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Silesian University of

Technology

Poland

Editorial Office

MDPI

St. Alban-Anlage 66

4052 Basel, Switzerland

This is a reprint of articles from the Special Issue published online in the open access journal

Energies (ISSN 1996-1073) (available at: https://www.mdpi.com/journal/energies/special issues/

energy intelligent transportation).

For citation purposes, cite each article independently as indicated on the article page online and as

indicated below:

LastName, A.A.; LastName, B.B.; LastName, C.C. Article Title. Journal Name Year, Volume Number,

Page Range.

ISBN 978-3-0365-4453-3 (Hbk)

ISBN 978-3-0365-4454-0 (PDF)

© 2022 by the authors. Articles in this book are Open Access and distributed under the Creative

Commons Attribution (CC BY) license, which allows users to download, copy and build upon

published articles, as long as the author and publisher are properly credited, which ensures maximum

dissemination and a wider impact of our publications.

The book as a whole is distributed by MDPI under the terms and conditions of the Creative Commons

license CC BY-NC-ND.



Contents

About the Editors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

Albert Y. S. Lam, Bogusław Łazarz and Grzegorz Peruń
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1. Introduction

With the Internet of things and various information and communication technologies,
a city can manage its assets in a smarter way, constituting the urban development vision of
a smart city. This facilitates a more efficient use of physical infrastructure and encourages
citizen participation. Smart energy and smart mobility are among the key aspects of the
smart city, in which the electric vehicle (EV) is believed to take a key role. EV adoption in
the market can clearly provide supporting evidence. When comparing to 2019, the 2020
global EV stock showed a 43 % increase, hitting the 10 million mark.

EVs are powered by various energy sources or the electricity grid. With proper schedul-
ing, a large fleet of EVs can be charged from charging stations and parking infrastructures.
Although the battery capacity of a single EV is small, an aggregation of EVs can perform as
a significant power source or load, constituting a vehicle-to-grid (V2G) system. V2G refers
to a system allowing EVs to communicate with the power system for demand response
services by either discharging their excessive energy to the grid or by being charged with
the excessive electricity from the grid. Besides acquiring energy from the grid, in V2G, EVs
can also support the grid by providing various demand response and auxiliary services. We
can reduce our reliance on fossil fuels and utilize renewable energy more effectively. V2G
enables EVs to store electricity generated from renewable energy sources so as to overcome
the intermittency of renewable due to different weather and time of day conditions.

The EV market is growing very quickly, and there will likely be an abundance of EVs
running on the road in the near future. EVs are also important building blocks to developing
intelligent transportation systems. The self-control of autonomous vehicles (AVs) and the
systematic remote control of AV fleets will bring smart energy and intelligent transportation
systems into new dimensions. We can develop a public transportation system with AVs, in
which a fleet of AVs is managed to accommodate transportation requests, offering point-
to-point services with ride sharing. AVs can also participate in V2G to support various
V2G services. Through properly coordinating AVs in appropriate parking facilities, it has
been shown that AVs can facilitate better V2G services with higher efficiency. On the other
hand, an energy delivery system can be built upon the transportation network and EVs
utilized as energy carriers to transport energy over a large geographical region. With proper
routing, energy can be transmitted from sources to destinations as in a packet-switched
network. Such a system can complement the power network and enhance the overall
power system performance.

This Special Issue contributes to the smart energy and intelligent transportation system
agenda through enhanced scientific and multi-disciplinary knowledge intended to improve
performance and deployment by bringing some focus to electric and autonomous vehicles
in order to meet technical, socio-economic, and environmental goals, as well as for energy
security. We are particularly interested in investigating how smart energy technologies
contribute to intelligent transportation systems, and vice versa.

Energies 2022, 15, 2900. https://doi.org/10.3390/en15082900 https://www.mdpi.com/journal/energies1
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2. Summary of the Contributions

Research works by scholars from divergent backgrounds are included in this Special
Issue. Refs. [1,2] focus on the health of the vehicle and road–rail accidents. Ref. [3]
investigates the control of charging in V2G while [4] develops an EV recommendation
system. Ref. [5] studies the loading hub placement in an electric bicycle-oriented city
logistic system.

Ref. [1] makes use of artificial neural networks in diagnosing the technical condition
of driving systems operating under variable conditions, in which the effects of temperature
and load variations on the values of diagnostic parameters were taken into consideration. A
new approach is proposed to train the network using a learning set from the efficient system
only. The responses to new data from the undamaged system are compared to the response
to data recorded for three damage states: misalignment, unbalance, and simultaneous
misalignment. As a normalized measure of the deviations, a diagnostic parameter for the
faulted system is derived from the result for the undamaged condition.

Ref. [2] focuses on assessing the likelihood of the occurrence of various effects of
road–rail accidents in different selected situations.The specificity of the road–rail accidents
requires a separate characteristic to categorize types of incidents and to specify the affecting
factors with an assessment of the strength of this impact. Classification trees are adopted to
deal with the ordinal form of the dependent variables. The experiment results facilitate
the characterization and assessment of the danger and constitute guidelines for taking
preventive actions.

The massive adoption of EVs creates an unprecedented energy load for the power
system, in which the stability and quality are compromised by multiple simultaneously
connected vehicles, especially on a local distribution level. In [3], a choice-based pricing
algorithm is proposed to indirectly control the charging and V2G activities of EVs in
non-residential facilities. Two metaheuristic methods are applied to solve the proposed
optimization problem with a comparative analysis for performance evaluation.

Due to the Act on Electromobility and Alternative Fuels, EVs are becoming popular
in Poland, in which local government units and state administration are expanding their
EV fleets. The expansion of the fleet should be well-planned and supported by economic
analyses. Ref. [4] develops an EV recommendation system which meets the needs of the
local and state administration to the greatest extent. A multi-criteria decision analysis
method is designed with the Monte Carlo method, and it allows of promoting more
sustainable vehicles with high technical, economic, environmental and social parameters.

Electric cargo bicycles are popular transport for last-mile goods deliveries in urban
areas with restricted traffic. In a cargo bike delivery system, loading hubs serve as inter-
mediate points between vans and bikes ensuring loading, storage, and e-vehicle charging
operations. The loading hub placement a key problem for designing city logistic systems,
which heavily rely on electric bicycles. In [5], the authors propose a mathematical model by
considering consignees and loading hubs as vertices in the graph constituting a transport
network. This allows determination of the location of a loading hub under stochastic
demands for transport services in the closed urban area.
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the manuscript. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Pawlik, P.; Kania, K.; Przysucha, B. The Use of Deep Learning Methods in Diagnosing Rotating Machines Operating in Variable
Conditions. Energies 2021, 14, 4231. [CrossRef]
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Abstract: This paper presents the use of artificial neural networks in diagnosing the technical
condition of drive systems operating under variable conditions. The effects of temperature and load
variations on the values of diagnostic parameters were considered. An experiment was conducted
on a testing rig where a variable load was introduced corresponding to the load of the main gearbox
of the bucket wheel excavator. The signals of vibration acceleration on the gearbox body, rotational
speed, and current consumption of the drive motor for different values of oil temperature were
measured. Synchronous analysis was performed, and the values of order amplitudes and the
corresponding values of current, speed, and temperature were determined. Such datasets were the
learning vectors for a set of artificial deep learning neural networks. A new approach proposed
in this paper is to train the network using a learning set consisting only of data from the efficient
system. The responses of the trained neural networks to new data from the undamaged system were
performed against the response to data recorded for three damage states: misalignment, unbalance,
and simultaneous misalignment and unbalance. As a result, a diagnostic parameter as a normalized
measure of the deviation of the network results was developed for the faulted system from the result
for the undamaged condition.

Keywords: condition monitoring; vibroacoustic diagnostics; gearbox; power transmission systems;
neural networks; deep learning

1. Introduction

Monitoring systems using vibration signals are often used in the industry to diagnose
the technical condition of machinery. Systems based on parameters such as RMS (root mean
square), crest factor, and peak of vibration signal are perfect for machines operating in
constant operating conditions, where one can assume threshold values for these parameters,
whereby exceeding them signals a system fault. However, these parameters are not
sufficient to diagnose machines operating under variable loads caused by varying operating
conditions [1]. Variable loading causes a change in speed, which makes diagnosis difficult
using classical methods based on spectral analysis of the time signal. Synchronous methods
are used in the diagnosis of machines operating at variable speed, which are based on the
synchronization of the signal carrying diagnostic information with the rotational speed of
the tested object [2–5]. However, varying operating conditions such as load or operating
temperature can also affect the amplitude of the diagnostic signal [6–10]. An increase in
amplitude due to a variable load can be misinterpreted by monitoring systems. Therefore,
this impact must be considered in the monitoring process. A previous study [1] investigated
the effect of load and speed on the amplitude values of the characteristic components and
proposed a method for scaling these parameters. It is also possible to find papers on
diagnosing a planetary gearbox operating under variable conditions, which addressed

Energies 2021, 14, 4231. https://doi.org/10.3390/en14144231 https://www.mdpi.com/journal/energies5
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the problem of changing parameter values from load [7,11]. The solution to this problem
can be realized using artificial neural networks [12–15]. The authors of [16] presented a
one-dimensional multi-scale domain adaptive network in bearing diagnostics for different
degrees of load. The preliminary preparation of diagnostic signals is important in using
neural networks to diagnose machines working in variable conditions. In [17], higher-order
spectral analysis and multitask learning were used. However, in [18], a method of learning
a convolutional network was proposed using a labeled date and pseudo-labeled date. The
measurement of drive motor current in diagnosing gear damage and bearings [19–21] is
increasingly being used. The presented cases used artificial neural networks as classifiers.
In the learning process, vectors for the undamaged and damage states were used as
inputs of the network. However, in industrial conditions, especially in the heavy industry,
there are no measurement data registered during damage because not all machines are
monitored, and the drive system components are produced in small amounts. Moreover, it
is impossible to predict all types of faults and introduce them into the network learning
process. Accordingly, we propose a solution based on learning neural networks with data
recorded only during fault-free operation, which analyzes the responses of the trained
networks to signals recorded when faults are introduced.

This paper presents the use of artificial neural networks in diagnosing the technical
condition of drive systems operating under variable conditions. The effects of temperature
and load variations on the values of diagnostic parameters were considered. An experiment
was conducted on a testing rig, where a variable load was introduced, corresponding to
the load of the main gearbox of the bucket wheel excavator. The vibration acceleration,
speed, and current signals feeding the drive motor were recorded for different values of oil
temperature. Synchronous analysis was performed, and the values of order amplitudes
and the corresponding values of current, speed, and temperature were determined. Such
datasets were the learning vectors for a set of artificial neural networks.

This article presents a new approach to diagnosing machines working in variable
conditions. Instead of analyzing the order spectrum, an analysis of the amplitudes of
orders as a function of changes in speed, current, and temperature was carried out. A new
approach proposed in this paper is to train the network using a learning set consisting only
of data from the efficient system. In the next step, the behavior of such a trained neural
network on new data from the undamaged system was investigated in comparison with
the response to data recorded during three fault conditions of the drive system. As a result,
a diagnostic parameter as a normalized measure of the deviation of the network results
was developed for the faulted system from the results for the fault-free condition.

2. Materials and Methods

2.1. Testing Facility Description

The testing rig (Figure 1) consisted of a TRAMEC EP 90/1 planetary gearbox driven
by an electric motor controlled by a frequency converter. The load consisted of a second
induction motor connected to the gearbox by a jaw coupling. The load motor was also
controlled by a frequency converter, which allowed setting any load function of the system.

Vibration acceleration on the planetary gear case was measured using a PCB 356B08
triaxial acceleration sensor, the temperature was measured using an LM35 sensor, speed
was measured using a laser tachometer, and electrical current was measured using an
ACS714 sensor. All measurements of the experiment were obtained using a specially
built measuring system based on the PXI platform (PCI Extension for Instrumentation).
The platform comprised the PXI Trigger Bus, which allows measurement synchronization
between individual measuring cards.

6



Energies 2021, 14, 4231

 

Figure 1. Laboratory bench, (1) drive motor, (2) planetary gearbox, (3) load motor, (S1) acceleration
sensor, (S2) temperature sensor, (S3) tachometer, (5) frequency inverter for the drive motor, and (6)
frequency inverter for the load motor.

2.2. Diagnostic Experiment

Measurements were made for four drive system conditions, which are shown in
Table 1.

Table 1. Designation and measurement time for the different conditions of the drive system.

Marking Machine Condition Measurement Time

F0 Undamaged 30 min

F1 Misaligned 30 min

F2 Unbalanced 30 min

F3 Misaligned and unbalanced 30 min

The misalignment condition (F1) consisted of placing 0.5 mm thick shims under the
front feet of the drive motor. The unbalance condition (F2) was introduced by placing
additional mass (13 g) on the output shaft coupling. Condition F3 consisted of the simul-
taneous introduction of misalignment and unbalance. Signals of 30 min duration were
recorded for each condition. Measurements were carried out when warming up a system
for a temperature in the range of 35–40 ◦C.

The variable load changes from 1.3 Nm to 4.0 Nm were entered into the system. This
caused a change in the rotational output shaft speed of 730–758 RPM and in the RMS value
of drive motor current in the range of 2.48–2.51 A. The system was subjected to a variable
load corresponding to the load occurring on the main gear of the bucket wheel excavator.
The reference signal was obtained from the KWK 1500 s excavator main gear monitoring
system, the subject of the patent in [22]. The main gear of the bucket wheel excavator
is a bevel-planetary gearbox that drives a bucket wheel. The input of the bucket in the
ground causes the system load. With a fixed set voltage value on the drive engine, the load
causes a change in speed and vibration amplitude. Diagnosing the main gear of the wheel
excavator has already been addressed in [7,11,23], which investigated the signals coming
from industrial conditions. However, in industrial conditions, a controlled experiment
with given damage cannot be carried out. Therefore, the experiment was carried out in
laboratory conditions. The variable load-induced velocity change signals recorded under
industrial conditions were scaled up to the capabilities of the laboratory bench.

7
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2.3. The Method of Determining Diagnostic Parameters

The proposed signal analysis method is based on the order analysis algorithm. The
order spectrum is determined using a method based on resampling the vibration accel-
eration signal against the input shaft speed. Figure 2 shows the schematic of the order
analysis algorithm. In the first phase, the tachometer signal is subjected to an interpolation
procedure using a cascaded integrator–comb filter (CIC). Next, on the basis of filtered
tachometer signal, a vibration signal resampling procedure is performed to determine the
vibration signal against the rotation angle (even angle signal). In the resampling method,
time samples are converted to angle samples. The time samples are samples of the physical
signal that are equally spaced in time. The angle samples are samples that are equally
spaced in the rotation angle. The signal resampled as such can be subjected to a fast
Fourier transform (FFT), the result of which is an order spectrum. An order spectrum
represents amplitude as a function of order rather than as a function of frequency. The
orders correspond to multiples of the rotational frequency of the shaft on which the speed
measurement is performed [24]. In the case under consideration, the rotational speed
measurement is carried out at the output shaft of the gearbox.

Figure 2. Schematic of the order analysis algorithm [24].

In addition to the averaged order spectrum, the time course of the amplitudes of
the individual orders can be obtained from the order analysis. Information about the
technical condition of the tested object can be obtained by monitoring the amplitudes of the
characteristic orders. However, the change in amplitudes can also be caused by a change
in the load on the system [6,25]. The load can be measured indirectly by measuring the
electrical current consumption of the drive system. However, it is not always possible to
accurately measure electrical current in industrial conditions, especially a measurement
synchronized with a vibration measurement. However, in industrial settings, the driving
motor is often supplied with a constant voltage and frequency, and any variation in speed
is due to a change in load. The relationship between load change and speed recorded on the
testing rig is shown in Figure 3. The rotational speed decreased as a result of the increase
in the system load, while the load increase resulted in a higher power consumption by the
driving motor.

In the test object, the rotational speed was determined by measuring the keyphasor
signal. This measurement was synchronized with the vibration acceleration measurement,
allowing load variations to be included in diagnostic estimates, such as characteristic
component amplitudes. Figure 4 shows the speed waveform of the input shaft of the
diagnosed object during operation under load. Speed changes were caused by changes
in the system load because the frequency and voltage applied to the motor driving the
system were constant. A similar case can be encountered in industrial settings. In the
experiment conducted, rotational speed variation waveforms recorded on the main gear
drive system of a bucket wheel excavator were used. The shape of the rotational speed
variation waveform shown in Figure 4 corresponds to the waveform recorded on the main
gear of a wheeled excavator operating in a brown coal mine.

8
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Figure 3. The relationship between rotational speed and current consumption of the drive motor.

Figure 4. Input shaft rotational speed waveform.

Changes in rotational speed associated with varying load resulted in a significant
change in the amplitude of the characteristic orders. The value of the order amplitude
for the loaded and unloaded system changed significantly, hindering the diagnosis based
on this parameter. Figure 5 shows the meshing order amplitude (no. 72) as a function
of rotational speed for the efficient system, which varied under load. For maximum
rotational speed value, a small load was applied to the system. As the load increased, the
speed decreased, while the value of the meshing order amplitude increased because of the
interaction between the teeth increasing.

9
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Figure 5. Dependence of order no. 72 amplitude as a function of speed.

The values of ordinate amplitudes are also affected by temperature, and this was
shown in [9]. Diagnostics should be performed for a constant temperature or by considering
its influence during inference. Therefore, temperature waveforms measured on the gearbox
body were also recorded.

Changes in amplitudes of characteristic orders in the order spectrum are usually ana-
lyzed in vibroacoustic diagnostics. According to the literature [6,26–28], individual faults
or installation defects are characterized by changes in the amplitudes of the corresponding
orders, e.g., a change in the amplitude of order no. 1 is symptomatic of unbalance, while
a change in the order corresponding to the number of claws of the jaw coupling is due
to system misalignment. Therefore, each order obtained from the order spectrum was
considered separately because the characteristics of the order amplitudes as a function of
load (rotational speed) would change with failure for each order in a different way [25].

As a result of the order analysis, 100 consecutive orders of vibration acceleration
recorded in the direction parallel and perpendicular to the shaft axis were obtained. Current,
temperature, and speed were recorded simultaneously. Signals of 30 min duration were
recorded for each condition. Next, all the recorded signals were divided into time frames
of 30 s each. Sets of signals of this length were sequentially subjected to the processing
algorithm shown in Figure 6. The processing time of 30 s signals was shorter than 30 s;
therefore, the algorithm can be implemented in continuous monitoring systems.

This procedure was performed for data recorded during correct operation (F0) and for
signals recorded for individual faults F1, F2, and F3.

First, the vibration signal was subjected to order analysis. The results of this analysis
were the waveforms of order amplitudes and speed over time. Figure 6 shows the case
for one order. The waveforms of order amplitude, speed, temperature, and current were
then sorted in ascending order with respect to speed. The results of such sorting were the
courses of these parameters relative to the rotation speed. The next step was to determine
the moving average for N consecutive elements. Averaging was used to reduce data scatter.
The data thus prepared were input vectors for artificial neural networks.

10



Energies 2021, 14, 4231

Figure 6. Measurement signal processing algorithm for a single order.

2.4. Using the Artificial Neural Network for Condition Assessment

Deep learning artificial neural networks were used to evaluate the condition of the
diagnosed drive train. The idea behind the method was to design the learning process of
the neural network such that it detects abnormal situations in systems where faults have
not historically occurred or have occurred so infrequently that typical classifiers based
on supervised learning could not be used. Accordingly, only data from the undamaged
system were used for the learning process.

In addition, it was considered that neural network learning is more efficient when
there are significantly fewer outputs than the input data variables [29–31]. For this reason,
instead of one model evaluating all 100 orders simultaneously, a separate model was built
for each order.

From a diagnostic perspective, the best solution would be to reduce the diagnostic
decision to a single numerical parameter. Therefore, the system was designed to produce
a synthetic diagnostic parameter for each order by exploiting the ability of deep neural
networks to recognize patterns autonomously [32,33]. Moreover, some theoretical results
suggested that network-based systems can lead to proper robustness [34].

The input data vector for each network were xk ∈ R5, with its components including
the following values, in respective order:

• output shaft rotational speed;
• oil temperature;
• the current drawn by the motor;
• amplitude values of order k in the x-axis;
• z-axis amplitude values of the order k;

The input layer, therefore, consisted of five neurons, followed by two hidden
layers [35,36]:

• a 30-neuron layer with RELU activation function and a drop-out layer with a drop
rate of 20%;

• a 20-neuron layer with RELU activation function and a drop-out layer with a drop
rate of 10%.

The output layer of the individual networks consisted of a single neuron returning
a numerical value, which, for the correct state of the machine (F0), should return values
close to the constant value determined in the network learning stage. In the experiment
conducted, the conventional value of this constant was taken as m = 1.
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The expected effect of modeling was that the applied neural network should real-
ize some continuous transformation [32] Hk : R5 → R with the property described in
Equation (1).

Hk,i(xk,i) =

{
m + ε when xk,i ∈ F0
t(xk,i) when xk,i /∈ F0

, (1)

where t(xk,i) is the function from R5 in R with the property that |m + ε − t(xk)| is signifi-
cantly different from 0, xk,i ∈ F0 is the vector containing data from the undamaged system
for order k, xk,i /∈ F0 is the vector containing data from the faulty system (F1, F2, or F3) for
order k, i is the index of the input vector, m = 1.00, and ε ∼ N

(
0, σ2

0
)
.

This means that, if xk,i ∈ F0, then the value of the function Hk,i should be close to the
value of m = 1. However, if the vector xk,i corresponds to the operation of the defective
transmission, the neural network should return a value different enough from m such
that, taking into account the amount of variance, σ2

0 this difference could be detected by
statistical analysis. Since the transformation in Equation (1) is continuous, this guarantees
the stability of the network (similar values of the network response come from similar
input values). There are some papers where similar observations were made for obtaining
stabilization of randomized systems [37].

The primary task in constructing such an architecture is to avoid network overfitting.
Due to the fact that we only used the data of a well-functioning machine during the
network learning process, such a network may tend to adjust the weights in such a way
that, regardless of the output, it returns a response equal to the learned value (i.e., returning
a parameter close to m regardless of the input state). Therefore, the network training
process used as input a set of vectors xk,i associated with the state F0. On the other hand,
random values from the distribution N(m = 1, σ = 0.1) were generated as the output
vector. Adding a perturbation with a small variance to the output vector, as early as at
the network learning stage, reduced the risk of trivializing the function realized by the
neural network.

Further reducing the risks associated with overfitting involved the following steps:

• using drop-out layers in the network architecture and randomizing the network by
randomly deactivating neurons during learning;

• the learning set was randomly divided into a learning set and a validation set (which
the network did not formally use for learning).

In addition, the use of these operations renders the network training process nonde-
terministic, such that the process of training the network for each order can be repeated
independently, each time obtaining slightly different values of the weights in each layer,
for the same input data. One can notice that this feature of the training process can be ex-
ploited to implement the bagging technique. The learning process was, therefore, repeated
120 times, resulting in 120 network models for each order. This approach provided a key
mechanism to reduce the risk of system overfitting, as it dispersed this risk across multiple,
independent models. In order to achieve that dispersion, evaluation values for 120 models
were considered instead of considering the evaluation of a single model. The algorithm of
the learning process is shown in Figure 7.
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Figure 7. Learning process algorithm.

2.5. Verification of Artificial Neural Network Functionality

The functionality of the obtained model was verified after the network learning
process. The responses of the proposed solution were investigated when the vectors
obtained from the measurements for the machine fault conditions F1, F2, and F3 and for the
correct operation state F0 were input. Vectors that were not used during network learning
were used to verify the undamaged conditions.

The network response values Hk,i were determined for all orders, k ∈ {1...100}. Next,
the average value was determined Ĥk for each order according to the following relationship:

Ĥk =
1
n

n

∑
i=0

Hk,i(xk,i), (2)

where n is the number of input vectors, i is the index of the input vector, and Hk,i(xk,i) is
the i-th output value of the network for the k-th order.

This process was then repeated for 120 trained models. The 120 values of the parameter
Ĥk were obtained for each order. This process was repeated for each condition of the tested
drive train. The process of analyzing the functionality of the learned neural network for
the F1 condition is shown in Figure 8.

For verification, ratings for states with damage were compared to ratings for a defect-
free system. Verification of whether the average of 120 evaluations Ĥk for each order
differed significantly from the average of 120 evaluations Ĥ0 for condition F0 was con-
ducted using an ANOVA test.

Two independent input datasets of the undamaged system were used when testing the
response for the undamaged system. This approach allowed not only determining whether
there was a statistically significant difference between the network response to the fault
condition and the response to the no-fault condition, but also measuring the magnitude of
the observed discrepancy in a normalized way using the parameter ω2. According to the
recommendations [38], negative values of this coefficient, which occur when the size of
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the noise exceeds the size of the effect, were treated as zeros. Taking this correction into
account, the value ω2 is described by Equation (3).

ω2 =

{
SSe f f ect−d fe f f ect ·MSerror

MSerror+SStotal
, when SSe f f ect > d fe f f ect·MSerror

0, otherwise
, (3)

where SSe f f ect is the sum of squares of the effect from the ANOVA test, d fe f f ect is the
number of degrees of freedom of the effect from the ANOVA test, SStotal is the total sum of
squares from the ANOVA test, and MSerror is the mean squared error of the residuals from
the ANOVA test.

 
Figure 8. Algorithm of neural network functional analysis process for the F1 condition.

The parameter ω2 allows a numerical evaluation normalized to the interval [0, 1]
of the deviation of the results obtained from the neural networks for a given technical
condition from the result for the condition without faults. The values of the parameter ω2

can be classified by determining the power of the effect on the Cohen scale [39] (Table 2).

Table 2. Cohen Scale.

Range of ω2 The Power of the Effect

0–0.1 No effect

0.1–0.3 Little effect

0.3–0.5 Moderate effect

0.5–1.0 Large effect

3. Results and Discussion

3.1. Results of the Order Analysis

When analyzing the spectrum of orders of vibration acceleration signals recorded
during machine operation at variable load (Figure 9and Figure 11), a significant standard
deviation can be observed for the gear coupling band (orders around coupling order
no. 72). This scatter is caused by the high dynamics of the load (Figure 4) applied to the
planetary gearbox.
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Figure 9. Order spectra of vibration acceleration signal (vertical direction) for the undamaged system (black) and for the
misaligned system (red).

Figure 9 shows the spectra of vibration acceleration orders (vertical direction) for the
system without damage (black) and with the introduced misalignment (red).

In the case of misalignment, one would expect an increase in the amplitude of order
no. 4 corresponding to the number of clutch teeth. However, there is a noticeable increase
in amplitude near the coupling band—orders no. 60 to 70. On the other hand, observing the
dependence of the amplitude of the order no. 4 as a function of rotational speed (Figure 10),
we can observe more than a twofold increase for the speed equal to 745 RPM and for the
speed over 755 RPM. Moreover, in the range of 748–755 RPM, the values for the amplitudes
for the misaligned system are smaller than those for the efficient system. On the order
spectrum, the difference is smaller because the order spectrum represents a value averaged
over a period of over a dozen rotations.

Figure 10. Order no. 4 amplitudes of vibration acceleration signal (vertical direction) versus rotational speed for the system
without damage (black), for the misaligned system (red), and for the unbalanced system (orange).
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Comparing the order spectrum from the undamaged system with the order spectrum
from the imbalanced system, it is difficult to see the increase in order no. 1 amplitude,
which is symptomatic of this damage (Figure 11). These differences are relatively small
when compared to the values of the coupling order amplitudes. However, the order no. 1
has a much smaller standard deviation than the orders in the coupling band of Figure 11.

Figure 11. Order spectra of vibration acceleration signal (vertical direction) for the undamaged system (black) and for the
unbalanced system (red).

A much smaller scatter of amplitudes of the order no. 1 for unbalance than for
misalignment is also seen in Figure 12. However, the amplitude for the alignment signal
increased for the entire speed range by a value of 0.04 m/s2, constituting more than 70% of
the initial value.

Figure 12. Order no. 1 amplitudes of vibration acceleration signal (vertical direction) versus rotational
speed for the system without damage (black), for the misaligned system (red), and for the unbalanced
system (orange).

In the case of variable load with a dynamic character causing speed changes shown
in Figure 4, the analyzed damage is hardly visible in the order spectrum. Significant
changes are visible only after careful analysis of the dependence of the amplitudes of the
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individual orders on the changes in rotational speed, which are caused by the change in
load. Therefore, it is necessary to take into account the changes in ordinate amplitudes due
to loading in the diagnosis process.

Temperature also has a significant effect on the values of order amplitudes in the
interlocking band. Figure 13 shows the order spectra of vibration acceleration for the
signal recorded for different temperatures. There is a clear increase in order amplitudes
occurring with increasing temperature. This confirms the need to consider the temperature
in vibroacoustic diagnostics.

Figure 13. Order spectra of vibration acceleration signal (vertical direction) for a system without damage for different
temperatures.

3.2. Results Obtained from Deep Learning Neural Networks

(Figures 14–16) show the values of the ω2 parameter for each order. This parameter
is a numerical evaluation of the deviation of the results obtained from the set of neural
networks for a given fault from the results obtained for the no-fault condition.

Figure 14. Values of the ω2 parameter for individual orders—the system in the F1 condition (misalignment).
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Figure 15. Values of the ω2 parameter for particular orders—the system in the F2 condition (unbalanced).

Figure 16. Values of the ω2 parameter for individual orders—the system in the F3 condition (misalignment and unbalance).

First, the control data from the measurement for the undamaged system (F0) were
provided to the input of the trained networks. These values for all orders were 0, indicating
no effect according to the Cohen scale.

Figure 14 shows the values of the parameter ω2 for the misalignment condition (F1).
A large effect size can be observed for orders no. 1, 2, 3, 4, and 68, while a moderate effect
can be observed for orders near the coupling order. The increase in the parameter for order
no. 4 is most reasonable and is related to the number of teeth in the coupling used. On
the other hand, large values of the ω2 parameter for the coupling band may be due to
increased inter-tooth interaction during system misalignment.

For the unbalanced condition (F2) (Figure 15), a large effect of the Cohen scale is
observed only for order no. 1. The values of the ω2 parameter for the other orders indicate
no effect (differences between the response of the network to the condition F2 and F0). This
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is consistent with theory because unbalance affects the order no. 1 amplitude values with
respect to the shaft on which it occurs.

In the case of the F3 condition (Figure 16), where both faults were introduced, similar
values of the ω2 parameter can be observed as in the F1 condition. However, the effect of
unbalance is also evident by the increased amplitude for the parameter for order no. 1.

4. Conclusions

This paper presents the problem of diagnosing machines operating under variable
conditions. A diagnostic experiment was conducted on a testing rig for diagnosing a
planetary gearbox. The effects of varying load and oil temperature on vibration acceleration
signals measured on the body of a planetary gear that was part of the drive system
were analyzed.

For the applied variable load, the use of order spectrum was not sufficient to diagnose
the introduced drive train damages. This paper shows that the analysis of the dependence
of the order amplitudes on the changes in rotational speed (caused by varying load) allows
observing significant changes.

A method to evaluate the drive train technical condition using a set of artificial deep
learning neural networks was proposed. The input data to the network were values of
order amplitudes, temperature, current, and corresponding values of rotational speed. A
new approach was proposed to train a set of neural networks using only data recorded for
a drive train without faults. The response of the network to given sets of data from a system
with introduced faults, i.e., misalignment, unbalance, and simultaneous misalignment and
unbalance, was then tested.

The ω2 parameter was proposed to evaluate the deviation of the network results for
introduced faults from the result for the no-fault condition. This parameter is determined
for each order individually. Therefore, damage can be identified on the basis of previous
diagnostic knowledge by observing the orders carrying information about each damage.

The use of artificial deep learning neural networks made it possible to take into
account the effects of varying load and temperature on the values of the amplitudes of the
characteristic orders.
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8. Peruń, G.; Łazarz, B. Modelling of Power Transmission Systems for Design Optimization and Diagnostics of Gear in Operational
Conditions. Solid State Phenom. 2014, 210, 108–114. [CrossRef]

9. Pawlik, P. The Diagnostic Method of Rolling Bearing in Planetary Gearbox Operating at Variable Load. Diagnostyka 2019, 20,
69–77. [CrossRef]

10. Pawlik, P. The Use of the Acoustic Signal to Diagnose Machines Operated Under Variable Load. Arch. Acoust. 2020, 45, 263–270.
[CrossRef]

11. Bartelmus, W.; Zimroz, R. A New Feature for Monitoring the Condition of Gearboxes in Non-Stationary Operating Conditions.
Mech. Syst. Signal Process. 2009, 23, 1528–1534. [CrossRef]

12. Lipinski, P.; Brzychczy, E.; Zimroz, R. Decision Tree-Based Classification for Planetary Gearboxes’ Condition Monitoring with the
Use of Vibration Data in Multidimensional Symptom Space. Sensors 2020, 20, 5979. [CrossRef]

13. Popiołek, K.; Pawlik, P. Diagnosing the Technical Condition of Planetary Gearbox Using the Artificial Neural Network Based on
Analysis of Non-Stationary Signals. Diagnostyka 2016, 17, 57–64.

14. Dabrowski, D. Condition Monitoring of Planetary Gearbox by Hardware Implementation of Artificial Neural Networks. Meas. J.
Int. Meas. Confed. 2016, 91, 295–308. [CrossRef]

15. Łazarz, B.; Wojnar, G.; Czech, P. Early Fault Detection of Toothed Gear in Exploitation Conditions. Eksploat. i Niezawodn. Maint.
Reliab. 2011, 1, 68–77.

16. Wang, K.; Zhao, W.; Xu, A.; Zeng, P.; Yang, S. One-Dimensional Multi-Scale Domain Adaptive Network for Bearing-Fault
Diagnosis under Varying Working Conditions. Sensors 2020, 20, 6039. [CrossRef]

17. Hasan, M.J.; Sohaib, M.; Kim, J.M. A Multitask-Aided Transfer Learning-Based Diagnostic Framework for Bearings under
Inconsistent Working Conditions. Sensors 2020, 20, 7205. [CrossRef]

18. Zhang, K.; Wang, J.; Shi, H.; Zhang, X.; Tang, Y. A Fault Diagnosis Method Based on Improved Convolutional Neural Network
for Bearings under Variable Working Conditions. Measurement 2021, 182, 109749. [CrossRef]

19. Azamfar, M.; Singh, J.; Bravo-Imaz, I.; Lee, J. Multisensor Data Fusion for Gearbox Fault Diagnosis Using 2-D Convolutional
Neural Network and Motor Current Signature Analysis. Mech. Syst. Signal Process. 2020, 144, 106861. [CrossRef]

20. Li, F.; Pang, X.; Yang, Z. Motor Current Signal Analysis Using Deep Neural Networks for Planetary Gear Fault Diagnosis. Meas. J.
Int. Meas. Confed. 2019, 145, 45–54. [CrossRef]

21. Han, T.; Yang, B.S.; Choi, W.H.; Kim, J.S. Fault Diagnosis System of Induction Motors Based on Neural Network and Genetic
Algorithm Using Stator Current Signals. Int. J. Rotating Mach. 2006, 2006. [CrossRef]
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Abstract: A special element of road safety research is accidents at the interface of the road and rail
system. Due to their low share in the total number of incidents, they are not a popular subject of
analyses but rather an element of collective studies, whereas the specificity of the road–rail accidents
requires a separate characteristic, allowing, on the one hand, to categorize these types of incidents,
and on the other, to specify the factors that affect them, along with an assessment of the strength of
this impact. It is important to include in such analyses all potential predictors, both qualitative and
quantitative. Moreover, the literature considers most often a number of accidents while, according
to the authors, it does not fully reflect the scale of the danger. A better evaluation would be the
victim’s degree of injury. Therefore, the purpose of this article is to assess the likelihood of occurrence
of various effects of road–rail accidents in the aspect of selected factors. Due to the ordinal form
of the dependent variable, the classification trees method was used. The results obtained not only
allow the characterization and assessment of the danger but also constitute guidelines for taking
preventive actions.

Keywords: road–railway accidents; classification trees; road safety; transport means; accidents victims

1. Introduction

Railroad transport safety is an important factor taken into account when evaluating
the operation of this branch of transport. Due to the importance, scope and consequences
for society and economy of the low level of traffic safety, it is the subject of many stud-
ies and analyses and is systematically evaluated [1–3]. According to the latest annual
reports/statistics from the International Union of Railways (UIC), the number of railroad
accidents is decreasing [4,5]. The European Union Agency for Railways (ERA) reports are
similarly optimistic. The latest reported safety level is historically the highest, although
ERA points out that while safety levels have steadily improved, the rate of improvement
has slowed down [6].

World statistics are derived from research, and thus, the presented trends are very
important for decision-making also at the national level. It should be noted that the
level of safety should be shaped primarily at the local level. In Poland, according to
the latest data [7], both the overall number of railroad accidents and fatalities decreased.
However, the rates of accidents at railroad crossings have not decreased. For example,
in 2019, 11 more people died there than the year before. This shows that despite the
overall positive indicators (both at the global and national level), there are areas for safety
improvement and analysis in a smaller scope, in this case concerning only road–railway
crossings. This became the genesis of this publication. Additionally, the UIC report shows
that at the international level, railway crossing accidents account for as much as 15% of
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all diagnosed causes of railroad accidents, being the second most common cause (after
persons trespassing on railroad infrastructure) estimated at 75% [5]. This further supports
the analysis presented in the article. Another important argument is that, according to the
ERA report [6], the overall level of safety at railroad crossings in Europe has improved.
The average annual decrease in accidents between 2010 and 2018 was 3%, and 4% for
fatalities. This shows that Poland does not fit into the general trend in Europe in this regard.
Therefore, detailed analyses for the country are necessary.

Rail–road level crossings are an important element of the road infrastructure, enabling
an intersection of the road and rail vehicles’ tracks. There are over 14,000 such intersections
in Poland [8] at which, in the period under investigation (the years 2014–2020), almost
8000 incidents (collisions and accidents) were recorded. Approximately 259 people were
killed, and 404 were injured. Such accidents, apart from the tragic consequences, are
associated with high costs, especially regarding the repair of rail vehicles. That is why
the research is important, aimed to increase the level of safety and reduce the scale of
the danger.

The accidents at the meeting point of road and rail transport are not a popular subject
of analyses because they are relatively rare. This is shown in Figure 1, which shows
the number of total road accidents during the study period and the number of road–
railway accidents. The differences are so large that two scales had to be used to make the
figure visible.

Figure 1. Number of total traffic accidents and road–railway accidents during the studied period.

Calculations show that road–rail accidents account for only 5% of all traffic incidents.
Therefore, the interest in this issue is mainly due to the potential severity of their conse-
quences. The research in the literature concerns, for example, predicting the likelihood of
accidents, injuries and fatalities using logistic regression [9]. Ghomi and others in [10] used
the ordered probit model, CART and association rules to evaluate the factors that most
strongly affect the risk of an accident, which turned out to be train speed, age and gender
of the incident participant.

The large-scale study was conducted in [11] and in [12]. The first concerns the analysis
of the railroad level crossings in Great Britain over 64 years (1946–2009), while the second
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one concerns Australia (Victoria) in the years 1969–1974. However, the mentioned research
is not new. The dynamic development of motorization, the constantly increasing number
of road users, as well as the development of road safety systems [13] make it necessary to
update them. This conclusion indicates that new analyses are needed in this area.

The accessibility of information does not help such analyses, which in many countries
is very limited [14,15], which is why the data from simulators are used [14].

The most frequently studied element are factors affecting the number of accidents or
their consequences. They differ from one country to another. In Israel [14], the warning
device category, vehicle traffic intensity, train traffic intensity, and visibility conditions were
considered important. In Ethiopia [16], the studies have shown that most accidents are
due to human error, followed by technical problems and non-compliance with operational
procedures. In [17], Ling et al. evaluated the derailments of Australian passenger trains as
a result of a collision with heavy road trucks.

Classification models are popular both for the analysis of railroad accidents and all
accidents in general [18,19]. The decision to use them is primarily influenced by the form
of the dependent variable, as well as the nature of the factors that may affect the number of
such incidents or the injuries caused by them. These are often qualitative variables, which
limits the availability of some methods of mathematical analysis.

Most commonly used are logistic regression and decision trees, as the most popular
tools for assessing the impact of qualitative predictors [20–24]. Decision trees were used,
for example, in the investigation of car accidents from the years 2005 to 2006 in Taiwan,
where the key factors determining the effects of injuries turned out to be driving under
the influence of alcohol, not using seat belts, type of vehicle, type of collision, number of
vehicles involved in the accident and location of the accident [25].

The authors [24] also used such a method to analyze 4-year observations regarding
road accidents in India, indicating that in order to improve safety on motorways, first
of all, it is necessary to properly design and control motorway entrances and limit the
speed achieved by vehicles. The CART algorithm was used to investigate accidents in
2001 in Taiwan. This made it possible to evaluate the relationship between the severity of
injuries and driver characteristics, vehicle type and conditions during an accident. The
results indicate that the most important variable related to the severity of the collision is
the vehicle type. It has also been identified that pedestrians, motorcyclists and cyclists run
a greater risk of injury than other drivers in road accidents [26].

The logistic regression, in turn, was used in the study of falling asleep at the wheel
or fatigue as factors contributing to an accident [27]. In [20], the probability of death was
examined, indicating a significant impact of the location and cause of the accident. On
the other hand, the authors [28] used polynomial logistic regression to identify significant
factors of risk of accidents, indicating elements related to the road infrastructure, driver’s
characteristics and vehicle type.

Guided by the experiences resulting from reviewing the literature in terms of the
tools used and the research gap identified regarding the railroad accidents analysis, the
authors decided to use classification trees to evaluate factors influencing the effects of
such an incident. Additionally, other approaches like random forest [29,30] and boosting
technique [31–33] were used for improving the results obtained from the decision tree. All
research was performed in the R environment.

2. Data for the Study

In Poland, information on traffic incidents is collected by the Police in the Accident
and Collision Records System (SEWiK). Based on this, the Polish Road Safety Observatory
(POBR), operating at the Motor Transport Institute (ITS), develops databases that have
become the genesis of this study. The files made available contain a number of detailed
characteristics for each incident, including:

• Place and time of the incident,
• Type of incident: collision of vehicles, rear-end collision, overturning,
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• Consequences: fatalities, injured people (including slightly and seriously injured),
• Behavior of participants (drivers, passengers, pedestrians),
• Vehicle and road infrastructure condition,
• Atmospheric conditions (sun, rain, fog, strong wind), time of day and lighting (day,

night, darkness, dawn),
• Type and condition of the road (surface, signposting, traffic lights),
• Circumstances and causes of the incident.

This study uses factors related to:

• Date and time of the incident,
• Existence of traffic lights at a railroad level crossing,
• Geographical location of the accident (province),
• Type of area (built-up, undeveloped),
• Driver characteristics (age, driving under the influence of alcohol or other drugs),
• Type of the injured participant (pedestrian, driver),
• Type of vehicle involved in the incident (passenger car, truck, truck with semi-trailer,

motorcycle, motorcycle with an engine capacity of up to 125 cm3, moped, bicycle, bus,
agricultural tractor, train, emergency vehicle).

The data from 2014 to 2020 was examined. The total number of incidents per month,
with the participation of rail vehicles in this period, is shown in Figure 1 (green line).

Almost 11,000 people took part in these accidents, most of whom have not been
injured. Other victims, according to the type of injuries sustained, were divided into three
categories [34]:

• Fatal—people who died at the scene of the accident or within 30 days of the date of
the accident due to the injuries sustained,

• Seriously injured—persons suffered severe disability, a serious incurable illness or
long-term, life-threatening illness, permanent mental illness, complete or significant
permanent incapacity for work or permanent, significant deformation or deformity
of the body; this term also includes a person who suffered other injuries resulting in
violation of bodily functions or health disorder for a period of more than 7 days,

• Slightly injured—injuries other than listed above and causing a health disorder in the
period of no more than 7 days.

Due to the fact that almost 93% of participants in incidents did not suffer any injuries
during the period under investigation, it was decided to further analyze only those who
suffered health damage or died.

Results of the analysis of road traffic safety in Poland indicate that in the studied
period there were 8474 accidents and collisions. Participants in them were 10,960 people,
of which 210 died. This is less than 2% of all victims. For comparison, the total number of
all road accidents and collisions in this period was 219,863. As many as 18,527 people died
in them. Reducing the number of people injured in road accidents is the main goal of all
actions undertaken in the area of road safety improvement. For this reason, the authors
found it necessary to focus only on accidents and their worst effects. This will allow
identifying the most important causes (factors) of these accidents and thus the necessary
preventive actions (making the right decisions).

3. Decision Trees

We consider the feature Y (called the injured state), which depends on the value of the
features (independent variables) X1, . . . , Xm presented in the previous chapter. One of the
possible ways to determine the relationship between features is to construct a decision or
regression tree. In the presented case, the Y feature is qualitative, so in order to analyze
the impact of incident circumstances on the injured person’s condition, decision trees have
been used.

Let D =
{(

x(i), yi

)
: x(i) ∈ R1 × . . . × Rm , yi ∈ A, 1 ≤ i ≤ n

}
be the learning set.

For any 1 ≤ j ≤ m set Rj denotes the possible realization of Xj feature, but set A denotes
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the set of possible realizations of a response variable, where cardinality #A = h > 0
(power of the A set or the number of possible classes is equal h). For the i−th observation,
1 ≤ i ≤ n the vector x(i) ∈ R1 × . . . × Rm denotes the realizations of independent (input)
variables (usually feature values that influence to output variable) but yi ∈ A denotes the
value of the response variable. Our task is to define a model, where based on observations
x ∈ R1 × . . . × Rm we should predict a victim condition. To assess the features influence
on the sufferer state, we will apply the decision tree model.

The tree-based method consists of partition (splitting, division) of the feature space
S = R1 × . . . × Rm into a set of separable regions and fitting values of a response variable
to appropriate regions. Below, we consider a decision problem for response variable
Y. We split the entire S feature space into S1, S2, . . . , Sk regions, where Si ∩ Sj = ∅ for
1 ≤ i �= j ≤ k. Based on input vector x ∈ S, we predict the output variable Y as follows:

f (x) =
k

∑
j=1

cj Ij(x), (1)

where,

Ij(x) =
{

1, f or x ∈ Sj
0, f or x /∈ Sj

(2)

and value cj ∈ A for 1 ≤ j ≤ k denotes the most commonly occurring class of response
variable in the Sj region. From (1), we see that the main task during decision tree building
consists of splitting the entire space of features into separated regions.

The regression tree is usually presented in graphic form. The internal tree nodes
describe how the division was made, while the leaves correspond to the classes to which
the objects belong. The tree edges, in turn, represent the values of the features based on
which the division was made.

For each Sj region we estimate the classification rates 0 ≤ pj1, . . . , pjh corresponding to
elements from set A (possible realizations of response variable) where pj1 + . . . + pjh = 1.
The value pji represents the proportion of observations in the j−th region that are from the
i−th class. The classification error rate is a fraction of observations in this region that do
not belong to the most common class

errorj = 1 − max
1≤i≤h

pji (3)

The decision tree building method consists of portioning of an appropriate region by
minimizing the Gini index

Gj =
h

∑
i=1

pji
(
1 − pji

)
(4)

or entropy

Ej = −
h

∑
i=1

pji log pji (5)

From (4) and (5) we can see that the Gini index and entropy take on a small value
when the classification rates pj1, . . . , pjh are close to zero or one. Both the Gini index and
entropy are referred to as purity of j−th node and typically used to assess the quality of a
particular split of a region.

The restrictions that can be applied during the division of S feature space are: the
minimum cardinality of node subject to dividing, the minimum cardinality of the node
resulting from dividing, the maximum number of tree levels. Selecting the right tree size
can also be adjusted by pruning the original model.

For this purpose, there are selected algorithms being used. Among the most popular
are: CART and C4.5 (and then C5.0) algorithms. Additionally, CHAID [35], QUEST, THAID
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and others [36] can be used. In our analysis, we employ the CART algorithm to select the
important features’ influence on accidents result.

The decision trees suffer from high variance. One of the possible techniques to improve
the predictions obtained from decision trees is bagging [33]. The main idea depends on
creating an ensemble of decision trees based on several bootstrapped training sets. These
training sets are chosen randomly with replacement from the data set and are used to train
the decision trees. The variance is reduced by aggregating a set of predictions obtained
from an ensemble of trees. For classification trees, we take a majority vote from the obtained
class predicted by each tree.

The random forest is an extension of the bagging method [29,30]. The main difference
is that during the making of the training set for each tree we randomly choose the set
of features from a full set of features. Thus, we make an ensemble of random trees. A
multitude of random trees is called a random forest. This technique avoids the problem of
selecting the dominant predictor in the split of space for each tree. The predictions obtained
from trees with randomly selected features are less correlated, thereby making the average
of the predictions obtained from regression trees or majority vote from classification trees
less variable and more reliable.

Another technique to improve the results obtained from the decision trees is boost-
ing [33]. Boosting, like bagging, depends on creating an ensemble of decision trees. For
bagging, we adapt the trees to training sets chosen randomly from the data set. By applying
the boosting technique, the trees are made sequentially, i.e., the current tree is built based
on information from the previously grown tree and the response variable in the current
tree is defined as residuals (not explained outcomes) from the previous tree.

The adaptation of a large decision tree to the data can be hard and potentially over-
fitting. The boosting approach results in the learning process being slow. By adding
the current decision tree into the ensemble of trees in order to update the residuals, we
define the model that explains the dependences between outcomes and features. Each of
these trees can be small but by adapting the small trees to the residuals, we improve the
outcomes (response variable) in areas where this does not work well. It is the main benefit
of this method. In general, the learning process is slow and sequential but tends to explain
the dependences well. In our analysis, we employ the XGB (eXtreme Gradient Boosting)
algorithm [31,32] to select the influence of important features on the accidents’ result.

Various measures are used to evaluate the classifier. Most often, the basis for their
definition is the confusion matrix. The columns of this matrix determine the actual decision
classes while rows determine the decisions predicted by the model. The Nij value at the
intersection of the i−th verse and j−th column specifies the number of observations of
j−th class classified into the i−th class, 1 ≤ i, j ≤ h. In general, the case has the form
presented in Table 1.

Table 1. Form of the confusion matrix.

Actual Class →
Predicted Class ↓ Class 1 Class 2 ... Class h

Class 1 N11 N12 ... N1h

Class 2 N21 N22 ... N2h

... ... ...

Class h Nh1 Nh2 ... Nhh

For each possible realization, we estimate the basic values. For the j−th class (1 ≤
j ≤ h), the TP (true positive) denotes a number of outcomes (instances) that are correctly
classified for this class, the FP (false positive) is the number of outcomes that are classified
for the class but they do not belong to it, the FN (false negative) is the number of outcomes
that belong to the class but are incorrectly classified, the TN (true negative) is the number
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of correctly classified outcomes that do not belong to the class. According to the notation
presented in Table 1 for the j−th class (1 ≤ j ≤ h), we determine the basic values as follows:

TP = Njj, FP = ∑h
i = 1,
i �= j

Nji, (6)

FN = ∑h
i = 1,
i �= j

Nij, TN = ∑h
i,j=1 Nij − TP − FP − FN (7)

Additionally, for each class, we estimate the following basic metrics:

1. Sensitivity (Recall, True Positive Rate—TPR), indicating to what extent the truly
positive class has been classified as positive:

TPR =
TP

TP + FN
(8)

2. Specificity (True-Negative Rate—TRN), indicating to what extent the truly negative
class has been classified as negative:

TNR =
TN

TN + FP
(9)

3. Positive Predictive Value (PPV), indicating with what certainty we can trust positive
predictions, i.e., in what percentage are the positive predictions confirmed by the
truly positive state:

PPV =
TP

TP + FP
(10)

4. Negative Predictive Value (NPV), indicating with what certainty can we trust negative
predictions, i.e., in what percentage the negative predictions are confirmed by the
truly negative state:

NPV =
TN

TN + FN
(11)

5. Prevalence is the fraction of cases possessing the examined feature (it shows how
often the positive class occurs in the sample).

Prevalence =
TP + FN

TP + TN + FP + FN
(12)

6. Detection rate shows the number of correct positive class predictions as a proportion
of all of the predictions made.

Detection rate =
TP

TP + TN + FP + FN
(13)

7. Detection prevalence or predicted positive condition rate (PPCR) is the percentage of
observations that the classifier predicted as positive (it illustrates the feasibility of the
model in practice).

Detection Prevalence =
TP + FP

TP + TN + FP + FN
(14)

8. Balanced accuracy is an average arithmetic sensitivity and specificity, specifying the
average number of predictions for each class, correctly classified by the model (it
finds better use when we have just one test set, and it is not balanced).

Ballanced Accuracy =
TPR + TNR

2
(15)
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Additionally, for the entire classifier, we determine accuracy (ACC), which denotes
the fraction of all instances that are correctly categorized:

ACC =
∑h

i=1 Nii

∑h
i,j=1 Nij

(16)

4. Results

The CART algorithm was used for the construction of decision trees. The influence of
the characteristics of the province and the time of the incident on the condition of the victim
was investigated. There were 631 observations used for the construction. The following
symbols were adopted for individual provinces: B—Podlaskie, C—Kujawsko-Pomorskie,
D—Dolnośląskie, E—Łódzkie, F—Lubuskie, G—Pomorskie, K—Małopolskie, L—Lubelskie,
N—Warmińsko-Mazurskie, O—Opolskie, P—Wielkopolskie, R—Podkarpackie, S—Śląskie,
T—Świętokrzyskie, W—Mazowieckie, Z—Zachodnio-Pomorskie. Figure 2 presents the
classification tree with maximum depth equalling 5. This tree contains only seven rules.

Figure 2. Classification tree for the variables of place and time of the accident.

The accuracy of the model taking into account only two variables is not satisfactory,
with the value of ACC = 0.517. The accuracy of the predictions is presented by the confusion
matrix—Table 2. The elements on the main diagonal indicate correctly classified observa-
tions.

Table 2. Confusion matrix for the decision tree based on location of incident and time.

Class

Prediction Death Seriously Slightly

Death 102 49 61
Seriously 16 48 16
Slightly 66 97 176

Because the quality of the prediction is not satisfactory, a decision tree was constructed
that includes a higher number of predictors. The following variables were taken into
account: time of day, month, type of vehicle, type of participant, existence of traffic lights
at the level crossing, age of the victim, area (developed, undeveloped), and location of the
incident (province).

The classifier includes 49 decision rules. Its extensive form prevents legible, graphical
presentation. Therefore, only a descriptive characteristic of the model was made using a
matrix of errors, basic measures of states and a graph with variable importance.
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The inclusion of additional predictors has improved the quality of the classifier. The
accuracy is ACC = 0.679. Table 3 shows the confusion matrix. On the main diagonal, there
are correctly classified observations.

Table 3. Confusion matrix for the extended decision tree.

Class

Prediction Death Serious Injury Slight Injury

Death 149 60 50
Seriously 13 95 18
Slightly 22 39 185

The predictors, ranked by their importance, are shown in Figure 3. This figure shows
the percentage of decrease of the Gini index (interpreted as gain) for the construction
of the classification tree. The evaluation of the importance of the predictors’ impact on
the dependent variable has indicated a significant impact primarily of the location of the
accident (province) and the time of the incident. A detailed evaluation of the model was
made by analyzing measures for each of the singled-out injury levels. The sensitivity
and specificity take values exceeding 73% (except for the “serious injury” class for which
sensitivity is about 49%). The precision of positive and negative prediction is high (up to
75% except for the “death” class). The remaining results are presented in Table 4.

Figure 3. Variable importance ranking for the extended decision tree.

Table 4. Detailed measures for the individual injury classes.

Class Death Serious Injury Slight Injury

Sensitivity 0.8098 0.4897 0.7312
Specificity 0.7539 0.9291 0.8386

Pos Pred Value 0.5753 0.7540 0.7520
Neg Pred Value 0.9059 0.8040 0.8234

Prevalence 0.2916 0.3074 0.4010
Detection Rate 0.2361 0.1506 0.2932

Detection Prevalence 0.4105 0.1997 0.3899
Balanced Accuracy 0.7818 0.7094 0.7849

31



Energies 2021, 14, 3462

In order to verify the influence of each feature, a random forest was also constructed,
consisting of 50 trees, where three features were randomly selected for the learning set. As
before, we present the results in the form of a confusion matrix (Table 5), a matrix of the
basic measures for each state (Table 6) and the variable importance plot (Figure 4).

Table 5. Confusion matrix for the random forest.

Class

Prediction Death Serious Injury Slight Injury

Death 175 16 8
Seriously 3 160 4
Slightly 6 18 241

Table 6. Detailed measures of the random forest for the individual injury classes.

Class Death Serious Injury Slight Injury

Sensitivity 0.9511 0.8247 0.9526
Specificity 0.9463 0.9840 0.9365

Pos Pred Value 0.8794 0.9581 0.9094
Neg Pred Value 0.9792 0.9267 0.9672

Prevalence 0.2916 0.3074 0.4010
Detection Rate 0.2773 0.2536 0.3819

Detection Prevalence 0.3154 0.2647 0.4200
Balanced Accuracy 0.9487 0.9044 0.9445

Figure 4. Predictor importance ranking for the random forest.

By comparing Tables 3 and 5, we can see that the quality of the classifier for the
random forest is better than for the extended decision tree. For the random forest, the
accuracy is equal to 0.913.

From Figure 4, we can see that the predictors: age of the victim, time, province and
month have the greatest impact on the variable describing the state of the injured person.
Basic metrics for the random forest are presented in Table 6.

From Table 6, we see a significant improvement in metrics sensitivity, specificity,
balanced accuracy, PPV and NPV.
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The classifier was also constructed using the boosting technique. In this case, it
is assumed that the maximum depth of a tree equals 3, and the maximum number of
boosting iterations is 50. As before, we present the results in the form of a confusion matrix
(Table 7), matrix of the basic measures for each state (Table 8) and a variable importance
plot (Figure 5).

Table 7. Confusion matrix for the boosting tree model.

Class

Prediction Death Serious Injury Slight Injury

Death 179 5 1
Seriously 3 185 3
Slightly 2 4 249

Table 8. Detailed measures of boosting tree model.

Class Death Serious Injury Slight Injury

Sensitivity 0.9728 0.9536 0.9842
Specificity 0.9866 0.9863 0.9841

Pos Pred Value 0.9676 0.9686 0.9765
Neg Pred Value 0.9888 0.9795 0.9894

Prevalence 0.2916 0.3074 0.4010
Detection Rate 0.2837 0.2932 0.3946

Detection Prevalence 0.2932 0.3027 0.4041
Balanced Accuracy 0.9797 0.9699 0.9842

Figure 5. Predictor importance ranking for the boosting tree model.

By comparing Tables 3, 5 and 7, we can see that the quality of the classifier for the
boosting tree model is the best. For this model, the accuracy equals 0.972.

From Figure 5, we can see that the province predictor dominates the others. The time,
month and vehicle type predictors have a significant impact on the variable describing
the state of the injured person. Basic metrics for the boosting tree model are presented in
Table 8.
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From Table 8, we see that the sensitivity, specificity, balanced accuracy, PPV and NPV
metrics are over 0.95.

The most powerful predictor, in the case of decision trees and the boosting tree model,
is the location of the accident, in this case defined by the province. This can be due to
two reasons. The first is the discrepancy in the state and quality of both linear and point
infrastructure in the individual regions of Poland. These elements remain in the sphere of
administration of the local government units. This condition applies to as much as 95.4% of
all roads in the country and means different management, financing and control. Because
the impact of infrastructure on both the number of accidents and injuries is significant [37],
the impact of location in the presented study is also significant. Another reason influencing
this result is the different densities of the railroad network in individual regions of Poland.
In eastern Poland, it is smaller than in western Poland. However, central Poland has the
largest number of railroad lines. Moreover, the number of road users as well as their
mobility vary between provinces. This activity, different not only in particular areas but
also during the times of the day, results in the next factor strongly influencing the model
being the time of the event.

Another important predictor related to time is the month. The increased number of
traffic accidents is probably influenced by the increase in traffic associated with vacation
activity from May to September. It may also be due to the reduced alertness of drivers
focused on resting. The fact that some drivers are not daily users of cars and have little
experience in driving also contributes to the accidents. The fourth most important is the
type of vehicle. Among the established rules, the most common means of transport is the
bicycle, the passenger car and the truck. Additionally, in many situations, cyclists’ deaths
are equal to or very close to 100%.

In the case of the random forest, the age of the victim was the first factor contributing
to injury in accidents. The other factors with the highest influence were the same but
ranked in a different order (time, province, month).

The influence of the remaining predictors was significant but smaller. The existence
of traffic lights and developed areas is conducive to the tragic consequences of accidents.
The drivers are more likely to die than passengers. The influence of alcohol is also an
important factor, but it should be emphasized that this result is affected by a small number
of accidents in which such a violation was noted. In the analyzed sample, there is less than
1.2% of them.

5. Conclusions

The classification trees are a flexible, user-friendly, and easy-to-interpret tool for
analyzing large sets of observations, consisting of many variables. Their biggest advantages
include transparency and readability of the result presented in the form of rules, as well as
no requirements for the form and distribution of variables. Additionally, it is necessary to
emphasize their insensitivity to the occurrence of non-typical observations and deficiencies
in the data set.

However, in the analyzed case, the application of this method resulted in an accuracy
of 68%. This result was improved by applying the boosting tree model for which the
highest accuracy of 97% was achieved. In both cases, the result was the same. The most
important predictors were: province, time, month and vehicle time. An additional method
proposed was random forest, for which ACC = 91%. This model indicated a different order
of predictors, placing the age of the victim first.

The results obtained, in addition to indicating the factors increasing the risk of certain
injuries in an accident, also indicate the need to develop comprehensive solutions for the
entire country in terms of improving road safety. Such a large impact of location may result
from the different functioning of individual local government units and the differences in
administration of the governed infrastructure. Therefore, it is necessary to develop and
implement common standards and equalize the differences between individual regions,
particularly in relation to the condition of the road, its surroundings and road equipment.
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The obtained measurable results of measurements concerning the influence of the
examined factors on traffic safety at railroad crossings provide information on such actions,
which are conducive to improving road–rail traffic safety through:

• Shaping of the road–railway traffic safety strategy based not only on the analysis
of data on the number of road–railway incidents but also on the factors influencing
mortality and the strength of this influence,

• Ensuring funds in the state budget for the creation and improvement of national
and local databases collecting information not only on the number of road–railway
accidents but also covering detailed characteristics of each event (e.g., visibility range
at a railroad crossing, number of lines/tracks–track gauge, frequency of railroad links),

• Setting standards for improving the safety of road–railway infrastructure in terms of
traffic engineering and road and construction issues,

• Setting standards for improving the safety of road–railway infrastructure for owners
and managers of roads with road–railway connections on each administrative level,

• Shaping the behavior of all road users and awareness of existing risk factors and the
significance of their impact on road–railway incidents and their consequences,

• Conducting social campaigns shaping attitudes and opinions, also on the basis of
obtained research results showing which factors most strongly influence mortality in
road–railway accidents,

• Creating and enforcing stricter regulations, especially with respect to identified causes
of fatal accidents, and increasing the penalties in this area,

• Improving the operation of road–railway rescue systems by identifying areas (railroad
crossings) particularly conducive to fatal accidents,

• Improving the process of education and training using the results of analysis of factors
affecting the mortality in road–railway accidents for prevention purposes, as part of
training and prevention talks, as well as guidelines for determining the timing and
scope of police operations organized in support of safety.

A limitation of the analysis presented in this paper is, first of all, the qualitative form
of most of the variables. It limits the possibility of research to classificatory methods.
The quality of the presented research is also affected by the number of recorded factors.
Especially in the framework of further considerations, the authors would like to take into
account the volume of traffic. This factor is very important from the point of view of road–
railway traffic safety, but it is not monitored at most of the railroad crossings. Generally
speaking, traffic volume monitoring in Poland concerns mainly selected regions (mostly
intersections of big cities). However, the dynamic development of smart transportation
systems is conducive to obtaining the necessary information [38], so analyses that take this
factor into account for a smaller area will probably be possible soon.
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Kolejowego nr 16/2020; UTK: Warsaw, Poland, 2020.
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34. Choinski, K. Zarządzenie Komendanta Głównego Policji z Dnia 30 Czerwca 2006 r; Komenda Główna Policji: Warsaw, Poland, 2006.
35. Kass, G.V. An exploratory technique for investigating large quantities of categorical data. J. R. Stat. Soc. Ser. C Appl. Stat. 1980, 29,

119–127. [CrossRef]
36. Loh, W.Y.; Shih, Y.S. Split selection methods for classification trees. Stat. Sin. 1997, 7, 815–840.
37. Graczyk, B.; Polasik, R. Wpływ infrastruktury drogowej na bezpieczeństwo ruchu drogowego. Postępy Inżynierii Mech. 2016, 7,

5–15.
38. Jamal, A.; Mahmood, T.; Riaz, M.; Al-Ahmadi, H.M. GLM-based flexible monitoring methods: An application to real-time

highway safety surveillance. Symmetry 2021, 13, 362. [CrossRef]

37





energies

Article

Optimal Pricing of Vehicle-to-Grid Services Using Disaggregate
Demand Models

Charilaos Latinopoulos *, Aruna Sivakumar and John W. Polak

Citation: Latinopoulos, C.;

Sivakumar, A.; Polak, J.W. Optimal

Pricing of Vehicle-to-Grid Services

Using Disaggregate Demand Models.

Energies 2021, 14, 1090. https://

doi.org/10.3390/en14041090

Academic Editors: Albert Y.S. Lam

and Javier Contreras

Received: 3 November 2020

Accepted: 12 February 2021

Published: 19 February 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Civil and Environmental Engineering, Imperial College London, London SW7 2BU, UK;
a.sivakumar@imperial.ac.uk (A.S.); j.polak@imperial.ac.uk (J.W.P.)
* Correspondence: charilaos.latinopoulos10@imperial.ac.uk

Abstract: The recent revolution in electric mobility is both crucial and promising in the coordinated
effort to reduce global emissions and tackle climate change. However, mass electrification brings up
new technical problems that need to be solved. The increasing penetration rates of electric vehicles
will add an unprecedented energy load to existing power grids. The stability and the quality of
power systems, especially on a local distribution level, will be compromised by multiple vehicles that
are simultaneously connected to the grid. In this paper, the authors propose a choice-based pricing
algorithm to indirectly control the charging and V2G activities of electric vehicles in non-residential
facilities. Two metaheuristic approaches were applied to solve the optimization problem, and a
comparative analysis was performed to evaluate their performance. The proposed algorithm would
result in a significant revenue increase for the parking operator, and at the same time, it could alleviate
the overloading of local distribution transformers and postpone heavy infrastructure investments.

Keywords: electric vehicle charging; vehicle-to-grid; genetic algorithms; particle swarm optimization;
demand-side management; discrete choice theory; revenue management

1. Introduction

Advances in battery technology, the low emission factors, the low operation costs and
the high fuel economy of Battery Electric Vehicles (BEVs) and Plugged-in Hybrid Electric
Vehicles (PHEVs) are some of the reasons that the family of Electric Vehicles (EVs) has
attracted a lot of attention over the last few years. New models with extended capabilities
and longer electric ranges are presented every year by major automobile manufacturers [1].
The latest generation of EVs shifts the paradigm towards new markets by providing
extended full electric ranges of over 300 km and significantly reducing the problems
associated with “range anxiety” [2].

The adoption of EVs in private transportation could ultimately lead to a replacement
of crude oil with cleaner energy sources. At the same time, they can be transformed from
unidirectional devices that draw power from the grid to bidirectional assets that transfer
power back. Vehicle-to-Grid (V2G) may enable drivers to provide ancillary services to the
grid in exchange for financial returns, as well as to contribute in alleviating peak power
demand [3]. Kempton and Tomic [3,4] have compared existing grid services (spinning
frequency reserves, peak power supply and regulation) with Vehicle-to-Grid (V2G) support
and concluded that using EVs for regulation can offer the most substantial returns to
vehicle owners.

The accelerated growth in electric mobility also demands the development of new
methods to address their implications for the power grid. The stability of the power
system is at stake, particularly when charging events cluster in space and time. Without
charging coordination, the variations in charging demand could have a great impact on
the electricity market. Peak power demand could be deteriorated without investment in
charging infrastructure at working places and throughout cities.
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Public or non-residential private parking facilities are characteristic examples of
places where large numbers of EVs can concentrate in short periods of time. In order to
avoid system disruptions, the aggregated load in the parking facility should be closely
coordinated. Techniques that achieve this are widely known as “smart charging”.

Smart charging can be either centralized or decentralized. In centralized approaches,
EVs transmit a signal with the required State of Charge (SOC) and the desired parking
duration, and a control unit allocates charging times and sends the information back to the
charger/inverter of each vehicle [3–7]. In decentralized smart charging, the information on
spatiotemporal demand is transmitted in the form of incentives that are processed by the
in-vehicle controller, which optimizes the charging intervals of the vehicle [8–18].

This process can be facilitated by a Charging Service Provider (CSP), which coordi-
nates charging events with the objective of optimizing one or more from the list below:
power losses, transformer overloading, system operation costs, generation costs, vehicle
integration, the cost of the power supply, costs for individual drivers, balancing demand
and supply, and revenue for the CSP.

For this study, it was assumed that CSPs are contracted as intermediate agents to carry
out the task of charging and V2G coordination for parking operators in their control area.
As a result, they have a threefold role: (a) to provide EV drivers with their desired SOCs at
departure time, (b) to exchange electricity in two directions by respecting the local grid
constraints from the Distribution System Operators (DSOs) and (c) to maximize revenue
for contracted parking operators. If the parking operators were acting directly as Charging
Point Managers (CPMs), there would be no need for the intermediate services of the CSP.
These services can be classified as Business-to-Business (B2B) and Business-to-Customer
(B2C), and they are schematically presented in Figure 1.

CSP

DSOs

EV drivers Parking operators

B2B

B2C

Guarantee SOC

Satisfy grid 
constraints

Maximize  
Revenue

Parking operators act directly as CPM

Sell electricity

Buy electricity

Satisfy grid constraints

Parking operators 
act directly as CPM

Charging 
coordination

Minimize 
imbalance 
between 
supply and 
demand

Buy electricity

Sell electricity Economic and operational services
Services that involve conventional energy flows
Services that involve V2G

Figure 1. Business-to-Business (B2B) and Business-to-Customer (B2C) services of Charging Service
Providers (CSPs) in public and private parking facilities with Vehicle-to-Grid (V2G)-enabled charging
infrastructure.

As they grow in size, EV fleets offer greater load flexibility to the CSP. For example,
if an individual vehicle needs a lot of energy over a limited period, this energy can be
balanced from drivers who are more flexible in their demand and are willing to postpone
charging or even provide V2G services. Load flexibility is valuable for charging control,
and price incentives can be applied to promote longer charging events with lower power
rates and discourage short, power-intense intervals [19].

The work presented in this paper has contributed to the existing literature by develop-
ing a Revenue Management (RM) framework for charging coordination. In this framework,
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EV drivers reserve, in advance, a parking-and-charging bundle with certain characteristics,
such as a charging location, start time and duration, as well as a charging rate. For the
users, this approach offers more transparency and control over the charging parameters,
and a better understanding of the underlying mechanisms compared to typical scheduling
algorithms. For example, if they wish to leave the charging facility earlier, they can estimate,
with precision, the final SOC at that time. However, this transition of control from the CSP
to the EV driver does not necessarily mean a loss of flexibility. On the contrary, CSPs can
vary prices to incentivize low-power bundles; they can better predict EV arrivals, segment
their users and optimize their operations in advance.

The modelling framework was evaluated in a microsimulation framework with syn-
thesized activity patterns from a London-based travel diary and choice parameters adopted
from a stated preferences experiment [20]. Different EV penetration rates were simulated
for a commercial and a shopping area in the city centre.

The rest of the paper is structured as follows: Section 2 discusses the literature review
that is relevant to the context and the methodological approach of this study, while the
proposed optimization algorithm is presented in Section 3. In Section 4, a brief overview
of the data sources that were used for this study is provided along with a demonstration
of the simulation framework. Section 5 presents the results and a comparative analysis.
Finally, the outcomes of the study are discussed in Section 6.

2. Literature Review

2.1. State of the Art in EV Scheduling and V2G Optimization for Non-Residential Facilities

Several studies have investigated the optimal charging of electric vehicles and the
provision of V2G services for peak power and ancillary markets [21–33]. In these studies,
the objectives of the control algorithms vary significantly between maximizing economic
factors and minimizing the impact on the power network.

The addition of V2G services on top of regular charging complicates the decision
process for EV owners. The fast recovery of SOC is desirable because it means that smart
charging does not interfere significantly with the daily schedules of the owners. On the
other hand, arbitrage techniques based on wholesale electricity prices can generate profits
for them at the expense of recharging speed [4].

Rotering and Ilic [21] present a dynamic programming approach to solving this V2G
optimization problem, where the objective is to maximize the profit for the EV owners
and the decision variable is the daily SOC curve. Zhang et al. [22] examined the potential
application of V2G for ancillary services by developing optimal methods for voltage
regulation and reactive power control. Shokrzadeh et al. [23] present optimal scheduling
strategies for minimizing harmful operating conditions for distribution transformers at
a neighbourhood level. DeForest et al. [24] present a centralized method for optimizing
EV charging and bid capacity via V2G while maximizing the profit and minimizing the
operation costs for the aggregator. Vandael et al. [25] propose a multiagent system for
charging coordination with the objective of minimizing imbalance in a smart grid.

Non-residential parking facilities such as parking garages or supermarket parking
lots are characteristic examples of places where large numbers of EVs can concentrate in
short periods of time. As a result, there is an increasing volume of studies that are shifting
their focus away from home recharging.

Yao et al. [26] investigated the optimal integration of EVs in a parking station with the
distribution grid according to two different objectives: an economic and a technical one.
Shafie-khah et al. [27] present an optimization problem for a parking operator that satisfies
demand while curtailing loads for a power utility. They suggest that a constant power rate
over the charging session, which is in line with the present paper implementation, can
prolong the battery service time. Zhang et al. [28] also modelled the parking operator as a
demand response aggregation agent, but they found the optimal level of participation in a
set of demand response programs (price-based and incentive-based) instead of focusing on
one. Su and Chow [29] developed an intelligent energy-management system for EVs that
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charge at a municipal parking site, which they solved using probabilistic model-building
genetic algorithms.

Finally, the studies that explore the interaction between utilities and parking lots,
when V2G is available, are more limited.

Mehta et al. [30] implemented a water-filling algorithm to minimize the variance of the
load profile for workplace car parks as a means of reducing peak demand. Babic et al. [31]
propose a framework where the parking operator is a broker with two distinct roles: (a)
an energy retailer and (b) a player in a target electricity market. The electricity trad-
ing functionalities of the operator were evaluated within an agent-based simulation.
Moradijoz et al. [32] used genetic algorithms to solve a multi-objective algorithm that
optimizes the sites and sizes of parking lots that provide V2G services to the grid.

Probably the research work most closely related to the present paper is that of
Hashimoto et al. [33]. In their study, drivers could reserve charging and V2G services
through an auction-based system, and the improvements in revenue for the operators were
evaluated. It also presents similar methodological assumptions such as discretizing hour
intervals for parking reservations and billing by parking duration. In addition, a probability
distribution for parking users’ willingness to pay was derived from the completion of a
questionnaire addressed to them. Finally, the arrival and departure patterns were modelled
according to real parking data.

Summarizing the state of the art in EV scheduling methodological approaches, while
much effort has been devoted to assessing the economical and network impact of charging
and V2G, the current practice largely relies on simplistic representations of charging and
parking demand.

2.2. Representation of Charging Demand

In the majority of relevant studies, as was also pointed out by Daina et al. [34],
smart charging appraisals adopt predefined charging scenarios and exogenous EV use
patterns. The attributes that affect the charging process (the start and end times of charging
sessions, initial SOC, subsequent trip duration, parking duration, etc.) are calculated by
drawing values from typical probability distributions. Fazelpour et al. [35] used probability
distributions of arrival rates and arrival times in a movie theatre parking lot in Tehran, in
order to optimize the charging rates of the vehicles. Vandael et al. [25] used fixed charging
scenarios, and they assumed that the charging rate is constant during the charging process.

In some rare cases [28], these values have been validated with historical parking
information. When real-world charging data are available and are used to deduce charging
flexibility [29], these data are not adequate for capturing the elasticity of drivers to charging
parameters, because their choices are constrained by the limitations of the provided options.

Recently, there have been some efforts to predict charging behaviour with machine-
learning methods. The impact of accurate predictions on charging scheduling has been
demonstrated in [36], where the authors suggest a potential 27% decrease in peak load.
However, when using historical data of parking durations and energy consumption to
predict user behaviour, there is a lack of understanding of individual users’ preferences for
service attributes, such as the location of the charger and the charging rates.

The prominent novelty of the choice-based pricing optimization that was developed
in the present paper is the representation of the charging behaviour in a random utility
context and the use of parameters that were empirically estimated from user-tailored choice
experiments for charging choices. In a previous study by the authors, the results from
these experiments were used under expected and non-expected utility frameworks to
understand how people perceive price probabilities and how risk averse they are when
they book charging events in advance [37].

Our model bridges the gap in the literature by capturing the heterogeneity in activity-
travel and charging preferences and transferring this disaggregate information to a price-
based control mechanism.
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One of the first studies that modelled the implication of discrete choice models for
smart charging services was [34], but in the context of home-based charging activities.
In [8,11], the authors developed an activity-based microsimulation where the electric
vehicles were controlled with smart charging. Nevertheless, the willingness-to-pay as-
sumptions are not backed by empirical estimation based on revealed or stated preference
data. The parameters in the utility function are somewhat arbitrarily tuned using the
difference between the forecasted electricity price for next day and the current equivalent
price of gasoline. This trade-off makes sense in the decision process for a PHEV driver
who can run in both electric and gasoline modes, yet it does not adequately capture the
behaviour of a BEV driver.

The integration of charging coordination with the demand response of EV users is
achieved through the implementation of revenue management. Before proceeding to the
methodological framework in Section 3, there is a brief review of RM and its existing
applications in the context of parking and charging.

2.3. Revenue Management for Electric Vehicle Charging

Revenue management is a widely adopted method for the allocation and pricing
of non-storable services and perishable goods in the service industry. It made its first
appearance in the 1970s, when airline companies were deregulated. Data analytics were
adopted to differentiate the fares for seats located in the same cabin, and the operators
started making dynamic decisions based on predicted demand [38]. Today, we encounter
RM techniques in car rental services, hotels, hospitality and most of the industries where
there is an inventory with capacity constraints [39].

The first revenue-management approach for a car parking lot was presented in
Guadix et al. [40]. In a later study, car parking revenue maximization was achieved by
finding the optimal balance between early subscriptions and last-minute drive-in users [41].
In [42], the authors pursued the goal of maximizing revenue for a parking lot in a slightly
different manner. A fuzzy-logic-based intelligent parking system with learning capabilities
decided, in real time, which reservations to accept and which to reject.

To the best of the authors’ knowledge, the first study where revenue management was
applied for electric vehicle charging was that of Flath et al. [43]. The optimization objective
was to minimize disruption at the distribution network level and to balance energy demand
with supply. In this approach, there were two main differentiations from conventional
RM methods: (a) instead of discrete inventory units (e.g., hotel rooms, airplane seats,
etc.), the energy provided to the EV drivers was continuous, and (b) limited and high-
value transactions were replaced by frequent and low-cost ones. In terms of customer
segmentation, it is assumed that there are two types of users: drivers who charge their
vehicles on a regular schedule (e.g., at home or work) and drivers who have a spontaneous
need for topping-up their batteries.

Compared to [43], our methodological approach adds the physical dimension of
charging-post availability, moving from a single-resource (energy amount) to a dual-
resource allocation. Most importantly, it uses a sophisticated representation of charging
demand, and it enables customer segmentation using both quantitative and qualitative
choice parameters.

3. Choice-Based Price Optimization

3.1. Charging Offer Set

Charging services in the rest of the paper are represented as “bundles” that combine a
parking place with the electricity for recharging. As with existing revenue-management
applications, this study developed an online reservation system where EV drivers can book
their charging bundles up to 1 h before arrival. This system should display all the available
options at the time of reservation, including their prices and other service attributes. By
packaging out-of-home charging with other parking services, overall prices could become
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even more appealing than home energy tariffs and attract sufficient charging events to
boost investment in public infrastructure.

This is not the first study where users have had the option to choose between different
charging offers. In [44], the authors suggest a menu-based pricing system where the users
select among contracts of fixed energy quantity and time windows.

The charging bundle offer set for the EV customers was designed by the CSP, and it
could either include or not V2G services. The optimal pricing algorithm that is presented
here used as input the demand for parking and charging along with the elasticities to the
characteristics of each bundle. Given that the size of the price menu escalated exponentially
with additional hours of operations, multiple periods of four-hour slots were evaluated.

Moreover, the various bundles were categorized according to their charging rates,
which ranged between 3 and 12 kW. It was decided that rapid chargers should not be
included in the analysis, due to their relatively low availability at the time that the research
was undertaken. The charging preferences of EV customers were estimated under a Latent
Class (LC) model.

The optimization problem has two capacity constraints. The first one is the physical
constraint of the available charging posts across the parking lots. The second one is the
power constraint that is defined by the remaining capacity available to the DSO. While the
objective of the algorithm is revenue maximization for the CSP and the contracted parking
facilities, the demand-driven management of charging events has the potential for peak
shaving and the alleviation of bottlenecks in the local distribution network.

One of the ethical concerns around dynamic pricing is the fairness of the prices. For
this reason, the fairest approach is to differentiate prices for EV services based on the impact
they have on the grid. Therefore, we need to make sure that we apply accurate bounds for
each charging bundle. In order to achieve that, the following equation was formulated:

p∗j = phour + pbaseRjTjCDj Arj (1)

where p∗j is representative of the specific charging service, and the upper bound is defined
at 1.5 p∗j ; phour is the parking price for an hour, pbase is the price for baseload electricity, Rj is
the factor that penalizes power-intensive services, Tj is the factor that penalizes peak-load
time intervals, CDj is the charging duration and Arj is the factor that penalizes parking
lots with high occupancy. All these factors were normalized in a way meaning that the
electricity price varied between the base price (10 p/kWh) and a maximum of 55 p/kWh.

In the UK power market, after the actual delivery of electricity, the differences between
demand and supply are resolved with an imbalance settlement. This settlement recovers
the costs for the system operator by compensating every entity that produced an energy
surplus and charging every entity that produced a deficit [45]. Therefore, if the CSP agrees
with the DSO for a certain amount of power supply, and the actual demand for EV charging
is lower than the expected one, each unit of deficit will have to be reimbursed according to
the market index for imbalance costs.

Imbalance prices should be higher for peak-load periods because these are translated
to higher costs for the TSO; as a simplification of the complexity of real-market trading
values, the imbalance price for each charging bundle was estimated using the Tj factor
from Equation (1). Subsequently, these prices were used to calculate the costs from excess
power capacity, which were subtracted from the charging service profits to calculate the
net revenue for the CSP.

The analysis went a step further by incorporating V2G services in the bundles offered
by the CSP. Preferences for V2G services were not estimated because there was a high risk
of compromising the estimation validity by augmenting the stated preferences experiments
conducted in [20] with V2G scenarios and increasing the complexity for the respondents.
Therefore, an assumption was made that the sensitivities to the selling price and discharging
amount are identical to those for the buying price and charging amount. The only difference
was that the marginal utilities would then have the opposite signs.
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While charging and V2G behaviour are assumed to be symmetric, it is likely that this
is not the case in reality. For example, the marginal disutility from discharging could be
higher for the drivers because of the degradation of the battery or range anxiety. As there
are increasing examples of V2G trials around the world, future research could explore these
behavioural nuances.

When V2G services are provided, the offer set is extended from 46 to 60 charging
bundles. Therefore, EV drivers with low energy requirements (<1 kWh/day) are presented
with an extended choice set, where all 14 discharging alternatives deliver a 6 kWh discrete
energy quantity to the grid, using different combinations of discharging rates and plug-in
durations.

As Moradijoz et al. [32] elaborate, the revenues from V2G power depend on the type
of the electricity market that it is sold to. For example, there are markets that pay for
energy such as the peak-power market and markets that pay for the available capacity and
only require having the vehicle plugged in, such as ancillary services [4]. In the following
analysis, only peak-power services were taken into account.

In the next section, we show that by incorporating a latent class model, within the
choice-based formulation, it is possible to capture the taste heterogeneity among EV users.

3.2. Utility Specification

The utility of the individual user n selecting the charging bundle j under a discrete
choice model specification is the following:

Ujn = ASCj + βXXjn + βXYXjnYn + βXZXjnZn (2)

where ASCj is the alternative specific constant of the charging bundle j, βX is a set of
parameters to be estimated, X is a vector of charging-bundle-specific attributes, βXY and
βXZ are sets of parameters for interaction terms, Y is a vector of the travel and charging
patterns of the individual n, and Z is a vector of individual attributes of the decision maker
such as age, marital status, employment type, income, gender and parental status. In
particular, the vector X consists of the following characteristic parameters of the charging
service:

• The energy required by the user n, Ejn;
• The parking and charging price, p∗j ;
• The walking time from the charging post to the location where the activity of the

individual takes place, WTjn;
• The Charging-Induced Schedule Delay Early (CISDEjn) and the Charging-Induced

Schedule Delay Late (CISDLjn).

The last two parameters (i.e., CISDEjn and CISDLjn) are based on the theory behind
time-of-travel-choice modelling. In particular, the methodology developed in Vickrey’s
seminal paper [46] suggests that when a commuter choses what time to leave for work,
this decision comes after a trade-off between travel time and the measures Schedule Delay
Early (SDE) and Schedule Delay Late (SDL). These two measures were defined as follows:

SDE = max (PAT − (td + TT(td)), 0) (3)

SDL = max (td + TT(td)− PATb, 0) (4)

where PAT is the preferred arrival time, td is the time of departure from home and TT(td)
is the travel time, which is a function of the departure time. We defined CISDEjn and
CISDLjn in a similar fashion to the disutility of starting the activity earlier or later, respec-
tively, due to the starting time of the charging event. To better clarify these terms, they are
visually demonstrated in Figure 2 for a hypothetical daily scenario.
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Figure 2. Graphical representation of charging-induced schedule delay for four scenarios: (a) there is no schedule disutility,
as the charging and the parking episodes are identical; (b) there is no schedule disutility, as the charging episode is a subset
of the parking episode; (c) there is Charging-Induced Schedule Delay Early (CISDE) because both episodes start before the
Preferred Arrival Time (PAT); and (d) there is Charging-Induced Schedule Delay Late (CISDL) for the next activity because
both episodes finish later than the typical departure time. The red dotted lines in (c,d) represent the actual arrival times that
are different from the preferred arrival times.

The majority of the above parameters were estimated in [20]. The parameter for the
energy amount βE was based on a previous estimation of EV drivers’ sensitivity to post-
charging SOC [47], and the parameter for CISDL was obtained from the CISDE coefficient
using the SDE-to-SDL ratio estimated in another study for London commuters [48].

3.3. Latent Class Specification

Latent Class (LC) models are typically applied for segmentation, since they identify
classes of users with distinct choice behaviours. As a result, the objective of these models is
to achieve intrasegment homogeneity and intersegment heterogeneity based on a set of
attributes. Individuals are attributed to each of the classes probabilistically, by estimating
class-membership probabilities. A typical LC model formulation is the following:

Pn
(

j
∣∣Xjn, Yn, Zn, β

)
=

K

∑
κ=1

Pn
(

j
∣∣Xjn, Yn, Zn, βκ ; κ

)
Pn(κ|zn) (5)

where K represents the total number of classes, zn is the set of attributes that makes the
behaviour across the segments distinctive and Pn(κ|zn) is the probability that the user n
belongs to class κ, conditional on zn, widely known as the class-membership probability.
It is deduced that ∑ K

κ=1Pn(κ|zn) = 1. Additionally, Pn
(

j
∣∣Xjn, Yn, Zn, βκ ; κ

)
is the class-

specific probability calculated in (6).

SPn
(

j
∣∣Xjn, Yn, Zn, βκ ; κ

)
=

eUjn

∑J
j=1 eUjn + eU0n

(6)
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where J is the total set of bundles and U0n is the utility gained from the “no buy” choice.
Since “no buy” was not an option in the choice experiments, this utility was approximated
by calibrating the alternative specific constant of Equation (2) in a way implying that a
small share of the EV drivers did not buy any of the charging bundles.

The typical formulation for a class-specific probability is the multinomial logit (MNL)
model; however, other Generalized Extreme Value (GEV) models, such as nested logit or
cross-nested logit, can also be adopted to relax some of the hard assumptions of MNL.

The empirical estimation of the latent class model in [20] identified two latent classes:
a class where the common characteristic was the high elasticity to price, and a class that
was more sensitive to time coefficients, such as walking time and charging duration. The
class-membership model is shown in Equation (7).

Pn(κ|zn) =
eδκ+γκzn

∑K
l=1 eδl+γl zn

(7)

where δκ is a constant that is specific to the k class and γκ are the parameters to be estimated.

3.4. Price Optimization

In revenue management, it is commonly assumed that the demand is homogeneous.
The introduction of discrete choice models as a means to better capture customer behaviour
was first attempted with the Choice-Based Deterministic Linear Program (CDLP) [49].
MNL models were replaced by more sophisticated specifications such as nested logit [50]
and LC models [51] in subsequent studies.

The objective of the optimization problem developed in this paper is to maximize the
expected revenue of the CSP for each four-hour period. The final solution is a menu-based
pricing strategy, which should satisfy the constraints for the two-dimensional capacity
(charging-post and power availability). The decision variables of this problem, pj, are
the prices of the 46 (or 60 when V2G is available) charging bundles. The latent-class
optimization problem is formulated as follows:

max
pj

Revenue = DEV [
J

∑
j=1

{ K
∑

κ=1
Pn

(
j
∣∣Xjn, Yn, Zn, βκ ; κ

)
Pn(κ|zn)pj}]−[Yc − DEV B

K
∑

κ=1
Pn

(
j
∣∣Xjn, Yn, Zn, βκ ; κ

)
Pn(κ|zn)pj]pI (8)

subject to:

• Capacity constraints:

DEV A
K

∑
κ=1

Pn
(

j
∣∣Xjn, Yn, Zn, βκ ; κ

)
Pn(κ|zn)pj ≤ Xc (9)

DEV B
K

∑
κ=1

Pn
(

j
∣∣Xjn, Yn, Zn, βκ ; κ

)
Pn(κ|zn)pj ≤ Yc (10)

• Price-policy constraints:

p−j ≤ pj ≤ p+j (11)

where DEV is the total number of electric vehicles that arrive at the parking facilities for
recharging or discharging, Xc is the total number of charging posts, Yc is the power in kW
supplied to the CSP for the contracted facilities, pI are the imbalance prices, A and B are the
incidence matrices for the two capacity dimensions, and finally, p−j and p+j are the lower
and upper bounds for the decision variables, which are calculated using Equation (1). The
methodological approach is visually demonstrated in Figure 3.
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Figure 3. Decomposed elements of the choice-based revenue-management approach. The choice probability for a charging
service for an electric vehicle driver affects the revenue outcome for the CSP. Simultaneously, the price, which is the decision
variable of the optimization problem, can alter the choice probability, creating a closed-loop formulation with a nonlinear
objective function.

Equation (8) can be decomposed in two terms. The first term is the generated profit
that is calculated by multiplying the number of EVs by the latent class probability of
choosing a charging bundle j and the price of this bundle. The second term is the imbalance
cost that is calculated by multiplying the imbalance price for each hour slot with the
respective deficit power. The maximum revenue for the CSP is equal to the difference
between the generated profit and the imbalance cost for the optimal price menu.

The capacity constraints (9) and (10) correspond to the number of charging posts and
the supplied power, respectively. Price-policy constraints (11) vary across charging and
V2G services. The minimum price for charging bundles is equal to the maximum price for
V2G bundles, and it is assumed to be zero. On the other hand, the maximum prices for
charging bundles and minimum prices for V2G bundles reflect their main characteristics;
i.e., power-intensive bundles are allowed to have higher prices.

4. Data and Simulation Approach

A simulation approach was employed for the demonstration of the developed pric-
ing algorithm. Two areas with distinct activity patterns and increased travel demand
levels were selected for the simulation: a large shopping mall (Westfield Shopping Cen-
tre) and a busy commercial area (Canary Wharf). Similar assumptions were made in
Battistelli et al. [52], where two garages with EV parking spaces were modelled, serving an
office and a residential area. The characteristics of the trips for these areas were extracted
from an annual household survey, which combined personal and household information
with data from travel diaries: the London Travel Demand Survey (LTDS) [53].

The number of parking spaces used for the simulation corresponded to the existing
off-street infrastructure within a 1 km2 radius of the centroid of each area. It was assumed
that these spaces and the hypothetical charging posts were concentrated in two large
parking lots for both areas. In terms of data preprocessing, the steps below were followed:

• The units of analysis were tours that started and ended at the homes of the respondents.
The tours contained multiple trips.

• Tours that were not identified as car driving, or did not have an intermediate stop
within the examined areas, were removed from the analysis.
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• If the number of stops in the area of interest was higher than one, the parking event
with the highest duration was identified, and that is where the charging event was
assumed to take place.

All the electric vehicles in the simulation were assumed to be BEVs, because of range
anxiety and their higher likelihood of depending on out-of-home charging infrastructure.
At the time of the research, one of the most competitive BEVs in the market was the Nissan
Leaf; hence, it was used for the estimation of electricity consumption [54]. For combined
city and highway driving, this was set equal to 30 kWh/100 miles, and given a battery
capacity of 24 kWh, it corresponds to a driving range of 83 miles. Finally, the energy
efficiency of the charging posts was assumed to be 80% and to remain constant at any time
step.

The number of charging posts for the simulation was assumed to be equal to the
number of parking spaces. While this could be considered a very optimistic scenario for the
evolution of electromobility and its infrastructure, there is a rapid deployment of charging
posts in large urban centres, which is going to be further facilitated by economies of scale.
Furthermore, it should be noted that the areas examined are of high economic interest,
with the potential to attract infrastructure investments.

Along with travel demand, these areas have increased electricity demand, especially
during hours of peak occupancy. Some examples of appliances that contribute to the
aforementioned peaks are personal computers, display lighting and air conditioning units.
In order to model the base load of electricity without electric vehicles, first, we identified
the baseload profiles for a typical winter weekday for both domestic and nondomestic
users. Then, the average population density of residents, the number of employees and
the percentages of domestic and nondomestic consumption were used to scale up from
a personal profile to the daily distribution. The resulting load curves are presented in
Figure 4.

Figure 4. Typical winter weekday baseload curves for the areas of analysis (dashed lines represent
installed capacity for the scenario of 20% overload capacity).

The overload capacity can generally fluctuate between local distribution networks.
Typically, distribution transformers are replaced when the peak demand grows to be almost
equal to the installed capacity. Figure 4 demonstrates the capacities that were selected for
the simulation, which in both cases, were 20% higher than the peak value of the base load.

The trip data from LTDS only represent a sample of the population and not the actual
demand. Thus, the respondents were used to generate a synthetic population that would
allow the exploration of network effects for the two areas. The specifics of the population
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synthesis algorithm are presented in [20]. The energy requirements for the synthetic EV
drivers were calculated based on the reported mileage for all the daily trips. However,
since out-of-home charging events were expected to follow a top-up pattern, there was an
asymmetric draw from the lower end of the distribution (1–5 kWh).

In order to account for different levels of EV penetration, three scenarios were evalu-
ated: a mid-term scenario (25%), a long-term scenario (50%) and a full-electrification (100%)
scenario. As a preliminary step, the incoming demand was satisfied with an uncoordinated
charging strategy. This allowed an initial estimation of the spatiotemporal allocation; thus,
it could be used for an informed pre-allocation of the supplied power capacity amongst
the parking facilities. Some basic assumptions for the uncoordinated scenario were the
following: (a) recharging starts as soon as the vehicle is plugged in and (b) the charging
event has a constant rate and is evenly distributed over the parking dwell time.

Combining the data sources and the synthetic information that has been described
so far in this section, we present all the variables that were used for simulation and
optimization in this study, in Table 1. Scaling up the trip sample dataset using aggregate
statistics for the areas of interest, we ended up with 10,852 trips for Canary Wharf and
14,360 trips for Westfield. Then, depending on the scenario for EV penetration levels, the
total numbers of trips in the simulation are presented at the end of the table.

Table 1. Description of the input data used in the simulation.

Description Value Range Description Value Range

Parking and charging characteristics Demographics
Parking start time 9:00–20:00 Gender Male or female
Parking end time 10:00–21:00 Age <=40 vs. >40
Parking location 1 or 2 Marital status Married vs. all other categories

Constant charging rate (in kW) 0.5–12 Employment status Employed vs. unemployed
Walking distance from activity to

parking locations (in m) 10–1700 Income (in GBP) <GBP 10,000 to >100,000

Energy requirements (in kWh) 0–24 Children in the household Yes or no

Charging bundle characteristics Context variables
Discrete charging rate (in kW) [−6,−3,3,6,8,12] Day of week Monday–Sunday

CISDE (in minutes) 0–180 Initial charging prices
(GBP/kWh) 0.10–0.55

CISDL (in minutes) 0–180 Energy consumption
(kWh/miles) 30/100

Charging duration (in minutes) 0–240 Battery range (in miles) 83
Number of products (no V2G/V2G) 46/60 Charging efficiency 80%

Number of charging posts 625
Work-based tour Yes or no

Distribution network
headroom 20%

Size of synthetic daily trip dataset
Canary Wharf Westfield

25% EVs scenario
50% EVs scenario

100% EVs scenario

2713
5426

10,852

3590
7180

14,360

The first step of the methodological approach was to examine an uncontrolled charging
scenario. The parking and charging characteristics in the top left of Table 1 were deduced
from the trip dataset following a set of assumptions and rules. For example, it was assumed
that the driver will park at the facility that is closer to the final destination and that the
energy requirements will depend on the subsequent trips of the day and the remaining
SOC. Subsequently, the initial SOC depends on the distance driven so far and the energy
consumption. Additional context variables that were necessary for the simulation are
depicted in the middle-right part of the table.
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The “dumb charging” strategy is useful for understanding the spatiotemporal alloca-
tion of demand and applying the simple area-based and time-based fixed prices that are
explained in Equation (1). It also enables the higher allocation of power capacity to the
busiest parking facility as a strategic decision. In the next step of our methodology, the
charging events were driven by actual choices of the users, which in turn, were probabilistic
outcomes of a decision process. Individuals try to maximize their utility (Equation (2)),
which is a linear combination of factors from all the sections of Table 1. Using the choice-
based formulation described in Equation (8), the prices of the charging bundles were
optimized with respect to CSP revenue. Then, they were used to rerun the simulation and
evaluate other key metrics such as the load factors and demand–supply imbalance.

EV scheduling problems are typically characterized by large numbers of variables
and constraints that are not continuously differentiable and increase the related models’
execution times for finding an optimal solution. Metaheuristic algorithms (MAs) are very
popular in the relevant literature as a means for solving these NP-hard (nondeterministic
polynomial-time hard) problems [55,56]. The main disadvantage of MAs is that they are not
guaranteed to reach the global optimum, due to the stochasticity in the process. However,
V2G scheduling problems are typically highly dimensional, nonconvex and nonlinear
optimization problems, and MAs are arguably one of the best options for both binary and
real-valued problems.

The formulation in this paper is, in fact, a constrained nonlinear problem, and the two
main categories of MAs that are applied to solve such are Genetic Algorithms (GAs) and
Particle Swarm Optimization (PSO).

The reader is referred to [55,56] for a detailed review of GAs, PSO and other meta-
heuristics applied in Unit Commitment (UC) problems and EV charging/discharging
coordination. The studies [57,58] are typical applications of the two methods. In [57], the
authors used a GA in a game theoretic analysis of EV charging coordination. On the other
hand, Hutson et al. [58] applied binary PSO to find the optimal buying and selling times
for a fleet of vehicles in a parking lot.

The genetic algorithm creates a population of candidate price vectors for the charging
bundles, and the best candidate approaches the optimal price vector. Each population
is generated after applying certain stochastic operators to the previous population. In
particular, the revenue for the operator, which is the fitness score in this application, is
calculated for every price vector in the population using Equation (8). If the score of the
vector is higher than the average fitness score, it is selected to be transitioned to the next
population. This process is typically known as selection. If the score is lower than the
average fitness score, random changes are applied to the parent price vectors in order to
generate children for the new population. This process of adding diversity in the creation
of new offspring is typically known as mutation. If some of the prices in a price vector
lead to solutions that violate capacity constraints (Equations (9) and (10)) or price-policy
constraints (Equation (11)), a penalty score is incremented by the maximum price. In this
way, infeasible price candidates are less likely to be selected for the next population.

The algorithm is presented in detail in Figure 5. First, we initialize the number of
iterations (generations) as G = 100. We randomly generate an initial population P0 of size
P = 100. Each individual in the population is represented by a D-dimensional vector, where
D is the number of charging (or charging and discharging) bundles:

pi = (pi1, pi2, . . . , piD) (12)

and the genetic encoding is a direct value encoding the price. This value can be between
0 and the upper bound for the charging bundles or between the lower bound and 0
for the discharging bundles. The fitness function (the choice-based revenue function in
Equation (8)) is evaluated for all the individuals in P0. Then, as long as the stopping
criterion is not satisfied, we iteratively create subsequent populations. We calculate the
score (revenue) for each individual and the average score of the population. We select
the individuals with scores higher than the average population score to move to the next
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generation, and we remove the remaining ones. We also mutate the genes (prices) of the
successful individuals by adding random noise, in order to create new price vectors and
always have a population of size 100. At each generation t, we evaluate the fitness function
Pt, and we follow the same steps. Finally, when the stopping criterion is satisfied, the
iteration is terminated, and the individual that generates the maximum revenue is selected.

n

n 
m 

Calculate fitness of
individuals 

Revenue Equation 8

Satisfy stop
criterion

no. of 
iterations = 100

Selection of
individuals

score individual > avg.
score of population

Mutation
Add random noise to

prices

Figure 5. Genetic algorithm solution for price optimization.

The second nature-inspired algorithm that was adopted in this study for optimization
is the PSO. Like the genetic algorithm, each individual in a population (here referred to as
swarm because it is based on the information exchange of birds in a swarm) is updated in an
iterative manner. The exploration of the problem search space is guaranteed by introducing,
again, a certain stochasticity in the transitions. Upon initialization, each individual particle
in the swarm creates a randomized position solution, i.e., vector of prices, and a randomized
velocity within a uniform range of values. Then, the initial positions are assigned to the
particles’ best-known positions. For each iteration, the algorithm updates the velocity of
the price vectors using their best individual positions and the best position of the swarm.
A cognitive constant c1 limits the influence that the particle’s best-known positions have
on their new velocity, while a social constant c2 limits the influence the best price vector of
the swarm has on the other vectors.

The details of the PSO solution are presented in Figure 6. The algorithm starts by
initializing a set of parameters including the acceleration constants c1 and c2. The size
of the swarm is assumed to be P = 100. The position of each solution (particle) i of the
swarm is represented by a D-dimensional vector, where D is the number of charging (or
charging and discharging) bundles, as depicted earlier in Equation (12). Simultaneously,
each particle is randomly assigned an initial velocity, which is given by:

vi = (vi1,vi2, . . . , viD) (13)
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Figure 6. Particle Swarm Optimization (PSO) solution for price optimization.

The fitness value (Equation (8)) is evaluated for each particle’s position f(xi). The
current position is assigned as the best local position (x*

i), while the position with the
highest fitness value is assigned as the best global position (gbest). Then, as long as the
termination criterion is not satisfied, the positions and velocities of the swarm particles
are updated based on (a) their own best local positions and (b) the global best positions in
their neighbourhood:

pi
(t+1) = pi

(t) + v(t+1)
i (14)

vi
(t+1) = vi

(t) + c1ri1

(
x∗(t)i − x(t)i

)
+ c2ri2

(
gbest − x(t)i

)
(15)

where t is the iteration count, while r1 and r2 are random vectors that take values between
0 and 1. The fitness value is evaluated for the new position, and the local and global best
solutions are updated. At the end, when the termination criterion is satisfied (t = 100), the
best particle is selected as the optimal price vector.

Both the GA and PSO algorithms were developed in Python, which was also used to
build the simulation framework.

The simulation framework, which is demonstrated in Figure 7, considered four control
scenarios: (a) fixed pricing based on the time of day (FP), (b) fixed pricing based on the
time of day and typical spatial demand (FP2), (c) optimal pricing with the GA, and (d)
optimal pricing with PSO. All these control scenarios were compared with an uncontrolled
charging scenario where it was assumed that charging demand was equally allocated for
the parking duration.
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Figure 7. Simulation framework for charging and V2G coordination. The three levels capture (a) the synthetic approach
to building a representative demand for travel and energy, (b) the technology and behavioural assumptions and (c) the
dynamic parameters that were evaluated under different scenarios.

All the simulation runs account for a 12 h operating window between 9:00 and 21:00
with overlapping subsequent 4 h scheduling windows. By running the simulation for all
the possible combinations, a total of 48 cases were modelled. Breaking down the problem
into 4 h subproblems led to near-optimal solutions but, simultaneously, did not become
computationally expensive, which would be prohibitive for the numerous scenarios that
were analysed.

5. Results

The main metrics that were evaluated after each simulation run are the revenue for the
charging service provider, and the load factors for both the physical dimension of charging
posts and the power supplied by the DSO.

Figures 8 and 9 demonstrate the results for the simulation across two dimensions: the
percentage of EVs and the overload capacity. Figure 8 corresponds to the heavy business
area, while Figure 9 corresponds to the commercial area. For each case study, we examined
the load curve against a transformer capacity that was designed based on the maximum
value of the baseline curve (first column) and on an overload capacity of 20% (second
column). Finally, the three rows are associated with an increasing percentage of EVs from
top to bottom.
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Figure 8. Charging allocation analysis for Electric Vehicle (EV) market penetration and overload
capacity (Canary Wharf area). The red dotted line represents the nominal capacity of the distribution
transformer; the grey line, the baseline load demand; the blue dotted line, the uncoordinated charging
scenario; and the green line, the charging allocation with Fixed Pricing based on time of day (FP).
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Figure 9. Charging allocation analysis for EV market penetration and overload capacity (Westfield
Shopping Centre area). The red dotted line represents the nominal capacity of the distribution
transformer; the grey line, the baseline load demand; the blue dotted line, the uncoordinated
charging scenario; and the green line; the charging allocation with Fixed Pricing based on time of day
(FP).

56



Energies 2021, 14, 1090

Since the peak demand for the study areas is already high, a 20% overload capacity is a
significant increase in the available power, and it is sufficient, even for the full-electrification
scenario. The baseline load distribution is quite similar for the two areas, with the busiest
time being around midday. For the uncoordinated-charging scenario, there are several
periods where demand exceeds the available capacity. The most extreme case is the scenario
for Westfield, with 100% of EVs and 0% overload capacity.

The FP control algorithm takes into account historical driving and activity data to
penalize the hour slots with the highest charging demand. The price for each charging
bundle is calculated based on Equation (1) without the area factor. Each charging bundle is
allocated only if it is not constrained by power availability and the number of free charging
posts. This pricing incentive initiates a behavioural shift, with some EV drivers charging
later in the day, while some drivers with low SOC needs are discouraged from charging at
all.

Figures 8 and 9 do not include V2G services for parking customers. The impact of V2G
services can be observed in Figure 10. From this point on, only the Canary Wharf results
are presented because the relative effects of the parameters on the results were similar for
the Westfield area. The difference is that now, the overload capacity was kept fixed at 0%,
and it is replaced in the graphs by the V2G availability parameter.

It is interesting to observe that the final load curve is below the baseline curve for
the majority of the day. This can be explained by the fact that several drivers prefer to
sell electricity back to the grid instead of charging their cars, even taking into account the
disutility from the reduced SOC for the rest of their daily trips. This is extremely useful
for periods of peak demand because it allows other drivers with higher charging needs to
refill their batteries. Nevertheless, it incurs additional imbalance costs to the CSP during
nonpeak periods, when the V2G services are not required.

The net revenue for the CSP is optimized with the choice-based pricing algorithm that
was presented in the previous sections. Figure 11 shows the load curves under the four
different control approaches, with and without V2G availability. FP2 is similar to FP, but
now, the area factor is included in the calculation of Equation (1). In this way, busy parking
is penalized, and drivers are incentivized to plug in their cars in a more distant location.

In terms of overall load scheduling, this method has very similar results to the previous
one. On the other hand, the two solution algorithms for our optimization problem have
a more profound effect. When V2G is not available, a higher portion of charging events
is shifted from peak to nonpeak hour slots by setting prices that are closer to the drivers’
willingness to pay. To better understand what happens when V2G services are provided,
one can have a look at Table 2.
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Figure 10. Charging allocation analysis for EV market penetration and V2G availability (Canary
Wharf area and 0% overload capacity). The red dotted line represents the nominal capacity of
the distribution transformer; the grey line, the baseline load demand; the blue dotted line, the
uncoordinated charging scenario; and the green line, the charging allocation with Fixed Pricing based
on time of day (FP).
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Figure 11. Charging allocation analysis for V2G availability and control algorithm (Canary Wharf
area and 0% overload capacity). The red dotted line represents the nominal capacity of the distribution
transformer; the grey line, the baseline load demand; the blue dotted line, the uncoordinated charging
scenario; and the green line, the charging allocation with the respective algorithm.
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Table 2. Revenue performance and parking load factors for various parameter combinations.

V2G
Availability

EV Market
Penetration

Control
Scenario

Overload
Capacity

Revenue
(GBP)

Parking
Load Factor

Parking
Load Factor

(P1)

Parking
Load Factor

(P2)

No V2G

100% FP
0.0 5768 40% 43% 38%

0.2 7980 69% 69% 68%

50% FP
0.0 3775 27% 27% 27

0.2 5268 50% 51% 50%

25%

FP
0.0 1959 15% 16% 14%

0.2 2818 31% 31% 31%

FP2 0.0 1835 15% 8% 22%

GA 0.0 6056 15% 16% 14%

PSO 0.0 8051 15% 16% 13%

V2G

100% FP
0.0 −5278 72% 73% 71%

0.2 −5026 72% 72% 72%

50% FP
0.0 −2691 48% 51% 45%

0.2 −2657 50% 51% 48%

25%

FP
0.0 −1358 25% 27% 23%

0.2 −1230 27% 28% 26%

FP2 0.0 −2005 25% 31% 18%

GA 0.0 −6.86 18% 9% 26%

PSO 0.0 −1040 20% 20% 20%

When drivers are allowed to sell electricity to the grid using V2G technology, all the
methods result in losses for the CSP because the expenses from the “selling” bundles exceed
the income from the “buying” bundles. The choice-based optimization reduces the losses,
especially when the GA solution is applied. The reduced parking load factors indicate that
upon decreasing the sale prices to avoid excessive V2G and reduce the imbalance costs, the
V2G activities are spread throughout the day.

The trade-offs between charging and discharging in the choice model heavily rely on
the customers’ sensitivity to price. As was highlighted earlier, the class-specific parameters
for the two latent classes were estimated by the authors in previous work. Therefore, the
estimates were bound to the tariffs used in the choice experiments and do not necessarily
reflect future fluctuations in electricity prices. The effect of this behavioural uncertainty
on the outcome of the optimization problem was addressed by performing a sensitivity
analysis regarding the price coefficients. The outcomes are demonstrated in Table 3 for the
GA solution. The relative differences were similar for the PSO solution.

Table 3. Analysis of revenue and parking load factor sensitivity to price parameters.

Price
Sensitivity

Revenue (GBP)
Parking Load

Factor
Parking Load

Factor (P1)
Parking Load

Factor (P2)

Decreased 850.21 23% 24% 13%

Medium −6.41 20% 11% 28%

Increased −791.26 18% 17% 30%

The original specification was defined as “Medium Price Sensitivity”, and the price
parameters were halved and doubled, respectively, for the “Decreased” and the “Increased”
scenarios. When drivers are less sensitive to charging prices, their utility is overruled by
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their energy needs and their willingness to walk, so there is an increase in drivers that
charge in parking lot 1, and the overall revenue becomes positive for the CSP. On the
contrary, when drivers are more sensitive to charging prices, the number of V2G events
increases in both parking facilities. Consequently, the imbalance costs are increased by the
excess electricity, and the optimal solution leads to an overall loss.

The following results indicate the significance of the demand parameters in the devel-
oped framework. If similar datasets become available in the future, a cross-validation could
be useful since some elements of the choice experiments that were used are not established
at the moment (e.g., workplace charging services), and some properties were approximated
(e.g., the sensitivity to energy quantity). At the same time, the estimated parameters should
be treated with caution when applied to other geographic locations, since it is likely that
they are correlated with some idiosyncratic preferences of British drivers.

The next step in the analysis was to understand how the optimal prices were related
to the attributes of the charging bundles. Figure 12 demonstrates a classification of the
prices that were generated with the GA solution by power and charging duration. It is
observed that short-duration, high-power bundles tend to be more dispersed around 0
compared to long-duration, low-power bundles. This is essentially an indirect reward to
users that strain the power network less by spreading their charging demand over time.

Figure 12. Classification of GA-optimized prices for charging and V2G bundles by power and
charging duration.

To conclude this section, we performed a comparative analysis of the two algorithms’
performance in terms of computational time. The run time of the optimization was eval-
uated for three different parameters: (a) the number of iterations, (b) the number of
populations (GA) or the number of particles (PSO) and (c) the effect of scaling up the
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number of EVs. All the parameters were found to have linear effects on computational
time as is shown in Table 4.

Table 4. Comparative analysis of computational times for solution algorithms.

Genetic Algorithms Particle Swarm Optimization

No. of Iter. No. of Populations Scale (%) Time (s) No. of Iter. No. of Populations Scale (%) Time (s)

10 10 25 20.1 10 10 25 17.1

10 10 50 40.6 10 10 50 35.0

10 10 100 83.6 10 10 100 69.2

100 10 25 186.7 100 10 25 184.5

10 100 25 192.7 10 100 25 194.3

The metaheuristics’ overall performance can be summarized as follows:

• Their computational times are very similar;
• The GA algorithm provides a better solution without V2G;
• The PSO algorithm provides a better solution with V2G.

6. Conclusions

This paper shows how a choice-based revenue-management problem can be integrated
with the parking and charging choices of electric vehicle drivers. In particular, an integrated
latent class and nonlinear framework was developed to optimize prices for charging
services provided by a charging service provider.

There are two innovative elements of the developed methodological framework in
comparison to existing research.

First, the endogenous relationship between the sensitivity of EV drivers to charg-
ing characteristics and the charging coordination methods applied by the operator was
captured with a sophisticated disaggregate model of demand. Most importantly, the pa-
rameters of this model were empirically estimated from user-tailored choice experiments
for charging choices.

The second contribution of this paper is the development of a framework that can have
direct implementation in the charging service industry. Revenue management allows the
closed-loop integration of supply and demand and has proven to be financially beneficial
in several service industries. The excessive number of papers that have been written in the
last decade aiming to accommodate the increasing charging needs of EV drivers cannot
always be aligned with practice-ready business models.

A microsimulation framework was used to implement the pricing model for a syn-
thesized network of two distinctive regions. Baseload electricity curves were modelled
by scaling up typical load profiles, and survey data for travel behaviour were scaled up
by using synthetic population methods. The charging behaviour of the simulated drivers
was modelled using an advanced discrete choice model, and different scenarios were
established for EV penetration rates, the overload capacity and the V2G availability.

One limitation of this online reservation system is that it cannot capture last-minute
stochastic arrivals. As was explained in the introduction, this approach reduces the un-
certainty both for the users who need to be reassured of a certain level of SOC for their
subsequent trip and for the parking operator who wants to achieve a smooth allocation
of charging demand. However, it results in a conservative lower-bound estimation of the
optimal revenue. Future research could combine a revenue-management approach, which
by definition, has to be resolved in a preservice booking period, with a more dynamic
application that considers last-minute arrivals.

The results suggest that the revenue-management framework simultaneously maxi-
mizes revenue and assists in the prevention of local transformer overloading. Charging
peaks are alleviated especially when V2G services are adopted to provide energy back to
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the grid. In addition, it accommodates drivers during the peak hours, while before, they
were unable to charge their vehicles because of network constraints.

The outcomes of this research could potentially be interesting for retail operators that
host charging infrastructure and want to understand revenue opportunities from merging
charging and retailing services. The charging bundles described could be extended to
incorporate a point system or the exchange of electricity with retail products. At the same
time, the power constraints could reflect the energy needs of a retail building, such as,
for example, lighting, heating and cooling for a supermarket in high-demand hours. It is
significant to highlight here the rapid increase in studies that are exploring the integration
of V2G with energy-management systems in buildings [59–61].
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4. Kempton, W.; Tomić, J. Vehicle-to-grid power fundamentals: Calculating capacity and net revenue. J. Power Sources 2005, 144,

268–279. [CrossRef]
5. Acha, S.; Green, T.C.; Shah, N. Effects of Optimised Plug-In Hybrid Vehicle Charging Strategies on Electric Distribution Network

Losses. In Proceedings of the IEEE PES T&D 2010, Sao Paulo, Brazil, 8–10 November 2010; pp. 1–6.
6. Clement-Nyns, K.; Haesen, E.; Driesen, J. Coordinated Charging of Multiple Plugin Hybrid Electric Vehicles in Residential

Distribution Grids. In Proceedings of the 2009 IEEE/PES Power Systems Conference and Exposition, Seattle, WA, USA,
15–18 March 2009; pp. 1–7.

7. Zheng, Y.; Shang, Y.; Shao, Z.; Jian, L. A novel real-time scheduling strategy with near-linear complexity for integrating large-scale
electric vehicles into smart grid. Appl. Energy 2018, 217, 1–13. [CrossRef]

8. Galus, M.D.; Waraich, R.A.; Noembrini, F.; Steurs, K.; Georges, G.; Boulouchos, K.; Axhausen, K.W.; Andersson, G. Integrating
power systems, transport systems and vehicle technology for electric mobility impact assessment and efficient control. IEEE
Trans. Smart Grid 2012, 3, 934–949. [CrossRef]

9. Shafiekhah, M.; Heydarian-Forushani, E.; Golshan, M.; Siano, P.; Moghaddam, M.P.; Sheikh-El-Eslami, M.; Catalão, J. Optimal
trading of plug-in electric vehicle aggregation agents in a market environment for sustainability. Appl. Energy 2016, 162, 601–612.
[CrossRef]

10. Lopes, J.A.P.; Soares, F.J.; Almeida, P.M.R. Identifying Management Procedures to Deal with Connection of Electric Vehicles in the
Grid. In Proceedings of the 2009 IEEE Bucharest PowerTech, Bucharest, Romania, 28 June–2 July 2009; pp. 1–8.

11. Waraich, R.A.; Galus, M.D.; Dobler, C.; Balmer, M.; Andersson, G.; Axhausen, K.W. Plug-in hybrid electric vehicles and smart
grids: Investigations based on a microsimulation. Transp. Res. Part C Emerg. Technol. 2013, 28, 74–86. [CrossRef]

63



Energies 2021, 14, 1090

12. Gan, L.; Topcu, U.; Low, S.H. Optimal decentralized protocol for electric vehicle charging. IEEE Trans. Power Syst. 2013, 28,
940–951. [CrossRef]

13. Ma, Z.; Callaway, D.; Hiskens, I. Decentralised Charging Control for Large Populations of Plug-In Electric Vehicles. In Proceedings
of the CDC 2010: 49th IEEE Conference on Decision and Control, Atlanta, GA, USA, 15–17 December 2010; pp. 206–212.

14. Karfopoulos, E.L.; Hatziargyriou, N.D. A multi-agent system for controlled charging of a large population of electric vehicles.
IEEE Trans. Power Syst. 2013, 28, 1196–1204. [CrossRef]

15. Wen, C.-K.; Chen, J.-C.; Teng, J.-H.; Ting, P. Decentralized plug-in electric vehicle charging selection algorithm in power systems.
IEEE Trans. Smart Grid 2012, 3, 1779–1789. [CrossRef]

16. Papadaskalopoulos, D.; Strbac, G. Participation of Electric Vehicles in Electricity Markets through a Decentralised Mechanism. In
Proceedings of the 2011 2nd IEEE PES International Conference and Exhibition on Innovative Smart Grid Technologies (ISGT
Europe 2011), Manchester, UK, 5–7 December 2011; pp. 1–8.

17. Papadaskalopoulos, D.; Strbac, G. Decentralised Participation of Electric Vehicles in Network-Constrained Market Operation.
In Proceedings of the 2012 3rd IEEE PES Innovative Smart Grid Technologies Europe (ISGT Europe 2012), Berlin, Germany,
14–17 October 2012; pp. 1–8.

18. Cao, Y.; Tang, S.; Li, C.; Zhang, P.; Tan, Y.; Zhang, Z.; Li, J. An optimized EV charging model considering TOU price and SOC
curve. IEEE Trans. Smart Grid 2012, 3, 388–393. [CrossRef]

19. Bessa, R.J.; Matos, M.A. Global against divided optimisation for the participation of an EV aggregator in the day-ahead electricity
market. Part I: Theory. Electr. Power Syst. Res. 2013, 95, 309–318. [CrossRef]

20. Latinopoulos, C. Efficient Operation of Recharging Infrastructure for the Accommodation of Electric Vehicles: A Demand Driven
Approach. Ph.D. Thesis, Imperial College London, London, UK, 2016. Available online: https://spiral.imperial.ac.uk/handle/10
044/1/33340 (accessed on 25 December 2019).

21. Rotering, N.; Ilic, M.D. Optimal charge control of plug-in hybrid electric vehicles in deregulated electricity markets. IEEE Trans.
Power Syst. 2011, 26, 1021–1029. [CrossRef]

22. Zhang, B.; Lam, A.Y.; Dominguez-Garcia, A.D.; Tse, D. An optimal and distributed method for voltage regulation in power
distribution systems. IEEE Trans. Power Syst. 2015, 30, 1–13. [CrossRef]

23. Shokrzadeh, S.; Ribberink, H.; Rishmawi, I.; Entchev, E. A simplified control algorithm for utilities to utilize plug-in electric
vehicles to reduce distribution transformer overloading. Energy 2017, 133, 1121–1131. [CrossRef]

24. Deforest, N.; Macdonald, J.S.; Black, D.R. Day ahead optimization of an electric vehicle fleet providing ancillary services in the
Los Angeles Air Force Base vehicle-to-grid demonstration. Appl. Energy 2018, 210, 987–1001. [CrossRef]

25. Vandael, S.; Boucké, N.; Holvoet, T.; de Craemer, K.; Deconinck, G. Decentralized Coordination of Plug-In Hybrid Vehicles for
Imbalance Reduction in a Smart Grid. In Proceedings of the AAMAS ’11: The 10th International Conference on Autonomous
Agents and Multiagent Systems, Taipei, Taiwan, 2–6 May 2011.

26. Yao, L.; Lim, W.H.; Tsai, T.S. A real-time charging scheme for demand response in electric vehicle parking station. IEEE Trans.
Smart Grid 2017, 8, 52–62. [CrossRef]

27. Shafie-Khah, M.; Heydarian-Forushani, E.; Osorio, G.J.; Gil, F.A.S.; Aghaei, J.; Barani, M.; Catalao, J.P.S. Optimal behavior of
electric vehicle parking lots as demand response aggregation agents. IEEE Trans. Smart Grid 2015, 7, 2654–2665. [CrossRef]

28. Zhang, G.; Tan, S.T.; Wang, G.G. Real-time smart charging of electric vehicles for demand charge reduction at non-residential
sites. IEEE Trans. Smart Grid 2018, 9, 4027–4037. [CrossRef]

29. Su, W.; Chow, M.-Y. Performance evaluation of an EDA-based large-scale plug-in hybrid electric vehicle charging algorithm.
IEEE Trans. Smart Grid 2011, 3, 308–315. [CrossRef]

30. Mehta, R.; Srinivasan, D.; Khambadkone, A.M.; Yang, J.; Trivedi, A. Smart charging strategies for optimal integration of plug-in
electric vehicles within existing distribution system infrastructure. IEEE Trans. Smart Grid 2018, 9, 299–312. [CrossRef]

31. Babic, J.; Carvalho, A.; Ketter, W.; Podobnik, V. Extending Parking Lots with Electricity Trading Agent Functionalities. In
Proceedings of the Workshop on Agent-Mediated Electronic Commerce and Trading Agent Design and Analysis (AMEC/TADA
2015), Istanbul, Turkey, 4 May 2015.

32. Moradijoz, M.; Moghaddam, M.P.; Haghifam, M.R.; Alishahi, E. A multi-objective optimization problem for allocating parking
lots in a distribution network. Int. J. Electr. Power Energy Syst. 2013, 46, 115–122. [CrossRef]

33. Hashimoto, S.; Kanamori, R.; Ito, T. Auction-Based Parking Reservation System with Electricity Trading. In Proceedings of the
2013 IEEE 15th Conference on Business Informatics (CBI), Vienna, Austria, 15–18 July 2013; pp. 33–40.

34. Daina, N.; Sivakumar, A.; Polak, J.W. Electric vehicle charging choices: Modelling and implications for smart charging services.
Transp. Res. Part C Emerg. Technol. 2017, 81, 36–56. [CrossRef]

35. Fazelpour, F.; Vafaeipour, M.; Rahbari, O.; Rosen, M.A. Intelligent optimization to integrate a plug-in hybrid electric vehicle
smart parking lot with renewable energy resources and enhance grid characteristics. Energy Convers. Manag. 2014, 77, 250–261.
[CrossRef]

36. Chung, Y.-W.; Khaki, B.; Li, T.; Chu, C.; Gadh, R. Ensemble machine learning-based algorithm for electric vehicle user behavior
prediction. Appl. Energy 2019, 254, 113732. [CrossRef]

37. Latinopoulos, C.; Sivakumar, A.; Polak, J. Response of electric vehicle drivers to dynamic pricing of parking and charging services:
Risky choice in early reservations. Transp. Res. Part C Emerg. Technol. 2017, 80, 175–189. [CrossRef]

64



Energies 2021, 14, 1090

38. van Ryzin, G.; McGill, G. Revenue management without forecasting or optimisation: An adaptive algorithm for determining
airline seat protection levels. Manag. Sci. 2000, 46, 760–775. [CrossRef]

39. McGill, J.I.; van Ryzin, G.J. Revenue management: Research overview and prospects. Transp. Sci. 1999, 33, 233–256. [CrossRef]
40. Guadix, J.; Onieva, L.; Muñuzuri, J.; Cortés, P. An overview of revenue management in service industries: An application to car

parks. Serv. Ind. J. 2011, 31, 91–105. [CrossRef]
41. Akhavan-Tabatabaei, R.; Bolívar, M.A.; Hincapie, J.A.; Medaglia, A.L. On the optimal parking lot subscription policy problem: A

hybrid simulation-optimisation approach. Ann. Oper. Res. 2014, 222, 29–44. [CrossRef]
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Abstract: Increasing the popularity of electric vehicles is one way of reducing greenhouse gas
emissions and making the economy more sustainable. In Poland, the use of electric vehicles is to be
increased by the adoption of the Act on Electromobility and Alternative Fuels. This Act obliges local
government units and state administration to expand the electric vehicle fleet. The expansion of the
fleet should be carried out on a planned basis, based on rational decisions supported by economic
analyses. Therefore, the aim of this article is to provide a recommendation of an electric vehicle
that meets the needs of local and state administration to the greatest extent possible. The aim has
been achieved using the multi-criteria decision analysis method called PROSA-C (PROMETHEE
for Sustainability Assessment—Criteria) combined with the Monte Carlo method. The PROSA-C
method allows promoting more sustainable vehicles with high technical, economic, environmental
and social parameters. The Monte Carlo method, on the other hand, is a stochastic simulation tool
that allows for taking into account the uncertainty of parameters describing vehicles. As a result
of the research, the most and least attractive vehicles were identified from the perspective of the
needs of local government units and state administration. Moreover, the conducted research allowed
confirming the effectiveness and usefulness of the research methodology proposed in the article and
the procedural approach combining the PROSA-C and Monte Carlo methods.

Keywords: electric vehicles; PROSA; PROMETHEE for Sustainability Assessment; MCDA;
Multi-Criteria Decision Analysis; stochastic analysis; Monte Carlo; uncertainty

1. Introduction

Global energy demand is almost steadily increasing, the only exception being the global lockdown
in the first half of 2020, which caused a temporary drop in demand for energy production [1]. Together
with increased energy production, the number of greenhouse gases emitted into the atmosphere is also
increasing: at present, more than 25 billion tons of CO2 are released annually as a result of human
activity [2]. One of the most important options for reducing CO2 emissions into the atmosphere is the
development of electric vehicles [3], because, according to the International Energy Agency, around 14%
of greenhouse gases in the world are produced by the transport sector [4]. Therefore, the electrification
of transport, together with an increase in the use of renewable energy sources, offers the possibility of
significantly reducing greenhouse gas emissions [3]. Of course, the development of electric vehicles is
not the only option for reducing CO2, emissions associated with transport. Another interesting option
is, for example, the design of urban space in such a way as to maximize the possibility of walking [5,6].
However, the need to use the vehicle cannot always be eliminated, so electrifying transport remains
the main way to reduce emissions contributing to the sustainability of the transport system.
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In order to increase the share of electric vehicles in transport, the Polish government has adopted
the Act on Electromobility and Alternative Fuels [7] imposing obligations on state and local government
units in terms of:

• the percentage of battery electric vehicles in the fleet of used vehicles,
• the percentage of zero-emission buses in the fleet of vehicles in use,
• the minimum number of charging points in municipal districts.

According to this legal act, state administration authorities and local government units with
more than 50,000 inhabitants must gradually increase the share of electric vehicles in the vehicle fleet.
For state administration bodies, the share of battery electric vehicles in the fleet of used vehicles should
be: from 1 January 2022 at least 10%, from the beginning of 2023 at least 20%, and in 2025 at least 50%.
For larger municipal districts and counties, i.e., with more than 50,000 inhabitants, the share should be
at least 10% from 1 January 2022, and at least 30% in 2025. In addition, local government units are
obliged to provide public transport services using a fleet partly composed of zero-emission buses: from
the beginning of 2021 such buses are to constitute 5%, from 2023 10%, from 2025 20%, and on 1 January
2028 it is to be 30% of the bus fleet. As far as the expansion of the electric vehicle charging network is
concerned, the number of charging points required in 2021 depends on the number of inhabitants and
the number of cars in each municipal district. The detailed requirements are shown in Table 1 [7,8].

Table 1. Required number of electric vehicle charging points installed by 31 March 2021 depending on
the size of the municipal district.

Number of Inhabitants
of the Municipal

District

Number of Motor
Vehicles in the

Municipal District

Number of Motor
Vehicles per 1000

Inhabitants

Required Number of
Charging Points

≥100,000 ≥60,000 ≥400 ≥60
≥150,000 ≥95,000 ≥400 ≥100
≥300,000 ≥200,000 ≥500 ≥210
≥1,000,000 ≥600,000 ≥700 ≥1000

Increasing the share of electric vehicles in the fleets of state and local government units is expected
to contribute to the number of 1 million electric vehicles in use in Poland in 2025 [9]. Therefore,
a critical problem is the appropriate expansion of the fleets of state and local administration vehicles.
The expansion of fleets should be well thought-out and carried out in a planned manner, and decisions
taken in this area must be rational and supported by analyses. The expansion of fleets of electric
vehicles cannot take place chaotically, without a plan and research, because this can lead to wasteful
spending of state and local government funds, with criminal sanctions associated with this. This is
all the more important because the cost of purchasing electric vehicles is much higher than that of
conventional vehicles, so ill-considered purchases of electric vehicles result in greater financial losses
than conventional vehicles. Selecting suitable vehicles to expand the fleet is even more difficult due
to the fact that electric vehicles, even belonging to the same class, differ in a number of parameters.
It is important to properly select such vehicles in order to minimize the inconvenience associated
with, among other things, the low range and long charging time of such vehicles, while maintaining a
reasonable price of expanding the fleet of electric vehicles.

The research problem addressed in the article, and at the same time its practical objective, is to
analyze the electric vehicles available in Poland and to present recommendations of vehicles with
the highest utility for institutional users (state and local government bodies). This is of particular
importance in the context of the previously indicated statutory obligation of state and local government
units to expand the fleet of electric vehicles and the expected increase in demand for such vehicles.

The methodological contribution is the use of MCDA (Multi-Criteria Decision Analysis) method
called PROSA-C (PROMETHEE for Sustainability Assessment–Criteria) [10,11], which allows taking
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into account the sustainability of decision-making alternatives in the solution of a decision problem.
In the case of electric vehicles, the PROSA-C method allows promoting vehicles with more balanced
economic, technical, social and environmental characteristics. What is important, in this article the
method has been developed with elements of a stochastic simulation, which takes into account the
uncertainty of individual parameters of electric vehicles. This uncertainty should be taken into
account in the solution of the decision problem and is due, among other things, to the fact that certain
operational parameters depend on the user and how the vehicle is used, e.g., the same vehicle may
have different energy consumption and range depending on the driving style.

Section 2 contains a literature discussion on the applications of MCDA methods in decision-
making problems related to electric vehicles. Section 3 discusses the PROSA-C method, a stochastic
analysis using the Monte Carlo method, and a research procedure based on these methods. Section 4
presents the results of research on the selection of electric vehicles for local government units and state
bodies in Poland. The article ends with a summary and indication of further research directions.

2. Literature Review

Electric vehicles are characterized by many parameters, such as: electric motor size, weight,
range, battery capacity, energy consumption, charging time, etc. [12,13]. These parameters are often in
conflict with each other, so improving one of them causes deterioration of another, e.g., higher battery
capacity means longer charging time. Moreover, many parameters are characterized by uncertainty,
e.g., charging time depends on the charger used. Therefore, the comparison and recommendation
of electric vehicles is a multi-criteria problem characterized by uncertainty and consisting in the
search for pareto-optimal solutions. MCDA methods are used to solve these types of decision-making
problems [14]. These methods are used both to solve decision-making problems at the strategic
level (e.g., selecting policies for the development of electric vehicles and their infrastructure) and at
the tactical and operational level (e.g., selecting specific vehicles or locations of charging stations).
Barfod et al. [15] studied the opportunities, risks and policies for the widespread use of commercial
electric vehicles in Denmark. Adhikari et al. [16] examined the limitations and challenges of using
electric vehicles in the context of Nepal. Both Zhang et al. [17] and Liu and Wei [18] examined the risk
factors for building an electric vehicle charging infrastructure in a public-private partnership, with
Zhang et al. [17] conducting the study from a Chinese perspective, and Liu and Wei [18] considered
the three Chinese provinces separately, building their ranking. Fazeli et al. [19] assessed the potential
impact of various fiscal policies on the acceptance of electric vehicles by consumers and the Government
of Iceland over the next 30 years. Erbas et al. [20] and Ju et al. [21] examined the potential locations
of electric vehicle charging stations and built a ranking, with Erbas et al. [20] conducting a survey
for Ankara and Ju et al. [21] examining the locations in Beijing. Xu et al. [22] ranked the various
electric vehicle sharing programs used in Beijing. Sałabun, Karczmarczyk [13] and Wątróbski et al. [23]
compared different electric cars in their rankings. The decision-making problems considered in
individual studies and the MCDA methods used are presented in Table 2.

In the above mentioned works, various MCDA methods were used, starting from methods based
on single synthesizing criterion: AHP and Fuzzy AHP, TOPSIS and Fuzzy TOPSIS, VIKOR, SMARTER,
DEMATEL, COMET, and ending with the outranking PROMETHEE II method. It should be noted here
that the AHP method in each of the quoted tests was only used to determine the weights of the criteria.
A detailed review of these and many other MCDA methods can be found, for instance, in the papers
of [14,24]. In the context of the research objective, it should be noted that MCDA methods may have
high or low compensation of criteria and therefore a correspondingly weak and strong sustainability.
Depending on the adopted paradigm (strong or weak sustainability), different MCDA methods can
be used to solve sustainability decision-making problems. Generally speaking, it is recognized that
methods based on a single synthesizing criterion, such as AHP, SMARTER, TOPSIS, VIKOR, DEMATEL,
COMET, among others, are characterized by high compensation and therefore only allow for weak
sustainability. On the other hand, methods based on outranking, thanks to the use of indifference,
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preference and sometimes also veto thresholds, are characterized by lower compensation and thus
stronger sustainability [25,26]. In the light of the purpose of the research, in addition to the degree of
compensation, another important feature of MCDA methods is their ability to take into account the
uncertainty of the criteria. The MCDA methods are often used to deal with ex-ante decision-making
problems, so the decision-maker or analyst is not able to fully and certainly foresee all its consequences
at the time of the decision. So this is a decision taken in conditions of uncertainty. A natural tool for
taking into account uncertainty in decision making problems is fuzzy MCDA methods [27]. In turn,
the MCDA methods using crisp data can take into account uncertainty by using a stochastic approach,
such as the Monte Carlo method [28].

Table 2. Decision-making problems related to electric vehicles and MCDA methods used.

Decision Problem Location MCDA Method
No. of

Alternatives/Criteria
Reference

Analysis of the challenges
related to the widespread
use of commercial electric

vehicles

Denmark SMARTER -/25 [15]

Analysis of obstacles related
to the use of electric vehicles Nepal AHP -/17 [16]

Risk analysis of the
development of electric

vehicle charging
infrastructure in

public-private partnership

China 2-tuple DEMATEL -/22 [17]

Risk assessment of the
development of electric

vehicle charging
infrastructure in

public-private partnership

China Fuzzy TOPSIS 3/17 [18]

Assessment of the impact of
fiscal policy on the

acceptance of electric
vehicles

Iceland TOPSIS 6/4 [19]

Evaluation of the locations
of electric vehicle charging

stations
Ankara, Turkey Fuzzy AHP +

TOPSIS 12/15 [20]

Evaluation of the locations
of electric vehicle charging

stations
Beijing, China Fuzzy AHP +

PFWIG + GRP 6/14 [21]

Ranking of electric vehicle
sharing programs Beijing, China VIKOR 3/22 [22]

Electric vehicle selection Poland COMET 9/6 [13]

Electric vehicle selection Poland PROMETHEE II,
Fuzzy TOPSIS 36/9 [23]

Analyzing the quoted articles, several important research gaps can be observed in the studies on
the selection of electric vehicles for public administration and local authorities. First of all, the presented
literature review indicates a small number of works in which electric vehicles were compared in a
multi-criteria way. It can also be noted that to the best of the author’s knowledge, no scientific research
on the selection or recommendation of electric vehicles for administrative and local government units
has been published so far. On the other hand, the quoted research on the Polish electric vehicle market
is out of date, because this market is changing dynamically and new vehicle models appear on it every
year, and current vehicles are updated. As regards the MCDA methods used, it should be noted that
among the approaches taking into account the uncertainty of parameters of electric vehicles, the only
methods used are Fuzzy TOPSIS and COMET, operating on fuzzy sets. Unfortunately, both methods are
characterized by high compensation [24] and therefore weak sustainability [14]. This means that a high
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value of one of the vehicle’s parameters can fully compensate for a low value of another parameter [29],
so, for example, a high maximum speed can compensate for high energy consumption. In other words,
in the case of high compensation, a profit for one criterion may compensate for losses for another
criterion, while low or no compensation reduces or eliminates this possibility altogether [30]. There is
another research gap here, because the use of highly compensated MCDA methods results in solutions
obtained using the indicated methods are not sustainable.

The research gaps identified directly determine the objectives and contribution of this research.
The aim is a multi-criteria analysis of electric vehicles currently available in Poland, which meet the
needs of state and local administration bodies. The practical effect will be to identify the most useful
vehicles for these administrative units. As far as the scientific contribution is concerned, in this article,
the PROSA-C method was used to evaluate electric vehicles available in Poland. It is a method designed
to solve multi-criteria decision-making problems, enabling sustainable solutions. It allows adjusting
the balance between the criteria influencing the expected degree of sustainability of the solution. This
article develops the PROSA-C method by introducing elements of a stochastic analysis, thanks to
which the uncertainty of data describing characteristics of electric vehicles is taken into account.

3. Materials and Methods

3.1. PROSA-C Method

PROSA is used to consider discrete decision-making problems, where a set of A = {a, b, . . .}
consisting of m alternatives is considered. Alternatives are considered in terms of n criteria belonging
to a set C = {c1, c2, . . . , cn}. The calculation procedure of the PROSA-C method [10,11] consists of
7 stages, with the initial 4 stages taken directly from the PROMETHEE method [31,32], on which the
PROSA method is based. These steps are based on the approach using single criterion net flows [33]
(pp.161–162) [31] (pp.200). The subsequent stages are written below using mathematical formulas.

1. Determination of deviations based on pair-wise comparisons:

dj(a, b) = cj(a) − cj(b) (1)

where dj(a, b) denotes the difference between the performances of a and b on a j-th criterion.
2. Application of the preference function:

Pj(a, b) = Fj
[
dj(a, b)

]
(2)

where Pj(a, b) denotes the preference of alternative a with regard to alternative b on each criterion,
as a function F of dj(a, b).

3. Calculation of a single criterion net outranking flow:

φ j(a) =
1

m− 1

m∑

i = 1

[
Pj(a, bi) − Pj(bi, a)

]
(3)

where φ j(a) denotes the criterion net flow of a over any other alternative, and m describes the
number of alternatives.

4. Calculation of a global (overall) net outranking flow:

φnet(a) =
n∑

j = 1

φ j(a) wj (4)
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where φnet(a) is the weighted sum of net flow for each criterion, wj is the weight of j-th criterion,

and weights are normalized to 1 (
n∑

j = 1
wj = 1). The above steps allow obtaining the PROMETHEE

II solution, while the subsequent steps lead to the PROSA-C solution.
5. Determination of a single criterion absolute deviation:

ADj(a) =
∣∣∣φnet(a) −φ j(a)

∣∣∣sj (5)

where sj denotes the sustainability (compensation) coefficient for a j-th criterion. As it can be easily
noticed, sj is a sort of a weight coefficient, and ADj(a) is a weighted distance of a solution φnet(a)
from solutions φ j(a) obtained for individual criteria. The greater the value sj, the more preferred
are alternatives strongly sustainable with regard to the j-th criterion, therefore, the compensation
degree for the criterion cj(a) is smaller.

6. Calculation of a single criterion PROSA net sustainable value:

PSVj(a) = φ j(a) −ADj(a) (6)

where PSVj(a) describes the sustainability of alternative a and with regard to the j-th criterion.
7. Calculation of a global PROSA net sustainable value:

PSVnet(a) =
n∑

j = 1

PSVj(a) wj (7)

where PSVnet(a) is the weighted sum of the PROSA net sustainable value for each criterion.

The PROSA-C method allows conducting an analysis of the sustainability of criteria for individual
decision alternatives. It distinguishes three sustainability/compensation relationships.

1. The relation of being sustainable (≈)–takes place when φ j(a) ≈ φnet(a) and it means that the
alternative a is sustainable in terms of a j-th criterion.

2. The relation of being compensated (Cd)–takes place when φ j(a) � φnet(a) and it means that
the low performance of the criterion cj(a) is compensated by another criterion or other criteria
(∃φ j′(a) : φ j(a) Cd φ j′(a)).

3. The compensation relationship (Cs)–occurs when φ j(a) � φnet(a) and it means that the high
performance of the criterion cj(a) compensates for lower performance on another criterion or
other criteria (∃φ j′(a) : φ j(a) Cs φ j′(a)).

Relations Cd and Cs are relations indicating the unsustainability of the alternative a with regard to
the criterion cj(a). The << and >> operators denote contractual relations “much less than” and “much
greater than”, expressing the subjective views of the decision-maker about the difference between the
compared values. These relations can provide a hint to the decision-maker about the expected values
of the coefficient sj. For example, if the decision-maker wants to increase the impact of sustainability
on the obtained solution, a lower sj value can be adopted for more sustainable criteria, and higher sj
values can be adopted for less sustainable criteria.

3.2. Stochastic Analysis

A stochastic analysis is based on random variables defined in the probability space. In this article,
a stochastic simulation based on the Monte Carlo method is used. In the Monte Carlo method, K
iterations are carried out, and during each of them L independent random variables r with a specific
distribution D are drawn [34]:

rk
l

i.i.d.
∼ D(v) (8)
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where rk
l is an l-th independent random variable (l = 1,2, . . . ,L) drawn in a k-th iteration (k = 1,2, . . . ,K),

v is a set of distribution parameters D (e.g., range of values), i.i.d. means independent and identically
distributed. This approach allows considering solutions based on different values of random variables,
covering the whole probability space, including the specified distribution.

In this article, the Monte Carlo method has been used to generate various possible values for
criteria describing uncertain parameters of electric vehicles. Random variables represent the values
of individual criteria for each of the alternatives cj(a). Therefore, the number of random variables
generated in each iteration should be equal to the product of the number of criteria and alternatives
considered (L = n * m). However, each random variable may have a different distribution and
distribution parameters, depending on which alternative and which criterion it represents. Therefore,
in this article, the stochastic simulation is based on a formula:

cj(ai)
k = rk

l
i.i.d.
∼ D(v)i, j (9)

where D(v)i, j denotes the distribution and parameters adopted for a j-th criterion of an i-th alternative.
Further elements of the stochastic analysis are based on elements of SMAA (Stochastic Multicriteria

Acceptability Analysis) [35]. On the basis of random variables generated in each iteration, rankings
of alternatives are built using the PROSA-C method. The results obtained in subsequent iterations
allow us to determine the statistic Bir indicating the number of iterations, in which the i-th alternative
obtained an r-th position in the ranking. On this basis, after K iterations, rank acceptability indices [35]
are estimated:

br
i ≈

Bir
K
∗ 100% (10)

In practice, the rank acceptability indices br
i show the probability that the i-th alternative will get the

r-th position in the ranking. This probability is, of course, determined by random variables generated
on the basis of the specified distributions D(v)i, j. The obtained values of the rank acceptability indices
are characterized by a certain precision and an assumed confidence interval, depending on the number
of iterations. The expected precision of the rank acceptability indices can be determined from the
formula [36]:

ε =
zα√

4L
(11)

where zα denotes a standard score for a confidence level 1− α. In the SMAA method and Monte Carlo
simulations 104–106 iterations [36,37] are usually used, which gives a precision of 0.01–0.001 for 95%
confidence respectively.

3.3. Research Procedure

Some elements of the research procedure have already been mentioned in Section 3.2, while this
section discusses the complete procedure applied to the decision-making problem of recommending
electric vehicles for state and local authorities. A diagram of the procedure is presented in a graphical
form in Figure 1.
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Figure 1. Research procedure.

1. At the beginning, an analysis of electric vehicles available in Poland was carried out and a review
of sources describing usual needs of the state administration and local government in relation to
electric vehicles was conducted. Data on electric vehicles available on the Polish market were
obtained from the database of the Polish Alternative Fuels Association [38]. On the other hand,
the needs of administration units with regard to electric vehicles were determined on the basis of
information on tenders for such vehicles announced by administration units and information
on purchases made by local government units and public administration units [39–42]. This
information was also verified by consulting local government experts. On this basis, vehicles
applicable in local government units and state authorities were selected, obtaining a set of
decision-making alternatives A.

2. The vehicle characteristics were then considered and a set of criteria C was obtained. The set
of criteria was established on the basis of the data on electric vehicles obtained in step 1, with
the reservation that these must be measurable and, at least to some extent, objective criteria.
For this reason, criteria such as the appearance of the vehicle were not taken into account.
The selection of the set of criteria was also based on other studies on vehicle recommendations,
including electric vehicles [12,13,23]. The following criteria were taken from these publications:
Top speed [23], Power [13,23], Torque [13,23], Cargo capacity [23], Battery capacity [12,13,23],
Price [13,23], Range [12,13,23], Consumption [12], Charging time [13,23], Fast charging time [23].
This collection was supplemented with the criteria obtained in an expert interview: Acceleration,
Seats, and Safety. This set of criteria was divided into certain criteria, the values of which for each
alternative are crisp numbers, and uncertain criteria, the values of which may vary according to
different factors. In addition, ranges of uncertain criteria were established.

3. In the next stage, based on the Monte Carlo simulation, random variables were generated to
determine the values of uncertain criteria.

4. A performance table with values for the certain criteria and simulated crisp values for the
uncertain criteria was constructed.

5. On the basis of the performance table, calculations were carried out using the PROSA-C method,
thereby obtaining a ranking of alternatives.

6. The procedure of generating random numbers and building the ranking of alternatives was
repeated K-times (the study assumed the number K = 1,000,000 iterations).

7. After all iterations of the calculation procedure were performed, the rank acceptability indices br
i

were calculated for each alternative.
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4. Results

At the outset, the most frequent needs of state and local government units with regard to electric
vehicles were identified. The analysis of Internet sources [39–42] as well as the expert interview revealed
that both the state administration and local government in Poland most often use electric hatchback,
B-segment (small cars), C-segment (medium cars) and J-segment (SUVs) cars with appropriate electric
motor power, energy consumption and range. Therefore, electric cars of these segments with electric
motor power of not less than 130PS, a range of at least 200 km and energy consumption of not more
than 250 Wh/km are considered in this research. Moreover, only electric vehicles available on the Polish
market were considered [38]. The vehicles concerned and their characteristics are shown in Table 3.

Table 3. Characteristics of the electric vehicles concerned [38,43,44].
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Segment JB JB JB C C C B B B B B B
Top speed [km/h] 150 155 167 165 144 157 150 160 150 150 150 140

Acceleration 0–100 km/h [s] 8.7 9.9 7.9 9.7 7.9 7.3 7.3 6.9 7.3 8.1 8.1 9.5
Total power [PS] 136 136 204 136 147 218 170 184 184 136 136 136

Total torque [Nm] 260 395 395 295 320 340 250 270 270 260 260 245
Cargo volume [L] 350 361 361 357 435 420 260 260 211 309 265 338

Cargo volume–seats folded [L] 1050 1143 1143 1417 1176 1161 1100 1100 731 1118 1106 1225
Seats [people] 5 5 5 5 5 5 4 4 4 5 5 5

Battery capacity-useable [kWh] 45 39.2 64 38.3 36 56 37.9 37.9 28.9 45 45 52

Pr
ic

e
[P

LN
th

.] Min equipment 159.9 158.4 182.4 184.5 155.5 164 169.7 184.2 139.2 128.9 124.9 135.9

Max equipment 199.9 185.3 232.6 204 195.5 211.1 233.7 242.6 173.4 171.9 155.7 165.6

R
an

ge
[k

m
]

EVDB range 250 255 400 250 220 325 235 230 185 275 275 310
WLTP range 320 305 484 311 270 385 308 283 234 330 339 385

City–cold weather 250 250 390 235 215 320 235 230 180 270 270 305
City–mild weather 375 385 595 365 325 485 365 355 280 410 415 465

Highway–cold weather 175 180 280 175 155 230 165 160 130 195 195 220
Highway–mild weather 225 230 365 230 200 300 215 205 170 250 255 280
Combined–cold weather 210 215 335 205 185 275 200 195 155 230 230 260
Combined–mild weather 285 295 460 290 250 375 275 265 215 315 320 355

En
er

gy
co

ns
um

pt
io

n
[W

h/
km

] EVDB vehicle
consumption 180 154 160 153 164 172 161 165 156 164 164 168

WLTP rated consumption 176 143 147 138 206 180 153 161 152 170 164 177
WLTP vehicle
consumption 141 129 132 123 133 145 123 134 124 136 133 135

City–cold weather 180 157 164 163 167 175 161 165 161 167 167 170
City–mild weather 120 102 108 105 111 115 104 107 103 110 108 112

Highway–cold weather 257 218 229 219 232 243 230 237 222 231 231 236
Highway–mild weather 200 170 175 167 180 187 176 185 170 180 176 186
Combined–cold weather 214 182 191 187 195 204 190 194 186 196 196 200
Combined–mild weather 158 133 139 132 144 149 138 143 134 143 141 146

C
ha

rg
in

g
ti

m
e

[m
] Wall plug (2.3 kW) 1395 1215 1965 1185 1110 1725 1170 1170 900 1395 1395 1605

1-phase 16A (3.7 kW) 870 750 1230 735 690 1080 735 735 555 870 870 1005
1-phase 32A (7.4 kW) 435 375 615 375 390 5 600 2 375 375 285 435 435 510
3-phase 16A (11 kW) 300 6 255 420 735 1 690 1080 1 255 255 195 300 6 300 6 345
3-phase 32A (22 kW) 300 6 255 4 420 4 375 3 390 5 600 2 255 4 255 4 195 4 300 6 300 6 180
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Table 3. Cont.
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Fa
st

ch
ar

gi
ng

ti
m

e
[m

] CHAdeMO 50 kW DC 40 62

CCS 50 kW DC 50 50 63 50 7 36 36 29 50 50 56 9

CHAdeMO 100 kW DC 35

CCS 175 kW DC 27 12 50 10 44 11 47 8 36 10 36 10 29 10 27 12 27 12 56 9

CCS 350 kW DC 27 12 50 10 44 11 47 8 36 10 36 10 29 10 27 12 27 12 56 9

Sa
fe

ty
[%

] Adult occupant 87 87 87 91 93 93 86 86 79 79 91 89
Child occupant 86 85 85 80 86 86 81 81 73 77 86 80

Pedestrian 54 62 62 70 71 71 57 57 66 71 56 66
Safety assist 63 60 60 82 71 71 55 55 56 56 71 85

1 3.7 kW max; 2 6.6 kW max; 3 7.4 kW max; 4 11 kW max; 5 optional 6.6 kW On-board Charger (3.6 kW is standard);
6 optional 11 kW On-board Charger (7.4 kW is standard); 7 40 kW max; 8 44 kW max; 9 46 kW max; 10 50 kW max; 11

77 kW max; 12 100 kW max.

On the basis of Table 3, the decision-making criteria were defined, which were: C1–Top Speed,
C2–Acceleration, C3–Total Power, C4–Total Torque, C5–Cargo Volume, C6–Cargo Volume–Seats Folded,
C7–Seats, C8–Battery Capacity, C9–Price, C10–Range, C11–Energy Consumption, C12–Charging Time,
C13–Fast Charging Time, C14–Safety. It is easy to notice that criteria C9–C14 are uncertain and their
values may vary depending on the situation. The other criteria (C1–C8) are certain and their values
remain constant. Based on Table 3, the ranges of uncertain criteria values are defined in Table 4. Table 4
therefore shows the distribution parameters D(v)i, j used in the Monte Carlo simulation.

In subsequent iterations of the procedure, new values for uncertain criteria were generated on the
basis of Table 4, using continuous uniform distribution for each criterion. These values, together with
the values of the certain criteria, were recorded in the performance table and constituted the input
for the PROSA-C method. In the PROSA-C method, in each iteration the same preference model was
used, specifying the functions and directions of preferences and the weights of criteria. The weights
may be defined directly or relative to other criteria [45], with the PROSA-C method expressing them
directly. In the preference model, the most difficult to build is to select the preference function and set
the values of the indifference and preference thresholds [46,47]. It is assumed that for quantitative
criteria one of the functions should be used: V-shape criterion, V-shape criterion with indifference
area, or Gaussian criterion. For qualitative criteria, the Usual criterion or Level criterion is most
often used [48]. As regards the values of indifference (q) and preference (p) thresholds used in the
V-shaped functions, Roy states that the threshold values should be between reliable minimum and
maximum values for a given criterion. He also suggests that the values of these thresholds may be
based on certain characteristics of the value of the criteria, such as mean value, standard deviation,
minimum, maximum, etc. [49]. Deshmukh, on the other hand, notes in the context of the Gaussian
criterion that the Gaussian threshold (σ) should be placed between the values of thresholds q and
p [48]. Amponsah et al. interpret the threshold σ as the standard deviation of the value of a given
criterion [50]. Based on these observations, it can be assumed that the threshold q should be less than
the standard deviation of the criterion value and the threshold p should be greater than the standard
deviation. In addition, Podvezko and Podvezko propose an approach where the values of thresholds q
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and p should be between a minimum and a maximum value for the gap between the values of the
alternatives on a given criterion [51,52]. The last parameter of the preference model in the PROSA-C
method is the values of sustainability coefficients. Research on the PROSA-C method has shown that in
order to maintain the performance scale [−1.1] in accordance with the classic PROMETHEE II method
for a problem consisting of 14 criteria, sustainability coefficients with values no greater than 0.3 should
be used [10]. Taking into account the above observations, a preference model presented in Table 5
was defined. The weights and functions of preferences were expertly defined taking into account
assumptions about the applicability of the preferences function [48]. The preference thresholds were
based on the population standard deviation σ j calculated from all the values of a given criterion (for
certain criteria) and all the minimum values of a given criterion (for uncertain criteria). The indifference
threshold was set at q = 0.5σ j whereas the preference threshold at p = 2σ j [53]. Such threshold
values are in line with previous considerations, and at the same time meet the request of Podviezko
and Podviezko for threshold values to be included between a minimum and a maximum range of
alternatives for a given criterion. Moreover, based on the analysis in [10], the values of sustainability
coefficients were set as sj = 0.3 for each criterion.

Table 4. Ranges of uncertain criteria.
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C9–Price [PLN thousand] min 159.9 158.4 182.4 184.5 155.5 164 169.7 184.2 139.2 128.9 124.9 135.9
max 199.9 185.3 232.6 204 195.5 211.1 233.7 242.6 173.4 171.9 155.7 165.6

C10–Range [km] min 175 180 280 175 155 230 165 160 130 195 195 220
max 375 385 595 365 325 485 365 355 280 410 415 465

C11–Energy Consumption
[Wh/km]

min 120 102 108 105 111 115 104 107 103 110 108 112
max 257 218 229 219 232 243 230 237 222 231 231 236

C12–Charging Time [m] min 300 255 420 375 390 600 255 255 195 300 300 180
max 1395 1215 1965 1185 1110 1725 1170 1170 900 1395 1395 1605

C13–Fast Charging
Time [m]

min 27 50 44 47 40 35 36 36 29 27 27 56
max 50 50 63 50 40 62 36 36 29 50 50 56

C14–Safety [%] min 54 60 60 70 71 71 55 55 56 56 56 66
max 87 87 87 91 93 93 86 86 79 79 91 89

Table 5. Preference model.

Criterion Weight
Preference
Direction

Preference
Function

Indifference
Threshold (q)

Preference
Threshold (p)

C1–Top Speed [km/h] 3 Max 5 4 16
C2–Acceleration 0–100 km/h [s] 2 Min 5 0.5 2

C3–Total Power [PS] 1 Max 5 15 61
C4–Total Torque [Nm] 1 Max 5 27 108
C5–Cargo Volume [L] 3 Max 5 34 136

C6–Cargo Volume –Seats Folded [L] 3 Max 5 77 309
C7–Seats [people] 5 Max 1 - -

C8–Battery Capacity [kWh] 4 Max 3 - 19.4
C9–Price [PLN thousand] 5 Min 3 - 42.4

C10–Range [km] 5 Max 3 - 80
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Table 5. Cont.

Criterion Weight
Preference
Direction

Preference
Function

Indifference
Threshold (q)

Preference
Threshold (p)

C11–Energy Consumption [Wh/km] 3 Min 5 3 10
C12–Charging Time [m] 4 Min 5 57 230

C13–Fast Charging Time [m] 5 Min 3 - 20
C14–Safety [%] 5 Max 3 - 14

Preference function: 5–V-shape with indifference, 1–Usual criterion, 3–V-shape criterion.

Based on the conducted simulation, the rank acceptability indices br
i contained in Table 6 were

calculated. Additionally, the values of the rank acceptability indices are graphically shown in Figure 2.
One million iterations allowed obtaining accuracy of results at 0.1% with 95% confidence level.

Table 6. Rank acceptability indices for individual alternatives.

Rank
Rank Acceptability Index [%]

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12

1 (b1
i ) 3.6 2.3 15.1 3.0 6.7 37.4 0 0 0 10.3 18.0 3.4

2 (b2
i ) 5.7 5.4 14.8 6.9 11.6 19.1 0 0 0 13.4 16.5 6.6

3 (b3
i ) 6.9 7.7 13.4 9.9 13.7 12.9 0.1 0.1 0 13.3 13.5 8.4

4 (b4
i ) 7.9 9.6 12.3 12.2 14.3 9.5 0.4 0.4 0 12.5 11.4 9.6

5 (b5
i ) 8.9 11.1 11.2 13.8 13.8 7.2 0.8 0.8 0 11.7 10.0 10.6

6 (b6
i ) 10.2 12.4 10.2 14.5 12.8 5.4 1.6 1.5 0 10.7 8.8 11.8

7 (b7
i ) 11.7 13.6 8.8 14.4 11.0 3.9 3.0 3.0 0.1 9.8 7.7 13.0

8 (b8
i ) 13.6 14.6 7.1 12.7 8.6 2.6 5.6 5.6 0.6 8.5 6.5 13.9

9 (b9
i ) 15.7 13.6 4.8 8.8 5.3 1.5 11.6 11.4 2.7 6.4 4.9 13.3

10 (b10
i ) 9.7 6.9 1.8 3.1 1.7 0.4 26.3 26.1 12.6 2.6 2.1 6.7

11 (b11
i ) 4.5 2.3 0.4 0.7 0.3 0.1 28.3 28.8 31.0 0.7 0.6 2.3

12 (b12
i ) 1.5 0.5 0 0.1 0 0 22.2 22.2 52.9 0.1 0.1 0.4

 
Figure 2. Plot of rank acceptability indices for individual alternatives A1–A12 (and zoomed fragment
of the plot).

The analysis of Table 6 and Figure 2 shows that the best alternative, which most often comes
first in the simulations, is A6, i.e., Nissan LEAF e+. Slightly worse results are obtained by the group
of alternatives A11 (Peugeot e-208), A3 (Hyundai KONA Electric 64 kWh), A10 (Opel Corsa-e), but
they are also in the lead and their profiles, determined by the ranks obtained in the simulations, are
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similar. The rankings are usually followed by the A5 (Nissan LEAF) and A4 (Hyundai IONIQ Electric)
alternatives, which are followed by a group of alternatives with similar ranks: A1 (DS 3 CROSSBACK
E-TENSE), A2 (Hyundai KONA Electric 39.2 kWh), A12 (Renault ZOE R135). The last positions in the
rankings are usually very similar to A7 (BMW i3), A8 (BMW i3s) and A9 (Mini Cooper SE) alternatives,
with Mini Cooper SE achieving the worst rank in over half of the simulation. The results obtained
are, of course, still uncertain, i.e., it is impossible to determine the order of alternatives with unknown
values for uncertain criteria. However, this order is largely predictable. Furthermore, it is possible to
identify a group of vehicles whose purchase is worthwhile and a group of vehicles which should not be
taken into account. The first group certainly includes A6—Nissan LEAF e+, and the following vehicles
can also be considered: A3—Hyundai KONA Electric 64 kWh, A10—Opel Corsa-e and A11—Peugeot
e-208. The second group should certainly include the following: A1—DS 3 CROSSBACK E-TENSE,
A2—Hyundai KONA Electric 39.2 kWh, A12—Renault ZOE R135, A7—BMW i3, A8—BMW i3s,
A9—Mini Cooper SE.

5. Discussion

The high rankings achieved by alternatives A3 and A6 are due to their good performance in terms
of numerous criteria. The values of the criteria for the individual alternatives are shown in Figure 3.
Bearing in mind that the preference direction for C1, C3–C8, C10, C14 is maximum and for C2, C9,
C11–C13 the minimum is preferred, it is easy to observe that alternatives A3 and A6 have relatively
high values of criteria C1–C8, C10, C14. The results are worse for criteria C12–C13 and values for
the other criteria are average for the alternatives discussed. This allows alternatives A3 and A6 to
obtain high values for φnet (compare formula 4). Moreover, these alternatives are relatively balanced
on criteria (C12–C13 is an exception). This results in low absolute deviation values (compare formula
5), so they do not receive large penalties for not reaching a sustainable balance of criteria. As a result,
they have high PSV values.

As far as the highly rated alternatives A10 and A11 are concerned, they also score well on criteria
C7, C9-C10, C13 and, for most of the other criteria, do not deviate significantly from the average. This
gives them quite high scores for φnet, but they gain higher profits in the PROSA-C method because they
are more sustainable than alternatives A3 and A6. This observation can be confirmed by comparing the
ranking of acceptability indices obtained in the PROSA-C method (Table 6) with the values obtained
with the same assumptions (1 million iterations, accuracy 0.1%, 95% confidence level) in the classic
PROMETHEE II method, presented in Table 7.

Comparing Tables 6 and 7, it is easy to see that in the case of alternatives A3 and A6, the PROSA-C
sustainability study makes them ranked first less frequently compared to PROMETHEE, while
alternatives A10 and A11 are more likely to win the PROSA-C rankings than in PROMETHEE II.
Tables 8 and 9 show the rank acceptability indices obtained in the PROSA-C method with sustainability
coefficients values of sj = 0.5 and sj = 1 respectively. The aim of this study was to check
whether the results would change as the impact of the sustainability of alternatives on the achieved
solution increased.

The analysis of Tables 6–9 shows that as the value of the sustainability coefficient increases,
the alternatives A10 and A11 as well as A1, A2, A5 gain. In turn, the alternatives A3, A4, A6, A7,
A8, A9, A12 lose. This comparison therefore allows dividing the alternatives into two groups, which
include more and less sustainable alternatives.
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Figure 3. Values of the criteria C1-C14 for the different alternatives A1–A12.

Table 7. Rank acceptability indices for individual alternatives obtained by the PROMETHEE II method.

Rank
Rank Acceptability Index [%]

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12

1 (b1
i ) 1.9 1.6 22.8 3.7 4.3 37.5 0.0 0.0 0.0 7.2 16.0 5.0

2 (b2
i ) 3.6 3.9 20.3 8.0 8.9 21.3 0.1 0.1 0.0 10.4 15.3 8.2

3 (b3
i ) 5.0 6.0 16.2 11.2 12.2 13.9 0.2 0.3 0.0 11.6 13.4 10.0

4 (b4
i ) 6.3 8.0 12.7 13.2 14.1 9.6 0.5 0.6 0.0 12.1 11.7 11.1

5 (b5
i ) 7.7 9.8 9.9 14.2 14.8 6.8 0.9 1.2 0.1 12.2 10.5 11.8

6 (b6
i ) 9.4 11.9 7.5 14.4 14.3 4.7 1.7 2.1 0.3 11.9 9.4 12.3

7 (b7
i ) 11.5 13.8 5.3 13.4 12.7 3.1 3.1 3.8 1.0 11.3 8.3 12.6

8 (b8
i ) 14.1 15.6 3.2 11.0 9.9 1.9 5.7 6.8 2.8 10.2 6.9 12.0

9 (b9
i ) 16.7 14.7 1.5 7.2 5.9 0.9 10.7 12.4 8.0 7.6 5.0 9.4

10 (b10
i ) 12.3 9.0 0.4 2.9 2.2 0.2 19.6 21.9 20.4 3.7 2.4 5.0

11 (b11
i ) 7.6 4.3 0.1 0.8 0.6 0.0 24.7 24.7 32.9 1.4 0.9 2.0

12 (b12
i ) 3.9 1.5 0.0 0.1 0.1 0.0 32.8 26.1 34.4 0.4 0.2 0.5
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Table 8. Rank acceptability indices for individual alternatives obtained by the PROSA-C method,
sj = 0.5.

Rank
Rank Acceptability Index [%]

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12

1 (b1
i ) 5.0 2.9 11.6 2.4 8.3 36.1 0.0 0.0 0.0 12.5 18.7 2.5

2 (b2
i ) 7.2 6.4 11.9 6.1 13.0 18.1 0.0 0.0 0.0 14.9 16.9 5.6

3 (b3
i ) 8.1 9.0 11.3 9.2 14.4 12.5 0.1 0.1 0.0 14.0 13.7 7.5

4 (b4
i ) 9.0 10.7 11.2 11.7 14.4 9.5 0.4 0.3 0.0 12.6 11.4 8.8

5 (b5
i ) 9.7 11.9 11.0 13.6 13.4 7.5 0.9 0.6 0.0 11.4 9.9 10.1

6 (b6
i ) 10.7 12.8 10.8 14.7 12.0 5.9 1.7 1.3 0.0 10.1 8.6 11.5

7 (b7
i ) 11.7 13.4 10.4 14.9 10.2 4.5 3.1 2.7 0.0 8.8 7.4 12.9

8 (b8
i ) 12.9 13.5 9.6 13.6 7.8 3.2 5.9 5.2 0.2 7.4 6.2 14.6

9 (b9
i ) 13.8 11.9 7.8 9.7 4.8 1.9 12.3 10.8 1.2 5.5 4.7 15.5

10 (b10
i ) 8.0 5.6 3.5 3.4 1.5 0.6 30.0 27.2 8.1 2.1 1.9 8.1

11 (b11
i ) 3.3 1.6 1.0 0.7 0.2 0.1 30.0 33.1 26.3 0.5 0.5 2.7

12 (b12
i ) 0.7 0.2 0.1 0.0 0.0 0.0 15.6 18.7 64.2 0.0 0.1 0.3

Table 9. Rank acceptability indices for individual alternatives obtained by the PROSA-C method,
sj = 1.

Rank
Rank Acceptability Index [%]

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12

1 (b1
i ) 9.0 4.2 6.1 1.3 11.6 31.4 0.0 0.0 0.0 17.0 18.6 0.8

2 (b2
i ) 10.5 9.1 7.2 4.3 14.9 16.2 0.0 0.0 0.0 17.4 17.2 3.2

3 (b3
i ) 10.7 11.7 7.6 7.7 15.1 12.0 0.1 0.0 0.0 14.9 14.3 5.8

4 (b4
i ) 11.0 13.1 8.2 10.7 14.3 9.9 0.5 0.1 0.0 12.8 12.1 7.4

5 (b5
i ) 11.2 13.7 9.1 13.2 12.8 8.4 1.2 0.5 0.0 10.8 10.2 8.9

6 (b6
i ) 11.3 13.5 10.0 15.1 11.0 7.0 2.3 1.2 0.0 9.0 8.7 10.8

7 (b7
i ) 11.0 12.4 11.3 16.3 8.8 5.8 4.2 2.5 0.0 7.3 7.2 13.2

8 (b8
i ) 10.3 10.7 12.6 15.3 6.5 4.6 8.0 5.2 0.0 5.5 5.7 15.8

9 (b9
i ) 8.5 7.6 13.5 10.8 3.6 3.1 16.1 11.2 0.3 3.5 3.9 17.9

10 (b10
i ) 4.6 3.2 9.4 4.4 1.1 1.3 32.9 25.6 2.7 1.4 1.7 11.6

11 (b11
i ) 1.7 0.8 4.6 0.9 0.2 0.3 29.2 42.4 14.8 0.3 0.4 4.4

12 (b12
i ) 0.1 0.0 0.5 0.0 0.0 0.0 5.6 11.2 82.2 0.0 0.0 0.3

6. Conclusions

The article considers the problem of analyzing and recommending electric vehicles which are
most useful for local government and state administration units. For this purpose, based on publicly
available information about tenders for local governments and state administration, the most typical
demand of such units for electric vehicles was determined. Next, the vehicles available on the Polish
market were analyzed, indicating vehicles meeting the needs of local and state units. Based on the
relatively new MCDA method called PROSA-C and on the Monte Carlo method, the most useful
vehicles were identified, taking into account the uncertainty of parameters describing individual
vehicles. The conducted research indicated that the best choice, based on a defined preference model,
is currently Nissan LEAF e+.

As regards the generalized conclusions of the studies carried out, there is a wide range of electric
vehicles in B, C and J segments. Twelve such vehicles were included in the studies carried out, but a few
others were initially rejected on the grounds that they did not meet the requirements for electric motor
power or range. In addition, it is easy to see that many of the parameters characterizing electric vehicles
are uncertain and dependent on the use of the vehicles or on external factors such as consumption
or the types of charging station available. In relation to the methodological approach used in the
studies, its usefulness is obviously not limited to electric vehicles, but the methodology is much more
universal. The methodological contribution of the article consists in developing the PROSA method by
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a stochastic analysis based on the Monte Carlo method. This allows the PROSA method, naturally
designed to work on crisp data, to take into account the uncertainty of the input data. In addition,
the PROSA method, indicating the most useful solution, takes into account the sustainability of the
alternatives considered and through the option of changing the values of the sustainability coefficients
sj allows seeking more or less sustainable solutions.

The limitations of the studies presented in the article are mainly related to the fact that one
preference model, presented in Table 5, has been applied. Therefore, the study presented captures the
uncertainty of the parameters of electric vehicles, but does not take into account the possible uncertainty
of the weights of the criteria, as well as the possibility of applying other preference functions and
other values of the indifference and preference thresholds. Another limitation refers to the constant
changes on the Polish electric vehicle market. These changes are related, among other things, to
the development of the electric vehicle market and the introduction of new vehicle models on it,
and to changes in the legal environment of that market. These restrictions result in further directions
of research.

An important methodological research direction will be to develop the PROSA method into
Fuzzy PROSA, capable of capturing uncertainty by means of fuzzy numbers, as other MCDA fuzzy
methods do [54–56]. As far as practical aspects are concerned, it should be noted that subsidies for
individual users have been introduced in Poland for the purchase of electric vehicles [57,58]. This may
significantly change the situation on the vehicle market and make electric vehicles more attractive
and accessible to the public. It would be interesting to carry out a study to address this situation and
consider the attractiveness of electric and hybrid vehicles compared to conventional (combustion)
vehicles for individual users.
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Abstract: Electric cargo bicycles have become a popular mode of transport for last-mile goods
deliveries under conditions of restricted traffic in urban areas. The indispensable elements of the
cargo bike delivery systems are loading hubs: they serve as intermediate points between vans and
bikes ensuring loading, storage, and e-vehicle charging operations. The choice of the loading hub
location is one of the basic problems to be solved when designing city logistics systems that presume
the use of electric bicycles. The paper proposes an approach to justifying the location of a loading hub
based on computer simulations of the delivery process in the closed urban area under the condition of
stochastic demand for transport services. The developed mathematical model considers consignees
and loading hubs as vertices in the graph representing the transport network. A single request
for transport services is described based on the set of numeric parameters, among which the most
significant are the size of the consignment, its dimensions, and the time interval between the current
and the previous requests for deliveries. The software implementation of the developed model in
Python programming language was used to simulate the process of goods delivery by e-bikes for
two cases—the synthetically generated rectangular network and the real-world case of the Old Town
district in Krakow, Poland. The loading hub location was substantiated based on the simulation
results from a set of alternative locations by using the minimum of the total transport work as the
efficiency criterion. The obtained results differ from the loading hub locations chosen with the use of
classical rectilinear and center-of-gravity methods to solve a simple facility location problem.

Keywords: cargo bicycles; loading hub; facility location problem; computer simulations; Python
programing

1. Introduction

The growth of e-commerce during the last decade is one of the main reasons for the
exponentially increased demand for last-mile deliveries that are characterized by cargo
diversity and low utilization of vehicles’ capacity. Commercial vehicles delivering the
packages directly to customers may significantly contribute to the increase of traffic in
urban areas. Especially, this concerns the central city areas with historic buildings and low
capacity of the roads: commercial vehicles are the main source of noise and air pollution
in such areas, they cause congestions and reduce the public space. For these reasons,
nowadays, the restriction of traffic in the selected districts is provided in many cities: the
motorized vehicles may enter the area only during the specified time window (usually
these are night or early-morning hours). Such restrictions, however, negatively influence
the businesses located in the areas with restricted traffic by increasing the storage costs
and causing the loss of profit due to the lack of goods at the given time moment. In such
a situation, cargo distribution systems based on cargo bikes could be considered as the
alternative to conventional last-mile deliveries by motorized vehicles.
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Loading hubs are necessary elements of the urban distribution system based on cargo
bicycles: loads are transported by vans to the storage point located at the bound of the
area with restricted traffic and after are delivered to consignees. As examples of such hubs,
the following real-world implementations may be listed: a trailer or a semi-trailer, a cargo
container unit used as a mobile point, the dedicated transshipment bay, a parcel locker, or
a storage space having the character of a permanent loading point. As the core function of
the loading hubs, besides the transshipment operations and short-term storage, the e-bikes
charging operations should be mentioned.

Both from practical and theoretical points of view, choosing the loading hub location
constitutes a significant problem. Practically, such alternative locations should be found
that satisfy the legislative restrictions and are characterized by availability for conventional
transport and e-bikes. Then, theoretically, by applying a chosen methodology, such the hub
location should be distinguished from the set of alternative variants that guarantees the
most effective operation of the distribution system.

The current study presents the novel simulation-based methodology to choose the
location of a loading hub for a cargo bicycle system given the set of alternative locations. The
developed approach, unlike the existing simulation-based methods, considers stochasticity
of demand for deliveries in the selected urban area as well as allows the implementation of
the routing procedures as part of the technology of goods delivering by electric cargo bikes.

The paper has the following structure: The second part presents a brief review of recent
publications related to the research problem; the proposed methodology to substantiate
the loading hub location for a cargo bikes delivery system is described in the third part; the
fourth part contains the introductive description of software implementing the developed
model; the fifth section introduces case studies of choosing the loading point location for a
synthetic rectangular network and the cargo bikes delivery system in the Old Town district
of Krakow, Poland; the last part offers brief conclusions and directions of future research.

2. Literature Review

Many recent studies underline the advantages of cargo bicycles as the sustainable
mean of transport under urban conditions [1–3]. The author of the paper [4] concludes that
the use of cargo bikes contributes to the reduction of traffic congestion and the improvement
of air quality. According to the publication [5], both operational and external transport
costs can be reduced if the delivery scheme with transshipment hubs and cargo bikes is
used for the distribution of e-commerce goods in Antwerp (Belgium). The authors of the
research [6] point out that the use of electric cargo bikes in urban logistics activities in Porto
(Portugal) reach up to 25% of reductions in external costs. Numeric results regarding the
decrease of CO2 emissions due to the use of bicycles for cargo deliveries also show the
significant impact: According to [6], CO2 emissions can be reduced by up to 73%, while the
authors of the research [7] state that the use of electrically assisted cargo tricycles results in
the CO2 emissions decrease by 54% per parcel delivered. Authors of the publication [6]
also conclude that cargo bikes can replace up to 10% of the conventional vans without
changing the overall network efficiency. The study [8] shows that the expected travel time
for delivery distances up to 20 km is on average just 6 min longer if cargo bikes are used
instead of traditional vans.

The transport of loads by bikes also has many limitations related to the delivery
distance, the consignment size, the vehicles’ speed, and the safety of the goods. However,
these limitations are not subject to the case of deliveries under the urban conditions
when electrically powered bicycles are used: Delivery distances are relatively short, the
e-bike’s capacity is comparable with the capacity of light commercial vehicles, the speed of
conventional vans does not exceed the average e-bikes’ speed due to road traffic restrictions,
and the freight is protected from the weather conditions when the bikes with the covered
bins are used.

The contemporary scientific literature describes the set of operational problems to be
solved while designing the e-bike delivery system in an urban area: vehicle routing [9–11],
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synchronization of bikes with conventional vans [12], choice of vehicle type [10,13], vehi-
cles scheduling [14,15], shaping the recharging strategy [15–17], etc. However, the most
significant practical and theoretical issue when setting up the regional e-bike delivery
system is the substantiation of the transshipment hub(s) parameters, including the type
and location of the hub(s).

As it pointed out in the study [13], contemporary knowledge about planning urban
transshipment points is very limited. Substantiation of the loading hub location refers to
the branch of the operations research known as the facility location problem (FLP) [18].
The simplest version of FLP (the Weber problem) assumes the choice of a single facility
location for the given set of customers’ locations. For the multiple hub locations, the FLP
becomes NP-hard and is usually solved by using different approximation algorithms that
find the solution within a reasonable computational time. In real-world applications of
FLP, the uncertainty of demand for deliveries, as well as the stochastic parameters of the
servicing process and resource restrictions, should be considered [19–23]; it significantly
complicates the process of searching for a reliable solution.

To solve FLP, various approaches are used by scholars and practitioners. The most
popular mathematical apparatus for substantiation of the loading hubs location is the
mixed-integer linear programming [9,14,15,21,24], although the fuzzy-logic-based models
are used as well [17,25]. Another direction for finding the solution of FLP is the simulation-
based approaches [5,8,19,26]: The delivery and servicing processes are simulated for a set
of alternative locations and the best option is being substantiated based on the simulation
results. The simulation-based approaches assume that the adequate model of the transport
system is developed as the base for simulations. The model is used to run multiple
simulations of the transport system to consider the overall influence of random parameters
on the simulations’ results and to evaluate statistically significant values of the efficiency
criteria. The authors of the study [27] use the robust optimization approach to alleviate the
impact of uncertainty on obtained solutions.

Different heuristics are used to obtain the solution for FLP. The authors of the pa-
per [28], to place bicycle stations in a way that minimizes the distance between clients and
the closest bike station in Malaga (Spain), have studied the comparative advantages of the
following algorithms: genetic algorithm, iterated local search, particle swarm optimization,
simulated annealing, and variable neighborhood search. Genetic algorithms (GA) are
quite a popular heuristic for solving FLP: e.g., the optimal location and size of charging
stations are substantiated based on the developed GA in the study [17], the location of a
transshipment hub is being chosen based on the proposed GA in the paper [29] considering
the vehicle routing problem in the multistage distribution system.

Although the contemporary literature proposes a variety of methods to substantiate
the loading hub location, it should be mentioned that existing approaches are usually
case-study-sensitive and allow solving the problem for the specific situation or the given
initial data. Considering the presented literature review, the following research gaps should
be filled by the proposed simulation-based approach:

• the demand for deliveries is presented by deterministic parameters: the stochas-
tic nature of the demand for transport services should be considered, that may be
achieved by implementing the demand simulation procedure within the model of a
distribution system;

• the technological procedures are not considered in detail: the result of some servicing
operations (such as vehicle routing or loads scheduling) depend on the demand
parameters; conventional linear programming models cannot consider this; however,
the corresponding procedures may be implemented within the simulation models.

3. Simulation-Based Methodology for the Substantiation of a Loading Hub Location

As the basis for estimating the alternative location of the loading hub, the simulation
model of the transportation system is proposed to be used. Such model simulates de-
mand for transport services, as well as the technological processes: handling and charging
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operations in loading hubs, delivery of consignments to consignees located in the serviced
area, as well as loading and unloading operations at customers’ locations and in a hub. To
run the model, its proper program implementation should be developed. Based on the
simulation results and considered efficiency criteria, the expediency of the loading hub
locations is estimated.

The process of goods delivery by electric bikes is implemented within the logistic
system of the considered urban area. As basic structural elements of this system, the
following subsystems should be listed:

• the transport network of the selected urban area where the processes of goods delivery
take place;

• demand for the supply of goods reflecting the customers’ needs for deliveries;
• the subsystem serving the transport demand that includes means of transport (cargo

bicycles) and loading hubs.

Thus, the mathematical model MDS of the delivery system in a general form can be
presented as the tuple of three above listed elements:

MDS = 〈Ω, D, Φ〉, (1)

where Ω is the transport network; D is demand for transport services; Φ is the servicing
subsystem.

3.1. Transport Network Model

The most commonly used approach to modeling transport networks is the use of
mathematical structures based on graph models. The transport network can be formalized
as a pair of subsets—the nodes and the edges:

Ω =
〈{ηi},

{
λj
}〉

, ∀ηi ∈ N, ∀λj ∈ Λ, (2)

where ηi is the i-th node being the element of the network nodes set N; λj is the j-th edge
being the element of the network edges set Λ.

In the proposed mathematical model, as the nodes of the network, the locations of
potential customers of transport services are presented, while the edges (links) are used
to reflect the relevant sections of the road network connecting the nodes. Locations of the
loading hubs, from which the cargoes are delivered by bikes, can be also represented as the
network vertices. Additionally, for the more detailed networks, the nodes can be used to
model the road intersections.

The basic characteristics of a node are its geographical coordinates and lists of ingoing
and outgoing edges:

η = 〈x, y, λin, λout〉, (3)

where x and y are the coordinates characterizing the node location (latitude and longitude
may be used as such coordinates); λin and λout are the sets of ingoing and outgoing edges
for the given node η : λin ⊂ Λ, λout ⊂ Λ.

The obligatory set of parameters describing the graph edge includes its weight and
end vertices:

λ = 〈w, ηout, ηin〉, (4)

where w is the edge weight (e.g., the length of the corresponding road section, the travel
time, the transport costs, etc.); ηout and ηin are the beginning and the ending nodes of the
edge: ηout ∈ N, ηin ∈ N.

Note that in a more advanced version of the network model, the set of node and edge
parameters could be extended depending on the problem being solved.

3.2. Model of Demand for Goods Delivery

The core unit shaping transport demand is a request for the delivery of goods un-
derstood as the customer’s need for services, supported by his purchasing ability, and
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presented on the market to be satisfied. A set of requests for the services of a given com-
pany forms the demand for the services of a transport enterprise. Each request could be
quantified based on a set of numerical parameters.

In the general form, the demand model for goods delivery can be presented as an
ordered set of requests:

D = {ρ1, ρ2, . . . , ρN}, (5)

where ρi is the i-th request in the flow: ρi ≺ ρi+1 if ti ≤ ti+1, ti is the moment of appearance
of the i-th request; N is the number of requests in a flow.

A single request for delivery is characterized by the following parameters:

ρ = 〈ηo, ηd, ζ, ω, 〈θl , θw, θh〉〉, (6)

where ηo and ηd are the transport network nodes defining the location of a sender and a
recipient: ηo ∈ N, ηd ∈ N; ζ is the time interval between the moments of appearance of the
given and previous requests [min]; ω is the consignment weight [kg]; θl , θw, and θh are
dimensions of the load unit—its length, width, and height [cm].

In the Equation (6), the time interval ζ characterizes the intensity of the demand for
deliveries for the given consignor: the more the value of the interval, the less intense the
demand for transport services.

For a flow of requests with a finite number of elements, the subsetting of requests by
sender and recipient can be presented in the form of a travel matrix Δ. An element δij of
such the matrix reflects the number of requests for which the sender is located in the node
ηi (origin node), while the recipient—in the node ηj (destination node).

For a single request, its numerical parameters are deterministic, but for the requests
flow, these parameters are random, and can be described by stochastic variables. It follows
that the demand model for cargo transport can be presented as a set of random variables
characterizing the numerical parameters of requests for cargo deliveries supported by the
origin-destination matrix defining spatial distribution of the requests:

D =
〈

Δ, ζ̃, ω̃,
〈

θ̃l , θ̃w, θ̃h

〉〉
, (7)

where x̃ is a random variable characterizing some numeric parameter x of demand for
cargo deliveries.

Given the set of ordered requests for the cargo deliveries characterize the demand, the
task of demand modeling can be presented as the task of generating numerical parameters
of the requests in a flow. Implementation of the demand model as a flow of N elements
is a set of requests in the form (5), where numerical parameters are values from samples,
generated for the respective random variables, and the locations of senders and recipients
are defined by the matrix Δ.

3.3. Model of the Servicing Subsystem

Basic components of the servicing subsystem are the fleet of vehicles (cargo bicycles)
and a set of loading hubs:

Φ =
〈{bi},

{
pj
}〉

, ∀bi ∈ B, ∀pj ∈ P, (8)

where bi is the i-th cargo bicycle being the element of the vehicles fleet B; pj is the j-th
loading hub being the element of all the loading hubs’ set P (in case, when the single hub
location problem is solved, the set P contains just one element).

The basic parameters of cargo bikes as elements of the servicing system are their load
capacity, dimensions of the cargo space, and technical speed:

b = 〈qb, vb, 〈lb, wb, hb〉〉, (9)
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where qb is the load capacity of a cargo bicycle [kg]; vb is the average technical speed of a
cargo bicycle [km/h] (the technical speed may be also considered as a random variable); lb,
wb, and hb are dimensions of the bicycle cargo space—its length, width, and height [cm].

Note that the battery capacity may be considered as the key parameter for electric
bikes, if it is used as the restriction in the problem being solved or if it is needed for the
estimation of the resulting efficiency criteria. The dimensions of the loading space are
considered in the model as the additional restriction to the load capacity (these parameters
may be used if the solution of the knapsack problem is being considered in the procedure
implementing the loading operations).

Loading hubs within the frame of the proposed model are short-term (temporary)
storage points to which cargo is transported by other means of transport (usually—by
delivery vans) to deliver them to the final recipient. The basic characteristics of loading
hubs are their location and capacity:

p =
〈
ηp, qp

〉
, (10)

where ηp is the node of the transport network representing the location of the loading hub,
ηp ∈ N; qp is the loading hub capacity (possible maximum amount of cargo that can be
stored at the hub) [t or m3].

3.4. Shaping the Routes for Delivery of Cargoes by Electric Bikes

In most cases, the deliveries of goods by bicycles are carried out under conditions of
combined consignments: By aiming the minimization of the total distance, the delivery
routes are being formed for the requests that are received during the considered time
window (in such situations, the total weight of the combined consignment should not
exceed the vehicle’s capacity). Assuming that servicing companies behave rationally and
shape rational (or optimal) delivery routes while servicing the clients, the simulation model
should approximate the real-world behavior of transport operators, and thus—it should
contain the implementation of routing procedures.

As input data in the routing algorithms, the matrix of the shortest distances between
the vertices of the transport network is used. To estimate such matrix, any known method of
searching for the shortest paths should be used (e.g., Dijkstra algorithm or Floyd–Warshall
algorithm [30]). For the generated flow of requests, the task of shaping the delivery routes
is solved as the traveling salesman problem (TSP), where the location of the load sender
(the parameter ηo) is defined as the location of a loading hub, and locations of recipients
(the parameter ηd)—as the locations of the corresponding nodes in the transport network
model. Known heuristic methods can be used for solving the TSP (e.g., Clarke–Wright
algorithm, simulated annealing method, methods based on genetic algorithms, ant colony
optimization methods, etc. [31]). The result of the routing procedure is a set of delivery
routes, being the ordered sets of vertices of the graph representing the network model. The
first and last element in the set of nodes shaping the route are the vertices defining the
location of a loading hub.

The basic characteristics of delivery routes, calculated based on given parameters of
the mathematical model, are the route length (total distance covered), the total weight of
transported cargo, and the total transport work. These technological characteristics may be
considered as key indicators to estimate the efficiency of the routing procedures, as well as
the efficiency of the delivery system for alternative facility locations.

Note that time windows may be added to the model as additional restrictions: for
each consignor, the time window when a parcel should be delivered may be considered.
More advanced optimization techniques should be used within the routing procedure
in this case, as far as the solution for the capacitated vehicle routing problem with time
windows should be found.
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3.5. The Objective Function for the Hub Location Problem

Special scientific literature proposes various efficiency criteria for solving FLP. The
most widely used criterion is total costs: In the research [5], the e-commerce distribution
system based on cargo bikes and delivery points is assessed with total operational and
external costs, the authors of the paper [9] propose to select cost-minimizing locations of
parcel lockers for goods deliveries by cargo bikes, the study [15] uses total costs as the
objective function to substantiate the location of recharging stations for electrical vehicles.
However, some recently developed approaches define facility locations considering envi-
ronmental pollution together with operational costs: The model developed in [10] uses
the total costs and the environmental impacts to assess alternative configurations of urban
consolidation centers, while the study [27] considers the combination of total costs and
parameters of environmental pollution to select locations of refueling stations.

There are also other efficiency criteria mentioned in recent studies and used to sub-
stantiate the facility location. Authors of the publication [20] use total system travel time
and total system net energy consumption for optimal positioning of dynamic wireless
charging infrastructure for battery electric vehicles, while the minimization of the power
loss in a distribution network is considered as the objective function in the study [17] when
solving the problem of the charging stations location. The paper [24] proposes solving
the multimodal capacitated hub location problem based on the profitability of alternative
locations. The authors of the study [7] use the total distance traveled and the CO2 emissions
per parcel delivered to substantiate the efficiency of an urban micro-consolidation center
located in the delivery area where the deliveries are performed by electrically-assisted
cargo tricycles and electric vans.

For solving the hub location problem based on the simulations of the delivery process,
the minimization of total transport work can be used as the core objective function reflect-
ing the technological operations performed within the logistic system of the considered
urban area:

Wtkm(ηH) = ∑NR
i=1 ∑

NS(i)
j=1 qij × dij → min, (11)

where ηH is the node of the transport network Ω that represents the loading hub location,
ηH ∈ NH, NH is the set of possible loading hub locations, NH ⊂ N; NR is the number of
delivery routes formed to service the transport demand in the considered city area; NS(i)
is the number of segments at the i-th route, NS(i) ≥ 2; qij is the total weight carried by a
vehicle at the j-th segment of the i-th route [tons]; dij is the distance covered by a vehicle at
the j-th segment of the i-th route [km].

Note that ∑
NS(i)
j=1 qij × dij represents the total transport work performed by a vehicle

at the i-th delivery route.
The proposed objective function may be used for solving the multiple hub location

problem as well. In such a case, the subsets of locations representing alternative solutions
should be formed prior (if the number of available alternative locations n is greater than
the number k of hubs to be located, then the number of subsets is equal to the number of

possible combinations
(

n
k

)
), and the total transport work should be estimated for each

of the combinations.
Criterion (11) is the resulting technological parameter that may be used as the base for

the calculation of other indicators. The performed ton-kilometers estimated at the level of
delivery routes can serve for evaluation of total costs, environmental pollution, and energy
consumption for a heterogeneous fleet of vehicles (total transport work may also be used
to estimate the values of these indicators for homogenous fleet).

4. Software Implementation

To implement simulation models of the systems of goods transport by cargo bikes,
a library of core classes was created. The library has been developed by using the Python
programming language (Version 3.9, Manufacturer–Python Software Foundation), and
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it is available in an open-source repository [32]. The structure of the library is presented
in Figure 1.

 
Figure 1. UML-diagram of the library for modeling of goods delivery by cargo bicycles.

The developed library contains the following core classes that are used to create a
simulation model of the cargo bicycle transport system:

• Net class is used to implement the mathematical model of the transport network
described in the previous section; this class contains lists of Node and Link elements
defining the network configuration and the list of Consignment objects implementing
the model of demand for transport services; the servicing system is implemented in
the Net class as the lists of LoadPoint and CargoBike elements;

• Node and Link classes allow implementing the network vertices and edges as the
models described by Equations (3) and (4);

• Consignment class is used to model requests for the delivery of goods; the sender
and the consignee locations are defined within the given class as references to the
appropriate Node objects of the transport network model;

• Route class allows implementing the program model of the delivery route; as far as
the delivery route model can be defined only within a specific transport network,
this class contains an object of the Net type being a reference to the network program
model; the sequence of the route is defined as a list (ordered collection) of elements of
the Consignment type; numeric parameters of the route (transport work, route length,
total consignment weight) are calculated by methods implemented as properties of
this class;

• CargoBike class is the program model of a cargo bicycle as the mean of transport used
in the process of handling requests for the goods delivery;

• LoadPoint class is dedicated to developing program models of loading points; the point
location is defined by the reference to the object of the Node type that represents the
respective vertex of the transport network.

The Net class contains methods for generating demand as a flow of requests for the
given random variables defining parameters of requests (consignment weight, the time
interval between requests), the methods for calculating the shortest distance matrix based
on the Floyd–Warshall and Dijkstra algorithm, as well as the methods for shaping delivery
routes that implement the Clarke–Wright algorithm, the simulated annealing method, and
the GA-based heuristic.
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5. Case Studies and Discussion

The use of the proposed methodology of substantiating the loading hub location is
presented for a synthetic transport network with two alternative locations and the real-
world case study of the Old Town district in Krakow (Poland) with a set of feasible loading
hub locations. The considered case studies represent examples of solving the FLP problem
for a single facility.

5.1. Synthetic Network Example

Let us consider the rectangular (square) transport network, where the nodes define the
locations of clients. To generate such the network, the dedicated procedure is implemented
within the class Net [32]: the method takes as arguments the size of the network (the side
of the square in nodes) and the random variable representing the length of the network
edges. The Figure 2 shows the configuration of the square network with the square side
equal to 7 nodes.

Figure 2. Synthetic network and alternative locations of loading hubs.

As alternative locations of the loading hub, the nodes connected to the corner node
(location A) and the mid-side node (location B) are considered. The hub nodes are connected
to the network with the edge that has the weight generated based on the same random
variable that was used for the network generation.

To choose the loading hub locations out of two alternatives, the following simulation
experiment was conducted:

• for each alternative location, 100 runs of the simulation model representing the deliv-
ery system were made,

• the distance between adjacent network vertices was generated as the random variable
uniformly distributed between 50 and 200 m,

• the weight of shipments was generated as the normally distributed random variable
with the average value of 30 kg and standard deviation of 5 kg,

• the probability of the request appearance (the probability that a client located in the
given node has a request for goods delivery) is set equal to 0.5,

• total transport work at each launch of the simulation model was measured as the sum
of ton-kilometers for all delivery routes obtained based on the Clarke–Wright heuristic
(capacity of vehicles was set to 150 kg).

The results of the computer simulations are shown in Figure 3 as the distributions of
random variables representing the total transport work conducted for each of the alternative
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variants of a loading hub location. The normal distribution of the random variables for both
locations is confirmed with the Kolmogorov–Smirnov test for the probability of confidence
equal to 0.95.

Figure 3. Distributions of the total transport work for the considered alternative hub locations in the
synthetic network.

The obtained results of simulations show that the average total transport work for
location A (0.757 tkm) is lower than the average value of this indicator for location B
(0.789 tkm). On this basis, it can be concluded that the location of the loading hub in the
corner of the rectangular network allows reducing the total transport work compared to
the option of locating the hub in the middle of the rectangle side. However, it should
be noted that such configurations of the network sections length and the parameters of
demand are possible when the corner location of the transshipment point is characterized
by a greater value of the objective function (in the conducted experiment, the 46 largest
values of transport work for location A are greater than the corresponding lowest values of
the objective function for location B).

A sufficient number of observations was evaluated for each of the experiment series
based on the normal distribution of the objective function. For the significance level equal
to 0.05, the sufficient number of the model runs is 29 for the series with location A and
35 for the series where a loading hub is located in node B. As the number of completed
runs of the simulation model is bigger than the sufficient number of observations, it can
be stated that the obtained results are statistically significant for the considered level of
significance (the corresponding probability of confidence equal to 0.95).

The solution for the single-facility location problem obtained based on the rectilinear
location model [18] for the considered example is the node located in the center of the
network (that is node 24 highlighted at the net presented in Figure 2). Accordingly, when
choosing between locations A and B, the node located closer to the center of the network
would be a more preferable alternative (evidently, that is node B). As we can see, the
solution obtained based on the proposed methodology differs from the conventional
approach. This result may be explained by the effect of the routing procedures considered
in the simulation model.
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5.2. Kraków Old Town Case

The Old Town district of Krakow is the area with restricted traffic: only 3 streets of
this district are not closed for motorized vehicles. At the same time, Krakow Old Town
is the main touristic attraction of the region, where hundreds of restaurants, shops, and
other touristic objects are located (locations of 730 commercial enterprises out of 954 objects
registered in Google Maps are shown in Figure 4).

 

Figure 4. Locations of potential clients in the Old Town district of Krakow.

As far as the district is closed for heavy vehicles, the supply of the objects located in
the district is allowed in the morning from 8 p.m. to 9.30 a.m. under the condition that only
light good vehicles with the carrying capacity not exceeding 1.5 tons deliver the goods.
Such restrictions lead to the increase of logistics expenses due to additional storage costs
and the lack of the ability to implement on-time deliveries. The use of cargo bicycles is a
solution that allows reducing logistics costs in this situation while preserving the tourist
appeal of the district and low level of environmental pollution.

The location of a loading hub for the bikes delivery system in the Old Town of
Krakow should be chosen from the set of alternative variants that satisfy the conditions
of transport accessibility (both for conventional vehicles and cargo bicycles) and consider
the architectural features of historic buildings in the district. The set of such alternative
locations is presented in Table 1.
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Table 1. The alternative locations of a loading hub in the Old Town district of Krakow.

Hub Location Longitude Latitude Address of Location

A 50.05435 19.93880 St. Giles str.
B 50.06208 19.93341 St. Anna str.
C 50.06036 19.94142 Holy Cross str.
D 50.06416 19.93542 St. Stephen sq.
E 50.06364 19.94214 Holy Spirit sq.

Using the developed software, the transport network model that considers roads
available for bicycles was prepared for the district of the Krakow Old Town. Initial data
for the network model (locations of the objects and intersections, the type of the objects)
were obtained by the means of Google Maps API. Enterprises and non-commercial objects
located in the Krakow Old Town (including hotels, shops, restaurants, cafés, museums,
and theaters) and the set of alternative locations of a loading hub were considered as the
nodes of the graph representing the network model. The graph of the obtained network
model is presented in Figure 5.

Figure 5. Locations of clients, intersections, and loading hubs in the Krakow Old Town.
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To choose the best location of the loading hub, the Monte-Carlo simulations were
performed based on the developed model. For each element of the considered set of
possible hub locations, 30 runs of the following procedure were conducted:

• requests for goods delivery were generated for the set of the clients,
• the delivery routes were formed for the set of generated requests by using the Clarke–

Wright algorithm,
• the total transport work was calculated for the obtained delivery routes.

For the demand simulation procedure, the probability of the request appearance was
taken equal to 0.1 for each client and the random variable of the consignment weight was
generated as the normally distributed variable with the average value equal to 30 kg and
standard deviation equal to 5 kg.

As the result, the samples characterizing random variables of the total transport
work were obtained for the alternative loading hub locations (distributions of the total
ton-kilometers performed at the delivery routes are shown in Figure 6).

Figure 6. Distribution of the total transport work for the considered loading hub locations.

More detailed characteristics of the random variables representing the total transport
work for the considered locations are presented in Table 2. To confirm that the obtained
samples are big enough to make statistically significant conclusions, the sufficient number
of observations was calculated for the level of significance equal to 0.05, assuming that the
random variables representing the total transport work have a normal distribution. As it
follows from the data presented in Table 2 (the number of performed observations is bigger
than the corresponding sufficient number), the obtained results should be considered as
statistically significant with the confidence probability equal to 0.95.

Based on the obtained results of computer simulations, locations C and E are the best
options in the Krakow Old Town case, as they are characterized by the smallest mean value
of the total transport work.
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Table 2. Results of computer simulations for the considered loading hub locations.

Alternative
Hub Location

Mean Value of Total
Transport Work [tkm]

Variance of Total
Transport Work [tkm2]

Sufficient Number of
Observations [obs.]

A 5.828 0.335 11
B 3.521 0.128 12
C 2.999 0.076 10
D 3.130 0.073 9
E 2.992 0.087 11

According to the center-of-gravity approach [18], for the set of potential clients located
in the Old Town district of Krakow, the center of gravity is the point with coordinates
(50.06178, 19.93846). Thus, based on the set of considered alternative locations, the solution
of the single-facility location problem is the point closest to the center of gravity. The
distances obtained from Google Maps (biking mode) and Euclidean distances between the
gravity center and alternative hub locations are shown in Table 3.

Table 3. Distances from the gravity center to alternative hub locations.

Alternative Hub
Location

Euclidean
Distance [m]

Distance According to
Google Maps [m]

A 744 850
B 506 500
C 328 300
D 386 450
E 412 400

As follows from the data presented in Table 3, both Euclidean and Google Maps
distances to the gravity center are the smallest for location C, while location E is not the
best alternative according to the conventional approach. Note that location A is evaluated
as the worse possible option by the proposed methodology, as well as by the center-of-
gravity approach.

The solution obtained by using the proposed simulation-based approach is superior
to the one obtained based on the center-of-gravity approach: by choosing location E,
we guarantee the minimum of the average total transport work (with 95% level of the
probability of confidence), while by choosing location C, the minimum of the averaged
values of the objective function cannot be guaranteed.

6. Conclusions

The proposed approach to the modeling of goods deliveries by cargo bicycles allows
considering the stochastic nature of the demand for transport services and the used tech-
nology of the delivery process. The numerical parameters described in the mathematical
model are the core characteristics, but the proposed model can be extended to be adapted
for solving other optimization problems. Unlike the existing approaches, the proposed
method allows taking into account the use of rational delivery routes, which increases the
adequacy of the obtained results and the validity of the choice for the loading hub location
problem. Since the main tool for choosing the loading hub location is the logistic system
simulation, the proposed approach can be expanded by including other technological
procedures in the program model in addition to routing.

By using the developed model and its software implementation, the problem of
choosing the location for a loading point in the cargo bikes delivery system was solved for
the Krakow Old Town district. It should be noted that the obtained results are preliminary:
The detailed studies of demand and its simulation in the frame of the proposed model are
needed for the real-world implementation of the system of goods delivery by cargo bicycles.

The use of the proposed approach in practice has the following implications:
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• the chosen location of the transport hub will guarantee the minimum of total ton-
kilometers performed by all e-bikes servicing the clients in the considered urban area;
supposedly, the minimum of transport expenses will be achieved as well (for the
homogenous fleet of vehicles);

• the stochastic nature of the demand for consignments delivery in the area will not
affect the efficiency of the distribution system for chosen alternative location;

• the use of combined consignments will not deteriorate the resulting total transport
work, as the rational behavior of the carriers regarding the used delivery routes is
considered in the simulation model.

However, the use of the proposed methodology may have certain limitations placed
upon its practical implementation:

• the parameters of demands should be studied prior for each group of potential clients
located in the serviced area: for this, the surveys should be carried out aiming the
estimation of the demand characteristics as stochastic variables; additionally, direct
visual observations can be made for the selected clients to estimate the demand
intensity (random variable of the time interval between requests in a flow);

• the method (or methods) of forming the delivery routes used by the carriers should
be implemented within the simulation model: this limitation may be overcome di-
rectly if the carriers use a decision-support system that optimizes the delivery routes;
otherwise, the behavior of the carriers should be studied to define the used rout-
ing strategies.

As the directions of further research on the developed methodology, the following
topics should be mentioned:

• the development of the advanced procedures of demand simulations;
• the expansion of the model with algorithms of such technological operations as vehicle

scheduling and stacking of load units in a bicycle cart;
• the study of the influence of different heuristics for solving the TSP problem on the

simulation results for various parameters of demand for transport services;
• the consideration of additional restrictions related to the servicing subsystem, such as

the number of available drivers and the drivers’ schedule.
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