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1. Introduction

Even though more than half a century has already passed since the first demonstration of laser
action in ruby crystal, solid-state lasers are still a hot research topic. Their unique versatility has made
them irreplaceable tools in many fields. The list of actual or potential applications is continuously
being updated at a pace that is set by the rate of advancing research. This virtuous cycle is only
made possible by the favorable interplay between continuous research progress, enabling new exciting
applications, and the emergence of new needs from industrial markets and fundamental research fields,
fostering the study of new materials, the development of new technologies, and the fast maturation of
the existent ones.

2. Solid State Lasers Materials, Technologies and Applications

In light of the above, this special issue was introduced to collect the latest research on relevant
topics and reviews on the most recent technology developments and applications. There were 20 papers
submitted to this special issue, and 14 papers were accepted. Of these, three were review papers and
the remaining 11 were research articles.

Regarding solid-state lasers’ materials and technologies, the first paper, authored by N. G. Boetti,
D. Pugliese, E. Ceci-Ginistrelli, J. Lousteau, D. Janner and D. Milanese presents a comprehensive
review on the recent advances in phosphate fiber laser technology [1]. The second paper provides
another review on state of the art high-power solid-state deep ultra-violet lasers, authored by H. Xuan,
H. Igarashi, S. Ito, C. Qu, Z. Zhao and Y. Kobayashi [2]. Nonlinear optics applications of high power
lasers are presented in [3], where H. Su, Y. Peng, J. Chen, Y. Li, P. Wang, and Y. Leng present a
Master Oscillator Power Amplifier (MOPA) laser at 1064 nm, delivering hundreds of mJs, 50-ps pulses
at 100 Hz, designed to work as a pump for Optical Parametric Amplification (OPA) experiments.
Two other articles describe MOPA laser systems operating at 1 um. In particular, a very flexible,
temporally programmable, arbitrary pulse shape hybrid MOPA laser was described by M. Nie, Q. Liu,
X. Cao, and X. Fu in [4], whereas an industrial grade, picosecond regenerative amplifier based on
Nd:YVOy is presented by Z. Bai, Z. Bai, Z. Kang, F. Lian, W. Lin, and Z. Fan in [5].

Mid-Infrared laser sources are present in two papers of this special issue. In particular, direct
nanosecond pulse generation in a Q-Switched Er:Y,O3 ceramic laser is reported by X. Ren, Y. Wang,
J. Zhang, D. Tang, and D. Shen in [6], whereas parametric down-conversion is exploited in a cw-OPO
based on a periodically-poled Lithium Niobate crystal to generate a multi-Watt output tunable between
2.4-2.9 um or 3.14-3.45 um, depending on the nonlinear crystal poling period (Y. Liu, X. Xie, J. Ning,
X. Lv, G. Zhao, Z. Xie, and S. Zhuin in [7]).

Coherent beam addition is addressed in two papers. D. Malka, E. Cohen, and Z. Zalevsky propose
a novel concept for power beam combining in Photonic Crystal Fibers [8], whereas a fast frequency
acquisition and phase locking method for high spectral purity nonplanar ring oscillator is presented
by Y. Wang, C. Wang, Y. Tao, Y. Liu, Q. Zouh, J. Su, Z. Wang, S. Shi, and Q. Qiu in [9]. The proposed
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technique can be used to enhance the performance of optical phase locking loops used in space coherent
optical communication systems and active coherent laser beam combiners.

A detailed study on the impact of subsurface impurity defects introduced in the polishing process
of fused-silica optics, and the beneficial effect of HF acid etching in the defect removal and laser-induced
damage threshold enhancement, is presented by J. Cheng, J. Wang, ]. Hou, H. Wang, and L. Zhang
in [10].

Applications of solid state lasers, in particular in the field of laser welding and laser cladding,
are presented in four papers published in this special issue. The first one is a review paper from
M. Jiang, W. Tao, and Y. Chen [11]. In this paper, a comprehensive overview on laser welding under
vacuum is presented, which is a recently re-discovered laser welding technique [12] that can help in
fully exploiting the potential of recently available high-power and high-brightness solid-state fiber
and disk lasers. A study on high-power (10 kW) fiber laser welding of stainless steel T-joint focused on
the investigation of the impact best fiber core diameter selection is presented by A. Unt, 1. Poutiainen,
S. Grunenwald, M. Sokolov, and A. Salminen in [13]. The effect of welding position on the quality of
the laser welds is investigated in detail by B. Chang, Z. Yuan, H. Pu, H. Li, H. Cheng, D. Du, and ]. Shan
in [14], where a high-power (6 kW) fiber laser is used to weld titanium alloys. Finally, a study on the
effect of Molybdenum content on the microstructures and properties of stainless steel coatings by laser
cladding is reported by K. Wang, B, Chang, J, Chen, H. Fu, Y. Lin, and Y. Lei in [15].

3. Future Perspectives

The large diversification of the topics covered by the review paper and research articles published
in this special issue is clear evidence of the exceptional flexibility, potential and variety of application
of solid-state lasers. Based on what we saw happening in recent decades, the research on new
materials, the advances in photonics technologies and the increasing demand for speed, cleanliness
and high-precision in industrial processes will contribute to propelling the research in this exciting
field in the foreseeable future.
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Abstract: In recent years, the exploitation of compact laser sources and amplifiers in fiber form has
found extensive applications in industrial and scientific fields. The fiber format offers compactness,
high beam quality through single-mode regime and excellent heat dissipation, thus leading to high
laser reliability and long-term stability. The realization of devices based on this technology requires
an active medium with high optical gain over a short length to increase efficiency while mitigating
nonlinear optical effects. Multicomponent phosphate glasses meet these requirements thanks to the
high solubility of rare-earth ions in their glass matrix, alongside with high emission cross-sections,
chemical stability and high optical damage threshold. In this paper, we review recent advances in
the field thanks to the combination of highly-doped phosphate glasses and innovative fiber drawing
techniques. We also present the main performance achievements and outlook both in continuous
wave (CW) and pulsed mode regimes.

Keywords: fiber laser and amplifier; phosphate fiber; all-fiber master oscillator power amplifier
(MOPA); rare-earth-doped fiber

1. Introduction

Fiber lasers are nearly as old as the glass laser itself. The first demonstration of a fiber laser dated
back to the 1960s, when E. Snitzer and C. ]. Koester demonstrated laser action in a neodymium-doped
fiber [1,2].

Nowadays, fiber lasers are not only one of the fastest growing photonic technologies, but they are
also a sound industrial reality that is rapidly eroding the markets shares of other laser technologies.
They find applications in a variety of fields ranging from industrial material processing, medical
applications, semiconductor device manufacturing, remote sensing and scientific instrumentation.

The key advantages of fiber laser reside in their waveguide geometry. Indeed, a low threshold and
a high conversion efficiency are possible thanks to the tight confinement of the pump and the generated
signal. First of all the tight confinement of both pump and laser light results in a low threshold and
a high optical conversion efficiency. Moreover, optical fibers exhibit an enhanced heat dissipation
capability thanks to their high surface-to-volume ratio and the distribution of the thermal load over a
considerably long length, which facilitates unprecedented power scaling capacity. The whole laser
resonator can be realized using fiber components only, such as Fiber Bragg Gratings (FBGs) and fiber

Appl. Sci. 2017,7,1295 4 www.mdpi.com/journal/applsci
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couplers. This all-fiber configuration avoids the use of free-space optics, thus allowing a robust and
compact system design that facilitates the usability of fiber lasers outside the laboratory. Another
advantage of fiber laser is that beam handling and beam deliveries become inherently simple thanks
to the fiber based configuration [3,4].

Another important aspect of fiber laser technology is the fact that is extremely versatile and
can be adapted to different laser applications, by customizing the output power, beam quality and
dimension, spectral properties, output stability and temporal output properties. Moreover, the very
large spectral bandwidths achievable from rare-earth (RE) ions in glass allow fiber lasers to operate
from the continuous wave (CW) regime down to pulse durations of few femtoseconds.

The fiber geometry is indeed the origin of the main advantages of fiber lasers; however, it is
also responsible for the main drawbacks of such devices. The enforcement of deleterious nonlinear
effects, such as self-phase modulation (SPM), stimulated Raman scattering (SRS) and stimulated
Brillouin scattering (SBS), is due to the confinement of the laser radiation in a small area and to the long
interaction length. These effects constitute the main restriction of RE-doped fiber laser systems [3].

Optical fibers for lasers and amplifiers are drawn from glasses and several glass systems suitable
for photonic applications are well-known, with a variety of chemical, physical and optical properties [5].
However, most of the research work performed so far on fiber lasers has been performed on doped
silica glasses, thanks to their outstanding properties. Silica is featured by the lowest propagation
losses (0.2 dB/km), can withstand high temperatures and shows exceptional mechanical strength
and chemical durability. However, a major drawback of silica glass is the poor solubility of RE ions,
and the consequent tendency to cluster. This causes deleterious effects on the spectroscopic properties
of the material.

Multicomponent phosphate glasses have demonstrated in last years to be a promising contender
to silica glass as a fiber material, especially for the realization of compact active devices [6-8]. The main
reason is that, thanks to the very open and disordered matrix structure [9,10], they can withstand very
high doping level of rare earth-ions (up to 10?! ions/cm?3), typically about 50 times higher than in
the more rigid glass matrix of silica glass. High concentrations of laser-active RE ions (like Erbium,
Ytterbium and Neodymium) can thus be incorporated into the glass matrix without clustering, which
is responsible to degrade the performance of the glass enhancing quenching effects [11-14]. Fiber laser
length can be then substantially reduced, minimizing nonlinearities that grow with fiber length.

Moreover, phosphate glasses are substantially immune to photodarkening. It was demonstrated
that the maximum concentration of Yb** ions allowed in a phosphate fiber before the onset of
photodarkening at 660 nm was at least 56 times higher than a standard commercial silica fiber and 6
times higher than a highly Al-doped silica fiber [15].

In terms of thermo-mechanical properties, phosphate glasses have typically a low glass transition
temperatures (400-700 °C), if compared to silica (1000-1200 °C), and also lower softening temperatures
(500-800 °C instead of 1500-1600 °C) [10,16-18]. Although these thermal features present some
advantages in terms of glass processing for fabricating the fiber preform, the drawback is that
phosphate fiber can suffer from thermal degradation under high-power operation. Special care
and subsequent cooling apparatus may therefore be required during high power laser operation.
In addition, the characteristic temperatures difference between phosphates and silica, as well as the
sharp difference in physical properties between standard commercial silica based fibers and phosphate
ones, has slowed down the exploitation of these fibers due to the more challenging integration in
all-fiber devices. Nonetheless, splicing of phosphate fibers to silica based fibers and fiber components
(for example couplers and Fiber Bragg Gratings) is nowadays commonly employed, with relatively
low loss (0.2 dB per joint) and high strength [19-21].

In the last decades, remarkable results in the field of phosphate based fiber lasers and amplifiers
have been obtained in terms of high output power, new operating wavelengths, single-frequency
operation, pulse duration and compact configurations. The aim of this paper is to review major results
obtained in the field of phosphate fiber laser technology to highlight its complementarity to silica
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fiber technology and discuss its future prospect. The paper is organized as follows. In Section 2 a
brief review of spectroscopic properties of main RE ions used for the development of phosphate fiber
lasers and amplifiers is presented. Section 3 reports the current state of the art of CW phosphate fiber
lasers and amplifiers. In Section 4 main results of CW single-frequency fiber lasers and amplifiers are
reviewed. Pulsed single-frequency phosphate fiber lasers and amplifiers are addressed in Section 5.

2. Rare-Earth Active Ions for Phosphate Fiber Lasers

Among the different RE ions, Ytterbium is one of the most commonly used for the fabrication
of phosphate fiber lasers. The electronic transition 2Fs 52— 2F, /2 (see Figure 1) can generate laser
emission over a band of wavelengths ranging from ~970 to ~1200 nm, thus allowing a wide tuning
ability of the output beam in the 1 pm window and short pulse amplification (down to fs regime) [22].

The absorption band is also very broad, from ~850 to ~1070 nm, and covers a range where laser
diodes have their highest output power and efficiency. Since the pump wavelength is very close to
the laser emission one, an Yb®*-doped fiber laser displays always a small quantum defect, potentially
allowing for very high power efficiencies and reduced overheating effects in high-power regimes [23].

Ytterbium is well-known for the simplicity of its energy level diagram, based on a simple two
levels system that reduces the incidence of detrimental processes such as multiphonon relaxation and
excited state absorption (ESA). Figure 1a shows a typical Yb®* ions energy level diagram with indicative
splitting of the Stark sublevels. This splitting allows the ion to work in a three or four levels system,
according to the choice of the pump and lasing wavelengths. Figure 1b displays typical absorption and
emission spectra of a multicomponent Yb3*-doped phosphate glass. Table 1 summarizes the typical
absorption and emission cross-sections reported in literature, alongside typical lifetime value of the
2F; /2 excited state level.
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Figure 1. (a) Typical energy level diagram of Yb>* ions in phosphate glasses; (b) Typical absorption
and emission spectra of Yb3* ions in an in-house fabricated phosphate glass.

The Neodymium is featured by a much more complex structure. Figure 2a reports the schematic
of the energy levels of Nd>* ions with the transitions of interest with respect to this review.

Although the radiative decay can occur to all the lower lying *Ij levels, the strongest transition is
the one to the *I11 /; level, that leads to a maximum peak at a wavelength of 1053 nm in most phosphate
glasses. Thanks to the numerous absorption bands in the visible and near-infrared, Nd could be
pumped by flash lamps, which were the oldest and most common pumping solution for this ion
in phosphate glass host. The first fiber laser in the 1960’s was indeed demonstrated in a Nd-doped
fiber excited by means of flash lamps [1,2]. More recently, with the availability of laser diodes at the
requested wavelengths, a more efficient and compact pumping scheme has been achieved through
the use of AlGaAs pump diode lasers operating at around 808 nm to excite the transition 4Ig,, —
2Hy /2 + 4F; /2 (see Figure 2a). Despite the large number of closely spaced excited states, Nd3* ion does
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not suffer from ESA. Even though the F3,, — 2Ds,, ESA transition occurs, it is resonant with the
photon energy of the 800 nm wavelength laser pump, it is negligible and does not significantly affect
the 800 nm pumping [24]. Thanks to the several absorption bands in the visible, an unusual pumping
scheme for Nd-doped phosphate lasers by solar radiation was also investigated in the framework of
the research on solar pumped lasers [25,26].

Figure 2b reports typical absorption and emission spectra of Nd** ions in phosphate glasses.
Typical cross-section values are reported in Table 1, along with lifetime of the *F, excited state in

phosphate glass.
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Figure 2. (a) Typical energy level diagram of Nd3* ions in phosphate glasses; (b) Typical absorption
and emission spectra of Nd3* ions in phosphate glasses (adapted from [27]).

The most common laser transition in Erbium is that from the 4I;5 /2 manifold to the ground-state
115/2 (see Figure 3a), centered at around 1.55 um. This transition forms a three-levels system for
which a high pump power is required to obtain a population inversion and thus reach the threshold.
The most common pumping arrangement is based on the transition s /2 — 41 2 with a wavelength
of around 980 nm, although in-band pumping (*Ij5,, — *I13/2, e.g., at 1.45 um) is also possible [28,29].
This transition is widely exploited in Er**-doped fiber amplifiers (EDFAs).

In order to increase lasers and amplifiers efficiency, Erbium-doped fibers and amplifiers are often
co-doped with Ytterbium, which exhibits larger absorption cross-section and broad absorption band
(from ~850 to ~1070 nm). In this scheme Ytterbium, which acts as a sensitizer, strongly absorbs pump
photons, and then resonantly transfers its energy to Erbium that acts as activator.
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Figure 3. (a) Typical energy level diagram of Er®* ions in phosphate glasses; (b) Common absorption
and emission spectra of Er>* ions in phosphate glasses (adapted from [12]).
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Phosphate glass is considered an excellent host for an Yb**-Er®* co-doped system in virtue of
its high emission cross-section, low accumulative energy transfer rates and low backward energy
transfer [30]. In fact, in comparison to silicate glasses (~1100 cm 1), the larger phonon energy in the
phosphate host (~1200 cm 1) increases the transition probability for I /2 — 445 /2 relaxation [31],
which prevents the back energy transfer from Er®* to Yb3*. Furthermore, thanks to the large spectral
overlap between the Yb3* emission spectrum (%Fs 2= 2E, /2) and Erd* absorption spectrum (4135 /2 —
“131/2), the energy transfer efficiency from Yb%* to Er®* in phosphate glasses can reach 95% [11].

Typical absorption and emission cross-sections of Erbium ions in phosphate glasses, together with
lifetime of the #I;3, level, are reported in Table 1.

Table 1. Typical spectroscopic parameters of common rare-earth (RE) ions in highly doped phosphate
glasses [8,11,14,25,32-35].

Parameter Ytterbium Neodymium Erbium
~1.5 x 1072
~1.6 x 1020 ~2.0x 10 20 s — 4
Absorption cross-section (cm? 15/2 1172
P (em?) 2, ;5 — 259 4y — 2Hy )y + 4F5 ~6.6 x 10721
Mysn — 4
15/2 13/2
Emission cross-section (cm?) 1410 > ~24 X 10720 ~7.0 x 1072
F5/, — 2Fy)n 4F30 = 12 Mi3/2 = *is )2
Doping level (ions/cm?) 1.4 x 102! ~2.7 x 1020 4.0 x 102
1.2 0.3 8.0
Excited state lifetime (ms)
F5/, = 2Fy)n 4F30 = 12 132 = *is )2

3. CW Phosphate Fiber Lasers and Amplifiers

RE-doped glass fibers are excellent gain media for obtaining high power lasers with enhanced
brightness. The large surface-to-volume ratio of active fibers favors heat dissipation to the surrounding,
allowing active fibers to operate at very high powers. The heat dissipation further increases by using
efficient RE dopants, such as Ytterbium, which allows operation with pump wavelengths close to the
signal wavelength [23]. As a consequence, beam distortion is negligible and the beam quality is mainly
affected by the fiber geometry.

In addition, the waveguide structure confines the pump light over the entire fiber length, enabling
noticeably large single-pass gains to be achieved due to the long interaction path of the light with the
active medium. This leads to a very efficient operation of the fiber lasers, showing very high gain and
low pump threshold values.

Nowadays, high power fiber lasers and amplifiers are typically implemented using RE-doped
double-cladding (DC) optical fibers, a concept which was introduced in 1988 by Snitzer et al. [36] and
has allowed in last decades a significant enhancement in scaling fiber lasers to higher power levels.
DC fibers consist in a RE-doped core surrounded by a much larger inner cladding, itself surrounded
by an outer cladding (see Figure 4). The pump light is launched and confined into the inner cladding
and spatially overlaps the core. The pump power is then absorbed over the entire length of the fiber
through multiple interaction with the core, thus exploiting the fiber geometry. The benefit of this
design resides in the possibility to use multi-mode high power laser diodes with relatively poor beam
quality and to obtain a single-mode fiber radiation with outstanding beam quality.
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Figure 4. Schematic of cladding-pumped double-cladding fiber laser.

Thanks to DC fiber geometry, power scaling of silica-based fiber lasers has experienced noticeable
progress in the last two decades, reaching 100 kW of output power in the 1 um wavelength region
from a multi-mode Yb3+—doped fiber [37] and 10 kW from a single-mode fiber laser [38]. In eye-safe
region, at 1.5 pm, 297 W from an Yb3*-Er3+—doped fiber laser was demonstrated [39], while at 2 pm
1 kW of emitted power was reported from a Tm3+—doped fiber laser [40].

Power scaling of silica fiber lasers is ultimately limited by two main mechanisms: nonlinear effects
(especially SBS) induced by the long path lengths of the tightly confined light in the fiber core and
photodarkening. A different approach devoted to the fiber laser power scaling, which can overcome
the above limitations, is indeed to employ phosphate glass instead of silica as fiber material. The higher
solubility of RE ions in phosphate glass hosts allows the increase of RE ions concentration and thus
to generate the necessary amplification over a much shorter fiber length as compared to silica fibers.
The onset of the non-linear phenomena described above is then considerably limited. In addition,
the higher photodarkening threshold in phosphate glasses eliminates the risk of power degradation
over time in high power applications [15].

Another important advantage of phosphate glasses in power scaling of fiber lasers is related to
the possibility to easily adjust the refractive indices [41]. Thus, DC optical fibers with a reduced core
numerical aperture (NA) and hence a much larger single-mode core are feasible. Furthermore, thanks
to a large glass forming region, it is possible to manufacture glasses with considerably large refractive
index differences and thus realize a high NA pump waveguide with a glass based outer cladding
instead of a low-index polymer coating, as widely used in DC silica fibers. These all-glass DC optical
fibers offer a high degree of immunity to heat loading [8,42].

A typical configuration used to realize high power fiber lasers is the master oscillator power
amplifier (MOPA) system: the high power laser is obtained by splitting it into a low-power signal
generator (master oscillator) and an optical power amplifier that boosts the output power. Thus,
the high-spectral qualities of the signal are preserved while simplifying the manufacturing constraints
of the seed-laser. For this kind of device, an all-fiber structure without the use of free-space components
is a better solution in order to simplify configurations while improving compactness and reliability.

Phosphate glasses main features, such as extremely high doping level, low SBS gain coefficient
and absence of photodarkening, make them an ideal host to develop a MOPA system.

3.1. Yb-Doped Phosphate Fiber Lasers and Amplifiers

The first CW cladding-pumped Yb-doped single-mode phosphate fiber laser emitting in the 1 um
region was demonstrated in 2006 by Lee et al. [8] using a Large Mode Area (LMA) fiber with diameters
of 10/240/355 um for the core, inner cladding and outer cladding, respectively. In view of breaking the
symmetry of the fiber design and thus increasing the pump absorption, the core of the fiber was offset
from the center and an air hole parallel to the core was added to the inner cladding. With a length
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of 84.6 cm of this fiber, doped with 12 wt % of Yb,O3 and pumped with 80 W at 940 nm, an output
power of nearly 20 W at 1.07 um, with a slope efficiency of 25.8% against launched pump power,
was demonstrated. With this very same fiber configuration, few years later, power scaling to 57 W
was demonstrated with a slope efficiency of 50.6% by varying the pump wavelength to 977 nm, where
Yb3* absorption is much higher and quantum defect is lower [43]. In both reported Yb-doped fiber
lasers, the slope efficiency was reduced by the quite high loss of the fiber, around 3 dB/m, which was
measured to be mainly due to impurity absorption (77%) and scattering.

Recently, an Ytterbium-doped phosphate glass single-mode fiber laser with noticeably high slope
efficiency of 66.6% in relation to the launched pump power was reported. The fiber consisted in a
double-cladding fiber with a 19 um diameter step-index core and a pump waveguide with a high
numerical aperture due to the external air-cladding. An output power of 11.6 W was obtained by
using 4 cm-long fiber sample pumped with a multi-mode laser diode. This is the best result, in terms
of slope efficiency, ever reported for a phosphate single-mode fiber laser pumped with a multi-mode
laser diode [44].

Concerning Yb**-doped phosphate fiber amplifiers, the first watt level Yb3*-doped phosphate
fiber MOPA was reported in 2009 [43] with an output power of 16.3 W corresponding to a gain of
27 dB with respect to the launched signal power (~0.36 dB/cm). The gain medium was a 74.5 cm-long
single-mode double-cladding phosphate fiber doped with 12 wt % of Yb,Os.

3.2. Nd-Doped Phosphate Fiber Lasers and Amplifiers

As the first fiber laser was realized using a Nd3*-doped fiber, in that case made of silicate glass [1],
the first phosphate fiber laser reported in literature was also manufactured with a Nd**-doped
phosphate fiber [45].

A length of 10 mm of single-mode and single-cladding optical fiber, manufactured by rod-in-tube
technique and highly doped with 3 wt % of Nd,O3 (3.1 x 100 Nd3* ions/cm?), was used to demonstrate
laser emission at 1.054 um, when core-pumped by an 808 nm laser diode. A low threshold of 1 mW
and an efficiency of ~50% were measured. Lasing was also demonstrated at 1.366 um, although
with lower performance both in threshold and slope efficiencies, as expected for this less efficient
neodymium emission.

In 1996 Griebner et al. [46] reported a core-pumped Nd-doped multi-mode phosphate fiber,
although with a quite low output power of 130 mW at 1053 nm. An efficiency of 31% with respect to
the launched pump power was achieved at 807 nm.

Concerning power scaling of CW Nd>*-doped phosphate fiber lasers, in 2011 Zhang et al. [47]
reported an output power of 2.87 W at 1053 nm from a length of 26 cm of heavily Nd**-doped
(3.5 x 1020 Nd3* /cm®) DC fiber, with diameters of 14/285/360 um for the core, inner cladding and
outer cladding, respectively. Average slope efficiencies of 26.2% and 44.7% with respect to the launched
and absorbed pump powers at 795 nm were obtained. The reported loss of 1.5 dB/m at 1053 nm is the
lowest ever measured for a Nd**-doped phosphate fiber.

More recently [48], single-mode operation was reported in a cladding-pumped Nd**-doped fiber
laser having an output power of 1.42 W and an efficiency of 34% with respect to the absorbed pump
power at 808 nm. A 21 cm-long DC fiber was used, with a small core diameter of 5.3 um to allow
single-mode operation at 1.053 um. In view of improving the coupling efficiency between the pump
diode and the active fiber, a novel design for local cooling by fluid sealing of the coupling point
was exploited.

In 2015 a Nd**-doped phosphate fiber laser was demonstrated by using a DC fiber with an
hexagonal inner cladding made by a stack-and-draw technique, that is commonly used for the
realization of microstructured optical fibers [42]. Single-mode operation was achieved with a core
diameter of 35 um, thanks to the low NA of the fiber core. A maximum output power of 2.87 W and a
slope efficiency of 19% were achieved. The poor laser performance was due to the high propagation
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loss of the fiber, as high as 3.8 dB/m, and to the mismatch between the pump wavelength (793 nm)
and the Nd-doped glass peak absorption (802 nm).

An alternative solution that was recently proposed for the power scaling of Nd**-doped fiber
lasers and amplifiers relies in the use of short-length core/cladding canes as active elements. A 60 mm
length of cane, with a core diameter of 270 pm and a cladding diameter of 800 pm, was able to emit
2 W of output power at 1054 nm with slope efficiencies of 30% and 40% with respect to the launched
and absorbed pump powers, respectively. Caird’s analysis revealed that a slope efficiency of 55% over
the absorbed power could be achieved in optimal conditions, matching the highest results obtained
so far [27]. Although the latter configuration did not operate in single-mode regime, similar cane
configuration can be employed as a booster amplifier in a MOPA configuration to reach high power
while preserving high beam quality [49].

Significant results have been obtained in last years from photonic crystal fibers (PCFs). In 2012 the
first non-silica all-solid Nd**-doped PCF was demonstrated, with an hexagonal shaped inner cladding,
to achieve high absorption coefficient of pump power [50]. An output power of 7.92 W and a slope
efficiency of 38.1% were obtained but with unsatisfactory beam quality. In 2014 a single-mode
multi-watt phosphate Nd3+-doped all-solid PCF with core diameters of 30, 35 and 40 pm was
reported [51]. An output power of 5.4 W and a slope efficiency of 31% were measured with a beam
quality that is not degraded even at the highest power.

Higher emitted power was registered by using a complex photonic crystal fiber (PCF) containing
seven different single-mode cores. This allowed achieving 15.5 W of emitted power over a fiber length
of 25 cm, featuring a slope efficiency of 57% over the absorbed power [52].

3.3. Er and Yb/Er Co-Doped Phosphate Fiber Lasers and Amplifiers

Erbium-Ytterbium co-doped system received noticeable interest in the last two decades due to its
use for optical communications and eye-safe laser applications.

In 2004 Qiu et al. reported 9.3 W CW 1535 nm multi-mode output from a 7.0 cm short-length
single-cladding Er-Yb phosphate fiber [7]. The fiber featured a D-shaped cladding and an off-centered
core 130 and 20 um in diameter, respectively. A slope efficiency of 29% and a power per unit length
(p-u.l) as high as 1.33 W/cm were achieved. From another 7.1 cm of Er-Yb co-doped fiber laser, 4.0 W
single transverse mode output was generated with lower power per unit fiber length (0.56 W/cm),
due to the less efficient pump absorption exhibited by the smaller core.

In the early 2000’s the first Er’*-doped fiber amplifiers based on heavily Erbium-doped phosphate
fibers were demonstrated [53,54]. They were core-pumped by single-mode laser diodes emitting
at 980 nm. For example, Hwang et al. [54] reported a high concentration (3.5 wt %) Er3+-doped
phosphate fiber amplifier. An internal gain of 23 dB and a gain p.u.L. of 3 dB/cm were achieved in a
71 mm-long Er®*-doped phosphate fiber core-pumped by a laser diode at around 980 nm. The fiber,
manufactured by the rod-in-tube technique, displayed a single-mode behavior at 1.55 um and showed
a quite high loss of 0.28 dB/cm at 1.3 um. The gain obtained was lower than that predicted by
theoretical calculations, due to cooperative up-conversion phenomena between the Er®* ions and
the small absorption cross-section of Erbium at the pumping band of 980 nm. Thus, soon after the
same group proposed the realization of the amplifier using a phosphate fiber doped with a lower
amount of Er¥* (3 wt %) [55], to prevent Erbium concentration quenching, and with Yb?* sensitization
(2 wt %), to increase the pump absorption. An internal gain of 18 dB and a gain p.u.l. of 5 dB/cm were
obtained for small-signal input at 1535 nm, using 3.6 cm-long co-doped fiber pumped at 980 nm in a
co-propagating configuration.

In light of limiting the amplifier cost and power scale the output power, single-cladding phosphate
fibers were replaced by DC fibers pumped by broad area high power multi-mode laser diodes instead
of single-mode pump sources. Thanks to these improvements, in 2003 an Er**-doped phosphate fiber
amplifier showing net gain values of 41, 27 and 21 dB at 1535 nm, 1550 nm and over the C-band,
respectively, was demonstrated with only 8 cm-long fiber. The fiber was an all-glass single-mode DC
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fiber with a loss of 0.09 dB/cm at 1.3 um [6], which was significantly lower compared to the previously
fabricated fibers.

In 2008 5 cm-long single-mode heavily Yb%* /Er®* co-doped fiber was used to demonstrate optical
amplification of signal in the range 1525-1565 nm [56]. The fiber, doped with 1 mol% of Er®* and
2 mol% of Yb3*, was dual-pumped by two 976 nm fiber pigtailed laser diodes. A peak net gain of
16.5 dB at 1534 nm was achieved, that corresponds to a gain p.u.l. of 3.3 dB/cm (internal gain p.u.l. of
9.1 dB/cm). The fiber loss was evaluated to be 0.06 dB/cm at 1.3 um.

In 2015 novel high concentration Yb/Er co-doped phosphate glasses (1.08 mol% of Er,O3; and
1.08 mol% of Yb,O3) were employed to manufacture DC fibers for optical amplification. Core-pumped
and cladding-pumped amplifiers were demonstrated, reaching gains p.u.l. of 4.0 and 2.3 dB/cm,
respectively [57].

The main results obtained with highly RE-doped CW phosphate fiber lasers are summarized
in Table 2.

Table 2. Main results obtained with continuous wave (CW) fiber lasers based on highly RE-doped

phosphate glasses.
. RE Doping Apump Asignal Output Slope Gain
Fiber Type [Reference] Concentration (nm) (nm) Power (W) Efficiency (%)  Length (cm)
3+ _,
Yb-doped 12wt % 940 1064 20 344 84.6
multi-mode [8]
3+_
 Yb*-doped 12 wt % 977 1064 57 56.7 716
single-mode [43]
Nd?*-doped 20 N3+ /omd
multi-mode [47] 3.5 x 10" Nd”* /cm 795 1053 29 447 26
3+ _
 Nd™-doped 35 x 100 Nd*/ecm® 808 1053 14 341 21
single-mode [48]
3+ _,
Nd*-doped 3wt% 793 1053 15.5 57 25

single-mode PCF [52]
Yb3* /Er3* co-doped 8.6 x 1020 Yb3* /em®

multi-mode [7] 1.1 x 102 Er3* /em3 976 1535 9.3 % 70
Yb3+ /Er3*t co-doped 8.6 x 1020 Yb3* /em3
single-mode [7] 1.1 x 102 Er¥*/em3 976 1535 40 » 2

4. CW Single-Frequency Phosphate Fiber Lasers and Amplifiers

Fiber lasers considered in the previous Sections display relatively broad linewidth, usually in the
1-10 nm range. However, several applications such as interferometric gravitational-wave detection [58],
coherent Light Detection and Ranging (LIDAR) [59], laser nonlinear frequency conversion [60],
coherent beam combining [61] and laser spectroscopy [62] require laser emissions with narrower
linewidth. This feature can be provided by single-frequency fiber lasers, which are lasers that operate
with only a single-longitudinal mode and thus can emit quasi-monochromatic radiation with a very
narrow linewidth and low noise.

Different configurations have been exploited to demonstrate single-longitudinal mode operation.
One typical design is the distributed feedback (DFB) fiber laser, in which a FBG is directly written in
the core of the active fiber and is responsible for the generation of a phase change in the middle of the
grating area.

Another common configuration is the distributed Bragg reflector (DBR) fiber laser, in which the
laser resonator is formed by the RE-doped fiber placed between two FBGs. This configuration is
generally preferred for the fabrication of single-frequency fiber lasers thanks to its compactness and
robustness [63].

When an output power higher than 1 W is demanded, a MOPA configuration is used, with a
single-frequency seed laser followed by a series of amplifier stages to achieve the power amplification.
This configuration is able to power scale the output power while preserving the spectral characteristics
of the seed laser.
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The use of highly doped phosphate glass fibers for the manufacturing of single-frequency fiber
lasers is particularly advantageous since allows the realization of a short cavity that creates large
longitudinal mode spacing, helping to maintain lasing on a single-longitudinal mode and thus a
single-frequency behavior.

Power scaling of single-frequency fiber lasers is ultimately reduced by SBS and is much more
arduous than that of a multi-longitudinal mode CW fiber laser. Several different methods have been
implemented to limit the SBS in silica-based fiber lasers [64—66]. The use of phosphate glass-based
optical fiber represents an alternative option to overcome this limitation.

CW single-frequency phosphate-based fiber lasers operating at 1 and 1.5 um have reached a
relatively high maturity level and are commercially available [67].

4.1. Yb-Doped Single-Frequency Phosphate Fiber Lasers

In 2004 Kaneda et al. [68] reported for the first time a DBR laser based on 1.5 cm-long
Yb3**-doped phosphate fiber that was fusion spliced with two FBGs to form the resonator. 200 mW
of single-frequency output power at 1064.2 nm was achieved (gain p.u.l. equal to 2 dB/cm), with a
linewidth of approximately 3 kHz.

In 2011 Xu et al. [69] demonstrated over 400 mW of emission at 1063.90 nm from a DBR Yb3*-doped
phosphate fiber laser based on 0.8 cm-long active fiber. The fiber was heavily doped (15.2 wt %) in
order to obtain a very short resonator cavity and thus ensure laser operation on single-longitudinal
mode. A slope efficiency of about 73% versus launched pump power was obtained, with a net gain
coefficient p.u.l. of 57 dB/cm. This work reports the highest slope efficiency and output power
obtained so far in this kind of single-frequency fiber lasers.

Besides the typical lasing wavelength at 1064 nm, Yb**-doped phosphate fibers have been
successfully exploited to obtain single-frequency operation at more exotic wavelengths [20,70,71],
thanks to the broad Yb®* emission from 970 to 1200 nm.

In particular, during last years, interest for high power single-frequency lasers below 1 pm has
increased, since they are excellent pump sources for second and fourth harmonic generation in the
blue and deep UV, which have found several scientific and industrial applications [72]. Yb3*—d0ped
phosphate fibers have been successfully employed to achieve single-frequency laser emitting at 976 nm,
through the transition from the lowest level of the excited state 2F5,, manifold to the lowest level of
the ground state 2E, ,2 manifold (quasi-three-level operation) (see Figure 1a). Yb3+—d0ped phosphate
fibers, compared to Yb3*-doped silica fibers, exhibit a larger difference between the absorption and
emission cross-sections at shorter wavelengths, making them more suitable for short wavelength laser
emission [73].

The first demonstration of an Yb3*-doped phosphate fiber laser emitting at 976 nm was reported
by Bufetov et al. [32] in 2006 using 2 cm-long highly doped fiber (1 x 102! Yb®* ions/cm?). 250 mW of
output power was achieved, with an efficiency versus launched pump power of about 40%.

In 2012 the first 976 nm single-frequency all-fiber DBR fiber laser was developed with a
2 cm-long highly (6 wt %) Yb**-doped phosphate fiber [20]. 100 mW of linearly polarized output
power was generated with a linewidth of less than 3 kHz. By using this fiber laser as a seeder
in a MOPA configuration, a single-frequency Yb3*—d0ped phosphate fiber amplifier was realized.
A linearly polarized output power of 350 mW was obtained by core-pumping a 4 cm-long polarization
maintaining (PM) phosphate fiber [74]. The birefringence of the PM fiber was made possible by
inserting two high stress elements around the fiber core. A small signal net gain of 25 dB, corresponding
to a unit gain over 6 dB/cm, was achieved.

With the aim to investigate the power scaling of a single-frequency laser operating at 976 nm,
Wau et al. fabricated an Yb**-doped phosphate fiber amplifier based on 7 cm-long Yb3*-doped DC
phosphate fiber cladding-pumped by high power multi-mode laser diodes. 3.41 W single-frequency
output power was obtained, with a relatively low slope efficiency of ~7% due to the reduced spatial
overlap of the pump and the doped fiber core in the cladding-pumped arrangement [73].
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Single-frequency emission from an Yb%*-doped phosphate fiber was also demonstrated at 1014 nm,
which is an interesting wavelength for optical lattice clock applications [75]. A compact fiber laser of
5 mm was reported, with a CW single transverse and longitudinal mode characterized by an output
power over 164 mW, low noise and a linewidth lower than 7 kHz. At the wavelength of 1014 nm
Yang et al. [76] reported also a MOPA laser with over 1 W of single-frequency emission, obtained by
amplifying a seed laser with a core-pumped one stage Yb3*-doped phosphate fiber amplifier of 4 cm
of length.

On the other hand, with Yb3*—d0ped phosphate fibers, emission at longer wavelengths was also
investigated. Low noise single-frequency single polarization fiber laser emitting at 1083 nm was
reported from a 1.8 cm-long heavily (18.3 wt %) Yb3*-doped phosphate fiber. 100 mW of output power
was achieved, with a slope efficiency of almost 30% and a laser linewidth lower than 2 kHz [70].

4.2. Er and Yb/Er Co-Doped Single-Frequency Phosphate Fiber Lasers

The first single-frequency phosphate fiber laser emitting at 1.5 um was reported in 2003 [77],
with an output power of 100 mW and a very narrow linewidth of less than 2 kHz. It was a DBR fiber
laser based on an heavily Yb3*/Er®* co-doped fiber (3 wt % of Yb®* and 2 wt % of Er®*) that displays
very high optical gain per unit length of up to 5 dB/cm. The laser cavity was established by using two
spectrally narrow passive FBGs that were fusion spliced to a 2 cm-long piece of active fiber.

In 2013 [78] a monolithic all-phosphate glass fiber laser was reported, with a laser cavity obtained
by inscribing a FBG directly into an heavily Yb®*/Er®* co-doped phosphate fiber (8 wt % of Yb,O3
and 1 wt % of Er,O3) by using a femtosecond laser. Avoiding hybrid splices between phosphate and
silica based fibers allowed for improving the laser stability and reducing the cavity loss. An output
power of 550 mW was demonstrated with a slope efficiency of 12%.

Power scaling of a single-frequency fiber laser emitting at 1.5 um was investigated in 2005 [79]
by using a DC heavily Yb%*/Er®* co-doped phosphate fiber, cladding-pumped by multi-mode laser
diodes at 976 nm. 1.6 W of single-longitudinal mode output power was reported from a 5.5 cm length
of fiber, although the slope efficiency was limited at 5%.

The main results obtained with highly RE-doped CW single-frequency phosphate fiber lasers are
summarized in Table 3.

Table 3. Main results obtained with CW single-frequency phosphate fiber lasers based on highly
RE-doped phosphate glasses.

Fiber Type RE Doping Apump Asignal Output Slope Gain Linewidth
[Reference] Concentration (nm) (nm) Power (mW) Efficiency (%)  Length (cm) (kHz)
Yb3*-doped [69] 152 wt % 976 1064 400 72.7 0.8 <7
Yb3*-doped [20] 6wt % 915 976 100 25 2 <3
Yb3*-doped [75] 152 wt % 976 1014 164 219 0.5 <7
Yb%*-doped [70] 18.3 wt % 976 1083 100 29.6 1.8 <2
3+ 3+ o,
co\{sopi:]ir[%] Slv‘\:t {;ﬂét;zooaa 975 1538 550 12 7 <60

Yb3* /Erdt 8.6 x 1020 Yb3* /em?

co-doped [79] 1.1 x 102 Er?* /em? 976 1550 1600 5 ) 55

5. Pulsed Phosphate Fiber Lasers and Amplifiers

Pulsed fiber laser operation is generally obtained through modulation of the laser cavity using
several Q-switching and mode-locking techniques. Owing to the very large spectral bandwidths
achievable from RE ions in glass hosts, pulsed fiber lasers can operate in nanosecond, picosecond and
even femtosecond regimes using chirped pulsed amplification techniques.
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Q-switching is a technique mostly applied for the generation of micro and nanosecond pulses of
high energy and peak power, while the mode-locking technique enables ultrafast laser pulses in the
picosecond and femtosecond ranges.

In 1993 a Q-switched fiber laser based on a multicomponent Nd-doped phosphate glass was
reported with 2.2 yJ, 2 ns duration pulses at up to 2 kHz repetition rate with only 22 mW of absorbed
pump power at 812 nm from a laser diode [80]. Tunability over a 40 nm tuning range around 1060 nm
was demonstrated thanks to the broad emission line of Neodymium in the phosphate glass.

More recently, in 2004 [81], a single-frequency all-fiber Q-switched laser at 1550 nm was reported
with 25 W of peak power in 12 ns, 0.3 pJ pulses at a repetition rate of 80 kHz with 370 mW of
pump power, without using an amplifier. The laser consisted of a 2 cm-long Yb/Er co-doped
phosphate glass fiber fusion spliced between two FBGs inscribed in silica fibers. The fiber was
actively Q-switched by fast stress-induced birefringence modulation, a technique that allows an
all-fiber configuration, thus avoiding the use of bulk components in the cavity responsible for the
growth of loss, size and complexity.

By using 2 cm-long highly (6 wt %) Yb%*-doped phosphate fiber the first compact, single-frequency
all-fiber Q-switched laser at 1 pm was reported in 2007 [82]. The fiber was actively Q-switched by
fast stress-induced birefringence modulation [81], a technique previously demonstrated at 1.5 pm.
A repetition rate up to 700 KHz was reported, with a maximum average power of 31 mW. A maximum
average pulse energy of 0.4 puJ was obtained.

Concerning fiber lasers operating in the picosecond regime, mode-locking techniques are generally
used. Passive mode-locking is usually preferred to avoid costly modulators in the laser cavity as
those commonly employed in active mode-locking solutions. However, passive mode-locking of
fiber lasers allows achieving low repetition rates (tens of MHz), as a results of the long cavity length.
Thus, an attractive approach to push the pulse repetition rate into the GHz regime is the use of short
Fabry-Perot lasers with high gain RE-doped phosphate fiber and a small saturable absorber that could
be integrated with fiber-end.

In 2007 [83] a mode-locked short cavity 10 GHz phosphate fiber laser emitting at 1535 nm
was reported using a 1 cm-long heavily Yb/Er co-doped phosphate fiber and a saturable absorber
constituted by single-wall carbon nanotubes. Stable pulse trains with an output power as high as
30 mW and a repetition rate as high as 10 GHz were achieved.

In 2012 another solution for the integrated saturable absorber was proposed: a graphene film
deposited on one tip of the active fiber [84]. The obtained laser operated in a stable mode-locked
regime with fundamental repetition rate of 7 GHz but with an output power of only 1.2 mW.

In 2014 [85] a repetition rate of 12 GHz was demonstrated from a compact and stable
all-fiber fundamentally mode-locked fiber laser based on an Yb/Er co-doped phosphate fiber and a
semiconductor saturable absorbing mirror (SESAM). A short length of 0.8 cm of high gain (6 dB/cm at
1535 nm) PM fiber was used to form the laser cavity.

Several applications like coherent LIDAR, range finding or active remote sensing require, for high
precision measurements, not only high peak power laser pulses in the nanosecond time regime
but also a narrow linewidth. However, neither directly Q-switching a single-frequency fiber laser
nor modulating a CW single-frequency fiber laser with an external modulator can deliver sufficient
energy/power for practical applications [86]. A MOPA system is thus required to boost the power of a
single-frequency low power seed laser.

Power scaling of narrow linewidth fiber laser and amplifiers using single-mode silica fibers is
challenging due to the onset of nonlinearities in the fiber, primarily SBS, that build up strongly in case
of pulses >1 ns [87].

Therefore, increasing SBS threshold for fiber amplifiers is crucial and several solutions have been
proposed to fulfill this scope [88-90]. One possible approach is to focus on the optical fiber itself, with a
reduction of the active fiber length and the increase of the core size, conditions that can be achieved
more easily by using active fibers made of phosphate glass.
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In 2009 Shi et al. [21] proposed the use of a single-mode PM large core highly Er/Yb co-doped
phosphate fiber for engineering the final power amplifier stage of a monolithic all-fiber pulsed MOPA
laser operating in the C band. Single-mode operation was achieved in such a large core (15 um) thanks
to the accurate control of the refractive indices of the core and the cladding obtainable in phosphate
glasses (core NA = 0.053). The fiber length was 12 cm only, thanks to the high doping level used in the
phosphate glass core (15% Yb and 3% Er). Pulse energy of 54 uJ and peak power of 332 W without SBS
effects for 153 ns pulses at 1538 nm were demonstrated.

In 2010 the same research group, by using 15 cm of a new active fiber with larger single-mode
core (25 pm, core NA = 0.0395) for the power amplifier section, was able to demonstrate a peak power
of 1.2 kW for 105 ns pulses at 1530 nm, equivalent to a pulse energy of 0.126 m], with transform-limited
linewidth and diffraction limited beam quality [91].

In 2012 a pulse energy of 0.38 mJ and a peak power of 128 kW were demonstrated using a
multiple stage, short, large core Yb/Er co-doped phosphate fiber, in which a short pulse width of
few nanoseconds was used to further enhance the SBS threshold [92]. In fact, SBS is an acousto-optic
non-linear effect due to the interaction between photons and phonons in the fiber, therefore employing
pulses with duration shorter then phonon lifetime, in applications in which this is allowed, is an
additional method to increase the SBS threshold.

Further increase in power amplifier performances was reported in 2014 by NP Photonics [93].
An all-fiber pulsed MOPA system with 1 W average power, 200 uJ energy, >10 kW peak power and
20 ns of duration at 1550 nm was demonstrated using a seed phosphate single-frequency fiber laser,
amplified by several Er-doped phosphate fibers, with a final power amplifier stage consisting in 11 cm
of highly Yb/Er co-doped PM phosphate gain fiber.

The same group reported also a pulsed all-fiber MOPA system in the nanosecond regime emitting
in the 1064 nm band. The architecture was similar to the one at 1550 nm, but in this case Yb-doped
phosphate fibers were used. In particular, the power amplifier consisted in 25 cm of highly Yb**-doped
PM phosphate fiber.

Both MOPA systems were packaged and shipped as an Original Equipment Manufacturer (OEM)
product, just showing the maturity level achieved by phosphate fiber laser technology.

The main results obtained in the 1.5 um region with high energy and peak power pulsed
single-frequency all-fiber amplifiers are summarized in Table 4.

Table 4. Main results obtained in the 1.5 pm region with high energy, high peak power pulsed
single-frequency all-fiber amplifiers based on highly Yb3* /Er3* co-doped phosphate glasses.

Asignal Pulse Energy  Pulse Duration  Average Power  Beam Quality = Peak Power
Ref signal
) (m]) (ns) W) o) (W)
[21] 1538 0.054 153 1.08 12 0.332
[91] 1530 0.126 100 - 12-14 12
[92] 1550 0.384 3 - - 128
[93] 1550 0.200 20 1 - >10

6. Conclusions

In the last decades, remarkable achievements in the field of phosphate based fiber lasers and
amplifiers have been obtained thanks to the progress in the diode technology, advanced fiber fabrication
technology and novel pumping techniques. In this review, we reported on current state-of-the-art
CW, pulsed, and single-frequency fiber lasers and amplifiers based on phosphate glass optical fibers.
Phosphate glasses main properties were also briefly discussed to give to the readers a general overview
of this outstanding gain medium.

The reported results show that phosphate glass fiber lasers and amplifiers can be highly efficient
in a short fiber laser arrangement and can thus represent a promising alternative for other glass lasers
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at medium output power performance. Thus, in future, phosphate based fiber lasers and amplifiers
are expected to be extensively employed in different applications fields.
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Abstract: At present, deep ultraviolet (DUV) lasers at the wavelength of fourth harmonics of 1 um
(266 nm /258 nm) and at the wavelength of 193 nm are widely utilized in science and industry.
We review the generation of these DUV lasers by nonlinear frequency conversion processes using
solid-state/fiber lasers as the fundamental frequency. A DUV laser at 258 nm by fourth harmonics
generation (FHG) could achieve an average power of 10 W with a beam quality of M? < 1.5.
Moreover, 1 W of average power at 193 nm was obtained by sum-frequency generation (SFG).
A new concept of 193-nm DUYV laser generation by use of the diamond Raman laser is also introduced.
A proof-of-principle experiment of the diamond Raman laser is reported with the conversion efficiency
of 23% from the pump to the second Stokes wavelength, which implies the potential to generate a
higher power 193 nm DUV laser in the future.

Keywords: deep ultraviolet laser; frequency conversion; Raman laser

1. Introduction

Deep ultraviolet (DUV) lasers are currently widely employed in various applications. For instance,
a DUV laser at 260 nm has been applied as an “external seed” of a free-electron laser (FEL) with output
wavelengths as short as 4.3 nm, which would make it possible to do the scientific research beyond the
carbon K-edge [1]. In the industrial applications, laser machining of wide bandgap materials would be
also beneficial from the DUV lasers owing to their characteristics of high photon energy [2].

In the past decades, with the fast development of the solid-state lasers and the nonlinear optical
crystals, high-power DUV lasers at 266 nm/258 nm have been studied by many research groups
fruitfully [3-17]. These DUV lasers are usually generated by fourth-harmonics generation (FHG) of the
near-infrared (NIR) laser at 1 um as shown in Figure 1. Until now, the highest average output power
of these DUV lasers was 40 W at the wavelength of 266 nm, of which the fundamental light was a
high-power Nd:Y3Al5012(Nd:YAG) laser at 1064 nm and the nonlinear optical crystal was a CsLiBO1g
(CLBO) [8]. In the scientific and industrial applications, the beam quality of the DUV laser is also an
important parameter. Particularly, the beam quality of the DUV laser dramatically affects the laser
machining results. The beam quality of the DUV laser is determined by that of the fundamental laser
and the crystal for the frequency conversion. Recently, a high-power DUV laser (>10 W) at 258 nm was
reported with a beam quality of M? < 1.5, which was generated by FHG of a Yb:YAG laser at 1030 nm
using the CLBO crystal [13]. This laser would lead to a better laser machining result compared to the
previous DUV lasers with larger M.
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NIR laser @1064nm/1030nm| (BBO,LBO, CLBO etc) - (BBO, CLBO, KBBF etc) Zoormy | Output
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Figure 1. Schematic setup of the solid-state DUV laser by FHG of 1-um laser (DUV: deep
ultra-violet; SHG: second-harmonics generation; FHG: fourth-harmonics generation; YAG:Y3Al5015;
BBO: |3—Ba8204; LBO: LiB305; CLBO: CSLiB6O]0; KBBE: KBezBO:;Fz)A

In terms of the solid-state DUV laser at 193 nm, the laser machining as well as other applications
such as mask-inspection or lithography require a high-power DUV laser output [4,18,19]. The highest
output power of the continuous-wave (CW) 193-nm laser was 120 mW by stages of sum-frequency
generation (SFG) between DUV lasers (wavelength longer than 193 nm) and corresponding NIR
lasers [4]. For the pulsed lasers, a DUV laser at 193 nm with average power of 300 mW was reported
and had already been applied to be the seed of a hybrid ArF excimer laser [2,12]. By use of this
hybrid ArF excimer laser schematics, both high power (>100 W) and high coherence could be obtained
at the same time, which consists of a solid-state DUV laser seed and an ArF excimer amplifier [2].
A high-power solid-state DUV seeding laser with high coherence is beneficial to the final output of the
hybrid ArF excimer laser, and it would also result in suppressing the amplified spontaneous emission
(ASE) of the amplifier.

SEG is the most popular method to generate the DUV laser at 193 nm. Typically, a DUV laser,
of which the wavelength is usually from 200 nm to 300 nm, and a NIR laser play the roles of SFG
lasers in the nonlinear crystals to generate the 193-nm DUV laser. So far, the highest output power at
193 nm by following the above SFG schematics was 1 W by two stages of SFG [20]. As aforementioned,
there is still great demand for power scaling of the solid-state DUV laser at 193 nm. Thus, by the SFG
schematics, the requirement is to increase both the DUV laser (wavelength longer than 193 nm) power
and the NIR laser power at the same time. By choosing the appropriate high-power fundamental laser
at 1 um as well as the nonlinear optical crystals, the average power of the DUV laser at the fourth
harmonics of 1 um could be obtained to be at the 10-watts level in the previous reports. On the other
side, the power scaling of the NIR laser is another aspect to increase the average power of the 193-nm
DUV laser. Due to the lack of the high-power amplification solution of the NIR laser (for example at
1553 nm), nonlinear frequency processes such as optical parameter oscillation (OPO) could be applied
to build a wavelength converter by shifting the wavelength from 1 um to the desired wavelength as
well as obtaining relative higher power [21]. Recently, a diamond Raman laser showed its ability in
achieving a high power and a high conversion efficiency at the 1st Stokes of the 1-um laser [22,23],
which implies the possibility to be applied in the 193-nm DUV laser generation because of its high
Raman gain and large frequency shift.

In this paper, we present a review on the current status of the high-power solid-state DUV lasers.
The high-power DUV laser at 258 nm was generated by FHG from 1 um. The development of the
193-nm laser was demonstrated by stages of SFG. In order to scale the DUV laser power effectively, a
new concept of the 193-nm DUV laser generation is presented based on the diamond Raman laser.

2. DUV Laser Generated by FHG of the 1-um NIR Laser

Figure 1 depicts the schematic setup of the solid-state DUV laser at the FHG wavelength (258 nm
or 266 nm) of 1-um laser, and Table 1 lists the typical results by following this setup including a result
by SFG in the LiB3Os5 (LBO) crystal. So far, the highest average output power of it was 40 W, which
was reported by M. Nishioka et al. in the year 2003 [8] as the improvement result of their 20.5 W DUV
laser in 2000 [9]. The fundamental laser was an Q-switched diode-pumped Nd:YAG green laser at the
wavelength of 532 nm. The 40 W 266 nm laser was obtained by second-harmonics generation (SHG) in
a CLBO crystal. Nevertheless, the beam quality of the DUV laser was not good enough because the
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green laser had a M? of 10 [8]. In 2006, G. Wang et al. reported a 28.4 W average power DUV laser at
266 nm by SHG of a 532 nm laser with M2 =6.5[10]. Q. Liu et al. presented the result of their DUV laser
with average output power of 14.8 W by FHG of a Nd:YVOy laser at the wavelength of 1064 nm [3].
The output power of the fundamental Nd:YVOy laser was 160 W with the beam quality of M2 = 1.28
and M% =1.21. After SHG, the beam quality of green laser was M2 = 1.44 and M; =1.28. However, the
beam quality of DUV laser will be remarkably decayed due to the large walk-off effect of the 3-BaB,Oy
(BBO) crystal for FHG to 266 nm [6]. O. Novak et al. reported a 6-W DUV laser at 257.5 nm by FHG in
a CLBO crystal which effectively improved the DUV laser beam quality due to the smaller walk-off
effect of the CLBO crystal [11] comparing to the previous results using BBO crystals [3-6]. However,
the estimated M2 of it was still more than 1.5. From the above-reported results, the key point to obtain
a high-power, high-beam quality DUV laser is to choose a high power fundamental laser at 1 pm with
a good beam quality and proper nonlinear crystals with a smaller walk-off effect for SHG and FHG. A
fundamental laser with a good beam quality is crucial for the final DUV beam quality as well as the
nonlinear crystal with a smaller walk-off angle.

Table 1. Typical results of the solid-state DUV laser at 258 nm & 266 nm (NIR: near-infrared; DUV: deep
ultra-violet; FHG: fourth-harmonics generation; BBO: 3-BaB,O4; CLBO: CsLiBsO19; KBBF: KBe;BO3F;;
NSBBF: NaSr3Be3B3OgFy; YAB: YAl3 (BO3)y; SFG: sum-frequency generation).

wa‘:il::;gth FHG Crystal Power/Energy Repetition Rate El;_]é,l;::\cl;lf"i) M? (DUV)  Reference
266 BBO 148 W 100 kHz (~ns) ~10 >1.5 [3]
257 BBO 32W 30 kHz (~ns) 14.5 >1.1 [4]
257.7 BBO 2.74 mJ 1 kHz (~ps) 9.7 <3 [5]
257 BBO 11W 14.5 kHz (~ns) ~31 [6]
258 BBO 46 W 796 kHz (~fs) ~5.8 13 x 16 [7]
266 CLBO 40W 7 kHz (~ns) <10 >10 [8]
266 CLBO 205 W 10 kHz (~ns) 14 >10 [9]
266 CLBO 284 W 10 kHz (~ns) <22 >6.24 [10]
257.5 CLBO 6W 100 kHz (~ps) 10 >1.5 [11]
258 CLBO 3W 6 kHz (~ns) 35 <1.5 [12]
258 CLBO 10.5W 10 kHz (~ns) 31 <1.5 [13]
266 KBBF 7.86 W 10 kHz (~ns) <10 >2 [14]
266 YAB 5.05W 65 kHz (~ns) 6.3 [15]
266 LBO(SFG) 33W 1 MHz (~ns) 14 [16]
266 NSBBF 280 uJ 10 Hz (~ps) 36 [17]

Due to the thermal lens effect in the solid-state lasers, if the heating management is insufficient, it
is not easy to obtain the solid-state laser with a high power and a high beam quality simultaneously.
Recently, with the development of the thin disk laser and single-crystal fiber (SCF) laser, a high-power
laser at the fundamental wavelength (1 um) had been realized with a good beam quality even with
a TEMp mode beam [4,24], which would be good candidates for the fundamental of the DUV laser
generation. Another candidate for the fundamental is the high-power fiber laser which could be
achieved by coherent beam combination with M2 value less than 1.1 on both axes of the beam. Hence,
4.6 W DUV laser at 258 nm was obtained by FIIG of this fiber laser with an M2 value of 1.3 x 1.6, which
is the highest average power of the femtoseconds laser at this DUV wavelength so far [7]. Additionally,
using the fiber laser as the fundamental, 100-W ultraviolet laser at 343 nm has also been obtained
by third harmonics generation with M2 < 1.4 [25]. Nevertheless, these high-power fiber lasers were
achieved by the coherent beam combination requiring electronics systems to lock different amplifier
channels, which increases the cost and the complexity.

Many kinds of crystals could be used for FHG such as BBO, CLBO, KBe,BO3F, (KBBF), YAl;
(BO3)4 (YAB), NaSr3Be3B3OgF4 (NSBBF) etc. as shown in Table 1. For FHG from 515 nm to 258 nm,
the efficient nonlinear coefficient (deg) of the BBO crystal is the highest one among these crystals [15].
However, the BBO crystal also has the largest walk-off angle which will lead to a decline of the DUV
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laser beam quality comparing to use the crystal with a smaller walk-off angle such as CLBO. LBO is
also an excellent nonlinear crystal which is always applied to the SHG from the NIR to the green. The
DUV laser is usually realized by two stages of SFG in the LBO crystals since there is no phase-matching
angle for LBO to convert the green laser at 515 nm or 532 nm to the DUV directly by SHG [16]. Recently,
the NSBBF crystal has also shown its potential to obtain a high conversion efficiency from 532 nm to
266 nm. The walk-off angle and d. of the NSBBF are almost similar to those of CLBO [17].

The conversion efficiency from fundamental NIR to DUV is from 5% to 36% according to the
reported results in Table 1. Increasing the conversion efficiency will reduce the burden on the design
and setup of the fundamental laser amplifier as well as the electric power consumption. A good beam
quality of the fundamental laser will also contribute to the increasing of the conversion efficiency
as well as the appropriate power intensity of the NIR and green laser in the SHG and FHG process,
respectively. The highest conversion efficiencies from NIR to green and green to DUV laser by use
of CLBO crystal are 70% and around 50%, respectively [12], which corresponds to the conversion
efficiency of 35% from fundamental to DUV. In this report, the average output power of this DUV
laser was 3 W which was limited by the fundamental NIR laser power. Recently, a DUV laser with
10.5 W average power output was reported, and the conversion efficiency was 31% from fundamental
to DUV [13]. Its beam quality was the best for the 258 nm /266 nm DUV laser with the average power
higher than 10 W, of which the M2 is less than 1.5.

This high-power, high-beam quality DUV laser is also following the schematic setup as depicted
in Figure 1. In detail, the fundamental laser was at 1030 nm which was from a master oscillator power
amplifier (MOPA). The frequency conversion stages consisted of a noncritical phase-matching (NCPM)
LBO crystal (5 x 5 x 30 mm?) for SHG from 1030 nm to 515 nm and a CLBO crystal for FHG from
515 nm to 258 nm. The seed laser of the MOPA was a distributed-feedback (DFB) laser diode (LD), and
it was electrically modulated by a pulse generator with the repetition rate of 160 kHz and with a pulse
duration of 10 ns. The repetition rate was lowered down to 10 kHz by an acousto-optic modulator
(AOM). After 3 stages of fiber amplifiers, the signal was amplified to about 2 W. One stage of Yb:YAG
ceramics thin rod (CTR) amplifier and one stage of Yb:YAG SCF amplifier (TARANIS, Fibercryst Inc.,
Décines-Charpieu, France) were used as the main amplifiers. The Yb:YAG CTR was in the dimension
of ® =1 mm x L =40 mm with Yb3* ion doping of 1 at. % as well as the Yb:YAG SCF. The pump
source of this stage was a 940 nm LD with 100 W output and the output power was 25 W by use of a
double-pass configuration. The Yb:YAG SCF amplifier was pumped by a 200 W LD at the wavelength
of 969 nm which was stabilized with a volume Bragg grating. The Yb:YAG SCF amplifier was a single
pass configuration with 35 W output at 100 W pumping. The conversion efficiency of SHG from NIR
to green and FHG from green to DUV was 73% and 42%, respectively, corresponding to a conversion
efficiency of 31% from NIR to DUV. This was highest conversion efficiency for the DUV lasers with
average powers of more than 10 W. Furthermore, the beam quality was near-diffraction-limited for
both amplifiers (Yb:YAG CTR: M3 = 1.06 and M = 1.03; Yb:YAG SCF: M3 = 1.02 and M = 1.04). Hence,
the DUV laser had an excellent beam quality owing to the good beam quality of the fundamental
laser and the optimized frequency conversion stages. The measured value of M2 was M2 = 1.02 and
Mﬁ = 1.05 for DUV laser at 3 W. Although the DUV beam became a little worse at 9-10 W (M2 = 1.37
and M; = 1.46), it is still the best laser beam quality with M2 < 1.5 for the DUV laser power more than
10 W [13].

The average power of the NIR laser still has the potential to be improved to tens of watts such
as 70 W [26] if the double-pass configuration could be utilized for the Yb:YAG SCF amplifier stage.
Hence, if the conversion efficiency of 31% from NIR to DUV could be still maintained at this higher
power condition, the average output power of the DUV laser at 258 nm could be more than 20 W,
which would be a remarkable power level for the DUV laser and lead to the unanticipated DUV laser
machining results. Moreover, for high-power DUV laser, the UV damage of the nonlinear crystal,
including the windows for CLBO crystal and the mirrors, is another important parameter for long
term and stable operation. On the other hand, the beam quality of this higher power DUV laser would
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become worse due to more serious thermal and nonlinear effects. Hence, the frequency conversion
processes should be carefully designed to mitigate the aforementioned effects. Thus, a high-power
DUV laser at the FHG of 1 um with a good beam quality could be obtained and will be beneficial for
obtaining the shorter wavelength DUV lasers such as 193 nm by SFG.

3. DUV Laser at 193 nm

The reported typical results of the solid-state DUV laser at 193 nm in the past decades are listed in
Table 2.

Table 2. Typical results of the solid-state DUV laser at 193 nm (CW: continuous-wave; KABO: K, Al;B,O7).

Wavelength (nm) Method Crystal Power/Engergy Repetition Rate Reference
193 SHG KBBF 15 mW CW [27]
193 SHG KBBF 223 mW 8 kHz (~ns) [28]
193 SHG KBBF 1.05W 1kHz (~ps) [29]
193 SHG KBBF 02W 6 kHz (~ns) [30]

193.4 SFG (234.1 nm + 1110 nm) CLBO 120 mW cw [18]
193 SFG (221 nm + 1547 nm) CLBO 140 mW 200 kHz (~ns) [31]
193.5 SFG (221 nm + 1553 nm) CLBO 310 mW 6 kHz (~ns) [12]
193 SFG (226 nm + 1342 nm) CLBO 230 mW 6 kHz (~ns) [32]
193 SFG (221 nm + 1553 nm) CLBO 1.02W 10 kHz (~ns) [20]
193 SFG (235.8 nm + 1064 nm) KABO 02W 10 kHz (~ns) [33]
193.4 SFG (266 nm + 708.6 nm) BBO 25 mW 5 kHz (~ns) [19]
193 SFG (258 nm + 774 nm) BBO 2y 20 Hz (~fs) [34]
193 SFG (213 nm + 2100 nm) LBO 770 uJ 60 Hz (~ns) [21]

Two methods are usually applied to generate the solid-state DUV laser at the wavelength shorter
than 200 nm. One is by SHG directly from a longer wavelength; the other one is by stages of SFG.
T. Thao Tran et al. and Y. Yang et al., respectively, summarized the nonlinear optical materials for
DUV generation from 5th to 7th harmonics of Nd:YAG laser at 1064 nm [35,36] by SHG and SFG
including CLBO, KBBF, LBO, BBO, K,Al;B,07 (KABO) etc. Recently, coherent radiation in the vacuum
ultraviolet (VUV) region was generated with a wavelength as short as 121 nm in strontium tetra borate
(SBO) by “random quasi-phase matching” (RQPM), which was the shortest wavelength generated by
second-order nonlinear optical process in a solid-state material [37]. However, this SBO crystal does
not fit for the high-power DUV laser generation due to the low efficiency of around 1075.

Table 2 summarizes the typical results of the solid-state DUV laser at 193 nm by use of the different
nonlinear crystals. Among the above crystals, the KBBF crystal is currently known as the only one,
enabling high power and short wavelength directly by SHG [28-30,36,38,39]. For the application
of seeding the hybrid ArF excimer laser, the DUV laser should be at the wavelength of 193 nm. In
2008, H. Zhang reported the result of 2.23 mW at 193 nm average power output directly by SHG in
KBBF [28]. Later, Kanai et al. reported a 1.05 W 193-nm laser also by SHG in KBBF with the pulse
duration of several hundred of picoseconds, of which the fundamental laser was from a Ti:Sapphire
amplifier [29]. This is also the highest average power of 193-nm laser by SHG until now. In 2012, S. Ito
et al. presented a 0.2 W 193-nm laser by SHG in KBBF with nanoseconds pulse which is suitable for
seeding the ArF laser [30]. In addition, CW DUV laser at 193 nm was reported by M. Scholz et al. with
the output power of 15 mW in KBBF by SHG with which the fundamental laser was from an external
cavity laser [27].

The wavelength conversion of SHG to 193 nm by using KBBF was successfully demonstrated
by the aforementioned groups. However, the KBBF should be packed in a prism coupling device
(PCD) consisting of CaF, or SiO; prisms to achieve the phase-matching condition [14,29]. Moreover,
KBBF is significantly difficult to be grown into single crystal because of the weak interaction of alkali
metal and fluorine cations [35,36], which limit its potential to be grown into large dimension and to be
applied in generating a higher power 193-nm laser for seeding the hybrid ArF laser. Hence, the SFG
process in other crystals is the practical method for high-power 193-nm laser generation. The cut-off
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wavelength of DUV laser generated by SHG in BBO is limited to 205 nm by a phase matching condition
although its absorption edge could reach down to 189 nm [40]. Nevertheless, the BBO crystal could
be used in SFG process to generate the 193 nm laser. ].J. Jacob et al. reported a 193.4 nm laser by SFG
between a 266 nm and a 708.6 nm laser with the output power 2.5 mW [19]. Even more than 20 years
ago, femtoseconds 193 nm laser was generated in BBO by SFG between 258 nm and 774 nm [34].
Another drawback of BBO crystal is a large walk-off effect, which would deteriorate the SFG laser
beam quality. LBO crystal could also be used for 193-nm laser generation if the wavelengths fulfilling
the phase-matching condition. Hamilton et al. reported the 193-nm laser generation between 213 nm
and 2100 nm in LBO by SFG with the energy of 770 uJ [21]. LBO has a smaller walk-off angle leading
to a better beam quality. However, the efficient nonlinear coefficient is smaller than that of the BBO or
CLBO crystal, which limits the DUV laser power scaling. KABO is also an excellent nonlinear optical
crystal for DUV laser generation. Umemura et al. reported a 193 nm laser with the average output
power of 0.2 W which could run stable for 50 hours although KABO has the smallest dg comparing to
BBO, LBO, and CLBO [33]. For the CLBO crystal, . Sakuma reported a 120 mW DUV laser output at
193.4 nm by SFG between 234.1 nm and 1110 nm, which is the highest solid-state CW 193-nm laser
until now [18]. Other results of 193 nm generation by SFG in CLBO also could reach to the average
power from 100 mW to 300 mW [12,31,32]. CLBO has a larger def than LBO and a smaller walk-off
angle than BBO, which means it could lead to a higher power DUV laser with better beam quality at
the same time. Hence, the CLBO crystal is a suitable crystal for 193-nm laser generation. However,
CLBO is more hygroscopic comparing to BBO or LBO crystals. Packaging the CLBO crystal into a cell,
heating the crystal up to more than 150 °C, and purging it by use of noble gas is the solution to avoid
these problems [41]. In addition, the previous CLBO crystal for FHG to DUV laser at 258 nm was also
treated in the above conditions.

In terms of the experimental setup, the two laser wavelengths for SFG should be chosen carefully
in order to satisfy the phase-matching condition of the nonlinear optical crystals. The Nd:YAG, Yb:YAG,
Nd:YVOy and Yb-doped fiber lasers could achieve both high power and high beam quality. According
to the published results for generating 193 nm, these NIR lasers were used for the fundamental of
a DUV laser with the wavelength longer than 193 nm such as 258 nm (4th harmonics) [12], 213 nm
(5th harmonics) [21]. By use of nonlinear processes such as OPO, the 1-um NIR laser is converted
to longer wavelengths [19,21,28], which extends the available laser wavelengths for SFG. Using the
Er-doped fiber laser at 1550 nm together with the 1-pum NIR laser, the final target of the 193 nm laser is
achieved without involving the complex and unstable nonlinear OPO process [12,31,42].

Recently, 310 mW DUV laser at 193 nm was generated by stages of SFG in the CLBO crystals. The
schematic setup for this 193 nm laser was shown in Figure 2. The 193-nm laser was generated by two
stages of SFG process between a 258 nm laser generated by FHG of a 1030 nm laser and a 1553 nm laser.
The 1030 nm laser was based on an Yb-doped hybrid amplifier and the 1553 nm laser was from an
Er-doped fiber amplifier. The 1030 nm laser and the 1553 nm laser were synchronized by a commercial
available delay/digital pulse generator. The LBO crystal was utilized for the SHG to 515 nm and
the CLBO crystals were used for FHG to 258 nm, SFG to 221 nm, and SFG to 193 nm. The generated
193 nm laser was operated at 6 kHz with pulse duration of 4 ns. The average power was 310 mW
and the linewidth was about 4 GHz, which satisfied the needs for injection-seeding the hybrid ArF
excimer laser [2,12]. As a higher-power 193 nm laser was needed to increase the signal-to-ASE-ratio
of the hybrid ArF excimer laser output, a watt-level 193-nm laser has been generated due to this
requirement [20].
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Figure 2. Schematic setup of 193 nm generation by frequency mixing of 1030-nm and 1553-nm lasers
(NCPM: noncritical phase-matching).

4. DUV Laser Generation Based on Diamond Raman Laser

In this section, a new method to generate the 193 nm DUV laser is introduced, which is based on
the diamond Raman laser scheme. In terms of the above methods of the 193 nm generation with 258 nm
and 1553 nm, there is a limitation for its power scaling. The power of 258 nm laser is improved to
more than 10 W while the power of the 1553 nm laser is limited because of the lack of the amplification
medium and methods. The output power of the current Er-doped fiber amplifier is less than 2 W
which is limited due to the stimulated Brillouin scattering [42]. For the solid-state laser, the average
output power was also no more than 1 W [43]. Hence, this longer wavelength is usually generated by
use of OPO process pumped by the Nd- or Yb-doped lasers.

In the past few decades, many Raman materials have been studied [44-46], which showed the high
conversion efficiency to the first Stokes light from 1 um. The stimulated Raman scattering (SRS) laser
is remarkable for the momentum conservation automatically determined by the scattered phonons,
which will induce the Stokes light beam to be a high quality [22,47]. Particularly, by use of the chemical
vapor deposition (CVD) diamond, the diamond Raman laser depicted a high power result of 100 W [22]
and a high slope efficiency of 84% approaching the quantum limit [23]. In detail, the most interesting
advantages of diamond includes the high Raman gain (pumping at 1030 nm, gg = 13.5 £ 2.0 cm/GW)
and the large frequency shift of the 1st order Raman mode (1332.5 cm™1) [22,48], which could achieve
a high-power operation and a sufficient frequency shift. Moreover, the high thermal conductivity
(2200 W/m-K), which is two to three orders of magnitude higher than conventional Raman materials,
and the low thermal expansion coefficient of diamond (1.1 x 10 ¢ K1) will be helpful for power
scaling to a high level as well as its high damage threshold [45-48]. Another important advantage of
the diamond is the broad transmission band. Recently, the longest solid-state Raman laser wavelength
was obtained in the 3-pum region in a CVD diamond, showing a new pathway to the mid-IR laser and
the possibility to cover from NIR to mid-IR wavelength [49]. Hence, by choosing a suitable Raman
wavelength, a high-power 193 nm laser will be effectively generated by stages of SFG.

Figure 3 demonstrates the conceptual setup of the high-power 193 nm laser by the diamond
Raman laser. The idea is also basically based on two stages of SFG process. The first DUV wavelength
is at 260 nm, which is the FHG of a 1040 nm laser. Meanwhile, the wavelength of the NIR laser is
1512 nm, which is the second Stokes wavelength of a 1078 nm laser and generated by a diamond
Raman laser. Both the 1040 nm and 1078 nm laser come from one dual-wavelength Yb-doped fiber
laser. Each laser is amplified by stages of fiber amplifier and Yb-doped materials amplifier, respectively.
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Figure 3. Conceptual setup of the 193 nm laser generation based on the diamond Raman laser.

The Yb-doped materials amplifier could be a Yb:LupOj3 [50] or a Yb3*:CaCdAlOQ, [51] laser at
both wavelengths (1040 nm & 1078 nm). For the frequency conversion by nonlinear crystals to short
wavelengths, the 1040 nm laser generates the green laser at 520 nm by SHG using the LBO crystal, and
then the DUV laser at 260 nm will be generated by SHG from 520 nm by use of the CLBO crystal. On
the other hand, the 1078 nm is the pump laser of the diamond Raman laser; its 2nd Stokes wavelength
of 1512 nm will be the NIR laser for the following SFG processes to 193 nm. Hence, a DUV laser at
222 nm will be achieved by SFG between the 260-nm laser and the 1512-nm laser. The 193-nm laser will
be generated by the second stage SFG between the 222-nm laser and the residual of the 1512-nm laser.

We first used a Yb:YAG laser at the wavelength of 1030 nm as the pump of the diamond Raman
laser, which is the proof-of-principle experiment. For this proof-of-principle experiment, the Raman
laser setup is depicted in Figure 4, of which is a short Raman laser cavity with a small piece of
diamond inside it pumped by a 1030 nm laser [52]. The 1030 nm laser is from a 10 kHz Yb:YAG CTR
amplifier with the average power of 27 W. The diamond is made by CVD process with a dimension
of 6 x 6 x 1.5 mm?® and with anti-reflection (AR) coating of the pump, the 1st and the 2nd Stokes
wavelengths. The beam radius of the 1030 nm pump laser is about 700 pum [52]. The diamond crystal is
pumped in the direction of <110>. The Raman laser cavity is a short and linear cavity with the length
of 25 mm including an input concave mirror (M1) with R =75 mm and an output coupler (OC) with
R =50 mm. The coating of M1 is high transmission (HT) at 1030 nm and high reflection (HR) at the 1st
(1194 nm) and the 2nd Stokes wavelength (1420 nm) of 1030 nm. The OC is HR for both 1030 nm and
1194 nm. The transmission of OC at 1420 nm was tried with three different values of 5%, 20%, and
50%. Two reflection mirrors (BB1-E04, Thorlabs Inc., Newton, NJ, USA) were applied to filter out the
fundamental light, and the 2nd Stokes wavelength of 1420 nm was detected.

~25mm
M1 <mmssssssmmp OC
R=50mm BB1-E04
IR@1030nm
HR@1194nm

~10mm 0C@1420nm(5%, 20 & 50%) 2nd Stokes

@1420nm
BB1§

Figure 4. Experimental setup of the diamond Raman laser pumped by the Yb:YAG laser (HT: high
transmission; HR: high reflection; OC: outup coupler).

Pump
@1030nm

HT@1030nm
HR@1194nm
HR@1420nm
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The Raman laser achieved lasing at the wavelength of 1420 nm when the pump laser power was
above the threshold power. As shown in Figure 5, the threshold power was 1.25 W and 1.5 W for
the 5% and 50% OC, respectively. The threshold power for 20% OC was between 1.25 W and 1.5 W.
During the cavity alignment to achieve the 2nd Stokes wavelength, the AR coating of the front surface
of the diamond was easily damaged by the reflected pump beam back from the OC when the pump
laser (1030 nm) power was higher than 3 W. This was because of the imperfect design of the current
Raman laser cavity. Not only the AR coating of the diamond surface but also the coating of the input
mirror M1 was damaged by the returned pump laser. The values of the intensity of the returned pump
laser at M1 and the front surface of the diamond were estimated to be 0.6-1 J/cm?. The pump power
was limited to 3 W to prevent the damages inside cavity for 5% and 20% OC. For the 50% OC, the
pump power was carefully increased to about 4 W during the experiment, which was still at a lower
power level in order to avoid the damage of the M1 and diamond. The HT coating of the pump beam
at OC or the change of the radius of the curvature of could solve this issue to realize the higher power
operation. At the pump power of 3 W, the output power of the Raman laser was 130 mW, 293 mW
and 325 mW using 5%, 20%, and 50% OC, respectively. By use of the 50% OC, the highest average
power of this Raman laser was 0.586 W when the pump laser was 4.2 W as shown in Figure 5, with the
slope efficiency of 23% which was comparable to the previous reported results. The spectrum of the
generated 2nd Stokes after the two reflection mirrors was measured by a spectrometer (NIRQuest512,
Ocean Optics Inc., Largo, FL, USA) as shown in Figure 6.
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Figure 5. Output power of the 2nd Stokes (1420nm) vs. Pump power with 5% and 50% OC.
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Figure 6. Spectrum of the diamond Raman laser at the 2nd Stokes wavelength of 1420 nm.
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The pulse duration of the second Stokes light was shortened to 5 ns as shown in Figure 7a, a
single-shot picture from the oscilloscope, which is a common phenomenon in Raman laser [44] while
the pulse duration of the pump laser was 10 ns. The beam profile shown in Figure 7b demonstrated a
good beam quality as one of the merits of Raman laser, which would be beneficial to generate a 193-nm
DUV laser with a high quality beam.

(@ (b)

Figure 7. (a) Pulse duration of ~5 ns (5% OC); (b) Beam profile of the 1420 nm laser.

According to the proof-of-principle experiment, the conversion efficiency of 23% implied the
possibility of achieving high-power at the second Stokes wavelength of the Raman laser. If the pump
laser of 1078 nm could be obtained at the average power of 50 W, the output power of its 2nd Stokes
wavelength at 1512 nm could be more than 10 W. The design of the Raman laser cavity should be
optimized in order to avoid the damage of the M1 and diamond surface. For instance, the current
concave OC could be replaced by a plane mirror which could mitigate the power density on the
surface of M1 and the diamond. Moreover, using high damage threshold coatings for M1 and diamond
would also improve the output power without any damages. Then, the NIR laser at the 2nd Stokes
wavelength could be high enough, as well as its good beam quality, to generate the final DUV laser at
193 nm with a high average power.

5. Conclusions

We summarized the current development status of the high-power DUV laser both at the
wavelength of FHG of the 1-um laser and at 193 nm. The recent development of the solid-state/fiber
laser, as well as the nonlinear optical crystals, prompts not only the average power but also the beam
quality (coherence) of the DUV lasers to an unprecedented level. Moreover, combining the solid-state
laser with other nonlinear process such as stimulated Raman scattering, NIR lasers could be achieved at
new wavelengths with high power and high beam quality, which was tested by the proof-of-principle
experiment. This Raman laser scheme provides a new route to the high-power DUV laser, especially at
the wavelength of 193 nm.
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Abstract: A high-energy diode-pumped picosecond laser system centered at 1064 nm for optical
parametric chirped pulse amplifier (OPCPA) pumping was demonstrated. The laser system was based
on a master oscillator power amplifier configuration, which contained an Nd:YVO, mode-locked seed
laser, an LD-pumped Nd:YAG regenerative amplifier, and two double-pass amplifiers. A reflecting
volume Bragg grating with a 0.1 nm reflective bandwidth was used in the regenerative amplifier
for spectrum narrowing and pulse broadening to suit the pulse duration of the optical parametric
amplifier (OPA) process. Laser pulses with an energy of 316.5 m] and a pulse duration of 50 ps were
obtained at a 100 Hz repetition rate. A top-hat beam distribution and a 0.53% energy stability (RMS)
were achieved in this system.

Keywords: diode-pumped solid-state laser; picosecond laser; OPCPA pumping

1. Introduction

High energy, ultrafast laser in the mid-infrared (mid-IR) is desirable for applications in strong field
physics [1], high-harmonic generation [2], and driving X-ray sources [3]. An optical parametric chirped
pulse amplifier (OPCPA) is one of the most promising ways to achieve amplification for mid-IR laser
pulses by applying proper nonlinear crystals and a phase matching condition. A kHz, m]-level OPCPA
at 2.1 um is reported with a high-energy cryogenic Yb:YAG pump laser [4]. The current limitation
for a higher OPCPA output depends upon the development of high-energy picosecond pumping
sources. Several investigations have been developed for the generation of high-energy OPCPA pump
sources. A picosecond pump laser for IR OPCPA delivering 25 m] at 3 kHz based on a Yb:YAG
thin-disk amplifier has been reported [5]. A 100 mJ, 1 kHz laser output has been achieved as a pump
for picosecond OPCPA based on Yb:YAG thin disk regenerative amplifier [6]. Additionally, an OPCPA
pump laser based on rod-shaped Nd:YAG crystals has been reported, producing 130 m]J, 64 ps pulses
with a repetition of 300 Hz [7].

In this paper, we present a diode-pumped solid-state laser (DPSSL) amplification system based
on a master oscillator power amplifier (MOPA) configuration, delivering 316.5 mJ, 50 ps pulse energy
at a wavelength of 1064 nm and a repetition of 100 Hz. The amplification system works at room
temperature. A thermal lens and thermally induced depolarization were studied and compensated.
A reflecting volume Bragg grating was utilized in the regenerative amplifier to achieve temporal
stretching of the laser pulses to suit the width of the signal laser pulses in the optical parametric
amplifier (OPA) process. The output of the amplification system also features an approximately flat-top
spatial distribution and a 0.53% energy stability (RMS).

Appl. Sci. 2017,7,997 35 www.mdpi.com/journal/applsci
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2. Experiments and Results

2.1. Front-End and Regenerative Amplifier

The schematic of the laser system is shown in Figure 1. The master oscillator is a home-built
Nd:YVO,4 mode-locked laser, providing up to 280 mW, 8.4 ps laser pulses at a wavelength of 1064 nm
and a frequency of 80 MHz. The OPCPA system we serve is seeded by a commercial ultrafast laser
(Vitara, Coherent Corporation, Santa Clara, CA, United States) centered at 800 nm. The laser is
then converted to 4 um via a three-stage OPA based on KTiOAsO, (KTA) nonlinear crystals [8].
The 4 pum laser will serve as the signal pulses in the following OPCPA process. OPA is an interactive
process between pump pulses and signal pulses, thus the temporal and spatial overlap between two
pulses determines actual gain performance. To achieve perfect temporal synchronization, the Nd:YVOy
mode-locked oscillator is designed to operate at 80 MHz, which is the same with the commercial 800 nm
laser. The commercial 800 nm oscillator is equipped with a synchronization accessory, which can
synchronize its oscillator to an external Radio Frequency (RF) source. Part of the Nd:YVO,4 mode-locked
laser pulses are utilized and converted into a master signal by a photo-diode. The synchronization
accessory will accept the trigger and automatically adjust the length of the cavity to achieve precise
frequency synchronization with the master Nd:YVOy oscillator. At the same time, the trigger signal
from the Nd:YVO,4 mode-locked oscillator is transmitted to a synchronizer, which provides all delay
signals for latter electrical devices.
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4

Tmago Relay Main Amplifier

Figure 1. Schematic of the laser system. HR: high reflector; HWP: half-wave plate; PBS: polarization
beam splitter; PD: photo diode; PC: Pockels cell; FR: Faraday rotator; TFP: thin-film plate; QWP:
quarter-wave plate; LD: laser diode; VBG: volume Bragg grating.

Pulses from the Nd:YVO, mode-locked oscillator first pass through a half-wave plate (HWP),
which works with a polarization beam splitter (PBS), to control the pulse energy injected into the
amplification system by rotating the HWP. A Pockels cell (PC) is operated at half-wave voltage with
a repetition of 100 Hz, working together with two PBSs and an HWP to achieve pulse picking and
isolation from the damage of returning pulses. When the half-wave voltage is applied to the Pockels
cell, pulses will maintain p-polarization after passing through the Pockels cell and the HWP. When the
voltage is off, laser pulses will change their polarization after passing through the HWP and exit
from either PBS. Before they are injected into the regenerative amplifier, laser pulses of 100 Hz are
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aligned and expanded to 1.8 mm with a pair of plano-convex lenses, which suit the cavity mode of the
regenerative amplifier.

Before seeding the regenerative amplifier, laser pulses pass through an optical isolator composed
of a PBS, an HWP, and a Faraday rotator (FR) to ensure extra protection for the oscillator.
The regenerative amplifier has a linear cavity with a stable cavity mode. The diode-pumped
amplification module (Cutting Edge Optronics, RBAT30-1P, St. Charles, MO, USA) has a rod-shaped
Nd:YAG crystal with a diameter of 3 mm and a length of 60 mm. When operated at 180 A and 300 Hz
with a pulse width of 250 ps, this module has a stored energy of 197.7 m]. In this system, the operating
parameters are set at 75 A and 100 Hz with a duration of 250 ps, which matches the upper state lifetime
of the Nd:YAG gain material. A Pockels cell is operated at quarter-wave voltage with an operation
frequency of 100 Hz, whose time delay is precisely controlled by the synchronizer to achieve correct
build-up of the pulse energy in the cavity before exiting.

To achieve better temporal overlap between pump pulses and signal pulses in the OPA process,
pump pulses should also be stretched to tens of picoseconds to suit the temporal width of signal pulses.
In this work, a reflecting volume Bragg grating (VBG) is inserted as one of the mirrors to achieve the
temporal stretching. The VBG we utilize (OptiGrate, RBG-1064-99, Oviedo, FL, USA) has an aperture of
8.0 mm X 5.0 mm and a thickness of 12 mm. The VBG has a bandwidth of 0.1 nm centered at 1064 nm
with a reflection efficiency as high as 99.7%. Narrower reflected bandwidth will result in stretching
in the time-domain. To obtain a maximum, saturated output with a fixed round-trip time, the input
pulse energy needs to be maintained constant. If we want to change the duration of the output pulse,
we need to vary the energy of the injected pulse and make the regenerative amplifier at the saturated
state with different round-trips. We precisely control the input pulse energy, and after 20 round trips
in the regenerative cavity, laser pulses are stretched to 115 ps, which is shown in Figure 2a. Using
stretched pulses has two advantages: on the one hand, it will match the width of the signal pulses in
the OPA process; on the other hand, stretched pulses lower the peak power of laser pulses and promise
a higher energy gain without bringing about damage to optical devices. After 20 round trips, a total
2.2 m] of pulse energy is achieved via the regenerative amplifier. The beam distribution is shown
in Figure 2b.

Normalized Intensity (a.u.)
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Figure 2. (a) Temporal profile and (b) beam distribution of amplified pulses from the regenerative amplifier.

The laser pulses of the regenerative amplifier are then expanded to 6.5 mm and aligned with
a pair of plano-convex and plano-concave lenses. In the OPA process, a top-hat distribution of pump
pulses is preferred due to its uniform amplification gain. To achieve a top-hat distribution of the laser
beam, a serrated aperture with a diameter of 6 mm is inserted behind the regenerative amplifier to
select the uniform part of the laser beam, which also reduces the pulse energy from 2.2 to 1.6 m]J.
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The beam at the serrated aperture is then relay-imaged to the high-reflection mirror 1 (HR1) with
a pair of plano-convex lenses. A pinhole is set at the focal point in the relay-imaging setup to achieve
spatial filtering.

2.2. Power Amplifiers and Compensation of Thermal Effects

The power amplification stage consists of two successive laser gain configurations. The first
setup contains a diode-pumped gain module (Cutting Edge Optronics, REA6306-1P), which has
a rod-shaped Nd:YAG crystal with a diameter of 6 mm and a length of 120 mm. This module has
a maximum operating parameter of 180 A and 300 Hz, a condition under which it has a stored energy
of 513.3 mJ. In this system, the module is operated at 100 A and 100 Hz with a small signal gain of 3.49
in consideration of controllable thermal effects and sufficient amplification performance. After exiting
from the serrated aperture, laser pulses pass through the gain module and a Faraday rotator, and are
reflected back. The laser pulses change their polarization after the double-pass of the Faraday rotator
and exit from thin film polarizer (TFP).

In the diode-pumped gain module, unabsorbed pumping light will bring about heat accumulation.
A water-cooling circulatory system is used to take away the redundant heat to prevent the fracture of
the gain crystal. The pumping system together with a water-cooling system will result in a nonuniform
radial temperature distribution in the rod-shaped crystal. The thermal strains in the rod-shaped
crystal brought by the nonuniform radial temperature distribution will result in a change in the
refractive index via the photoelastic effect, which will lead to a thermally induced birefringence and
thermal lensing.

The thermally induced birefringence will bring about depolarization and lead to a loss of laser
energy when pulses pass through polarization-related devices. According to Reference [9], thermally
induced depolarization will be compensated when laser pulses pass through the same gain module
with a 90-degree polarization rotation. Thus, a Faraday rotator is placed between the gain module and
HR1 to achieve the polarization rotation and depolarization compensation. With our measurements,
the loss of depolarization is below 3%.

After the double-pass of Gain Module 2, laser pulses are relay-imaged from HR1 to Surface
1 and expanded from 6 to 10 mm with an imaging system composed of a pair of plano-convex
lenses. Laser pulses will show little convergence due to a thermal lensing effect in Gain Module 2.
When operated at 100 Hz and 100 A, the gain module has a measured focal length of 30 m, as shown in
Figure 3. Thus, in the imaging setup, the distance between two lenses is precisely adjusted to achieve
the compensation of the thermal lensing effect and alignment for the laser beam. In order to avoid
air breakdown, a vacuum tube is placed in the imaging setup. An HWP and Faraday rotator are
placed inside the imaging setup together with two TFPs to achieve another optical isolation. After the
double-pass of Gain Module 2, laser pulses are amplified to 38.5 m]J.
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Figure 3. The relationship between pump current and the focal length of the gain module.

The second part of the power amplification setup consists of two identical gain modules (Cutting
Edge Optronics, REA12006-3P), which has a rod-shaped Nd:YAG crystal with a diameter of 10 mm
and a length of 120 mm. Each has a stored energy of 1.05 ] when operated at 125 A and 300 Hz.
Both gain modules are operated at 100 A and at 100 Hz with a small signal gain of 2.88 in this system.
An equivalent focal length of 3.2 m is measured in such an operating situation. To obtain the best beam
distribution in the exit, the laser beam should be relay-imaged from Surface 1 to HR2 and then to the
exit. We take advantage of the thermal lensing of the gain module. A plano-convex lens with a focal
length of 500 mm is placed behind with a distance of 400 mm to the center of the gain module. After
passing through the gain module and the plano-convex lens, laser pulses converge at the focus point.
Another identical gain module and a plano-convex lens are placed symmetrically with the focus point.
Thermal lenses in two gain modules together with two plano-convex lenses consist of an equivalent
imaging system. Due to this equivalent imaging system, laser pulses will pass through the same
gain modules with the same optical path in the reflecting round. To overcome thermally induced
depolarization, a Faraday rotator is placed behind Module 4 to achieve the polarization rotation and
depolarization compensation.

Via the total power amplification system, laser pulses are amplified to 316.5 m]. An approximate
top-hat beam distribution with near-field modulation (peak to mean) of 1.46 is achieved, as shown
in Figure 4a. A 10 min energy stability has thus been tested, and 0.53% RMS is achieved, as shown
in Figure 4b.
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Figure 4. (a) Beam distribution and (b) energy stability of amplified pulses from the whole amplifier.
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Due to the gain saturation effect of the Nd:YAG amplifier, after two successive double-pass gain
modules, the pulse temporal width shortened from 115 to 50 ps, as shown in Figure 5, which is suitable
for the signal laser pulses in the OPA process.
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Figure 5. Pulse temporal width via the amplifying system.

3. Conclusions

In conclusion, a laser amplification system combined with an Nd:YVOy seed, a regenerative
amplifier based on an Nd:YAG crystal, and two double-pass Nd:YAG power amplifiers is demonstrated.
Thermally induced birefringence and thermal lensing are compensated. A 316.5 mJ, 50 ps laser
pulse is achieved with an operating frequency of 100 Hz. The amplification system also features
an approximately flat-top distribution and a 0.53% energy stability (RMS). This high-repetition-rate
picosecond laser could be used for OPCPA pumping and other applications.
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Abstract: An arbitrary pulse shape by compensating gain saturation in a solid-state Master oscillator
power amplifier (MOPA) system made up of three Neodymium doped yttrium vanadate (Nd:YVOy)
amplifiers is demonstrated. By investigating the amplifier dynamics in detail, car-shaped pulse shapes
were obtained with compensated pulse distortion. Desired pulse shapes, such as multiple-step, square,
parabolic, and Gaussian pulses, were achieved, with a high peak power level of 41.6 kW and a narrow
linewidth less than 0.06 nm. In addition, through second harmonic generation (SHG), a green laser
with different pulse shapes was obtained, with a maximum conversion efficiency of 42.6%.

Keywords: laser amplifiers; diode-pumped; pulsed laser; pulse shaping

1. Introduction

In the fields of optical sensing and Lidar applications, a long pulse duration, a good pulse shape,
as well as a narrow spectral linewidth are required to achieve high precision measurements [1-5].
Master oscillator power amplifier (MOPA) systems seeded by a modulated semiconductor diode is
a cost-effective approach to obtaining the above parameters. However, the gain saturation effect of
amplifiers would cause pulse shape distortion and would shorten the pulse duration in the case of deep
saturation. To obtain the required laser parameters for the above-mentioned applications, the negative
influence of pulse distortion from MOPA systems should be eliminated. Therefore, the inverse problem
on how to obtain the desirable output waveform by actively controlling the input pulse shape and
compensating the gain saturation effect should be solved.

The general compensating method was firstly proposed by Siegman in 1986 in his book Lasers [6].
The key of the method is to get the function G(f) describing the change of the input waveform, which is
directly related to the gain characteristics of the amplifier. Many researchers have reported works
on the pre-compensation of pulse distortion in master oscillator fiber power amplifier (MOFPA)
systems [7-11]. Although it is easy to obtain G(t) and control the pulse shape in fiber amplifiers,
the peak power is limited by the nonlinear effect in the fiber [5,12], especially for the case of narrow
spectral linewidth.

To overcome the shortage of fiber amplifiers, solid-state amplifiers are introduced in this paper.
From the literature investigation, for solid-sate amplifiers, few have proposed a way of obtaining G(t)
and arbitrary output waveforms accurately in theory. Few works have demonstrated compensation of
pulse distortion in solid-state amplifiers by experiment. With the help of a complicated computational
system Laser Performance Operations Model (LPOM), a square pulse for a huge laser system was
achieved by the group of National Ignition Facility (NIF) [13]. However, the detailed information of
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the software is not provided by the group. Other software packages for the simulation of the output
from an amplification chain include Mir6 [14] and GLAD [15]. However, they are not easy to access for
a high price.

In 2015, Lu Xu et al. [16] demonstrated an experimental method of shaping the input pulse
of a solid-state MOPA system by introducing a device made up of two polarizers, one Pockels cell
and one half-wave plate. However, the shaping ability is restricted to providing arbitrary input
pulse, and the device could not compensate the pulse distortion in the case of an arbitrary saturation
degree. Although a square pulse shape is demonstrated in the experiment, the difference between the
desired pulse shape and the measured one is large due to the non-linear edge of the input pulse. Gain
characteristics and pulse shape transfer function are not deduced theoretically for their MOPA system
in that paper either. Table 1 shows the detailed information of progress in temporal compensation for
saturated amplifiers.

Table 1. Progress in temporal compensation for saturated amplifiers.

Amplifier ~Peak Power (kW)  Linewidth (nm) Exp orTheo!  Arbitrary Waveform Reference

2.6 3 theo yes [7]

fiber 1.5 - theo yes [8]

18 0.3 exp yes [9]

. - - exp yes [13]
solid-state 1.34 x 108 narrow exp no [16]

1 The method of obtaining the arbitrary waveforms: experimental or theoretical.

Our previous work [17] emphasizes the demonstration of an arbitrary burst envelope for an
MOPA laser operating in burst mode, which could be used in chirped amplification. In this study,
we obtained arbitrary nanosecond pulse shapes in a solid-state MOPA system made up of three
Neodymium doped yttrium vanadate (Nd:YVO,) amplifiers. The theoretical method is similar to
that in [17]. The pulse distortion was experimentally compensated without a feedback loop. Several
particular desired pulse shapes were demonstrated, with a high peak power level and a narrow spectral
linewidth. The MOPA laser, compared with the fiber laser, achieved a higher pulse energy and peak
power by introducing more solid-state amplifiers, without the limit of a nonlinear effect. Moreover,
second harmonic generation (SHG) was demonstrated after the MOPA source, resulting in arbitrary
waveforms of the green laser. Based on the experimental results, how to generate desired pulse shapes
through the SHG process is discussed.

2. MOPA Setup

A schematic diagram of the experiment setup is depicted in Figure 1. Figure la shows the
setup of the fiber stage, including a distributed feedback (DFB) laser with fiber-coupled output and
two fiber amplifiers. The setup of the fiber stage was similar to that in [17]. The difference was
that electro-optic modulator (EOM2) was replaced by an acousto-optic modulator (AOM, Gooch &
Housego T-M200-0.1C2G-3-F2P, llminster, UK). The maximum rise/fall time of the AOM is 10 ns,
and the maximum modulation frequency is 200 MHz. Its function was enhancing the extinction ratio
and pulse contrast of the output pulses.

The photo of the setup of the solid-state amplifiers was shown in Figure 1b, which was almost the
same with [18]. To eliminate the influence of the amplified spontaneous emission (ASE) and accurately
obtain the gain characteristics, the pump beam diameters of the 2nd and 3rd amplifiers were enlarged
to about 940 um. Moreover, in order to prevent possible parasitic laser oscillation between the 2nd and
3rd amplifiers with high gain, a 3° wedge on one of the facets of the Nd:YVOj crystal was cut for the
3rd amplifier.

The SHG was realized by a lithium borate (LBO) crystal (¢ = 90°, § = 0°), with a dimension of
3mm x 3 mm x 25 mm. To focus the output beam radius into a small point with a beam radius of
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90 um, a focusing lens with a focal length of 150 mm was employed. The LBO crystal was placed in an
oven whose temperature was controlled at 160.1 °C with a precision of 0.1 °C.

| I Pump LD1 Pump LD2 I I (a)
976nm 976nm
YDF YDF Fiber

- R
1st
amplifier .
=

a .
Fold Mirror|

Figure 1. (a) Schematic of the fiber stage. OI: optical isolator; WDM: wavelength division multiplex;
YDEF: Ytterbium doped fiber; BPF: band pass filter (5 nm). (b) Photo of setup of solid-state
laser amplifiers.

3. MOPA Laser with Arbitrary Pulse Shape

3.1. Fiber Amplifier Stage

Due to the narrow spectral linewidth of the semiconductor laser, stimulated Brillouin scattering
(SBS) could happen when the pulse energy increases. We carefully increased the pump power of the
2nd fiber amplifier and observed at the output end. When the average output power reached 22 mW
at a pulse repetition rate of 100 kHz with a pulse duration of 168 ns, a strong backward SBS was
generated. As shown in Figure 2b, a depression appeared in the middle of the shape, and the pulse
shape was also unstable (see the uploaded video from Supplementary Materials). By introducing the
optical spectrum analyzer (Agilent 86142B, Palo Alto, CA, USA), the frequency shift caused by SBS
was evidently observed as shown in Figure 2a. The spectrum was also unstable (see the uploaded
video from Supplementary Materials).

Compared with the experimental results in [18], the SBS effect was not observed even when the
output power was larger than 150 mW. The main reason is that the spectrum of directly modulated
DFB laser is chirped broadened, causing a higher SBS threshold. Therefore, it is important to carefully
increase the pump power during amplification in order to protect the optical components from the
SBS giant pulse.
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Figure 2. The results are measured at a pulse repetition rate of 100 kHz with a pulse duration of 168 ns.
(a) Raman frequency shift from the stimulated Brillouin scattering (SBS) effect; (b) pulse distortion due
to backward SBS generation.

3.2. Arbitrary Pulse Shape Output for the First Nd:YV Oy Amplifier

In this section, we verified the feasibility of the theoretical method. By introducing three pulses
and compensating the pulse distortion, the shape of a car, interestingly, was obtained. The input
average power was 19.5 mW at a pulse repetition rate of 100 kHz, with a square pulse and pulse width
of 168 ns.

First, the small-signal gain was calculated through our model [19]. Since the stimulated emission
section 0 directly affects the gain integral, it is a key parameter for the small-signal gain. For Nd:YVOy,
crystal, 0, is strongly dependent on the boundary temperature [20,21]. We measured the temperature
of the crystal at the pumping input end when the pump power was 56 W. The result was 120 °C, and o
was estimated to be 12.5 x 10~ cm? [21-24]. Therefore, we obtained the small-signal gain of the first
solid-state stage as 40 dB by slice model [19]. By applying the iteration method [17], the initial pulse
gain of 26.5 dB obtained only after 25 times, as depicted by Figure 3. The pulse shape transfer functions
from experiment and simulation were plotted in Figure 4a, while the output pulse shapes from
experiment and simulation with the same input pulse shape were plotted in Figure 4b. The simulated
output power was 7.38 W, being consistent with the experimental one of 7.32 W. Comparing the
experimental and simulated results, it was concluded that the theoretical method was very effective in
calculating the gain characteristics and in obtaining the pulse shape transfer function.
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Figure 3. Pulse shape evolution during the iteration.
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Figure 4. (a) Pulse shape transfer function from experiment and simulation. (b) Output pulse shape
from experiment and simulation with the same input pulse shape.

To test the capability of compensating pulse distortion and obtain car-shaped pulse shapes,
the input pulses were theoretically obtained by the desired output pulse shapes and G(t). With the
same amplifier setup, the pulse shape transfer function was the same as that in Figure 4. As shown in
Figure 5a, for the input pulses, the leading edges” amplitude values were smaller than those of the
trailing edges. As the gain of the leading edges were larger than that of the trailing edges, the output
shapes were car-shaped, as plotted in Figure 5b. Comparing the target pulse shapes (in black dot lines)
and the experimental one, they are in good accordance with each other. As for the output power of the
three pulse shapes, they were all equal to 7.3 W with identical input powers of 19.5 mW.
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Figure 5. Compensation of the pulse distortion. (a) Input pulse shape (three pulses); (b) output pulse
shape with amplified power.

3.3. Arbitrary Pulse Shape Output for the MOPA System

To further boost the output power and obtain the desired output pulse shapes, another two
Nd:YVO, amplifiers were cascaded after the first Nd:YVO, amplifier. The output power of 7.3 W was
scaled up to 21 W and 41.4 W by the two amplifiers, respectively. With the help of a beam propagation
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analyzer (Spiricon M2-200-FW-SCOR, Ophir, Israel), the beam quality was measured to be very good.
The M? factor were 1.150 and 1.113, respectively, at horizontal and vertical directions. Due to the setup
of the amplifiers, the ASE and parasitic oscillation was not significantly observed at the output of the
whole system, both from the pulse shape and the spectrum. The optical signal-to-noise ratio (OSNR)
was as high as 42 dB. The spectral line-width (3 dB) was so narrow that it exceeded the resolution of
the optical spectrum analyzer (Agilent 86142B, Palo Alto, CA, USA). Many times, the resolution was
measured to be less than 0.060 nm. Therefore, we concluded that the spectral linewidth was narrower
than 0.06 nm.

The pulse shapes were recorded for each amplifier as shown in Figure 6. The pulse shape distorted
after each amplifier resulting from different gains for the leading and trailing edge. The leading edge
first consumes the inversion population resulting in a smaller gain for the falling edge and then
pulse distortion.

Several desired pulse shapes were obtained after the third amplifier through the same method.
The initial pulse gain for the MOPA system was calculated as 34.7 dB. As shown in Figure 7,
four common pulse shapes, including multiple-step, parabolic, Gaussian, and flat-top pulses,
were introduced. The corresponding input pulses are shown in the insets.

To enhance the peak power, the repetition rate was set to be 40 kHz, and the pulse duration was
40 ns. The output power was 38.3 W, corresponding to the pulse energy of 0.96 mJ, with the input
power of 13.5 mW. Using the same method, square, parabolic, and Gaussian pulses were obtained for
the MOPA system, as shown in Figure 8. The highest peak power of 41.6 kW, much larger than that
in [9], was achieved by the Gaussian pulse.

Limited by the rising time and falling time of the arbitrary waveform generator (AWG), the leading
edge and falling edge of the pulses could not be controlled very precisely, especially for the square
pulses with fast leading edges and falling edges. In addition, the control of the null point of the EOM
and the inadequate sampling rate of the AWG led to the small mismatch of the targeted pulse shape.
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i
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Figure 6. Pulse evolution for each amplifier.
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4. Second Harmonic Generation

To obtain green lasers with arbitrary pulse shapes, second harmonic generation was accomplished
using the output of the above-mentioned MOPA system. The temporal parameters of the fundamental
laser (1064 nm) and the output power of the green laser are listed in Table 2. The pulse shapes of the
green laser are demonstrated in Figures 7 and 8 with green lines. The maximum conversion efficiency
of 42.6% was achieved when peak power intensity was 163 MW /cm? at a PRF of 40 kHz.

Table 2. Temporal parameters of 1064 nm and an output power of 532 nm.

100 kHz, 414 W 40 kHz, 38.3 W
Pulse Shape ; ; A .
Leading Falling Pulse Power of Leading Falling Pulse Power of
Edge Edge Duration Green Edge Edge Duration Green
(ns) (ns) (ns) Laser (W) (ns) (ns) (ns) Laser (W)
square 9(1.53) ! 15 (5.7) (12(2’88) 3.63 6.6 (2.4) 8.6 (3.6) 39 (38) 145
Gaussian 45(32.6) 51(379) 63 (47.2) 53 16(11.7)  20(13.7) 23(17.5) 16.3
parabolic 49 (57.2)  54(644) 123.4(96) 419 14 (144) 18(132) 29 (247) 16.0
multiple-step 8(2.0) 12 (7.5) 111 (-) 423 - - - -

1 The data in the bracket is for green laser.

Comparing the output power of the green laser with the same pulse energy but with different
pulse shapes in Table 2, it was deduced that a smaller pulse duration, namely a higher peak power
intensity, contributes to a higher conversion efficiency from a fundamental laser to the second harmonic
wave. Moreover, the conversion efficiency is not linear to the peak power intensity, leading to pulse
shape distortion from the fundamental laser. The portion with a higher peak power in the fundamental
pulse converts to a green laser to a much greater extent than that with a lower peak power, resulting in
a pulse duration narrowing effect.

The comparison between the 1064 nm and 532 nm lasers in Figure 7a evidently shows that the
conversion efficiency differs for different peak power levels of fundamental lasers. The lower peak
power in the pulse is 0.25 for the fundamental laser, while it is smaller than 0.25 for the green laser.
As shown in Figures 7b and 8c, the leading edge and the falling edge of the green laser become
smaller than the fundamental laser after the SHG process, which results in a narrower pulse duration.
The comparison between the 1064 nm and 532 nm lasers in Figures 7d and 8a indicates that pulse
shapes with a uniform distribution of peak power could alleviate the narrowing effect and obtain a
green laser pulse similar to the fundamental one. For the Gaussian shape, a higher peak power is
helpful to keep the original fundamental pulse shape, as the pulse shape narrowing percentage in
Figures 7b and 8b are 22% and 15%, respectively.

To obtain a desired pulse shape from the SHG process, the non-linear conversion efficiency
must be taken into account. For example, to obtain a multiple-step green pulse just like in Figure 7a
(the lower peak power is 1/4 of the higher peak power for green laser), the lower peak power of the
fundamental laser must be larger than one-fourth of the higher peak power.

5. Conclusions

In summary, desired pulse shapes were demonstrated in a hybrid MOPA system mainly made
up of three Nd:YVO, amplifiers. By investigating the amplifier dynamics, the pulse shape transfer
function of an end-pumped Nd:YVO, amplifier was obtained. The numerical simulation for the first
amplifier indicates excellent agreement with the experimental results. Interesting pulse shapes, such as
that of a car, were obtained through the theoretical method, showing the effectiveness of the theoretical
method in achieving arbitrary pulse shapes. Furthermore, several pulse shapes were obtained through
the same method for the MOPA system made up of three amplifiers. A high peak power level of
41.6 kW and a narrow linewidth less than 0.06 nm were achieved, with good beam quality. A green
laser was generated by this source, with a maximum conversion efficiency of 42.6%. Compared with
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the input pulse of SHG, the pulse shape of the green laser was distorted due to the nonlinear effect,
especially for the ones with a slow leading edge and a falling edge. The solid-state MOPA system with
arbitrary waveforms, high peak power levels, and narrow spectral linewidths shows great potential in
precision manufacturing, optical sensing, and Lidar applications.

Supplementary Materials: Supplementary materials are available online at Zenodo DOI: 10.5281/zenod0.854840
(https:/ /zenodo.org/record /854840# WaefZ4SGMcY). Video S1: SBS pulse distortion_40kHz_40ns. Video S2: SBS
pulse distortion_100kHz_168ns. Video S3: SBS_freqency shift_100 kHz_168ns.
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Abstract: A non-pulse-leakage optical fiber pumped 100-kHz level high beam quality Nd:YVO,
picosecond amplifier has been developed. An 80 MHz, 11.5 ps mode-locked picosecond laser is
used as the seed with single pulse energy of 1 nJ. By harnessing the double 3-BaB,O4 (BBO) crystal
Pockels cells in both the pulse picker and regenerative amplifier, the seed pulse leakage of the output
is suppressed effectively with an adjustable repetition rate from 200 to 500 kHz. Through one stage
traveling-wave amplifier, a maximum output power of 24.5 W is generated corresponding to the
injected regenerative amplified power of 9.73 W at 500 kHz. The output pulse duration is 16.9 ps,
and the beam quality factor M? is measured to be 1.25 with near-field roundness higher than 99% at
the full output power.

Keywords: regenerative amplifier; double-crystal Pockels cell; 100-kHz; non-pulse-leakage

1. Introduction

Over the past decade, there has been significant development of high power ultrashort pulse lasers
with high repetition rate [1-3], with applications including nonlinear optical frequency conversion,
precise material processing, satellite ranging, and high-intensity physics [4-7]. Specifically, in ultrashort
lasers in the order of picoseconds, their pulse width is smaller than the electron-phonon coupling time
of most materials, heat conduction can be decreased substantially during the process of interaction.
This decrease is beneficial to fine processing, biological medicine, and historical relic cleaning [8-11].
Currently, mode-locking is the main approach to obtain the pulse width around ~10 ps. However, the
pulse energy of the directly generated mode-locked lasers is very low such that it restricts their
applications. To solve this problem, different types of laser amplifiers are utilized, in which a
regenerative amplifier is considered to be the most effective method for strong amplification of the
mode-locked pulses [1,2,12,13]. In most cases, increasing the repetition rate and power can improve the
efficiency of laser processing and laser ranging. Therefore, it is not only necessary to increase the single
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pulse energy but also the repetition rate of the current regenerative amplified lasers. Determined by
the parameters of Pockels cell and regenerative cavity, repetition rates from hundreds to mega-Hz have
been obtained with output power up to 100 watts. For instance, Nd:YVO, picosecond regenerative
amplifiers with a repetition rate up to 850 kHz have been demonstrated [14,15]; other broadband gain
materials such as Yb:CaF;, Yb:CAIGO, Yb:YVOy,, and Nd:LuVO,4 show up to 1.43 MHz repetition
rate [16-18]. Currently, Bergmann et al. [19] reported the record high repetition rate of 2 MHz for a
picosecond regenerative amplifier in Yb:YAG. In general, when the repetition rate is up to 100 kHz,
it is very difficult for the Pockels cell to realize the fast and complete switching due to the limitations
of high voltage driving supply. This will lead to the leakage of the directly amplified seed pulses in the
output that not only introduce optical noise but also increase unnecessary pump power consumption.
Especially after traveling-wave amplification, the existence of pulse leakage will further reduce the
master-slave pulse ratio of the output and influence the performance of the laser system in applications.
For example, in nonmetallic brittle materials processing (viz. artificial crystal, ceramics, and solar
panels), the amplified leaking pulses easily cause breakage of the samples because of the excessive heat
load; meanwhile, the presence of leaked pulses also results in the reduction of accuracy in laser satellite
ranging and laser communication due to the introduction of stray signals. Therefore, it is necessary to
eliminate the pulse leakage of regenerative amplifiers used in some specific industrial areas.

Nd:YVO; crystals as a gain material with sufficient gain bandwidth and a high emission cross
section are widely adopted in end-pumping picosecond regenerative amplifiers. Nowadays, fiber
coupled high-power laser diode (LD) are an appropriate pumping source for the regenerative amplifier
due to their highly compact size and relatively low cost. The pumping of Nd:YVO, with 888 nm LD
induces less thermal stress gradient along the crystal compared with 808 nm that makes it possible for
long time operation of the laser with higher stability [20,21]. Table 1 presents the physical parameters
of Nd:YVOy crystal pumped by 808 nm and 888 nm wavelengths [22,23]. As the data show, the lower
fractional thermal loading in 888 nm pump compared with 808 nm wavelength results in the heat
reduction and optical efficiency growth. Although the absorption coefficient of 808 nm is higher
compared to 888 nm wavelength, it shows different values between the two crystallographic axes
that result in the varying and irreproducible absorption if without the polarization controlling of
pump light. The lower pump absorption efficiency can be optimized by using a longer crystal for high
output power that allows the heat load to be spread in a larger volume, thus minimizing stress and
thermal gradient [24]. Additionally, the 888 nm wavelength shows a higher absorption band width
than 808 nm, which decreases the sensitivity to the shift in the pump wavelength.

Table 1. Comparison of Nd:YVO,4 pumped by 808 nm and 888 nm.

Wavelength (nm) Output(‘r’:l;\;elength Fractional Thermal Loading Absorpt:é):‘ ggefﬁclent Absorpho(r;“]‘}l;nd Width
808 1064 0.241 10 (a-axis) 37 (c-axis) 0.8
888 1064 0.173 1.5 (a- & c-axis) 8

In this study, we demonstrate a highly stable and high power industrial grade picosecond
Nd:YVOy amplifier with the adjustable repetition rate from 200 to 500 kHz. A combination of an
888 nm optical fiber pumped Nd:YVO, regenerative and a traveling-wave amplifiers have been
utilized. To eliminate the leakage of the regenerative amplifier in high repetition rate operation,
double BBO crystal Pockels cells are adopted as one switch to improve the responsivity of the
switching. The maximum output power of 24.5 W is obtained at 500 kHz with the pulse width
of 16.9 ps, corresponding to the pulse energy and the peak power of 0.05 mJ and 2.9 MW, respectively.
The beam quality factor M? is measured to be 1.25 at the full power operation. When operated at
200 kHz, the maximum pulse energy of 0.11 mJ and the maximum peak power of 6.5 MW is obtained.
Our measurements show that this method effectively realizes the suppression of leakage and improves
the purity of the regenerative amplified pulses.
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2. Experimental Principle and Setup

Q-switch is the core component of the regenerative amplifier that is used in the pulse picker for
mode-locked sequence. To date, both acousto- and electro-optic switches have been used to realize
the pulse selection function in regenerative amplifiers [19,25,26]. However, due to the slow switching
speed (with rise time up to 100 nanoseconds) and limited diffraction efficiency (usually less than
90%), the acousto-optic switch is difficult to generate regenerative pulses without the leakage of
mode-locked seed. In contrast to the acousto-optic switch, the electro-optic switch has faster switching
speed (rise time <10 ns) and excellent switching effect, which is widely adopted in regenerative
amplifiers. Nowadays, the commonly used electro-optic crystals include 3-BaB,O4 (BBO), KH,POy4
(KDP), KD,PO, (KD * P), RbTiOPOy (RTP), and LiNbOj; (Lithium niobate) etc. To meet different
experimental conditions (such as half- or quarter-wavelength voltage, acceptable input beam diameter,
and available crystal size), both longitudinal and transverse electrode configuration Pockels cells are
manufactured. However, so far there is not one kind of electro-optic crystal or configuration the can
provide a general solution under different operating wavelengths, repetition rates, spot diameters,
and output powers. At present, BBO crystal Pockels cells with minimal piezoelectric ringing and low
acoustic noise, have emerged in high repetition rate (>100 kHz) pulse picking applications [14-17,19].
Nevertheless, with the increase of repetition rate, it is difficult to realize fast switching within the
effective duty cycle due to the long fall time of the high voltage.

To solve the problem, double BBO crystal Pockels cell is adopted in our experiment to reduce the
load of the high voltage driving supply by reducing the quarter-wavelength voltage. The value of the
quarter-wavelength voltage V) /4 of BBO crystal is given by [27,28]:

Ad

— 1
4n(3]d22L ( )

Via=
where laser wavelength A = 1064 nm, the crystal section thickness d = 3 mm, the refractive index of the
crystal 19 = 1.66, the effective electro-optic coefficient dyy = 2.2 pm/V, and the crystal length L = 40 mm.
The calculated value of the quarter-wavelength voltage is just 2000 V, which is almost half that of the
previous reports. The lower quarter-wavelength voltage of Pockels cell means faster switching speed,
and makes it possible for higher repetition rate operation.

The experimental setup of the picosecond amplifier is shown in Figure 1, which consists of a
picosecond seed source, two optical isolators, a BBO pulse picker, a regenerative amplifier, and one
stage traveling-wave amplifier.

...................... = (N

--------------------------- Pumpl
(888 nm)

Figure 1. Diagram of the non-leakage 100-kHz Nd:YVOy picosecond regenerative amplifier. The inset
is the illustration of the setup.
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In the present system, the amplifier is seeded with a self-developed semiconductor saturable
absorption mirror (SESAM) mode-locked oscillator capable of generating 11.5 ps pulses at a repetition
rate of 80 MHz with a single pulse energy of 1 nJ. Picosecond pulse sequence from the seed is injected
into the pulse picker through two high-reflection mirrors, M1 and M2. The function of the pulse picker
is to select the desired repetition rate for regenerative amplifier by eliminating the pulse leakage of the
seed sequence. The half-wave plate HWP1 is set to let most of the seed light to p-polarization and the
rest s-polarization reflected into the photodetector (PD) as feedback signal. After passing through the
first stage optical isolator composed of a polarization beam splitter PBS1, a Faraday rotator FR1, and
a HWP2, the seed enters into the double BBO crystal Pockels cell PC1 (PCB3S-1342; EKSMA Optics,
Vilnius, Lithuania). The size of the two BBO crystals are 3 x 3 x 20 mm?3. The distance between the
PC1 and M3 is 0.8 m, corresponding to a round-trip time about 5.3 ns. Without voltage of the PC1, the
reflected seed from the M3 will pass through the PBS2 and FR1, then enter into the dump. While with
a quarter-wavelength voltage of the PC1, the pulse sequence with a specified range of repetition rate
can be selected with polarization changed to s-polarization after double-passing through PC1 and then
output by the PBS2. The switching time of the two Pockels cells in our setup is adjustable from 25 to
200 ns with a rising and falling time about 5 ns. The switch time of the PC1 is set to be 20 ns. With
the polarization changed to p-polarization by HWP3, the selected pulses enter into the regenerative
amplifier. The second optical isolator formed by a Brewster angle polarizer P1, HWP4, and FR2 is
placed in front of the regenerative amplifier which is used to output the regenerative amplified pulse.

The laser pulse with p-polarization is injected into the regenerative amplifier by the P2. The length
of the whole cavity is 1.8 m, corresponding to a cavity round-trip time of 12 ns. The gain medium is
0.5 at. % doped Nd:YVO, with a size of 3 x 3 x 20 mm® and double-end-wedged cut at 2°. Both sides
of the Nd:YVO, have anti-reflective (AR) coating at the 1064 nm and 888 nm wavelength. A 50 W,
888 nm fiber-coupled laser diode with a numerical aperture of 0.22 and a diameter of 400 um is used
as the pump source. The coupling ratio of the pump beam is 1:3 into the Nd:YVOy crystal. M4 and M8
are two concave mirrors with R = —2000 mm; M4 and M7 are two 1064 nm high-reflection (HR) convex
mirrors with R = 1500 mm in which M4 is also 888 nm AR coated. Reflected by an end mirror M4, the
seed beam double passes the quarter-wave plate (HWP) and reflects through P2 with s-polarization.
Then the PC2 inside the cavity is switched on with a quarter-wavelength voltage and the seed laser
continues to make round trips in the regenerative cavity with s-polarization until the PC2 is switched
off. The regenerative amplified pulses are reflected by P1 with s-polarization, and then enter into the
traveling-wave amplifier.

To further amplify the output power, one stage traveling-wave Nd:YVO, amplifier is adopted.
A Nd:YVOjy crystal with the dimensions of 4 x 4 x 30 mm? is selected as gain medium with
0.5 at. % Nd3*-doped and at a 2° angle. The pumping source of the traveling-wave amplifier has
the same parameters as the regenerative amplifier with a coupling ratio of 1:4. L is a concave lens with
f = —360 mm used to compensate the thermal lens effect of the Nd:YVOjy crystal. M10 and M11 are
two 888 nm AR & 1064 nm HR coated 45° plane mirror. The single-pass amplified pulse is output from
the M11.

3. Experimental Results and Discussion

In our experiment, we tested the leakage of the regenerative amplifier by monitoring the output
power with the PC2 turning on and off. At the maximum pump power of 50 W, the output power
of the regenerative amplifier increases with the Pockels cells switching time, however, the leakage
appears when the PC2 switching time more than 69 ns. For example, with the switching time of 79 ns,
the leakage reached 2 W when the maximum regenerative amplified power was about 18 W at 500 kHz.
Accordingly, in order to obtain maximum power regenerative output without leakage, the switching
time of Pockels cells is set to be 68 ns, corresponding to the five round trips in the regenerative cavity.
The pump power of the regenerative amplifier is set to be 50 W because higher power may result in
the self-excited oscillation between the M4 and M8. Next, improvement of the leakage and self-excited
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oscillation threshold to increase the output power of regenerative amplifier will be studied, including
the optimization of cavity design and Pockels cell structure (e.g., employing bidirectional voltage
switching power supply to achieve a faster and more thorough switch [29]).

The injected pulse energy into the regenerative amplifier was about 1 nJ, and the output pulse
energy saturated with the increase number of round trips in the cavity. Figure 2a,b illustrates the
dependence of the output power and pulse energy of the regenerative and final amplifier output on
the repetition rate from 200 to 500 kHz, respectively. At the same pump power, the out power of the
regenerative amplifier increases with the repetition rate, while the single pulse energy decreases, which
is shown in Figure 2a. At 500 kHz, maximum regenerative amplified power of 9.73 W was obtained
corresponding to the pulse energy of 0.02 m]. After passing through the traveling-wave amplifier, the
maximum output power of the laser system was 24.5 W at 500 kHz, corresponding to the peak power
of 2.9 MW; while the maximum output pulse energy obtained was 0.11 m]J at 200 kHz, corresponding to
the peak power of 6.5 MW. No leakage occurred when the repetition rate continuously adjusting from
200 to 500 kHz with the measured root-mean-square-error (RMSE) of output power less than 0.04%.
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Figure 2. Average output power and pulse energy of the amplifier in dependence on the repetition rate
of (a) regenerative amplifier output; and (b) final amplifier output.

The amplified pulses are monitored using a photodiode. At 500 kHz, oscilloscope trace of the
output pulse train with 4 us/div and single pulse with 10 ns/div are illustrated in Figure 3, respectively.
We can observe that the amplifier generates very clean output pulses without any noticeable pulse
fluctuation or stray signal.

(a) 4 ps/div (b) 10 ns/div

Figure 3. Oscilloscope trace of the regenerative amplified pulse train (a) 4 ps/div; and (b) 10 ns/div.

Figure 4a shows the autocorrelation trace of the amplified pulses with the measured width
of 16.9 ps at a repetition rate of 500 Hz. The pulse width of the output was slightly broadened
compared with that of the seed pulses 11.5 ps, which is mainly caused by the gain narrowing [30,31].
The measured beam quality factor M? and near-field beam intensity profile are shown in Figure 4b.
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The M? measured were 1.27 and 1.22 for the horizontal and vertical axes of the output, respectively.
The roundness of the near-field intensity distribution is higher than 99%.
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Figure 4. Measured (a) autocorrelation trace (Gaussian fitting) for the amplified pulse; and (b) beam
quality factor M? (insert: near-field beam intensity distribution).

4. Conclusions

In conclusion, we have demonstrated a non-pulse-leakage high power industrial grade Nd:YVOy4
picosecond amplifier. Two double BBO crystal Pockels cells were used in the pulse picker and
regenerative amplifier, respectively. This design successfully suppresses the appetence of pulse leakage
in the regenerative amplifier that improved the purity of the output pulses, which makes it possible
for the regenerative amplifier to operate stably at the repetition rate of 100-kHz level with lower high
voltage driving supply. A maximum power of 24.5 W was obtained at 500 kHz, and a maximum single
pulse energy 0.11 mJ was obtained at 200 kHz. High beam quality output is obtained with M? about
1.25 and the roundness of near-field distribution up to 99%. The output pulse width measured to be
16.9 ps with the RMSE of the output is less than 0.04%. Our work offers a new approach to generate high
quality (in both time domain and space domain) 100-kHz level repetition rate continuous adjustable
picosecond regenerative amplified output. This solution can be made possible with high efficiency and
high precision processing for nonmetallic brittle materials, as well as low noise space communication.
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Abstract: A short-pulse-width repetitively Q-switched 2.7-um Er:Y,0O3 ceramic laser is demonstrated
using a specially designed mechanical switch, a metal plate carved with slits of both slit-width and
duty-cycle optimized. With a 20% transmission output coupler, stable pulse trains with durations
(full-width at half-maximum, FWHM) of 27-38 ns were generated with a repetition rate within the
range of 0.26—4 kHz. The peak power at a 0.26 kHz repetition rate was ~3 kW.

Keywords: laser materials; mid-infrared lasers; rare-earth solid-state lasers

1. Introduction

Laser radiation at ~2.7-um is important for practical applications and scientific research. Being
regions of water absorption and molecular fingerprints, laser sources at ~2.7-um are useful for biomedical
therapy [1,2] and atmospheric sensing [3]. In addition, these lasers are utilized for generating 3-5-pm laser
emission [4,5], which corresponds to an atmosphere transparent window. Lasers at ~2.7-pm also facilitate
studies of laser materials that is suitable to generate deep-infrared lasing [6,7]. Both the applications and
research require versatile ~2.7-um laser sources with short pulse duration and high repetition rate.

A simple approach to generate ~2.7-pum pulses is Q-switching ion-based (as Er®*, Ho®*, Dy* and
Cr2*) lasers. Er-based lasers operating on the transition between I /2 and 445 /2 energy levels are
most often utilized because of the mature pump sources of flashlamps and ~976-nm laser diodes (LDs).
With 50 atom % Er:YAG (Y3Al5013), 30 atom % Er:YSGG (Y3Sc,GazO13), and 15 atom % Er:YLF (LiYFy)
laser materials, ~2.7-pm pulses at durations of tens of nanoseconds have been obtained. However,
the repetition rates of these lasers are generally limited to several Hertz due to the severely thermal
effects generated during laser operations [8-11]. Laser pulses at ~2.7-um with repetition rates at the
kilohertz scale have been generated from Er:ZBLAN (ZrF4-BaF,-LaF3-AlF3-NaF) fiber lasers, which are
more thermally advanced [12,13]. However, the pulse durations are hundreds of nanoseconds because
fibers have limited energy storage capability. So far, short pulses at ~2.7-um with high repetition rates
are rare.

The use of Er-based sesquioxides is promising in terms of obtaining ~2.7-um laser pulses with short
pulse durations and high repetition rates. As ~2.7-um laser oscillation can be realized from Er-based
sesquioxides with low doping concentrations (lower than ~7 atom %) [14,15], the thermal effects
generated during laser operation are greatly alleviated. In addition, sesquioxides have high thermal
conductivity, which decreases slightly with increasing doping concentration [16]. Furthermore, Er-based
sesquioxides have long ~2.7-um fluorescence lifetimes (e.g., an order of magnitude longer than that of
Er:YAG), making them beneficial for energy storage [17]. Unfortunately, sesquioxides have extremely
high melting points (>2400 °C), imposing serious challenges for traditional single-crystal-growth
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approach. In this aspect, polycrystalline ceramics are superior to single crystals since they can be sintered
at much lower temperatures. Moreover, transparent ceramics have advantages over crystals in terms of
their rapid fabrication in large scale and composite structures, flexible doping concentrations, and good
thermo-mechanical properties [18]. Recently, sesquioxide ceramics have been successfully fabricated and
mainly explored to realize continuous-wave (CW) laser operation at ~2.7-um. A passively Q-switched
~2.7-um Er:Y,03 ceramic laser with a pulse duration of 4.47 us and a pulse repetition rate of 12.6 kHz
was realized, aiming to demonstrate the broadband availability of black-phosphorus [19]. For actively
Q-switched operation, an acousto-optically Q-switched Er:Y,O3 ceramic laser was demonstrated,
generating pulses with durations of 41-190 ns in the range of 0.3-10 kHz [20]. Due to the scarcity of
~2.7-um acousto-optic and electric-optic Q-switches, mechanical Q-switching is commonly used in a
wavelength range of ~2.7-um [21,22], which does not require high voltages or drive power and has
avoidable insert losses.

Here we report a short-pulse-width repetitively Q-switched Er:Y,O3 ceramic laser at ~2.7-um
using a specially designed mechanical switch, a metal plate carved with slits of both slit-width
and duty-cycle optimized. The laser performances with output couplers (OCs) of 5%, 8% and 20%
transmissions are compared in both CW and Q-switched operation modes. In the CW operation mode,
the 8% transmission OC yields an output power of over 1.8 W. In the Q-switched operation mode,
the 20% transmission OC yields pulse trains with durations (FWHM) of 27-38 ns and energies of
80.8-27.5 pJ with repetition rates in the range of 0.26—4 kHz. The corresponding peak power at the
0.26 kHz repetition rate is ~3 kW. To the best of our knowledge, the laser offers the shortest pulse
durations among ~2.7-pm Q-switched lasers with pulse repetition frequency (PRF) above several Hertz.

2. Experimental Details

Figure 1 shows the schematic layout of the pulsed Er:Y,O3 ceramic laser. A pig-tailed ~976-nm
LD with a fiber core diameter of 105-pm and a numerical aperture (NA) of less than 0.15 was used
to pump the Er:Y,0O3 ceramic. The pump light was focused into the Er:Y,O3 sample with a ~420-um
spot diameter through a 25-mm-focal-length lens F1 and a 100-mm-focal-length lens F2. The confocal
parameter was estimated to be ~26 mm. The physical length of the plane—plane cavity was 28 mm.
The input coupler (IC) was high-transmission coated at ~976 nm (T > 98%) and high-reflectivity coated
at ~2.7-pum (R > 99.8%). Three flat mirrors with transmissions of 5%, 8%, and 20% at ~2.7-um and
high transmissions at ~976 nm were employed as OCs. The Er:Y,0;3 ceramic (developed at Jiangsu
Normal university) was synthesized by the solid-state reaction method and vacuum sintering followed
by hot isostatic pressing [14]. The ceramic sample had a dimension of 2 x 3 x 12 mm and an Er-ion
concentration of 7 atom % and was uncoated. It was mounted in a copper block that was cooled by
water at ~13 °C to allow for effective heat removal. A dichroic mirror (DM) coated with high reflectivity
at the laser wavelength and high transmission at the pump wavelength was placed between the OC
and the detector to filter out the unabsorbed pump power.

DM
Detector

/

Q-switch

Figure 1. Schematic setup of the Q-switched Er:Y,Oj3 ceramic laser. LD: laser diode; IC: input coupler;
OC: output coupler; DM: dichroic mirror.
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The mechanical Q-switch was a 1-mm-thick rotating metal plate carved with sagittal rectangular
slits (see the inset of Figure 1), of which the rotating speed and slit number were variable from 1 to
134 rounds per second and 1 to 30, respectively. It was placed close to the ceramic sample, where the
diameter of the laser mode was calculated to be ~470-um. The modulation frequency was adjusted
by changing the slit number or (and) the rotating speed. The slit width was optimized to be 0.6 mm.
The duty ratio of the Q-switch was continually tunable by moving the plate along its radial direction.
Using such a mechanical Q-switch considerably increased the time for the inversion population
to accumulate.

3. Results

A comparison of CW laser performances with 5%, 8% and 20% transmissions OCs of the Er:Y,03
medium was first made. Figure 2 shows dependences of output powers on the absorbed pump power.
The absorbed pump power was calculated by multiplying the incident pump power by the absorption
efficiency, which was measured under non-lasing condition (without existence of the laser resonator) to
be ~90%. The threshold pump powers for the 5%, 8% and 20% transmission OCs were ~1.1 W, ~1.4 W,
and ~3 W, respectively. At pump powers of less than 14 W, the output powers increased linearly with
the pump power for all three OCs, and the 8% OC yielded the highest slope efficiency of 10.2% with
respect to absorbed pump power. When the pump power was above 14 W, the laser became slightly
less efficient due to the increased thermally induced losses. Nevertheless, an output power of over
1.8 W was obtained at 19 W of pump power with the 8% transmission OC. According to the laser
properties with different output couplers, the distributed cavity losses (excluding the output coupling
loss) were calculated to be ~1.67% cm ™! using the well-known Findlay—Clay method, comprising
the thermally induced losses and the losses of the cavity mirrors and ceramic sample (~1.2% cm ™!
estimated though the in-line transmission spectrum of a 1.3-mm-long Er:Y,03 sample). The attainable
output power should be readily increased by improving the cooling system and reducing passive
losses of the ceramic sample.
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Figure 2. Continuous-wave (CW) output power vs. absorbed pump power with different output couplers.

The Q-switched operation performances were studied with the same output couplers. An HgCdTe
detector (PVM-10.6, VigoSystem S. A) with a rise time of 1.5 ns and an oscilloscope (DSO104A, Keysight)
with abandwidth of 1 GHz were utilized to measure the pulse characters. The threshold for Q-switched
operation was the same as that for the CW operation. Not too far above the threshold, stable pulse
trains were observed for all three OCs. The pulse characters were then optimized by changing the
distance between the center of the mechanical switch and the optical axes of the cavity, and the
optimal distance was found to be ~50 mm. The pulse duration and pulse energy as functions of
the pulse repetition frequency for all three OCs are shown in Figures 3 and 4. With the 5% and 8%
transmission OCs, single pulses with 40 ns duration and 30.8 pJ energy, and 37 ns duration and 46.1 uJ
energy were obtained at a 0.26 kHz pulse repetition frequency (corresponding to the rotating speed of
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130 rounds per seconds and a slit number of 2) under a pump power of 3.2 W. With the increase in
repetition frequency, the pulse duration increased while the pulse energy decreased. Nevertheless,
pulse durations of less than 50 ns were obtained in the range of 0.26—4 kHz with both OCs. When
further increasing the pump power, multi-pulse operation occurred. With the 20% transmission OC,
shorter pulse duration and larger pulse energy were achieved. This is because a higher output coupling
can delay the occurrence of multi-pulse operation in mechanically Q-switched lasers. In this case,
multi-pulse operation occurred when the pump power was above 10 W. Under 10 W of pump power,
the pulse duration increased from 27 to 38 ns, whereas the pulse energy decreased from 80.8 to 27.5 pJ
with increasing the repetition frequency from 0.26 to 4 kHz, corresponding to ~3 kW peak power at
0.26 kHz repetition frequency. The optical-optical conversion efficiencies in the Q-switched mode could
be effectively improved using a larger plate carved with more slits but the same turn-off area and /or a
motor with higher rotating speed to make the laser operate at a higher repetition rate. Improvement in
the Q-switched efficiencies is also achievable through optimizing the pump wavelength to avoid the
excited state absorption of the upper laser level during the pumping process. The short pulse durations
achieved in our experiment are a consequence of the good energy storage of Er:Y,O3, in which losses
of excited ions on the upper laser level caused by multiphonon relaxation and spontaneous emission

are small.
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Figure 3. Pulse duration vs. pulse repetition frequency with different output couplers.
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Figure 4. Pulse energy vs. pulse repetition frequency with different output couplers.

Figures 5 and 6 show the typical single pulse profile and pulse train recorded at 0.26 kHz repetition
rate with the 20% transmission OC under 10 W of pump power. The pulse profile shows a fairly
symmetric shape and the time spacing between two adjacent pulses remains nearly fixed for the given
repetition rate with no noticeable timing jitter. The amplitude fluctuations were estimated to be less
than 10%.
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Figure 5. Typical pulse profile recorded at 0.26 kHz pulse repetition frequency (PRF) under 10 W of
absorbed pump power.
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Figure 6. Pulse train recorded at 0.26 kHz PRF under 10 W of absorbed pump power.

The optical spectrum of the Q-switched Er:Y,O3 ceramic laser with the 20% transmission OC was
found to vary slightly with the repetition rate or pump level. Figure 7 shows the typical emission
wavelength measured by a Fourier transform spectrum analyzer with a resolution of 7.5 GHz (OSA205,
Thorlabs, Newton, NJ, USA). It was centered at 2716.5 nm with a linewidth of 0.12 nm.

2716.5nm
3
s
z
‘'
=
3
=
-
2712 2716 2720

‘Wavelength (nm)

Figure 7. Spectrum of the Q-switched Er:Y,0Oj3 laser.

4. Conclusions

In summary, we demonstrated a short-pulse-width repetitively Q-switched Er:Y,O3 ceramic laser
at ~2.7-um using a specially designed mechanical switch. Stable pulse trains with 27-38 ns durations
and energies of 80.8-27.5 pJ were obtained with a pulse repetition frequency within a range of 0.26 to
4 kHz. A peak power of ~3 kW was realized at 0.26 kHz. The results presented here reveal the potential
of Er-doped sesquioxide ceramics in generating short pulses at ~2.7-um. Improvements in terms of
pulse energy should be possible by further optimizing the transmission of the output coupler.
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Abstract: We demonstrate here a compact optical parametric oscillator module for mid-infrared
generation via nonlinear frequency conversion. This module weighs only 2.5 kg and fits within
a small volume of 220 x 60 x 55 mm®. The module can be easily aligned to various pump laser
sources, and here we use a 50 W ytterbium (Yb)-doped fiber laser as an example. With a two-channel
MgO-doped periodically poled lithium niobate crystal (MgO:PPLN), our module covers a tuning
range of 2416.17-2932.25 nm and 3142.18-3452.15 nm. The highest output power exceeds 10.4 W at
2.7 um, corresponding to a conversion efficiency of 24%. The measured power stability is 2.13% Root
Meat Square (RMS) for a 10 h duration under outdoor conditions.

Keywords: mid-infrared laser; optical parametric oscillator; laser module

1. Introduction

Coherent mid-infrared (MIR) radiation is important for applications in many fields, such as gas
sensing, ranging, spectroscopy, biochemistry, atmospheric science, and security [1-3]. Direct MIR
generation can be achieved using quantum cascade lasers, but the output power, and thus the sensing
and interaction distance, is limited [4,5]. On the other hand, high power MIR radiation can be generated
from nonlinear optical frequency conversion in the form of optical parametric oscillators (OPOs) [6-9],
and an output power up to 10 W has been reported [10]. However, most OPOs are built on optical
tables with bulky optics and thus are not compatible for portable applications, such as moving vehicles
based on the air, land or water [11-13].

In this article, we demonstrate an OPO module, which is embedded in a monolithic metal frame,
with dimensions and a weight of 220 x 60 x 55 mm?® and 2.5 kg, respectively. Such a module is
compatible, and can be easily aligned, with any continuous-wave laser centered around 1064 nm
for the MIR generation, and an ytterbium-doped fiber laser pump was used for our test. The MIR
tuning ranges were 2416.17-2932.25 nm and 3142.18-3452.15 nm, using two channels of a periodically
poled lithium niobate (PPLN) crystal with poling periods of 31.59 and 30.49 um channels, respectively.
At a maximum pump power of 50 W, the output power exceeded 10.4 and 9.1 W at 2.7 and 3.3 pm,
respectively. The 10 h power stability was measured to be 2.13% root meat square (RMS) in a room
without any special temperature stabilization.
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2. Module Design

The frame of the MIR module was made from a single block of 7075 aluminum alloy for its high
strength-to-weight ratio. As a result, we managed to construct the whole module with a weight of
less than 2.5 kg. The configuration and schematic of our module is shown in Figure 1, and it was
designed to be quickly aligned with any continuous-wave (CW) pump laser at around 1064 nm. The
pump path into the OPO cavity was aligned to two irises in our module, and two high-reflection
mirrors R1 and R2 can be used to steer the pump beam for the input alignment. Once the pump light
matches with the irises, the module is ready for MIR generation. Inside the module is a symmetric
ring OPO cavity. Cavity mirrors M1-M4 are all high-reflection-coated (R > 99.5%) at 1.35-2 um (signal
wavelength) and high-transmission-coated at 1064 nm (pump wavelength, T > 95%) and 2.3-5 pm
(idler wavelength, T > 90%). M1 and M2 on both ends of the short arm are plane mirrors, while M3 and
M4 on the long arm are concave mirrors with a curvature radius of 100 mm. The nonlinear medium is
a periodically poled lithium niobate crystal (MgO:PPLN) doped with 5 mol % MgO with dimensions
of 50 x 10 x 1 mm? and two channels with poling periods of 30.49 and 31.59 um, for the dual band
MIR generation around 2.7 and 3.3 um, respectively. Both ends of the crystal are antireflection-coated
at pump, signal, and idler wavelengths. The crystal temperature is controlled using a homemade oven,
where the crystal mount is temperature-controlled with an accuracy of £0.1 °C in a range between
20 and 170 °C. It is suspended from the oven enclosure by three ceramic tubes, which form a 2 mm air
gap to reduce the thermal conductivity and further stabilize the temperature of MgO:PPLN. The surface
of the crystal mount is finely ground for good thermal contact with the MgO:PPLN. A homemade
miniaturized linear translation stage and electric actuator were built into the temperature-controlled
oven for channel switching for the MgO:PPLN, and together they weigh only 10 g.

|—— Laser
(1064nm.50W)
~,

L
RI I\ 50, CW Pump
J

HWP

LS  E———

3 M4
N o e =7 Mid-IR Output

Module
(b)

Figure 1. The configuration of the module (a) and the optical schematic of the experiment (b).
HWP: half wavelength plate; ISO: isolator; MgO:PPLN: MgO-doped periodically poled lithium niobate
crystal; CW: continuous-wave.

3. Experiment and Results

In this experiment, we pumped our OPO module with a CW, linearly polarized, single-frequency
Yb-doped fiber laser (IPG Photonics). The laser can deliver a maximum power of 50 W at 1064 nm with
a beam diameter of 2 mm. Its spectral linewidth is only 70 kHz, which is one of the keys to achieving
a narrowband MIR output. A free space optical isolator was used to protect the pump laser from
unwanted back scattering, followed by a half-wave plate (HWP) to recover the polarization of 45°
to a vertical polarization, and matched the Z-axis of the MgO:PPLN. A focal lens L with a focal length
of 150 mm beam was used to focus the pump light to the center of the MgO:PPLN, with a beam waist
radius of 58 um. Considering the different diffraction properties at pump and signal wavelengths,
we made the radius of signal light slightly larger than that of the pump light to optimize the overlap
mode between them.
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We measured the temperature tuning from the OPO module with both channels by varying
the MgO:PPLN temperature from 20 to 170 °C. The MIR wavelength can be tuned from 2416.17 to
2932.25 nm or from 3142.18 to 3452.15 nm in 31.59-um- and 30.49-um-poled channels, as shown by the
black and red curves in Figure 2, respectively.
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Figure 2. The output wavelength of the module as a function of the crystal temperature.

There are two wavelengths of special interest in the tuning range: 2.7 and 3.3 um,
which correspond to the absorption peaks of H-O and C-H bonds, respectively. The strong molecular
rovibrational transitions that can be accessed with mid-IR laser sources allowed trace-gas sensing
down to the parts-per-quadrillion level. We measured the output power from the MIR module at
these two wavelengths. Figure 3 shows the output power as functions of the pump power when the
MgO:PPLN temperature is set at 105.6 °C. The MIR wavelength was 2.7 um for the 31.59-um-poled
channel, corresponding to a signal wavelength of 1.75 um. For the 30.49 um channel, the MIR and
signal wavelength were 3.3 and 1.56 um, respectively. The thresholds of the two above processes were
5.9 and 7.4 W, respectively. The output power for both wavelengths rose steadily as the pump power
increased. The MIR output was limited by the maximum pump power of 50 W and exceeded 10.4 and
9.1 W at 2.7 and 3.3 pum, respectively. The maximum conversion efficiencies were 24% for 2.7 um and
21% for 3.3 um, respectively. The conversion efficiencies of the idler output were not linear because of
the saturation of the pump depletion.
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Figure 3. Output power of the module at 2.7 and 3.3 um as a function of incident pump power.
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The power stability of the OPO module was measured. The test lasted 10 h in a room without
special temperature stabilization. The pump power was maintained at 35 W throughout the entire
testing process. The MIR power was about 6.2 W at this pump power. As shown in Figure 4, the RMS
of the MIR output power in 10 h was 2.13%. We measured the spectra characteristic using an optical
spectra analyzer (YOKOGAWA AQ6375, YOKOGAWA, Tokyo, Japan), where the measured linewidth
was limited by the instruction spectral resolution of 6 GHz. However, we could infer that our OPO
was oscillating in a single longitudinal mode.
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Figure 4. The long time power stability of 3.31 um. Inset: the spectrum of the signal.

4. Conclusions

In summary, we have designed and fabricated an OPO module. The module is compact
and confined, with dimensions and a weight of 220 x 60 x 55 mm? and 2.5 kg. The experiment
results show that the module had a wide tuning range, a high power, and a stable output
when a commercial Yb fiber laser was used as the pump laser. The MIR tuning ranges were
2416.17-2932.25 nm and 3142.18-3452.15 nm when two channels of a periodically poled lithium
niobate (PPLN) crystal, with poling periods of 31.59 and 30.49 um channels, respectively, were used. At
the maximum pump power (50 W), the highest output power of the module exceeded 10.4 W at 2.7 um
and 9.1 W at 3.3 um. To our knowledge, this is the best performing CW-OPO based on PPLN. The 10 h
power stability at 3.31 um was measured to be 2.13% RMS under outdoor environment. We believe
that such a compact, tunable, stable, and high-power OPO module can be used as the core part of
a number of mid-infrared laser sources. Its promoting effect in the relevant industries is foreseeable.
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Featured Application: The proposed device can be very useful to high power and parametric applications.

Abstract: A novel concept of 4 x 1 power beam combiner based on multicore photonic crystal fiber is
described. The light coupling obtained by integrating small air-holes in the multicore photonic crystal
fiber (PCF) structure allows light coupling between coherent laser sources to the central core. The
beam propagation method (BPM) and coupled mode theory were used for analyzing the proposed
device. Simulation results show that four coherent fiber laser sources of 1 um in a multicore PCF
structure can be combined into one source after 2.6 mm light propagation, with a power efficiency of
99.6% and bandwidth of 220 nm. In addition, a higher 8 x 1 ratio combiner was demonstrated, based
on the proposed device. Thus, the device can be very useful to combine beams.

Keywords: combiner; beam propagation method; photonic crystal fiber

1. Introduction

In 1961, the first laser based on neodymium (Nd**) doped fiber was demonstrated [1,2]. Since
then, fiber laser has been found as an efficient source for various applications, such as laser material
processing [3], medical diagnostics [4], high power [5], metrology [6], imaging [7], etc. The most
commonly used laser-active ion dopants in fibers are erbium (Er®*) and ytterbium (Yb3*) dopants,
with their emission wavelengths around 1.5-1.6 pm and 1-1.1 um, respectively [8,9].

The benefits of using a fiber laser as a light source: strong stability against thermo-optic effects,
ease of use and higher gain, can be obtained by long fiber, while still keeping a compact cavity
structure. Another advantage of fiber lasers is the capability to achieve output power values as high as
10 kW [10], using a single fiber laser. However, problems such as modal instabilities, thermal damage,
and nonlinear effects, limit the power levels of a single fiber laser [11]. In order to overcome these
problems, several beam combining methods were developed, such as the coherent beam combining [12],
spectral beam combining [13], and incoherent beam combining [14].

Another solution is to use the combiner based on photonic crystal fiber (PCF). PCF is a versatile
technology, based on a microstructured formation of low- and high-index materials [15]. Usually,
the background material is pure silica (high-index), and the low-index areas are air holes along the
fiber length.

PCF has unique characteristics [16,17] that do not exist in classical fibers such as high birefringence,
larger single-mode areas, extremely low /high nonlinearity, and lower coupling length value between
two closer cores. In recent years, research has demonstrated the potential of using PCF based
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coupler/splitter devices [17-19]. One of the recent improvements is the ability to obtain a smaller
value of the coupling length compared to coupler/splitter based classical fibers.

Recently, the authors demonstrated a compact 4 x 1,8 x 1 and 16 x 1 power combiner based
on PCF [20]. The combining was achieved by replacing some air-holes areas with pure silica along
the fiber length. However, this approach cannot be fabricated by fiber drawing methods [21-23].
In order to solve this problem, we propose a new approach that involves small air-holes in the
PCF structure, which allows the control of light coupling between close cores without changing the
refractive index structure. Thus, this technique can be used with the drawing and stack method for
fabricating a combiner device based on multicore PCF. In this paper, we propose a new approach to
obtain a multicore PCF that combined multiple laser sources to one source with high power level.
The coupled mode theory and the beam propagation method [24,25] were used to investigate the
performances of the 4 x 1 power combiner. In addition, a higher ratio of 8 x 1 combiner was designed
using a cascade of two 4 x 1 power combiners and one 2 x 1 power combiner.

2. Principle of the Work

Figure 1 shows a schematic sketch of the multicore PCF 4 x 1 power combiner design based on
the coupling between five cores (yellow color). The coefficients k1, k; are the coupling coefficients
between the cores: k1 denotes the coupling between core 3 and core 1, or between core 2 and core 1.
Kk denotes the coupling between core 4 and core 1, or between core 5 and core 1. d is the diameter
of the air-holes (white color), d is the diameter of the small air-holes (black color) and A denotes the
pitch—the distance between two air holes.
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Figure 1. Schematic sketch of the 4 x 1 power combiner design at the x-y plane.

Classical coupled-mode equations can be used to analyze the light coupling between the five

cores in the multicore PCF 4 x 1 power combiner. In our model, we integrated eight small air holes

(black color), which leads to cancellation of other coupling that may occur between closer cores

such as core 3—core 5, core 3—core 4, core 2—core 4, and core 2—core 5, and by assuming polarization
independence, the solutions of the mode amplitudes can be given as

A, = aelH2(BFe)) (1)

73



Appl. Sci. 2017, 7,695

where A, (r =1, 2,3, 4, 5) are the amplitudes of the fundamental mode in core 7, B is the propagation
constant of the fundamental propagation mode, z is the propagation distance, «, (n = 1,2,3,4,5) is
the amplitude constant, and ¢ is an eigenvalue. In our design, there are five cores, which mean that
five coupled-mode equations can be used to describe our design. However, the combiner is based on
multicore PCF with symmetrical hexagonal structure; in other words, the mode amplitude is equal in
core 2—core 3 (A; = A3) and core 4—core 5 (A4 = As). Therefore, the five coupled-mode equations can
be reduced to three equations which are given by

(—jz(B+¢)) » j j
% +ioelTTEBre) — *j{Zocze(”Z(B“))M +2064e(7jz(6+€))'<2} @
W +iBogel B+ = ool B ®

where the boundary conditions are given by
A1(z=0)=0,A2(z=0) = Ay(z=0) =0.25 (5)

The three coupled-mode Equations (2)—(4) can be simplified to three linear equations, which are
given by

exy = 20Ky + 204Ky 6)
EXy = X1K] 7)
E0g = X1Kp 8)

The matrix system can be described as follows:

€ 72K1 72K2 28] 0
—K1 3 0 0% =10 )
—K2 0 £ X4 0

The eigenvalues and the eigenvectors can be found by solving the matrix system (Equation (9)).
The field E(z) can be represented by a linear combination of the eigenvectors. In a particular solution,
where k; = K, a complete transfer of the energy from cores 2, 3, 4, and 5 to the central core 1, can be
obtained. However, this condition depends on the geometrical parameter values of the multicore PCF
structure (z, d, d’, and A). Therefore, optimization of the key parameters was done, in order to fulfill
the necessary condition. In addition, this model can be duplicated, in order to design a higher ratio
power such as 8 x 1 combiner.

3. Results: The Designs of 4 X 1and 8 x 1 Power Combiners

Figures 2a—c and 3a—c shows the refractive index structure of the 4 x 1 power combiner and
8 x 1 power combiner, respectively. In these figures, the red color areas represent silica, and the purple
color areas represent air.

The optimal values of the 4 x 1 power combiner multicore PCF structure are

, d d
z = 26mm, d = 0.8277 um, d' = 0.2483 um, A = 2.365 um, A= 0.105, A= 0.35

The 8 x 1 power combiner is based on a cascade which includes two units of 4 x 1 power

combiners and one unit of 2 x 1 power combiner, as shown in Figure 3a—c.
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Figure 2. Refractive index profiles of the 4 X 1 power combiner: (a) xz plane aty = 0; (b) yz plane at
x=0;(c) xy plane at z = 0.
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Figure 3. Refractive index profiles of the 8 x 1 power combiner: (a) xz plane at y = 0; (b) yz plane at
x=0;(c) xy plane at z = 0.

4. Simulation Results

The multicore PCF 4 x 1 power combiner structure was simulated using RSoft Photonics CAD
software (5.1.5, RSoft, Ossining, NY, USA), based on BPM.

Figure 4a shows the transmission of four Gaussian sources at a 1 um wavelength at z = 0, with a
normalized power value of 0.25. Figure 4b shows the light coupling between the central core to the
other four cores at z = 1 mm. Figure 4c shows that four Gaussian sources are combined to one source
atz = 2.6 mm, with 99.6% of the total power.
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Figure 4. The 4 x 1 power combiner of the optical signals (A = 1 um) of three xy cross sections:
(a) z=0mm, (b) z=1mm; (c) z= 2.6 mm.

The proposed device can also act as a two dimensional (2D) 2 x 1 power combiner, as shown in
Figure 5a,b.
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Figure 5. Two dimensional (2D) 2 x 1 power combiner of the optical signals (A= 1 um): (a) yz plane;
(b) xz plane.

In addition, a MATLAB script code, combined with BPM simulations, was developed to examine
the sensitivity of the proposed device to the wavelength variation of the laser sources around 1 pm.
Figure 6 shows power attenuation around the central wavelength (1 um).
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Figure 6. Normalized power in the central core at z = 2.6 mm as a function of wavelength.
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It can be noticed from Figure 6 that the bandwidth (FWHM) of the 4 x 1 power combiner is about
220 nm in the 900-1120 nm range. Such a bandwidth implies that this combiner may be suitable for
tunable lasers around a wavelength of 1000 nm, and can support broadband sources. This provides
many benefits, due to the fact that within this range, one can use optical lasers such as ytterbium
doped fiber laser, which is highly useful for high power and parametric applications.

This device can be also used in cascade configuration for obtaining a higher ratio of combining.
For example, we used two units of the 4 x 1 power combiner and connected them to a 2 x 1 combiner,
in order to obtain an 8 x 1 power combiner. Figure 7a shows the transmission of eight Gaussian
sources at a 1 um wavelength at z = 0, with a normalized power value of 0.125. Figure 7b shows the
combining of eight sources to two at z = 2.6 mm. Figure 7c shows that eight Gaussian sources are
combined to one single mode at z = 5.8 mm.
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Figure 7. The 8 x 1 power combiner of the optical signals (A = 1 um) of three xy cross sections:
(a) z=0mm; (b) z=2.6 mm; (c) z = 5.8 mm.

5. Conclusions

In this article, we have shown a new approach of designing specific air holes in a multicore PCF
structure that are utilized to obtain an optical 4 x 1 power combiner.

Through BPM simulation results, we showed that the energies of four optical signals at
1 um wavelength can be combined into one source output in a PCF structure with dimensions of
38 um x 38 um x 2.6 mm. The amount of total power at the output is about 99.6% of the input power,
the coupling losses between core 1-core 2/3/4/5 is about 0.01% of the input power, and the optical
bandwidth value is 220 nm for the output port. Thus, this combiner device can be used in high power
and parametric applications.

This combiner can be fabricated by stacking and drawing techniques which are simpler than
other known fabrication techniques [20]. It is important to emphasize that all of these combiners were
demonstrated using simulation.

In addition, a higher level 8 x 1 combiner was demonstrated using two units of 4 x 1 connected
toa 2 x 1 combiner in a cascade configuration.

This research could be expanded to optical combiners with larger numbers of input fiber laser
sources, such as 16 x 1and 32 x 1.
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Abstract: Optical phase locking is a critical technique in space coherent optical communication and
active coherent laser beam combining. In a typical optical phase locking loop based on nonplanar
ring oscillators, the pull-in range is normally less than 1 MHz, limited by loop delay and frequency
tuning bandwidth of the laser source. Phase locking cannot be achieved at large initial frequency
differences. In this work, a fast laser frequency acquisition method is demonstrated. The frequency
difference between the signal and local lasers was measured via frequency dividing and period
counting, and the frequency control signal was generated by a frequency discrimination and control
module, to reduce the frequency difference to the pull-in range of the loop. Under the coordinating
function of the loop filter and the frequency discrimination and control module, phase locking under
a large initial frequency difference was achieved. The frequency acquisition range reached 164 MHz,
and the acquisition and locking time was measured to be 440 ms. Additionally, the acquisition time
was shortened with the decrease in initial frequency difference.

Keywords: optical phase-locking loop; frequency acquisition; coherent optical communication;
frequency discrimination

1. Introduction

An optical phase locking loop (OPLL) plays an important role in space homodyne coherent
optical communication systems, which have a significant advantage in receiving sensitivity. Gbps-level
LEO-LEO [1], LEO-GEO [2], LEO-GS [3], and GEO-GS [4] communication links were verified, where
LEO, GEO and GS denoted low earth orbit satellites, geostationary earth orbit satellite, and ground
station, respectively. Compared to electrical wave sources in an electrical PLL, laser sources have
a wider line width and a faster frequency drift [5], which result in difficult frequency acquisition
and poor tracking performance. Early OPLLs were based on gas laser sources. A. L. Acholtz et al.
achieved phase locking of CO, lasers and 100 Mbps homodyne communication [6]. However, limited
by certain disadvantages in lifespan, volume, and efficiency; it is hard for gas lasers to meet certain
requirements in space applications. The development of optical communication has greatly promoted
the progress of semiconductor laser technology. S. Norimatsu et al. achieved phase locking of an
external cavity semiconductor laser with a residual phase error of 7.4° [7]. Although semiconductor
lasers have a small size and low cost, the linewidth of these devices is relatively wide, or the phase
noise is large, which leads to losing lock or large residual phase error. Recently, integrated OPLLs
based on semiconductor lasers have been studied intensively. Such loops have potential applications
in optical frequency synthesis [8] and microwave photonics [9]. Integration of OPLLs reduces the loop
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delay, broadens the loop bandwidth, and improves the loop stability [10]. Thanks to the intensive
study of diode-pumped solid-state lasers (DPSSL) over the last three decades, their performance has
greatly improved in coherence, service life, and reliability. Among DPSSLs, nonplanar ring oscillators
(NPROs) have a narrow linewidth (<1 kHz), low intensity noise (relative intensity noise <—140 dB/Hz),
and good frequency stability. Due to the merit of a narrow linewidth, in OPLL applications, small
residual phase error can be obtained. In homodyne coherent optical communication systems, small
residual phase error is conducive to an improvement in the receiving sensitivity, which is important
for space communication systems. Until now, NPRO is the only laser source that has been verified
in orbit for applications of homodyne coherent optical communication, to the best of our knowledge.
We believe that NPRO is, up to now, the first-choice laser source in space homodyne coherent optical
communication systems.

For OPLLs based on NPRO, F. Herzog presented the scheme and performance of a dither loop,
which did not require residual carrier transmission [11]. T. Ando et al. studied phase locking stability
of OPLLs based on NPRO [12]. The authors analyzed the effect of response bandwidth of frequency
tuning on phase locking precision [13]. Frequency acquisition performance is also quite important
for phase locking loops. Frequency acquisition schemes based on a bang-bang phase detector [14]
and a Hogge phase detector [15] have been reported in electrical PLLs. The range of initial frequency
difference (or offset) between signal laser and local laser is larger in OPLLs, compared with electrical
PLLs, and this is mainly due to laser frequency drift. Even under the condition of precise temperature
control, the initial frequency offset can still be around 100 MHz. In addition, for OPLLs based on
NPROs, the response bandwidth of the frequency tuning of the laser source is narrower, and loop
delay is much longer, compared to electrical PLLs. Therefore, the lock-in range and pull-in range of
an OPLL are much narrower. The frequency acquisition range, for OPLLs based on NPROs, should
start from tens of kHz to more than 100 MHz. Thus, a special acquisition scheme with a wide range,
high speed, and good compatibility with loop filters should be proposed for OPLLs based on NPROs.
The frequency sweeping technique based on laser crystal temperature turning was used, with a
frequency acquisition time longer than 10 s [2]. For this technique, if the loop lost locking due to a
small frequency step during normal operation, it might also need more than 10 s for relocking. As the
link duration of inter-satellite communication is typically in the range of 100-200 s for LEO-to-LEO
links [1], the acquisition time should be reduced significantly to less than a few seconds, less than 1's
ideally. A shorter acquisition time means a longer communication time and more collected data. In this
work, a faster frequency acquisition was achieved via frequency discrimination and piezoelectric
frequency control. In addition, smooth continuity between the frequency acquisition process and
the phase locking process was achieved. The frequency acquisition range reached 164 MHz, and the
acquisition and locking time is less than 0.5 s.

2. Design of the OPLL

A block diagram of the OPLL is shown in Figure 1. The signal and local lasers were
both NPROs, with two signal input ports for temperature and piezoelectric-transducer (PZT)
frequency tuning, respectively. The temperature of the laser crystals was precisely controlled via
a proportional-integral-derivative (PID) controller to keep the laser frequency stable. The control
precision was 0.01 K for 1 h and 0.03 K for 8 h. The thermal tuning coefficient of Nd:YAG NPRO was
3 GHz/K. The typical frequency drift was measured to be around 30 MHz for 1 h and 100 MHz for 8 h.
A piezoelectric element was bonded to the upper nonoptical face of the Nd:YAG crystal. The applied
voltage can slightly change the dimension and refraction index of the laser crystal. Thus, the laser
frequency was tuned. The PZT tuning coefficient was 1.6 MHz/V, and the response bandwidth was
about 100 kHz.
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Figure 1. Block diagram of the optical frequency acquisition and the phase-locking loop.

The output lights of local and signal lasers were combined and mixed via a 50/50 fiber coupler.
Two output beat signals with a 180° phase difference were sent to the balanced photodetector, which
had a model number of PDB480C and was made by Thorlabs, Inc. (Newton, NJ, USA). The converted
electrical beat signal, acting as a phase error signal, was sent to the loop filter and the frequency
discrimination and control module (FDCM). V. and V., are the output signal amplitude of the loop
filter and FDCM, respectively. The loop filter was an active proportional-plus-integral filter, where
the first time constant 71 = 3 ms and the second time constant 7, = 5 pus. The main function of the
loop filter was locking the phase, as the beat frequency falls into the pull-in range of the loop, which
was around 700 kHz. The FDCM was used for the acquisition of signal frequency to keep the beat
frequency below the pull-in range. V1 and V., were amplified and added in the PZT driver, where
the gain values G and G, were 9 and 18, respectively. The output voltage amplitude of the PZT driver
was £190 V.

3. Principle of Frequency Acquisition

In the FDCM, the beat signal frequency is measured digitally, and a control signal is generated for
frequency acquisition. A block diagram of the FDCM is shown in Figure 2. The frequency of the beat
signal is firstly divided by 200 and converted into square pulses. The dividable frequency ranges from
10 kHz to 300 MHz. The pulse repetition frequency is measured via a microprogrammed control unit
(MCU). The measuring period is set to be 5 ms. From the measured frequency in the current measuring
period and the previous period, the frequency control direction and the frequency shift amount were
obtained. An MCU generates corresponding binary data to the digital/analog (D/A) converter, in
which the frequency control signal is generated. After passing through the amplifier, the control signal
is sent to a low pass filter. It is then sent to the V., port of the PZT driver. The low pass filter is essential
for stable phase locking. In the locking status of the OPLL, the phase step and minor frequency step
can cause a transient response in the phase error signal. Some frequency steps might be caused by the
high frequency components of the D/A-converted signal. If the amplitude of the transient response
signal reaches the threshold of the FDCM, it will function and generate a small frequency shifting
signal. This is a false shifting signal and might result in losing lock. With a low pass filter of a 400 Hz
bandwidth, the shifting signal is smoothed. The phase locking loop can precisely track the smoothed
minor frequency shift, and keep a stable residual phase error. One frequency control cycle includes a
frequency measuring period, 5 ms, and a frequency shifting period, 1 ms. The step response time of
the low pass filter is close to 1 ms. Thus, the frequency shifting period is set to 1 ms.

. 10x 10x 2x Low | 0 V.
Beat Signal V, D/A 3x utput ¥,
Freq. |—»{ Freq Freq. Converter Amplifier Pass

Divider Divider Divider Filter

Figure 2. Block diagram of the frequency discrimination and control module (FDCM).
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Figure 3 shows the flow chart of the frequency discrimination and control program. The program
is mainly achieved via an MCU. After program initialization, pulses that are sent to the module during
the measuring period are counted. The frequency difference Af, in the current measuring period is
computed from the counted pulse number. If Af, is less than critical frequency difference Af;, then the
frequency locking is achieved. Thus, the FDCM will maintain the frequency control voltage, and
the loop will be locked under the function of the loop filter. The lock-in range and pull-in range of
the loop are 15 kHz and 700 kHz, respectively. The critical frequency difference Af. can be set to
40 kHz, with a locking time less than 1 ms under the function of the loop filter. If Af,, is larger than the
frequency difference in the last measuring period, Afy, then the frequency control direction is incorrect.
If the current frequency control cycle is the second cycle, the wrong control direction is caused by a
random chosen direction in the first frequency control cycle. Otherwise, the wrong control direction
is caused by fast laser frequency drift during the last frequency control cycle. The frequency control
direction will thus be changed, and the frequency shift amount is determined by Af, and the PZT
tuning coefficient. If A, is less than Af;, then the frequency control direction is correct. The local laser
frequency will be controlled in the correct direction until Afj, is less than Af;. Phase locking will thus

be achieved via the loop filter.

Initialization, Set time,
1 Start timer/counter

End of counting

Computing current frequency
difference A f,

Control laser frequency N
in the opposite
direction

Control laser frequency in current
direction

Figure 3. Flow chart of frequency discrimination and control program.

The choice of division ratio is a tradeoff between the maximum measurable frequency (MMF) and
measurement accuracy (MA). The crystal oscillating frequency of the MCU is 24 MHz, corresponding
to a machine cycle of 0.5 ps. For a division ratio of 200, MMF is 200 MHz, and MA is 40 kHz. For a
smaller division ratio, to get the same MA, a shorter frequency measuring period can be adopted, and a
faster acquisition can be achieved. However, with the MCU used in this work, the MA is increased.
At the initial frequency difference that equals MA, the phase locking time is longer under the function
of the loop filter. If the phase locking time is longer than one frequency control cycle, the OPLL will
become unstable. For example, if the division ratio is set at 100, a frequency measuring period can be
set at 2.5 ms, and one frequency control cycle is 3.5 ms, with an MA of 80 kHz. At an initial frequency
difference of 80 kHz, the phase locking time is close to 3.5 ms, and the loop operates at the critical
region with poor stability. Moreover, for a higher division ratio, the MMF is decreased, which is also
undesired. Thus, the optimum division ratio in this work is 200. If we could decrease the phase locking
time, under the condition of a shorter loop delay and a wider loop bandwidth, a smaller division ratio
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is allowed. The output voltage range of the D/A converter is +5 V. The converted signal has a total
amplification of 54 x before sending to the PZT port of the local laser.

4. Experimental Results

The phase locking loop was constructed according to Figure 1. First, the FDCM was turned
off, and the initial frequency difference of the two lasers was controlled by adjusting the crystal
temperature of the signal laser. At a set frequency difference, as the FDCM was turned on, frequency
acquisition and phase locking were tested. In the experiments, the output signal of the loop filter, the
PZT driving signal, and the laser beat signal were monitored.

The frequency acquisition and phase locking process at an 8 MHz initial frequency difference
is shown in Figure 4 with a time scale of 200 ms/div. At 630 ms, the FDCM was turned on, and the
feedback control was started. After 80 ms, phase locking was achieved, as indicated by the beat signal
(yellow). According to the frequency discrimination and control program, under the control of the
FDCM, the local laser generated an initial frequency shift. As the change in frequency difference is
measured, the direction of the frequency control and the frequency shift amount were determined.
The main function of the initial frequency shift determined the right frequency control direction. After
that, the frequency difference decreased to less than Af;, 40 kHz, as indicated by the PZT driving signal
(green). For such a small frequency difference, the phase locking time based on the loop filter was
quite short, shorter than 1 ms, which is negligible compared to the frequency acquisition time.

™\ LocKing \Beat Signal (1V/div)

80ms Tirme

Closed-loop Time PZT Driving Signal (20V/div

Figure 4. Frequency acquisition and phase locking process at an 8 MHz initial frequency difference.

As the initial frequency difference increased to 164 MHz, the acquisition time was around 440 ms,
as shown in Figure 5. As the beat signal was detected via the probe of the oscilloscope, the amplitude
of the detected signal varied with the signal frequency in the acquisition process because impedance
matching varied at different frequencies. For a higher initial frequency difference, the frequency
discrimination and control would go wrong sometimes. The main reason for this is that the machine
cycle of the MCU, compared to the divided beat signal period, was so long that the frequency could
not be correctly measured. It could be improved by increasing the crystal frequency and the processing
speed of the MCU. In order to guarantee the stability of the frequency control process, the local laser
frequency shift was set to less than 3 MHz at every control step. For an even higher frequency shift step,
the laser frequency would not reach a steady state at the end of the control period, causing inaccurate
frequency measuring in the following measuring period, even leading to false control. As the initial
frequency difference increased, more control periods were needed, and acquisition time was normally
extended. In the frequency acquisition process, when the beat signal frequency was out of the pull-in
range of the loop, the loop filter output a constant DC signal. Only as the beat frequency fell into the
pull-in range of the loop did the loop filter signal have an obvious response, as shown in the figure
by the blue line. According to the measurement of the laser frequency stability, the frequency drift
of the beat signal of the two lasers was around 100 MHz in 8 h, under precise temperature control.
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The frequency acquisition range, 164 MHz, was significantly larger than the frequency drift range, so a
stable loop operation was achievable.

\Loop Filter Signal
(1V/div)

E ] U SR
Closed-loop Time { “~~PZT Driving Signal (100V/div)

Figure 5. Frequency acquisition and phase locking process at a 164 MHz initial frequency difference.

The frequency acquisition and phase locking time at different initial beat frequencies is shown in
Figure 6. According to the frequency discrimination and control program, the theoretical minimum
number of control cycles was equal to the initial frequency difference divided by the maximum
frequency shift step of a given period, which was set to 3 MHz. As the time of one control cycle was
set to 6 ms, minimum acquisition time could be computed. The actual acquisition time was usually
longer, and had a certain degree of uncertainty. Main causes include uncertainty of the initial frequency
shift direction, laser frequency drift during the acquisition process, and a shortened frequency shift
step in the last few control cycles. The dashed line in Figure 6 is the linear fitting line with a slope
of 2.03 ms/MHz. The slope corresponds to the ratio of time of one frequency control cycle, 6 ms,
to the maximum frequency shift step in one cycle, 3 MHz. Compared to the frequency acquisition time
achieved via the frequency sweeping technique based on laser crystal temperature turning, which was
longer than 10 s [2], the acquisition time of this work was 1-2 orders of magnitude shorter.

500

400f oo -~

300 o °

200¢ o

100}

Acquisition and locking time (ms)
[ ]

0 50 100 150 200
Initial frequency difference (MHz)

Figure 6. Measured frequency acquisition and phase locking time vs. the initial frequency difference.
The dashed line is the linear fitting line.
5. Conclusions

Nonplanar ring oscillators have a high frequency stability, a narrow linewidth, and low intensity
noise. These devices are becoming the preferred laser sources in coherent space optical communications.
They can also be used in coherent laser beam combinations. In these applications, phase locking is
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the key technique. Traditionally, laser frequency acquisition based on temperature control consumes
quite a long time. In this work, we designed and achieved a frequency acquisition sub-loop based
on PZT control. The acquisition sub-loop operated coordinately with the phase locking loop based
on the loop filter. The frequency acquisition range reached 164 MHz, with an acquisition time of less
than 500 ms. For a smaller initial frequency difference, acquisition times decreased. This technique
significantly shortens the frequency acquisition time, which makes the system reach work status much
more quickly. In addition, by improving the processing speed of the control circuit, acquisition time
can be further shortened.
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Abstract: Laser-induced damage on fused silica optics remains a major issue that limits the promotion
of energy output of large laser systems. Subsurface impurity defects inevitably introduced in the
practical polishing process incur strong thermal absorption for incident lasers, seriously lowering
the laser-induced damage threshold (LIDT). Here, we simulate the temperature and thermal stress
distributions involved in the laser irradiation process to investigate the effect of impurity defects on
laser damage resistance. Then, HF-based etchants (HF:NH4F) are applied to remove the subsurface
impurity defects and the surface quality, impurity contents and laser damage resistance of etched
silica surfaces are tested. The results indicate that the presence of impurity defects could induce a
dramatic rise of local temperature and thermal stress. The maximum temperature and stress can reach
up to 7073 K and 8739 MPa, respectively, far higher than the melting point and compressive strength
of fused silica, resulting in serious laser damage. The effect of impurity defects on laser damage
resistance is dependent on the species, size and spatial location of the defects, and CeO, defects play
a dominant role in lowering the LIDT, followed by Fe and Al defects. CeO, defects with radius of
0.3 um, which reside 0.15 um beneath the surface, are the most dangerous defects for incurring laser
damage. By HF acid etching, the negative effect of impurity defects on laser damage resistance could
be effectively mitigated. It is validated that with HF acid etching, the number of dangerous CeO,
defects is decreased by more than half, and the LIDT could be improved to 27.1 ]/ cm?.

Keywords: fused silica; ultra-precision polishing; subsurface damage; laser damage resistance;
absorbing impurity defects; HF acid etching

1. Introduction

In order to achieve clean and sustainable energy resources, high-power laser systems have been
developed worldwide for pursuing inertial confinement fusion (ICF), such as the National Ignition
Facility (NIF) in the United States [1,2], the Laser MegaJoule (LM]) in France [3], the High Power laser
Energy Research facility (HiPER) in Europe [4] and the ShenGuang (SG)-III laser facility in China [5].
To obtain the extremely high pressure and temperature required for ICF ignition, a huge amount of
large-aperture optics with high precision surfaces are required to temporally, spatially and spectrally
control the laser beams. The laser beams are finally coupled together, focusing simultaneously on a
very tiny target filled with fusion fuels. Among these optics, fused silica is an amorphous state of
silicon dioxide, which has extremely low thermal conductivity, super strong thermal-shock resistance,
low dielectric loss, and high deformation (1370 K) and softening (2000 K) temperatures. Besides, the
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fused silica optics possess such broad optical transmission spectra that over 1000 pieces of silica optics
have been widely used in the sub-laser systems with fundamental (1w) and triple (3w) frequencies
of the ICF facilities. The fused silica optics serve as switch and vacuum windows, wedged focus
lens, diffraction grating, debris shields and so on [6,7]. Since the fused silica optics are exposed to
high-power lasers in their actual applications, the well prepared engineering silica components should
have very high laser damage resistance. However, due to the weak mechanical properties of fused
silica, the introduction of undesirable by-products (viewed as defects) on the surface or subsurface of
finished brittle silica parts in the actual cutting, grinding, polishing, coating and cleaning processes is
inevitable. The surface and subsurface defects can extend downward several to tens of microns beneath
the finished surface, which would greatly lower the energy output capacity of the ICF laser facilities.
Currently, thanks to the development of various new advanced processing techniques (e.g., laser
conditioning [8], thermal annealing [9,10]), the bulk laser-induced damage threshold (LIDT) of fused
silica can reach up to 475 + 25 GW/ cm? (1064 nm, 8 ns), which is very close to the theoretically intrinsic
LIDT and almost one order of magnitude higher than the surface LIDT [11]. This means that the
laser-induced damage on surface and subsurface of fused silica plays a dominant role in restricting the
promotion of energy output capacity of ICF facilities. Similar to the fused silica optics applied in high
power laser systems, many other optical materials (e.g., potassium dihydrogen phosphate KDP as well
as its deuterated analog DKDP, fluoride and selenide crystals) are also expected to possess high optical
qualities, like optical transparency and laser damage threshold [12-15]. For these crystal materials,
rapid growth of large-size boules with desired optical properties has been being a great challenge,
and the growth conditions are susceptible to affect the crystal structures, which is closely associated
with the bulk laser damage threshold. As a result, the efforts to promote the optical properties
of these optical materials are mainly focused on exploring the mechanisms of bulk laser-induced
damage and optimizing the growth parameters to improve the crystal structures for increasing the
bulk LIDT [14-16]. For fused silica optics, though the internal structure of silica is stable and robust,
its hard and brittle characteristics would make the ultra-precision manufacturing of defect-free silica
surfaces a great challenge. Therefore, the study on laser damage of fused silica optics should primarily
aim at the defects on a finished surface or subsurface. It is of great theoretical and practical significance
to explore the underlying mechanisms involved in the laser-induced surface damage and develop new
engineering techniques to remove the surface and subsurface defects for improving the laser damage
resistance of fused silica.

The primary source leading to the low surface LIDT of fused optics is the subsurface damage
(SSD) caused in the chemical-mechanical polishing process. The SSD layer located beneath the polished
surface generally consists of re-deposition layer (also named the Beilby layer), a defect layer with crack
and scratch defects included, and a deformed layer [17-19]. During the polishing process, the highly
absorptive impurities (e.g., Ce, Fe, etc.) coming from the polishing slurries are randomly distributed
among the re-deposition layer. Some of the impurities are even embedded and hidden deeply inside
the defect layer via entering the open subsurface cracks and scratches. Under the irradiation of intense
laser, the impurity defects would make the natively transparent fused silica optics highly absorptive to
incident laser, resulting in very high local temperature and stress, and eventually the breakdown of the
optical parts [7,20,21]. Meanwhile, the absorptive impurity defects would change the initial band-gap
structure of fused silica and also trigger new photon excitation under intense laser irradiation. These
effects caused by the impurity defects would substantially affect the laser-induced nonlinear excitation
of dielectric silica optics (e.g., multi-photon and avalanche ionizations), making the optical material
more susceptible to laser damage [22,23]. The absorptive impurities mainly originate from three kinds
of sources in the optical processing stage: oxide polishing slurries (CeOy, ZrO,, etc.), metal polishing
tools (Fe, Cu, Cr, etc.) and Al ion from optical cleaning. Hu et al. [24] demonstrated that besides
subsurface scratch and dig defects, ~35% of the laser damage sites were initiated at invisible defects,
probably being absorptive impurities with submicrometer size. It was also experimentally proved by
Neauport et al. [17,25] that the laser-induced damage on fused silica was closely associated with the
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subsurface absorptive impurities and different types of impurity defects would incur different levels of
optical damage. Hence, in this work, the heat conduction and thermo-elastic equations involved in the
absorbing process of impurity defects under intense laser irradiation are firstly numerically resolved
using the finite element method (FEM). Then, the temperature and thermal stress distributions inside
fused silica caused by impurity defects are investigated to figure out the most dangerous species and
size range of impurity defects in decreasing the laser damage resistance of silica optics. This part
of work could provide further understanding of the laser-induced damage mechanisms on optical
components, which are beneficial to the surface/subsurface quality evaluation and SSD removal of
ultra-precision fabricated fused silica optics.

To alleviate the effect of SSD defects on the laser damage resistance of fused silica optics,
many engineering techniques (e.g., hydrofluoric HF acid etching [26-28], ultraviolet or CO, laser
preprocessing [8,29], plasma etching [30], and magneto-rheological finishing (MRF) [31], etc.) have been
developed and applied in the actual preparation processes of high-quality silica surfaces. In the laser
preprocessing process, lasers with energy lower than the LIDT are used to irradiate the fused silica
surfaces. Due to the strong absorption of silica material to CO, lasers, the temperature on the
optical surface would moderately rise, resulting in the recombination of surface micro-structure
and the healing of subsurface cracks. At the same time, the lasers can bring about the electronic
excitation of the impurity defects, which would finally lower the defect energy band to a steady
state. Hence, this processing technique is able to mitigate the negative effect of impurity defects and
subsurface cracks on the laser damage resistance of fused silica. However, there are some shortcomings
that need to be urgently solved as well. For example, the temperature gradient in laser heated zone
can produce high residual thermal stress and the surface figure error caused by laser preprocessing
may induce wavefront distortion, which greatly limits the capacity and advancement of this technique
in improving the laser damage resistance [32]. For the plasma etching process, carbon tetrafluoride
(CFy) gas is necessary for effectively etching the silica materials. However, the CF4 gas and its residual
etching reaction product may become new sources of impurity defects, polluting the processed surface
and consequently influencing the effect of improving the laser damage resistance [30]. However,
high-quality optical surfaces with low roughness and few SSD defects can be achieved with the MRF
method, and the magnetic Fe-ion defects from the magnetorheological fluid may be deposited inside
the finished optical surfaces, resulting in low LIDT. However, for the HF acid etching technique,
polished fused silica optics are immerged in various HF-based etchants (HF or NH4F:HF mixed
solutions with various ratios) to remove the re-deposition layer and partial SSD defects. With the HF
acid etching, the crack and scratch defects hidden in deep subsurface of fused silica can be blunted
and no new impurity defects would be introduced as well [26]. Besides, under the assistance of
megahertz-frequency agitation, the scouring effect of micro jet on the cleaned optical surfaces could be
enhanced, causing the micro-particles and impurity defects adhering to the optical surface/subsurface
to be further removed [28,33]. As a result, the laser damage resistance of finished fused silica would be
greatly enhanced. In the latter part of this work, the HF acid etching technique is employed to remove
the SSD defects on fused silica. Then, the etching rate, impurity contents, surface quality and laser
damage resistance of etched silica samples are thoroughly investigated and analyzed to validate the
role of the HF acid etching technique in removing the subsurface impurity defects and promoting
the laser energy capacity of fused silica.

2. Theory and Methods

2.1. Modeling of Impurity-Induced Temperature and Thermal Distributions

The residual impurity defects are generally distributed inside the SSD layers of ground and
polished fused silica optics. The laser energy absorbed by these impurity defects is far greater than that
by intrinsic thermal absorption of the fused silica itself. On the one hand, the strong absorption of these
impurity defects can locally heat the silica materials, inevitably resulting in unsteady and non-uniform
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temperature distribution. When the local temperature reaches a certain degree, the optical material
may suffer from modification, softening, melting and even boiling, which would certainly incur
laser-induced damage [7]. On the other hand, the great temperature gap inside silica materials caused
by the absorption of impurity defects could give rise to internal thermal stress, and correspondingly
leads to the negative effects of obvious wavefront distortion and weak mechanical strength. These
negative effects would directly affect the laser energy capacity and service life of large-aperture fused
silica optics [20,21]. In the present efforts, the heat transfer and thermo-elastic equations governing
the laser energy absorbing process are numerically solved by adopting the FEM method to investigate
the distributions of temperature and thermal stress induced by impurity defects. The effects of
subsurface impurity defects with various species and dimensions on the laser damage resistance
are then analyzed, based on which we finally clarify the most dangerous impurity defects in terms of
lowering the LIDT of fused silica optics.

When the incident laser falls on the silica surface, most of the laser energy is reflected at
the interface or transmitted through the bulk, leaving only a fraction of the laser energy absorbed
by the materials [34]. As the absorbed energy penetrates, the temperature on fused silica materials
increases. The spatially and temporally increasing temperature can be described by the heat transfer
equation in the Cartesian coordinate system which is given below [35]:

of _ T T 0T, qv

aT _ 2T T 1
o YGat o T T o @

where, T, «, c and p represent the temperature, thermal diffusivity, specific heat capacity, and density,
respectively. g, indicates the heat source determined by the incident laser, which can be expressed
as [36]: ,
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with « the absorption coefficient, R the Fresnel reflection coefficient, P the incident laser power, and a
the radius waist at 1/e.

As the laser irradiates the optical surface, part of the heat energy is transported into the bulk,
resulting in the rise of surface temperature. Thermal radiation would take place at the hot surface.
Besides, the high temperature on the surface may cool down by exchanging heat energy with
the ambient air in the form of thermal convection. Hence, the below boundary conditions of heat flux,
natural convection cooling and surface-to-ambient radiation are all applied to fully describe the heat
transfer process in fused silica under the intense laser irradiation [37]. Under the control of Equation (3),
the energy balance would be actually realized by transferring the energy among the sample surface,
sample bulk and the surrounding circumstance during the laser heating and natural cooling processes.

IAT = —kg% +h(Ts = To) + oe(Ts* - To*) )

where, k, 1 and ¢ are the heat conductivity, convection coefficient, and radiation coefficient, respectively.
Ts and T denote the temperatures of fused silica surface and indoor air temperature. I represents
the incident laser intensity and At indicates the laser action period. ¢ is the Boltzmann constant.

The historical temperature evolution on fused silica optics can be obtained by numerically solving
the heat transfer equation of Equation (1) with the consideration of boundary conditions of Equation (3).
It is worth noting that in this work we only focus on the temperature evolution inside the laser spot for
the reason that the amount of heat energy transferred outside the light spot is much smaller.

Under the irradiation of the Gaussian laser pulse, the thermal distortion caused by absorptive
impurity defects could be resolved and analyzed on the basis of the temperature distribution obtained
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from Equation (1). Ignoring the volume and inertia forces inside fused silica, the thermal distortion
arising from internal temperature gradient would be described as follows [38]:
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where 1, and 1, are the displacement components in r and z directions of cylindrical coordinate system.
e represents the volumetric strain of fused silica. v and a; are the Poisson’s ratio and coefficient of
thermal expansion, respectively. Using the relations between stress and strain, the expression of
potential energy principle can be gained based on the principle of virtual work. Then, by dispersing
the potential energy expression and solving the nodal displacement matrix with the FEM method, we
would obtain the corresponding thermal stress distribution initiated by the absorptive impurity defects.
With the application of advanced testing techniques like synchrotron radiation X-ray fluorescence
(SXRF) and secondary ion mass spectrometry (SIMS), it has been previously reported [17,18,20,22,25]
that the precision grinding and polishing of optical materials can probably introduce impurity defects
with sub-wavelength size on the processed surface or subsurface. The impurity defects mainly
contain cerium oxide (CeO,), zirconium dioxide (ZrO,), iron (Fe), aluminum (Al), chromium (Cr)
and so on [17,20,25]. In this work, we choose CeO,, Fe and Al as the three representative defects
coming from the oxide polishing slurries, metal polishing tools and cleaning solutions, respectively.
The effects of defect species, size and spatial location are all investigated and compared to reveal
the most dangerous impurity to laser damage resistance. The optical and thermodynamic parameters
of fused silica and impurity defects are exhibited in Tables 1 and 2, respectively. It should be noted
that the optical damage of fused silica materials initiated by impurity defects under intense laser
irradiations is really a complex process, which involves in the material modification, softening, melting,
boiling, material fracture and even ejection. All of these processes are closely associated with the rise
of temperature and stress during the energy absorption of incident lasers. Therefore, in the present
work, the material definition models for both fused silica and impurity defects are simplified with
constant thermodynamic parameters to model the temperature and stress distributions caused by
representative impurity defects for evaluating their effects on the laser damage resistance.

Table 1. Thermodynamic parameters of fused silica materials used in calculations [39,40].

Property Nomenclature Value (Units)
Molar mass M 60.06 (g/mol)
Crystal system - Amorphous
Density 14 221 (g/cm3)
Melting point Tm 1900 (°C)
Thermo-optical coefficient € 1x10°°
Coefficient of linear expansion oy 55 x 1077 °C-1
Specific heat capacity c 0.728]/(g-°C)
Heat conductivity coefficient k 1.35 W/(m-°C)
Relative dielectric constant & 2.25
Young modulus E 7.36 x 1010 (Pa)
Shear modulus G 3.14 x 1010 (Pa)
Compressive strength P 800~1000 (MPa)
Poisson’s ratio v 0.17

Table 2. Thermodynamic parameters of various impurity defects used in the calculation [40-42].

Defect Density Specific Heat Heat Conductivity Coefficient of Linear Young Modulus Poisson’s
Species (g/em®) Capacity (J/(g-°C)) (W/(cm-°C)) Expansion (x107¢ K~ (GPa) Ratio
Fe 7.0 0.45 0.565 11.8 152.0 0.30
Al 27 0.88 2.38 23.0 70.0 0.33
CeOy 7.13 0.465 0.045 13.2 174 0.32
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Figure 1 shows the FEM model for simulating the temperature and thermal stress distributions
caused by subsurface impurity defect. To improve the computational efficiency, only the domain
exposed within the laser spot is calculated and the diameter of fused silica is set to be 400 pm.
The sample thickness is chosen as 10 pm due to the dramatically attenuating of laser energy in the
vertical propagation direction. A two-dimensional axisymmetric finite element model is applied in
this work for a cylindrical fused silica optics. The diabatic boundary conditions combined with the
surface-to-ambient radiation boundary are applied at the borders of the simulation domain. Since the
energy of the applied incident lasers is spatially distributed with a Gaussian profile, the temperature in
the area beyond the laser spot would be much lower than those in the central area. Hence, the applied
boundary conditions would not affect the simulation accuracy and more attention should be paid on
the results of temperature and stress fields near the central area. The laser parameters chosen in the
simulations are the same as those applied in the actual laser damage experiments to ensure accurate
and reliable simulation results. It is worth noting that the actual laser energy is spatially distributed
with an approximate Gaussian distribution. For simplicity, the spatial distribution of incident lasers
with Gaussian shape (see Figure 1c) is applied in the simulations with a 390-um beam diameter and
a 10-ns pulse duration. The laser frequency is 1 Hz and after each laser pulse the fused silica sample
cools down naturally. In this work, the evolutions of temperature and stress distributions during the
laser heating and free cooling processes are both simulated and the total simulation running time
is set to be much longer than the pulse duration to insure the stable temperature and stress fields
to be reached finally. For simplicity, the impurity defect inside fused silica in Figure 1b is viewed
as a small spherical particle positioned right beneath the laser spot center. The simulation domain
is non-uniformly gridded in different regions: the defect region is gridded with triangular mesh, while
the other region is gridded with quadrilateral mesh. Further, the refined gridding sizes are applied in
the vicinity of fused silica-defect interface to guarantee the simulation accuracy. We have adjusted the
maximum element mesh size to check the deviations of the simulation results. It has been found that
the simulation results with the applied mesh sizes are maintained almost equal to those with more
refined meshes, which indicates that the mesh generation is applicable to the simulations.
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Figure 1. The finite element method (FEM) model for simulating the temperature and thermal
stress distributions initiated by impurity defects under intense laser irradiation: (a) the FEM model;
(b) the designed gridding; (c) the spatial energy distribution of applied Gaussian laser pulse.

2.2. Sample Preparation, SSD Removal, and Etching Process Characterization

In the practical chemical-mechanical polishing process of fused silica optics, mechanical and
chemical actions are both involved in generating the polished surfaces by mutual contact, friction,
squeezing and deformation between polishing agent and optical surface. Under the combined work of
mechanical and chemical actions, the optical materials are removed, leaving the subsurface damage
(SSD) distributed beneath the polished surface. The SSD distribution profile is presented in Figure 2,
which includes re-deposition, defect and deformed layers [17,26,31,43]. The re-deposition layer
consists of impurity defects and silica compounds, resulting from the hydrolysis reaction of fused silica.
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The defect layer is mainly formed by cracks and scratches introduced in the initial rough grinding
process. Besides, in the final polishing process, the impurity defects are easily imbedded and hidden
inside the defect layer as well. The deformed layer is generated by the deformation of optical materials,
which ascribes to the pressure stress of grinding wheel and buffing pad in the processing processes.

Figure 2. Schematic of the subsurface damage (SSD) defect distribution located beneath the ground
and polished fused silica surface.

To promote the laser damage resistance of fused silica optics, the HF acid etching technique is
employed in this work to remove the subsurface impurity defects. In the etching process, the topside
re-deposition layer including most of the impurity defects is firstly dissolved by chemical reaction
between the HF acid and hydrolysis products. Then, the crack and scratch defects are blunted and
the embedded impurity can be also easily wiped off. In this way, the detrimental impact of these SSD
defects on the laser damage resistance can be greatly mitigated for the silica optics. In the sample
preparing process, W14-sized SiC abrasive particles are adopted to grind the ten pieces of initial fused
silica samples (30-mm diameter and 5-mm thickness) for half an hour. The ground samples are then
polished for 2 h with 1-um-diameter CeO; polishing slurry to ensure that large brittle scratches and
cracks are totally removed or buried under the re-deposition layer. The grinding and polishing spindle
speeds are 50 r/min and 40 r/min. The grinding and polishing solution concentrations are 10 wt %
and 8 wt %, respectively, with a 22-kPa load pressure. Figure 3 shows the HF acid etching schematic
for removing the subsurface impurity defects. The HF-based etchant with 2% HF (mass fraction) and
5% NHyF (mass fraction) is applied with solvent of deionized water. The NH4F solvent, regarded as
buffered oxide etch (BOE), is added in the etching process to promote the F~ population and eventually
guarantee the stable etching rate and low evaporation pressure. It should be noted that one half side
of the topmost sample surface is set as reference with the paraffin applied over it to prevent the acid
etching. Meanwhile, the other half side of the polished silica surface is etched when submerged into the
HF-based etchant. After different periods of acid etching, the samples are cleaned with deionized water
and the coated paraffin layers are removed with acetone reagent. The effectiveness of acid etching on
removing the subsurface defects of polished silica optics is presented by the etching depths at various
etching times, which can be directly calculated from a key parameter of etching rate. The etching
rate in this work is measured with a stylus profilometer and the principle diagram of the measuring
process is shown in Figure 3b. For silica samples etched for various periods, the profilometer stylus
scans perpendicularly to the dividing line of the un-etched and etched surfaces to obtain the height
profiles before and after HF acid etching. By comparing the height profiles of the two surface regions,
the etching depths under various etching periods can be calculated, and the curve of etching rate
is then accordingly achieved as well (see Figure 3b).
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Figure 3. Sketch of the HF acid etching experiment (a) and the principle diagram; (b) for determining
the etching depth using stylus profilometer in the etching process of fused silica optics.

Besides, in order to investigate the dynamic evolution of the surface quality involved in the
etching process, the surface roughness and morphology are both tested at various etching times using
a 3D stereo microscope, white light interferometer and profilometer. To quantitatively characterize the
effectiveness of HF-based etching on eliminating the subsurface impurities, an energy dispersive X-ray
spectrometer (EDS) is employed to test and compare the amounts of impurity defects before and after
the acid etching process.

2.3. Laser Damage Test

The laser-induced damage thresholds (LIDTs) of fused silica optics before and after HF acid
etching are measured following R-on-1 test protocol to validate the effect of impurity on laser damage
resistance. In this test protocol, the laser pulse with fluence far below the damage threshold is initially
applied. Then, incident lasers with pulse fluence increasingly ramped up are adopted until damage
is observed. The LIDT is defined as the lowest fluence at which the damage occurs [44]. The laser
damage experiment is carried out using a Q-switched Nd: YAG pump lasers (SGR-Exra-10, provided
by the Beamtech Company (Beijing, China). It is capable of steadily providing 1064 nm and 532 nm
wavelength lasers with a 1-Hz repetition rate and 10-ns pulse width. The detailed parameters of the
laser damage test are listed in Table 3.

Table 3. The experimental parameters for laser damage test on fused silica.

Pulse Width Wavelength Repetition Beam Diameter  Incident Angle Laser Divergence
Tp/ns Alnm Rate v/Hz D/um 6;/deg Modal Angle 64/mrad
10 355 1 390 0 TEMy <25

The setup used to test the LIDT of fused silica is sketched in Figure 4. The pump laser is effectively
delivered and focused on the surface of tested fused silica sample by propagating through focusing
lens, wedged splitter and reflection mirrors. The attenuator consisting of polarizer and half-wave
plate is used to adjust the energy output of the laser system. The pulse energy of each laser shot
is calculated and recorded by monitoring the partial light energy, split from the main pump lasers
using a wedged splitter. The sample is firmly mounted on the 3D translation stage to assure its position
is accurately adjusted during the laser damage test. The judgment of the laser damage initiation is
crucial to the laser damage test in that the measured LIDT is directly determined by the laser energy at
which the laser damage is initiated. The Normaski microscope camera with magnification ranging
from 100 to 200 times is employed to image any permanent changes (i.e., laser-induced damage) on the
tested sample surface. Furthermore, the laser damage morphology is also real-time monitored with a
He-Ne laser scattering system as shown in Figure 4b. By travelling through the focus lens, the He-Ne
probe lasers scattered from the tested surface can be focused on the photoelectric detector. The detector
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linked with a phase-locked amplifier is capable of recognizing the weak scattering light signal. When
the laser damage is initiated on the tested surface, the signal becomes stronger. As a result, the laser
damage can be precisely judged by real-time monitoring the change of the scattering light signal.
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Figure 4. Schematic diagram of the laser path designed for the laser damage experiments (a) and
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the online monitoring system; (b) applied for detecting the laser damage initiation.

3. Results and Discussion
3.1. Temperature Distribution Caused by the Subsurface Impurity Defects

3.1.1. Comparison of Temperature Distributions with and without Impurity Defects

Figure 5 shows the comparison of temperature distributions caused by fused silica optics with
and without impurity defects under the irradiation of Gaussian laser pulse with a 355 nm wavelength,
10 ns pulse width and 10J/cm? laser fluence. The typical subsurface impurity defects of CeO,, Fe and
Al are all considered with defect diameter of 1 um that is located 1 um (the distance between defect
center and surface) beneath the optical surface. Figure 5a,b exhibits the temperature curves for fused
silica without any impurity defect. It is shown that under the irradiation of Gaussian laser pulse, the
temperature field on the silica surface is also distributed in a Gaussian profile. With the increase of laser
loading time (¢ < 10 ns), the temperatures on the surface rise gradually, and the maximum temperature
at the center of Gaussian profile (r, = 0 mm) can reach the peak of 1650 K when the laser pulse lasts for
10 ns (pulse width). The peak temperature is lower than the melting point (2173 K) of fused silica so
that no laser damage will occur under this condition. The evolution of peak temperature (rp = 0 mm)
in the heating (t < 10 ns) and cooling (f > 10 ns) phases is exhibited in Figure 5b. One can see that when
the laser stops heating, the peak temperature will dramatically decrease. The temperature gradually
falls down thereafter to a stable and low value at room temperature (~300 K), when the laser pulse
ends for 10* ns. It means that the simulated temperature field would reach a stable state finally. It
should be noted that the central-point temperature in Figure 5b shows a short plateau from ¢ = 15 ns
to t = 30 ns and the potential explanation is listed below. After the laser ends (¢ > 10 ns), when the
decreasing surface temperature is close to that in the bulk, the effects of convection and radiation of
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the surface would make the surface temperature keep decreasing. The surface temperature would be
then lower than that of the bulk, and the heat energy could be transferred from the bulk to the surface.
Owing to the competitive contributions of natural convection, surface radiation and heat transfer,
the central-point temperature may remain roughly a short constant.
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Figure 5. Comparison of temperature distributions caused by fused silica optics with and without
impurity defects. (a) Temperature variation with respect to the radial position without impurity defect.
Evolution of the peak temperature for fused silica optics without (b) and with (c) impurity defects of
CeO;,, Al and Fe.

Figure 5c shows the variations of peak temperatures caused by impurity defects of CeO,, Fe and
Al It can be seen that the peak temperature caused by CeO, defect rises more strongly than those
caused by Fe and Al defects. The maximum temperature can reach 4458 K, which is much higher than
the melting point of fused silica and the melting (2673 K) and boiling (3773 K) points of CeO,. This
means that the fused silica would be seriously damaged with the presence of a CeO, impurity defect.
The maximum temperatures caused by Al and Fe impurity defects are both above 2200 K, which is
also higher than the melting points of Al (933 K) and Fe (1808 K). Hence, the fused silica optics with
Fe and Al impurity defects would also suffer from laser damage under the irradiation of an intense
laser pulse. It can be concluded that with the presence of impurity defects, the optical materials would
strongly absorb the laser energy, melt or even boil, and finally incur optical breakdown under the
irradiation of a 355 nm wavelength, 10 ns pulse width and 10 J/ cm? laser fluence.

The evolutions of temperature distributions caused by impurity defects are presented in Figure 6.
As shown in Figure 6a—c, due to the strong absorption of CeO, defect, the temperature on the upper
surface of impurity defect greatly increases in the heating process of laser pulse (¢ < 10 ns). When
the laser pulse ends, the absorbed thermal energy is gradually diffused and transferred upward to
the fused silica surface and downward to the bulk of the spherical CeO, defect. This means that the
temperature distribution around the defect is non-symmetrical along the z-direction and should be
highly dependent on their distances relative to the location of the initial incident lasers. Figure 6d,e
shows the temperature distribution along the central axis for CeO, and Al defects at various times. One
can see that, as the laser pulse acts, the temperature inside Al impurity defect (z-position ranging from
8.5 um to 9.5 pm) becomes more and more uniform. The temperature is totally uniformly distributed
in the bulk of Al defect when t > 30 ns (the curve keeps horizontally stable). However, for the case of
the CeO, impurity defect, its induced temperature distribution inside impurity defect keeps barely
uniform. The fact that the heat conduction capacity of Al is much better than that of CeO, should be
responsible for this phenomenon.

98



Appl. Sci. 2017, 7,838

z position (pm)

1 2 2
7, position (um) 7, position (um) r, position (Lm)
4000 Ins ——30ns (d) | 2000} Lns ;8 E;
) 3ns —50ns 9 iﬁz 70 ns
B | 5ns ——70ns &
2 2000 7ns  ——100ns p 1300F 7ns —100ns
2 = 300 s
g —10ns 300 ns g 10ns 538 2:
5 2000} 500 ns 21000}
E H %
= 0! oy
1000+ Y | 500 Vg
= S , Y
6 7 8 9 10 6 7 8

z-position (pm) z-position (um)

Figure 6. The temperature distributions on the longitudinal cross-section (z-rp plane) caused by CeO,
defect for laser loading times of (a) 10 ns; (b) 100 ns; (c) 1000 ns and (d) the temperature distributions
along the central axis (rp = 0 um) caused by CeO; and Al (e) defects for various laser loading times.

3.1.2. Effect of Impurity Defect Parameters on Temperature Distribution

In order to figure out the most dangerous impurity defect to the laser damage resistance of fused
silica, we investigate the temperature distributions caused by impurity defects with various structural
parameters (e.g., defect radius r, defect depth d). The effect of defect structural parameters on its
induced temperature rise is demonstrated in Figure 7. As shown in Figure 7a, after being exposed
in lasers for 10 ns, the maximum temperatures caused by impurity defects ascend sharply and then
decrease gradually with the increase of defect radius. The critical defect radius corresponding to the
highest temperatures for Al and Fe impurity defects is 0.15 um. The highest temperatures are 3037 K
and 2965 K, respectively, for the Al and Fe defects. Meanwhile, for the CeO, defect, the critical radius
is 0.15 um with the highest temperature of 4531 K. Temperature with this order of magnitude is high
enough to incur matter evaporation, or even plasma formation, which would consequently induce
local volume expansion, surrounding material fracture and finally laser damage. The phenomenon
of maximum temperature evolution with respect to the defect radius can be explained as follows: as
the defect radius increases, the defect area irradiated by incident lasers will enlarge, resulting in more
laser energy to be absorbed by the defect. However, the enlarged irradiation area of impurity defect
will increase the energy loss by thermal diffusion as well. Besides, with the increase of defect radius,
the increase rate of absorbed energy would gradually decrease owing to the Gaussian distribution
of the incident laser energy. Based on this, there must be a critical defect radius existing between the
heat absorbing and diffusing processes, at which the temperature would reach the summit. This is
consistent with the results shown in Figure 7a. Figure 7b shows the dynamic evolution of maximum
temperature versus the defect radius. One can see that during the laser loading period (t < 10 ns),
the maximum temperature increases firstly and then decreases gradually similar to the results as shown
in Figure 7a. When the laser pulse ends (t > 10 ns), the temperature keeps rising all the time with the
increase of defect radius. This is because under the same heat diffusing circumstance, an impurity
defect with large size will hold more thermal energy and correspondingly induce a higher temperature.
This agrees with the explanation discussed above. The simulation results at the loading times before
(t =1ns, 3 ns, 5ns, 7 ns, 10 ns) and after (t = 30 ns, 50 ns, 70 ns, 100 ns, 300 ns) the incident laser
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heating process as shown in Figure 7b validate that the maximum temperatures caused by impurity
defects with various radii generally take place at the ending time (f = 10 ns) of the laser pulse. Hence,
the variations of maximum temperatures at f = 10 ns with respect to the defect radius and depth
are summarized in Figure 7a,c to obtain the most dangerous impurity defects in the polished fused
silica optics.
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Figure 7. Evolutions of the maximum temperatures caused by various impurity defects with respect
to the defect radius (a) and depth (c) during the laser loading period of 10 ns. (b) The dependence of
maximum temperature on defect radius for CeO, defects under various laser loading times.

Figure 7c exhibits the dependence of maximum temperature on the defect depth. It is shown
that the maximum temperature caused by impurity defect is higher when it is located more closely
to the fused silica surface. When the defect depth is deeper than 0.3 um, the maximum temperature
will keep constant as the defect depth increases. This is because the heat conductivity coefficient of
ambient air (0.023 W-m~1-K~1) is lower than that of fused silica materials. For defect located more
closely to the surface, the thermal energy is more prone to transfer among the ambient air. Under
this circumstance, less energy will be lost by thermal diffusion. Hence, the temperature is higher
when the defect resides closer to the silica surface. However, when the defect is located deeper than
0.3 um beneath the surface, the effect of ambient air on thermal diffusion becomes negligible. From
the simulations of temperature distributions shown above, we can conclude that impurity defects
(especially for CeOy) located closer than 0.3 um away from the surface with defect radius ranging from
0.1 um to 0.15 um are most dangerous defects for lowering the laser damage resistance of polished
fused silica optics.

3.2. Thermal Stress Distribution Caused by the Subsurface Impurity Defects

3.2.1. Comparison of Thermal Stress Distributions with and without Impurity Defect

By numerically solving Equations (1) and (4) with finite element method (FEM), the physics of
heat conduction and solid mechanics involved in the intense laser irradiation process can be well
coupled for obtaining the thermal stress distribution caused by impurity defects. The thermal stress
could be applied to describe the negative effect of impurity defects on the mechanical property and
wavefront distortion of fused silica optics with high precision surfaces. In this section, the von Mises
equivalent stress is employed to evaluating the yielding behavior of fused silica material with the
presence of subsurface impurity defects. Figure 8 presents the comparison of von Mises equivalent
stress on fused silica with and without impurity defects. The parameters of incident lasers are the
same to those applied in Section 3.1 (10 ]/ cm?, 355 nm, 10 ns) and the defects of CeO,, Fe and Al are all
investigated with a 1 um defect radius and a 1 um defect depth. The negative effect of impurity defects
on laser damage resistance of fused silica optics is primarily related to the maximum temperature and
stress during the laser irradiating process. Hence, in this work, we only concentrate on the transient
simulation results of the maximum temperature and stress, which generally take place at roughly 10 ns
when the laser pulse ends.
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Figure 8. Comparison of the von Mises thermal stress distributions with and without impurity defects.
(a) Thermal stress distribution along the radial direction (z = 10 um) on fused silica surface without
impurity defect. The maximum stress at 7, = 0 pum could be applied in the comparison with those
caused by the impurity defects. The von Mises thermal stress distribution along the central axis
(rp =0 pm) caused by (b) CeO,; (c) Al and (d) Fe defects for various laser loading times. The z-positions
of 8.5 pm and 9.5 um are the intersection points of fused silica with the downmost and upmost parts of
the impurity defect.

As shown in Figure 8a, for fused silica optics without a subsurface defect, the induced von
Mises stress appears in standard Gaussian distribution under the laser irradiation. The maximum
thermal stress is 52 MPa, which is far lower than the strength of fused silica (800-1000 MPa). It means
that the mechanical property and surface deformation of fused silica would be not strongly affected
under the laser irradiation with this level of power. For the thermal stress in fused silica optics with
impurity defects, it is demonstrated in Figure 8b—d that different types of impurity defects can induce
different thermal stress distribution under the intense laser irradiation. The highest thermal stress
is induced by the CeO, impurity defect, followed by Al and Fe defects. The maximum von Mises
equivalent thermal stress induced by CeO, defect is 7432 MPa located on the topmost surface of
defect and the maximum stress on the fused silica material is 3617 MPa. For Al and Fe defects, the
induced maximum Mises equivalent thermal stresses are 4476 MPa and 2236 MPa, respectively. By
comparing the simulated thermal stress distributions and thermodynamic parameters of Al and Fe
defects, one can see that the coefficient of thermal expansion plays a dominant role in producing the
higher thermal stress. It is also shown in Figure 8c,d that sharp changes exist at the intersections of
fused silica material and impurity defect in the evolutions of von Mises stress caused by Al and Fe
defects (the thermal stress curves have discontinuous points at z-positions of 8.5 um and 9.5 um). This
phenomenon can be explained below: (1) under the intense laser irradiation, the temperature rise of
the impurity defect is greater than that of surrounding fused silica material and the local concentrated
thermal load may be formed; (2) the thermal expansion coefficient of fused silica is much smaller than
that of impurity defects that the impurity defect undergoing thermal expansion would be spatially
constrained by the local surrounding silica materials; and (3) a big difference exists in the rigidity
property of neighboring FEM elements due to the natural mechanical properties of the involved
materials. However, for CeO, defect as shown in Figure 8b, since the thermal energy has been not
already transferred to the downmost part (z-position of 8.5 um) of impurity defect, the temperature
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rise in this region is very small. Besides, the CeO, defect and fused silica materials share a similar
thermal expansion coefficient. Thus, for CeO, defect, the thermal stress curve at the lower intersection
point of fused silica and impurity defect (z-position of 8.5 um) behaves continuously. While for the
upper intersection point (z-position of 9.5 um), the temperature of impurity defect is much higher than
that of fused silica. Under this situation, an obvious heat load would be probably formed, resulting in
evident thermal stress discontinuity as shown in Figure 8b. It can be concluded that the impurity defect
would lower the laser damage resistance of fused silica optics by its induced thermal expansion and
stress. The thermal stress of impurity defect may incur high stress in the surrounding silica materials,
which would exceed the compressive strength of fused silica optics and finally lead to its fracture
and breakdown.

3.2.2. Effect of Impurity Defect Parameters on Its Induced Thermal Stress

In order to discern the most dangerous impurity defect to the laser damage resistance of fused
silica optics, we also investigate the von Mises thermal stress caused by impurity defects with various
structural parameters (e.g., defect radius r, defect depth d). Since the CeO, impurity defect would
induce the highest temperature and thermal stress as discussed above, here we only consider the
effect of CeO, defect parameters on its induced thermal stress, which is shown in Figure 9. As shown
in Figure 9a, with the increase of defect radius, the von Mises stress ascends firstly and then decreases
gradually. The maximum thermal stress reaches the summit (7420 MPa) when the defect radius
is 0.15 pm (critical defect radius). One can see from Figure 9b that impurity defect located more closely
to the silica surface would induce higher maximum thermal stress. The peak maximum stress of
fused silica is 8739 MPa, and when the defect depth is larger than 0.3 um, it remains roughly stable.
The changing tendency of maximum thermal stress with respect to defect parameters is similar to that
of maximum temperature shown in Figure 7. It is worth noting that the thermal stress of fused silica is
higher than that of CeO, defect as shown in Figure 9b. This is because the defect radius is so small
(r keeps constant at the critical radius of 0.15 pum) that the heat energy can be promptly transferred to
the surrounding fused silica materials. As a result, fused silica with higher heat capacity would induce
higher thermal stress.

< )
an E T T T a. E T T T
S @ SPNIC) ]
2 70001 4 7
é 8 [
g £ 700 1
£ 60001 g r 1
= = 6000 —— 10 ns; stress of fused silica
= i = —— 10 ns, stress of CeO, defect
S 50001 4 <4800 3 i
E Z
E 2 3600 .
3 4000 1 £

| I 1 | I
2 OT oz Ton 04 o5 = A0 z ' y y

Defect radius, 7 (um)

0.2 0.3 0.4
Defect depth, d (um)

Figure 9. Evolution of the maximum von Mises stress caused by CeO, impurity defect with respect
to the defect radius (a) and depth (b) when the fused silica surface is irradiated by incident lasers for
10 ns. The maximum thermal stresses in fused silica and CeO, defect are both presented in (b).

From the simulation results of defect-induced temperature and thermal stress distributions
discussed above, one can see that the transient local high temperature can be produced by heat
absorbing of impurity defects under the irradiation of intense lasers. The extremely high temperature
would trigger the plasma formation inside the impurity defect, result in material expansion, and finally
initiate the fracture and breakdown of the surrounding silica materials. In addition, the huge thermal
stress caused by the impurity defect far exceeds the intrinsic strength limit of the material, making the
fused silica optics susceptible to be crushed down. Furthermore, in the actual process of intense laser
irradiation, the high temperature and thermal stress caused by the impurity defect could act together,
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leading to even worse damage of fused silica optics. Based on the results above, we can conclude that
the temperature and thermal stress caused by impurity defects strongly depends on the defect species
and structural parameters. The CeO, defect can induce higher temperature and thermal stress than Al
and Fe defects, especially when it is located more closely to the silica surface. The most dangerous
subsurface impurity defect is the CeO, defect with a diameter of 0.3 um, located less than 0.15 um
beneath the surface, which would induce local temperature up to 7073 K and von Mises equivalent
thermal stress up to 8739 MPa. Therefore, we should pay close attention to control and remove this
dangerous kind of subsurface defects in the practical manufacturing process of fused silica optics with
high precision surfaces. By considering the synthetic effects of temperature and thermal stress caused
by impurity defects, it can be concluded from the simulation results shown in Figures 8b—d and 7
that the CeO, defect plays the dominant role in decreasing the laser damage resistance of fused silica,
followed by Al and Fe defects. It has been also experimentally observed by Neauport et al. [17,25] that
the laser damage density of silica optics is most closely correlated to the cerium content, followed by Al
and Fe defects. The correlation coefficients of damage density to the Ce, Al and Fe impurity defects are
0.99, 0.16 and 0.001, respectively. Hence, the simulation results of temperature and stress in this work
are qualitatively supported by the previously experimental results and the present results would offer
potential theoretical explanations on the experimental observations of the effect of impurity defects on
the laser damage resistance of fused silica optics.

3.3. Remowval of Subsurface Impurity Defects by HF Acid Etching

The simulation results of temperature and thermal stress caused by subsurface impurity defects
presented in Sections 3.1 and 3.2 indicate that the impurity defects included in the SSD lasers play
a crucial role in lowering the laser damage resistance of polished fused silica. In order to improve the
laser damage resistance of silica optics, HF acid etching assisted with buffered oxide etch (BOE) is
applied to remove the SSD layers. Then, the etching rate, surface quality and impurity contents are all
investigated, and the laser damage threshold is tested to validate the effect of impurity defects on the
laser damage resistance of fused silica optics.

3.3.1. Etching Rate of Fused Silica

Figure 10 presents the measured variation of etching rate as a function of etching time and
etching depth using a stylus profilometer on the basis of a test scheme shown in Figure 3. One can
see that in the initial etching process, the etching rate exhibits a sharp decrease from 46.45 nm/min
to 28.81 nm/min. As the etching proceeds, the etching rate gradually descends to 23 nm/min and
remains roughly stable. This phenomenon can be ascribed to the different speeds of chemical reaction
of HF acid with body material (SiO,) and hydrolysis product in form of hydrated silica gel (=Si-OH).
The product of hydrated silica gel is formed following the process below:
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Figure 10. The evolution of etching rate with respect to the etching time (a) and etching depth (b).
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Besides, the re-deposition layer produced in the grinding and polishing processes has a loose
structure, which would enlarge its contact area with BOE and acid solvents. Hence, the etching rate
appears very large in the initial etching phase. However, the curve shows a downtrend behavior
because of the decreasing concentration of hydrated silica gel as the etching proceeds. When the
re-deposition layer is totally removed, and the pure substrate of fused silica is exposed to the HF-based
solvent, the etching rate would change slightly and keep almost constant as shown in Figure 10. Owing
to the random motions of grinding and polishing particles, the density and depth of SSD defects on
fused silica optics are somewhat different, even though the same processing parameters are applied.
For this reason, the etching rate fluctuates with 10% amplitude in the steady etching process as shown
in Figure 10. By polynomial fitting the etching rate data, we can conclude that a 200-nm etching depth
and an 8-min etching time are required for steadily etching the SSD layers of polished silica optics.
Based on the aforementioned discussions, it can be also inferred that the thickness of ground and
polished silica optics is roughly 200 nm, which is consistent with most of the previously reported
experimental results [24,26,45].

3.3.2. Surface Quality and Impurity Content of Fused Silica Etched by HF Acid

As the HF acid etching proceeds, not only the impurity defects included in the re-deposition layers
are removed, but the subsurface cracks and scratches are blunted [26,27]. The optical quality of etched
fused silica surfaces would have great changes and the surface roughness value is an important index
in evaluating the quality of optical surface. Thus, the evolution of surface roughness value as the HF
acid etching proceeds is investigated using the white light interferometer and profilometer to check the
effect of acid etching on the surface quality. Figure 11 shows the tested evolution of surface roughness
with respect to the etching time (or etching depth) for fused silica etched with HF-based solvent
(5% HF and 10% NHy4F). It is shown that the surface roughness value Ra experiences three changing
phases as the HF etching proceeds. During phase 1 with the etching depth smaller than 500 nm, the Ra
ascends from 2.6 nm to 4.2 nm. The decrease of surface quality (rise of roughness) arises from the
appearance of subsurface plastic scratches and cracks as the topmost re-deposition layers are removed.
During phase 2 with the etching depth ranging from 0.5 um to 2.15 um, the Ra value descends from
4.2 nm to 3.3 nm due to the passivation of subsurface damage under the assistance of acid etchants.
The subsurface cracks and scratches are etched and blunted, resulting in the improvement of surface
quality. The surface roughness increases again during phase 3 for etching depth larger than 2.15 pm.
The reproduction of scratches and opening of cracks with the increase of etching depth should be
responsible for this results.
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Figure 11. The evolution of surface roughness of etched fused silica optics as the acid etching proceeds
and its corresponding etching depths.

Figure 12 presents the evolution of surface morphology of etched fused silica with various etching
periods, which are tested by a 3D stereo microscope and white light interferometer. It can be seen
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that with the increase of etching period, the subsurface defects (e.g., scratches, cracks, pits and so on)
emerge and the defect population become larger. This is the further evidence for the great decrease of
surface quality during phase 3 as shown in Figure 11. It should be noted that with a mixed etchant of
5% HF and 10% NH4F, as applied in Figure 12, the re-deposition layer is totally removed when the
etching period is 3 min. Thus, all of the tested surface morphology in Figure 12 corresponds to phase 3
shown in Figure 11.

{20 00w}

3D surface Etched for 10 mins 3D surface Etched for 20 mins 3D surface  Etched for 40 mins

()

20

Figure 12. The evolution of surface morphology of etched fused silica under various etching
periods. The etched surfaces are tested with a 3D stereo microscope for etching periods of (a) 0 min;
(b) 30 min and (c) 60 min The surface morphologies of etched surfaces are also tested with white light
interferometer for etching periods of (d) 10 min; (e) 20 min and (f) 40 min.

To quantitatively evaluate the effectiveness of HF-based acid etching in removing the subsurface
impurity defects, the comparison of defect contents on fused silica surfaces before and after acid etching
is investigated using energy dispersive X-ray spectrometer (EDS). Figure 13 shows the comparison of
defect content and the evolution of Ce content with the increase of etching time. For the defect content
before acid etching as shown in Figure 13a, one can see that the contents of Si and O are two types
of elements most distributed on the polished silica surface. They originate from the body material
of fused silica (SiO,) and satisfy their proportional relationship of mass fraction. Besides Si and O,
other impurity defects (e.g., Ce, Fe, Cu and Se) are also observed with the maximum defect content of
7.45 wt % for Ce impurity. The results obtained in Section 3.1 and 3.2 indicate that the CeO, impurity
defect plays the dominant role in lowering the laser damage resistance of polished fused silica optics.
Hence, we take Ce defect as an example to investigate its elimination when the SSD layers of silica
optics are etched with HF etchant. The tested impurity contents on etched silica surfaces are presented
in Figure 13b. It is shown that the contents of most of the impurity defects are effectively lowered by
acid etching, especially for the Ce impurity defect, whose content largely descends from 7.45 wt % to
3.24 wt %. It means that 56.5% of the CeO, impurity defects could be removed by HF acid etching
and the heat absorption caused by impurity defects would be greatly mitigated to improve the laser
damage resistance of fused silica. The evolution of Ce defect content with respect to the etching time
is exhibited in Figure 13c. It can be seen that the content of Ce defect decreases gradually and becomes
roughly stable when the fused silica optics are etched for a sufficient time. This phenomenon can
be explained as follows. In the initial etching stage, the defect content decreases dramatically due
to the removal of re-deposition layers, among which a majority of impurity defects are located and
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distributed. After etching for 10 min, when the re-deposition layers are totally removed, the subsurface
scratches and cracks appear and some of the impurity defects hidden inside or adsorbed to the cracks
could be removed and washed away. The defect content therefore shows gradual decrease for etching
time from 10 min to 50 min. When the silica optics are etched for longer than 50 min, the defect
content keeps almost constant since the impurity defects adsorbed to the cracks are then difficult to
be removed by ordinary etchant washing. From the discussions above, it can be concluded that the
impurity defects can be effectively removed by HF-based acid etching. The acid etching shows the
best effectiveness in removing the impurity defects, when the re-deposition layers are being etched.
The mechanical properties and laser damage resistance of fused silica would be greatly improved by
controlling the heat absorption caused by these impurity defects.
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Figure 13. Tested results of impurity defects on polished silica surfaces before and after acid etching:

(a) impurity contents before HF acid etching; (b) impurity contents after HF acid etching for 90 min;
(c) Variation of Ce defect content for various etching times.
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3.3.3. Laser Damage Resistance of Etched Fused Silica Surface

Now that the contents of impurity defects are effectively controlled, another key index,
laser-induced damage threshold (LIDT) of etched fused silica optics should be checked as well.
The LIDTs of fused silica etched for various times using etchant of 5% HF and 10% NH4F are measured
with the testing protocol and setup described in Section 2.3. A 10-min step of etching period is chosen
in the HF-etching procedure and the reason as follows. Firstly, it can be derived from Figure 10
that an 8-min etching period and a 200 nm etching depth are required to ensure a steady etching
rate for the polished fused silica optics with SSD layers. It means that the impurity defects mainly
distributed among the uppermost re-deposition layer could be effectively removed within 10 min.
Besides, the general trend of the tested Ce impurity content shown in Figure 13c would be clearly
recognized with an etching period of 10 min.

The tested LIDTs for various etching times are shown in Figure 14a. It can be seen that the LIDT
rises firstly (etching for less than 10 min) and then gradually decreases (etching for more than 10 min)
as the etching proceeds. It is indicated by the results in Figure 10 that the re-deposition layers
containing most of the impurity defects and hydrolysis products are initially removed during the
first 8-min etching times. Combined with the results shown in Figure 14a, one can conclude that not
only the impurity defects are effectively removed, but the LIDT of etched fused silica optics could
be enhanced from 24.4 ] /cm? to 27.1 J/cm? (355 nm, 10 ns). However, when the re-deposition layers
are fully removed, the LIDT presents gradual decrease as the etching proceeds due to the appearance
of subsurface scratches and cracks. Based on this, in the practical etching process of fused silica
optics, the etching time should be accurately and strictly controlled to prevent the appearing and
deepening of subsurface cracks and scratches. The morphological comparisons of laser damage spots
on un-etched and etched fused silica optics are exhibited in Figure 14b,c. It can be seen that the damage
spot on an un-etched silica surface is very large, consisting of many local small and concentrated
damage sites. Besides, the damaged silica materials are all peeled off. As for the damage spots on
etched silica surfaces, they are very small and discretely distributed right on the surface scratches.
The difference in laser damage morphology on etched and un-etched silica surfaces indicates that
the un-etched surfaces possess more impurity defects, which are the main initiators for inducing
serious optical damage. When the polished fused silica surfaces are etched by HF acid, the amounts of
impurity defects are greatly reduced, and correspondingly the laser damage resistance of silica optics
could be effectively improved. This is consistent with the tested results of impurity defect contents
on etched and un-etched fused silica surfaces. The laser damage experiment directly validates the
negative effect of impurity defects on the laser damage resistance of fused silica. Since the CeO,,
Al and Fe impurity defects are very difficult to be separated from each other and a silica sample
with a single impurity defect is difficult to prepare in actual experiments, the respective effects of
single impurity defects on laser damage resistance of fused silica optics are hard to be directly and
quantitatively validated. Furthermore, the transient temperature caused by absorptive impurity
defects is very high and it only lasts for such a short time that experimentally acquiring the transient
high temperature is quite a challenge. Thus, it is very difficult to detect the accurate temperature
evolution on the laser-irradiated silica surface to directly justify the simulation results in this work.
However, the experimental results of the laser damage test show that the impurity defects are probably
the absorbing initiators that incur the laser damage event. This indirectly validates the simulation
results that the much higher temperature and stress caused by impurity defects in comparison to
defect-free surfaces are the potential underlying mechanisms for explaining the low laser damage
threshold of polished fused silica optics.
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Figure 14. Comparison of the laser damage performance for fused silica optics before and after HF
etching. (a) Variation of laser-induced damage thresholds (LIDTs) of etched silica surface under various
etching times. The typical laser damage morphologies on un-etched (b) and etched (c) silica surfaces.
The microscopic images in (b,c) are both magnified by 40 times.

The decrease of LIDT as shown in Figure 14a and the initiation of laser damage shown in Figure 14c
should be blamed for the appearance of subsurface cracks and scratches. To solve this issue, two
other parallel processing techniques, CO; laser conditioning [8] and thermal annealing [9,10], have
been also being developed to close and heal the cracks and scratches by heat softening for mitigating
the negative effect of subsurface defects, which is beyond the scope of the present work. It is worth
noting that though the amount of CeO, defects as shown in Figure 13 can be reduced by more than
a half, some residual impurity defects are still adsorbed on the etched surfaces or hidden beneath
the subsurface cracks. The residual impurity defects would limit the capacity of the HF-based acid
etching technique in promoting the laser damage resistance of fused silica optics. Therefore, based
on HF-based etching, some new techniques (e.g., assistance of megasonic agitation and addition of
chelating agent adoption) are being explored and developed to further remove the subsurface impurity
defects of fused silica optics. In the experiments, the variation of the impurity defect population with
respect to the increase of etching time is indirectly derived by characterizing the etching rate, impurity
element content, laser damage threshold, surface roughness and morphology of etched silica surfaces.
The errors in the etching process would bring in potential deviations of these characterized features to
the actual case. Hence, the simulation results of the negative effects of impurity defects have been not
quantitatively and accurately validated, and new techniques of testing the transient high temperature
and analyzing the exact impurity defect content should be developed in the future to further justify
the role of impurity defects in decreasing the laser damage resistance of the polished fused silica optics.

4. Conclusions

To evaluate the effects of impurity defects on the laser damage resistance of fused silica,
the distributions of temperature and thermal stress caused by absorptive defects are investigated by
numerically solving the heat conduction and thermo-elastic equations involved in the laser irradiation
process. The simulation results indicate that the presence of impurity defects would induce a dramatic
rise in temperature and thermal stress. The maximum temperature and thermal stress in fused silica
can exceed its melting point and compressive strength, resulting in optical breakdown of optical
materials. The effect of impurity defects on the laser damage resistance is dependent on the species,
size and spatial position of defects. The CeO, defect plays the dominant role in lowering the laser
damage resistance, followed by Fe and Al defects. The defects located more closely to the silica surfaces
would incur higher local temperature. It is further concluded that the CeO, defects with radius of
roughly 0.3 pm, which reside 0.15 pm beneath the silica surfaces, are the most dangerous defects
affecting the laser damage resistance of fused silica optics.

With the HF-based etching method, the impurity defects on fused silica are removed and the
surface quality, defect content and laser damage threshold of etched surfaces are experimentally tested
to evaluate the etching effectiveness. The results show that the negative effect of impurity defects
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on the laser damage resistance can be effectively mitigated by HF acid etching. As the acid etching
proceeds, the re-deposition and subsurface defect layers are successively removed, resulting in the
evolution of surface roughness in three phases. The EDS and laser damage experiments validate
that the number of dangerous CeO, defects on fused silica can be decreased by more than a half
and the LIDT can be improved to 27.1J/cm? (355 nm, 10 ns) by removing the re-deposition layers.
It is proved that the HF-based acid etching is able to effectively control the bad effect of impurity
defects on the laser damage resistance and the further improvement of LIDT is limited by the deep
scratches and cracks. This work can not only contribute to the understanding of laser-induced damage
mechanisms on large-aperture ultraviolet optical components, but also provide theoretical foundations
for the post-processing of ultra-precision machined fused silica optics.
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Abstract: Laser welding has been widely used in various industry fields. In order to further alter
and broaden its applicability, a novel technology of laser welding under vacuum is introduced.
The combination of high power laser and low ambient pressure provides an excellent welding
performance and quality. In this paper, an overview on laser welding under vacuum is presented.
It begins with a short introduction about the research status of laser welding under vacuum. Next,
the equipment of laser welding under vacuum is introduced. Then, the fundamental phenomena of
laser welding under vacuum, including penetration depth, weld geometry, plasma plume, molten
pool and keyhole behaviors, are summarized in detail. Finally, the applications and prospects of laser
welding under vacuum are proposed.

Keywords: laser welding under vacuum; ambient pressure; equipment; fundamental phenomena;
application; prospect

1. Introduction

Welding, a joining method by heat or pressure to make the materials reach the connection between
atoms, is the most versatile and realistic joining technology in every industrial field [1,2]. Like the arc,
plasma and electron beams, a laser beam can also be used as heat source in the welding. Laser beam
has been applied to welding since the first ruby laser was invented by Doctor Maiman [3-5]. In the
last 20 years, laser welding has experienced rapid development. Because of the advantages of high
quality, high precision, high efficiently, high performance, high flexibility, high speed, low distortion
and low deformation, laser welding has been the most advanced and the best developing foreground
welding method [6-9]. In the field of laser beam welding, constant attempts to alter and broaden the
application possibilities have been made for years. New laser beam welding methods are appearing
constantly, for example, laser welding with filler wire, remote laser welding, laser scanning welding,
and so on [10-18]. Among these new laser welding methods, laser welding under vacuum or under
reduced pressure is one of the most promising methods. Although there are some different opinions
about laser welding under vacuum, the exceeding expected laser welding phenomena and excellent
weld quality under vacuum or reduced pressure both attract the interests of researchers.

This paper makes a short overview of laser welding under vacuum. It begins with a short
introduction about the research status of laser welding under vacuum. Next, the equipment of
laser welding under vacuum are introduced. Then, the fundamental phenomena of laser welding
under vacuum, including penetration depth, weld geometry, plasma plume, molten pool and keyhole
behaviors, are presented in details. Finally, the applications and prospects of laser welding under
vacuum are proposed.
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2. The Research Status of Laser Welding under Vacuum

Laser welding under vacuum or reduced pressure has a history of more than 30 years. As shown
in Figure 1, the first report about laser welding under vacuum or under reduced pressure dates
back to the 1980s. Arata et al. [19] (Joining and Welding Research Institute, JWRI for short, at Osaka
University) made the first effort to carry out the experiment of laser welding under vacuum conditions.
The original intent of this research was to suppress the plasma and achieve a deep penetration in CO,
laser welding. The problem of laser induced plasma, which is the most severe problem in laser welding
at atmospheric, was completely solved by laser welding under vacuum. In addition, the exceeding
expected penetration depth, which was approximate 2 times the depth of laser welding at atmospheric
pressure, was achieved by laser welding under vacuum. However, this new laser welding method did
not attract much attention due to the inadequate development of laser welding in industrial fields at
that time. JWRI at Osaka University insisted on the research about laser welding under vacuum and
paid their attention to fundamental phenomena in laser welding under vacuum. In 2001, the effect of
vacuum on weld penetration and porosity formation was investigated in high-power CO, and YAG
laser welding [20]. The reason for no porosity in vacuum was explained by keyhole and molten pool
behaviors. In 2011, Katayama et al. [21] performed a high power disc laser welding experiment on 304
stainless steel and A5052 aluminum using a new chamber for laser welding under vacuum achieved
by using rotary pumps. Sound deep single pass weld of 73 mm in penetration depth on type 304
stainless steel was obtained at a laser power of 26 kW, a welding speed of 0.3 m/min, a defocused
distance of —40 mm and an ambient pressure of 0.1 kPa. The research of Katayama et al. [21] showed
the penetrability of laser welding under vacuum which was similar to that of electron beam welding
and the application feasibility of laser welding under vacuum on thick plate welding.
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Figure 1. The research status of laser welding under vacuum.

Fabbro et al. (PIMM Laboratoire, Paris, France) have also been studying laser welding under
vacuum or reduced pressure for many years. The research of Fabbro et al. mainly focused on the
explanation of weld geometry changes and penetration improvement under vacuum conditions.
In 1995, Fabbro et al. [22] observed the plasma suppression at low pressure by measuring plasma
size, electron temperature and electron density. The energy deposition process inside the keyhole was
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compared to explain the different weld seam profiles between vacuum and atmosphere. Recently,
Fabbro et al. [23] made a detailed explanation of fundamental phenomena in laser welding under
vacuum by theoretical analysis and numerical simulation.

Since 2000, lasers have experienced an extremely rapid development. Especially during the
last 10 years, the high-power (>10 kW, up to 100 kW) and high-brightness (<15 mm mrad) solid
state lasers (fiber lasers or disk lasers) emerged into market [24,25]. Due to the availability of a new
generation of high brightness multi-kilowatt solid state lasers, high-power laser beam welding became
a new stimulus. However, some new problems, for example, the weld defects of sagging and spatter,
the intense plasma plume and turbulent molten pool flow, are accompanied during high-power laser
beam welding [26-28]. That means that the application of high power single pass laser welding
encounters a bottleneck. Under such a background, the method of laser welding under vacuum or
reduced pressure has been enjoying a renaissance.

In 2010, the Welding and Joining Institute (ISF) of RWTH Aachen University started research work
of laser welding under vacuum using a 600 W single-mode fiber laser and a 12 kW multimode fiber
laser [29]. The weld formations of both thick plate and thin plate were compared between laser welding
under vacuum and electron beam welding. Based on the impressive results of the preliminary study, ISF of
RWTH Aachen University built up a welding equipment for laser welding under vacuum on cooperation
with PTR Strahltechnik GmbH A large number of process exploration tests of laser welding under vacuum
were carried out on this new laser welding equipment [30-32]. The results of process tests showed that
laser welding had a strong penetrating ability and a good adaptability for materials. Various materials,
for example unalloyed steel, high alloyed steel, nickel-base alloy, titanium alloy and even copper alloy,
were welded and achieved a deep and sound weld. In terms of the research results of laser welding under
vacuum, ISF of RWTH Aachen University actively promoted this technology in the industrial field.

In 2011, Institute of Joining and Welding (ifs) at TU Braunschweig started studying laser welding
under vacuum on a corporation with Trumpf Laser- und Systemtechnik GmbH and Pro-beam M [33,34].
Instead of the beam generator, a laser beam was coupled into a vacuum chamber of a former electron
beam welding machine to carry out laser welding under vacuum. The influence of ambient pressure
on spattering and weld quality in laser beam welding was presented. The process characteristics of
laser welding at reduced ambient pressure was studied in detail.

In recent years, more and more researchers have shown their interest in laser welding under
vacuum. In 2014, the State Key Laboratory of Advanced Welding and Joining (AW]) at Harbin institute of
technology investigated the laser bead on plate welding of aluminum alloy under reduced pressure [35].
In 2017, the effect of ambient pressure on weld formations and the interaction between laser radiation and
plasma plume were further investigated [36]. In 2015, Laboratory of Laser Processing at Lappeenranta
University of Technology studied the influence of joint edge surface edge roughness and pre-set air
gap on the weld quality and penetration depth in partial vacuum conditions laser beam welding [37].
In 2014, Shanghai Jiao Tong University investigated the plasma plume in fiber laser welding under
subatmospheric pressure [38]. In 2016, the dynamic coupling between molten pool and metallic vapor
ejection in fiber laser welding under subatmospheric pressure was further studied [39]. In 2015, Daimler
AG in Germany carried out the welding experiments of 16MnCr5 steel and ALMg3 aluminum using
X-ray analysis to investigate the keyhole behavior at the reduced ambient pressure [40]. In 2016, Lawrence
Livermore National Laboratory, USA, performed the study about the effect of reduced pressure on laser
keyhole weld porosity and weld geometry in pure titanium and nickel [41].

Significant advantages of laser welding under vacuum or reduced pressure are attracting the
attention of researchers and show great value of research and practical application. In the further 5-10
years, laser welding under vacuum will become a key issue in laser beam welding.

3. The Equipment of Laser Welding under Vacuum

In order to carry out laser welding under vacuum, the first issue is to build up a vacuum chamber
for laser welding. The simplest way is to refer to the basic design of electron beam welding. Instead of an
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electron beam generator, a laser processing head is installed in vacuum chamber. The design of a built-in
laser head has the advantage of a more flexible laser welding under vacuum machine. However, a special
seal should be designed to couple optical fiber and water-cooled pipelines into vacuum chamber. With the
cooperation of ISF at RWTH Aachen University and II-VI HIGHYAG, a fiber-fiber-coupler was design to
develop an easy and affordable method to transfer laser power into the vacuum. The fiber-fiber-coupler
open the possibility of high power laser processing with built-in laser head under vacuum [42]. Unlike
electron beams, laser radiation is a matter of light. Laser beams can pass through the glass into a vacuum.
Therefore, there is another structural design for laser welding under vacuum. Laser processing head is
fixed outside the vacuum chamber. Only the laser beam is coupled into the vacuum chamber through
glass. As shown in Figure 2, most of the research institutions used the second design according to the
current reports. JWRI at Osaka University created a transparent vacuum chamber using acrylic [43,44].
The rotary pump was used to achieve vacuum conditions. The design of transparent vacuum chamber
was beneficial to take photos with high speed camera and other optical tests. AW] of Harbin Institute
of Technology set up a 680 x 400 x 400 mm vacuum chamber. The theoretical limit vacuum level was
6.6 x 10 * Pa by using a rotary pump and a molecular pump simultaneously. The ifs at TU Braunschweig
reformed a 1.5 m® vacuum chamber of former electron beam welding plant [33]. A blank flange was
manufactured in which a quartz glass was located as a coupling-in window to couple laser into chamber.
ISF at RWTH Aachen University established a cylinder vacuum chamber of 0.6 m® [31]. The vacuum
chamber was equipped with two rotary vacuum pumps. This vacuum chamber had a minimum vacuum
pressure of 107 hPa and the ability to reach 0.1 hPa in 5 min. Besides, the vacuum chamber could realize
different welding positions by turning around the longitudinal axis.

JWRI at Osaka university AW] at Harbin Institute of Technology

Rotary pump
Pupming speed 359 &
Pupming speed 1.5 g &'

(i Pupming speed 1193
Pressure
gauge

| Flow meter

Delivery fiber with 200ym-diameter

-_‘]
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I ] ] length of 1000 mm

Disk laser Vacuum window,

High speed camera

Argon gas
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ISF at RWTH Aachen University

Tailor Made Weiding Optics

Fiber Socket
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Figure 2. The equipment of laser welding under vacuum. Reproduced with permission from [31],
Springer, 2016; Reproduced with permission from [33], Laser Institute of America, 2011; Reproduced
with permission from [44], Taylor & Francis, 2014.
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According to the above designs of vacuum chamber, the equipment of laser welding under vacuum
basically consists of three parts: laser processing head, vacuum chamber and coupling-in window.
The laser processing head should be set above the vacuum chamber. A conventional system for laser
welding at atmosphere can easily fulfill the requirement. Compared with electron beam welding, laser
welding under vacuum has a relatively low requirement of vacuum level. Therefore, the vacuum
chamber structure of laser welding is relatively simple. Hence, the key part of the vacuum chamber is the
coupling-in window for coupling the laser beam into the vacuum. A ZnSn glass were used as coupling-in
window in CO, laser welding under vacuum. A quartz glass was used for solid laser welding under
vacuum. In laser welding under vacuum, intense metal vapor ejected from keyhole and deposited on
the surface of glass. That means that the stability of laser propagation and the lifetime of glass could be
seriously affected. A laser head with long focusing length [31,43,44] JWRI at Osaka University and ISF at
RWTH Aachen University) or a special coupling-in window [32,34] (ISF at RWTH Aachen University and
ifs at TU Braunschweig) with a rather small gas flow under the glass are used to protect the coupling-in
window from process emissions. Furthermore, the coupling-in glass is coated with an antireflection film
and equipped with a water-cooling device for long-time welding with high power.

In the last 2-3 years, the systematic equipment of laser welding under vacuum entered the market.
As shown in Figure 3, LAVA-L95 and LASVAC PL 01 are two typical systematic equipment of laser
welding under vacuum [45-47]. With the support of ISF at RWTH Aachen University, the machines
were developed separately by FOCUS Gmbh and PTR Company. In order to meet the demand for
different processes or products, a unit assembly system is designed. That means the different laser
sources and optics can be chosen in the equipment of laser welding under vacuum.

Figure 3. The systematic equipment of laser welding under vacuum (a) LAVA-L95. Reproduced
with permission from [45], FOCUS electronics GmbH, 2017. (b) LASVAC PL 01. Reproduced with
permission from [47], PTR Strahltechnik GmbH, 2017.

4. Fundamental Phenomena during Laser Welding under Vacuum

4.1. The Influence of Ambient Pressure on Penetration Depth and Weld Geometry

The increase in penetration depth and change in weld geometry are the most obvious
achievements brought by the reduction of ambient pressure. According to the present experiment
results [31,33,36,38,44], the penetration depth increases with the decrease of the ambient pressure.
Based on the effect of ambient pressure on penetration depth, there exists a critical threshold of ambient
pressure. That means the penetration no longer increases, and sometimes probably decreases when the
ambient pressure is lower than the critical threshold. Because of the different machines and different
experimental conditions, the critical pressures are not consistent. The previous results [31,33,36,38,44]
showed that the critical pressure was in the range of 0.1 kPa to 10 kPa. Abe et al. [44] carried out
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the bead-on-plate welding of type 304 stainless steel plates and A5052 aluminum alloy with a 16 kW
laser power at a welding speed of 1 m/min under reduced pressure. The results showed that the
critical pressure was about 10 kPa and the penetration depth of both type 304 stainless steel plates and
A5052 aluminum alloy at 10 kPa is nearly twice as deep as that at 101 kPa. The results of Abe et al. [44]
also revealed that the weld width decreased with the decreasing ambient pressure. The increase in
penetration depth and the decrease in weld width led to a large difference in aspect ratio (penetration
depth/weld width). That meant that the weld geometry between under vacuum and atmosphere
were totally different. In comparison with conventional laser welding at atmospheric pressure, a
deep and parallel weld, which is similar to electron beam welding, is achieved during laser welding
under vacuum.

The results of ISF at RWTH Aachen university also proved the strong penetrating ability of
laser welding under vacuum [31,48]. The cross section profiles of laser welding at atmosphere, laser
welding under vacuum and electron beam welding are shown in Figure 4. With the same heat input,
the penetration depth of both laser welding under vacuum and electron beam welding is about 50 mm.
However, the pressure used in electron beam welding is two orders of magnitude lower than in laser
welding under vacuum. The strong penetrating ability under low vacuum is the unique advantage of
laser welding under vacuum.

Figure 4. Comparison of cross section profiles using different welding processes (a) Laser welding
(laser power is 16 kW, welding speed is 0.3 m/min, ambient pressure is 1000 mbar), (b) Laser welding
under vacuum (laser power is 16 kW, welding speed is 0.3 m/min, ambient pressure is 10~ mbar),
(c) Electron beam welding (electron beam power is 16 kW, welding speed is 0.3 m/min, ambient
pressure is 10~ 3 mbar). Reproduced with permission from [48], John Willey and Sons, 2015.

The ambient pressure, welding speed and defocused distance are the main parameters that control
the weld appearance and penetration depth during laser welding under vacuum. It was found that, under
vacuum condition, the increase of penetration depth was quite different at various welding speed [33,49].
As shown in Figure 5 (Figure 6 of “Influence of ambient pressure on spattering and weld seam quality
in laser beam welding with the solid-state laser” reproduced with permission from Proceedings of the
International Congress on Applications of Lasers and Electro-optics, October 2011), a remarkable increase
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of penetration depth occurs at low to medium speeds (up to approx. 3.0 m/min), it is true that there is
a limit in the ambient pressure for improving penetration depth. Besides the lower the welding speed
is, the more obvious the effect of ambient pressure on penetration depth is. When the welding speed
is over 4 m/min, the ambient pressure has almost no impact on the penetration depth. The laser focus
position carries with the most concentrated laser energy. The focus position (above the workpiece or
below the workpiece) has an influence on the laser energy transfer along the keyhole. In the case of
laser welding under vacuum, the laser energy disposition along the extreme deep keyhole has a distinct
difference compared with the conventional laser welding. The keyhole depth under vacuum is much
deeper than that at atmosphere. Therefore, the defocused distance is an important parameter to control
the weld appearance and penetration depth under vacuum. In addition, the oscillating laser beam has
been introduced into laser welding under vacuum. This has proved that the oscillation of laser beam
affected the weld seam geometry, spattering behavior and weld meatal ajections [50].
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Figure 5. Effect of ambient pressure on penetration depth at various welding speed ICALEO® 2011
Proceedings. Reproduced with permission from [33], Laser Institute of America, 2011.
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Figure 6. Typical video pictures of A5052 aluminum alloy laser induced plume observed under
each reduced pressure (laser power is 16 kW, welding speed is 1 m/min, defocus distance is 0 mm).
Reproduced with permission from [44], Taylor & Francis, 2014.

4.2. The Influence of Ambient Pressure on Plasma Plume

It was known that the welding vapor plasma exerted a negative “shielding effect” in high-power
CO; laser welding. The strong inverse bremsstrahlung (I.B.) effect decreases the penetration depth
and even stops the CO; laser welding process due to the optical breakdown [51,52]. The vapor plasma

118



Appl. Sci. 2017, 7,909

exerts a different state between CO, laser welding and solid laser welding. Due to the presence of
a large number of non-ionized metal particles, the vapor plasma is called “metal vapor plume” in
solid laser welding [53]. However, the plasma plume still causes some disturbances by Rayleigh or
Mie scattering in solid laser welding [54-56]. The previous studies [19,33,44] showed that no matter
whether CO; laser welding or solid laser welding was used, the reduction of ambient pressure had a
significant effect on plasma plume behavior. As shown in Figure 6 an extremely intensive and very
bright plasma plume was exerted above the workpiece in high power laser welding at atmospheric
pressure (101 kPa). The lower part plasma plume adjoined directly the keyhole has much higher
brightness than the other part. Besides, a large number of spatters were observed around the plasma
plume. The reduction of ambient caused an obvious change in plasma plume. When the ambient
pressure reduced to 50 kPa, the change of plasma plume was already visible. Both the intensive
luminescence and the volume of plasma plume decreased. At the reduced ambient pressure of 10 kPa,
the intense illuminant plasma plume and obvious spattering disappeared. There was only a small
brightness and volume of plasma plume above the keyhole. When the ambient pressure decreased at
0.1 kPa, the plasma plume was completely suppressed and invisible. The different materials and the
welding parameters led the difference in critical ambient pressure of plasma plume disappearance.

The enormous difference in the luminescence and the volume of plasma plume guide the research
of the interaction between laser radiation and plasma plume under different ambient pressures. As
shown in Figure 7, a probe laser, which horizontally passed through the plasma plume, was usually
used to study the interaction between laser radiation and plasma plume [54,56]. As shown in Figure 8,
the spot behaviors of a probe laser beam passing through the plasma plume under various ambient
pressures are presented [36]. The results showed that the interaction between laser radiation and
plasma plume was minimal at low ambient pressures. Therefore, the laser process was more stable
under vacuum. In addition, the extinction of fiber laser radiation decreased with decreasing ambient
pressure [38]. Although the interaction between laser radiation and plasma plume under different
ambient pressures has been discussed, the essential influence of ambient pressure on plasma plume
has not been presented in detail. On the one hand, the illuminant change of plasma plume means that
the ambient pressure has a significant effect on the ionization state and formation condition of the
plasma plume. On the other hand, the ambient pressure has a direct relation with the stress state of
metal vapor behavior. This may lead to a different laser welding process.
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Figure 7. The schematic of studying the interaction between laser radiation and plasma plume using a
probe laser. Reproduced with permission from [54], Taylor & Francis, 2008.
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Figure 8. The spot behaviors of probe laser beam passing through the plasma plume under various
ambient pressures (laser power is 5 kW, welding speed is 0.25 m/min, defocus distance is 0 mm).
Reproduced with permission from [36], Elsevier, 2017.

4.3. The Influence of Ambient Pressure on Molten Pool and Keyhole Behaviors

During laser welding, the molten pool and keyhole behaviors have a close relationship with weld
quality and defect formation. Due to the specialty of molten pool and keyhole behaviors, it is difficult to
understand and investigate the molten pool and keyhole behaviors. Therefore, the advanced imaging
technology and numerical simulation are the main methods to study the molten pool and keyhole
behaviors. Both methods are used to explore the effect of ambient pressure on the molten pool and
keyhole behaviors. The surface molten pool and keyhole inlet of SUS 304 stainless steel under different
ambient pressures were observed by Youhei et al. [44]. As shown in Figure 9, the surface molten
pool and the keyhole inlet changed following the ambient pressure decreasing. The average diameter
of keyholes decreased, the surface molten pool became narrower and more stable under vacuum
conditions. Moreover, there were quite different liquid flows between atmospheric pressure and
vacuum. Katayama et al. [20] presented the liquid flow in the molten pool at various ambient pressures
using the micro focused X-ray real-time observation. Based on the results of Katayama et al. [20],
there were two main differences in liquid flow between atmosphere and vacuum. On the one hand,
the liquid flowed downward along the rear keyhole at atmospheric pressure. While the liquid flowed
upwards along the rear keyhole wall under vacuum. That means the liquid flow along the rear keyhole
is opposite. On the other hand, there was a molten flow along the bottom molten pool at atmospheric
pressure, while there was no such strong flow near the bottom under vacuum. The differences in
molten pool flow had a direct relationship with the porosity formation. In addition, the keyhole
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shapes at different pressures were observed directly by Engelhardt et al. [40]. Figure 10 (Figure 5 of
“Time-resolved X-ray Analysis of the Keyhole Behavior during Laser Welding of Steel and Aluminum
at Reduced Ambient Pressure” reproduced with permission from Proceedings of the International
Congress on Applications of Lasers and Electro-optics, October 2015) shows the averaged keyhole
shapes at ambient pressures from 0.5 kPa to 101 kPa. The keyhole depth increased with the decreasing
of ambient pressure. This phenomenon corresponded to the increase in penetration depth under
vacuum. In addition, the reduction of ambient pressure resulted in an increased inclination angle of
the keyhole front and an increased bending of the keyhole tip.
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Figure 9. High speed video picture of keyhole inlet and molten pool in type 304 stainless steel weld
observed under each reduced pressure(laser power is 16 kW, welding speed is 1 m/min, defocus
distance is 0 mm). Reproduced with permission from [44], Taylor & Francis, 2014.
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Figure 10. X-ray images of averaged keyhole shapes at ambient pressures from 0.5 kPa-101 kPa (laser

power is 2 kW, welding speed is 1.2 m/min, defocus distance is 0 mm). ICALEO® 2015 Proceedings.
Reproduced with permission from [40], Laser Institute of America, 2015.
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Pang et al. [23,57,58] investigated the physical phenomenon of laser welding under vacuum by
numerical simulation. Based on the 3D transient multiphase model of laser welding, an improved model
of recoil pressure for laser welding under any ambient pressure was proposed. The comparison of the
predicted keyhole wall temperature and the predicted velocity distribution of metallic vapor under
atmosphere and vacuum are presented. The results show that the average keyhole wall temperature
became lower and the predicted speed of metallic vapor increased under vacuum. Based on the previous
results of numerical simulation, Fabbro et al. [23] presented that the penetration depth improvement
in laser welding under vacuum mainly resulted from the reduction of evaporation temperature. Less
power per unit depth of keyhole is necessary due to the reduction of evaporation temperature, resulting
in a deeper keyhole with the same incident laser power. The saturation of the penetration depth below
some critical pressure is related to the recoil pressure. In addition, the recoil pressure and welding speed
are positively related. At high welding speed, the recoil pressure is higher. Moreover, it is much higher
than ambient pressure. Therefore, the reduction of ambient pressure cannot change the evaporation
pressure inside the keyhole. This is the reason that at high welding speeds there is no improvement
in penetration depths while at low welding speed, the reduction of ambient pressure will modify the
evaporation pressure inside the keyhole due to relatively low recoil pressure. The low evaporation
pressure results in the improvement in penetration depths under vacuum.

5. Applications of Laser Welding under Vacuum

As an emerging welding technology, laser welding under vacuum has received much attention
in recent years. The reports of laser welding under vacuum mainly focused on the effect of ambient
pressure on laser welding phenomena. Laser welding under vacuum is still at the beginning stages
of application. Based on the advantages of laser welding under vacuum, the applications of this
competitive technology are expected. The main application attempt was on the mass production of
drive section components with radial and/or axial weld seams [47,59,60]. Within the framework of a
cooperation of PTR Company and RWTH Aachen University, a cycle machine for welding with laser
beam under vacuum was implemented. The planet wheel carrier and gear wheel were fabricated by
the cycle machine for laser welding under vacuum. As shown in Figure 11, the plate wheel carriers
consist of a planet wheel carrier with axle arm and a coronoid bole carrier. The welding zone is
triangular and the maximally required penetration depth is 25 mm. A sound welded joint without
oxides and spatters was fabricated using a laser power of 7.5 kW, a welding speed of 0.42 m/min,
a focus position of —5 mm and an ambient pressure of 2 kPa. At the same time, Pro-beam, TRUMPF
and the ifs at TU Braunschweig are also adapting the process for the low-pressure, spatter-free laser
welding of powertrain components into industrial application [61,62]. The powertrain components
requiring weld penetration depths of between three and six millimeters and a high feed rate were
manufactured. Because of stable process without spatter, high weld quality and proper penetration
depth, laser welding under vacuum is very suitable for the fabrication of powertrain components.

Figure 11. The planet wheel carrier welded by laser welding under vacuum ((laser power is 7.5 kW,
welding speed is 0.42 m/min, defocus distance is —5 mm, ambient pressure is 20 mbar-1). Reproduced
with permission from [59], John Willey and Sons, 2015. (a) The schematic of planet wheel carrier,
(b) Cross-section in stud center, (c) Longitudinal section through the weld.
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Laser welding has been widely used in various productions. However, laser welding is mainly
used in the sheet structure with small thickness. With the advent of new high power solid lasers,
the use of solid-state laser in deep penetration welding has been constantly explored. The exceeding
expected phenomena of laser welding under vacuum make it very suitable for thick plate applications
where low welding speeds can be applied to achieve very high penetration depth and for welding
tasks with the highest demands on the weld quality. Some various materials, such us copper alloys,
structural steels, duplex stainless steels, nickel-based alloys, titanium alloys and so on, have been
welded by ISF at RWTH Aachen University [30-32,46]. As shown in Figure 12, the plate thickness
of 50 mm for unalloyed steel S690QL was achieved by single pass laser welding under vacuum at
a laser power of 16 kW, a welding speed of 0.5 m/min, a focus position of —5 mm and an ambient
pressure of 10 Pa. The full penetration weld joint of 38 mm nickel-base alloy without was fabricated
at a laser power of 16 kW, a welding speed of 0.4 m/min, a focus position of 0 mm and an ambient
pressure of 10 Pa. As shown in Figure 12, both the weld joints presented a sound weld with super deep
penetration depth. It is clear that laser welding under vacuum has the developing prospect of welding
heavy section components under low vacuum. As we know, electron beam welding is thought to be
suitable for single pass weld of thick plate [29,63]. In this regard, laser welding under vacuum is able
to challenge the electron beam welding in terms of the weld quality and penetration depth. In addition,
laser welding under vacuum has the following advantages: relatively low vacuum level, lack of X-ray
radiation protection and possible arising of nonmetallic [29,64].

Figure 12. The survey of weldable plate thicknesses/materials with laser welding under vacuum.
Reproduced with permission from [31], Springer, 2016. (a) Laser welding under vacuum of unalloyed
steel S690QL, (b) Laser welding under vacuum of nickel-base alloy 617.

6. Prospects of Laser Welding under Vacuum

With the reference to the previous researches of laser welding under vacuum, the main advantages
of laser welding under vacuum or reduced pressure are as follows [45,47,61,62]:

e  Significant increase (More than two times) of the welding depth;

e Parallel-sided seams with reduced nail head;

e Increased process stability due to greatly reduced and stable plasma plume;
Reduction of workpiece contamination by spatter and vaporization;
Higher-quality, pore-free weld seams;

Low operating costs due to efficient solid-state laser;

Welding process without inert gas;

e Lower vacuum level and simpler device compared with electron beam welding.

Despite the advantages of laser welding under vacuum above, the vacuum chamber causes laser
welding loose the most important advantage: flexibility. In addition, the dimensions of the welded
part were restricted by the dimensions of the vacuum chamber. A larger vacuum chamber means
higher cost and associated pumping time [65]. A lot of trails were carried out to make the electron
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beam welding release the limitation of vacuum chamber. Rolls-Royce and TWI worked on a local
vacuum, or “out of chamber” to expand the application of electron beam welding in thick section
components [66]. However, the electron beam interaction with low pressure gases is the difficult
point in the application of electron beam welding under local vacuum. However, the interaction of
the laser with ambient gases is negligible. In addition, the relatively low vacuum can achieve an
obvious increase in penetration depth. Therefore, laser welding under local vacuum or mobile vacuum
has a more practical application value. ISF RWTH-Aachen and BAM, Germany has conducted some
attempts in laser welding under mobile vacuum [66-68]. As shown in Figure 13, a vacuum cap, which
provides a local reduced ambient pressure of about 20 kPa above the welding area, was presented by
BAM. The reduced pressure in the vacuum cap generate 50% higher penetration depth in comparison
to welding under ambient pressure conditions. Due to the restriction of this movable seal, the vacuum
level is very low and the penetration depth has no significant increase. The laser welding under
vacuum can be combined with local vacuum electron beam welding to accumulate the disadvantages
of those two processes. Hence, a local vacuum seal with a laser, instead of the electron beam generator
may be a promising technique in the future.

Figure 13. The mobile local vacuum chamber for high power laser beam welding of thick materials.
Reproduced with permission from [66], John Willey and Sons, 2015.

Laser welding under vacuum not only has promising application prospects, but also provides a
special physical environment to achieve a fundamental understanding of the laser welding process.
Laser keyhole welding is a complex physical process involving heat flow, melting, evaporation,
solidification phase changes, melt flow, and vapor flow. Most physical phenomena in laser keyhole
welding have not been fully understood due to the complexity of laser welding. The phenomena of
laser welding are completely different at the same welding parameter except for ambient pressure. By
comparing the differences between atmosphere and vacuum and analyzing the influences of ambient
pressure, the essences of laser welding can be more deeply understood. For example, the interaction
of laser radiation and plasma plume is a focused issue in high power laser welding. Under vacuum
conditions, the plasma plume was suppressed completely. By studying the effect of ambient pressure
on the plasma plume, we could get a better understanding of the interaction of laser radiation and
plasma plume.

There is no such thing as a perfect technology. The laser welding under vacuum is no exception.
There are also some challenges in laser welding under vacuum. As is stated above, the coupling-in
window for coupling laser beam into vacuum is the key part of vacuum chamber for laser welding.
The lifetime of coupling-in window determines the stability of the equipment of laser welding under
vacuum. Besides, higher and higher laser power will be used in laser welding under vacuum in
the future. The coupling-in window glasses should have a higher maximum limiting power. As we
know, the laser processing head itself consists of optical glass. In the future, the integration of a laser
processing head and coupling-in window on the vacuum chamber is probably a development trend
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of equipment of laser welding under vacuum. On the other hand, there are also many mechanisms
yet to be explained in laser welding under vacuum. The research about the effect of ambient pressure
on the plasma ionization and vapor ejection in plasma plume, the dynamic behavior of keyhole and
molten pool, and the metallurgical behavior under vacuum will provide a good deal of insight into the
fundamental processes of laser welding under vacuum.

7. Conclusions

A review of laser welding under vacuum including histories, equipment, fundamental
phenomena, applications and prospects has been reported. The first test of laser welding under
vacuum or under reduced pressure dates back to the 1980s. The development of high-power lasers
means laser welding under vacuum is enjoying a renaissance. Compared with electron beam welding,
the equipment of laser welding under vacuum is relatively simple. The coupling-in window for
coupling the laser beam into a vacuum is the key part of vacuum system for laser welding. The ambient
pressure has a significant influence on the phenomena of laser welding. The changes of plasma plume,
keyhole and molten pool behaviors result in an excellent sound and deep welding performance. Based
on the advantages of laser welding under vacuum, the application on drive section and powertrain
components has been attempted in Germany. A local mobile vacuum for laser welding is expected
to be a promising technology in the future. Besides, the vacuum environment is a benefit to further
understanding the physical process of laser keyhole welding.
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Abstract: Laser welding of thick plates in production environments is one of the main applications of
high power lasers; however, the process has certain limitations. The small spot size of the focused
beam produces welds with high depth-to-width aspect ratio but at times fails to provide sufficient
reinforcement in certain applications because of poor gap bridging ability. The results of welding
shipbuilding steel AH36 with thickness of 8 mm as a single-sided T-joint using a 10 kW fiber laser are
presented and discussed in this research paper. Three optical setups with process fibers of 200 pm,
300 um and 600 um core diameters were used to study the possibilities and limitations set by the
beam delivery system. The main parameters studied were beam inclination angle, beam offset from
the joint plane and focal point position. Full penetration joints were produced and the geometry of
the welds was examined. It was found that process fibers with smaller core diameter produce deeper
penetration but suffer from sensitivity to beam positioning deviation. Larger fibers are less sensitive
and produce wider welds but have, in turn, lower penetration at equivalent power levels.

Keywords: shipbuilding steel; fiber laser; laser keyhole welding; T-joint; fillet joint

1. Introduction

Laser welding with multi-kilowatt fiber lasers is fast becoming a highly advantageous joining
technology in manufacturing industries such as shipbuilding, where it saves production time and cost
compared to conventional arc based welding processes [1]. The growing acceptance and adoption of
laser technology can be seen, for example, in sales statistics, which show an annual growth rate
of over 10% for the last few years [2,3]. Modern high power fiber lasers are low maintenance,
easy to integrate with production robots, and produce welds with deep penetration and low heat
input at high throughput rates [4,5]. High beam quality at high power levels and the decreasing
price per kilowatt of laser power are enabling previous limitations to be overcome and opening up
new possibilities, especially in keyhole welding. The main limiting factor hindering more extensive
utilization of laser welding is its demand for high accuracy in joint fit-up tolerances. A common way to
compensate gap fluctuations and ensure welds of acceptable quality is to add an arc process working
in synergy with the laser. While such hybrid laser-arc welding allows control of weld bead formation
through adjustment of the arc parameters and extends the gap bridging ability of the welding system,
it increases process complexity and production costs.

One of the most important characteristics of a laser welding system is the beam quality that the
lasers deliver. The beam quality affects the power density of the beam, which has a direct effect on
the penetration depth and geometry of the weld [6,7]. High power density of the beam means deeper
penetration for the same level of power and welding speed. Single-sided welding of Tjoints with fiber
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lasers is not an entirely novel concept, and its applicability and key parameters have been studied,
for example, for aluminum welding in the aircraft industry [4]. The high depth-to-width aspect ratio of
typical fiber laser welds can be a drawback in medium and thick section welding of T- and fillet joints.
Space and maneuverability restrictions on the welding head can cause the laser beam to cross the joint
plane at a certain angle, and a narrow melt pool may easily partially miss the joint plane and produce
incomplete fusion. In addition, T-joint welds can be several meters long and heat-induced distortions
during welding can thus cause variations in joint fit-up regardless of the accuracy of the original setup.

Classification societies such as DNV (Det Norske Veritas) and IIW (International Institute of Welding)
suggest avoiding fillet welds in parts of a construction that are subjected to fatigue, because partial
penetration creates a possible crack initiation point at the root of the weld [8,9]. Nevertheless, more than
80% of welded joints are fillet welds, because one of the plates serves as backing during the welding
process and less post-welding correction is required. Figure 1 illustrates the principal differences in the
geometry and location of the stress concentration of arc, laser and hybrid welded joints.

web web web
of stress of stress of stress
Potential fatigue failure
@ ] . agw .m] . 7
f-s,

flange flange tlange
(a) (b) (c)

Figure 1. Comparison of weld joint geometries produced with: (a) arc welding; (b) autogenous laser
welding; and (c) laser-arc hybrid welding, and stress concentration locations.

The key problem with T-joints is ensuring fusion throughout the whole joint plane, preferably with
single-sided welding. In autogenous laser welding, avoidance of the possible occurrence of underfill
or undercut due to an absence of filler material is important, because throat thickness and shape of
the weld toe influence the fatigue performance of the joint. In thin materials and flat assembly joints,
this problem can be addressed by increasing weld width through wider distribution of the beam
energy. Approaches used include but are not limited to: manipulation of the focal point position [10],
and usage of dual focal point setups [11-13] and beam oscillation techniques [14-17]. Scanning is
also beneficial for bringing more heat into the material, which decreases the cooling rate and keeps
the hardness of the weld at acceptable levels. Unfortunately, this procedure is not applicable in thick
section welding, where the typical weld length is several meters, because scanning mirrors are unable
to handle the power levels needed [14,18]. Large components such as scanning optics also limit the
degree of freedom and flexibility of the welding process as regards positioning.

Determining the operational window for a good quality weld accounts for three main process
parameters: laser power, welding speed and focal point position. These three easily adjustable
parameters affect the power density at the top of workpiece, and therefore melt flow and distribution
of the energy inside the keyhole, which have a major influence on the geometry of the weld. A certain
threshold value of power density must be reached in order to be able to form the keyhole [19].
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The threshold is typically defined as 10° W/cm?, or more commonly 10° W/mm?, with typical
dimensions of laser beam focal point. The power density is calculated as follows:

=L 1)

ﬁ/

where P is laser power and r radius of the beam on the surface of the workpiece. The above-mentioned
power density threshold is valid for CO, laser welding, whereas when using solid state lasers with
wavelengths around 1000 nm the threshold is lower [20,21]. The lower threshold is a result of
higher absorption of shorter wavelengths, and it gives extra flexibility to parameter selection and
greater freedom to tailor parameters to specific applications, for example, with static or dynamic
beam formation.

Suder and Williams et al. [22] developed the concept of Specific Point Energy (Egp). In addition to
energy density (power density x interaction time), Esp includes also beam diameter on the surface:

pPd
ESP = ppT,A = PLT,‘ = 7; (2)

where pp is average power density of the beam (mW/ cm?), T} is interaction time (s), A is area of the
beam on the surface (mm?), Py is laser power (W), d is beam diameter on the surface (mm), and v is
welding speed (mm/s). Experiments performed with bead-on-plate joints have shown that power
density and Egp control the depth of penetration and interaction time controls the bead width [22-24].
Esp has also been shown to be suitable for evaluating the efficiency of laser cutting [25,26].

The relationship between spot size and welding performance in steel and aluminum welding
has been addressed in several studies [27-30], and it has been found that small spot size produces
deeper welds yet is accompanied by defects such as undercut and porosity. A study by Vanska [14]
showed that in some cases the keyhole welding mode changes between selected parameter values,
resulting in different weld cross section shape in butt joint welding of stainless steel with a disk laser.
Lap and butt joints produced with CO, and solid-state laser sources have been characterized and
compared [20]; for example, Kawahito et al. [28] addressed the effect of focal spot size on weld defects
and showed that, of the four sizes studied, welds with highest quality were obtained using the two
larger spot sizes.

The effect of focal point diameter on beam intensity on surface is much stronger than the effect
via laser power. A simple way to manipulate the focal point diameter is to change the focal length of
the focusing lens. A problem with this approach is that the focusing angle, i.e., the angle at which the
beam enters the keyhole, changes as the focal length is changed, and the effect of focal point diameter
is influenced by the effect of focusing angle and changes in the shielding gas arrangement. Change
in the beam feeding fiber can only increase the diameter of the raw beam and the beam parameter
product. This paper addresses the issue of weld quality of high power fiber laser welded T-joints
of shipbuilding steel AH36 by comparing welds produced with three optical set-ups having beam
transfer fibers of different diameters.

2. Materials and Methods

Shipbuilding steel AH36 is commonly used for shipbuilding and offshore structures. Hot rolled
steel plates of AH36 have excellent weldability with a CEV (carbon equivalent value) of 0.248,
calculated based on the chemical composition presented in Table 1. The yield strength of AH36
is 355 MPa.

Table 1. Chemical composition of AH36 steel (wt %).

Material C Si Mn P S Cr Mo Ni Cu Al A%
AH36  0.111 0.149 0711 0.035 0.150 0.051 0.01 0.041 0.031 0.030 0.008
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Test specimens (100 mm x 350 mm x 8 mm) were cut with a CO, laser using oxygen-assisted cutting.
The edges were grid blasted with aluminum oxide and cleaned with acetone to remove possible
contaminants. The plates were tack welded from the root side from the ends and the middle using
gas metal arc welding. The workpiece was fixed in the flat (1F) position using stiff fixtures to avoid
heat-induced air gap fluctuations during the welding. Single-sided welds with a length of 165 mm were
performed. The experimental setup is shown in Figure 2.

Plasma
knife

- = <
AH36 workpiece| |Beam angle from flange |5
— .

Sample fixture ' *

Figure 2. Experimental setup for laser welding of T-joints. Beam is positioned at the joint plane
(offset 0 mm).

All welding experiments were made with a continuous wave fiber laser IPG YLS-10000 having
wavelength of 1070 nm and a top-hat focused beam profile. A Kugler LK190 mirror optics laser
welding head was used. An air knife protected the focusing system from contamination with fumes
and spatter, and no additional shielding gas was used. When comparing a T-joint with a butt joint,
a further parameter, called offset, describing the distance of the beam center from the joint at the flange
front edge, must be added. This parameter has a crucial effect on weld quality and must be considered
for thick section joints of the type studied in this work. The experimental parameters of the welding
process are presented in Table 2.

Table 2. Welding process parameters.

Parameter Unit Parameter Range
Fiber diameter [um] 200; 300; 600
Laser power, Py, [kW] 6.0; 8.0; 10.0
Welding speed, vy [m/min] 0.75;1.0; 1.25; 1.5; 1.75
Focal point position, Fpp [mm] —2.0;, —4.0; —6.0
Beam angle from flange « [°] 6;10; 15
Beam offset from flange [mm] 0.5;1.0;1.2;1.5;2.0

The beam was delivered by a system consisting of a beam transfer fiber (with core diameters
of either 200, 300 or 600 um), 120 mm collimating length optics, and a 300 mm focal length mirror.
The properties of the laser beam emitted from each transport fiber were measured using a laser beam
analyzer from Primes GmbH and are shown in Table 3.
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Table 3. Beam properties.

Delivery Fiber Diameter (um) 200 300 600
b 7 \ / i
. i,‘ f i y ’ pasd 1 ;C
004 J\ j‘ 2 qe-: 3 ’i 2 nu-: * ?
mad 4 . oot * * el 8 s
Beam profile 1 I I 15001 I—J w4
_? J \‘I | | \‘. 5 _ ‘/ 1
] 1 7 o \
T ! b a0l o, " o AP O N
Nominal beam waist (mm) 0.50 0.75 1.50
Measured beam waist (86% pts) (mm) 0.710 0.882 1.460
BPP (mm-mrad) 9.079 12.000 23.800
Rayleigh length (mm) 13.86 16.18 22.38
Py, at workpiece (kW) 6.0 6.0 6.0
Beam area at surface (mm?) 0.396 0.611 1.674

The bead surface and root of each weld were visually evaluated based on standard EN ISO 13919-1,
which classifies welds into three quality levels based on the type and severity of the imperfections that
are present. The categories from best to worst are: B, stringent; C, intermediate; and D, moderate [31].
Metallographic preparation of the samples was carried out according to SFS-EN ISO 17639 [32].
The welds were transversely sectioned at the middle of the joint length, and polished and etched using
a 2% Nital solution. Macrographs of the weld cross sections were taken for inspection of penetration,
defects, and dimensions and shape of the fusion zone and HAZ (heat affected zone).

3. Results

3.1. Effect of Beam Inclination Angle «

To study the effect of beam inclination angle « on the morphology/geometry of the weld, all other
process parameters were kept constant. The beam was positioned 0.5 mm above the joint plane on
the flange and focused 2 mm below the surface of the material. Focal point diameters on the surface
were 0.82 mm, 1.00 mm and 1.61 mm for the 200 pm, 300 pm and 600 pm process fibers, respectively.
The cross sections of the welds are shown in Figure 3.

It can be seen in Figure 3 that the penetration depth (measured from top of the weld) and the
length of the joint fusion along the intersection decreased as the inclination angle increased. It can
also be noticed that the penetration depth and area of the fusion zone correlate with the energy
density of the beam. A full penetration weld was obtained only with the 200 um process fiber and 6°
inclination angle. All of the joints followed the axis of beam propagation. Averaged dimensions from
three welds produced with each inclination angle are shown in Table 4.

Table 4. Effect of fiber diameter on the weld dimensions.

Fiber Diameter ~ Penetration Depth  Bead Width  Fusion Zone = HAZ Area Depth to Max Hardness
[um] [mm] [mm] [mm?] [mm?] Width Ratio HV5 [FZ 1/HAZ]
200 87 23 13.2 6.5 4.0 386/373
300 7.8 24 12.6 6.0 3.3 392/359
600 5.6 27 12.0 5.5 2.0 393/365

1 FZ = fusion zone.
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a=10° a=15°

@ 300 pm @ 200 pm

@ 600 um

Figure 3. Macrographs of weld samples at different beam inclination angles: AH36, ¢t = 8 mm,
Pp =6 kW, vy = 1.25 m/min, beam offset from flange 0.5 mm, Fpp = —2 mm.

3.2. Effect of Beam Offset from the Flange

The effect of the beam offset from the flange was studied only with 300 pum and 600 pum
process fibers. Based on the very narrow bead width produced earlier with the 200 um process
fiber and an assumption that the weld width largely determines the tolerance limits, the 200 um
process fiber was not included in the experiments. The laser power needed for full penetration
was first calculated using the Power Factor Model developed by Suder et al. [23] and subsequently
determined experimentally. The calculated values exceeded the real power requirement by at least
30% (less than 8 kW vs. 9.7 kW, Fpp —2 mm, beam @ on surface 1.0 mm; 10 kW vs. 13 kW, Fpp —2 mm,
beam @ on surface 1.6 mm). Macrographs showing beam offsets from 0.5 mm to 2.0 mm are presented
in Figure 4.

0.5 mm 1.0 mm 1.2 mm 1.5 mm 2.0 mm

9 300 pm
P =8kW

@600 pm
=10 kW

Py

Figure 4. Macrographs of weld cross-sections when beam position from the flange was varied:
material = AH36, t = 8 mm, vy, = 1.25 m/min, Fpp = =2 mm, « = 15°.

As shown in Figure 4, despite similar width of weld bead, there was a significant difference in the

geometry of the fusion area. Welds produced with the 300 um process fiber had a deep and narrow
profile with a slightly wider top typical of high power laser welds. The setup with the 600 um process
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fiber produced welds that were wide throughout the whole fusion area, resulting in a more acceptable

weld profile for a T-joint.

3.3. Effect of Focal Point Position

Negative defocusing was used to study whether decrease in beam density at the workpiece
surface has a favorable effect on the formation of the weld bead. The influence of focal point position
on the weld profile was investigated by changing the defocusing distance in steps of 2 mm. Beam offset
from the flange was selected as 1 mm and 1.5 mm (for the 300 um and 600 pm setups, respectively) to
increase the likelihood of full penetration. The focal point was moved along the beam propagation
direction inside the material in 2 mm steps. Figure 5 shows cross-sectional macrographs of the
welds produced.

Fpp =-2mm FPP =—4 mm FPP =-6 mm

9 300 pm
P, =8 kW

10 kW

9 600 pm

Figure 5. Weld profiles at various focal point positions: AH36, t =8 mm, v, = 1.25 m/min, beam offset
from flange 1.0 mm (up) and 1.5 mm (down), & = 15°.

It can be seen from the images presented in Figure 5 that decreasing the focal point position leads
to a slight decrease in penetration. Fpp —4 mm resulted in full penetration in the set-up with the 600 um
process fiber, while none of the welds produced with the 300 um fiber had complete penetration at the
weld root.

4. Discussion

4.1. Geometry of the Welds

The purpose of this study was to investigate geometrical differences in welds produced with
three different beam delivery fibers and to determine the effect of process parameters on Tjoint welds.
Thirty welds were produced, evaluated, and their cross-sections analyzed. The acceptance criteria in
visual inspection were smooth and plain face and root sides of the weld seam, lack of spatter, cracks
or other defects listed in the Standard EN ISO 13919-1, and full visible penetration on the root side.
Cracks or porosity were not present, qualifying the welds for class C of ISO 13919-1. Obvious undercut
and lack of fusion produced by an inappropriately positioned beam or a lack of laser power were
causes of rejection.

The width of the weld fusion zone determines the largest acceptable inclination angle for
producing full penetration at a given web thickness. It can be seen in Figure 3 that compared to
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the other set-ups studied, the process fiber with a core diameter 600 um was least sensitive to increase
of a. However, at given thickness of 8 mm, & = 6° produced the largest weld throat in all set-ups,
regardless of the diameter of the beam, since the keyhole formed strictly along the axis of beam
propagation. Figure 6 illustrates the effect of beam inclination angle on melt distribution relative to the
middle axis of the joint.
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Inclination angle &

Figure 6. Proportions of the weld and melt area distribution differences at three inclination angles tested.
AH36, t =8 mm, P = 6 kW, v, = 1.25 m/min, Fpp = —2 mm.

Figure 6 shows the size of the melt area above and below the middle axis of the joint of the welds
presented earlier in Figure 3. The bars illustrate the proportions of the melt area above (web) and below
(flange) the joint plane, and the lines show the area of the melt. Process fibers with core diameters of
200 pm and 300 um produced welds with similar properties: the melt area decreased with increase of
inclination angle. The 600 um diameter process fiber produced welds in which the melt area increased
while simultaneously keeping the same proportions of the fusion zone above and below the joint axis.
The fiber producing the largest focal point diameter was least sensitive to change of inclination angle.

From an engineering point of view, beam offset is an important parameter affecting the weld
quality of fillet welds, where joint bridging ability and ensuring complete fusion are more important
than the penetration depth itself. As can be observed in Figure 4, tolerance to beam offset is also
determined by the width of the weld. An inclination angle of 15° was chosen over two smaller angles
tested based on the width of the weld bead and possible accessibility restrictions of the welding head.
Optimal offsets for acceptable top bead and full fusion at the root are: 1.0 mm with the 300 um
transfer fiber, and, 1.0 mm and 1.5 mm with the 600 um transfer fiber. The diameters of the beams on
the surface were 1.0 mm and 1.6 mm, respectively.

When the 300 um fiber was used, deviation to either side from the 1.0 mm offset produced either
lack of fusion at the root or undercut and lack of penetration at the face of the weld. Due to the small
width of the weld/fusion zone, higher offset resulted in formation of severe undercut on the top of
the weld, while part of the melt was pushed through the weld root. The transfer fiber with 600 um
core diameter had a wider positioning tolerance window because the width of the weld throughout
the fusion area is also wider. All of the welds produced with the 600 um process fiber had a smooth
bead and root sides, complete penetration, and class B quality according to EN-ISO 13919-1. It seems
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that a change in the keyhole process, noticed earlier by [14], can be seen in the case of fillet welds in
low alloyed steel. It is logical that power density has an effect on the process mechanism while still
producing weld shape that is similar but wider than in the case of higher power density.

The focal point position has the same effect on Tjoints as any other weld. Comparing the setups
studied, an insignificant increase in bead width in correlation with an increase in beam dimension on
the surface of material was noticed. Fpp of —2 mm produced welds with a larger weld toe radius than
Fpp —6 mm. When Fpp was positioned at —4 mm, that is, at half of the thickness of the web, the setup
produced fully fused welds lacking porosity or other defects on both sides of the joint.

4.2. Application of Specific Point Energy to Welding of T-Joints

Traditionally, the depth of penetration has been characterized through the concept of heat input,
also called line energy, which describes the energy available for producing the weld through the
relationship of available laser power and welding speed. Egp also considers the diameter of the
beam on the surface of the specimen and therefore provides higher accuracy in definition of the
penetration depth and weld geometry [23]. Suder and Williams [22] have shown that, in the case of
bead-on-plate welds, the penetration depth is defined by power density and specific point energy,
and the width of the weld by interaction time, regardless of the optical setup used. T-joint fillet welds
follow the same analytical model regarding the penetration depth as bead-on-plate welds; in this work,
however, there was a deviation at larger beam diameters produced with the 600 um process fiber.
The relationship between Egp and penetration depth for all three setups is summarized in Figure 7.
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Figure 7. Penetration depth plotted as a function of specific point energy. Egp values of the three welds
shown: (Aa) 396 J; (#b) 384 J; and (Mc) 386 J.

Figure 7 shows curves for penetration depth produced with each of the process fibers and
macrographs of three welds obtained at similar Egp using different process fibers. Beam diameters
on the surface of the welds shown in Figure 7 were 0.82 mm, 1.00 mm and 1.61 mm (Fpp —2 mm).
The following laser power and welding speed combinations were used: (a) P, = 6 kW, v, = 0.75 m/min;
(b) P, =8 kW, vy =1.25m/min; and (c) P;, =4 kW, v, =1 m/min. Welds (a) and (b) both had penetration
depths close to 10 mm, when measured from the top of the bead, thus exceeding the thickness of
the material, while weld (c) had only partial penetration. At similar Egp, the 200 um process fiber
produced the weld with the deepest penetration and largest melt area (a). Full penetration was not
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obtained with the 300 um process fiber despite sufficient penetration depth, and the weld produced
with the 600 um fiber was noticeably shallower.

It is known that the diameter of the beam governs the dimensions of the keyhole, which in turn
define the depth and width of the weld. As expected, beams with smaller diameters produced deeper
penetrations at any given Egp. Within each setup, it can be seen that an increase in Egp also increases
the penetration depth, but comparison of all three setups shows that the power density of the beam
has a more pronounced effect on the morphology of the weld than Esp. A possible explanation for
this might be that the heat conduction in Toints is different than in butt joints or bead on plate
joints. Distribution of energy over a larger area leads to a slight decrease in molten area and reduced
penetration depth. The power density of the beam determines the depth of the weld, while the width
of the weld is determined by the diameter of the focused beam on the surface of the specimen.

4.3. Optimal Welding Conditions for T-Joint

The effects of beam inclination angle, beam offset from the flange and the focal point position
relative to the surface of the material were studied to gain insight into the applicability of each setup
under industrial conditions. Table 5 summarizes the findings.

Table 5. Acceptable limits for beam positioning for producing full penetration.

Parameter 200 um Process Fiber 300 um Process Fiber 600 um Process Fiber
o3 6° 6° 6°;10°
Beam offset 1 mm 1 mm 1-1.5 mm
Fpp —4 mm —4 mm —2-—6 mm

The optimal parameters for all set-ups were inclination angle 6°, beam offset from the flange
1 mm, and focal point position —4 mm below the surface of the material. In all of the setups, the axis
of the weld was aligned along the direction of the beam propagation. For this reason, when the beam
was aimed past the root of the joint, the formed molten pool did not follow the joint plane, resulting in
a lack of fusion at the back of the weld. However, the applicability of a beam inclination angle of 6° in
industrial applications may be limited because of a danger of collision of the laser welding head while
maneuvering in restricted space, especially in situations where the incident beam side of the flange
exceeds the focal length of the laser.

From the industrial point of view, the most versatile solution for Tjoints of the three process fibers
tested would be the fiber with a core diameter of 600 um. This setup produced top beads superior
in quality to the two other setups studied. The welds made with the 200 um and 300 um process
fibers were deep yet extremely narrow at the deepest section of the weld and prone to undercut at
the surface. A setup with a 600 um fiber results in a more stable process that has a greater tolerance for
beam displacement and smaller probability for seam imperfections.

5. Conclusions

The present work reported welding of single-sided T-joints of 8 mm thick AH36 shipbuilding
steel with three optical setups using process fibers with core diameters of 200 pm, 300 um and 600 pm.
The current study found that:

(1)  Full fusion in one welding pass was produced with all three process fibers studied.

(2) Penetration depth and width of the weld both primarily depend on the beam diameter.
The parameter with the greatest influence on the depth of the weld is the power density of
the beam, while the width of the weld is determined by the diameter of the focused beam.
The width of the weld bead only has a minor correlation to the diameter of the beam on the surface.
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(3) Smaller spot sizes provide an advantage in penetration depth at the same welding speed and
power but are prone to producing undercuts. Due to the narrowness of the weld, the positioning
of the beam has to be extremely accurate to avoid the weld missing the root of the joint.

(4) Welds produced with 600 pm process fiber were less prone to undercut formation and had more
favorable shape of the weld toe than welds produced with 200 um and 300 pm process fibers.

(5) Process fiber with core diameter 600 pm produced welds with the highest quality and was least
sensitive to changes in beam positioning.

(6) Using beam delivery fibers with larger core diameters has a favorable effect on achieving full
fusion in T-joints. Reduced energy density on surface increases the width of the weld throughout
the penetration and produces smoother junctions of weld bead and base material.
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Abstract: Laser welding has been increasingly utilized to manufacture a variety of components thanks
to its high quality and speed. For components with complex shapes, the welding position needs be
continuously adjusted during laser welding, which makes it necessary to know the effects of the
welding position on the quality of the laser welds. In this paper, the weld quality under two (flat and
horizontal) welding positions were studied comparatively in the laser welding of Ti6Al4V titanium
alloy, in terms of weld profiles, process porosity, and static tensile strengths. Results show that the
flat welding position led to better weld profiles, less process porosity than that of the horizontal
welding position, which resulted from the different actions of gravity on the molten weld metals and
the different escape routes for pores under different welding positions. Although undercuts showed
no association with the fracture positions and tensile strengths of the welds, too much porosity in
horizontal laser welds led to significant decreases in the strengths and specific elongations of welds.
Higher laser powers and travel speeds were recommended, for both flat and horizontal welding
positions, to reduce weld porosity and improve mechanical properties.

Keywords: titanium alloy; laser welding; welding position; porosity; weld profile

1. Introduction

Titanium alloys have been widely used in many industrial fields, such as aerospace and aircraft,
because of their superior properties [1]. Meanwhile, lasers are applied to weld such titanium alloy
components and achieve high quality at a high speed thanks to its high brightness and power
availability [2]. For components with complex shapes, the weld tracks are generally not straight
lines but complicated two-dimensional or three-dimensional curves (e.g., girth welds of pipelines),
which lead to changes in the welding positions during laser welding. Such changes in welding
positions may result in fluctuations in welding quality because of the different actions of gravity for
various welding positions, which then necessitates the adjustment of welding parameters accordingly.
As a basis to optimize the laser welding parameters for varying welding positions, it is therefore
necessary to study the influence of welding position on weld quality.

Some research has already been done on the effects of welding position in the laser welding of
steels. Guo et al. [3] indicated that employing the 2G (horizontal) welding position (with the laser
beam perpendicular to the direction of gravity) could mitigate the welding defects of undercuts and
sagging in laser welding of 13-mm-thickhigh strength steel plates. Such defects occurred commonly
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when using the 1G (flat) welding position (with the laser beam in the same direction with gravity).
Such an improvement in quality was attributed to a more balanced state for the weld pool between the
surface tension, recoil pressure, and gravity. Shen et al. [4] compared the process window and porosity
distribution when laser welding 10-mm-thick 30CrMnSiA ultrahigh strength steel plates using flat and
horizontal positions, and found that higher line energies were required to reach the same penetration
depth in the horizontal position than that for the flat position. In addition, the pores in the horizontal
position laser welds were located in the upper part of the weld, while those in the flat position were in
the weld center. Sohail et al. [5] studied the laser welding of 20-mm-thick low carbon steel plates in
eight different welding positions, and found that the welding position had little influence on the weld
bead shape and the fluid flow features of weld pools, but could lead to different levels and positions
of porosity.

Besides laser welding, the effects of the welding position have also been studied for other
welding processes, such as gas metal arc welding (GMAW), hybrid laser-arc welding (HLAW),
and electron beam (EB) welding. Kumar and Debroy [6] numerically investigated the fluid flow during
gas-metal-arc fillet welding for different various joint configurations (L and V shapes) and welding
positions (tilting angles), and revealed that workpiece orientation and welding configuration could
affect the free surface profile of the weld pool significantly, which might in turn affect the strength of the
welds. Cho et al. [7] numerically studied the molten pool behaviors in gas metal arc welding (GMAW)
of a 10-mm-thick V-groove steel plate with various welding positions (flat, overhead, and vertical).
Different trends were found for humping, overflow, and lack of penetration. Lin et al. [8-10]
investigated the molten pool behavior for all-position narrow gap GMAW of 25-mm-thick carbon steel
plates and found that the molten pool surfaces had different shapes when welding in flat, vertical
down, and overhead welding positions due to the different actions of gravity. Chen et al. [11] studied
the effects of welding position on the droplet transfer behavior during hybrid CO; laser-MAG welding
of 16-mm-thick steel and indicated that the gravity, in combination with the electromagnetic force,
would cause great differences in impacting positions, modes, dimensions, and frequencies of the
droplets for different welding positions (flat, horizontal, and vertical). The study by Koga et al. [12] on
the all-positional electron beam welding of 19-mm-thick pipeline steel plates indicated that the optimal
welding parameters were different for different welding positions, and therefore need be adjusted
appropriately during a girth welding.

Existing research work on positional welding has focused mainly on thick steels used for
construction of pipelines, and only a few of them are concerned with laser beam welding. Within
those references, the laser welding of titanium alloy sheets under different welding positions has not
been reported so far. Therefore, this research sets out to study the influence of two welding positions
(flat and horizontal) on the weld quality in terms of weld profile, porosity, and strength, when laser
welding Ti6Al4V titanium alloy. The results obtained can then be useful in process optimization when
laser welding titanium alloy components with complex joint shapes.

2. Experimental Procedures

Titanium alloy (Ti6Al4V, annealed) sheets 3 mm in thickness were used in the study, with the
chemical composition listed in Table 1. The sheets were cut into rectangular workpieces of approximately
150 mm x 300 mm. Argon with a purity of 99.998% was used as a shielding gas in all instances.

Table 1. Chemical composition of the titanium alloy Ti6Al4V sheets (wt %).

Elements Al v Fe C N H o Ti
Contents, wt % 5.8 4.0 0.2 0.05 0.03 0.011 0.19 Balance

Welding trials were performed using an IPG Photonics YLS-6000 (6 kW) Yb-fiber laser (IPG Photonics,
Oxford, MS, USA) with an output wavelength of 1070 &= 10 nm. Table 2 details the collimating and
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focusing units used and the resulting calculated laser beam profile characteristics. For all the trials
performed, the process head was mounted on a 6-axis articulated arm robot (Reis Robotics, Obernburg,

Bavaria, Germany).

Table 2. Optic combinations used in the butt welding trials.

Parameter Value
Delivery fiber core diameter, mm 0.2
Beam parameter product, mm-mrad 6
Collimating unit focal length, mm 100
Focusing unit focal length, mm 300
Beam width, mm 0.6
0.94

Rayleigh length, mm

A schematic diagram of the laser welding setup is shown in Figure 1. Three flows of shielding
gas were employed in welding. The main flow was used to protect the molten weld pool, with a rate
of 20 L/min. The trailing shielding flow was used to prevent the high temperature metals that just
solidified from oxidation, with a rate of 70 L/min. The root shielding flow was to protect the back

surface of a specimen, with a rate of 5 L/min.

Main shielding gas:

Weld direction
[ 20-25L/min

Laser beam \ |
_Shielding gas for

welding seam:
70L/min

Welding pool ,J“j
NN T

W

[RARARANQN
\Shielding gas on the back: 5L/min

TR IGIEE

|
Figure 1. Schematic diagram of the laser welding setup.
The two welding positions studied (i.e., flat and horizontal) are shown in Figure 2. For each

welding position, two sets of laser welding parameters were chosen, as listed in Table 3. In all welding
trials, the focal position of the laser beam was located on the top surface of the workpiece.

Laser beam
Laser beam

(a) Flat (b) Horizontal

Figure 2. Two welding positions studied in the study.
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Table 3. Welding parameters used in the experiments.

Welding Positions  Butt Weld Identity = Laser Power, (kW) Welding Speed, (mm/s) Heat Input (J/mm)

o FOl 22 8 275
at FO2 25 20 125
Horizontal HO1 22 8 275

orizonta Ho2 25 20 125

Close fitting butt welds were produced with welding conditions listed in Table 3. After welding,
the specimens were firstly inspected using X-ray radiography to detect any porosity in the welds.
Secondly, metallographic samples were cut from the specimen, then ground, polished and finally
etched in a solution of 2 mL of HF + 10 mL of HNOj; + 88 mL of water. The shapes and dimensions
of the welds were observed and the weld profile defects were measured with an optical microscope
(OM) (Olympus, Tokyo, Japan). For clarity, Figure 3 details the definition of the parameters and
defects relating to weld profiles. Thirdly, static tensile tests were carried out to evaluate the mechanical
properties of the welds, and fracture surfaces were examined with scanning electron microscope
(SEM) (FEI Company, Hillsboro, OR, USA) to determine the fracture features. Finally, the influences
of the two welding positions on the weld morphologies, porosity levels, and mechanical properties
were analyzed.

Ca Ca = Face undercut
ca = Root undercut
R = Excess weld metal
r = Excess penetration
L = Face weld width
| = Root weld width

$ Ca

Figure 3. Weld profile parameters and defects.

3. Results

3.1. Weld Profile Defects

The cross sections of the laser welds produced with the two sets of laser welding parameters used
are shown in Figures 4 and 5, respectively. The dimensions of weld profile defects measured for these
laser welds are listed in Tables 4 and 5.

Imm

(b)

Figure 4. Cross sections of laser welds (laser power: 2.2 kW; welding speed: 8 mm/s). (a) Flat welding;
(b) Horizontal welding.
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(b)

Figure 5. Cross sections of laser welds (laser power: 2.5 kW; traveling speed: 20 mm/s). (a) Flat
welding; (b) Horizontal welding.

Table 4. Undercuts of welds produced under different welding conditions (unit: um).

Welding Butt Weld Face Undercut Root Undercut Sum of Face and Root Undercuts
Position  Identity "y rgige  RightSide LeftSide  Right Side Left Side Right Side
) Fo1 71.1 75.8 0 0 71.1 75.8
Flat F02 116.1 101.9 0 237 116.1 1256
Hori . HO1 81.0 0 111.9 25.0 1929 25
orizonta HO02 116.0 329 465 0 162.5 329

Table 5. Excess weld metals, excess penetrations, face and root weld widths for different welding
conditions (unit: pm).

Welding Butt Weld Excess Excess Face Weld  Root Weld
Position Identity Weld Metal Penetration Width Width
) F01 11.8 252.4 6194.3 6111.4
Flat F02 86.1 314.0 3784.4 3265.4
Hori 1 HO1 255.8 100.3 6546.6 6339.7
orizonta H02 199.1 1738 4169.0 3470.7

Table 4 lists the undercuts of welds, from which it can be found that, for flat welds, the face
undercut is greater than the root undercut. Undercuts on the left side and the right side are essentially
the same, i.e., symmetrical about the weld centerline. A decrease in heat input (i.e., using 2.5 kW and
20 mm/s, instead of 2.2 kW and 8 mm/s) results in a noticeable increase in face undercut, while the
root undercut is less affected. For horizontal welds, the undercuts on the left side and the right side are
no longer symmetrical. The left side (which is on the top side during horizontal welding) is notably
larger than the right side (which is on the bottom side during welding). A decrease in the heat input
results in an increase in the face undercut but decrease in the root undercut. On the whole, flat welding
leads to larger face undercuts but smaller root undercuts than horizontal welding. With regard to the
sum of the face and root undercuts on the same side (i.e., left side or right side), it can be found that
the sum on the left side for the horizontal welds is notably larger than that on the right side, and is
also larger than both the left and right side for the flat welds.

The excess weld metal and excess penetration values are presented in Table 5. Among all
welds produced in this study, the flat welds have the least excess weld metals but noticeable excess
penetrations. Large differences exist between the excess weld metal and the excess penetration for
flat welds. The horizontal welds have larger excess metal values than excess penetration values.
The differences between the excess weld metal values and the excess penetrations are smaller than the
differences for the flat welds.
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The face and root weld widths of welds are also given in Table 5. For both sets of welding
parameters, the face and root widths for the flat welds are slightly smaller than those for the horizontal
welds. Face weld widths are larger than root weld widths for both flat welds and horizontal welds.
A decrease in the heat input results in decreases in both the face weld width and root weld width,
as would be anticipated.

3.2. Porosity in Welds

Figure 6 shows the X-ray radiographs of four laser butt welds produced with the two different
welding positions and the two different sets of welding parameters.

(b)

Figure 6. X-ray radiographs of butt welds made under flat and horizontal welding positions with
two different sets of welding parameters. (a) Flat welding (left) versus horizontal welding (right) for
2.2 kW and 8 mm/s; (b) Flat welding (left) versus horizontal welding (right) for 2.5 kW and 20 mm/s.

For welding parameters with higher heat input (Figure 6a, heat input 275 J/mm), several isolated
pores can be found along the centerline of the flat weld. By contrast, extensive chain porosity is
detected above the centerline of the corresponding horizontal weld.

For welding parameters with lower heat input (Figure 6b, 125 ]/mm), a limited amount of porosity
can be seen in the flat weld. In the horizontal weld, fine scale chain porosity is detected. The pores are
very close to each other and become indistinguishable individually, and they distribute in the upper
half part of the weld.

For a quantitative characterization, the cumulative lengths of porosity over a 100 mm weld length
were measured and are presented in Figure 7. It is confirmed that the porosity contents for the flat
weld are lower than those in the horizontal welds. For both flat and horizontal welding positions,
using higher laser power and correspondingly higher welding speed (2.5 kW, 20 mm/s) can also help
to reduce the porosity content.
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Figure 7. Cumulative lengths of porosity in welds with different welding conditions.
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3.3. Mechanical Behavior

Static tensile tests showed that, irrespective of the welding position used, specimens fractured
through the weld metals in welds with the lower heat input (2.5 kW and 20 mm/s), and through the
base metals in welds made with higher heat input (2.2 kW and 8 mm/s).

Figure 8 shows the static tensile properties of the laser welds made using four welding conditions.
It can be seen that, when a lower heat input (2.5 kW, 20 mm/s) was employed, comparable tensile
strengths and specific elongations were achieved for flat welds and horizontal welds: these welds
fractured through the base metals owing to the higher strengths of the weld metals compared to that of
the base metal. The yield strengths of the flat welds made with the higher heat input (2.2 kW, 8 mm/s)
were similar to those made with the lower heat input. By contrast, the yield strengths of the horizontal
welds decreased by about 25 MPa when the higher heat input conditions were used.

In addition, marked decreases in specific elongation could be seen in both flat and horizontal
welds when the higher energy input was used. Such deterioration in ductility was more significant for
horizontal welds than for flat welds in these cases.

1000 0O 2.2kW, 8mm/: %
. mm/s
' O 2.2kW, 8mm/s

080 o 2.5kW, 20mm/s . o 25KW, 20mms
© X
o R
= S 204
< 9601 @ t = ]
=3 2 [
s )
O 940 =
® o 10 L|IJ
i} =
2 9204 & i
> &

900 T T 0 T T

Flat Horizontal Flat Horizontal
Welding positions Welding positions
(a) (b)

Figure 8. Static tensile properties of the laser welds made using four welding conditions. (a) Yield
strength; (b) Specific elongation.

4. Discussion

4.1. Effects of Gravity on Weld Profile

Results on weld profile defects show that using the flat welding position leads to deeper undercuts
on the top side than the bottom side of the weld, while using horizontal welding position leads to
deeper undercuts on the left side (on the top side during welding) than on the right side (on the bottom
side during welding) of the weld.

These differences can be attributed to enhanced fluid flow towards the root of the weld under
the action of gravity for the flat welding position (as shown in Figure 9a); for the horizontal welding
position, gravity drives the molten metal flow from the top side of the weld toward the bottom side,
leading to necking on the top and thickening on the bottom (as shown in Figure 9b). Such a lateral flow
also contributes to horizontal welds being wider than flat welds for a given set of welding parameters.
The notable downward movement of the weld pool metal when the flat position welding also accounts
for the smaller amount of excess weld metal and larger amount of excess penetration, when compared
with horizontal welds.
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Figure 9. Schematic representation of the molten metal flow and movement of the weld pool surface
due to the action of gravity in (a) the flat position and (b) the horizontal position.

4.2. Effects of Gravity on Porosity

Porosity content results indicated that using the flat welding position will result in less porosity
when compared with the horizontal welding position. This can be attributed to the different degree of
ease with which the pores can escape from the solidifying weld pool under different welding positions.
As shown in Figure 10a, in flat welding, the pores formed in the weld pool will float upwards under
the action of melt flow and buoyancy, which has been observed using an X-ray transmission imaging
system by Katayama et al. [13,14]. Some pores can escape through the top surface of the weld pool
before it solidifies, while others that are not able to escape will remain in the welds and form porosity.
For horizontal welding, shown in Figure 10b, the pores formed also float upwards and move away
from the weld centerline. However, the uppermost surface of the weld pool is now in contact with the
unmelted base rather than free space. This restricts those pores from escaping; consequently, almost all
end up entrapped within the weld bead. Therefore, a high porosity content, located above the weld
centerline, exists within the horizontal welds, as revealed in Figure 6, which is also visible from the
cross section of the horizontal weld shown in Figure 4b.

Furthermore, the final amount of porosity in a weld, especially when horizontal welding, will
depend on the amount of pores formed during welding, which is closely related to the stability of
the keyhole and the fluid flow characteristics in the weld pool. Results (Figure 6) show that higher
power (2.5 kW) at higher welding speed (20 mm/s) result in less porosity compared with lower power
(2.2 kW) at lower speed (8 mm/s). This agrees with results reported previously [15], which indicated
through computational fluid dynamic (CFD) modeling that the fluid flow behind the keyhole can be
quite unstable, and vortices and pores can form, particularly more so when using lower power and
lower welding speed conditions. In contrast, when using higher power and welding speed conditions,
CFD modelling predicted that the fluid flow would be less unstable, and fewer pores would result.
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Figure 10. Schematic diagrams showing the movement of pores for (a) the flat position and (b) the
horizontal position welding.

4.3. Effects of Welding Position on Static Tensile Properties

For laser welds made in Ti6Al4V, weld toe undercuts may result in high stress concentrations,
which in turn lead to crack initiation and propagation during tensile testing [16]. This seems true in
this work in the case of the horizontal welds made with higher heat input (2.2 kW, 8 mm/s), which had
the largest undercut. However, this was not the case for the flat welds made with the same heat input,
which still also fractured through the weld metal, in spite of their smaller undercuts (ref. Table 4).
Evidently, the fracture position is determined not only by the degree of undercut but also other factors.
It has been indicated that higher heat input will make the microstructure in the (martensitic) weld
coarser, which then gives a lower toughness and a greater tendency toward cracking [16]. This could
explain why all of the welds produced with a higher heat input failed through the weld metal, while
those made with lower heat input failed through the base metal.

For welding conditions with higher heat input (2.2 kW, 8 mm/s), a greater amount of porosity is
formed (ref. Figure 6), and this may also deteriorate weld strength. This strength deterioration is not
noted in flat welds, because their porosity levels are low overall. By contrast, a great number of pores
are entrapped in horizontal welds, which could then explain the notable decrease in weld strength.
Figure 11 shows the comparative fractographs of a horizontal and a flat weld, both made with higher
heat inputs. As Figure 11 shows, large pores are seen in the fracture face of the horizontal weld, while
porosity is not detected in that of the flat weld.

Irrespective of welding position, all welds that fractured through the base metal had greater
ductility than those that fractured through the weld metal. This is because the martensite of the
weld metal has worse ductility than the phases (x + [3) of the base metal Ti6Al4V, as previously
reported [17-23]. In addition, as porosity is to the detriment of the ductility of welds when its amount
reaches a certain limit [24], the great amount of porosity present in the horizontal welds could make
the ductility even worse.
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Figure 11. Fractographs of the horizontal weld (a) and the flat weld (b) made with higher heat input
(2.2 kW, 8 mm/s).

5. Conclusions

The following conclusions have been drawn from work carried out:

(1) For flat welds, face undercut was larger than root undercut; for horizontal welds, the undercut
on the left side (top side during welding) side was larger than that on the right side (bottom side
during welding).

(2) The excess penetration was greater than the excess weld metal for the flat welds, while for the
horizontal welds, the excess penetration was smaller than the excess weld metal. For the same
laser welding parameters, the horizontal welds were wider than the flat welds.

(3) The horizontal welding position resulted in higher weld metal porosity contents than the flat
welding position, because there were fewer routes for pores to escape from the weld pool during
horizontal welding. The pores were located in the center plane of the flat welds, and above the
center plane of the horizontal welds.

(4) Inthe welds investigated, the undercuts did not show an association with the fracture positions
nor the strengths in static tensile testing, although excessive porosity in laser welds did lead to
significant decreases in their strength and specific elongation.

(5) Compared with a horizontal welding position, the flat welding position led to better weld
formation, less porosity, and higher tensile strength. For both flat and horizontal welding
positions, it is recommended to use higher laser powers and welding speeds to reduce weld
porosity and improve the mechanical properties of laser welds in Ti6Al4V alloys.
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Abstract: Stainless steel powders with different molybdenum (Mo) contents were deposited on the
substrate surface of 45 steel using a 6 kW fiber laser. The microstructure, phase, microhardness,
wear properties, and corrosion resistance of coatings with different Mo contents were studied by
scanning electron microscopy (SEM), electron probe microanalyzer (EPMA), X-ray diffraction (XRD),
microhardness tester, wear tester, and electrochemical techniques. The results show that good
metallurgical bonding was achieved between the stainless steel coating and the substrate. The amount
of My(C, B); type borocarbide decreases and that of M,B and Mp3(C, B)s type borocarbides increases
with the increase of Mo content in the coatings. The amount of martensite decreases, while the
amount of ferrite gradually increases with the increase of Mo content. When the Mo content is M,
Mo, C phase appears in the coating. The microstructure of the coating containing Mo is finer than that
of the Mo-free coating. The microhardness decreases and the wear resistance of the coating gradually
improves with the increase of Mo content. The wear resistance of the 6.0 wt. % Mo coating is about
3.7 times that of the Mo-free coating. With the increase of Mo content, the corrosion resistance of the
coating firstly increases and then decreases. When the Mo content is 2.0 wt. %, the coating has the
best corrosion resistance.

Keywords: laser cladding; stainless steel powder; Mo content; microstructure; wear resistance;
corrosion resistance

1. Introduction

Carbon steel and low alloy steel, which have a high strength, good processing performance, and
low price, are widely used in marine environments [1,2]. Due to the complex environment of the
ocean, some damage will inevitably occur on the surfaces of steels. The main failure ways of steel
surfaces include wear, corrosion, and oxidation [3-5]. Hence, surface modification technologies are
necessary to improve the performance of steel parts. The coatings cladded on the surface of steels can
greatly improve the service life of steel facilities in the ocean, which have a significant influence on the
reliability of offshore steel components and can enhance the economic efficiency of the ocean [6].

Laser cladding technology is a new kind of surface modification technology. Coatings with
specific properties can be obtained by melting alloy powder on the surface of a substrate through a laser
beam [7]. Compared to the traditional surface modification technologies such as surfacing welding,
thermal spraying, etc., the laser cladding process can control the heat input more precisely, has basically
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no limits on the alloy powders that can be used, and is suitable for flexible processing. The coatings by
laser cladding have a dense microstructure, lower dilution rate, and less thermal deformation [8-11].
In addition, laser cladding has high material utilization and low energy consumption, and it is
considered as an environmentally friendly materials processing technology. Therefore, the laser
cladding has been widely studied and used for surface modification in recent years [12]. Tan et al. [13]
researched the effect of different Al/Fe,O3 thermite reactants on the Fe-based coating in laser cladding.
The results showed that Al,O3; ceramic and M;C3 type carbide were in situ synthesized by laser
cladding. With the increase of thermite reactants, the amount of Al;O3 ceramic and M;Cj3 carbide in
the coatings increased gradually. The microhardness and the wear resistance of the coatings could
be improved when increasing the amount of thermite reactant. Ray et al. [14] used three different
Ni-based alloy powders to strengthen the surface of a continuous casting roller by laser cladding.
The on-line results showed that the continuous casting roller exhibited a better performance after being
reinforced by the laser cladding.

Powders used in laser cladding mainly include Fe-based, Ni-based, and Co-based alloy
powders [15-17]. The Fe-based alloy is widely available and inexpensive, and it is the most widely
used material in industrial production [18]. A good wetting performance and high bonding strength
can be achieved between the coating and substrate by using Fe-based alloy powders on the surface of
steel substrates in laser cladding [19-21]. Wang et al. [22] prepared an FeCrBSi coating on the surface
of 45 steel by laser cladding. The toughness of the coating was improved and the crack tendency was
reduced by increasing the Cr content. The average microhardnesses varied from 760 to 950 HV. Adding a
specific alloy component in the alloy powder could further improve the properties of the laser cladding
layer [23]. Incorporating hard particles like WC [24], VC [25], TiC [26], and TiB [27] in the coating could
improve the wear resistance of the coating. Rare earth elements like CeO; [28] and Y,03 [29] could refine
the grain and improve the properties of the coating. Mo could refine the grain, increase the toughness,
enhance the plasticity, and reduce the crack sensitivity of the coating, and was beneficial for improving
the performance of the coating [30,31]. Ding et al. [32] studied the effect of Mo on the microstructure and
wear resistance of laser cladded Ni-based alloys on Q235 steel. The results indicated that Mo could refine
grains and synthesize polygonal equiaxed grains. The microhardness and wear resistance of Ni-based
coatings were improved greatly by the addition of a moderate amount of Mo.

Although the beneficial effect of Mo on the coating has already been demonstrated for some alloy
powders, the influence of Mo content on the performance of the laser cladded coating of the stainless
steel alloy powder has not been well investigated up to date. In this paper, the stainless steel coatings
with different Mo contents were laser cladded on the surface of 45 steel, and the microstructure,
hardness, wear resistance, and corrosion resistance of the coatings were studied. The obtained results
could provide theoretical guidance for the industrial applications of stainless steel coatings.

2. Materials and Methods

2.1. Specimen Preparation

Laser cladding was carried out using a fiber laser cladding system, which consisted of an IPG
YLS-6000 fiber laser (IPG Photonics Corporation, Oxford, MA, USA), powder feeding system, cooling
system, and control system. The laser head was integrated with an ABB-4600(Asea Brown Boveri)robot
(Asea Brown Boveri Ltd., Zurich, Switzerland). A DPSF-2 powder feeding system (Beijing Institute
of Aeronautical Manufacturing, Beijing China) and a coaxial nozzle (HIGHYAG Corporation, Berlin,
Germany) were used to feed powders into the molten pool by argon gas. The gas flow was 15 L/min
and the purity of argon gas was > 99.9%. The substrate material was 45 steel (Baosteel Corporation,
Shanghai, China). The nominal composition of the 45 steel plate is shown in Table 1. The dimension of
the specimen was 150 mm x 150 mm X 12 mm. The surface of the substrate was abraded on SiC grit
paper (Suzhou suboli grinding material Co. Ltd, Suzhou, China) with the mesh of 200 # and 400 #, and
acetone was then used to clean the surface of the substrate before the experiment. The cladding alloy
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material was 431 stainless steel alloy powder (Hogands Corporation, Skane, Sweden) with a particle
size of 50-105 um, and the nominal composition of 431 stainless steel alloy powder is shown in Table 1.
The Molybdenum element for the experiment was provided by Mo-Fe powder (Qinghe Xinbao Alloy
Material Co., Ltd, Xingtai, China). The composition of Mo-Fe powder is as follows: 50.30 wt. % Mo,
0.37 wt. % C, 0.031 wt. % P, 0.016 wt. % S, Fe: Bal. The size of the Mo-Fe powder was less than 50 pm.
In this paper, the Mo-Fe powder with the mass fraction of 4%, 8% and 12% was mixed with 431 alloy
powder, and the Mo content in the composite powder was 2%, 4%, and 6%, respectively. In order to
ensure that the powder was mixed evenly, the composite powders were mixed using the ball mill
(Changsha planetary machinery and equipment factory, Changsha, China). The milling speed was
160 r/min and milling time was 11 h. The size and morphology of the 431 and Mo-Fe powders were
basically not changed by the ball milling process. The powders were placed in a drying stove (Suzhou
Jiangdong precision instruments Co., Ltd., Suzhou, China) and dried at 100 °C for about 2 h before the
laser cladding experiments.

Table 1. Chemical composition of the 45 steel substrate and 431 stainless steel alloy powder (wt. %).

Element C Cr Ni Si Mn B Co Fe

45 steel 0.44 0.15 0.15 0.24 0.69 - - Bal.
431 powder 0.19 18.44 2.40 0.75 0.26 0.87 0.53 Bal.

On the basis of previous experiments [33,34], the laser cladding process parameters were chosen as
follows: the laser power, the scanning speed, and the feeding powder rate were 2000 W, 240 mm/min,
and 15 g/min, respectively. Specimens for metallographic examinations were cut, ground, and
polished according to standard procedures and etched with a solution consisting of HCI (3 mL) (Beijing
Chemical Works, Beijing, China) and HNO3 (1 mL) (Beijing Chemical Works, Beijing, China) for 50 s.
After the completion of etching, the residual etching solution was washed with water, and the surface
was then dried with a blower (PHILIPS, Amsterdam, Netherlands).

2.2. Microstructure Observation

The microstructure of the coating was investigated by an OLYMPUS BX51 optical metallographic
microscope (OM) (OLYMPUS Corporation, Tokyo, Japan) and Quanta FEG650 scanning electron
microscope (SEM) (FEI Company, Hillsboro, OR, USA). Element distributions were analyzed by energy
disperse spectroscopy (EDS) (FEI Company, Hillsboro, OR, USA) and an electron probe microanalyzer
(EPMA) (SHIMADZU Corporation, Kyoto, Japan). The phase identification of the coatings was carried
out on a Shimadzu XRD-7000 X-ray diffractometer (XRD) (SHIMADZU Corporation, Kyoto, Japan).
The detailed parameters of XRD were as follows: Cu-K« radiation at 40 kV and 200 mA as an X-ray
source. Specimens were scanned in the 26 range of 20°~80° in a step-scan mode (0.02° per step).

2.3. Hardness and Wear Resistance Test

The microhardness of the coating was measured by a MICRO MET-5103 digital microhardness
tester (Shanghai Nazhi Electronic Technology Co., Ltd, Shanghai, China) with a load of 5 N and holding
time for 10 s. Each sample was measured and the microhardness of the coating was the average of
ten measurements.

The wear test was carried out on an M-200 wear test machine, of which the schematic diagram is
shown in Figure 1. The size of the sample was 10 mm x 10 mm x 12 mm and the grinding ring material
was GCr15 steel (its chemical composition: 1.03% C, 1.49% Cr, 0.35% Mn, 0.27% Si). The hardness
of GCr15 steel was 60.5 HRC. The detailed measuring parameters of the wear test were as follows:
the test load 294 N, the test machine speed 200 rpm, the experiment temperature 20 °C, the test time
30 min. The weight loss of the sample was weighed by TG328B balance (Shanghai Liangping Co.,
Ltd , Shanghai, China). The weighing range and the precision of the balance were 200 g and 0.1 mg,
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respectively the wear resistance of the coating was the ratio of wear time/weight loss. The greater
the value, the better the wear resistance of the coating. The microstructure of the worn surface was
investigated by Quanta FEG650 SEM.

Figure 1. Schematic diagram of wear tester. 1—Rotating ring, 2—The coating, 3—45 steel
substrate, 4—Load.

2.4. Electrochemical Corrosion

The surfaces of the coating were machined to a size of 12 mm x 12 mm using a wire cutting
machine, and were then well polished. Electrochemical measurements in 3.5% NaCl (Beijing Chemical
Works, Beijing, China) solutions were carried out on an electrochemical workstation (Parstat 2273,
AMETEK, Berwyn, PA, USA) at 25 °C. The potentiodynamic polarization curves were measured at
a scanning speed of 0.5 mV/s from —1.0 to 0.5 V. The conventional three-electrode cell was used,
with the coating or matrix sample as the working electrode, the Ag/AgCl electrode as the reference
electrode, and the platinum electrode as the counter electrode.

3. Results and Discussion

3.1. Microstructure Analysis

In order to identify the phase composition of the coatings with different Mo contents, XRD
analysis were conducted on the coating. The XRD spectra are presented in Figure 2. With the increase
of Mo content, the phases in the coating are changed and the intensity of the diffraction peak becomes
weaker. The phases in the Mo-free coating are x-Fe, MB (M = Fe, Ni), My3(C, B)s, and M7(C, B)s.
Another x-Fe peak appears near the main peak when Mo is added into the coating. The intensity of
the peak gradually increases with the increase of Mo content. When the Mo content is 4.0 wt. %, Mo,C
phase appears in the coating. With the increase of Mo content, the amount of My(C, B); decreases
gradually, and the amount of M, B, M3(C, B)s, and Mo,C gradually increases.

Figure 3 shows the metallographic microstructure of the coating. It can be seen from the bottom part
of the coating (Figure 3a,c) that a light line is formed between the coating and the substrate. The light line
is the fusion that grows mainly in the form of planar grains. The fusion line indicates a good metallurgical
bonding between the substrate and the coating. During the solidification process, the microstructure of
the coating is mainly determined by the ratio (G/R) of the temperature gradient (G) and solidification
rate (R) [35]. The temperature gradient (G) is high and the solidification rate (R) is very low at the bottom
of the molten pool, so the ratio of G/R is relatively large and the solidification structure grows as planar
grains [36]. With the increase of distance from the fusion line, the temperature gradient (G) decreases and
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the solidification rate (R) increases, so that the G/R value is reduced, and the microstructure of the coating
is transformed from planar grains to cell grains, dendrites, and equiaxed grains [37].
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Figure 2. XRD spectrums of coatings: (a) Mo-free; (b) 2.0 wt. % Mo; (c) 4.0 wt. % Mo; (d) 6.0 wt. % Mo.

Figure 3. Optical micrographs of the coating: (a) The bottom part of the Mo-free coating; (b) The upper

part of the Mo-free coating; (c) The bottom part of the 4.0 wt. % Mo coating; (d) The upper part of the
4.0 wt. % Mo coating.

Figure 4 shows the scanning electron micrographs of the coating with different Mo contents. It can
be seen from Figure 4 that the coating is mainly composed of a netlike eutectic structure, small granular
eutectic structure, and dendrite matrix. During the solidification process, the dendrite matrix is firstly
precipitated from the liquid phase, and then the eutectic structure between the dendrites is formed
through the eutectic reaction in the remaining liquid phase. The size of the dendrite is obviously refined
with the increase of Mo content from 0 to 6.0 wt. %, as shown in Figure 4. The sizes of the dendrite
are measured by Image Pro-plus 6.0 software, and the average sizes of dendrites in the coatings of
Mo-free, 2.0 wt. % Mo, 4.0 wt. % Mo, and 6.0 wt. % Mo are 7.9 um, 6.5 um, 4.4 pm, and 3.9 um,
respectively. This may result from the addition of Mo, which affects the nucleation process of the
coating [38]. On the one hand, the Mo element can prevent the growth of austenite, which can refine the
structure of the coating. On the other hand, part of Mo can dissolve in the coating, which results in lattice
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distortion. The compositions of netlike eutectic structure 1, the dendrite structure 2, and the granular
eutectic structure 3 with the addition of 4.0 wt. % Mo content (Figure 4c) are analyzed by EPMA point
scanning. The results are shown in Table 2. The EPMA results show that the contents of Cr, B, and C
in the eutectic structure are relatively high. Combined with XRD results, it can be concluded that the
netlike eutectic structures are mainly composed of MB and My(C, B)3. The content of Fe in the dentrite
is the highest, indicating that the dentrite structures are mainly composed of martensite and ferrite.
From Figure 4 it can also be seen that the amount of martensite decreases, while the amount of ferrite
gradually increases with the increase of Mo content. This is because Mo can promote the formation of
ferrite [39]. Dendrite 2 contains a certain amount of Cr, which can strengthen the matrix by solid solution
strengthening [40]. According to the EPMA and XRD results, the content of C in the granular eutectic
structure is higher, and the granular eutectic structure is therefore identified as Mp3(C, B)e.

o ) L
Granular eutecticis

Figure 4. Microstructure of coatings with different Mo content: (a) Mo-free; (b) 2.0 wt. % Mo;
(c) 4.0 wt. % Mo; (d) 6.0 wt. % Mo.

Table 2. The electron probe microanalyzer (EPMA) results of the point scan (wt. %).

Point Cr C B Mo Ni Si Fe
1 19.978 4.877 4.789 4.674 1.910 0.428 63.344
2 15.336 2.606 - 1.801 1.937 0.783 77.537
3 14.224 11.034 0.139 1.780 1.697 0.779 70.347

Figure 5 presents the mapping scanning results of 4.0 wt. % Mo coating. It shows that the
microstructures are inhomogeneous due to the severe elemental segregation that occurs during
solidification. As can be seen from Figure 5b, e, f, the Ni, Fe, and Si elements are evenly distributed in
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the matrix phase. The Mo, Cr, and C elements (showed in Figure 5c,d,g, respectively) are rich at the grain
boundaries, which indicates that the microstructures of the grain boundaries are primarily carbides of
Mo and Cr. EDS component analyses were done in this area, and the relative contents (wt. %) of the
composition calculated are as follows: 72.7% Fe, 15.2% Cr, 4.6% Mo, 5.2% C, 0.7% Si, and 1.6% Ni.

Figure 5. Cont.
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Figure 5. The mapping scanning results of the 4 wt. % Mo coating: (a) surface scan diagram (b) Fe;
(c) Cr; (d) Mo; (e) Si; (f) Ni; (g) C.

3.2. Hardness Analysis

Figure 6 shows the morphology of the 4.0 wt. % Mo coating after the microhardness test.
The size of the thombus is basically the same, which indicates that the hardness distribution in
the coating is uniform. The coating has good ductility because there are no obvious cracks around the
indentations [41].

100 pym
—

Figure 6. Hardness indentation morphology of the coating (4.0 wt. % Mo).

The microhardness test results of the coatings with different Mo contents are shown in Figure 7.
The microhardness decreases with the increase of Mo content in the coatings. The microhardness
of the 6.0 wt. % Mo coating is 288.0 HV, which is about half of the microhardness of the Mo-free
coating. The XRD results show that the amount of M3(C, B)s increases and the contents of My(C, B)3
decrease with the addition of the Mo element. The microstructure analyses show that the martensite
decreases and the ferrite increases gradually with the increase of Mo content in the coating. It is
known from the literature that the microhardness of martensite is 525.4 HV and the microhardness of
ferrite is 235.1 HV [42]. The microhardness of Cry3Cq is 13.2 GPa and the microhardness of Cr;C3 is
18.3 GPa [43]. Therefore, the microhardness of the coating decreases gradually with the increase of
Mo content.
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Figure 7. Effect of Mo content on the microhardness of the coating.

3.3. Wear Resistance

The wear loss and wear resistance of the coatings with different Mo contents are shown in Figure 8.
The wear loss of the coatings decreases gradually with the increase of Mo content. The wear resistance
of the 6.0 wt. % Mo coating is the best, which is about 3.7 times of that of Mo-free coating. Obviously,
the addition of Mo in the stainless steel powder can greatly improve the wear resistance of the coatings.
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Figure 8. Effect of Mo content on the wear loss and wear resistance of the coatings.

To reveal the wear mechanism of the coatings with different Mo contents, the worn morphologies
of the coatings are observed by SEM, as shown in Figure 9. The worn surface of the Mo-free coating
(Figure 9a) has a large number of deep furrows, which are typical features caused by abrasive wear.
When the contents of Mo are 2 wt. % and 4 wt. % (Figure 9b,c), the depths of the furrows are reduced
and the amount of debris is gradually increased. Both abrasive wear and adhesive wear exist for these
two cases. When the Mo content is increased to 6 wt. %, there is no furrow on the worn surface, but
there is a large amount of debris. The main wear mechanism is adhesive wear. From the above analysis
we can see that when the Mo content in the stainless steel coating increases, the wear mechanism of
the coating changes from abrasive wear to adhesive wear.
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In summary, the wear resistance of the stainless steel coating can be improved by adding the Mo
element. The main reasons for the increase of wear resistance of the coatings are as follows. First, from
the microstructure analysis it can be seen that the addition of Mo will refine the microstructure of
the coatings, which can improve the wear resistance of the coating [44]. Second, the addition of Mo
can change the phase types of the stainless steel coatings from the XRD results. Mo,C hard phase is
formed when the Mo content is greater than 4 wt. %. Therefore, the wear resistance of the coatings can
be effectively improved with the increase of Mo [45]. Third, a higher hardness generally represents a
higher brittleness and lower ductility, and the lower hardness shown in Figure 6 therefore represents
a ductility of the coating when Mo is added [46]. With the increase of Mo content, the hardness of
the coating will decreases, and the ductility will increase. The increase of ductility will increase the
wear resistance of the coatings [47]. Fourth, it is found from the worn morphologies that the depths
of the furrows on the coating surfaces gradually decrease while the amounts of debris increase with
the increase of Mo content. Such changes indicate that the wear mechanism is changed from abrasive
wear to adhesive wear with the increase of Mo content. Therefore, the wear resistance of the coating is
improved with the increase of Mo content.

|

debris |

furro

debris.

Figure 9. Worn surfaces of laser cladding coatings with different Mo contents: (a) Mo-free;
(b) 2.0 wt. % Mo; (c) 4.0 wt. % Mo; (d) 6.0 wt. % Mo.

3.4. Electrochemical Test Analysis

The potentiodynamic polarization curves of the coatings with different Mo contents and 45 steel
substrate are shown in Figure 10. The potential for all of the coatings is higher than that of the
45 steel substrate, which indicates that the corrosion resistance of the 45 steel substrate is significantly
improved by the coatings. Laser cladding is a rapid heating and cooling process. From the XRD
results, it can be seen that complex chemical reactions take place and new phases generate during
the solidification process. The addition of Mo will refine the microstructure of the coatings, which
can improve the corrosion resistance of the coating. With the increase of Mo content in the coatings,
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the potential first increases and then decreases. The coating with 2.0 wt. % Mo has the best corrosion
resistance. The reasons are as follows. When the corrosion test is carried out in NaCl solution, the C1~
will be adsorbed on the surface of the coating, which can react with the metal ion and form soluble
chloride. This process can break the surface of the coating, and result in the formation of pitting (i.e.,
corrosion) on the surface of the coating. The addition of Mo can lead to a passivation phenomenon and
greatly improve the pitting resistance of the coating [48]. When a certain amount of Mo is added in the
coating, it can form a passivation film on the surface of the coating, which hinders the C1~ entering the
coating. So the pitting of the coating reduces and the corrosion resistance improves. When the Mo
content is too high, the corrosion resistance decreases. Through the mapping scanning analysis, it can
be seen that the Mo element is mainly enriched at the grain boundaries. Such an uneven distribution
reduces the corrosion resistance of the coating.

0.1

2wt.%Mo

0.0+ Owt.%Mo

0.1 4wt.%Mo

-0, 2_. 6wt.%Mo
034
04
@5:

) 45 steel
-0.6

Potential /V vs Ag/AgCl electrode

-0.74

-0.8 -

lg I /(Alem’)

Figure 10. Potentiodynamic polarization curves of the substrate and four coatings with different
Mo contents.

4. Conclusions

The stainless steel coatings with different Mo contents were prepared on the surface of a 45 steel
substrate by laser cladding. The following conclusions can be obtained.

(1)  With the increase of Mo content, the amount of My(C, B); decreases gradually, while the amount
of MB, M3(C, B)g, and Mo,C gradually increases. When the Mo content is 4.0 wt. % and above,
Mo, C phase appears in the coating.

(2) The microstructure of the coatings is transformed from planar crystals to cell crystals, dendrites,
and equiaxed crystals with the increase of distance from the fusion line. The amount of martensite
decreases, while the amount of ferrite gradually increases with the increase of Mo content.

(3) The microhardness decreases and the wear resistance of the coatings gradually increases with the
increase of Mo content. The wear resistance of the 6.0 wt. % Mo coating is about 3.7 times that of
the Mo-free coating.

(4) The corrosion resistance of the 45 steel substrate is significantly improved by the laser cladding
coating. With the increase of Mo content, the corrosion resistance of the coating first increases
and then decreases. The coating with 2.0 wt. % Mo has the best corrosion resistance.
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