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1. Introduction

In modern times, mechatronic and robotic systems are developing at a faster pace
than in the past [1], and research on novel solutions and applications of such devices are
studied in both industrial and academic environments [2]. The modelling and control of
mechatronic and robotic systems is a fundamental field of investigation, especially within
the context of Industry 4.0, in which novel scenarios for manufacturing processes and
production lines are strictly related to the implementation of robots, automatic machines,
and cyber-physical systems.

In this scenario, it is crucial to develop kinematic and dynamic models that can predict
the behavior of a mechatronic or robotic system over time, and can support the planning
of the path and the trajectory that the system needs to track during its operation [3].
Furthermore, the modelling, design, and control of mechatronic devices and robots play an
increasingly central role in enhancing their performance with respect to different objectives,
such as energy efficiency [4] or vibration suppression, when the flexibility of the mechanical
structure cannot be neglected [5].

The second volume of this Special Issue of Applied Sciences aims to disseminate
the latest research achievements, ideas, and applications of the modelling and control
of mechatronic and robotic systems, with particular emphasis on novel trends and chal-
lenges. We invited contributions to this Special Issue on topics including (but not lim-
ited to): modelling and control, path and trajectory planning, optimization problems,
collaborative robotics, mechatronics, flexible multi-body systems, mobile robotics, and
manufacturing applications.

2. Modelling and Control of Mechatronic and Robotic Systems, Volume II

The papers collected in this Special Issue refer to a broad range of disciplines, such as
robotic manipulation, mobile robots, service and social robots, cable-driven robotic systems,
biomimetic robots, manufacturing, trajectory planning, and control. In most of the papers,
numerical and simulation results are corroborated by experimental tests on real prototypes.

Several papers discuss mobile and autonomous systems. In [6], the kinematic and
dynamic modelling, and the design of an omni-directional robotic platform for tunnel
inspection is presented. That robot was built with the aim of automating the surveillance
of a particle acceleration environment characterised by remaining radiations and spatial
limitations. The authors of [7] illustrate the development and the experimental evaluation
of a crawling terrestrial robot capable of rapidly adapting to the mission it must perform.
The proposed prototype can provide a basis for future crawler robots used to detect, disarm,
and dispose of explosive threats in extreme environments. Furthermore, the design and
modelling of an amphibious spherical robot with fins is proposed in [8]. That robotic system
is capable of both terrestrial and aquatic locomotion by exploiting the rolling motion of a
spherical shell. Moreover, the spinning motion of the spherical shell is used to steer the
robot efficiently and with agility.

Appl. Sci. 2022, 12, 5922. https://doi.org/10.3390/app12125922 https://www.mdpi.com/journal/applsci1
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The paper [9] presents a behaviour-control architecture for legged and climbing robots
by considering their ability to perform self-reconfiguration after unforeseen leg failures.
The proposed control approach is suitable for robots with different numbers of legs that
move in any direction and inclination planes. Another control algorithm for biomimetic
robots is illustrated in [10]. The authors provide a more detailed description of a data-
driven control approach for snake manipulators composed of several modules coupled
with universal joints. That control algorithm solves the problem of model uncertainty
when the number of connecting rods of the serpentine manipulator increases and the
environment becomes complex. Moreover, the model of a quadruped robot is considered
in [11] to demonstrate the performance of an online foot-location-planning approach for
legged robots. In particular, the illustrated strategy leverages model predictive control to
solve the problem of large posture changes during gait transitions.

The work of [12] presents the design of the JET humanoid robot, characterized by
low stiffness of the actuator modules, high motion capability, and wide range of motion
of each joint. Experimental results, including stair climbing, egress from a car, and object
manipulation, verify the robot performance and design concepts. In [13], the inverse
kinematic problem of a multi-fingered anthropomorphic hand is solved using a genetic
algorithm based on workspace analysis. Results show the effectiveness of the proposed
approach and its potential application to many industrial robots.

Other works within this Special Issue focus on robotic systems with parallel kinemat-
ics. The authors of [14] present the design of a cable-driven parallel robot for non-contact
tasks on planar surfaces, such as laser engraving on a paper sheet, inspection, and ther-
mal treatment. A novel cable guidance system is illustrated, which allows for a simple
kinematic model to control the manipulator. The work of [15] describes the design and
implementation of a platform with six degrees of freedom used as a motion simulator.
The inverse kinematic model of the robotic platform and its position-control system are
implemented and verified with experimental results. Moreover, the authors of [16] present
the control of closed-kinematic chain manipulators based on the concept of sliding mode
control. The proposed controller is tested numerically on a planar manipulator with two
degrees of freedom.

The paper [17] presents a method for estimation of the natural frequencies of a robotic
Cartesian 3D printer based on the kinematics of the system. The approach can help the
development of preliminary mechanical design of 3D printers and promises to be useful for
emerging 3D printing technologies, which allows for new and sustainable manufacturing
paradigms, especially within the framework of Industry 4.0 [18].

The papers [19,20] deal with automation applications in industry. In [19], the design
and simulation of a fish-processing machine is shown. The system is introduced to process
trout fish in four steps thanks to a vision-based approach. The effectiveness of the proposed
design solution is verified through the fabrication of a physical prototype. The article
in [20] presents a flow-rate estimation method for an automatic pouring machine for the
casting industry. The approach is applied to a laboratory pouring machine to verify its
performance in the case of uncertainties in the system model parameters.

The paper in [21] describes a hybrid position and force control architecture based on a
finite state machine, which is applied to a robotic manipulator with five degrees of freedom.
That control approach is tested on a waste management robotic systems adopted to the
selective recycling of different types of materials.

In [22], a trajectory control for piezoelectric actuators based on artificial neural network
is presented. The proposed scheme allows for compensating the unmodelled dynamics,
uncertainties and perturbations.

Finally, the paper in [23] describes a theoretical method for designing thin motors
using electromagnetic forces and electropermanent magnets for applications in portable
electrical equipment. A prototype of a motor is fabricated to verify the results obtained
with the theoretical approach.
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3. Final Remarks

The second volume of this Special Issue collects interesting research papers focused
on the modelling and control of mechatronic and robotic systems. This collection of
works covers a wide range of applications with both numerical and experimental results.
This Special Issue “Modelling and Control of Mechatronic and Robotic Systems, Volume
II” demonstrates the level of interest in these topics and hints at future developments
and challenges.

Author Contributions: Conceptualisation, A.G., S.S. and L.S.; writing—original draft preparation,
L.S.; writing—review and editing, A.G., S.S. and L.S.; supervision, project administration, A.G. All
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Abstract: Intelligent robotic systems are becoming essential for inspections and measurements in
harsh environments. This article presents the design of an omnidirectional robotic platform for tunnel
inspection with spatial limitations. This robot was born from the need to automate the surveillance
process of the Super Proton Synchrotron (SPS) accelerator of the European Organization for Nuclear
Research (CERN), where there is remaining radiation. The accelerator is located within a tunnel that
is divided by small doors of 400 × 200 mm dimensions, through which the robot has to cross. The
designed robot brings a robotic arm, and the needed devices to carry out the inspection. Thanks to
this design, the robot application may vary by replacing certain devices and tools. In addition, this
paper presents the kinematic and dynamic control models for the robotic platform.

Keywords: dynamic model; harsh environment; kinematic model; mecanum wheel; omnidirectional
robot; robotic platform; surveillance

1. Introduction

One of the most significant problems in underground tunnels is the survey of the
proper performance of the security sensors available all along the whole corridor. Inspection
of large tunnels can be laborious when performed by operators. However, robots may
help with performing 4D tasks (dirty, dangerous, difficult, and dull), reducing risks for the
personnel. Inspection in underground tunnels use to be complicated because of (a) the long
time to access the facilities, (b) the long time to escape the facilities in case of evacuation,
(c) the strong safety protocols, and (d) the lack of GPS signal to locate where you are.
Usually used tunnels have other ways to communicate with the outside, such as 4G and a
WiFi network.

To enhance the process of inspection in long tunnels, a robotic platform is presented
in this paper. This mobile robot has been focused in the surveillance of the SPS where a
large amount of restriction are present due to its actual state. However, the platform could
be used in any other underground tunnel, where the only requirement is found in the floor
material, which should guarantee that the omnidirectional wheels work properly.

The SPS is the second largest machine in CERN’s accelerator complex, with a circumfer
ence of approximately 7 km. Like the rest of tunnels of these characteristics, the corridor of
the tunnel becomes completely monotonous, making navigation and SLAM an authentic
challenge. Environmental sensors, which measure the radiation, temperature and oxygen
concentration among others, are essential to guarantee material and personal safety. Due
to the need of periodic check-ups of the sensors, inspections have to be carried out every
month. Thus, in this paper we propose the design of an omnidirectional wheeled robot.
The robot should be stored in a charging station, located in one of the entrances of the
tunnel, where the batteries are charged. When required, it has to go around the ring and
record data about the environmental variables. During its journey, the robot brings the
needed sensors to record these variables and locate itself in the environment.

Appl. Sci. 2021, 11, 6631. https://doi.org/10.3390/app11146631 https://www.mdpi.com/journal/applsci5
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One of the most challenging features of the SPS is the fact that it has 19 partition doors
which separate sections of the tunnel. These doors have an aperture of 400 × 200 mm,
allowing the robot to cross them. Furthermore, the charging station is located in an area of
difficult access. It means that the robot has to do several maneuvers to enter and go out of
the station. In conclusion, the wheeled robot has the following requirements:

• The survey should take around 80 min. To achieve that, the robot should drive at a
speed of 5.5 km/h, or 1.5 m/s, approximately.

• The robot should be able to deal with small spaces, such as doors of 200 × 400 mm.
• The motors should guarantee the nominal velocity of the robot of 5.5 km/h.
• The robot’s autonomy should be of 3 h at least, guaranteeing that the robot completes

the surveillance even with the presence of unforeseen circumstances.
• The robot should be equipped with the required devices to perform the surveillance

autonomously, or through tele-operation if the situation requires it. Autonomous
inspection is understood as the fact that the robot travels through the tunnel without
direct control by an operator. In such a way, that the robot is able to leave the charging
station until the start of the journey, navigate from door to door, cross the door to go
from one section to another, and go back to the charging station to charge the batteries.
In this line, it is expected that the robot will need external sensors, such as cameras, a
3D LIDAR, and distance sensors to be placed in the middle of the tunnel.

The paper is organized as follows: In Section 2, an overview of wheeled robots is
presented. In Section 3, we present the reasons which justify the selected locomotion
arrangement. Later, we explain the selection of the locomotion actuators, the electronic and
electrical design, the selection of the needed sensors to comply with the robot applications,
and the mechanical design, where all the previous is included. Section 4 includes the
kinematic and dynamic models of the robot for the locomotion arrangement selected,
which will help us move the robot as desired. Section 6 includes the results of the design.
Lastly, in Section 7, we present the conclusions of the developed work.

2. Related Work

Wheeled mobile robots are widely used in a large variety of applications, such as in
industries, inspection, domestic tasks, rescue, planetary exploration, mining, hazardous
waste clean-up, and medical assistance, among others. These robot may have different
arrangements, such as differential, synchronous, tricycle, ackerman, or omnidirectional.

Differential drive mobile robots use two steering wheels with a free balancing wheel,
called “castor”. These robots are controlled by two motors independently, are non-
holonomic, have good manoeuvring capacities and work well in indoors environments [1].
However, the speed of these robot is very limited and the odometry estimation is very
sensitive. To solve the last problem, backstepping methods for posture tracking [2],
adaptive controllers to compensate errors and improve stability [3], and non- linear
controllers [4] are used. Furthermore, a wheel synchronization is a critical point for the
orientation control of differential mobile robots. Sun et al. propose in [5] a control approach
for improving the orientation control, focusing in the coordination of the wheels instead on
the robot configuration.

Synchronous drive mobile robots use chains or belts to orientate the wheels at the
same time to move the robot in the same direction. This kind of locomotion arrangement
needs a lot of space to include all the needed devices. Even with the easiness of its control
and the good accuracy of its proprioceptive sensors, its use is not very widespread in
robotics mainly because of design problems. They may have as many wheels as desired,
but usually they have three or four. Zaman et al. present in [6] a model for translation of a
synchoronous drive mobile robot of three wheels, whereas Wada presents in [7] the concept
of a variation of this kind of arrangement, making use of four “synchro-caster” wheels.

Tricycle mobile robots have never attracted attention in the scientific community due
to its structure, bad stability, and complexity in the path planning in narrow environments.
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Kamga et al. present in [8] a path tracking controller for this kind of robot, where
problematic dynamic effects are neglected.

Ackerman vehicles, as the one presented in [9], are required when an aggressive
steering is needed while maintaining a reasonable velocity when positioned in flat surfaces
with obstacles. However, this locomotion arrangement increases the design components
(and design complexity), as well as it reduces the manoeuvrability. This kind of locomotion
arrangement is widely used in agriculture.

Lastly, omnidirectional robots are capable of moving in arbitrary directions without
changing the direction of the wheels, thanks to the smart design of the mecanum wheels,
ball wheels, or off-centered wheels among others. In order to increase stability and
enhance manoeuvrability of omnidirectional robots with high heights and small bases,
a reconfigurable footprint mechanism is developed in [10], which allows varying the
ratio of wheel base to tread so that the vehicle could go through a narrow doorway,
ensuring the stability. Similarly, the design of a four wheeled omnidirectional mobile
robot with a variable wheel arrangement mechanism is presented in [11], where they take
advantage of the redundant d.o.f. to drive the mechanism enabling the wheel arrangement
to vary. Similarly, Byun et al. present in [12] an omnidirectional robotic platform with
the capability of modifying the orientation of the wheels in order to save energy under
some circumstances. These approaches would help a robot cross a door as described in
Section 1; however, they only allow the platform to move at very slow velocities. Moreover,
they do not have into account the viability of using the systems in machines with spatial
constraints, since the systems require a mechanical connection between the four wheels,
throughout a free joint.

Similarly to our requirements, in [13] an omnidirectional wheeled robot is developed
with the objectives of manipulating objects and navigating in indoor environments. They
mount two 3D LIDARs, one in front and one in the back, in order to have autonomous
navigation in indoors environments. They focus the design on a robotic arm with high load
capabilities, without focusing on spatial constraints. In addition, the disposal of the 3D
LIDARs produces (a) the necessity of a very accurate calibration to join the generated point
clouds, (b) the limitation of navigation only in indoors environments with a lot of features
(unable to implement in tunnels), and (c) high costs due to the location of two sensors. Jia
et al. present in [14] a kinematic model of a mecanum wheeled robot of four wheels. Later
they design and develop the robot. The design approach does not take advantage of the
free space between the wheels, raising the load within the body of the platform. Equally,
Liu et al. present in [15] an omnidirectional robotic platform with for mecanum wheels
and a manipulator. By mounting a manipulator in this kind of arrangement, the working
space is expanded. Lastly, since this locomotion arrangement produces an unavoidable
glide, ref. [16,17] study the movement performance of mecanum wheeled omnidirectional
mobile robots, trying to solve the problem of determining the robot pose even though the
robot slides.

About trading platforms, many large manufacturers sell omnidirectional robotic
platforms, such as KUKA with the Kuka Mobile Platform 1500, Stanley with Flex Omni,
or Nexus with Mecanum 4WD. However, all these platforms are much larger than ours
required, in addition to not leaving free the possibility of including a robotic arm to carry
out maintenance and handling tasks.

3. Omnidirectional Robotic Platform. Hardware Design

According to the requirements described in Section 1, we have decided to select an
omnidirectional locomotion arrangement, with four mecanum wheels located in parallel.
Mecanum wheels are composed by passive rollers that transform the force to other
directions, giving the robot the capability to be omnidirectional. The selected wheels
have a frame that covers the rubber rollers. They work properly on smooth and hard
surfaces, such as the tunnel floor, excluding in the same way the necessity of damping
devices due to the regularity of the surface.
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With the chosen locomotion structure, where the wheels are located in a rectangle
with straight forward orientation, we denote important advantages. First of all, (a) the
design is more simple, since each wheel has only one associated motor set. (b) The robot is
more compact, since the wheels are mounted in the covering box of the whole robot, giving
important advantages when crossing the doors or when entering in the charger station.
(c) The risk when a motor fails is lower, giving more robustness against foreseen failures
in one of the wheels. This kind of structure makes the system redundant, this is, there
are more modifiable d.o.f., four in this case, than motion d.o.f, three in this case (x, y, θ).
That means that in case a motor fails, the system would be able to finish its task through
the implementation of fault tolerance techniques and control architecture approaches.
However, this locomotion arrangement presents some disadvantages that should be taken
into account: (a) the rollers of the wheels usually slide, spoiling slightly the odometry
estimation of the wheels, and (b) the energetic efficiency is low. These problems are not
critical, since (a) a SLAM system may correct the wrong odometry, (b) the wheeled robots
allow enough space for the batteries to cover the task energetic requirements, and (c) the
required speed is low for safety reasons, since the robot is expected to be autonomous in
an environment where crashes are not allowed.

Intending to comply with the requirements (surveillance time, robot speed, spatial
constraints, autonomy time and tele-operation availability), we present along this section
the selection of the locomotion actuators, the electronic and electrical design, the selection
of the needed sensors to comply the robot applications, and the mechanical design, where
all the previous is included.

3.1. Locomotion Calculation

We present the guidelines to determine the proper motor, gearhead, and encoder. It is
important to highlight that the wheels have a known size. They have been selected during
the mechanical design process, and they have a crucial role in the selection of the motor
set since the most critical part is found in the acceleration torques, which have a strong
dependency on the moments of inertia. Firstly, we calculate the nominal force, torque, and
power that each motor set has to provide, this is, when the robot is driving at the desired
nominal speed. Secondly, we find out the maximum force, torque, and power, which
are highly related to the inertial moments, this is, when the robot is under acceleration.
With all these calculations, we choose the required devices, which eventually are tested
in simulation.

3.1.1. Nominal Torque and Power

Equation (1) relates the desired linear velocity of the robot, Vnom, with the angular
velocity of the wheels in r.p.m., nnom. Here, a factor η is applied to ensure good performance
even with the inevitable presence of friction.

nnom =
60
π

· Vnom

d · η
(1)

On the other hand, (2) calculates the nominal torque, Mnom, to move the entire robot
at nominal velocity. This torque depends proportionally on the force necessary to apply,
Fnom, which is determined in (3), and inversely on the bearing factor, δ.

Mnom =
d
2
· Fnom

δ
(2)

The nominal force is the needed force to keep the robot at the nominal velocity.
Typically, three main friction forces appear during the displacement of a vehicle: (a) rolling
resistance, (b) aerodynamic resistance, and (c) slope resistance. Both aerodynamic and
slope resistances may be neglected in our case. Aerodynamic resistance does not contribute
because of the following reasons: (a) the air in the tunnel is static, without the presence
of air currents, (b) the robot moves at low velocity, and (c) the air is clean and dry. Slope
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resistance does not contribute because the tunnel is mainly flat. Thus, the rolling force is
calculated in (3) through (a) the rolling resistance coefficient, or the coefficient of rolling
friction (CRF), Crr, and (b) the normal force, FN , this is, the perpendicular force to the
surface on which the wheel is rolling. The coefficient of rolling friction is given in (4) [18]
by the sinking depth, z, which depends on the elastic features of the material of the rollers,
and the wheel diameter, d. On the other hand, FN depends on the robot weight, mR.

Fnom = Crr · FN = Crr · mR · g (3)

Crr =
z
d

(4)

The calculated nominal torque has to be split in the number of traction wheels, N,
in the robot, as expressed in (5), resulting in the needed nominal torque in each motor
set, Mnom/m.

Mnom/m =
Mnom

N
(5)

So far, the torque when the nominal velocity is reached has been calculated. However,
in order to calculate the acceleration, average and maximum torques, a velocity profile
has to be created, as shown in Figure 1, where the time to reach the nominal velocity, tacc,
and the time of nominal velocity, tnom, are indicated. For simplicity, we have assumed
constant acceleration, a, and equal acceleration and deceleration time. Thus, acceleration is
calculated in (6).

Figure 1. Velocity profile of the robotic platform.

a =
Vnom

tacc
(6)

The last variable to figure out is the power that the motor set has to provide while the
robot is driving at nominal velocity. Thus, in (7) we calculate the necessary nominal power
of the motor set, Pnom/m, where a confidence factor, κ, and a power factor, PF, have been
set to slightly oversize the set. Anyway, the chosen devices have to provide more power
than calculated during the nominal stage.

Pnom/m = PF · mR · Vnom · (a + g · sin θ)

2 · π · κ · N
(7)

3.1.2. Maximum Torque and Power

One of the most important parts in the selection of the locomotion actuators is found
in the inertial forces, this is, the force that the locomotion system has to apply during the
acceleration and deceleration. With a preliminary motor selection, it is possible to know
its moment of inertia. Since the wheels and shaft ones are well known, the one of the full
system, this is motor/shaft/wheel, may be calculated. Both wheel and shaft ones, Jw and
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Js, respectively, are calculated through (9), where the inertial mass, mi, is calculated in (8).
Here, we define (a) ρ as the component density, (b) ra as its external radius, (c) ri as its
internal (if applicable), and (d) h the width.

Thus, the robot acceleration torque, Macc, is calculated in (10), where the moment of
inertia of the motor, Jm, is one of the motors that satisfies the previous specifications, and
where d is the diameter of the wheels. Although the moment of inertia of the motor may
change with the final decision, it is practically negligible concerning that of the set of wheel,
shaft, motor, and robot weight (each one is indicated in (10).

mi = ρ·π·(ra² − ri²)·h (8)

Jw =
1
2
· mi·(ra² + ri²) (9)

Macc = (N · ( Jw︸︷︷︸
wheel

+ Jm︸︷︷︸
motor

+ Js︸︷︷︸
sha f t

) +
mR
η

· d2

4︸ ︷︷ ︸
robot

) · a · PF (10)

Then, taking into account the torque during the nominal moment (2) and during the
acceleration (10), it is possible to calculate the maximum and the root mean square, RMS,
torque in each motor, Mmax/m and Mrms/m, respectively, according to (11), (13) and (14),
respectively. For a wheeled robot, the decelerate torque, Mdec, is determined by the
difference between the nominal and acceleration torques, as indicated in (12). For a robotic
platform that is continuously working, the resting torque, denoted as Mrest is null, since
the robot is expected to perform the survey without stops.

Mmax/m =
Mmax

N
=

Mnom + Macc

N
(11)

Mdec = Mnom − Macc (12)

Mrms =

{
1

ttotal
· (tacc · M2

max + tnom · M2
nom+

tdec · M2
dec + trest·M2

rest)

}1/2 (13)

Mrms/m =
Mrms

N
(14)

After all, the maximum and RMS power may be calculated according to (15) and (16),
respectively.

Pmax/m = Mmax/m · nnom · π

30
(15)

Prms/m = Mrms/m · nrms · π

30
(16)

3.1.3. Motor and Gearhead Selection

Thanks to the equations described before, we should select a gearhead with a continuous
torque of at least Mrms/m, and an intermittent torque at gear output of at least Mmax/m. In
our case, we have chosen the model GP 26A of Maxon, which has a reduction of Kg of
1:27 and a maximum efficiency η of 80%. It is required to select the immediately inferior
reduction that fulfills the requirements.

After that, we should chose a motor that provide (a) an angular velocity of at least
nnom · Kg (r.p.m.), (b) a continuous torque of at least Mrms/m′ , calculated in (17), (c) a
maximum torque of at least Mmax/m′ , calculated in (18), and (d) a continuous operation
power of at least Prms/m.

10



Appl. Sci. 2021, 11, 6631

Mrms/m′ =
Mrms/m
Kg · η

(17)

Mmax/m′ =
Mmax/m

Kg · η
(18)

Then, it is needed to check that the speed constant of the motor is at least Cv, calculated
in (19). Here, V0 denotes the no-load speed calculated in (20), whereas υ denotes the voltage
of the motor. Regarding the no-load speed equation, τ denotes the speed/torque gradient
of the motor.

Cv =
V0

υ
(19)

V0 = Vnom + τ · Mmax/m′ (20)

In the end, we have chosen the motor model RE 25, Graphite Brushes, 20 W of
24 V, which fulfills the previous specifications. Additionally, we select the encoder model
Encoder MR Type ML, which allows 500 counts per turn, high enough to guarantee
real-time behavior for a wheeled robot.

For mechanical reasons, it is needed a motion transmission between the motor system
and the wheels. To solve this problem, a couple of pulleys, connected by a belt, are used.
Taking advance of this restriction, a velocity reduction is applied to get the nominal robot
velocity. The relationship of the pulleys in our case is 1:1.1.

3.1.4. Electronic and Electrical Design of the Motor Set

Since the motor, the gearhead, the encoder, and the controller (EPOS4 Compact 50/5)
have been selected from Maxon Motor seller, the cables have been chosen as well. In order
to communicate the controller with the computer, we have used CAN bus, as shown in the
electronic and electrical scheme shown in Figure 2. The electronic and electrical scheme
shows each cable with the corresponding identifier of the seller.

3.1.5. Motor Validation

In order to guarantee the proper performance of the selected motor and gearhead,
we have simulated the motor set behavior under the expected circumstances during the
driving. Thus, the simulation shows the performance of the motor set when the robot
follows the velocity profile described before.

In this way, simulating the behavior of the motor, we have developed the block
diagram illustrated in Figure 3, where we include a PID controller that directly control the
motor model (defined by its features such as the terminal resistance, terminal inductance,
torque constant, inertial moment and viscous constant).

Min denotes the load reaction torque, this is the torque produced by the robot weight,
friction, slope of the terrain, etc. This torque is related to the force specified in (3). Thus,
the simulation process follows the following guidelines:

• Guided by the high level controller, the desired velocity, Vd, is inserted.
• The PID controller takes the difference between the desired velocity and the current

robot velocity, VR, to generate the control signal, υc, which is inserted in the model of
the motor.

• The angular velocity of the motor is transformed to the robot velocity (linear) through
the reduction generated by the gearhead and the pulleys, Kn. On the way, a friction
constant is applied, η, as well as a transformation between angular to linear.
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Figure 2. Electronic and electrical scheme to control the motors. Blue wires represent power cables,
yellow ones represent USB cables, green ones indicate the motor specific cables, purple one is the
encoder specific cable, and light brown is the BUS CAN, which collect the data from all the motor
sets.

Figure 3. Block diagram for the motor validation.

The obtained results for the required velocity show us that the motor does not reach its
limits, concluding that the selected devices are proper for the first and third requirements
described in Section 1.
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3.2. Device Selection

In the final version, the robot will be equipped with the following sensors:

• Two 2D LIDARs for object detection. They will be used to prevent the robot from
crashing with obstacles, with the walls, and with the accelerator. The model UST-20LX,
by Hokuyo, is used.

• Cameras for teleoperation and optionally for visual odometry. The model UI-3080CP
Rev. 2, by IDS, is used.

• A point cloud generator sensor for the self-localization. It can be a 3D LIDAR or an
RGBd camera (only for small environments). The model HDL-32E of Velodyne has
been used for localization and environment reconstruction tests with good results.
However, it is recommendable to use another sensor like Puck Lite or Ultra Puck
from the same manufacturer, since the size of this sensor is too big for our spatial
constraints, the vertical field of view is focused down (problematic for low and small
robots like ours) and it has moving parts (recommendable to avoid them). In this
paper, we include the 3D LIDAR Puck Lite, by Velodyne.

• An inertial measurement unit, IMU, for the localization system. The model VMU931
is used.

• A radiation sensor.
• An ultrasonic sensor, SONAR, to determine the distance between the radiation sensor

and the radiation source. The model MB7040 I2CXL-MaxSonar-WR Ultra compact
Housing, by MaxBotix is used.

• A WiFi antenna for communication.
• A robotic arm to bring the radiation sensor in the particular application of the radiation

survey, and to bring a specific tool in other cases. The Jaco by Kinova is used.

Furthermore, the onboard computer is the NUC i5-8259U, 8 GB, DDR4-SDRAM,
256 GB SSD Mini, by Intel, which is the computer that supports all the logic behavior. The
devices are connected to the NUC as shown in Figure 4. We have decided to connect the
cameras through Ethernet, whereas the robotic arm through USB drivers. However, both
the cameras and the arm may use Ethernet or USB. With these devices, the system fulfills
the needs to comply with the last requirement of Section 1.

Figure 4. Electric diagram where all the devices are connected to the NUC for its processing. Blue
wires represent power cables, yellow ones represent USB cables, where both termination types are
indicated, green ones indicate Ethernet alternatives, and the purple one is a specific cable from
Velodyne that communicates the LIDAR with the interface box throughout a given protocol.
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3.3. Mechanical Design

We present a mechanical design based on the use of aluminum profiles for the main
structure, giving consistency and strength to the robot body. Furthermore, the bottom plates
are also of aluminum material, since this material is proper for radioactive environments.
The design (Figure 5) has the following characteristics:

Figure 5. Design of the robotic platform for the survey in underground tunnels with space constraints.
Adapted from: [19].

• Four lead–acid batteries, two located at each side. Each provides 7A· h. In total they
provide energy so that all the robot devices are working at their maximum power for
3 h and a quarter, enough to guarantee the forth requirement of Section 1.

• A magnetic connector for charging the batteries is localized on one side.
• Four possible localization for cameras behind the wheels, place where the field of

view is good enough.
• Two 2D LIDAR for obstacle and wall detection (one in front and one in the back).

Both of them are linked to the structure with a piece that has to be manufactured in
aluminum material.
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• A 3D LIDAR for the SLAM algorithm.
• A support for the radiation sensor in the end-effector of the robotic arm.
• A support in the radiation sensor to place the SONAR.

The main dimensions are 707 × 350 × 184 mm, a proper size to cross the doors,
complying with the second requirement of Section 1. The estimation of the weight is
around 45 kg, taking into account all the components. The reach of the sensor is around
1100 mm at its main point.

The robot adopts the position shown in Figure 6 when it is crossing the door, where
it is appreciated that space while doing so is enough. In this configuration, the robotic
arm is set horizontally and the 3D LIDAR is folded against the other face of the plate that
supports the robotic arm.

Figure 6. Robot configuration while crossing the doors.

The robot has been designed with an eye on the main application, this is, the surveillance
of the SPS accelerator. However, with the cameras and with the robotic arm, the application
range increases abruptly, having the possibility of using the robot in teleoperations (drilling,
leak repair, component replacement, cable welding, etc.), visual surveillance of other
environments, variable checking (temperature, oxygen concentration, etc.), and many
more, with the single replacement of the end-effector tool.

4. Kinematic and Dynamic Models of the Robotic Platform

In this section, the kinematic and dynamic models of the platform are presented from
a theoretical point of view, to include them into the CERNTAURO framework [20], which
contains all the robotic software of CERN.

4.1. Kinematic Model

Firstly, to describe the robot posture in the ground plane, the reference systems shown
in Figure 7 have been created, where we find reference systems of: (a) the world, ∑W ,
(b) the robot, ∑R, (c) the wheel i with the same orientation that the robot one, ∑Ri, and (d)
the wheel i with the orientation of the mecanum wheel rollers, ∑ri.

In that picture, we describe: (a) the distance between ∑R and ∑Ri, Li, (b) the angle
between the axis Rx and the contact point of the wheel i rollers with the floor, αi, (c) the
angle between the axis rix and the axis Riy, βi, and (d) the angle between the axis Riy and
the axis riy, γi. All of them are well known: (a) Li, (b) αi and (c) βi are determined by the
dimensions of the robot design, and (d) γi is determined by the wheel design (usually 45°).
Moreover, we describe (e) φi as a sum of αi, βi and γi, and (f) δi as a sum of βi and γi.
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Figure 7. Overall of the robot reference systems (∑W , ∑R, ∑Ri and ∑ri).

Like the vast majority of wheeled robots, the position of the robot is described by
3 d.o.f., this is, position and orientation x, y and θ. Thus, the vector ξ which defines the
posture of the robot is presented in (21). Furthermore, we define (a) ξ̇ as the velocity vector
of the robot in ∑W , and (b) η as the velocity vector of the robot in ∑R, calculated from ξ̇
in (22), where RR

w(θ) is the rotation matrix between ∑R and ∑W .

ξ =

⎡
⎣ x

y
θ

⎤
⎦ ∈ �3 (21)

η = RR
w(θ) · ξ̇ =

⎡
⎣ cθ sθ 0

−sθ cθ 0
0 0 1

⎤
⎦ ·
⎡
⎣ ẋ

ẏ
θ̇

⎤
⎦ (22)

The required velocity in each wheel i, ȮRi, to move the robot at a given velocity η is
described in (23). In addition, in η the velocities are referred to ∑R, so in (24) we displace
them to ∑ri through the rotation matrix RRi

R (φi), which does so.

⎡
⎣ ȮRi1

ȮRi2
0

⎤
⎦R

=

⎡
⎣ ẋR − Li · sαi · θ̇

ẏR − Li·cαi ·θ̇
0

⎤
⎦ (23)

⎡
⎣ ȮRi1

ȮRi2
0

⎤
⎦Ri

= RRi
R (φi) ·

⎡
⎣ ȮRi1

ȮRi2
0

⎤
⎦R

=

⎡
⎣ sφi −cφi 0

cφi sφi 0
0 0 1

⎤
⎦ ·
⎡
⎣ ȮRi1

ȮRi2
0

⎤
⎦R

(24)
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According to [21], we define: (a) the wheel speed, ϕ̇Ri , (b) the wheel radius, rRi , (c) the
roller speed, ϕ̇ri , and (d) the roller radius rri . In our case, the robot values are shown in
Table 1.

Table 1. Kinematic parameters of our robot. Figure 8 shows each variable in the robot frame.

Wheel i Li αi βi γi rRi

1 L 360 − α π
2 − α1

π
4 r

2 L α π
2 − α2 −π

4 r
3 L 180 − α π

2 − α3
π
4 r

4 L 180 + α π
2 − α4 −π

4 r

L 274.06 mm

α 29.5º

r 76.2 mm

Figure 8. Wheel parameters relative to the robot.

For omnidirectional robots with mecanum wheels, the delivered speed by the wheel is
rRi · ϕRi in the Rix direction, whereas the roller lineal velocity is rri · ϕri in the rix direction.
Thus, making use of (24), we transform the delivered speed by the wheel to ∑ri

in (25).

⎡
⎣ rRi · ϕ̇Ri · cγi

rri · ϕ̇ri + rRi · ϕ̇Ri · sγi

0

⎤
⎦ =

⎡
⎣ sφi −cφi Li · cδi

cφi sφi Li · cδi
0 0 0

⎤
⎦ · η

(25)

For each wheel, a motion constraint, shown in (26), is obtained from the first row of
the equation system of (25) [21].

[ −sφi cφi Li · cδi

] · RR
w(θ) · ξ̇ + rRi · ϕ̇Ri · cγi = 0 (26)

Thus, the motion constraints equation of the entire robot is shown in (27), where (a)
J1 is composed by the motion constraint rows of each wheel, as described in (26), and
where (b) J2 is defined by the wheel design. The results are the Equations (28) and (29),
respectively.

J1 · RR
w(θ)·ξ̇ + J2·ϕ̇i = 0 (27)
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J1 =

⎡
⎢⎢⎣

−sφ1 cφ1 L1 · cδ1
−sφ2 cφ2 L2·cδ2
−sφ3 cφ3 L3·cδ3
−sφ4 cφ4 L4·cδ4

⎤
⎥⎥⎦ (28)

J2 =

⎡
⎢⎢⎣

rR1·cγ1 0 0 0
0 rR2·cγ2 0 0
0 0 rR3·cγ3 0
0 0 0 rR4·cγ4

⎤
⎥⎥⎦ (29)

The kinematic configuration model for that robot is given by (30) [21], where S(q) is
decomposed in the high and low part, relating to the kinematic posture model and the
wheels velocities, respectively.

q̇ =

⎡
⎢⎢⎢⎢⎣

ξ̇
ϕ̇1
ϕ̇2
ϕ̇3
ϕ̇4

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

ẋ
ẏ
θ̇
ϕ̇1
ϕ̇2
ϕ̇3
ϕ̇4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
= S(q) · η =

[
RR

w(θ)
E

]
·
⎡
⎣ ẋR

ẏR

θ̇R

⎤
⎦ (30)

The high part of the previous equation is determined by the kinematic posture model
for an omnidirectional robot, which is given by (31). The low part of the equation is given
by the isolation of ϕ̇i from (27), in such a way that for all the wheels we obtained (32),
which is related to E from (30).

ξ̇ = Rw
R(θ) · η (31)

ϕ̇i = −J−1
2 · J1 · RR

w(θ)·ξ̇ = −J−1
2 · J1 · η (32)

Then, substituting the values of Table 1, we obtain our kinematic model, which is
presented in (33).

q̇ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

ẋ
ẏ
θ̇
ϕ̇1
ϕ̇2
ϕ̇3
ϕ̇4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

cθ −sθ 0
sθ cθ 0
0 0 1
1
r

1
r

(l1+l2)
r

1
r − 1

r − (l1+l2)
r

1
r

1
r − (l1+l2)

r
1
r − 1

r
(l1+l2)

r

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
·
⎡
⎣ ẋR

ẏR

θ̇R

⎤
⎦ (33)

4.2. Dynamic Model

The dynamic model for a wheeled omnidirectional robot can be calculated through (34),
where (a) the sum of kinetic energies of the robot, T, is calculated in (35), and where (b) the
applied torque in the wheel i, ϕ, is figured out in (36) [21].

RR
w(θ)[T]ξ + ET [T]ϕ = ETτϕ (34)

[T]ψ =
d
dt

(
∂T
∂ψ

)
− ∂T

∂ψ
(35)

τϕ =
[

τϕ1 τϕ2 τϕ3 τϕ4
]T (36)
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We denote (a) mR as the robot total mass, (b) IRz as the robot total moment of inertial,
and (c) Iϕy a the wheels moment of inertial. For an omnidirectional robot, T can be
expressed as shown in (37), where M, Iϕ and ϕ̇ have the values shown in (38)–(40).

T = ˙ξT
(

RR
w(θ)
)T · M·RR

w(θ)·ξ̇ +
˙ϕT ·Iϕ·ϕ̇ (37)

M =
1
2

diag{mR, mR, IRz} (38)

Iϕ =
1
2

diag
{

Iϕy, Iϕy, Iϕy, Iϕy
}

(39)

ϕ̇ =
[

ϕ̇1 ϕ̇2 ϕ̇3 ϕ̇4
]T (40)

Developing (37), (41) is obtained.

T =
mR
2

(
ẋ2 + ẏ2

)
+

IRz
2

θ̇2+

Iϕy

2

(
ϕ̇2

1 + ϕ̇2
2 + ϕ̇2

3 + ϕ̇2
4

) (41)

[T]ξ and [T]ϕ terms are given using (35), whose results are reflected in (42) and (44).

[T]ξ = MR · ξ̈ (42)

MR = diag{mR, mR, IRz}, ξ̈ =

⎡
⎣ ẍ

ÿ
θ̈

⎤
⎦ (43)

[T]ϕ = Mϕ · ϕ̈ (44)

Mϕ = diag
{

Iϕy
}

, ϕ̈

⎡
⎢⎢⎣

ϕ̈1
ϕ̈2
ϕ̈3
ϕ̈4

⎤
⎥⎥⎦ (45)

Upgrading (34) with the previous calculations, (46) is obtained. In order to transform
the accelerations from the world frame to the robot frame, (47) and (48) are presented. The
second one uses and derives the high part of (33).

RR
w(θ) · MR·ξ̈ + ET · Mϕ · ϕ̈ = ETτϕ (46)

ξ̈ = Rw
R(θ) · η̇ + Ṙw

R(θ)·η (47)

ϕ̈ = E · η̇ (48)

The result is shown in (49), with (50) and (51), where the dynamic model of the
omnidirectional robot is presented as the final model related to the operational space
in (49)–(51).

M̄ · η̇ + C̄ · η = ET · τϕ (49)

M̄ = RR
w(θ) · MR · Rw

R(θ) + ET · Mϕ · E (50)
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C̄ = RR
w(θ)·MR·Ṙw

R(θ) (51)

Since the compact form described in [22] (specified in (52)) works in the robot space
(unlike η that is described in the operational space), it is needed to apply the inverse
kinematic transformation calculated in (33) and specified in (53).

M(q) · q̈ + C(q, q̇) · q̇ + g(q) = τ (52)

q̇ =

⎡
⎢⎢⎣

ϕ̇1
ϕ̇2
ϕ̇3
ϕ̇4

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

1
r

1
r

(l1+l2)
r

1
r − 1

r − (l1+l2)
r

1
r

1
r − (l1+l2)

r
1
r − 1

r
(l1+l2)

r

⎤
⎥⎥⎥⎥⎦·

⎡
⎣ ẋR

ẏR

θ̇R

⎤
⎦ = K · η (53)

Since K is not quadratic, the transformation should use the pseudo-inverse matrix (54),
as shown in (55).

η = K+ · q̇ (54)

K+ =
r
4

⎡
⎣ 1 1 1 1

1 −1 1 −1
1

l1+l2
−1

l1+l2
−1

l1+l2
1

l1+l2

⎤
⎦ (55)

For the same reason (transform the data from the operational to the robot space), the
frame transformation matrices RR

w(θ) and Rw
R(θ), have to be transformed through K+. In

order to calculate the transformation, θ̇ is figured out in (56).

θ̇ =
r

4 · (l1 + l2)
· (ϕ̇1 − ϕ̇2 − ϕ̇3 + ϕ̇4) (56)

Lastly, to convert the dynamic model to the compact form [22], the final model in the
robot space is shown in (57), where M̄ and C̄ are defined in (57) and (59).

M̄ · q̈ + C̄ · q̇ = τϕ (57)

M̄ =
(

ET
)−1 · RR

w(q) · MR · Rw
R(q) · K+ + Mϕ · E·K+ (58)

C̄ =
(

ET
)−1 · RR

w(q)·MR·Ṙw
R(q)·K

+ (59)

In the compact form, M̄ is the inertial matrix, C̄ is the centrifuge and Coriolis matrix,
g(q) is the gravity vector and τ is the torque applied by the motors. The content of these
matrices is strongly important and relevant in the design of robotic arms, not so much
for the platform. Its use is quite relevant in the design of joint controllers. Even so, it is
possible to detail some important features about these matrices [22]:

• The inertial matrix is very important for (a) the dynamic model (related to the
kinematic energy), and for (b) the robot controller design (related to stability studies
for robotic arms mainly).

• The centrifuge and Coriolis matrix are also important to perform stability studies for
control systems in robotic arms.

• The gravity vector is present in non-designed robots, this is, a robot whose design
does not provide gravity torques of compensation. In addition, for robotic platforms,
which move in the horizontal plane, this vector does not appear in the dynamic model.
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5. Control Architecture

As shown in Figure 9, the proposed control architecture is divided in two levels, the
Decisional level, and the Executive level. The Decisional level includes:

• The graphical user interface (GUI), through which the user sets the robot’s goals and
the task. In addition, the user can control the robot, observe its status and view the
information from the sensors.

• The Supervisor is responsible for observing the robot status and take the needed
decisions when an internal error occurs.

• The Task manager is a finite state machine that breaks down the main objective into
small tasks.

Figure 9. Control architecture of the robot.

On the other hand, the Executive level includes:

• Hardware: It is composed of motors, drivers, etc.
• Four Motor controllers, which consequently move the motors according to the desired

position, velocity, and speed.
• The Robot model (Kinematic and dynamic) is composed by the models described previously.

According to the desired trajectory, the motor state is calculated.
• The Path planner takes into account the goal task to generate the trajectory.
• The SLAM system makes the simultaneous location and mapping of the environment.

The reconstruction will be used by the path planner to generate the trajectory.
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6. Results

The result of the work presented in this paper is an omnidirectional robotic platform,
whose first prototype still does not count all the required sensors for autonomous surveillance.
As shown in Figure 10, a monitored surveillance was perform in the SPS accelerator by
members of the robotic group of CERN. Throughout the tests, the operator remotely
navigated the robotic platform from the control room. In this case, the operator had
the information from the cameras; however, in future interventions a point cloud-based
reconstruction system for three-dimensional environments will be available, thanks to the
installed 3D LIDAR. This addition will help the operator and control to cross the gates
along the tunnel. Due to the developed tests, it was tested that the robot design comply
with the first, third and forth requirements of Section 1, which are related with surveillance
time, robot speed and autonomy.

The robot was tested in its most critical point, this is, during crossing the section doors.
As shown in Figure 11, the robot was able to cross it, complying in this way with the spatial
requirements (the second requirement).

Figure 10. SPS robot driving during the first test.

As explained in Section 1, the robot charges its batteries in one of the entrances of
the SPS tunnel, where a charging station is available. In that moment, the robot folds the
robotic arm over its top plate, as shown in Figure 12.
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Figure 11. SPS robot crossing the door during the first test.

Figure 12. Robot in the charging station with the robotic arm folded over its top end plate.
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The kinematic and dynamic models were tested in a wide environment, obtaining the
results shown in Figure 13. In that picture, the blue line represents the desired trajectory
or ground truth, the red line represents the trajectory that the robot followed using the
kinematic model, and the green line represents the trajectory using the dynamic model.
The test was done within a wide environment, traveling a distance of approximately 90 m
and changing the orientation in the meantime. It is calculated that the maximum error by
the kinematic model during the given trajectory was 2.78 m and 5.1◦, while the dynamic
model reduced this error to 0.89 m and 0.45◦.

Figure 13. Behaviour of the kinematic and dynamic models. The robot was given a trajectory
twice (blue) and the kinematic and dynamic model calculated the needed robot inputs to follow
that trajectory.

7. Conclusions

In this paper, we have presented an original design of an omnidirectional robotic
platform under very high spatial restrictions. The robot will perform the surveillance of
the tunnel Super Proton Synchrotron, SPS, an accelerator of the European Organization
for Nuclear Research, CERN. However, its applications are not only included in this
environment, since it can be used in any installation where maneuverability is an essential
requirement. Thanks to the compact design, this robot can deal with small spaces making
use of the feature of setting horizontally the robotic arm that is mounted on it, together
with the feature of folding the 3D LIDAR plate while crossing the doors and extract it while
the surveillance. The robot is stably tested from a theoretical point of view, guaranteeing in
this way the performance of the robot under foreseen circumstances. In addition, the final
design of the robot is equipped with all the needed sensors and actuators, allowing not
only the autonomous survey of the tunnel but also allowing it to be used in teleoperation
tasks, where the end-effector tool may be changed.

The work presented represents a robot with very particular features. In the first place,
the great distances that it must travel accompany the design of a large robotic platform, with
the possibility of housing a large number of devices for measuring environmental variables
and for intervention on the environment. However, the strict spatial restrictions that arise
make it necessary to design a very small platform, even requiring physical robustness,
high computing capacity and high load capacity for the portability of measurement and
actuation devices. In addition, the design developed presents a novel ability to fold the
robotic arm when crossing the doors, maintaining the stability of the small platform. In
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this way, the robot becomes the first interchangeable tool robot capable of performing tasks
in large environments, such as tunnels, which have narrow passages 400 mm wide and
200 mm high.

The prototype of the platform has shown high capabilities to cross the small doors
or narrow passages with the help of operators that control the motion, as well as good
performance when the robot is driven to the charging station. The platform shows high
maneuverability, allowing the robot to move within the narrow corridors and spaces that
communicate the charging station with the tunnel.

Furthermore, to achieve proper control of the robot, the kinematic and dynamic
models have been obtained. These models have been included in a user interface, which
allows the operator to move the robot as desired, according to the information sent by the
cameras and sensors.
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Abstract: Today, terrestrial robots are used in a multitude of fields and for performing multiple
missions. This paper introduces the novel development of a family of crawling terrestrial robots
capable of changing very quickly depending on the missions they have to perform. The principle
of novelty is the use of a load-bearing platform consisting of two independent propulsion systems.
The operational platform, which handles the actual mission, is attached (plug and play) between
the two crawler propulsion systems. The source of inspiration is the fact that there are a multitude
of intervention robots in emergency situations, each independent of the other. In addition to these
costs, there are also problems with the specialization of a very large number of staff. The present
study focused on the realization of a simplified, modular model of the kinematics and dynamics of
the crawler robot, so that it can be easily integrated, by adding or removing the calculation modules,
into the software used. The designed model was integrated on a company controller, which allowed
us to compare the results obtained by simulation with those obtained experimentally. We appreciate
that the analyzed Explosive Ordnance Disposal (EOD) robot solution represents a premise for the
development of a family of EOD robots that use the same carrier platform and to which a multitude
of operational platforms should be attached, depending on the missions to be performed.

Keywords: robot; crawler; traction; kinematics; EOD Robot; terrorist attacks

1. Introduction

The most serious threat to the civilized world, following nuclear threats, is terrorist
threats [1]. In recent decades, due to the expansion of civilization across the globe, and the
ease of access to information, technology and culture, extremist actions and reactions have
proliferated [2]. They are symmetrical with extremism in the process of globalization and
aim to stop and destabilize the offensive growth of the civilized world against increased
fragmentation, promiscuity, poverty and violence [3].

Terrorism does not have a generally accepted definition. The difficulty of defining it
stems both from its complexity and from a wide divergence of positions of individuals,
organizations or states involved in the fight against terrorism [4]. The simplest definition
is “purpose and method”: Terrorism is an unconventional fighting tactic used to achieve
strictly political goals that are based on acts of violence, sabotage or threat, executed against
a state, organizations, social groups or against a group of civilians, with the precise purpose
of producing a generalized psychological effect of fear and intimidation [5]. The ultimate
goal is to put pressure on that entity to get it to act in accordance with the wishes of the
terrorists if that goal cannot be achieved by conventional means [6].

The correct and complete definition and understanding of the phenomenon of ter-
rorism are absolutely necessary for the elaboration of effective strategies and tactics in
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the fight against it [7]. As there is no valid general model, the definition and analysis
of the terrorist act must be done on a case-by-case basis. The main defining elements of
terrorism [8] are: Means: violent actions [9]; Method: inducing fear for citizens [10]; Target:
civilians (non-combatants) [11]; Purpose: to bring about a major political change [12]; Actors:
individuals or non-state groups [13].

On the other hand, terrorism uses only one type of action—surprise attacks of small
magnitude but of maximum intensity on people, infrastructures and institutions. The
procedures for such attacks are endless [14]. Among the most common terrorist acts, we
mention: surprise attack with firearms; bomb attack; attack of infrastructures of any kind
(sophisticated artisanal systems) [15]; attack on public places and public institutions [16];
radiological attack [17]; chemical attack [18]; biological attack [19].

There are, of course, many other forms of terrorist acts. Therefore, the main forms and
procedures of counter-terrorism actions must respond promptly to these challenges, and
must be anticipatory, preventive, effective and dissuasive [20].

In previous studies, no specific forms and procedures in the war on terrorism have
been found, but actions and measures have been initiated by all structures, forces and
institutions to protect themselves against terrorist attacks. That is why we followed the
description, quite exhaustively, of the testing procedures, which allows for the validation
of the developed analytical–numerical model.

In this stage of project development, the formulation of research hypotheses for our
model refers to the validation of the analytical–numerical model regarding the ability of
the robot to move in different environments (structured/unstructured), the validation
being experimentally performed. The solution proposed in the article has already been
implemented, and the obtained results encourage us to move towards the development
of operational platforms with multi-role destinations. The software architecture is mod-
ular, and the proposed algorithm can be upgraded relatively easily, by simply inserting
or removing modules. Additionally, the proposed mechanism can provide a basis for
discussion/development for those interested in developing EOD robots. On this basis, the
results showed that the robot can operate on an operational platform specific to the actions
of taking over and relocating objects that are considered to be suspicious.

Regarding the novelty of the project, we consider that the possibility to assemble
an intervention robot at the crime scene, according to the identified specific, is much
more useful than more expensive and complex logistics. On top of that, the price of the
prototype robot (designed and made) is 1/10 compared to a similar robot in the same
class, respectively compared to TELEROB (https://www.telerob.com/de/ (accessed on
18 February 2021)); most robots in the same class are made to perform a single mission, it
is a robot that at the maximum opening of the arm can support 15 kg, even when there is
no power supply. This could be achieved by introducing electromagnetic brakes in each
joint from R0 to R5; with the available resources we were able to make a multifunctional
robot, only by changing the operational platform, given that the design and assembly were
performed entirely in ATM, only the mechanical elements were made at the industrial
partner.

The paper is structured as follows: Section 2 highlights the state of the art in the field of
EOD; Section 3 shows how the geometric configuration of the crawler robot was established;
Section 4 details the performance of simulations based on the defined analytical–numerical
model; Section 5 details the evaluation tests of the propulsion system in order to validate
the analytical–numerical model; Section 6 presents the conclusions.

2. State of the Art

Currently, mobile robotics is at the intersection of several fields of science. These
systems include: Knowledge representation [21]: the field of artificial intelligence helps to
obtain an internal model of the world associated with the task performed by the robot, and
uses data structures and specific algorithms to represent the characteristics of objects in the
environment; Natural language [22]: natural language changes quite frequently, so simple
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word recognition is no longer enough to understand the real meaning of a processed
text; Learning [23]: ideally, a robot could learn the tasks it has to perform by simply
repeating similar actions performed by a human operator; Planning and problem solving [24]:
intelligence is inherently associated with the ability to plan actions needed to achieve a
particular goal, as well as the ability to solve problems that arise when these action plans do
not work; Inference [25]: by inference, it is possible to fill in the missing information to solve
a certain problem; Search [26]: in terms of artificial intelligence, search means the efficient
examination of a representation of knowledge, specific to a certain problem (search in a
“space”) in order to determine a solution; Vision [27]: by creating artificial vision systems,
the actions of the mobile robot can be made more precise and complex. Sometimes, mobile
robots appear in the form of vehicles capable of operating autonomously on the ground
(UGVs—Unmanned Ground Vehicles), in the air (UAVs—Unmanned Aerial Vehicles) or in
the water (UUVs—Unmanned Undersea Vehicles). In the broadest sense of the definition,
a mobile robot is a real-time integrated system (embedded real-time system), that has
sensors [28] for environmental perception, execution elements for performing actions on
the environment and a control system for mapping perception in action [29]. Perception
and action are the major aspects that define a mobile robot. Depending on the organization
of these three functional aspects, it can be considered that the mobile robot has a greater or
lesser degree of autonomy.

The best-known type of mobile robot is the Automated Guided Vehicle (AGV—
Automated Guided Vehicle). AGVs operate in pre-programmed environments and are
inflexible and “fragile” in operation; thus, any unforeseen route changes (objects on the
runway) can lead to a compromise of the entire mission [30].

The alternative to AGV is to build mobile robots with autonomy in motion to travel
in the environment to perform various tasks; adapt to changes in the environment; learn
from experience and change their behavior accordingly (how to act); build internal repre-
sentations of the world around them that can be used for decision-making processes (for
example, for navigation).

These characteristics allow for the use of these robotic structures in specific applica-
tions (Figure 1): transport operations, exploration, surveillance, orientation, inspection,
evolution in environments inaccessible or hostile to the human operator such as robots
intended to combat terrorist actions, or robots operating in contaminated environments,
underwater robots, planetary exploration vehicles, etc. [31].

 

Figure 1. Examples of robotic structures, including for EOD missions: (1). https://www.nides.cz/en/
telerob/ (accessed on 18 February 2021); (2). https://icortechnology.com/robots/caliber-t5/caliber-
t5-swat-eod-robot-leveled/ (accessed on 18 February 2021); (3). https://www.rvconnex.com/eod-
robot/ (accessed on 18 February 2021); (4). https://www.publictechnology.net/articles/news/
introducing-harris-t7-%E2%80%93-mod%E2%80%99s-new-%C2%A31m-bomb-disposal-robot (ac-
cessed on 18 February 2021).
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2.1. The Functions of a Crawler Mobile Robot

From a functional point of view, a mobile robot consists of three modules: the role of
the sensor module is to estimate the speed and position of the mobile robot [32–34]; the
orientation module is the reference generator for the orientation of the mobile robot in
space [33]; the control module is the subsystem that generates the control quantities for the
execution elements based on the data provided by the orientation module [34].

The following essential functions of a mobile robot can be defined according to the
functional modules:

A. Navigation function [35]: workspace representation; avoidance of obstacles; location
function; motion planning; motion control.

B. Task Planning Function [36]:
C. Interaction and communication function [37].

2.2. Justification for the Use of a Crawler Mobile Robot for EOD Actions

Anti-terrorism intervention requires the use of robots to limit risks for the following
reasons: performing procedures during IED intervention missions, which include observa-
tion and inspection, X-ray analysis, disruption, etc.; no matter how careful the operator is
in responding to the IED, there is always the possibility that the attacker may be nearby so
that he can operate the explosion-proof device remotely; even if a robot cannot neutralize
an IED, it can still be used to provide information on the choice of procedure and devices
needed to evacuate/eliminate the dangerous object from the threatened area.

2.3. Features of Crawler Mobile Robots

Named mobile robots and controlled/autonomous vehicles, robot trailers or robotics,
have a structure consisting of (Figure 2):

 
Figure 2. The general structure of an EOD mobile robot [https://www.telerob.com/en/products/
teodor-evo (accessed on 18 February 2021)] mechanical and drive system [38]; location system [39];
environmental perception and security system [40]; data interpretation and task management sys-
tem [41]. Operation in the environment is defined by agility and maneuverability: agility is the ability
of the mobile robot to overcome obstacles [42]; maneuverability is defined by the minimum area
required for a maneuver [43].
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Mobile intervention robots have the following main features: degree of mobility: fol-
lowing a varied trajectory in terms of shape, length, and number of parking/stopping
points [44]; speed: it is between 1–10 m/s, depending on the environment in which it moves
inside/outside [45]; autonomy: is the dependence on own power sources or the length of
the power cord [46]; remote control and automation of operations [47].

2.4. Requirements for Crawler Mobile Robots, Resulting from an Anonymized Market Study

The robot should be affordable, if the designers meet the following requirements,
simultaneously or individually: is intended only for specific missions and threats, for
example pyrotechnic intervention [48]; is built modularly [49]; subsystems to be redesigned
so that the solution is as simple and reliable as possible [50]; can use a disruptor [51];
should be equipped with video cameras [52]; must have an adequate lifting capacity [53];
can use X-ray systems [54]; should be equipped with omnidirectional cameras [55]; the
robot must be able to communicate with an operator [56]; can easily climb stairs it can be
said that only 10% of the threats targeted easily accessible open areas; should be easy to
maintain and repair; must operate in a wide range of terrains [57]; arm should have high
mobility [58].

3. Geometric Configuration of the Crawler Propeller

In order to achieve the geometric configuration of the crawler engine, one must
consider the influence of the geometric characteristics of the tracked engine on the following:
mobility of the robot on terrain with various configurations and consistencies; stability of
the robot during movement and during the execution of the specific mission. The effects of
the terrain on the robot can be grouped into the categories presented in Figure 3.

 

Figure 3. Representation of different types of environmental effects on the crawler engine [59]. This
representation aims to allow us to establish algorithms for defining the kinematic and dynamic model
depending on the type of terrain on which the crawler robot will move.

Analyzing the requirements formulated by the potential beneficiaries, as well as the
current stage of technological development of mobile robots, the main functional parameters
were quantified, and the main functional characteristics were estimated (Table 1).

The global analysis of the problem of locomotion on surfaces leads to the identification
of four types of forces, among them including the propulsive force: Propulsion; Adhesion;
Cohesion; Support.
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Table 1. Type-dimensional and actuation requirements for the EOD robot under analysis.

Characteristics U.M. Amount

Fully equipped mobile robot table kg 250
Maximum speed on horizontal terrain m/s 1

Maximum slope when walking straight deg 30
The height of the steps mm 150

Average ground pressure MPa 0.05
The height of the stepped obstacle crossed mm 225

The width of the ditch crossed mm 800
Depth of water on hard horizontal ground mm 100

Race of turns mm continuously variable
Minimum turning radius mm 0–rotation

Travel control - wireless
The mass of the manipulated object kg 25

Range of the manipulator arm mm 1000
Rotate the manipulator arm to the side deg 30

The gripping length of the gripping mechanism mm 150
Arm displacement position - folded/extended

Omnidirectional video camera for travel buc. 2
Video camera for inspection buc. 2

Riding the platform while working - no
Working autonomy h 6
Construction type - modular

3.1. Conditions Regarding the Crossing of the Step Type Obstacle

The step type obstacle is often encountered in urban environments (curbs, stairs in
buildings, etc.), which requires a detailed study of this process for an optimal geometric
configuration of the crawler engine (Figure 4). The crossing of the step-type obstacle
presupposes the obligatory completion of two successive stages: the approach to the
obstacle; crossing the obstacle.

 
Figure 4. Geometric diagramming of the robot while approaching the step-type obstacle.

The ascending force arises Tasc [N]. Its value is limited by: ϕt [−] and ϕobs [−].

Tt = ϕt · G [N], (1)

where: Tt[N]—traction force, manifested at the wheel; G[N]—the weight of the robot.
The ascending force is given by the following relation:

Tasc = ϕobs · Z = ϕobs · Tt = ϕobs ·ϕt · G [N], (2)

where: Tasc[N]—the ascending force, manifested in front of the tensioning roller, at the
contact of the track with the obstacle.
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The limiting condition for them of climbing the obstacle is:

Tasc(La + la) = G · xG [N], (3)

ϕobsϕt ≥ xG
La + la

≡ ϕobsϕt ≥ xG
L

, (4)

where: CG—weight center; yG[m]—distance from the CG to the running surface, on the axle
Oy; rm[m]—drive wheel radius; ra[m]—the radius of the tension roller; ha[m]—distance
from the axis of the tension roller to the tread, on the axis Oy; αa[deg]—the angle of
inclination of the ascending branch of the track to the axis Ox; xG[m]—distance from the
CG to the axle of the drive wheel, on the axle Ox; La[m]—the distance from the axle of the
drive wheel to the last roller, the one at the beginning of the ascending branch of the track,
on the axis Ox; la[m]—distance from the center of the last roller to the center of the tension
roller, on the axis Ox.

The coefficient of friction between the tracked thruster and the obstacle (Figure 5), μ
[−], is given by the following calculation relation [60–62]:

μ ≥ L − L1

L1 + R/

√
1 −
(

h−R
L

)2
[−], (5)

where: h[m]—the height of the obstacle step, on the axis Oy; Δ = h − ha [m]—the difference
between the height of the step obstacle and the height of the axis of the tension roller,
on the axis Oy; L1[m]—the distance from the axis of the drive wheel to the CG, along
the longitudinal axis of the robot; L − L1[m]—the distance from the CG to the axis of the
tension roller, along the longitudinal axis of the robot; β[deg]—the angle of inclination of
the longitudinal axis of the robot with respect to the axis Ox.

 

Figure 5. Representation of the beginning of the climbing of high obstacles by the robot.

Which is denoted by λ, the ratio:

λ =
L1

L
[−], (6)

Thus, (5) becomes:

μ ≥ 1 − λ

λ + R/L

√
1 −
(

h−R
L

)2
[−], (7)
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In order to assess the influence of the length of grip and the position of the center of
gravity, the height of the obstacle shall be considered to be: h = 1, 5 · rm. It is denoted as
γ = rm/L , so that inequality (7) becomes:

μ(λ, γ) ≥ 1 − λ

λ + 2γ√
4−γ2

[−], (8)

The above relation allows for the evaluation of the influence that the position of the
center of mass has on the conditions of escalation of the obstacle (Figure 6).

 

Figure 6. Variation in the minimum coefficient of friction required for escalating the step obstacle.
Four different values were considered for the report γ = rm/L [−] to highlight how the CG position
leads to a change in the coefficient of friction between the tracked thruster and the obstacle μ.

Given the notation presented in Figure 7, the following equations result:

sG = r sin θ+ xG cos θ− yG sin θ [m], (9)

h = r − r cos θ+ d sin θ [m], (10)

d =
(h − r + r cos θ)

sin θ
[m], (11)

s = r sin θ+ d cos θ = r sin θ+
(h − r + r cos θ)

sin θ
[m], (12)

where: r [m]—the running radius of the support wheel (bucket), including the thickness of
the track; h [m]—the height of the step obstacle.

Analyzing the way in which the vehicle climbs onto the obstacle, the following distinct
situations can be distinguished: sG < s—the vehicle can climb over the obstacle; sG > s—
the vehicle cannot climb over the obstacle; sG = s—critical condition, at the limit.

From the analysis of the Equations (9)–(12), from the graphical representation of these
equations (Figure 8) and of the presented limit conditions, it results in (13):

r sin θ+ xG cos θ− yG sin θ = r sin θ+
(h − r + r cos θ) cos θ

sin θ
[m]. (13)

xG sin θ cos θ− yG sin2 θ = (h − r) cos θ+ r cos2 θ [m]. (14)

Solving Equations (13)–(14) was performed for a running radius of 0.0425 m (Figure 9).
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Figure 7. Schematic of the ascent of the step-type obstacle, considering that the lower branch of the
track is already ascended on the obstacle. Explaining notations: d[m]—distance from the wheel axle
to the point where the lower track branch is tangent to the obstacle edge; s[m] —distance from the
wheel axle to the point where the lower track branch is tangent to the obstacle edge; θ[deg] —the
angle of inclination of the longitudinal axis (of the track) with respect to the running surface in the
conditions in which the lower branch of the track has already “climbed” on the obstacle; sG[m] —the
horizontal distance between the rear point of contact and the edge of the obstacle.

 

Figure 8. Graphical representation of Equations (9)–(12). The variations inf the two graphs mean
that, as the obstacle escalates, the distance increases sG horizontally between the rear point of contact
and the edge of the obstacle decreases to zero, at which point it can be stated that the robot remains
stable at the obstacle stage and the distance s from the center of the driving wheel to the point where
the lower branch of the track is tangent to the edge of the obstacle is moving towards the point of
minimum, and “0”, followed with increasing distance from the edge of the obstacle, the proximity of
the edge following the corresponding allure.

How to vary the maximum angle of arrangement of the support branch of the track
to the ground θ is shown in Figures 9 and 10. It can be seen that the angle of inclination
decreases as the center of mass moves forward.
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Figure 9. Angle variation with the horizontal position of the center of mass for h = 0.20 m, depending
on yG. The variation in the inclination angle of the longitudinal axis (of the caterpillar) is obviously θ

compared to the running surface in the conditions in which the lower branch of the track has already
“climbed” on the obstacle, in the sense that the increase in the CG height, compared to the axle Oy,
leads to increased angle θ, enabling (exaggerating) the robot to overturn.

 
Figure 10. Angle variation with the horizontal position of the center of mass for h = 0.15 m. Addi-
tionally, in this case, in which the height of the step obstacle has changed (reducing it), the allure of
variation of θ according to yG[m] is similar; only the dimensions differ.

The schematic of the tracked platform geometry for the trench crossing limit situation
is presented in Figure 11. In the initial phase, the vehicle (drawn in blue) remains horizontal
until the vertical passing through the center of mass coincides with the edge of the ditch.
The vehicle starts to oscillate around the point of contact with the edge of the ditch (point
marked with P). The limit position, at which it is still possible to cross the ditch (drawn
in red) occurs when contact is made with the other edge of the ditch at a point on the
circumference of the front wheel on its horizontal axis of symmetry. The above-mentioned
approach scenario neglects inertial forces due to the low travel speeds of the mobile robot
platform. For the limit situation, the following geometric equations can be written:

(L − L1) cosϕ+ hr sinϕ+ R cosϕ = Ls [m]. (15)

(L − L1) sinϕ− hr cosϕ+ R sinϕ = 0 [m]. (16)

for the general case, in which it was assumed that hr > rm hr > rm.
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Figure 11. Geometric schematization of the limit situation when crossing the ditch. The explanations
of the notation in the figure are: LS[m]—the width of the ditch; ϕ[deg] —the angle of rotation of the
CG relative to the vertical line passing through the CG and the point of contact with the first edge of
the ditch; hr[m] —the radius of a bucket.

Eliminating the unknown ϕ, the width of the ditch that can be crossed was calculated
according to the horizontal position of the center of mass and using the notation γ = L/L1 ,
the results shown in Figure 12 are obtained.

 

Figure 12. Variation of the maximum width of the ditch that can be crossed depending on the
horizontal position of the center of mass.

There is an inversely proportional dependence between the maximum width of the
ditch that can be crossed and the horizontal distance from the rear wheel axle and the
center of mass. It turns out that the forward movement of the center of mass leads to an
increase in the height of the step that can be climbed, but also to a decrease in the width of
the ditch that can be crossed.

3.2. Conditioning Imposed by the Average Pressure on the Ground

The average pressure exerted by the tracks on the ground is given by the following
relation:

pmed =
G

2 · b · La

[
N
m2

]
. (17)

where: b [m]—width of the track; La [m]—adhesion length of the track to the ground.
Using the relation (17) the “Contour Plot” type graph was obtained (Figure 13).
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Figure 13. Graph of the variation of the average pressure on the ground depending on the width of
the track and the length of adhesion. The simple explanation of the graph is as follows: as the width
of the track b (m) and the length of the adhesion (track) increase La (m), the average pressure on the
ground decreases.

In Figure 13, it can be naturally concluded that the area located in the upper right, for
which pmed < 6 [kPa], is the most advantageous. An average–low ground pressure can be
obtained by increasing the adhesion length and/or by increasing the track width.

However, reporting to military vehicles is not able to generate consistent values for
the recommended average ground pressure due to the “scale effect” [62,63] (Figure 14).

 

Figure 14. Behavior of a crawler vehicle with elastic suspension versus one with rigid suspension [64];
Figure 8. We cannot draw an exhaustive conclusion on which suspension system.

3.3. Geometric Conditions Imposed by the Execution of the Turn

From the point of view of cornering, there are two major conditioning factors: the
position of the center of mass and the gauge (the distance between the planes of symmetry
of the two tracks).
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The position of the center of mass (CG) directly conditions the distribution of the
pressure exerted by the support branch of the track on the ground. The value of the
displacement of the turning poles is obtained by solving the following equation [64]:

12x
La2 x0

2 + 2x0 − 3x = 0, (18)

and the moment of resistance in the turn is determined by the relationship:

Mre = μ
GLa

4
k [Nm], (19)

where μ [−] = the steering resistance coefficient, and k [−] = a coefficient that takes into
account the displacement of the turning poles.

k =

(
1 +

4x0
2

La2

)
·
(

1 +
4x0x
La2

)
− 16x0x

La2 [−]. (20)

It can also be seen that a relative displacement of a maximum of 0.27 to the front
contributes to the decrease in the resistant movement in cornering Figure 15. The track
gauge, denoted by B, determines the magnitude of the traction forces on the two tracks:

F1 = f
G
2
− μ

G
4

La

B
k [N], (21)

F2 = f
G
2
+ μ

G
4

La

B
k [N], (22)

where F1,2 [N] = the traction forces at the inner and outer tracks of the turn, respectively;
f [−] = the coefficient of resistance to progress in rectilinear gait; μ [−] = the steering
resistance coefficient,

μ =
μmax

0.85 + 0.15 R2
B

[−], (23)

in which μmax [−] = the steering resistance coefficient for the turning radius equal to the
track gauge; R2 [m] = the turning radius measured at the outer track of the turn.

 

Figure 15. Variation of the coefficient k as a function of the relative displacement of the center of
mass xr = x/La, for La = 1.0 m. The significance of the graph lies in the fact that, with the change in the
CG, in the longitudinal plane, the turning radius increases.
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For constant values of the coefficient k, the weight of the platform and the maximum
coefficient of cornering resistance, the value of the traction forces at the two tracks depends
on the ratio La/B and the specific turning radius (Figure 16):

ρ =
R2

B
[−]. (24)

It follows that it is rational to adopt a track gauge value as close as possible to the
value of the track length of the track.

Figure 16. Variation of the specific force at the inner track of the turn. The representations of
the five graphs show that, as the ratio increases La

B [−], the traction forces required to make the
turn decrease. The observation itself is useful for determining energy consumption, f = 0.1 [−];
G = 1962 [N]; μmax = 0.5 [−].

3.4. Static Stability Study of the Crawler Engine

The geometric characteristics of the crawler propeller, as well as the position of
the center of mass of the mobile robot, are critical for ensuring stability in static mode:
movement on the longitudinal slope; crossing the slope; turning with a stable radius; cargo
handling.

From the point of view of the stability of the tracked platform when moving on the
longitudinal slope, the most difficult situation occurs when braking during the descent of
the slope (Figure 17), which is denoted for the deceleration of the platform during braking:
a = d2x

dt2

[
m
s2

]
. At the limit, the misalignment x of the ground pressure center becomes equal

to L-L1, so that the equation of equilibrium of the moments with respect to the point P of
the forces acting on the platform results in the expression:

a =
d2x
dt2 = g

(
L − L1

hg
cos α − sin α

) [m
s2

]
. (25)
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Figure 17. Schematic of the forces acting on the braking during the descent of the longitudinal slope.
R f — the force of resistance corresponding to the contact area of the track with the ground in front of
the drive wheel; R — the force of resistance corresponding to the contact area of the track with the
ground in front of the bucket; N —the normal force; α —the angle of the slope.

It can be concluded that the increase in the height of the center of gravity, as well as its
movement towards the front of the platform leads to a substantial decrease in the braking
deceleration at which the overturning occurs (Figure 18).

a =
d2x
dt2 = g

(
L − L1

hg

) [m
s2

]
. (26)

Resuming the calculations that led to the plot of the graph presented above, we
obtain the variation of the maximum deceleration when braking on the horizontal terrain,
graphically presented in Figure 19.

Figure 18. The variation of the maximum deceleration when braking on the slope of 30◦ depending
on the position of the center of mass. It is observed that with enlargement yG and the movement
of CG towards the front of the robot in the longitudinal plane, when descending the slope, we will
obtain a lower deceleration until the moment that coincides with the overturning of the robot.
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Figure 19. Variation in the maximum deceleration when braking in horizontal terrain (30◦ slope)
depending on the position of the center of mass. These simulations were performed to predict how
the robot would react if it was equipped with an arm used to transport suspicious objects.

The deceleration during braking is constant and the initial speed is v; it follows that
the minimum time required for braking is given by the relation: tmin = v/a [s].

Stability on the transverse slope is a particular case of the issue of lateral stability. The
geometric scheme, as well as the forces acting on the platform during the crossing of the
slope, are shown in Figure 20. The overturning stability condition is satisfied as long as the
resultant of the ground reactions is inside the support polygon:

y ≤ B + b
2

= hg
G sin α + Fc

G cos α
[m], (27)

where Fc [N]—the centrifugal force, b [m]—track width; B [m]—track gauge; FC [N]—
centrifugal force.

Figure 20. Schematic of the forces acting on the robot’s platform when crossing the slope.

For a transverse slope angle of 30◦, it results in hg = 0.866 · (B + b), which does not
imply severe conditions.
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4. Simulation Singularity Crossing Obstacles

4.1. Simulation of the Slope Ascent

In order to evaluate the simulation potential of the simulation performed on the basis
of a simple 2D model, a two-axle vehicle was schematized in the situation of longitudinal
displacement on the slope Figure 21.

∑ FX = 0 = μγrFN f − mg sin θ [N], (28)

∑ FY = 0 = FNr + FN f − mg cos θ [N], (29)

∑ M = 0 = FNrLw − mg
(

Lcg cos θ+ hmg sin θ
)
[Nm]. (30)

 

Figure 21. Schematic diagram of the vehicle moving on the longitudinal slope.

Equations (28)–(30) allow for the determination of the expressions for the normal
forces acting on the drive wheels and of the minimum coefficient of adhesion that ensures
the capitalization of the traction forces:

FNr =
mg
(

Lcg cos θ+ hcg sin θ
)

Lw
[N], (31)

FN f =
mg
[(

Lw − Lcg
)

cos θ− hcg sin θ
]

Lw
[N], (32)

μ ≥ Lw sin θ(
γr − γ f

)(
hcg sin θ+ Lcg cos θ

)
+ γ f Lw cos θ

[−], (33)

θ = arctg
(

Lw − Lcg

hcg

)
[deg]. (34)

where: m [kg]—weight of the vehicle; FTr,f [N]—rear and front traction force, respectively;
FNr, Nf [N]—normal force back, respectively front; θ [deg]—angle of the longitudinal slope;
Lcg [m]—distance of the center of mass from the axis of the front axle; hcg [m]—distance of
the center of mass from the running surface; Lw, [m]—the distance between the axes of the
axles; γ [−]—coefficient of indication of the driving axis, with value 1 if the axis is driving
and 0 if the axis is not driving.

The data that were considered for the simulation are contained in Table 2.
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Table 2. Characteristics of the crawler robot used for simulation.

Characteristics U.M. Amount

Rear wheel diameter, Drw mm 350
Front wheel diameter, Dfw mm 350

Wheelbase, Lw mm 1200
Distance between front axle and center of gravity, Lcg mm 600

Height of the center of gravity relative to the
running track, hmg

mm 650

The mass of the vehicle, m kg 250
The weight of the vehicle, mg N 2450

Coefficient of adhesion, μ - 0.8

From the analysis of the obtained results, it results that the all-wheel drive solution is
the most favorable.

4.2. Simulation of Crossing the Step-Type Obstacle

The simulation of crossing a step-type obstacle was performed in two variants
(Figure 22): when climbing the obstacle; and suspended on the obstacle.

Figure 22. Schematic of crossing a step-type obstacle: (a) shows the passage over the obstacle with the first cheek, in front of
the robot; (b) follows the approach of the obstacle with the driving wheel.

Using the schematic in Figure 22, the following geometric relationships are calculated:

cos θ =
R − h

R
[−], sin θ =

√
h(2R − h)

R
[−] (35)

The equilibrium equations for the forces and moments acting on the vehicle are as
follows:

∑ FX = 0 = μγrFNr + μγ f FN f cos θ − FN f sin θ [N], (36)

∑ FY = 0 = FNr − mg + FN f cos θ + μγ f FN f sin θ [N], (37)

∑ M = 0 = −FNr(Lw + R sin θ) + mg
(

Lcg + R sin θ
)
[Nm]. (38)

The following notations are introduced:

A = LCG + R sin θ [m], B = Lw − Lcg [m], S = sin θ [−],
C = cos θ [−]

(39)

From Equations (35)–(42), the following second-degree equation is finally obtained:

μ2γrγ f AS + μC
(

Aγr + Bγ f

)
− SB = 0, (40)
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with the next positive solution:

μ ≥
−C
(

Aγr + Bγ f

)
+

√
C2
(

Aγr + Bγ f

)2
+ 4γrγ f ABS2

2γrγ f AS
. (41)

Relationship (41) allows one to determine the coefficient of adhesion required to cross
the obstacle. From Equations (36)–(38) result the expressions of the normal forces acting on
the drive wheels:

FNr =
mgA

Lw + RS
[N], FN f =

mgB

(Lw + RS)
(

C + μγ f S
) [N] (42)

If the obstacle is crossed by a single axis, the following equations are used:

∑ FX = 0 = μγrFNr + μγ f FN f cos θ − FN f sin θ/2 [N]. (43)

μ ≥
−C
(

Aγr + Bγ f

)
+

√
C2
(

Aγr + Bγ f

)2
+ 2γrγ f ABS2

2γrγ f AS
[−]. (44)

FNr =
mgA

Lw + RS
[N]., FN f =

mgB

(Lw + RS)
(

C + μγ f S
) [N] (45)

The calculations were performed tabularly in Microsoft Excel. The results obtained
are presented in Tables 3 and 4.

Table 3. The results of the simulation for crossing the step-type obstacle with a single track.

h, mm 50 75 100 125 150

Normal force at the rear axle wheels, N 669.2 678 684 687 689.8
Minimum adhesion coefficient, μ2, μmin2 0.2 0.26 0.33 0.41 0.51
Normal force on the front axle wheels, N 650 693 741 788 829.3

Total traction force, N 2514 2514 2514 2514 2171
Limited tensile strength of grip, N 1070 1085 1094 1100 1104

Table 4. The results of the simulation for crossing the step-type obstacle with a single track.

h, mm 50 75 100 125 150

Normal force at the rear axle wheels, N 669.2 678 684 688 689.8
Minimum adhesion coefficient, μ2, μmin2 0.37 0.47 0.56 0.66 0.76

Total traction force, N 2514 2514 2514 2514 2171
Limited tensile strength of grip, N 1070 1085 1094 1100 1104

The data obtained allow for an assessment of the demands of the driving wheels that
attack the obstacle; the coefficient of adhesion required for the development of the traction
force; the requirements imposed on the energy aggregate (engine and transmission) to
overcome the obstacle.

From the analysis of the obtained data, it can be seen that the most important variation
is the coefficient of adhesion necessary to allow for the crossing of the obstacle. For the
two situations studied, Figures 23 and 24 show the variation in the minimum adhesion
coefficient that ensures the crossing of the obstacle, depending on its height.
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Figure 23. Variation in the minimum coefficient of adhesion when crossing the obstacle with a single
track. The obstacle was positioned so that only one track could be passed over it.

Figure 24. Minimum variation coefficient of adhesion crossing an obstacle with both tracks.

As the height of the obstacle increases, so does the need for traction. The variation in
the traction force required to cross the obstacle is shown in Figures 25 and 26.

Figure 25. Variation in traction force when crossing the obstacle with a single track.

 

Figure 26. Variation in traction force when crossing the obstacle with both tracks.
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From the analysis of the presented graphs, it can be concluded that crossing the
obstacle with both tracks leads to the increase in the required traction force with a value of
about 250–350 N, approximately constant depending on the height of the obstacle.

The simulations were performed for a disposition of the center of mass, arranged
symmetrically with respect to the two axes, and the traction force was evenly distributed
over the entire adhesion length of the track: the model is simple and easy to operate,
providing important and relevant information; the correlation between the constructive
parameters and the functional characteristics is easy to highlight and to be optimized at a
coarse level; the simplicity of the model makes it quickly integrated into complex models
for simulating mobility.

4.3. Simulation of Crossing the Step-Type Obstacle with Recurdyn

The virtual model of a crawler engine was made using the specialized program
Recurdyn. After making the virtual model, we proceeded to check the arrangement of all
elements in order to eliminate interference or incorrect positioning (Figure 27).

 

Figure 27. Detail representing the crawler gearing with the drive wheel. The simulation was
performed using Recurdyn software.

These simulations refer to the decomposition of the traction forces on the three direc-
tions of the orthogonal axis system. Each track element (patina) displaces the tread in the
three directions. The graphs in Figure 28 refer to those stated.

Figure 28. Simulation study of track contact with the ground.
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Simulating the contact of a skid in the composition of the track with the ground allows
for the extraction of information on vertical stresses on the ground (ground pressure), as
well as the evaluation of reactions in the direction of travel, which allows for the study of
the ground lift in the direction of traction.

The study of the contact between the skate and the buckets allows for the evaluation
of the contact force with implications for the dimensioning of the rubber bandage, but also
for the identification of possible shocks when the bucket passes over two skates due to the
intersection between them (Figure 29).

Figure 29. Study of the contact of a patina in the composition of the caterpillar with the buckets.

The simulation study of the torque variation at the driving wheel indicates its impor-
tant variations, in the conditions of a stationary movement, with constant speed (Figure 30).

Figure 30. Simulation study of the moment at the drive wheel.

Studying the simulation of travel speed for a value of about 45% of the maximum
travel speed indicates the existence of irregularities that can have disruptive adverse effects
on the image stability recorded by the video cameras installed on the platform (Figure 31).
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Figure 31. Study by simulation of travel speed.

An attenuation of these variations will be recorded by taking into account the moment
of inertia of the electric motor and gearboxes.

5. Testing and Evaluation Propulsion Systems

The following main objectives of the experimental research were determined: the
functional characteristics of the mobile platform; the functional characteristics of some
main components of the mobile platform;

The testing of the mobility of the mobile robot had the following important objectives:
the operation of the propulsion system when moving rectilinearly; when cornering; the
control mode of the controller; the operation of the engine: in reverse and reverse; at rapid
changes of the operating mode; the road holding of the mobile robot.

5.1. Testing and Evaluation on the Stand

The testing of electric motors had the following objectives: the operation of motors at
supply voltages of 12 Vcc and 24 Vcc; the controller and the electrical connections between
the motor and the controller; the way of simultaneously changing the speed of electric
motors; how to differentiate the speed of electric motors.

Stand-up testing of electric motors followed, checking the way of making the electrical
connections between the motor and the controller; the RS232 and ANALOG control modes
of the motors; the operation of the motors in simultaneous and differentiated speed regime;
the efficiency of the engine failure stop system.

The following operations were performed prior to the actual execution of the tests
(Figure 32): the smooth rotation of the shafts of the electric motors was verified; integrity of
the electrical conductors connecting the electric motors was checked; motors were mounted
on the test stand. The schematic of the electrical connections is included in Figure 33. The
electrical connections were made with conductors of large section so as to avoid voltage
drops when high currents occur.

In the case of designing the DasyLab application, a decision was made to monitor and
record the measured values. Butherworth type 3 digital filters were used to reduce the
noise associated with the acquired signals. A first set of data was purchased during the
stand test of electric motors. Next, a vacuum test was performed at different speeds of the
two engines. The results are shown in Figure 32 For these tests, the digital control of the
controller was used through the RS232 interface of the computer.
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Figure 32. How to mount the motors and the controller on the stand.

 

Figure 33. Diagram of electrical connections for connecting motors.

From the analysis of the presented graph, the following can be noticed (Figure 34):
the value of the current varies relatively little with the speed due to the fact that the
mechanical load of the electric motor is zero, so that the absorbed current has relatively
small values; control through the RS232 interface provided by the RoboteQ program leads
to the execution of the turn by differentiating the speeds as follows: the outer track of the
turn: v + Δv; and the inner track of the turn: v − Δv; where Δv it is proportional to the turn
command (Figure 35).

 

Figure 34. Vacuum testing at constant speed of electric motors.
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Figure 35. Vacuum testing at variable speed of electric motors.

5.2. Engine Testing by Suspension Test

Suspended testing of electric motors followed the same things as in Section 5.1.
The results of the test for simulating rectilinear gait are shown in Figure 36.

Figure 36. Example of recording for the simulation of rectilinear motion in the suspended sample.

The analysis of the graphically represented data shows the dependence between speed
and absorbed current, which can be explained by the increased level of friction torque in
the gearboxes.

Figure 37 shows examples of results obtained when simulating the turn in the sus-
pended test.
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Figure 37. Example of simulating the turn in the suspended test.

The development of experimental research allowed the formulation of the following:
the testing program was completed and complied with procedural requirements; when
the electric motors are idle, they absorb a current of about 3 A rms; in the case of a rapid
change of speed by about 10%, there were short-term increases in the absorbed current of
up to 8 A rms; due to the technological and adjustment non-uniformity, the speeds of the
two engines differ by about 1–2% when idling; no abnormal noises or overheating were
found during the operation of the gearboxes. During the operation of the tracks, the test
was suspended: the occurrence of the phenomenon of hooking the tip of the tooth flank of
the crawler chain roller was noted, as the phenomenon was found both at the entry into the
gear and at the exit of the gear, given that the support branch of the track is a free-forming
an arrow of about 35–40 mm, as can be easily seen from Figure 38; the current absorbed by
the motors, corresponding to a speed regime close to the maximum speed, by 18–20 A rms.

 

Figure 38. Overview of the mobile platform of the robot with the lower branch of the track hanging,
with an arrow within the admissible limits on making the turn.

5.3. Testing and Evaluation of Rectilinear Displacement Capacity

Rectilinear gait testing was followed: testing the robot’s ability to move forward
in a straight line; backwards in a straight line; the ability to accelerate the mobile robot;
determination of the maximum speed. A data acquisition system assisted by a portable PC
using the specialized program DasyLab was used to perform the measurements.

An example of recording data at rectilinear motion at maximum speed is shown in
Figure 39. The maximum speed obtained was higher than 1 m/s.
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Figure 39. Example of data recorded at rectilinear displacement.

5.4. Testing and Evaluation of the Ability to Make the Turn

Testing of ability to make the turn followed the same things as in Section 5.1.
The same data acquisition systems described above were used to perform the mea-

surements. On-the-go testing at two different engine speeds was performed by analog
control, maintaining a relatively long time the command to be able to record data at con-
stant operating speeds. During the suspended test, the following steps were performed:
straight forward movement followed by turning right and then left; rectilinear movement
backwards followed by the execution of the right and then left turn; execution of the turn
with minimum radius only by driving only one track. In the first two stages, the following
aspects were pursued: ability to make turns with different radius; the quality of the crawler
gear drive; firmness and accuracy of the analog control. In the third stage, the following
aspects were further pursued: ability to execute the turn with a minimum radius; smooth,
noiseless operation of the tracks; control of the controller in analog mode; efficiency of the
track guidance and stretching mechanism. The turning radius was determined:

ρ2 = B v2/v2 − v1 [m]. (46)

where B [m]—the gauge of the mobile robot; v [m/s]—left track speeds (index 2) and right
track (index 1), respectively.

From the analysis of the graphically represented data, it is found that, at the rectilinear
course for which v2 = v1, the turning radius tends to take an infinite value (Figure 40).
During the test when performing the turn by operating a single track, it was found that
a turning radius of 0.68 ÷ 0.72 (m) was achieved, depending on the landslide of the
immobilized track. During testing the ability to travel for a long time, the robot performed
the following travel categories for 80 min: rectilinear movement back and forth; turning
left and right; crossing singular obstacles. When operating the robot at maximum speed,
the electric motors absorb a current of about 50 A rms, representing less than 50% of the
maximum current set for the controller (110 A) and about 35% of the maximum capacity of
the controller (140 A), the values recorded differ from those determined by simulation with
a maximum of 6.52%, which confirms the validity of the calculation model developed.
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Figure 40. Appearance during the test of the ability to move over a rectangular prism.

5.5. Experimental Research on the Ability to Approach Obstacles

Testing the ability of the mobile obstacle robot had the following more important
objectives: testing the operation of the propulsion system when crossing obstacles; the
control mode of the controller; the operation of the engine at rapid changes in operating
mode; the road holding of the mobile robot when approaching obstacles (Figure 40).

The rectilinear gait test aimed at testing the ability to approach the obstacle in terms
of energy resource and the characteristics of the track’s adhesion to the ground.

An example of data recorded at rectilinear displacement at maximum speed is shown
in Figure 41. It is noted that, although the displacement speed was approximately constant
(red line), the current shows significant variations due to the corresponding change in the
overall resistance coefficient to advance.

Figure 41. Example of data recorded at rectilinear displacement.

The height of the obstacle was 160 mm and the average speed of approaching the
obstacle was 0.363 m/s. During the obstacle approach, the absorbed current had an average
value of 57.22 A with a maximum of over 120 A. During the obstacle approach the robot
control was firm, and its speed remained at an approximately constant value, the variations
being generated by the entry/exit of/in contact with the edges of the obstacle of the support
rollers of the track.
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6. Conclusions and Discussion

The engine test program was completed in full and complied with the procedural
requirements. The test program had a complex character, including the running of motors,
reducers and tracks. When the electric motors are idle, they absorb a current of about 3 rms.
In the case of a rapid change in speed of about 10%, there were short-term increases in the
absorbed current of up to 8 A rms.

When operating during the test, the current absorbed by the motors, corresponding
to a speed regime close to the maximum speed, was suspended at 18–20 A rms. Thus,
regardless of the speed regimes, when driving in a straight line and/or in a corner, as well
as for both directions, no warm-ups of the motors or reducers were found. The temperature
of the MOSFET power components in the controller exceeded the ambient temperature
by 1–2 ◦C. The values of the absorbed current represent 12–15% of the maximum current
allowed by the controller.

The values obtained differ from those calculated by a simulation with a maximum of
4.7%. Increased current values were recorded at the transient regimes. The tests followed
the following functional algorithm:

Through the program of experimental research, the following important issues related
to the functional characteristics of the mobile platform were revealed: the constructive
characteristics of the ROBTER crawler robot allowed for stable and fully controllable rolling;
the ROBTER crawler robot did not lose its grip, and there was no skidding or tilting; the
ability to cross the individual obstacles (longitudinal slope) of the ROBTER crawler robot
is considered to be in accordance with the formulated requirements;

The main advantages of the studied solution are the possibility of creating a family
of intervention robots by replacing the operational platform; simplicity of the calculation
logarithm; making modular software; the use of relatively cheap materials and components,
the aim being to increase the degree of efficiency and annihilation of potential risks with
minimal costs. In addition, this functional model can also be used for research activities in
the subject, as well as for doctorates. As the structure is extremely versatile, future users
develop it to conduct in-depth research. In further research, we want to focus on describing
the influence of the crawler propeller on the ground and on the development of at least
two new operational platforms.

The previously-performed and presented study had as main objective the highlighting
of the influences that the main geometric parameters exert on the functional characteristics
of the mobile robot. The following conclusions regarding the geometric configuration of
the mobile robot platform result: the increase in the height at which the center of mass
is arranged leads to more favorable conditions for approaching step-type obstacles but
generates conditions of loss of stability when sloping and braking, especially when braking
when descending the slope; increasing the height of the axis of the drive wheel leads to the
corresponding increase of the height of the step-type obstacle that can be approached, but
also to the increase of the width of the ditch that can be crossed; the forward movement
of the horizontal position of the center of gravity leads to more advantageous conditions
for tackling step-type obstacles, but appropriately reduces the width of the ditch that can
be crossed and increases the value of the forces required to perform the turn; increasing
the adhesion length of the crawler propeller with the ground leads to the corresponding
increase in the width of the ditch that can be crossed but also to the increase in the traction
forces in turning; the increase of the track width allows to obtain a lower average pressure
on the ground, reducing the sinking of the tracked propeller in the deformable ground and,
therefore, the resistance to advance; the lower sinking in the deformable soil also leads to
the reduction of the lateral excavation effect during the execution of the turn, which leads
to the decrease of the resistance moment in the turn.

All these conclusions highlight the contradictory nature of the influence exerted by
the main geometric parameters of the crawler engine on the functional characteristics of the
mobile robot. This results in the need to optimize the geometrical parameters of the crawler
engine according to the characteristics of the specific mission for which the mobile robot is
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intended. All these considerations were taken into account when making the prototype,
which is the subject of this paper.
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Abstract: Mobile robots that can survive in unstructured wildernesses is essential in many appli-
cations such as environment detecting and security surveillance. In many of these applications, it
is highly desirable that the robot can adapt robustly to both terrestrial environment and aquatic
environment, and translocate swiftly between various environments. A novel concept of amphibious
spherical robot with fins is proposed in this paper, capable of both terrestrial locomotion and aquatic
locomotion. Unlike the traditional amphibious robots, whose motions are commonly induced by
propellers, legs or snake-like tandem joints, the proposed amphibious spherical robot utilizes the
rolling motion of a spherical shell as the principal locomotion mode in the aquatic environment.
Moreover, spinning motion of the spherical shell is used to steer the spherical robot efficiently and
agilely; several fins are attached to the outer spherical shell as an assistance to the rolling motion.
These two motion modes, rolling and spinning, can be used unchangeably in the terrestrial environ-
ment, leading to a compact and highly adaptive design of the robot. The work introduced in this
paper brings in an innovative solution for the design of an amphibious robot.

Keywords: amphibious robot; spherical robot; assistant fin; buoyancy; hydrodynamic force

1. Introduction

Amphibious robots are designed to cope with drudgeries involving miscellaneous
terrains, such as lakes, wetlands, shallows and pipelines [1,2]. Compared with a robot
moving only on land or underwater, which is easily stuck in the junction area between the
land and the water, amphibious robots are capable of both aquatic locomotion and terres-
trial locomotion, which are especially suitable for applications in unknown environments,
potentially with complex terrains. Tasks calling for this kind of robots include environment
detecting, wild exploring, security surveillance as well as scientific inspecting [3].

A variety of amphibious robots have been developed by researchers in recent years.
As one of the typical amphibious robots, snake-like robots are inspired by the locomotion
mode of a snake as well as a lamprey. A snake-like robot called HELIX is developed
by Takayama and Hirose to verify the propulsion principle that helical motion can be
created by successive distortions of articulated body segments [4]. The design of one unit
of HELIX, including a special spherical mechanism and two servo motors, is introduced in
detail by the same authors. As a modified prototype of HELIX, ACM-R5 bears impressive
performance in terms of its dexterous locomotion capacity. Underwater swimming fins
are attached around the outer surface of each unit to assist the underwater motion, with
passive wheels attached on the tip of each fin in order to improve the on-land locomotion
performance [2,5]. The AmphiBot robots, a series of amphibious snake-like robots capable
of swimming in water and crawling on land, are designed by Ijspeert and Crespi et al. [6].
A central pattern generator (CPG)-based controller is used to generate lateral undulation
for this kind of robot [7,8]. Some key parameters that produce fast locomotion gaits, such
as the amplitude of oscillation, frequency and wavelength, are identified by a series of
experiments. An improved version of AmphiBot, named Salamandra robotica, equipped
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with a passive tail and four active 3-DOF limbs, is also introduced [9]. To make the snake-
like robot to follow a desired path, a straight line path following controller is proposed by
Kelasidi et al. [10,11].

Another type of amphibious robots is equipped with flippers that act as paddles
in water and as legs on land. Using six paddles for propulsion, AQUA is suitable for
navigating in shallow-water environment [12,13]. With the help of an acoustic-based local-
ization system and a vision-based localization system, AQUA obtained the ability to revisit
a previously visited site autonomously [14,15]. To enhance its climbing ability, Whegs
IV combines two similar body segments with wheel-leg propellers [16,17]. AmphiHex-I
obtains versatile gaits with the aid of transformable flipper legs, which makes it flexible
in transforming propulsion mechanisms [18]. Its improved version with variable stiffness
legs and CPG-based control strategy is also introduced [19]. A quadrupedal micro-robot
weighs only several grams is introduced by Cheng et al. [20], which uses passive flaps to
swim forward and adjust direction.

Some robots with spherical shape have also drawn researchers’ attention. The Ground-
bot, an amphibious spherical robot that accomplishes its propulsion system by displacing
the center of mass, is introduced by Kaznov et al. [21]. Groundbot shows good robustness
in the waypoint following mode. An amphibious spherical robot which combines two actu-
ating systems, including the quadruped walking system for terrestrial locomotion and the
water-jet propulsion system for underwater locomotion, is designed by Guo et al. [22,23].
A micro-robot which is used as a manipulator and a monitor can be carried and deployed
by this amphibious spherical robot. An amphibious spherical robot uses pendulum to
move on land and propeller to move in the water is developed by Li et al. [24]. A spherical
rotary paddle called Omni-Paddle is proposed to form a robot that mainly moves on the
boarder of water and ground [25]. Four Omni-Paddles are disposed in a radical pattern
around the outside of the robot, with which the robot is capable of moving towards any
direction. The Omni-Paddle works as not only a driving mechanism but also a source of
buoyancy in one prototype of the robot.

Each of the amphibious robots mentioned above has its advantages and disadvantages.
A snake-like robot adapts well to complex terrains; however, it usually needs many units of
bodies in order to achieve a high terrain adaptability, as a result requiring a large amount of
motors. This leads to low robustness and high energy consumption, which is the bottleneck
in field applications. A robot equipped with water-jet propulsion system can control its
position and attitude precisely underwater. However, another actuation system is needed
for its locomotion on land, resulting in a complex actuation system and extra weight. A
robot with paddles mimics the locomotion modes used by amphibians such as ducks and
turtles, which is advantageous in that it uses the same set of actuation system for both on
land and in water locomotion; however, it calls for complex algorithms for gait planning in
order to reach dynamic stability. In addition, the existence of feet increases risk of being
entwined by water plants or shrubs.

A spherical robot bears very few motors that are sufficient for both on land and in
water locomotion. Because of its inherent sealing characteristic, good stability and low
energy cost, spherical robots have a great potential to be used in amphibious locomotion
in field applications. However, the relatively slow locomotion speed on the water due
to frictionless spherical shell and the poor maneuverability are main hindrances in using
a spherical robot as an amphibian. To overcome these limitations, a novel amphibious
spherical robot design is proposed in this paper, by attaching assistant fins to the outside
surface of the spherical shell to increase its locomotion speed, and by using a combination
of pendulum and rotator as the Inside Drive Unit (IDU) to propel the robot agilely. It is
shown that this design strategy significantly improves the mobility capacity of the robot,
and enhances its resistance to environment undulation, making it practicable to use a
spherical robot both on land and on water.

The remainder of the paper is organized as follows. In Section 2, the mechanical
design, the electrical actuation and the control system of the amphibious spherical robot
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are introduced. In Section 3, the equations of the robot’s motion are deduced based on
kinematic analyses and force analyses. In Section 4, simulations of the dynamic model are
presented, and the experiments to test the performance of the robot are described in detail.
Finally, the conclusion is given in Section 5.

2. Mechanical Structure and Electrical Actuation and Control System

2.1. Design Objectives

The design objectives of the amphibious spherical robot project are:

1. the ability to navigate on the water and on the land with exactly the same
driving mechanism;

2. a sealed structure, enclosing its vulnerable components to protect them from out-
side environments, e.g., water, sand and gas, so as to make it capable of surviving
harsh environments;

3. this robot can be remotely handled by an operator.

These aims are achieved by the proposed amphibious spherical robot scheme, which
consists of a spherical robot and a radio frequency (RF) remote controller.

2.2. Introduction of the Developed Spherical Robot

The spherical robot introduced here is a modified type aiming at amphibious ap-
plications, which is originated from traditional spherical robots [26,27]. The spherical
robot is mainly composed of two parts: a hollow spherical shell and an IDU, as shown in
Figure 1. The spherical shell acts as both a wheel and a shelter; while the IDU, consisting
of components inside the spherical shell, acts as the driving unit of the whole robot.

Figure 1. Mechanical structure of the amphibious spherical robot.

The hollow spherical shell consists of two hemispheric shells made of acrylic material,
which makes it transparent and with little radio interference. A toroidal collar is attached
to the great circle of one hemispherical shell, acting as an installation reference for the other
hemispherical shell. Some subtriangular fins are adhered onto the outside surface of the
spherical shell, in order to improve the robot’s locomotion performance when navigating
on the water.

The IDU is mounted completely in the inner space of the hollow spherical shell. Its
mechanical structure mainly contains a main shaft, a support frame and a rotator. Two
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basic motion modes of the spherical robot, i.e., rolling motion and spinning motion, can be
actuated by the IDU.

The main shaft lies along the sphere’s main axis which is fixed relative to the spherical
shell during motion, making it parallel to the ground in a stationary state. Two DC motors
are mounted on the main shaft to actuate the IDU, named rolling motion motor and
spinning motion motor, respectively. The rolling motion motor is placed along the main
axis. When this motor starts to rotate, the IDU will depart from its balanced position
and begin to rotate about the main axis. The torque exerted onto the spherical shell will
accumulate as a consequence. The spherical shell starts to roll as soon as this torque exceeds
the friction resistance, resulting in the linear motion of the whole spherical robot. The
spinning motion motor is placed perpendicular to the sphere’s main axis, and is along the
diameter that passes through the contact point in a stationary state. A rotator is connected
to this motor through a coupler. When the angular velocity of the rotator is changed by
activating the spinning motion motor, the angular momentum of the rotator succeeds to
change. As a result of the conservation of angular momentum principle, the spherical shell
will spin in the direction that opposite to the change of angular momentum.

The principle of those two motion modes is illustrated in Figure 2.

 

Figure 2. Schematic of rolling motion and spinning motion.

A curved trajectory can be achieved upon combining the rolling motion mode and
spinning motion mode, i.e., upon steering the robot when it is moving forward or backward.

The rotator is placed in the interspace between the main shaft and the semi-circular
support frame, which is fixed beneath the main shaft. The rotator is composed of a few
pieces of ballasts, which are made by stainless steel in order to supply enormous mass and
moment of inertial. In order to test the relationship between the depth of immersion and
locomotion performance of the spherical robot, the number of ballasts is designed to be
adjustable by splitting the ballasts into pieces with different mass. So, the total mass of the
rotator can be simply changed by adding or removing some pieces of the ballasts.

Sixteen subtriangular fins, eight on each side, are fixed on the outside surface of the
spherical shell to improve the locomotion performance on the water. By applying prudent
control strategies, these fins will not have any collision with the ground when the robot is
moving on land. By contrast, they will immerge into the water when the robot is navigating
on the water. Two factors—the first is the number of fins attached to the spherical shell,
and the second is the shape of the fin—are believed to have significant impact on the
locomotion performance of the robot on the water.

Apart from those driving facilities mentioned above, the waterproof ability is of great
importance for the amphibious spherical robot. Several approaches have been proposed to
keep loads inside the spherical shell from water.
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2.3. Electrical Actuation and Control System of the Robot

The electrical actuation and control system consist of two DC motors, a servo motor,
two electronic speed controls (ESC) working as motor drive units, a signal receiver, a
camera and power supply module. It provides the power and impetus needed for the
spherical robot. It receives the control signal transmitted by the RF remote controller and
the signal emitter, then outputs impetus to the mechanical structure of the IDU and the
spherical shell. Its schematic is shown in Figure 3.

 

Figure 3. Schematic of electrical actuation and control system.

The signal receiver is used to collect radio frequency signals emitted from the RF
remote controller. After some valid signals arrived, it will decode the received signals and
then generate control signals for corresponding motors. The signal receiver connects to
two DC motors through two ESCs respectively and one servo motor directly. These three
motors occupied three of the nine output channels of the signal receiver. The power of
the signal receiver is supplied by a battery eliminator circuit (BEC) incorporated in one
of the ESCs. The ESC, mainly used for brushed DC motors, acts as motor driver in this
application. It converts the digital signals from the signal receiver to voltages exerted upon
the motors. Those ESCs are powered by the power supply module. The output voltage of
the ESC will change with the variation of the input signal received from the signal receiver.
As a result, rotation speed of these DC motors will change at the same time.

To record videos of the robot’s surroundings, a digital camera is mounted inside the
spherical shell. The servo motor mounted on the main shaft is used for adjusting the vision
field of the camera in horizontal plane. This servo motor is connected directly to the signal
receiver because it consumes power within the safety threshold of the signal receiver. As
a micro wireless signal transmitter is integrated into the camera, videos produced by the
camera can be transmitted to the RF remote controller in time.

A 24 V lithium battery is used as the power supply module for the robot, and a
wireless switch is placed between the power supply module and those power consuming
devices. The on-off state of the power supply is then achieved by sending corresponding
signals to the wireless switch from an external signal emitter.

The control block diagram of the robot system is shown in Figure 4. Two PID con-
trollers are implemented in order to control the two system inputs, i.e., τl and τr, generated
by the rolling motion motor and the spinning motion motor, respectively.
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Figure 4. Control block diagram of the robot.

The PID1 controller is used in the basic rolling motion mode, while the PID2 controller
is used in the basic spinning motion mode, when the robot needs to adjust its direction.
These two controllers work in cooperation when the robot is operating in a curved trajectory.

3. Dynamic Model of the Robot

The amphibious spherical robot is modelled as a system consists of three rigid bodies,
the spherical shell with its attached assistant fins, the IDU platform and the rotator. As-
sumptions about these three components are (1) the spherical shell is a uniform hollow
spherical shell whose radius is R; the total mass of the spherical shell and its attached
assistant fins is ms while each fin has mass m f ; (2) the IDU platform is considered as a
uniform rectangular bar with mass mp, length 2R, neglecting its structural details; it is
mounted along the main axis with its center of mass locating at the center of spherical shell;
(3) the rotator is a hollow cube with its mass mr distributed on the four side faces of the
cube; the distance between the center of mass of the rotator A and the main axis is lOA.

3.1. Coordinate Frames

Coordinate frames attached to those three rigid bodies are shown in Figure 5. An
inertial frame U-XYZ is set with its X axis pointing to the east of the locus, its Y axis pointing
to the north and its Z axis pointing vertically upward. The frame O-XYZ is parallel to the
inertial frame, with its origin located at the center of spherical shell O. Let OS-XSYSZS be
the coordinate frame anchored to the spherical shell, whose origin is located at the point O
and YS axis is always parallel to the main axis. This OS-XSYSZS frame is used to describe
the configuration of the spherical shell. Let OD-XDYDZD be the body frame of the IDU
platform, with its origin located also at point O, its YD axis coinciding with the YS axis and
its ZD axis parallel to the rotator’s spinning axis. In addition, the A-XAYAZA frame, located
at the center of mass of the rotator, is used to describe the configuration of the rotator; its
ZA axis lies along the rotator’s spinning axis.

 

Figure 5. Coordinate frames of the robot.
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In general, eight variables η = (x, y, z, φ, θ, ψ, αs, αr) are needed to describe the states of
the whole robot, among which, three variables (x, y, z) represent the center of the spherical
shell, three Euler angles (φ, θ, ψ) represent the orientation of the IDU platform, the angle
αs represents the angle between the body frame of the spherical shell OS-XSYSZS and the
body frame of the IDU platform OD-XDYDZD; lastly, the angle αr is the spinning angle of
the rotator. As these eight variables are independent of each other, they are chosen as the
generalized coordinates of the robot system.

3.2. Kinematics

Kinematic parameters that are necessary for deducing the dynamic equations, i.e., the
translational velocities of the center of mass of each rigid body and the angular velocities
with respect to each center of mass, are presented in the following. Let rO = (x, y, z)
be the position vector of the geometric center of the spherical shell O whose velocity is
.
rO =

( .
x,

.
y,

.
z
)
, rP = (xP, yP, zP) be the position vector of the center of mass of the IDU

platform whose velocity equals to
.
rO, i.e.,

.
rP =

.
rO, and rA = (xA, yA, zA) be the position

vector of the center of mass of the rotator A. Let DrOA = (0, 0,−lOA) denote the position
vector of the point A with respect to the OD-XDYDZD frame; rA then is

rA = rO + U
DRDrOA, (1)

where U
DR ∈ SO(3) denotes the rotation matrix between the U-XYZ frame and the OD-

XDYDZD frame, which can be expressed in terms of the Euler angles, that is,

U
DR =

⎡
⎣ cψcθ −sψcφ + cψsθsφ sψsφ + cψcφsθ

sψcθ cψcφ + sψsθsφ −cψsφ + sθsψcφ
−sθ cθsφ cθcφ

⎤
⎦, (2)

where cφ is the shorthand for cos φ, sφ for sin φ, and so on. Substituting U
DR into

Equation (1), we get

rA = (x − (sψsφ + cψcφsθ)lOA, y − (−cψsφ + sθsψcφ)lOA, z − cθcφlOA). (3)

The velocity of the rotator’s center of mass
.
rA can be obtained by differentiating rA,

its three components are

.
xA =

.
x −
(

cφsψ
( .

φ − .
ψsθ
)
+ sφcψ

( .
ψ − .

φsθ
)
+

.
θcφcψcθ

)
lOA

.
yA =

.
y −
(

sφsψ
( .

ψ − .
φsθ
)
− cφcψ

( .
φ − .

ψsθ
)
+

.
θcφsψcθ

)
lOA

.
zA =

.
z +
( .

θcφsθ +
.
φsφcθ

)
lOA

(4)

As the rotation matrix U
DR is an orthonormal matrix, U

DR−1 = U
DRT, so

U
DR U

DRT = I3×3. (5)

Differentiating both sides of Equation (5), we have

U
D

.
R U

DRT +
(

U
D

.
R U

DRT
)T

= 0. (6)

If we define Sp := U
D

.
R U

DRT, then Sp + ST
p = 0. So Sp ∈ so(3) is an anti-symmetric

matrix whose diagonal elements are all zero:

Sp =

⎡
⎢⎣ 0 − .

ψ +
.
φsθ

.
θcψ +

.
φsψcθ

.
ψ − .

φsθ 0 − .
φcψcθ +

.
θsψ

−
.
θcψ − .

φsψcθ
.
φcψcθ −

.
θsψ 0

⎤
⎥⎦. (7)
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The matrix Sp can be made up from ωp =
(
ωpx, ωpy, ωpz

)
, the angular velocity of the

IDU platform with respect to the U-XYZ frame, that is,

Sp =
^
ωp =

⎡
⎣ 0 −ωpz ωpy

ωpz 0 −ωpx
−ωpy ωpx 0

⎤
⎦. (8)

The angular velocity ωp then can be deduced from Sp reversely:

ωp =
( .

φcψcθ −
.
θsψ,

.
θcψ +

.
φsψcθ,

.
ψ − .

φsθ
)

. (9)

Note that ωp is not a generalized velocity but a quasi-velocity. The angular velocity of
the IDU platform with respect to the OD-XDYDZD frame can be obtained by coordinate
transformation

Dωp = U
DRTωp =

( .
φ − .

ψsθ,
.
θcφ +

.
ψsφcθ,−

.
θsφ +

.
ψcφcθ

)
. (10)

To deduce the angular velocity of the spherical shell, let Ss := U
S

.
R U

S RT, where U
S R

is the rotation matrix between the U-XYZ frame and the OS-XSYSZS frame. U
S R can be

obtained by matrix multiplication, U
S R = U

DR D
S R, where D

S R is the rotation matrix between
the OD-XDYDZD frame and the OS-XSYSZS frame. D

S R can be expressed as

D
S R =

⎡
⎣ cαs 0 sαs

0 1 0
−sαs 0 cαs

⎤
⎦. (11)

Substituting D
S R into the equation of U

S R, U
S R then is

U
S R =

⎡
⎣ cψcθcαs − (sψsφ + cψcφsθ)sαs cψsθsφ − sψcφ cψcθsαs + (sψsφ + cψcφsθ)cαs

sψcθcαs + (cψsφ − sθsψcφ)sαs cψcφ + sψsθsφ sψcθsαs + (sθsψcφ − cψsφ)cαs
−sθcαs − cθcφsαs cθsφ cθcφcαs − sθsαs

⎤
⎦. (12)

The angular velocity of the spherical shell with respect to the U-XYZ frame,
ωs =

(
ωsx, ωsy, ωsz

)
, can be deduced from the matrix Ss, whose three components are

ωsx =
.
φcψcθ −

.
θsψ +

.
αs(cψsθsφ − cφsψ)

ωsy =
.
θcψ +

.
φsψcθ +

.
αs(sψsθsφ + cφcψ)

ωsz =
.
ψ − .

φsθ +
.
αscθsφ

(13)

Its expression with respect to the OS-XSYSZS frame are

Sωsx =
.
θsφsαs +

.
φcαs −

.
ψ(sθcαs + cθcφsαs)

Sωsx =
.
θcφ +

.
ψcθsφ +

.
αs

Sωsz =
.
φsαs −

.
θsφcαs +

.
ψ(cθcφcαs − sθsαs)

(14)

Then, let Sa := U
A

.
R U

ART, where U
AR is the rotation matrix between the U-XYZ frame

and the A-XAYAZA frame and U
AR = U

DR U
AR. U

DR is the rotation matrix between the
OD-XDYDZD frame and the A-XAYAZA frame, which is

D
AR =

⎡
⎣ cαr −sαr 0

sαr cαr 0
0 0 1

⎤
⎦. (15)
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Substituting D
AR into the equation of U

AR, we get

U
AR =

⎡
⎣ cψcθcαs − (sψsφ + cψcφsθ)sαs cψsθsφ − sψcφ cψcθsαs + (sψsφ + cψcφsθ)cαs

sψcθcαs + (cψsφ − sθsψcφ)sαs cψcφ + sψsθsφ sψcθsαs + (sθsψcφ − cψsφ)cαs
−sθcαs − cθcφsαs cθsφ cθcφcαs − sθsαs

⎤
⎦. (16)

The angular velocity of the rotator with respect to the U-XYZ frame, ωr =
(
ωrx, ωry, ωrz

)
,

can be deduced from the matrix Sa, its three components are

ωrx =
.
φcψcθ −

.
θsψ +

.
αr(cψsθcφ + sφsψ)

ωry =
.
θcψ +

.
φsψcθ +

.
αr(sψsθcφ − sφcψ)

ωrz =
.
ψ − .

φsθ +
.
αrcθcφ

(17)

Its expression with respect to the A-XAYAZA frame are

Aωrx =
.
θcφsαr +

.
φcαr +

.
ψ(cθsφsαr − sθcαr)

Aωry =
.
θcφcαr −

.
φsαr +

.
ψ(cθsφcαr+sθsαr)

Aωrz =
.
ψcθcφ −

.
θsφ +

.
αr

(18)

The above kinematic analyses determine parameters that are important in dynamic
modeling, i.e., the velocity

.
rO,

.
rA as well as the angular velocity Dωp, Sωs and Aωr.

3.3. Generalized Forces

The equations of motion of the amphibious spherical robot are derived based on force
analyses when the robot is navigating on the water, as shown in Figure 6. The coordinate
frame O-XYZ is set with its origin located at the center of the spherical shell O and its Y
axis pointing outward the paper.

 

Figure 6. Force analysis of the amphibious spherical robot.

Forces exerted on the spherical shell are mainly due to interactions between the fluid
and the spherical shell. It includes the gravity of the spherical shell msg, the buoyancy
Fb, the hydrodynamic force Fhyd, the resultant force exerted on all fins Ft f as well as their
corresponding torques. Fhyd consists of two main components, i.e., the frictional resistance
R f and the pressure resistance Rpv. The forces exerted on the IDU platform and the rotator
are simply their gravities, mpg and mrg, respectively. Two input torques τl and τr are
generated from the rolling motion motor and the spinning motion motor.

The buoyancy Fb, the frictional resistance R f , the pressure resistance Rpv and the
resultant force exerted on all fins Ft f are described in detail in the following.
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(a) Buoyancy

The buoyancy exerted on the spherical shell equals the gravity of the water which
has the same volume as the immerged part of the spherical shell. If we set the generalized
coordinate z = 0 and let H0 represents the height from the bottom of the spherical shell
to the surface of water when the robot is in static equilibrium on the water, then the
buoyancy is

Fb = ρwgπ
(

R(H0 − z)2 − (H0 − z)3/3
)

, (19)

where ρw is the density of water, g is the gravitational acceleration. The center of buoyancy
lies vertically below the center of sphere, its z coordinate is

zb = z − 3(H0 − z − 2R)2

4(H0 − z − 3R)
. (20)

(b) Frictional Resistance

In contrast to the pure rolling motion on the ground, the amphibious spherical robot
slides relative to the fluid surface when rolling on the water, as a consequence of poor
frictional condition at the contact region. The frictional resistance between the spherical
shell and the fluid can be derived from the theory adapted to a ship [28], assuming that it is
equal to the frictional resistance on a flat plate that is equivalent to the immerged spherical
shell. It should be noted that the direction of the frictional resistance on the spherical shell
is the same as the robot’s moving direction, instead of being in the opposite direction in the
case of a ship. As a result, the frictional resistance acts as propulsion for the amphibious
spherical robot.

The frictional resistance exerted on the spherical shell R f can be written as

R f =
(

Cf + ΔCf

)
·1
2

ρwV2
equSw, (21)

where Cf is the frictional resistance coefficient of an equivalent flat plate corresponding to
the spherical shell; ΔCf is the roughness coefficient, determined by the roughness of the
spherical shell in contact with the water; Vequ is the equivalent velocity of the robot relative
to the water. Sw is the wetted surface area, which can be written as

Sw =
∫ H0

0
2π
√

R2 − (h − R)2·
√√√√1 +

(h − R)2

R2 − (h − R)2 dh = 2πRH0. (22)

The frictional resistance coefficient is determined by the Reynolds number Re, namely,

Re =
Vequ·Lwl

ν
, (23)

where ν is the kinematic viscosity of water; Lwl represents the waterline length of the
spherical shell,

Lwl = 2 ×
√

2RH0 − H2
0 . (24)

An estimated value of Re for the amphibious spherical robot described in this paper
is about 1.45 × 105 given that Vequ = 0.5 m/s, Lwl = 0.33 m, the kinematic viscosity
ν = 1.139× 10−6 m2/s, and the temperature of the water is 15 ◦C. This Re value is less than
the critical Reynolds number of a flat plate, which is approximately 1.0 × 106. Therefore,
the water flow relative to the spherical shell can be presumed as laminar flow, which is
characterized by smooth, constant fluid motion. The frictional resistance coefficient Cf is
then given as [29]

Cf = 1.328Re−
1
2 . (25)
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As the outside surface of the spherical shell is smooth, the roughness of the spherical
shell barely contributes to the total resistance, so the roughness coefficient ΔCf is set as
zero in the calculation.

Solving Equations (21)–(25), we have

R f = 1.328π

√
νV3

equ

Lwl
ρwRH0. (26)

Using Equation (26), we can obtain a roughly estimate of the frictional resistance of
the spherical shell in terms of its specifications. To get an accurate value of the frictional
resistance, experiment or Computational fluid dynamics (CFD) methods are necessary,
which, however, are not the emphasis here.

(c) Pressure Resistance

The hydrodynamic force exerted on the spherical shell consists of the frictional resis-
tance and the pressure resistance. The pressure resistance is due to the decrease of pressure
between the front of the spherical shell and its rear. It is difficult to separate the frictional
resistance and pressure resistance theoretically. However, researchers have carried out
CFD simulations and experiments to measure the resultant of those two resistances [30,31].
So, it will be possible to evaluate the pressure resistance approximately by subtracting the
frictional resistance from the resultant resistance in a somewhat simple way.

The hydrodynamic force exerted on the spherical shell then can be presented in the
O-XYZ frame as OFhyd = (FhX , FhY, FhZ), its corresponding torque relative to the center of
sphere is Oτhyd = (τhX , τhY, τhZ).

(d) Resultant Force Exerted on the Fins

According to Healey et al. [32], when a fin moves relative to the water, a drag force
and a lift force are exerted on the fin. The drag force D is in line with the inlet water,
whose velocity is f Vw, and the lift force L is perpendicular to the inlet water. They can be
calculated as follows [32]

L =
1
2

ρw
f V2

wS f CLmax sin(2αe), (27)

D =
1
2

ρw
f V2

wS f CDmax(1 − cos(2αe)), (28)

where S f is the cross-section area of the fin submerged in the water; the angle of attack αe
is defined as the angle between the inflow water’s velocity and the cross-section plane of
the fin. The maximum lift coefficient CLmax is determined by the shape of the fin. CDmax is
the maximum drag coefficient. Both these two coefficients can be acquired by experiments.

The components of the drag force and the lift force projected in the horizontal direction
and vertical direction can be calculated as:

FiX = −L sin(ϕ + αe) + D cos(ϕ + αe), (29)

FiZ = L cos(ϕ + αe) + D sin(ϕ + αe), (30)

where FiX denotes the components of the ith fin in the X direction, FiZ denotes the compo-
nents of the ith fin in the Z direction, ϕ is the phase angle of the fin in its rotation cycle.

The resultant force exerted on all those fins submerged in the water is the sum of forces
exerted on each fin, and it can be presented in the O-XYZ frame as OFt f =

(
Ff X , Ff Y, Ff Z

)
;

its corresponding torque relative to the center of sphere is Oτt f =
(

τf X , τf Y, τf Z

)
.

After determining all the applied forces upon the spherical robot, it is necessary to
calculate the generalized force due to nonconservative forces before we obtain the equations
of motion. This will be accomplished by the principle of virtual work. The virtual work δWj
corresponding to one generalized coordinate can be calculate by multiplying the applied
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forces with the virtual displacement. The generalized forces can be obtained by dividing
the virtual work by its corresponding generalized coordinate, that is,

Qj = δWj/δηj. (31)

3.4. Equations of Motion

The equations of the spherical robot’s motion when it navigates on the surface of water
are deduced by Lagrange’s methods. When evaluating the forces exerted on the robot’s
components, forces that can be obtained from a potential function are conservative, and
should be formulated into the potential energy. Forces associated with energy dissipation
are nonconservative and should be formulated into the generalized forces. First, we need
to construct the Lagrangian by calculating the kinetic energy and the potential energy of
those three components of the robot.

The kinetic energy of the spherical shell is the sum of the energy due to the translational
motion of its center of mass and the energy due to rotation about the center of mass, that is,

Ts =
1
2

ms

( .
x2

+
.
y2

+
.
z2
)
+

1
2

(
IsXX

Sωsx
2 + IsYY

Sωsy
2 + IsZZ

Sωsz
2
)

, (32)

where IsXX , IsYY and IsZZ are moments of inertia of the spherical shell about its three axes
of body frame OS-XSYSZS, respectively. As the spherical shell is symmetrical, those three
axes are its principle axes. The total number of fins attached to the spherical shell is 2n
with n fins on each hemisphere. Each of those attached fins can be reckoned as with mass
m f and radius of gyration R/2 approximately, so IsXX , IsYY and IsZZ can be written as

IsXX =
2
3

msR2 − 5
6

nm f R2, IsYY =
2
3

msR2 − 5
6

nm f R2, IsZZ =
2
3

msR2 − 5
6

nm f R2.

The gravity and the buoyancy on the spherical shell are related only to the generalized
coordinates so that they are conservative, then the potential energy of the spherical shell is

Vs = msgz + ρwgπ
(
−R(H0 − z)3/3 + (H0 − z)4/12

)
. (33)

The first term in the right-hand side of the above equation is potential energy cor-
responding to the gravity, and the second term is the potential energy arising from
the buoyancy.

Similarly, the kinetic energy of the IDU platform is

Tp =
1
2

mp

( .
x2

P +
.
y2

P +
.
z2

P

)
+

1
2

(
IpXX

Dωpx
2 + IpYY

Dωpy
2 + IpZZ

Dωpz
2
)

, (34)

where IpXX, IpYY and IpZZ are moments of inertia of the IDU platform about its three
axes of body frame OD-XDYDZD, respectively. They can be obtained by referring to the
cuboid model

IpXX =
1
12

mp

(
4R2 + l2

p

)
, IpYY =

1
6

mpl2
p, IpZZ =

1
12

mp

(
4R2 + l2

p

)
.

The potential energy of the IDU platform is

Vp = mpgzP. (35)

The kinetic energy of the rotator is

Tr =
1
2

mr

( .
x2

A +
.
y2

A +
.
z2

A

)
+

1
2

(
IrXX

Aωrx
2 + IrYY

Aωry
2 + IrZZ

Aωrz
2
)

, (36)
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where IrXX , IrYY and IrZZ are moments of inertia of the rotator about its three axes of body
frame A-XAYAZA, respectively. As the mass of the rotator is assumed to be distributed on
the four side faces of the cube, each of which is a square with length lr, so these moments
of inertia are

IrXX =
1
4

mrl2
r , IrYY =

1
4

mrl2
r , IrZZ =

1
3

mrl2
r .

The potential energy of the rotator is

Vr = mrgzA. (37)

After determining all those kinetic energies and potential energies associated with the
robot’s three components, it is ready to construct the Lagrangian of the robot system

L = Ts − Vs + Tp − Vp + Tr − Vr. (38)

As those eight generalized coordinates describing the states of the robot are indepen-
dent of each other, the equations of motion of the robot system can be obtained from the
Lagrange’s equations, that is,

d
dt

(
∂L
∂

.
η j

)
+

∂Ψ
∂

.
η j

− ∂L
∂ηj

= Qj, (39)

where ηj denotes one of the generalized coordinates, Qj denotes its corresponding gener-
alized force due to the nonconservative forces and Ψ denotes the viscous damping effect
between components of the robot.

The full dynamic equations are lengthy and will not be listed here for simplicity.
Instead, its simplifications are presented in the following section in order to reveal its
dynamic characteristics.

3.5. Model Simplification

The dynamic equations indicate that the amphibious robot is a highly coupled nonlin-
ear system, which makes it difficult to analyze and control. To make the dynamic model
practicable, a method for decoupling is applied, by separating the model into two basic
motion modes, i.e., the rolling motion mode and the spinning motion mode.

The dynamic equations, in its original form, represent a highly underactuated system
with two inputs and eight state variables. The system has one input τl and three state
variables (x, θ, αs) in the basic rolling motion mode, while it bears one input τr and two
state variables (ψ, αr) in the spinning motion mode; in a combined motion mode of these
two, three extra variables (y, z, φ) exist. The focus here is on the linear motion of the robot
when navigating on the water. In this case, the dynamic model can be described by just
three generalized coordinates η

′
= (x, θ, αs) when the others are set to zero. The Lagrangian

then can be written as

L = 1
2
(
ms + mp + mr

) .
x2

+ 1
2
(

IpYY + IrYY + mrl2
OA
) .
θ

2
+ mrglOAcθ

−mrlOAcθ
.
x

.
θ + 1

2 IsYY

( .
θ +

.
αs

)2
+ 1

12 ρwgπ(4R − H0)H3
0

. (40)

Substituting the above Lagrangian into the Lagrange’s equations, and let Ψ = ζ
.
α

2
s /2

be the viscous damping effect between the spherical shell and the IDU platform where
ζ denotes viscous damping coefficient, we obtain the simplified equations of motion of
linear motion,

M(η)
..
η+ C(η)

.
η+ K(η) = τ, (41)
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where

M(η) =

⎡
⎣ ms + mp + mr −mrglOAcθ 0

−mrglOAcθ IpYY + IrYY + IsYY + mrl2
OA IsYY

0 IsYY IsYY

⎤
⎦, C(η) =

⎡
⎢⎣ 0 mrlOAsθ

.
θ 0

0 0 0
0 0 ζ

⎤
⎥⎦,

K(η) =

⎡
⎣ 0

mrlOAgsθ
0

⎤
⎦, τ =

⎡
⎣ FhX + Ff X

τhY + τf Y
τhY + τf Y + τl

⎤
⎦.

The generalized forces τ are determined by Equation (31). The elements of τ are
corresponding to the generalized coordinates x, θ and αs, respectively, where FhX , consisting
of the frictional resistance and the pressure resistance, is the hydrodynamic force exerted
on the spherical shell, Ff X is the resultant force exerted on the fins.

It can be concluded from Equation (41) that attaching assistant fins to the outer
spherical shell will increase the propulsion force of the amphibious spherical robot. As a
result, it will increase the acceleration of the robot, especially in the accelerating process
when the robot starts from stationary. This can be validated by experiments presented in
the following section. Since the magnitude of the propulsion force induced by one assistant
fin correlate positively to the cross-section area of the fin, and the overall effect of all the
fins are the summation of propulsion forces exerted on those fins immersed into the water,
it will be helpful to use larger fins or more fins in order to improve the performance of the
amphibious spherical robot.

It is noteworthy that the forces exerted on the spherical shell by the water are estimated
by empirical equations which significantly depends on their corresponding coefficients.
Determining the accurate values of these coefficients is important in order to obtain a
precise model for the amphibious spherical robot. However, this is not the emphasis here
so it is put off for future research.

4. Simulation and Experiments

4.1. Simulation

Simulations were carried out in MATLAB in order to reveal characteristics of the
dynamic model. The zero-state response under a prescribed input of the rolling motion
motor is provided. Parameters used in the simulation are ms = 1.6 kg, mp = 2 kg,
mr = 2.2 kg, ζ = 0.02, lOA = 0.08 m, IsYY = 0.0308 kg·m2, IpYY = 0.00053 kg·m2,
IrYY = 0.0045 kg·m2, τl = 0.4 Nm, τr = 0 Nm, CLmax = 0.92, CDmax = 1.12, respectively.
The frictional resistance exerted on the spherical shell is R f = 0.04 N when the equivalent
velocity is set as Vequ = 0.4 m/s.

The time-varying states of those three generalized coordinates are shown in Figure 7.
The simulation results show that the linear velocity of the robot

.
x, the angle of the

IDU platform θ and the angular velocity of the spherical shell
.
αs proceed to a prescribed

value in an oscillation manner as time increases, while the angular velocity of the IDU
platform

.
θ oscillates and then attenuates to zero; the travel distance x increases in a nearly

linear manner, when ζ = 0.02. If ζ = 0, oscillation will be magnified for
.
x, θ,

.
θ and

.
αs, and

θ, αs,
.
αs will have a large amplitude while x keeps the same.

It can be concluded from the simulation results that a steady linear speed can be
achieved by increasing the viscous damping between the spherical shell and the IDU
platform; moreover, a less oscillating IDU platform can be achieved at the same time, which
is favorable in terms of the performance of sensors and cameras mounted on the IDU.

Simulations were carried out to evaluate the effects of two parameters on the robot’s
steady-state velocity when operating on the water, i.e., mr and ΔCf , the adjustable rotator
mass and the roughness coefficient of the spherical shell. Figure 8a shows the velocity
curve when the rotator mass is set as 0.8mr, mr and 1.2mr, respectively, while Figure 8b
shows the velocity curve when the roughness coefficient is set as 0R f , 0.5R f and 1.5R f ,

74



Appl. Sci. 2021, 11, 3739

respectively, with mr representing the nominal mass of the rotator and R f the nominal
frictional resistance.

The results indicate that, the reduction of the rotator mass to 0.8mr results in lower
steady-state velocity of the robot, while the increase of the rotator mass has no apparent
effect. It is observed that, the spherical shell floats upward when the rotator mass is
reduced, leading to lower area of fins immersed under water, thereby reducing the forces
exerted on the fins, affecting the steady-state velocity.

On the other hand, the spherical shell dives downward when the rotator mass is
increased, which leads to larger area of fins immersed under water; however, this effect
is found to be less significant, since the water line is approaching the great circle of the
spherical shell that parallels to the surface of water. The wetted surface area increases at
the same time, leading to increased hydrodynamic forces because it is positively correlated
to the wetted surface area.

As a matter of fact, the current value of mr was chosen such that it roughly maximizes
the average area of the fin under water, under the condition that the mass of the robot is
kept reasonably low, which is the cause of the behavior observed here.

As for the roughness coefficient, it is found that it has no apparent effect, because the
proportion of roughness in the hydrodynamic forces is low.

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 7. Time-varying states of the generalized coordinates. (a) Travel distance of the robot; (b) Speed of the robot; (c)
Angle of the IDU platform; (d) Angular velocity of the IDU platform; (e) Angle of the spherical shell; (f) Angular velocity of
the spherical shell.
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(a) (b) 

Figure 8. The velocity curve of the robot under different parameters. (a) Different rotator masses, (b) Different roughness
coefficients of the spherical shell.

4.2. Amphibious Spherical Robot Prototype

Following the design considerations, an amphibious spherical robot prototype was
constructed, as shown in Figure 9. An RF remote controller (Futaba T9CHP) was used to
handle the spherical robot remotely.

 

Figure 9. Amphibious spherical robot prototype.

Some specifications of the amphibious spherical robot prototype are given in Table 1.

Table 1. Specifications of the amphibious spherical robot.

Items Parameters

Diameter 350 mm
Weight 5.8 kg

Power supply voltage 24 V
Duration time 1 h

Speed (on ground) 0.6 m/s
Speed (on the water) 0.4 m/s(16 fins)

Control signal transmitting distance 500 m
Camera signal transmitting distance 60 m

4.3. Movement Experiments

(a) Movement on Land

Curvilinear motion experiments of the robot were carried out in order to validate its
on-land motion capacity, especially its turning capacity without stepping over the fins,
as shown in Figure 10. The subgraphs were extracted from a recorded video. The time
interval between adjacent subgraphs is 1 s. The robot’s trajectory is shown in the subgraph
numbered 1. During the curvilinear motion, the robot steers by spinning the rotator. It was
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found that, upon limiting the curvature of the trajectory below a threshold, the robot can
avoid stepping over the fins when moving on the land.

 

Figure 10. Curvilinear motion on land.

(b) Movement on the Water

Linear motion experiments of the amphibious spherical robot on the water were
carried out in order to validate the effectiveness of the assistant fins, as shown in Figure 11.
Sixteen assistant fins, eight on each hemisphere shell, were attached to the outside surface
of the spherical shell. The amphibious spherical robot with fins was then placed onto the
surface of static water out of doors. The rolling motion motor was started at t = 0 and
the robot’s subsequent track of motion was recorded by a video camera. After that, all the
assistant fins were removed from the spherical shell, transforming the amphibious spherical
robot to a traditional spherical robot. The linear motion experiment was repeated and the
track of motion of the robot without fins was also recorded. Comparison of locomotion
performances of those two cases are made based on those video records.

  
(a) (b) 

Figure 11. Movement on the water. (a) Fins attached; (b) Fins removed.

The velocities of the spherical robot with fins and without fins during accelerating
process are shown in Figure 12. The results show that the spherical robot with fins speeds
up more rapidly than that without fins when accelerating. It takes about 5 s for the spherical
robot with fins to reach the velocity of 0.4 m/s, while it takes about 12 s for that without
fins to reach the same velocity. The final steady velocity of the spherical robot with fins
under constant rolling motion motor outputs, however, is only slightly higher than that
without fins. The maximum on-water velocity that this amphibious spherical robot can
reach is about 0.4 m/s, which is about 70% of the on-land locomotion velocity.
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Figure 12. Velocities of the spherical robot with fins and without fins.

5. Conclusions

A novel amphibious spherical robot is here proposed for field applications. This
amphibious spherical robot’s motion is the composition of the rolling motion based on
unbalancing a ballast and the spinning motion based on the principle of conservation of
angular momentum. The architecture of the robot is proposed, along with its kinematics
and dynamics analyses, which laid out the foundation of manipulation and control of the
robot. Moreover, assistant fins are attached on the outside of the spherical shell to increase
the propulsion force for the rolling motion, overcoming the disadvantage that a spherical
shell slides easily on the surface of water. Results show that the robot with fins speeds up
faster than that without fins. With the advantages of high adaptability and robustness, this
amphibious spherical robot is suitable for applications in unstructured wild environments.

Future tasks are to carry out experiments to determine coefficients in the empirical
equations, so as to obtain a more precise mathematic model for the robot.
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Featured Application: Control of legged-and-climber robots with at least four legs, under unfore-

seen failures in one or more legs.

Abstract: In this paper, we present a fully original control architecture for legged-and-climber robots
that is level-based, hierarchical, and centralized. The architecture gives the robots the ability to
perform self-reconfiguration after unforeseen leg failures, because it can control this kind of robot
with different numbers of legs. The results show the capability of performing movements in any
direction and inclination planes. The components and functionalities of the developed control
architecture for these robots are described, and, the architecture’s performance is tested on the
ROMHEX robot.

Keywords: behavior-based; climber robot; control; control architecture; fault-tolerant; legged robot;
optimization

1. Introduction

Due to the increased size and complexity of civil construction, using climbing robots
in infrastructure inspection is becoming increasingly relevant. Regular maintenance and
surveillance of large complexes are extremely important to guarantee their life-cycle.
The European consortium SPARC (euRobotics) carried out an analysis, revealing in the
“European Robotics & AI workshop Applied to Inspection and Maintenance” report [1]
that in the coming years the task of inspection will be increasingly important, and robots
will play the main role in maintenance, inspection and dismantling.

Inspection is a particularly structured repetitive task, that requires permanent atten-
tion during the operation, and in many cases, it involves placing the human operator
in risk situations. That is why robotics is revealed as a technology of direct application.
The number of service robots, mainly driven by drones, has increased by 25% in recent
years, and the number of autonomous vehicles in a non-manufacturing environment, has
increased by 51% in one year [2].

Many solutions are based on remote visual inspection, but this is not valid for many
industrial structures. We may not have direct visual access to the areas to be inspected,
and in other cases it is not possible to carry a flying drone because of the narrowness or
typology of the environment. In addition, an inspection usually requires much more than
seeing. Non-destructive techniques require contact or proximity to the surface that is not
possible to achieve while flying. Climbing robots have become increasingly attractive for
effective infrastructure inspection due to their ability to overcome these limitations.

A crucial part of these robots is their control. Typically, robots are controlled based
on control architectures. The lack of existing control architectures for legged-and-climber
robots drives a need to design a new architecture. The state-of-the-art of control architec-
tures for this kind of robot reveal that much work remains, because although plenty of
legged-and-climber robots are structurally defined, they lack a defined architecture. Only a
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few control architectures are found for climber robots. Shen et al. [3] proposed a climber
robot for oil tank inspection, whose control architecture only covers the kinematic control
of the robot. Several control architectures for legged robots can be found easily, such as [4]
or [5], which describe the motion controller of two-legged robots. However, these kinds of
legged robots are unable to climb due to their bipedal disposal. Robots with more than
two legs, like [6], for example, have a control system that only covers legs management
and exclude the high-level control.

A control architecture specifies the organization guidelines of a robot’s behavior, estab-
lishes the action and movements that the robot must carry out to achieve a goal or a set of
goals, according to the robot state. It has the main purpose of establishing a way to organize
the system to maintain defined roles, modularize the system components and make the
system as fault-tolerant as possible, always trying to keep the system under control over
as many situations as possible. The main characteristics of the control architectures are
the capacity to (a) face multiple goals simultaneously, (b) integrate data from different
sensors, (c) be robust against component failures, (d) be adaptive to new environments,
(e) extend and modify its content easily, (f) make its own decisions according to the robot
state, and (g) modify the surroundings properly.

Some important definitions should be declared in a control architecture: (a) an agent
is a computer system that is capable of autonomous action in its environment to achieve
its delegated objectives [7,8], (b) a level is composed of an agent or a group of agents that
have the same importance from a determined point of view, (c) hierarchy is how agents of
higher levels have a kind of control over the agents of lower levels, (d) a centralized control
is characterized by coordinated conduct of the agents, whose decisions depend directly
on the state of the other agents, (e) a decentralized control is characterized by freedom in
the agent decisions, without directly considering the state of the rest of the agents, and (f)
a behavior-based control is a way in which agents are delegated with the main task to
achieve a goal through some instructions. Then, it is possible to conclude that a control
architecture may be understood as a multi-agent system where the communication rules
and protocols are well-defined.

This paper’s objective is to design an organic and hierarchical control that allows the
safe movement of the legs. Moreover, the control must be generic for a legged robot with
any number of legs. In this paper, we test the performance of the control architecture over
the legged-and-climber robot ROMHEX. This robot has ben modified; the most remarkable
is the change of the initial position of each leg that the robot should adopt to maximize
the efficiency of the walking pattern. This maximization has been obtained generically,
as explained in Section 3.1. Thus, the initial position directly influences the beginning of
the gait, and it is also used as the default position when the robot needs to reconfigure
while walking.

We propose a control architecture that fulfills the following requirements: (a) generic
for all legged robots, independent of the number of legs, distribution of legs in the body,
or the number of joints per leg, (b) agent-based, (c) hierarchical (that is, agents of higher
levels should have the control of lower-level agents, and in this way, first agents may
disable second agents), and (d) agents of the same level must synchronize their behaviors
using synchronization mechanisms.

This paper is organized as follows: In Section 2, we present an overview of the state
of the art of control architectures. We describe how different architectures are organized
and the levels they use. In Section 3, we describe the hexapod robot used in the tests.
Furthermore, we include the developed optimization of the legs’ position in the body.
In Section 4, we describe the developed control architecture, and we explain its levels,
hierarchy and agents. In Section 5, we discuss the results obtained during the tests. Lastly,
in Section 6, we detail the obtained conclusions from the results.
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2. Related Work

Control architectures are found within autonomous machines, especially in spacecraft.
The increasing development of these vehicles has generated generic architectures that may
be used in any system. Within the state of the art, we can find Contextual Management
of Tasks and Instrumentation (CMTI), which is a mixed architecture between deliberative
and reactive architectures [9], originally conceived for an autonomous underwater vehicle
(AUV). It is organized into three layers: global supervisory control, local supervisory
control and low-level control. CMTI is a well-defined and robust architecture but laborious
to implement in short projects. Based on CMTI, Contextual Task Management Architec-
ture (COTAMA) is a control software architecture layered into two levels [10]: decisional
level and executive level. The decisional level is in charge of the mission monitoring and
decision making according to robot context. The executive level applies these decisions
while managing all real-time aspects such as instrumentation conflicts or tasks deadlines.
It contemplates the identification of faults to correct them [11]. COTAMA improves the
robustness of CMTI while it enlarges the possible applications; however, like CMTI, it is
very laborious to implement. Remote Agent architecture (RA) is an autonomous control
system capable of closed-loop commanding of spacecraft and other complex systems [12].
It integrates three layers of functionality: a constraint-based planner/scheduler, a reactive
executive, and a model identification and recovery system. RA is very useful for spacecraft;
however, its usefulness is limited to tasks previously defined in detail. Intelligent Dis-
tributed Execution Architecture (IDEA) was created to duplicate RA architecture within a
unified agent framework where all the layers have the same structure [12]. IDEA improves
the coordination of RA; however, the drawbacks are similar.

Laboratory for Analysis and Architecture of Systems (LAAS) architecture is presented
in [13] as an architecture for reflexive autonomous vehicle control. It decomposes the robot
software into three main levels, having different temporal constraints and manipulating
different data representations. LAAS is thought to improve robustness; however, it is
poorly-defined and very open to the developer. Coupled Layer Architecture for Robotic
Autonomy (CLARAty) is designed for improving the modularity of system software while
more tightly coupling the interaction of autonomy controls [14]. According to the CLARAty
developers, typical robot and autonomy architectures comprise three levels: functional,
executive and planner. To correct the shortfalls in the three-level architecture, they propose
a two-tiered architecture, in which the executive and planner layers are combined. As well
as LAAS, CLARAty is very open to the user because it only describes the two main levels.
Cooperative Intelligent Real-Time Control Architecture (CIRCA) was designed in [15] to
guarantee the control-level goals, but not necessarily the task-level goals. They divide
the architecture into three main parts: the real-time subsystem (RTS) that is responsible
for implementing the responses, the AI subsystem (AIS) that decomposes task-level goals
into plans consisting of several phases, and the scheduler. CIRCA has the limitations that
it only works for well-known and defined problems. Open Robot Controller Computer
Aided Design (ORCCAD) architecture is an open architecture where qualified users have
access to every control level: the application layer is accessed to by the end-user of the
system, the control layer is programmed by an automatic control expert, and the lowest one,
the system layer, is overseen by a system engineer [16]. ORCCAD has the problem that the
system’s complexity may increase exponentially with new fault tolerance techniques, while
the organization structure may become untenable. The described architectures are generic
for any system; however, their application in legged-and-climber robots may be laborious
and complex. Thus, the decision to develope a new architecture has been considered a
better option than augmenting an existing one.

Control leaders in multiple-legged robots, such as Boston Dynamics, hide their con-
trol architectures while other researcher groups show their work. For example, in [17],
Jakimovski et al. present an Organic Self-Configuration and Adapting Robot (OSCAR),
a hexapod robot that is described through the Organic Robot Control Architecture (ORCA).
ORCA [18] proposes creating an entire system out of subsystems, where each of the subsys-
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tems is designed for a determined task [19]. More complex subsystems can be generated
by combining and cascading smaller subsystems [20]. Each subsystem may be supervised
by another subsystem that evaluates its performance and may even change its behavior
to optimize the performance of the whole system. As another example, in [21], Pack et al.
present Robotic Inspector (ROBIN), a robot designed for climbing infrastructures that
uses a behavior-based control architecture arbitration by subsumption [22]. This robot
is composed of two vacuum fixtures, so its architecture is completely dependant on the
performance of both devices. Lastly, in [23], Ronnau et al. describe LAURON V, a legged
robot controlled by its own control architecture, which is a modular and behavior-based
design approach. It subdivides the system into understandable hierarchical layers and
small individual behaviors. The layers are the hardware architecture, the hardware abstrac-
tion layer, and the behavior-based control system. Finally, Fankhauser et al. present Free
Gait in [24] a software framework for the task-oriented control of legged robots, which
they check over ANYmal [25]. Free Gait consists of a whole-body abstraction layer and
several tools designed to interface higher-level motion goals with the lower-level tracking
and stabilizing controllers.

Architectures for legged robots exist, but none exist for legged-and-climber robots.
Furthermore, these architectures are usually conceived for a defined and not modifiable
number of legs. Leg problems are possible, especially in climber robots, due to the harsh
conditions they are involved in. OSCAR robots contemplate the situation of leg amputation;
however, the visible face of its architecture does not allow to define clearly the behavior of
a new robot.

3. The Climber Hexapod Robot ROMHEX

The ROMHEX robot is a commercial platform called xyzrobot bolide crawler Y-01 with
some modifications. The robot is a hexapod with three degrees of freedom in each leg.
The reference systems of each leg according to the robot body are referred to as shown in
Figure 1a, while the axes of the leg joints are illustrated in Figure 1b. Mainly, the robot is
composed of an electronic board called MCU board Y-01 and motors called xyzrobot smart
servo A1-16.

The development kit Intel Euclid has been added to the robot through a plastic piece
that locates it in a proper position to take advantage of all its features. This device provides
a motion camera (not used, so external obstacles are not considered), a computer processing
unit and a depth camera. Furthermore, suction cups have been added to the legs extremes
in order to hold on to any surface and allow the robot to climb. Every suction cup is
equipped with its own centrifugal impeller and motor that creates and maintains the
vacuum even on porous surfaces, extracting the internal air [26]. The complete griping
system consists of (a) an electronic circuit inside the cup that sensorizes the system and
measures the pressure and the distance to the support surface, (b) a turbine motor with its
variator, (c) an electronic board that acts as a link between sensorization circuits and the
control system of the suction cups and the microcontroller, and (d) a mechanical system
with three rotary degrees of freedom to properly align with the surface.

Lastly, to increase the work-space of the legs, the configuration of the motors has been
modified, changing the position of the second motor. In this way, the center of mass is
lowered, increasing the robot stability.

A critical aspect of controlling the robot while climbing is to ensure the normal and
shear forces at the suction cup do not exceed certain limits during movement, creating the
risk of loss of grip [27]. The hexapod robot is a hyper-static system whose elastic model is
too complex to be included in a control loop. Given the hyperstatic nature of the problem,
a simplified dynamic model is calculated in [28] and included in the control.

Climber robots are deployed in dangerous situations, where the power consumption
must be optimized to guarantee the finalization of the task. Possible solutions are found
in weight reduction, calculation of the best path, or optimization of the walking patterns.
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The leg position is a critical aspect that determines the distance traveled in a given period
of time. For this reason, it is highly desired to optimize the robot’s leg positions.

(a)

(b)

Figure 1. Joint axis and reference systems of the legs. (a) ROMHEX with the reference system of the
body and legs, and leg identifier. (b) Axis of ROMHEX joints.

3.1. Optimization of the Leg Positions

Making use of genetic algorithms (in this case, MatLab’s ga function), it is possible
to find the best position of the robot’s legs’ initial configuration according to a criterion.
The algorithm uses a combination of the distance the robot can walk and the forces pro-
duced at the legs as a cost function. Because the objective is to obtain the optimal initial
position of the legs to walk, the “genes” or decision variables are the initial positions of
the legs (X and Y for each leg and a global Z with respect to the center of the robot, this is,
13 positions in total).

An analysis has been carried out on the center of mass and how its position affects
the forces produced in the different legs to improve the results. The objective of the cost
function is to obtain a genetic individual (legs position configuration) that achieves the
greatest distance while walking with a given number of movements following a predefined
pattern, keeping the robot safe. It considers the distance that the robot moves, as well as the
maximum permissible forces in the legs, as indicated in (1), where C is the cost function, D
is the distance traveled, and F is a matrix where each row corresponds to a moment in the
execution of the walking movement and each element of the row corresponds to each leg.
The cost function is negative because it is required to minimize the value. Both f (x) and
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D are positive values, being a single S calculated in (2), where S represents the vector of
forces applied over a leg, and S(2) is the force applied over the z axis.

C = −min( f (max(F)), f (min(F))) · D (1)

S = norm(S) · sign(S(2)) (2)

Function f (x) is distance scaling and piecewise defined, as shown in Figure 2. The ob-
jective of scaling the distance obtained by the factor produced by the function is to penalize
the individuals that produce the highest forces, even if they manage to move a greater
distance. The function takes into account the sign on the z axis, to differentiate the danger-
ous forces. Both signs are considered to eliminate individuals that make the suction cups
detach and reduce extreme forces on a single leg to reduce unequal wearing.

Figure 2. Distance scaling function.

To obtain the value of dist, the developed walking movement has been simulated in
the following way: First, it is checked that the individual is valid, this is, (a) the position of
all the legs is reachable with the inverse kinematics, (b) the position of the motors is within
the specified ranges, and (c) there is no collision between legs. Second, the cost function
value is obtained.

The results of the genetic algorithm are an increase of 107% in the distance traveled
(from 355 mm to 735 mm) and a decrease of 10% in the force. Figure 3 shows a repre-
sentation of the optimized version over the previous one. As illustrated in that picture,
the position of the legs has undergone a slight variation to achieve an initial position
that optimizes the evaluation criteria. Table 1 denotes the joint initial position increment
between before and after the optimization, with the references in the motor encoder origins.
Furthermore, both tables show the end-effector positions (feet) when the motors are in the
given initial position.
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Figure 3. Comparison between the position of the legs before (gray) and after (red) the optimization
through the genetic algorithm. Positions specified in Table 1.

Table 1. Variation of the position of each joint and suction cup after the optimization.

Leg
Joint Angles (rad) Feet Position (mm)

q0 q1 q2 x y z

1 −0.1 −0.13 0.33 28 6 −3
2 −0.1 −0.18 0.49 22 35 −3
3 0.36 −0.36 −1.15 79 −129 −3
4 −0.66 0.15 −0.75 −17 127 −3
5 −0.11 −0.08 0.19 −21 −11 −3
6 0.11 −0.19 0.49 36 −11 −3

4. Control Architecture

A new control architecture that considers safety under unforeseen circumstances is
needed to guide legged-and-climber robots. The proposed control architecture is charac-
terized as a behavior-based control, hierarchical and centralized. As shown in Figure 4,
the architecture is split in the Executive, the Planner and the User Interface. The Planner
is divided into three main levels, which make use of complementary modules located in
the Executive. The architecture includes a User interface, with which the user may control
the behavior of the robot and observe the state of the robot and the legs. Each level of the
Planner has a set of critical and given objectives:

1. Level 1: Corresponds to the nominal and continuous behavior without checking the
safety at any moment. This level is responsible for the body movement in the desired
direction, through the performance of the robot legs.

2. Level 2: Corresponds to behaviors about movements under expected situations,
having considered basic safety issues. It is responsible for determining if a movement
may still be developed.

3. Level 3: Corresponds to the critical safety checks to ensure that the robot is not in a
hazardous situation. This level is vitally important in robots like the one in question
here, where the goal is to allow it to walk safely on the wall and ceiling.

There is a hierarchical relationship between the different levels in that the higher level
is able to disable the lower level. Dependencies occur from top to bottom; in other words,
what happens at the upper level is unknown by lower levels. The agents of the same
level are in a situation of equality, so they need a synchronization mechanism in case two
behaviors are mutually exclusive. A token synchronization has been used to do this: the
agent with the token is the one that can be executed. When it stops executing, it will drop
the token and other behavior will be free to catch it.
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Figure 4. Control architecture.

Each behavior has its own functionalities, inputs, outputs, and implementation features.
Architecture modularity allows developers to add more, increasing control capabilities.

4.1. Level 1: Nominal Movement of the Body
Trajectory Tracking

The objective of this behavior is that the robot center follows a trajectory in terms of
different global positions and orientations, without explicit information about velocities.
Basically, it carries out the inverse kinematics of the robot, where the input is the robot
center trajectory, and the output is the position of the leg extremity. The output is generated
dynamically through a close chain. However, this agent neither checks the stability nor
sends commands if the inverse kinematics can not obtain a required point. Interpolation is
needed if two consecutive poses are too far apart to obtain as many intermediate ones as
needed. In this case, the point is divided into position and orientation, where spherical
linear interpolation (SLERP) [29] is used for the orientation interpolation, to obtain the
maximum precision, while the position interpolation is linearly done.

Because several legs are attached to the ground to move the center of the body in
the world coordinates, the legs will move opposite to the body robot coordinates. When
Pn is the position of the center of the robot, Rn is its orientation, vn is the vector that
describes the position of one of the leg extremities, vn+1 is the vector in the position to
be achieved, (Pn, Rn) denotes the robot pose, and (Pn+1, Rn+1) is the pose to be achieved.
Then, the position of the leg extremity in both references (3) is obtained, while vn+1 is
calculated in (4). For better understanding, Figure 5 shows a comparison of the movement
in the robot’s and world coordinates.

Pn + Rn · vn = Pn+1 + Rn+1 · vn+1 (3)

vn+1 = (Rn+1)
t · (Pn − Pn+1 + Rn · vn) (4)
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(a) (b) (c)

Figure 5. Comparison of the movement in the robot’s and world coordinates. (a) Representation
of the reference change of the point Q between (Pn, Rn) and (Pn+1, Rn+1), where αk represent the
angle for the rotation matrix Rk. (b) Comparison between the initial (light color) and final position
in global coordinates. (c) Comparison between the initial (light color) and final position in the
robot’s coordinates.

4.2. Level 2: Expected Situations and Leg Allocation
4.2.1. Leg Safety

The objective of this behavior is to predict when a leg will find an instability or
blocking situation and move it to avoid this state. It takes as input the current pose of
each leg and the current motion tendency, among others. The main output is which leg
is required to relocate to where to ensure the robot’s stability; that is, move a leg to a
new position.

To implement this behavior, a metric about how urgently each leg should be relocated
is obtained, in this case: how close the joints are to their limits, from 0.6 rad (not urgent)
to 0 rad (critical); and how close each foot is to the center of mass (COM) of the robot,
from 20 cm (not urgent) to 5 cm (critical). Furthermore, it checks that, in the future position,
each leg’s kinematics will allow lifting them in case a reallocation is needed in that state.

Two limits have been set, a motion limit and a danger limit. They represent the limit
within which a leg can move and the limit within which the leg can move without entering
a dangerous situation, respectively. If the robot enters a dangerous situation, the behavior
is blocked until the legs in hazard are reallocated.

Whenever a leg is expected to move, it moves the maximum possible distance without
colliding with other legs in the direction of movement, minimizing the number of move-
ments needed. To move a leg, it must have enough space to move and lift without creating
an unstable situation, considering how the rest of the legs are positioned. For that, the force
model generated in [28] is needed.

During the behavior execution, it is possible to enter in a blocked state, in which there
is no leg to move. In this case, it informs the upper level to take control to return the robot
to a safe state. When this behavior is disabled, the trajectory control is disabled to avoid
hazardous situations. Whenever it is enabled again, it enables the trajectory control to
continue with the previous execution.

4.2.2. Leg Allocation

This behavior is responsible for safely moving all the legs, or a subset of them, to a
given position. The input is the desired position, and the output is a movement of each
leg, in the proper order and moment. The order is defined as a function of the safety in
which the movement may be done (state while a leg is lifted). Leg allocation checks that
the forces of lifting the legs do not produce any hazard and the possibility of reaching the
desired position without colliding with other legs exits.

This behavior can not work at the same time as the “leg safety” behavior due to the
possibility of conflicts. Thus, a timing mechanism of a token is used, because there is no
hierarchy of any kind between them.
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4.3. Level 3: Critical Exceptions and Blocking Situations
4.3.1. Blocking Recovery

This behavior is thought of as an external observer. It is responsible for detecting
when there is a blocking state to unlock it. The input is the system state, and the output is
the position in which the legs should move to solve the blocking state.

The “leg safety” behavior informs when it detects that no legs can move because it
is not possible to lift a leg or move enough in the required direction. When the advice
is received, this behavior blocks the advice emitter to avoid any leg movement during
the reallocation. It asks the “leg allocation” behavior to move all legs to a default safety
position. When this process finishes, it enables the “leg safety” behavior to continue with
the nominal execution.

4.3.2. Critical Exception Handler

This behavior is responsible for ensuring that the robot is not in danger. The input is
the system state with the information from all sensors. The output is the fact of blocking
the motion system, keeping the robot completely still, and informing the user about the
critical error. Then, the user should solve the problem using the graphical user interface to
check forces, leg positions, and other factors.

4.4. Complementary Modules

These modules are needed to make the behaviors work. They include different
geometric calculations and control over the links at a low level.

4.4.1. Robot Center Follower

This module obtains the movement of the robot center. Its input is the position
of the legs, and its output is the position of the robot center in the world coordinates.
To observe how the robot follows the trajectory from an initial state (Pn, Rn) to a target
state (P∗

n+1, R∗
n+1), the real state of the center of the robot (P, R) is calculated in an instant

between tn and tn+1 in absolute coordinates, making use of the relative position vectors of
each of the different legs attached to the ground. uk are the vectors of the relative position
of the leg k-th respecting the robot center in the current time (with reference (P, R)), uk

n are
the vectors of the relative position at the tn time respecting the reference (Pn, Rn), and K
is the number of legs attached to the ground. A system of 3 · K equations is obtained (5),
where the unknown values of P and R are obtained through numeric solvers due to the
non-linearity of the problem. For that, the gradient descent method has been used.

P + Ruk = Pn + Rnuk
n, k = 1, . . ., K (5)

4.4.2. Collision Model

This module describes a simplified collision model with which is possible to calculate
if a leg collides with another leg in a given configuration. The simplification consists of a 2D
model of the ROMHEX robot, where each leg is represented as a linear segment, and each
suction cup is represented as a circle. The module checks if there is a collision of the type
(a) between two circles, (b) between a circle and a segment, or (c) between two segments.

4.4.3. Kinematics Calculation

This module obtains the direct and inverse kinematic of a leg, with the reference
system in the robot center. It is completely dependent on the robot, so this module must be
changed if another robot is used. Using the tests with ROMHEX, we present the forward
and inverse kinematics of this robot, obtaining the algebraic solution.

Following Figure 1, forward kinematics is calculated in (6)–(8), where Acoxa is the
angle between the first motor origin and the femur. Px, Py and Pz denote the position of the
end-effector with respect to the leg coordinate system, Lcoxa, L f emur, and Ltibia denote the
link lengths, while q1, q2 and q3 denote the joint angles. Furthermore, thanks to Figure 1a it
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is possible to obtain the transformation matrix between the body center and each leg origin.
These transformation matrices must be applied over the body and legs reference systems.

Px = Lcoxa · cos(Acoxa + q1) + L f emur · cos(q2) · sin(q1)+

Ltibia · cos(q2 + q3) · sin(q1) (6)

Py = Lcoxa · sin(Acoxa + q1) + L f emur · cos(q2) · cos(q1)+

Ltibia · cos(q2 + q3) · cos(q1) (7)

Pz = Lcoxa,z + L f emur · sin(q2) + Ltibia · sin(q2 + q3) (8)

With respect the inverse kinematic, the solution is found in (9)–(11), where variables
B, A1, etc. are calculated in (12)–(16).

q3 =

{
B − π i f third link up
π − B i f third link down

(9)

q2 =

{
(A1 + A2)− π

2 i f third link up
π
2 − (A1 + A2) i f third link down

(10)

q1 =
Px

Py
− Lcoxa,x

LP + Lcoxa,y
(11)

B = arccos(
HF2 − L2

f emur − L2
tibia

−2 · L f emur · Ltibia
) (12)

HF =
√

LP2 + (Pz − Lcoxa,z)2 (13)

LP =
√

P2
x + P2

y − L2
coxa,x − Lcoxa,y (14)

A1 = arctan(
LP

|Pz − Pcoxa,z| ) (15)

A2 = arccos(
L2

tibia − L2
f emur − HF2

−2 · L f emur · HF
) (16)

4.4.4. Center of Mass Calculation

This module calculates the center of mass with respect to the robot center. It is
implemented with the knowledge of the joints’ state, the links’ mass and the links’ shape.

4.4.5. Links Control

This module is responsible for unifying all movements for the different legs, which
are sent from the different behaviors to be executed at the link level. Whenever a behavior
desires to move a leg, it sends a command with the leg identifier, where to move it (in
cartesian or articular coordinates), and the priority of the movement. Behaviors that
send movements must be aware that some movements may be overwritten and partially
executed because a higher priority message is received.

4.4.6. Cyclic Movement

This module aims to generate a default cyclic movement that allows the robot to
walk forward. Without inputs, the output is the positions that the legs should reach in
each moment. The module checks the performance of the control architecture, so a simple
walking process has been developed. It consists of moving the legs individually from the
back to the front after moving the whole body forward. Its behavior may be replaced by
changing and complex patterns.
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4.5. Graphical User Interface

A graphical user interface (GUI) for a generic legged robot has been developed to
make interacting with the robot easier. The GUI is shown in Figure 6, and it includes (a)
information about the robot status, (b) plots of the positions of the motors along a given
period of time, and (c) a graphical representation of the position of the legs and the robot
trajectory. It is also possible to create trajectories and send them to the robot.

Figure 6. Graphical User Interface. The first tab shows information about the robot, including the motors and suction cup.
The second tab shows the motors position during a given period. The third tab shows the whole robot trajectory, and it
allows setting the goal position to execute a new trajectory.

5. Experimental Results

The performance of the simulated robot while walking on a flat plane was tested in
CoppeliaSim. The system was studied while moving forward, laterally, diagonally, rotatory,
and walking with a combination of movements. After validating the performance in these
conditions, the system was tested on sloping (45◦) and vertical walls with successful results.
However, the presence of gravity in different axes required adjusting the controller gains.

To test the generalization of the control, the performance was checked when the
number of legs was changed. The behavior when two legs are removed is also valid, even
though the control code is not modified. Figure 7 shows the generated walking pattern
when the robot detects six legs and when it detects a malfunction in two of its legs. As it is
observed, the walking pattern when the robot has six legs is periodic, because the tolerances
specified for a leg to move were adjusted with a hexapod robot. In the case of four legs,
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the walking pattern is not periodic. In this case, legs are moved a non-defined distance
when the space in front of them is higher than a threshold.

(a)

(b)

Figure 7. Walking patterns automatically generated for different numbers of legs detected. Each
point represents the reallocation of a leg, that is, the turn of a leg to move. For example, in the upper
walking pattern, first the fourth leg moves, second the fifth leg, third the second leg, etc. (a) Six
legs detected. (b) Four legs detected. Red lines represent the disabling of a leg.

Figure 8 shows the motion sequences that the robot follows during a walking pattern.
Furthermore, we tested how capable the robot is of moving its center to desired positions
and orientations. A video summary of the robot’s movements during this simulation is
found in https://youtu.be/ex1Dj-uwluE, accessed on 12 October 2021.

Figure 8. Motion sequences during a walking pattern. The two center legs are disabled, pointing the suction cup up.

In the tests with the real robot, it is crucial to determine the time the suction cups spend
to be attached to the ground or wall and the amount of time they spend to be detached.
These times are 0.5 s and 1.5 s, respectively. The tests were carried out in the ROMHEX
robot, to check the feasibility of our approach for its implementation in the ROMERIN
robot (a modular climber robot for infrastructure inspection) [28]. The tests reveal a good
performance during the movements in the horizontal plane. However, the tests on the
sloping wall reveal hardware problems. The first problem is related to the suction cups,
which have three free joints. These joints make the suction cup focus down instead of
against the wall, spoiling the correct pulling force. As a result, one of the free joints has
been removed, while another has been limited in movement. Once the first problem was
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solved, the second problem involved the grip force of the suction cups. The maximum
inclination that the robot can manage to hold by itself is 60◦. However, in this situation,
a small perturbation may make the robot fall. The walking pattern during the tests with
ROMHEX is shown in Figure 9 with successful results. The video of the robot moving can
be found in https://youtu.be/-ASO8B4THEU, accessed on 12 October 2021.

Figure 9. Motion sequences during a walking pattern with ROMHEX.

Finally, the control architecture has been tested and found to work when the robot
loses more legs than allowed. For example, if the hexapod robot loses three legs, it is
statically unstable, but it can stay still with three legs supporting its weight.

6. Conclusions

First of all, implementing the described control has completed the task of making the
robot capable of walking in any direction while maintaining safety. Thanks to behavior-
based control, it has been possible to divide the global problem into smaller and more
encompassing parts, obtaining a more modular control. This structure also allows adding
new functionality in a simple way, by adding layers in the control without changing the
current control. The generality of the system allows using a large part of the control with
any legged robot typically between four to eight legs, because the majority of legged-and-
climber robots dispose of these number of legs. However, the control architecture could be
used for a legged robot of more than eight legs, because there is no upper limit.

We achieve a generic control for a robot with an unpredefined number of legs. A cyclic
walking pattern has been tested in the hexapod ROMHEX robot with successful results,
even when the robot suffers a malfunction of two legs. Taking advantage of the agent-based
structure, the system may be improved with the easy addition of new agents over the used
standard framework ROS.

Optimizing the initial position of the legs allows increasing the mobility of the robot
and obtaining a better understanding of how the forces are distributed when walking.
As the movement is generated dynamically, it sometimes reaches a configuration where it
cannot easily move. In this case, all legs are reconfigured to this optimized initial position,
which allows the robot to continue moving easily. The tests carried out with the real
robot demonstrate its potential for climbing, although the hardware may undergo some
modifications. Each iteration carried out on the robot has improved its ability to walk,
and increase knowledge about the effects of gravity.

All results and changes made with the current robot, as well as improving its ability to
move and climb correctly, serve as inspiration for designing future robots. It is important
to consider all the details in which ROMHEX fails to obtain a more complete and robust
platform in these designs.
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Contrasting with state of art, this paper presents a new architecture especially created
for legged-and-climber robots, where the number of layers is reduced from the typical three-
layer architecture [30] to only two layers, as done previously in CLARAty and COTAMA.
Unlike CLARAty, where the internal behaviors are open to the developer, we define specific
behaviors for legged-and-climber. Unlike COTAMA architecture, we dispense with the
supervisors and scheduler, to particularize our problem.
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Abstract: In some environments where manual work cannot be carried out, snake manipulators
are instead used to improve the level of automatic work and ensure personal safety. However, the
structure of the snake manipulator is diverse, which renders it difficult to establish an environmental
model of the control system. It is difficult to obtain an ideal control effect by using the traditional
manipulator control method. In view of this, this paper proposes a data-driven snake manipulator
control algorithm. After collecting data, the algorithm uses the strong learning and decision-making
ability of the deep deterministic strategy gradient to learn these system data. A data-driven controller
based on the deep deterministic policy gradient was trained in order to solve the manipulator system
control problem when the control system environment model is uncertain or even unknown. The
data of simulation experiments show that the control algorithm has good stability and accuracy in
the case of model uncertainty.

Keywords: deep deterministic policy gradients; snake manipulator; data-driven; accuracy

1. Introduction

Existing manipulator control theory can be divided into three categories: (1) Accurate
mathematical models are required, such as optimal control strategies, linear or nonlinear
control strategies, and pole assignment methods. Some (2) mathematical models are
known, such as sliding mode variable structure control, fuzzy control, adaptive control,
and intelligent control. (3) The mathematical model is unknown, or it is difficult to
establish a mathematical model, such as iterative learning control, model-free adaptive
control, and other data-driven control strategies [1]. Currently, the commonly adopted
control strategies of manipulators include PID control, fuzzy control, adaptive control,
and hybrid control strategy. Mendes designed an adaptive fuzzy controller to solve the
contact problem of a manipulator [2]. However, with continuous improvement of the
control requirements of manipulators, the scale of control systems is increasing, there are a
large number of coupling phenomena between the systems, and the traditional manipulator
control strategy has been unable to meet the control requirements. Due to their strong
self-learning ability and nonlinear system mapping ability, neural networks have been
introduced into manipulator control to compensate for the uncertainty of manipulator
models. Aiming at the trajectory tracking control problem caused by uncertainty and
disturbance of the manipulator, Vu proposed a robust adaptive control strategy based on a
fuzzy wavelet neural network system with dynamic structure. The control strategy can
effectively reduce system error and can improve the control accuracy of the manipulator
system [3,4]. Concerning the problem of the unknown dynamic model of a manipulator,
Yu proposed an adaptive neural network tracking control strategy based on a disturbance
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observer, which is used to compensate for the unknown disturbance of the system [5]. Jung
proposed an improved sliding mode control method based on an RBF neural network to
solve the problem of nonlinear function gain selection of a sliding mode controller and the
uncertainty of the three-link manipulator model [6].

The hybrid control strategy of neural networks [7] and classical strategy can improve
the control performance of the manipulator and can improve its application in many
fields, such as stirring, welding, polishing, and assembly. However, with continuous
improvement in industrial production accuracy, the neural network model’s uncertainty
compensation has been unable to meet control accuracy requirements. Therefore, the deep
neural network algorithm was introduced into manipulator control. Due to its strong
perception and decision-making ability, deep reinforcement learning can perceive the
response of the environment to change and improve the accuracy of the behavior of the
agent. Therefore, deep reinforcement learning is more widely used in deep neural network
algorithms [8,9].

Deep Reinforcement Learning (DRL) is an artificial intelligence method that combines
deep learning with a perceptual ability and reinforcement learning with a decision-making
ability. DRL can be divided into two categories: value-based function and strategy-based
gradient. The value-based learning algorithm is mainly an approximate representation
of the value function. The representative algorithms are the Deep Q Network (DQN)
algorithm, Nature DQN algorithm, Double DQN algorithm [10], prioritized replay DQN
algorithm [11], and Dueling DQN algorithm [12]. The representative algorithm based
on strategy learning is the Policy Gradient algorithm [13]. The algorithms that combines
strategy and value are the Actor-Critic algorithm [14], the Deep Deterministic Policy
Gradient (DDPG) algorithm, and the Asynchronous Advantage Actor-Critic (A3C) [15].
The algorithms are summarized in Table 1 [16].

Table 1. Classical Deep reinforcement learning algorithms.

Classification Algorithm Algorithm Name Algorithm Improvement

Nature DQN Two identical Q network structures.
Value-based
reinforcement learning
(DQN)

Double DQN
A choice of action between
decoupling target Q value and the
calculation of target Q value .

Prioritized replay
DQN The sample is prioritized.

Dueling DQN
The value function of the Q network
is divided into two parts: value
function and advantage function.

Strategy-based
reinforcement learning
method

Policy gradient Value-based methods are replaced by
policy-based methods.

Actor-critic
The two methods, namely
policy-based and value-based, are
combined.

Hybrid algorithm
actor-critic

Asynchronous
advantage
actor-critic (A3C)

Asynchronous training framework,
network structure optimization, and
evaluation point optimization. A
general asynchronous concurrent
reinforcement learning framework

Deep
deterministic
policy gradient
(DDPG)

Two actor networks and two critic
networks, a total of four neural
networks, are used to update the
model parameters iteratively.
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DRL has been proven to be effective in solving complex control problems of manipu-
lators in OpenAI, such as operating [17], grasping [18,19], and mobile tasks [20,21]. Luo
applied the DRL strategy to the assembly task of a manipulator. The device completed
a task that could not be realized using the traditional control strategy [22]. Through the
priority division of the DRL network, Wu realized high-precision millimeter-scale auto-
matic assembly technology [23]. Wen designed an obstacle avoidance algorithm based on
DDPG, which solved the convergence problem of the obstacle avoidance motion of the
manipulator and ensured its continuity and stability [24].

The contribution of this paper is to propose a data-driven snake manipulator control
strategy to solve the control problem of snake manipulators in some complex environments.
The main work is as follows:

(1) Based on the model control method, a control system of a two-link model snake
manipulator based on DDPG was designed. First, according to the structure of the
snake manipulator and the Lagrangian dynamic equation, the dynamic model of
the two-link snake manipulator was established. Second, the Q network model and
action network model of the DDPG agent were designed. Finally, the simulation
results show that the control strategy based on DDPG has good convergence and
strong anti-jamming ability.

(2) In order to solve the problem of model uncertainty, a data-driven control method
of the snake manipulator is proposed. When the number of connecting rods of
the serpentine manipulator increases and the environment becomes complex, it is
difficult to establish the model of an integral snake manipulator that renders the
control effect of the model-based control strategy poor. In view of this, a data-driven
control method based on DDPG is proposed. First, the data-driven control method
requires a large number of input and output data, and the data set was established
by using the results of the traditional control method as the training sample of this
method. Second, the DDPG agent model was designed according to the input and
output parameters. Finally, based on simulation and comparative results analysis,
the feasibility and superiority of the control method was verified.

The main sections of this paper are as follows. The Section 1 mainly introduces
the control methods currently applied to the manipulator. It briefly combs through the
control method of the manipulator, focusing on the DRL algorithm and its application in
the manipulator. Based on this, aiming at the problems in the application of the snake
manipulator, the main innovation of this paper is pointed out. Combined with previous
research work on DRL in manipulators, Section 2 outlines the chosen DRL algorithm and
DDPG algorithm used in this study. The main structure, workflow, and related calculation
methods of DDPG are described in detail. In the Section 3, the design of the DDPG
control method simulation of the two-link snake manipulator is explained. The method of
establishing the environment object and agent of the DDPG control system is introduced in
detail. This mainly includes the two-link dynamic model of the serpentine manipulator, Q
network design, and action network design. The simulation results show that the DDPG
algorithm is effective and superior in the control of snake manipulators. Section 4, based on
the research outlined in the Section 3, reports that it is difficult to establish the entire snake
manipulator model, with significant error in the accuracy of the model, which reduces the
stability and accuracy of the control system. In view of this, a data-driven control method of
the snake manipulator is proposed in this paper. The simulation experiment of this method
was designed, and the simulation results verify the feasibility of the method. In addition,
this method not only avoids the complicated task of establishing the manipulator model
but also improves the stability and accuracy of the control system.The data-driven control
algorithm uses the existing motion data of the serpentine robot. All the motion data of
the serpentine robot are integrated, and its motion database is established. The DDPG is
used to train using the data in the database, and the current best motion path is obtained.
With the increasing amount of data in the database, the accuracy and stability of robot
control continue to improve. Section 5 summarizes the work of this paper.
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2. Deep Deterministic Policy Gradient

In the study of motion control of a two-link manipulator, Jianping Wang compared
3 kinds of DRL algorithms: A3C, DPPO, and DDPG. He found that the DDPG algorithm
has the best convergence effect on the control system. The convergence reward value of
the algorithm is the most stable [25]. Since the DDPG algorithm has a better control effect
on the manipulator [26] and the motion of the snake manipulator is mainly continuous,
the application of the DDPG algorithm was studied in this work. DDPG adds a determin-
istic strategy network on the basis of the DQN to output action values; thus, compared
with the DQN, it only needs to learn the Q network, while DDPG also needs to learn the
strategy network. The network structure of DDPG is shown in Figure 1.

Figure 1. DDPG network structure.

From the figure, we can observe that DDPG has four networks: the current action
network, the target action network, the current Q network, and the target Q network.
The current action network is mainly used to update the policy network parameter δμ.
The network selects the current action A through the current state S. By utilizing target
action network sampling, one state S′ selects the optimal next action, and its network
parameter δμ′

duplicates the parameter value of δμ. The current Q network is mainly used
to update the value network parameter θQ and to calculate the current Q value. The target
Q network is used to calculate the Q′ part of the Q value, and the network parameter δQ′

copies the parameter θQ. The two processes of updating network parameters are different.
The current network uses the SGD algorithm to update network parameters. The target
network uses the soft update algorithm to update the network parameters, as shown
in Equation (1). By using the soft update algorithm, the change in the target network
parameters is small, and the training is easy to converge, but the learning speed is slow.

θQ′ ← δθQ + (1 − τ)θQ′

θμ′ ← δθμ + (1 − τ)θμ′ (1)

In Equation (1), θQ′
denotes the target Q network parameters. θQ denotes the current

Q network parameters. The current network parameters θμ and target network parameters
θμ′

are constructed by policy μ. δ is the update coefficient, and the value is often 0.1 or 0.01.
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For the definition of the network loss function, the current Q network loss function is
similar to that in the DQN, mainly using mean square error, as shown in Formula (2).

Loss =
m

∑
i=1

(ri − Q(si, ai, ω))2 (2)

In Formula (2), Loss denotes the loss function. ri denotes the reward value of i
moment. Q(si, ai, ω) denotes the current Q network Q value calculation function. Since the
deterministic strategy is adopted in the current action network, its loss function is different
from that of PG and A3C.

�J (θ) =
m

∑
i
[�aQ(si, ai, ω) |s=si ,a=πθ(s) ∗�θ∗πtheta(s) |s=si ] (3)

In Formula (3), � denotes the gradient decreases. πθ(s) denotes the action selection
strategy. For the loss function, the greater the Q value of the target action, the smaller the
Loss. The smaller the Q value, the greater the Loss; thus, the status network returns to a
negative Q value.

J(θ) = −
m

∑
i

Q(si, ai, ω) (4)

In Formula (4), si denotes the state of the manipulator at i moment, including joint
angle and angular velocity. ai denotes the moment value of the manipulator at time i,
which is transformed from the state si to si+1 through the dynamic model.

rTime =
Time

∑
i=t

γi−t ∗ r(si, ai) (5)

In Formula (5), γ denotes the weighted value of the reward, the range of the value
is
[
0 1
]
, and Time denotes the total time. r(si, ai) is used to calculate the single-step reward

value obtained by the dynamic model after performing the behavior ai in the state si. rTime
denotes the weighted total value of all single-step awards r from the current state to a
certain state throughout the process.

3. Simulation of DDPG Control Based on 2-Link Model

In order to verify whether the DDPG algorithm can be feasibly and effectively applied
to the space manipulator, a DDPG control simulation based on two connecting rods was
designed, as outlined in this section. In addition, a 2-link model lays the foundation for the
establishment of the whole model.

3.1. Overall Design Scheme of Control System

The DDPG-based control system is shown in Figure 2. According to the given param-
eters of the target trajectory point, the angular value, angular velocity value, and angular
acceleration value of each joint moving to the target point are calculated by using the ridge
method. These parameters are used as input to the DDPG controller. The DDPG agent
is trained, saving the agent that meets the conditions, and finally the state value with the
lowest reward value is the output. The position of the actual trajectory point is obtained by
the forward kinematics of the manipulator. The control precision value is obtained from
the error between the actual position and the target position.
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Figure 2. Control block diagram based on DDPG control system.

3.2. Environmental Object Establishment

A modular design method was adopted for the snake manipulator in this study to
facilitate equipment maintenance. In order to improve the flexibility of the manipulator,
a 1-joint 2-degrees-of-freedom structure was adopted to enable the manipulator to move in
both the yaw and pitch directions, and the three-dimensional motion of the manipulator
was realized. A structure diagram of the snake manipulator model is shown in Figure 3.
Due to the large number of structural joints, a 2-joint structure was used as an example in
this study to establish the dynamic model.

Figure 3. Structural model diagram of snake manipulator. (A) is the connecting rod structure and (B)
is the universal joint structure.

(1) Definition of input signal: In this experiment, the joint torque of the 2-link manipu-
lator was used as the input signal of the environment object.

(2) Establishing a dynamic equation to evaluate the environment: The dynamic model
of the two connecting rods was established according to the Lagrangian dynamic method.
The joint coordinate system of the manipulator is shown in Figure 4. The yaw angle is α.
The pitch angle is β.
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Figure 4. Joint coordinate system.

Suppose that the mass of the connecting rod is concentrated at the center of mass;
the inertia tensor of the connecting rod is set to 0. Therefore, according to the Lagrange
formula, the kinetic energy and potential energy of each connecting rod are expressed
as follows.

Ek1 =
1
2

m1ṖT
c1Ṗc1 (6)

Ep1 = m1gLc1sin(β1) (7)

Ek2 =
1
2

m2ṖT
c2Ṗc2 (8)

Ep2 = m2g(asin(β1) + Lc2sin(β1 + β1)) (9)

In Formulas (6)–(9), Ek1 denotes the kinetic energy of the first connecting rod; Ep1
denotes the potential energy of the first connecting rod; Ṗc1 denotes the velocity at the center
of mass of the first connecting rod; “g” denotes gravitational acceleration; “a” represents
the length of the connecting rod; and Lc1 denotes the length of the center of mass of the
first connecting rod, etc. The definitions are consistent for all formulas in this paper.

Pc1 =

⎡
⎣ Lc1cos(α1)cos(β1)

Lc1sin(β1)
−Lc1sin(α1)cos(β1)

⎤
⎦ (10)

Pc1 =

⎡
⎣ a ∗ cos(α1)cos(β1) + Lc2cos(α1 + α2)cos(β1 + β2)

a ∗ sin(β1) + Lc2sin(β1 + β2)
−a ∗ sin(α1)cos(β1)− Lc2sin(α1 + α2)cos(β1 + β2)

⎤
⎦ (11)

θ1 =
[
0 α1 β1

]T denotes the rotation angle of joint 1. θ̇1 =
[
0 α̇1 β̇1

]T denotes

the angular velocity of joint 1. θ̈1 =
[
0 α̈1 β̈1

]T denotes the angular acceleration of
joint 1. The angular value, angular velocity, and angular acceleration of joint 2 are the
same as those of joint 1. Set the center of mass of the connecting rod to the center of the
connecting rod, such that Lc =

1
2 a.

According to the position of the centroid point, the expressions of Formulas (6) and (8)
can be obtained, which are ṖT

c1Ṗc1 and ṖT
c2Ṗc2 of Formulas (6) and (8), as shown in Formulas (12)

and (13).
ṖT

c1Ṗc1 = L2
c1cos(β1)

2α̇1
2 + L2

c1 β̇1
2 (12)
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ṖT
c2Ṗc2 = a2cos(β1)

2α̇1
2 + a2 β̇1

2
+ L2

c2(β̇1 + β̇2)
2

+ L2
c2(cos(β1 + β2))2(α̇1 + α̇2)

2

+ 2aLc2cos(β1)cos(α2)cos(β1 + beta2)(α̇1
2 + α̇2)

+ 2aLc2sin(β1)cos(α2)sin(β1 + beta2)(β̇1
2
+ β̇2)

+ 2aLc2cos(β1)cos(β1 + β2)(β̇1
2
+ β̇2)

(13)

Lc2 in Formulas (12) and (13) denotes the centroid length of connecting rod 2, which is
only half of the length of a connecting rod. Formula (12) is substituted into Formula (6).
Formula (13) is substituted into Formula (8). The total kinetic energy of connecting rod 1
and connecting rod 2 can be calculated.

Ek = Ek1 + Ek2

=
1
2

θ̇T H(θ)θ̇
(14)

The Lagrangian dynamic formula deduces the dynamic equation by making use of the
difference between the kinetic energy and the potential energy of the mechanical system
of the manipulator. The second kind of Lagrange equation is shown in Formula (15).
The dynamic equation of the manipulator is shown in Formula (16).

d
dt

∂L
∂θ̇

− ∂L
∂θ

= τ (15)

H(θ)θ̈ + C(θ, θ̇))θ̇ + G(θ) = τ (16)

In Formula (16), H(θ) denotes the equivalent inertia matrix. C(θ, θ̇) denotes a Coriolis
matrix. G(θ) denotes the gravity matrix. τ denotes the moment. The complete dynamic
expression equation Formula (17) can be deduced according to Formulas (15) and (16).

θ̈ = [H(θ)]−1(τ − C(θ, θ̇)θ̇ − G(θ)) (17)

(3) Calculation and updated observations: According to the dynamic equation, the an-
gular acceleration of the joint at the next moment is calculated. The joint angular acceler-
ation integral operation is used to calculate the corresponding angle value and angular
velocity value. It is outputted as an observation of the agent.

(4) Calculation of the reward value: The reward value of each sampling is calculated
according to the angle value and angular velocity value. The reward value for each process
is the sum of all sample reward values. The simulation time for each episode is set to 10 s,
and the sampling time is set to 0.05 s. Each episode is sampled 200 times. The process
reward value function is set to the following.

rt = −
200

∑
i

7(θi1 + θi2)
2 + ( ˙θi1 + ˙θi2)

2 (18)

In Formula (18), rt denotes the sum of the reward values of the t process. θi1 denotes
the angle value of joint 1 during the i time sampling. ˙θi1 denotes the angle velocity of joint
1 during i time sampling. Joint 2 is defined in the same manner.

3.3. DDPG Agent Establishment

(1) Q network design. The Q network uses a deep convolution neural network with
three inputs and one output. The three inputs are the observed value (joint angle value[
θ1 θ2

]
; the angular velocity value

[
θ̇1 θ̇2

]
), and the action value (torque value

[
τ1 τ2

]
),

and the output is the evaluation reward value. The input parameter of the observed value
input is eight. The network is set to the first full connection layer to set the number of nodes
as 128. The activation function is ReLU. The number of nodes in the second layer of the
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full connection layer is 200. The input parameter of the action value is four. The number of
nodes in the fully connected layer is 200. The final output parameters of the full connection
layer of the three inputs are added through the ReLU activation function. The setting
parameter of the third layer is one. The output value can be obtained. The Q network
configuration is shown in Figure 5. The network optimizer is set to the adaptive matrix
estimation (adam) optimizer. The learning rate is set to 0.0005.

Figure 5. Q network structure design.

(2) Action network design. The action network adopts a deep convolution network
with one input and one output. The input is the observed value. The output end is the
torque value

[
τ1 τ2

]
. The input parameter is eight. The network is set to the first full

connection layer to set the number of nodes to 128. The activation function is ReLU.
The second full connection layer sets the number of nodes 200. The activation function
is ReLU. The number of nodes in the full connection layer of the third layer is set to two.
The activation function is tanh. The magnification of the scale layer is five times. The action
network configuration is shown in Figure 6. The network optimizer is set to the adaptive
matrix estimation (adam) optimizer. The learning rate is set to 0.001.

Figure 6. Action network structure design.

(3) Parameter setting of agent training: Training is set at 1800 episodes with 200 samples
per episode. The training end mark is the point at which the total value of a certain episode
reward is zero or the required number of training episodes is completed.

3.4. Analysis of Experimental Results

This simulation design is a single-point control precision simulation experiment.
The sampling time is 0.02 s. Single episode time is 10 s, with a total of 1800 episodes. Two
simulation experiments were designed. They involve the additive torque disturbance value[

1 1
1 1

]
and undisturbed value. The training progress is shown in Figures 7 and 8.
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Figure 7. Undisturbed training chart.

Figure 8. Diagram of disturbance training.

In Figures 7 and 8, the blue curve represents the change in the total reward value for
each episode of training. The red curve represents the change curve of the average value of
the total episode reward. The cyan curve is the Q value change curve for each episode of the
evaluation network. With the increase in the number of training episodes, the fluctuation
of the curve tends to be stable, the network finally converges, and the agent reaches the
optimal value in this state. Overall, there is no difference between the two situations. Due
to the anti-disturbance adjustment of the controller, the curve fluctuation is different in
early training. It is proven that the DDPG controller has a strong anti-disturbance ability
and strong stability.

Through the 2-joint experimental simulation of the snake manipulator, it is proven
that the DDPG algorithm can improve the anti-interference and stability of the manipulator
control system. Through many repetitions of training and learning, the position control
accuracy of the end of the manipulator can be improved. However, it is difficult to establish
the overall model of the snake manipulator. Thus, it is difficult to realize the model-based
DDPG control method.

4. Control Simulation of Snake Manipulator Based on Data-Drive

According to the 2-link model, the dynamic model of the snake manipulator is complex
and difficult to establish. The modeling of the whole snake manipulator not only is difficult
but also involves a large number of parameters. According to the model-free data-driven
control method, a data-driven control method based on DDPG is proposed for which
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an accurate snake manipulator and environment model are not required. This method
avoids the influence of model uncertainty on the control system to improve the safety and
reliability of the system.

4.1. Data Set Establishment

Since the snake manipulator mainly adopts the joint modular design method, as shown
in Figure 3, according to the 2-link model of the snake manipulator, the overall 10-link
snake manipulator model can be established. By using the traditional motion control
method of the snake manipulator, the motion parameters of the snake manipulator are
obtained. The data in the database are mainly based on the snake manipulator using the
firework-optimized BP neural network PID (FWA-BPNN-PID) control method to perform
varied trajectory motion. Part of the trajectory is shown in Figure 9.
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(a) Circular trajectory motion diagram.

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4

x

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

z

expected trajectory
FWA-BPNN-PID

(b) Zigzag trajectory motion diagram.
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(c) Ellipse trajectory motion diagram.
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(d) Sinusoidal trajectory motion diagram.

Figure 9. Partial trajectory motion diagram of snake arm in the database.

The data set of this simulation takes the origin as the center and 0.3 as the radius.
The endpoint trajectory moves counterclockwise from the point (0.3), as shown in Figure 9a.
Since the trajectory of the endpoint in the figure is designed on the plane of y = 0.65, the co-
ordinate value y of the endpoint of the track is expected to remain the same. The coordinate
values of the output result of the FWA-BPNN-PID method in Figure 9a are used as the
input data set, and the sampling data are shown in Figure 10b. The desired track position
coordinate values in Figure 9a are taken as the output data set, and the sampling data are
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shown in Figure 10b. The three curves in Figure 10 represent the values of the coordinate
location in the data set.
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(a) Input data set.
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(b) Output data set.

Figure 10. Input and output data set.

4.2. Analysis of Simulation Results

A new DDPG agent was built according to the method described in Section 3.3.
The observed value of the agent is the coordinate position

[
xo yo zo

]T. The output

action value is the coordinate location point
[
xa ya za

]T. The reward value function is
set to the error between the action value and the expected value. The sampling time of the
training network is 1 s, the simulation time is 100 s, and the number of samples for a single
episode is 100. The number of sample training episodes is set to 3000. The 3000 training
results of the agent are shown in Figure 11. In Figure 11, it can be found that with the
increase in training times, the reward value of the sample gradually tends toward zero,
and the gap between the sample Q value and the sample Q value decreases and tends
to be stable. When the sample reward value tends to be stable, it means that the system
has converged and the network training has reached the current best state. The closer the
sample reward value is to zero, the smaller the system error value is and the higher the
system accuracy is.

0 500 1000 1500 2000 2500 3000

episode number

-300

-250

-200

-150

-100

-50

0

50

e
p
i
s
o
d
e
 
r
e
w
a
r
d

episode reward
average episode
episode Q0

Figure 11. One hundred samples for a single episode and 3000 training maps for agents.

The 12th, 1000th, and 3000 training states were randomly selected, and the error values
are shown in Table 2. The output results and error changes of the control system during
training are shown in Figure 12.
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(a) 12th training state.
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(b) 1000th training state.
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(c) 3000th training state.

Figure 12. Sampling of the system training process: (left) error curve; (right) output value.
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Figure 12 shows the 12th training state in the initial stage, the 1000th in the middle of
the training, and the 3000th at the end of the training. The three pictures on the left are error
curves, which represent the data output error values for the database. The average errors
of the 12th, 1000th, and 3000th training states are 0.0142, 0.006, and 0.0034, respectively.
The specific data are shown in Table 2. The three pictures on the right side of Figure 12 are
the output action graphs of the three training states, which clearly show that the curves
become smoother and that the fluctuations are reduced. The fluctuation of the output curve
represents the stability and accuracy of the output of the control system. With the increase
in the number of training episodes, the stability of the system increases.

Table 2. Training error data of data-driven control method based on DDPG.

FWA-BPNN-PID 12th 1000th 3000th

Average 0.0119 0.1420 0.0060 0.0034
MSE (10−5) 2.543 8.119 0.265 0.284

It can be found from Table 2 that, with the increase in training times, the control effect
of the snake manipulator control system is better, and the control accuracy is continuously
improved. In addition, compared with the traditional control methods, the control ac-
curacy and stability of the snake manipulator control system are significantly improved,
which verifies the effectiveness and superiority of the data-driven control algorithm based
on DDPG.

4.3. Comparative Experimental Analysis

In order to test the influence of intelligent agent single-episode training times and
agent network setting on the control system, a comparative experiment was designed.
The first group of simulations is the original network, but the number of single-process
training episodes is 10. The simulation results are shown in Figure 13. In the second group
of simulations, the number of single training episodes is set to 10, and the agent action
network adds a hidden layer. The hidden layer is set to the full connection layer, and the
number of network nodes is set to 150. The simulation results are shown in Figure 14.
The third group of simulations is based on the second group of experiments. The number
of single training episodes is set to 100. The simulation results are shown in Figure 15.
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Figure 13. The first group of simulations.

As observed in Figure 13a, the training simulation chart converges slowly and fluctu-
ates greatly compared with Figure 11. The average error of the sampling sample is 0.0301,
and the Mean Square Error (MSE) is 4.7225 × 10−5. Compared with the simulation of
100 samples, the average error and MSE are larger. This shows that the number of training
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samples is too small, which results in deterioration of the accuracy and stability of the
control system.
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Figure 14. The second group of simulations.

When comparing the training chart of Figure 14a to the training chart of Figure 13a ,
we can observe that, after adding the network, the fluctuation value and convergence speed
of the network do not change much. However, after increasing the network, the average
error is 0.0271, and the MSE is 8.2381 × 10−6. From numerical analysis, the increase in the
number of network layers improves the accuracy and stability of the system.
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Figure 15. The third group of simulations.

By comparing the training chart of Figure 15a with that of Figure 11, it can be con-
cluded that the convergence speed of the network is faster when the number of samples is
the same. However, there are large fluctuations in the early stage, and the overall training
time is longer. The average error value of 0.0061, and the MSE value of 1.1585 × 10−6 can
be obtained from the sampling error curve. Compared with the original network, the con-
trol accuracy of the simulation training system is reduced, but the stability is improved.
The simulation results are shown in Table 3.
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Table 3. Comparison of simulation training error.

Original 1st Group 2nd Group 3rd Group

Average 0.0034 0.0301 0.0271 0.0061
MSE (10−5) 0.284 4.7225 0.8238 0.1156

It can be observed from Table 3 that the number of samples and the number of network
layers have an impact on the stability and accuracy of the system. Too few samples result in
deterioration of the accuracy and stability of the control system. The control performance
of the system can be improved by increasing the number of samples and training network
layers. However, when the number of samples reaches a certain value, increasing the
number of network layers can continue to improve the stability of the system. This,
however, results in a decline in the accuracy of the system. In addition, increasing the
number of samples and the number of network layers results in a longer training time
of the system. In practical application, according to the needs of control, the number of
samples of training or the number of network layers can be increased. This adjusts the
manipulator control speed, stability, and accuracy to achieve a relative balance.

5. Summary and Prospects

In this study, the DRL algorithm was applied to a snake manipulator to verify whether
it can improve its control accuracy. Through the study of the theory of DRL and the
continuity of the action of the snake manipulator, the DDPG method is proposed as a
means of designing the controller of the manipulator’s joint. A model-based DDPG control
method is proposed to verify the effectiveness and superiority of the DDPG controller
through the control of two joints, the simulation object environment and the network
structure of the agent are established. The agent was trained, and the simulation without
disturbance and torque disturbance was carried out. The simulation results verify the
feasibility of the method. However, through the modeling of the 2-link snake manipulator,
it was found that it is difficult to establish the entire manipulator model. It is difficult to
realize the model-based DDPG control method for the whole manipulator control system.
In order to solve the control problem of an unknown model of the snake manipulator,
a data-driven control method based on DDPG is proposed. It does not need to establish
an accurate manipulator model and avoids the influence of the accuracy error of the
manipulator model. The training data were established according to the expected trajectory
and the actual output trajectory of the traditional control method. Compared with the
traditional control algorithm, it is proven that the data-driven control system based on
DDPG has higher accuracy and better stability. At present, the control system of the
snake manipulator is only based on data theory. In order to establish a complete snake
manipulator motion library for training, the actual manipulator motion data and a large
number of trajectory data are needed. The trained control system has a good ability to
control known movements. For unknown actions, it also achieves a better control effect.
By utilizing continuous learning, the strong adaptability of the snake manipulator control
system can be realized.
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Abstract: This paper proposes an online uniform foot location planning method (UPMPC) based
on model predictive control (MPC) for solving the problem of large posture changes during gait
transitioning. This method converts the foot location planning into a discrete-time MPC problem.
The core part of the method is to complete the planning of the foot location based on the linear
inverted pendulum (LIP) model and the simplified robot dynamics model. By unifying the input foot
location at each time step, the solution time is shortened. The final simulation experiment compares
the results of using the UPMPC and foot location planning method with heuristic function (HF)
for gait transitioning, respectively. This result demonstrates that the UPMPC can complete the gait
transitioning task and adapt to large changes in posture during gait transitioning. In addition, the
results also show the good performance of UPMPC in fixed gait.

Keywords: MPC; foot location; motion planning; gait transitioning; legged robots

1. Conventions

To illustrate the content of this paper, the following abbreviations listed in Table 1
are used.

Table 1. The abbreviations are used in this manuscript.

Abbreviations Meaning

MPC Model Predictive Control
LIP Linear Inverted Pendulum

COM Center of Mass
UPMPC A foot location planning method proposed in

this paper. It contains LIP model, dynamics
model of a quadruped robot and MPC method.

HF A foot location planning method used heuristic function
GRFs Ground reaction forces
COT Cost of Transport
QP Quadratic Programming
FL Front Left Leg
FR Front Right Leg
HL Hind Left Leg
HR Hind Right Leg

To illustrate the formulas in subsequent sections, the mathematical notation listed in
Table 2 is used. Matrices and vectors are upright and bold. Scalars are italicized.

Appl. Sci. 2021, 11, 7866. https://doi.org/10.3390/app11177866 https://www.mdpi.com/journal/applsci115
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Table 2. Main Symbol Conventions in this paper.

Variables Meaning

x The position of the COM on the x-axis
in the world coordinate system

y The position of the COM on the y-axis
in the world coordinate system

z The position of the COM on the z-axis
in the world coordinate system

p The position of the COM
in the world coordinate system

px The position of supporting foot in the LIP model
on the x-axis in the world coordinate system

py The position of supporting foot in the LIP model
on the y-axis in the world coordinate system

pz The position of supporting foot in the LIP model
on the z-axis in the world coordinate system

x Robot state variables without angular velocity
pf The position of the robot’s foot in the world coordinate system
f Ground reaction force
I The robot’s inertia tensor
ω The robot’s angular velocity
X Robot state variables

2. Introduction

Legged robots have greater environmental adaptability than wheeled and tracked
robots. In order to meet the needs of different tasks in various environments, users are no
longer satisfied with quadruped robots moving in a fixed gait and expect legged robots to
be able to switch stably between multiple gaits during moving.

Quadruped robots usually perform gait transitioning to reduce energy consumption.
Horses [1] have varying energy expenditure at different gaits and speeds. In order to
maximize energy efficiency, the horse will choose the gait with the least energy consumption
at each speed. Quadruped robots designed with reference to quadrupeds naturally have
variable energy consumption at different gaits. The energy consumption of a quadruped
robot at various gaits and speeds is explored in detail in [2]. Each gait has a significant
energy gap at the same speed. It is also found that the long-period, large duty cycle gait
and the short-period, low duty cycle gait consume less energy at low and high speeds,
respectively. Therefore, it is of utmost importance to switch from a high-energy-consuming
gait to a gait with relatively low energy consumption.

However, in actual use, the appropriate gait is also selected according to the task needs.
When traversing uneven terrain, it is expected that the impact on the ground is small and
the height of the quadruped robot is basically constant while maintaining a certain speed.
Thus, the gait chosen at this point may not be the less energy intensive one. The choice
of gait is the result of many factors. Therefore, the quadruped robot needs to successfully
switch between different gaits at a certain speed, not just from a high-energy-consuming
gait to a low-energy-consuming gait.

The successful locomotion of the robot cannot be separated from the choice of the foot
location. A lot of researches have been done on foot location planning. HF [3] is a commonly
used method. By adjusting the gain parameters, better results can be obtained. The method
has been applied in several MIT’s robots [4,5]. Combining HF and MPC [4], MIT’s Mini
Cheetah implements multiple gaits. However, the fixed-parameter HF is difficult to cope
with transitioning between various gaits with different periods. The properties of gaits
are distinct, in the case of different periods, leading to the inability of the fixed-parameter
HF to adapt to the large changes of posture after the gait transitioning. The capture point
technique which is frequently used in bipedal robots is also a common method for foot
location planning. Pratt et al. simplify the bipedal robot into a LIP model with a flywheel,
and determine the range of foot locations and the foot location point of the bipedal robot
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by establishing the capture domain and the capture point where the robot can stop in
one step [6]. Simões et al. find the capture domain that can two-step stop based on the
capture points and N-Step Capturability theories, and successfully verify the effect of the
algorithm on simulation [7]. Seyde et al. [8] and Kojio et al. [9] both utilize capture point
theory for foot location planning and achieve good results on bipedal robots. However,
the capture point method requires setting the number of steps to stop, which limits the
performance of the robot. MPC is capable of generating behavior with a wide range of
adaptations based on real-world situations [10]. Saraf et al. use the MPC to complete a
terrain adaptive gait transitioning between bounding and trotting [11]. MPC-based foot
location planning has also been widely studied. A number of researchers achieve better
robustness and interference resistance on quadruped robots based on the LIP model for foot
location planning using MPC [12–14]. Xin et al. design LIP-based foot location planning
using MPC [15]. The method applies the LIP model to predict the COM position and
velocity. Furthermore, the prediction result is used as the initial state of MPC for planning
the foot location. It is successfully applied not only to quadruped robots but also to bipedal
robots, and has good anti-interference capability. However, the calculating time grows
rapidly with increasing prediction length.

This paper aims at addressing the transitioning of walking, trotting and flight trotting
with different gait periods at the same speed. Walking (four beat or two beat) has a duty
cycle greater than 50%. The duty cycle is the proportion of the support period to the
entire gait period. Furthermore, the four-legged support period can exist in this gait.
The two diagonally opposite legs move together for trotting. The duty cycle of trotting
is equal to 50%. The two diagonal opposite leg of the flight trotting gait also moves
simultaneously, but differs from trotting in that the duty cycle is less than 50%. There is
a period of quadrupedal vacancy. The gait cycles for three gaits are shown in Figure 1.
Walking is a common gait and employed by all terrestrial vertebrates [16]. Walking is
stable with little change in height and posture. And the quadruped robot has little contact
force with the ground. The results in [1,2] indicate that either two-beat walking or four-
beat walking has less energy expenditure at low speeds than the other gaits. Trotting
is widely adaptable to a greater range of speeds and has high energy efficiency when
the speed is below 1.2 m/s [4]. Trotting with a vacant period (flight trotting) has a better
performance in terms of energy utilization at high speeds [2]. Furthermore, these three gaits
are representative on quadruped robots that can adapt to a variety of environments and
task needs. During the gait transitioning process, the quadruped robot posture and speed
will experience large changes. By choosing a suitable foot location, the effect of the foot
location on posture and speed can be reduced. The quadruped robot can return to the stable
position more quickly. The three gaits which are used for gait transitioning, with widely
varying characteristics, have different gait periods. The HF gain parameters required for
each gait are also different. There is no fixed order for transitioning. The difference in gait
characteristics leads to large changes in posture after transitioning, making it difficult for
the fixed parameter HF to cope with. The MPC-based foot location planning method can
select a foot location that best meets the desired future state based on the actual situation
during the transitioning process and the prediction results. Thus, the quadruped robot
can better complete the gait transitioning and quickly correct the state deviation caused by
the transitioning, with better robustness and adaptability. Therefore, it was decided to use
UPMPC as the foot location planning method for quadruped robots. During the motion
of the quadruped robot, the position of the foot in the world coordinate system remains
unchanged. By unifying the foot positions at each time step, the final optimization variables
are ensured to be independent of the predicted horizon length. The matrix dimensions
to be computed are greatly reduced, which can significantly improve the computational
speed of UPMPC to satisfy the demand of high-frequency foot location planning. The gait
transitioning results given at the end of the article well demonstrate that UPMPC has
better practical performance than HF and can be applied to the foot location planning for
fixed gait.
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Figure 1. The black block indicates that the single leg of the quadruped robot is in the support phase.
FL: Front Left Leg. FR: Front Right Leg. HL: Hind Left Leg. HR: Hind Right Leg.

The main contributions of this paper are: (a) An MPC-based method for selecting the
foot location is proposed based on the LIP model and the dynamics model of the quadruped
robot, which solves the problem of large posture oscillation during gait transitioning in
different gait periods. (b) UPMPC is able to complete some of gait transitioning that cannot
be done by the HF. (c) UPMPC selects the foot location based on the predicted future state,
which improves the overall adaptability of the quadruped robot.

The paper is organized as follows. Section 3 presents the overall control architecture
of the quadruped robot. The composition of MPC and the functions of the UPMPC are
briefly demonstrated. A detailed mathematical description of UPMPC is illustrated in
Section 4. A comparison of UPMPC with HF in a simulation environment is given in
Section 5. Section 6 is a summary of the whole text.

3. Control Architecture

The control method used in this paper is MIT’s Convex MPC [4]. The overall control
block diagram [4] is shown in Figure 2.

Figure 2. The red block indicates the control frequency at 0.5 kHz, the blue block indicates the control
frequency at 30 Hz, and the green block indicates the control frequency at 4.5 kHz [4]. xre f is the
reference state of the robot. xest is the estimated state of the robot. pdesW is the desired foot location
in the world coordinate system. f(i) is the GRFs in the world coordinate system and f

(i)
B is the GRFs

in the ontology coordinate system. Kp, Kd, τf f , pdesB, vdesB denotes the PD control parameters of the
joint, the feedforward force, the desired foot location under the body coordinate system, and the
desired foot velocity in the body coordinate system, respectively. The swing leg is position controlled
and the control effect of the joint is adjusted according to the PD control gain Kp, Kd.

Based on Convex MPC, the UPMPC for selecting the foot location is added. Operator
Input is the user input for commands such as gait, speed and direction. Reference Trajectory
generates a reference state for the robot based on user input, such as the robot’s pose and
speed. State Estimator estimates the robot’s state based on the sensor data. Swing Trajectory
is used in three main purposes: selection of swing legs, determination of swing time and
generation of swing trajectory. Swing Trajectory generates the desired swing trajectory
for the swing leg to track based on the reference foot location input by the UPMPC. MPC
outputs the desired GRFs based on the output of Reference Trajectory. The UPMPC selects
the foot location of the swing leg.
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The UPMPC input variables are the desired state, the current estimated state and
the GRFs planned by MPC when switching from the swing phase to the support phase.
The output variables are the desired foot location. Using the LIP model and dynamics
model of the robot, the selection of the foot location is simplified to a QP problem. The de-
sired result is obtained from the solution of the QP problem. The detailed mathematical
derivation and introduction are in shown in Section 4.

4. Foot Location Selection Based on MPC

The expression for the HF is shown in Equation (1).

pdes
f = pref

h + vCOMΔt/2 + kd

(
vCOM − vdes

)
(1)

pdes
f is the desired foot location of the quadruped robot. pref

h is the location of the
hip projected onto the ground. vCOM is the current speed of the COM. Δt is the time the
foot will spend on the ground. vdes is the desired speed of the COM. All the variables
above are in the world coordinate system. kd is the gain of the difference between vCOM

and vdes. Due to the characteristics of different gaits, the posture of the quadruped robot
after gait transitioning will have a large offset from the steady state. In this case, HF may
choose a foot location that is not conducive to the stability of the quadruped robot’s posture
in order to correct the velocity offset. If it is desired to do a better job of transitioning
between several different gaits, a heuristic gain value needs to be determined for each gait.
Therefore, a new way of foot location planning is needed to enable gait transitioning of
quadruped robots in multiple gaits with a single set of parameters. The variables used in
the equations below are shown in Figure 3.

Figure 3. A model of the quadurped robot is shown in the figure. The World in the bottom left corner
of the diagram indicates the defined world coordinate system. The black frame in the top right corner
indicates the composition of the variables labelled in the model. pf is the position of the robot’s foot
end. p is the position of the robot’s COM. f is the ground reaction force. All the variables mentioned
are in the world coordinate system.

The LIP model has been widely used in bipedal robot motion [17,18]. The simplified
LIP model allows better planning of the bipedal robot’s foot location. LIP can also be
applied to quadrupedal robots [19,20]. With the virtual leg concept, a quadrupedal robot
can be equated to a bipedal robot. At this point the quadruped robot can also apply the LIP
model to plan the foot location. Therefore, the LIP model can be used to predict the velocity
of the quadruped robot. In a single-point support, the COM is pushed by the support foot.
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The forward acceleration ẍ is driven by the difference between the support foot position px
and the COM position x.

ẍ =
g
z0
(x − px) (2)

where px represents the position of the supporting foot in the x-axis direction in the world
coordinate system, and x, ẍ and z0 represent the position of the COM, the acceleration in
the x-axis and the height in the z-axis in the world coordinate system, respectively. g is
the acceleration of gravity in the z-axis in the world coordinate system. With the height of
COM z0 constant, the value of ẍ is determined only by x and px.

The lateral acceleration ÿ is driven by the difference between the position of support
foot py and the position y of the COM.

ÿ =
g
z0

(
y − py

)
(3)

where py represents the position of the supporting foot in the y-axis direction in the world
coordinate system, and y and ÿ represent the position of the COM and the acceleration in
the y-axis under the world coordinate system, respectively. Let the COM state be x = [x, ẋ]T,
then the equation of state is shown in Equation (4).

ẋ = Ax0 + Bpx (4)

A =

[
0 1
g
z0

0

]
, B =

[
0

− g
z0

]
, x0 =

[
x0
ẋ0

]
(5)

x0 is the robot’s current state. Extending the COM state to x = [p, ṗ]T, p ∈ R3×1 is the
position of the COM in the world coordinate system. ṗ ∈ R3×1 is the velocity of the COM
in the world coordinate system. The position of the supportting foot is extended to the
coordinates of the foot in the world coordinate system during the motion of the quadruped
robot. The equation of state is shown in Equation (6).

ẋ = Ax + Bpf (6)

A =

[
03×3 13×3

w3×3 03×3

]
(7)

B =

[
03×3 03×3 03×3 03×3

−ε(|f(1)|)·w3×3

2
−ε(|f(2)|)·w3×3

2
−ε(|f(3)|)·w3×3

2
−ε(|f(4)|)·w3×3

2

]
(8)

w3×3 =

⎡
⎣g/z0 0 0

0 g/z0 0
0 0 0

⎤
⎦ (9)

ε
(∣∣∣f(i)∣∣∣) =

⎧⎨
⎩0

∣∣∣f(i)∣∣∣ > 0

1
∣∣∣f(i)∣∣∣ = 0

(10)

where pf =
[
pf

(1) pf
(2) pf

(3) pf
(4)
]T

is the position of the foot in the world coordinate

system. pf
(i) =

[
p(i)f 1 p(i)f 2 p(i)f 3

]T ∈ R3×1 and f(i) =
[

f (i)1 f (i)2 f (i)3

]
∈ R3×1 are the

coordinates of the foot i and the GRFs in the world coordinate system, respectively. In the
LIP model, the choice of the foot location affects the velocity of the COM, but not the height
of the COM. Equation (10) is used to determine the swing leg.

The presence of GRFs makes the location of the foot affect the COM posture. Therefore,
the choice of foot location needs to consider the effect on the velocity and the posture.
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The dynamics of a quadruped robot rotating around the COM in the world coordinate
system is shown in Equation (11).

d
dt

(Iω) =
n

∑
i=1

r(i) × f(i) (11)

where I is the robot’s inertia tensor, ω ∈ R3×1 is the angular velocity of the robot. r is the
vector between the position of the foot end and the COM. When ω is small, the left side of
Equation (11) can be approximated with:

d
dt

(Iω) = Iω̇ + ω × (Iω) ≈ Iω̇ (12)

Converting the right-hand side of Equation (11) to a representation of the COM
position and the foot position in the world coordinate system.

n

∑
i=1

r(i) × f(i) =
n

∑
i=1

(
pf

(i) − p
)
× f(i) =

n

∑
i=1

f(i) ×
(

p − pf
(i)
)

(13)

Then Equation (11) can be converted to:

ω̇ =

[
I−1
[

n
∑

i=1
ε(
∣∣∣f(i)∣∣∣)f(i)] 0

]
·
[

p

ω

]

+
[
I−1
[
−f(1)

]
I−1
[
−f(2)

]
I−1
[
−f(3)

]
I−1
[
−f(4)

]]
⎡
⎢⎢⎢⎣

pf
(1)

pf
(2)

pf
(3)

pf
(4)

⎤
⎥⎥⎥⎦

(14)

where
[
−f(i)

]
=

⎡
⎢⎣ 0 f

(i)
3 −f

(i)
2

−f
(i)
3 0 f

(i)
1

f
(i)
2 −f

(i)
1 0

⎤
⎥⎦ is the GRFs of MPC planning when switching

from the swing phase to the support phase in the previous period. The equation of state of
the system is

Ẋ = AX + Bpf (15)

A =

⎡
⎢⎢⎣

03×3 13×3 03×3

w3×3 03×3 03×3

I−1
[

n
∑

i=1
ε(
∣∣∣f(i)∣∣∣)f(i)] 03×3 03×3

⎤
⎥⎥⎦ (16)

B =

⎡
⎢⎢⎣

03×3 03×3 03×3 03×3

−ε(|f(1)|)·w3×3

2
−ε(|f(2)|)·w3×3

2
−ε(|f(3)|)·w3×3

2
−ε(|f(4)|)·w3×3

2

I−1
[
−f(1)

]
I−1
[
−f(2)

]
I−1
[
−f(3)

]
I−1
[
−f(4)

]
⎤
⎥⎥⎦ (17)

where X =

⎡
⎣p

ṗ

ω

⎤
⎦, 13×3 =

⎡
⎣1 0 0

0 1 0
0 0 1

⎤
⎦. Discretize Equation (15) using a zero-order retainer:

X[n + 1] = ÂX[n] + B̂pf (18)

Combining the current COM state X0, the GRFs planned by the MPC when the foot
touched the ground in the previous period and the reference state of the robot, the location
of the foot is determined according to Equation (18). Let the desired foot location be pf.
After the foot touches the ground without slipping, the position in the world coordinate
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system does not change. The equation for the change of the state for the next N steps can
be obtained.

X1 = ÂX0 + B̂pf

X2 = ÂX1 + B̂pf = Â2X0 +
(
ÂB̂ + B̂

)
pf

X3 = ÂX2 + B̂pf = Â3X0 +
(

Â2 · B̂ + Â · B̂ + B̂
)

pf

...

XN = ÂXN−1 + B̂pf = ÂNX0 +
(

ÂN−1 · B̂ + ÂN−2 · B̂ + · · ·+ B̂
)

pf = ĀX0 + B̄pf

Ā = ÂN , B̄ = ÂN−1 · B̂ + ÂN−2 · B̂ + · · ·+ B̂

(19)

The control problem can be transformed into the selection of the foot location that the
robot will achieve the desired state at step N.

min J =
N

∑
i=1

(
X(i) − X(i,re f )

)T
L
(

X(i) − X(i,re f )

)
+ (pf − p)TK(pf − p) (20)

s. t. X[n + 1] = ÂX[n] + B̂pf (21)

pfmin ≤ pf ≤ pfmax (22)

Dpf = 0 (23)

Both L and K are adjustable weight matrices and semi-positive definite. Equation (23)
selects the foot that is currently in the swing period. By using Equations (19) and (20) can
be converted into the following quadratic optimization form.

min
x

1

2
pT

f Hpf+pT
f g (24)

where H = 2
(
B̄TLB̄ + K

)
, g = 2B̄TL(ĀX0 − Xd)− 2Kp. By limiting the foot location of

each time step to be equal, the dimension of the matrix to be computed is greatly reduced
and the efficiency of the computation is improved. The dimensionality of the final matrices
H and vector g is independent of the prediction length and is only related to the number
of variables. Therefore, it can greatly reduce the amount of computation to improve the
computation speed and increase the frequency of prediction.

p̈ =
∑4

i=1 f(i)

m
− g (25)

g ∈ R3×1 is the acceleration of gravity. Equations (11) and (25) form the complete
dynamics model of the quadruped robot. In Equation (11), angular acceleration is deter-
mined by the foot location and GRFs. The GRFs also determines the linear acceleration in
Equation (25). The user not only wants the quadruped robot to be able to keep up with the
desired speed, but also to ensure that the posture is stable around the desired value. This
places demands on both linear and angular acceleration. The MPC controller will select the
GRFs based on Equations (11) and (25) and the foot location. Therefore, the choice of foot
location will directly influence the outcome of the GRFs.

The HF selects the foot location only according to the current state so that the gain
value greatly affects the result. The UPMPC considers not only the current state but also
the influence of the foot location on the future state. It improves adaptability by selecting a
foot location where the future state is more in line with the desired one, rather than just
based on the current state. Therefore, the UPMPC can adapt to multiple gaits and complete
gait transitioning between different periods.
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5. Results

5.1. Simulation Setup

The proposed UPMPC is validated based on the simulation platform of MIT [21].
The simulation environment is shown in Figure 4 below. It is based on Ubuntu 18.04.
MIT’s Mini Cheetah is used [5] as the verification model for the algorithm. In which the
robot with 12 degrees of freedom weighs 9 kg [5], the friction between the foot and the
ground is 0.4. All of the joints are motor driven and torque controlled. LCM is used for
communication between the simulation environment and the control interface. LCM is
lightweight real-time communication software [22]. In this paper, qpOASES [23] is used
as a solver for the QP problem. qpOASES is specifically used to solve the MPC quadratic
optimization problem. The walking gait chosen in this paper is two-beat walking, so the
diagonal leg of walking, trotting and flight trotting can be equated to a virtual leg. At this
point, the quadruped robot is equivalent to a bipedal robot. Furthermore, the LIP model
can be applied. The control frequency of UPMPC is 0.5 kHz.

Figure 4. The model in simulation environment is the Mini Cheetah. The real-time in the upper
left corner indicates the time of the real world. The sim-time represents the time in the simulation
environment. The rate denotes the simulation rate.

During the simulation experiments, the control parameters of MPC are kept constant.
The prediction length of MPC method is 10 steps in all three gaits. The time length of each
step is 0.03 s. The prediction time is 0.3 s and the control frequency is 33 Hz. The prediction
length of UPMPC is three steps. The time length of each step is 0.03 s. None of the
parameters of the HF or UPMPC are changed during the motion. The periods of walking,
trotting and flight trotting are 0.6 s, 0.42 s and 0.3 s, respectively. The duty cycle of walking,
trotting and flight trotting are 0.6, 0.5 and 0.3, respectively. Each gait transitioning interval
is 3 s. The swing leg is planned with a Bessel curve. Figure 5 shows the COT [24] of three
gaits. COT is used to indicate the energy consumption level of the quadruped robot.

0 0.5 1 1.5 2 2.5 3
velocity
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O

T
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flight trotting

Figure 5. COT of walking, trotting and flight trotting at different speeds, respectively.
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The three curves in Figure 5 represent the different gaits. The horizontal axis coor-
dinate corresponding to the rightmost end of each curve indicates the maximum speed
that can be achieved at the current gait. According to the curves in the image, the energy
consumption at various speeds for different gaits is variable. To reduce energy consump-
tion or to meet task requirements, the robot needs to transitioning between multiple gaits.
Because gait transitioning is performed at multiple speeds, the experiment is divided into
five parts to verify the performance of UPMPC:

• Transitioning between three gaits at the speed of 0.4 m/s;
• Transitioning between three gaits at the speed of 0.8 m/s;
• Transitioning between trotting and flight trotting at the speed of 1.2 m/s;
• Transitioning between trotting and flight trotting at the speed of 1.6 m/s;
• Movement of trotting gait using the UPMPC

At 0.4 m/s, walking has lower energy consumption. Higher than this speed, the energy
consumption of trotting is lower than walking. Transitioning between trotting and walking
at this speed can complete the transitioning of energy consumption smoothly. At this
time, flight trotting energy consumption is higher, but can have greater acceleration. Flight
trotting is indispensable when the robot wants to accelerate quickly from low speed to
high speed. Therefore, it is of great importance to perform the transitioning between the
three gaits.

At 0.8 m/s, it is the approximate speed at which the trotting and flight trotting COT
curves appear to intersect. Greater than this speed, flight trotting energy consumption is
less than trotting energy consumption. Flight trotting can accelerate to very fast speed in
the short time while walking can ensure posture stability at a certain speed. Therefore,
flight trotting and walking transitioning at this speed are equally relevant for applications.

For walking, 1.2 m/s and 1.6 m/s are already quite large speed of movement, very
close to the maximum speed in that gait, which itself is already not moving stably enough.
Feet in swing may collide with feet lifting off the ground sometimes. Furthermore, the COT
in this gait is already much larger than trotting and flight trotting. Therefore, transitioning
between trotting or flight trotting and walking at this speed lacks practical meaning. Only
the gait transitioning between trotting and flight trotting is considered.

To eliminate the effect of incidental factors, multiple gait transitioning is performed at
a given speed during the transitioning process. During the motion of a quadruped robot,
the posture change is closely related to the stability of the control. With small variations
in posture, the quadruped robot performs better in actual motion. Ideally, a quadruped
robot is most stable when the posture is at the desired value and does not change during
motion. Therefore, comparing the change in posture at the time of gait transitioning and
throughout the gait transitioning process gives a good indication of how well the foot
location planning method works. With the control algorithm unchanged, the choice of foot
location affects the planning result of MPC in gait transitioning, which in turn influences
the posture control of the quadruped robot. The posture is the result of the combined effect
of force and foot location. The advantages and disadvantages of the two methods can
be determined by posture changes and foot-end forces. Because the selected gaits are all
symmetrical, the force change at the foot end of one leg can better reflect the planning result
of MPC. The effectiveness and superiority of the UPMPC can be better demonstrated by
integrating the results of force planning and posture change. Finally, the posture changes
in trotting are shown to demonstrate that UPMPC can also get good results in a single gait.

5.2. UPMPC vs. HF

In this section, the peak value and the mean of absolute value are used to compare the
advantages and disadvantages of the two methods. The peak value is able to reflect the
stability of the posture after transitioning. Smaller peak indicates less posture oscillation
and better stability. The mean of absolute value gives a better evaluation to the change in
posture throughout the process and eliminates the effect of positive and negative values.
A smaller mean of absolute value of the posture indicates that the quadruped robot recovers
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from postural oscillations more quickly after a gait transitioning or the change in posture is
relatively small over the whole time. If the mean of absolute value is large, the quadruped
robot is unable to return to a stable state more quickly after a gait transitioning, or has a
large oscillation over the whole time.

The numbers marked in the figures below are the times at which the gait transitioning
takes place. The peak value used is the maximum value of the posture for the duration
after the gait transitioning has occurred and before the next starts. There is a time delay
between the peak values and the transitioning point, as the quadruped robot needs a very
short amount of time after the gait transitioning to reach its most unstable moment. This
part of the time is not negligible. Therefore, it will be seen that there is a lag between the
time of the transitioning point and the time of peak values.

Figure 6 is the gait transitioning between trotting and walking at 0.4 m/s. The gait
transitioning using the HF in Figure 6a fails directly and using the UPMPC in Figure 6b
succeeds despite facing a large posture oscillation. In Figure 6a, a large posture oscillation
has happened during the gait transitioning but the foot location of the HF planning cannot
cope with this situation. It makes the roll and yaw deviate more and more from the stable
position, leading to the posture divergence and gait transitioning failure. The posture
change is not so clear in Figure 6a,b. In Figure 6e, it becomes clear. In this graph the peak
of the posture after the gait transitioning is shown. The numbers 1, 2 and 3 stand for roll,
pitch and yaw, respectively. It is clear from Figure 6e that the gait transitioning using the
HF faces a large posture peak after the transitioning and far exceeds that of the UPMPC.
This is more than the controller can steadily control, making the system falter and the
transitioning fail. In Figure 6b,e, with the controller unchanged, the UPMPC planned foot
location effectively reduces the peak values of the posture comparing with the HF, allowing
the posture to return to near the stable value. Even if the transitioning results in a large
posture change, the UPMPC is able to help keep the robot moving stably by planning
a good foot location. Figure 6c,d shows the foot-end force planned by MPC for the left
front leg foot of the quadruped robot during the transitioning process. Figure 6f shows
the comparison of the peak force at the foot end after transitioning. The difference in peak
force is not so clear from Figure 6c,d. However, in Figure 6f, a huge difference is shown.
The huge force may cause unnecessary vibration and instability. It is not desirable that the
peak of the foot-end force is too large if the gait transitioning can be done. This is because
it will have a large impact on the posture and affects the stability of the quadruped robot
after gait transitioning. As can be seen from Figure 6f, the forces required by the robot
using UPMPC are much smaller during gait transitioning. The quadruped robot regains
stability in its posture by the combined effect of force and foot-end position. In Figure 6f,
the HF uses a greater force to try to restore stability, but the gait transitioning still fails.
In contrast, the UPMPC successfully completes the gait transitioning with less force.

These would suggest that the foot location chosen by the UPMPC is far superior to the
HF. Gait transitioning is accomplished with less foot-end force and less posture oscillation.
UPMPC shows a great advantage over HF in completing the gait transitioning between
trotting and walking.
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Figure 6. The figure shows the posture and GRFs of trotting in a gait transitioning to walking at
0.4 m/s. The number 1 in (a–d) indicate gait transitioning occuring. The horizontal coordinate of the
number 1 in the diagram represents the exact time of the transitioning. The transitioning process
is: trotting (0–27.6 s), walking (27.6-final). (c,d) Only capture the GRFs near the transitioning point
to facilitate analysis of the forces, so the transitioning time is not consistent with (a,b). All data in
the plots are from the same dataset. (a) Posture change using the HF at 0.4 m/s gait transitioning.
(b) Posture change using the UPMPC at 0.4 m/s gait transitioning. (c) Change in forward force at
0.4 m/s during gait transitioning. (d) Change in lateral force at 0.4 m/s during gait transitioning.
(e) Comparison of the peak values of roll, pitch and yaw for the two methods after transitioning.
The numbers 1, 2 and 3 on the horizontal axis in the graph represent roll, pitch and yaw, respectively.
(f) Comparison of peak values after transitioning for forward and lateral forces under both methods.
The numbers 1 and 2 on the horizontal axis in the diagram represent forward and lateral forces,
respectively.
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Figure 7 is the posture change during gait transitioning between flight trotting and
walking at 0.8 m/s. The transitioning points are marked by the numbers 1, 2, 3, 4 and 5
in the figure. In Figure 7a, the change of roll using UPMPC is basically consistent with
HF. All have oscillation after the transitioning. In Figure 7b, the numbers 1, 2, 3, 4, 5 show
the peak of the posture after the gait transitioning. A distinct difference between the two
methods can be seen in in Figure 7b. In this figure, the peak of roll using the UPMPC is
smaller than that of the HF, except for the fourth gait transitioning. The location of the foot
chosen by the UPMPC enables a smaller roll peak after transitioning. This indicates that the
quadruped robot with the UPMPC is more stable after switching. The number 6 represents
the mean of absolute value of the roll. Smaller mean of the absolute values can indicate
that the quadruped robot is more stable throughout the whole transitioning process. In
Figure 7b, the mean of absolute value of roll using the HF is significantly larger than that
using the UPMPC. The roll with the less oscillations over the whole time has the small
mean of the absolute values. Combining the mean of absolute value and the peak values,
the UPMPC has better control over roll. In Figure 7c, the curves of the two methods overlap
highly. In Figure 7d, both the peak values and the mean of absolute value of pitch at the
gait transitioning using UPMPC are smaller. Therefore, the UPMPC has better control of
the pitch. In Figure 7e, yaw drifts regardless of the foot location planning method. As the
number of transitioning accumulates, the yaw drift of UPMPC is smaller than that of the
HF in Figure 7e. UPMPC has better control of yaw during gait transitioning. Comparing
Figure 7b,d, the good control of yaw by UPMPC does not come at the expense of roll and
pitch. Figure 8 is the foot-end force change during gait transitioning between flight trotting
and walking at 0.8 m/s. Figure 8a,c show the force planned by MPC for the foot-end of the
left front leg during the transitioning process. In Figure 8b, the force peaks of the UPMPC
are significantly smaller in the second, third and fourth gait transitioning. The HF has
a slightly smaller force peak in the first and fifth gait transitioning. It is not possible to
distinguish exactly which method has the smaller mean of absolute values. The forward
forces required by the robot are nearly the same for both methods over the whole time.
In Figure 8d, the peak using the HF is smaller than that of UPMPC over the whole time.
However, there is no difference in the mean of absolute value between the two methods.
This means that both methods require essentially the same size force over the whole time.
There is no considerable difference between the two methods in regards to forward forces
or lateral forces. Combined with the change of posture, the UPMPC uses the same force to
achieve smaller posture peak and mean of absolute values of posture over the whole time.
Therefore, the UPMPC enables better control of posture. The UPMPC helps the quadruped
robot to perform better in gait transitioning tasks at 0.8 m/s. The overall oscillations in
posture are also smaller. However, it still cannot avoid the oscillation of posture at the
moment of transitioning. The better effect of UPMPC has been demonstrated.
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Figure 7. The figure shows the posture changes in gait transitioning between flight trotting and
walking at 0.8 m/s. The numbers 1, 2, 3, 4 and 5 in (a,c,e) indicate gait transitioning occuring.
The horizontal coordinate of these numbers in the diagram represents the exact time of the tran-
sitioning. The transitioning process is: flight trotting (0–2.27 s (number 1)), walking (2.27–5.27 s
(number 2)), flight trotting (5.27–8.77 s (number 3)), walking (8.77–11.81 s (number 4)), flight trotting
(11.81–15.20 s (number 5)) and walking (15.20-final). The numbers 1, 2, 3, 4 and 5 in (b,d,f) denote the
peak values of the corresponding posture (roll, pitch or yaw) after the gait transitioning. Furthermore,
the number 6 indicates the mean of the absolute value of the corresponding posture over the whole
time. (a) Changes in roll during gait transitioning at 0.8 m/s. (b) Comparison of the peak values of
roll after transitioning and mean of the absolute values of roll in the whole time for the two methods
at 0.8 m/s. (c) Changes in pitch during gait transitioning at 0.8 m/s. (d) Comparison of the peak
values of pitch after transitioning and mean of the absolute values of pitch in the whole time for the
two methods at 0.8 m/s. (e) Changes in yaw during gait transitioning at 0.8 m/s. (f) Comparison of
the peak values of yaw after transitioning and mean of the absolute values of yaw in the whole time
for the two methods at 0.8 m/s.
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Figure 8. The figure shows the force changes in gait transitioning between flight trotting and walking
at 0.8 m/s. The numbers 1, 2, 3, 4 and 5 in (a,c) indicate gait transitioning occuring. The horizontal
coordinate of these numbers in the diagram represents the exact time of the transitioning. The tran-
sitioning process is: flight trotting (0–1.37 s (number 1)), walking (1.37–4.54 s (number 2)), flight
trotting (4.54–7.86 s (number 3)), walking (7.86–11.05 s (number 4)), flight trotting (11.05–14.33 s
(number 5)) and walking (14.33-final). The numbers 1, 2, 3, 4 and 5 in (b,d) denote the peak values
of the corresponding forward forces or lateral forces after the gait transitioning. Furthermore, the
number 6 indicates the mean of the absolute value of the corresponding forces over the whole time.
(a) Change in forward force at 0.8 m/s. (b) Comparison of the peak values of forward force after
transitioning and mean of the absolute values of forward force in the whole time for the two methods
at 0.8 m/s. (c) Change in lateral force at 0.8 m/s. (d) Comparison of the peak values of lateral force
after transitioning and mean of the absolute values of lateral force in the whole time for the two
methods at 0.8 m/s.

Figure 9 is the posture change during gait transitioning between flight trotting and
trotting at 1.2 m/s. The transitioning points are marked by the numbers 1, 2, 3, 4 and
5 in the figure. In Figure 9a, many parts are overlapped. At three transitioning points,
the peak of the roll using UPMPC is slightly larger than that of HF in Figure 9c. However,
the HF does not show a clear advantage over the UPMPC in reducing the peaks values.
The mean of absolute value of the two methods is basically the same. For a slightly larger
peak values than the HF, the UPMPC has the same mean of absolute value. It shows that
the UPMPC allows the quadruped robot to recover stable from the postural oscillation of
the transitioning more quickly. Despite the small peak values, the HF requires a longer
time of posture oscillation to remove the effects of the transitioning. Therefore, it cannot be
stated which method is really better for roll control. In Figure 9e, both methods have a large
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change in pitch at the instant of transitioning. The pitch using UPMPC has a smaller peak.
It can be clearly seen from Figure 9b. At the same time, the mean of absolute values of pitch
using the UPMPC is also smaller than that using the HF. Therefore, the UPMPC has better
control for pitch. In Figure 9d, the yaw of both methods has some variation. In contrast to
the UPMPC, HF does not control yaw well. Yaw gradually deviates from the stable value
as gait transitioning occurs. The yaw using UPMPC also deviates, but its deviation under
multiple gait transitioning is much smaller than HF in Figure 9f. Thus, the UPMPC has
better control for yaw. Stability of posture is a prerequisite for the stable movement of a
quadruped robot. Figure 10a,b shows the foot-end force of the left front leg planned by the
MPC during the transitioning process. In Figure 10a, the vast majority of the curves from
both methods overlap. A clear feedback is also obtained in Figure 10c. It was not possible
to clearly determine which method had a smaller peak value of the forward force after gait
transitioning. The mean of absolute values are also essentially the same. The forces are
essentially the same under both methods. From the peak values, the lateral forces planned
by UPMPC become significantly smaller than those of HF in Figure 10d. During the whole
transitioning process, the lateral forces of HF are significantly greater than those of the
UPMPC. Comparing to HF, the robot with the UPMPC has less posture change during gait
transitioning, along with same forward forces and less lateral forces over the whole time
at the speed of 1.2 m/s. The gait transitioning task is done better by the UPMPC. This
indicates that the UPMPC selects a better location for the landing point. Combining the
forces and posture, UPMPC’s results are much better than HF’s.
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Figure 9. Cont.
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Figure 9. The figure shows the posture changes in gait transitioning between trotting and flight
trotting at 1.2 m/s. The numbers 1, 2, 3, 4 and 5 in (a,c,e) indicate gait transitioning occuring. The hor-
izontal coordinate of these numbers in the diagram represents the exact time of the transitioning.
The transitioning process is: trotting (0–4.66 s (number 1)), flight trotting (4.66–7.87 s (number 2)),
trotting (7.87–11.36 s (number 3)), flight trotting (11.36–14.38 s (number 4)), trotting (14.38–17.88 s
(number 5)) and flight trotting (17.88-final). The numbers 1, 2, 3, 4 and 5 in (b,d,f) denote the peak
values of the corresponding posture (roll, pitch or yaw) after the gait transitioning. Furthermore, the
number 6 indicates the mean of the absolute value of the corresponding posture over the whole time.
(a) Changes in roll during gait transitioning at 1.2 m/s. (b) Comparison of the peak values of roll
after transitioning and mean of the absolute values of roll in the whole time for the two methods at
1.2 m/s. (c) Changes in pitch during gait transitioning at 1.2 m/s. (d) Comparison of the peak values
of pitch after transitioning and mean of the absolute values of pitch in the whole time for the two
methods at 1.2 m/s. (e) Changes in yaw during gait transitioning at 1.2 m/s. (f) Comparison of the
peak values of yaw after transitioning and mean of the absolute values of yaw in the whole time for
the two methods at 1.2 m/s.
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Figure 10. The figure shows the force changes in gait transitioning between flight trotting and trotting
at 1.2 m/s. The numbers 1, 2, 3, 4 and 5 in (a,c), indicate gait transitioning occuring. The horizontal
coordinate of these numbers in the diagram represents the exact time of the transitioning. The tran-
sitioning process is: trotting (0–1.4 s (number 1)), flight trotting (1.4–4.26 s (number 2)), trotting
(4.26–8.08 s (number 3)), flight trotting (8.08–10.94 s (number 4)), trotting (10.94–14.11 s (number 5))
and flight trotting (14.11-final). The numbers 1, 2, 3, 4 and 5 in (b,d) denote the peak values of the
corresponding forward forces or lateral forces after the gait transitioning. Furthermore, the number 6
indicates the mean of the absolute value of the corresponding forces over the whole time. (a) Change
in forward force at 1.2 m/s gait transitioning. (b) Comparison of the peak values of forward force
after transitioning and mean of the absolute values of forward force in the whole time for the two
methods at 1.2 m/s. (c) Change in lateral force at 1.2 m/s gait transitioning. (d) Comparison of the
peak values of lateral force after transitioning and mean of the absolute values of lateral force in the
whole time for the two methods at 1.2 m/s.

5.3. Walk with a Fixed Gait

The UPMPC can also be used for walking with a fixed gait. Let the gait be trotting and
the foot location planning method be UPMPC. In this gait the quadruped robot accelerates
from stepping in place to 1.6 m/s. Each speed increase is 0.1 m/s with time interval of
30 gait periods (12.6 s). The roll, pitch and yaw changes during this process are shown in
Figure 11.
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Figure 11. (a) The change of roll in trottting. (b) The change of pitch in trottting. (c) The change of
yaw in trottting.

The quadruped robot has a small spike at each acceleration and the amplitude of
the oscillation increases as the speed increases. Yaw has deviated from the stable value.
However, it basically oscillates back and forth around the stable value. The peak values of
posture has not yet exceeded ±0.03 rad (1.72 deg) which is so small that it can be ignored.
With the same control method, the use of UPMPC also allows the quadruped robot to
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advance at a uniform speed and accelerate steadily. Therefore, UPMPC can be applied not
only in the process of gait transitioning, but also in the planning of foot location under
fixed gait.

5.4. Discussion

Figure 12 is the gait transitioning between trotting and walking at 0.8 m/s. This figure
is different from Figure 6a. The gait transitioning using the HF in Figure 12a fails. The
three postures after the transitioning are a straight line with no change, indicating that the
quadruped robot is at stationary position. There is no command given after transitioning
in the simulation. Thus, the gait transitioning has failed and the robot falls to the ground.
It fails because of the large posture changes generated after the gait transitioning and the
foot-end forces do not provide good control of the posture. The gait transitioning using
the UPMPC in Figure 12b succeeds. However, the posture still face a huge oscillation. The
control method for the quadruped robot is MPC all the time. Despite the greater foot end
forces, the UPMPC planned foot location can perform gait transitioning tasks together with
the controller. Although the force is less, the gait transitioning using the HF cannot be
completed. It indicates that the foot location chosen by HF at this point is not reasonable.
The foot location and foot-end forces under the HF can not correct for postural deviations.
The HF cannot cope with this gait transitioning. Therefore the UPMPC’s choice of foot
location is still preferable to HF. The rest of the simulation results are in the Appendix A.
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Figure 12. The figure shows the posture and GRFs of trotting in a gait transitioning to walking
at 0.8 m/s. The number 1 in (a–d) indicate gait transitioning occuring. The horizontal coordinate
of the number 1 in the diagram represents the exact time of the transitioning. The transitioning
process is: trotting (0–28.3 s), walking (28.3-final). (c,d) only capture the GRFs near the transitioning
point to facilitate analysis of the forces, so the transitioning time is not consistent with (a,b). All
data in the plots are from the same dataset. (a) Posture change using the HF at 0.8 m/s gait
transitioning. (b) Posture change using the UPMPC at 0.8 m/s gait transitioning. (c) Change in
forward force at 0.8 m/s during gait transitioning. (d) Change in lateral force at 0.8 m/s during gait
transitioning. (e) Comparison of the peak values of roll, pitch and yaw for the two methods after
transitioning. The numbers 1, 2 and 3 on the horizontal axis in the graph represent roll, pitch and
yaw, respectively. (f) Comparison of peak values after transitioning for forward and lateral forces
under both methods. The numbers 1 and 2 on the horizontal axis in the diagram represent forward
and lateral forces, respectively.

6. Conclusions

Combining multiple gaits transitioning at various speeds, UPMPC performs better
than the HF in all cases. In particular, the gait transitioning between trotting and walking
cannot be done by the HF but can be done by UPMPC. Furthermore, it has much better
control over yaw and pitch than HF. At most gait transitioning, the mean of absolute values
of roll under UPMPC is smaller. UPMPC with fixed parameters is able to accommodate
gait transitioning between multiple gaits at a variety of speeds.

Despite the use of a simplified model to describe the kinematics and dynamics of
the quadruped robot, the UPMPC-planned foot location still meets the requirements for
gait transitioning and is better than HF. The use of the uniform foot location not only
speeds up the solution, but also converts the problem to be solved into a QP form with
a smaller matrix. The coordinates of the foot in the world coordinate system are used as
the optimization solution variable more in line with the actual situation. Due to the good
migration of the used platform, it is believed that UPMPC can be applied in real systems to
meet the need of gait transitioning on real world.
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Figure A1. The figure shows the posture changes in gait transitioning between trotting and flight
trotting at 0.4 m/s. The numbers 1 and 2 in (a,c,e) indicate gait transitioning occuring. The horizontal
coordinate of these numbers in the diagram represents the exact time of the transitioning. The transi-
tioning process is: trotting (0–1.80 s (number 1)), flight trotting (1.80–4.76 s (number 2)) and trotting
(4.76-final). The numbers 1 and 2 in (b,d,f) denote the peak values of the corresponding posture
(roll, pitch or yaw) after the gait transitioning. Furthermore, the number 3 indicates the mean of the
absolute values of the corresponding posture over the whole time. (a) Changes in roll during gait
transitioning at 0.4 m/s. (b) Comparison of the peak values of roll after transitioning and mean of the
absolute values of roll in the whole time for the two methods at 0.4 m/s. (c) Changes in pitch during
gait transitioning at 0.4 m/s. (d) Comparison of the peak values of pitch after transitioning and mean
of the absolute values of pitch in the whole time for the two methods at 0.4 m/s. (e) Changes in yaw
during gait transitioning at 0.4 m/s. (f) Comparison of the peak values of yaw after transitioning
and mean of the absolute values of yaw in the whole time for the two methods at 0.4 m/s.
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Figure A2. The figure shows the posture changes in gait transitioning between flight trotting and
walking at 0.4 m/s. The numbers 1 and 2 in (a,c,e) indicate gait transitioning occuring. The hor-
izontal coordinate of these numbers in the diagram represents the exact time of the transitioning.
The transitioning process is: flight trotting (0–1.88 s (number 1)), walking (1.88–5.12 s (number 2)) and
flight trotting (5.12-final). The numbers 1 and 2 in (b,d,f) denote the peak values of the corresponding
posture (roll, pitch or yaw) after the gait transitioning. Furthermore, the number 3 indicates the mean
of the absolute value of the corresponding posture over the whole time. (a) Changes in roll during gait
transitioning at 0.4 m/s. (b) Comparison of the peak values of roll after transitioning and mean of the
absolute values of roll in the whole time for the two methods at 0.4 m/s. (c) Changes in pitch during
gait transitioning at 0.4 m/s. (d) Comparison of the peak values of pitch after transitioning and mean
of the absolute values of pitch in the whole time for the two methods at 0.4 m/s. (e) Changes in yaw
during gait transitioning at 0.4 m/s. (f) Comparison of the peak values of yaw after transitioning
and mean of the absolute values of yaw in the whole time for the two methods at 0.4 m/s.
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Figure A3. The figure shows the posture changes in gait transitioning between trotting and flight
trotting at 0.8 m/s. The numbers 1, 2, 3, 4 and 5 in (a,c,e) indicate gait transitioning occuring. The hor-
izontal coordinate of these numbers in the diagram represents the exact time of the transitioning.
The transitioning process is: trotting (0–3.48 s (number 1)), flight trotting (3.48–6.77 s (number 2)),
trotting (6.77–10.28 s (number 3)), flight trotting (10.28–13.10 s (number 4)), trotting (13.10–16.61 s
(number 5)) and flight trotting (16.61-final). The numbers 1, 2, 3, 4 and 5 in (b,d) denote the peak
values of the corresponding posture (roll, pitch or yaw) after the gait transitioning. Furthermore, the
number 6 indicates the mean of the absolute value of the corresponding posture over the whole time.
(a) Changes in roll during gait transitioning at 0.8 m/s. (b) Comparison of the peak values of roll
after transitioning and mean of the absolute values of roll in the whole time for the two methods at
0.8 m/s. (c) Changes in pitch during gait transitioning at 0.8 m/s. (d) Comparison of the peak values
of pitch after transitioning and mean of the absolute values of pitch in the whole time for the two
methods at 0.8 m/s. (e) Changes in yaw during gait transitioning at 0.8 m/s. (f) Comparison of the
peak values of yaw after transitioning and mean of the absolute values of yaw in the whole time for
the two methods at 0.8 m/s.
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Figure A4. The figure shows the posture changes in gait transitioning between trotting and flight
trotting at 1.6 m/s. The numbers 1, 2, 3, 4 and 5 in (a,c,e) indicate gait transitioning occuring. The hor-
izontal coordinate of these numbers in the diagram represents the exact time of the transitioning.
The transitioning process is: trotting (0–3.57 s (number 1)), flight trotting (3.57–6.79 s (number 2)),
trotting (6.79–10.27 s (number 3)), flight trotting (10.27–13.09 s (number 4)), trotting (13.09–16.72 s
(number 5)) and flight trotting (16.72-final). The numbers 1, 2, 3, 4 and 5 in (b,d) denote the peak
values of the corresponding posture (roll, pitch or yaw) after the gait transitioning. Furthermore, the
number 6 indicates the mean of the absolute value of the corresponding posture over the whole time.
(a) Changes in roll during gait transitioning at 1.6 m/s. (b) Comparison of the peak values of roll
after transitioning and mean of the absolute values of roll in the whole time for the two methods at
1.6 m/s. (c) Changes in pitch during gait transitioning at 1.6 m/s. (d) Comparison of the peak values
of pitch after transitioning and mean of the absolute values of pitch in the whole time for the two
methods at 1.6 m/s. (e) Changes in yaw during gait transitioning at 1.6 m/s. (f) Comparison of the
peak values of yaw after transitioning and mean of the absolute values of yaw in the whole time for
the two methods at 1.6 m/s.
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Abstract: This paper presents the development of the JET humanoid robot, which is based on the
existing THORMANG platform developed in 2015. Application in the industrial and service fields
was targeted, and three design concepts were determined for the humanoid robot. First, low stiffness
of the actuator modules was utilized for compliance with external environments. Second, to maximize
the robot whole-body motion capability, the overall height was increased. However, the weight was
reduced to satisfy power requirements. The workspace was also increased to enable various postures,
by increasing the range of motion of each joint and extending the links. Compared to the original
THORMANG platform, the lower limb length increased by approximately 20%, and the hip range of
motion increased by 39.3%. Third, the maintenance process was simplified through modularization
of the electronics and frame design for improved accessibility. Several experiments, including stair
climbing and egress from a car, were performed to verify that the JET humanoid robot performance
enhancements reflected the design concepts.

Keywords: humanoid robots; robot design; legged robots

1. Introduction

Robots have many increasingly different applications. Recently, their feasibility in
various service and industry settings, where interaction with humans or environments is
required, has been explored. Among the many possible robot forms for these applications,
humanoids can be very effective as they have similar kinematic structures to humans.
That is, utilizing two arms and two legs, humanoid robots can perform various tasks
in a human-centered environment. In particular, the DARPA Robotics Challenge (DRC)
Finals in 2015 demonstrated the potential of humanoid robots for use in disaster-response
scenarios [1]. Furthermore, the use of humanoid robots in industrial applications, such as
airplane assembly and nuclear power plant cleaning, is now being actively investigated [2].

As humanoid robots are required to interact with people as well as the environment in
industry and service applications, both high performance and safety are important. Thus, several
design features should be considered: compliance with unexpected external forces, whole-body
motion capability through an increased workspace, and straightforward maintenance.

Compliance reduces the physical damage or instability from unexpected collisions
between the robot and external objects and is an essential design consideration for a hu-
manoid robot. There are two approaches to achieving compliance: hardware methods
using low-stiffness actuators and software approaches such as torque-based controllers and
impedance controllers [3,4]. Recently, a method for controlling compliant contact with ob-
jects has been proposed through an optimization-based approach [5]. In addition, artificial
intelligence-based methods of controlling desired compliance have also been introduced
for many applications [6]. However, software methods are limited by their dependence
on the performance of a sensory system, with their compliance bandwidth limited by
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those of the sensors and control systems. Furthermore, if a sensor malfunction or software
failure occurs, robot compliance cannot be guaranteed. Therefore, humanoid robots with
low-stiffness actuators have recently been developed [7,8].

Second, whole-body motion capability is fundamental for various tasks, and a large
robot workspace enhances this capability. In the DRC Finals, most teams reported whole-
body motion planning as a main factor determining manipulation capability in human-
centered environments [9]. For instance, the robot should have the capability to perform
complex tasks such as stair climbing, driving, and exiting a vehicle.

Finally, and most importantly, industrial and service humanoids should be easy to
maintain. As humanoid robots frequently interact with humans or objects, they require
periodic maintenance to avoid malfunction. Modularization is a dominant approach to
easy maintenance and is adopted for many robots [10].

In this study, the JET humanoid platform shown in Figure 1 is introduced to implement
the three features listed above. JET was developed on the basis of THORMANG, which
was developed by ROBOTIS and was modified by TEAM SNU for the DRC Finals [11].
Through the new design proposed herein, JET overcomes the THORMANG platform
limitations while conserving its advantages. The main aim of the new design is to acquire
more practical capabilities suited to industrial and service applications.

Figure 1. Humanoid robot JET.

The remainder of this paper is organized as follows. Section 2 describes the THOR-
MANG platform specifications and our design goals, while Section 3 presents the newly
developed JET humanoid robot design. Section 4 reports experimental validation of the
developed robot and Section 5 concludes the paper.

2. Design Goal Selection

This section presents the specifications of our previous humanoid robot platform,
THORMANG, and the design goals of our newly proposed humanoid robot for maxi-
mized performance.
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2.1. Limitation of THORMANG Platform

THORMANG, which was developed by ROBOTIS, is an open source platform hu-
manoid. This robot has two representative characteristics. First, THORMANG is modular
and can, therefore, be easily modified according to user aims. For example, although four
teams used the THORMANG platform at the DRC Finals (TEAM SNU, TEAM THOR,
TEAM, Hector, and TEAM Robotis), the robot shapes, sizes, and weights varied, as shown
in Figure 2 [11].

(a) (b) (c) (d)

Figure 2. THORMANG platform at DRC Finals in 2015: (a) THORMANG, TEAM SNU (1.47 m, 60 kg), (b) THOR-RD, TEAM
THOR (1.50 m, 54 kg), (c) Johnny05, TEAM Hector (1.47 m, 55 kg), (d) THORMANG2, TEAM ROBOTIS (1.60 m, 60 kg).

Second, THORMANG employs Dynamixel Pro, which is an actuator module devel-
oped as a commercial product by ROBOTIS. Dynamixel Pro has low stiffness, which is more
comparable to a series elastic actuator (SEA) than to other conventional electric actuators
with harmonic drives. The SHG-17-100-2SO harmonic drive, which has a similar torque
capacity to Dynamixel Pro, has a stiffness of 10,000 Nm/rad or higher [12,13]. In con-
trast, SEAs for humanoids have a lower stiffness of 500–10,000 Nm/rad [14,15]. Notably,
the H54-200-S500-R Dynamixel Pro stiffness is 900 Nm/rad, on a similar scale as the
COMAN and WALKMAN SEAs [16]. As mentioned above, mechanical compliance from
low-stiffness actuators aids robot control in complex multiple-contact situations, as it can
provide robustness to the disturbance caused by unexpected contact with external objects.

However, the THORMANG platform has several limitations in terms of robot perfor-
mance. First, the robot kinematic structure is not suited to various tasks in human-centered
environments such as industrial and service sites. Humanoids require whole-body motion
capability to perform diverse tasks, but the THORMANG leg length is insufficient and the
joint ranges are limited. In the DRC Finals, all THORMANG-based robots failed the egress
task, as detailed in Table 1, because the robot could not reach the floor while sitting in the
vehicle. Further, the stair task, which required the robot to climb a staircase, was one of
the most difficult tasks for the THORMANG-based designs because of their short legs and
narrow workspace [11]. To statically climb the stairs, the knees required sufficient bending
for lateral movement. To move the center of mass (COM) over the feet on the stairs, it
was necessary for the leg joints to rotate by more than the shorter length between the hip
and foot. On a step with a 24 cm height, self-collision of the hip and knee joints occurred
because of the short legs of the THORMANG design.

Second, unmeasurable deformation occurred at the hip joints because of the high
lower body weight and actuator module compliance. The lower body of the original THOR-
MANG platform consists of two lithium polymer (LiPo) batteries (22,000 mAh, 22.2 V) and
heavy links [17]. Therefore, when the robot walks, the pelvis tilt is so extensive that control
of the swing foot is very difficult. During the DRC competition, most THORMANG-based
robots, excluding that of TEAM SNU, fell when walking.
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Table 1. Scores of THORMANG-based teams in DRC Finals. Team SNU successfully performed
4 missions (O), but failed 4 missions (X), including the egress task.

Mission Team SNU Team ROBOTIS Team THOR Team HECTOR

Driving O O O O
Egress X X X X
Door O O O X
Valve O O O X
Wall O X X X

Surprise X X X X
Rubble X X X X
Stairs X X X X

Score 4 3 3 1

Therefore, we concentrated on developing our hardware to upgrade the performance
and overcome the above limitations.

2.2. Design Goals

In addition to overcoming the above THORMANG limitations, to achieve compli-
ance, whole-body motion capability, and easy maintenance, as mentioned in Section 1,
the following three philosophies were adopted as the JET design goals.

First, increasing the lower body workspace allows a robot to fit various situations.
As main structures such as stairs, seats, and ladders are designed for humans, a proper leg
length is advantageous. Furthermore, the robot range of motion (ROM) can be increased
by avoiding self-collision. Hence, the designed robot can perform various motions such as
full squats.

Second, robot weight reduction is necessary for increased energy efficiency and to al-
leviate actuator loads. However, increasing the link length to enhance the robot workspace
can overload the actuators. To solve this problem, we considered better weight distribution
as well as weight reduction for JET.

Third, easy maintenance is important for increased economic feasibility. Thus, the JET
links are composed of many small parts. We designed most link parts to have a flat shape
for easy laser cutting, which is cheaper and quicker than milling. Additionally, the frames
containing actuators and circuits were designed to be easily removable for easy disassembly
and assembly.

3. JET Design

As detailed in Table 2, the height, weight, and wingspan of the developed robot are
1.63 m, 48 kg, and 2.12 m, respectively. Other robots, including TALOS, HRP-5P, and
former THORMANG platforms, and human characteristics are also shown in Table 2.
Similar to the THORMANG platforms, TALOS is a commercial off-the-shelf research
platform which is developed by PAL-Robotics [18]. HRP-5P is an adult-sized humanoid
developed to realize the use of humanoids in large-scale assembly industries. Compared
with the THORMANG of Team SNU, JET is taller and lighter. However, JET is heavier
than THORMANG3, the latest released version from ROBOTIS because THORMANG3 is
the shortest platform among all of the THORMANG platforms. Both THORMANG3 and
JET are developed on the basis of THORMANG, but THORMANG3 is designed to focus
on increasing speed by reducing size. On the other hand, JET is designed to focus on the
workspace to conduct difficult tasks, such as egress from the vehicle and climbing stairs
in the DRC Finals, for THORMANG due to its small size. With a similar leg length to JET,
TALOS is taller but much heavier due to stronger actuators and torque sensors. Developed
to perform a variety of industrial tasks with a wide joint range, HRP-5P has 23 mm longer
legs, and it is taller than JET. However, HRP-5P is much heavier due to its larger degrees
of freedom (DOF) and stronger actuators. Notably, the JET height, weight, and leg length
are similar to the averages for Korean young women aged 20–24 [19]. Due to the torque
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capacity of the hip pitch joint, the length of each link in the shin and thigh was adjusted.
Therefore, the JET hardware specifications are suitable for performance of various complex
tasks in a human-centered environment.

Table 2. Comparison of JET, THORMANG (Team SNU), THORMANG3, TALOS, HRP-5P, and average Korean young
female (aged 20–24) characteristics.

JET THORMANG THORMANG3 TALOS HRP-5P Korean
(Team SNU) [20] [21] Young Female

Height (m) 1.63 1.47 1.38 1.75 1.83 1.61
Weight (kg) 48 60 42 95 101 55

Wingspan (m) 2.12 1.95 1.69 2.1 - 1.62
Leg length

(mm) 839 696 716 837 862 799

Thigh length
(mm) 370 300 300 380 380 384

Shin length
(mm) 373 300 300 325 380 352

Foot height
(mm) 96 96 116 132 102 63

Degree of
freedom 32 32 32 31 37 -

Figure 3 shows the JET joint configuration, which consists of a total of 32 DOF,
excluding the LiDAR actuator. There are eight joints in each arm with the end-effectors, six
in each leg, two in the waist, and two in the head. In the waist, we used two DOF joints in
the yaw and roll directions to increase not only the bipedal walking stability but also the
robot workspace [22].

(a) Joint configurations (b) Link length

Figure 3. Kinematic structure of JET.

The following subsections present details of the proposed hardware, i.e., the electrical
system and lower and upper body designs.
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3.1. Electrical System Design

Figure 4 shows the overall electrical system of JET. A mini-ITX PC is used as the
computing system, with the computer board being placed at the front of the robot’s chest.
The computer CPU is an Intel Core i7-4790 Processor (3.6 GHz) to provide sufficient com-
putation performance for robot control. The computer is equipped with a SENSORAY 826
DAQ board for acquiring analog sensor data and a DIAMOND DS-MPE-OPT4485 4-Port
RS-485 MiniCard Module for actuator communication. Using a PCIe-based communication
interface, JET can be controlled with a 200 Hz command rate. In contrast, the THORMANG
command rate is 100 Hz [11].

Figure 4. Electrical system diagram of JET.

To supply power to the robot, we designed a power system including regulators
and a battery. To connect the battery, electronics, and regulators, wire connectors were
unified with the same actuator connectors. Parts unification is a well-known method
of reducing both manufacturing cost and maintenance. In the JET system, one LiPo
(22,000 mAh, 22.2 V) battery supplies power to all actuators and voltage transformer mod-
ules. A voltage transformer module is composed of three DC–DC converters. To match the
computer ground level with the actuators, two 12 V converters are nonisolated. However,
the converter for the FT sensor interface is isolated to reduce the FT sensor power source
noise. The sensor ground level is matched with the main ground via the DAQ board.
The LiPo battery has excellent discharge performance and small voltage fluctuation, even
under high load. On standby, JET consumes 5 A (0.2 C). The peak current while walking
is 9 A (0.4 C); this is a small current compared to the LiPo battery discharge rate. Thus,
the battery voltage fluctuations due to the discharge rate are sufficiently small to integrate
the actuator power source with the computer source. With a fully charged LiPo battery,
JET can stand for 4 h.

The sensory system required for humanoids includes an environment perception sensor
and a measurement sensor of the robot state. Three sensor types are used for the perception
system: one LiDAR, one IMU, and four FT sensors. A HOKUYO UTM-30LX-EW sensor,
which is a 2D LiDAR, is mounted at the head to acquire 3D point cloud data of the robot
surroundings; this is achieved by continuously rotating the sensor about its vertical axis.
To facilitate continuous LiDAR rotation, a slip ring is used to connect the electric wires.
A MicroStrain 3DM-GX4-25 IMU is placed at the robot coordinate origin in the pelvis. Finally,
ATI Mini 58 and Mini 45 FT sensors are mounted on both feet and hands to measure the forces
acting on the feet and wrists. Further system integration and software development details
are given in our previous paper [23]. Using a robot operating system (ROS)-based system
framework, JET can be controlled stably with many sensors and actuators.
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3.2. Lower Body Design

The lower body design goal was to achieve a wide ROM. To accommodate various
environments and obstacles tailored to an adult body, a wide lower body workspace is
required. The foot workspace can be extended by increasing the leg length or by increasing
the joint ROM. However, in the case of JET, the lower body length is limited by the robot
actuator. Therefore, to secure a large working space, the ROM of each joint must be increased.

JET has the same hip joint structure as THORMANG. The hip joint consists of two
actuators in roll-pitch order, as shown in Figure 5a, and each axis of rotation is orthogonal
at the initial position. To increase the ROM, an S-shape thigh frame was devised, as shown
in Figure 5b. This thigh frame reduces interference between the motor and thigh frames,
thereby increasing the hip joint ROM, as shown in Figure 5c. Figure 6 compares the JET,
THORMANG, THORMANG3, and TALOS ROMs. Because of self-collision, the ROM of
one joint is not independent of another joint position. Thus, thigh frame was designed for
ROM expansion when both hip joints bend. Hence, the ROM of the two hip joints was
expanded by 39.3% and 36.7%, respectively, compared to THORMANG and THORMANG3.
The hip joint ROM of TALOS, which is introduced in [18], is also smaller than the ROM
of JET. The authors of [21] developed HRP-5P, which has 14.8% larger hip roll ROM than
that of JET when the pitch angle is 110◦. JAXON3-P, which has a 1.7 m height and 70 kg
weight, also has 14.8% larger hip roll ROM than that of JET when the hip pitch is 110◦ [24].
To increase the knee ROM, the curves of the back of the thigh and shin frame were designed
similarly, and the knee actuator was relocated from the shin to the thigh. These changes
allow JET to perform more varied postures than THORMANG.

THORMANG has a larger upper-to-lower body height ratio than that of a typical
young female with similar height, at 1:0.79 compared to 1:1, respectively. The large head,
which includes many cameras, is one of the reasons for this difference. Generally, a hu-
manoid robot with a shorter pelvis and lower shoulder height than humans has perfor-
mance limitations for various tasks involving human life tools such as ladders and stairs.

(a) lower body standby posture (b) JET thigh design

(c) Wide range of lower body motion

Figure 5. Lower limb design: (a) lower body standby posture, (b) thigh design, (c) lower body
squatting pose. The lower body frames were designed to avoid self-collisions. In particular, the thigh
frames were designed such that the link front surfaces are perpendicular to the ground.
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Figure 6. ROM comparison for JET, THORMANG, THORMANG3, TALOS, HRP-5P, and
JAXON3-P hip joints.

The JET lower body design is based on the average body proportions of a young
female for more natural behavior in industry and service applications. Thus, the lower
body is lengthened from 696 to 839 mm compared to THORMANG. The the thigh length
to shin length to ankle joint height ratio is 1:1:0.26, which is adjusted to the average ratio
for a young female. Figure 3b shows the length of each part. With this leg length increase,
the upper-to-lower body height ratio is almost 1:1.

In addition to the functional advantages, the S-shape thigh frame has aesthetic benefits,
having a fuller shape than that of the shin and human-like body proportions. As shown in
Figure 5c, the S-shape thigh frame seems to be stretching the knees in the standby pose,
because the thigh front surface is perpendicular to the ground.

3.3. Upper Body Design

JET features a yaw and roll combination in the waist for the following reasons. First,
downward tilting of the upper body in the forward direction is difficult, because the
actuator has limited maximum torque. However, the waist pitch motion can be generated
by the two hip pitch actuators. Second, the upper body roll motion is useful to control the
center of mass in the lateral direction during walking [22,25]. This also extends the arm
reach in the vertical direction. Finally, the yaw motion is useful to reverse the upper body
orientation to avoid collision between obstacles and the shin, which protrudes during knee
bending [11,26].

For easy maintenance, most electronic components are located on the open side of the
torso. The advantage of this is that most electrical components can be accessed without
disassembling the entire frame. The part where the circuit is fixed is modularized for easy
assembly and disassembly. Figure 7 shows the torso and modularized computer design,
which allows easy removal of the computer module from the robot.
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thin plate frame1

2

Figure 7. Exploded view of computer module. The modularized computer board can be sideways-
disassembled by removing four bolts.

3.4. Design for Load Alleviation

Greater leg length increases the moment of inertia as well as the gravity load of the
same joint space configuration. As JET employs the same actuators as THORMANG, it
was essential to alleviate the load in accordance with the actuator capacity. The frame
weight was reduced by adding polygon holes. Through finite element analysis (FEA),
a lightweight link was created that could maintain the strength to withstand an applied
load without excessive deformation.

Figure 8 shows the overall weight proportions of each JET component. The actuators
occupy more than 50% of the total robot weight. As the ratio of the actuators to the total
weight is significant, the actuator arrangement played an important role in load reduction.
In various studies, four bar linkages or ball screws have been used to position the actuators
close to the first limb joint [27,28]. Although transmission helps reduce inertia, these
approaches increase the overall weight and mechanical element number. Such changes
would complicate achievement of the design goals in this case.

Figure 8. JET weight proportions.

Therefore, the JET actuators were placed as close as possible to the parent joint. How-
ever, a simple structure is maintained. As shown in Figure 9, various actuator arrangements
are possible. The JET actuator positions are colored blue, and the worst cases, with maxi-
mum inertia, are colored orange. The inertia values at the hip and shoulder calculated for
each case are listed in Table 3. Note that all values were calculated from the initial pose,
with full extension of the robot legs and arms.
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(a) (b) (c)

Figure 9. Possible actuator arrangements, blue for JET and orange for bad case: (a) Knee actuator
arrangements, (b) Forearm actuator arrangements, (c) Arm actuator arrangements.

For example, the total inertia of the entire leg at the hip roll joint is 2.53 kgm2 for
the blue case, with a knee-actuator inertia of 0.22 kgm2. For the orange case, however,
the knee actuator contributes 0.34 kgm2 to the total inertia with respect to the hip roll
joint. Therefore, the inertia due to the knee actuator increases by 50%, and the total inertia
increases by 5%. The foot has a major effect on the total inertia. When the robot bends its
knees, the proportion of inertia due to the knee actuator increases. Note that the total inertia
decreases when the knees bend, but the inertia due to the knee actuator is independent of
the joint configuration. Therefore, the proposed design has a greater impact in the walking
configuration. Similar to the knee actuator, the forearm and arm actuator positions affect
the inertia at the shoulder joint. Without weight reduction, inertia reduction is achieved
through actuator rearrangement.

Table 3. Comparison of inertia values for various actuators and arrangements.

Joint Inertia (kg m2) Joint Inertia (kg m2)
for Blue Case for Orange Case

(Total/Actuator) (Total/Actuator)

Hip roll
(Knee actuator) 2.53/0.22 2.65/0.34

Hip pitch
(Knee actuator) 2.53/0.22 2.65/0.34

Shoulder pitch
(forearm actuator) 1.13/0.08 1.26/0.20

Shoulder pitch
(arm actuator) 1.13/0.02 1.26/0.03

Shoulder roll
(forearm actuator) 1.15/0.08 1.29/0.20

Shoulder roll
(arm actuator) 1.15/0.02 1.29/0.03

Although each JET link was lengthened, the entire link weight is 3 kg less than that
of THORMANG. We designed a frame with polygonal-shaped holes, not only for weight
reduction but also to enhance the actuator connector accessibility. The actuator modules
were utilized as the frame itself to reduce the weight. Thus, in the final design, most
actuator modules are exposed. Hence, most actuators can be easily disassembled and
replaced. For safety, every frame was assessed via FEA to confirm a yield strength with a
gravity load.

Most frames were designed to have flat plate shapes for cheap fabrication. These flat
frames were manufactured by laser cutting, which is faster and cheaper than CNC milling.
Sanding is essential for laser cut frames to remove the roughness of the laser cut surface.
However, both rough and sanded surfaces are too inaccurate for assembly. Therefore, we
designed flat frames that do not require high edge tolerance for assembly. This design
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approach allowed us to manufacture complex links, such as the thigh links in Figure 5b,
at low cost.

To reduce the total weight, the battery capacity was reduced from 44,000 to 22,000 mAh.
THORMANG utilizes two low-performance computers. However, JET features one high-
performance computer. Additionally, for weight reduction, JET has no bumpers. Therefore,
the total JET weight is 12 kg lower than that of THORMANG.

3.5. Design for Maintenance

Sections 3.1, 3.3 and 3.4 describe the electric connector frame design and unification.
In addition to the above design approaches, the number of bolt types used for assembly
was also limited. Dynamixel Pro requires M3 bolts. Thus, many of the bolts for the frames
were selected to have an M3 size. Overall, more than 95% of the bolts in the finalized
design are M3. Further, more than 90% of the bolts are the same size, with one of three
different lengths: 6, 8 and, 12 mm. Thus, only one tool is required to disassemble most of
the actuators.

4. Performance Demonstrations

This section reports and discusses several experiments performed to demonstrate
the performance of the developed hardware. In particular, to assess the compliance and
whole-body motion capability, various tests involving locomotion, stair climbing, exiting a
vehicle, etc., were performed.

As mentioned in Section 1, compliance reduces physical damage or instability from
unexpected contacts. Therefore, compliance helps increase robot stability and balance
during contact situations. However, compliance from low-stiffness actuators in the sup-
porting limb often causes problems during humanoid bipedal walking, which degrades
the performance and stability. To overcome this problem, in a previous work, we presented
the actuator elasticity compensator [16].

To enhance the swing leg compliance and overcome the negative features of the sup-
porting leg, the following studies were conducted. External joint encoders were installed to
measure the actuator deformation [23]. A linear quadratic regulator (LQR)-based trajectory
tracking controller and disturbance observer (DOB)-based compliance controller, which
were presented in our previous work [29], were also employed, along with a walking
pattern generator with improved stability proposed by Kim et al. [30]. Using these new
algorithms, JET can walk faster and with better stability than THORMANG. To minimize
the COM velocity fluctuation, model predictive control-based pattern generation was
developed and verified for JET [31].

Whole-body motion capability was verified through the following experiments. Stair
climbing and egress experiments were chosen among the DRC Finals missions. Both
tasks were the hardest tasks in the DRC Finals because THORMANG has short legs for
these missions. First, the lower body workspaces were validated through stair climbing
experiments on 23 cm high stairs, which were the same height as the stairs used in the DRC
Finals. As shown in Figure 10, JET walked up the stairs without any of the THORMANG
strategies applied at the DRC. That is, THORMANG climbed the stairs without bumping
into the stairs themselves by grabbing the rails and walking backwards [11]. The required
foot workspaces of the JET for climbing stairs are ±30 cm for x-axis, ±17 cm for y-axis, and
23 cm for z-axis as shown in Figure 10. The x and z axis workspaces are determined by the
dimensions of the stairs. Figure 11 shows the total foot workspace of JET, THORMANG,
and HRP-5P and the required workspaces of the robots. In Figure 11d, JET has a 32 cm
z-axis workspace from −75 cm to −43 cm. In the same way, HRP-5P has a 34 cm z-direction
workspace from −77 cm to −43 cm, but THORMANG has only a 17 cm z-direction
workspace from −59 cm to −42 cm. In this experiment, JET used the same walking pattern
generation algorithm which was used at the DRC Finals [11].
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Figure 10. Snapshots of stair climbing test.

Figure 11. Comparison of foot workspace among JET, THORMANG, and HRP-5P. (a–c) are the
total foot workspaces of JET, THORMANG, and HRP-5P. (d–f) are the required workspaces with
60 cm × 34 cm on x- and y-axis.

Next, we confirmed the robot could rise from a 64 cm high vehicle seat using whole-
body motion with multiple contacts. Figure 12 shows snapshots of the robot egress from
the vehicle. In this experiment, the robot performed whole-body motion with contacts
at the gripper, pelvis, and two feet. The gripper holds the hand rail to stabilize the body
during the JET stand-up. This demonstrated not only the improved robot workspaces,
but also the robot’s capability to execute compliant motion in multiple-contact situations.
In this experiment, the personal mobility vehicle which was designed for adults is used.
The height of the vehicle seat is 56 mm, which is shorter than the fully stretched leg length
of THORMANG.

In Figure 13, JET manipulated objects with the gripper developed by Kim and Park
and teleoperation systems [32]. Videos of experiments on manipulation and locomotion can
be viewed at https://youtu.be/jWbCwT1IYJ4 (accessed on 1 July 2021), https://youtu.be/
T48uXPhgeoU (accessed on 1 July 2021), and https://youtu.be/ZfyvAklrUBQ (accessed
on 1 July 2021).
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Figure 12. Snapshots of egress test with personal mobility. Videos can be seen at https://youtu.be/6NWdPNTjnjs (accessed
on 1 July 2021).

Figure 13. Manipulating objects with teleoperation.

5. Conclusions

We developed the JET humanoid robot, which is based on the THORMANG platform.
To develop JET, the limitations of THORMANG were considered, as revealed by our
experiences at the DRC. However, THORMANG has the advantage of easy maintenance
as it employs the Dynamixel commercial modular actuator. To retain the advantages of
THORMANG but overcome its platform limitations, three design goals were identified
with the aim of effective application to the industrial and service fields: compliance, whole-
body motion capability, and easy maintenance. To achieve compliance, the Dynamixel low
stiffness was utilized to achieve compliance with external environments.

To overcome the small workspaces of THORMANG, the overall height was increased.
However, the weight and inertia were reduced to satisfy the power requirement. Notably,
load alleviation is essential for a taller robot with the same actuators. The leg-joint ROM
was also increased to achieve a larger lower limb workspace.

Both manufacturing and maintenance methods were considered for the JET design.
The frame was designed to provide easy access to the electronics, including the computer,
power modules, and actuators. With this exposed design, the modular actuators can
be replaced easily. Further, by limiting the number of electric connector and bolt types,
the number of parts required for actuator replacement was reduced. The number of
links requiring manufacture with expensive CNC milling was reduced through the use of
flat-plate-shaped links, which can be manufactured through low-cost laser cutting.

Several experiments were conducted to verify the enhancements of the JET humanoid
robot based on the above three design concepts. Compliance and enhanced whole-body
motion capability were observed for stair climbing and egress from a personal mobile
vehicle. In addition, the entire system was verified through a teleoperation test. These
experiments validated the JET performance.

As a future study, an optimization-based control and path generation algorithm to improve
walking speed and stability will be developed based on the JET proposed in this paper.
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Abstract: Although the solution of inverse kinematics for a serial redundant manipulator has been
widely researched, many algorithms still seem limited in dealing with complex geometries, including
multi-finger anthropomorphic hands. In this paper, the inverse kinematic problems of multiple
fingers are an aggregate problem when the target points of fingers are given. The fingers are
concatenated to the same wrist and the objective is to find a solution for the wrist and two fingers
simultaneously. To achieve this goal, a modified immigration genetic algorithm based on workspace
analysis is developed and validated. To reduce unnecessary computation of the immigration genetic
algorithm, which arises from an inappropriate inverse kinematic request, a database of the two
fingers’ workspace is generated using the Monte Carlo method to examine the feasibility of inverse
kinematic request. Furthermore, the estimation algorithm provides an optimal set of wrist angles for
the immigration genetic algorithm to complete the remaining computation. The results reveal that
the algorithm can be terminated immediately even when the inverse kinematic request is out of the
workspace. In addition, a distribution of population in each generation illustrates that the optimized
wrist angles provide a better initial condition, which significantly improves the convergence of the
immigration genetic algorithm.

Keywords: inverse kinematics; genetic algorithm; workspace analysis; multi-fingered anthropomor-
phic hand

1. Introduction

The solution of inverse kinematics (IK) is one of the most critical and elemental
issues in robotics. Many related research areas such as motion planning, robotic grasping,
manipulation, and manufacturing are all involved in IK. The IK of a manipulator is used to
find the map between the joint coordinate (θ) and the Cartesian coordinates (x, y, z), where θ
represents the joint angles of each joint in the manipulator and (x, y, z) represent the position
of the manipulator’s end-effector. While most IK solutions are performed on simple
manipulators, several studies focus on redundant manipulators. For a redundant robot,
in addition to the basic accurate positioning, different requirements such as computation
time, robustness, and minimum displacement are considered suboptimal conditions. One
of these complex redundant manipulators is the multi-fingered anthropomorphic robotic
hand, whose joints of fingers move simultaneously and two wrist joints are deemed as
the base of the hand. To obtain the IK solution of the anthropomorphic hand, a robust
algorithm is essential to solve this multiple end-effector problem.

Traditionally, there are three kinds of methods used to acquire the IK solutions of
a redundant manipulator, namely, the algebraic [1,2], geometric [3], and iterative meth-
ods [4–7]. Each of them has its own advantages and disadvantages. For example, the
algebraic method can derive a closed-form solution from a Denavit and Hatenberg (D–H)
table [8] and, thus, offers efficiency in computation. However, the algebraic method cannot
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guarantee a closed-form solution for all configurations of manipulators. On the other
hand, the geometric method can obtain a closed-form solution, while it is usually limited
in specific configurations such as sphere–revolute–sphere manipulators. Likewise, the
iterative algorithm utilizes local linearization to get a linear trajectory, and it is suitable for
most manipulators. Nevertheless, the iterative method may encounter a singularity prob-
lem in which it can accidentally converge to the same solution if the same initial point is
given. All of these traditional methods have one point in common, i.e., high computational
efficiency, but they all inevitably suffer from certain restrictions. Alternatively, thanks to
the advancement of computer hardware, compute-intensive algorithms can come in handy.
For these reasons, although the computation is intensive, researchers have focused on
using biologically inspired optimization to solve the IK problem.

Recently, many papers associated with neural networks [9–13] and evolutionary
algorithms [14–18] have been published to allow obtaining the IK solution of redundant
manipulators with some convincing results. KöKer [19] presented a hybrid approach
using neural networks and the genetic algorithm (GA) to solve the IK problem under the
consideration of error minimization in the end-effector. Three Elman neural networks
were applied to create the floating-point initial population for the GA. The simulation
experiments were performed on a six-axis serial robot and showed a critical high precision.
Tabandeh et al. [20] presented an adaptive niching strategy to acquire several possible
solutions to IK problem. By using the niching genetic algorithm accompanied by the quasi-
Newton algorithm, the precision and resolution of the simulation results were improved
dramatically. A sequential mutation genetic algorithm combined with an extreme-learning
machine was presented by Zhou et al. [21]. In their study, the extreme-learning machine
first computed the preliminary IK solution. With the use of the simple GA, the refined
solution was optimized. The grasping experiments were then conducted on the 6 degree of
freedoms (DOFs) Stanford MT-ARM robotic manipulator, from which an improvement in
the computational time without reducing the accuracy of IK solutions was demonstrated.
Momani et al. [17] provided a continuous genetic algorithm to solve the IK problems of a 3R
planar manipulator. The continuous genetic algorithm operators used in the initialization
phase, crossover, and mutation were designed to smoothen the joint space while the
Cartesian path was kept accurate.

Although the aforementioned algorithms made a great contribution to solving the IK
of redundant robots, they focused only on single kinematic chain redundant manipulators
which are widely used in industry. For instance, the most common applications using GA
to solve the IK problem are 6-DOFs manipulators, although there are closed-form solutions
already; this can also be found in 7-DOFs manipulators, for which GA is quite applicable
because it includes one redundant DOF in the joint space when the end-effector moves in
the Cartesian coordinate system. Given that previous research did not consider the inverse
kinematic problem of multiple manipulators such as robotic hands and dual-arm robots,
further investigation on the IK problem of multiple kinematic chain manipulators is crucial.
The other drawback of GA is its ignorance of an unreachable target. Specifically, GA is
implemented regardless of feasibility, which is a fatal flow in solving the IK problem of
a dual-arm robot. Without checking the viability in advance, it is frequently found that,
when two target points are given to each arm, only one arm can reach the target point while
the other one fails because of the limited range of motion. Therefore, feasibility analysis
beforehand is indispensable.

In this paper, a workspace-analysis-based immigration genetic algorithm (IGA) is
proposed to solve the inverse kinematics of a multi-fingered anthropomorphic hand. The
architecture of the proposed algorithm is divided into two stages, namely, the offline stage
and the online stage. In the offline stage, workspaces of the exemplary index finger and the
thumb are established by the Monte Carlo method and stored in a database for the feasibility
check. In the online stage, a feasibility estimation function examines whether the IK request
is out of the workspace or not. If the request is unreachable, the algorithm is suspended
immediately. Conversely, with a reachable request, the feasibility function provides a better
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initial condition for the IGA to get high-precision IK solutions. This paper aims to solve
the IK problem of multiple chain manipulators and to provide a mechanism that can avoid
unnecessary computation if the target point is inappropriate. Meanwhile, the proposed
mechanism can offer a superior range to variables, which improves the convergence
of the IGA. The performance of this algorithm is validated through simulations, which
include both reachable and unreachable IK requests. A population distribution during the
evolutionary process is conducive to the understanding of the improvement in convergence.

The remainder of this paper is organized as follows: in Section 2, the configuration of
the anthropomorphic hand is described, and the IK problem is defined. In Section 3, the
establishment of the workspace and mechanism to check the feasibility is explained. Sec-
tion 4 introduces the architecture of the proposed algorithm and illustrates details of each
operator in IGA, while Section 5 presents the simulation results of the proposed algorithm
applied to several IK requests. Lastly, the contributions of this paper are summarized in
the conclusion.

2. Problem Formulation

In this section, the geometric description of the anthropomorphic hand and the sce-
nario of the motion task are discussed. The anthropomorphic hand is designed according to
the human hand anatomy. In this anthropomorphic hand, the wrist mechanism is designed
to possess two degrees of freedom in order to mimic the motion of a human’s wrist. For
fingers, the thumb and index finger each has three joints, namely, the metacarpophalangeal
(MCP), the proximal interphalangeal (PIP), and the distal interphalangeal (DIP) joints,
as shown in Figure 1. Among these three, the PIP and DIP joints of a human finger are
anatomically coupled by a tendon. As a result, to mimic a human finger’s anatomy, the
design of a four-bar linkage mechanism to create coupled motion by a ratio of 1:1 is adopted
in this research, whereby θt3 is equal to θt4 and θi3 is equal to θi4, where subscript t stands
for thumb and i stands for index finger. As many dexterous gestures and tasks are executed
by the thumb and index finger, such as picking up small items and handling a key, the
kinematics of the thumb and index finger of the anthropomorphic hand is the main focus
of this paper. The other fingers, i.e., the middle finger, ring finger, and little finger, could
also be taken into consideration for the IK problem by using the same procedure presented
in this study. However, to fix ideas and to convey the concept clearly, the remainder of this
paper uses only the thumb and index finger as examples for simplification.

 
(a) (b) 

Figure 1. Schematics of (a) the design and (b) the kinematic structure of the model anthropomorphic
hand.

In this study, the target points of the index finger and the thumb are given at the
same time as the inverse kinematic requests and the associated task space is restricted only
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to a translation of posture. Because both the index finger and the thumb are connected
to the wrist, it is evident that the robotic hand has multiple serial kinematic chains, and
each of them is dependent. In other words, the tips of both the index finger and the
thumb comprise the same angle θw1 and θw2, where the subscript w represents the wrist.
Mechanically, the inverse kinematics of the two fingers are highly coupled.

With the problem described according to Cartesian coordinates, an IGA is then used
to solve this highly nonlinear and coupled inverse kinematics. However, from theory, an
IGA always returns a minimum value that it has computed even if the target point is out of
the workspace. To avoid this ambiguous situation, a procedure to generate the workspace
is proposed, and a technique to check the feasibility to assist the computation of the inverse
kinematics is discussed in the next section.

3. Workspace Analysis

3.1. Forward Kinematics

Through kinematic analysis, the relationship between the position of the end-effector
and the angles of each joint can be easily defined for a robot. The kinematics can be
conducted using two analyses, namely, forward kinematics analysis and inverse kinematics
analysis. The forward kinematics analysis allows one to obtain orientation and translation
of the end-effector on the basis of the given angles of joints. Therefore, the workspace of
the fingers is easily acquired using the forward kinematics analysis.

Before analyzing kinematics, the problem must be formulated using a mathematic tool.
Denavit and Hatenberg in 1995 introduced the convention for two spatial coordinates [8].
From this convention, a matrix, which contains the information on the translation and
rotation, can be obtained. To access the values of the D–H parameters, the coordinate
of each joint must be defined first. The long axis of each cylinder, as shown in Figure 1,
represents the rotational direction of each joint for the index finger and the thumb. Tables 1
and 2 give the geometric parameters of the index finger and the thumb, respectively. The
forward kinematic model of the index finger or thumb is given through D–H parameter
convention, and the transformation between adjacent i-th and (i − 1)-th joint coordinate
systems can be written in the form of the following homogeneous transformation matrix:

i−1Ti(θi) =

⎡
⎢⎢⎣

cosθi −sinθicosαi sinθisinαi aicosθi
sinθi cosθicosαi −cosθisinαi aisinθi

0 sinαi cosαi di
0 0 0 1

⎤
⎥⎥⎦, (1)

where αi, ai, θi, and θi are D–H parameters. From Tables 1 and 2, one can observe that
each finger has six joints from the base to its fingertip. Starting from joint 0 to joint 5, the
homogeneous transformation matrix 0T5 can be written as

0T5 = 0T1·1T2·2T3·3T4·4T5 =

⎡
⎢⎢⎣

nx ox ax Px
ny oy ay Py
nz oz az Pz
0 0 0 1

⎤
⎥⎥⎦, (2)

where (Px Py Pz)
T is the position vector of the fingertip measured from the base coordinate

system. By giving many sets of joint angles, the workspace of the finger can be collected
through the forward kinematics analysis.

3.2. Database Collection

The workspace of the robot mathematically represents all possible solutions of loca-
tions that the robot’s end-effector can reach in space. To ensure that the finger of the model
anthropomorphic hand can reach the target points, careful analysis of its workspace is
crucial.
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Table 1. Denavit and Hatenberg (D–H) table of the index finger.

Joint i αi (◦) ai (mm) θi di (mm) Range

0 90◦ 33 θw1 0 −60◦ to + 60◦
1 −90◦ 93 θw2 38 −60◦ to + 90◦
2 90◦ 15.5 θi1 −4 −45◦ to 0◦
3 0 20 θi2 0 0◦ to + 90◦
4 0 25 θi3 0 0◦ to + 90◦
5 0 36 θi4 0 0◦ to + 90◦

Table 2. D–H table of the thumb.

Joint i αi (◦) ai (mm) θi di (mm) Range

0 90◦ 33 θw1 0 −60◦ to + 60◦
1 90◦ 1.8 θw2 38 −60◦ to + 90◦
2 −90◦ 21 θt1 31 −30◦ to + 90◦
3 0 20 θt2 0 −90◦ to 0◦
4 0 25 θt3 0 −90◦ to 0◦
5 0 36 θt4 0 −90◦ to 0◦

The conventional workspace analysis is to find the range of the locations according
to all joints. For example, the dual-arm robot investigated by Kang et al. [22] has two
workspaces to indicate the motion range of each arm. In this dual-arm robot, the two arms
are connected to the same fixed frame, and the joints of the left arm are independent of the
right arm’s joints. Consequently, we can simply use the workspace to check whether one
arm can reach the target point.

Unlike the dual-arm robot, the index finger and the thumb of the anthropomorphic
hand are connected to a moving palm. As they share the same degrees of freedom of the
wrist, the workspaces of two fingers are definitely dependent and coupled. Even if the
two target points of the index finger and the thumb are all in their workspaces, with the
traditional method, the calculated angle of the wrist may show different value at each
point, which implies that there may exist mechanical interference and that the index finger
and thumb cannot reach their target points at the same time. To resolve this problem, the
workspace analysis below is proposed to make the workspace of the thumb independent
of the workspace of the index finger in this research.

Unlike the traditional method to build a workspace, we propose the workspace
analysis under the condition that the angle of the wrist is separated from the angle of the
fingers. The angle of the wrist is denoted as

⇀
qw = [θw1, θw2]

T . The angles of the two fingers
are denoted as

⇀
q f 1 = [θt1, θt2, θt3, θt4]

T and
⇀

q f 2 = [θi1, θi2, θi3, θi4]
T , with the subscript f

standing for finger. Once the angle of the wrist is decided, the workspaces of the index
finger and the thumb are determined by substituting sets of

⇀
q f 1 and

⇀
q f 2 into Equation (2)

to generate the cloud of points, as shown in Figure 2a, in which the red dots represent the
possible positions of the fingertip of the index finger. The workspace of the index finger for
a given set of wrist angles is denoted as I

(
⇀
qw

)
and that of the thumb is denoted as T

(
⇀
qw

)
.

The Monte Carlo method, a statistical method to solve problems by random sampling,
was adopted to analyze the workspace. A considerable number of particles were used to
approach the real shape of the workspace. Algorithm 1 shows the details for generating
the workspace of the index finger and the thumb for a given set of wrist angle. Figure 2b,c
illustrate the point cloud of the index finger (red dots) and the thumb (green dots) under
different conditions of wrist angle.
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(a) 

  
(b) (c) 

Figure 2. Representation of three-dimensional (3D) finger workspace: (a) point cloud of the index
finger’s tip generated by the Monte Carlo Method; (b) workspace of the index finger’s tip and the
thumb’s tip at wrist angle (θw1, θw2) =

(
0
◦
, 0

◦)
; (c) workspace of the index finger’s tip and the

thumb’s tip at the wrist angle (θw1, θw2) =
(
12

◦
, 30

◦)
.

Since the purpose of workspace analysis was to roughly examine whether the target
point is near the finger’s workspace or not, the number of sampling points of each finger
in a certain configuration of wrist was intentionally set to be low. As a result, the sub-
workspaces I

(
⇀
qw

)
and T

(
⇀
qw

)
were established every 10 degrees in wrist angle to cover

the whole workspace. Using this algorithm, the database for two fingers was established
and the data were sorted by the angle of the wrist. With this database, a further estimation
function was created to check the feasibility of the IK request.
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Algorithm 1. Algorithm for constructing the workspace of fingers

Purpose: To obtain the workspace of the fingers at certain wrist angle
Input:

⇀
q w,

⇀
q f ,range

Output: S
1 : S = ∅, I

(
⇀
qw

)
= ∅, T

(
⇀
qw

)
= ∅

2: Choose sample size Nsample

3: for i ∈
{

1, 2, . . . , Nsample

}
do

4: Obtain
⇀

q f 1 from randomly sampling
⇀
q f ,range

5: Obtain
⇀

q f 2 from randomly sampling
⇀
q f ,range

6: PT = 0T5

(
⇀
qw,

⇀
q f 1

)
7: PI = 0T5

(
⇀
qw,

⇀
q f 2

)
8: add PT to T

(
⇀
qw

)
9: add PI to I

(
⇀
qw

)
10: end for

11: add T
(
⇀
qw

)
, I
(
⇀
qw

)
to S

12: return S

3.3. Feasibility Check

Now, we have two databases for the index finger and the thumb, and each of them
has many point clouds to indicate the workspace of the finger’s tip according to the angle
of the wrist. The feasibility of the motion command can be determined by computing the
nearest distance between the target point and the point in the workspace. This distance is
defined as

κ(S, p) = min
xi∈S

‖p − xi‖, (3)

where S is the point cloud of the finger’s tip which is stored in the database, and p is the
target point. This function can be achieved by many algorithms such as the k-nearest
neighbor algorithm which returns the nearest point and the distance. Because the point
cloud is not concentrated enough, a threshold value is needed as the basis for proximity
to the workspace. Using Equation (3) and the database of reachable area, the coupling
phenomenon can be solved by the following equation:

Dist = min
[
κ
(

T
(
⇀
qw

)
, p1

)
+ κ
(

I
(
⇀
qw

)
, p2

)]
, (4)

where κ(a, b) denotes the operation with the k-nearest neighbor algorithm for entities a and
b, and p1 and p2 are the target points for the thumb and the index finger, respectively. Please
note that the angle set of the wrist

⇀
qw is intentionally set to be the same in the database of

the thumb and the index finger so that the inconsistency between the wrist angles of two
fingers can be avoided. The result of Equation (4) is used as a basis for performing the IGA
to prevent unnecessary computations. Moreover, the database is sorted in the order of the
angle of the wrist for quick search and access to the corresponding optimized angles of the

wrist. This optimized angle set of the wrist
⇀

qw
∗ is further provided to the IGA through the

estimation function below as the initial guess to accelerate the computation and to offer
better convergence. Equation (5) defines the estimation function.

θw1
∗, θw2

∗ = arg
⇀
qw

min
[
κ
(

T
(
⇀
qw

)
, p1

)
+ κ
(

I
(
⇀
qw

)
, p2

)]
. (5)

4. Algorithm

The proposed hybrid genetic algorithm mainly includes two steps:
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1. Examining the feasibility of the motion command on the basis of the workspace and
providing the angle set of the wrist if it is reachable.

2. Using IGA to solve the inverse kinematics and finding joint values of two fingers.

A schematic illustration of the proposed algorithm is depicted in Figure 3, and a
flowchart of the proposed hybrid GA is shown in Figure 4. A detailed explanation of each
step is addressed in the sections below.

 

(a) (b) (c) 

Figure 3. Process of the proposed algorithm: (a) assign inverse kinematics (IK) request; (b) feasibility check and generate
wrist angle range; (c) perform immigration genetic algorithm (IGA) to obtain precise solution.

 

Figure 4. Flowchart of the proposed algorithm.
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4.1. Feasibility Check and Feedforward of Wrist Angle

Utilizing the techniques elaborated in Section 3, in which collection and establish-
ment of the database are conducted, the feasibility check is performed when the inverse
kinematics request is assigned. The value obtained from Equation (4) is compared to the
heuristic threshold value to decide whether the motion command should be dropped out
or not. The heuristic threshold value and the fitness value of termination are the sum of the
distances between target points and end-effectors of the two fingers. Basically, the heuristic
threshold value is set to be a bit bigger than the fitness value of termination. Provided
that the heuristic threshold value is as low as termination value, the feasibility check will
frequently fail. On condition that the heuristic threshold value is much larger than the
fitness value of termination, the fitness value will not converge to termination 1. In this
research, the fitness value of termination is set to be 1 and the heuristic threshold value is
set to be 5.

On the assumption that the motion command passes the feasibility check, Equation (5)

yields an optimal wrist angle set
⇀

qw
∗ according to the aforementioned workspace database.

The new wrist angle range provided to the IGA is, therefore, generated in the form of
⇀

qw
∗ ± θw. The value θw is associated with the intervals of the wrist angle used in creating

the workspace database. A wider interval denotes a larger value of θw. In this paper, θw
was set to be 10◦ to cover the adjacent workspace. For example, the original range of θw1

was −60◦ to +60◦ and that of θw2 was −60◦ to +90◦. Supposing that the
⇀

qw
∗ provided by

the feasibility estimation function is [0◦, 12◦], then the new range of θw1 becomes −10◦
to +10◦ and that of θw2 becomes +2◦ to 22◦. Note that, if the new angle range exceeds the
original angle limit, the boundary shall be set to the original one.

4.2. Chromosome Coding

In an IGA, a chromosome is the individual in a population, and it consists of many
genes to show the individual differences. In this case, the chromosome represents a solution
to the IK problem, while a series of genes constitutes a chromosome. The population
contains many chromosomes and acts as a set of numerous possible IK solutions. To begin
with the IGA, it is necessary to encode the joint angle configurations as the genes for each
chromosome. The genetic encoding format is a binary string representation for each joint.
By concatenating the binary string of each joint, the chromosome is built and provided for
further operations. Figure 5 shows the binary encoding structure of the chromosome.

 
Figure 5. Binary encoding structure.

The decoding process can help a joint angle recover from a chromosome. Using
binary–decimal conversion, the bit value is used to calculate the exact joint angle and to
ensure that the joint variable is within the bounded joint space, which is mathematically
written as

θi = θimin +

(
∑n

j=1 χi[j] ∗ 2j
)

2n ∗ (θimax − θimin

)
, (6)

where θimin is the lowest value for a certain joint, and θimax is the highest one. It is hard
for iterative algorithms based on the Jacobian matrix to avoid exceeding the joint limits.
Through this encoding mechanism, the resulting angles computed by the IGA always fall
in the range of the joint limit and, thus, prevent unpredictable errors.
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4.3. Evaluation and Selection

Better chromosomes are chosen from the population in order to reproduce the off-
spring during the process of the IGA. To evaluate a chromosome, a fitness function, which
is a quantitative measure, is adopted to measure how satisfactory a chromosome is. In
this study, the task-space is only within the position. As a result, the fitness function is
defined as

Errorp = ‖p1 − xt‖+ ‖p2 − xi‖, (7)

Errord = max
k=1,...,8

θk,i − θk, f , (8)

Fitness = Errorp + K·Errord, (9)

where p1 is the target point for the thumb, xt is the tip of the thumb, p2 is the target point
for the index finger, xt is the tip of the index finger, θk,i is the initial angle of each joint
before computing the IGA, θk, f is the angle of the joint contained in the chromosome, and
K is the weight of the second criterion (infinity-norm term).

The position of xt is calculated using the forward kinematics according to the angle
set contained in the chromosome. Equation (7) computes the distance in Cartesian space to
indicate how far the tips of fingers are from the target points and, thus, sums the distances
to be a criterion for the fitness function. Equation (8) takes the maximum absolute value
within the angle differences between the initial angle and the angle generated by the IGA.
Equation (8) is derived from the concept of the infinity norm and is used to guarantee the
smoothness of the motion. The fitness function is minimized by the IGA, which means that
the tips of two fingers are set to reach the target points as closely as possible, with each
joint having about the same angular difference.

On the other hand, to maintain the quality and diversity of the population, the
selection operator is performed to select superior chromosomes for breeding of the next
population. Supposing that the chosen chromosomes are always the best individuals,
the diversity of the IGA will be narrow. Hence, the k-tournament selection operator is
used to choose which chromosomes should reproduce new offspring. The k-tournament
selection randomly withdraws k chromosomes from the population and picks the top two
chromosomes for the crossover operator. The advantage of the k-tournament selection is
that it is unnecessary to sort the entire population to get the top two chromosomes, thereby
reducing computational resources. In addition, the top two chromosomes may be poor
ones, which keeps the population diverse and eliminates a local minimum.

4.4. Crossover and Mutation

In this step, the new chromosomes are produced by genetic operations, such as a
crossover and a mutation. The crossover operation is adopted to create two offspring from
two parent chromosomes. The parents swap with the partial section of genes and then
generate two children. Here, k-point crossover is used. The k-point crossover first selects
k crossover points to make the k + 1 interval in one chromosome and then changes the
section of genes every two intervals to form two offspring.

The crossover operation is followed by the mutation operation. Mutation is utilized
to change some genes of the children chromosomes. The mutation rate is defined as the
reciprocal of the chromosome’s length. The mutation operation is implemented on each
gene and flips it with the probability of the mutation rate. Because of these two genetic
operations, the diversity of the IGA is highly promoted; simultaneously, it becomes more
possible to get close to the global minimum.

4.5. Elitism

Elitism is a mechanism that guarantees the best chromosome will survive in every
generation. Elitism can accelerate the convergence of the IGA but slightly decrease the
diversity of the population. In this study, the feasibility check function was used to provide
an optimal wrist angle set that narrows down the search space of the IGA. Therefore, the
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possibility of being trapped in local minimum was lower, thus validating elitism as a good
strategy to be adopted.

4.6. Immigration

An immigration strategy can be performed periodically to maintain the diversity
level of the genetic algorithm [23]. The best individuals immigrate to the new popula-
tion to replace the worst ones at defined intervals, which is called “structured memory
immigration operator.” In this research, the immigration operator was set to occur every
three generations in order to obtain better optimal solutions. Half of the population was
replaced with the best individuals of the previous generation in the same quantity. As
mentioned, we can ensure that the solution to the IK problem is near the best individuals
of the population through the feasibility check. In this case, the introduced immigration
operator is more suitable for the population than a random immigration operator. As a
result, the tournament selection can have a better chance of selecting better chromosomes
and maintaining the diversity.

5. Results and Discussion

In this section, the performance of the proposed hybrid GA is validated by examination
through parametric numerical simulations. The simple GA and the IGA are also performed
to compare the results. To highlight the capability of determining the feasibility, both
appropriate and improper IK requests are given to different algorithms for computing
IK solutions. The detailed parameters used in the illustrated cases through numerical
simulations with the proposed algorithm are shown in Table 3.

Table 3. Parameters used in the proposed hybrid genetic algorithm. GA, genetic algorithm.

Parameter Value

GA type Generational
Representation Binary

Chromosome length 80
Population number 500

Selection 10-tournament
Crossover 2-point

Crossover rate 0.8
Mutation Bit-flip

Mutation rate 1/L
Survivor 1000

Termination 3 s or fitness lower than 0.6

Among the parameters in Table 3, the fitness value of termination dominates the
computation time. As exhibited in Table 4, when the termination value increases, it takes
less time to compute, while the accuracy of the solution is sacrificed. It also compares
the average execution time of the simple genetic algorithm and the performance of the
proposed hybrid GA, which shows that the proposed hybrid GA is two times faster than the
simple GA. Additionally, it is known that the selection of the fitness value of termination
depends on the application scenario. Thus, the termination condition applied in different
tasks was varied accordingly.
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Table 4. Effect of termination value on the convergence speed of GA.

Termination Fitness
Value

Average Number of
Generation

Average Execution
Time (s)

Simple GA
1

52 4.41
Proposed hybrid GA 24 2.06

Simple GA
5

18 1.68
Proposed hybrid GA 10 0.72

Simple GA
10

7 0.63
Proposed hybrid GA 4 0.35

In calculating the inverse kinematics, two points were assigned as the target points
of the index finger and thumb. Different algorithms were performed to solve the inverse
kinematics, and the best fitness values were recorded for the graphical representation to
analyze the performance of each algorithm. Table 5 lists the conditions and results for
three illustrated cases. The illustrated case #1 and case #2 were those with reachable target
points, whereas an unreachable target point was assigned in the illustrated case #3. In the
illustrated case #1, the target fingertip point sets were (50, 0, 130) and (75, 30, 125) for the
index finger and the thumb, respectively. As shown in Figure 6a, the two target points were
in the workspace of two fingers and they passed the feasibility check. Additionally, the
corresponding angle set of the wrist (θw1, θw2) = (12◦, 15◦) was provided to the hybrid
GA as the initial condition. By using the solutions computed by the GA, the tips of the
index finger and the thumb reached their target points. The simple GA and IGA were
also performed to solve the same IK problem as a comparison. As shown in Figure 6b, the
proposed hybrid GA was observed to have a lower fitness value than the other GAs in
the beginning. The proposed hybrid GA was found to obtain the solution for the inverse
kinematic problem faster than the other GAs with fewer generations.

Table 5. Results of illustrated cases performed by the proposed algorithm.

Case
Target Points

(mm)
Feasibility

Feedforward
Wrist Angle

Solutions of the Proposed
Algorithm

Error Sum of
Two Fingers

(mm)

#1

Index finger:
(50, 0, 130)

Thumb:
(75, 30, 125)

Pass θw1 : 12
◦

θw2 : −15
◦

θw1 14.4981◦

0.5795

θw2 −5.0000◦
θt1 14.9817◦
θt2 −8.4396◦
θt3 −21.9780◦
θi1 −45.0001◦
θi2 55.2968◦
θi3 45.0110◦

#2

Index finger:
(45, 52, 172)

Thumb:
(81, 60, 111)

Pass θw1 : 0
◦

θw2 : 0
◦

θw1 0.2515◦

0.5875

θw2 −4.9987◦
θt1 15.0110◦
θt2 −19.6923◦
θt3 −8.8571◦
θi1 −19.6374◦
θi2 14.5494◦
θi3 41.4726◦

#3

Index finger:
(50, 0, 300)

Thumb:
(60, 50, 125)

Drop out Not
Computed Not Computed Not

Computed
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(a) (b) 

Figure 6. (a) Schematic illustration showing the solution resulting from an appropriate motion command and (b) the
corresponding fitness performance of the illustrated case #1.

In the illustrated case #3, the target fingertip point sets were (50, 0, 300) and (60,
50, 125) for the index finger and thumb, respectively. As shown in Figure 7a, the target
point of the index finger was obviously out of the workspace. In this circumstance, as
shown in Figure 7b, the proposed hybrid GA immediately ceased the inappropriate motion
command to prevent unnecessary computation. However, the other GAs still conducted
computation until meeting certain termination criteria. As a result, Figure 7b shows high
fitness values of the simple GA and IGA, while the proposed hybrid GA successfully
stopped computing. The hybrid GA, thus, was successful in avoiding the unnecessary
computation for a given inappropriate IK request.

(a) (b) 

Figure 7. (a) Schematic illustration showing the solution resulting from an inappropriate motion command and (b) the
corresponding fitness performance of the illustrated case #3.

Results in Table 6 demonstrate the distribution of population by exemplary gener-
ations during the evolution process in the illustrated case #1 for the simple GA and the
proposed hybrid GA. The blue dots represent all the thumbs’ tips of the population in one
generation, whereas the red dots serve as those of the index finger. The corresponding cross
marks stand for the target point or the answer of the IK problem. In the initial generation,
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the population distribution of the simple GA was scattered more widely than that of the
proposed hybrid GA. Because of the feedforward wrist angle, the proposed hybrid GA
started with a smaller searching scope. When the generation increased, the proposed
hybrid GA had more chances to get close to the target points and, therefore, converged
faster than the simple GA.

To surpass the performance of the other GA, the workspace of two fingers plays an
important role in the proposed hybrid GA. Initially, the workspace analysis can provide
the nearest distance between the target point and the workspace. As a result, the feasibility
of the IK request can be checked accordingly. Second, the workspace was pre-established
and stored in the order of the wrist angle. Consequently, the workspace analysis gives a
feedforward wrist angle to the hybrid GA. The hybrid GA then reduces the variable range
of the wrist angle to offer a superior initial condition. In general, the proposed hybrid GA
has better convergence than the other GA and can effectively terminate the computation
when an improper IK request is given.

Table 6. Comparison of population distribution at different generations in the illustrated case #1.

Proposed Hybrid GA Simple GA

Generation No. 1

Generation No. 2

Generation No. 5
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Table 6. Cont.

Proposed Hybrid GA Simple GA

Generation No. 20

In addition to the interaction between a thumb and an index finger, the proposed
algorithm can solve the IK problem for a thumb and the other three fingers. Numerical
simulations were performed to solve the IK under all three scenarios, namely, the IK
of the thumb and middle finger, the IK of the thumb and ring finger, and the IK of the
thumb and little finger. Similarly, the same procedures were adopted in these IK problems,
including building the database of the workspace, checking the feasibility, and providing
the feedforward wrist angle. Figure 8 shows a schematic illustration of the IK solutions
for the thumb and the other three fingers. The diagram of the best fitness value over
generations indicates that the proposed algorithm outperformed the simple GA and the
immigration GA. Through these cases, it was confirmed that the proposed algorithm is
capable of solving the IK problem of a multi-fingered robotic hand.
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(a) 

 
(b) 

 
(c) 

Figure 8. Schematic illustration showing the solution of the IK problem with (a) thumb and middle finger, (b) thumb and
ring finger, and (c) thumb and little finger, as well as the corresponding fitness performance.
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6. Conclusions

In this study, a workspace-analysis-based immigration genetic algorithm was pre-
sented to solve the inverse kinematics of a multi-fingered hand. In the offline stage,
the kinematic model of fingers is built to perform forward kinematics, from which the
workspace database of the fingers can be established using the Monte Carlo method. In
the online stage, an estimation function is used to check the feasibility of the target point
whenever an IK request is assigned. If the target point is within the workspace, the esti-
mation function then provides an optimal set of wrist angles for the IGA to compute the
solution; contrarily, the estimation function terminates further calculation. This estimation
function enables the searching range to be narrowed to the neighborhood of the solution.
Therefore, the distribution of the population is less widespread, and the IGA can have
better initial condition and greater convergence. Numerical simulations were conducted
to verify the performance of the proposed hybrid GA. For the unreachable targets, the
estimation function could efficiently abort the entire computation. For the reachable targets,
the proposed algorithm took fewer iterations to obtain accurate results than the simple GA
and the IGA. As a whole, this study presented an algorithm to solve the multi-fingered
inverse kinematics, which enables the tips of the index finger and the thumb to move to
their target points concurrently; likewise, the same approach can be applied to the other
fingers. The results can also be applied to the IK problem of a dual-arm robot that has
degree of freedoms in the waist. The proposed method is believed to have the potential to
be employed in many industrial robots.
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Abstract: Cable-driven parallel robots offer significant advantages in terms of workspace dimensions
and payload capability. Their mechanical structure and transmission system consist of light and
extendable cables that can withstand high tensile loads. Cables are wound and unwound by a set
of motorized winches, so that the robot workspace dimensions mainly depend on the amount of cable
that each drum can store. For this reason, these manipulators are attractive for many industrial tasks
to be performed on a large scale, such as handling, pick-and-place, and manufacturing, without
a substantial increase in costs and mechanical complexity with respect to a small-scale application.
This paper presents the design of a planar overconstrained cable-driven parallel robot for quasi-static
non-contact operations on planar vertical surfaces, such as laser engraving, inspection and thermal
treatment. The overall mechanical structure of the robot is shown, by focusing on the actuation and
guidance systems. A novel concept of the cable guidance system is outlined, which allows for a simple
kinematic model to control the manipulator. As an application example, a laser diode is mounted
onto the end-effector of a prototype to perform laser engraving on a paper sheet. Observations on
the experiments are reported and discussed.

Keywords: cable-driven parallel robots; overconstrained robots; design; non-contact operations

1. Introduction

Cable-driven parallel robots (CDPRs in short) combine the successful features of par-
allel manipulators with the benefits of cable transmissions. The payload is divided among
light extendable cables, resulting in an energy-efficient system that can achieve high accel-
eration of the end-effector (EE) over a remarkably large workspace. From a structural point
of view, a CDPR is formed by a set of actuation units, usually fixed to a frame, and a mobile
platform, working as EE [1]. The cables, driven by the actuation units, are guided inside
the robot workspace (WS) using a guidance system, and then connected to the mobile
platform. The variation of cable lengths is responsible for the EE displacement throughout
the robot WS. These features result in easily reconfigurable systems, where the WS can be
modified by relocating the actuation and/or guidance units [2].

Nevertheless, the use of CDPRs in industrial environments is still limited, mainly
due to the drawbacks of employing flexible cables. Indeed, cables impose unilateral
constraints that can only exert tensile forces and, consequently, the EE cannot withstand
any arbitrary external action. In addition, the viscoelastic nature of cables can cause
their elongation under prolonged load application [3]. This highly non-linear behavior
complicates the control of the robot and the estimation of the actual cable lengths, and
therefore the determination of the platform pose through direct kinematics. To enhance
the robot controllability, CDPRs can be overconstrained by employing a number of cables
higher than the degrees of freedom (DoFs) of the EE. This allows cables to pull one against
the other and to keep the overall system controllable over a wide range of externally
applied loads. In other cases, to increase accessibility and reduce hardware complexity,
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suspended architectures with less cables than EE DoFs can be used, though they are more
difficult to control [4,5].

Thanks to their simple architecture, high reconfigurability, easy deployability, and
large workspace, CDPRs have been proposed in many fields of application: entertain-
ment [6,7], logistics [8], construction [9–11], maintenance [12,13], to name a few. In general,
it is possible to design a general-purpose machine that can be dedicated to different tasks
by changing the EE tool [14,15] or, in alternative, a CDPR for a specific purpose can be
developed. In the second case, the robot geometry, the number and configuration of ca-
bles, and, consequently, additional design constraints are established by the final task.
This is the case of the deployable CDPR in [16]: the suspended architecture and the EE
self-deployability ensure the high orientational capability required for the laser scanning
of low-accessibility environments. As an additional example, the storage-retrieval CDPR
in [8] is equipped with eight cables, despite the planar nature of the robot task, in order to
provide a suitable machine stiffness and prevent platform tilt.

Usually, if the task requires a specific motion pattern of the EE, it is possible to act
in two different ways to limit the EE range of motion. First, an external means, which
physically constrains the EE, can be employed. This happens with the CDPR Pickable [17],
whose EE is constrained to slide on a planar surface thanks to an air-bearing system.
Likewise, in [13], the EE of the robot moves in direct contact with the building façade
to perform window cleaning operations. The contact of the EE with the environment
requires specific contact models [18], and suitable force-control strategies [19]. For the
Pickable robot, undesired phenomena, such as friction, are significantly reduced by using
air bearings, whereas, for the cleaning robot, friction is part of the process itself. A different
approach for constraining the EE motion consists in adopting special cable configurations,
such as the parallelogram arrangements inspired by delta robots [20–22]. This expedient
allows obtaining a translational motion of the EE without any external constraint, provided
that all cables are taut. This is useful in the case of large-scale industrial tasks, such as
pick-and-place and warehousing [23], or operations that need deployable systems, such as
rescue and contour crafting [24,25].

The parallelogram arrangement strategy can also be applied in non-contact tasks
where the EE must move on a prescribed vertical plane without interacting with the
surrounding environment. This is the case of welding, laser engraving, thermal treatment,
and decoration or inspection of building façades, to name a few. This paper focuses
on the design of a CDPR for this kind of applications. Specifically, an overconstrained
planar machine is presented. This prototype employs a parallelogram cable arrangement
to constrain the EE to move on a vertical plane. Four cables, closed in a parallelogram
loop, are used to control the mobile platform’s three degrees of freedom (DoFs). The cable
guidance system comprises a pair of swivel pulleys whose swivel axes are orthogonal to
the work surface: the intersections of these swivel axes with the work surface effectively
define the cable proximal and distal points. Each cable loop is driven by one winch,
whose drum has two helicoidal starts. Each winch includes a rotary encoder for cable
length control. In addition, the pulley swivel axes are equipped with rotary encoders
to achieve redundant kinematic measures, and cable tensions are measured with shear
beam load cells integrated into the proximal anchor systems. Like other planar CDPR that
share the idea of parallelogram mechanisms [23,26], this system allows the platform to
move on a defined plane, excluding low-amplitude oscillatory motions induced by external
disturbances [27,28]. On the other hand, unlike the others, the proposed system shows three
advantages: the use of a single cable loop, instead of two separate cables, ensures that the
parallel cable segments are in tension when controlled by a single actuator, thus reducing
the number of actuators to be used; the cable anchor system includes a measurement
unit to continuously monitor cable tensions and cable angles with respect to the frame;
the mounting arrangement of the swivel pulleys allows to estimate the cable lengths
as distances between two precisely defined points, which are the intersections between
the swivel axes and the work plane, without introducing geometrical approximations.
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Consequently, a simple geometric model can be adopted to control the CDPR without
inherent geometrical errors.

The paper is organized as follows. The main aspects to be taken into consideration
for the mechanical design of a CDPR are described in Section 2. Then, the design of the
planar overconstrained CDPR prototype is presented in Section 3, focusing on the actuation
and guidance system, and the influence of the kinematic model. In Section 4, as an
application example, an experiment of the robot performing laser engraving is reported
and discussed. Lastly, some conclusions are drawn.

2. Design Strategies

In most cases, cables are driven by actuators that are placed on a fixed base. Sometimes,
if deployability is a requirement, they can be attached to mobile vehicles [24] or placed on
the mobile platform [29]. A guidance system is used to convey cables from the actuators to
the mobile platform. Many authors analyzed the design process of CDPRs and identified
several methods for optimizing their structure and dimensions [1,30]. For a given criterion
(i.e., workspace dimension, accuracy, stiffness, orientation capability), optimization proce-
dures help determine the geometry of the CDPR, including the number of cables, position
of cable anchor points, and platform and frame shapes [2,15,31]. Once the architecture is
known, the hardware design requires developing three distinct systems: the actuation unit,
the guidance system, and the mobile platform. These systems can be equipped with suitable
sensors, to monitor the robot performance and obtain feedback on relevant control variables.
The two most notable examples are cable lengths, which are usually estimated by using angu-
lar sensors mounted on the actuation unit motors, and cable tensions, whose measurement
involves integrating force sensors in the actuation unit, guidance system, or EE [1].

This section shows how specific design techniques can help keep the robot model and
control as simple as possible without introducing geometrical approximations. Usually,
a simplified kinematic model, called standard in the following, is adopted. This model
considers cables inextensible and massless and, thus, treated as line segments between
two points, one on the mobile platform and the other on the frame (distal and proximal
anchor points, respectively). The former is usually assumed to be fixed with respect to
the moving platform, whereas the latter is fixed with respect to the robot frame. These
assumptions neglect not only all effects caused by the elastic nature of cables, which
may be negligible in some small-to-medium-scale applications, but also the kinematics
of the guidance system. Geometrical-model errors can be limited by accounting for the
pulley geometry [4,32], but the model and control complexity is usually increased. As an
alternative, if the standard kinematic model is to be used without inherent geometrical
errors, special design techniques of the actuation units and guidance systems can be used,
as discussed in the following.

2.1. Actuation Unit

The most appropriate type of actuation is chosen depending on the EE motion pattern
and WS size, defined by the task [1,33]. A rotary actuation system generally consists of a
servo-actuated winch where the cable is coiled onto a cylindrical drum. This solution is
easy to implement but can result in low robot position accuracy since it introduces several
errors when estimating cable lengths [34]. Lengths are computed by measuring the rotation
of the motor and, thus, they depend on the drum design and cable arrangement on it.
Linear actuation systems reduce cable-length estimation errors, but they usually limit the
size of the achievable WS [35], or increase cable wear [34].

A solution could be to adopt a rotary actuation system designed to be as close as
possible to the model intended for its control. The main drawback of the rotary actuation,
if a simple lifting winch is considered, is the fact that the cable exit direction from the drum
varies, even unpredictably, as the motor rotates: this results in a non-linear transmission
ratio between the motor angle and the cable length, which is usually undesirable. A con-
stant transmission ratio can be obtained (i) by avoiding the cable overlapping onto the
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drum surface, (ii) by suitably grooving the drum to accommodate the cable, which is also
desirable for reducing cable wear [36], and (iii) by constraining the cable to exit the drum
in a fixed, known, direction. There are several solutions in the literature to achieve such
desired design requirements (Figure 1).

(a) (b)

(c) (d)

Figure 1. Winch models. (a) Cross section of a rototranslating drum. (b) Rendering of a winch with
rototranslating drum kinematically equivalent to the ones in [37,38]. (c) Close-up view of a winch
of the Ipanema CDPR family [14]. (d) Winch with translational motor-drum.

It is possible to rototranslate the drum [16,37,38] so that the cable exit point from
the drum, and consequently its direction, is kept fixed with respect to the winch frame,
while the cable is coiled and uncoiled. This is usually achieved by employing screw/nut
joints to convert the rotational motion of the motor into rotational and translational motion
of the drum, and allowing the drum to translate by mounting it on a passive prismatic
joint. In [38] the drum houses a nut and two pairs of cylindrical bearings. Two rods, which
are coupled with the motor shaft, parallel to the drum axis, but mounted with a radial
offset with respect to the drum, pass through the bearings, thus transmitting the rotational
motion, but allowing the drum to translate. The translation is caused by the drum nut
being joined with a screw, which is fixed on the winch frame: a cross section of the drum
system is shown in Figure 1a. The main advantages of this solution are compactness and
mechanical simplicity, but this design suffers from one main drawback, namely the rods
used for transmitting the motor rotations pass through the drum, thus the latter diameter
needs to be large. An example of this design is shown in Figure 1b, where a timing belt is
used to transmit motion from the motor to the drum, as in [37].
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As an alternative, in [14] an auxiliary cable guiding device equipped with a pulley
(spooling helper) continuously follows the variable cable exit point on the rotating drum
(Figure 1c) by translating parallel to the drum axis, to ensure that the direction of the
cable connecting the drum and the spooling helper is constant. The spooling helper is
mounted on a support equipped with a nut and a pair of bearings, and thus slides with
respect to fixed rods, driven by a screw, which is ultimately connected to the drum with
a synchronous belt. Given its footprint, this solution has the primary benefit of allowing
very long cables to be stored onto the drum. Still, an additional mechanical transmission,
such as a timing belt, is always required to transmit drum motion to the screw.

A different solution allows the translation of the entire motor-drum system on a linear
guide [39], similar to the design shown in Figure 1d. This solution has the advantage
of being particularly simple and cheap, since the drum is directly connected to the motor,
and the drum supports are connected to a carriage. Still, the motor mass, which needs to
be translated, may limit the system’s dynamic performance.

2.2. Guidance System

One of the main advantages of CDPRs is the possibility to locate the actuation units
almost anywhere. This is possible thanks to the cable guidance system that conveys the
cable, from the actuator, through the prescribed anchor points on the frame (proximal) to
the anchor point on the platform (distal). For the standard model to be respected, without
introducing geometrical-model errors, the cable anchor points need to be geometrically
determined. An extensive review of possible construction solutions is reported in [1],
where a distinction is made between the proximal and distal anchor systems.

The mechanical devices that compose the proximal guidance system should allow
for large deflection angles and at the same time determine the anchor point position. Swivel
(or panning) pulleys and eyelets are primarily used for this purpose. Eyelets allow for the
approximate definition of a point and significant cable orientation, but cause high cable
wear [40]. However, they are employed in many CDPRs thanks to their simplicity, and
the possibly low geometrical error introduced, if the CDPR workspace is large [16,38,41].
Figure 2 shows the use of eyelets as proximal anchor points on the fixed frame of the
CDPR prototype presented in [16]. Conversely, swivel pulleys can reduce cable wear and
still allow for orientation in a broad direction range, since, unlike classical fixed pulleys
(Figure 3a), they can rotate about an axis tangent to the pulley groove, the swivel axis
(Figure 3b). This kind of solution is adopted in [39,42], and an example of exit point layout
is shown in Figure 4. In general, the presence of pulleys in the guidance system makes
the system reliable, but complicates the geometrical model of the robot. This issue can be
faced in two ways: by adopting a more complex model, which includes pulley kinematics
for CDPR control [4,32,43], or by ignoring the actual geometry of the system, and accepting
several modeling errors. Otherwise, particular layout and orientations of the pulley system
must be adopted.

Figure 2. Model of the eyelet exit point of the CDPR laser scanner in [16].
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(a)

swivel axis
(b)

Figure 3. 3D model of pulley transmissions. (a) Fixed pulley. (b) Swivel pulley.

Figure 4. Application of swivel pulleys for cable proximal anchor point.

On the platform, at the distal anchor points, cables can be knotted to a fixture (i.e.,
an eyelet or a hook) or anchored to a universal joint: both these options allow to define
a fixed point with respect to the platform. The knot solution is preferred for its simplicity
(Figure 5) [16,44], but it is neither accurate nor reliable for long-term use. On the other hand,
the universal joint (Figure 6) is more precise but complex and more expensive. Pulleys can
also be employed if the cable needs to be deflected and not fixed at the distal anchor point.
In [45], a pulley system is used at the distal anchor point on the platform to compensate
for the effect of the proximal swiveling pulley geometrical model.
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(a) (b)

Figure 5. Cable knotted at the anchor point on the platform of the CDPR laser scanner [16].
(a) Platform overview. (b) Knot detail.

(a) (b)

Figure 6. Prototypal universal joint at the anchor point on the platform of a CDPR. (a) Platform
overview. (b) Universal joint detail.

3. Mechanical Design

The prototype presented in this section is devoted to non-contact tasks, such as laser
engraving, welding, thermal treatment, decoration, and inspection of vertical surfaces, such
as building façades. Thus, the main design requirements are the following: (i) it should
present a planar vertical workspace, which should be easily scaled upon the redefinition
of the installation locations of the guidance systems, (ii) the tool mounted on the platform
should be interchangeable.

The 3D model of the designed prototype is shown in Figure 7. The machine frame
(1) is formed by aluminum profiles that define the robot installation (and WS) limits.
An actuation (2) and a proximal guidance unit (3) are placed at each of the four corners
of the frame to coil and uncoil four cables and convey them to the distal guidance unit
(4) attached to the mobile platform (5). The platform has n = 3 DoFs in the plane, thus,
a 4-cable architecture results in an overconstrained manipulator. The constraint redundancy
allows firstly to obtain a wider WS and then improve the EE controllability. Redundant
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actuated cables make them pull one against the other to keep the overall system under
tension. Reconfigurable anchor points also characterize the prototype: cables can be
arranged in a standard (Figure 8a) or crossed (Figure 8b) layout by simply un-mounting
and re-mounting the distal guidance unit. As shown in Figure 8, each swivel pulley (1)
on the platform, which forms the distal anchor point, can be translated into slots (2) on
the support (3); the equivalent operation can be done on the proximal anchor systems on
the frame. The crossed layout aims to improve the platform’s orientation capability [46], if
required by the task, and to withstand external torques induced by gravity (if the tool is
not mounted in a barycentric position) or external disturbances.

The actuation units and guidance systems are the same for each cable, and they are
described in the following subsections.

(a) (b)

(c) (d)

Figure 7. Planar 4-cable CDPR prototype with two cable arrangements: (1) frame, (2) actuation unit,
(3) proximal guidance unit, (4) distal guidance unit, (5) platform. (a) Standard layout, front view.
(b) Crossed layout, front view. (c) Standard layout, top view (d) Crossed layout, top view.

182



Appl. Sci. 2021, 11, 9491

1 2
3

(a) (b)

Figure 8. Reconfigurable distal anchor points on the mobile platform: (1) swivel pulley, (2) slots
for the translation of the swivel pulley, (3) platform support. (a) Standard layout. (b) Crossed layout.

3.1. Actuation Unit

The cable actuation unit is a servo-actuated winch where both the motor and the
drum translate along a linear guide during the motor rotation (Figure 9). As described
in Section 2.1, this design choice limits the overall machine cost, at the price of poorer
actuator dynamic performances: given the quasi-static requirement for the robot operation,
this design choice was deemed the best. In addition, to further limit the robot cost, most
components were produced by Fused Deposition Modeling (FDM) technology using PETG
as base material. The choice of a rotary actuation, instead of a linear one, is supported
by the project requirements reported in Section 3. In particular a rotary actuator allows
for easy scalability in case of wide-workspace applications and field deployability.

Figure 9. 3D model of the winch: (1) servo-stepper motor, (2) brackets, (3) aluminum drum, (4) brass
nut, (5) screw shaft, (6) support element, (7) base plates, (8) end-stop switches, (9) circular rods,
(10) cable guidance slot, (11) carriage.

A double-helicoidal-groove aluminum drum (3) is rigidly connected to the shaft of a
Wantai (57HBM20-1000, 2.1 Nm holding torque) Nema 23 servo-stepper motor (1) equipped
with an incremental encoder (≈0.1◦ resolution). Drum dimensions were chosen in order
to coil 2.2 m of a 0.51 mm diameter dyneema cable (DAIWA j-braid X8, 550 N breaking
tension), and limit (for the given motor) the realizable maximum tension to 160 N (cable
tension safety factor of ≈3.5). Thus, drum diameter was selected as 27 mm, and groove
pitch as 2 mm. A brass nut (4) is rigidly centered to the drum and coupled to a trapezoidal
screw shaft (5), which is clamped at one end to the actuation unit frame, in a support
element (6). While the motor rotates, the drum-motor system, fixed to a carriage (11) using
two brackets (2), moves on a linear guide (9) made by two circular rods and linear ball
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bearings. The drum and the shaft have the same pitch, so the cable portions exiting the
drum always have a fixed direction and position with respect to the winch frame. Two
end-stop switches (8) are mounted at the physical limits of the drum-motor system, to
provide a safety-stop signal to the motor controller. The winch frame is ultimately fixed to
the overall robot frame with bolted connections via two plates (7).

This winch houses one of the four cables. One end of the cable is fixed to the drum
employing a screw. Then, the cable is coiled onto the first start of the drum and conveyed
to the guidance system through a thin slot (10) on the carriage (11). After being guided to
the distal anchor point on the platform (as detailed in Section 3.2), the cable returns to the
drum through the slot (10) and is then wound onto the other start of the drum and secured
with another screw.

3.2. Guidance System

The cable guidance system is designed to (i) guide each of the four cables on a
parallelogram-like routing (Figure 10) to ensure the motion of the EE in a defined plane;
(ii) geometrically define the cable exit points, to apply a standard kinematic model for robot
control, (iii) integrate a load sensor for cable tension measurement.

1
3

45

2
6

working plane
Figure 10. Layout of the guidance system of the robot in standard cable arrangement (top view): (1),
(6) fixed pulleys, and (2), (3), (4), (5) swivel pulleys; a and b sides of the parallelogram defined by the
cable loop.

The cable, which leaves the drum groove from a fixed point in space, in a fixed
direction (see Section 3.1), is then guided on a fixed pulley (1) attached to a tension
measurement unit, which will be analyzed later on. After that, to obtain a parallelogram
shape, the cable passes through four identical swivel pulleys (2,3,4,5) and then, through
another fixed pulley (6) (also included in the tension measurement unit) before engaging the
other groove on the drum. The proposed cable-loop arrangement realized with one cable
avoids possible cable slackness during EE motion, which may happen if the parallelogram
is made of two separate cables driven by the same winch. Two of the swivel pulleys (2,5)
are fixed to the base and form the proximal guidance unit, while the other two (3,4) are
attached to the platform and form the distal guidance unit. The distance a between the two
pulleys composing each group is equal. This defines the first two sides of the parallelogram,
which are invariant, being distances between points of rigid bodies. The other two sides b
are formed by cable sections that are equal and parallel when the cable is taut by design.

3.2.1. Sensor Integration

The CDPR guidance system is often equipped with position [47] and force sensors [48]
to monitor the robot performance in real-time, if required by the control strategy. In this
prototype, one of the swivel pulleys of the proximal group is equipped with an incremental
encoder. The encoder is coaxial with the swivel pulley, thus it measures the angle between
the cable and the frame: this feature can be used for platform pose estimation through
direct kinematics [49]. In addition, the fixed pulleys of the proximal guidance group are
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equipped with a load sensor, a shear beam load cell (Phidget CZL635 micro load-cell, load
range 20 kg). Figure 11 shows the force measurement unit: the load cell (1) is directly
connected to the pulley support (2) and structurally constraints the fixed pulleys (3) to
the machine frame (4) via an auxiliary bracket (5). The system is designed for the load
direction of the pulley to be always orthogonal to the shear beam load cell, to ensure the
optimal working conditions of the sensor. The load cell, ideally, measures the double of the
cable tension value.

(a) (b)

Figure 11. Force measurement unit: (1) load cell, (2) pulley support, (3) fixed pulleys, (4) machine
frame, (5) auxiliary bracket. (a) Front view. (b) Side view.

3.2.2. Kinematic Model

To define the cable exit points, each of the four swivel pulleys forming the guidance sys-
tem is oriented so that its swivel axis, identified by the unit vector ki (Figures 11b and 12b)
is orthogonal to the work plane, that is a vertical plane. The two pulleys, forming the
proximal or distal guidance units, are coaxial, and the projection of their swivel axes onto
the vertical plane identifies the cable exit points (Bi, for i = 1, . . . , 4 for the proximal point
in Figure 12a,b). Thus, the kinematic standard model can be used without causing geometri-
cal modeling errors. Angle φ defines the rotation of the pulley about the swivel axis. ti is
the unit vector of the i-th cable.

(a) (b)

Figure 12. Standard model definition. (a) Geometry of the i-th constraint of the planar 4-cable CDPR.
(b) Detail of a proximal swivel pulley.
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Considering one of the four cable transmissions (Figure 12), Oxy and Px′y′ are defined
as inertial and mobile frames. The mobile frame is attached to the platform center of mass P,
described as p with respect to the inertial frame. Cables, assumed massless and inextensible,
are considered as the line segments between the distal and proximal anchor points, defined
by the pulley swivel axes (Ai and Bi respectively, for i = 1, . . . , 4). Points Bi are described
by vectors bi in the inertial frame, and points Ai are described by a′ i and a′ in the mobile
and inertial frame, respectively. The rotation matrix R(θ) represents the orientation of the
moving platform in the vertical plane. The platform pose is defined as [pT , θ]T , and i-th
cable vector is:

ρi = ai − bi = p + R(θ)a′ i − bi, R(θ) �
[

cos(θ) −sin(θ)
sin(θ) cos(θ)

]
(1)

For a given EE pose, the i-th cable length li and unit vector ti can be computed as:

li = ‖ρi‖, ti =
ρi
li

(2)

4. Experimental Demonstration: Laser Engraving

A prototype of a 3-DoF 4-cable CDPR with a crossed layout was built at IRMA L@B
of the University of Bologna (Figure 13a). It employs 4 of the actuation systems described
in Section 3.1, connected to the corners of an aluminum frame, and 4 guidance units, whose
distal swivel pulleys are bolted to the robot platform. The CDPR has rectangular base
(0.875 m × 0.700 m) and mobile platform (0.080 m × 0.100 m). The inertial frame Oxy is
located in the center of the base and the moving frame Px′y′ is located at the center of the
EE, coinciding with its center of mass. Its wrench-feasible translational workspace [50]
is represented in Figure 13b with a regular discrete grid of 100 × 100 points, considering
the platform mass equal to m = 2.5 kg, and τmin = 10 N and τmax = 80 N as cable tension
limits.

(a) (b)

Figure 13. Laser-engraving prototype at IRMA L@B. (a) Picture of the prototype. (b) Wrench-feasible
translational workspace of the prototype.

The CDPR is controlled by a Real-Time Linux PC, which runs its control algorithm
at 1 kHz rate, and feeds motor commands through Ethercat protocol [51] to low-level
servo drives. The low-level controller is also developed in-house and run on a ST Nucleo-
H743ZI development board at 10 kHz: in addition to controlling motor angles, this allows
to directly feed a cable-tension command to the drive. This latter feature simplifies the
adoption of the hybrid-input control strategy for the CDPR described in [50]: once an
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EE-pose set-point is assigned in the Cartesian space, 3 cables are length controlled (i.e.,
motor angles are commanded to the drives), and one cable is tension controlled (i.e., cable
tension is commanded to the drive, and the error with respect to the readings of the load
cell is compensated).

A 2.5 W laser diode is mounted on the robot EE so that its focal axis is perpendicular to
the working plane (Figure 14), thus allowing the engraving of a paper sheet (for additional
details, see Supplementary Video Material). The name of our laboratory, IRMA L@B,
was stylized in a way that every letter was a union of a finite number of linear segments
(Figure 15a): accordingly, a quantitative comparison between the digital model and the
engraved result could be performed, by comparing each segment length. A series of consec-
utive points P1, P2, . . . , Pn, with n = 15, were extracted from the digital model (Figure 15b),
and the robot reference point commanded to follow the path between them with a trape-
zoidal velocity profile in the task space, while keeping the orientation identically zero. If
the trajectory is expressed as:

p(t) = pi + (pi+1 − pi)u(t), u(0) = 0, u(T) = 1, i = 1, . . . , n − 1 (3)

the motion law u(t) [52] takes the form:

u(t) =

⎧⎪⎪⎨
⎪⎪⎩

1−α
2α (vt)2, for 0 ≤ t < αT
− α

2(1−α)
+ vt, for αT ≤ t < (1 − α)T

− 2α2−2α+1
2α(1−α)

+ 1
α vt − 1−α

2α (vt)2, for (1 − α)T ≤ t ≤ T

, T =
1

v(1 − α)
(4)

Since the set-points Pi of Equation (3) are set by the task, the only parameters to
be determined are v and α of Equation (4). They represent, respectively, the motion law
maximum speed, and the ratio between the accelerating phase duration and the total time;
they are set considering the requirements of the technological operation to be performed.
Since the diode laser can only be on or off, the accelerating phase duration should be as
limited as possible, to avoid burning the paper when the EE is moving too slow; on the
other hand, motors have limited power, and too quick accelerations may result in their
stall: by trial and error, α = 0.1 was established as a good compromise. The motion law
maximum speed was instead calculated so as the EE maximum translational speed was
optimal for the engraving operation, namely ‖ṗ‖max = 0.02 m/s for the 2.5 W laser diode
at hand; thus, by differentiating Equations (3) and (4) we get:

‖ṗ‖max = 0.02 = ‖pi+1 − pi‖v (5)

Figure 14. Robot end-effector equipped with a laser diode.
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(a) (b)

Figure 15. Digital image for engraving task. (a) Stylized version of IRMA. (b) End-effector path:
solid line for engraving process, dotted line for movement; Pi, with i = 1, . . . , 15, consecutive points
extracted from the digital image.

The engraving operation of the stylized IRMA L@B was then performed, and the
result is shown in Figure 16. First of all, it can be noticed that rectilinearity of the segments
is qualitatively good (see Figure 17a). Small out-of-plane vibrations were excited by the
laser diode cooling fan when the laser was switched on and off at the beginning and the
end of each segment. This is nearly unnoticeable even scaling up the engraved paper
(see Figure 17b), and it was ultimately expected: a vibration-damping device, such as the
one proposed in [27], can be added to prevent such small-magnitude effects.

Figure 16. Result of the laser engraving operation.

(a) (b)

Figure 17. Qualitative evaluation of the laser engraving operation. (a) Rectilinearity of a segment.
(b) Platform out-of-plane oscillations induce sub-millimetric errors.

From a quantitative point of view, the ideal length l�i of each segment was compared
to the engraved one li, measured on the paper with a digital caliper (maximum measuring
error of 0.3 mm at full scale, 180 mm). If the error is defined as εli = l�i − li and the
percentage error is εli ,% = 100(l�i − li)/l�i , the root-mean-square error was 2 mm, and the
root-mean-square percentage error was 2.4% (complete results can be found in Table 1).
Considering the size of the robot workspace and its prototypal nature (most of the compo-
nents are 3D printed in plastic material), errors of this magnitude are reasonably attributed
to an imperfect calibration, mounting errors of the guidance system on the aluminum
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frame, and elastic components deflection. All in all, the machine can perform the pla-
nar non-contact task with relatively good accuracy, which can be increased with a more
advanced mechanical design, followed by a precise calibration.

Table 1. Comparison between ideal and engraved segment lengths.

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14

l�i [mm] 90.8 66.4 92.7 84.2 85.1 84.6 92.7 92.7 92.7 92.7 92.7 92.7 80.9 75.2

li [mm] 89.4 64.4 91.2 87.4 85.5 88.3 91.2 94.6 91.3 91.6 90.5 92.6 78.3 76.9

εli
[mm] −1.4 −2.0 −1.5 3.2 0.4 3.7 −1.5 1.9 −1.4 −1.1 −2.2 −0.1 −2.6 1.7

εli ,% [%] −1.6 −3.1 −1.6 3.7 0.4 4.4 −1.6 2.1 −1.5 −1.2 −2.3 −0.1 −3.3 2.3

5. Conclusions

This paper presented an overconstrained CDPR for non-contact tasks on planar vertical
surfaces. The actuation and guidance systems were described and the applicability of the
standard model was outlined by showing the employed design expedients. The CDPR
prototype was built at IRMA laboratory at the University of Bologna, and used to perform
laser engraving on a paper sheet. Engraving results are qualitatively good, considering the
prototypal nature of the robot, and quantitatively acceptable, since they can be improved
by better manufacture of mechanical components and calibration.

In the future, the proposed actuation and guidance units design will be evolved
in order to achieve on-site deployability: the actuation (or guidance) unit will be mounted
on a vertical façade, and the system geometry will be self-calibrated on-site after each
mounting operation.

6. Patents

The preliminary design of the prototype presented in this paper is object of the patent
WO2021144685.

Supplementary Materials: The following are available at https://www.mdpi.com/2076-3417/11/2
0/9491/s1, Video S1: This video shows the engraving process described in the experimental section
of the paper.
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Abstract: Six-axis motion platforms have a low contraction height and a high degree of freedom.
First of all, the designed six-axis crank arm platform, including the motor, reducer, crank arm,
link, platform support arm, and upper and lower platforms, can be designed for different bearing
requirements. Secondly, it uses a coordinate transform and kinematics theory to derive each motor
rotor angle. A set of platform data acquisition (DAQ) monitoring modules was established, and
the LabVIEW programming language was used to write measurement software. The monitoring
items include displacement, speed, and acceleration, which can be displayed on the screen and
recorded by an industrial computer in real time and dynamically. Then, an RS-485 or RS-232
communication transmission interface was used to provide the control system with the related
movement information. Finally, an industrial computer combined with a motion control card was
used as a control kernel to realize the control algorithms, internet module function, I/O write and
read signals, firmware integration, and human–machine interface message. The experimental results
validate the appropriateness of the proposed method.

Keywords: 6DoF motion platform; inverse kinematics; monitoring system; crank arm mechanisms

1. Introduction

Simulators continue to progress toward high performance, high fidelity, and complex,
realistic scenes [1]. A motion platform with six degrees of freedom (DoF) simulates the
dynamic motion of several vehicles to be perceived by passengers. In addition to visual
effects, sound effects, and force, adding motion to professional training simulators can
make the simulations more realistic as well as improving the effectiveness of training
and exempting trainees from having to readapt to the motion of real vehicles. Regarding
entertainment systems, adding motion can increase excitement, enhance interaction, and
increase the value of the systems. Motion platforms with six DoF are commonly driven by
one of the following devices: (1) A linear actuator, which is composed of motors, belts, and
lead screws. This structure includes six electric cylinders, three pneumatic cylinders, upper
and lower platforms, and a platform controller. (2) A 6DoF crank arm platform, which is
created by combining a crank arm mechanism—composed of a servo motor, a gear box,
and a crank arm—with a reducer, a rocker arm, a platform support arm, upper and lower
platforms, and a control system. Though they possess the advantages of simple control,
high DoF, high efficiency, and high loading capacity (ton) [2], linear actuators have high
production costs, and the height of the platform to be positioned in the center is overly
high. With approximately half the development cost of linear actuators, 3DoF and 4DoF
crank arm platforms have comparable high-fidelity motion, which reduces manufacturing
costs, and can be applied in professional training simulators (e.g., of ships and vehicles)
and entertainment simulators, which may serve as a point device at amusement parks [3,4].

In 1965, Stewart from the United Kingdom proposed a 6DoF, six-axis motion platform
structure [5], which was first used as a flight simulator. The potential advantages and
application prospects of parallel platforms received considerable attention and inspired
numerous studies. In 1980, Fichter and Mcdowell proposed a parallel mechanism derived
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from Stewart’s platform and discussed the inverse kinematics of said mechanism [6],
which represented the earliest discussion of inverse kinematics. In 1985, Mohamed and
Duffy published a study on the relationship between the end effector speed of a six-axis
motion platform and the drive input speed [7]. In 1992, Kumer clarified the relationship
between the speed and acceleration of a six-axis platform and the drive. In 1993, Liu
proposed a comprehensive analysis of forward kinematics and inverse kinematics of a
six-axis motion platform [8]. Ji et al. analyzed the inverse kinematics of a 3-RRPS 6DoF
Stewart platform [9]. By that time, most kinematics problems related to the general type of
6DoF Stewart platform had been resolved. Studies after 2010 have generally addressed
means of controlling parallel architectures, such as artificial neural network control [10],
and predictive control [11–13]. Studies after 2010 have also explored numerical solutions.
For example, the spatial position and the center of the upper platform can be obtained
by applying forward kinematics [14]. In addition, [15] proposed a real-time algorithm for
solving the six motors’ angular update command problem caused by multithreading. The
algorithm is advantageous in that it increases the computing speed and reduces the running
time, which enables the motors’ angular update commands of the six-axis platform to
provide more timely updates to the six servo drives. The current study applied the dynamic
proprioception of real-life situations to achieve a motor sense that is identical or close to
that created by real vehicles. Theoretically, the motion cueing effect most closely resembles
reality when the motion state of the platform is exactly that of a real vehicle [16,17]. The
simulation of motion especially targeted the speed and acceleration perceptible by the
human sensory system to achieve a realistic motor sense.

The majority of simulators have been designed based on the 6DoF structure of the
Stewart platform [5–17], which uses linear actuators to achieve a 6DoF overall movement.
However, the need to use six linear actuators is expensive. Therefore, this work proposes a
six-axis crank arm mechanism for motion systems. There is no formal literature about the
design and implementation of an actual crank arm mechanism platform. As in [18], this
work’s design was based on DIY methods to create a simple model. Limiting the range of
movement through the error correction method achieves an effect similar to an integrator.
In order to improve the movement stroke of the platform, this study investigated the crank
arm motion platform with a monitoring system, in order to propose an inverse kinematics
design for virtual cylinders. In addition, a motion monitoring system is proposed for
affordable measurement of the platform. For affordability, low-cost sensors are utilized.
The software offers functions such as sampling settings, impulse response display, real-time
display of measured values, and log file reading and sending. To the best of our knowledge,
the ideas we mention have not been presented in previously published papers [1–18]. As
a result, this paper presents some new ideas on the implementation of motion control
systems, including an adjustable speed control system and a middle-distance stroke control
system. Related measuring instruments, such as a touch panel, an industrial computer,
professional wiring harnesses, sensors, jigs, and auxiliary appliances, are placed in a self-
designed waterproof storage box to facilitate portability and operation at different venues.
Validated through experiments, the proposed algorithm can control different attitudes,
human–machine interface operations, network packet reading, and command receiving of
the platform and can achieve 6DoF control and monitoring.

2. Inverse Kinematics Design

For six-axis motion platforms with a parallel structure, when the upper platform
changes directions, the crank arm mechanism can bear the evenly divided load. That is, the
highly rigid structure has a high load-bearing capacity. For six-axis motion platforms with
a serial design, a structure resembling a cantilever beam is formed when the connecting
rod is fully extended, and each joint connected in series accumulates errors (which reduces
accuracy), possesses a low bearing capacity, and easily wobbles. Accordingly, a parallel
structure has greater rigidity and stability and can achieve high-precision positioning
in a complex working environment. Kinematics is divided into forward and inverse
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kinematics. Forward kinematics refers to the rotation angles of the servo motors of a
six-axis platform, and numerical methods are used to determine the position, speed, and
acceleration corresponding to the platform [19]. Inverse kinematics involves the use of
platform position, speed, and acceleration to calculate the rotation angle of servo motors.
This is the method adopted in the current study [20]. Figure 1 presents the physical model
of the six-axis crank arm motion platform, which comprises six crank arm mechanisms,
an upper platform (moving platform), a lower platform (fixed platform), and six support
arms. The coordinates of the upper platform, lower platform, and rotation axis of the drive
shaft are (xpi, ypi, zpi), (xbi, ybi, zbi), and (xb_Mi, yb_Mi, zb_Mi), respectively, where i = 1,
2–6. Traditional inverse kinematics methods and the proposed inverse kinematics method
are explained in the section below.

Figure 1. Photograph of the motion platform.

2.1. Traditional Inverse Kinematics

Traditional inverse kinematics changes the endpoint coordinate of the crank arm
through the rotation angle of the arm [18], which requires adding together the components
of the crank mapped to the platform, components of the connecting rod mapped to the
platform, and the coordinates of the rotation axis of the drive shaft and then subtracting
the sum from the expected upper platform coordinate to calculate its distance from the rod.
Because the length of the support arm is fixed, the endpoint coordinate of the crank arm
was adjusted by rotating the crank arm until the distance between the lower and upper
platform coordinates aligned with the actual length of the support arm (Figure 1).

As Figure 2 illustrates, when the upper platform coordinate (xp1, yp1, zp1) of the first
axis and inverse kinematics were used to calculate the expected rotating position vector
(xp1_1, yp1_1, zp1_1), the coordinate corresponding to the lower platform (xb1_1, yb1_1,
zb1_1) was moved from (xb1, yb1, zb1) according to the rotation angle of the crank arm.
The virtual support arm (L1) was calculated using (xp1_1, yp1_1, zp1_1) and (xb1, yb1,
zb1). If L1 did not equal the actual support arm (L), the two had different lengths. The M1
motor rotation command is obtained according to the change in the error value as

θ1(k + 1) = θ1(k) + γ(L1(k)− L) (1)

where k is the number of sampling points, θ1 is the angle of the M1 motor, and γ is the
weighting factor of the iteration. Then, the angle of the M1 motor had to be adjusted until
L1 and L were of the same length. Therefore, the upper platform coordinate (xp1, yp1, zp1)
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was slowly moved from the virtual support arm (L1) to L′ by controlling the M1 motor.
The length of L′ was calculated using Equation (1).

L′ =
√

(x p1_1−xb1

)2
+ (y p1_1−yb1

)2
+ (z p1_1−zb1

)2
(2)

Figure 2. The schematic diagram of axis1 control.

The software ran Equation (2) until L = L′, which indicated that the coordinate of the
lower platform (xb1_1, yb1_1, zb1_1) was correct.

2.2. Proposed Inverse Kinematics

Because traditional inverse kinematics methods fail in the position control imple-
mentation, the upper platform can only be moved approximately to adjust the length of
the virtual support arm. To improve the movements of the endpoint coordinates of the
motion platform crank arm, an actuating method similar to that of a linear actuator was
adopted to obtain the relevant coordinates. The position of the linear actuator was set as
the lower fixed point coordinate, and the upper platform coordinate could be changed by
adjusting the elongation of six linear actuators. In practice, the elongation required by each
electric cylinder can be calculated by subtracting the distance between the upper and lower
platform coordinates with elongation from that without elongation. Therefore, this study
proposes changing the motion platform of the rotary crank arm to the output end of the
crank arm motor as the lower fixed point of the linear actuator, thereby determining di,
which is the distance between the upper platform coordinate and the motor coordinate
(xb_Mi, yb_Mi, zb_Mi). The vector of di is expressed as follows [21]:

di = qi − bi = T + R · pi − bi (3)

where T is the position vector of the upper platform coordinate relative to the lower
platform, R denotes the homogeneous transformation matrix, pi = [xpi ypi zpi] represents
the position vector of the upper platform, bi = [xb_Mi yb_Mi zb_Mi] is the position vector
of the motor rotation axis, and di denotes the equivalent rod length.

Thus, by taking into account the relationship between the lengths of the crank, con-
necting rod, and support arm, the positions of the motor end and upper platform were bi
and pi, respectively, s was the sum of the connecting link length (p) and support arm length
(l), and the contact coordinate (Ai) between s and the crank length (a) was projected to the
xy plane. In Figure 3, φi denotes the included angle between the x direction and the crank
length. The known conditions, namely, s, a, Bi = [xb_Mi yb_Mi zb_Mi], pi = [xpi ypi zpi], and
φi, were used to calculate the angle required for each axis to rotate (θi), thereby controlling
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the different virtual cylinder lengths (di), controlling the elongation of the virtual cylinder,
and determining the platform attitude required by the 6DoF platform.

Figure 3. The relationship of axis i (i = 1–6) and upper platform coordinate.

Because the six sets of crank arm mechanisms were arranged opposite to each other,
they were divided into odd and even numbers. The first, third, and fifth axes were
controlled at 0–180 degrees, while the second, fourth, and sixth axes were controlled at
180–360 degrees. The odd axes of Ai are expressed as

xai = a · cos(θi) cos(φi) + xb_Mi (4)

yai = a · cos(θi) cos(φi) + yb_Mi (5)

zai = a · sin(θi) + zb_Mi (6)

where i = 1, 3, and 5. The even axes of Ai are expressed as

xai = a · cos(180 − θi) cos(180 + φi) + xb_Mi (7)

yai = a · cos(180 − θi) cos(180 + φi) + yb_Mi (8)

zai = a · sin(180 − θi) + zb_Mi (9)

where i = 2, 4, and 6. As shown in Figure 3, Pythagorean theorem is applied to find s, di,
and a, which are expressed as follows:

s2 =
(

xpi − xai
)2

+
(
ypi − yai

)2
+
(
zpi − zai

)2 (10)

d2
i =
(
xpi − xb_Mi

)2
+
(
ypi − yb_Mi

)2
+
(
zpi − zb_Mi

)2 (11)

a2 = (xai − xb_Mi)
2 + (yai − yb_Mi)

2 + (zai − zb_Mi)
2 (12)

Equations (11) and (12) are substituted into Equation (10) to derive

s2 = d2
i + a2 + 2

(
x2

b_Mi + y2
b_Mi + z2

b_Mi

)
− 2
(

xpixb_Mi + ypiyb_Mi +zpizb_Mi
)
+ 2xai

(
xpi − xb_Mi

)
+2yai

(
ypi − yb_Mi

)
+ 2zai

(
zpi − zb_Mi

) (13)

Equations (4)−(9) are substituted into (13) to derive

d2
i + a2 − s2 + 2a · sin(θi)

(
zpi − zb_Mi

)− 2a · cos(θi) ·
{

cos(φi)
(

xpi − xb_Mi
)
+ sin(φi)

(
ypi − yb_Mi

)}
= 0 (14)
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To facilitate the calculation, the equation is rewritten as follows:

H = E · sin(θi) + K · cos(θi) (15)

where
H = d2

i + a2 − s2 (16)

E = −2a · (zpi − zb_Mi
)

(17)

K = 2a · cos(θi){cos(φi)
(

xpi − xb_Mi
)
+ sin(φi)

(
ypi − yb_Mi

)}
(18)

Equation (15) belongs to the trigonometric identity, and θi can be written as

θi = sin−1
(

H/
√
(E2 + K2)

)
− tan−1(K/E) (19)

The aforementioned equation demonstrates that the actual rotation angles (19) of the
six motors can be directly derived using the known conditions—s, a, bi = [xb_Mi yb_Mi
zb_Mi], pi = [xpi ypi zpi], φi, and the distance (di) from the upper platform coordinate to the
motor coordinate.

3. PID Controller

In the synchronous d-q frame, the voltage equations can be expressed as

vd = rsid + Ld
d
dt

id − ωreLqiq (20)

and
vq = rsiq + Lq

d
dt

iq + ωreLdid + ωreλm (21)

where vd is the d axis voltage, vq is the q axis voltage, rs is the stator resistance, id is the d
axis current, iq is the q axis current, Ld is the d axis inductance, Lq is the q axis inductance,
d/dt is the differential operator, ωre is the electrical motor speed, and λm is the flux linkage
of the permanent magnet mounted on the shaft rotor. Through realizing id = 0 by applying
field-oriented control, Equations (20) and (21) can be rewritten as

vd = −ωreLqiq (22)

and
vq = rsiq + Lq

d
dt iq + ωreλm

= uq + ωreλm
(23)

The electro-magnetic torque is

Te =
3
2

P
2

λmiq = KTiq (24)

where Te is the electro-magnetic torque of the motor, P is the number of poles of the
motor, and KT is the torque constant. The mechanical speed and position of the motor are
expressed as

d
dt

ωrm =
1
Jt
(Te − TL − Btωrm) (25)

and
d
dt

θrm = ωrm (26)

where ωrm is the mechanical speed, θrm is the mechanical position, Jt is the total inertia of
the motor and gearbox, TL is the load torque, and Bt is the total viscous coefficient of the
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motor and gearbox. The electrical position and speed, which can be expressed as θre and
ωre, are shown as follows:

θre =
P
2

θrm (27)

and
ωre =

P
2

ωrm (28)

The PID control law is

u = KPe(t) + KI

∫
e(t)dt + KD

d
dt

e(t) (29)

where e(t), KP, KI , and KD are the control error, proportional, and integral coefficients,
respectively. In Figure 4, Gθ , Gω , and GC of the servo driver are the PID controllers, namely,
the position loop, speed loop, and current loop controllers, respectively. The control system
was designed and applied to each of the six actuators independently.

Figure 4. Block diagram of the position control system.

4. Monitoring System Design

The six-axis platform monitoring module was developed exclusively for six-axis
platform testing. The industrial computer monitoring program was designed under the
LabVIEW environment and the interactive property is good. The function of the system
reached the expected design requirements, and the cost is low. Combined with the modular
design concept, it is integrated in the waterproof box shown in Figure 5. The waterproof box
contains a high-speed DAQ, an industrial computer, a touch screen, sensors, professional
wiring harnesses, and jigs. The special jig allowed for convenient and rapid installation.
Measurement software was written to measure and record various parameters of the
six-axis motion platform at high speed.

Figure 5. Photograph of the monitoring system.
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4.1. Gyroscope and Angular Velocity Meter Jig

Three angular velocity sensors were fixed on the cube to measure angular velocity in
the x, y, and z directions. The attitude gyroscope and the cube were fixed on a magnetic
bottom plate, the magnetic attraction was approximately 47 kg. The adherence distance
was adjusted using three screws to avoid the strong impact of direct magnetic adherence
from damaging the sensors. Two powerful magnets at the bottom of the jig were adhered
to the six-axis platform to be tested. To avoid the impact of powerful magnetic adherence,
three knobs were designed. Before adherence, the knobs were turned clockwise to the end
such that the three screw threads formed three points of support. After aligning with the x
direction of the platform, the jig was adhered to the platform, and the three knobs were
turned counterclockwise for the bottom plate to fit closely to the platform, the jig was thus
firmly adhered to the platform. The jig could be easily dissembled by turning the three
knobs clockwise to the end, as shown in Figure 6.

Figure 6. Gyroscope and angular velocity meters.

4.2. Laser Displacement and Angular Meters

Three three-section brackets (Figure 7a) were used to adjust the height of the x, y, and
z axes of the measurement platform, while three measurement reference plates (Figure 7b)
were magnetically adhered to the x, y, and z axes of the six-axis platform. The positions
of the brackets or reference plates were adjusted for a red laser dot fired out of the laser
displacement meter to hit near the center of the reference plate. Because the six-axis
platform had a hexagonal structure design when viewed from above, the x axis was
adjusted for the measurement reference plate to magnetically adhere to the x direction, and
the x direction displacement was immediately read when the laser hit the measurement
reference plate. The y axis was not perpendicular to any plane. Therefore, the reference
plate was installed on the side of the six-axis platform, and y direction displacement was
obtained through angle correction. The correction method is shown in Figure 7c.

4.3. Measurement Software

Figure 8a presents the measurement software setting form, which allows for archive
path and measurement speed settings. The five sensor-related settings are as follows:
angular velocity sensor and laser displacement meter receiving signals from the voltage
input channels (the software enables or disables the function as well as adjusting the
channel name, scale, offset, and unit), three-axis accelerometer receiving signals from
the IEPE channel (the software enables or disables the function as well as adjusting the
channel name, sensor sensitivity, and unit), and attitude gyroscope receiving signals from
the RS232 serial port (the software sets the communication port). Figure 8 presents the
real-time curve and trend curve for the sensor signals received by the high-speed DAQ.
The left side of Figure 8b is the channel display. The operator can manually select the
number of measurement channels for continuous and simultaneous measurement, display,
and archiving.
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Figure 7. Laser displacement meter: (a) three-section bracket, (b) measurement reference plate, and
(c) schematic diagram of x axis and y axis measurement.

Figure 8. Cont.
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Figure 8. Operation interface: (a) software setting and (b) channels display.

5. Implementation

The implementation block diagram of the platform is displayed in Figure 9. The
mechanical structure of the platform was designed to carry a simulator cab of 1500 kg or
heavier (Figure 10a). The platform mechanism was divided into upper and lower platforms.
The six support arms of the platform achieved the 6DoF stroke required by the simulator
cab through crank arm rotation. Fisheye bearing joints were used to connect the upper
end of the support arm to the upper platform, while the lower end of the support arm
was coupled with the crank arm to drive the upper platform. The prototype of the crank
mechanism is shown in Figure 10b. The dimensions are link length = 105 mm, support arm
length = 835 mm, and crank length = 250 mm. The parameters of the motor are shown
in Table 1. The gearbox ratio is 32.41. The servo motor was connected with a gearbox to
magnify the torque output. A motion control card PMDK, produced by ICP Das Co., Ltd,
was used with a 5-V PCI bus. The PMDK had six pulse input and output channels, six
analog input and output channels, and various digital input and output channels. The
PMDK was equipped with a two-wire FRnet IO module, which can be used for remote
input and output control.

Figure 9. The block diagram of the 6DoF platform.

202



Appl. Sci. 2021, 11, 9330

Figure 10. 3D design drawing of the 6DoF platform: (a) 6DoF platform, and (b) crank arm mechanism.

Table 1. The parameters of the motor.

Pole Number 8 Pole

Power dissipation 5.0 kW

Rated voltage 220 V

Rated load current 25.9 A

Rotor inertia 0.00488 Kg-m2

Rated speed 2000 r/min

Maximum speed 3000 r/min

Rated torque 23.9 N.m

Maximum torque 71.6 N.m

The monitoring module is shown in Figure 11a,b. The operator opened the waterproof
storage box, screwed one end of the wiring harness to the input and output connector and
the other end to sensor a, and secured the measurement reference plates and three-section
brackets in place (Figure 11a). Figure 11b displays the positions of the angular velocity
meter and the gyroscope.

The main program conducts the initial setup, thread enabling, and mode login of
the platform. Figure 12a contains a flowchart of the implementation. Under the normal
mode, the login mode can be selected using the human–machine interface. When the
operator discovers an abnormal alarm or when maintenance personnel need to inspect the
electric cylinders, they may select the maintenance mode via the interface. Data can be
read and written via Internet transmission, and a thread of network modules is produced
(Figure 12b). Operators can issue 6DoF commands to the platform and transmit the 6DoF
commands to the platform computer by using Internet cable transmission.
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Figure 11. Photograph of the implementation system: (a) monitoring module and (b) upper platform.

Figure 12. Flowchart of the implementation: (a) main program and (b) network module.
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6. Experimental Validation

Figure 13 contains photographs of the four strokes under the control of 6DoF. This
section validates the accuracy and feasibility of the proposed method by using experimental
results. Traditional inverse kinematics and the proposed inverse kinematics were written
into the software—only the inverse kinematics software was modified, the hardware was
not—to compare the motion of the six-axis crank arm platform when the two algorithms
were applied. Then, 6DoF commands were issued to the platform through the human–
machine interface, and the movable range of each DoF was recorded.

Figure 13. The control of 6DoF: (a) heave, (b) pitch, (c) roll, and (d) surge.

Figure 14a–c are records of the relevant measurement results. The controllable angles
of the two algorithms were compared, as indicated in Figure 14a. Because the traditional
method used the trial-and-error method to control the lower platform coordinate, when the
calculated rod length approximated the actual rod length, the movement was completed.
The traditional method allowed the actuator to be operated only within the linear region,
that is, a position of 60 to 180 degrees. The proposed method opted to directly map the
crank arm platform to the Stewart platform, enabling the actuator operating region to reach
50 to 230 degrees. A comparison of the algorithms is presented in Figure 14b, where the
subscripts “old” and “new” denote the traditional and proposed methods, respectively.
As in the figure, the movable range of the proposed method was larger than that of the
traditional method—a front–back distance 60 mm longer, a left–right distance 80 mm
longer, and a vertical distance 160 mm longer, which effectively improved the stroke of the
platform operation space. The algorithms’ controllable angles of rotation—known as roll,
pitch, and yaw—were compared, as in Figure 14c. The angles of rotation of the proposed
algorithm were wider than those of the traditional algorithm—8 degrees wider in roll,
4 degrees wider in pitch, and 4 degrees wider in heave. An enlarged operating angle implies
an increased overall platform space. Figure 12a,b are the 2 DoF ± 300 mm displacement
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response diagrams, where the motion control command begins at 8 s with a period of 4 s.
To observe the relationship between surge and sway—a 90-degree difference—more clearly,
they were plotted on the horizontal and vertical axes, respectively, forming a perfect circle
(Figure 15b). Figure 16a–c present the displacement, velocity, and acceleration curves of
surge conducting 150 mm of forward and reverse rotation, and the velocity was obtained
using differential software. Platform operation involved complex mechanical parts as
well as the simulator cab. Accordingly, a few spikes were observed in the differential
velocity due to discontinuous displacement. Figure 17a,b are the response diagrams of
the three translational DoF (surge, sway, and heave) at ±300 mm displacement with an
angular difference of 120 degrees between any two. Regarding heave, the laser light of the
displacement meter hit the rear of the upper platform. Due to the unfavorable mechanism
smoothness, ripples were observed in the extracted signals. A 3D circle was formed when
the three translational DoF were spatially plotted. Figure 18a–d are the response diagrams
of the three other DoF at ±26 degrees with an angular difference of 120 degrees between
any two. In Figure 18b, RS232 is used to read the angular velocity of the gyroscope, which
has an amplitude of ±12 degrees/s. The roll, pitch, and yaw were spatially plotted, forming
a 3D circle. Figure 19 shows the x, y, and z axis accelerations of the test platform, and the
impulse responses were captured by the accelerometer. The platform performed x axis
acceleration and deceleration alternately at 5–15 s, and the acceleration was approximately
0.5 g, whereas the platform performed y and z axis acceleration and deceleration alternately
at 22–23 s and 43–55 s, respectively, and the acceleration was also approximately 0.5 g.

Figure 14. Cont.
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Figure 14. Comparison of the proposed method and the conventional method: (a) control range,
(b) surge, sway, and heave, and (c) roll, pitch, and yaw.

Figure 15. Measured displacement responses: (a) responses and (b) trajectories.
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Figure 16. Measured triangular wave displacement responses: (a) displacement, (b) velocity, and
(c) acceleration.

Figure 17. Measured responses at different time-varying commands: (a) 2D view and (b) 3D view.
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Figure 18. Measured sine wave degree responses: (a) angle, (b) angular velocity, (c) angular accelera-
tion, and (d) 3D view.
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Figure 19. Measured acceleration responses: (a) x axis, (b) y axis, and (c) z axis.

7. Conclusions

This study discussed the inverse kinematics of a six-axis motion platform, and the
development of a monitoring system. The main contribution of this study is the design of a
6DoF crank arm mechanism to replace the expensive 6DoF linear actuator Stewart platform,
3DoF crank arm platform, and 4DoF crank arm platform, and the result of obtaining a
comparable movement experience to the Stewart system. The algorithm was applied to the
motion control of a 6DoF platform to control the elongation of the virtual cylinder and to
determine the platform attitude required by the 6DoF platform. Unlike the conventional
method, which relies on approximation to obtain the required angle, this study proposed a
more accurate, real-time, and highly dependent processing method. In addition, this study
used LabVIEW to create a set of testing equipment that integrates different sensors and jigs
to read the angle, angular velocity, displacement, and linear acceleration of the platform in
motion. Subsequently, the differential equation and sampling rate were used to calculate the
angular acceleration and linear velocity. The testing equipment data were transmitted to the
platform computer via RS-485 or RS-232 digital communication, allowing the platform to
control the state of motion at all times. Finally, the experimental results prove the proposed
algorithm capable of improving the operation of the platform stroke and thus applicable to
simulators with higher specification requirements. Moreover, the implementation of the
platform was based on the PID controller. Because of its simple structure, strong robustness,
and good stability, the PID controller is still widely used in various fields of industrial
control. However, the modern control theory of the platform is not the main topic of this
study that will be considered to evaluate the design in future work.
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Abstract: Control of closed-kinematic chain manipulators (CKCM) with uncertain dynamics is a
tremendous challenge due to the synchronization among actual joints and end-effectors, limited
workspace, and nonexistent closed-form solutions of forward kinematics. This paper proposes a
synchronization control scheme based on the concept of sliding mode control (SMC) developed for
CKCMs called nonsingular fast terminal sliding mode control (NFTSMC) in conjunction with the
time-delay estimation (TDE) method to address the above issues. First, the cross-coupling error is
derived by combining position errors and synchronization errors to achieve the synchronization goal
and then used to form a sliding mode surface of the NFTSMC. After that, a control law is developed
based on the sliding mode surface to ensure faster asymptotic convergence of the errors of both
position and synchronization of the CKCMs in a finite and minimal time. Then, the TDE control
scheme with no prior knowledge of manipulator dynamics is employed to estimate the unknown
dynamics and disturbances and thereby reject the effects of chattering caused by the NFTSMC.
Lyapunov stability theorem is employed to show that the overall system controlled by the proposed
control scheme achieves asymptotic convergence of errors and system stability. The performance of
the proposed control is assessed by computer simulation on a 2 degrees-of-freedom (DOF) planar
CKCM manipulator and simulation results are presented and discussed.

Keywords: closed-kinematic chain manipulator (CKCM); sliding mode control (SMC); time-delay
estimation (TDE); nonsingular fast terminal sliding mode control (NFTSMC); synchronization control;
model-free control

1. Introduction

Closed-kinematic chain manipulators (CKCMs) for which its motion is achieved in all
degrees-of-freedom (DOF) by the combined motion of their active joints can provide higher
positioning accuracy and greater payload handling capability than the conventional open-
kinematic chain manipulators (OKCM) composed of serial linkages or rigid bodies [1–4].
Despite the above advantages, CKCMs possess several drawbacks such as synchronization
among actual joints and end-effectors, limited workspace, and nonexistent closed-form
solutions of forward kinematics. To address the above issues, the concept of synchronization
control has been considered, and as a result, there has been much effort in the development
and implementation of error synchronization-based control schemes for CKCMs. In a
synchronization-based control scheme, all joints are synchronously driven to improve
CKCM’s performance.

The synchronization concept was first introduced in [5], and it was applied to perform
tracking control of parallel robots [6–9]. Most existing synchronized control schemes are
model-based such as the computed torque control (CTC) [10], adaptive control [11,12],
and sliding mode control (SMC) [13,14]. In general, a SMC scheme consists of a driving
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component that forces the system’s trajectory to reach a stable hyperplane (sliding surface)
and a design of a sliding surface that assures the plant’s desired error dynamics. The imple-
mentation of the above synchronized control schemes requires a precise dynamical model
of the manipulator, for which its calculation is highly computationally intensive. Moreover,
it was concluded that an accurate mathematical dynamic model of CKCMs is difficult to
obtain. Consequently, the above model-based control schemes are not suitable for real-time
control of CKCM manipulators, particularly those with more than 2 DOFs. To tackle the
above dynamic modeling issue, the authors in [15,16] considered synchronized control
schemes that have simple structures and do not require knowledge of the manipulator
dynamics to implement their control laws. However, those control approaches proposed
for parallel manipulators can only achieve asymptotic stability, which requires infinite time
to converge to an equilibrium point. In order to assure finite-time convergence, the terminal
SMC (TSMC) scheme was proposed in [17–19]. Then, the advantage control scheme of
TSMC, called Nonsingular Fast Terminal Sliding Mode Control (NFTSMC), was introduced
in [20,21]. This developed control scheme can handle the singularity and fast convergence
of the system. Recently, the NFTSMC was combined with synchronization, and this control
scheme was applied to a parallel robot manipulator in [7]. It used the cross-coupling error
that combined both tracking errors among the active joints and synchronization errors
of a parallel robot to fix the actuator’s external disturbances and dynamic uncertainties.
Thus, the tracking performance of the robot improved significantly. However, the gains
of this control scheme are still selected based on conservative estimates of the dynamic
manipulator model. Thus, it leads to complications in the highly complicated model
in calculations.

Recently, a simple model-free controller called Time-Delay Estimation (TDE) was
applied to CKCMs to solve the above issue. The TDE has been employed to control robot
manipulators over the last decade because of its efficient computation capability [22–24].
It used time-delayed information to estimate unknown dynamics and disturbances in
a sufficiently small time-delay. Lately, the TDE has been combined with Nonsingular
Terminal Sliding Mode (NTSM) control [25] to provide highly robust and precise control
schemes for robots with a fast convergence finite time. To our best knowledge, control
schemes combining the TDE, the NFTSMC and synchronization have not been considered
for controlling CKCMs.

Based on the above analysis, a simple model-free synchronization control system for
CKCMs based on TDE and NFTSMC is proposed in this paper to pursue simplicity while
preserving the robustness of CKCMs.

Comparing to the existing control schemes approach for robot manipulators, the
contribution of this paper can be marked as the following significant points:

(1) Unlike the above-mentioned control schemes, the proposed control scheme TDE-based
NFTSMC with synchronization is proposed for the first time.

(2) A new control scheme is proposed based on the combination of TDE-based NFTSMC
and synchronization control.

(3) The proposed control scheme is to optimally synchronize the robot joints to minimize
the synchronization errors with a NFTSMC-based controller while the robot dynamics
and disturbances are estimated and compensated by a TDE-based subsystem.

This paper presents the computer simulation studies of the performance of the pro-
posed control scheme using Matlab-Simulink. Comparative studies with other existing
control schemes will be conducted.

The paper is organized as follows. Section 2 presents the structure of the proposed
control scheme. Section 3 presents the control scheme analysis without TDE while Section 4
presents the description of subsystems and discusses their simplicity and efficiency. The
stability and the stability provided by the control scheme is analyzed and discussed in
Section 5. Section 6 presents and discusses results of computer simulation conducted to
study the performance of the control scheme applied to control the motion of a 2 DOF
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CKCM manipulator in comparison with other existing control schemes. Finally, Section 7
concludes the paper with a summary of the paper and final comments.

2. Structure of the Control Scheme

2.1. Kinematic Scheme of the CKCM

The structures of the 2 DOF CKCM manipulator and the frame assignment are shown
in Figures 1 and 2, respectively. Figure 1 shows a two DOF CKCM manipulator, which is a
special case of the n-DOF CKCM manipulator. It consists of an end-effector platform and a
fixed upper platform interconnected by two links. All links act in a parallel manner and
share the same payload.

Figure 1. Architecture of the 2 DOF CKCM manipulator.

Figure 2. Frame assignment for the 2 DOF planar CKCM manipulator.
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Figure 2 depicts the frame assignment for the two DOF planar CKCM manipulator
with a two-dimensional coordinate system (x, y). From this figure, we obtain the following:

q2
1 = x2 + y2 (1)

q2
2 = (d − x)2 + y2 (2)

where d is the distance between the pin joints hanging the two actuators, (x, y) represents
the Cartesian position of the end-effector, and q2 and q2 are the length of the first and
second legs, respectively.

We see that (1) and (2) represent a closed-form solution for the inverse kinematics in
the sense that they can be used to determine the leg lengths q1 and q2 that yield a desired
Cartesian position (x, y).

Moreover, from (1) and (2), the Cartesian variables x and y can be obtained as follows.

x =
q2

1 − q2
2 + d2

2d
(3)

y =
−
√

4d2q2
1 −
(
q2

1 − q2
2 + d2

)
2d

(4)

We see that (3) and (4) represent a closed-form solution for the forward kinematics in
the sense that a Cartesian position can be determined based the actual leg lengths q1 and
q2. We note that, due to the small number of DOFs of this manipulator, it has closed-form
solutions for both its forward and inverse kinematics.

2.2. Structure of the Proposed Control Scheme

The structure of the proposed control scheme is presented in Figure 2. It mainly
consists of three subsystems: the Synchronization Subsystem, the NFTSMC Subsystem.
and the TDE Subsystem.

The notations used in Figure 3 are listed below:

• xd ∈ Rn: the desired Cartesian configuration vector. (Note: Configuration means both
position and orientation of the CKCM);

• qd ∈ Rn, q ∈ Rn and
..
q ∈ Rn: the desired joint vector, actual joint vector, and actual

acceleration vector, of the CKCM, respectively;
• ec ∈ Rn: the synchronization error vector;
• u ∈ Rn: the control law vector of the NFTSMC;
• M(q) ∈ Rn×n: constant, diagonal matrix selected by the TDE;
• r ∈ Rn: the output vector of the NFTSMC Subsystem;
• τ ∈ Rn: the compensated control input vector to the CKCM;
• τd ∈ Rn: the external disturbances vector;
• L: the estimate time delay of the TDE;
• ..

qt−L ∈ Rn and τt−L ∈ Rn: the past acceleration vector and past control input vector of
the CKCM, respectively;

• Ĥ ∈ Rn: the estimate of all nonlinear terms including the inertia uncertainty, Corio-
lis/centripetal vector, gravitational vector, friction vector, and disturbances.

The operation of the proposed control scheme applied to control the motion of an
n-DOF CKCM is described as follows. The desired Cartesian vector xd of the manipulator
configuration (position and orientation) specified by the user or obtained by a trajectory
planner is transformed to its corresponding desired joint vector qd by the CKCM Inverse
Kinematic Transformation. The desired joint vector qd and the actual joint vector q (pro-
vided by the CKCM joint sensors) are supplied to the Synchronization Subsystem, which
then produces the position errors ei = qdi

− qi of every ith active joint, the synchronization
error eS, and the cross-coupling error ec between the active joints. The cross-coupling
error ec is then inputted to the NFTSMC subsystem that in turn based on ec defines a
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sliding surface to achieve the above desired behavior of the errors. Next, the control law u

composed based on the sliding surface will be a driving component forcing the system’s
trajectory to reach a stable hyperplane (sliding surface). This control law u will then serve
as part of the input τ to the CKCM and is developed to ensure asymptotic convergence
of the errors of both position and synchronization of the CKCM in a finite and minimal
time. The TDE subsystem uses the past control input and acceleration of the CKCM to
estimate the CKCM dynamics and the disturbance torques, which are required for the
implementation of the input τ to CKCM.

Figure 3. Structure of the Proposed Control Scheme.

3. Control Scheme Analysis without TDE

The dynamics of an n-DOF CKCM manipulator can be represented in joint-space as
follows [25]:

M(q)
..
q + C

(
q,

.
q
) .
q + G(q) + F

(
q,

.
q
)
+ τd = τ (5)

where M(q) ∈ Rn×n stands for the generalized inertia matrix, C
(
q,

.
q
) ∈ Rn×n is the

Coriolis/centripetal matrix, G(q) ∈ Rn is the gravitational vector, and F
(
q,

.
q
) ∈ Rn is the

friction forces.
Suppose system (5) can be decomposed into n decoupled systems and is presented by

the following:
M

..
q+H(q,

.
q,

..
q) = τ (6)

where M is a constant diagonal matrix, and H(q,
.
q,

..
q) represents the necessary CKCM

dynamics and the disturbance torques. Then, from (5) and (6), we obtain the following.

H(q,
.
q,

..
q)=
[
M(q)−M

] ..
q+C(q,

.
q)

.
q+G(q)+F(q,

.
q) + τd (7)

Now we apply an input τ such that the following is the case.

τ = Mu + H(q,
.
q,

..
q) (8)

In order to implement (8), the control system must evaluate H(q,
.
q,

..
q) which in light of

(7) requires heavy computation and thereby making the proposed control scheme impracti-
cal and not suitable for real-time control applications. Consequently, some computationally
efficient estimation of H(q,

.
q,

..
q) is needed for the control scheme, which the TDE Subsystem

could provide. Finally, the Synchronization Subsystem will enhance the overall perfor-
mance of the control system by using the synchronization errors instead of the conventional
joint errors. Detailed development of the above subsystems will be presented below.

4. Description of Subsystems

This section presents the function of the three subsystems of the control structure in-
cluding the Synchronization Subsystem, the NFTSMC Subsystem, and the TDE Subsystem.
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4.1. The Synchronization Subsystem

In this section, the error equations will be developed to achieve the synchronization
goal. First the trajectory tracking error ei of the ith active joint is defined as follows:

ei(t) = qdi
(t)− qi(t) (9)

where qdi
(t) and qi(t) denote the desired and actual trajectories of the ith active joint, respectively.

Then, the tracking error vector e(t) can be written as follows.

e(t) = [e1(t) e2(t) . . . en(t)]
T (10)

The synchronization goal is to make the tracking errors of all active joints identical at
all times, which can be achieved if the following is the case.

e1(t) = e2(t) = . . . en(t) (11)

In order for (11) to be valid, a control scheme must be aware of all the joint errors
and must control the motions of all joints, thereby resulting into possible control and
communication errors and heavy real-time computational requirements. Alternatively, (11)
can be satisfied by achieving its following sub-goals [8]:

es1(t) = 2e1(t)− [e2(t) + en(t)]
...

esi (t) = 2ei(t)− [ei+1(t) + ei−1(t)]
...

esn(t) = 2en(t)− [en−1(t) + e1(t) ]

(12)

where esi (t) presents the synchronization errors of the ith active joint.
It is evident that if all synchronization errors in (12) are equal to zero, then the original

synchronization goal stated in (11) is automatically achieved.
From (12), a synchronization error vector es can be written as follows:

es(t) =

⎡
⎢⎢⎢⎢⎢⎣

2 −1 0 · · · −1
−1 2 −1 · · · 0

...
. . . . . . . . .

...
0 · · · −1 2 −1
−1 0 · · · −1 2

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

e1(t)
e2(t)

...
en−1(t)

en(t)

⎤
⎥⎥⎥⎥⎥⎦ = Ce(t) (13)

where C is the synchronization transformation matrix and es(t) = [es1(t)es2(t)es3(t) . . . esn(t)]
T.

The cross-coupling error vector that combines both tracking errors and synchronization
errors is defined as follows:

ec(t) = e(t) +αes(t) = (I +αC)e(t) (14)

where I is the n × n identity matrix, and α is an n × n diagonal positive definite matrix.
Since every leading principal sub-matrix of (I +αC) has positive determinant, (I +αC) is
positive definite. [26]

Remark 1. Assuming that all the elements of matrix α are very small, then if ec(t) is controlled
such that as t → ∞ , ec(t) → 0 then e(t) → 0 and then es(t) → 0 and finally ei(t) = ei+1(t)
(synchronization goal).
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4.2. The NFTSMC and TDE Subsystems

This section presents the development of the control law of the NFTSMC Subsystem
in conjunction with the TDE Subsystem.

4.2.1. Preliminaries and Notations

The preliminaries and notations can be stated as follow

x[c] = |x|csign(x), where c > 0

It can be easily verified that as c ≥ 1, the following is the case.

d
dt

x[c] = c|x|c−1 .
x

The sign function is defined as follows.

sign(x) =

⎧⎪⎨
⎪⎩

1 if x > 0
0 if x = 0
−1 if x < 0

The power of error vectors is defined as follows.

e[ϕ] :=
(

e[ϕ]1 , . . . , e[ϕ]n

)T ∈ Rn

.
e
[ϕ] :=

(
e[ϕ]1 , . . . ,

.
e[ϕ]1

)T ∈ Rn

|e|ϕ−1 := diag
(
|e1|ϕ−1, . . . , |en|ϕ−1

)
∈ Rn×n

∣∣ .e∣∣ϕ−1 := diag
(∣∣ .e1
∣∣ϕ−1, . . . ,

∣∣ .en
∣∣ϕ−1
)
∈ Rn×n

The spectral norm ‖A‖ of a matrix A ∈ Rn×m is defined as ‖A‖ =

√
λmax

{
ATA

}
where λmax

{
ATA

}
is the biggest eigenvalue of ATA.

4.2.2. The NFTSMC and TDE Sybstems Design

First a nonsingular terminal sliding surface is defined as [20,27].

s = ec + K1e
p1/q1
c + K2

.
e

p2/q2
c (15)

where K1 and K2 are diagonal design matrices, 1 < p1/q1 < 2, 1 < p2/q2 < 2, and p1, p2, q1,
and q2 are positive odd integers.

As discussed above, the implementation of (8) requires the computation of H(q,
.
q,

..
q),

which is in light of (7) highly computationally intensive. Thus, an estimate of H(q,
.
q,

..
q)

is needed. We assume that L is the smallest obtainable time between which H(q,
.
q,

..
q)

remains almost unchanged, such that an estimate of H(q,
.
q,

..
q), namely Ĥ(q,

.
q,

..
q) is equal

to H(q,
.
q,

..
q)t−L which is H(q,

.
q,

..
q) evaluated at (t−L). In other words, we obtain [22]

the following:
Ĥ(q,

.
q,

..
q) = H(q,

.
q,

..
q)t−L (16)

where
..
qt−L can be computed as follows.

..
qt−L =

qt−qt−L
L − qt−L−qt−2L

L
L

=

(
qt − 2qt−L + qt−2L

)
L2 (17)
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From (6) and (16), we obtain the following.

Ĥ(q,
.
q,

..
q) = τt−L − M

..
qt−L (18)

Consequently, (8) can be expressed as follows.

τ = Ĥ(q,
.
q,

..
q) + Mu (19)

We proceed to develop a control u as follows.

u =
..
qd +

q2

p2
[K2(I +αC)]−1

[∣∣ .ec
∣∣p2/q2−1

]−1
(

1 +
p1

q1
K1|ec|p1/q1−1

)
.
ec + Ks + Kswsign(s) (20)

where K and Ksw are diagonal design matrices, sign(s) = (sign(s1), . . . , sign(sn))
T ∈ Rn.

xd ∈ Rn.
Thus, replacing u in (19) by (20) and using (18), we obtain the following.

τ =
(
τt−L − M

..
qt−L
)︸ ︷︷ ︸

TDE

+ M

[
..
qd +

q2

p2
[K2(I +αC)]−1

[∣∣ .ec
∣∣p2/q2−1

]−1
(

1 +
p1

q1
K1|ec|p1/q1−1

)
.
ec + Ks + Kswsign(s)

]
︸ ︷︷ ︸

NFTSM control

(21)

As indicated above in Equation (21), CKCM input τ consists of two main components:
a TDE-based input and an NFTSM input. The TDE-based component minimizes the impact
of the unknown CKCM dynamics while the NFTSM component forces the cross-coupling
errors ec and tracking error e to converge to zero asymptotically. Furthermore, in light
of the application of the TDE Subsystem as presented above and reflected in Figure 1,
the TDE-based component can be derived with the estimate Ĥ(q,

.
q,

..
q) of H(q,

.
q,

..
q) using

(16), instead of having to compute H(q,
.
q,

..
q) directly, thereby making the control scheme

highly efficient.

5. Stability Analysis

This section presents the stability analysis of the control scheme using the Lyapunov
Theorem. Substituting τ in (6) by (21), using (9) and (14) and solving for

..
ec, after rearrang-

ing some terms, we obtain the following:

..
ec = −

{
q2

p2
[K2]

−1
[∣∣ .ec
∣∣p2/q2−1

]−1
(

1 +
p1

q1
K1|ec|p1/q1−1

)
.
ec + (I +αC)[Ks + Kswsign(s)]

}
+ (I +αC)ε (22)

where the TDE error ε is defined as follows.

ε = M
−1[

H(q,
.
q,

..
q)− Ĥ(q,

.
q,

..
q)
]

(23)

Using (15),
.
s can be obtained as follows.

.
s =

.
ec +

p1

q1

K1|ec|p1/q1−1 .
ec +

p2

q2

K2
∣∣ .ec
∣∣p2/q2−1 ..

ec (24)

Next, we consider a candidate Lyapunov function V = sTs
2 . Using (24), the derivative

of V with respect to time is obtained as follows.

.
V = sT .

s = sT
[

.
ec +

p1

q1

K1|ec|p1/q1−1 .
ec +

p2

q2

K2
∣∣ .ec
∣∣p2/q2−1 ..

ec

]
(25)

Applying (24) in (25) provides the following.

.
V = sT

{
p2

q2

(I +αC)K2
∣∣ .ec
∣∣p1/q1−1

[−Ks − Kswsign(s) + ε]

}
(26)
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In other to achieve the asymptotic stability of
.
s about the equilibrium point s = 0, the

following conditions must be satisfied [28]:

(a)
.

V < 0 for s �= 0;
(b) lim

|s|→∞
V = ∞.

Condition (b) is obviously satisfied by V. In (26), since p2 and q2 are positive integers
and 1 < p2/q2 < 2, there is

∣∣ .eci

∣∣p2/q2−1
> 0 for

.
eci �= 0 [29].

Thus, (26) can be presented as follows.

.
V = sT

{
p2

q2

(I +αC)K2
∣∣ .ec
∣∣p1/q1−1

[−Ks − Kswsign(s) + ε]

}
≤ sT[−Ks − Kswsign(s) + ε] (27)

The derivative of the candidate Lyapunov function (27) is negative definite if the
following is the case:

{Ksw}ii > |εi| (28)

where •ii denotes ith diagonal element of •.
Thus, if ε is bounded, the stability condition (28) ensures that the time derivative of

the candidate Lyapunov function is negative and the cross-coupling error is bounded.
Using (19), (6) becomes the following.

H(q,
.
q,

..
q)− Ĥ(q,

.
q,

..
q) = M

(
u − ..

q
)

(29)

Applying (29), the TDE error in (23) is given as follows.

ε = u − ..
q (30)

From (5), the acceleration
..
q can be determined as follows.

..
q = M−1(q)

[
τ− C

(
q,

.
q
) .
q − G(q)− F

(
q,

.
q
)− τd

]
(31)

Substituting (31) into (30) yields the following.

Mε = Mu +
(
C
(
q,

.
q
) .
q + G(q) + F

(
q,

.
q
)
+ τd − τ

)
(32)

Then, using (16) and (19), (32) becomes the following.

Mε = Mu +
(
C
(
q,

.
q
) .
q + G(q) + F

(
q,

.
q
)
+ τd − Mu − H(q,

.
q,

..
q)t−L

)
(33)

From (7), the delayed nonlinear term can be derived as follows.

H(q,
.
q,

..
q)t−L =

(
Mt−L − M

) ..
qt−L +

(
C
(
q,

.
q
) .
q
)

t−L + (G(q))t−L +
(
F
(
q,

.
q
))

t−L + (τd)t−L (34)

Substituting (34) into (33) provides the following:

Mε =
(
M − M

)
u − (Mt−L − M

) ..
qt−L + Ω (35)

where the following is the case.

Ω = C
(
q,

.
q
) .
q + G(q) + F

(
q,

.
q
)
+ τd −

(
C
(
q,

.
q
) .
q
)

t−L − (G(q))t−L −
(
F
(
q,

.
q
))

t−L − (τd)t−L (36)

The friction term F in (36) can be divided as F = FV + FC, where FV denotes that
the viscous friction is continuous, and FC denotes that the Coulomb friction is bounded
and discontinuous at velocity reversal [25]. Next, we divide Ω into continuous term and
discontinuous term to obtain the following:

Ω � Ωcon + Ωdiscon (37)
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where the following is the case.

Ωcon � C
(
q,

.
q
) .
q + G(q) + FV + τd −

(
C
(
q,

.
q
) .
q
)

t−L − (G(q))t−L −
(
F
(
q,

.
q
))

t−L − (τd)t−L
Ωdiscon � FC − (FC)t−L

}
(38)

If C
(
q,

.
q
) .
q + G(q) + FV + τd is continuous and bounded, then Ωcon = O

(
L2), where

O is used to describe the error term in an approximation to a mathematical function [30].
In addition, the discontinuous term Ωdiscon is described as follows.

Ωdiscon ≤
{

b, at velocity reversal
0, otherwise.

(39)

Thus, Ω is bounded by the following:

Ω ≤ b + O
(

L2
)

(40)

for a sufficient small L, where b is a constant vector. The approximation error can be made
small by reducing sampling time L.

From (30), the delayed nonlinear term is given by the following.

..
qt−L = ut−L − εt−L (41)

Substituting (41) to (35) yields the following

Mε =
[(

M − M
)
u − (M − M

) ..
qt−L + (M − Mt−L)

..
qt−L + Ω

]
=
(
M − M

)
εt−L +

[(
M − M

)
(u − ut−L) + (M − Mt−L)

..
qt−L + Ω

] (42)

Therefore, from (42), ε can be determined as follows:

ε = Eεt−L + Eμ1 + μ2 (43)

where the following is the case.

E = I − M−1M, μ1 = u − ut−L, μ2 = M−1[(M − Mt−L)
..
qt−L + Ω

]
(44)

For a sufficiently small-time delay L, μ1 and μ2 are bounded.
There is a conformal mapping on the complex plane from continuous-time to discrete-

time [31]. In the discrete time domain, (43) is represented as follows.

ε(k) = E(k)ε(k − 1) + E(k)μ1(k) + μ2(k) (45)

We assume ‖E‖ < 1 by properly selecting M [31]. Thus, the eigenvalues of E(k) reside
inside a unit circle [32]. As a result, (45) is asymptotically bounded with bounded function
μ1 and μ2. Therefore, ‖E‖ < 1 implies the boundness of the ε in (43).

When ε is bounded, then (28) is satisfied and as a result, the candidate Lyapunov
function (27) is negative definite. Thus, this assures of the boundedness of the cross-
coupling error. Furthermore, when the cross-coupling error is bounded, the tracking error
is bounded. Consequently, all the above errors and the TDE error ε will never grow out of
bound and the system is uniformly stable.

6. Computer Simulation Study

6.1. Simulation Setup

The proposed scheme can be applied for a general n DOF CKCM manipulator. How-
ever, the implementation and application for a n DOF manipulator require massive compu-
tation effort and hardware complexity. Therefore, a 2 DOF CKCM robot manipulator that
resembles a special case of the complete n DOF manipulation was designed and built for
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the purpose of testing of the results obtained in our projects. Hence, this article is devoted
to investigate the simulation study of the obtained results on the 2 DOF manipulator.

In this section, computer simulation will be conducted to study the performance of the
above NFTSMC in comparison to other existing control schemes when they are employed
to control the motion of a 2-DOF CKCM.

The computer simulation study for the NFTSMC is described in the block diagram
given in Figure 3 when n = 2 since this manipulator has two DOFs, and is designed in
MATLAB/Simulink environment in Figure 4. When other existing control schemes are
applied, then the block labeled as Proposed in Figure 3 is replaced by their particular control
schemes. For this particular manipulator, it is noted that the length of an actuator is
denoted as its joint variable. To facilitate the analysis of tracking errors in Cartesian space,
the actual joint variables q and their joint velocities

.
q of the CKCM are converted to their

corresponding Cartesian variables by using the CKCM forward kinematic transformation,
which is also a closed-form solution due to the number of DOFs of this manipulator.

Figure 4. Control design in MatLab/Simulink environment.

MATLAB-Simulink® is used to comparatively evaluate the performance of the devel-
oped NFTSMC (Syn-TDE-NFTSMC) in comparison with four other existing control schemes
including PD-based control scheme (LINEAR), TDE-based LINEAR (TDE-LINEAR), TDE-
based LINEAR with synchronization errors (Syn-TDE-LINEAR), and TDE-based SMC with
synchronization errors (Syn-TDE-SMC) in tracking the same motion. A brief description
of the above control schemes can be found in Appendix A. After conducting numerous
simulations of the above control schemes, we selected the most optimal parameters for
their best tracking performance.

The parameters of the manipulator are listed in Table 1 while the control parameters
of the control schemes are provided in Table 2.

Remark 2. The parameters of the control scheme are tuned as: Tuning M and α, diagonal
matrices, by increasing the diagonal elements from small positive values, while checking the control
performance by trial error. The selection of the other parameters of the proposed control scheme p1,
p2, q1, q2, K1, K2, and K are described in [28]. Ksw can be selected from (28).

The Lagrangian dynamic equations of the above manipulator is given in [33] as follows:

τ = M(q)
..
q(t) + C(q,

.
q)

.
q(t) + G(q) + F(q,

.
q) (46)

with
τ(t) = (τ1 τ2)

T ; q(t) = (q1 q2)
T (47)

where τi denotes the joint force of the ith actuator, respectively, for i = 1,2.
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Table 1. The robot parameters.

Robot Parameters Description Value Unit

m Link’s total mass 4.91 kg
m1 Link’s moving part mass 0.59 kg
d Grounds’ horizontal distance 0.74 m
ls Link’s fixed length 0.26 m

FV1 Viscous friction coefficient of the 1st link 5 N·m·s/rad
FV2 Viscous friction coefficient of the 2nd link 5 N·m·s/rad
FC1 Coulomb friction coefficient of the 1st link 5 N·m
FC2 Coulomb friction coefficient of the 2nd link 5 N·m
g Gravitational acceleration constant 9.81 m/s2

Table 2. The parameters of the control schemes.

Control Scheme Control Parameters

LINEAR M= diag(0.1, 0.1), KD= diag(200, 200), KP= diag
(
7.704 × 103 , 7.704 × 103)

TDE-LINEAR L = 9.999 × 10−4s, M = diag(0.1, 0.1), KD= diag(200, 200), KP= diag
(
7.704 × 103 , 7.704 × 103)

Syn-TDE-LINEAR L = 9.999 × 10−4s, M= diag(0.1, 0.1), KD= diag(200, 200), KP= diag
(
7.704 × 103 , 7.704 × 103),

α = diag(0.5,0.5)

Syn-TDE-SMC L = 9.999 × 10−4s, M= diag(0.1, 0.1), K1 = diag(0.1, 0.1), K= diag(10, 10), Ksw= diag(5, 5),
α = diag(0.5, 0.5)

Syn-TDE-NFTSMC L = 9.999 × 10−4s, p1= 19, p2= 11, q1= 17, q2= 9, M= diag(0.1, 0.1), K1= diag(25, 25),
K2= diag(5, 5), K= diag(0.1, 0.1), Ksw = diag(15, 15), α = diag(0.5, 0.5)

The inertia matrix, the Centrifugal and Coriolis forces, and the friction and the gravita-
tional forces at two joints are given by the following:

M =

[
m1 0
0 m1

]
, C =

[
0 mls(q2−q1)

3v
mls(q2−q1)

3v 0

]
, G = [G1G2]

T (48)

with

G1 =
(−m1 g

[
2v1 q2

1(q1 ls + q2 ls + 2q1 q2)− q2 lsv2]− mgls[2q2
1v1(q1 + q2)− q2 v2]

) /
4dq2

1q2 v,

G2 =
(−m1 g

[
2v1 q2

2(q1 ls + q2 ls + 2q1 q2)− q2 lsv2]− mgls[2q2
2v2(q1 + q2)− q1 v2]

) /
4dq2

2q1 v

(49)

F =

[
FV1

.
q1 + FC1sgn(

.
q1)

FV2

.
q2 + FC2sgn(

.
q2)

]
(50)

and the following is obtained.

v1 = v2 = q2
2 − q2

1 + d2, v =
√

4d2q2
1 − v1 (51)

6.2. Simulation Results

The control schemes listed in Table 2 are used in the computer simulation to control the
end-effector of the manipulator to track a circle specified by xdes(t) and ydes(t) as follows.{

xdes(t) = 0.3683 + 0.05 cos(πt + π/2)
ydes(t) = −0.4183 − 0.05 sin(πt/10 + π/2)

(52)

The results obtained from the simulation are presented in Figures 5–9 and Tables 3–5.
Figure 5 shows the planar motions of the manipulator end-effector when controlled by the
above control schemes while Figure 6 presents the time trajectories of the tracking errors
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e(t) of the control schemes. Table 3 tabulates the absolute average tracking errors (AATE)
of the control schemes computed by MATLAB.

Figure 5. Trajectory tracking in X-Y plane (circular motion).

 
(a) (b) 

Figure 6. Time trajectories of tracking errors of the control schemes, of joint 1 (a) and joint 2 (b).

(a) (b) 

Figure 7. Time trajectories of synchronization errors and cross coupling errors of the control schemes,
of joint 1 (a) and joint 2 (b).
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                       (a) (b) 

Figure 8. Time trajectories of estimation errors of Syn-TDE-NFTSMC of joint 1 (a) and joint 2 (b).

  
(a) (b) 

Figure 9. The control input signals of the control schemes of joint 1 (a) and joint 2 (b).

Table 3. The absolute average tracking errors (AATE) of the control schemes, computed by MATLAB.

Tracking Errors LINEAR TDE-LINEAR Syn-TDE-LINEAR Syn-TDE-SMC Syn-TDE-NFTSMC

e1 (mm) 0.32 0.0197 0.0197 7.17 × 10−3 4.07 × 10−3

e2 (mm) 0.26 0.0192 0.0192 6.95 × 10−3 5.06 × 10−3

Table 4. The absolute average synchronization errors (AASE) and cross-coupling errors (AACE) of
the control schemes, computed by MATLAB.

Tracking Errors Syn-TDE-LINEAR Syn-TDE-SMC Syn-TDE-NFTSMC

es1 (mm) 0.0206 3.82 × 10−3 2.16 × 10−3

es2 (mm) 0.0206 3.82 × 10−3 2.16 × 10−3

ec1 (mm) 0.028 1.03 × 10−2 9.07 × 10−3

ec2 (mm) 0.016 5.33 × 10−3 4.99 × 10−3

Table 5. The absolute average estimation errors (AAEE) of the Syn-TDE-NFTSMC computed
by MATLAB.

AAEE Syn-TDE-NFTSMC

eest1 (Nm) 0.0177
eest2 (Nm) 0.0172
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Figure 7 presents the time trajectories of the synchronization errors (es(t)) and cross-
coupling (ec(t)) of the control schemes while Figure 8 presents the estimation errors (eest(t))
of the Syn-TDE-NFTSMC. Table 4 tabulates the absolute average synchronization errors
(AASE) and cross-coupling errors (AACE) of the control schemes while Table 5 tabu-
lates the absolute average estimation errors (AAEE) of the Syn-TDE-NFTSMC, computed
by MATLAB.

The control inputs of both joints show no chattering, as shown in Figure 9a,b.
From Figures 5–7, it is seen that Syn-TDE-LINEAR provided better performance and

faster error convergence than both LINEAR and TDE-LINEAR. It is meaningful that the
involvement of TDE and the synchronization errors improved the performance of the
control schemes. Syn-TDE-SMC showed a better tracking path than the Syn-TDE-LINEAR.
Finally, we see that our proposed control scheme, Syn-TDE-NFTSMC, was on track with
the fastest desired trajectory with the slightest deviation (from the desired path in Figure 5)
and had the fastest error convergence compared to other existing control schemes.

From Table 3, based on the computed AATEs of the control scheme, it is clear that
inclusion of TDE and the synchronization errors improved the performance of control
schemes as for example the AATE of the TDE-LINEAR (0.0197 mm) is smaller than that of
the LINEAR (0.32 mm). Other AATEs in the table validate the above observation. From the
results presented in Table 3, we see that our proposed control scheme, namely Syn-TDE-
NFTSMC, has the best tracking performance as compared to other existing control schemes
due to its smallest AATEs for both joint variables.

From Table 4, based on the computed AASEs and AACEs of the control scheme, it is
clear that inclusion of Syn-TDE-NFTSMC improved the performance of control schemes as
for example the AASEs of the Syn-TDE-NFTSMC (2.16 × 10−3 mm) is smaller than that of
the Syn-TDE-SMC (3.82 × 10−3 mm). Other AASEs and AACEs in the table validate the
above observation. From the results presented in Table 4, we see that our proposed control
scheme has the best tracking performance as compared to other existing control schemes
due to its smallest AASEs and AACEs for both joint variables.

Figure 8a,b plotted the nonlinear term Hi = H(q,
.
q,

..
q), the estimation term

hi = τt−L −M
..
qt−L, and the estimation error eesti = Hi −hi = H(q,

.
q,

..
q)− (τt−L − M

..
qt−L
)
,

respectively, of the ith active joint. It can be seen that the estimation error remains close
to zero. Furthermore, from the results presented in Table 5, we see that our proposed
control scheme, namely Syn-TDE-NFTSMC, has the AAEEs close to zero as 0.0177 Nm and
0.0172 Nm for both joint variables. This implies that the TDE cancels the uncertainty, and
the chattering phenomenon is reduced while maintaining the tracking accuracy.

Therefore, it can be concluded that the proposed control scheme shows high-accuracy
tracking performance with the model-free control performance in comparison with the
other control schemes.

7. Conclusions

In this paper, we proposed a new NFTSMC scheme in which TDE was applied to
efficiently compute the dynamics of a robot manipulator and disturbances required for
control scheme. In addition, the synchronization errors were used instead of the conven-
tional joint errors. A new NFTSMC law was proposed and the Lyapunov Theorem was
employed to prove that the proposed control scheme is uniformly stable. The conducted
computer simulation showed that the proposed control scheme provided the best tracking
performance compared with other existing control schemes including LINEAR, TDE-based
LINEAR, TDE-based LINEAR with synchronization errors, and TDE-based SMC with
synchronization errors when tracking the same motion for a 2-DOF-CKCM.

Comparing with the existing approach, the proposed control scheme has several
significant improvements:

(1) The proposed control scheme optimally synchronized the robot joints to minimize the
synchronization errors with an NFTSMC-based controller.
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(2) Since the proposed control scheme does not require the computation of the manipula-
tor dynamics thanks to TDE, it is computationally efficent and is, therefore, suitable
for real-time control applications.

Future work from this paper could include computer simulation study on higher DOF
manipulators and experimental studies of the proposed control scheme on real manipulators.
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Appendix A. Other Control Schemes Used in Computer Simulation

This appendix contains relevant equations of control schemes to which the proposed
control scheme is compared to in our computer simulation study.
LINEAR

The LINEAR and TDE-LINEAR Control Scheme were suggested in Reference [22]
given by the following.

τ = M
( ..
qd + KD

.
e + KPe

)
(A1)

where KD and KP are constant matrices.

TDE-based LINEAR (TDE-LINEAR)

τ = τt−L − M
..
qt−L︸ ︷︷ ︸

TDE

+ M
( ..
qd + KD

.
e + KPe

)︸ ︷︷ ︸
LINEAR control

(A2)

TDE-based LINEAR with synchronization errors (Syn-TDE-LINEAR)

τ = τt−L − M
..
qt−L︸ ︷︷ ︸

TDE

+ M
( ..
qd + KD

.
ec + KPec

)︸ ︷︷ ︸
LINEAR control

(A3)

TDE-based SMC with synchronization errors (Syn-TDE-SMC)

The control scheme was suggested in Reference [13] and is given by the following:

τ = τt−L − M
..
qt−L︸ ︷︷ ︸

TDE

+ M
(

..
q

d
+ K

.
ec + Kswsign(s) + K1 s

)
︸ ︷︷ ︸

SMC control

(A4)

where the sliding surface expressed by s =
.
ec + Kec.
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Abstract: Nowadays, 3D printers based on Cartesian kinematics are becoming extremely popular
due to their reliability and inexpensiveness. In the early stages of the 3D printer design, once it is
chosen to use the Cartesian kinematics, it is always necessary to select relative positions of axes and
linear drives (prismatic joints), which would be optimal for the particular specification. Within the
class of Cartesian mechanics, many designs are possible. Using the Euler–Lagrange formalism, this
paper introduces a method for estimating the natural frequencies of Cartesian 3D printers based on
the kinematic scheme. Comparison with the finite element method and experimental validation of
the proposed method are given. The method can help to develop preliminary designs of Cartesian
3D printers and is especially useful for emerging 3D-printing technologies.

Keywords: 3D printer; Cartesian kinematics; vibration analysis; additive manufacturing; mechanical
design

1. Introduction

Robotic systems are becoming more and more popular in various applications since
they perform fast and accurate operations while decreasing production costs and reducing
tedious and potentially hazardous tasks. One rapidly developing field of application for
robots is additive manufacturing, often referred to as 3D printing [1,2]. Having emerged
as a tool for rapid prototyping, nowadays 3D printing is also widely used for various
industrial applications [3,4].

Industrial robots are highly diverse in many parameters, and several classifications
of them can be proposed [5]. Usually, researchers identify six significant kinematics
of industrial robots [6]: articulated, SCARA, Cartesian, Parallel (or Delta), Cylindrical,
Spherical.

Cartesian mechanical design became a predominant configuration in 3D printing [7,8].
The main advantage of Cartesian robots for additive manufacturing is the lowest cost
compared to the other types of robots with the same accuracy and repeatability. The second
popular design for 3D printers is the Delta robot, almost as inexpensive as Cartesian but
more demanding on production quality and calibration accuracy. This issue sufficiently
limits its popularity [9]; nevertheless, special implementation of this type of robot may
yield unique advantages, e.g., energy efficiency [10]. Articulated robots gained the most
popularity in such applications like welding, assembly, handling, and inspecting [11] and
are used only in specific 3D printing applications [12]. SCARA robots, as well as cylindrical
robots, are relatively rare in 3D printing but have some prospects in this field [13,14].

As can be expected for the rapidly developing area, the level of scientific comprehen-
sion of additive manufacturing sufficiently lags behind the practice. For example, a study
of publications on the Design for additive manufacturing (DfAM) found that the main
content of these works is guidelines, rules and certain practical aspects, papers are mainly
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concentrated in a small number of clusters and the level of international collaboration in
them is weak [15]. There is a similar situation with publications on the theory of 3D printer
design. This paper tries to introduce one more important theoretical aspect of additive
manufacturing into scientific discourse.

The printing rate of the 3D printer is one of the most critical consumer characteristics,
directly affecting its user experience and economic returns. A recent study by J. Go et al.
proposed that three main factors limit the building rate in FDM/FFF technology: the rate
of filament feed, the rate of filament heating, and velocity of the printhead positioning [16].
The first and second factors have been addressed in several recent studies. For example, a
novel rotatable extruder with a slot-shaped nozzle was designed to increase the filament
feed rate [17], and the heating rate was sufficiently increased by introducing a laser heating
system [18]. In the article [19], the authors propose to use fuzzy adaptive control for
balanced thermal distribution during extrusion, in order to achieve the highest quality
rapid prototyping. However, increasing the speed of printhead positioning is probably
the most challenging problem in mass-market printers. Despite the technical opportunity
of using rigid and heavy CNC machine frames providing better printing quality at high
speeds, the design of 3D printers always implies a trade-off between mechanical stiffness
and the printer cost, which should be as minimal as possible for economic reasons. This is
especially crucial in FDM/FFF 3D printers since this technology is the most inexpensive
and the most demanded in the 3D printer mass market. Therefore, many various designs
are present on the market. Unfortunately, almost each of them suffers from certain flaws
limiting the building rate sufficiently below the theoretical maximum determined by the
properties of the printing material.

The vibration characteristics of 3D printers and components directly affect the accuracy
of the work, as reported in several studies, e.g., [20–22]. The main problem in FDM/FFF 3D
printing originating from mechanical imperfectness is ghosting (ringing): the emergence
of a repetitive pattern on the printed detail surface caused by mechanical vibration of
the printer frame. This matter limits the maximal acceleration and speed available to a
particular 3D printer [23,24]. Another defect also caused by mechanical imperfectness is
corner swell, an outgrowth of the deposed material on a corner [24,25]. An example of
these defects is given in Figure 1. They are negligible within a specific range of positioning
settings, but printing errors become significant and practically unacceptable when they
exceed particular values.

Figure 1. Example of corner swell (upper box) and ghosting (lower box). Arrows mark typical
variants of these defects.
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The magnitude of the resulting vibrations directly depends on the rigidity of the
structure, which is also affected by many other factors [26]. Nevertheless, reducing the
vibration amplitude of the system and increasing the natural frequency of vibrations can
improve the quality of 3D printing.

Several recent studies are dedicated to detecting and decreasing these effects [24,27,28].
The most effortless way to do that is to increase the natural frequency of the printer head
vibration due to proper mechanical design, leading to decreasing mode shape displace-
ments [29]. A more elaborate solution is using active vibration control, which is a common
practice in CNC milling machines [30,31]. For 3D printing, some solutions based on feed-
forward control have been reported recently applied to vibration-prone 3D printers [32,33].
In addition, open-source Klipper firmware allows using one of the feed-forward resonance
compensation algorithms for all compatible 3D printers [34].

However, how does an engineer understand which design is the most vibration-
tolerant at the stage of preliminary design, where neither a complete CAD/CAE model
exists nor any experimental specimens are available? This paper proposes using natural
frequencies as the feature for distinguishing vibration-tolerant designs from vibration-
prone ones. This feature depends on the relative positions and mobility of 3D printer parts.
We propose a method for natural frequencies estimation from the 3D printer kinematic
scheme, study in detail its bounds of applicability and give several illustrative examples
including decision making on the 3D printer construction.

The paper is organized as follows. Section 2 describes the approach to calculating
the natural frequency for a given Cartesian design. Section 3 presents examples of natural
frequency analysis for Anycubic i3 Mega (Shenzhen Anycubic Technology Co., Ltd., Shen-
zhen, China) The natural frequencies have been obtained theoretically using the proposed
approach and experimentally, confirming its applicability. Section 4 gives brief conclusions.

2. Vibration Analysis of 3D Printers

This section introduces kinematic schemes for 3D printers. We show that a simple
approach based on a flexible joint model is applicable in the case of composite structures
with considerably stiff beams, such as constructions of the aluminum extruded profile,
often used in custom 3D printing buildings.

2.1. Problems of Modal Analysis for Constructions with Bolted Joints

Knowing its dimensions and material, the vibration characteristics of any monolithic
component can be calculated with one of the well-established approaches. In the case of
beams, the basic tool for their normal mode estimation is the elastic beam theory, including
the Euler–Bernoulli, Rayleigh, Timoshenko, and other models [35]. However, stiffness
calculation for the composite structures with this approach is a nontrivial problem [36].
Usually, estimation of vibration frequency distinguishes several types of boundary con-
straints for beam couplings: hinged, fixed, sliding, and free. They imply an absolute
coupling stiffness. In practice, components are usually coupled with different bracing
(bolts, angles, screws, etc.). In such systems, joints, backlashes, surface friction, and non-
linear deformations play a huge role, making the problem of normal mode estimation
extremely complex. Only very recent studies deal with efficient calculations of natural
frequencies of bolted structures, given their nonlinear character. For example, the work [37]
proposes a machine learning approach to nonlinear modal analysis. The paper [38] de-
scribes an artificial neural network for predicting parameters of normal contact stiffness,
penetration limit, and contact. Recent work [39] proposed an efficient algorithm for es-
timating damping in bolted joints providing good accuracy compared to simulations in
commercial finite element software. Nevertheless, this solution is still not implemented in
commercially available engineering packages.

In several papers, the determination of natural frequencies for bolted structures
using FEM analysis shows unsatisfactory results, with errors ranging from 9 to 46.9% in
determining natural frequencies [40]. A technique of using equivalent material can be
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applied to improve the accuracy[41]. Equivalent lower-dimensional models can also be
efficient for simulating bolted constructions [42]. In civil engineering, to avoid detailed
analysis of each element joint, a concept of effective stiffness is introduced reflecting the
overall stiffness of a joint [43].

In our previous study, we did not find low-frequency vibrations for the 3D printer
Anycubic i3 Mega using finite-elements analysis [44] since we did not simulate joints,
which played a leading role in the occurrence of this low-frequency mode.

Therefore, we will consider an approach based on the equivalent model of the entire
construction. Since we consider the preliminary design stage, we will omit any implemen-
tation details and focus on the effective stiffness of the joint. We will use the term “stiffness”
for simplicity, meaning exactly “effective stiffness”. Nevertheless, the proposed approach
is valid only if the beams can be treated as absolutely stiff. Therefore, we must ensure that
at least their first normal modes are far above the normal modes of the entire setup, i.e., the
condition must be satisfied

wb >> w, (1)

where wb is the beam first normal mode, w is the setup lower frequency. Elastic beam
theory provides a well-established tool for verifying this assumption via estimating normal
beam modes. The following section briefly recalls the main concepts of the Euler–Bernoulli
beam theory and its application to our problem.

2.2. Euler–Bernoulli First Normal Modes

The natural frequency of the beam using the Euler Bernoulli theory is calculated by
the formula [45]:

ω = a2

√
EI

ρAL
, (2)

where E is elastic modulus, I is the second moment of the beam’s cross-section area, ρ
is beam material density, A is the cross-sectional area, and a is a wavenumber of Euler–
Bernoulli mode.

Let us calculate the natural frequency of a 20 × 20 mm aluminum profile fixed at one
end. The properties of the beam are:

L = 0.38 m, A = 1.6 × 10−4 m2, I = 0.7 × 10−8 m4,

ρ = 2700 kg m−3, E = 7.1 × 1010 N m−1.

Wavenumber a for a beam fixed at one end and corresponding to the first mode equals
1.875 [45].

f =
ω

2π
=

1.8752

2π

√
7.1 × 1010 × 0.7 × 10−8

2700 × 1.6 × 10−4 × 0.38
= 135.86 Hz.

In our previous study, we found the experimental natural frequency of the aluminum
profile beam to test the theoretical results (see Figure 2). The beam was attached to a fixed
base using hidden aluminum profile corner brackets.

We investigated two options for fastening the beam to a fixed base: using one or
two hidden brackets. The first mode frequency for the case with one hidden bracket was
22.1 Hz, and for the case with two hidden brackets, it was 45.2 Hz. As a result, the beam’s
natural frequency value calculated with the Euler–Bernoulli approach was significantly
higher than the values obtained experimentally (the theoretical value is 135.86 Hz).

It means that almost all energy received by the beam from the impact hammer was
turned into vibration caused by the joint flexibility rather than the beam elasticity. Further-
more, various beam mounting options affect the obtained values of natural frequencies,
which verifies this assumption.

The flexible mounting option is not considered in the Euler–Bernoulli theory; however,
it can be extended to such a case. Meanwhile, theoretical calculation confirms that the
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condition (1) is satisfied. Experimental results show that vibration on Euler–Bernoulli’s first
normal mode of the beam is almost indistinguishable compared to the vibration caused by
a finite joint stiffness k. So we can conclude that the condition (1) allows considering the
aluminum profile beams used in the 3D printer construction as a rigid body.

L = 0.38 m, with one hidden corner bracket

L = 0.38 m, with two hidden corner brackets

Figure 2. Experimental frequencies of the beam. (Top): one hidden bracket for fastening to a base is
used, several peaks emerge because of the joint stiffness non-linearity [46]. (Bottom): two hidden
brackets are used, the vibration is close to harmonic.

2.3. How Cartesian 3D Printer Kinematic Scheme Affects Its Dynamics

Cartesian 3D printers consist of two independent parts: the frame with the printhead
mounted on it and the printing surface (the printbed). These parts move relative to each
other. The system requires the mobility of 3D printer parts along three orthogonal axes to
be functional.

Using the standard graphical notation of kinematic schemes [47], we can depict a
kinematic structure of any Cartesian design as a very simple object with three translational
degrees of freedom provided by three orthogonal groups of prismatic joints (redundant
systems will not be considered). Examples of such schemes are given in Figure 3, left
column. Figure 3a refers to the simplest structure used in very cheap 3D printers, Figure 3b
refers to popular gantry kinematics with one closed kinematic chain, Figure 3c presents a
variant of more stiff kinematics, containing three closed kinematic chains. These kinematic
schemes figure out only how the structure is intended to move.

It is not obvious from each kinematic scheme in the left column, which one is better in
terms of vibration tolerance unless we consider an additional factor: a finite stiffness of
joints between beams, linear guides and other elements of construction. As the simplest
approximation, these joints can be considered spherical joints with internal stiffeners. Such
a point of view is reflected in Figure 3d–f. From these extended schemes, the advantage
of closed kinematic chains becomes obvious: the more spherical joints are involved in
possible angular movement the higher the overall stiffness is.

For better illustration, we introduce a simple formalism describing differences in
relative axis mobility and axes structure for 3D printers and present all possible kinematic
designs within this formalism in Appendix A.
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Figure 3. Examples of kinematic schemes for Cartesian 3D printers. Rectangles denote prismatic
joints, circles denote spherical joints, a black triangle denotes the printhead, and a black parallelepiped
denotes the printbed. Panels (a–c) refer to functional kinematic schemes, while the panels (d–f)
additionally show frame and guide joints that cannot be considered absolutely stiff.

Now, let us consider how the kinematics of the 3D printer affects its vibration charac-
teristics and therefore printing quality. Denote the vector of angular rotations in spherical
joints as θ = (θ1, θ2, . . . , θn)�, and a vector of linear translations in prismatic joints in local
coordinate systems associated with each direction of prismatic joints as q = (xL, yL, zL)

�,
where N is the number of spherical joints and n ≤ N is the number of rotational degrees
of freedom, and the number of translational degrees of freedom is 3. Denote the global
coordinates of the 3D printer working point as x = (x, y, z)�. The overall dynamics of the
3D printer correspond to a linearized ODE:⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

J(x)θ̈+ Cθ θ̇+ Kθθ = fθ(x, ẋ, ẍ, q, q̇, q̈),
x = L(q, θ),
Mẍ + Cx ẋ + Kxx = fx(x, ẋ, ẍ, q, q̇, q̈),
x = L(q, θ),
e = q − x,

(3)

where J(x) is a diagonal matrix of moments of inertia, M is a diagonal matrix of masses,
Cθ , Cx are diagonal matrices of damping coefficients, Kθ , Kx are matrices of linearized
stiffness, fθ is a vector of disturbance torques, q is a vector of relative translations in local
coordinate systems attached to the prismatic joints, fx is a vector of disturbance forces,
x is an absolute position of the 3D printer working point, e is the positioning error. The
kinematic scheme determines the number of degrees of freedom and the function J(x).

Let us show more exactly how dynamical error is related to mechanical movement.
Consider a case where stiffness matrices are diagonal, so each equation of the system (3) is
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independent. Then, one rotational degree of freedom of a linearized system is described
as follows. Let the system be affected by the torque fθ = AejΩt, where Ω is the frequency
of vibrations induced by the 3D printer parts’ translational movements. In case of small
angles the function L is linear, so we imply e = Lθ, Kθ = k, Cθ = 0. The Equation (3)
then reads: {

Jθ̈ + kθ = AejΩt

e = Lθ.
(4)

Substituting a known solution θ(t) = θ1ejωt + θ2ejΩt into the Equation (4), where
ω =

√
k/J is a natural frequency of the printer vibration, we obtain:

θ2 =
A

J(ω2 − Ω2)
. (5)

The error amplitude maximal value is e∗ = L(|θ1|+ |θ2|). The low-frequency vibra-
tions caused by massive 3D printer parts movements satisfy the condition ω2 > Ω2. The
Equation (5) explains the profit from the natural frequency enhancement: increasing the
natural frequency lowers down the amplitude of the dynamical error.

The way how real Cartesian systems are implemented suggests using more com-
plicated structures than the ones shown in Figure 3. A typical Cartesian system can be
illustrated by the gantry-type kinematics often used in architectural 3D printers or CNC
milling machines. Its functional kinematic scheme is given in Figure 4a following literature
on CNC machine design [48,49]. Meanwhile, a more detailed kinematic scheme given in
Figure 4b shows some issues with practical implementations. In addition to actuated pris-
matic joints, each axis is supplied with passive linear translation mechanisms for several
reasons: to decrease the load on actuated joints, to prevent skew and jamming in actuated
joints, and to improve the overall stiffness. The latter is important in the context of the
current paper. A study for the CNC machine [49] confirms the importance of passive
joint stiffness.

Figure 4. Practical implementation of a Cartesian system. Panel (a) shows a functional kinematic
scheme of a Cartesian gantry CNC machine and panel (b) gives a detailed kinematic scheme of its
implementation with actuated prismatic joints (shown with white rectangles) and passive rail guides
(shown with grey rectangles). Circles denote passive spherical joints with internal stiffeners, a black
triangle denotes the printhead, and a black parallelepiped denotes the printbed

The engineering practice of 3D printer designing implies using multiple additional
passive joints as well. Several types of passive linear guides are common including round
rods with ball bearing carriages, profiled rails with ball bearing carriages and aluminum
profiles with wheeled carriages. Their properties such as backlashes, precision and price
are highly variable and should be considered individually for each manufacturer and each
design, and their application is also highly variable. For example, in inexpensive gantry
3D printers a brintbed with round rod guides is used in (Prusa Research, Prague, Czech
Republic) and Anycubic i3 Mega (Shenzhen Anycubic Technology Co., Ltd., Shenzhen,
China) 3D printers [50,51], while Sovol SVO3 (Sovol 3D, Shenzhen, China) has a wheeled
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carriage on an aluminum profile [52]. None of these designs should be preferred without
an additional investigation.

2.4. Flexible Joint Model

The approach described in the previous section based on the flexible joint model is
applicable to any construction made of rigid metal beams, in which natural frequencies
are much higher than the natural frequencies emerging due to joint imperfectness. Unless
other is claimed, we assume the system is strictly linear and symmetric and stiffness
matrices in (3) are diagonal, so vibrations, which would occur in at least two orthogonal
planes (denote them θx(t) and θy(t)) are independent and similar in case of similar initial
conditions. Therefore, we first consider only a planar motion in one selected plane (denote
the angle θ(t)) and only one corresponding frequency, and then extend this approach to
more complex cases.

Vibration model of the beam. A joint model based on a linear flexible joint is proposed to
find the natural frequency of vibrations, a. When the length of the beam is relatively small,
it can be assumed that the structural profile is rigid. Then, according to Newton’s second
law, the motion of the beam is expressed in the following linear differential equation:

Jθ̈ + kθ = 0, (6)

where J = 1
3 MT L2 is the beam moment of inertia, MT is the total mass of the beam, L is the

beam length, and k is the torsional stiffness of the joint, θ is the angular displacement (see
Figure 5).

Figure 5. Model of the beam.

The analytical solution of Equation (6) has the form:

θ(t) = θ(0)ejωt. (7)

Substituting (7) into (6), we obtain:

−Jω2 + k = 0,

hence, the vibration frequency of the extruded profile beam is expressed as:

ω =

√
3k

MT L2 =
1
L

√
3k
MT

. (8)

Equation (6) can be used to determine the stiffness of the joint by empirically deter-
mining the first mode frequency of the system and expressing the stiffness as a ratio:

k =
1
3

ω2L2MT . (9)
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In the case of linear stiffness, (9) provides a simple way to determine k from experi-
mentally estimated ω. In the case of nonlinear stiffness, the identification procedure should
involve the waveform shape and would be more complicated [46].

Vibration model of the gantry structure. To find the natural vibration frequency of the
gantry structure shown in Figure 6. Let us determine two independent mechanical stiffness
of the joints. The stiffness of the lower joint is denoted by k1, and the stiffness of the upper
joint is denoted by k2. The mass of the vertical beam is indicated M1, and the mass of the
horizontal beam is represented by M2.

Figure 6. Model of the portal.

The moment of inertia of the beam is equal to L1
2 :

J1 =
M1L1

2

3

The kinetic energy of motion of the gantry structure in this case is equal to:

K =
2J1θ̇2

2
+

M2(θ̇L1)
2

2
=

M1L2
1

3
θ̇2 +

M2L2
1

2
θ̇2,

the potential energy:

P =

(
2k1θ2

2
+

2k2θ2

2

)
= (k1 + k2)θ

2.

The Lagrange function, where L is the Langrangian, is equal to the difference of
kinetic and potential energy:

L = K − P =

(
M1

3
+

M2

2

)
(L1θ̇)2 − (k1 + k2)θ

2,

the Euler–Lagrange equation is written as:

d
dt

∂L
∂θ̇

− ∂L
∂θ

= 0

from where (
2M1

3
+ M2

)
d
dt
(L1

2θ̇) + 2(k1 + k2)θ = 0,

and (
2M1

3
+ M2

)
L1

2θ̈ + 2(k1 + k2)θ = 0.
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Using (7), we find the equation of the frequency of natural vibrations of the gantry
structure:

ω =
1
L1

√
2(k1 + k2)
2M1

3 + M2
. (10)

It should be noted that the length of the horizontal beam does not affect the frequencies
of the gantry structure.

Vibration model of a parallelepiped. For simplicity, in the structure shown in Figure 7,
the stiffness of the joints can be assumed and equal to k1 and k2. The length of all vertical
beams is equal to L1.

Figure 7. Model of the parallelepiped.

The moments of inertia of the vertical and horizontal beams are equal, respectively, to:

J1 =
1
3

M1L1
2, J2 = M2L1

2.

The kinetic energy of motion of the parallelepiped structure is equal to:

K =
4J1θ̇2

2
+

4J2θ̇2

2
,

potential energy:

P =

(
4(k1 + k2)θ

2

2

)
= 2(k1 + k2)θ

2.

The Lagrange equation after transformations will be:

4
3

M1L2
1θ̈ + 4M2L2

1θ̈ + 4(k1 + k2)θ = 0.

The frequency of the parallelepipedal structure, in this case, is equal to:

ω =

√
k1 + k2

1
3 M1L1

2 + M2L1
2 =

1
L1

√
k1 + k2

1
3 M1 + M2

. (11)

Taking into account several degrees of freedom. Usually, 3D printers have two, three or
more degrees of freedom, including oscillations in directions of X and Y axes, oscillations
of the printbed independently from the frame, moreover, some printer designs provide
horizontal and vertical elements of the frame to oscillate independently as well, like the
open kinematic chain design shown in Figure A3b. If we use linearized models and also
assume that the stiffness matrices in the Equation (3) are diagonal, treatment of multiple
degrees of freedom is fairly simple: each rotational degree of freedom is considered as if
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the other degrees of freedom are fixed. For example, let us calculate the gantry structure
vibration in another plane, orthogonal to the plane considered before. The kinetic energy
of motion of the gantry structure in this case is exactly the same

K =
M1L2

1
3

θ̇2 +
M2L2

1
2

θ̇2,

but the potential energy, due to the fact that upper joints are not involved in the oscillations,
is

P = k1θ2.

This results in the frequency:

ω =
1
L1

√
2k1

2M1
3 + M2

. (12)

To simplify this approach, we present an Algorithm 1 for calculating Cartesian struc-
tures. For example, for the gantry and parallelepiped structures considered before longitu-
dinal beams are vertical, transverse beams are horizontal, so Formulas (10)–(12) could be
easily derived without Lagrangians.

Algorithm 1: The algorithm for calculating Cartesian structure natural frequency.

Input: {mi}, {Li}, {ki}.
Output: ω.
1. Select the plane in which the vibration of the structure will be investigated.

Select an appropriate degree of freedom.
2. Decompose the construction into primitives:

(a) n longitudinal beams of length Li with mass mLi, length LLi and

moment of inertia: JLi =
mLiLLi

2

3
.

(b) m transverse beams and lumped masses with the distance from the base
to the center of mass LTi, mass mTi and moment of inertia JTi = mTiLTi

2.

3. Calculate the stiffeners kj, j = 1 . . . N (N is the number of joints).
4. Estimate the frequency using the formula:

ω =

√√√√ ∑N
j=1 kj

∑n
i=1 JLi + ∑m

i=1 JTi

3. Analysis of Sample Designs

The current section describes the application of the proposed method for estimating
natural frequencies of 3D printers to some practically valuable examples.

3.1. Experimental Analysis of a Gantry 3D Printer

It is possible to find the first lower mode for an existing 3D printer using the proposed
approach. A gantry design Anycubic i3 Mega was chosen as an example. A distinctive
feature of this 3D printer is the presence of a relatively heavy printhead mounted on
two horizontal cylindrical guides working as a whole due to the rigid coupling of their
ends (see Figure 8). The length of the vertical beams is labeled L1, and the height at
which the printhead is located is labeled L2. This design has three types of joints with
different stiffness.
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The kinetic energy of motion of the gantry 3D printer is equal to:

K =
M1L2

1
3

θ̇2 +
M2L2

1
2

θ̇2 +
MH L2

2
2

θ̇2,

potential energy of motion:

P =

(
2k1θ2

2
+

2k2θ2

2
+

2k3θ2

2

)
= (k1 + k2 + k3)θ

2.

The Lagrange equation after transformations will look like this:(
2M1L1

2

3
+ M2L1

2 + MH L2
2

)
θ̈ + 2(k1 + k2 + k3)θ = 0.

The natural frequency of oscillation of the 3D gantry printer can be expressed using
the formula:

ω =

√√√√ 2(k1 + k2 + k3)
2M1L1

2

3 + M2L1
2 + MH L2

2
. (13)

Figure 8. Anycubic i3 Mega kinematic scheme.

This formula can be also obtained using the Algorithm 1. Using the Formula (13),
we can find the relationship between the printhead position on the Z-axis and the natural
frequency of oscillations. A testbench for vibration data acquisition was assembled to
measure the vibrations of the head, bed, and frame of the 3D printer. The testbench
includes the following components: NI PXI 1042 controller with the PXI-4461 module for
collecting vibroacoustic signals, piezoelectric accelerometer IMV VP-4200, accelerometer
power amplifier, and custom mount for accelerometer printed on a 3D printer, which
allows placing the sensor parallel to any of three axes X, Y, Z (see Figure 9).

A series of experimental data were recorded with a sampling rate of 1000 Hz. The
program for recording data into a file was implemented in the LabVIEW environment. The
data received from the accelerometer was processed in the MATLAB environment using
the built-in FFT function.

We investigated the dependence of the natural frequency of oscillation on the height of
the printhead. Since the printhead and related components involved in Z-axis movement
(guides, belts, mounts) have a total mass of 1.7 kg, which is greater than the mass of the
vertical beams (0.7 kg), the location of the printhead on the Z-axis affects the 3D printer
natural frequency, much.
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(a) (b)

Figure 9. (a) Model of the 3D printer Anycubic i3 Mega. A circle marks a place of the accelerometer
mounting, an arrow marks the direction of axis sensitivity (b) Example of the accelerometer mounting.

In the experiment, we used the g-code to set a short-term extruder movement at each
of the positions along the Z axis with a step of 10 mm, and the maximum height at which
the printhead was positioned was 200 mm. Printer movement gave an impulse to the
printer frame impact with the spectrum as close to that experienced by a 3D printer during
printing as possible. The accelerometer was mounted on the X axis of the 3D printer in
the right corner, see Figure 9. This position allows determining the frequency of frame
vibrations affecting the printhead directly during operation.

The total stiffness of the 3D printer at zero position was found using Equation (13) to
validate the theoretical approach based on the flexible joint model. Further, the theoretical
natural frequencies of vibrations were found. Figure 10 shows the dependence of the experi-
mental and theoretical natural frequencies on the position of the printhead along the Z axis.
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14
Experimental data

Theoretical data

Figure 10. The first mode of the Anycubic i3 Mega 3D printer.

Figure 10 shows that the proposed approach successfully predicts the first mode of the
Anycubic i3 Mega. The relative error of the theoretical frequency was 2–6 percent (see Table 1).
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Table 1. The first mode of the Anycubic i3 Mega 3D printer.

Z, mm Theoretical, Hz Experimental, Hz Relative Error,%

0 13.85 13.36 3.54
10 13.67 13.19 3.52
20 13.49 12.78 5.31
30 13.31 12.84 3.48
40 13.12 13.07 0.38
50 12.92 12.62 2.38
60 12.73 12.40 2.58
70 12.53 12.12 3.26
80 12.33 11.99 2.79
90 12.14 11.94 1.62

100 11.94 11.91 0.23
120 11.74 11.50 2.07
130 11.55 11.79 2.08
140 11.36 11.89 4.69
150 11.16 11.57 3.59
160 10.98 11.22 2.18
170 10.79 11.36 5.27
180 10.61 10.97 3.41
190 10.43 11.04 5.82
200 10.26 10.56 2.97

3.2. Preliminary Analysis of a New Design

This subsection shows how natural frequency can be calculated from the classification
scheme for an arbitrary 3D printer.

Suppose, natural frequencies of cubic printers depicted in Figure A2a,b are predicted.
From Algorithm 1 it follows that the natural frequency equals to

f =
1

2π

√√√√√√∑
i

ki

∑
i

Ji
, (14)

where ki is i-th joint stiffness, and Ji is i-th moment of inertia.
The formula for the frequency of open Z-axis design is:

f1 =
1

2π

√√√√√ 4kP + 4kP + 2kL + 2kL

4MvL2
1

3
+ MBL2

2 + (MH + 5Mh + 4MM + 3MR)L2
1 +

2MGL2
1

3

, (15)

where MG is the guide mass and MP is the profile mass. Let the mass of a horizontal beam
equal Mh = ρPLh, where Lh is the length of the horizontal beam, and Mv = ρPL1 is the
mass of a vertical beam.

From this and Equation (15) we can obtain:

f1 =
1

2π

√√√√√ 8kP + 4kL

4ρPL3
1

3
+ MBL2

2 + (MH + 4MM + 3ρRLh)L2
1 + 5ρPLhL2

1 +
2ρGL3

1
3

. (16)

Substituting values from Table 2 yields:

f1 = 32.0 Hz.

The frequency of the kinematics with closed Z-axes is calculated using the following
formula (supposing that one motor is used for actuating both linear drives of the closed
Z-axis on a printbed):
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f2 =
1

2π

√√√√√ 8kP + 8kL

4ρPL3
1

3
+ MBL2

2 + (MH + 4MM + 3ρRLh)L2
1 + 5ρPLhL2

1 +
4ρGL3

1
3

. (17)

Substituting values from Table 2, another value is obtained:

f2 = 34.9 Hz.

The resulting difference is relatively small, so we can conclude that using the open
Z-axis is reasonable for the design from the point of view of natural frequency in XY plane,
and a closed Z will not yield much more stiffness.

Table 2. Parameters of the evaluated design.

Parameter Value Units

Profile angle stiffness kP 3700 N·m/rad
Linear guide mount angle stiffness kL 2000 N·m/rad
Profile density ρP 0.85 kg/m
Linear rail guide density ρR 1.45 kg/m
Linear 8 mm guide density ρG 0.4 kg/m
Stepper motor mass MM 0.26 kg
Printhead mass MH 0.7 kg
Printbed mass MB 0.4 kg
Vertical beam length L1 0.4 m
Z position of the printbed L2 0.3 m
Horizontal beam length Lh 0.4 m

3.3. Comparison of Common Designs

To compare the seven most common 3D printer designs, their CAD/CAE models have
been developed. A more detailed description of these designs is given in Appendix A.

First, we used the finite-element method (FEM) to calculate the natural frequencies of
the printers assuming that all joints are absolutely stiff. Then, we used the proposed method
based on the kinematic schemes of the same structures and calculated the approximate
lowest frequencies of these printers using Algorithm 1 with the parameters given in Table 2.

Figure 11 shows small images of the printers in one panel with their ordinal numbers,
and Figure 12 shows the corresponding lowest natural frequencies found with two methods:
the FEM and the proposed one.

Figure 11. Common printer designs used in the investigation.
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Figure 12. Lowest normal modes of 3D printer structures found by the FEM and by the proposed
approach based on a flexible joint model.

The experiment found that for the cuboid structures 1 and 6 the results of our method
and FEM approximately coincide (see Table 3). This shows that profile elasticity has an
almost similar impact on the vibration as the flexibility of the joints. For the other designs,
the FEM overestimates the vibration frequency in comparison with the proposed method.
This can be explained by the fact that these constructions are more light-weighted, and in
the case of absolutely stiff joints the overall stiffness is high. In practice, flexibility in joints
make such structures more vibration-prone, and this is confirmed by engineering practice:
only a few cheapest 3D printers have an open kinematic chain structure 3, and structure 2
is also becoming less common in recent years.

Table 3. Modes 1–3 of the printers obtained by the FEM and the lowest mode by the proposed method.

№ Mode 1, Hz Mode 2, Hz Mode 3, Hz Proposed Method, Hz

1 31.12 31.38 53.99 31.59
2 42.97 45.50 95.37 24.14
3 58.04 67.02 103.5 17.81
4 60.62 84.89 117.4 24.83
5 32.83 40.81 77.71 25.67
6 31.45 36.12 60.58 36.72
7 48.73 50.38 96.97 27.93

Of course, these results should be extrapolated on real designs with care. However,
they clearly show the limitation of the FEM when joint flexibility is not taken into account.
This is especially important when novel additive manufacturing machines are developed
with heavy printheads, such as painting robots [53].

3.4. Example of Cost Calculation

As an example of calculating the cost of an FDM 3D printer, a gantry printer was
chosen, shown in Figure A3a, with a frame made of 20 × 20 mm aluminum profiles. The
length of horizontal and vertical aluminum profiles is 400 mm. The length of lead screws
was chosen as 350 mm. Table 4 shows the cost (minimum and maximum) of the main
components of a 3D printer. The difference in the cost of the components is conditioned
by their different quality, brands and other features. Among the components, there are
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obligatory ones used in any configuration of a 3D printer and not depending on the
kinematic scheme: the power supply unit (PSU), the printbed, the printhead and the
controller board.

Table 4. The cost of a 3D printer in Figure A3a.

Component Amount Cost of 1 Piece, $ Total Cost, $ Cost Ratio

Aluminum profile 2400 mm 3–5 (1000 mm) 7.2–12 6–3%
Lead screw 5 pc. 2–5 10–25 8–6%

Rail guide system 4 pc. 7–25 28–100 22%
Stepper motor 4 pc. 5–15 20–60 15–13%

PSU 1 pc. 5–20 5–20 4%
Print bed 1 pc. 15–50 15–50 12–11%

Print Head 1 pc. 15–80 15–80 12–18%
Controller Board 1 pc. 30–100 30–100 23–22%

All components excluding additional spare parts 130.2–447

The economic effect of creating a 3D printer with the specific kinematic scheme
increases when cheap obligatory components are used, because in this case a rail guide
system, motors, etc. will affect the total cost of the printer much more significantly. In
the case of using top-level obligatory components, a more stiff kinematic scheme will not
result in relatively much higher expenses, so it should be preferred. The exception here
is the rail guide system, which is a rather costly component, but it can be replaced with
cheaper cylindrical guides in many cases.

4. Conclusions

The paper proposes a simple method for calculating 3D printer natural frequencies
based on the kinematic scheme. It is applicable in the case of high stiffness of elongated
elements such as profiles, guides, and beams. This method allows replacing elaborate
finite-element analysis of the detailed model on a preliminary design stage. The accuracy
of this approach is relatively high and feasible for engineering purposes; the provided
examples confirm its practical applicability. Several most common designs have been
compared via their lowest natural frequency, and the variant with the greater value of
vibration frequency is preferred using this technique. Additionally, we give an example
of calculating the FDM printer cost. We conclude that using expensive obligatory parts
such as the power unit, the printhead and the controller, may reduce the relative cost of
mechanical components and therefore make using a more stiff kinematic scheme more
reasonable. An example of decision-making concerning the type of 3D printer is given.

We also propose a classification scheme for the Cartesian mechanical systems used
for additive manufacturing which considers variants of already existing structures and
examples not yet applied to 3D printing. It can be used by developers of various additive
machines, such as desktop 3D printers, architectural 3D printers, and others, to simplify
the engineering process in a preliminary design stage. The algorithm for natural frequency
estimation can be used for computer search of proper designs using optimization. A table
of stiffness of various joint components obtained from the experiment can be developed
which would help engineers to find optimal design solutions.

To summarize, the paper makes the following contributions. First, the paper provides
theoretical and practical confirmation of the applicability of the flexible joint model and the
necessity to take bolted joint flexibility into account during finite element analysis, which
is a non-trivial task in most moderns software packages such as Fusion 360. Second, the
paper gives a simplified and handy algorithm for natural frequency estimation of the 3D
printer which does not require the application of the Euler–Lagrange formula directly and
is suitable for both manual and machine usage. Third, a classification scheme for Cartesian
3D printers is proposed using two criteria: the type of kinematic chain associated with
each axis (open/closed) and the mobility of each axis’ elements (actuated/fixed) connected
to the print head and the print bed.
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Further work will be dedicated to testing some non-existing designs and considering
other decision-making criteria, such as the system tolerance to the inaccuracy of the 3D
printer components, in addition to the natural frequency criterion.
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Appendix A. Classification of Cartesian Designs: Principles and Examples

The usefulness of a specific classification scheme for practice depends on whether it is
accurate enough to systematize all the existing knowledge and is capable of accommodat-
ing new subjects [54]. Basics of kinematic scheme topology classification and methods for
mobility investigation are reported in papers [55–57]. For 3D printing, a detailed classifica-
tion of possible designs may be helpful for engineers at the early design stage to choose the
most feasible kinematics, for sellers to organize their catalogs, for purchasers to identify
their requirements more efficiently, for researchers to place their novel designs among
existing ones.

Cartesian 3D printers consist of two independent parts: the frame with the printhead
mounted on it and the printbed.To distinguish between the coordinate axes of the printhead
and the printbed, we denote them as XH , YH , ZH for the printhead and XB, YB, ZB for the
printbed. These parts are separated in space by the printed part and move relative to each
other. The system requires the mobility of 3D printer parts along three orthogonal axes to
be functional. For example, if the coordinate system as a whole is stationarily attached to
the printbed, then the printhead must move along the XH , YH and ZH axes. Hereafter, for
brevity, we will use the term “axis” not only for the direction in space but also to denote a
set of mechanical elements (beams, guides) designed to move the printer’s working body
along a given coordinate axis.

Kinematics of modern Cartesian printers implies variation of mobility and immobility
of the axes. In our analysis, the actuated axis is designated (A) and the fixed axis is
designated (F).

Table A1 shows all possible combinations of the printhead and the printbed axis
mobility. Each row in the table represents a kinematics variant with three actuated axes.
Because creating each layer of the printed part takes place in the XY plane, the Ox and
Oy axes of the printhead and the printbed are interchangeable. Thus, the third row is
synonymous with the fourth row, the fifth row is interchangeable with the seventh row,
and only one version of each pair will be considered further.

Also, two mounting options for the actuated axes were considered:
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• Open axes (AO)—actuated axes that have one attachment point to a fixed base or
elements of other axes. This corresponds to the open kinematic chain.

• Closed axes (AC)—actuated axes that have at least two attachment points to a fixed
base or elements of other axes. This corresponds to a closed kinematic chain.

The closed axis provides more rigidity to the construction but needs a more compli-
cated design with additional guides, motors, etc.

Table A1. Variability in axis mobility of the Cartesian 3D printer. Cells for the printhead are filled
gray. Rows 4 and 7 are not investigated further.

№ Actuated Axis Fixed Axis

1 XH YH ZH XB YB ZB
2 XH YH ZB XB YB ZH
3 XH YB ZH XB YH ZB

�4 XB YH ZH XH YB ZB
5 XH YB ZB XB YH ZH
6 XB YB ZH XH YH ZB

�7 XB YH ZB XB YB ZB
8 XB YB ZB XH YH ZH

Appendix A.1. Classification of Cartesian Designs

In this subsection, we will overview all possible combinations of fixed and actuated
axes and make a complete classification of Cartesian 3D printers. An example of the visual
representation of each kinematics is presented in Appendix A in Figures A5–A10. It should
be noted that the kinematic schemes can be depicted differently depending on where
the entire structure is mounted (e.g., standing on the table or attached to the wall). All
illustrated constructions shown in Appendix A are fixed on the floor. Tables A2–A7 show
kinematic schemes with different variations. Since the X and Y axes are interchangeable,
designs numbered 2 and 8 (marked yellow (*)) as well as 6 and 7 (marked red (**)) in some
tables are the same, and one solution from each pair can be omitted. In Tables A4 and A5,
there are no interchangeable designs because the axes XB and YH (or XH and YB) belong to
different 3D printer components.

Table A2. Fixed axes XB, YB, ZB and actuated axes XH , YH , ZH .

№ XB YB ZB XH YH ZH
1 F F F AO AO AO
2 * . . . AO AC AC
3 . . . AC AC AO
4 . . . AC AC AC
5 . . . AO AO AC
6 ** . . . AO AC AO
7 ** . . . AC AO AO
8 * F F F AC AO AC

Table A3. Fixed axes XB, YB, ZH and actuated axes XH , YH , ZB.

№ XB YB ZB XH YH ZH
1 F F AO AO AO F
2 * . . AC AO AC .
3 . . AO AC AC .
4 . . AC AC AC .
5 . . AC AO AO .
6 ** . . AO AO AC .
7 ** . . AO AC AO .
8 * F F AC AC AO F
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Table A4. Fixed axes XB, YH , ZB and actuated axes XH , YB, ZH .

№ XB YB ZB XH YH ZH
1 F AO F AO F AO
2 . AC . AO . AC
3 . AC . AC . AO
4 . AC . AC . AC
5 . AO . AO . AC
6 . AC . AO . AO
7 . AO . AC . AO
8 F AO F AC F AC

Table A5. Fixed axes XB, YH , ZH and actuated axes XH , YB, ZB.

№ XB YB ZB XH YH ZH
1 F AO AO AO F F
2 . AC AC AO . .
3 . AC AO AC . .
4 . AC AC AC) . .
5 . AO AC AO . .
6 . AC AO AO . .
7 . AO AO AC . .
8 F AO AC AC F F

Table A6. Fixed axes XH , YH , ZB and actuated axes XB, YB, ZH .

№ XB YB ZB XH YH ZH
1 AO AO F F F AO
2 * AO AC . . . AC
3 AC AC . . . AO
4 AC AC . . . AC
5 AO AO . . . AC
6 ** AO AC . . . AO
7 ** AC AO . . . AO
8 * AC AO F F F AC

Table A7. Fixed axes XH , YH , ZH and actuated axes XB, YB, ZB.

№ XB YB ZB XH YH ZH
1 AO AO AO F F F
2 * AO AC AC . . .
3 AC AC AO . . .
4 AC AC AC . . .
5 AO AO AC . . .
6 ** AO AC AO . . .
7 ** AC AO AO . . .
8 * AC AO AC F F F

Appendix A.2. Survey of Existing Mechanical Designs

A review of existing 3D printer solutions showed that many of the variants presented
in Table A2 of the kinematics are not used in practice, except for numbers three and four.
Examples of a additive systems with closed XH , YH and open ZH axes (see Figure A1a)
are the machine painting systems [53,58]. The use of an open ZH here is due to the small
movement requirement on the Z coordinate. Examples of 3D printers with closed axes
XH , YH , and open ZH (see Figure A1a) primarily are building 3D printers, e.g., from
companies Specavia ATM [59], Winsun [60], COBOD [61], etc. Examples of 3D printers
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with closed axes XH , YH , and ZH are VORON 2.4 [62] and a custom printer with Core-XYZ
kinamtics [63].

Creating 3D printers with bed fixation is sometimes not a convenient technical solution
but rather a forced one. The choice of this configuration for architectural printers can be
explained by the fact that we can not move the platform on which the building stands.

(a) (b)

Figure A1. 3D model of 3D printers with fixed axes XB, YB, ZB and actuated axes XH , YH , ZH (a)
with closed XH , YH and open ZH axes (b) with closed axes XH , YH , ZH .

Table A3 illustrates two variants used in practice. Both variants are the most popular
among all designs. An example of a 3D printer with closed XH , YH and open ZB axes (see
Figure A2a) is Anycubic 4max Pro [51] or Ultimaker 3. An example of a 3D printer with
closed XH , YH , ZB axes (see Figure A2b) is the Total Z Anyform 3D printer [64].These 3D
printers differ only in the closed Z axis of the table, which affects the stiffness of the table.
As a rule, 3D printers with a closed ZB axis are often significantly more expensive, which is
due to using more precise ball screw drives instead of a trapezoidal screw and is not fully
determined by the printer kinematics.

(a) (b)

Figure A2. 3D model of 3D printers with fixed axes XB, YB, ZH and actuated axes XH , YH , ZB (a)
with closed XH , YH and open ZB axes (b) with closed XH , YH , ZB axes.

Table A4 shows two variants used in practice. The first variant is the one with closed
axes XH , YB and open ZH . This variant is trendy in the 3D-printers market due to its
cheapness and simplicity of construction. Examples of a this type of 3D printers are
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Wanhao Duplicator i3 [65] and Anycubic i3 Mega [51] (see Figure A3a). The second variant
with open XH , ZH axes and open YB (see Figure A3b) is a simplified version of the previous
model, and one of the cheapest variations of Cartesian 3D printers. An example of such a
3D printer is the Wanhao Duplicator i3 Mini 3D printer [66].

(a) (b)

Figure A3. 3D model of 3D printers with fixed axes XB, YH , ZB and actuated axes XH , YB, ZH (a)
with closed axes XH , YB and open ZH (b) with open XH , ZH axes and open YB.

Examining the designs from Table A5, we found only one variant of the existing 3D
printer with two actuated printbed axes. It is Felix 3.0 [67], a 3D printer with open YB, ZB
and closed XH (see Figure A4). The manufacturer claims that the 3D printer can develop a
fairly high printing speed thanks to this design compared to its counterparts.

Figure A4. 3D model of 3D printer with fixed axes XB, YH , ZH and actuated axes XH , YB, ZB with
closed axis XH , and open YB, ZB.

Three-dimensional printers with the designs shown in Tables A6 and A7 were not
found. Probably, such designs are not quite suitable for 3D printing. Moving the printing
surface along all three axes can affect print quality since the printbed with the printed detail
is much heavier than the printhead. However, it is possible that designs of this type are
or will be used for other additive technologies, where complete fixation of the printhead
is required due to its size and mass. A recent study published the design of a prototype
3D printer with a fully fixed extruder. However, this printer is not Cartesian and is not
commercially available [68].
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Now, make a complete classification scheme of the existing Cartesian 3D printers. It is
given in Table A8. The classification scheme shows each case’s fixed and actuated axes and
the closed and open axes for each actuated axis.

Table A8. Full classification of existing Cartesian 3D printers.

№ XB YB ZB XH YH ZH
1 F F AO AC AO F
2 F AC F AC F AO
3 F AC F AO F AO
4 F F F AC AC AO
5 F F F AC AC AC
6 F F AC AC AC F
7 F AO AO AC F F

Only seven of the 40 possible kinematics designs (8 interchangeable) were identified
among existing designs. Table A8 shows that the actuated axes are often closed for greater
structural stiffness. Most of the actuated axes relate to the printhead.

Figure A5. Fixed axes XB, YB, ZB and actuated axes XH , YH , ZH . Existing designs are 3 and 4.
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Figure A6. Fixed axes XB, YB, ZH and actuated axes XH , YH , ZB. Existing designs are 3 and 4.

Figure A7. Fixed axes XB, YH , ZB and actuated axes XH , YB, ZH . Existing designs are 1 and 3.
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Figure A8. Fixed axes XB, YH , ZH and actuated axes XH , YB, ZB. Existing design is 7.

Figure A9. Fixed axes XH , YH , ZB and actuated axes XB, YB, ZH .
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Figure A10. Fixed axes XH , YH , ZH and actuated axes XB, YB, ZB.

Figure A11. Classification scheme for existing Cartesian 3D printer designs, yellow C stands for
closed axis, red O stands for open axis.
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Featured Application: Due to the broad automation in food industry, the need to design and man-

ufacture automate devices with high capabilities in the fish and aquatic processing industries is

of great importance. This system is introduced to process trout fish in four steps in an integrated

machine including, belly cutting, beheading, gutting, and cleaning processes bsed on the ma-

chine vision. The applied grippers stabilize the fish for any trout processing operations. In this

system, trout moves inside a canal along the machine, and all the operations are conducted on

the fish. Therefore, this system can be applied in the fish supplying markets and fish processing

factories, which facilitate the fish cleaning process in different fish sizes.

Abstract: Today, industrial automation is being applied in a wide range of fields. The initial modeling
of robots and mechanical systems together with simulation results in optimal systems. In this study,
the designed system is simulated to obtain the required velocities, accelerations and torques of the
actuating arms in a vision-based automatic system. Due to the slippery skin of fish and the low
friction coefficient, it is not easy to design an optimal tool to handle fish. Since the fish-processing
operation is undertaken step by step and provides fish stability, it is essential that the gripper enables
different processing operations along the system. The proposed system performs belly-cutting,
beheading, gutting, and cleaning stages for different fish sizes, based on the extracted dimensions of
the vision system. In the head-cutting section, the average speed of the actuator jack was considered
as 500 mm s−1. Under these conditions, the maximum required force to provide this speed was
332.45 N. In the belly-cutting subsystem, the required torque for the stepper motor resulted in
1.79–2.15 N m. Finally, the maximum required torque for the gutting stepper motor was calculated
as 0.69 N m in the tested processing capacities.

Keywords: trout; fish processing machine; simulation; vision based system

1. Introduction

Trout, with the scientific name of Oncorhynchus mykiss, is from the salmon genus. The
recent technology in the food industry is developed in different fields, such as fully auto-
mated and intelligent systems based on vision. Since the speed of the processing function,
together with the accuracy and quality of the final product, is required, recent systems
are equipped with vision-based equipment, especially in the products with different sizes
and shapes.

Fish sorting increases the final quality of the product but requires an initial investment
and carries with it structural complexities [1]. In small and large fish centers, fish species
in high demand are usually available in different sizes. In non-processed fresh fish, some
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prefer gutted fish; others opt for gutted and beheaded, or just in fillets. It should be noted
that trout scales are finer than other species, and it can be processed without scaling.

Due to the broad automation in industry, the need to design and manufacture auto-
mated devices with high capabilities in the fish and aquatic processing industries is of great
importance. Because of the importance of fish consumption to the food industry, there is
a need to design and develop fish-processing systems with higher capabilities than the
current models. In fish-processing factories and fish supplying markets, it is necessary to
properly stabilize the fish for cleaning operations. Due to the slippery skin and the low
friction coefficient, it is usually challenging to control the fish constantly. To increase the
system capacity, it is necessary to process the fish with functioning arms while the fish are
passing in front of the processing tools.

The initial modeling of the robots and mechanical systems together with simulation
results in optimal real systems. In this condition not only are the links and joints and actual
movements of the arms and actuators traced, but also the required forces and torques are
determined in the most optimized condition. This needs defining the initial conditions of
the friction coefficients, the movement limitations, required initial speeds and accelerations.
In a study conducted by Beiranvand [2], the minimum length sliding mode control of
a three degrees of freedom (DOF) Cartesian parallel robot was modeled and identified
considering the virtual flexible links. In another study, kinematic optimal design of a
partially compliant four-bar linkage using the elliptic integral solution was applied [3]. An
analytical model of a compact flexure mechanism for translational motion together with
the designing process was conducted by Hao [4].

A conventional machine vision system (MVS) includes an image-capturing unit (cam-
era), image processing unit, and statistical analysis [5]. Machine vision has been used in the
field of aquaculture for classification, sex determination, and quality assessment. This non-
destructive method was also applied in fish post-processing steps like removing unwanted
parts and cutting the fillet edges. The following are examples of research conducted in
this area. To adapt the fish cleaning system to the individual characteristics of each fish,
it is necessary to provide special tools for cutting, gutting, cleaning, and gripping fish of
different sizes. Machine vision as the main detection and processing tool was applied by
Atienza-Vanacloig for tuna growing stages [6]. This method was also applied to develop a
fish counting algorithm while passing from the embedded system [7]. It was also applied
for fish fillet quality and freshness assessment [8]. Fish freshness can be detected according
to the color features of the eyes and the gills [9]. The fish length and size determination
algorithm was developed by Miranda [10] and Muñoz-Benavent [11]. In other research,
the size, direction, and heterogeneity of the fish were measured based on edge analysis to
develop the tools for grading bass species [12].

The mechanical systems and cutting arms are designed in different fish-processing
machines. In a design, the researchers developed a head-cutting fish cleaner. In their proto-
type, the fish was held using two metal plates to separate the fish head in the appropriate
position [13]. In order to cut the head, they proposed a mechanism to keep the head in the
right position while gripping the body. The designed clamp only allowed the system to cut
the head. In this system, the fish was held steady and the head-cutting tool cuts the head
by moving toward the fish.

In another system, a machine for fish head cutting was designed [14]. In this machine,
the fish were moved using a conveyor chain system with stainless steel semicircular seats.
In this model, as the fish passes over the conveyor, the holding arm from the top of the
line approaches the moving fish to stabilize it and for beheading processes. Like the
previous model, this machine was only able to cut the fish head. The difference between
this proposal and the model designed by Buckingham lies in the processing condition
of the fish (stable or moving fish) [13]. Due to the high inertia of the cutting tools, it is
preferred to process the fish while moving with minimum movement of cutting tools. On
the other hand, the capacity of the system is high if the fish moves in front of the cutting
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arms. Therefore, the system used by De Silva [14] takes priority in terms of meeting the
proper dynamic conditions compared to the system designed by Buckingham [13].

Later, Lang [15] proposed a device for cutting salmon heads. In this machine, the
fish were placed manually in their seat and then transported to the cutting position by
a hydraulic jack. In order to provide linear motion, a rotary motor was used to convert
rotational motion to linear motion. This device was also developed to catch the fish
for beheading.

Ketels [16] proposed a system for correctly placing the fish in the processing line
during head cutting. In this design, they used metal seats mounted on the chains. Since
the sorted fish were fed to this system, the fish conveyor seats were designed in fixed
sizes. Therefore, in the fish of different sizes, this mechanism cannot be used unless specific
conveyor chains are considered for each of the different sizes of the fish.

In another fabricated design, conveyor belts consisting of metal seats were used [17],
as applied by Ketels [16]. In addition to the clamp designed for beheading, another clamp
was used to separate the fishbone. It should be noted that, although the designed device
was able to perform two different operations, two different types of clamp were used for
each step of beheading and deboning. In the proposed system in the present study, in
addition to the ability to perform various steps of belly cutting, gutting, and beheading, it
will be possible to perform all these steps in one integrated system.

Urushibara [18] designed and fabricated a device for fish beheading and gutting
without cutting the belly. In this design, the fish were transported while lying on their
sides to cut the head and evacuate the belly contents. In another system, a device to grip
the fish and clean the belly contents was applied [19]. In this system, contrary to the model
proposed by Paulson [20], the fish were transported downward between two support
straps along with the device. Similarly, a device to catch the fish for removing blood clots
near the spinal cord was used [21]. This tool is only for catching fish to suck the blood and
blood clots, and it is a single-use clamp in the fish-processing industry. This clamp was
applied in a fish filleting machine.

A flow tool for extracting belly content was designed and fabricated [22]. The design-
ers have offered this tool for cutting fish fillets, but they have also suggested this tool for
evacuating the belly content. In this system, as the fish moves towards the cutting tool, the
blade contacts the belly content and removes it from the belly cavity. It was necessary to
separate the fish head from the body in the previous step.

In a design proposed by Finke [23], a device with attached material to the spinal cord
with two sets of rotating disks was applied. The first set of the discs guides and presses
the fish, and the other set under the fish performs the cleaning operation from beneath the
fish. The second set of the disks were placed opposite with angles. In this design, the fish
is pulled from the tail, and the belly is downward. In order to use this tool, it is necessary
to clean the belly and remove the head in the previous step. Among the described systems,
only in the designs proposed by Paulson [20] and Ryan [19], a combination of mechanical
and electronic sensors has been applied to detect the dimensions of the fish, which can be
applied to extract the fish size and cutting points. Since in each of these systems, only a
single operation of cutting or gutting is undertaken, using these sensors is sufficient for
dimension determination.

In Paulson’s design [20], the head of the fish remains on the fish, and only the gutting
process with the details of belly-cutting, suction, and belly cleaning steps are undertaken in
a single system. Also, in the system designed by Ryan [19], the head of the fish is removed
in the previous stage, and subsequently, by passing through the conveyor belt, the gutting
process is performed. These sensors are used while cutting and cleaning operations are
performed on the belly because the exact head-cutting position requires special methods
like machine vision.

Then, an automated line for slaughtering and cutting fish heads using machine vision
was designed [24]. To slaughter the fish, the pneumatic jacks were equipped to narrow
blades. The general structure of the device used in this study is similar to those applied by
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Storbeck [25] with the difference that, in addition to all devices applied as mechanical tools,
the stunning technology enabled the feeding of alive fish so that they can be processed
simultaneously. It was also necessary to identify the fishtail and head sides in order to
make an injury on the right side.

In the current system, an automated system is designed for trout beheading, gutting,
and cleaning. As this system consists of mechanical, controlling, and machine vision
sections, the whole system needs an accurate design and synchronization. The mechanical
system was designed in CATIA software (Dassault Systems Corporation) and simulated
in Automated Dynamic Analysis of Mechanical Systems (ADAMS) simulation software
owned by MSC Software Corporation. The controlling algorithm was developed in Siemens
TiaPortal15 software and tested to solve any errors. Extracted data from the machine vision
system are sent to the control unit by the Ethernet TCP/IP protocol. Finally, by installing
magnetic and inductive sensors, pneumatic cylinders and actuators, and user interface
panel, the machine functioning was synchronized and calibrated.

Since the system is supposed to process fish of different dimensions, machine vision
can provide a precise cutting point determination. With such system, not only the fish
dimension is defined, but also the head cutting, belly-cutting length and gutting points are
defined based on the fish fin segmentation. Since the fish dimensions are different, there
is a high risk of collision between the arms and the grippers as they pass in front of each
functioning station. Therefore, designing a system capable of functioning different cutting
and cleaning actions on fish of different sizes in an integrated machine is the main goal of
this research. The detailed goals are presented as follows:

1. Designing a trout fish-processing system capable of processing the fish in
different dimensions.

2. Developing the system into a machine at which different cleaning steps can be per-
formed in one integrated system (belly-cutting, beheading, gutting, and
cleaning processes).

3. Designing a system that is adapted with online data extracted from the online image
processing technique.

4. Extracting the required forces, torques, and displacements by simulating the
real movements.

5. Finally, fabricating and selecting the proper functioning motors and pneumatic jacks
of the system based on the applied tools (mechanical design, machine vision, control
algorithms, and simulation).

2. Material and Methods

This system is composed of different units which are combined in an integrated
system for trout processing. The machine vision system as the main processing and data
acquisition unit is mounted in the initial part of the machine. The mechanical design of the
system and final fabrication processes are described in detail in the following.

2.1. Machine Vision and Dimension Determination

This system is designed, simulated, and fabricated to process trout in an online condi-
tion. The main part of the system is the image processing setup in which the images are
captured and the cutting points and dimensions are extracted using the developed algo-
rithm. To develop the cutting point determination algorithm, an imaging case with a light-
emitting diode (LED) was designed. We applied a video camera (Basler, daA1280-54uc,
USB3) for the online process. To capture the images, as the fish was passing in front of
the camera sensor, the signal was sent to the programmable logic controller (PLC) and the
frame capturing command was sent to the MATLAB software to store the frame for fish
segmentation and dimension extraction. As soon as the dimensions were extracted, they
were sent to the controlling unit with the TCP/IP protocol. The machine vision components,
segmentation process, and cutting point determination are presented in Figure 1.
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Pure blue background with 

the LED lights  

‘ON’  

Trout sample 

V- Shaped 

guide channel

(b) 

(a) 

(c) 

(d) 

(e) 

Figure 1. The image processing setup: (a) pure blue background, (b) the video camera, (c) inside of the imaging case with
the sample, (d) segmented fish, and (e) trout fin shear to define the cutting points and functioning lengths.

The cutting points and extracted dimensions are presented in Figure 2. The head and
belly-cutting regions will be considered as the operational points of the system. L1 to L4
are head-cutting point, belly-cutting start point, the body length without tail, and total
length, respectively. The operational width of the trout is shown as W.
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Figure 2. Trout fish dimensions: (a) determining trout dimensions (L1 to L4 are head-cutting point,
belly-cutting start point, trout length without the tail, and the total length, respectively and W is the
fish width), (b) comparing the width in different fish samples (W1 and W2 are different trout width),
and (c) comparing the functioning length of actuating arms in two fish samples with different lengths
(LS and LB are functioning length for small and big fish).

2.2. Designing the Mechanical Parts

In the first step, the initial model was designed by CATIA software. Then, all parts,
such as conveyor chain and gears, were defined by entering the exact dimensions of the
parts in the software. To enable all fish-processing steps in the system, we considered the
dimensions of the chassis: 2.8 m in length, 0.85 m in height, and a width of 0.7 m. The total
design rationale is presented in Figure 3.
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Figure 3. The design rationale of the trout-processing system with applied methods and software.

2.2.1. Fish-Carrying Subsystem

One of the most critical points in designing a system with the ability to perform
different trout-processing stages is to consider a holding place in the fish body to avoid
interfering with cutting and cleaning tools during the various cleaning stages. Therefore,
the tail of the fish was selected as the appropriate area.

The fish carrier subsystem consists of four main parts:

1. Fish grippers;
2. Gripper guides and fish canal;
3. Driver AC motor;
4. Gripper conveyer.

In order to stain and increase the wear resistance of steel gears, hard chrome electro-
plating operation was used. To transmit the motor’s power to the grippers, we selected a
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stainless steel chain with a length of 4800 mm. By dividing this length into five equal parts,
a distance Dg of 960 mm was obtained. Therefore, five grippers were designed, by which
five fish are processed in one turn. Figure 4 shows the sketch and schematic view of the
conveyor chain and grippers in detail.

(a) 

 

(b) 

Dg 

Grippers  

Trout samples which are gipped Trout tail in gripping position  

Figure 4. (a) System sketch, and (b) conveyor chain and the grippers with a distance “Dg” between the grippers.

This figure shows the gripper position and the conveyor chain with the gripper
distance (Dg). If a complete cycle of the conveyor chain is performed for one minute, the
number of five fish per minute (MF_5) will be processed by the machine. Under these
conditions, the linear velocity of the carrier chain will be calculated using Equation (1):

v =
x
t

(1)

In this equation, ‘v’ is the linear velocity (mm s−1), ‘x’ is the length of the carrier chain
(mm), and ‘t’ is one complete path of the chain (60 s). Based on Equation (1), we considered
five fish to be processed in one minute; the linear velocity will be calculated 80 mm s−1.
Other linear velocity values in different processing capacities are presented in Table 1.

Table 1. The linear velocities in different system capacities.

Fish Cleaning Machine Capacity (MF)

System capacity
(fish/minute) 4 5 6 7 8 9 10

Linear velocity of the conveyer
chain (mm s−1) 53.33 66.66 80 93.33 106.66 120 133.33
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As shown in this table, by increasing the system capacity from four to 10 fish per
minute, the linear velocity increased from 53.33 mm s−1 to 133.33 mm s−1. These values
are the base inputs for design and simulation of the system. The complete design of
the trout-processing system is presented in Figure 5. The subsystems of the machine are
described in detail below.

Figure 5. The complete design of the trout-processing machine.

2.2.2. Belly-Cutting Subsystem

The function of this subsystem is to make a longitudinal incision in the trout belly from
the beginning of the anal fin to the pectoral fin. After extracting the required dimensions,
the first step in device operation is to make a longitudinal incision in the abdomen of the
fish from the anal fin to the pectoral fin based on fish size. By sending the commands from
the control unit to the stepper motor, the carrier arm moves downwards, and then, the
rotating blade cuts the belly. Figure 6 shows the position of the belly-cutting subsystem in
the machine together with its components.

 
Figure 6. Belly-cutting subsystem: (a) designed subsystem, (b) fabricated belly-cutting components,
and (c) limiting sensor.

2.2.3. Head-Cutting Subsets

Since the fish is moving along the system, it is necessary to provide the best head-
cutting condition. In order to have a proper cut, a fast and precise cut must be developed.
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Therefore, a pneumatic jack was used for the head cutter subset. As mentioned before,
when the grippers reach the beginning of the guide rails, the fingers contact the rails and
the fishtail stocks between the gripper clamps. At this point, any clamped trout is pulled
along the system. Therefore, to define the system processing capacity (fish per minute);
it is necessary to determine the optimal working speed. By knowing the linear velocity
of the conveyor, the penetration velocity of the cutting blade will be investigated. In fact,
the speed at which the cutting blade approaches the fish is directly related to the fish
transferring speed. The designed head-cutting subsystem is presented in Figure 7.

 

Figure 7. Head-cutting subsystem: (a) the position of the head-cutting subsystem in the machine, (b)
isometric view of the subsystem, and (c) right view of the subsystem.

2.2.4. Gutting Subsystem

When the fish reaches the gutting position, the stepper motor is activated by receiving
the start command from the control unit and rotates in clockwise and counterclockwise
directions depending on fish size. In case the size of the fish is determined as small by the
machine vision section, the narrower tube enters the fish belly. In fact, the stepper motor is
rotated counterclockwise, and due to the engagement of the pinion with the rack gear, the
set of sliders together with the suction tube move toward the fish. The gutting subsystem
is presented in Figure 8.

 
Figure 8. Gutting subsystem: (a) designed subsystem, (b) homing position with the applied sensor in the right side, and
(c) functioning position with the limit sensors in the left side of the subsystem.
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2.2.5. Cleaner Subsystem

This subset is designed to clean the inside of the fish belly and remove any material
attached to the fish spine. When the fish reaches the cleaning position, the command is
transferred to the pneumatic jack from the control unit and performs the cleaning operation
by lowering the jack. The time duration in which the pneumatic jack is extended is directly
related to the fish length. As the fish passes in front of the cleaning station, the jack retracts
to the initial position. The cleaner subsystem is presented in Figure 9.

Figure 9. Fish cleaning subset: (a) designed subsystem, (b) fabricated subsystem, and (c) applied sensor.

The function analysis is presented in Figure 10. As shown in this figure, at the initial
step, the fish is gripped by a clamp. Then the fish is carried along the machine for further
processing. By passing the fish in front of the camera sensor, the signal is sent to the
controller. Then, the controller sends the received data to the interface (Matlab software)
via TCP_IP protocol. A frame of the camera is captured immediately and saved for further
process. In the next step, the extracted data return to the controller and are reserved
specifically for each trout sample. As the gripped fish is carried along the machine, the
sensors in each of the stations are stimulated and receive the related information from the
labeled pack of the data. Regarding the length and feeding rate, the functioning arms cut
or clean the trout with subsequent delays and speeds.

2.3. Device Simulation, Kinetic and Dynamic Analysis and Extracting the Torques of the Motors
and Forces of the Pneumatic Jacks

After designing the system in CATIA software, it was necessary to choose the motors
and pneumatic jacks. Therefore, it is required to calculate the required torque and rotational
speed of stepper motors and the force and speed of pneumatic jacks.

The simplest method is to design all the parts and define their weights to calculate
the forces using the conventional method and numerical calculations. This method is
applicable when the dynamic parameters are calculated for a single part or, in some cases,
the limited number of parts within the relation. Using this method to determine accurate
inertia reaction forces in a multi-body system faces a significant challenge unless the
problem is simplified. It should be noted that in the simplification method, in addition to
the time-consuming computational steps, the reaction forces and the dynamic and static
friction conditions will not be the same as the real condition. Therefore, to have closer
results to the real operating conditions and reduce the numerical calculations and increase
output accuracy, the designed system in CATIA software was imported to ADAMS 2017
software and simulated for dynamic analyses. The simulation steps in the software are
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presented in Figure 11. The simulation process and extracting dynamic diagrams are
presented in Figure 12.

Figure 10. Function analysis of the trout fish-processing system.

After importing the designed model into simulation software, the first step is to name
all parts. The related constraints were assigned for all the parts, and any possible errors
were solved. At the next step, the associated motions for the moving parts were considered.
For this purpose, a rotational motion was considered for the stepper motor’s hinge in the
belly-cutting and gutting subsystems. Likewise, for the linear moving parts, pneumatic
jacks, and suction tubes, the linear constraints were considered.

In some parts of the device, to determine the constraints and types of movement, it is
necessary to consider the collision between the components involved. This collision was
considered between the pinion and the rack gear in the gutting subsystem. The Columbus
friction model was used to determine static and dynamic friction between the parts. As
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the power screw and nut in the belly-cutting subsystem are both made of steel, grease
lubrication will be used between these parts. The static friction coefficient was considered
to be 0.16 for steel–steel contact [26]. Also, the dynamic friction coefficient was set to
0.08 [27]. For other dry parts of the device, the values of static and dynamic coefficients of
friction were considered to be 0.1 and 0.2, respectively.

 
Figure 11. Simulation steps in Automated Dynamic Analysis of Mechanical Systems (ADAMS) software for dynamic
analyses of the trout-processing system.

In order to determine the motion of the moving parts, the “Step” function was applied.
As the fish enters the machine, trout size is extracted and the cutting points are defined
using machine vision. The rotary cutter creates the longitudinal cut in the belly-cutting
subsystem in the first stage. In the next step, the trout is beheaded and gutted. In this
regard, it was necessary to consider the sequences of each operator in the simulation.

Therefore, four-movement steps were considered for each of the four operators of
the device based on the movement time and rotational and linear speeds. Each pair of
steps was considered for each operator’s round trip. For example, the belly-cutting stepper
motor start runs based on the written step function. As soon as the arm reaches the end of
the path, the second step is applied to control the speed and acceleration. The same steps
were also considered for the returning path. As the operator reaches the end of the path
in the first run, the arm stops equal to the time required for cutting the trout length. This
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time is considered between the second and third steps. By finishing the cutting process,
the arm returns to the initial position based on the defined speed to complete the fourth
step. In this step, when the cutting blade arm reaches the end of the path, a stop command
is issued to the stepper motor. In the simulation process, for all of the arms and moving
parts, a motion function is considered so that all the contacts, collisions, and moving paths
are visible. In such a condition, the timing of arms and actuators is set in an optimized
condition. Therefore, by trial and error, the motions in the real system face the least errors
and collisions.

Figure 12. Simulation process and extracting the dynamic diagrams.

Since the minimum and the maximum number of fish is considered to be 4–10 fish
per minute, the simulation of the device is performed for the minimum and maximum
number and the average number of the fish (4, 7, and 10 fish per minute). To perform
the simulation in these conditions, some preliminary considerations and calculations are
required. For example, it was necessary to determine fish transfer speed in the canal in
terms of fish per minute, because the operator’s speed, performing all calculations, and
writing step-functions will be undertaken based on fish transfer speed.
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2.3.1. Calculations Related to the Stepper Motors of the Belly-Cutting and
Gutting Subsystems

To determine the required torque to actuate the cutting arm and gutting tubes, the
system was simulated. Considering the working conditions in the system, all the necessary
parameter and considerations such as static and dynamic friction coefficients, any collisions,
and all the constraints, were incorporated and motion simulation was performed.

Since the linear velocity of the fish varies in different feeding capacities, it is necessary
to bring the cutting arm closer to the fish concerning linear transmission speed. It should
be mentioned that the belly-cutting time at which the arm is in the cutting position also
concerns the fish transfer speed. In addition to determining motor torque, rotational
speed, acceleration, and energy consumption were obtained. Finally, the maximum torque
required for system functioning at a capacity of 10 fish per minute was selected to determine
stepper motor characteristics in both belly-cutting and gutting subsystems.

A power screw was used to move the cutting arm. Due to the self-locking property
of the power screw in the non-working condition, no force will be applied on the stepper
motor in idle condition. Since the gutting subset has a different structure, it was necessary
to use a stepper motor with a gearbox system due to the inertia of the moving parts so that
the suction tubes would stop as soon as the motor stops.

2.3.2. Calculations Related to Pneumatic Jacks of Head-Cutting and Cleaner Subsystems

Two pneumatic jacks were applied in a trout-processing system in head-cutting and
cleaning subsystems. As the piston moves downwards during the extraction step, the jack
is expected to prevent the subset from free falling. To know whether the pneumatic jack
will empower or prevent free fall, we investigated the piston velocity in free-fall conditions
from a height of 180 mm. The falling situation is presented in Figure 13. In this figure, IP,
SP, and FP are the initial, start, and final positions of the head-cutting subsystem.

 

Figure 13. Free falling condition of the head-cutting subset: (a) distance from the home position of
the head-cutting subset to the end of the cutting path, (b) the length from the home position to the
initial contact of the blade and trout (80 mm), and (c) head-cutting width. In this figure, IP, SP, and
FP are the initial, start, and final positions.

The following are the equations for calculating the final velocity of the head-cutting
subset in a free-fall condition. According to these relationships, considering the weight of
all stimulus parts was regarded as a single mass. By simplifying the falling conditions, the
penetration speed in the initial contact and termination step was calculated.

U0 + K0 = U2 + K2 (2)

m·g·h0 +
1
2
·m·v0

2 = m·g·h2 +
1
2
·m·v2

2 (3)
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g·h0 =
1
2
·v2

2 (4)

9.81 × 0.18 × 2 = v2
2 (5)

v2 = 1.88 (6)

In these relations, ‘U’ and ‘K’ are potential and kinetic energies in terms of (J), m is
body mass (kg), ‘v’ represents body velocity (m s−1), ‘h’ is the falling height (m), and ‘g’
represents gravitational acceleration (m s−2). According to the energy conservation law, the
sum of kinetic and potential energy at two points at the beginning and end of the motion
path must be equal (Equations (2) and (3)). After simplifying the relationship, the velocity
value at the end of the path resulted in 1.88 m s−1. Assuming that the head-cutting subset
has a free fall, by substituting the velocity values for ‘v1’ and ‘v2’, the required time for
complete cut will be obtained using Equations (7) and (8).

v1 = g·t1 + v0 (7)

v2 = g·t2 + v0 (8)

By setting the values of 1.25 m s−1 and 1.89 m s−1 for ‘v1’ and v2 in
Equations (7) and (8), t1 and t2 were calculated as 0.13 s and 0.19 s, respectively. The
blades will travel the distance from IP to FP (180 mm) in 0.19 s in the vertical direction.
Also, the head-cutting blades will travel ‘a’ distance ‘b’ in 0.13 s. At this distance, the
cutting blades will descend freely to reach the fish in the SP position. Considering the fish’s
average width of 100 mm, the cutting time from SP to FP resulted in 0.06 s. It should be
noted that the penetration velocities in the SP and FP region are high values; this value is
also higher than the maximum speed provided by the pneumatic jack.

Comparing the velocity values in different states, it is not allowed to consider different
speed ranges for the piston. Obviously, the least amount of longitudinal displacement of
the fish during the cutting process will be achieved at the highest blade penetration speed
and the lowest processing capacity. Therefore, a penetration velocity of 500 mm s−1 was
considered as the final velocity for cutting blade. Under these conditions, as this speed
is considered maximum, the other feeding rates will be processed even better than the
maximum feeding rate of 10 fish per minute. By comparing the velocity and time of the
free fall with the maximum speed piston speed, it is expected that the piston must exert
the opposite force against the free fall. This can also be seen in the output of the ADAMS
software. By defining the required force, the pneumatic jack was selected for both the head-
cutting and cleaning subsystems. Since the total displacement range of the head-cutting
subset is 180 mm, a 250 mm course jack was selected. It should be noted that the amount
of applied force was different in jack extraction and retraction courses. The amount of
supplied force in extraction and retraction steps is calculated by Equations (9) and (10),
respectively.

Fe =
π× D2

4
·P·g (9)

Fr =
π×
(

D2 − d2
)

4
·P·g (10)

In these equations, ‘D’ and ‘d’ are the outside and inside diameter of the piston rod
in millimeters, ’g’ is the gravitational acceleration (9.81 m s−2), ‘Fe’ and ‘Fr’ are the force
of the jack in the extraction and retraction course in Newton ‘N’, and P is the air pressure
in terms of ‘bar’, respectively. Since the one-way pneumatic jack exerts more force in the
extraction course, it is preferred to use the cylinder in the retraction mode until the next
fish arrives, the jack can return to its original position slower than the extraction course.

Assuming the fish moves at a constant speed in the guided canal, the faster the blade
penetrates the fish body; the more precise the head cut will result. Knowing that the force
exerted by the jack resists the free fall of the cutting sub-section, especially at the end of
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the course, the designed model is entered into ADAMS software, and all the necessary
constraints, their movements, and friction coefficients were entered into the model. Among
the tested speeds for the jack, the maximum required force was obtained for the speed of
500 mm s−1. After determining the amount of force, the next step is to select the pneumatic
jack. The following items will be considered in selecting the jack:

1. Design factor;
2. Jack force;
3. Load coefficient in vertical operation mode;
4. Air pressure;
5. Speed coefficient.

Considering the design factor, the maximum force was considered 1.5 times greater
than the value given by ADAMS software. Therefore, the force is considered equal to
332.45 N in further calculations. If the pneumatic jack is considered to work in a horizontal
position with a pressure of 0.8 MPa, a jack with a bore diameter of 32 mm will be a proper
option. If the jack is used in the vertical position, the bearing load by the jack will be
reduced to 50%. This value can be reduced by up to 20% at high operating speeds. In fact,
in addition to considering the design factor, the vertical load factor must also be considered.
Also, in order to have an optimal performance at low air pressures, the air pressure of
0.4 MPa was considered in calculations. The pneumatic jack bore size selection graph is
presented in Figure 14.

 

Figure 14. Pneumatic jack bore size selection graph based on the applied force, vertical operating
coefficient, and operating pressure.

As shown in lower part of Figure 14, by considering the air pressure and vertical
operation coefficient, a vertical line was defined. By tracing this line and contacting bore
size of 32 mm, the supplied force between 100–150 N was anticipated which was less
than the desired force of 332.45 N. Considering the vertical load factor as 0.5 at a working
pressure of 0.4 MPa and the impact of the vertical force, an air jack with a 32 mm diameter
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can supply force values between 100 N and 150 N, which is less than the required value
(N45/332).

As a final option, a jack with a bore size of 50 mm can supply the desired force values
between 300–400 N. A similar process was performed to determine the second jack in
the cleaning subsystem. Hence, at a load factor of 0.5 and air pressure of 0.4 MPa, a jack
with a 20 mm diameter to supply active force between 30–40 N was selected in maximum
fish-processing rate (10 fish per minute).

2.4. Fabricated System

The final trout-processing machine is presented in Figure 15a. The final system was
fabricated after the motion simulation. The components of the system are presented in
detail. This system also contains a controlling and machine vision section beside the
mechanical design and machine vision section. The rear view and the controlling panel
are presented in Figure 15b,c, respectively. In order to control the moving parts, different
electronic devices are required: start/stop switches, emergency disconnect switch, sensors,
controller, stepper motors, and drives. Inductive and magnetic sensors were used to control
operating arms and stepper motor movements. Because the device’s arms’ movement in
each of the working steps require unique control, the device control algorithm was written
in three parts: initial setup, manual operation, and online automatic function. To develop
the controlling algorithm, Siemens TIA Portal automation software and Siemens controller
was used.

 

Figure 15. The fabricated trout-processing system: (a) the completed mechanical and electronics
parts, (b) the rear view, and (c) controlling panel.
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Since inductive sensors are applied in each of the five subsets (machine vision, belly-
cutting, head-cutting, gutting, and cleaning subsets), in case there is no fish in the gripper,
the dimensions extracted by machine vision will be calculated as “0”, and the system
operators will be standby state without any function (Supplementary Material).

3. Results and Discussion

Since the system is designed, simulated, and fabricated based on the simulation data,
the results of the simulation are presented as follows. These calculations are conducted
on the piston speed, selecting the belly-cutting stepper motor, choosing the head-cutting
actuating piston, defining the gutting stepper motor’s characteristics, and the required
force for the cleaning subsystem. The related results are presented below.

3.1. Piston Speed Calculations

In addition to the analytical results generated by the software, some of the results
were calculated in the initial step. This part of the results is related to the working capacity
and processing quality of the operators during machine functioning. The results are related
to the amount of fish movement in each of the capacities of the device. In Table 2, trout
transfer length along the machine is presented in each feeding rate.

Table 2. Fish movement along the machine based on the feeding rate (fish per minute).

Pneumatic Cylinder
Fish Movement along the Machine Based on the Feeding Rate

(Fish Per Minute)

Speed
(mm s−1)

t (S) MF-4 MF-5 MF-6 MF-7 MF-8 MF-9 MF-10

100 1 53.33 66.67 80.00 93.33 106.67 120.00 133.33
200 0.50 26.67 33.33 40.00 46.67 53.33 60.00 66.67
300 0.32 17.78 22.22 26.67 31.11 35.56 40.00 44.44
400 0.25 13.33 16.76 20.00 23.33 26.67 30.00 33.33
500 0.20 10.67 13.33 16.20 18.67 21.33 24.80 26.67
600 0.17 8.89 11.11 13.33 15.56 17.78 20.00 22.22
700 0.14 7.62 9.52 11.43 13.33 15.24 17.14 19.05
800 0.13 6.67 8.33 10.00 11.67 11.85 15.00 16.67
900 0.11 5.93 7.41 8.89 10.37 14.22 13.33 14.81

Free fall 0.06 3.20 4.00 4.80 5.60 6.40 7.20 8.00

As shown in this table, by increasing the feeding rate, the fish transfer speed increases.
Since it is desirable to increase the capacity of the system, the appropriate solution is to
increase the penetration rate of the blades in the fish. The longitudinal displacement of
fish at MF-4 and MF-10 capacity with the piston velocity with 100 mm s−1 was calculated
as 53.33 mm and 133.33 mm, respectively. It should be noted that moving the trout as
133.33 mm while moving in front of the head-cutter blades causes separation from the
gripper or creates an undesirable cut in the head.

By increasing the blade penetration rate to 900 mm s−1, the displacement values in
both MF-4 and MF-10 capacities were calculated as 5.93 mm and 14.81 mm, respectively.
These values are suitable for cutting the head, but it should be noted that increasing the
speed of the pneumatic jack increases the inertia in the actuator sections, so the rod speed
such as 400 mm s−1 and 500 mm s−1 is suitable for head cutting. The amount of fish
movement in the minimum and the maximum capacity of the device at the speed of
500 mm s−1 are 10.67 mm and 26.67 mm, respectively. The head of the fish will be cut with
a slight deviation from the vertical line, in which the fillet near the neck of the fish will be
separated along with the body.

Figure 16 shows fish movement at different jack speeds. As shown in this figure,
the displacement values at a particular capacity, such as the F-4, decrease non-linearly
by increasing jack speed, so that at piston speeds in the range between 100–200 mm s−1,
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fish displacement decreases with a high slope while the slope decreases at speeds of
600–1000 mm s−1.

Figure 16. Fish movement at different jack speeds.

This figure also shows that, at low transfer speeds, there is a large difference between
the fish movement values, whereas as jack speed increases, the difference between these
values decreases. In other words, considering the balance between the jack speed and
the amount of fish displacement, it is appropriate to consider higher velocities of the
carrier jack, but it should be noted that at higher jack velocities, the difference between the
displacement values decreases. Due to the higher inertia of the moving parts and the high
vibrations in the system, electing jack speeds such as 400–500 mm s−1 is a suitable speed
for the head-cutting blade set.

3.2. Results of Simulation

The results of system simulation are presented in the following. In order to reach an
optimized design and observe the force, torque, and speed trends, the system was tested in
three feeding rates. These capacities are the minimum, maximum, and the average number
of fish per minute (4, 7, and 10 Fish/min), respectively.

3.2.1. Selecting the Stepper Motor of the Belly-Cutting Subsystem

The belly-cutting subsystem is a subset of the machine in which a longitudinal incision
is made from the anal fin to the fish head using a rotating blade mounted on the main arm.

In Figures 17–19 the motion simulation results are presented for the belly-cutting sub-
set. In these figures, the characteristics of the required stepper motor are determined. These
characteristics are the required torque for cutting operations, angular velocity, angular
acceleration, and energy consumption in three feeding rates. In these figures, blue dotted,
green dashed, and red solid are the components in X, Y, and Z directions.
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Figure 17. Results of ADAMS software simulation to determine the motor characteristics of the belly-cutting subset (4 fish
per minute). In this figure, (a–d) are torque, angular velocity, angular acceleration, and required power respectively.

 
Figure 18. Results of ADAMS software simulation to determine the motor characteristics of the belly-cutting subset (seven
fish per minute). In this figure, (a–d) are torque, angular velocity, angular acceleration, and required power respectively.
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Figure 19. Results of ADAMS software simulation to determine the motor characteristics of the belly-cutting subset (10 fish
per minute). In this figure, (a–d) are torque, angular velocity, angular acceleration, and required power respectively.

As shown in these figures, the angular velocity and acceleration around the Z-axis
are maximum. Also, the required energy increases by increasing angular velocity. The
maximum torque values in three capacities of 4, 7, and 10 fish per minute were 1.334 N m,
1.378 N m, and 1.431 N m, respectively. Therefore, to select the required stepper motor
maximum amount of torque (10 Fish/min) was selected. By considering the design coeffi-
cient of 1.25–1.5, the required torque for the stepper motor is in the range of 1.79–2.145 N m.
Therefore, a Nema 23 stepper motor (57PH20-0.2 kg m) stepper motor with a torque
1.96 N m was selected. Considering this stepper motor, a design factor of 1.37 is obtained,
which is acceptable for the device operation.

In Figure 17b−d the angular velocity, acceleration, and energy consumption are
presented, respectively. As shown in these figures, by increasing the fish feeding rate, the
blades are about to penetrate the belly at higher speeds, requiring higher velocity and
acceleration. As shown in these three figures, the maximum angular velocity, acceleration,
and energy consumption are related to 10 fish per minute. Due to the sufficient time
interval between the fish grippers, there is enough time to return to its initial position.

3.2.2. Selecting the Pneumatic Jack of the Head-Cutting Subsystem

The results for the simulation are shown in Figures 20–22. In order to ensure successful
head cutting, it is necessary to synchronize the fish feeding rate and cutter penetration. In
fact, the faster the jack penetrates and the slower the fish moves, the better the cut is done.
Although the lower transfer speeds result in a proper head cut, it should be noted that it
results in low system operation capacity.
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Figure 20. Results of ADAMS software to determine the characteristics of the jack of the head-cutting subset (four fish per
minute). In this figure, (a–d) are force, velocity, acceleration, and required power respectively.

(b) (a) 

(d) (c) 

Figure 21. Results of ADAMS software simulation to determine the motor characteristics of the gutting subset (seven fish
per minute). In this figure, (a–d) are force, velocity, acceleration, and required power respectively.
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(b) (a) 

(d) (c) 

Figure 22. Results of ADAMS software to determine the characteristics of the head-cutting subset jack (10 fish per minute).
In this figure, (a–d) are force, velocity, acceleration, and required power respectively.

By comparing the final velocity of the free fall for the head-cutting jack at the end of
the cut path, it is obvious that the air jack prevents the moving parts from free-falling. The
maximum required force in three capacities resulted in 149.83 N, 164.33 N, and 221.63 N,
respectively. As shown in Figure 20, the amount of required force for the jack in the stop
mode is between 127.5–130 N to compensate for the subset weight.

When the fish reaches the head-cutting position, the jack is activated and moves
downward. As moving downwards, the required force decreases, and by reaching the end
of the cutting path, the force increases to the maximum amount of 149.83 N. This force
value resulted in a feeding rate of four fish per minute and the jack penetration speed of
200 m s−1. Besides the required force and speed of the pneumatic jack, the acceleration
and energy consumption in the simulation time interval in the three working capacities
are shown in Figure 20c,d. Similarly, the amount of required force in 7 and 10 fish per
minute resulted in 164.33 N and 212.63 N at the blade penetration speeds of 350 m s−1

and 500 m s−1, respectively. Similar results for the two penetration velocities of 350 m s−1

and 500 m s−1 are shown in Figures 21 and 22. The maximum required force to provide a
speed of 500 mm s−1 resulted in 2221.63 N. By multiplying this force by 1.5 as the design
coefficient, the final force size on which the jack resulted in 332.45 N. Refer to the diagram
presented in Figure 22.

Based on the operational position of the jack (vertical or horizontal) and air pressure,
the size of the air jack was determined based on the maximum force required to move the
head-cutting subset (332.332 N). Since the supplied force in extraction mode is more than
the retraction, the pneumatic jack was selected based on the amount of the force that the
jack can supply in retraction mode so that it can supply the required force while the jack
ascends toward the initial position. On the other hand, it should be considered that the
operating speed of the jack is one of the most important characteristics for determining the
size of the jack. By following the line obtained from the intersection of the axis related to
the vertical operating coefficient of 0.5 and the axis of air pressure, the 0.4 MPa vertical line
is determined.
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By contacting this line with the force axis equal to 332.45 N, a cylinder with an internal
diameter of 50 mm was selected. The minimum displacement of 180 mm was considered
to provide successful head cutting and avoid any contact with the moving grippers, but to
ensure any contact, among two different courses of 200 mm and 250 mm, the larger size
was installed in the system. Therefore, the penetration rate of 500 m s−1 was considered as
the final penetration rate of the cutting blades. This condition will be the desired condition
for head cutting in lower feeding rates. On the other hand, choosing this speed can result
in an acceptable head cutting without any considerable fillet loss.

3.2.3. Selecting the Stepper Motor of the Gutting Subsystem

The motion simulation results for selecting the motor characteristics in three feeding
rates are presented in Figures 23–25, respectively. In all the figures, the required torque,
angular velocity, angular acceleration, and energy consumption are presented for each of
the feeding rates. The diagrams present both clockwise and counterclockwise motions.

As shown in these figures, the maximum required torque to move the suction pipes in
a vertical direction resulted in the highest working capacity. In this section, when the fish
reaches the suction position, the stepper motor rotates in clockwise and counterclockwise
directions depending on the fish dimension. As soon as the tubes open, the material inside
the trout belly is evacuated. Using two discharge pipes, the required torque for lifting two
pipes is less than the condition at which the stepper motor controls one suction tube.

The required torque increases by increasing the angular velocity; whereas, in the
maximum angular velocity, the maximum amount of required torque in the three input
velocities was 0.226 N m, 0.386 N m, and 0.465 N m, respectively. Since the maximum
required torque resulted in 0.465 N m, the required torque was estimated to be 0.698 N m
by considering the design coefficient of 1.5. As the pinion is connected directly to the rack
gear, a gearbox mounted stepper motor was applied to move the suction pipes. Therefore,
a stepper motor with a reduction ratio of 1:18 with a total maximum torque of 0.8 N m
was applied.

 

Figure 23. Results of ADAMS software simulation to determine the motor characteristics of the gutting subset (four fish per
minute). In this figure, (a–d) are torque, angular velocity, angular acceleration, and required power respectively.
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Figure 24. Results of ADAMS software simulation to determine the motor characteristics of the gutting subset (seven fish
per minute). In this figure, (a–d) are torque, angular velocity, angular acceleration, and required power respectively.

Figure 25. Results of ADAMS software simulation to determine the motor characteristics of the gutting subset (10 fish per
minute). In this figure, (a–d) are torque, angular velocity, angular acceleration, and required power respectively.
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3.2.4. Selecting the Pneumatic Jack of the Cleaning Subsystem

After evacuating the belly content, it is necessary to clean any sticky materials attached
to the spinal cord and belly cavity. A rotary brush with a ferry-ribbed edge was driven
with an AC electromotor. In order to move the belly cleaner set, it was necessary to use a
jack to raise and lower the rotating brush to avoid hitting the fish grippers.

The final stage of the fish processing in this system is to clean the belly content. As
long as the clamp reaches the cleaning subsystem, the cutter descends to clean the belly. As
long as the fish is moving towards the end of the machine, depending on the size of the
fish, the arm is in an operating position based on the fish length. As soon as the fish cleans,
the arm returns to the initial position. The results for the output of ADAMS software in
three capacities are presented in Figures 26–28. In these figures blue dotted, green dashed,
and red solid lines are the components in X, Y, and Z directions.

In these diagrams, the force diagram in three directions of x, y, and z (diagram a), the
velocity and acceleration (diagrams b and c), and the total force values (diagram d) are
presented. As shown in these figures, unlike the jack used in the head-cutting subset, in
addition to applying force along the z-axis, force components are also observed in both the
x and y directions. The maximum required force to move the arm at the capacity of four,
seven, and 10 fish per minute was 20.55 N, 21.26 N, and 25.84 N, respectively. Multiplying
the maximum force by 1.5 as the design coefficient, the final force results in 38.76 N. By
referring to the diagram presented in Figure 28, the size of the jack was determined based
on working position and air pressure by referring to the calculated force (38.76 N). Like
the pneumatic jack of the head-cutting subsystem, the retraction mode was selected as the
criteria to select the jack. Since the arm operates at a considerable angle to the horizontal
line, the vertical operation coefficient was 0.5.

Figure 26. Results of ADAMS software simulation to determine the characteristics of the pneumatic jack of the cleaning
subsystem (four fish per minute). In this figure, (a–d) are force, velocity, acceleration, and resultant of the force in three
direction respectively.
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Figure 27. Results of ADAMS software simulation to determine the characteristics of the pneumatic jack of the cleaning
subsystem (seven fish per minute). In this figure, (a–d) are force, velocity, acceleration, and resultant of the force in three
direction respectively.

Figure 28. Results of ADAMS software simulation to determine the characteristics of the pneumatic jack of the cleaning
subsystem (10 fish per minute). In this figure, (a–d) are force, velocity, acceleration, and resultant of the force in three
direction respectively.
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Pursuing the intersection line of vertical operation coefficient and air pressure of
4 bar, the required force value (37.86 N) falls between the possible standard bore sizes of
16 and 20 mm. Finally, a jack with 20 mm was selected. The method of selecting the jack is
that by following the line obtained from the intersection of the axis related to the vertical
operating coefficient of 0.5 and the air pressure of 4 bar, the upper limit bore size (20 mm)
was selected. To avoid any contact of rotary brush with the moving grippers, the minimum
vertical displacement length was 100 mm, so a pneumatic jack with the course of 150 mm
was selected.

4. Conclusions

In this study a system capable of performing belly-cutting, beheading, gutting, and
cleaning steps was designed, simulated and fabricated. As the customers choose the fish
size, the image processing system is applied to measure trout size and extract the precise
cutting points. In order to prevent any contact between the grippers and the system arms,
the automated controlling system was designed to control the machine arms to process
different cleaning operations on fish of different sizes together with providing the system
security. Using this integrated system, it is possible to perform several fish-processing steps.
Due to the slippery skin of the fish and the low friction coefficient, a clamping gripper
was designed. By initial design and motion analysis, the most appropriate model to meet
the required functions was achieved. In the next step, the designed model was simulated.
This process resulted in proper and optimal force extraction in the beheading and cleaning
subsystems and the required torque in the belly-cutting and gutting subsystems. By
designing this system, simulating and analyzing the motion, an integrated machine with
the highest efficiency of driver units was fabricated.

Supplementary Materials: The video of the functioning system is also available online at https:
//www.mdpi.com/article/10.3390/app11125602/s1.
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Abstract: This paper discusses a real-time flow-rate estimation method for a tilting-ladle-type
automatic pouring machine used in the casting industry. In most pouring machines, molten metal
is poured into a mold by tilting the ladle. Precise pouring is required to improve productivity
and ensure a safe pouring process. To achieve precise pouring, it is important to control the flow
rate of the liquid outflow from the ladle. However, due to the high temperature of molten metal,
directly measuring the flow rate to devise flow-rate feedback control is difficult. To solve this
problem, specific flow-rate estimation methods have been developed. In the previous study by
present authors, a simplified flow-rate estimation method was proposed, in which Kalman filters
were decentralized to motor systems and the pouring process for implementing into the industrial
controller of an automatic pouring machine used a complicatedly shaped ladle. The effectiveness
of this flow rate estimation was verified in the experiment with the ideal condition. In the present
study, the appropriateness of the real-time flow-rate estimation by decentralization of Kalman filters
is verified by comparing it with two other types of existing real-time flow-rate estimations, i.e., time
derivatives of the weight of the outflow liquid measured by the load cell and the liquid volume in the
ladle measured by a visible camera. We especially confirmed the estimation errors of the candidate
real-time flow-rate estimations in the experiments with the uncertainty of the model parameters.
These flow-rate estimation methods were applied to a laboratory-type automatic pouring machine to
verify their performance.

Keywords: flow-rate estimation; automatic pouring machine; extended Kalman filter

1. Introduction

Pouring processes in the casting industry can be dangerous to workers because they
perform the task of handling molten metal with extremely high temperatures. Accordingly,
the need for automation of the pouring process has promoted improvements in the work
environment in this context [1–4]. A tilting-ladle-type automatic pouring machine, where
molten metal is poured into the mold by tilting the ladle automatically, is employed as
one such automated pouring process. It can be installed relatively easily as part of the
pouring process because it essentially employs the same pouring method as a manual
handling of this task [5]. As a control system for the tilting-ladle-type automatic pouring
machine, the teaching-and-playback control approach has been practically applied [6–8].
The pouring process requires the precision pouring of molten metal into the pouring basin
of the mold to improve productivity and user safety. However, doing so can be difficult
because the pouring flow rate is indirectly changed by tilting the ladle [9–11]. Furthermore,
the molten metal can spill from the mold due to the falling trajectory of the outflow liquid
varying in accordance with the flow rate changes.
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To solve these problems, control technologies have been developed to improve pouring
precision. The sloshing suppression controls of the liquid in the ladle were developed
for suppressing the liquid vibration while the liquid is poured into the mold [12,13].
For keeping the pouring mouth of the ladle in a fixed position, a forward-and-backward and
an up-and-down motions of the ladle were controlled synchronously to the ladle tilting [12].
Moreover, the sloshing caused in the ladle’s back-tilting-motion was suppressed by the
input shaping approach in which the input command is shaped for generating the anti-
phase sloshing in [12,13]. The sloshing caused in the pouring motion was modeled simply
by a pendulum model in [14,15]. In addition, the sloshing was suppressed by combining
the partial inverse dynamics approach and PID controller. The parameters of PID controller
was designed using the metaheuristic search algorithm. The sloshing in the liquid container
handled by a robotic manipulator was modeled by a spherical pendulum model in [16,17].
For suppressing the sloshing, the reference trajectories with the container’s position and
orientation were shaped by an exponential filter, the parameters of which were designed
using the spherical pendulum. The sloshing caused in the ladle’s forward-tilting-motion
was suppressed by making the angular velocity in the ladle’s tilting motion smaller [18].
The control system for the liquid height in the pouring basin was constructed using the
audio vibration sensing and the deep neural network [19]. The neural network in the
pouring robot system was trained with a real-world pouring dataset with multi-modal
sensing data, which contains more than 3000 recordings of audio, force feedback, video,
and trajectory data of the human hand that performs the pouring task. The pouring
skill of human was emulated by the robot with the haptic device using the parametric
hidden Markov model [20]. In this approach, the human tele-operated the robot using a
haptic device, and data from the demonstrations were statistically encoded by a parametric
hidden Markov model. The Gaussian mixture regression was used at the reproduction
in the robotic playback motion. The angular velocity of ladle tilting was optimized using
the optimization approach with a Computational Fluid Dynamics (CFD) simulator for
suppressing the casting defects [21]. The flow-rate feedforward control, based on the
mathematical model of the pouring process, was developed in [22]. The falling position
control of the liquid outflow from the ladle was developed to achieve precise pouring of
the liquid into a steady position inside the pouring basin of the mold [23]. Additionally,
a control method for positioning the ladle as low as possible while pouring the liquid
was proposed in [24]. In these falling position control approaches, the ladle is moved in
vertical and horizontal directions. However, the liquid can still spill from the pouring
basin of the mold due to the splashing inside the ladle, which is caused by the movement
of the ladle [25]. Therefore, the optimal positioning of the ladle which minimizes the
amount of spilled liquid from the pouring basin of the mold was developed in [25,26].
In these studies, a control system was constructed using the flow-rate feedforward control.
Pouring precision can be degraded by disturbances that emerge from variable pouring
conditions. To suppress the influence of such disturbances, flow-rate feedback control has
to be established. However, it can be difficult to directly measure the flow rate of poured
molten metal because sensors e.g., the flow meter, can be damaged by the high temperature
of the molten metal. Therefore, to measure the pouring flow rate, the real-time flow-rate
estimation approach using the Kalman filter (KF), specifically an extended Kalman filter
(EKF), was developed in [27,28]. However, this approach can only be applied to smooth
shaped ladles, e.g., a fan-shaped ladle, due to the requirements of the Jacobian matrix
used in the EKF. Nonetheless, ladles with complicated shapes for which it is difficult to
derive a Jacobian matrix, have been used in practical settings. Thus, flow-rate estimation
with an unscented Kalman filter (UKF), which does not require a Jacobian matrix, was
proposed in [29]. Moreover, the flow-rate estimation method was integrated with the
flow-rate feedback control system in [30]. However, it is difficult to implement and perform
a real-time computation using an industrial controller, which has low computational
power. To apply a real-time flow-rate estimation to an automatic pouring machine with
a complicatedly shaped ladle, and implement the flow-rate estimation method in an
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industrial controller, the simplified flow-rate estimation method in which the steady-state
KFs (SSKFs) and the EKF are decentralized to the motor systems and the pouring process,
respectively, was proposed in our previous study [31]. The decentralization of Kalman
filters (DKFs) were integrated with the flow-rate feedback control system in [32]. As a
remaining issue, the appropriateness of the flow rate estimation method via DKFs as
a real-time pouring flow-rate measurement in the automatic pouring machine must be
verified. In [31], the effectiveness of the flow rate estimation by the DKFs was verified in the
experiment with the ideal condition as the pouring process model in the DKFs is identified
with the experimental pouring. However, some uncertainties in the model parameters
identification with practical pouring can arise. It is especially difficult to identify the
tilting angle of the ladle at the start of the liquid outflow, which can be influenced by the
surface tension and density of the liquid in the ladle [32]. Moreover, in order to verify the
effectiveness of the flow rate estimation, the true flow rate of the liquid outflow from the
ladle in the experiment should be measured. It is, however, difficult to obtain the true flow
rate of the liquid outflow.

Therefore, in the current study, we verified the appropriateness of the flow-rate
estimation method using DKFs by comparing it with two other existing real-time flow-rate
estimations. We confirmed the noise levels and the estimation errors of the candidate
real-time flow-rate estimations in the experiments with/without the error between the
ideal and the actual tilting angle at the start of the liquid outflow. As evaluation of the
estimation error, the estimated flow rates were compared with the simulated flow rate
which represents faithfully the experimental pouring with the model of pouring process.
In one of the compared methods, the flow rate was estimated by differentiating the weight
of the outflow liquid measured by the load cell with respect to time [33]. In this approach,
a low-pass filter was applied for reducing the noise of the measured data. In addition,
the angular velocity of ladle tilting motion was controlled by the fuzzy rules referring to
the filtered data. In the second estimation method, the flow rate was estimated using a
visible camera [34–36]. In the approaches [35,36], the liquid height in the target container
was measured by the stereo camera or RGB-D camera for estimating the pouring state.
The flow line of the inflow liquid in the clear target container was measured by the visible
camera [37]. Therefore, in the case of the pouring situation using the clear ladle, the visible
camera is able to estimate the flow rate of the outflow liquid by measuring the liquid
volume in the ladle in real time. In the casting industry, since the ladle generally consists
of gypsum and metal, detecting the liquid volume in the ladle using a visible camera is
difficult. In this study, we used water as the target liquid and a clear acrylic container as a
ladle. As such, we were able to discern the liquid volume in the ladle from the projected
liquid area, as captured by the visible camera. This flow-rate estimation method cannot,
however, be applied to practical pouring processes using molten metal. Nonetheless, we
applied this flow-rate estimation method for verifying the appropriateness of the flow-rate
estimation method by DKFs. Most practical automatic pouring machines have a rotary
encoder for measuring the tilting angle of the ladle and a load cell for measuring the weight
of the outflow liquid from the ladle. DKFs in which the flow rate can be estimated indirectly
using the rotary encoder and the load cell are useful for the control of automatic pouring
machine in practical use.

The remainder of this paper is structured as follows. The tilting-ladle-type automatic
pouring machine used in this study is introduced in Section 2. The mathematical model for
the pouring motion is derived in Section 3, and compensation for the measured weight
by the load cell is presented in Section 4. The flow-rate estimation method by DKFs
is described in detail in Section 5. The additional two flow-rate estimation methods are
discussed in Section 6. In Section 7, the appropriateness of the flow-rate estimation by DKFs
is verified experimentally by comparing the process with two other flow-rate estimations.
Concluding remarks are presented in the final section.
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2. Automatic Pouring Machine

The tilting-ladle-type pouring machine used in this study is presented in Figure 1.
In the pouring machine, the ladle could be transferred according to two dimensions (the y-
and z-axes) and could also be rotated (in the Θ direction). Each direction had a direct current
(DC) servomotor to drive in the velocity control mode. In the y- and z-axes, the driving
force of each motor was amplified by a ball-and-screw mechanism. The transfer distance
and the tilting angle of the ladle could be measured by the rotary encoders installed in the
motors. These motor drivers for driving the servomotors communicated with the controller
through a controller area network bus.

Servomotors
and Rotary Encoders

Figure 1. Automatic pouring machine.

The center of the ladle’s rotation shaft was placed near the center of gravity to avoid
the increase in the capacity of the motor for rotating the ladle. This mechanism has been
used with the recent practical automatic pouring machines. While rotating the ladle around
the center of gravity, the tip of the ladle’s pouring mouth moved in a circular trajectory.
By moving the tip of the pouring mouth, it became difficult to precisely pour the molten
metal into the mold. Therefore, the position of the tip of the pouring mouth had to be
invariably controlled while pouring; this was achieved using synchronous control of the
y- and z-axes during rotational motion around the ladle’s Θ-direction [38]. The weight
of the outflow liquid could then be measured by the load cell equipped to the base of
the pouring machine. In the load cell system, four sensing terminals were located on
the four corners of the base of the pouring machine. The maximum measuring error of
this load cell is 0.05 kg. The weight rate of the outflow liquid cannot be measured by
the load cell. The amplifier of the load cell communicates with the controller by a serial
communication method. The load cell data can be obtained with the sampling interval
0.02 s using the serial communication. The splash of the liquid in the ladle can be caused
by varying the liquid shape in the pouring motion with tilting the ladle. For suppressing
the splash, the input shaping approaches were proposed in [12,13]. However, it is difficult
to suppress the splash in the different conditions from the parameters’ setting. The splash
can be suppressed by making the variation of the liquid shape smaller. We applied the
splash suppression approach by limiting the angular velocity of the ladle tilting [18]. In the
preliminary experiments, the amplitude of the angular velocity has been limited within
12 deg/s for suppressing the splash in the expected pouring motion using this automatic
pouring machine.

In this study, the target liquid was water, and a clear acrylic ladle was used to visualize
its inside; the side area of liquid in the ladle was captured by a visible camera while pouring
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the liquid. The camera was located 1.5 m from the ladle in the lateral direction for capturing
the whole area of the ladle. In the camera system, the images with 512 × 480 pixels were
captured with the frame rate 30 fps. The processing time for obtaining the side area of the
liquid in the ladle from the captured image is 0.06 s.

3. Mathematical Models of Pouring Motion

The pouring motion is represented by the block diagram in Figure 2. In the motorized
pouring motion, the input command was applied to the motor for tilting the ladle. The
liquid was poured from the tilted ladle, and the weight of outflow liquid was measured by
the load cell.

ut[-]

Figure 2. Block diagram of motorized pouring motion.

3.1. Motor Model for the Tilting Ladle

In Figure 2, motor model Pt for tilting the ladle is simplified as a first-order lag system
and an integrator, which can be given as follows:

dω(t)
dt

= − 1
Tmt

ω(t) +
Kmt

Tmt
ut(t), (1)

dθ(t)
dt

= ω(t), (2)

where ω deg/s is the angular velocity of the tilting ladle, ut is the input command applied
to the motor, θ deg is the angle of the tilting ladle, Tmt s is the time constant, and Kmt deg/s
is the gain constant. The time constant and the gain constant can be identified by a step
response method. In this method, three step input commands were given as ut = 2, 4,
and 6. The time and the gain constants were obtained from the response for each step input
command. We determined these constants by averaging the obtained constants. In this
study, identification experiments obtained Tmt = 0.022 s and Kmt = 0.980 deg/s.

3.2. The Pouring Process Model

The pouring process model Pf in Figure 2 represents the volume balance of the
topmost liquid volume in the ladle, which can be shown as the input–output relation
from angular velocity ω to flow rate q m3/s of the outflow liquid. The cross section of the
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pouring process at tilting angle θ is presented in Figure 3, where the volume balance of the
topmost liquid volume in the ladle can be given as follows:

dVr(t)
dt

= −q(t)− ∂Vs(θ(t))
∂θ

ω(t), (Vr ≥ 0, θ ≥ θs), (3)

where Vr m3 is the liquid volume over the pouring mouth, Vs m3 is the liquid volume
under the pouring mouth, and θs deg is the angle of the ladle at the start of the liquid
outflow. Accordingly, volume Vr m3 can be approximated as follows:

Vr(t) ≈ A(θ(t))h(t), (h(t) ≥ 0), (4)

where A m2 is the upper surface of the liquid in the ladle, and h m is the height of the
liquid over the pouring mouth. As presented in Figure 3, surface A is changed by tilting
angle θ deg of the ladle.

Using Bernoulli’s principle, flow rate q at liquid height h is given as follows:

q(t) = c
∫ h(t)

0
L f (ha)

√
2ghbdhb, (0 < c ≤ 1, ha = h(t)− hb), (5)

where L f m is the width of the pouring mouth at height ha m from the bottom edge of the
pouring mouth (see Figure 4a), hb m is the depth at the pouring mouth from the surface of
the liquid in the ladle, g m/s2 is the acceleration of gravity, and c is the flow-rate coefficient.
Figure 4a and Equation (5) show the relation between the flow rate and the liquid height
in the pouring mouth with the generalization of cross-sectional shape. In more detail,
since the geometry of the pouring mouth is represented on the basis of the bottom edge
of the pouring mouth, the width L f is defined by the function of the height ha. On the
one hand, the flow velocity

√
2ghb depends on the depth hb from the surface of the liquid.

In design of the flow-rate control, the relation in Equation (5) can be implemented by the
interpolation method [22] or the look-up table [39]. Accordingly, the flow rate q(t) can
be calculated by giving the liquid height h(t) to the implementation of Equation (5) each
sampling time. In the case that the cross-sectional shape of the pouring mouth is rectangle
as shown in Figure 4b, the flow rate q shown in Equation (5) can be simplified as follows:

q(t) =
2
3

cL f

√
2gh(t)3, (0 < c ≤ 1). (6)

In this study, since the ladle with the rectangular pouring mouth was used in the
experiment, Equation (6) was applied as the relation between the flow rate and the liquid
height on the pouring mouth. The flow-rate coefficient c can be identified by fitting the
simulation result to the experimental result of the weight of the outflow liquid measured
by the load cell. In this study, we obtained c = 0.75.

From Equations (3), (4) and (6), the dynamics of liquid height over the pouring mouth
in the pouring process were derived as follows:

dh(t)
dt

= − q(h(t))
A(θ(t))

− 1
A(θ(t))

(
∂Vs(θ(t))

∂θ(t)
+

∂A(θ(t))
∂θ(t)

h(t)
)

ω(t), (h ≥ 0, θ ≥ θs). (7)

The actual weight W kg of the outflow liquid can be represented as:

dW(t)
dt

= ρq(t), (8)

where ρ kg/m3 is the density of the liquid. In this study, since we used water as a target
liquid, ρ = 1.0 × 103 kg/m3 was applied.
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Figure 3. Cross section of the pouring process.

Depth from Surface
of Liquid

hb[m]

Height from Bottom Edge
of Pouring Mouth

ha[m]

h[m] Liquid Height over 
Pouring Mouth

Width of Pouring Mouth
at Height ha

Lf (ha)[m]

Pouring Mouth

Ladle

Ladle

Width of Pouring Mouth
Lf [m]

h[m] Liquid Height over 
Pouring Mouth

Pouring Mouth

(a) Pouring Mouth 
     with Generalized Cross-Sectional Shape

(b) Pouring Mouth 
      with Rectangle Cross-Sectional Shape

Figure 4. Parameters on pouring mouth.

3.3. Load Cell Model

The dynamics of the load cell can be simplified as a first-order lag system. Therefore,
the load-cell model PL can be given as follows:

dWL(t)
dt

= − 1
TL

WL(t) +
1

TL

{
W(t)− M

g
az(t)
}

, (9)

where WL kg is the weight of the outflow liquid measured by the load cell, and TL s is the
time constant of the load cell. The time constant can be identified by fitting the simulation
and experimental results of the liquid pouring. In this study, the identification experiments
obtained TL = 0.16 s. Furthermore, az m/s2 was the acceleration for transferring the ladle
on the z-axis, and M kg was the gross weight of the ladle, the liquid in the ladle, and the
actuator for transferring the ladle on the z-axis. We assumed that the weight variation of
the liquid in the ladle while pouring had been sufficiently smaller than the gross weight M.
Accordingly, the gross weight M was given as a constant parameter that could be obtained
before pouring. Thus, the gross weight in this study is given as M = 14.93 kg.
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3.4. Motor Model for Transferring the Ladle on the y- and z-Axes

The motor models Py and Pz are given as follows:

dvi(t)
dt

= − 1
Tmi

vi(t) +
Kmi
Tmi

ui(t), (i = y, z), (10)

dxi(t)
dt

= vi(t), (i = y, z), (11)

where vi m/s is the velocity of the ladle, and xi[m] is the position of the ladle. Tmi s is
the time constant, and Kmi m/s is the gain constant. Index i in Equations (10) and (11)
refers to the direction for transferring the ladle; y and z refer to the direction on the y- and
z-axes, respectively. The time constants and the gain constants can be identified by the step
response method with the same procedure of the Θ-axis. In this study, Tmi = 0.05 s and
Kmi = 0.997 m/s were obtained as the same parameters on each axis by the identification
experiments. Acceleration az m/s2 on the z-axis can be represented as follows:

az(t) =
dvz(t)

dt
. (12)

3.5. Synchronous Control for Transferring and Rotating the Ladle

Since the rotation shaft of the ladle is placed near the center of gravity, the tip of the
pouring mouth in the ladle moved in a circular trajectory, making it difficult to precisely
pour the liquid into the mold (see Figure 5a). To rotate the ladle around the tip of the
pouring mouth, the ladle is transferred synchronously on the y- and z-axes while tilting it
(see Figure 5b). The synchronous controller can be described as follows:

ry = La cos θa − La cos(θa − θ), (13)

rz = La sin θa − La sin(θa − θ), (14)

where La m is the length from the tip of the pouring mouth in the ladle to the rotation
center of the ladle; θa is the angle between the line segment with length La and a horizontal
line; and ry m and rz m are the reference trajectories on the y- and z-axes for rotating the
ladle around the tip of the pouring mouth. These reference trajectories were applied to the
position feedback controllers on each axis.

(a) without Synchronous Control (b) with Synchronous Control

Figure 5. Motion of ladle with/without synchronous control.
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4. Compensation of Measured Weight by Load Cell

In an automatic pouring machine, as presented in Figure 1, the load cell for measuring
the weight of the liquid in the ladle was equipped at the bottom of the automatic pouring
machine. Consequently, the weight measured by the load cell was influenced by the
movement of the ladle on the z-axis (see Equation (9)) due to the synchronous control noted
in the previous section.

To obtain only the weight of liquid outflow from the ladle, the influence of the
movement on the z-axis was subtracted from the measured weight as follows:

WLc(t) = WL(t)− WLz(t), (15)

where WLc kg is the compensated weight, and WLz(t) is the weight transformed from
acceleration az m/s2 of the ladle’s movement on the z-axis and can be estimated as follows:

dWLz(t)
dt

= − 1
TL

WLz(t) +
1

TL

M
g

az(t). (16)

The acceleration can be estimated by the SSKF, which is derived in the following section.
Figure 6a presents the results of the measured weight by the load cell. The sampling

interval of the load cell data are 0.02 s. The black and magenta solid lines indicate the
weights before and after compensation, respectively. The dashed line indicates the weight
of the outflow liquid in the simulation using the pouring flow-rate model with weight
compensation. The vibration of 4.5 Hz has appeared in the measured weight. It is caused
by the resonant vibration of the automatic pouring machine excited by the pouring motion.
In the design of flow-rate estimation, the vibration can be regarded as the process noise
of the load cell. Figure 6b presents the angular velocity of the motor for tilting the ladle.
Figure 6c,d present the acceleration of movement of the ladle on the z-axis and the trans-
formed weight, respectively. As presented in Figure 6, the influence of movement on the
z-axis was reduced to within the compensated weight.

Figure 6. Experimental results of the weight compensation system. (a) Weight data measured by load
cell; (b) Angular velocity of ladle tilting; (c) Acceleration on z-axis estimated by SSKF; (d) Weight
data transformed from estimated acceleration on z-axis using Equation (16).
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5. Flow Rate Estimation by Decentralization of Kalman Filters

5.1. The Design of Flow Rate Estimation

In the first flow-rate estimation method [28], the EKF was applied to the pouring
motion using the input command for tilting the ladle to the measured weight of the outflow
liquid. This estimation method is applicable only where the ladle has a smooth shape
(e.g., fanned), since a complicated shape does not satisfy the twice differentiability concern-
ing the tilting angle. The Jacobian matrix in the EKF requires this twice differentiable of
the model parameters obtained from the ladle shape. To avoid the twice differentiability
of the model parameters concerning the tilting angle and simply construct the flow-rate
estimation system in an automatic pouring machine with complicatedly shaped ladle,
the SSKFs and EKF were decentralized to the motor systems and the pouring process,
respectively, in [31]. The motor system and the pouring process are sequentially connected
as shown in Figure 2. The angular velocity is added as the input in the pouring process.
In addition, the angle of the ladle can be detected by the rotary encoder. Therefore, in the
case that the angular velocity of the ladle tilted by the motor system on the Θ-axis and the
acceleration of the ladle transferred by the motor system on the z-axis can be estimated
precisely by the SSKFs, and the pouring flow rate can also be estimated precisely by the
EKF with only the pouring process model [31]. A block diagram of flow-rate estimation by
DKFs is presented in Figure 7.

(SSKF)

(SSKF) (EKF)

az

q

ut[-]

Figure 7. Block diagram of flow-rate estimation by DKFs.

In this approach, a discrete-time SSKF was applied for estimating the angular velocity
of the motor for tilting the ladle. The discrete-time state equation of the motor system can
be given as follows:

[
ωn+1
θn+1

]
=

[
1 − Ts

Tmt
0

Ts 1

][
ωn
θn

]
+

[
TsKmt

Tmt
0

]
utn, (17)

yn =
[

0 1
][ ωn

θn

]
, (18)
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where Ts s represents the sampling interval and is given as 0.020 s in this study. The
angular velocity estimated by the discrete-time SSKF with the model of the motor system
in Equation (18) is applied to the estimation of the pouring flow rate described later.

Similarly, a discrete-time SSKF was applied to estimate acceleration for transferring
the ladle on the z-axis and is represented as follows:

[
vzn+1
xzn+1

]
=

[
1 − Ts

Tmz
0

Ts 1

][
vzn
xzn

]
+

[
TsKmz

Tmz
0

]
uzn, (19)

yzn =
[

0 1
][ vzn

xzn

]
. (20)

The acceleration on the z-axis was estimated as:

azn = − 1
Tmz

vzn +
Kmz

Tmz
uzn. (21)

We designed an EKF for estimating the pouring flow rate. The discrete-time state
equation of the pouring process can be represented as follows:

xn+1 = f (xn, un), (22)

yn = η(xn), (23)

where

x =
[

h W WL
]T, (24)

u =
[

ω̂ âz
]T, (25)

f (x, u) =

⎡
⎢⎣
(

1 − Ts
A(θ)

∂A(θ)
∂θ ω̂

)
h − Tsq(h)

A(θ)
− Ts

A(θ)
∂Vs(θ)

∂θ ω̂

W + Tsρq(h)
(1 − Ts

TL
WL) +

Ts
TL
(W − M

g âz)

⎤
⎥⎦, (26)

η(x) = WL. (27)

The input vector u consists of the angular velocity ω̂ on the Θ-axis and the acceleration
âz on the z-axis estimated by the SSKFs. Then, the Jacobian matrices used for updating the
Kalman gain in the EKF can be given as:

∂ f (x)
∂x

= A f =

⎡
⎣ α11 0 0

α21 α22 0
0 α32 α33

⎤
⎦, (28)

∂η(x)
∂x

= Cf =
[

0 0 1
]
, (29)

where

α11 = 1 − Ts

A(θ)

(
∂q(h)

∂h
+

∂A(θ)

∂θ
ω̂

)
, α21 = Tsρ

∂q(h)
∂h

, α22 = 1, α32 =
Ts

TL
, α33 = 1 − Ts

TL
.

The derivative of the pouring flow rate q to the liquid height h can be derived from
Equation (5) as follows:

∂q(h)
∂h

= cL f (h)
√

2gh. (30)

Based on the Jacobian matrices in Equations (28) and (29), it was confirmed that twice
differentiability of the model parameters according to the ladle shape was not required.
Therefore, this estimation method could be applied to a complicatedly shaped ladle.
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Following this, the pouring flow rate q̂ m3/s could be estimated by substituting the
estimated liquid height on the pouring mouth as follows:

q̂(ĥ(t)) = c
∫ ĥ(t)

0
L f (ha)

√
2ghbdhb. (31)

In the EKF, the time-update equations can be represented as follows:

• Predict

x̂−n = f (x̂n−1),

P−
n = A f n−1Pn AT

f n−1 + Q f ,

• Update

Gn = P−
n CT

f n(Cf nP−
n CT

f n + R f )
−1,

x̂n = x̂−n + Gn{yn − η(x̂−n )},

Pn = (I − GnCT
f n)P−

n ,

where x̂− is a priori state estimate, x̂ is a posteriori state estimate, and Q f and R f represent
covariance matrices of the system noise and the observation noise, respectively. Further-
more, Gn is the Kalman gain, and P− and P are a priori error covariance and a posteriori
error covariance, respectively.

5.2. Simulations

Flow-rate estimation by DKFs was performed in the simulation for the tilting-ladle-type
automatic pouring machine. The ladle used in this study is presented in Figure 8.

L =0.030 mf

0.116 m

0.125 m

0.200 m

0.250 m

0.190 m

Figure 8. Geometry of ladle (inside dimension).

The model parameters of the ladle were obtained from the three-dimensional data
of the ladle. In Figure 9, the horizontal area A(θ) m2 on the pouring mouth and volume
Vs(θ) m3 under the pouring mouth (presented in Figure 3) are indicated in (a) and (b),
respectively. Figure 9c,d are the derivatives of (a) and (b) for the tilting angle, respectively.
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Figure 9. Model parameters of ladle. (a) Horizontal area on pouring mouth; (b) Volume under
pouring mouth; (c) Derivative of horizontal area A with respect to angle θ; (d) Derivative of volume
Vs with respect to angle θ.

The derivatives ∂A(θ)/∂θ and ∂Vs(θ)/∂θ can be derived as follows:

∂A(θ)

∂θ
=

A(θ(k + 1))− A(θ(k))
Δθ

,
∂Vs(θ)

∂θ
=

Vs(θ(k + 1))− Vs(θ(k))
Δθ

, (32)

where Δθ is the sampling interval of the tilting angle, and k is the sampling number, which
has the relation of θ(k) = kΔθ. In this study, we used Δθ = 1.0 deg. The volume Vs(θ)
is decreased with increasing the tilting angle θ. The horizontal area A(θ) is increased
with increasing the tilting angle until reaching the bottom of the ladle, θ ≤ 40 deg. In the
tilting angle over 40 deg, it is decreased with increasing the tilting angle. In particular, it is
decreased as the quadratic curve by increasing the area of the channel to the pouring mouth.

To estimate the angular velocity of the motor for tilting the ladle, the covariance of
process noise Qt and the covariance of observation noise Rt were assumed as follows:

Qt = diag(1.0 × 10−3 deg2/s2, 1.0 × 10−7 deg2), (33)

Rt = 1.84 × 10−7 deg2. (34)

To estimate the acceleration of the movement of the ladle on the z-axis, the covariance
of process noise Qz and covariance of the observation noise Rz were assumed as follows:

Qz = diag(1.0 × 10−8 m2, 1.0 × 10−4 m2/s2), (35)

Rz = 5.0 × 10−6 m2. (36)

Similarly, to estimate the state of the pouring process, the covariance of the process
noise Q f and the covariance of the observation noise R f were assumed as follows:

Q f = diag(25 m2, 1.0 kg2, 1.0 kg2)× 10−11, (37)

R f = 5.0 × 10−4 kg2. (38)

In the simulations, the feedforward flow-rate control [22] was constructed to realize
the desired flow rate, The reference flow rate applied to the flow rate control is presented
in Figure 10.
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Figure 10. Reference pouring flow rate.

The simulation results obtained without any disturbances are presented in Figure 11,
where (a) indicates the input command applied to the motor for tilting the ladle, and (b)
and (c) indicate the angular velocity and the tilting angle of the ladle, respectively.
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Figure 11. Simulation results of flow-rate estimation with error of tilting angle +0 deg at the start of liquid outflow. (a) Input
command to motor for tilting ladle; (b) Angular velocity of tilting ladle; (c) Angle of tilting ladle; (d) Liquid height on
pouirng mouth; (e) Flow rate of outflow liquid from ladle; (f) Weight of outflow liquid from ladle.

The black solid lines are the results simulated using the motor model, and the chained
lines are the results estimated using the SSKF. Furthermore, (d–f) indicate the liquid height,
the pouring flow rate, and the outflow weight, respectively. The dotted magenta lines
are the reference values, and the black solid lines are the results simulated using the
pouring process model. The chained green lines are the results estimated using the EKF.
In Figure 11b, the amplitude of angular velocity of the ladle is within 12 deg/s. Therefore,
the splash of the liquid in the ladle could be suppressed into the level that has no influence
on the pouring motion. As presented in Figure 11e, the flow rate could be precisely
estimated by the flow-rate estimation using the DKFs.
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The following disturbance simulations were performed. In the practical pouring
process, the volume of molten metal in the ladle was uncertain due to temperature changes
in the metal. Therefore, an error between the ideal liquid volume, designed in the control
system, and the actual liquid volume occurred (see Figure 12).

Figure 12. Tilting angle of ladle at the start of liquid outflow.

The error between the ideal and actual tilting angles at the start of the liquid outflow
increased alongside an increase in the error between the ideal and actual liquid volumes.
In the disturbance simulations, the ideal tilting angle θs at the start of the liquid outflow
was given as 20 deg, and the error between the ideal and actual tilting angles at the start of
the liquid outflow was +3 deg. The simulation results are presented in Figure 13, where
the graphs are illustrated similar to Figure 11.
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Figure 13. Simulation results of flow rate estimation with error of tilting angle +3 deg at the start of liquid outflow. (a) Input
command to motor for tilting ladle; (b) Angular velocity of tilting ladle; (c) Angle of tilting ladle; (d) Liquid height on
pouirng mouth; (e) Flow rate of outflow liquid from ladle; (f) Weight of outflow liquid from ladle.
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As presented in Figure 13e, the error between the reference and the simulated flow
rates was the result of disturbance. However, the estimated flow rate converged rapidly
to the simulated flow rate. In addition, the error between the reference and the simulated
outflow weights was increased by the disturbance as shown in Figure 13f. However,
the estimated outflow weight tracked precisely to the simulated outflow weight. DKFs
can estimate robustly the outflow weight, even if the disturbances are occurred in the
pouring motion.

6. Other Flow-Rate Estimation Methods for Comparison

To verify the appropriateness of the flow-rate estimation by DKFs, we constructed
two additional types of flow-rate estimation.

6.1. Flow-Rate Estimation by Differentiating Load Cell Data

Flow rate was estimated by differentiating the weight of the outflow liquid measured
by the load cell. However, because the load cell data included a significant level of
noise, it was processed by a low-pass filter. This flow-rate estimation method could be
described as follows:

dWl f

dt
= −ωl f Wl f + ωl f WL, (39)

ql f = −ωl f

ρ
Wl f +

ωl f

ρ
WL, (40)

where Wl f is the weight of the outflow liquid processed by the low-pass filter, ωl f is the
cut-off frequency of the low-pass filter, ρ kg/m3 is the liquid density, and ql f m3/s is the es-
timated flow rate. In this study, the cut-off frequency is given as ωl f = 1.5 rad/s for noise re-
duction. In the experimental implementation, the method described in Equations (39) and (40)
could be represented by the discrete time equations as follows:

Wl f n+1 = (1 − ωl f Ts)Wl f n + ωl f TsWLn, (41)

ql f n = −ωl f

ρ
Wl f n +

ωl f

ρ
WLn, (42)

where Ts s is the sampling interval. In this study, it is given as Ts = 0.020 s.

6.2. Flow-Rate Estimation Using a Visible Camera

To estimate the flow rate by attaching different sensor to the load cell, we conducted
the flow-rate estimation using a visible camera. In this approach, the side area of liquid
in the ladle was measured using a visible camera. As presented in Figure 14, the shaded
parts refer to the measurement areas, and it was assumed that these areas were on the same
plane for simplifying measurement.

Figure 14. Measurement of side area of liquid in ladle.
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Figure 15 presented the parameters of the ladle for obtaining the liquid volume in the
ladle. In Figure 15, D1 m and D2 m denote the depth of the liquid in the ladle, and A1 m2

and A2 m2 are the side areas of the liquid in the ladle.

Figure 15. Parameters of ladle for obtaining liquid volume by a visible camera.

To estimate the pouring flow rate, the volume Vc m3 of the liquid in the ladle was
calculated as follows:

Vc(θ) = V1(θ) + V2(θ), (43)

where V1 m3 and V2 m3 are the volumes of the liquid in the front and rear parts of the ladle,
respectively, as follows:

V1(θ) = A1(θ)D1, V2(θ) = A2(θ)D2.

The side areas A1 m2 and A2 m2 are varied with the tilting angle θ deg of the ladle.
The depths D1 m and D2 m are constant without regard to the tilting angle of the ladle.

Then, the pouring flow rate qc m3/s could be estimated by differentiating volume Vc
with respect to time and can be denoted as follows:

qc =
dVc(θ(t))

dt
. (44)

In the experimental implementation, the differential form described in Equation (44)
could be represented by the backward difference as follows:

qcn =
Vcn(θn)− Vcn−1(θn−1)

Tc
, (45)

where Tc s is the sampling interval of the visible camera and is given as 0.06 s in this study.
This approach is difficult to apply in the practical pouring process in the casting

industry because the ladle generally consists of gypsum and metal, which means that
the liquid volume in the ladle cannot be measured by the visible camera. However, our
purpose in this study is to verify the appropriateness of the flow-rate estimation method by
DKFs, which is able to be applied in the practical automatic pouring machine. Therefore,
in this study, since we used water as the target liquid and a clear acrylic container as a
ladle, we could apply this flow-rate estimation approach using the visible camera to the
automatic pouring machine.
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7. Experimental Verifications

The flow-rate estimation method by DKFs was applied to the laboratory-type auto-
matic pouring machine (see Figure 16), and the appropriateness of this flow-rate estimation
approach was verified via the pouring experiments described in the current section.

The conditions of the experiments were the same as for the simulations noted
in Section 5.2.

Figure 16. Laboratory-type automatic pouring machine.

The flow-rate feedforward controller was also applied to control the flow rate based
on the reference pattern (see Figure 10). In the first experiment, the flow-rate estimation
was performed using an ideal condition, with no error between the ideal and the actual
tilting angle at the start of the liquid outflow. The experimental results are presented
in Figure 17, where (a) is the input command applied to the motor for tilting the ladle;
(b) and (c) indicate the ladle’s angular velocity and angle, respectively; and (d) and (e)
indicate the liquid height in the pouring mouth of the ladle and the pouring flow rate,
respectively. In Figure 17d,e, the dotted magenta lines indicate the reference patterns,
and the dashed cyan lines indicate the simulation results obtained from the pouring
process model by applying the results of (b) and (c). The chained green lines show
the estimated results gained by using the EKF in the flow-rate estimation via DKFs.
Figure 17f presents the weight of the outflow liquid. The black solid line is the weight
measured by the load cell, and the remaining lines are shown in the same manner as (d)
and (e). The state variables in the pouring motion were estimated in real time, as presented
in Figure 17. To verify the appropriateness of the flow-rate estimation by DKFs, we applied
the two other types of flow-rate estimation methods described in Section 6. Moreover,
to verify the validity of the system parameters in DKFs, we also applied DKFs with the
different covariance of process noise Q f to Equation (37). The covariance of the process
noise was given as follows:

Q f = diag(250 m2, 1.0 kg2, 1.0 kg2)× 10−11. (46)

The process noise in the liquid height on the pouring mouth was increased as com-
pared with Equation (37). In Figure 18a–d, the black solid lines are the simulation result
obtained from the pouring process model, and these results were the same as the dashed
line in Figure 17e. The solid green lines in Figure 18a–d indicate the results of flow-rate
estimations using the EKF with the covariance of the process noise in Equation (37) that
in Equation (46), the derivative of the load cell data, and the visible camera, respectively.
As presented in Figure 18a,b, the estimated results were similar to the simulated result. The
result in Figure 18c shows that the flow rate exhibited a higher level of noise compared with
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the result estimated by the EKF. Additionally, the response was delayed by the low-pass
filter applied for noise reduction. The flow rate of the outflow liquid from the ladle does
not have a negative value (i.e., q ≥ 0 m3/s). However, it was confirmed that the flow rate
during the back-tilting motion of the ladle from 16 s to 17 s indicates the negative value
as shown in Figure 18c. This response was caused by the fact that the load cell data was
influenced by the movement of the ladle on the z-axis as shown in Figure 6.
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Figure 17. Experimental results using automatic pouring machine (tilting angle error at the start of liquid outflow: +0 deg).
(a) Input command to motor for tilting ladle; (b) Angular velocity of tilting ladle; (c) Angle of tilting ladle; (d) Liquid height
on pouring mouth; (e) Flow rate of outflow liquid from ladle; (f) Weight of outflow liquid from ladle.
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Figure 18. Comparison of flow-rate estimations in experiments with tilting angle error at the start of liquid outflow: +0 deg.
(a) Estimated flow rate by EKF with covariance as shown in Equation (37); (b) Estimated flow rate by EKF with covariance
as shown in Equation (46); (c) Estimated flow rate by differentiating weight of outflow liquid measured by load cell;
(d) Estimated flow rate by visible camera.
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The noise in the flow rate estimated by the visible camera (as presented in Figure 18d)
was smaller than that estimated by differentiating the load cell data (see Figure 18c). Hence,
we confirmed that the flow rate could be estimated roughly using the visible camera.

The real-time flow-rate estimation is required to process within 0.02 s for realizing
the high-precision real-time flow rate control [32]. The processing times in the flow-
rate estimations using DKFs and the derivative of the load cell data were within 0.02 s.
The processing time in the flow-rate estimation using the visible camera was 0.06 s by
taking the time for the frame rate of the camera and the image processing.

Figure 19 presents the experimental results for the pouring conditions alongside the
tilting angle error at the start of the liquid outflow which was +3 deg. Figure 20 presents
the estimated results of the flow rate for comparing the three types of flow-rate estimation,
as discussed in previous sections.

These figures are shown in the same manner as in Figures 17 and 18. In Figure 20d,
the trends of flow-rate estimation by the visible camera are similar to the simulation result.
On the other hand, errors between the DKFs estimation results and the simulation result
occurred at the start of pouring (see Figure 20a,b). However, these errors can be potentially
reduced by updating the KF process. As shown in Figure 20a, the flow-rate after 11 s can
be estimated precisely by DKFs with the covariance of the process noise in Equation (37).
Moreover, the estimation result of the flow rate by DKFs with the covariance of the process
noise in Equation (46) can track the simulation result faster than that in Equation (37).
As presented in Figure 20, the noise in the flow rate estimated by DKFs was the smallest in
the estimation methods performed in this study.
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Figure 19. Experimental results using automatic pouring machine (tilting angle error at the start of liquid outflow: +3 deg).
(a) Input command to motor for tilting ladle; (b) Angular velocity of tilting ladle; (c) Angle of tilting ladle; (d) Liquid height
on pouring mouth; (e) Flow rate of outflow liquid from ladle; (f) Weight of outflow liquid from ladle.
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Figure 20. Comparison of flow-rate estimations in experiments with tilting angle error at the start of liquid outflow: +3 deg.
(a) Estimated flow rate by EKF with covariance as shown in Equation (37); (b) Estimated flow rate by EKF with covariance
as shown in Equation (46); (c) Estimated flow rate by differentiating weight of outflow liquid measured by load cell;
(d) Estimated flow rate by visible camera.

We compared quantitatively the accuracies of each flow-rate estimation. Since the
simulation results of the flow rate were generated by the pouring process model with the
experimental conditions, we consider that the simulation results of the flow rate represented
the actual flow rate in the experiments faithfully. The accuracies of the flow rate estimations
were evaluated by the integral absolute error (IAE) of the estimated and the simulated flow
rates as follows:

IAE =
N

∑
i=0

|qesti − qsimi|ΔT, (47)

where i is the sampling number and N is the total number of the sampling in the estimation.
ΔT is the sampling interval of the flow rate estimations. qest and qsim are the estimated
and the simulated flow rates shown in Figures 18 and 20. Table 1 presents the results of
IAE. In Table 1, the IAEs in the ideal condition with no error between the ideal and the
actual tilting angles at the start of the liquid outflow and the condition with +3 deg error
between the ideal and the actual tilting angle at the start of the liquid outflow were shown.
Furthermore, we also compared quantitatively the amounts of noises in the estimated flow
rates. The amounts of the noises were evaluated by the total variation (TV) [40] of the
estimated flow rates as follows:

TV =
N

∑
i=1

|qesti+1 − qesti|, (48)

Table 2 presents the results of TV. This table is shown in the same manner as in Table 1.
However, TV as shown in Equation (48) includes not only the amounts of the noises but
also the variation of the set-point changes in the flow rate. The set points in the flow rate
are changed monotonically as shown in Figure 10. Therefore, we used the modified TV
(mTV) [41] for eliminating the variation of the set-point changes from TV as
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mTV =
N

∑
i=1

|qesti+1 − qesti| − |2qsimm + qsimN − qsim0|, (49)

where qsimm is the extreme point of the set-point changes which has the shape of one
pulse. qsimN and qsim0 are the final and initial values of the set-points in the flow rate,
respectively. These parameters were obtained from the simulation result of the flow rate
which does not have the noises. In this study, qsimm = 2.0 × 10−4 and qsim0 = qsimN = 0.0
were given. Table 3 presents the results of mTV. As seen from the comparison with TV and
mTV, the evaluation values by mTVs are smaller than those by TVs because mTVs can
suppress the influence of the set-points changes. Therefore, we can compare clearly the
amounts of the noises by mTVs.

In the evaluations by IAEs to the condition with +3 deg error between the ideal and
the actual tilting angle at the start of the liquid outflow, IAE of DKFs with the covariance of
process noise in Equation (46) was slightly smaller than that in Equation (37). Thus, the esti-
mation accuracy of the flow rate by DKFs can be improved by increasing the covariance of
process noise in the liquid height on the pouring mouth. However, the amount of noise in
the estimated flow rate was increased by increasing the covariance of process noise in the
liquid height on the pouring mouth as shown in the evaluation by mTVs. In the application
of DKFs in the flow-rate control, the covariance of process noise in the liquid height on the
pouring mouth should be increased while evaluating the noise in the estimated flow rate.

Both the IAE and the TV of DKFs were the smallest in the estimation methods per-
formed in this study because the noise in the estimated flow rate by DKFs could be
suppressed. However, IAE of DKFs was increased with increasing the error between the
ideal and the actual tilting angle at the start of the liquid outflow. Therefore, we consider
the present flow-rate estimation by DKFs to be appropriate for estimating the flow rate in a
pouring motion with small disturbances.

Table 1. Integral absolute errors (IAEs) between estimated flow rates and simulated flow rates.

Estimation Method
Tilting Angle Error at Start Tilting Angle Error at Start
to Liquid Outflow +0 deg to Liquid Outflow +3 deg

DKFs with Covariance of Process Noise in Equation (37) 4.277 × 10−5 2.005 × 10−4

DKFs with Covariance of Process Noise in Equation (46) 6.236 × 10−5 1.909 × 10−4

Differentiating Load Cell Data 2.431 × 10−3 2.518 × 10−3

Visible Camera 1.420 × 10−3 1.568 × 10−3

Table 2. Total variations (TVs) of estimated flow rates.

Estimation Method
Tilting Angle Error at Start Tilting Angle Error at Start
to Liquid Outflow +0 deg to Liquid Outflow +3 deg

DKFs with Covariance of Process Noise in Equation (37) 4.855 × 10−4 4.746 × 10−4

DKFs with Covariance of Process Noise in Equation (46) 8.628 × 10−4 8.357 × 10−4

Differentiating Load Cell Data 1.443 × 10−1 1.486 × 10−1

Visible Camera 3.861 × 10−2 4.006 × 10−2

Table 3. Modified total variations (mTVs) of estimated flow rates.

Estimation Method
Tilting Angle Error at Start Tilting Angle Error at Start
to Liquid Outflow +0 deg to Liquid Outflow +3 deg

DKFs with Covariance of Process Noise in Equation (37) 8.549 × 10−5 7.460 × 10−5

DKFs with Covariance of Process Noise in Equation (46) 4.628 × 10−4 4.357 × 10−4

Differentiating Load Cell Data 1.439 × 10−1 1.482 × 10−1

Visible Camera 3.821 × 10−2 3.966 × 10−2
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8. Conclusions

In this study, we verified the appropriateness of a real-time flow-rate estimation
method using the DKFs in a tilting-ladle-type automatic pouring machine. The design
of this flow-rate estimation method was described in detail. This method was imple-
mented using a laboratory-type automatic pouring machine and experimentally compared
with two other flow-rate estimation methods. In the estimation using the derivative of
load cell data, we were unable to recognize the flow rate due to large amounts of noise.
In the estimation using a visible camera, we were barely able to recognize the flow rate.
The noise in the flow rate estimated by DKFs was smallest among the approaches per-
formed in this study. However, it was confirmed that the estimated precision of this method
may be degraded by disturbances, such as uncertainty about model parameters. Although
the estimated precision can be improved with increasing the covariance of process noise
in the liquid height on the pouring mouth in DKFs, the amount of noise in the estimated
flow rate also is increased. Accordingly, we consider flow-rate estimation by DKFs to be
appropriate for estimating flow rate in a pouring motion with small disturbances. In the
practical applications, it might be difficult to maintain the pouring condition with small
disturbances because of varying temperature of the molten metal in the ladle and attach-
ing the slag to the ladle. Therefore, we plan to integrate the online model parameters
identification to the flow rate estimation system.

In this study, the sampling interval in the load cell data acquisition was limited
to 0.02 s by the specification of the load cell amplifier with the serial communication.
The noise in the load cell data might be reduced by the amplifier with a fast sampling
rate and the higher order filter. In future work, we will reconstruct the sensing system in
the automatic pouring machine for improving the accuracy of the flow rate estimation.
Furthermore, we will try to develop the high-precision and robust state estimation system
of the automatic pouring machine using the sensor fusion approach such as the integration
of the load cell and visible camera.
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Abstract: When robots are built with state-driven motors, task-planning increases in complexity and
difficulty. This type of actuator is difficult to control, because each type of control position/force
requires different motor parameters. To solve this problem, we propose a state machine-driven
hybrid position/force control architecture (SmHPFC). To achieve this, we take the classic hybrid
position/force control method, while using only PID regulators, and add a state machine on top of it.
In this way, the regulators will not help the control architecture, but the architecture will help the
entire control system. The architecture acts both as a parameter update process and as a switching
mechanism for the joints’ decision S-matrix. The obtained control architecture was then applied to a
5DOF serial manipulator built with Festo motors. Using SmHPFC, the robot was then able to operate
with position or force control depending on its designated task. Without the proposed architecture,
the robot joint parameters would have to be updated using a more rigid approach; each time a new
task begins with new parameters, the control type would have to be changed. Using the SmHPFC,
the robot reference generation and task complexity is reduced to a much simpler one.

Keywords: hybrid control; state machine; Festo; PLC; friction force

1. Introduction

Waste management is a growing concern and problem [1] around the world and
especially in the European Union. To help to solve this problem, rules, policies, and
guidelines were presented to the public [2], as ways of lowering the amount of recyclable
material going to waste dumps [3]. Communities are trying to recover more and more
recyclable materials from day-to-day garbage, even when people are not using selective
waste collection methods. For this, waste recycling companies usually hire people [4] to do
the tedious work of selective recycling for different types of objects and materials (plastic
and glass bottles, metal cans, etc.).

In order to aid companies when the workforce is scarce or to help employees when
the work conditions are bad, automated processes have been developed to try and sort the
waste [5] brought by garbage trucks. To this end, Diya et al. [6] proposed an intelligent
system to help communities aim towards a greener environment. This goal can also
be achieved through conventional selective methods using water for paper and plastic
or magnets for ferrite-containing waste, while the remaining waste was compacted and
incinerated or deposited in landfills. The other methods were to use video cameras on
conveyors as Kokoulin et al. [7] proposed, or to use artificial intelligence as Sousa et al. [8]
showed, to detect recyclable materials. Through different methods, using an intelligent
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city platform created by Popa et al. [9], or by using a distributed architecture and machine
learning built by Ziouzios et al. [10], recyclable waste can be moved to sorted containers,
or even by combining both methods to maximize the selection efficiency. Both methods
have their advantages and disadvantages [4,11], while using big and costly machinery.

An alternative to the automated conveyors and manual process of waste selective
recycling is to use mobile robots that move inside a warehouse where the garbage is laid
on the floor. While several robots conduct the search and recycle mission, stopping only to
recharge their batteries, the process can continue practically non-stop without the need for
human intervention, only requiring humans to replace the search material. This type of
selective waste collection can reduce the need for human workers, therefore preventing the
risks that arise from working with garbage and decomposing organic materials.

The proposed mobile robot has a mechanical arm/manipulator to grab the desired
material and a video camera to detect recyclable objects. The serial mechanical manipulator
has four positioning and orientation degrees of freedom and one degree of freedom for
the gripper, resulting in a 5DOF mechanical arm for picking recyclable objects and placing
them in a waste selective storage container.

The video camera detection method [7,8,12] is reliable and provides the position and
orientation of the object with small detection errors that increase the sorting capability of
recyclable material. Once the coordinates or the object is known, these are fed as a reference
to the control algorithm. Having a certain robot architecture [13] and using specific Festo
hardware [14], we created a hybrid position/force control method to achieve the best
performance for this application. The main reason behind using the hybrid position/force
control is to avoid the inverse matrix singularities of direct kinematics equations required
when computing the end-effector reference values.

Starting with Raibert and Craig [15], the forefathers of the hybrid position/force
control, the method has been developed [16] and used [17] in recent years to improve
the interaction between robots and the environment [18], which is especially useful in
our application. In 2019, Wang et al. [18] presented a hybrid position/force control used
on a manipulator for close wall inspection, where the robot–environment interaction
is treated as a mission consequence, and in 2020, Liu et al. [19] developed and used a
hybrid position/force-controlled robot to drill and rivet metal plates with high precision
(±0.1 mm).

The hybrid position/force control (HPFC) methods [20] can and have been used
in multiple areas of robot environments [21], combining them with new mathemati-
cal concepts [22] or fuzzy inference systems [23]. In 2011, Vladareanu and Smaran-
dache [22] used neutrosophic logic to improve hybrid position/force control. In 2019,
Ballesteros et al. [24] designed a second-order control feedback controller using the sliding
mode control (SMC) [25] for an active orthotic mechanism, by using the system’s dynamics
and controlling each joint through a combined force and position reference, while gathering
force sensor information. This approach uses the highly complex solution of designing a
dynamic regulator while maintaining stability in a Lyapunov sense, while Rani et al. [26]
developed an HPFC for task-coordinated manipulators using non-modeled system dy-
namics. Even if the dynamic equations were not used within the control diagram, they
still ensured overall stability. Using the same approach, Peng et al. [27] created a hybrid
control while using joint neural network observations on uncertain parameters and external
perturbations which also uses dynamic equations and the Lyapunov stability to track and
follow a path reference. Others have developed parallel manipulators with redundant
actuation [28], some that learn the dynamics uncertainties to ensure stability [29], and
even some hybrid control methods that use a fuzzy-neural network for multiple robot
control [30].

When considering the type of regulator or control method to use, we took into ac-
count the sliding mode control (SMC) [25]. One reason was the experience the authors
have in developing such control methods [25], and the other was that it has very good
precision in compensating robot dynamics and external disturbances. As Zhang et al. [31],
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Solanes et al. [32], and Ravandi et al. [33] have proven, the sliding mode control method
can be combined with other methods to create different control algorithms depending on
the required application. This approach may provide high accuracy where not needed,
but it adds complexity to the mathematical model used in designing and developing the
final control system. Because of this, the approach used in this paper was to avoid the high
complexity of the model and focus on the application results, keeping the accuracy within
the required parameters.

Different research papers have developed HPFC methods for specific applications
when dynamic precision was required. Gao et al. [34] developed a 6DOF hydraulic manip-
ulator that uses force and vision for positioning, while Han et al. [35] created a manipulator
with a highly compliant end-effector. Some research handles the classic approach [18,19],
while others combine the usefulness of the HPFC [20] with advantages of other meth-
ods [24–30] to increase stability and precision, to prevent perturbation or to compensate for
uncertainties. These approaches, as reviewed in scientific papers [16,36,37], are necessary
when the robot environment interaction requires high precision in positioning tasks or in
order to combine position and force to safely interact with human patients or operators.
Most of the published HPFC methods use a static approach in defining the joint matrix
that separates the position-controlled joints from the force-controlled joints.

One way of preventing the static use of the S-matrix is to create a state feedback
decision as Pasolli et al. [38] proposed. Their approach was to switch between position and
force control on certain robot joints when the system required it, thus improving upon the
classic hybrid position/force control of Raibert and Craig [15] by adding a decision layer
to constantly change the position and force diagonal matrix S when certain events occur.
Building on this method, we have proposed the hybrid position/force control combined
with a state machine which will be called state machine-based hybrid position/force control
(SmHPFC). This new method will update the parameters of the S-matrix as the need arises
and depending on the task state of selective waste recycling.

The proposed method architecture was combined with a stick–slip analysis of the
gripper’s fingers to use a low force for gripping the detected recyclable waste objects, such
as plastic bottles that can deform on a higher gripping force, or glass bottles that may slip
with weaker force or break with a higher one. All of these were then implemented using
Festo motors, Festo motor controllers, and Festo central control unit PLC.

2. System Description

The waste sorting robot is presented in Figure 1 [39,40] and Figure 2 [40,41], and is built
from several separate systems that will work as a whole. The robot is the main objective of
a national research grant [40] which aims to build a working prototype of the municipal
waste sorting robot. Figure 1 presents one of several proposed 3D concepts, while Figure 2
presents the 3D design of the robot that has the following main components: (1) chassis,
(2) housing, (3) drive wheels, (4) free wheels, (5) XYZ handling system, (6) gripper and
(7) waste container [35]. The robot structure is already defined and published in a previous
paper [41] and is not the subject of this paper.

Figure 1. Initial concept of the waste sorting robot system [39,40].
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Figure 2. The mobile robot 3D model with the incorporated 5DOF manipulator [40,41].

An important component of the mobile robot is the drive wheels system for navigating
through the waste, which was previously laid on the ground as a uniform thin layer.
Another component that is not visible in Figure 2 is the vision system, which detects
recyclable objects and sends the information to the 5DOF manipulator. The manipulator is
the third important component of the mobile waste sorting robot, which grabs the detected
recyclable materials and stores them in the attached waste container.

The gripping system is made of a five-degree-of-freedom serial robot, mounted on the
mobile chassis and it was chosen as the simple approach in building the municipal waste
sorting robots’ manipulator. This is intended as a simple and easy solution for replacing
the human workforce in searching for scattered recyclable materials such as plastic and
glass bottles or aluminum cans, and it lowers the percentage of recyclable materials with a
high decomposing time that reach a landfill.

The 5DOFs of the manipulator can be separated into three categories: positioning,
orientation, and interaction. The first set, required for positioning the end-effector, is
composed of three linear motors. These 3DOFs move the gripper on all three axes (OX,
OY and OZ), achieving a positioning system within the robot manipulators’ confined
workspace. In our robotic system, the horizontal XOY movement is ensured by a Festo
planar surface gantry EXCM, while the OZ vertical displacement is given by a Festo
electrical slide EGSK. The orientation system uses a one-degree-of-freedom Festo rotary
motor ERMO to rotate the end-effector around the vertical axis OZ to align the gripper
with the object/bottle. Once the position and orientation are set, the last degree of freedom
is the end-effector which, in our case, is a Festo HGPLE gripper that uses a dual linear
motor that moves two rigid bodies (the gripper jaws) in two opposite directions on a single
axis. The first direction, which is considered to be the positive one, is when the two jaws of
the gripper are closing into each other and the second is when both move away from each
other in the negative direction.

To control the serial robot for selecting the recyclable materials, we chose the hybrid po-
sition/force control that allows us to position and orient the gripper within the workspace,
through a position-based control law, and to grip the object using a force-based approach.
Moreover, the gripper can be controlled in position for opening the jaws or in force for
gripping the objects. The control type of the gripper has to switch in real-time, depending
on the state of the robot and the mission objective. This is why a hybrid position/force
control law with a state-machine decision system was chosen as the control algorithm that
drives the 5DOF manipulator.

3. Decision Algorithm

The decision algorithm is the component that turns the static hybrid position/force
control method into a dynamic control by changing the Raibert and Craig [15] static
configuration of the S-matrix, and updating its values depending on a deterministic state
machine. The diagram of the overall state machine is presented in Figure 3. Here, one can
see multiple system states followed by one or more transitions. Table 1 presents the state
description and Table 2 presents the description of the transition.
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Figure 3. The main 5DOF robot state machine for waste selection.

Table 1. State machine states list and descriptions.

State Diagram Description

Si1 Main The initial state of the entire system.

Si2 Main/Homing Initialization complete.

Si2.1 Homing Homing process started.

Si3 All Homing done or motion complete.

SC1 Main Positioning in XOY plane and rotate gripper.

SC2 Main/Force Control Positioning on OZ axis (move gripper up or down) and
rotate around OZ for gripper orientation.

SC3 Main/Force Control Ready to start force control (grip object).

SC3.1 Force Control Doing force control for selected reference.

SC3.2 Force Control Gripping force is stable while holding the object.

SC4
Main/Position

Control/Force Control
Stop force control (done). Switching to position control

and open gripper.

SC5 Position Control Doing position control for selected reference.

SES
Position

Control/Force Control Emergency stop.

To keep the state machine clear and easy to understand, several components were
detailed in additional diagrams presented in Figure 4a–c. These are the homing state
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machine, the position control state machine, and the force control state machine. Their
state and transition descriptions can be also found in Table 1.

Figure 4. State machine sub-sections: (a) the homing state machine; (b) the position control state
machine; (c) the force control state machine.

The homing state machine is very simple. The homing process is started sequentially
on all five DOFs (state Si2.1). When the homing process is complete, the 5DOF system
transitions to the stable state Si3. This state is the starting point for all following control
sequences. When a new task is received (transition TC1), the system begins to complete
it, starting with the first two translation joints for positioning on XOY plane. Then, the
vertical motion and orientation begin (SC2) and on its completion, the force control takes
over for the gripper joint by changing the control type for this degree of freedom within
the S-matrix. Thus, by using force control, the gripper attempts to grab the target object
using the reference force given as input to the control system. Figure 4c details how the
force control handles different events. While the gripper force holds, the 4DOF positioning
system lifts the object and position the gripper above the recycling tray. At this moment, the
gripper force control ends by updating the S-matrix, and the object is dropped by opening
the gripper’s jaws using position control. After the object is dropped into the recycling tray,
the task is complete, and the 5DOF system can start a new task.

To better explain the sequence, the decision Algorithm 1 that can be more easily
understood is outlined below.
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Algorithm 1 Recycling process using the hybrid position/force control

for (i ∈ [1; 5])
x Init (Mi)
x Homing (Mi)
while (!ES &&New Task)
x get (ObjType, Txyz, Rz)
x if (ΔP + z > εPz)
x GripperMove (Ttop)
x if (!Gopen)
x Jaws (open)
Compute (Fjaws)
GripperMove (Txy)
GripperRotate (Rz)
GripperMove (Tz)
Switch (ToForceControl)
x Update (SP, SF)
Jaws (close)
while (ΔFjaws ≤ εFjaws)
GripperMove (Ttop)
GripperRotate (Rtray)
GripperMove (Ttray)
Switch (ToPositionControl)
x Update (SP, SF)
Jaws (open)

where:
Mi = motor i,
ES = Emergency Stop,
ObjType = Object type (metal, glass, plastic),
Txyz = target coordinates vector,
Ttop = coordinates of top gripper position,
Ttray = coordinates of waste tray position,
Rz = target rotation on the Z-axis,
Rtray = waste tray rotation on the Z-axis,
Fjaws = gripper reference force required to grab the current target,
ΔPz = position error on the Z-axis,
εPz = maximum allowed positioning error on the Z-axis,
ΔFjaws = gripper jaws force error,
εFjaws = maximum allows gripper jaws force error,
SP = position matrix joints,
SF = force matrix joints.

4. Influence of Friction Force Analysis on the Gripper’s Control Method

To pick up recyclable objects from the municipal waste collection, the gripper needs
at least two fingers. For this, we created a 3D finger design which is presented in
Figure 5a–c. These were designed as simple fingers that can grab different object types and
shapes. From the 3D design, the fingers were 3D printed using ABS material and a Zortrax
M200 3D printer.

When complete, the fingers were attached to the linear motor, resulting in a two-
finger gripper mechanism presented in Figure 6. One can observe in Figure 6 a small
deformation of the ABS fingers during the gripping action. This ABS finger’s flexibility
and deformability ensure a slower transmission of the force towards the actuation of the
gripper. Certain protection of the electric actuation of the gripper is thus ensured.
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Figure 5. Gripper 3D fingers: (a) front view; (b) bottom side view; (c) top side view.

Figure 6. The gripper mechanism in action.

Once the gripper is attached, we can calculate the required force needed to grab certain
recyclable materials/objects. To achieve this, we can use the stick–slip conditions [42]
derived from the Coulomb friction law [43]. Figure 7 presents the forces acting between
the gripper’s fingers and the object being manipulated, where:

→
F fL = Friction force between left finger and the object
→
F fR = Friction force between right finger and the object
→
F CL = Control force on the left finger
→
F CR = Control force on the right finger
→
G = Object’s weight
→
NL = Normal force on left fingers’ contact surface
→
NR = Normal force on right fingers’ contact surface

Figure 7. Forces acting on gripper fingers and the grabbed object.
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Coulomb friction law states that for the object to not slide from the gripper fingers,
the forces must follow Inequality (1), where the friction forces are defined in Equations (2)
and (3):

→
F fL +

→
F fR ≥

→
G (1)

→
F fL = μ

→
NL (2)

→
F fR = μ

→
NR (3)

In our case, the control forces
→
F CL and

→
F CR are equal with the gripper’s control force

→
F C, resulting Equations (4) and (5):

→
F CL =

→
F CR =

→
F C, (4)

→
NL =

→
F CL→

NR =
→
F CR

}
=>

⎧⎨
⎩

→
F fL = μ

→
F CL = μ

→
F C→

F fR = μ
→
F CR = μ

→
F C

⎫⎬
⎭. (5)

From Equations (1)–(5) we calculate that the required condition for the gripper to hold
the recyclable object is the one from the relation:

2μ
→
F C ≥

→
G (6)

Using this inequality, we can further analyze the required force depending on the
estimated weight of the object and the friction coefficient for certain types of recyclable
materials. However, before analyzing the minimum required control force, we have to
take into consideration the gripper motion on the same axis as the friction forces. Since
the gripper will move up after the object is grabbed, the dynamic motion will add a new
acceleration to the object, which will, in turn, translate into an inertial force that has the
same direction as the weight of the object. This means that we need to increase the force
acting on the object. Equations (7)–(9) add the new inertial force to the control force
condition from Equation (6).

The maximum acceleration for the motor placed on the vertical axis, as given by the
manufacturer [44] is:

ai = 10m/s2. (7)

Then, the inertial force added to the weight is:

→
F i = m × ai. (8)

From Relations (1) and (8) we obtain:

2μ
→
F C ≥

→
G +

→
F i. (9)

Expanding this relation, we get:

2μ
→
F C ≥ m(g + ai), (10)

where:→
F i = Inertial force due to vertical motion
ai = inertial acceleration due to vertical motion
m = Objects’ mass
g = 9.81m/s2 = Gravitational acceleration
μ = Friction coefficient
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Knowing the maximum acceleration (Equation (11)) and the maximum force [45]
(Equation (12)) that the gripper can sustain, we can compute the maximum object mass
that our gripper can hold for certain materials with known friction coefficients:

amax = g + ai = 19.81 m/s2 (11)

→
F Cmax = 250 N. (12)

From Relations (10) and (12) we can compute the required force for grabbing an object
and we can compare it with the maximum force the gripper can apply:

→
F C ≥ m(g + ai)

2μ
. (13)

If we consider the recommendations presented by online references [46,47], the control
force should be four times higher than the required force for gripping the object, without
considering the vertical acceleration, and is given by the relation:

→
F C =

mg
2μ

× 4. (14)

Table 2. Static friction coefficients.

Material Friction Coefficient

ABS—PET 0.33 [48]
ABS—Glass 0.3 [49]

ABS—Aluminum 0.25 [49]

This means that we can add a safety margin and all objects regardless of the systems’
accelerations will be firmly held by the gripping system. However, since Relation (13) takes
into account the maximum acceleration of the vertical axis, and we do not expect any other
forces to influence the system, we will use Relation (13) as the reference for computing the
force needed by the system to pick up objects with different friction coefficients and weight.
While the maximum acceleration is given by Relation (11), we can relate to Relation (14)
and present the new force control as:

→
F C =

mg
2μ

× 2, (15)

where the new safety margin is 2. However, in real experiments, we will use Relation (13)
as it is more accurate.

In our case, the recyclable materials of interest are plastic bottles, glass bottles, and
aluminum cans. Knowing this, we will continue the analysis using these materials. Thus,
Table 2 presents the known static friction coefficients between the ABS fingers and PET,
glass and aluminum objects, where we consider them more dry than wet.

Once we have the maximum force relation and the friction coefficients, we can com-
pute the required force for the gripper to pick up a certain object. Figure 5 presents the
computed force control value for different object mass and material types. The figure shows
the maximum force limit, represented by the top dashed rectangle. Using this diagram
(Figure 8), we can visualize the maximum weight of the recyclable objects that the gripper
can pick up and transfer to the recycling tray. Since for all three materials the maximum
weight is above 6 kg, we can presume that all recyclable objects that fit the recycling criteria
can be grabbed by our 5DOF gripper.
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Figure 8. Gripper force by object mass and friction coefficient.

By using Equation (13) and the friction coefficients of the recyclable materials of
interest (Table 2) we can now use this information in the hybrid position/force control
architecture to compute the gripper reference force.

5. The 5DOF Hybrid Position/Force Control

To achieve a functional control method, the mobile robots’ manipulator, used for
sorting waste materials, has to be able to move at target points and then grab the recycling
materials using a simple gripper. For this, the hybrid position/force control method [15]
was chosen and then modified to integrate the systems’ state, changing the control type
of the manipulator when needed, between position and force control mode. Thus, we
changed the static selection of control type for each degree of freedom to a deterministic
state of the S-matrix that separates each DOF into two categories: control mode and force
mode. Figure 9 presents the new hybrid position/force control architecture used to drive
the 5DOF manipulator.

Figure 9 presents the data flow of information between each control block, where:
O(p, type) = Object (position, type);
type = Glass, Aluminum, Plastic;
O(depth) = Object (depth);
Depth = distance from the robot reference system to the detected object.
In the new architecture of the hybrid position/force control method of Figure 9, we

have included several control blocks that group the control architecture by task, while the
arrows present the data flow. The control diagram starts with the reference generation
block. This block receives information from the video detection system that will provide
the objects’ position in XOY coordinates and the object type. The type is then used by the
reference generation to compute the required force according to the friction force coefficient
influence. Another input is received from the proximity sensors, which will provide the
distance to the target object, which represents the third coordinate in the 3D space, the
OZ axis.

The video detection system [50] uses neural networks to detect the type, position,
and orientation of the recyclable objects and will send this information as input for the
5DOF manipulator, through a TCP network interface. Combining both video detection for
XOY coordinates and orientation with the proximity sensors for depth distance, we get
the OXYZ coordinates with θ angle orientation. The detection system was developed by
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our project team and is already published by Melinte et al. [50], which is why we will not
focus on its results in this paper, but we are using the AI detection module as input to our
control architecture. The video camera used has an RGB resolution of 1280 × 1024 pixels,
which is more than enough for our AI detection system to use, with a detection confidence
of 75.54% and over 95% accuracy [50], using a 9 FPS image analysis rate.

Figure 9. Hybrid position/force control diagram.

Added to the input data, the systems’ state, provided by the state machine, the robot
can now decide what to do next, to achieve the given recycling task. If the robot is in search
mode, the manipulator is resting at the starting position. Then, when an object is detected,
the systems’ state switches to the start state of the pick-and-drop process. When the state
of the system requires the manipulators’ gripper to switch in order to force control then
the “S-matrix control” block will update the S-matrix, by switching the control type of the
gripper DoF. Equation (16) presents the way the S-matrix is composed out of the Sp and
Sf matrix:

S =

⎡
⎢⎣

1 · · · 0
...

. . .
...

0 · · · 1

⎤
⎥⎦ = Sp + S f =

⎡
⎢⎢⎢⎢⎣

1 . . . 0
. 1 .
. 1 .
. 1 .
0 . . . 0/1

⎤
⎥⎥⎥⎥⎦+
⎡
⎢⎢⎢⎢⎣

0 . . . 0
. 0 .
. 0 .
. 0 .
0 . . . 1/0

⎤
⎥⎥⎥⎥⎦. (16)

After the reference values are calculated, the hybrid method splits into two control
branches, each dealing with a specific control type: position control and force control. Each
control block uses a PID to compute the joint-specific drive inputs (Equations (17)–(19)):

Ux = XPID
(
Sp, ΔX

)
, (17)

Uf = FPID

(
S f , ΔF, FS−S

)
, (18)

U = Ux + Uf . (19)

One can see that while the position PID regulator depends on the positioning error
between the reference and the computed value, using the direct kinematics method and
Denavit-Hartenberg notation [51], the force PID regulator will have as input the force
control error computed using the reference value, the real force taken as a function of motor
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current and the force required to compensate the object weight through the friction force
compensator control block.

Equation (20) presents the function that receives the robot joint information and sends
it to the state machine and direct kinematics blocks:

f (d1, d2, d3, d4, θ1). (20)

Using the joint information, Equations (21)–(23) present the elements required to
compute the positioning and force errors, which are inputs to PID regulators that, in the
end, drive the 5DOF manipulators’ motors.

U = XPID
(
Sp, ΔX

)
+ FPID

(
S f , ΔF

)
, (21)

where:

ΔX = XP(State, Obj(p, type), Obj(depth))− Xr(Robkin(d1, d2, d3, d4, θ1)) (22)

ΔF = FP(State) + Fs−s(Obj(type))− Fr(Fconv(Im)) (23)

To obtain the PID position control values, we used the direct kinematics equations
through Denavit-Hartenberg notation that are shown in Figure 10 and presented in Equa-
tion (24).

Figure 10. Kinematics diagram and D-H notations of the 5DOF, TTTRT manipulator.

Since α is 0◦, then the direct kinematic coordinates are given by Relation (24), where a1
and a2 are constants given by the mechanical structure dimensions. The gripper’s degree
of freedom is not taken into account when computing the direct kinematics matrix. This is
because we had to position the gripper near the desired object, and then close the gripper’s
jaws (5th degree of freedom).

Using the direct kinematics matrix:⎡
⎢⎢⎣

cosθ1 −sinθ1 0 −a1 + d1
sinθ1 cosθ1 0 d2

0 0 1 −a2 − d3
0 0 0 1

⎤
⎥⎥⎦, (24)

and the PID general control equation:

PID = KPe(t) + Ki

∫ t

0
e(t)dt + Kd

de(t)
dt

, (25)

the position and force controllers were computed following classic methods [52]. Since
the PID controllers are not in the scope of this paper, we will not present their design and
tuning procedure.

The hybrid method we have proposed in this paper uses hardware components that
have a clear separation between position and force control. Because of this, the stability
problem is avoided, since when switching the control method, the regulator method is
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changed for that specific motor (DoF), and the motor is in a paused state (not moving).
When changing the control method, we can say that the control mission is restarted, which
is why there is no stability issue at the switching moment within the control law.

6. Experiment

The hybrid position/force control is designed for the 5DOF manipulator which will
be mounted on the mobile robot. The manipulator has several hardware components that
build the positioning and orientation system and one linear motor for the end effector.

Figure 11 presents the interaction diagram of the hardware components. One can see
that the system has only one PLC system that sends the reference information to the planar
XOY movement (Festo EXCM), to the vertical OZ positioning (Festo EXCM), and the rotary
motor (Festo ERMO), through CANopen, Modbus TCP or Input/Output Link (IO-Link)
communication with integrated motor drivers. The gripper’s motor requires a separate
motor driver (Festo CCEC-X-M1) that controls the linear motor (Festo HGPLE), which
forms the gripper with the attachment of two 3D printed ABS fingers.

Figure 11. The robot control components interaction diagram.

The experiment uses a video detection camera, which uses a neural network [50,53]
to detect different recyclable materials (glass bottles, aluminum cans, PET bottles) and
sends their position and orientation to the 5DOF manipulator as input information. This
information was simulated in the first stage of the experiment, since we had to prove that
the hybrid position/force control has a good performance in the process of controlling the
manipulator throughout the recycling operation.

Because the gripper’s control was the one that will switch between position and force
control, we can say that this joint (DoF) is the most important one when deciding if the
hybrid control can be used for this particular task, and we will describe its process in
more detail.
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The 5DOF manipulator is controlled by a Festo PLC, programmed using the CoDeSys
software. Using the state machine presented in Figures 3 and 4, one can see that the entire
system has several control steps. The first stage is to initialize the motors and start the
homing process for each motor, and then wait for the detection system to send the first
signal of position, orientation, and type for the object to recycling. After the initialization is
complete, the recycling system can receive the pick-and-drop commands.

To control the 5DOF mechanical system, a decision algorithm that implements the
state machine was developed outside the PLC, with communication capabilities through
Ethernet-UDP protocol (Figure 12). This system receives state messages from the ma-
nipulator and the video detection system, and, through a transition mechanism, sends
appropriate commands to the manipulator. The messages have two parts: command name
and value. The message is then decoded by the PLC through a decoding method. The
decoded information is used to set motor parameters and then activate the command.
While the motor is acting on the last received command, it will send status information
through a transducer to the motor driver which, in turn, is received by the PLC that will
send status information through Ethernet UDP to the state machine.

Figure 12. Motor control through PLC programming and state machine commands.

To test the gripper’s commands and states, we designed a CoDeSys visualization
interface that shows the state of each command or status bit.

Figure 14 presents all the main stages of the gripper’s control. The left part of each
figure contains the control bits, and the right part contains the status bits. As the name
suggests, the control bits are the values sent to the motor driver and the status bits are
the values received. Grey status means that the bit is not used by the driver, dark green
means that the bit value is 0 (false) and light green means that the bit value is 1 (true).
Using these control bits, we can set the motor driver states from initialization and homing
to the start of positioning or force control. Thus, Figure 14a,b present the configuration
bits for the initialization and homing functions of the motor driver, respectively. After
the initial step and homing have been completed, the motor driver, and consequently the
HGPLE motor, are in stand-by mode to receive control values. The first values that will be
sent to the driver are the control mode: position control mode (Figure 14c) or force control
mode (Figure 14e). After these values comes the speed reference with which the gripper
will move, while trying to reach its position or force reference. The third step is to send
the position and force reference values and to start the control process. Figure 14d shows
position control and Figure 14f shows force control. While the positioning mode will stop
after the position is reached, the force control will continuously try to hold the set force.
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The force control can be stopped by setting the control force to 0, by manually stopping the
control process, or by switching the control type to positioning mode.

Figure 13. Cont.
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Figure 14. CoDeSys visualization interface: (a) initialization stage; (b) homing stage; (c) positioning
mode control; (d) start positioning control; (e) force mode control; (f) start force control.

Using the described steps, the gripper can be used in the hybrid position/force control
method for the 5DOF manipulator. While the positioning and orientation system will
always be controlled in position, the gripper will switch between position and force control
states depending on the system’s state machine.

Figures 15 and 16 present the control phase for position control and force control,
respectively, for the manipulator’s gripper.

Figure 15. Gripper position control states.
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Figure 16. Gripper force control states.

The color code used in Figures 15 and 16 is:

• Purple line = speed reference;
• Brown line = force and/or position reference;
• Black line = start command and auto-stop state;
• Red line = gripper jaws position;
• Yellow line = gripper applied force.

For positioning control, Figure 15 is quite self-explanatory, where the reference velocity
is the first to be set, followed by the position reference. Once these two have been set, the
start command can be given, and the positioning regulator will start moving the motor
to the desired position with the configured speed. The gripper jaws will stop when the
target position is reached or when an alarm is detected. The alarm can be triggered by an
overcurrent due to an obstacle within the jaws’ path. When the position is set to 0 to open
the gripper jaws, and the start command is given once again, the gripper jaws will move
with the newly set speed.

For the force control, the control diagram is more complex and is presented in
Figure 16. This control process starts similarly to the positioning process, with setting
the speed reference. The next step is to set the target force and to start the control process.
Before the target force is reached, the gripper will move until an object/obstacle is reached
and the control force will increase. When the reference force is reached, the regulator will
not stop and will continue to feed current to the motor. At this point, the manipulator’s
4DOF positioning and orientation system can move the recyclable object. When the target
OXYZ position is reached, the gripper’s state is switched from force to position control, set
the reference position to 0, and start the positioning control to open the gripper’s jaws.

Using the described process of the hybrid position/force control to pick-and-drop
recyclable waste, we tested it for several objects and materials. Figure 17a–c present three
of the objects being grabbed and held until the movement state is complete and the gripper
can drop the recyclable material. As one can see, Figure 17a–c present the orientation and
gripper components. We tested the two degrees of freedom more thoroughly than the entire
5DOF system, since, for these two, the hybrid position/force control is more important.
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Figure 17. Experiments on object gripping: (a) experiment for aluminum pickup; (b) experiment for PET bottle pickup; (c)
experiment for glass bottle pickup.

7. Discussion

In order to use a mobile robot with a 5DOF manipulator for picking up recyclable
material, the first stage is to initialize the robot’s components. This means that for each
motor and actuator, a homing process is required when the robot starts up.

After the first initialization stage is complete, the robot is ready to start its search-
and-recycle task. For that, a human operator starts the mission, and the robot will move
within the mission area to search for recyclable materials, using its neural network-driven
detection video camera. At this stage, the manipulator is resting in the homing-done-ready-
for-task state.

When the robot detects a target object, it will compute the next stage reference for
the position, orientation, and type of the object to pick up. At this moment, the state of
the system’s manipulator changes from resting to start-task. All reference values are, at
this stage, being used to provide accurate task information for the manipulator. This data
includes a position in 3D space, orientation of the target object, and estimated friction
between the gripper’s fingers and the target. Using these values, the robot will start its
mission with a positioning task, followed by a hybrid position/force control to grab the
object and place it in the recycling tray. The last task is to position the manipulator in a
starting position with the gripper jaws open.

As seen from the main stages of the pick-and-drop process, the proposed hybrid
position/force control architecture based on a state machine is very useful for this type of
robot and mission.

For hybrid methods that require an online switch mechanism, the interest is quite
high between researchers and manufacturers. However, only certain types of motors can
be controlled in this way. An example is the research of Pasolli and Ruderman [38,54],
which proposed a hybrid control to be used on actuators which may not require different
control parameters, and should be used where the actuators’ parameters rarely change,
while the control values can be modeled as a single transfer function, within the control
architecture diagram.

The main difference between our approach and the one used by Pasolli and Ruder-
man [38,54] is that our hardware has parameters that require an update every time the
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control mode is switched. This is because modern motors and actuators are produced
with built-in regulators or fail-safe mechanisms to protect the hardware and provide the
engineer with a basic motor controller. With these types of motors and actuators, you need
a different type of hybrid control, one that can update the parameters of the motor while
switching the control type with certain degrees of freedom, and one that can use different
control methods.

Similar hybrid control with a built-in switching mechanism developed by Pasolli and
Ruderman [38,54] is used by the majority of hybrid control methods [16,18,19,24,26–30,33–
35,38,54,55], where the motor allows position or force control just by increasing the driving
current or motor torque. These are better used with a dynamic control law integrated
into the hybrid position/force control method. The built-in switching mechanism that
allows the hybrid control to control a certain motor either in position or in force requires
a stability analysis, but when the motor has to switch parameters to commute between
position and force control, the stability analysis is not needed. Since specific motors require
new parameters to switch between control types, kinematic control methods are enough to
drive the robot joints.

The hybrid position/force control with an online switch is not unfamiliar to us [20],
but it was considered to be unnecessary for the task at hand. We have developed other
control methods that require stability analysis [20], and ones that use dynamic control
methods [20,25], along with the hybrid position/force control to drive robots in their
mission. Compared to our previous research, the approach presented in this paper makes
it easier to implement the control method, but it has a higher complexity when using these
motors. The complexity comes from the multitude of parameters required to adjust not
only when commissioning the motor, but also at run time when switching the required
parameters to drive the motor in either position or force/torque.

Knowing this, the proposed architecture of the state machine-driven hybrid posi-
tion/force control is useful for many other robots [55,56] that are being used in different
environments and for different tasks, but more importantly, for those that are being used in
automated processes within Industry 4.0 type factories. These factories rely on the fact that
the robots can switch tasks whenever the supervisor asks them to change the production
line. Since our proposed architecture is based on a state machine, one can design a way
to update the state machine for each type of mission and task the robot is given, gaining
not only a hybrid position/force control method but also an adaptable robot with a set of
missions to choose from.

8. Conclusions

The proposed architecture of the state machine-based hybrid position/force control
(SmHPFC) can be implemented for robots and actuator-driven mechatronics, which use
motors with different control parameters between position and force control. One example
is the HGPLE Festo linear motor. This type of motor tends to include feedback information
on the real position and force/torque that can be easily included in a feedback control loop
such as the SmHPFC. Using this information, one can design a position control feedback
loop, knowing that the received information is showing the actual actuator position. At the
moment, when the control type is changed from position to force or torque and vice versa,
the same information value must be interpreted with a different scope, which will disturb
the real-time control loop since the motor control parameter has changed. In the standard
approach, a motor is usually controlled in position, force/torque, or direct current, and
uses different techniques to get the control value, starting from a position or force/torque
reference. This approach cannot be used by a state-driven actuator such as the one used on
the presented 5DOF manipulator.

One advantage of the SmHPFC architecture is that it is quite easy to integrate it into
an automated assembly line or use it to change the behavior of the robot since the stability
problem was mitigated due to the way the motors are built. This advantage translates
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into reconfiguring the automated line with ease, which is the backbone of the Industry
4.0 concept.

As an example of Industry 4.0 usage, the robots from an assembly line can be pro-
grammed to complete different tasks, while in a standard production line, the extra pro-
grammed tasks are not required. A robot can have a task to move certain components from
a top shelf to the conveyor in a certain factory configuration, but can also stack products
to a designated area, depending on the factory requirements. This can happen if all the
robots are pre-programmed with multiple tasks and a control unit will change the robot
state from a shelf-stacking robot to one that can pick up faulty products from the conveyor.
Another advantage of the SmHPFC architecture is that not only can it provide easy access
to multiple types of tasks for a single robot, but that these tasks can have very different
control parameters and objectives: position control, contour following, force control, etc.

This type of architecture has some disadvantages. The main one is that it cannot switch
between control modes while the robot is moving and it must perform a very short stop
while reconfiguring the input parameters. This stage is dependent on the communication
rate between the PLC and the motor, and on the time the motor can come to a stop. It
takes only a few communicated messages for the motor to stop, reconfigure and start a
new job. For example, to switch the Festo linear motor from position to force, we need to
send just one control byte. However, since the motor parameters cannot be changed while
it runs, we have to send two additional control bytes, to stop and restart the motor. On a
ModBus 9600 bps communication rate, it would translate to 2.5 ms, only to send the new
configuration. To this, we need to add the time it takes the motor to come to a stop if not
already stopped, and a maximum of eight more bytes to send the new motor reference.
This also depends on whether the motor can restart with ease. This disadvantage can turn
into an advantage if the robot task requires separate motion steps during which the robot
can be reconfigured to handle different control methods on a different degree of freedom.

Our proposed SmHPFC architecture does not depend on the joint regulators, and their
analysis was not included in this paper. Thus, the presented applied research is meant to
prove the behavior of our architecture and provide new means of control for automated
Industry 4.0 lines, but also for motors that are not as easy to integrate into a fully automated
robot due to restrictions in their control and parameterization functions.

Future work will focus on integrating the deterministic artificial intelligence [57] that
provides clear analytic methods for reference trajectory generation on each type of control.
By improving the reference aspect, we expect to improve the overall architecture, trans-
forming the reference generation component into a more robust and reliable component
that can provide the best data for the robot’s current task and control type.

Author Contributions: Control architecture, I.-A.G.; conceptualization, I.-A.G.; control algorithm,
I.-A.G., formal analysis, I.-A.G., A.-C.C. and M.M.; resources, I.-A.G., A.-C.C. and M.M.; writing—
original draft preparation, I.-A.G. and A.-C.C.; writing—review and editing, I.-A.G.; funding acquisi-
tion, I.-A.G. and M.M. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by a grant from the Romanian Ministry of Research and In-
novation, CCCDI—UEFISCDI, project number PN-III-P1-1.2-PCCDI-2017-0086/contract no. 22
PCCDI/2018, within PNCDI III, and with the support of the Robotics and Mechatronics Department,
Institute of Solid Mechanics of the Romanian Academy.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: This work was supported by a grant from the Romanian Ministry of Re-
search and Innovation, CCCDI-UEFISCDI, MultiMonD2 project number PN-III-P1-1.2-PCCDI2017-
0637/33PCCDI/01.03.2018, within PNCDI III, and by the European Commission Marie Sklodowska-
Curie SMOOTH project, Smart Robots for Fire-Fighting, H2020-MSCA-RISE-2016-734875 and by
inter-academic project IMSAR–Yanshan University: “Joint Laboratory of Intelligent Rehabilitation

335



Appl. Sci. 2021, 11, 4222

Robot”, KY201501009, collaborative research agreement between Yanshan University, China and
Romanian Academy by IMSAR, RO. The authors thank S.C. Festo S.R.L., Bucharest, Romania, for
their technical guidance and assistance in using the Festo products concerned in this paper.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

References

1. Del Borghi, A.; Gallo, M.; Del Borghi, M. A survey of life cycle approaches in waste management. Int. J. Life Cycle Assess. 2009, 14,
597–610. [CrossRef]

2. Coopers, L. Cost-Benefit Analysis of the Different Municipal Solid Waste Management Systems: Objectives and Instruments for the Year
2000; Office for Official Publications of the European Communities: Luxembourg, 1997.

3. Skovgaard, M.; Hedal, N.; Villanueva, A.; Andersen, F.M.; Larsen, H. Municipal Waste Management and Greenhouse Gases; European
Environment Agency: Copenhagen, Denmark, 2008.

4. Awasthi, A.K.; Zeng, X.; Li, J. Relationship between e-waste recycling and human health risk in India: A critical review. Environ.
Sci. Pollut. Res. 2016, 23, 11509–11532. [CrossRef] [PubMed]

5. Gundupalli, S.P.; Hait, S.; Thakur, A. A review on automated sorting of source-separated municipal solid waste for recycling.
Waste Manag. 2017, 60, 56–74. [CrossRef] [PubMed]

6. Diya, S.Z.; Proma, R.A.; Islam, M.N.; Anannya, T.T.; Al Mamun, A.; Arefeen, R.; Rabbi, M.F. Developing an intelligent waste
sorting system with robotic arm: A step towards green environment. In Proceedings of the 2018 International Conference on
Innovation in Engineering and Technology, Dhaka, Bangladesh, 27–28 December 2018; pp. 1–6.

7. Kokoulin, A.N.; Uzhakov, A.A.; Tur, A.I. The Automated Sorting Methods Modernization of Municipal Solid Waste Processing
System. In Proceedings of the 2020 International Russian Automation Conference, Sochi, Russia, 6–12 September 2020; pp.
1074–1078.

8. Sousa, J.; Rebelo, A.; Cardoso, J.S. Automation of Waste Sorting with Deep Learning. In Proceedings of the 2019 XV Workshop de
Visão Computacional, Sao Paulo, Brazil, 9–11 September 2019; pp. 43–48.

9. Popa, C.L.; Carutasu, G.; Cotet, C.E.; Carutasu, N.L.; Dobrescu, T. Smart city platform development for an automated waste
collection system. Sustainability 2017, 9, 2064. [CrossRef]

10. Ziouzios, D.; Tsiktsiris, D.; Baras, N.; Dasygenis, M. A Distributed Architecture for Smart Recycling Using Machine Learning.
Future Internet 2020, 12, 141. [CrossRef]

11. Grigore, M.E. Methods of Recycling, Properties and Applications of Recycled Thermoplastic Polymers. Recycling 2017, 2, 24.
[CrossRef]

12. Hua, D.; Gao, J.; Mayo, R.; Smedley, A.; Puranik, P.; Zhan, J. Segregating Hazardous Waste Using Deep Neural Networks in
Real-Time Video. In Proceedings of the 10th Annual Computing and Communication Workshop and Conference, Las Vegas, NV,
USA, 6–8 January 2020; pp. 1016–1022.
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Abstract: In applications where high precision in micro- and nanopositioning is required, piezo-
electric actuators (PEA) are an optimal micromechatronic choice. However, the accuracy of these
devices is affected by a natural phenomenon called “hysteresis” that even increases the instability
of the system. This anomaly can be counteracted through a material re-shape or by the design of
a control strategy. Through this research, a novel control design has been developed; the structure
contemplates an artificial neural network (ANN) feedforward to contract the non-linearities and
a robust close-loop compensator to reduce the unmodelled dynamics, uncertainties and perturba-
tions. The proposed scheme was embedded in a dSpace control platform with a Thorlabs PEA;
the parameters were tuned online through specific metrics. The outcomes were compared with a
conventional proportional-integral-derivative (PID) controller in terms of control signal and tracking
performance. The experimental gathered results showed that the advanced proposed strategy had a
superior accuracy and chattering reduction.

Keywords: mechatronics; hysteresis; advance trajectory control; piezoelectric; actuator; neural
networks; robust control

1. Introduction

A piezoelectric actuator (PEA) is a device that transduces an applied voltage into
a mechanical displacement that can be in the order of nano- and micrometers. This is a
huge advantage for several applications where precision is needed. For instance, optical
microsurgery requires displacement capabilities from a surgeon that can be complex to
achieve since the precision needed is around 10 μm [1]. An additional example is the
employment of PEAs in motors where not only proper accuracy is required but also the
stiffness of the actuator is a critical feature, which is another main advantage of piezoelectric
actuators [2].

Regardless the benefits of PEAs, which are extensive for several uses, downsides have
significant importance in the performance of these appliances. One of the main and most
studied ones is hysteresis, which is a ferroelectric phenomenon related to the material
poles that have arbitrary orientations that align when a voltage is applied, but the release
of this action yields to a different direction [3,4]. Thus, for this reason, it is also known
as a memory effect as it depends on previous history [5]. In practice, the accuracy can be
reduced by up to 22% of the nominal displacement as a consequence of this anomaly [6];
another important consequence of this phenomenon is also the instability [7]. Nevertheless,
since hysteresis is a natural property, available solutions comprise a material re-design or
the implementation of a control algorithm [4].

Proportional-integral-derivative (PID) had been widely used in practice as a first
option. Authors of [8] developed a PID for the position, which was verified in simulations
and later in experiments where the results showed a tracking error reduction of 5%. A
main disadvantage of PIDs is the gain scheduling, which can vary for different scenarios
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and or situations; thus, several ways have been suggested to tune these. For instance, the
authors of [9] proposed the usage of particle swarm optimisation (PSO) in a simulation
with a suitable PEA model. The obtained gains were used in an experimental platform
with a commercial PEA where the results showed an improvement in the position accuracy.
However, online tuning algorithms for experimental rigs can require a significant amount
of computational resources, and certainly, there are other non-linear controllers that manage
the compensation with better performance.

Sliding mode control (SMC) is a non-linear strategy with a discontinuity that drives the
system in a sliding surface [10]. The main advantage is the robustness against uncertainties
and external disturbances. The classic SMC has been implemented in PEAs for force
control by the authors of [11], where they found suitable outcomes with sine signals
as references. A similar approach was carried out in the research of Chouza et al. [12],
where SMC based with a PID surface was implemented in a commercial PEA where they
tested different reference signals, such as the ramp, constants and sine wave. In spite of
the improvements of error reduction in the ramp and constant references, the sine wave
showed an error of around 5%. However, in the analysed background, it was shown that
the main disadvantage of SMC is the chattering that is generated by the discontinuous
property. This is an unwanted effect because it increases the energy loss and also the wear
in the actuator [13].

Certainly, the chattering can only be reduced and not eliminated because the disconti-
nuity (produced by a sign function) is on of the main features of SMC. Thus, in the recent
years, many proposals have been published to trim this effect. For instance, the authors
of [14] changed the discontinuity by a hyperbolic function, and in comparison with conven-
tional approaches, the enhancement was acknowledged in the results. Another advance
strategy is the usage of high order sliding mode controllers (HOSMC), where high order
derivatives are used in the sliding surface, and as a result, the chattering is relieved [15,16].
An example of implementation has been carried out by the authors of [17], where they
used an HOSMC as an observer for error compensation in a PEA test rig. The results
showed significant improvements in comparison with other conventional types of SMC
strategies in simulation and experiments. Regardless of the enhancement of HOSMC over
conventional SMC, the design of sliding controllers establishes that the control law is split
into a switching and an equivalent term that are aimed to maintain and compensate the
sliding motion [18]. The equivalent is commonly achieved through a mathematical model
that describes the system, and this would imply the use of a proper hysteresis description.

Hysteresis models for PEAs are mainly classified in two main categories: physical and
phenomenological [19]. The first-mentioned group is a description of the ferromagnetic
effect that produces the non-linearity, although the material dependency and complex
numerical solutions are the downsides of these theories [20,21]. In regards to the phe-
nomenological, the sub-classification is related to the ones based on differential equations
(Dunhem [22], Backslash [23] and Bouc-Wen [24]), operator models (Preisach [5], Prandtl-
Ishlinskii [25] and Krasnoselskii-Pokrovskii [26]) and polynomial models [27]. Neverthe-
less, the disadvantages of these approaches are linked with complicated solutions to gather
the inverse model, incapability to deal with asymmetric hysteresis, rate dependency and
complex implementation [20].

Based on the research about the background that we made, we designed an HOSMC
controller known as QC-Continuous (QCSMC), which provides suitable results in terms of
chattering reduction in previous works [28]. Due to the drawbacks that we enumerated
about hysteresis models, we decided to achieve the equivalent term of the sliding controller
through means of an artificial neural network (ANN). This is possible because we could
conduct experiments to acquire data for the ANN training.

The structure of this article is arranged as follows. In Section 2, we provided a descrip-
tion about the hardware employed for the experiments within their technical specifications,
a hysteresis explanation of the PEA used, and the controllers designed within the metrics
used to contrast their performance. Section 3 provides the obtained results of the trained
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ANN and the control implementation outcomes. Finally, in Section 4, we recap the most
important features obtained within the research.

2. Materials Furthermore, Methods

2.1. Hardware Description

The main hardware that we used is a Thorlabs PK4FYC2 PEA that was produced with
several piezoelectric chips wedged with epoxy and glass beads. A maximum displacement
of 38.5 μm is achieved with a driving voltage of 150 V. As the device is frequently handled
for precise and micrometric displacement, the manufacturer included four strain gauges
arrayed in a Wheatstone bridge so that the measurement could be obtained from resistance
variation, which provides a better resolution [29].

The PEA accessories include a driver cube KPZ101, whose input signal is 0–10 V
and is transformed into a 0–150 V to manage the PEA. As the PEA delivers an output
voltage that is in the order of milivolts, a pre-amplifier augments this value into a 0–2 V
signal. The latter is transferred into a reader cube KSG101, which transforms the voltage
into 0–10 V. Further technical details of the PEA and its peripherals are summarized in
Table 1.

Table 1. Thorlabs hardware used.

PEA PK4FYC2 Values Units

Maximum displacement 38.5 μm
Blocking force 1000 N

Resonant frequency 34 kHz
Maximum error 15 %

Driver Cube KPZ101

Output driving voltage for PEA 150 V
Input driving voltage 0–10 V

Maximum output bandwidth 1 kHz

Reader Cube KSG101

Output range 0–10 V
Resolution 1 nm

Pre-Amplifier AMP002

Output range 0–2 V

Since the input and output signals of the PEA are in the range of 0–10 V, we, therefore,
used a proper platform for acquisition and control, such as the dSpace DS1104 board. We
linked this device to a Dell Precision Workstation T3500 through a peripheral component
interconnect (PCI) for monitoring and control. Moreover, the DS1104 has an external
connector panel CP1104 that we connected to the PEA driver and reader.

In regards to the software, we developed the proposed strutures in Simulink by
Mathworks and embedded them through the platform dSpace real-time interface (RTI).
This allowed us to generate and manage a real-time control algorithm, while the RTI helped
to reduce the compilation time. All the information was acquired with ControlDesk and
processed with MATLAB by Mathworks. The explained relation between software and
hardware is detailed in Figure 1. The chosen sampling time was 1kHz as it is a suitable
match with the acquisition and the hardware physical limits.
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Figure 1. Hardware and software workflow.

2.2. Hysteresis Description and Reference Design

Common excitation signals that represent a suitable hysteresis graph in PEAs are
triangular and sine waves [5]. The triangular waveform is a complex input for the PEA, as
it not only implies that sharp slope changes are required to be followed, but also this wave
is generated from high-frequency harmonics [30]. Therefore, we developed a triangular
reference of a 145V amplitude, which is lower than the maximum allowed voltage so that
the PEA lifetime is not affected; additionally, we chose a period of 4 s for this signal.

With the previously described triangular waveform as an output, we acquired the
displacement of the PEA where the outcome is the one shown in Figure 2. The mechanics
and features of the curve are developed as follows from the beginning of the applied
voltage:

• Initial point: We calibrated the PEA so that it initially starts at a zero displacement
from this.

• Curve (1): This is known as the initial ascending curve, which begins from the pre-
viously described point and ends at the upper target point. As the figure shows,
the non-linearity is present along this path.

• Upper target point: At this place, the PEA reached the correspondent displacement
to the specified amplitude of the triangular waveform.

• Curve (2): This, known as the second ascending curve, shows that the PEA has an asym-
metric hysteresis, which is a phenomenon that creates difficulties when mathematical
models need to be found to reflex.

• Lower converging point: Ideally, the final position could have been at the initial point
when the applied voltage is null. However, in this case, the lower converging point is
not the same as the initial point.

• Curve (3): Provided that amplitude and period are the same along the experiment,
then this curve will be equal for the following ascending cycles.

• Curve (4): As with the curve (3), this course will be the same provided that the
reference configuration is constant.
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Figure 2. Hysteresis graph of the used PEA.

Taking into account the previous analysis, we designed the reference considering
the applied voltage in the PEA. As a first consideration, the initial point within the first
ascending curve is negligible to evaluate the performance of the PEA in a long-term
experiment. Therefore, we outlined a reference between the lower converging and upper
target point as linear Equation (1) reflects. In this mathematical expression, we defined X
as the displacement, α the slope between the two points of interests and b the vertical offset
in terms of the lower converging point.

X[μm] = α · V + b (1)

2.3. Contrasted Schemes and Their Design

Based on the framework that we proposed, we decided to contrast it with a PID
controller, a commonly used structure in the industry and PEA tracking performance.
A simplified description of the used controllers is displayed in Figure 3. We designed the
structure by taking into account the advantages of the RTI properties so that the variables of
each controller could be changed in real-time. We developed the quest to find these values
through the online minimization of the integral of the absolute error (IAE). Equation (2)
express the IAE, where ei is the error in at the i-th sample, Δt is the sampling time and N
the number of points chosen to calculate the value.

IAE =
N

∑
i=1

|ei|Δt (2)
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Figure 3. Control schemes used where (a) is the proposed QCSMC-ANN and (b) is the contrasted
PID.

Another statistical metric used is the root-mean-square-error (RMSE), which reflects
the precision of each framework in terms of the error. Equation (3) is the mathematical
expression of the latter-described metric.

RMSE =

√√√√ 1
N

N

∑
i=1

(ei)2 (3)

According to Ventura and Fridman [31], the chattering can be measured with Equation (4)
in terms of the energy that is being dissipated from a nominal state u(t) of a control
signal u(t).

chatt(u) =

[ ∫ T

t0

(
u̇(t)− u̇(t)

)2
dt

] 1
2

(4)

2.4. Quasi-Continuous Sliding Mode Control

QC-SMC belongs to the HOSMC, known for the robustness and performance in track-
ing precision; moreover, the chattering reduction is another advantage of this controller
over other structures [32]. The control law that we settled as Equation (5) comprises of the
terms uann and usw0, which, respectively, aim to compensate the non-linearities (such as the
hysteresis) and counteract uncertainties or perturbations The definition of usw is defined in
Equation (6), which is dependant on a sliding surface expressed by Equation (7) and where
parameters λ and γ are positively defined by the designer. The term uann is dependant on
the ANN compensation, and further details are given in the following section.

u = uann + usw (5)

usw = −γ
ṡ + |s|1/2sign(ṡ)

|ṡ|+ |s|1/2 (6)

s = e + λ
∫ t

0
edt (7)

Neural Network Compensation Design

The implementation of conventional SMC methods, where the equivalent term has to
be through a mathematical model, can yield to a insufficient compensation or even increase

344



Appl. Sci. 2021, 11, 7390

the computational cost. Nevertheless, in recent years, ANNs have been a suitable solution
for system identification. The only drawback is the time that the training algorithm requires
to develop a truthful output. Hence, we used a time-delay neural network (TDNN) due to
the efficiency related to training time versus accuracy obtained.

In former investigations, we tested TDNN structures to reduce hysteresis, which
showed proper results in combination with conventional controllers [33]. As the name
states, a TDNN is an extension of a classic multilayer perceptron (MLP) that works with
time signals. The inclusion of time delays n allows the neurons to get further informa-
tion about the time history of the input; this implies that the ANN will fit to a time set
pattern [34]. Mathematically, this is expressed with Equation (8), where f is a non-linear
function that relates the input/output of the ANN. An schematic explanation is provide in
Figure 4.

Figure 4. The ANN.

uann = f
(

x(t), x(t − 1), x(t − 2), . . . , x(t − n)
)

(8)

A further expansion of the function f is as the following Equations (9)–(12): the
retarded reference inputs r(t − n) are weighted with parameters Wi and bias bi; later, this
operation yields into the activation function called tansig. The output q(t), which is the
outcome of the described operation, is employed as an input into the output layer. In this
case, the procedure is similar as previously, but the activation is done with a linear transfer
function called purelin. Subsequently, the output of this layer provides the compensation
voltage uann.

q(t) = tansig

(
n

∑
p=0

Wi · r(t − n) + bi

)
(9)

tansig(x) =
2

1 + e−2x − 1. (10)

uann = purelin[Wjq(t) + bj], (11)

purelin(x) = x. (12)

The calculation of the weights and bias, related to the previous explained relations,
are achieved with training algorithms. In this case, we used Levenberg–Marquardt, which
represents a method that guarantees the fitting of the ANN to the experimental data
through an adaptive behaviour [35]. This mechanism is generated by finding the location
of the minimum of a cost function is declared as the sum of square errors and the real
measurements within an iterative updating.

2.5. PID Control

The ream of PID controllers in terms of design and applications is vast, which allows
a robust design even with its simple structure. Even though several tuning methods
are available such as Ziegler–Nichols or Cohen–Coon [36], we used, in this case, the
minimization of IAE as it was explained previously. The controller expression is the one
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provided in Equation (13), where Kp, Ki and Kd are, respectively, the proportional, integral
and derivative gains; Δt is the sampling time, and e(k) is the error at a step k.

u(k) = Kpe(k) + Ki

k

∑
i=1

e(i)Δt +
Kd[e(k)− e(k − 1)]

Δt
. (13)

3. Results

3.1. ANN Analysis Results

We recorded experimental data from the PEA where the input was a triangular signal
of 145 V with a 4 s period. Furthermore, the displacement was acquired through the strain
gauge reader in 40 s experiments with a sampling time of 1 kHz. From this data, we used
the displacement as an input and the applied voltage as an output because the aim is to
achieve an inverse model.

After several tests to achieve the best MSE, we configured the ANN in 22 neurons
with 5 input delays. The data were split into 70%, 15% and 15%, respectively, for training,
evaluation and testing. Finally, the performance was measured with the mean squared
error (MSE) in the validation set, where the value obtained was 0.017 in 12.000 iterations
made in 4 min.

Figure 5 shows the performance of the ANN to fit with the PEA hysteresis in a 4 s cycle.
Although Figure 5a adapts with a decent effectiveness, Figure 5b exhibits the error where
several features can be highlighted. Between 1.5 and 2.5, the error tends to increase with
significant peaks; nevertheless, at 2 s, the deviation increases considerably due to the slope
change as it is a complex transition to be projected by the ANN. Still, the calculated RMSE
for this case provided 0.041 V in comparison to experimental data, which was acceptable.

Figure 5. Ability of the ANN to fit to the PEA nonlinearity, where: (a) is the hysteresis graph contrast and (b) the error of
the fitting.

3.2. Reference Tracking Results

The control structures were designed in Simulink, which was later embedded in the
dSpace platform. Even though the main reference used was a triangle wave, we also
used a sine signal (with same period and amplitude) and a variable amplitude triangular
signal. The aim of this was to test the flexibility of the proposed structures against different
references.

In regards to the parameters of each controller, these were reached through the min-
imization of the IAE in the experiments. The PID constants Kp, Ki and Kd gathered are,
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respectively, 1000, 10 and 10−4. The QCSMC-ANN parameters, γ and λ, acquired are 60
and 8, respectively.

3.3. Triangular Tracking Results

The first contract was performed with a triangular wave due to its complexity to
be followed. Figure 6 presents the error obtained with the QCSMC-ANN and PID in
triangular cycles where several points can be highlighted. The PID controller had a variable
performance since between 0 and 1 s, the error declined; however, in the following second,
the error began to rise up until 2 s. Despite the QCSMC-ANN providing a high amplitude
in the first second of this period, in the following, it was diminished.

Certainly, at 2 s, the first critical point appeared since it is where the slope of the
triangular reference changes its sign. The PID changed suddenly from 0.1 μm to near
−0.12 μm; although the controller performed an abrupt correction, the QCSMC-ANN
generated a similar action but with a faster improvement in time. This is reflected after
2 s where the PID had transitory development without reaching the null value of the error.
Nevertheless, the QCSMC-ANN carried with the same demeanour as previously right after
the slope change.

The fourth second of this analysis exhibits another crucial point to focus as it is
the following slope change at the lower converging point. The PID unveiled a similar
situation as previously at 2 s but with lower amplitude and a subsequently transitory
response. On the other hand, even if the QCSMC-ANN featured a peak that has a value
above −0.2 μm, the later reaction shows a similar trend as previously described, where
the controller aims to a mean near the null value. After 4 s, since the signal is repeated,
the detailed features are mirrored.

Figure 6. The error generated in 2 cycles of a triangular reference.

Aside from the error development, the control signal is an important feature to
analyse because it contributes to the performance of the proposed structures. Figure 7 is
a contrast of the control signal generated along the analysed error of both frameworks.
As main characteristics to take into account at this point, saturations or sudden changes
needed focus as these can damage the PEA driver cube. Henceforth, it can be perceived
that both controllers had a suitable demeanour, and any downsides were presented in
the experiments.
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Figure 7. The control signal in 2 cycles of a triangular reference.

3.4. Sinusoidal Tracking Results

In pursuance of a suitable performance test that can show the docility of the proposed
design against similar references, we inspected the development with a sine wave form
with the same chosen amplitude and periods as previously. Figure 8 shows the error that
the PID and the QCSMC-ANN produced in the mentioned reference signal. The PID
had an inferior performance in relation to the previous test since after 1 s, the amplitude
increased with peaks up to 0.15 μm. Although the slope transition is softer in 2 s, the error
kept increasing afterwards, which resulted in a variation of around 0.3 μm. However,
the QCSMC-ANN behaved even better than previously since the error was compensated
almost equally along the test with an amplitude below 0.05 μm, which oscillates around
the null value.

Finally, the control signal that is presented in Figure 9 unveils a better performance
than the former analysis due to the softness of the signal. It can be seen that any harm
changes were developed in the analysed time, which can lead to a damage of the in-
volved hardware.
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Figure 8. The error generated in 2 cycles of a sine wave reference.

Figure 9. The control signal in 2 cycles of a sine wave reference.

3.5. Triangular Tracking Results with Variable Amplitude

Another experiment performed is the triangular reference signal with variable ampli-
tudes that were settled randomly in 25 V and 121 V. Figure 10 shows the repercussions of
the error for the considered reference. During the first 4 s, where the amplitude was 25 V,
both controllers had a similar demeanour. The PID shows a perceptible shift at the upper
target point in 2 s; however, the QCSMC-ANN provided a constant development along this
range with the same deviation as the PID. On the other hand, the major difference can be
noticeable during 121 V, where the PID behaves similarly to previously analysed triangular
signals where fast corrections occur during the slope changes of the reference signal. This
effect produced a brief increment of the error amplitude in the analysed controllers, but
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the QCSMC-ANN managed to carry this without any transients, a feature produced by
the PID.

As previously, another important feature is the control signal, which is shown in
Figure 11. It can be seen that any saturations or sudden corrections that can deteriorate
the hardware were developed in the performed experiments. Nevertheless, effects of
chattering are analysed in further details in the following section.

Figure 10. The error generated in 2 cycles of a triangular reference with variable amplitude.

Figure 11. The control signal in 2 cycles of a triangular reference with variable amplitude.

3.6. Metrics Results

Certainly, for extra precise performance measurement and comparison, we used three
tools that aided us to gather more conclusions. As previously explained, the IAE was
used to tune the parameters until this value becomes minimum. The RMSE provides
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the accuracy in terms of the error, and because we implemented an SMC-based controller
(known for the chattering generated in the control signal), we calculated this value based on
the previously explained method. Numerical results of these parameters are summarized
in Table 2.

Table 2. A comparison of the different metrics.

Reference IAE RMSE (μm) Chatt(u) in 4 s

QCSMC-ANN PID Diff (%) QCSMC-ANN PID Diff (%) QCSMC-ANN PID Diff (%)

Triangle 0.1314 0.28 53.07 0.0404 0.0756 46.5 412.75 640.97 35.6
Sine wave 0.0518 0.28 81.5 0.0161 0.0795 79.7 108.8 600.8 81.8
Var. Amp. 0.2067 0.33 33.6 0.0318 0.0519 38.5 514.88 659.4 22

In regards to the IAE, the QCSMC-ANN indicated a superior performance in the
triangular reference, which led to a 53.07% difference in comparison with the PID. Never-
theless, in the sine wave test, it is shown that this value was augmented, as the QCSMC-
ANN reached 81.5% more. Additionally, the variable amplitude signal carried with the
same trend, as the difference achieved was 33.6% favourable for the proposed algorithm.
The RMSE showed a similar manner since the QCSMC-ANN kept the advantage over the
PID in both signals granted 46.5%, 79.7% and 38.5% of difference with the triangular, sine
and variable amplitude waves, respectively. Lastly, the measured chattering indicates the
dominance of the QCSMC-ANN over the PID, and even it emblazons through values of
the suitable performance of the control signal; according to the values of 35.6%, 81.8% and
22% of difference in both signals, it is clear that the QCSMC-ANN had less chattering than
the PID controller.

4. Conclusions

Throughout this research, we developed a control strategy with the aim of increasing
the accuracy of a commercial PEA. After an analysis of the previous investigations from
other authors and based on the study that we made, we found that the hysteresis was the
main non-linear phenomenon to be counteracted.

First, we made an analysis of the properties of a commercial PEA PK4FYC2 from Thor-
labs. According to the manufacturer, the maximum error is 15%, which is a considerable
value for applications where high precision is required. As the main reference, we used
a triangular wave because it is a complex signal to be tracked due to the high-frequency
harmonics and sudden slope changes.

Secondly, we proposed a robust sliding controller due to the advantages studied in the
related works from the introduction. Thus, we chose to use a QCSMC, which belongs to
the HOSMC, so that the chattering is reduced in comparison to classic SMCs. Commonly,
sliding controllers have two terms where one of them is achieved through a mathematical
model, but instead, a distinctive feature of our controller is the use an ANN. We contrasted
the proposed design with a conventional PID in terms of several metrics, such as IAE (that
was also used to tune the gains of each framework in experiments), MSE and chattering.

In regards to the results, at first, we analysed the performance of the ANN, which
provided a suitable RMSE and fitting to the hysteresis. Later, we implemented the QCSMC-
ANN and the PID in a dSpace platform for a real-time experiment. The results showed
that the QCSMC-ANN generated a lower tracking error, which oscillated around the null
value. The PID displayed a slow compensation and even with a disparity that had a
variation with a higher amplitude that reached the 0.1 μm. Nevertheless, both schemes
showed suitable control signals in the analysed graphs. Additionally, because we wanted
to test the flexibility of both structures against reference changes, we used a sine wave
and a triangular reference with variable amplitude. In this case, the first case exhibited a
demeanour that was similar in the error and control signal because the reference was softer
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than the previous one. In regards to the variable amplitude signal, the QCSMC-ANN still
provided a superior performance, which was verified in graphical and numerical analysis.

Finally, we calculated the mentioned metrics, which showed concrete values of the
performance from the comparisons made. Thus, in terms of the IAE and RMSE, the QCSMC-
ANN had a important distinction favourable for the QC-SMC in the proposed reference
signals. The calculated chattering also showed a significant difference, where the QC-SMC
carried the leading trend.

As future related works, we expect to study assorted options, including the usage
of other ANNs configurations with several training algorithms to improve the accuracy.
Certainly, this also implies taking into account the computational resources in terms of
the training time. The QCSMC can also be improved through the usage of an adaptive
algorithm for gain scheduling.
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Abbreviations

The following abbreviations are used in this manuscript:

PEA Piezoelectric actuator
PID Proportional-integral-derivative
PSO Particle swarm optimisation
SMC Sliding mode control
HOSMC High order sliding mode control
QCSMC Cuasi-continous sliding mode control
ANN Artificial neural networks
PCI Peripheral component interconnect
RTI Real-time interface
IAE Integral of absolute error
RSMC Root-mean-squared-error
TDNN Time delay neural network
MLP Multilayer perceptron
MSE Mean squared error
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Abstract: The thin wobble motors that are required to hold rating shafts employ an electropermanent
magnet. This turns the holding force on and off by applying a momentary electrical pulse. To design
the magnet devices without the need for finite element analyses, a theoretical force model is necessary
for predicting the attractive force. In this paper, first, a force model is derived by estimating the
permeance around the air gap. A magnetic circuit is constructed, employing a relatively simple
method to build the model in clouding leakage flux. Thus, the basic structure and driving principle
are also presented. Next, an analytical force model is constructed on the basis of distribution
parameter analysis between the stator and the rotating shaft. The design of the electromagnet core
and the control method are presented. Finally, a prototype model of the motor that is 30 mm in
diameter and 7 mm in thick is fabricated. The two models are verified by comparing the results of
FEM with the results of the experiments. They can properly predict the attractive force, so the thin
wobble motor with holding force can be applied in portable electric equipment.

Keywords: wobble motor; permeance; magnetic circuit; leakage flux; electropermanent magnet;
force model

1. Introduction

Electromagnetic actuators, which have many advantages, including their small size,
light weight, high precision, high accuracy, and high efficiency, have been widely used as
rotary driving motors in various fields such as industrial machinery, medicine, human care
device, electronic parts assembly, military equipment and mobile robots. These motors
are manufactured depending on the target application in various ways. For example, new
motors shapes have been developed using physical and chemical phenomena such as
electromagnetic force, smart polymers, shape-memory alloy (SMA), electrostatic force, etc.
Some of the materials used to drive these motors are difficult to control, and, therefore,
there are limitations to their use. For this reason, we chose electromagnetically driven
motors that are easy to manufacture and control and can easily calculate the generated
force. However, these motors require a reduction gear device to increase their driving
torque. The added reduction gear equipment increases the total volume of the driving
motor, making it difficult to drive or install. In addition, it may cause mechanical backlash,
added friction, or assembly errors, which may further occur to malfunctions when motor is
operated. To solve these problems, there have been a number of research and development
efforts aiming to increase torque through the application of various types of reduction gear
device [1,2]. Several new types of stepping motors have been developed, such as a wobble
motor [3–6]. In this research, we selected a wobble motor because it is simple structure,
with an eccentric structure, and the torque generated per unit volume is very high due to
the gear ratio while it also has the advantage of a precise control [7–9]. However, existing
wobble motors have the main disadvantage that they cannot fix a rotating shaft while
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the shaft is halted. To fix the shaft, we introduce a new type of wobble actuator with
an electropermanent magnet (EPM). It comprises semi-hard (Alnico 5) and neodymium
(NdFeB) magnets, and it can be used to fix the rotating shaft.

In this paper, we introduce the two theoretical force models for application with
portable electric devices and fabricate a thin electromagnetic wobble motor that is 50 mm
in diameter and 7 mm thick including the EPM device. First, it is necessary to predict the
magnetic force generated by the magnets of the EPM device. The most accurate method
predicting force is used by commercial finite element method software. FEM is one of the
ways to solve problems using numerical approximation for problems that are difficult to
obtain an accurate theoretical interpretation. In addition, FEM has the advantage of being
compatible with Auto CAD or other design programs, and accuracy of the model analysis
and user convenience are very high, and high-quality analysis is possible even if there is a
lack of professional knowledge about FEM. On the other hand, it will take several hours
to obtain the precise analysis of the complex model and variables in the model. However,
this comes with the problem of having to perform numerous iterations in the initial design
step. On the other hand, a more systematic method is magnetic circuit analysis. An EPM
device with two magnets is expressed as a model in which a magnetic flux source and
an internal reluctance are connected in parallel. The magnetic flux paths, including the
reluctance of the core of the magnetic material and the reluctance in the air gap, are shown
as an electric circuit. The method for calculating the magnetic force in a magnetic circuit is
similar to calculate the current in an electric circuit and is very simple. Since the fringing
effect and the leakage flux around the air gap are not considered, the results of magnetic
circuit analysis led to a considerably large degree of error. This is because it is difficult to
accurately include them in magnetic circuits. Therefore, we introduce a theoretical force
method into the initial design for use in the magnetic circuit. In addition, we design an EPM
device including magnets with a flat plate and a constant air gap, and propose a simple
3D model for the leakage flux and fringing effect around the gap. The paths of magnetic
flux are modeled using a simplified method consisting of several arcs, straight lines, and
a mean flux line. Additionally, we introduce the schematic of the EPM device to validate
the proposed theoretical force model, and the basic principle and structure, are presented
in a straightforward manner. Its effectiveness is confirmed on the basis of a comparison
with the results of FEM analysis, and experiments carried out using a prototype. Second,
in order to analyze the characteristics existing between the electromagnet core and the
rotating shaft, it is necessary to predict the magnetic flux density and magnetic force when
changing the air gap. To this end, we introduce a distribution parameter method in order to
propose a theoretical force model. This method was used to calculate the gap by mapping
the air gap, which does not have a constant structure, onto the Cartesian coordinates. We
also present a schematic of a thin wobble motor in order to validate the proposed force
model, as well as the optimization of core shape, basic driving principle, basic structure
and control method of the motor. Finally, the experimental results are presented for the
EPM device and a thin wobble motor.

2. Driving Principle and Structure

2.1. Driving Principle and Structure of the Wobble Motor

Figure 1 shows the basic working principle and structure of the wobble motor, which
comprises of cylindrical stator A and columnar rotating shaft rotor B. The rolling point of
Figure 1a is in contact with the stator A and the rotor B. Rs, RR, Rc and Sc denote in the
radius of stator A, the radius of a rotor B, the central point of rotor B, and central point
of stator A, respectively. The primary feature of the wobble motor is that rotor B rolls
along stator A’s inner surface as shown in Figure 1b. If the input current is supplied in
a clockwise direction in a continuous manner, the force will be generated from the input
current. The attractive force pulls the rotor, and the rotor rolls along the inner of the stator
via the generated attractive force. The driving direction of stator A is in the opposite
direction of rolling direction of rotor B [10–15].
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(a) 

(b) 

Figure 1. Driving principle of a wobble motor: (a) Schematic of a wobble motor; (b) Driving principle.

2.2. Driving Principle and Structure of the EPM

The EPM composes of two magnetic materials, NdFeB magnet and another Alnico5
magnet; a coil is wrapped around these, as shown in Figure 2. The basic principle driving
of the EPM was showed using the MagNet 7.0 electromagnetic analysis software from
Mentor. If the magnetization directions of the two magnets are oppositely combined, the
magnetic flux only circulates inside connected iron as shown in Figure 2a. After a switching
current pulse of the opposite polarity applied to Alinico5, the magnetization directions
of the two magnets were the same, and the EPM generated an external magnetic flux as
shown in Figure 2b. The magnetization direction of the NdFeB material is unchanged
because it has high coercivity. In ferromagnetic materials, the phenomenon of magnetic
hysteresis occurs. J.A. Ewing coined the term “hysteresis” to describe his observation that
the magnetic induction in a metal behind the applied current, and he also demonstrated
that the molecules of a ferromagnetic material acted as reversible permanent magnets [16].
The normal coercivity of Alnico 5 is approximately 50 kA/m, and the remnant flux density
is approximately 1.2 T. The normal coercivity of NdFeB is approximately 1000 kA/m, and
the remnant flux density is approximately 1.2~1.3 T [17].

When a switching current is applied to the coil wound, the magnetization direction of
the Alnico 5 magnet changes, and the external magnetic force generates attractive force.
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Figure 2. Basic principle driving an electropermanent magnet: (a) In the no current state, the
two magnets are oppositely polarized; (b) In the switching current state, the two magnetic magnets
are polarized in the same direction.

3. Derivation of Theoretical Force Model

3.1. Theoretical Force Analysis of the EPM

Figure 3 shows a full schematic of the EPM device for holding the rotating shaft
of the wobble motor. Alnico 5 and NdFeB magnets are described as square magnets in
the schematic, but the two magnets used in the theoretical analysis and the experiment
were replaced with cylindrical magnets. To predict the attractive force, first, the structure
is assumed to be a simple structure with a constant gap, and a core that contains two
permanent magnets. Additionally, we assume that the rotating shaft is replaced with the
plate. Second, in order to simplify the calculations for magnetic flux density, including the
leakage flux, we simplified the path through which the leakage flux flows. Additionally,
the fringing flux was assumed to be the leakage flux, and the path of flux was consisted
as a combination of arcs and straight line, as shown in Figure 4a [18]. The fringing fluxes
were considered a kind of leakage flux. It was also assumed that the paths detouring on
the top outside of the surrounding air gap were connected in the quadrant with a straight
line and the length of the air gap [19]. Figure 4b shows a consideration of the mean leakage
flux line. The specifications of the electromagnetic elements in use and their parameters
are summarized in Table 1.

For the leakage flux paths of Pdx, as shown in Figure 4a, the length lx of the magnetic
flux path is equal to g + πx, which is the sum of the lengths of two quadrant arcs of radius
x and the length of the gap. The permeance in the path is as follows:

Pdx =
1

�dx
=

μ0dAx

lx
=

μ0bdx
g + πx

(1)

The permeance of the total leakage flux can be obtained by integrating Equation (1).
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Figure 3. Schematic of the switchable eletropermanent magnet construction.

 

(a) (b) 

Figure 4. Paths model for leakage flux: (a) Paths for the leaked flux; (b) Mean length of flux path.

Table 1. Parameters of the electropermanent magnet device.

Parameter Symbol Value Unit

Thickness b 2 mm
Length L 22 mm

Pole length n 4 mm
Pole length q 11.6 mm
Pole length h 5.5 mm
Pole height p 2 mm
Pole width a 2 mm

Magnet diameter d 2 mm
Magnet length Lm 8 mm

Air gap g 0.1 mm
Rotor diameter r 5 mm
Stator diameter R 5.1 mm

Number of turns N 120
Angle θ 45 deg

Applied larger than current i 5 A
Diameter of the coil dc 0.18 mm

Permeability of the free space μ0 4π × 10−7 H/m
Relative permeability of the magnet μr 1.05 H/m
Cross-sectional area of the air gap Ag 5.26 mm2

Cross-sectional area of two magnets Am 6.28 mm2
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If the core and the plate have a constant air gap, as shown in Figure 5a, it is assumed
that the leakage flux paths diverting to the outside of the gap are connected to two quad-
rants of the same magnetic flux in a straight line along the length of the air gap. Each
leakage flux path indicated by a line has a reluctance, and all of them in the magnetic circuit
are connected in parallel, expressing it as shown in Figure 5b. Therefore, it is possible to
use a permeance that has an inverse relationship with a reluctance.

 

(a) (b) 

Figure 5. Analysis model consisting of an electropermanent magnet: (a) Flux leakage of the electropermanent magnet; (b)
Magnetic circuit.

In Figure 5b, the reluctance �c and �o in the iron are ignored. Therefore, when the
permeances of the leakage flux path are Pgo, Pgl , Pmo, Pmi and Pg, respectively, they can
be expressed as reciprocal reluctances �go,�gl ,�mo,�mi and �g, �m, Φr and Φm are the
source of the magnet, the magnetic flux of the magnetic flux passing through the air gap.
To more accurately consider the leakage flux generated in the gap, it is regarded as a
geometry as shown in Figure 6. The permeance of each of the flux paths through the gap
can be expressed as permeance Pgo = P1 + 2(P2 + P3) + 4P4 and Pgl = 2(P5 + P6) + 4P7.
Permeance P1 is μ0ab/g. The mean length of the flux path of permeance P2 can be consid-
ered to be equal to the length of a line drawn midway between the radius and a quarter
of circumference as shown in Figure 6b. Permeance P2 and P3 with a quadrant of the
cylindrical volume are 0.528μ0b and 0.528μ0a, respectively.

(a) (b) 

Figure 6. Permeance of flux paths through the air gap: (a) Permeance of parallel to end of the core; (b) Simple-shaped
volumes of permeance.

The mean length of the flux path for permeance P4 with one eighth of the spherical
volume can be approximated by considering the mean flux line to be situated 0.65 of
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the way between the center of the sphere and the circumference, as shown in Figure 5b.
Therefore, P4 with one-eighth of the spherical volume is 0.308μ0g. P5 and P6 with one-half
of the half annulus are 2μ0a/π ln(1 + t/g) and 2μ0b/π ln(1 + t/g), respectively. P7 with
one-half of the quadrant of the spherical shell is 0.5μ0t. Permeance Pmo and Pmi detouring
into the air without going through the plate are μ0t/π ln(1 + π) and μ0t/2, respectively.
The reciprocal of permeance is defined as reluctance. �t is the total reluctance; thus, all
reluctance in the magnetic circuit can be calculated. To calculate the magnetic field in
consideration of the leakage flux, we used Gauss’ law and a magnetic force circuit, which
can be expressed as follows

�t =
1
Pt

=
1

Pmo + Pmi + 0.5(Pgl + Pgo)
(2)

πd2(Ba + Br)/8 = Bgab + Φleak

Φleak = (Ni − HmLm)/�leak

Hm = (μ0ab/2g+1/�leak)Ni−πd2(Br+Ba)/8
πd2μ0/8+(μ0ab/2g+1/�leak)Lm

(3)

where Hm is the axial magnetic field intensity when combining two magnets, Bg is the
magnetic field density in the air gap, and Φleak is the pole-to-pole leakage flux. The axial
magnetic flux densities of the Alnico 5 and NdFeb magnets are Ba and Br, respectively.
Finally, the generated attractive force can be obtained using the Maxwell stress tensor,
which can be written as

F = μ0ab
(

Ni − HmLm

2g

)2
(4)

3.2. Theoretical Force Analysis of Motor

The side view used for theoretical analysis is showed in Figure 7. An idealized model
was assumed in which the end effects were neglected. The idealized model is thus similar
to an idealized rotating machine. A distribution equation of the electromagnetic system
can be expressed using Maxwell’s equation and Ohm’s law. The magnetic vector potential
A is defined as B =∇×A. Their solutions have previously been studied in related research
areas [20–23]. Therefore, we briefly describe the theoretical analysis of the flux density of
the air gap. To establish analytical solutions as a function of the air gap, variations in the
r-direction are ignored, and ∇ · A = 0 can also be assumed, and six terms of g, h, t, p, μ0
and μr are air gap, the pole width, thickness of the stator, pole pitch, the permeability of air
gap and the permeability of the material, respectively.

Figure 7. Geometric model for theoretical analysis.

The governing equation of the electromagnetic phenomena in the wobble motor can
be calculated as

∇2A = μσ

{
∂A

∂t
− v × (∇× A)

}
(5)
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where μ0 = 4π × 10−7N/A2 is the permeability of the free space, v is the speed of the
moving rotor (m/s), and σ is electrical conductivity ((Ω · m)−1). B is expressed from the
Fourier series as

B =
∞

∑
n=1,3,5···

Bmej(ωt−βx)
�
j (6)

where Bm = 4B/nπ sin(βd/2) and β = (nπ/p). β and ω are the wave number and
angular velocity, respectively.

The y-direction flux density in the air gap can be calculated using the following
equation:

B = ∇× A =
(

∂Ay
∂y

)�
i −
(

∂Ay
∂x

)�
j = Bx

�
i + Bj

�
j

Bx,I I =
∂AII

∂y =
∞
∑

n=1,3,5,···
(
λ1CIIeλ1y + λ2DIIeλ2y)ej(ωt−βx)

By,I I = − ∂AII
∂y =

∞
∑

n=1,3,5,···
jβ
(
λ1CIIeλ1y + λ2DIIeλ2y)ej(ωt−βx)

(7)

where
�
i and

�
j indicate x-and y-axis unit vectors, respectively, and I I represents the layer

of the air gap.
where λ1,2 =

(
γ ±√γ2 + 4α2

)
/2 , α2 = β2 + jμ0σsvsβ , γ = μ0σvx , and s and vs

indicate slip and a synchronous speed, respectively.
The boundary conditions are as follows:

BII |y= 0 , BII,y = Bmej(ωt−βx) ; BII |y=g , BII,g = BIII,g and μBII,x = μrBII I,x; BIII |y=∞, AIII = 0 (8)

The coefficients in Equation (8) form boundary conditions that can be solved, and the
coefficients is as follows:

CII =
Bm(βμ0+λ2μ)eλ2g

jβ(−eλ1gλ1+eλ2gλ2−Δ)

DII =
Bm(βμ0+λ1μ)eλ1g

jβ(eλ1gλ1−eλ2gλ2+Δ)

(9)

where Δ = (eλ1g − eλ2g)βμ0/μ.
Finally, in order to calculate the Equation (7) on the basis of the change in the air

gap [24], the air gap of the wobble motor can be simplified by representing it as a rectangular
coordinate system as shown in Figure 8.

Figure 8. Simplified geometry.

The air gap, g, between the rotor and stator as a function of θ is expressed and
simplified. Rs and Rr are the radius of stator and rotor, respectively. In addition, the
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distance of the air gap, g, between these points on the stator and the rotor was then
calculated.

g =
√
(ms − mr)

2 + (ns − nr)
2

=

√(
−δ±Δ
sec2 θ

− δ±Ψ
sec2 θ

)2
+
(

tan θ×(−δ±Ψ)
sec2 θ

− tan θ×(δ±Δ)
sec2 θ

) (10)

where Δ =
√

δ2 + sec2 θ(R2
s − δ2), Ψ =

√
δ2 + sec2 θ(R2

r − δ2).
The magnetic flux density can be calculated by substituting the valid gap obtained

from Equation (10) into Equation (9). The final magnetic force can be determined using
Maxwell’s stress tensor, which can be written as

Fx =
∮

A

(
Bx · By

)
μ0

dA , Fy =
∮

A

(∣∣By
∣∣2 − |Bx|2

)
2μ0

dA (11)

4. Validation of Theoretical Force Model

4.1. Modeling and Structure of Motor with EPM

To validate the proposed two force models, we developed a prototype based on a
thin wobble motor with EPM 30 mm in diameter and 7 mm in thickness, the schematic
of which is as shown in Figure 9. It was composed of a stator with an electromagnet core
and coil, rotating shaft, and an EPM device. First, we decided to consider the shape of
the core, as this was important for increasing the generated force, and then the core was
simply optimized. The parameters of the core were T1, T2, α, β , as shown in Figure 10a.
To increase the magnetic force and to decrease the leak of magnetic flux, we also carried
out electromagnetic field analysis, and the original material of the core was pure iron. In
this FEM analysis, the magnetic flux density was obtained by exciting two cores when the
rotor was momentarily in contact with the end of the stator. The optimal shape for the core
in order to increase attractive force and the magnetic flux density distribution of the core
were determined through FEM, as shown in Figure 10b.

Figure 9. Schematic of the thin wobble motor with an Electropermanent magnet.

Second, we propose a wobble with EPM device so that the rotating shaft can be
fixed without the continuous use of a power supply. Therefore, it is to be used to solve
the difficulties presented by existing wobble motors, and the schematic is represented in
Figure 11. 3D FEM simulation was conducted to estimate the flow of the magnetic flux of
EPM, but the results of FEM was expressed in 2D as shown in Figure 11 to confirm the
change of magnetic flux. The diameter and length of the two magnets used in FEM were
2 mm and 8 mm, respectively.
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(a) (b) 

Figure 10. Shape of the core: (a) Parameters for optimization of the core; (b) optimized core and the magnetic flux density
distribution.

(a) (b) 

Figure 11. Basic principle driving a proposed electropermanent manent magnet: (a) Flux path when
the magnetization direction of magnets is in the opposite direction; (b) Flux path through air gap
between iron and shaft.

When the magnetization directions of the two magnets are opposite, the magnetic
flux flows only toward the inside as shown Figure 11a. It means that the rotating shaft
in unaffected. When the current for changing the magnetization direction of the Alnico
5 magnet is applied, the magnetization direction is changed. However, when a current
is applied to the coil wound, the magnetization direction of NdFeb does not change.
Therefore, the magnetization direction of the two magnets is the same, and an external
magnetic flux is generated as shown in Figure 11b.

4.2. Experimental System and Driving Principle

The driving method of the motor and the experimental system of driving motor are
as shown in Figure 12. Current is applied to two electromagnets simultaneously, and the
rotational speed of the wobble motor is controlled by the frequency of the controller. The
U, V, W, and Z at four-phase from the signal controller matches with coil A, coil B, coil C,
and coil D wrapped around the four-pole core. The coil is operated as follows: (coil A and
coil B), (coil B and coil C), (coil C and coil D), and (coil D and coil A).

Figure 12. The driving method of the motor and total system of driving motor.
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4.3. Experiment for Theoretical Model Validation

To experimentally validate the proposed theoretical model, a prototype of a thin
wobble motor with an EPM device was fabricated. Pictures of the prototype are shown
in Figure 13. It has the same dimensions as the one used for FEM. The magnets used for
the EPM were 2 mm in diameter, 8 mm in length, and around them was wrapped a coil
with a diameter of 0.18mm for 120 turns, as shown in Figure 13b. Four electromagnetic
arms of core were arranged around the wobble shaft and wrapped with a coil as shown in
Figure 13c. In the experiment, a core with a thickness of 1 mm, around which a coil with a
diameter of 0.16 mm was wound for 150 turns, was used to create an attractive rotating
shaft. To maximize the force and minimize the iron losses, the material was changed from
pure iron to electrical steel. The material selected for the electrical steel was 50PN350,
characterized by Bsat = 1.62 T and an iron loss of 3.50 Watts per kilogram from Pohang
Iron and Steel Company (POSCO), and the core shape was then manufacturing by Electro
Discharge Machining (EDM). Additionally, pure iron (SS400) was used as the material
for the rotating shaft. This had the highest electrical conductivity, high permeability, low
coercive intensity, and was also easy to purchase. We fabricated a prototype of the EPM
device using a Computer Numerical Control (CNC) machine. From the FEM results, it
was confirmed that a change occurs when the magnetization direction of the Alnico 5
momentarily larger than 5A. To change the magnetization direction of the Alnico 5 magnet
in EPM device, we used the controller of an NI cRio-9022 from NATIONAL INSTRUMENTS
and a high-performance capacitor-type driver capable of momentarily applying a current
of larger than 5A. The signal controller was a TMS320F28335, and the driver was expressly
made for use with four-pole cores.

 

Figure 13. Pictures of a thin wobble motor with EPM. (a) Parts a thin wobble motor; (b) Fabricated
EPM device; (c) Core with the coil wound.

4.4. Validation Results

Figure 14 shows the predictions of the magnetic circuit model in three cases, as well
as the experimental results with respect to variation in the air gap of the EPM device. The
black curve shows the neglecting leakage permeance; the red curve shows the 2D leakage
permeance in consideration of 2 × P2 and 2 × P6, as shown Figure 6; the blue curve shows
the 3D leakage permeance; and the green curve shows the 3D FEM results. When the air
gap was set at 0, 0.1 mm and 0.2mm, the measured forces were 5.853 N, 1.762 N and 0.926 N,
respectively. When the air gap was set at 0.1 mm, the results without considering magnetic
flux and the FEM results showed considerable error. However, the error between the results
in which the magnetic leakage flux was 3D and the FEM results was the 20 percent. Based
on the plot, it can be seen that pole-to-pole leakage did not change the holding force when
the air gap was, but the slope of the force vs. the distance curve changed significantly with
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the zero air gap. This is an important effect to consider when designing EPM devices, even
those which operate over relatively small air gaps.

Figure 14. Experiment results, and comparisons of the force vs. air, calculated using the mantic
circuit with and without leakage flux.

Table 2 summarizes the results of FEM, the experimental results, and the theoretical
model results according to the applied current. An experimental test was conducted using
the method shown in Figure 12. The theoretically calculated stall torque and the stall
torque generated from FEM comprise the moment when the rotating shaft moves. It was
confirmed that the error between the theoretical method and the FEM analysis results was
26 percent on average, and between the experiment and the FEM analysis results was
12 percent average. As the input current to the electromagnet core was increased, the stall
torque of the wobble motor also increased.

Table 2. Comparison of stall torque according to current variation.

Current (A)
By Theoretical
Method (mNm)

By FEM (mNm)
By Experiment

(mNm)

0.1 0.166 0.134 0.118
0.2 0.672 0.523 0.456
0.3 1.488 1.173 1.034
0.4 2.64 2.088 1.843
0.5 4.128 3.264 2.857

5. Conclusions

This paper proposed the two force models in order to theoretically calculate the
generated force in a thin wobble motor with the EPM device. First, the EPM can change the
holding force on and off by applying a momentary electrical pulse, and the structure and
driving principle are presented. It is difficult to establish an analysis model that accurately
presents the magnetic leakage fluxes, but by assuming their paths to consists of straight lines
and arcs, the mean length of the flux path could be obtained. Therefore, in order to increase
the accuracy of the theoretical force model of the EPM device, a method considering the
leakage fluxes was proposed. Comparing the FEM results and the force calculated using
the proposed method, it was confirmed that there was a reduction in the error of the
force generated when considering leakage fluxes were considered. However, there were
differences between the theoretical and the experimental results, because the loss of friction
and assembly error of the magnets and the iron influenced the experimental measurements.
Despite the assembly error, it successfully generated holding force at the rotating shaft.
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These results can not only be used in selecting the initial design parameters necessary for
FEM analysis for the design of EPM devices, but also indicate that the proposed magnetic
circuit analysis results can be used as the basis for its design. Secondly, we simply presented
the optimal design of the electromagnets with respect to various parameters, as well as
a partial differential equation on the basis of the distribution parameters as a function
of the variation of the air gap between the stator and the rotating shaft. The theoretical
force model for the generated force of the electromagnetic field using the distribution
parameters was calculated by approximating the model using a linear coordinate system.
We conducted experiments using a prototype motor with respect to the changing current.
As shown in Table 2, it was confirmed that the theoretical method results and the FEM
results were similar. Differences were observed in the experimental results owing to the
loss of friction and error occurring when manufacturing the rotating shaft. However,
our study shows advantages in that this method is less time consuming and systematic,
because a large number of iterative analyses are not required during the initial design
step. As a result, the proposed a thin motor with EPM device has great potential for
commercialization as a driving part of small robots, in the medical industry, and especially
in thin portable equipment in the future.
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