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1. Introduction

The intensification of global water cycle, associated with anthropogenic climate change,
is affecting the characteristics of hydrologic extreme events throughout the world. With
the increases in the intensity of extreme precipitation, persistent low precipitation and
evaporative water demand at different spatial and temporal scales, hydrologic extremes
(floods and droughts) have become more likely and more severe in many regions [1,2]. The
changes in precipitation and evapotranspiration rates are projected to continue and intensify
in a warmer future, and further exacerbate the risks associated with floods and droughts.
In snow-dominated regions of the world, hydrologic extremes are further influenced by the
transitions from snow towards rainfall-dominated regimes [3], along with exceptionally
low snow conditions or snow drought [4] and changes in the frequency and severity of
rain-on-snow conditions [5]. Additionally, the risks associated with the climate-induced
changes in extremes could be exacerbated by the direct human impacts, such as floodplain
development and land use change in some river basins. Thus, understanding the historical
and future trajectories of hydrologic extremes is crucial for water resources and disaster risk
management, such as reservoir storage management and flood and drought preparedness,
as well as planning for adaptation measures.

In this context, the nonstationarity of hydrologic extremes is highly relevant, as it
can significantly alter the magnitude and frequency of extreme events [6,7]. Furthermore,
hydrologic extremes often result from a combination of interacting physical processes,
referred to as compound events, and risk assessment methods that consider a single driver
and/or hazard in isolation can potentially lead to an underestimation of the associated
risks [8]. However, addressing nonstationarity and compound events pose a number of
challenges, such as selecting an appropriate modelling strategy, handling uncertainties,
and understanding and communicating the associated concepts and risks.

This Special Issue comprises a collection of 11 papers that provide advances in various
aspects of climate change impacts on hydrologic extremes, including both drivers (temper-
ature, precipitation and snow) and effects (peak flow, low flow, water temperature). The
studies cover a broad range of topics on hydrologic extremes, including hydro-climatic con-
trols, trends, homogeneity, nonstationarity, compound events and associated uncertainties,
over both historical and future climates.

2. Summary of This Special Issue

Precipitation is a main driver of hydrologic extremes, and future changes in precipi-
tation indices can be expected to have implications on both floods and droughts. In this
respect, Khoi et al. [9] analyzed spatio-temporal changes in the intensity, duration and
frequency of maximum and minimum precipitation over Ho Chi Minh City, Vietnam. The
projections from statistically downscaled Global Climate Models (GCMs) from the Coupled
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Model Intercomparison Project 5 (CMIP5) representative concentration pathways (RCP)
8.5 ensemble indicated generally increasing future trends in most extreme indices, with
more statistically significant trends and higher rate of increases for the intermediate future
period (2051–2080) compared to the near future period (2021–2050). They also found higher
trends and more statistically significant increases in the extreme precipitation intensity and
frequency indices than the duration indices.

Arctic and subarctic regions of the world have been experiencing enhanced hydrologic
changes in response to the amplified warming and moisture transport to the region. In
this respect, Shrestha et al. [10] analyzed historical trends in annual mean flow, minimum
flow, maximum flow and its timing for stations across the permafrost region of Canada.
The results revealed significant warming for the majority of stations over both cold and
warm seasons, and precipitation increases for some of the stations. In response, nearly
half of stations exhibited significant minimum flow increases, while the number stations
with significant trends in mean flow, maximum flow and its timing were relatively smaller.
Further, by using a multiple linear regression (MLR) framework, they showed the dominant
controls of precipitation on mean and maximum flow, and temperature on minimum flow.

In snow-dominated regions, the change in volume, extent and duration of snowpack
can be expected to have considerable effects on the streamflow extreme response. To this
end, Wagner et al. [11] analyzed trends of temperature, snow water equivalent (SWE) and
streamflow extremes for selected rivers in the Yakima River Basin in the Pacific Northwest
US. They found increasing trends in winter air temperature, accompanied by decreasing
trends in SWE accumulation and a shift to an earlier peak SWE. The implications of these
changes were reflected in streamflow extremes in terms of increase in winter maximum
streamflow and decrease in summer maximum and minimum streamflow. Future projec-
tions indicated a continuation of the historical patterns that lead to above freezing winter
temperatures at most stations by 2060, and a transition of the basin to rain-dominant
hydrologic regime. Furthermore, Dibike et al. [12] investigated the spatial variations and
relative importance of precipitation, temperature and SWE drivers on annual maximum
flow and mean spring flow across snow-dominated river basins of western Canada. By
using a MLR framework, they found that the annual maximum SWE is the most important
predictor of both flow variables. They also analyzed the ability of the MLR model to project
future streamflow changes by comparing with the previous studies in the region that used
process-based hydrological models. The results were both consistent and inconsistent, and
they urged caution in using regression models for future hydrologic projections.

Studying a rainfall dominated basin in Malaysia, Tan et al. [13] quantified the pro-
jected impacts of climate change on hydrological extreme flows and environmental flow
components using a large set of indicators. They showed increases in future projections
of precipitation, streamflow, maximum and minimum temperature across the basin based
on a hydrological model driven by bias-adjusted CMIP6 GCM simulations. Overall, ex-
treme high flows showed more sensitivity to changes in climatic factors compared to the
normal and low flows. Further, they highlighted the different behavior of simulated future
hydroclimatic extremes based on high- and low-resolution model outputs.

In the context of compound hydrologic extremes, Bennett et al. [14] investigated
changes in concurrent extreme events (heat wave, drought, low flow and flood) in the
Colorado River basin under historical-to-future (1970–1999, 2070–2099) RCP8.5 scenario.
They projected increases in the future intensity and magnitude of concurrent events within
critical regions of the basin, with temperature-driven extremes (heatwaves and drought)
strongest and spatially coherent, and precipitation-driven extremes (flooding and low
flows) less strong and more spatially variable across the basin. They also found an increase
in the magnitude of all concurrent events from synoptic (5 days) to annual time scales,
ranging from large increases for heatwaves and drought, to a smaller increase for low
flows. Heatwave also affects glacier runoff and river water temperature, which was
analyzed by Pelto et al. [15] using glacier runoff, discharge and water temperature records
from the recent late summer heatwave events in the Nooksack river basin, located at the
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northwestern US–Canada border. The results indicated variable increases in discharge
and water temperature across different areas of the basin in response to heatwave driven
glacier runoff that account for about a third of total discharge. For the heavily glaciated
northern sub-basin, discharge increase was relatively larger and water temperature increase
was relatively smaller compared to the unglaciated southern sub-basin. With the ongoing
glacier area loss and declining glacier runoff, the study suggested increased frequency of
low flow extremes and high water temperatures that could exceed the tolerance levels of
aquatic species.

Wang et al. [16] assessed the compounding effects of riverine and coastal flooding, the
impacts of climate change on the corresponding drivers and the associated uncertainties,
at Stephenville Crossing, a coastal-estuarine region in eastern Canada. They setup and
calibrated a two-dimensional hydraulic model that combined with a hydrological model
was applied to determine historical and projected flood characteristics (such as depths
and extent) under various scenarios. The results suggested possible underestimations
of future flood risks associated with projected intensity–duration–frequency curves gen-
erated based on statistically downscaled GCMs compared with the ones derived from
convection-permitting regional climate model simulations. Temporal patterns of storm
events had a major impact on flood characteristics and therefore design storm method can
be considered a main source of uncertainty. Future increases in both drivers of flooding can
further exacerbate the impacts of their concurrent occurrences. Besides, through a bivariate
statistical analysis they showed the underestimations of compound flood risks when the
interdependencies between driving mechanisms were not considered.

Nonstationarity of the hydroclimatic factors can lead to projected increases in the
frequency and severity of floods and droughts, and subsequently challenge water resources
management. In this respect, Xie et al. [17] developed a framework to consider differ-
ent driving factors for nonstationary design flood volume estimation and represent the
nonstationary spatial correlation of the flood events. Studying the cascade reservoirs in
the Han River basin in China, they showed the long-term impacts of climate change and
population growth on the regional hydrological characteristics, and subsequently the flood
risks that can be misrepresented by the traditional design flood estimation methods base on
stationarity assumption. They also found that the cascade reservoir regulation can reduce
flow peaks and decrease flood volumes. Pasek and Marton [18] assessed the functional
water volumes of a reservoir in Czech Republic during extreme hydrological conditions.
They evaluated the uncertainties associated with the input variables including water in-
flows, hydrographs, bathymetric curves, and water losses due to evaporation and dam
seepage. To design the functional volumes of multi-purpose reservoir and characterize the
uncertainties, they linked a simulation-optimization model of the reservoir, to determine
the optimal storage volume, with a simulation model that transforms the flood discharge
and determines the retention volume of the reservoir. The study highlighted the significant
effects of uncertainties in the storage volume and retention volume estimations, and the
importance of considering climate change uncertainties and nonstationary flow conditions
for reservoir management.

Regional flood frequency analysis (RFA) is a widely recognized approach to tackle
the limitations associated with data availability at specific locations for flood quantile
estimations for structure/infrastructure design. Identification of homogenous flood regions
is a common RFA step prior to pooling flood information between similar catchments.
Zhang and Stadnyk [19] evaluated multiple attributes, including geographic proximity,
flood seasonality, physiographic variables, monthly precipitation and temperature pat-
terns, to identify homogenous regions for RFA at 186 sites across Canada. They showed
that the identification of homogenous regions relies on local hydrological complexities,
representation of the primary flood mechanisms and geographic clustering of the sites.
Catchments across eastern Canada form small geographic regions while areas in northern
Canada, that are snowmelt dominated, are sensitive to temperature variations signifying
the importance of monthly temperature pattern. They also found that the identification of
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homogenous regions can be a challenge across the Prairies and western Canada due the
complex physiographic characteristics.

3. Conclusions

The intensification of global water cycle is affecting climate and hydrologic extreme in
different regions of the world and this Special Issue provides critical information towards
understanding the historical and projected future changes. The studies covered regions
in Asia, Europe and North America, and included a range of precipitation, temperature,
snow and streamflow extreme variables. The papers also demonstrated an intensification
of the precipitation, temperature and streamflow extremes in the future climate, and as
well as their relative controls and interactions. For snow-dominated regions, the studies
highlighted the role of decreasing snowpack volume on both winter and spring maximum
flow. The papers also emphasized the compounding effects of climate and hydrologic
extremes, for example, temperature-driven (heatwaves, drought and elevated water tem-
perature) and precipitation-driven (flooding) concurrent extremes, and their implications
on water resources management. Additionally, the studies highlighted the importance of
considering hydro-climatic nonstationarity and associated uncertainties in water resources
risk assessment. Overall, the studies contributed to a growing body of knowledge on the
changing hydro-climatic and hydrologic extremes, as well as methods to characterize and
quantify the extremes and associated uncertainties. The advances in understanding and
quantifying extremes is critical towards an effective water resources management, and
planning adaptation strategies in a warming climate.
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Abstract: In the context of climate change, the impact of hydro-meteorological extremes, such as
floods and droughts, has become one of the most severe issues for the governors of mega-cities.
The main purpose of this study is to assess the spatiotemporal changes in extreme precipitation
indices over Ho Chi Minh City, Vietnam, between the near (2021–2050) and intermediate (2051–2080)
future periods with respect to the baseline period (1980–2009). The historical extreme indices were
calculated through observed daily rainfall data at 11 selected meteorological stations across the study
area. The future extreme indices were projected based on a stochastic weather generator, the Long
Ashton Research Station Weather Generator (LARS-WG), which incorporates climate projections from
the Coupled Model Intercomparison Project 5 (CMIP5) ensemble. Eight extreme precipitation indices,
such as the consecutive dry days (CDDs), consecutive wet days (CWDs), number of very heavy
precipitation days (R20mm), number of extremely heavy precipitation days (R25mm), maximum
1 d precipitation amount (RX1day), maximum 5 d precipitation amount (RX5day), very wet days
(R95p), and simple daily intensity index (SDII) were selected to evaluate the multi-model ensemble
mean changes of extreme indices in terms of intensity, duration, and frequency. The statistical
significance, stability, and averaged magnitude of trends in these changes, thereby, were computed
by the Mann-Kendall statistical techniques and Sen’s estimator, and applied to each extreme index.
The results indicated a general increasing trend in most extreme indices for the future periods. In
comparison with the near future period (2021–2050), the extreme intensity and frequency indices in
the intermediate future period (2051–2080) present more statistically significant trends and higher
growing rates. Furthermore, an increase in most extreme indices mainly occurs in some parts of the
central and southern regions, while a decrease in those indices is often projected in the north of the
study area.

Keywords: extreme precipitation; LARS-WG; CMIP5; spatiotemporal changes; climate change

1. Introduction

According to the Global Risks Report 2019 published by the World Economic Fo-
rum (WEF), extreme weather events (e.g., heavy rainfall or heat waves) and the failure of
climate-change mitigation and adaptation have remained as the top three risks in terms
of likelihood and impact on the environment and human being [1]. In addition, the Inter-
governmental Panel on Climate Change (IPCC) states in their Fifth Assessment Report
(AR5) that the global average surface temperature is expected to rise, and precipitation
is likely to occur more intensely and frequently in the 21st century [2,3]. In other words,
as a result of greenhouse gas emissions (GHGs), the evidence has shown that a growing
shift of temperature and humidity at global near-surface and troposphere layer could be
potential for precipitation changes in the frequency, intensity, and duration of extreme
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events around the world [4–6]. It should be noticed that extreme climate events have
always posed ever-intensifying threats to most aspects of natural resources and daily life,
such as natural ecosystems and biodiversity [7–9]; human life, community health and social
care systems [10,11]; energy supply and demand, transportation, and urbanization [12–14];
economics and agricultural productions [15–17], etc. Therefore, the study on extreme cli-
mate events has been of great concern to the scientific community and governments around
the globe for planning and implementing efficient mitigation and adaptation strategies.

To identify and examine the extreme events and their variation in the context of
climate change, quantitative approaches for evaluating the extreme climatic indices have
been developed and widely used by various researchers [18–20]. For consolidating the
definition of climate extreme indices on a global scale, as well as facilitating research to
compare differences in climate extremes across different study areas, a set of 27 extreme
climatic indices computed from daily temperature and precipitation data series has been
proposed and highly recommended by the Expert Team on Climate Change Detection
and Indices [21]. Afterward, there is a large volume of publications using these proposed
indices to address the concerned issues on the analysis of climate extremes in the context
of climate change [22,23]. Particularly, in the study of Tian et al. [24], trend analysis
of temporal and spatial variability of extreme precipitation indices has attracted more
attention. Therefore, this study is focused on assessment of the spatiotemporal variation of
extreme precipitation over Ho Chi Minh City caused by climate change. The future climate
change scenarios are usually produced using two downscaling techniques based on the
outputs of general circulation models (GCMs), namely, statistical downscaling technique
and dynamical downscaling technique. In comparison to the dynamical downscaling
technique, the statistical downscaling technique is simple to apply to different regions at
the station scale and requires fewer computing resources [25]. In this study, the well-known
stochastic weather generator, LARS-WG, which incorporates climate projections from the
Coupled Model Intercomparison Project 5 [26] ensemble, was used. Instead of analyzing
by individual model, a methodology of multi-model ensemble mean is applied to compute
future precipitation data for the assessment of the impact of climate change.

Ho Chi Minh City (HCMC) is the largest economic and financial center of Vietnam.
Although the City occupies just 0.6% of the country’s area and contains a total population of
around 8.8 million inhabitants in 2018 (approximately 8.34% of the population of Vietnam),
it occupies about 23% GDP of Vietnam (2019). Besides its rapid economic growth, HCMC
has been encountering many challenges, varying from natural extreme weather to anthro-
pogenic impacts. Additionally, HCMC has been ranked in the top 20 coastal cities that is
considered to be vulnerable and severely affected by climate change, and the estimated
cost for mitigation and adaptation of climate change impacts is expected to be the highest
in the East Asia region [27,28]. Furthermore, according to the projected scenarios of Asian
Development Bank (ADB), over 61% of the city area will be covered by regular flooding,
and HCMC will be entirely submerged under water due to sea level rise by 2050 [29].
Therefore, given the high extra cost linked to climate change, it is profoundly essential to
consider the potential climate-related risks as an integral part of urban management and
planning [30]; particularly, a localized case study is highly recommended for the analysis
of changes in extreme precipitation events [31–33].

Eventually, the aim of this study is (1) to compute and evaluate the spatial and
temporal trends in extreme precipitation indices over HCMC in the future period (2021–
2080); (2) to assess the spatiotemporal changes of trends in those extreme indices with the
effect of climate change. An expectation of this study is to obtain informative assessment
of the spatial and temporal variability of extreme precipitation events in HCMC during the
current and future periods, in order to contribute scientific references to the governors for
planning strategies to integrate climate change mitigation and adaptation frameworks for
the city development.
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2. Study Area and Data Preparation

2.1. Study Area

Located in the south of Vietnam, HCMC (Figure 1) has been recognized as an extraor-
dinarily economic and financial center in Vietnam, and also a vibrant metropolis with
the rapid industrialization, urbanization, and agricultural intensification. The climate in
HCMC is identified as the tropical monsoon regime with specificity of two distinguished
seasons, rainy and dry. In the dry season from November to April, the city obtains a low
rainfall (approximately of 10–15% of the total annual rainfall), high evaporation, and high
temperature (around 29–30 ◦C). On the other hand, the average rainfall during the rainy
season from May to October generally accounts for approximately 85–90% of the total
annual rainfall, which has approximately varied from 1000 to 1600 mm in recent years as
shown in Figure 2.

Figure 1. Map of Ho Chi Minh City and the location of 11 meteorological stations.

 

Figure 2. Average monthly precipitation in Ho Chi Minh City, Vietnam (source: weather-and-
climate.com).

With an area of 2095 km2, HCMC is located on the delta formed by the Saigon and
Dong Nai Rivers. Its topography is mostly plain, including small hills; approximately 50%
of its elevation is lower than 1.5 m above mean sea level [34]; around 16% of its total area
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is covered by a dense network of rivers and canals about 8000 km in length. In addition,
the water levels in these widespread waterways are primarily affected by a combination of
semi-diurnal tides, extreme monsoon rainfalls and storms across the city. Consequently,
the low-lying terrain accompanying the open and unrestrained water systems in HCMC
poses serious threats of flooding vulnerability to the city, especially in the context of climate
change [35].

2.2. Data Preparation

The historical daily precipitation data during the period of 1980–2017 provided by the
Hydro-Meteorological Data Center of Vietnam were collected at 11 meteorological stations
in HCMC and adjacent regions, as shown in Figure 1.

In this study, the basic quality controls and homogeneity assessment were applied to
both the observed and projected datasets in order to secure the completeness, reliability,
and consistency of the data before computing selected extreme precipitation indices and
performing trend analysis. To assess the quality and homogeneity of meteorological data,
as well as to compute the climatic extreme indices, the RClimdex statistical toolkit and
RHtests toolkit [36] are used. The RClimadex and RHtests are the libraries for computing
27 core extreme climate indices [21] and testing the data homogenization. These toolkits
are accepted and recommended by the World Meteorology Organization [37].

3. Methodology

3.1. Extreme Precipitation Indices

To assess the spatial and temporal variability of trends in extreme rainfall events across
HCMC, the well-known extreme precipitation indices suggested by the Expert Team on
Climate Change Detection and Indices (ETCCDI) were used in this study. Since the HCMC
is located in tropical climate region, a set of 8 appropriate extreme precipitation indices
(Rx1day, Rx5day, CDD, CWD, R20mm, R25mm, R95p, and SDII), as shown in Table 1, is
chosen in order to evaluate the elemental characteristics of extreme precipitation events,
such as intensity, duration, and frequency. Particularly, R20mm and R25mm indicate the
frequency of extreme rainfall; CDD and CWD describe the duration of extreme rainfall;
RX1day, RX5day, R95p, and SDII present the intensity of extreme rainfall. These extreme
indices were selected based on the previous studies [38].

Table 1. List of precipitation extreme indices used in this study.

Types Indices Name Definitions Unit

Intensity indices

RX1day Max 1-day precipitation amount Monthly maximum 1-day precipitation mm

RX5day Max 5-day precipitation amount Monthly maximum 5-day precipitation mm

R95p Very wet days Annual total precipitation when
precipitation > 95th percentile mm

SDII Simple daily intensity index Annual total precipitation divided by the
number of wet days mm/day

Frequency indices

R20mm Number of heavy precipitation
days

Annual count of days when precipitation
> 20 mm days

R25mm Number of very heavy
precipitation days

Annual count of days when precipitation
> 25 mm days

Duration indices
CDD Consecutive dry days Maximum number of consecutive days

with precipitation < 1 mm days

CWD Consecutive wet days Maximum number of consecutive days
with precipitation > 1 mm days
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These selected indices were computed by RClimdex tool for each station of the
11 weather stations in HCMC based on the corresponding datasets of historical obser-
vation and the future projections. Thereby, the trend analysis approach was used to
provide valuable information about the spatial and temporal change of trends in extreme
precipitation events due to the impact of climate change in the study region.

3.2. Trend Analysis
3.2.1. Mann-Kendall Test

For analyzing the underlying tendency in climate and hydrological data series, the
Mann-Kendall (M-K) nonparametric test [39,40] and Sen’s estimator [41] are highly recom-
mended by the World Meteorological Organization (WMO) and widely applied in most
studies on the trend analysis of hydro-meteorological data [32,42]. Additionally, the non-
parametric M-K test was selected for the present study instead of parametric tests, because
this method is suitable for the hydro-meteorological data with a non-normal distribution,
and it has low sensitivity to abrupt breaks due to the inhomogeneity of data [42]. The M-K
hypothesis test is based on the assumptions that the data need to be independent and iden-
tically distributed, i.e., there is no serial autocorrelation remains in the datasets [43]. The
statistic parameter (Z-score) computed from the M-K test was used to detect the movement
of trends (increasing or decreasing tendency); the corresponding p-value indicates the level
of statistical significance, whereas Sen’s slope was calculated to represent the magnitude
of trends.

Prior to applying the M-K test and Sen’s estimator, the study datasets were examined
for the existence of serial autocorrelation to reduce the adverse impact on the detection of
deterministic trends. In this study, the trend-free pre-whitening approach (TF-PW) was
conducted in order to remove the serial autocorrelation effects; the detailed definition and
procedure of this method can be found in [44,45].

3.2.2. Trend Strength and Stability

An advantage of using the M-K test for trend analysis is the test results being rarely
affected by outliers; it is not restricted to a specific sample distribution. However, the
determined sign and magnitude of a trend are strongly depended on a selected time
period, i.e., the trend’s test results will be changed as the time span of the dataset is varied.
Hence, it is challenging to evaluate the tendency of a time series due to the instability
of the test results [31,32]. Therefore, the traditional M-K test should be modified for
assessing a long-term persistence of the statistical significance and stability of the trend.
The choice of studying trends in 25-year moving periods was intended as a cross-validation
technique for time series data. The rainfall data of a station were recognized to have
a predominantly upward (or downward) trend if the number of 25-year moving time
series with significantly upward (or downward) trends was higher than the number of
significantly downward (or upward) trends. In this study, the M-K test and Sen’s estimator
were sequentially applied at each station for each interval of 25-year moving time series of
extreme precipitation indices within the historical (1980–2017), the baseline (1980–2009),
near future (2021–2050) and intermediate future (2051–2080) periods. In detail, there are
14 series of 25-year intervals regarding the historical observed data from the period of
(1980–2004) to (1993–2017), 6 series of 25-year intervals regarding simulated baseline data
from the period of (1980–2004) to (1985–2009), and 12 series of 25-year intervals regarding
simulated future data from the period of (2021–2045) to (2026–2050) and from the period of
(2051–2075) to (2056–2080), respectively.

The statistical significance of a trend was classified by the p-value, which is computed
by the M-K test following statistical classification as a strongly significant trend if p < 0.1,
a weakly significant trend if 0.1 ≤ p ≤ 0.2, and an insignificant trend if p > 0.2 [32]. In
addition, a particular trend, e.g., significant increasing/decreasing or insignificant trend,
with the greatest number of 25-year moving periods, was recognized as the dominant
trend at a specific station for spatial analysis. Thereby, the stability (S) of a significant
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increasing/decreasing trend in each extreme precipitation indices at a station was expressed
as the percentage of the 25-year moving time series, in which their trends were significantly
increasing/decreasing during a particular period. The determined stability of trends was
categorized as an unstable trend if 0% ≤ S ≤ 15%; a poor trend if 15% ≤ S ≤ 25%; a
stable trend if 25% ≤ S ≤ 50%; strongly stable if 50% ≤ S ≤ 75%; very strongly stable if
S ≥ 75%. In this study, the arithmetic average of the slope values, which were computed
by Sen’s estimator for each interval of 25-year moving periods, was taken to express an
average magnitude of a trend in each extreme precipitation indices at each station during
the particular periods. The detailed description of this approach could be found in [31,32].

3.3. LARS-WG Downscaling Tool

There are various statistical downscaling techniques, such as the Statistics Downscal-
ing Model (SDSM), Automated Statistical Downscaling (ASD), delta change methods, etc.;
among them, LARS-WG developed by Semenov and Stratonovitch [46] was selected for
this study because it can provide a better performance on reproducing monthly meteoro-
logical variables than other statistical downscaling techniques [47]. Basically, LARS-WG
uses observed meteorological data (daily rainfall, temperature) from a specified site to
estimate a set of parameters for fitting probability distributions, which is then used to
generate synthetic weather time series of a tributary length by randomly selecting values
from appropriate distributions [48]. Based on the coordinates of the meteorological station,
the LARS-WG tool automatically determines the match between the station and GCM grid
cell to generate a site-specific scenario of climate change using the GCM outputs, even
though the size of the GCM grid cells is larger than that of the study area. To produce the
climate change scenarios, the distribution parameters for a specific site were perturbed with
the monthly delta factors of each future period derived from the GCM output. The delta
factors are estimated as relative changes in precipitation. The LARS-WG has been widely
applied as a downscaling tool to generate future climate data from general circulation
models (GCMs) for climate change assessments in numerous studies, and it has confirmed
a good efficiency in simulating the extreme precipitation [49–51]. More discussion on the
applications of the LARS-WG tool for climatic extreme event analysis could be found in
various studies, such as [46,52,53].

By using the historical observed rainfall data, LARS-WG was sequentially applied to
estimate a set of parameters for the semi-empirical probability distributions of precipitation
data at each station in the study area. These probability distributions were used for fitting
the sequences of wet and dry days and precipitation amount. Thereby, the site-calibrated
parameters were used to simulate daily precipitation at each rain gauge for the baseline
period. To evaluate the performance of LARS-WG in simulating the rainfall, statistical
analysis of observed and simulated rainfall data was conducted. In order to generate the
future climate scenarios, LARS-WG modifies the historical rainfall data by adding monthly
change factors (the ratio of rainfall in the future and baseline periods) [52].

In this study, five GCMs from the Coupled Model Intercomparison Project Phase
5 (CMIP5) multi-model ensemble, which were incorporated in LARS-WG, were used to
generate the climate change scenario for the study area. The RCP8.5 scenario was chosen
for the present study, as it corresponds to the worst-case climate change scenario caused
by the highest greenhouse emission and radiative forcing level (8.5 Wm−2) in 2100. Since
the purpose of this study is mainly focused on the analysis of extreme events, the RCP8.5
was considered as a plausible selection [54]. The list of five GCMs used in this study is
presented in Table 2. The downscaled daily precipitation data from GCM outputs under
RCP8.5 scenario was generated by LARS-WG for the near (2021–2050) and intermediate
(2051–2080) future periods of the 21st century at each station of 11 meteorological stations
in HCMC.
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Table 2. The descriptions of the general circulation models (GCMs) from Coupled Model Intercomparison Project 5 (CMIP5)
used in the study.

GCMs Research Center Country Resolution

EC-EARTH EC—Earth consortium Europe 1.125◦ × 1.125◦

HadGEM2-ES UK Meteorological Office UK 1.25◦ × 1.88◦

GFDL-ESM2M Geophysical Fluid Dynamics Laboratory (NOAA GFDL) USA 2.5◦ × 2.0◦

MIROC5
The University of Tokyo, National Institute for

Environmental Studies, Japan Agency for Marine-Earth
Science and Technology

Japan 1.39◦ × 1.41◦

MPI-ESM-MR Max Planck Institute for Meteorology Germany 1.85◦ × 1.88◦

3.4. Model Evaluation Metrics

In this study, the performance of LARS-WG was evaluated according to the rela-
tive bias (RB), the mean differences (MDs), and Willmott Score (WS) [55] between the
observation-based and simulation-based series of corresponding extreme precipitation
indices. The mathematical formulas of those evaluation metrics are as follows:

RB =
∑N

n=1(Modn − Obsn)

∑N
n=1|Obsn|

(1)

MD =
1
N ∑N

n=1(Modn − Obsn) (2)

WS = 1 −
1
N ∑N

n=1(Modn − Obsn)
2

1
N ∑N

n=1

(∣∣∣Modn − Obs
∣∣∣+ ∣∣∣Obsn − Obs

∣∣∣)2 (3)

where Modn and Obsn are the values of the nth simulation-based and observation-based
extreme precipitation indices in a sample of size N, respectively.

The mean difference (MD) is used for a direct comparison between the observed and
generated extreme indices, while the two-sample Student’s t-test is applied for testing
the statistical significance of those differences at the 95% confidence level. The relative
bias (RB) is used to measure the relative differences between the observed and generated
extreme indices, as well as to determine the overestimated or underestimated property
of the simulation. According to the study of Moriasi et al. [56], the values of RB ≤ ±25%
indicate an acceptable performance of the model and the MD values of 0 indicate a perfect
performance of the model. The Willmott score (WS) or the Index of Agreement, whose
value varies between 0 and 1, is used as a standardized measurement of the degree of
model prediction error [57]. Particularly, the levels of model performance are classified
in a poor level if 0 ≤ WS < 0.3, a good level if 0.3 ≤ WS < 0.8, and an excellent level
if 0.8 ≤ WS ≤ 1.0.

3.5. Spatial Interpolation

The maps of extreme rainfall indices were built using interpolated techniques of
inverse distance weighting (IDW). This method had the assumption that the interpolated
points are the most influenced by the nearest points and the least influenced by the farthest
points. The IDW method was chosen for the present study, because it is widely applied
to spatial interpolation of rainfall data [58]; particularly it is applied to HCMC, whose
topography is mostly plain, and the orographic effect is negligible.
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4. Results and Discussion

4.1. Model Validation

In this section, the ability of the LARS-WG tool for reproducing extreme precipitation
indices was evaluated at each station for the baseline period of 1980–2009. Generally, the
results indicated the ability of the LARS-WG tool for reproducing the extreme indices as
its Willmott scores belonged to the good performance level (WS > 0.3) in most regions as
shown in Figure 3; the results of the t-test indicated that only few stations in the study
area (less than 36% of stations) obtained statistically significant differences between the
observation and simulation values, as shown in Table 3. Particularly, regarding the indices
CDD and CWD, the results of the Willmott scores indicated good agreement between the
simulation and observation as the WS values exceeded 0.3 for the entire region (ranged
from 0.31 to 0.57), whereas the index CWD shows the worst performance among other
indices as only good WS values (ranged 0.33 to 0.62) obtained at 6 out of 11 stations in
the research area. Furthermore, the relative bias indicated the underestimation of the
index CDD for most regions, especially in the central parts, whereas the overestimation of
the index CWD was observed in the same regions. Concerning the indices, RX1day and
RX5day, the high WS values (ranged from 0.33 to 0.67) and small negative biases were
apparent at most parts in the southern and central regions, whereas the lower WS values
(ranged from 0.17 to 0.28), as well as large positive biases, occurred in small parts of the
northern regions. About the indices, R20mm, R25mm, R95p, and SDII, the simulation
generally showed good performance as the WS values exceeded 0.3 for most regions
(ranged from 0.31 to 0.64), except in some parts in the central region the WS values were
observed slightly weaker scores (ranged from 0.14 to 0.28). Additionally, Figure 3 and
Table 3 show that the high values of WS are not always related to the lesser difference
between simulation-based and observation-based extreme indices (low values of RB and
MD) as shown in Equations (1)–(3).

Figure 3. Heatmap of the Willmott scores between observed and simulated extreme indices at each
station for the baseline period (1980–2009).
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In addition, Figure 6(6.1–6.8) show the spatial distribution of the observation
(Figure 6(6.1a–6.8a)) and simulation (Figure 6(6.1b–6.8b)) extreme precipitation indices
during the baseline period (1980–2009), and relative differences between the simulation
and observation (Figure 6(6.1c–6.8c)). In general, the spatial distribution of the differences
between simulation and observation under those indices had similar trends—here, large
negative biases were apparent in small parts of the central and southern regions, while
positive biases mainly occurred in other regions. General speaking, the results show that
the output from the LARS-WG tool is acceptable for simulating the spatial pattern of the
extreme indices.

4.2. The Historical Observation of the Extreme Precipitation Indices

In this section, the mean annual values of each extreme indices and the corresponding
averaged slope of temporal trends during the historical period (1980–2017) at each station in
the study area were listed in Table 4. Generally, most extreme indices exhibited downward
trends at most stations of the study area during this period, which accounted for approxi-
mately 56.8% of the total number of the trends. However, only about one-third proportion
(approximately 33%) of all trends were statistically significant; in which the significant
downward and upward trends accounted for 19.3% and 13.6% proportion, respectively.

About the spatial distribution patterns, a majority of the significant trends frequently
occurred in the northern (Cu Chi Dist.) and southern (Can Gio Dist.) parts of the study
area, whereas most of the central regions demonstrated insignificant trends (Table 4).

4.3. Projected Future Extreme Precipitation Indices

In this study, the future extreme precipitation indices were calculated from the sta-
tistically downscaled outputs of five GCMs (EC-EARTH, HadGEM2-ES, GFDL-ESM2M,
MIROC5, and MPI-ESM-MR) as mentioned in Section 3.3 above. The daily rainfall at each
station in the study area was generated for the future period of 2021–2080 under the RCP8.5
emission scenario. The temporal variation of each spatially averaged extreme index for
the entire study area during the future period was illustrated in Figure 4. According to
the results, while two duration-based indices, CDD and CWD, show a high degree of
agreement among the five GCMs, the other extreme precipitation indices are generally
projected with high uncertainty levels, especially in the intermediate future period (2051–
2080). Particularly, three GCMs such as MIROC5, MPI-ESM-MR, and EC-Earth projected
higher values of extreme indices than two other GCMs, HadGEM2-ES and GFDL-ESM2M.

However, the multi-model ensemble mean generally presents the obviously increasing
trends in value at the majority of extreme precipitation indices during both future periods
lasting from 2021 to 2080 for the entire study area.

4.4. Climate Change Impact on the Precipitation Extremes by the Averaged Multi-Model Ensemble
4.4.1. Variability in Inter-Annual Changes

To produce more reliable results from simulation of extreme precipitation indices for
assessing the impact of climate change, a multi-model ensemble (MME) at each station is
prepared by taking the arithmetic mean of the extreme indices computed from the output
from the five different GCMs mentioned in the previous section.
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In the following section, the temporal variation of percentage changes in each extreme
precipitation indices between the future (2021–2080) and baseline (1980–2009) periods over
the entire study area is analyzed and discussed. The temporal variation of changes in
spatially averaged MME extreme indices and its corresponding magnitude of linear trend
in each future period were illustrated in Figure 4 and Table 5. As shown in Table 5, the
decreasing trend is projected in most extreme precipitation indices during the near future
period, while the opposite tendency mainly occurs during the intermediate future period.
However, except for the index CDD, the temporal variation of relative changes in other
extreme indices is expected to be increased during both near (2021–2050) and intermediate
(2051–2080) future periods, in which only four extreme indices, R20mm, R25mm, RX5day,
and SDII, show the statistically significant trends.

Table 5. Trend in relative change between future and baseline periods (unit: % per decade).

Period CDD CWD R20mm R25mm R95p RX1day RX5day SDII

2021–2050 2.02 −0.25 −0.77 −0.34 −5.54 −0.69 2.21 −0.55

2051–2080 0.83 1.04 −0.26 1.82 0.28 0.79 2.69 0.65

Figure 5 illustrates the temporal variation of the relative changes in the spatially
averaged extreme indices between the future and baseline periods over the entire study
area. Figure 5 shows the multi-model ensemble mean with 5–95% interquartile range of
five different GCMs under RCP8.5 scenario. Considering the duration extreme indices, the
tendency of the index CDD presents an obviously increasing trend in both future periods;
while CWD gradually tends to decrease in the near future period, then slightly increase
in the intermediate future period. Particularly, the annual mean value of the percentage
changes in CDD indicates an increase by 0.15% (from −16.05% to 16.80%) in the near future
period (2021–2050), and by 0.7% (from −12.46% to 14.73%) in the intermediate future
period (2051–2080). In contrast, the future index CWD is expected to increase by 4.07%
(from −10.21% to 20.52%) and by 3.76% (from −8.63% to 17.34%) at the end of the near
and intermediate future periods with respect to those of the reference period.

In regard to the indices of heavy and extreme heavy precipitation days, R20mm and
R25mm, the annual changes in the future are comparatively similar with respect to the
baseline period. The length of heavy and extremely heavy rainfall days is expected to
be shortened during the near future period (2021–2050) with the projected decrease in
R20mm and R25mm by −2.67% (from −18.46% to 10.52%) and −1.08% (from −18.79%
to 13.66%), respectively. However, the MME predicts the indices R20mm and R25mm to
be increased by 3.75% (from −18.74% to 25.59%) and 5.65% (from −21.29% to 31.26%) by
2080, respectively.

Concerning the indices RX1day and RX5day, it shows that the annual percentages of
change in the near future period are slightly lower than those in the intermediate future
period. Moreover, the index RX5day clearly shows the strongest increasing trend among
other indices during both future periods with the mean value of percentage increase by
5.11% (from −8.85% to 20.78%) and 9.44% (from −10.33% to 28.37%) at the end of two
future periods (in 2050 and 2080), respectively. Although the RX1day exhibits a downward
trend during the early future period, an increase of 5.56% (from −9.67% to 21.84%) and
10.5% (from −10.04% to 10.50%) is predicted by the mean models at the end of the 2050
and 2080 periods, respectively.
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About the extreme intensity indices, the predicted percentage of changes in the indices
R95p and SDII approximately tend to be comparable behavior in the future, with a decreas-
ing trend in the near future period, and an increasing tendency in the later future period.
Both indices are projected to be increased in the future periods; however, the increasing
percentage of the index R95p is much larger than the increasing percentage of the index
SDII. Meanwhile, the multi-model ensemble predicts an increase of 5.5% (from −13.23%
to 23.72%) and 11.35% (from −17.94% to 43.67%) for the index R95p by 2050 and 2080,
respectively. The percentage of change in SDII is projected to be 0.77% (from −10.34% to
8.94%) and 5.37% (from −11.10% to 20.78%) at the end of two future periods, respectively.
Generally, the projected percentage changes, as well as the increasing rates in intensity
and frequency indices for future extreme rainfall, are predicted to be larger than those in
the duration indices, especially in the intermediate future period (2051–2080). In addition,
the extreme precipitation indices show larger variation in the intermediate future period
(2051–2080) in comparison to those in the near future period (2021–2050).

4.4.2. Distribution of Spatial Changes

In this section, the spatial distribution of the MME-projected mean relative changes in
extreme precipitation indices between the near (2021–2050) and intermediate
(2051–2080) future periods and the baseline period (1980–2009) over the study area is
shown in Figure 6 including Figure 6(6.1–6.8). Furthermore, the statistical significance,
stability, and magnitude of the trend in the distribution of spatial changes were determined
and computed using the M-K statistical test and the Sen’s estimator for particular 25-year
moving time spans within the future periods. Afterwards, the dominated trend during
these future periods at each station is also illustrated in these figures.

Generally, in comparison with the baseline period, the absolute changes of extreme
indices in the intermediate future period (2051–2080) show notably higher than those in
the near future period (2021–2050). In which, the largest absolute changes mainly occur in
the southern regions, while some parts of the northern and central areas often exhibit little
changes (i.e., lowest absolute changes). In terms of relative changes in extreme rainfall
indices in the same projection period, the multi-model ensemble predicts an increase in
most indicators in the south and the central regions, and a decline of those indices in the
north of the study area.

Particularly, regarding the index CDD, the relative changes between the future and
historical periods, along with the statistical significance, stability, and magnitude of trends,
are shown in Figure 6(6.1). During the near future period (2021–2050), the averaged multi-
model ensemble predicts an increase in the index CDD for most regions in the central and
southern parts of the study area, whereby a variation of percentage changes in indices is
from 0.4 to 20.6%; the averaged growth rate is from 0.4 to 13.1 [days.decade−1]. However,
only three stations located in the southern region present significant increasing trends
during the near future period, in which the strongest and most stable upward trend in
CDD is predicted to occur at the Tam Thon Hiep Station. In contrast, a decrease ranging
from −20.1 to −8.7% is predicted in the northern regions, while Cu Chi Station shows a
slight increase by 3.7%; even though none of the downward trends is statistically significant.
In the intermediate future period (2051–2080), the spatial distribution of the CDD is similar
with that of the near future period in the study area, in which the positive percentage
changes concentrate in the central and southern parts, while negative values are distributed
mostly in the northern regions of the city. During this intermediate future period, the mean
percentage of changes in CDD is predicted to decrease from −20.1 to −1.7% at Cu Chi,
Hoc Mon, Can Gio, Bien Hoa, and Ben Cat, and to increase from 1.82 to 21.8% at the other
stations, whereby the averaged magnitude of increasing trend is ranging between 0.1 and
10.4 [days.decade−1] while the decreasing rate is from −2.9 to −0.8 [days.decade−1].
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In regard to the index CWD, the projected results shown in Figure 6(6.2) present the
west-to-east increasing trend for the percentage of changes in extreme indices with respect
to both future periods. Generally, the MME predicts few differences between the spatial
distribution as well as the volume of relative change of the index CWD in both future
periods. Particularly, in comparison with the historical period, the index CWD is predicted
to be decreased from −18 to −0.2%, mainly in the central regions and small parts of other
areas, while it is predicted to be increased from 0.9 to 11.4% mostly in the southern regions
in both future periods. Additionally, the trend in changes of the projected index CWD
shows statistically significant and stable tendency occurring at more stations in the near
future period (2021–2050) than that in the later future period (2051–2080).

The spatial distribution of annual mean relative change in the indices R20mm and
R25mm between the future and historical periods is shown in Figure 6(6.3,6.4). Generally,
in comparison to the historical period, the MME predicts a decrease in both extreme indices
in the near future period, while an increase in both indices is expected in the intermediate
future period in most regions of the study area. Additionally, the projection results indicate
that the future spatial distribution of percentage changes in the index R20mm is comparable
with that in the index R25mm. Particularly, in the near future period (2021–2050), the MME
predicts a decrease in the index R20mm varying from 2.1% to 10.2%, and in the index
R25mm varying from 1.1% to 13% over most regions, especially in the central (Binh Chanh)
and southern (Tam Thon Hiep) area. In comparison, an increase from 0.5 to 6% and 0.26
to 13.2% in the rest of this location is corresponding to the indices R20mm and R25mm,
respectively (Figure 6(6.3d,6.4d)). For the same projection period, an increasing trend in the
temporal changes of the indices’ values is projected to be dominated at most stations with
the average rates ranging from 0.4 to 0.9 [days.decade−1] for the index R20mm, and from
0.1 to 0.7 [days.decade−1] for the index R25mm. In the near future period, the stable and
strongly upward trends are projected to mainly occur in the central and southern regions,
while the downward trends are weak and unstable. In the intermediate future period
(2051–2080), the MME predicts increasing from 0.5 to 17.3% for the index R20mm in most
regions (with high values mostly distributed in the central and southern parts of the study
area), while it presents a nuance with an increase ranging from 1.5 to 21.9% for the index
R25mm in the similar spatial patterns. Additionally, during the intermediate future period,
a slight decrease of −1.6% and −4.2% is projected to occur in a small part of the central
area for R20mm and R25mm, respectively (Figure 6(6.3e,6.4e)). In this period, both extreme
indices, R20mm and R25mm, show strongly significant and stable increasing trends at most
stations and equally distributed across the study area, in which the averaged magnitude
of dominated trends is ranging from 0.5 to 2.1, and from 1 to 1.6 [days.decade−1] for the
indices, R20mm and R25mm, respectively.

The relative changes in the maximum 1-day and 5-day total rainfall amount (RX1day
and RX5day) between the future and the historical periods are shown in
Figure 6(6.5d,e–6.6d,e). The simulation results show that the spatial distribution of the
indices RX1day and RX5day in each future period is relatively similar.

Generally, in the near future period (2021–2050), the multi-model ensemble predicts
an average increase in RX1day from 3.5 to 14.4%, and of RX5day from 0.2 to 12.5% in most
regions, especially in the southern parts of the study area, while a decrease occurring in
small parts of the central and northern regions is expected from −6.9 to −1.1% and −5.4
to −0.4% for the indices RX1day and RX5day, respectively. In this period, the statistically
significant and stable increasing trends are dominated, and present high likelihood of
occurrence in the central and southern parts of the study area, along with the averaged
growing rates from (3.2–4.2) [mm/decade−1] and (1.8–8.5) [mm.decade−1] for the indices
RX1day and RX5day, respectively.

In the intermediate future period (2051–2080), the multi-model ensemble predicts
an increase in both extreme indices RX1day and RX5day to be fluctuated across entire
study area from 1.3 to 28.2% and 2.8 to 18.5%, respectively; particularly, the highest values
frequently concentrate in the southern regions. Besides, a slight decrease (less than 2.8%) on
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average for both indices is also presented in the small parts of central regions. Additionally,
the indices, RX1day and RX5day, are projected to demonstrate the statistically significant
and stable upward trends in the northern and central regions, wherein an increasing rate
of (0.8–10.1) [mm.decade−1] for the index RX1day, and of (2.1–9.1) [mm.decade−1] for
the index RX5day; the stable and downward trends are predicted in the southern parts
with a decreasing rate of −3.5 [mm.decade]−1 for the index RX1day and of (−1.9 to −7.0)
[mm.decade−1] for the index RX5day.

Considering changes in the future intensity indices, the relative differences between
the indices R95p and SDII in the future and historical period are shown in
Figure 6(6.7d,e–6.8d,e). In the period 2021–2050, the MME predicts a decrease in the
index R95p from −4.3 to −5.8% on average in some locations of the central and north-
ern regions, and an increase from 0.01 to 12.5% in the rest of study area, especially in
the southern regions (Figure 6(6.7d)). During the same period, the index R95p exhibits
statistically significant and stable downward trend in the north of the study area with the
averaged rates between −21.3 and −31.7 [days.decade−1], while the stable and significant
upward trends are projected for the central and southern regions with the increasing rates
varying from 21.1 to 33.5 [days.decade−1]. In the period 2051–2080, an average increase
from 0.02 to 22.3% is forecasted by the MME over the entire study area, along with the
northwestern-to-southeastern tendency of growth in the extreme indices (Figure 6(6.7e)).
In this period, the statistically significant and stable trends are projected to be occurred
in most regions. Moreover, in contrast to the near future period, the statistically strong
and stable upwards (11.7 to 71.2) [days.decade−1] are projected with high likelihood of
presence in the northern regions, while the statistically strong but poor-stability downward
trends (−7.6 to −15.8) [days.decade−1] are predicted to appear in the southern regions of
the city during this intermediate future period.

The mean models predict a decrease in the index SDII from −0.65% to −3.77% on aver-
age in the north and south of the study area, while an increase from 0.1 to 4.8% is projected
over entire central regions in the period 2021–2050 (Figure 6(6.8d)). During this period,
SDII presents the domination of the statistically significant and stable increasing trends at
most stations in the central (strong upwards) and southern regions (weak upwards), along
with the averaged magnitude ranging from 0.1 to 0.4 [mm.day−1.decade−1]. In the period
2051–2080, the MME forecasts an increase from 2.8 to 9.1% on average over the entire study
area, with high values being mainly observed in the central regions. During the same
projection period, the statistically significant and stable upward trends are dominated at
most stations over the study area (mainly distributed in the north and central regions)
with the averaged magnitude of trends varying from 0.3 to 0.8 [mm.day−1.decade−1]
(Figure 6(6.8e)).

5. Discussion

The results of the current study on the spatiotemporal trend in changes of extreme
precipitation indices between the future (2021–2080) and historical (1980–2009) periods
indicate a general increase in most extreme indices over most regions in Ho Chi Minh City,
especially in some parts of the southern and central areas. Currently, the studies on the
impacts of climate change on extreme weather events in Vietnam are still limited in terms of
quantity and quality of the research, especially studies using the extreme indices proposed
by ETCCDI. Most of these studies were conducted for the entire Vietnam territory instead
of focusing only on a specific location such as HCMC. To the best of our knowledge, our
study seems to be the first reports assessing and mapping the changes of these extreme
indices over HCMC for the future period in the context of climate change. The findings
in our paper are consistent with previous remarkable related studies [58–60]. Particularly,
our main results are in agreement with the report on Climate Change and Sea Level Rise
Scenarios for Vietnam, which was a well-known and widely cited research work on this
topic and published by the Ministry of Natural Resources and Environment of Vietnam [59],
in which the authors only focused on the changes in RX1day and RX5day by the mid (2046–
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2065) and end (2080–2099) of 21st century with respect to the baseline period (1986–2005)
under RCP4.5 and RCP8.5 scenarios. According to the report by MONRE, the RX1day
and RX5day are expected to increase from 10 to 70% by the mid-century under RCP8.5
scenario; in which, the indices for HCMC area are projected to increase approximately
between 10 and 30% with respect to the baseline period. In terms of the intensity extreme
indices, our projection results agree with previous notable studies conducted by Ngo-Duc
et al. [60] on applying regional climate models (RegCM4) with quantile mapping bias
correction for evaluating extreme weather events over Southeast Asia regions for the mid-
century period [60,61]. Here, the authors suggested an overall increase in CDD, CWD,
SDII, R20mm, and R95p in the southern parts of Vietnam, especially in the rainy season.
These results are reaffirmed by Tangang et al. [62] in their recent study on future changes
in extreme precipitation indices under global warming of 2 ◦C; in which, the significant
and robust increasing changes in frequency and intensity indices are expected to occur in
the mid-future period [59]. From these results, the central and southern regions of the city
are warned to be threaten by flooding, while the plan of water management for rural areas
in the northern sides should be prepared in order to address and mitigate the impact on
agricultural sectors by potentially extreme droughts.

In this study, although the performance of the statistical downscaling tool and its
incorporated GCMs was evaluated and confirmed to be able to reproduce and generate ex-
treme precipitation indices, the model biases and uncertainties still remain in the projection
results, especially in the projected spatial changes. Therefore, it is essential to apply proper
bias correction methods, as well as more precise downscaling methods for maximizing the
model performance. Moreover, for the approach of multi-model ensemble, the unweighted
averaging multi-models used in this study are the simplest way but not effective when a
better skillful model could be underestimated (or vice versa). Thereby, further research
on individual model evaluation to create a weighted multi-model ensemble based on
the ranked models could be a promising approach in order to optimize the simulation
performance [63–65]. In addition, the relevant climate teleconnections (such as El Nino
Southern Oscillation or Sea Surface Temperature) have a significant contribution to the
behavior of climate extremes in the study area; therefore, their impacts on precipitation
extremes should be taken into account in further research.

6. Conclusions

In this paper, the projected temporal and spatial changes in selected ETCCDI extreme
precipitation indices between the future (2021–2080) and baseline period (1980–2009) in Ho
Chi Minh City (Vietnam) were evaluated in the context of climate change. The projected
extreme indices were computed based on daily rainfall data downscaled from five different
GCMs under an RCP8.5 scenario using the LARS-WG tool. The performance of the LARS-
WG tool for the simulation of extreme precipitation indices has been examined using the
model evaluation metrics, the Mann–Kendall statistical test and the Sen’s estimator, which
were also applied to analyze the significance, stability, and magnitude of trends in future
changes. A summary of the major findings of this study is as follows:

- The LARS-WG tool has presented adequate performance for reproducing the extreme
precipitation indices in most stations during the historical period (1980–2017), espe-
cially for simulating the spatial distribution of those indices. Notwithstanding, the
uncertainty in simulation results was probably inevitable. Notably, the simulation
tended to underestimate extreme indices in some parts of the central and southern
regions, while overestimating these indices in the northern regions. In addition,
the performance for simulating intensity indices is better than that for duration and
frequency indices, especially for CWD and R20mm.

- In the historical period (1980–2017), the high values of temporally mean extreme
indices were frequently observed in the central regions, while the low values of these
indices were mainly distributed in the northern and southern regions. During this
period, the decreasing trend in extreme indices were regularly observed at most
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stations in the study area. However, only 33% of this trend was significant and mainly
distributed in the north and south parts of the study area.

- In the future periods, the projected extreme precipitation indices were computed from
the downscaling from five different GCMs (EC-EARTH, HadGEM2-ES, GFDL-ESM2M,
MIROC5, and MPI-ESM-MR) under the RCP8.5 emission scenario. Afterwards, the
multi-model ensemble mean was calculated for evaluating the spatiotemporal changes
in the near (2021–2050) and intermediate (2051–2080) future extreme indices with
respect to the simulated indices in the baseline period (1980–2009). Generally, in
comparison with the historical period, the temporally relative changes in most ex-
treme precipitation indices are predicted to be increased during both future periods
(2021–2080), but the index CDD. In which, the extreme intensity and frequency indices
present a stronger magnitude and statistically significant increasing trends than those
of extreme duration indices during the future periods. The spatial distribution of
changes in future projected extreme indices across the study area is relatively system-
atic. In which, the highest values of mean absolute changes are frequently observed in
the southern regions, while the lowest values of mean absolute changes are regularly
observed in the northern and central areas of the study area in the future periods.

Moreover, the percentage changes in extreme indices in the intermediate future period
(2051–2080) present noticeably higher values than those in the near future period (2021–
2050) over most regions of the study area. In terms of relative changes in the same projection
period, the multi-model ensemble reasonably predicts an increase in most extreme indices,
and this mainly occurs in the southern regions. Meanwhile, a decrease in these indices
is often projected in the northern and some parts in the central region of the study area.
Furthermore, most stations obtain statistically insignificant and unstable trends in extreme
precipitation indices during the near future period (2021–2050), but present statistically
strong significance and high stability during the intermediate future period (2051–2080),
especially in the central and southern parts of the study area.

Consequently, the prediction of increasing trends in extreme precipitation indices,
especially for intensity and frequency of heavy and extreme heavy rainfall events, has
posed the potential risk of more frequent floods in the central and southern regions of
HCMC. Meanwhile, the projection shows a decrease in consecutive dry days in the northern
areas, which implies the potential risk of severe droughts occurring in the northern regions
of HCMC. Therefore, the simulation results in this paper could contribute a reasonable
assessment and detailed potential-risk maps based on the changes in extreme precipitation
indices across Ho Chi Minh City for the near and intermediate future periods in the
21st century. Although it is essential to reaffirm that these findings should be taken
into consideration with caution due to the sources of uncertainty, such as the GCMs and
statistical downscaling tool applied in this study, the achieved results could be recognized
as the informative scientific references for the city governors to develop and implement
comprehensive assessment, adaptation, and mitigation responding to the impact of extreme
weather events in the context of climate change in Ho Chi Minh City.
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Abstract: Climatic change is affecting streamflow regimes of the permafrost region, altering mean
and extreme streamflow conditions. In this study, we analyzed historical trends in annual mean
flow (Qmean), minimum flow (Qmin), maximum flow (Qmax) and Qmax timing across 84 hydrometric
stations in the permafrost region of Canada. Furthermore, we related streamflow trends with
temperature and precipitation trends, and used a multiple linear regression (MLR) framework
to evaluate climatic controls on streamflow components. The results revealed spatially varied
trends across the region, with significantly increasing (at 10% level) Qmin for 43% of stations as the
most prominent trend, and a relatively smaller number of stations with significant Qmean, Qmax

and Qmax timing trends. Temperatures over both the cold and warm seasons showed significant
warming for >70% of basin areas upstream of the hydrometric stations, while precipitation exhibited
increases for >15% of the basins. Comparisons of the 1976 to 2005 basin-averaged climatological
means of streamflow variables with precipitation and temperature revealed a positive correlation
between Qmean and seasonal precipitation, and a negative correlation between Qmean and seasonal
temperature. The basin-averaged streamflow, precipitation and temperature trends showed weak
correlations that included a positive correlation between Qmin and October to March precipitation
trends, and negative correlations of Qmax timing with October to March and April to September
temperature trends. The MLR-based variable importance analysis revealed the dominant controls of
precipitation on Qmean and Qmax, and temperature on Qmin. Overall, this study contributes towards
an enhanced understanding of ongoing changes in streamflow regimes and their climatic controls
across the Canadian permafrost region, which could be generalized for the broader pan-Arctic regions.

Keywords: climatic controls; multiple linear regression; permafrost region; streamflow extremes;
trend analysis; variable importance analysis

1. Introduction

The Arctic and subarctic regions of the world—mostly underlain by continuous/
discontinuous permafrost—are affected by a range of extreme streamflow conditions,
which include low to no flows in winter under ice-cover; spring floods due to river-ice
breakup and snowmelt; snowmelt driven peak flows during spring/early summer; and
in rare instances, rainfall driven peak flows in late summer. These extreme conditions
are influenced by various climatological and landscape drivers and controls, and changes
in these factors affect the magnitude, timing and duration of such events. Particularly,
enhanced warming in the northern latitudes (which is almost twice the global average
temperature increase [1–3]) and amplified poleward moisture transport to the region [4,5]
(which propagates into increased precipitation) are affecting different components of the
regional hydro-climatic systems. Prominent changes include reductions in the magnitude,
duration and extent of snow cover [6–8], enhanced permafrost thaw [9,10] and changes
in the snowfall–rainfall balance [11], all with the potential to alter the mean and extreme
streamflow conditions across the permafrost region.
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For instance, while warmer temperatures lead to an earlier snowmelt-driven peak
flow [12,13], the magnitude of peak flow is mainly determined by the precipitation
amount [14]. Furthermore, increased winter precipitation implies greater water input
and larger snowpack storage in the basin, and thus, the potential for higher peak flows. In
contrast, warmer temperatures tend to moderate peak flows by reducing the fraction of
winter precipitation falling as snow and shortening the snow accumulation period [15]. On
the other hand, spring rainfall and rain-on-snow events—which appear to be increasing in
the recent years [16–19]—could enhance peak flow events. At the same time, permafrost
degradation associated with the warming temperatures could lead to increases in subsur-
face flow pathways, soil moisture volume and groundwater recharge [20,21], which could
lead to winter low flow increases. Additionally, permafrost thawing augments a basin’s
water storage capacity, and could lead to decreases in the annual maximum discharge [22]
as well as the maximum-to-minimum discharge ratio [23].

Changes in the mean streamflow state and extremes could make areas within per-
mafrost region vulnerable. For instance, although current infrastructure in the permafrost
region is limited, the development (e.g., hydroelectric water resources) is progressing at a
rapid pace [24]. Thus, infrastructure design and operation need to take into account the
changes in extremes. For instance, while increased low flow could augment the water
supply in the winter, the potential increase in peak flow could make the built hydraulic
structures inadequate, and result in more frequent and widespread flooding. Higher peak
flows and flooding could also threaten infrastructure and operational services, such as
mines, roads, railways, bridges and settlements located nearby [25].

Given these potential impacts, it is important to enhance our understanding of changes
in streamflow regimes in the permafrost region beyond the magnitude and direction of
trends. For instance, understanding the role of climatic drivers on streamflow changes
could provide valuable insights, not only for process understanding, but also to diagnose
future directions of change. In this context, while a number of previous studies have
analyzed pan-Arctic wide streamflow trends [26–28], to our knowledge, neither the analy-
ses of streamflow trends across the entire permafrost region of Canada nor evaluation of
streamflow trends in relation to climatic drivers (i.e., precipitation and temperature) have
been undertaken.

In this study, we address the aforementioned knowledge gaps first by analyzing trends
in key streamflow variables across the continental-scale permafrost region of Canada.
Secondly, we conduct a novel analysis of climatic controls on streamflow changes by
relating spatial variability and trends in streamflow, air temperature and precipitation
in a statistical framework. We also use a multiple linear regression framework (MLR) to
evaluate the temporal relationships of seasonal precipitation and temperature with mean
and extreme streamflow conditions for selected rivers. We focus on select streamflow
variables including annual mean flow, minimum flow, and maximum flow and its timing,
and assess the streamflow trends in the context of pan-Arctic wide trends. Further, we
discuss the potential future changes in mean and extreme streamflow conditions.

2. Data and Methods

2.1. Streamflow Data

We used the permafrost database based on Heginbottom et al. [29] and published by
Natural Resources Canada [30] as a base map, which consists of a number of permafrost
zones (continuous, extensive, sporadic, isolated), for the selection of streamflow stations.
We selected 83 hydrometric stations that lie within these zones from the Water Survey
of Canada hydrometric station network [31], with the criteria of basin area > 2000 km2

and year-round observations. Additionally, a United States Geological Survey station
(15356000 Yukon River at Eagle AK [32]) was included because only a limited number of
years (1983 to 2017) of data are available for the corresponding station in the Canadian side
(09ED001).
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The selected hydrometric stations are unregulated (natural) except for the Mackenzie
River affected by the upstream Peace River regulation, whose effect can be assumed
relatively minor on selected three downstream mainstem stations [33]. We extracted four
streamflow variables from the daily time series data: (i) annual mean flow (Qmean), (ii)
annual minimum flow (Qmin), (iii) annual maximum flow (Qmax), and (iv) timing of annual
maximum flow (Qmax timing). For each of the four streamflow variables, the stations
with more than 40 years of records were first selected, out of which stations with >30%
missing values were discarded. This left 83, 83, 79, and 78 stations for Qmax, Qmax timing,
Qmin and Qmean, respectively. Additionally, the datasets cover different periods between
1945 and 2018, with missing values in different years, while some stationed have been
discontinued. However, further constraining the station selection over a consistent period
covering > 30 years of record would result in elimination of over a third of stations, and a
lack of representative stations over some regions. Thus, as in the case of St. Jacques and
Sauchyn [34], varying periods of records were used and trend analysis results provide a
general direction of historical changes rather than changes over a specific time period.

2.2. Climate Data

We used two observation-based gridded climate data products consisting of the
1945 to 2012 Pacific Northwest North American meteorological (PNWNAmet) data [35]
for western Canada and the 1950 to 2016 Natural Resources Canada meteorological (NR-
CANmet) data [36] for rest of Canada. Although NRCANmet is available for the entirety
Canada, PNWNAmet was preferred for western Canada (where it is available) as it showed
improved performance for climate means, extremes and variability compared to NRCAN-
met [35]. Both datasets consist of daily precipitation, maximum and minimum temperature,
with spatial resolutions of ~7 km (0.0625 degrees) and ~10 km (0.0833 degrees) at 60 ◦N
latitude, respectively, for PNWNAmet and NRCANmet. From the two datasets, basin-
averaged precipitation and temperature were extracted using the National hydrometric
network basin polygons [37] for the respective hydrometric stations. For comparison with
the streamflow variables, the time periods of precipitation and temperature data were
matched with the streamflow records of each station. Given the delayed snowmelt-driven
streamflow response in the region, water years (October to September) were considered for
all analyses.

2.3. Analyse

Trends in streamflow, precipitation and temperature variables were analyzed using
the R “zyp” package [38] by employing a non-parametric Mann–Kendall test [39] with
iterative pre-whitening [40]. The iterative pre-whitening method, employed to remove the
effects of serial correlation, was used because it has been found to be robust in handling
Type-I error and produce conservative estimates of p-values, thus limiting false trend
detection [41]. Besides accounting for serial correlations for each variable and at each
individual station, the effect of spatial correlation among stations (field significance) was
evaluated by using the false discovery rate technique suggested by Wilks [42]. Results of
the analyses are presented for 10% (p < 0.10) and 5% (p < 0.05) significance levels, with the
former considered as the level of statistically significant trend, while the latter signifies a
stronger trend.

We analyzed the spatial relationships amongst climatological means of the temper-
ature, precipitation and streamflow variables as well as their trends using the Kendall’s
τ correlation. This method was preferred to the more common Pearson correlation be-
cause Kendall’s τ uses a rank-based procedure, is more resistant to outliers, and measures
all monotonic (linear and nonlinear) correlations [43]. All streamflow values and trend
values were normalized by their respective drainage areas when comparing them with
precipitation and temperature values/trends.

It should be noted that, in most cases, the drainage areas of most hydrometric stations
extend beyond a particular permafrost zone, and in some cases, to the permafrost-free zone.
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Therefore, analyses specific to different permafrost zones were not undertaken. However,
we considered trends for seven (out of 11) of the Water Survey of Canada’s drainage
regions [37], which include: (3) Labrador, Northwestern Quebec; (4) Albany; (5) Nelson; (6)
Arctic, Hudson Bay; (7) Upper Mackenzie; (8–9) Pacific and Yukon; and (10) Arctic, Lower
Mackenzie and Queen. Region 8 has only one station and its results were combined with
region 9.

For selected stations, we characterized temporal sensitivities of streamflow variables
to climatic variables using the MLR framework. Precipitation, temperature and their
interaction were considered as the driving variables and streamflow components were
considered as the response variables, given by:

ΔQ = β1 + β2ΔP + β3ΔT + β4(ΔPΔT) (1)

where β1, β2, β3 and β4 are the coefficients of MLR. ΔQ, ΔP and ΔT are the anomalies of
streamflow, precipitation and temperature variables with respect to their mean values over
the period 1976 to 2005, with ΔQ and ΔP considered as the percentage change and ΔT
considered as the absolute change. ΔPΔT represents the interactions between precipitation
and temperature. Lehner et al. [44] and Chegwidden et al. [45] used a similar concept in
their evaluations using MLR models, although the latter did not use the interaction term.
Further, we used the R “Caret” package [46] variable importance (VI) metric, which is
based on the absolute t-statistic of each model coefficient, to assess the relative sensitivity
of each input variable with respect to the output variable of the MLR model.

3. Results and Discussion

3.1. Spatial Variations of Streamflow Trends

Figure 1 depicts the trends in Qmean, Qmin and Qmax along with the Qmax timing at
84 hydrometric stations across the permafrost region of Canada. The results generally
corroborate with previous studies of six large Arctic flowing rivers (Appendix A Table A1),
suggesting trends in the Canadian permafrost region are consistent with those across
the pan-Arctic. Specifically, similar to the trends across the pan-Arctic, there are larger
fractions of stations with increasing Qmean (62%) and Qmin (68%) trends than decreases,
although some of the trends are not significant. The larger fraction of stations (44%) with
significant increases (p < 0.10) in Qmin is also consistent with the previous studies. Overall,
Qmin increases represent the most prominent trend in this study, with 38% of trends field
significant (Table 1); thus, most trends are globally significant.

Table 1. Number of stations with significant trends (p < 0.1) using the Mann–Kendall test with
iterative pre-whitening, and the number of field significant trends with false detection rate method.

Variable
Significant Increasing/Decreasing

Trends/Total Stations

Field significant
Increasing/Decreasing Trends/Total

Stations

Qmean 12/5/79 6/0/79
Qmin 35/2/79 30/1/79
Qmax 9/7/83 3/1/83

Qmax timing 8/7/83 0/0/83
Qmax/Qmin 2/33/79 1/19/79

O–M_T 67/0/84 63/0/84
A–S_T 60/0/84 55/0/84
O–M_P 23/3/84 11/0/84
A–S_P 13/1/84 2/0/84
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Most stations with increasing Qmean trends in this study are located in north-western
Canada, while the southern and eastern regions show no trends, or even a few decreasing
trends. Likewise, while there are few stations with significant trends in Qmax and Qmax
timing in north-western Canada, the majority of stations in other regions show no signifi-
cant trends. Furthermore, number of stations with field significant trends are even smaller,
implying the lack of globally significant trends in these variables. This is especially the case
for Qmax timing, for which none of the trends are field significant, thus, these trends are
practically insignificant. Nevertheless, the effect of increasing Qmin is reflected in declining
Qmax to Qmin ratios for some of the stations (Table 1). Specifically, 33 out of 79 stations
exhibit significant downward trends, with field significant trends for 19 stations.

Considering the trends for the seven drainage regions of Canada, it can be seen that
the bulk of the stations are located in western Canada, with only a limited number of
stations in eastern Canada (Table 2). Given the limited number of stations, field significance
testing was not done at the regional level. Considering the temporal trends, regions 8, 9 and
10 have larger fractions of stations with trends in Qmin and Qmax/Qmin, while regions 3, 4,
5, 6 and 7 have smaller fractions of stations with trends. Some of the trends in region 3 are
opposite to other regions, e.g., while there are declining Qmean and Qmax trends in region 3,
the declining trends are less prevalent in other regions. However, given the limited number
of stations, generalization/extrapolation of patterns for these data-poor regions (regions
3 to 5) is considered problematic. There are also regional differences in western Canada;
e.g., in the upper Mackenzie (region 7), there is a larger fraction of stations with increasing
Qmin trends compared to the lower Mackenzie (region 10).

Table 2. Number of stations in seven regions with significant trends (p < 0.1) using the Mann–Kendall test with iterative
pre-whitening. Summarized trends include significant increasing/ decreasing trends/ total stations.

Variable Region 3 Region 4 Region 5 Region 6 Region 7 Region 8 & 9 Region 10

Qmean 0/3/5 0/0/5 0/0/6 4/1/15 0/0/9 4/0/14 2/1/25
Qmin 0/1/5 0/0/6 2/0/7 4/1/15 2/0/9 11/0/13 14/1/24
Qmax 0/2/5 0/1/5 0/0/7 2/1/15 1/2/9 1/1/14 4/1/28

Qmax timing 0/0/5 2/0/5 3/0/7 1/0/15 0/0/9 0/2/14 2/5/28
Qmax/Qmin 1/3/5 0/0/6 0/2/7 1/1/15 0/6/9 0/10/13 2/9/24

O–M_T 4/0/5 4/0/6 4/0/7 10/0/15 8/0/9 10/0/14 27/0/28
A–S_T 3/0/5 6/0/6 5/0/7 11/0/15 5/0/9 9/0/14 21/0/28
O–M_P 0/0/5 1/0/6 2/0/7 5/0/15 3/0/9 0/0/14 12/3/28
A–S_P 0/0/5 0/0/6 0/0/7 0/0/15 3/0/9 0/0/14 10/1/28

Seven regions are defined according to the Water Survey of Canada drainage regions, which include: (3) Labrador, Northwestern Quebec;
(4) Albany; (5) Nelson; (6) Arctic, Hudson Bay; (7) Upper Mackenzie; (8) and (9) Pacific and Yukon; and (10) Arctic, Lower Mackenzie and
Queen.

Regions 9 and 10 consist of the Yukon and Mackenzie rivers, respectively, along with
their tributaries. The streamflow trends at the most downstream stations and upstream
stations are generally consistent. Specifically, the significantly increasing Qmin trend in
the Yukon Eagle station (1951 to 2018) is consistent with 9 out of 11 upstream stations.
The Yukon Eagle station does not have significant trend in Qmean, Qmax and Qmax timing,
which is in general agreement with the lack of trends in 8 (12), 10 (12) and 10 (12) upstream
stations, respectively (numbers in the parentheses are the total number of stations). Similar
results were obtained when comparing the 1973 to 2016 trends for the most downstream
station on the Mackenzie River (Mackenzie River at Arctic Red River) with upstream
stations. Specifically, the absence of significant trends in Qmean, Qmax and Qmax timing are
in agreement with 14 (15), 14 (18) and 15 (18) upstream stations, respectively. However, the
downstream station exhibits no significant trend in Qmin, while 11 (15) upstream stations
show increasing trends. It is also noteworthy that for the Mackenzie River streamflow
variables, the lack of significant trends over 1973 to 2016 are in agreement with Yang
et al. [47] over 1973 to 2011. For the Yukon Eagle station, significant increases in Qmin and
insignificant change in Qmax for the period 1951 to 2018 agree with Bennett et al. [48], in
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which the 1954/1964 to 2013 periods were used. However, insignificant change in the
Yukon Eagle Qmean for the period 1951 to 2018 differs from the significant increasing trend
for the period 1975 to 2016 according to Box et al. [27].

Given that the Qmin increase is the most prominent trend in this study, as well as other
studies across the pan-Arctic (see Appendix A), an important question arises on its link to
permafrost degradation. In this respect, while a majority of stations in the discontinuous
permafrost zones in western Canada show increasing Qmin trends, only a few stations
in the discontinuous permafrost zones in Saskatchewan, Manitoba and Ontario show
increasing Qmin (Figure 1). Furthermore, Smith et al. [21] found greater Qmin increases in
the non-permafrost zone than permafrost zone of Eurasia and speculated that decreased
seasonal freezing of soils caused by warmer winters and/or deeper snowpack may be
causing the Qmin increases. Such processes could also be contributing to Qmin increases in
this study, and consequently, the decline of the Qmax-to-Qmin ratio.

3.2. Spatial Streamflow and Climatic Trends Relationships

Figure 2 shows the results of the Mann–Kendall trend analyses for the cold season
(October to March, i.e., O–M) and warm season (April to September, i.e., A–S) temperature
(T) and precipitation (P), with both calculated as the basin-average values for the areas
that drain to hydrometric stations. The results show distinct patterns in temperature and
precipitation changes. While the majority of O–M_T and A–S_T show increasing trends
for the entire permafrost region, a smaller fraction of O–M_P and A–S_P show increasing
trends. The differences become more distinct when the trends for the seven regions are
considered (Figure 2, Table 2). Specifically, while the stations with temperature increases
are distributed across all regions, the bulk of stations with increasing precipitation trends
are located in region 10 followed by region 7. Some stations in regions 5 and 6 also show
an increasing trend in O–M_P.

Next, we present correlations among the 1976 to 2005 climatological means of stream-
flow components and driving precipitation and temperature (Figure 3a), with Qmean, Qmin
and Qmax values normalized by the basin areas (hereafter referred to as the qmean, qmin and
qmax). The correlations specify the strength of spatial relationships, such as the significant
positive correlations among qmean, qmin and qmax suggest that the basins with higher values
in one flow component are also likely to have higher values in the other two components.
Furthermore, as precipitation is the main driver of annual flow, qmean for the basins are
positively correlated with both O–M_P and A–S_P. The negative correlation of qmean with
A–S_T is likely due to higher evapotranspiration losses in warmer basins. qmax is negatively
correlated with its timing, which is probably due to the wet-to-dry precipitation gradient,
and warm-to-cold temperature gradient from south to north in the permafrost region [49].
Thus, the warmer southern basins are likely to produce higher qmax, and earlier timing
than the colder northern basins. On the other hand, the negative correlation between qmin
and qmax could be linked to snowpack and baseflow generation. For instance, the relatively
colder basins are likely to have lower baseflow and larger snowpack than warmer basins
with a similar precipitation amount, thus producing relatively smaller qmin and larger
qmax in colder basins. Besides the spatial variability of precipitation and temperature, the
seasonality also plays a role on streamflow responses. Specifically, the positive correlations
of qmin and qmax with O–M_P are in line with the expectation that the basins with higher
winter precipitation also produce higher flow rates. qmin also has a positive correlation
with O–M_T. Therefore, the higher the winter temperature in the basin, the higher the
low-flow response, likely due to higher rainfall-to-total-precipitation ratio and higher sub-
surface flow. Furthermore, the negative correlation of qmax with A–S_T is likely related to
spring snow accumulation and melt, which is constrained by spring temperature; thus, the
higher the A–S_T, the earlier the snowmelt and the smaller the qmax. However, although
warmer basins are generally expected to have earlier Qmax timings, there is no significant
correlation between Qmax timing and A–S_T.
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Figure 3. Correlogram of climatic and streamflow variables: (a) 1976 to 2005 mean climatology; (b) trends for available
period. Both climatic and streamflow variables are averaged over the basins. The numbers on the plots are Kendall’s τ

correlations, with significant correlations (p < 0.1) indicated by bold numbers.

The correlations among streamflow and climate variable trend values (Sen’s slope)
signify the relationships in the magnitude and direction of changes (Figure 3b). The cor-
relogram reveals significant but mostly weak correlations (Kendall’s τ < 0.2) for some of
the variables. The positive correlations amongst qmean, qmin and qmax trends imply that
the increase in one of the streamflow variables is likely accompanied by increases in other
variables, although the trends for individual stations may not always be significant. With
reference to the driving variables, qmax and qmean trends show weak positive correlations
with O–M_T trends. Such unidirectional flow and temperature trends appear counterintu-
itive, as an increased temperature can normally be expected to lead to decreased snowpack
and consequently decreased flows. In this case, other factors that accompanied increas-
ing temperature trends may have played a role, such as precipitation trends, although
the correlations are not significant. The positive correlation of qmin with O–M_P trends
indicate increasing low-flow with increasing winter precipitation. The significant negative
correlations of Qmax timing trends with A-S_T and O–M_T trends are in line with the
expectation of earlier timing with increasing temperature, which cause smaller snowpack
and earlier snowmelt. Furthermore, the negative correlations between qmin and Qmax
timing trends are likely linked to temperature and snowpack changes, because increasing
winter temperatures lead to larger qmin and smaller snowpack, with earlier snowmelt
leading to earlier Qmax timing. However, the expected linkage between qmin increases with
temperature increases were not found to be significant.

Furthermore, a closer examination of the temperature, precipitation and streamflow
changes reveals expected patterns. For instance, 31 of the 35 significantly increasing
qmin trends coincide with the O–M_T increasing trend. However, only a few qmean and
qmax results showed significant trends, and these trends do not always line up with the
significant O–M_P and A–S_P trends. A number of factors affect the presence/absence of
the relationships between streamflow and climate variable trends. Firstly, streamflow trends
reflect the cumulative effects of precipitation, temperature and snow trends. Therefore,
trends in one of the driving variables (temperature or precipitation) may not lead to
trends in streamflow variables. Secondly, given the complex interactions between the
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climatic drivers, the trend values may not change monotonically for different variables,
thus resulting in weak or no correlations with the streamflow trends.

There are also a number of sources of uncertainty that could lead to discrepancies and
inconsistencies. A major source of uncertainty is the representativeness of the precipitation
and temperature in the PNWMAmet and NRCanmet dataset, particularly due to the sparse
station network in the high-latitude region [50]. Additionally, uncertainties arise from
the quality of the observed discharge data, especially during the ice-covered low-flow
period [51], as well as missing values in the discharge data. There are also inconsistencies
in the length of the records. Given that some of the Qmin, Qmean, Qmax and Qmax timing
records have gaps, the compared lengths are not always consistent with temperature and
precipitation records. Nevertheless, the analyses of climatological means and trends of the
driving and resultant variables generally provide physically plausible explanations.

3.3. Climatic Controls on Streamflow Variables

We focused our temporal analyses on stations with the longest available flow records,
which included: (i) 1947 to 2012 (with few years of missing records in between) period for
the Liard Upper Crossing (Liard-UC) and (ii) 1951 to 2012 (complete) period for the Yukon
Eagle (Yukon-E), Alaska stations (Appendix A Figure A1). Note that the flow records
were trimmed at the year 2012 to match the precipitation and temperature records in
the PNWNAmet datasets. Both the Liard-UC and Yukon-E stations flow records have a
significantly increasing Qmin trend (p < 0.05, Liard-UC: slope 5.1%/decade; Yukon-E: slope
4.1%/decade). Qmean and Qmax trends for both stations are not significant at p < 0.1. In the
case of basin-averaged temperature, both A–S_T and O–M_T are increasing significantly
(p < 0.05) for Liard-LC (decadal trends, A–S_T: 0.2 ◦C, O–M_T: 0.4 ◦C) and Yukon-E (decadal
trends, A–S_T: 0.3 ◦C, O–M_T: 0.5 ◦C). There were no significant precipitation trends (for
both A–S_P and O–M_P) for either basin.

The sensitivities of precipitation and temperature changes on Qmean, Qmin and Qmax
anomalies relative to 1976 to 2005 together with the results of MLR analyses are shown
in Figure 4. Note that Qmax timing results are not shown because of the overall lack of
relationships with climatic drivers. The relative controls of precipitation and temperature
on the three streamflow variables are depicted in terms of VI scores, with R2 summarizing
the MLR model fits. We also explored different combinations of the precipitation and
temperature seasons in the MLR model setup. The results that yielded the best R2 values
were depicted, which included annual values (Ann_P and Ann_T) for Qmean, October to
March values (O–M_P and O–M_T) for Qmin, and October to July (O–J_P and O–J_T) values
for Qmax for both stations. These best combinations of months are in agreement with the
analyses of climatic controls on these three streamflow variables using the historical and
projected future temperature and precipitation for the Liard River basin [14]. The relative
controls of temperature, precipitation and their interaction term are depicted by VI1, VI2
and VI3, respectively.

The MLR model results for Qmean indicate the dominant controls of Ann_P (VI2 > 0.75)
for both basins (Figure 4a,b). While Ann_T has a small influence on Qmean for Liard-LC, its
influence for Yukon-E is negligible. The controls of precipitation–temperature interactions
on Qmean for the two basins are non-existent to negligible. Furthermore, as illustrated by
the stratified patterns of Qmean anomalies relative to Ann_P anomalies, the sensitivities of
Ann_P on Qmean are positive for both basins; i.e., the larger the Ann_P, the larger the Qmean.
Overall, the model performance for Qmean is good for both basins (R2 > 0.7), i.e., Ann_P
and Ann_T anomalies can explain over 70% of variance in Qmean anomalies.
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Figure 4. Sensitivity plots of streamflow anomalies against annual/seasonal temperature (◦C) and precipitation (%)
anomalies with respect to 1976–2005 period. Illustrated results for Liard and Yukon Rivers include: (a,b) Qmean against
Ann_T and Ann_P; (c,d) Qmin against October to March temperature (O–M_T) and precipitation (O–M_P); and (e,f) Qmax

against October–June temperature (O–J_T) and precipitation (O–J_P) anomalies.
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In the case of Qmin, temperature plays a larger role, with VI1 for O–M_T > 0.5 for both
basins. Precipitation has a smaller control, and the precipitation–temperature interaction
has negligible to minor influence (Figure 4c,d). The higher temperature control on Qmin
is also illustrated by stratified patterns along O–M_T axis, i.e., larger Qmin with higher
O–M_T, especially in the case of Liard-LC basin. The MLR model predictability for Qmin
as given by R2 range between 0.39 and 0.46; thus, the models can only explain <50% of
the variance of Qmin. Nevertheless, the higher temperature control on low flow—which
in this region is mainly contributed by baseflow from groundwater [52]—align with the
expectation of higher groundwater recharge and subsurface flow and higher Qmin, as
temperature increases [20].

In contrast to Qmin, precipitation has higher control (VI2 ≥ 0.59) on Qmax, especially
in the case of Liard-LC. This is also illustrated by a stratified positive relationship between
Qmax and O–J_P, i.e., higher Qmax for larger precipitation (Figure 4e,f). The temperature
control on Qmax is ≤ 0.26, indicating the smaller role of O–J_T change on Qmax change. In
this case also, the precipitation–temperature interaction plays a minor role on Qmax. The
MLR model R2 range between 0.46 and 0.57, indicating a moderate predictability of Qmax
with O–J_P and O–J_T.

Overall, the evaluation of precipitation and temperature controls on Qmean, Qmin and
Qmax provide further insights into the effect of these variables on streamflow response.
The dominant control of precipitation on Qmean and Qmax, and temperature on Qmin
from this observation-based study is consistent with the modelling study that include
historical and projected future simulations [14]. This provides some confidence in using the
MLR model for diagnosing the future direction of streamflow change with respect to the
projected precipitation and temperature changes. As such, future warming can be generally
expected to lead to higher Qmin, while precipitation increase can be generally expected to
lead to increased Qmean and Qmax. However, the MLR models, with the R2 predictability
scores ranging between 0.39 and 0.74, have limited skills in explaining the variability of
streamflow components. Furthermore, given the lack of physical representation, the MLR
model is considered not suitable for extrapolation problems, such as projecting future
changes. Nevertheless, the MLR-based VI analysis contributes to a process understanding
with regard to dominant driving variables affecting streamflow responses.

4. Discussion on Future Changes in Extremes

The preceding investigation on the relationships of precipitation and temperature
with Qmean, Qmin and Qmax, based on the historical climate, leads to a subsequent question
about the potential future changes in these variables in the context of enhanced warming
and increased precipitation across the pan-Arctic region [53]. A number of other factors are
also associated with the higher temperature and precipitation are that directly or indirectly
affect these streamflow variables. For instance, with warmer temperatures, there will
be a reduction in the snowfall fraction and an increase in the rainfall fraction [11]. The
changing precipitation phase could lead to an increased frequency and areal extent of
rain-on-snow events [16,18,54]. Future projections of snow indicate a general decline
in the snow cover extent [7,55] and highly variable maximum snow–water equivalent
changes, with increases, decreases or no change depending on the region, and climate
model used [7,56–58]. Furthermore, in response not only to warming, but also to changes
in snow cover, which exerts a control on the underlying soil, Arctic permafrost is projected
to undergo substantial degradation [59].

Given that the projected changes in temperature, precipitation, snow and permafrost
are generally a continuation of historical trends, future changes in streamflow variables
can be expected to follow the historical changes. For instance, previous global-scale or
pan-Arctic-wide studies indicate future increases in Qmean and Qmin, and earlier Qmax
timings [60–62]. Similar changes in Qmean and Qmin were also projected for the Liard River
basin [14]. However, the potential future changes in Qmax over the northern region, which
is conditional on the evolution of precipitation, temperature, snowpack and permafrost
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changes and their interactions, remain less clear. Nevertheless, there are indications
of changes to the nonstationary streamflow extremes (i.e., alterations in return periods
and return levels). For instance, Hirabayashi et al. [63] projected future increases in the
frequencies of the historical 100-year return period floods for the Yenisei, Lena, Mackenzie
and Yukon Rivers, and a decreased frequency for the Ob River.

Summer rainfall-driven peak flow events are also related to rainfall/snowfall balance,
which are historically very rare in large Arctic rivers, and typically occur only in the small
coastal catchments [64–66]. For instance, an extreme summer flood event occurred in the
Upper Kuparuk River catchment (drainage area 142 km2) on the northern slope of Alaska
in response to a 50-h, 80 mm rainfall event in July 1999, with the peak flow exceeding
snowmelt peak discharge for 1993 to 2001 [64]. Additionally, a closer examination of the
Yukon-E streamflow revealed occurrences of multiple summer peaks, with secondary peaks
in late summers of 2010 and 2012 (not shown). Given that portions of the Yukon Basin are
experiencing extensive melting of alpine glaciers and perennial snow fields [67,68], these
summer peak flow events may have been influenced by glacier melt. In this respect, the
projected glacier mass loss has the potential to modify the mean and extreme streamflow
states of basins with glaciers across the pan-Arctic, including changes in the summer peak
flows [69].

5. Summary and Conclusions

This study contributes towards understanding the historical changes in streamflow
regimes and the role of climatic drivers on streamflow changes across the continental
scale permafrost region of Canada. We analyzed historical trends in several streamflow
components (i.e., Qmean, Qmin, Qmax and Qmax timing) across 84 streamflow stations in the
permafrost region of Canada. Overall, the trends are generally consistent with previous
studies across the pan-Arctic (Appendix A Table A1), with increasing Qmin for 43% of
stations (p < 0.10) as the most prominent trend. Qmin trends are also field significant
for 38% of stations, and the majority of the stations with Qmin increases are located in
western Canada. Similar to previous studies (Appendix A Table A1), the number of
stations with significant trends in Qmean, Qmax and Qmax timing are small, with increasing
or decreasing trends of less than 15%, and even smaller fractions with field significant
trends. Temperatures over the basins that drain to hydrometric stations show widespread
increases, with significant trends in October to March and April to September temperatures
for 80 and 71% of the basins, respectively; the majority of trends are field significant.
Upward precipitation trends were obtained for some of the basins, especially for the months
of October to March, with 27% of basins showing increases and 13% field significant.

The analysis of climatic controls (precipitation and temperature) provides key in-
sights into their relationships with the streamflow changes. For instance, the Kendall’s
τ correlations of the basin-averaged runoff with precipitation and temperature indicate
weak to moderate associations, including positive correlations of qmean with O–M_P and
A–S_P, and qmin with O–M_P and O–M_T. These associations reinforce the role of higher
basin precipitation in producing higher runoffs. In contrast, the negative correlations of
A–S_T with qmean and qmax is indicative of the temperature influence on evaporation, snow
accumulation and melt; therefore, the higher the temperatures, the lower the runoffs. The
correlations of streamflow trends with precipitation and temperature trends are usually
weak, although directions of trends are generally in line with the expectation, i.e., the posi-
tive correlation between qmin and O–M_P trends, and the negative correlations between
qmax timing and A–S_T and O–M_T trends.

The MLR-based variable importance analysis captured the sensitivity of climatic
drivers on streamflow components and provided plausible explanations on driver-response
relationships. The results revealed the dominant control of precipitation on Qmean and
Qmax, with increasing wetness generally leading to higher discharge. On the other hand,
the dominant temperature control on Qmin reinforces the impact of climate warming on
increasing the Qmin trend, apparently by increasing the fraction of precipitation falling as
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rain and promoting subsurface flow with increasing temperature. Overall, the insights
gained from this study, i.e., the effect of climatic drivers on streamflow changes, could be
generalized for understanding streamflow changes across the permafrost region of the
world. Furthermore, with a careful selection of climatic drivers, the methodologies used in
this study could be applied to evaluate streamflow changes in the permafrost-free regions.

The historical streamflow trends and their relationships with climatic drivers lead to a
subsequent question on future streamflow changes. In this respect, previous studies suggest
future increases in Qmean, Qmin and earlier Qmax timings across the pan-Arctic [14,60–62],
while the direction of Qmax—which depends on the interactions of precipitation, temper-
ature and snow—remain uncertain for most regions. Furthermore, given that most of
the impact studies over the northern region are large-scale studies, and not designed to
represent the finer details of the streamflow extremes, there is a need to develop basin-scale
hydrologic models by incorporating key processes (such as permafrost degradation) for
an improved understanding of the ongoing and future hydrologic changes. Furthermore,
there is a need to improve the ground-based streamflow observation network as well as
leverage remotely sensed products to better evaluate and attribute the streamflow changes,
especially in the areas with sparse coverage as identified in this study. Overall, the results
of this study, including the enhanced understanding of ongoing streamflow changes and
climatic controls affecting these changes, provide valuable insights into the hydrologic
processes in the permafrost region of Canada and beyond.
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Appendix A. Review of Streamflow Trends for Major Pan-Arctic Rivers

We compiled trends for Qmean, Qmin, Qmax and Qmax timing from previous studies
(most recent study for each river) for six large Arctic flowing rivers that include the Kolyma,
Lena, Yenisey and Ob rivers in Eurasia, and the Mackenzie and Yukon rivers in North
America (Figure A1; Table A1). Also included are results for multiple stations within
these basins, summarized as a count of stations with significant trends out of the total
number of stations. Note that these published studies present trends for different time
periods, thus reflecting the responses to different periods of long-term climate forcing (e.g.,
temperature and precipitation) and short-term variability (i.e., Arctic Oscillation, Pacific
Decadal Oscillation and El Niño Southern Oscillation). Some of the compiled results are
for different stations (upstream or downstream), and/or flow conditions (naturalized or
observed), which could produce different trends. Furthermore, the studies use different
trend analysis methods that could also cause differences on the reported results.
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Figure A1. Map showing the six large Arctic flowing rivers summarized in Table 1 (Kolyma, Lena,
Yenisey, Ob, Mackenzie, and Yukon). Red dots indicate the location of two hydrometric stations: (1)
Yukon River at Eagle (Yukon-E) and (2) Liard River at Upper Crossing (Liard-UC); for which detailed
analyses of climatic controls on streamflow extremes were conducted.

The review of streamflow trends across the Pan-Arctic generally suggests consistent
patterns. For instance, in the case of Qmean, most studies found an increasing trend or
no trend (p < 0.05 or p < 0.10), with no study showing significantly decreasing trends.
Furthermore, studies that considered aggregated discharge from several stations also
found generally increasing discharges. For instance, Zhang et al. [4] found an increasing
trend for the combined annual discharge from Lena, Yenisey and Ob Rivers from 1948 to
2008. Likewise, Durocher et al. [26] found a general increase in freshwater flow to the Arctic
Ocean for the period 1975 to 2015, with the increase being more prominent in the Eurasian
rivers than in the North American rivers. Ahmed et al. [28] found that the combined
annual mean flow from the Mackenzie, Lena, Yenisey and Ob rivers to the Arctic Ocean
has increased by 14% during in period 1980 to 2009. The increasing trends in Qmean are
also consistent with the annual cold season and warm season precipitation increases across
the Pan-Arctic [27].

From the few available studies on Qmin, the trends are mostly increasing, some of
which are significant [21,70]. Additionally, winter (e.g., December to February or January
to March) flows are also significantly increasing [28,34]. In the case of Qmax, the changes
are mostly insignificant, except for the tributaries of the Yukon and Lena rivers, which
show either increases or decreases [48,70]. However, besides hydro-climatic controls, other
factors may contribute to these trends. For example, the increasing trend for the Lena River
is also influenced by reservoir filling that reduced its outflows in the 1960s [71,72]. From the
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very few available studies, it appears that Qmax timings are shifting earlier [47,72] although
the trends are generally not significant. Nevertheless, there is a general expectation of
earlier Qmax timing, along with the earlier onset of snowmelt and earlier centroid of annual
flow in a warmer climate [73].

Table A1. Summary of previous studies on streamflow trends for major pan-Arctic Rivers.

River/Region Reference Study Period
Trends

Qmean Qmin Qmax Qmax Timing

Kolyma (Observed) Box et al. [27] 1971–2015 ++1 (1)

Lena (Observed) Box et al. [27] 1971–2015 ++1 (1)

Lena (Observed) Ahmed et al. [28] 1936–2009 ++1 (1)
annual volume

+NS10 (1)
December–
February
volume

−− (1)

Lena (multiple
stations)

Tananaev et al.
[70]

Varying periods
between

1925–2013

++29 (100); −−2
(100) ++30 (55); −−2 (55) ++6 (105); −−3

(105)

Lena + Eastern
Siberia (multiple

natural tributaries)
Smith et al. [21] 1958–1989 +46 (212); −17 (212)

Yenisey (Observed) Box et al. [27] 1971–2015 +NS10 (1)

Yenisey (Observed) Ahmed et al. [28] 1980–2009 ++1 (1) annual
volume

++1 (1) December–
February
volume

−NS10 (1)

Ob (Observed) Box et al. [27] 1971–2015 −NS10 (1)

Ob (Observed) Ahmed et al. [28] 1936–2009 +NS10 (1) annual
volume

++1 (1) December–
February
volume

+NS10 (1)

Mackenzie Box et al. [27] 1973–2015 +NS10 (1)

Mackenzie Yang et al. [47] 1973–2011 +NS10 (1) +NS10 (1) −NS10 (1) −NS10 (1)

Mackenzie and
tributaries

St. Jacques and
Sauchyn [34]

Varying periods
between 1939–2007 +9 (23)

+20 (23)
January–March

mean flow

Yukon Box et al. [27] 1975–2016 ++1 (1)

Yukon
(Canadian Portion) Déry et al. [74] 1964–2013 +NS05 (1)

Yukon and other
rivers in Alaska Bennett et al. [48] 1954/1964–2013 +3 (8) −3 (8)

++ (−−) indicate increasing (decreasing) trends at 5% significance level; + (−) indicate increasing (decreasing) trends at 10% significance
level. NS05 and NS10 signify no significant trends at the 5% and 10% significance levels, respectively. Blank cells mean no analysis for that
variable is performed in the cited study. The numbers in the trend columns are the number of stations with statistically significant trends
(out of total number of stations).
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Abstract: Snow plays a major role in the hydrological cycle. Variations in snow duration and timing
can have a negative impact on water resources. Excluding predicted changes in snowmelt rates and
amounts could result in deleterious infrastructure, military mission, and asset impacts at military
bases across the US. A change in snowpack can also lead to water shortages, which in turn can
affect the availability of irrigation water. We performed trend analyses of air temperature, snow
water equivalent (SWE) at 22 SNOTEL stations, and streamflow extremes for selected rivers in
the snow-dependent and heavily irrigated Yakima River Basin (YRB) located in the Pacific North-
west US. There was a clear trend of increasing air temperature in this study area over a 30 year
period (water years 1991–2020). All stations indicated an increase in average air temperatures for
December (0.97 ◦C/decade) and January (1.12 ◦C/decade). There was also an upward trend at most
stations in February (0.28 ◦C/decade). In December–February, the average air temperatures were
0.82 ◦C/decade. From these trends, we estimate that, by 2060, the average air temperatures for
December–February at most (82%) stations will be above freezing. Furthermore, analysis of SWE
from selected SNOTEL stations indicated a decreasing trend in historical SWE, and a shift to an earlier
peak SWE was also assumed to be occurring due of the shorter snow duration. Decreasing trends in
snow duration, rain-on-snow, and snowmelt runoff also resulted from snow modeling simulations
of the YRB and the nearby area. We also observed a shift in the timing of snowmelt-driven peak
streamflow, as well as a statistically significant increase in winter maximum streamflow and decrease
in summer maximum and minimum streamflow trends by 2099. From the streamflow trends and
complementary GEV analysis, we show that the YRB basin is a system in transition with earlier peak
flows, lower snow-driven maximum streamflow, and higher rainfall-driven summer streamflow. This
study highlights the importance of looking at changes in snow across multiple indicators to develop
future infrastructure and planning tools to better adapt and mitigate changes in extreme events.

Keywords: climate change; extreme events; hydrology; snow; trends; snow water equivalent; Yakima
River basin

1. Introduction

About one-sixth of the world’s population is dependent on seasonal snowpacks and
glaciers for water resources [1]. There is mounting evidence that the Northern Hemisphere
is experiencing changes in snowpack characteristics [2–7]. More recent studies indicate
that snowpacks are continuing to change in subarctic, Arctic, alpine, and mid-latitude
regions [8–10]. For the period of 1980 to 2018, Pulliainen et al. [11] reported a decreas-
ing trend of annual maximum snow mass for the Northern Hemisphere. Additionally,
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Coupled Model Intercomparison project 6 (CMIP6) models project strong negative snow
extent and mass trends in the Northern Hemisphere [10]. In the western US, changes
in snowpack could result in major consequences for the overall hydrology [3,5,12–17].
For example, in western watersheds, snow is a critical surface water resource; 50% to
80% of total runoff is from spring/summer runoff [18–20], leading to a significant loss
in water availability. Several studies show evidence that snowmelt is occurring earlier
in the spring (e.g., [12,18,21,22]). For example, in the western US, there is an indication
that snowmelt is taking place up to 26 days earlier [6]. Moreover, springtime snow water
equivalent (SWE) has been declining since 1925 [12]. According to a more recent study by
Mote et al. [23], a majority of the sites continue to show a decreasing trend. Not only is the
timing of snowmelt changing, but snow duration is also declining [24]. Future predictions
indicate a reduction in both total snow amount and snow duration for the western US
(e.g., [18,25–31]). In the western US mountain regions, [32] projects that snow duration will
decrease by about 2 months by the mid-21st century, and there will be a 30% reduction
in areal extent of wintertime snow-dominated area. Similarly, Lute et al. [33] estimated a
decline in both the total number of days with snowfall and the SWE in the same period.

Spring runoff occurs earlier in snowmelt-dominated rivers, with a shift of up to
3 weeks earlier [34]. Even with no change in precipitation intensity, predictions indicate that
this trend will continue, and that, by 2050, the maximum peak will take place approximately
1 month earlier [1]. Additionally, Casola et al. [35] indicated that a warming climate
will result in a loss of about 20% of the 1 April snowpack in the Washington Cascade
Mountains [35].

The Columbia River, located in the Pacific Northwest region of the western US, is
the fourth largest river in the US, when comparing annual flow. The Columbia is mainly
fed by mountain snowmelt, and approximately half of the annual flow is stored for flood
control, hydropower, and irrigation [19]. A tributary of the Columbia River, the Yakima
River, in the south central and eastern Washington State, houses important US military
investments, such as Hanford and Yakima Training Center. To help with future land
management planning in the Yakima River basin (YRB) region, Washington (WA), USA, a
Strategic Environmental Research and Development Program (SERDP) study was funded
to examine future impacts to snowpack at this site [36].

In this paper, we present the results of a 3 year SERDP study. This study included
an assessment of our hypothesis that there are multiple indicators of a change in climate
in the Yakima River region, with a specific focus on impacts on the US Army’s Yakima
Training Center (YTC). The paper considers trends in air temperature, snow accumulation,
SWE arrival and departure dates, SWE peak, and streamflow within YRB and close-by
watersheds as indicators of climate change.

2. Study Area, Data, and Methods

2.1. Study Area

The YRB is located in the northwestern corner of the Columbia Basin, Washington
(Figure 1). Within the YRB is YTC, a 327,000 acre maneuver and live-fire training area [37].
The Yakima River is a main branch of Columbia River with 15,941 km2 to its drainage outlet,
and the upper basin above Union Gap is 9018 km2. The mean annual precipitation varies
from 180 mm at lower elevations to 3000 mm at higher elevations [38]. Most of the runoff
from the basin is generated from the snowpack [39]. The Bureau of Reclamation initiated
the Yakima Project for irrigation efforts in the YRB in 1910. In 1932, the basin was also
developed for hydropower but the power is presently mostly generated for agricultural
use [40]. Several streams in YRB are regulated, where excess water is stored in reservoirs
and released during low flow. From this process, Yakima River and its tributaries provide
approximately 180,000 hectares of irrigation water to agriculturalists operating in the
region [39]. Vaccaro [41] estimated that regulation of flow reduced the mean annual flow
by about 20% at Union Gap and 48% near Parker.
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Figure 1. (a) Map of the study area and river basins, showing the YTC, selected cities including the town of Yakima (black
dots), the snow modeling boundary (dashed line), hydrological unit code (HUC) 8 boundaries for the Yakima and Upper
Columbia river basins, USGS gages (green solid dots, see Table S2), and SNOTEL stations (red solid dots, see Table S1).
(b) Elevation and (c) land cover from 2013 National Land Cover Data [42] for the snow modeling area.

2.2. Data
2.2.1. SNOTEL Sites and Climate Data

In the US, repeated manual measurements of snowpack along staked out snow courses
started in early 1900s. By the 1970s, the seasonal snowpack in the US was manually
measured along snow courses at close to 2000 stations [19]. In the mid-1960s, a new
fully automated and unattended snow telemetry (SNOTEL) network to measure snow
depth was initiated. The network is operated by the US Department of Agriculture
(USDA) Natural Resources Conversation Service (NRCS) and currently includes over
900 stations. Snow water equivalent (SWE) measurements are made using snow pillows,
and other measurements include snow depths, minimum and maximum air temperatures,
and precipitation.

For this work, we used SWE and air temperature from 22 SNOTEL stations, where
seven stations were located within the YRB and the remaining stations were in close-by
watersheds (Figure 1). The selected stations had a record of at least 30 years and included
data from water year (WY) WY1991–WY2020 (Table S1). The stations varied in elevation
(el.) from 1100 m at Fish Lake, located in the Headwaters Cle Elum River watershed, to
2000 m at Harts Pass, located in the Upper Canyon Creek watershed. Air temperature and
precipitation data for the Yakima Airport site were extracted from the Natural Resources
Conservation Service (NRCS) database.
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2.2.2. Streamflow Data

Streamflow gage information was compiled for eight US Geological Survey (USGS)
gages within our study area (Table S2). Historical USGS streamflow gage and naturalized,
modeled streamflow information was generated by the University of Washington’s study
of the Columbia River basin (Chegwidden, et al. [43], referred to as UW17). The UW17
dataset includes output from several hydrologic models, run with different parameteriza-
tions (P2 was selected for this work). For the purposes of this work, we selected output
from the Variable Infiltration Capacity (VIC) hydrologic model that matched well with
historical gage data [44]. We additionally included gages outside the Yakima River basin
for comparison with the Yakima gages, which are heavily impacted by dams, diversion
structures, and water withdrawals. The UW17 data also included future model projections,
as described below.

2.2.3. Climate Scenarios

For the streamflow analysis, we utilized future projections from two different re-
gional climate models (RCMs) and earth system models (ESMs)—Canadian Earth System
Model v2, CanESM2 (CanRCM4) and Global Fluid Dynamical Lab Environmental System
Model v2 Weather and Research Forecast model, GFDL-ESM2M (WRF)—that represented
high (wet) and low (dry) scenarios of change as reported in the aforementioned SERDP
study [36]. To project future streamflow changes, we focused on representative concentra-
tion pathway (RCP) 8.5 regional and earth system models scenarios, extracted from the
Coordinated Regional Downscaling Experiment (CORDEX) [45]. Additional analysis of
precipitation comparison between 2006 and 2099 for the CORDEX RCP 8.5 models that
support the selection of our two future models is presented in Supplemental Figure S1.

Future streamflow predictions were extracted from the University of Washington’s
Columbia River Basin study and utilized the CanESM2 and GFDL-ESM2M models, based
on multivariate adaptive constructed analogs (MACA) downscaled climate data and the
VIC hydrology model. More details on the datasets can be found in the Supplementary
Materials [46]. Future streamflow was obtained at eight USGS gages (ESMs; see Table S2).
CanESM2 (CanRCM4) simulates regional climate model feedbacks and responses using the
Canadian Earth System Model as boundary conditions and the Canadian Regional Climate
Model for internal energy and water simulations [47]. The GFDL-ESM2M Earth System
Model provides boundary conditions to the WRF model [47].

2.2.4. SnowModel Data

We present snow modeling simulation results derived from our SERDP study [36]
to illustrate the spatial representation of the snow coverage and trends of our study
area. In that study, we used SnowModel [48,49], a physically based model. We applied
a 3 h time step for 36 years starting on 1 September 1979 to 2015. We used a 300 m
grid increment, and the simulation domain was approximately 50,600 km2 (Figure 1b,c).
The dominant vegetation is cropland with upland shrubs and coniferous forest at higher
elevations. We used topography from the National Elevation Database (NED) and land-
cover data from the National Land Cover Dataset [42]. The meteorological data were
from the National Aeronautics and Space Administration’s (NASA’s) North American
Land Data Assimilation System (NLDAS, accessed at https://disc.gsfc.nasa.gov/datasets?
keywords=NLDAS, accessed on: 5 December 2015). For this work, the spatial changes in
snow duration, rain-on-snow (ROS), and SWE runoff are presented to illustrate the general
basin trends.

2.3. Methods
2.3.1. Air Temperature and SWE Trends

For each SNOTEL station and the Yakima Airport, we calculated both the average
monthly air temperatures for each month from December through February and the
average air temperature for the winter months (December–February) for WY1991–WY2020.
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From these averages, we performed a linear fit analysis and calculated the yearly increase
in monthly air temperatures over our studied time period. We recognize that assuming
a linear trend in time may underestimate temperature changes. If we were to fit a more
complex model to the future project climate data, there would be considerable feedbacks
that may lead to stronger increases in temperature. Thus, we believe that, by using a
simple linear approximation for modeling, our extrapolation of the air temperature is an
appropriate approach, particularly in combination with our other multiple (and nonlinear)
methods applied in our work. We used this linear increase to estimate the future year
when the average air temperatures would be above freezing. This was used to calculate the
percentage of stations that would be above freezing (or already at positive temperatures)
by 2020, 2040, 2060, 2080, and 2100.

We also identified maximum peak SWE and 1 April SWE for each of the years available
for the SNOTEL stations. For each station, we performed a linear fit trend analysis from
the time series (WY1991–WY2020) of maximum peak SWE and 1 April SWE. These results
were used to determine the historical SWE change. Additionally, we investigated the trends
of the SWE accumulation and snow-free dates for all years in the time period. These dates
were chosen from longest period of continuous snow cover for each WY following the
definition by Liston and Hiemstra [4].

2.3.2. Streamflow Trends and Generalized Extreme Value (GEV)

We analyzed the weekly, seasonal, and annual trends of maximum and minimum
streamflow trends for the eight USGS gages using GFDL-ESM2M and CanESM2. We
consider a historical time period (1991–2010) and a future time period (2070–2099), along
with the entire duration of time (1991–2099). Both trends and the GEV approach examine
the annual (YR) and seasonal (December, January, February (DJF); March, April, May
(MAM); June, July, August (JJA); September, October, November (SON)) time series trends.
Nonparametric trends were calculated using R’s zyp package, using Sen’s slope to estimate
the magnitude of the trend and the Mann–Kendall to estimate the trend significance;
significance was determined at a p-value ≤ 0.05.

We utilized a GEV distribution to further consider the type of changes projected in
streamflow. GEV is based on the theory of extremal limits, which states that “a sufficiently
long time series of block maxima will approach the GEV distribution asymptotically at large
sample sizes” [50]. We applied a technique that allowed us to consider the best fit form of
nonstationarity for the streamflow. For this component of the work, we considered only
the maximum streamflow and examined the time period from 1991–2099. Additionally, for
the GEV, we focused only on GFDL-ES2M streamflow projections, because of the strong
similarities found between CanESM2 and GFDL-ES2M trend results (see Figures S2 and S3,
Table S3).

The GEV approach in this study used the R-project’s Generalized Extreme Values
conditional density estimation network (GEVcdn) package [51,52], which was described in
detail in Bennett et al. [53]. For this application, we followed the same criteria to select the
‘best’ model on the basis of the minimized Akaike information criteria, corrected for small
sample sizes (AICc) [54]. We considered five candidate models, including a stationary (S),
a linear nonstationary (LNS), and three nonlinear nonstationary models with changing the
number of nodes from one to three. In the S model, the parameters were not allowed to
vary in time, whereas location and scale parameters were allowed to vary in time in the
other candidate models.

3. Results

3.1. Air Temperature at SNOTEL Sites and Yakima Airport

To investigate regions vulnerable to changes in water storage and availability, as well
as future increases in air temperatures, monthly and seasonal air temperature trends for
each SNOTEL site and Yakima Airport were calculated for WY 1991–2020. From these
trends, we projected air temperatures for each SNOTEL site and the years when tempera-
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tures above freezing would occur (Figure 2a). Such an increase in air temperature to above
freezing indicates a lesser snowpack in that year, which would most likely result in a de-
crease in water storage. As expected, the air temperatures were lower at higher elevations.
Surprisingly, the air temperatures in February increased at a lower rate than during other
months. In fact, in February, three stations (Trough, Corral Pass, and Harts Pass) did not re-
sult in an increasing trend in air temperature, indicating that temperatures at these stations
will continue to be below freezing during this century. We found a significant increasing
trend in air temperatures that varied both temporally and spatially. The monthly average
air temperature across stations was 0.97 ◦C/decade (0.59 to 1.42 ◦C/decade) in December,
1.19 ◦C/decade (0.81 to 1.82 ◦C/decade) in January, and 0.28 ◦C/decade (no increase to
0.73 ◦C/decade) in February. The average air temperature increase for December–February
was between 0.51 and 1.32 ◦C/decade (average of 0.82 ◦C/decade). Trends in yearly
average air temperatures for 1991 to 2019 ranged from 0.33 to 1.03 ◦C/decade.

 
Figure 2. (a) Projected years when mean air temperatures will be above freezing for Yakima Airport
and the 22 SNOTEL stations. Note that the current mean air temperature at the Yakima Airport
was above freezing in 2020 for all months but December. Furthermore, there is no projection for the
mean air temperature trends at Trough, Corral Pass, and Harts Pass during February because of a
decreasing air temperature trend. Lowest to highest elevation stations are listed from left to right.
(b) Projection of stations above freezing for winter months starting December through February and
average for December through February.

From our linear trend analyses, we also estimated the percentage of studied SNOTEL
stations where positive air temperatures were encountered for every 20 years starting in
2020 through 2100, to see if similar trends continued (Figure 2b). In year 2040, several
stations were already at above freezing air temperatures. In fact, more than one-third of the
stations (41%) experienced above freezing air temperatures in the period from December
through February. This percentage increased to 82% in 2060, and, by 2080, only one
station (Harts Pass) was below freezing temperatures. In 2100, below freezing was only
encountered at about half of the stations in the month of February.
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3.2. SWE Analysis

SWE observations at the 22 SNOTEL stations displayed high variability across both
years and elevation (Figure 3). The SWE ranged from a minimum of zero (several stations)
to close to a 2700 mm maximum at Pigtail Peak. The highest average 30 year SWE was at
Lyman Lake (el. 1823 m), the second highest elevated SNOTEL station studied. The stations
with the lowest average maximum SWE were, surprisingly, not at the lowest elevation
stations but at stations with various elevations (Trough SWE = 255 mm, el. 1670 m; Upper
Wheeler SWE = 303 mm, el. 1320 m; Blewett Pass SWE = 325 mm, el. 1292 m; Pope Ridge
SWE = 424 mm, el. 1094 m; Grouse Camp SWE = 475 mm, el. 1643 m).

 

Figure 3. SWE for WY1991–WY2020 at 22 SNOTEL stations (see information in Figure 1 and Table S1). Gray lines indicate
SWE for each WY and the black solid line is the average SWE for the WY1991-WY2020. The marks on the x-axis indicate the
first day of each month.

From the SWE dataset (Figure 3), we calculated the 30 year linear trends of SWE
accumulation (Figure 4a) and snow-free date (Figure 4b) for all stations. Most stations
were experiencing a later SWE start date and an earlier SWE end date. There was a strong
negative trend in SWE starting date for stations with low to high elevation, where the
longest delay in start date was at the lower elevation stations. The longest delay in start
date was 18 days (Sasse Ridge). Opposite to this trend, some of the highest elevation
stations were experiencing an earlier start date (Pigtail Peak, Lyman Lake, and Harts
Pass). Green Lake, also a high-elevation station, was experiencing a later SWE start date
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of 11 days. A positive trend was seen in SWE end dates where the end date was earlier at
lower elevations compared to higher elevations. The earliest SWE end date was 19 days
earlier, and this occurred at Blewett Pass. This station was also the station experiencing
the greatest difference in the number of total SWE days, with 29 fewer days in WY 2020
compared to WY 1991.

 

Figure 4. Trends in SWE start where a positive number indicates a later start date (a), and trends in SWE end where a
negative number indicates an earlier end date (b); change in SWE for WY1991–WY2020 (c).

We also calculated the trend in peak SWE; there was a clear decreasing trend in peak
SWE for the 30 year period (Figure 4c). The greatest decrease in peak SWE was 393 mm
found at Stampede Pass. Among the 22 stations, this station was the third lowest elevation
station. Even though it was one of the lowest elevation stations, it had a high SWE (max
1 April SWE peak of 2042 mm). In addition to investigating the trends in maximum SWE
on 1 April, which is typically greatest and also commonly used by water resource planners,
we also analyzed trends in maximum peak (Figure 4c). In general, the trends were similar;
however, for the lower stations, the 1 April SWE was lower than the SWE peak.

3.3. Snow Model Simulations

Snow model simulations were performed to develop a spatial coverage of snow
duration, ROS, and snowmelt runoff averages and trends from 1 September 1979–2015
for the studied area. Figure 5a–c shows the snow duration and trends during the core
snow season. Following Liston and Hiemstra [4], we defined the core season as the longest
period of continuous snow cover in each year (see the inset in Figure 5a). The average
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snow duration at lower elevations was less than 90 days during the 36 year period. For
higher elevations, snow duration was over 300 days. Trends in snow-cover duration varied
between ±40 days/decade. In general, lower elevations showed an increase in snow
trends and, at intermediate and higher elevations, snow-cover duration increased. When
averaging the yearly snow duration for the study area, it showed a declining trend of
20 days/decade for the 36 year period (Figure 5c). The number of ROS events was low
at lower elevations and up to 50 days/year at higher elevations where snowpacks are
long-lived (Figure 5d). Most of the studied area indicated almost no change in ROS trends
(Figure 5e). Overall, there was a decreasing trend of ROS events (Figure 5f). As expected,
higher elevations corresponded to higher snowmelt runoff values (400 cm) compared to
much smaller values at lower elevations (Figure 5g). The entire modeling domain showed
mostly negative snowmelt runoff trends, with −10 cm/decade at the highest elevations not
uncommon. A decline in average snowmelt runoff was, therefore, no surprise (Figure 5i).

 

Figure 5. Snow model results for simulations (1979 to 2015): (a) average 36 year snow duration, (b) snow duration trend per
decade, (c) yearly snow duration area average, (d) average 36 year ROS events, (e) ROS trend per decade, (f) yearly ROS
area average, (g) average 36 year snowmelt runoff, (h) snowmelt runoff trend per decade, and (i) yearly snowmelt runoff
area average (modified from [36]).

3.4. Streamflow Patterns and Trends

We analyzed historical streamflow and two ESMs at eight USGS gages (Table S2) for
the mean, maximum, and minimum streamflow historical and future streamflow patterns
(Figure 6). The historical streamflow was lowest in August–September and increased
gradually until peak flow in late spring or early summer, with several systems experiencing
higher flows in October–December. In all but the Tieton River watershed, peak flow
occurred close to mid-June to mid-July, with higher-elevation gages peaking later in the
year. Future streamflow patterns exhibit large shifts, with streamflow peaking much earlier
in the season (i.e., January through May) in the Yakima River basin, with the higher-
elevation systems (Wenatchee, Stehekin, Methow) peaking approximately 1 month earlier.
Watersheds ranged in size from the Yakima River USGS station at Parker to the smaller
American River at Nile station; hence, flows also varied on the basis of this factor.
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Figure 6. Streamflow trends for the eight USGS stations.

Over the 109 year period, minimum streamflow trends are projected to decrease
significantly in summer and fall at almost all stations with the exception of Tieton River
and Stehekin River, where only small declines are projected. Spring minimum streamflow
trends are expected to increase at all stations, with the exception of Methow River, where
streamflow trends are projected to decrease in all seasons and annually. Maximum stream-
flow is expected to increase significantly in winter at all stations with the exception of
Methow River. Furthermore, for maximum streamflow, trends for all stations are projected
to significantly decrease in summer, again with the exception of Stehekin River, where
summer streamflow is expected to increase (not significant). Annually, maximum stream-
flow patters are projected to increase over the 109 year period, while minimum streamflow
trends are expected to decrease overall at most stations.

3.5. GEV Analysis

The GEV results illustrate how the maximum winter and maximum summer stream-
flow is projected to change in the future for the Yakima River basin region. For the
GFDL-ESM2M data, the LNS model was minimized for the annual, winter, and summer
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streamflow maximums (Figures S4 and S5). The linear, nonstationary responses indicate
that shifts in the systems will occur linearly with strong trends occurring in the systems
over time, indicative of the overarching impacts of snowfall reductions and rainfall in-
creases observed in the region. The lack of nonlinear responses in these systems reinforces
that the changes are projected to be unidirectional under the snow-to-rain transition in
regime. The GEV revealed strongly increasing maximum streamflow in winter (DJF) over
the historical-to-future periods, while summer (JJA) maximum streamflow decreased over
the period at all stations, further supporting the trend analysis results for the region. Annu-
ally, the three systems north of Yakima (Wenatchee, Stehekin, and Methow) are projected
to exhibit some slight downward shift in trends by the 2050s, indicating a potential change
in the systems, possibly indicative of the shift toward a loss of snowpack, transitioning
toward a rainfall-dominant system by this time.

4. Discussion

Our study presented historical and future trends in multiple indicators (air temper-
ature, precipitation (snow and rain), and timing of minimum, average, and maximum
streamflow) for YRB, a snow-dominated region in the western US. We present three decades
of air temperature trends, SWE measurements, and snow duration trends, in addition to
simulated streamflow trends and GEV analysis from present to 2100. This study offers
insight into how changes in climate affect this region, and how these changes impact
streamflow. Even though hydrological simulations in a heavily irrigated watershed like
the YRB can be difficult [55], results as presented in this study across multiple indicators
represent the best estimate of how changes in climate could impact the region.

The air temperature trends for a 30 year historical period indicates that air temper-
atures are increasing at the majority of YRB stations and during most winter months
except for February. Confirming these colder trends is the study by Kapnick and Hall [56],
which reported lower warming trends for February for 12 western US states compared
to other months at more isolated locations. As such, our results indicate that YRB is in
a vulnerable transitional phase between precipitations falling as snow or rain. Hamlet
and Lettenmaier [57] reported that, in a transient watershed, any change in temperature
could have a great impact on runoff. Therefore, these increasing trends in air temperature
will affect future water storage in the basin. For our study period (WY1991–WY2020),
the highest increase in monthly air temperature observed was 1.82 ◦C/decade (January),
recorded at a mid-elevation SNOTEL location (Park Ridge). We saw an increase in winter
temperature (December–February) of 0.82 ◦C/decade as an average between the 22 stations.
Similar warming was reported by Hu and Nolin [58], who indicated a warming trend
of 0.4–1.2 ◦C/decade for the Interior West. Other studies also estimated warming rates
of about 0.5 ◦C/decade [56,59,60], which are similar to the trends in yearly average air
temperatures reported in this study (0.33 to 1.03 ◦C/decade). This extremely high rate of
warming across the region that is already being observed historically is indicative of the
rate of warming that has already occurred across the YRB.

As expected, associated with the increasing trend in air temperature, our analyses
showed a decrease in both peak SWE and 1 April SWE over the 30 year period (WY1991–
WY2020). Moreover, trends at most stations have experienced a delay in SWE start date
and an earlier SWE end date, resulting in a shorter snow duration. A trend in shorter snow
duration over the period of WY1980–WY2015 for the snow modeling area was also evident.
Considering these changes, as recommended by other studies (e.g., [32,61,62]), a different
date for peak SWE than 1 April should be considered for water resource planning.

Previous studies in the Washington area showed similar outcomes to our analyses,
where major shifts in snowpack and precipitation transitions from snow to rain were identi-
fied. Klos, Link, and Abatzoglou [32] projected changes in winter precipitation (December–
February) from late 20th century (1979–2012) for HUC4 watersheds, and Yakima indicated
a 16% decrease in snow-dominated extent and a 25% increase in rain-dominated extent
by the mid-21st century (2036–2050). Previous work predicted that snowmelt-dominated
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watersheds in the region will be reduced by 2080 [63]. Yakima River is one of three western
US watersheds predicted to be almost entirely depleted in 1 April SWE [30] by the 2080s.
The authors also reported that, by 2080, the Yakima watershed will experience a shift from
a transient rain–snow basin to a rain-dominated basin [30].

In a larger part of the US, the major driver for severe spring flooding is snow meltwa-
ter [64,65]. ROS events are a large cause of peak flow events [64,66]. At higher elevations in
snow-dominated areas, the projected future increase in ROS makes flood risk assessments
complicated [67,68]. Our snow modeling simulations for the historical period of WY1980–
WY2015 showed a similar outcome, where an increase of up to 4 days/decade was seen in
some higher elevation areas.

Patterns in streamflow indicate a system in transition between the historical periods of
1970–1999, as well as into the future to 2099. Under a slightly drier future climate scenario,
all streamflow at most sites is projected to experience declining summer minimum and
maximum streamflow, with one high-elevation station (Methow) experiencing declines
across all seasons and annually over the 1991–2099 period. Many systems are also projected
to experience increasing spring minimum streamflow, due to higher winter streamflow
influenced by increased rain in winter. On the other hand, winter streamflow is projected
to increase strongly across the region. These finding have strong implications for increasing
wintertime flooding events and drought scenarios in summer, highlighting the potential for
increased extreme events of opposing direction that may occur throughout the water year.

When considering changes using the GEV approach, we observed a linear and strongly
decreasing summer streamflow and increasing winter flows, again reinforcing the trends
and the transition in the systems toward a rainfall-dominant winter streamflow pattern,
with a shift in snowmelt streamflow peaks to an earlier and more drawn out melt, leading
to lower streamflow availability during the summer. The lack of nonlinearity in responses
highlights the combined impact of increasing temperature, reductions in snow, and in-
creases in rainfall on the systems observed across the region.

In a study where the focus was to assess hydrology implications from climate change
of Washington state, Elsner et al. [30] projected a similar shift to that reported in this study
in future streamflow peak from summer to winter for Yakima River at Parker (see location
in Figure 1) when compared to historical measurements. Our results are also comparable
to a study by Vano et al. [69], who performed a hydrological seasonal sensitivity study to
climate variations for several regions in the Pacific Northwest. They reported similar shifts
in streamflow for Yakima River near Parker. In their study, out of the five basins studied, the
Yakima River basin was the most sensitive to warming. The sensitivity is highlighted here
in the observed trends in streamflow projected to occur, with similar responses noted for
both the irrigated Yakima system and the adjacent, unimpacted river basins of Wenatchee,
Stehekin, and Methow. These findings have implications for other systems adjacent to the
sites we studied, including those systems draining into the Columbia River basin.

The changes observed in the multiple indicators have broad-reaching implications
for flow. Water managers, agriculturalists, irrigation managers, and urban planners may
require adjustments to planning and water retention scheduling to accommodate and retain
winter rainfall storage for drier summer months in lieu of the reduced natural water storage
in snowpack. Importantly, YTC will want to take into account the drier summer conditions,
which may affect military missions. Hanford may want to consider the possibility of
increased movement of solutes and sediments posed by the increase in winter runoff, as
well as the overall increase in water moving through the surface, subsurface, and soils in
the region. Additionally, the declines in summer streamflow will likely have an impact on
other important components of the ecology and economy in the region, such as fisheries.
Studies in the YRB indicate that a warming climate will decrease the salmonid habitat due
to both increased streamflow during winter months and higher water temperatures [70].
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5. Summary and Conclusions

Future climate predictions indicate that temperatures will continue to increase, and
that this can negatively impact snow-dominated watersheds in regions that rely on the
snowpack for water resources. Therefore, it is greatly important to investigate changes
in climate during the design phase of new infrastructure. Moreover, military operations
and missions can be affected by alterations in climate, making it necessary to account
for these changes during future land management. This study focused on historical and
future trends in climate, as well as their effect on streamflow for the Yakima River Basin,
a snow-dominated area located in the western US, in the same region as a large military
installation (YTC). Our analyses included air temperature and SWE data from a total of
23 stations over a 30 year period. From the air temperature trends, we also projected by
what year winter temperatures would be above freezing and would lead to a depleting
snowpack. Additionally, we analyzed streamflow trends across five stations in the YRB
and, because this watershed is heavily regulated, we also ran trend analyses for three
close-by stations.

Our air temperature trend analyses agree with previous studies showing increasing air
temperatures. The 30 year historical record of air temperature showed an increasing trend
for almost each month starting in December through February, as well as for the 3 month
average (December through February) air temperatures. Surprisingly, a few stations
showed no increase in air temperature during the month of February, indicating this as
the coldest of the months analyzed. More interesting, more than one-third of the stations
(41%) are predicted to have above freezing air temperatures by 2040 in December through
February. Most of these stations are located at lower elevations, but some stations are at
higher elevations (i.e., Lost Horse and Green Lake). By 2060, a majority of the stations (82%)
are projected to show air temperatures above freezing during this time period. The increase
in air temperature will result in a shift in snow arrival and departure date, SWE peak flow,
and maximum spring streamflow. The streamflow trend and GEV analyses indicated that
the YRB basin is a system in transition, where streamflow is changing to earlier peak flows
as a result of increasing temperatures. The findings from this study provide valuable input
for planning infrastructure, water, and land management in the YRB region and locations
with similar climate. Furthermore, this study highlights the local variability in climate,
which proves the need for and importance of incorporating spatial differences during the
design phase of hydraulic structures in order to avoid negative impacts.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/w13192608/s1, Table S1. Characteristics for the 22 automated SNOTEL stations from Natural
Resources Conservation Service, including SNOTEL site name and number, latitude, longitude, ele-
vation, and basin location. Table S2. Characteristics for the eight Washington state streamflow gages
and sites analyzed in this study. Site name and abbreviated description, USGS ID, latitude, longitude,
basin area, elevation of USGS gage, and basin location. Table S3. Seasonal and annual trends for min-
imum and maximum streamflow (m3/s) for 1991–2099 for GFDL-ES2M. Trends are values occuring
over the 109 year time period. Bold values indicate significant trends (p-value ≤ 0.05). Figure S1. Pre-
cipitation comparison between 2006-2016 (current/historical) and 2070-2099 (future) for the CORDEX
RCP 8.5 models that support the selection of our two future models. The CanESM2.CanRCM4 model
shows the wettest winter and spring for the current climate compared to future projections and the
GFDL-ESM2M.WRF model is the driest (winter and spring) in comparison to the future climate.
Figure S2. Left, GFDL-ESM2M for 1991–2099 maximum streamflow. Right, CanESM2 for 1991–2099
maximum streamflow. Darker shades of blue represent p-value ≤ 0.01, while lighter shades of blue
represent p-value ≤ 0.05 for statistical significance. Figure S3. Left, GFDL-ESM2M for 1991–2099
minimum streamflow trends. Right, CanESM2 for 1991–2099 minimum streamflow trends. Darker
shades of blue represent p-value ≤ 0.01, while lighter shades of blue represent p-value ≤ 0.05 for
statistical significance. Figure S4. GEV results for eight stations for the maximum annual streamflow
from 1991–2099 for the GFDL- ESM2M model. Figure S5. GEV results for eight stations for the
maximum DJF (top) and JJA (bottom) streamflow from 1991–2099 for the GFDL-ESM2M model.
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Abstract: Flows originating from cold and mountainous watersheds are highly dependent on temper-
ature and precipitation patterns, and the resulting snow accumulation and melt conditions, affecting
the magnitude and timing of annual peak flows. This study applied a multiple linear regression
(MLR) modelling framework to investigate spatial variations and relative importance of hydrocli-
matic drivers of annual maximum flows (AMF) and mean spring flows (MAMJflow) in 25 river
basins across western Canada. The results show that basin average maximum snow water equivalent
(SWEmax), April 1st SWE and spring precipitation (MAMJprc) are the most important predictors of
both AMF and MAMJflow, with the proportion of explained variance averaging 51.7%, 44.0% and
33.5%, respectively. The MLR models’ abilities to project future changes in AMF and MAMJflow in
response to changes to the hydroclimatic controls are also examined using the Canadian Regional
Climate Model (CanRCM4) output for RCP 4.5 and RCP8.5 scenarios. The results show considerable
spatial variations depending on individual watershed characteristics with projected changes in AMF
ranging from −69% to +126% and those of MAMJflow ranging from −48% to +81% by the end of
this century. In general, the study demonstrates that the MLR framework is a useful approach for
assessing the spatial variation in hydroclimatic controls of annual maximum and mean spring flows
in the western Canadian river basins. However, there is a need to exercise caution in applying MLR
models for projecting changes in future flows, especially for regulated basins.

Keywords: peak flows; multiple linear regression; predictor; predictand; snow water equivalent;
annual maximum flow; climate change; western Canada

1. Introduction

Streamflows originating from cold and mountainous regions are significantly affected
by increasing air temperature and changes in precipitation patterns associated with global
warming. A warming climate results in a shift in precipitation from snow towards rain,
affecting the snowpack volume and snowmelt timing [1]. The magnitude and timing
of peak streamflow events are also affected, often exacerbating flood events and caus-
ing significant damages [2–4]. Western Canada consists of a diverse region spanning
mid- to high-latitudes with highly contrasting topography (Figure 1) and hydroclimatic
regimes [5,6]. Water availability over the majority of the region is largely controlled by
snowmelt, especially from alpine areas in the headwaters of many of the river basins [7].
Hence, the snowmelt-driven spring freshet is the dominant hydrological event for most
of the rivers [8]. While winter temperature and precipitation affect snowfall amount and
late-winter snowpack, spring temperatures affect the rate and timing of spring snowmelt,
directly influencing spring runoff volumes and peak flows [9]. Some cold-season high
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flows in coastal regions are also associated with long-duration rainfalls resulting from
persistent storms, while intense short-duration rainstorms are often responsible for high
flow events in relatively small drainage basins [10]. Peak flows generated by such intense
and/or excessive rainfall typically occur in late spring and summer, when atmospheric
convective precipitation is more common [11].

Figure 1. The western Canadian study area including the relief map, the drainage basins and the location and regulation
status of hydrometric stations. Red and blue points depict regulated and unregulated stations, respectively (source of the
relief map: Natural Resources Canada).

Several studies indicate that western Canadian snowpack is diminishing, especially
in the southern regions, reducing the amount of water stored over the winter months
and affecting the amount of runoff produced in the spring and summer [12–15]. Both
glacial retreat and shrinking snowpacks have been accompanied by changes in runoff
patterns and streamflow timing, two factors that can have substantial effects on aquatic
ecosystems and urban water systems [16–18]. Studies also suggested that the changes
in the timing and magnitude of hydrologic extremes may be one of the most significant
consequences of climate change in Canada [2,19]. Future projections over cold region
watersheds indicate continued changes in the different components of the hydrologic cycle,
such as temperature, precipitation, snow accumulation and melt, with the potential to
further impact local and regional hydrological regimes. In many cases, such projected
changes are also expected to cause changes in the magnitude and timing of the spring
freshet and peak flow events [15,20]. However, peak flow prediction is a challenging
endeavor due to the different mechanisms involved and the nonlinear, nonstationary
nature of the underlying hydrological processes.

Statistical modelling techniques such as multiple linear regression (MLR) have been
widely used in hydrology, e.g., for establishing predictor–predictand relationships and
identifying predictors’ relative importance such as in spring freshet and peak flow pre-
diction [21–24]. Such statistical predictions of hydrologic time series mostly depend on
historic observations and are based on the correlations between the predictand and predic-
tor variables that manifest the influence of large-scale climate on the hydrologic regime [21].
In this context, for snow-dominated regions like western Canada, where peak streamflow
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is highly dependent on snowpack [10], the inclusion of snow storage in the regression
model could provide a potential pathway for improving the linear regression model. If
acceptable levels of correlations are found, an MLR framework can be useful to build
models for predicting the spring freshet and peak flows. There may also be a possibility
to extend the MLR approach to projecting flows for future climate. However, this could
be challenging if projected changes in the temperature and precipitation distributions are
large, thus shifting the distribution of streamflow extremes beyond the range of historical
observations. Therefore, there is a need to evaluate carefully the ability of the MLR models
to simulate future streamflow changes. Such evaluations can provide insights that could
be useful for other snow-dominated regions of the world. Besides, there is also a need to
analyze the model’s predictive ability in basins affected by direct human impacts, such as
regulation and diversion that could significantly alter the streamflow regime and affect the
predictability of streamflow response.

Given the aforementioned knowledge gaps, the first objective of this study is an
application of the MLR modelling framework to assess the relative importance of different
climatic drivers on the spatial and temporal variation in annual maximum flow (AMF)
and mean spring flows (comprising March, April, May and June, hereafter MAMJflow).
The application is conducted over 25 western Canadian river basins where the relative
importance of a number of predictors, including the annual maximum snow water equiva-
lent (SWEmax) or April 1st SWE, mean spring precipitation (MAMJpcp) and temperature
(MAMJtemp), is analyzed over the 1980 to 2012 historical period. The second objective of
the study is to investigate the applicability of the MLR model to project changes in the AMF
and MAMJflow in the region, using CanRCM4 projected climatic drivers corresponding to
RCP4.5 and RCP 8.5 scenarios over the 21st century. The study also examines differences
in MLR model performances between regulated and unregulated basins.

2. Study Area and Data Sets

This study assesses all major river basins across western Canada with a total area of
around 2.5 million square kilometers (Figure 1). The region’s physiography is dominated by
the Western Cordillera mountains, which are the hydrologic apex of major western North
American rivers that drain to the Pacific and Arctic oceans [17]. The major watersheds
in the region include the Mackenzie, Yukon, Fraser, Colombia and Saskatchewan, and
the flow in each of these river systems is heavily dependent on from mountain snowpack
and glaciers [7]. Twenty-five Water Survey of Canada (WSC) hydrometric stations each
with drainage areas of more than 7500 square kilometers are utilized. The threshold
for the drainage area was chosen to ensure an ample number of grids for the predictor
variables described below. Most of the selected stations are located in British Columbia (10),
Alberta (6) and the Northwest Territories (7), with the remaining two in Manitoba (1) and
Saskatchewan (1). Daily streamflow data from the Water Survey of Canada (WSC) HYDAT
database over the 1980–2012 historical period were used to extract AMF and MAMJflow
at each of the 25 stations. Basin boundary delineation for each station was obtained from
the National Hydrometric Network basin polygons online database [25] and verified with
in-house delineations generated by the GRASS GIS tools [26].

Some of the rivers in the study region, such as the Peace River in the Mackenzie
basin, tributaries of the Fraser basin and a large part of the Colombia River, are regulated
for hydropower production. Similarly, most parts of the Saskatchewan and Okanagan
rivers have a system of reservoirs and diversions for irrigation and hydroelectricity [7].
Therefore, while data from 13 of the selected stations represent unregulated natural flows,
the 12 remaining stations are designated as regulated with major upstream structure(s)
altering the natural flow regime. The level of flow alterations in the regulated stations
varies, with the Fraser River at Hope having minor flow alteration, while stations in the
Peace and Columbia basins are affected by major flow alterations from upstream dams [27].
Flows in the Saskatchewan and Okanagan basins are also affected by water withdrawal.
Nonetheless, the effect of upstream regulation on hydrologic regime usually diminishes
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with distance downstream of the regulation location. Therefore, regulated stations were
included in the study to explore whether the annual peak flows in these locations are
influenced by antecedent climatic conditions and if the MLR can still capture the prevailing
relationship between the climatic drivers and mean spring and annual peak flows in such
basins. Since major regulations in each of those 12 basins started before 1980, the study
employed the 1980–2012 historical streamflow data for better consistency. The 25 stations
and their drainage areas and geographic coordinates are provided in Table 1.

Table 1. Hydrometric stations across western Canada used for annual maximum and mean spring flow analysis and
MLR modelling.

Number Station Name Area (km2) Lat Lon Regulation

10LC014 Mackenzie River at Arctic Red River 1,680,000 67.4560 −133.7533 Yes
10KA001 Mackenzie River at Norman Wells 1,590,000 65.2720 −126.8500 Yes
10GC001 Mackenzie River at Fort Simpson 1,300,000 61.8684 −121.3589 Yes
05KJ001 Saskatchewan River at the Pas 389,000 53.8381 −101.2087 Yes
07KC001 Peace River at Peace Point 293,000 59.1181 −112.4369 Yes
10ED002 Liard River near the Mouth 275,000 61.7427 −121.2280 No
08MF005 Fraser River at Hope 217,000 49.3860 −121.4542 Yes
08NE058 Columbia River at International Boundary 156,000 49.0008 −117.6283 Yes
07DA001 Athabasca River below Fort McMurray 133,000 56.7804 −111.4022 No
05GG001 North Saskatchewan River at Prince Albert 131,000 53.2034 −105.7721 Yes
10BE001 Liard River at lower Crossing 104,000 59.4125 −126.0972 No
07FD002 Peace River near Taylor 101,000 56.1394 −120.6724 Yes
10MC002 Peel River above Fort McPherson 70,600 67.2589 −134.8888 No
05AJ001 South Saskatchewan River at Medicine Hat 56,368 50.0421 −110.6775 Yes
07OB001 Hay River near Hay River 51,700 60.7430 −115.8596 No
07GJ001 Smoky River at Watino 50,300 55.7146 −117.6231 No
05CK004 Red Deer River near Bindloss 47,849 50.9027 −110.2995 Yes
08EF001 Skeena River at Usk 42,300 54.6319 −128.4306 No
08CE001 Stikine River at Telegraph Creek 29,000 57.9003 −131.1597 No
10CD001 Muskwa River near Fort Nelson 20,300 58.7881 −122.6616 No
08DB001 Nass River above Shumal Creek 18,400 55.2623 −129.0850 No
08BB005 Taku River near Juneau 16,700 58.5386 −133.7000 No
07AD002 Athabasca River at Hinton 9760 53.4243 −117.5694 No
08CG001 Iskut River below Johnson River 9500 56.7344 −131.6690 No
08NM085 Okanagan River near Oliver 7540 49.1146 −119.5667 Yes

Daily precipitation and daily maximum and minimum air temperature data were
obtained from the Pacific Climate Impacts Consortium’s Pacific North-Western North
America meteorological (PNWNAmet) dataset [28]. PNWNAmet is a temporally consis-
tent high-resolution gridded daily meteorological dataset at 1/16◦ spatial resolution for
northwestern North America interpolated from temporally consistent long-term homog-
enized daily station data covering 1945 through 2012. Additionally, historical gridded
SWE data were obtained from the NASA Global Modeling and Assimilation Office’s
(GMAO) Modern-Era Retrospective Analysis for Research and Applications, Version 2
(MERRA-2) [29]. MERRA-2 provides atmospheric and surface reanalysis data at 50 km
spatial resolution from 1980 to the present. As MERRA-2 uses observation-based precip-
itation data to drive the land surface water budget, its SWE product has lower bias and
correlates better against reference data from the Canadian Meteorological Centre than other
reanalysis products [30]. For each of the 25 stations, gridded precipitation, temperature
and SWE data were extracted and then averaged over the contributing drainage basins.
The 1980–2012 time window for the historical period was chosen based on an overlapping
time frame between the MERRA-2 data, which starts in 1980, and the PNWNAmet data,
which ends in 2012.
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3. Application Methods

3.1. Multiple Linear Regression (MLR)

MLR is an extension of ordinary least square regression that can model the linear
relationship between several explanatory (predictor) variables and a response (predictand)
variable as shown in Equation (1), where i is the index of each observation, yi is the response
variable, xi represents the explanatory variables, β0 is the y-intercept, βp represents slope
coefficients and ε is the residual. MLR provides a computationally easy and simple to
interpret method of predicting streamflow. The main assumptions are that there is a linear
relationship between the predictor and predictand variables and that the predictors are not
too highly correlated with each other.

yi = β0 + β1xi1 + β2xi2 + . . . + βpxip + ε (1)

While hydrologic processes have nonlinear characteristics, a number of previous
studies have shown that MLR between selected predictors and predictand variables can
explain most of the variance in catchment responses [21–24]. In most of the cases, predictors
were selected based on an understanding of the physical processes, relevant literature
and initial exploratory data analysis. The MLR is also a relatively simple approach for
identifying the relative importance of the different potential predictors and the level
of significance in the linear relationship established between the predictor and response
variables. In this study, the MLR models relate the AMF or MAMJflow (predictands) at each
of the 25 hydrometric stations over western Canada with the corresponding basin average
values of selected hydroclimatic drivers (predictors). Seven predictors were selected
based on the underlying physical processes, relevant literature and initial exploratory
data analysis [8,21,24]. As the SWEmax and April 1st SWE are highly correlated, the
MLR uses either the magnitude and timing of SWEmax or April 1st SWE, but not both,
to avoid multicollinearity. Average spring temperature and precipitation are calculated
over the months from March to June (hence MAMJtemp and MAMJpcp respectively). The
monthly rates of change in spring temperature (spring warming rate) and precipitation
(the spring rate of increasing/decreasing in precipitation) are also calculated as the slope
of each variable between March and June (hence MAMJtemp-slope and MAMJpcp-slope,
respectively). The nonparametric Spearman’s rank correlation between each predictor
and predictand measures the strength and direction of monotonic association between
two variables and is estimated using Equation (2), where Di is the difference in ranks
between the ith pair of predictor and predictand and n is the number of data pairs (see
Table 2) [31]. The correlation coefficient, rs, takes values from +1 to −1, and the strength
of the rank correlations was analyzed in terms of statistical significance tests at the 5%
significance level.

rs = 1 − 6 ∑n
i=1 D2

i
n(n2 − 1)

(2)

Table 2. Hydroclimatic predictors used in the MLR models to predict AMF and MAMJflow at each of the hydrometric stations.

Predictor Name Abbreviation Units Data Source

Annual maximum snow water equivalent SWEmax mm MERRA-2
Date of annual maximum snow water equivalent SWEmax-date Date number MERRA-2

April 1st snow water equivalent SWEapril 1st mm MERRA-2
Average spring temperature MAMJtemp °C PNWNAmet

Rate of change in spring temperature MAMJtemp-slope °C/month PNWNAmet
Total spring precipitation MAMJpcp mm PNWNAmet

Rate of change in spring precipitation MAMJpcp-slope mm/month PNWNAmet
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MLR models are fitted to the predictor/predictand data at each station over the 1980
to 2012 historical period, with MAMJpcp, MAMJpcp-slope, MAMJtemp, MAMJtemp-
slope as common predictors and either April 1st SWE or SWEmax and its timing as
additional predictors and either AMF or MAMJflow as predictand. First, a best subsets
regression approach, as implemented in the R leaps package version 3.0, was employed
to fit MLR models to all possible combinations of the predictor variables and each of
the two predictands. Then, the best fitting MLR model from the pool of all possible
combinations with one to five predictor variables (when using April 1st SWE) or one to
six predictor variables (when using SWEmax and its timing) were chosen based on the
sum-of-squares of residuals [32]. This approach involved an exhaustive comparison of
models from each predictor size group and ended in the selection of models with the lowest
Akaike information criterion (AIC) [32].

These five or six models each selected from a predictor size group were then compared
in terms of their predictive power by repeated k-fold cross-validation, with k = 5 [33]. The
k-fold cross-validation procedure divides the limited dataset into k nonoverlapping folds.
Each of the k folds is given an opportunity to be used as a held-back test set, whilst all other
folds collectively are used as a training dataset. A total of k models were fit and evaluated
on the k hold-out test sets and the mean performance was reported. The model with the
lowest root-mean-square error (RMSE) from k-fold cross-validation was selected as the
final model if it was statistically significant at a p-value of 0.05. All selected models were
also tested for their fulfillment of the regression assumptions by computing their variance
inflation factors (VIF) with the intention of removing highly correlated predictors with VIF
above the most common acceptable threshold of 5 [33,34].

3.2. Predictors’ Relative Importance

Predictor relative importance refers to the quantification of an individual predictor’s
contribution to a multiple regression model. To identify which predictors are the most
influential in explaining variation in AMF and MAMJflow, the total explained variance,
R2, of each selected model for a station was decomposed into the proportion explained
by each individual predictor using the Lindemann, Merenda and Gold (LMG) method
as implemented in the R package relimpo [35]. In addition to the variance explained by
each predictor, the percentage of the total variance (explained by the model, R2) that is
contributed by each predictor variable provides a measure of the relative importance of
each variable. Analysis of these metrics included the frequency of dominant predictors
among all station models, where a dominant predictor is defined as the predictor in a model
with the highest relative importance. The spatial distribution of dominant predictors was
also mapped as it may be a good indicator of the effect of watershed features on predictor–
predictand relationships.

3.3. Future Projection of Annual Peak and Spring Flows

To evaluate the applicability of the selected MLR models for estimating future mag-
nitudes of AMF and MAMJflow, climatic predictors derived from the Canadian Regional
Climate Model (CanRCM4; Scinocca et al., 2016) [36] under RCP4.5 and RCP8.5 future
scenarios were used. The CanRCM4 output used in this study is from the CORDEX Experi-
ments for North America (NAM-22), which is at 0.22◦ or approximately 25 km resolution
and driven by the CanESM2 GCM [36]. Recognizing that RCM outputs usually have
systematic biases [37], this study employed the “delta change method”, to account for
the biases in future predictor values. Mean projected changes in each of the predictor
variables between the 1976–2005 baseline and the two future periods (2041–2070 and
2071–2100) were computed from the CanRCM4 data and then averaged over the basin
area contributing to each of the 25 hydrometric stations. The future predictor values for
each hydrometric station were computed by applying the CanRCM4 delta changes on the
observed values derived from MERRA-2 and PNWNAmet over the historical period as
shown in Equation (3) below:
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{
Δm = CanRCM4 f uture − CanRCM4baseline or Δm = CanRCM4 f uture/CanRCM4baseline
Scenario f uture = Observedhistorical + Δm or Scenario f uture = Observedhistorical ∗ Δm

(3)

Changes between the baseline and future periods were calculated in terms of ratios for
SWEmax, SWEapril 1st, MAMJpcp, MAMJpcp-slope and MAMJtemp-slope or differences
for MAMJtemp and SWEmax-date and applied to the historical observations to obtain
the corresponding future projections (Equation (3)). The MLR model for each station was
then forced with the adjusted hydroclimatic predictors to compute AMF and MAMJflow
corresponding to the different RCP scenarios and future periods.

4. Results and Discussion

4.1. Spearman’s Rank Correlation

The Spearman correlations between the selected predictors and predictands at each
of the 25 hydrometric stations are presented in Figure 2. The correlation coefficients (as
expressed by rs) indicate that both the AMF and MAMJflow at most of the stations are
positively correlated with SWEmax, April 1st SWE and spring precipitation (MAMJpcp)
and negatively correlated with mean spring temperature (MAMJtemp), though the corre-
lation strength varies. However, there are some smaller watershed stations in the Pacific
coastal region (e.g., 08CG001 and 08DB001) and some regulated stations (e.g., 05AJ001)
that show weaker correlations with these predictors. This is mainly because peak flows
in those coastal watersheds are less controlled by snowmelt and more by rainfall, and in
regulated stations, they are affected by regulations. The correlations with SWEmax timing
(SWEmax-date) and mean spring precipitation and temperature slopes (MAMJtemp-slope
and MAMJpcp-slope, respectively) are generally weaker, although they are significant at
some specific stations. While there are some differences in the correlation matrix between
regulated and unregulated stations, the results do not indicate one group as being more
correlated than the other.

4.2. MLR Model Performances

The MLR models fitted to each of the 25 stations and four combinations (with either
AMF or MAMJflow as predictand and either SWEmax and its timing or April 1st SWE
as predictors) over the 1980 to 2012 period resulted in a total of 100 optimized models.
None of the selected models were found to have problematic multicollinearity, with VIF
less than 5 indicating no significant correlation between predictor variables [31]. This
may be explained in part by the careful initial variable selection which included the
decision to build models with either SWEmax or April 1st SWE but not both variables.
However, 12 models (9 for AMF and 3 for MAMJflow, out of the 100) that are not statistically
significant (p-value > 0.05) were removed, resulting in the final selection of 88 MLR models.
Some of the stations where the MLR models are not statistically significant are located
in the Pacific coastal region (e.g., 08CG001, 08DB001), while others are in the interior of
the Mackenzie basin with relatively large drainage areas that are affected by the Peace
River regulations (e.g., 10KA001, 10LC014). Nonetheless, MLR models also show good
performances in most other regulated basins comparable to those of the nonregulated
ones. The list of all selected models corresponding to each hydrometric station along with
models’ R2 and p-values is provided in Supplementary Materials.

The MLR performances are presented in Figure 3, which summarizes the mean per-
centage differences between model-predicted and observed AMF and MAMJflow over
the 1980–2012 historical period for those models with p-value < 0.05 along with error
bars indicating the 95% confidence interval. The results generally indicate a good model
performance with the historical period mean prediction error at most stations being within
±10% of the observed values. However, few stations have prediction errors in some years
in the order of ±20%. It is also not surprising that most of the stations with relatively
higher prediction error are located in highly regulated watersheds (e.g., 08NM085 and
05AJ001 have water withdrawals, and 07KC001 is affected by reservoir regulation). Other
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factors including the size and hypsometry of the contributing watershed may also affect
the performance of the MLR models. However, since the effects of the different factors are
overlapping, it is hard to clearly identify the specific reason for some of the unsatisfactory
performances. The error in predicting AMF is relatively larger than that in predicting
MAMJflow. This is also expected because MAMJflow is averaged flow over four months
where the daily variations are smoothened out while AMF is a peak of daily flows occur-
ring at any time during the spring or summer high flow seasons. For the majority of the
stations, the MLR models with either SWEmax or April 1st SWE as predictor show similar
performances, except in a few stations where using April 1st SWE resulted in a relatively
smaller prediction error.

Figure 2. Spearman correlation of AMF (left panel) and MAMJflow (right panel) with area-averaged predictors corre-
sponding to each of the 25 hydrometric stations. Top panels represent stations not affected by regulation while the bottom
panels represent regulated basins. Bold entries correspond to Spearman correlations with p < 0.05.
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Figure 3. Mean percentage differences between MLR model-predicted and observed annual maximum flow (AMF) and mean
spring flow (MAMJflow) over the 1980–2012 period. Error bars indicate the 95% confidence interval for predicted values.

4.3. Predictors’ Relative Importance

Figure 4 shows the relative importance of each climatic predictor in the MLR models
in explaining the variances of the predictands at each hydrometric station. Top and bottom
panels correspond to AMF and MAMJflow while left and right sides display SWEmax
and April 1st SWE, respectively. For the majority of stations, April 1st SWE or SWEmax
contributed the highest proportion of explained variance, indicating the relatively higher
importance of snow accumulation in predicting AMF and MAMJflow. For most stations,
MAMJPrc has the second-highest predictor importance. The proportion of explained
variance in predicting both AMF and MAMJflow averaged across all stations is in the
order of 44% for April 1st SWE and 51.7% for SWEmax. This is followed by MAMJprc
with the proportion of explained variance ranging between 29.4% and 37.6% under the
different categories. However, for some regulated stations (e.g., 08NM085, 05CK004,
05AJ001, 05KJ001), the predictor importance of MAMJprc is higher than that of SWE.
MAMJprc-slope contributed more to the explained variance of AMF while MAMJtemp
and MAMJtemp-slope contributed more to the explained variance of MAMJflow at about
half of the stations. While MAMJprc-slope contributes to around 10% of the explained
variance in predicting AMF, its contribution to predicting MAMJflow is almost nonexistent
(<0.3%). The results also show that the contribution of MAMJtemp and MAMJtemp-slope
to the explained variance is relatively small and with higher contribution to predicting
MAMJflow (5–13%) than to AMF (2–5%).

79



Water 2021, 13, 1617

Figure 4. Relative importance of each predictor variable presented in terms of fraction of the explained variance in predicting
annual maximum flow (AMF) and mean spring flow (MAMJflow) at each hydrometric station.

Similarly, Figure 5 presents the spatial distribution of predictors’ relative importance
for the AMF and MAMJflows at each of the 25 stations over western Canada. Once again the
figure shows SWEmax as the most important predictor at most stations (21/25 for AMF and
24/25 for MAMJflow), followed by MAMJprc, which is also an important predictor (20/25
for AMF and 19/25 for MAMJflow). MAMJtemp and MAMJtemp-slope are important
predictors of MAMJflow for about one-third of the stations, mostly located in the middle
part of the study region, while their contribution to predicting AMF is limited to a couple
of stations. MAMJprc-slope is important in predicting AMF in the southern and Pacific
coast regions but not that important in predicting MAMJflow in most parts of the study
region. The contribution of SWEmax timing in predicting both AMF and MAMJflows is
limited only to a few stations. The generally smaller importance of spring temperature and
its rate of increase in predicting AMF is an indication that spring peak flows in most basins
are affected more by accumulated snow and spring precipitation than temperature. The
predictability of MAMJflow is also mostly dependent on more variables than that of AMF,
a possible reason for the MAMJflow models being more robust with relatively smaller
prediction errors. While the importance of SWEmax in predicting flow is higher towards
the northern part of the study region, the importance of MAMJprc is higher towards the
south, possibly resulting from the effect of temperature on partitioning precipitation into
rain and snow. In general, the results presented in Figure 5 show that predictors’ relative
importance is spatially variable and cannot be generalized for the whole region.
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Figure 5. Spatial distribution of predictors’ relative importance in predicting annual maximum flow (AMF) and mean
spring flow (MAMJflow) at each station over western Canada expressed as the proportion of the total explained variance
(R2) contributed by each predictor.

4.4. Projected Changes in Hydroclimatic Variables

Figure 6 shows mean CanRCM4 projected changes in each of the predictor variables
between the 1976–2005 baseline and the two future periods (2041–2070 and 2071–2100)
for the two scenarios (RCP4.5 and RCP8.5). The results indicate that both MAMJpcp and
MAMJtemp are projected to increase from 10% to 50% for the former and from 2 to 7 ◦C
for the latter depending on the RCP scenarios and the future time windows considered.
As expected, the biggest increases for both precipitation and temperature occur under
RCP8.5 and far future (2071–2100) period while the smaller increases correspond to RCP4.5
and the near future (2041–2070) period. While there are some regional variations in the
projected changes in spring precipitation and temperature with slightly higher increases in
the northern than the southern basins, the differences are relatively small.

Figure 6. Projected changes in catchment-averaged predictor variables between each of the two future periods
(2041–2070 and 2071–2100) and the baseline period (1976–2005) based on the CanRCM4 model projection over the study
area corresponding to the RCP4.5 and RCP8.5 scenarios.

SWEmax and April 1st SWE are both projected to decrease in the majority of the
basins under both scenarios and time periods with values ranging from −80% to +5%. The
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greatest decreases are mostly in the Fraser, Colombia, and Pacific coast basins, while the
smallest decreases or even slight increases correspond to the most northern basins, as was
also found in previous studies [15,38]. At the same time, SWEmax timing is projected to
advance by about 5 to 25 days in all river basins. MAMJpcp-slope increases in almost all
basins (except two), indicating more increase in precipitation in the later part rather than
the earlier part of spring. In contrast, MAMJtemp-slope show decreases for most basins,
indicating higher increases in early spring than late spring, except for a few southern
stations where the reverse is true. In general, while the overall direction of projected
changes in the predictor variables over most parts of the study region is similar, there are
some north-to-south variations in the magnitude of those changes.

4.5. Projected Changes in AMF and MAMJflow

Future projections of AMF and MAMJflow were computed using the MLR models de-
veloped for the historical period, with delta changes from the CanRCM4 projections under
the two RCP scenarios applied on the observed predictor values (Equation (3)). The results
indicate overall projected increases in both the AMF and MAMJflow for most of the stations,
with a few stations showing no change or some decreases (Figure 7). For RCP8.5 and the far
future period, the average increase in AMF (12%, ranging from −69% to +126%) has more
spatial variability than that of MAMJflow (28%, ranging from −48% to +81%) (Figure 8).
The largest percent increases in both are located in Saskatchewan (05AJ001, 05CK004),
although large increases in MAMJflow are also projected in the Athabasca (07AD002) and
other northwestern rivers. The largest decreases in both AMF and MAMJflow are located at
the Peace River at Taylor (07FD002) and Peace Point (07KC001), respectively. Most northern
stations are projected to have relatively smaller percentage changes in AMF compared to
the south, although the absolute magnitude of these changes can be larger for those with
relatively larger flow magnitudes, such as in the Mackenzie River mainstem stations.

Figure 7. Mean projected changes in annual maximum flow (AMF) and mean spring flow (MAMJflow) for the two RCPs and
two future periods computed with the MLR models at each of the hydrometric stations (predictions made with SWEmax;
error bars indicate the 95% confidence interval in future values).
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Figure 8. Spatial distribution of projected changes in annual maximum flow (AMF) and mean spring flow (MAMJflow)
corresponding to the RCP8.5 and the far future (2071–2100) period (predictions made with SWEmax; asterisks indicate
regulated stations).

Projected increases in AMF are mostly located in the interior of western Canada, while
increases in MAMJflow are found throughout the region. However, the projected AMF
in the coastal basins could be subject to large uncertainties since peak flow events in the
region are sometimes influenced by atmospheric rivers, which is not taken into account in
the MLR model [39]. No clear pattern was found differentiating the results from regulated
and unregulated stations since some regulated stations (e.g., in Peace, Fraser and Colombia
rivers) show projected decreases in AMF and MAMJflow while other regulated stations
(e.g., South Saskatchewan and Liard rivers) show increases. The wide variation in the
direction and magnitude of projected changes in AMF among the river basins could partly
be due to changes in the synchrony of mainstem and tributary streamflow during high-flow
periods at the mainstem–tributary confluence [40]. Decreasing synchrony may dampen
the forced increases in AMFs along mainstem stations, but its relative effects may vary in
space and time, as well as in future climate scenarios.

A comparison of the projected changes in flows using the MLR models and future
climate projections (applying delta change method) with those of other previous studies
using process-based hydrological models driven by statistically downscaled GCMs shows
both agreement and disagreement depending on basin characteristics. For example, the
directions of MLR-projected changes, such as increases in AMF and MAMJflow for the
unregulated Liard (10BE001, 10ED001) and Athabasca (07DA001) basins, are consistent
with previous studies in the two basins using process-based hydrologic models [15,41].
Similarly, for the mildly regulated station in the Fraser basin (08MF005), the MLR model
projections of decreases in AMF and no change in MAMJflow are comparable with the
projections of decreases in AMF and some increases in MAMJflow of Shrestha et al. [27].
However, the MLR model projections for the Peace basin (07KC001, 07FD002) are not
consistent with the results of Schnorbus et al. [42], which showed projected increases in
both AMF and MAMJflow. Likewise, the MLR projected decreases in AMF and MAMJflow
at another regulated station in the Columbia River (08NE058), in contrast to the projected
increases for the same basin reported by Werner et al. [43]. The discrepancies could be
partly explained by the fact that both the Peace and Columbia rivers are highly regulated
by large hydroelectric dams/reservoirs. Schnorbus et al. [42] and Werner et al. [43] also
used naturalized flows, while the MLR models are based on the regulated flows. Besides,
the lack of representation of physical processes in the MLR model is one of its limitations in
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extrapolating beyond the range of historical observation affecting flow projections for some
basins. Therefore, the overall ability of the MLR model to project AMF and MAMJflow
may be limited, especially when applied to regulated basins.

5. Summary and Conclusions

Flows originating from cold and mountainous watersheds are highly dependent
on their snow regimes that are determined by temperature and precipitation patterns
over the region. Climatic variations generally affect the mean seasonal flows and the
magnitude and timing of peak streamflow events with implications on infrastructures
and ecosystem services. This study applied the MLR approach for assessing the climatic
controls of AMF and MAMJflow in 25 western Canadian river basins using multiple
station-specific hydroclimatic predictors. The analysis indicated that the basin-integrated
SWEmax or April 1st SWE and mean spring precipitation (MAMJPr) are the most prominent
predictors of AMF and MAMJflow throughout the region, together explaining over 80% of
the predictand’s variance. The proportion of explained variance is in the order of 44% for
April 1st SWE and 51.7% for SWEmax, followed by MAMJprc explaining between 29.4%
and 37.6% of the predictand’s variance. However, predictors’ relative importance was
spatially variable and could not be generalized for the whole region. While the relative
importance of SWEmax in predicting flow is higher towards the north and that of MAMJprc
is higher towards the south, the relative importance of MAMJtemp is mostly higher in the
middle part of the study region. The best-fitting MLR models were statistically significant
at a p-value of 0.05 at the majority (88%) of the stations, and mean prediction errors over the
historical period were below ±10% at most stations (although a few stations had prediction
errors ranging in the order of ±20%).

The results of this study are highly relevant to other regions of the world where
runoff processes are dominated by mountain snowpack. The main lesson is that while
winter snow accumulation and spring precipitation are the major drivers of mean spring
and annual peak flows in cold mountainous watersheds, their relative contribution to
predictability largely depends on the location and other physiographic characteristics of
the watersheds. Other studies have also shown that the transformation from snow accu-
mulation to runoff generation in cold regions is dominated by snowmelt and infiltration
processes that are highly heterogeneous [44]. In particular, direct human impacts, such as
regulation and diversion in the basin, can alter its flow regime and affect the dependency
between those predictor and response variables. Therefore, there is a need to carefully con-
sider physiographic characteristics as well as human impacts in using regression models
for streamflow simulation.

A warming climate will bring a shift in precipitation from snow towards rain, affecting
the snowpack volume and snowmelt timing. Therefore, by adjusting the snowpack together
with precipitation and temperature based on CanRCM4 projections, the MLR models were
tested to see if they can be applied to predict future changes in AMF and MAMJflow.
CanRCM4 outputs show a general increase in mean spring temperature (2 to 7 ◦C) and
precipitation (10% to 55%) and an overall decrease in SWEmax and April 1st SWE for all
but two river basins (+5% to −95%) by the end of this century. Application of the MLR
models with adjusted hydroclimatic predictors revealed considerable spatial variations,
with the projected increase in spring precipitation mostly compensating the opposite effect
of increasing spring temperature and decrease in SWE and resulting in AMF changes
ranging from −69% to +126% and MAMJflow changes ranging from −48% to +81%.
Projected changes are mostly higher for the RCP8.5 and end-of-century scenarios. Projected
changes in MAMJflow across the region are more consistent than those of AMF. Other
things being equal, change in phase of precipitation from snow towards rain (because of
increasing temperature) usually decreases the mean streamflow [1]. However, the current
study indicated that the projected increase in precipitation can sometimes compensate for
the effect of the decreasing fraction of snowfall and may result in an increase in spring flow.
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Comparisons of the MLR model projections with some previous studies using process-
based hydrological models driven by statistically downscaled GCMs show good agreement
in the direction of change for most of the unregulated rivers, while there are substantial
disagreements for the regulated river basins. This is in part due to the lack of physical rep-
resentation in these models, as well as limitations in extrapolating future flow magnitudes
beyond the range of historical observation. Therefore, there is a need to exercise caution
in the use of such statistical models for projecting future changes, especially in regulated
basins. More research is needed to better understand the extent of the limitation and ways
of incorporating relevant information in the modelling process to reduce those limitations.
Future research may also look at possible improvements by applying nonlinear methods
such as artificial neural networks (ANNs) and other machine learning techniques.
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Abstract: This study introduces a hydro-climatic extremes assessment framework that combines
the latest climate simulations from the Coupled Model Intercomparison Project Phase 6 (CMIP6)
HighResMIP with the Soil and Water Assessment (SWAT) model, and examines the influence of
the different climate model resolutions. Sixty-six hydrological and environmental flow indicators
from the Indicators of Hydrologic Alteration (IHA) were computed to assess future extreme flows
in the Kelantan River Basin (KRB), Malaysia, which is particularly vulnerable to flooding. Results
show that the annual precipitation, streamflow, maximum and minimum temperatures are projected
to increase by 6.9%, 9.9%, 0.8 ◦C and 0.9 ◦C, respectively, by the 2021–2050 period relative to the
1985–2014 baseline. Monthly precipitation and streamflow are projected to increase especially for the
Southwest Monsoon (June–September) and the early phase of the Northeast Monsoon (December)
periods. The magnitudes of the 1-, 3-, 7-, 30- and 90-day minima flows are projected to increase
by 7.2% to 8.2% and the maxima flows by 10.4% to 28.4%, respectively. Lastly, changes in future
hydro-climatic extremes are frequently quite different between the high-resolution and low-resolution
models, e.g., the high-resolution models projected an increase of 11.8% in mean monthly flow in
November-December-January compared to 3.2% for the low-resolution models.

Keywords: climate change; CMIP6; extreme; SWAT; flood; IHA; global warming; drought;
Malaysia; Kelantan

1. Introduction

Climate change features pervasive global warming driven by anthropogenic emissions
of greenhouse gases (GHGs), and is one of the major global threats that strongly affect the
environment, ecosystems and human society. Intensification of precipitation and increases in
temperature due to global warming have been observed in Asia in the past few decades [1–3].
These changes have a major impact on different hydrological systems and consequently
increase the risk of regional water hazards such as flood and drought [4,5]. For example,
damage caused by floods exceeds more than USD 10 billion a year in China [6,7]. Severe
droughts can significantly reduce agricultural yields and freshwater supplies, resulting
in social-economic losses [8]. Therefore, quantification of the climate change impact on
precipitation extremes and subsequent extreme flows is important in developing better
adaptation, more effective mitigation and greater resilience against water hazards.

The numerical modelling of the climate systems is one of the fundamental pillars in
studying the changes in hydro-climatic extremes under different scenarios of anthropogenic
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GHG emissions. For such studies, general circulation models (GCMs) are extensively
used to project scenarios of potential climate change across the earth system. Previous
studies based on GCM experiments produced for the Coupled Model Intercomparison
Project phase 5 (CMIP5) have projected a continuous global warming and increase in
temperature extremes across the globe in the 21st century [9]. For hydrological research,
outputs from the GCMs can provide useful driving data of hydrological models simulating
the interaction between climate change and hydrological processes. Betts, et al. [10]
applied the HadGEM3A-GA3.0, a high-resolution CMIP5 GCM (~60 km), to examine
global freshwater availability under the RCP8.5 scenario. They noticed the water cycle
changes are complicated and varied in different geographical regions, with mean river
flow increase two times greater than the historical period in South and East Asia. A
comparison of GCM resolution on a global hydrological cycle assessment was conducted
by Vannière, et al. [11], who found increases in global precipitation from low to high
resolutions models. However, uncertainties in the GCM simulations still require careful
and more detailed consideration at basin scale.

A new generation of GCM simulations produced for Coupled Model Intercomparison
Project Phase 6 (CMIP6) have been developed and released [12]. These experiments
are based on state-of-the-art GCMs which are more capable of describing the complex
physical processes within the climate system compared to the previous GCM versions [13].
The standard set of CMIP6 simulations are at relatively low resolutions of 100–200 km.
However, the release of simulations from the High-Resolution Model Intercomparison
Project (HighResMIP, Haarsma et al. [14]) for CMIP6 provides a good opportunity to study
hydrological changes at unprecedented resolutions under present and future climates.
Hence, application of the high resolution CMIP6 experiments in hydrological modelling at
basin scale is likely to be a hotspot of hydrological research in the near future, especially for
the impact assessment of hydrological extremes [15]. Previous studies based on regional
climate models (RCMs) have found a considerable sensitivity of simulated basin-scale
precipitation to changes in RCM model resolution, and such a resolution-dependance can
have an impact on hydrological simulations [16,17]. However, considerable uncertainty
remains both in RCM and GCM simulations requiring further investigation in order to
understand how hydrological changes are influenced by the increase in model resolution.
The availability of high-resolution GCMs from HighResMIP allows the comparison of
different GCM resolutions and hydrological outputs, especially in the simulation of tropical
extreme river flows, and provides a good opportunity to study the effect of model resolution
on hydrological assessments. In particular HighResMIP provides simulations at resolutions
similar to previous RCM based studies without the methodological uncertainties inherent
in using RCMs, i.e., definition of the domain, nesting, nudging, etc.

In tropical Asia, extreme flows are sensitive to extreme climatic events, particularly in
small catchments [18]. Numerous studies have investigated the impacts of climate change
on extreme flows in different river basins over Southeast Asia [19–21], where the reported
changes vary from place to place. Based on the recent Coordinated Regional Climate
Downscaling Experiment—Southeast Asia (CORDEX-SEA) simulations, a drier climate
condition is projected for the southern part of Southeast Asia by the end of the 21st century,
while a wetter condition is mainly found in the northern region [22]. The recent study of
Tan, et al. [23] introduced a SouthEast Asia HydrO-meteorological droughT (SEA-HOT)
framework that integrates the RCMs simulations from CORDEX-SEA and SWAT for hydro-
meteorological drought assessment in current and future climates. Although RCMs can
provide useful high-resolution climate inputs for hydrological simulations, there are several
known caveats. These include the lack of two-way interactions between the downscaled
climate on the one-way nested grids and the external large-scale circulations [24,25]. The
performance of RCMs is also strongly dependent on the selection of the driving lateral
boundary conditions, e.g., Tangang, et al. [26], which can introduce considerable model
uncertainties to climate simulations. Therefore, further studies are required to examine the
hydrological simulations of SWAT driven by the latest high-resolution climate simulations,
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e.g., the CMIP6 HighResMIP experiments, which have a resolution similar to that of
CORDEX-SEA.

To assess the hydrologic impacts on ecosystems, The Nature Conservancy (TNC) has
developed the Indicators of Hydrologic Alteration (IHA) program, which is a software
system that computes various hydrological and environmental indicators for quantifying
the frequency, magnitude and duration of flows [27]. These indicators provide useful
approaches to study flow behavior so as to improve the understanding of water hazards
and their ecological and environmental impacts at a regional level. Several studies have
combined the SWAT simulations with IHA to evaluate the impact of climate change on
regional extreme flows [28–30]. Kiesel, et al. [31] integrated SWAT and 32 IHA indicators to
evaluate future changes in extreme flows in three European catchments. Zhang et al. [32]
used a similar approach to evaluate the impacts of cascade dams and climate variability
on the streamflow of the Jiulong River watershed in the southeast of China. However,
the simulation of SWAT combined with the analyses of IHA in tropical regions has been
inadequately investigated in previous studies and requires further research, especially for
Southeast Asia.

The Kelantan River Basin (KRB) is a typical tropical river basin in Peninsular Malaysia,
which is frequently affected by monsoon floods during the early phase of the Northeast
monsoon (NEM) season in almost every year [33]. In fact, previous major flood events in
Malaysia were caused by continuous extreme precipitation episodes that were brought by
the NEM associated with Madden–Julian oscillation (MJO) and the Borneo vortex [34,35].
According to Chan [36], one of the most destructive floods occurred in 1967, when more
than 50% of the state’s population were affected. In 2014, the total amount of heavy
precipitation from 21 to 23 December reached 1295 mm, and resulted in the highest water
level of 22.7 m at the Jambatan Guillermard station [37], which is two times higher than
the normal level. Tan et al. [38] evaluated the impact of climate change on water resources
in the KRB based on the CMIP5 projections and found that the future annual streamflow
will increase by 14.6 to 27.2%. This study also projected an increase in the monthly mean
streamflow in November, December and January during the NEM season. However, these
previous studies have provided limited information on the projected changes in extreme
flows, which is critical for decision making in local water hazard risk management and
environmental protection [39] across Kelantan. In addition, the SWAT calibration and
validation of KRB have been mostly limited to monthly scale assessments. This study has
further evaluated the capability of SWAT for a 30-year daily-scale simulation up to 2014.

Therefore, this study aims to introduce a framework to assess the impact of climate
change on extreme flows in tropical regions through a novel approach that integrates SWAT,
CMIP6 HighResMIP and the IHA indicators. The specific objectives are: (1) to evaluate the
capability of CMIP6 HighResMIP at the basin scale; (2) to assess the SWAT capability in
simulating long-term daily streamflow in the KRB; and (3) to quantify the hydrological
extremes of the KRB in the mid-21st century period (1985–2014 vs 2021–2050) under
high-resolution and low-resolution CMIP6 GCMs. The results of this study will enhance
the understanding of how different HighResMIP CMIP6 GCMs resolutions influence the
tropical extreme flow simulations. Besides, this study provides a comprehensive and the
most up-to-date framework for assessing future hydro-climatic extremes for Southeast
Asia as well as other tropical regions both in developing and less developed countries for
climate adaptation and environmental protection policy formulations. Moreover, the future
hydro-climatic projections can be used as a reference by the local authorities to design flood
and drought related policies.

2. Materials and Methods

2.1. Study Area

The KRB is located in the northeast part of Peninsular Malaysia, between latitudes
4◦–6◦ and longitudes 101◦–103◦, as shown in Figure 1. The Kelantan River originates from
Mount Ulu Sepat. The elevation of the river basin ranges from −2 m to 2174 m. The river
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has a total length of 248 km and drains a basin area of 12,685 km2, covering more than
85% of Kelantan state. The outlet of this study was selected at the river mouth, so the
drainage area is slightly larger than Tan et al. [38] who selected the Jambatan Guillermard
streamflow station as the basin’s outlet. In 2013, the basin was dominated by forest (70.8%),
followed by rubber (13.3%), oil palm (11.2%), agricultural (2.8%), paddy-fields (1.3%) and
urban development (0.6%). Based on the flood reports prepared by the Department of
Irrigation and Drainage Malaysia (DID), floods have normally occurred in Kuala Krai,
Tanah Merah, Machang and Pasir Mas that are located in the middle and downstream
parts of KRB. As reported in the DID’s 2014/2015 annual flood report, floods in Kelantan
for the year 2014 resulted in the evacuation of more than 300,000 people, 14 casualties and
about RM156 million total losses [40].

Figure 1. (a) Topography, (b) location, (c) monthly average climate and (d) monthly average streamflow of the Kelantan
River Basin, Malaysia.

The KRB received an average annual precipitation of 2609.35 mm/year from 1985
to 2014, while average annual streamflow at the Jambatan Guillermard was 475.81 m3/s.
Figure 1 shows the average monthly precipitation, maximum temperature, minimum tem-
perature and streamflow for the basin from 1985 to 2014. The basin receives heavy precipi-
tation during the early phase of the NEM season, mainly in November (365.4 mm/month)
and December (380.74 mm/month). Relatively drier conditions can be found in the second
phase of the NEM, where only about 91.3 mm/month precipitation is received in February.
Average maximum and minimum temperatures of the basin vary from 29.3 ◦C to 34.1 ◦C
and 22.0 ◦C to 23.8 ◦C, respectively. The highest temperature value is normally observed
in April, the inter-monsoon period between the NEM and Southwest monsoon (SWM).
The highest average monthly streamflow at Jambatan Guillermard is found in December
(1296.3 m3/s), followed by November (781.9 m3/s) and January (721.3 m3/s), mainly
during the flood periods in this region. As seen in Figure 1, precipitation is the dominant
factor influencing the streamflow in the NEM, whereas temperature increases in the SWM
raise evaporation and reduce flows. A moderate streamflow rate was found in the driest
month of February, largely due to the lag of flows accumulated from the extreme high
precipitation between November and January, where a similar situation was reported in
other regions [41,42].
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2.2. SWAT

The SWAT model is a semi-distributed and continuous hydrological model developed
for water resources managers to decide the most appropriate strategy or solution by
considering the impact of different management practices on streamflow and non-point
source pollution [43]. SWAT has undergone continuous improvement over the past few
decades [44,45] and its applicability and credibility have been verified in Southeast Asia [46].
SWAT is typically run at daily or monthly temporal resolution for a continuous period of
time. The SWAT simulations can be driven by simulations of average flow climatology,
while the representation of extreme flood events usually requires simulations driven at a
finer (daily at least) temporal resolution. To simulate the long-term climatology of both
extreme droughts and floods, a long-term climate simulation for at least 30-years at daily
scale is recommended to be used as the SWAT input [15]. A review of SWAT-based hydro-
climatic extremes studies has recently been reported by Tan [15]. About 47% of the studies
were conducted in the United States and China. Besides that, only around 10% of the
reviewed research has further evaluated both low and high flow conditions. Therefore,
more studies in different geographical and climate conditions are needed to evaluate the
capability of SWAT in capturing extreme flows.

The SWAT Calibration and Uncertainty Programs (SWAT-CUP), a tool designed specif-
ically to calibrate and validate SWAT, is used in the SWAT model assessment [47,48]. The
Sequential Uncertainty Fitting Version 2 (SUFI2) calibration program in the SWAT-CUP
was selected to evaluate the model performance at daily and monthly scales. During
the calibration, SWAT was run with 500 simulations per iteration under different param-
eter combinations. The Coefficient of determination (R2) and Nash-Sutcliffe Efficiency
(NSE) [49] are the most commonly used statistical approaches to rate the performance of
SWAT for each simulation. The R2 and NSE values range from 0 to 1 and −∞ to 1, respec-
tively, with 1 being the optimal value for both metrics. Detailed descriptions and formulas
of the two statistical approaches are available in previous SWAT studies [50]. Moriasi
et al. [51] recommended that the performance of SWAT can be considered as satisfactory if
NSE and R2 values are greater than 0.5 and 0.6, respectively.

2.3. CMIP6 HighResMIP Models

As an integral protocol of CMIP6, HighResMIP [14] provides high-resolution GCM
ensemble simulations together with their coarse resolution versions. The HighResMIP
experiments allow the assessment of the impact of model resolution on climate simulations
and aim to improve the understanding of model biases and uncertainties [14]. This protocol
acts as an important input to the Intergovernmental Panel on Climate Change (IPCC)
sixth assessment report (AR6). The high resolution (<50-km) GCM simulations from
HighResMIP also help to solve the issue of coarse model resolution in the CMIP5 GCMs [52]
and are comparable to resolutions used in many RCM based studies [53,54]. In this paper,
ten HighResMIP experiments for the present-day (1980–2014) and future (2015–2050)
climates are chosen and the data are collected via the data platform of the Earth System
Grid Federation. The future period simulations are based on the high-emission 8.5 scenario
of the Shared Socioeconomic Pathways (SSPs-8.5), which is part of the new scenario
framework for the latest IPCC climate change assessment. Descriptions of these models
including the model developers and horizontal model resolutions are given in Table 1.

High resolution models have been demonstrated to offer greater fidelity than coarse
resolution models in representing both the observed mean and extreme precipitation
events over Peninsula Malaysia [55]. Nevertheless, even the high resolution models
of HighResMIP inevitably show biases in their representation of extreme precipitation.
Prior to applying the selected HighResMIP experiments to the simulation of SWAT and
the subsequent assessment of hydrological impacts, the model biases relative to climate
observations in the simulated climatic variables (i.e., daily precipitation, maximum and
minimum temperatures) are corrected using a quantile mapping (QM) approach similar
to Boé et al. [56] and Kim et al. [57]. QM first calculates the correction parameter (defined
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as the observed mean value divided by the simulated value) at different quantile levels.
Corrected variables are then obtained by the product of the simulated value and the
calculated correction parameter for each quantile level with an interval of 0.5 percentile
rank. To correct the model bias in simulating the annual cycle of climatic variables, QM is
applied to data for each month, respectively. To compare the simulations between low and
high resolutions, the ensemble of the low resolution (LR) simulations from HadGEM3-LM,
CNRM and FGOALS-L is analyzed and compared to the ensemble of the high resolution
(Ens_HR) simulations from the other seven models.

Table 1. Summary of the GCMs used in the CMIP6 HighResMIP experiments.

No. Modeling Organizations Model Name
Vertical Resolution

(Layers)
Horizontal Resolution
(Longitude × Latitude)

Label

1 The UK Met Office Hadley
Centre for Climate Change HadGEM3-GC31 85

1.875◦ × 1.25◦ HadGEM3-LM
2 0.83◦ × 0.56◦ HadGEM3-MM
3 0.35◦ × 0.23◦ HadGEM3-HM

4 French National Centre for
Meteorological Research CNRM-CM6-1 91

1.406◦ × 1.406◦ CNRM
5 0.5◦ × 0.5◦ CNRM-HR

6 27 institutes in Europe
(Haarsma et al., 2020) EC-Earth3P 91 0.703◦ × 0.703◦ EC-Earth

7 Meteorological Research
Institute (Japan) MRI-AGCM3-2 60

0.563◦ × 0.563◦ MRI-H
8 0.188◦ × 0.188◦ MRI-S

9
Institute of Atmospheric

Physics/Chinese Academy
of Sciences

FGOALS-f3 32 1.25◦ × 1◦ FGOALS-L

10
Geophysical Fluid

Dynamics Laboratory/
NOAA (U.S.)

GFDL-CM4C192 33 0.625◦ × 0.5◦ GFDL

2.4. IHA Indicators

IHA is a user-friendly tool developed by The Nature Conservancy to measure flow
characteristics using 32 IHA (Table 2) and 34 Environmental Flow Component (EFC)
(Table 3) indicators [27]. For example, the IHA tool can calculate the magnitude and du-
ration of annual minima and maxima flows for specific periods, e.g., 1-day, 3-day, 7-day,
30-day, 90-day. These indicators provide useful information for policy makers, water man-
agers, hydrologists and researchers to understand the impact of human activity, including
land use and anthropogenic climate warming, on rivers and groundwater. Comparative
analysis can be conducted to describe and quantify the changes of these extreme elements
associated with climate change. The zero-flow day indicator is excluded in this study due
to its limited suitability for tropical regions. The IHA version 7.1 is used to calculate the
extreme flows based on the SWAT outputs. The computation of IHA is based on the daily
streamflow data generated from the SWAT simulations.

Table 2. List of 32 IHA parameters adopted in this study.

Hydrologic Parameters Symbol

1. Magnitude of monthly water condition (12 parameters)
Mean value for each calendar month January–December

2. Magnitude and duration of annual extreme water
conditions (11 parameters)

Annual minima, 1-day mean 1-day min
Annual minima, 3-day means 3-day min
Annual minima, 7-day means 7-day min
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Table 2. Cont.

Hydrologic Parameters Symbol

Annual minima, 30-day means 30-day min
Annual minima, 90-day means 90-day mom
Annual maxima, 1-day mean 1-day max
Annual maxima, 3-day means 3-day max
Annual maxima, 7-day means 7-day max
Annual maxima, 30-day means 30-day max
Annual maxima, 90-day means 90-day max

Base flow index: 7-day minimum flow/mean flow for year Base flow

3. Timing of annual extreme water conditions (2 parameters)
Julian date of each annual 1-day maximum Date min
Julian date of each annual 1-day minimum Date max

4. Frequency and duration of high and low pulses (4
parameters)

Number of low pulses within each water year Lo pulse count
Mean or median duration of low pulses (days) Lo pulse dura
Number of high pulses within each water year Hi pulse count
Mean or median duration of high pulses (days) Hi Pulse dura

5. Rate and frequency of water condition changes (3
parameters)

Rise rates: Mean of all positive differences between
consecutive daily values Rise rate

Fall rates: Mean of all negative differences between
consecutive daily values Fall rate

Number of hydrologic reversals Reversals

Table 3. List of 34 Environmental Flow Component (EFC) parameters that adopted in this study.

Environmental Flow Components Parameters Symbol

1. Monthly low flows (12 parameters)
Mean values of low flows during each calendar month January low–December low

2. Extreme low flows (4 parameters)
Peak flow (minimum flow during event) EL peak

Duration of extreme low flows (days) EL duration
Timing of extreme low flows EL time

Frequency of extreme low flows EL freq

3. High flow pulses (6 parameters)
Peak flow (maximum flow during event) HF peak
Duration of high flow pulse event (days) HF duration

Timing of high flow pulse event (Julian date of peak
flow) HF time

Frequency of high flow pulse event HF freq
Rise rate of high flow pulse event HF rise
Fall rate of high flow pulse event HF fall

4. Small floods (6 parameters)
Peak flow of small flood event (maximum flow during

event) SF peak

Duration of small flood event (days) SF duration
Timing of slow flood event (Julian date of peak flow) SF time

Frequency of small flood event SF freq
Rise rate of small flood event SF Rise
Fall rate of small flood event SF Fall
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Table 3. Cont.

Environmental Flow Components Parameters Symbol

5. Large floods (6 parameters)
Peak flow of large flood event (maximum flow during

event) LF peak

Duration of large flood event (days) LF duration
Timing of large flood event (Julian date of peak flow) LF time

Frequency large flood event LF freq
Rise rate of large flood event LF Rise
Fall rate of large flood event LF Fall

2.5. Model Setup and Input Data

The general framework of this study is shown in Figure 2 and includes the following
steps: (1) SWAT input collection, (2) HighResMIP data download and bias correction; (3)
SWAT calibration and validation; (4) Incorporation of the bias corrected HighResMIP into
calibrated SWAT, (5) calculation of flow extremes based on the IHA indicators, and (6) com-
parison of the changes between future (2021–2050) and historical (1985–2014) flow extreme.

Figure 2. Flow chart of this study.

The simulation of SWAT requires three geophysical inputs, including land use, soil
and elevation. The latter information was extracted from satellite-based digital elevation
model data, the Shuttle Radar Topography Mission (SRTM). The land use data of 2013 is
provided by the Department of Agricultural Malaysia (DOA), while the soil data is from
the FAO-UNESCO soil map. The climate driving data of SWAT includes daily precipitation,
daily maximum and minimum temperatures. Daily climate data from 1980 to 2014 was
collected from the Malaysia Meteorological Department (MMD). To initialize the sub-
basin delineation, digital river network data collected from Department of Drainage and
Irrigation (DID) was used to integrate into the SRTM DEM for improving the river network
formation. Lastly, the streamflow data from the same department is used to calibrate and
validate the SWAT model. The minimum threshold value of 10,000 ha was used in the
sub-basin delineations. Five slope classes of 0%–10%, 10%–20%, 20%–30%, 30%–40% and
>40% were used in the slope definition during the model development. The next step
is the formation of hydrologic response units, the smallest spatial unit of SWAT which
lumps together all similar land uses, soils and slopes within each sub-basin to perform all
model calculations.

SWAT has exhibited a reliable performance in simulating the climatology of monthly
streamflow in Kelantan and typical cases of historical drought events [23,38]. This will
apply a new configuration of SWAT, calibrated by referring to parameter ranges and
sensitivity analysis from previous studies [23,38]. The calibration and validation periods
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are chosen as 1985–1999 and 2000–2014, respectively. As the SWAT model setup at the
monthly scale has been well configured and described in previous studies [23,38], this
paper focuses on the daily scale simulation, which is important for allowing the diagnoses
of extreme flows.

Bias corrected HighResMIP climate projections as described in Section 2.3 are used to
drive the calibrated SWAT in order to simulate the future daily streamflow from 1985 to
2050. Thus, the projected hydro-climatic changes driving the simulation of SWAT are based
on multi-GCM ensemble experiments, which help to consider the climate projection uncer-
tainties associated with the different GCM configurations and improve reliability in the
assessment of hydro-climatic impacts [58,59]. The simulated streamflow will then be used
to calculate the 66 extreme indicators as listed in Tables 2 and 3. The assessment of climate
change impact on flow extremes was conducted by comparing the relative differences of
extreme indicators between 1985–2014 and 2021–2050. Moreover, the statistical significance
of the mean difference between the future and the baseline historical periods at a 95%
confidence level (p-value < 0.05) will be determined using the two-tailed Student’s t-test.

3. Results

3.1. SWAT Calibration and Validation

Table 4 indicates that the baseflow alpha-factor (ALPHA_BF), initial SCS runoff Curve
Number for moisture condition II value (CN2) and effective hydraulic conductivity in main
channel alluvium (CH_K2) are among the most sensitive parameters for daily streamflow
calibration, which is similar to the previous monthly scale calibration in KRB [23,38].
ALPHA_BF shows the baseflow response to changes in recharge, CN2 represents a function
of the soil permeability, land use and soil water condition, while CH_K2 adjusts the
relationship of water exchange from groundwater to river [60,61].

Table 4. Final SWAT performance rating as recommended by Moriasi [51].

No Name First Iteration Last Iteration Fitted

1 v__ALPHA_BF.gw 0.00 1.00 0.00
2 v__CH_K2.rte 0.00 500.00 350.00
3 r__CN2.mgt −0.50 0.50 −0.45
4 v__GW_DELAY.gw 0.00 500.00 0.00
5 r__SOL_AWC().sol −0.50 0.50 −1.00
6 v__GW_REVAP.gw 0.02 0.20 0.10
7 v__RCHRG_DP.gw 0.00 1.00 0.00
8 v__GWQMN.gw 0.00 5000.00 1500.00
9 r__CH_N2.rte −0.50 0.50 −1.00

10 v__REVAPMN.gw 0.00 500.00 128.00
11 v__SURLAG.bsn 0.05 24.00 2.00
12 v__ESCO.bsn 0.00 1.00 0.05

v_ indicates that the original parameter value is replaced with the given value; R indicates that the parameter
value is multiplied with 1 + the given value.

The comparison between the observed and simulated streamflow in the case of Jam-
batan Guillermard during the calibration (1985–1999) and validation (2000–2014) periods
is shown in Figure 3. In general, the simulated monthly and daily variations of stream-
flow are captured reasonably well with respect to the observed streamflow. However, an
overestimation of baseflow is found for the period of 2010–2014, which is possibly due to
increasing groundwater demand in recent years [62], as there is no accessible groundwater
extraction data for the study area. Six groundwater parameters were considered in the
SWAT calibration by allowing more water transfer from baseflow to surface or atmosphere
so that the impact of inadequate groundwater data is minimized.

The model performance is rated as “very good” in terms of the monthly scale sim-
ulation according to the Jambatan Guillemard Bridge for both the calibration (R2 = 0.84
and NSE = 0.72) and validation (R2 = 0.84 and NSE = 0.63) periods. The performance of
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SWAT is rated as satisfactory at the daily scale. For the last iteration of calibration, 78%
(p-value = 0.78) of the simulations were bracketed by the 95 Percent Prediction Uncertainty
(95PPU) with r-value of 0.89, indicating that the calibration is acceptable. Thus, the cali-
brated configuration of SWAT will then be used for simulating the hydro-climatic extremes
in the KRB and the results will be discussed in Sections 3.3–3.5.

Figure 3. Observed and simulated daily streamflow at Jambatan Guillermard from 1985 to 2014.

3.2. Bias Correction of CMIP6 HighResMIP Models

The biases of the HighResMIP experiments were corrected using the QM, as discussed
in Section 2.3. Figure 4 shows the climatology of monthly precipitation and maximum
and minimum temperatures from 1980 to 2014 over KRB that are measured from observed
data, original and bias-corrected HighResMIP models. The original HighResMIP models
tend to underestimate the monthly precipitation in November and December, whereas an
inconsistent pattern was found for other months. The HighResMIP models simulate the
peak monthly precipitation in November, one month earlier than observed. The FGOALS-
f3-L simulation exhibits a generally poorer performance than the other simulations as it
significantly underestimates the precipitation amount over KRB, especially during the SWM
season (June–September). We also note that the original HighResMIP models generally
show a better performance in simulating the precipitation amount compared to the original
regional climate model simulations from CORDEX-SEA that dramatically overestimate
the observed precipitation by up to five times for certain months in the same basin [23].
As shown in Figure 4d, the QM approach reasonably corrects the biases of the models in
representing the peak monthly precipitation in December and precipitation amount for
all the simulations. It is also noted that the high resolution (HR) simulations exhibit less
underestimation of precipitation during the NEM compared to low resolution (LR).
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Figure 4. The annual cycles of monthly precipitation amount (a,d), monthly mean daily maximum (b,e) and minimum
temperature (c,f) for the ten CMIP6 HighResMIP experiments, compared to the MMD observations during the period
1980~2014: (a–c) original; (d–f) bias-corrected for the Kelantan River Basin, Malaysia.

In general, most CMIP6 HighResMIP models reasonably capture the observed warm
period in April and September in terms of the monthly mean of daily maximum and mini-
mum temperatures (Figure 4b,c,e,f), mainly during the inter-monsoon periods. However,
all the HighResMIP models underestimate the monthly maximum temperature, whereas
most of the models show an overestimation in the monthly minimum temperature, except
the CNRM-CM6-1-HR, EC-EARTH3P and GFDL-CM4C192 models. Minimum temper-
atures outperformed maximum temperatures in the climatology simulations since the
ensemble mean is much closer to the observed data. Similar to precipitation, maximum and
minimum temperature biases reduce significantly after applying the QM bias correction
approach, as shown in Figure 4e,f, respectively. Compared to LR, the HR simulations show
less overestimation of daily minimum temperature. However, no apparent improvement
in simulating maximum temperature is found in HR.

3.3. Climate Change

The projected annual and monthly changes in precipitation, daily maximum and
minimum temperatures over the KRB for the period 2021–2050 relative to 1985–2014 are
shown in Figure 5. Annual precipitation is projected to increase significantly by 6.9%. For
almost every month, the precipitation amount is projected to increase from 0.94 (October)
to 15.1% (December), except for April with a reduction of 2.4%. In Figure 5a, statistically
significant changes in the monthly average precipitation are seen in June, July, August and
December, indicating a general increase in precipitation during the SWM and the early
phase of the NEM.

The annual mean of daily maximum and minimum temperatures for the period
2021–2050 relative to 1985–2014 are projected to increase by 0.8 and 0.9 ◦C, respectively
(Figure 5b). The equivalent warming trends are slightly higher than the historical long-
term warming trends (0.1 and 0.3 ◦C/decade for maximum and minimum temperatures
respectively) from 1985 to 2018 in Malaysia [1]. For each month, maximum and minimum
temperatures are projected to increase by 0.7–1.0 ◦C, with higher magnitudes of warming
in May and November (Figure 5b). There is also a significant difference between the future
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and historical temperatures in their mean values for both the annual and monthly scales
(Figure 5b), supporting the literature regarding a warming situation in the next 30 years.

Figure 5. Projected changes of (a) precipitation, (b) maximum and (c) minimum temperatures between 1985–2014 and
2021–2050 in the Kelantan River Basin, Malaysia.

3.4. Hydrologic Extreme Changes

A comparison of the changes in hydrological extremes at the Jambatan Guillemard
station between the 2021–2050 and 1985–2014 periods is shown in Figure 6. Annual and
monthly streamflow are projected to increase by 9.9% and 3.5% to 16.8% in the future,
respectively, as simulated from an ensemble mean of the ten HighResMIP models. A
higher rate of increase of more than 10% can be found in June to August and December.
Additionally, a significant difference of mean streamflow at 95% confidence level can be
found at the time-scales of annual, December to January, March, and June to October, which
is similar to the monthly precipitation changes. As December and January are the major
flood periods in the KRB, more intense flooding impacts may occur in the future.

Next we analyze the indicators quantifying the annual streamflow extremes in terms
of their magnitude for different durations, e.g., the second IHA group listed in Table 1.
Figure 6b shows that the 1-, 3-, 7-, 30- and 90-day minima and maxima flows increase
significantly from 7.2% to 8.2% and 10.4% to 28.4%, respectively, in the 2021–2050 period.
There is a high deviation for the case of extremely high flows at 1-, 3- and 7- day maxima
flow, showing that the magnitude of floods might increase in the near future. As for the
baseflow index, a slight decrease of 0.9% is seen for the future period. This indicates that
the future amount of water available for freshwater supply tends to remain the same as the
current value. However, stress on water supply may occur if there is an increased water
demand following population growth in the future.

The third IHA group indicates the streamflow extreme events in terms of the occur-
rence timing. A water year is defined using the Julian dates format where “day 1” refers to
1st January and “day 365” refers to 31st December. As shown in Figure 6c, the occurrence
timing of the future annual minimum and maximum events that are projected by the ten
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models will increase by 1.0% to 25.3% (1.87 to 46.27) and 0.4% to 16.2% (0.73 to 29.67),
respectively. This indicates that the future streamflow extreme events are projected to be de-
layed for a few days to a few weeks. The fourth IHA group shows the number and duration
of extreme pulses. The results show that the number of low pulses showed no significant
changes; meanwhile, the number of high pulses is projected to increase significantly by
22.7%. The duration of future low and high pulses tends to change slightly compared to the
historical period, based on an ensemble mean of 3.3% and 5.9%, respectively. The last IHA
group contains the rate and frequency of water condition changes. There is a significant
increase in the rise rate and fall rate at the Jambatan Guillermard station by 31.9% and
25.5%, respectively, showing that a rapid increase or decrease in streamflow might happen
in the future. The number of hydrological reversals will increase by 11.6% as projected
by the model ensemble, which shows an increment in the number of daily streamflow
increases after decreasing, and decreases after increasing.

Figure 6. Projected changes in hydrological extremes as indicated by 32 IHA parameters of (a) monthly flows, (b) magnitude
and duration, (c) timing, (d) frequency and duration and (e) rate and frequency between 1985–2014 and 2021–2050 at the
Jambatan Guillermard station.

3.5. Environmental Flow Changes

The EFC indicators that divide into monthly low flows, extreme low flows, high
flow pulses, small floods and large floods, were also considered in this study because
this information is very important to sustain riverine ecological integrity. The first EFC
group shows the monthly low flow sustained by groundwater, so any changes in these
parameters can be related to groundwater availability. Basically, a slight decrease in the
monthly low flow can be found in April, May and October to December by 0.2% to 1.1%,
based on the ensemble mean projection as shown in Figure 7. By contrast, monthly low
flows from July to September are projected to increase significantly at the 95% confidence
level by 4.3 to 9.4%.
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Figure 7. Projected changes in hydrological extremes as indicated by 32 EFC parameters of (a) monthly low flows, (b)
extreme low flows, (c) high flow pulses, (d) small floods and (e) large floods between 1985–2014 and 2021–2050 at the
Jambatan Guillermard station.

4. Discussion

Climate change is expected to have a more significant impact on hydrological extreme
flows than environmental flow components, since more IHA indicators (Figure 6) were
found to be significant in the 2021–2050 period than EFC indicators (Figure 7). The findings
show that extreme high flows are more sensitive to climate than normal and low flows in
the KRB. The situation can be highlighted by the fact of continuous heavy precipitation in
the first week of January 2021, that resulted in serious flooding in five states of Peninsular
Malaysia, including Kelantan. According to the Kelantan e-flood portal, https://ebanjir.
kelantan.gov.my/ (accessed on 20 March 2021), water levels at the Jambatan Guillermard
station exceeded the danger level of 16 m from 6th January to 9th January 2021, up to the
peak level of 18.89 m. The water level is only slightly lower than the Kelantan Big Yellow
Flood of 2014 that reached a peak level of 22.74 m. The alteration in extreme flows has
a great influence on biodiversity and the ecological system within and surrounding the
river [63].

The statistical analysis has shown that the SWAT model is acceptable for daily stream-
flow simulations in the KRB. In Southeast Asia, a review of SWAT application in hydro-
climatic extreme studies reported that the SWAT model tended to have a better performance
on monthly time scales compared to daily time scales [46]. A possible explanation for
this might be insufficient rain gauges in the tropics to capture the daily-scale extreme
precipitation at a better spatial coverage [64]. For example, the only rain gauge in the
southeastern part of the KRB as shown in Figure 1 may miss captured extreme events in
the nearby region, and therefore the extreme flows were underestimated by the SWAT
model. In fact, the reported NSE and R2 values at daily time scales in previous SWAT
extreme related studies commonly ranged from 0.50 to 0.79 [15]. Besides, the SWAT model
tends to underestimate the peak flows which are reported in the river basins of Spain [65],
Brazil [66] and Hawaii [67]. Based on Krysanova and Arnold [68], the flood-plain depo-
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sition algorithm within SWAT needs to be improved in order to increase the accuracy
of SWAT in replicating peak flows. This suggestion has been taken into consideration
during the SWAT+ development [69]; however, how effective the improvement is still
needs further investigation.

Climate projections are always regarded as one of the major uncertainties in hydro-
climatic impact modelling [15,70]. Given that the HR models have been shown to have a
better fidelity in representing precipitation extreme events when compared to observations
than their LR model counterparts [55], one might expect the HR models to provide a more
accurate assessment of future precipitation extremes. Of the models assessed in this study,
changes in future precipitation extremes are frequently quite different between the HR and
LR models. The mean precipitation change is significantly higher during the November-
December-January period when most flooding occurs at 9.6% for the HR models compared
to 5.0% for the LR models (Figure 5). The associated mean monthly flow changes are
significantly higher during the Nov-Dec-Jan period at 11.8% for the HR models compared
to 3.2% for the LR models. The changes in the magnitude and duration of the 1-day to
90-day maximum flows are universally greater in the HR models than in the LR models
with values for 1-day maxima increases by as much as 35.1% for HR compared to 12.8%
for LR models (Figure 6). Large flood event marker changes in future climate scenarios
are significantly more prevalent in the HR models than the LR models. For example, the
large flood frequency increases by 119% for the HR models compared to 44.4% for the LR
models (Figure 7). Similarly, Troin [71] also reported that RCM is superior than GCMs
for hydro-climatic assessment, particularly in mountainous regions. Therefore, numerous
high-resolution GCMs along with different downscaling techniques should be considered
in future hydro-climatic modelling [72].

This intercomparison of simulations at different model resolutions suggests that
the simulation results based on climate simulations at relatively low model resolutions
should be interpreted with cautions. The linkage between the model performance in
simulating regional precipitation and the spatial resolution of the model is complex. For
example, Liang et al. [55] found that the high resolution version of HadGEM3-GC3.1 has a
stronger ability to simulate the Borneo Vortices during the NEM season and their associated
precipitation in Malaysia compared to the low resolution versions. This partly explains
that the high-resolution simulations of MRI-S and Had-HM exhibit a better performance
in capturing the high precipitation period (November and December) of the study area
with respect to the low-resolution experiments, as shown in Figure 4a. We note that the
application of all available climate models, or only the models with good performance in
hydrological impact assessment, is still a debatable issue regarding what is the optimal
choice [70], and offer a caveat that the number of models that provide LR diagnostics is
limited to just three in our analyses, compared to seven for the HR models. Further model
evaluations should be added as more HighResMIP model output becomes available.

Bias correction of climate model output is important for improving the quality of driv-
ing data of hydrological simulation for hydro-climatic impact modelling studies [23,73,74],
and is mainly based on statistical approaches. For instance, Tan et al. [38] used a linear
scaling approach to correct biases in the CMIP5 GCMs before applying them into SWAT. In
this study, a statistical method based on QM is used to correct biases in the HighResMIP
experiments. This method has also been used for bias corrections in the dynamical down-
scaling simulations over Malaysia [75] and Southeast Asia [76] from the CORDEX-SEA
experiments. This study of Shrestha, et al. [77] suggested that there is no significant differ-
ence between the simple (linear scaling) and complex (QM) bias correction schemes for
monthly streamflow studies. However, Luo, et al. [78] compared seven bias correction
schemes to downscale precipitation and temperature in the Kaidu River Basin, China, and
reported that the effect of different bias correction schemes is larger in precipitation than
temperature. More studies on how the use of different approaches influence bias correc-
tions in GCMs and how RCMs influence the daily streamflow simulations are required for
the study area of the paper and the surrounding western Maritime Continent.
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5. Conclusions

Extreme hydro-climatic events exert substantial impact on the environment and
human society. This study incorporates the latest high-resolution GCM simulations from
HighResMIP and SWAT to project possible future changes in hydrological extremes over the
KRB. The SUFI-2 algorithm was applied in the SWAT sensitivity analysis, calibration and
validation for improving the credibility of SWAT for simulating the long-term climatology
of daily streamflow. In this process, ALPHA_BF, CN2 and CH_K2 are found to be the
most sensitive parameters in the SWAT calibration, which is consistent with previous
studies [23].

The original outputs of the HighResMIP experiments tend to underestimate monthly
precipitation in November and December. Besides, the models are found to simulate an
earlier peak (by about one month) of monthly precipitation compared to observations.
Most of the HighResMIP experiments underestimate the monthly maximum temperature,
while an overestimation is found for the monthly minimum temperature compared to
observations. Based on future climate simulations with the model biases corrected by QM,
the annual precipitation, maximum and minimum temperatures are projected to increase
significantly by 6.9%, 0.8 ◦C and 0.9 ◦C, respectively, for the 2021–2050 period relative to
the 1985–2014 baseline period. Monthly precipitation in the basin is expected to increase
for almost every month by 0.9 to 15.1%, except for April with a decreasing signal of 2.4%.
Monthly maximum and temperatures are projected to increase by 0.7–1.0 ◦C.

The future simulation of the annual mean streamflow for the period 2021–2050 shows a
significant increase by 9.9% relative to the 1985–2014 baseline period. Meanwhile, monthly
streamflow is projected to increase for all months by 3.5 to 16.8%, with significant changes
mainly found in the SWM and the early NEM periods. The magnitude of 1-, 3-, 7-, 30- and
90-day minima and maxima flows are projected to increase significantly by up to 28.4%. In
contrast, the baseflow index is projected to change slightly by about 0.9%. The occurrence
timing of the extreme flows is expected to be delayed by a few days to a few weeks in the
future. The duration of future low and high pulses shows only minor changes as compared
to the baseline period. By contrast, the rise rate and fall rate exhibit a rapid increase or
decrease of streamflow that may occur in the future.

For the changes in the monthly distribution of low flows for the period 2021–2050
relative to 1985–2014, slight decreases are seen in April, May, October, November and
December, whereas a significant increase is found from July to September by 4.3% to 9.4%.
The duration and frequency of extreme low flows are projected to decrease by 15.7% and
16.5% respectively. For the high-flow pulses, future projections show an increase by 1.8% to
18.6% compared to the baseline period. Generally, indicators for both small and large floods
are projected to increase in the future. However, only changes in small flood duration and
large floods’ frequency are statistically significant.

This study constructs a framework for comprehensively assessing hydro-climatic
extremes by integrating hydrological modelling and state-of-the-art high-resolution climate
simulations. Further studies are needed to understand the limited ability of SWAT in cap-
turing both the peak and low flows in the KRB. Besides, future work is needed to compare
SWAT with its latest version, SWAT+ [69], and investigate the potential improvement of
SWAT+ in simulating peak flows in the KRB. As more simulations of CMIP6 GCMs with
different model resolutions will be released to the public, a comprehensive investigation on
how the horizontal and vertical resolutions of GCMs influence the SWAT simulation will be
investigated in the near future. Finally, this study indicates that high- and low-resolution
model resolutions resulted in quite different changes in future hydro-climatic extremes,
so a more reliable climate projection quantification framework and ensembles techniques
should be developed to minimize uncertainties in hydro-climatic extreme simulations.
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Abstract: Extreme events resulting in catastrophic damage have more than doubled in the last
five years, costing hundreds of lives and thousands of homes, and heavily undermining regional
economic stability. At present, most of these hydroclimatic extreme events are documented by the
media as individual events; however, in scientific terms, many are better understood as concurrent
events—concurrent extremes of both temperature and precipitation (e.g., drought, floods). This paper
considers concurrent changes in hydroclimate extremes, including heatwaves, drought, flooding,
and low flows, in six historical-to-future (1970–1999, 2070–2099) Earth System Model (ESM) climate
scenarios for the Colorado River basin. Results indicate that temperature-driven Impacts (heatwaves,
drought) have the strongest responses while percipitation-driven Impacts have weaker responses.
All Impacts exhibit an increase in magnitude from synoptic to annual time scales, with heatwaves
increasing in strength about three times at the annual time scale versus the synoptic, while low
flows only increase slightly. Critical watersheds in the Colorado were identified, highlighting the
Blue River basin, Uncompahgre, East Taylor, Salt/Verde watersheds, locations of important water
infrastructures, water resources, and hydrological research. Our results indicate that concurrent
extreme hydroclimate events are projected to increase in the future and intensify within critical
regions of the Colorado River basin. Considering extreme hydroclimate events concurrently is an
important step towards linking economic and social effects of these events and their associated
instabilities on a regional scale.

Keywords: extreme events; hydrology; concurrent; climate change; Colorado River basin; heatwaves;
drought; flooding; low flows

1. Introduction

Extreme events resulting in catastrophic damage (i.e., loss of life and costs exceeding
a billion dollars in response expenses, property damage, and economic disruption) have
more than doubled in the last five years, significantly undermining regional economic
stability [1]. The increase in both the frequency and intensity of these extreme events
has been directly linked to climate change (i.e., 6 events in a 2011 publication, versus
28 events in more recent work just four years later) [2–7]. These extreme events occur
locally, regionally, and globally, with major consequences for every aspect of human society
and economy [3,7].

The growing body of research on this topic reflects the fact that it has become one of the
most urgent issues of the last decade. Studies with the keywords “extreme events” in their
titles doubled between 2010 and 2018 (Google Scholar and Scopus, 26 June 2020, Figure 1),
and, in a recent study on the “Twenty three unsolved problems in hydrology,” “extreme
events” was listed as a major outstanding research topic, with particular emphasis placed on
the causes of flood/drought periods and recently documented changes to these periods [8].
Extreme events were also the focus of a 2012 Intergovernmental Panel on Climate Change
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Special Report [7], an updated 2018 Special Report [3], a “Key Finding” issued by the US
National Climate Assessment (NCA 2014), numerous databases and data sets (e.g., NOAA’s
Billion-Dollar Weather and Climate Disasters https://www.ncdc.noaa.gov/billions/time-
series, accessed on 20 October 2020), and a multitude of recent research papers [9–11]. We
urgently need to understand how extremes events are changing and we need to better
characterize and track such changes in critical regions, such as major watersheds.

Figure 1. Peer reviewed literature documenting extremes events has tracked increases in extremes over the past ~10 years.
Data source: NOAA CEI database, 2019.

In the United States, watersheds play a fundamental role in regulating water resources
for commercial and domestic purposes. For example, the Colorado River basin (CRB)
provides water for over 40 million people [12] and directly facilitates 1.4 trillion dollars in
agricultural and commercial applications (roughly 1/13th of the entire US economy, based
on the 2014 Gross Domestic Product). However, in the Southwest Climate region alone
(UT, CO, AZ, NM), flooding, drought, freezing events, wildfire, severe storms, and winter
storms have cost approximately 40 billion dollars between 1980–2020, with a more than
5-fold increase in extreme events from the 1980s to the 2010s [1].

Unfortunately, despite the vital importance of understanding extreme hydroclimate
events in watersheds such as the CRB, several fundamental steps have been overlooked.
Even the most basic task of comprehensively defining, classifying, and categorizing ex-
treme events has proven to be problematic, complicating comparisons across research
fields, which may have different standards for describing the occurrence, duration, and
severity of such events [13,14]. Additionally, many of the current tools used to consider
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extreme events use simple algorithms (e.g., NOAA’s Climate Extreme Index, or CEI) based
on simple indicators (minimum temperature changes, precipitation days, etc.), which allow
policy makers and the non-scientific community to understand basic changes in extreme
event trends. However, these resources cannot effectively track, for example, coupled
extreme events (e.g., drought/wildfire, winter storm/flood), and may even overestimate
the occurrences of extremes that impact society and underestimate the impacts of concur-
rent extremes. Consequently, much of the current work on extreme events has focused
largely on the analysis of individual or univariate indicators in documenting changing
extremes [15–18]. However, more complex indicators and statistical approaches are needed
to improve the scientific community’s ability to identify and characterize coupled, joint,
concurrent, or multivariate climate extremes [19–26] and to document the clear effects of
these concurrent events on the economy and society [27,28].

Despite the strong focus on individual indicators, research has emerged that charac-
terizes future changes in extreme events concurrently [22,26,29–38]. Review studies on
concurrent hydroclimate extremes provide an assessment of all studies and methodological
approaches to date of publication [39,40]. A Special Issue on concurrent or compound
extremes was also published [41]. The argument for consideration of concurrent extremes
over univariable extreme event analysis is given by several authors, offering definitions,
frameworks, paradigms shifts, and generally making the case that examining extreme
events in this manner is a means to improve projections of future changes, and that rethink-
ing the traditional univariate approach will allow for physical sciences to be more clearly
linked to socioeconomic impacts of extremes [42–46].

This paper describes modeled scenarios of concurrent extreme events in the CRB. We
present the results for six different Earth System Models (ESMs), and four different Impacts
(heat waves, drought, low flows, and flooding), calculated as coupled, joint, multivariate, or
concurrent indicators for two time periods, historical (1970–1999) and future (2070–2099).
For the purposes of this paper, extreme Impacts are considered as the 95th percentile
exceedance of concurrent indicators (from here on in, joint, coupled, multivariate indicators
are referred to as concurrent). We consider the changes in Impacts across synoptic, monthly,
seasonal, and annual time scales; and we also identify the most critical watersheds within
the CRB where concurrent changes are compounded, based on the accumulated changes in
Impacts between historical and future models. We conclude the paper with a summary of
the work and next steps.

2. Materials and Methods

2.1. Study Site

Our study area is the CRB, covering an area of 640,000 km2 in the semi-arid to arid
Southwestern United States and Northern Mexico. The basin stretches from 30◦ N to
44◦ N and from 106◦ W to 116◦ W, extending from the alpine regions of the Southern
Rocky Mountains to the Gulf of California, and covers elevations from sea level to more
than 4000 m, providing water resources to a vast number of adjacent infrastructures (e.g.,
agricultural, water routing structures, and cities, Figure 2). The large range of spatially and
temporally variable CRB landscapes and ecosystems span multiple climatic zones, with
observed annual average temperatures ranging from 4 ◦C to 24 ◦C (average 11 ◦C) and
annual average precipitation total ranging from 79 mm to 1699 mm (average 363 mm) [47].
Most precipitation in the basin falls as snow at high elevations, so roughly 85% of the CRB
flow originates between its upper headwaters and Lees Ferry at Glen Canyon, Arizona [48].
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Figure 2. The domain of the Colorado River Basin with adjacent areas that receive Colorado River
water. Adapted from USGS (accessed 11th January 2021)

2.2. Climate Simulations

Our hydrological model was forced using downscaled projections of daily tempera-
ture, precipitation, and wind speed from the Multivariate Adaptive Constructed Analogue
(MACA) database [49]. We extracted the following six climate data projections from MACA
based on Earth System Model (ESM) simulations from the Coupled Model Intercomparison
Project, phase 5 (CMIP5) [50] because they represent a range of future climate responses
for the CRB and also include dynamic vegetation components, listed in the brackets be-
low: HadGEM2-ES (TRIFFID) [51,52], MIROC-ESM (SIEB-DGVM) [53,54], MPI-ESM-LR
(JSBACH) [55,56], IPSL-CM5A-LR (ORCHIDEE) [57,58], and GFDL-ESM2M, and GFDL-
ESM2G (LM3V), [59,60]. Each ESM differs by a multitude of factors, including but not
limited to the country where the model was developed, initial conditions, physics rep-
resentations, and tuning mechanisms [61]. For this work, we used the representative
concentration pathway (RCP) 8.5 emissions scenario, which tracks closely with changing
emissions levels over time [62] and anticipates strongly increasing emissions by 2100 [63].

2.3. Hydrological Simulations

To generate simulations of extreme hydrological indicators, we used the Variable
Infiltration Capacity (VIC) model version 4.2 [64,65] at a 1/16th degree (6 km) spatial reso-
lution. For each grid cell in the simulation domain, VIC simulates vertical energy and water
dynamics at an hourly time step for land cover tiles situated above a 3-layer soil column.
Heterogeneity in VIC infiltration is represented by a sub-grid scale statistical distribution
(the variable infiltration capacity curve). Surface runoff is generated via saturation excess,
while sub-surface runoff is characterized by a non-linear baseflow curve [66].

We ran VIC using publicly available gridded historical climate data (daily precipitation,
minimum and maximum temperature, and wind speed) for the CRB (Livneh et al., 2015) and
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calibrated VIC for 2006–2010 using the United States Geological Survey (USGS) naturalized
gauged monthly streamflow data [67] and an automatic calibration tool [68] to correct
streamflow peaks, volume, and low flow biases. See Bennett, et al. [69] for a complete
description of VIC parameterizations and calibration details.

2.4. Extreme Indicators and Impacts

We calculated two time periods for our analysis: historical (1970–1999) and fu-
ture (2070–2099) for synoptic (5 days, with 73 5-day intervals in each year), monthly
(12-months), four-seasonal (December-January-February, DJF; March-April-May, MAM;
June-June-August, JJA; and September-October-November, SON), and annual intervals.
Leap-year days were removed from the time series, so all modeled years are 365 days.
We calculated extreme climatic and hydrologic indicators (e.g., maximum temperature,
freezing days, minimum streamflow) for each time period and interval, as described in
Table 1. Some indicators were VIC model input (e.g., temperature) while others were
generated from VIC model output (e.g., evapotranspiration). Our defined Impacts were:
heatwaves, drought, flooding, and low flows. For each Impact, we choose two to three
indicators that showed the least correlation with one another, yet remained relevant to the
assigned Impact (Table 2).

Table 1. Extreme indicators, description and units, and abbreviations used in the text.

Indicators Description and Units Abbreviation

Maximum temperature Maximum temperature achieved over the time period (◦C) tx
Maximum precipitation Maximum daily precipitation over the time period (mm) precx
Low precipitation days Number of days when accumulated precipitation is <0.01 mm. (count) dryd
Maximum streamflow Maximum daily streamflow over the time period (mm) qx
Minimum streamflow Minimum daily streamflow over the time period(mm) qn

Maximum soil moisture Maximum daily soil moisture from the third soil moisture layer over
the time period (mm) soilmx

Minimum soil moisture Minimum daily soil moisture from the third soil moisture layer over
the time period (mm) soilmn

Maximum evapotranspiration (ET) Maximum daily evapotranspiration over the time period (mm) evapx

Table 2. Extreme impacts and the relevant indicators used to construct the impact.

Impacts Indicators

Heat Waves Maximum temperature, maximum ET
Drought Maximum temperature, low precipitation days, minimum soil moisture

Low Flows Minimum streamflow, minimum soil moisture, maximum ET
Flooding Maximum precipitation, maximum streamflow, maximum soil moisture

2.4.1. Peaks Over Threshold Extreme Exceedance

We defined the occurrence of extreme indicator values by calculating the historical
95th percentile (or 5th percentile for low extreme indicators) at each grid cell location for
each indicator and using the 95th percentile as the threshold. Following a Peaks Over
Threshold (POT) approach, any instance where an indicator value exceeded the historical
95th percentile threshold for a given grid cell was considered extreme. The exceedance of
the threshold for each indicator at each grid cell and timestep was expressed as a binary
value and is referred to as “exceedance” from here on.

2.4.2. Distance Number

Distance Number (Dn) is a metric that indicates the distance between data pairs
normalized by the variance of the observed or historical values. By normalizing the
difference by the historical standard deviation, we can obtain a value analogous to a Z-
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score, describing the change that occurs between historical and future data [70–72]. We
define the Distance Number as:

Dnxy =
1
n ∑n

i=1

(
Fi,xy − Hi.xy

)
Sxy

, (1)

where F is the future indicator exceedance, H is the historical indicator exceedance, S is the
temporal standard deviation of the historical exceedance for each cell, i is the timestep, xy
is the spatial cell location, and n is the number of timesteps. We calculated the distance
number using equation (1) and estimate the change in exceedance of extreme Impacts by
averaging Dn for each indicator relevant to a given Impact. For example, the concurrent Dn
value for flooding is the average Dn value of the Dn of maximum precipitation, maximum
streamflow, and maximum soil moisture, respectively. By normalizing the exceedance
values by the historical standard deviation, the concurrent Dn value allows for a comparison
of change across large spatial distances and four different time scales, and also allows
for a comparison between different Impacts and ESMs. Dn values were examined for
individual grid cell responses, and by the Natural Resource Counsel (NRCS), United States
Department of Agriculture (USDA) hydrological unit basins. We used the cataloguing unit
level eight (HUC8) watersheds, of which there are 134 watersheds in the CRB.

We estimated critical Dn values based on the mean of the Dn for each grid cells in all
134 HUC8 watershed in the CRB. The HUC8 watersheds where the mean Dn exceeded the
95th percentile of the mean Dn were identified as critical for all Impacts and ESMs. For all
HUC8s, we summed instances for Impacts and ESMs; watersheds with values above 4 are
identified as notably critical (described as having criticality and compounded concurrent
extremes in Results and Discussion sections).

3. Results

The six ESMs examined in this study exhibit very similar temperature and precip-
itation data across the historical time period. Each ESM exhibits a mean temperature
across the entire CRB of between 11.7 ◦C and 11.9 ◦C, and an average annual precipitation
between 363.5 mm/yr and 369.9 mm/yr (std. dev. = 6.4 mm/yr, Table 3). The ESMs were
chosen to represent the range of changes in precipitation and temperature projected by
the larger CMIP5 model suite (not shown). Among the six ESMs, the projected change in
temperature for the future scenario (2070–2099) differenced from the historical scenario
(1970–1999) ranges from an increase of 4.1 ◦C (GFDL-ESM2M) to 7.0 ◦C (MIROC-ESM),
with a multi-model average of 5.5 ◦C (std. dev. = 1.2 ◦C). Projections of future precipitation
show large variance among ESMs, with ESMs projecting both increases and decreases
in annual precipitation. HadGEM2-ES365 shows the largest decrease in precipitation
(−52.8 mm/yr) while GFDL-ESM2G shows the largest increase (37.2 mm/yr). The mean
of the six ESMs shows a small increase of only 2.1 mm/yr in precipitation and a standard
deviation between ESMs of 32.6 mm/yr.

Table 3. Future and historical average annual temperature and precipitation values from the six GCMs considered. We also
include the multi-model average and standard deviation for each field (bold italics). Temp. = temperature, Prec. = precipitation.

Historical Future Change

Temp. (◦C) Precip. (mm) Temp. (◦C) Precip. (mm) Temp. (◦C) Precip. (mm)

GFDL-ESM2G 11.7 365.9 16.3 403 4.5 37.2
GFDL-ESM2M 11.7 366.5 15.8 377.9 4.1 11.3

HadGEM2-ES365 11.8 366.8 18 360.4 6.2 −6.4
IPSL-CM5A-LR 11.9 351.7 18.2 298.9 6.3 −52.8

MIROC-ESM 11.8 369.9 18.8 400.7 7 30.8
MPI-ESM-LR 11.9 363.5 17 356.3 5.1 −7.3

Average 11.8 364.1 17.3 366.2 5.5 2.1
Standard Deviation 0.1 6.4 1.2 38.3 1.2 32.6
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3.1. Individual Indicators

Figure 3 shows the average across all six ESMs and four time scales for the individual
indicators contributing to each Impact. Maximum temperature shows the largest Dn values
of any indicator, exhibiting an average of 2.07 across each ESM and time scale. Additionally,
maximum temperature (tx) shows little spatial variance (std. dev. = 0.07), which is not sur-
prising given that temperature often exhibits coherent and strong responses under climate
change [73]. Maximum precipitation (precx) shows little spatial variance (std. dev. = 0.09)
with modestly positive Dn values (0.22) across the entire basin, indicating an increase in
maximum precipitation for the CRB as a whole. Dn values are slightly higher in the upper
CRB than in the lower basin for maximum precipitation. Similarly, maximum evaporation
(evapx) and dry days (dryd) show slightly positive values (0.16, and 0.14, respectively)
across nearly the entire CRB with little spatial variability (std. dev. = 0.08 to 0.13). Maximum
evaporation shows slightly more elevated Dn values in the highest elevations regions of the
CRB, as well as in a narrow band in the lower CRB known as the Arizona Transition Zone,
where topography transitions from the high elevation Colorado Plateau to the basin and
range region of the US southwest [74,75]. This region is also characterized as experiencing
the highest average annual rainfall in the state of Arizona [76].

Figure 3. The multi-model and timescale average of Dn results for the individual indicators along
with the relevant impacts.
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Indicators related to minimum (std. dev.= 0.56) or maximum streamflow (std. dev.= 0.32),
or minimum (std. dev.= 0.60) or maximum soil moisture (std. dev.= 0.55) exhibit far more
spatial variance than the other indicators (qn, qx, soilmn, soilmx, respectively). Maximum
soil moisture and maximum streamflow have larger and more positive Dn values in the
upper CRB compared to the lower CRB, while minimum soil moisture and maximum
soil moisture show larger and more positive Dn values in the lower CRB compared to the
upper CRB.

3.2. Impacts

Dn results as difference between the future scenario and historical scenario for each
Impact and time scale are shown in Figures 4–8 and Table 4. Overall, we observe an
increase in each of the four Impacts when averaged over all ESMs and across the entire
CRB (Table 3, Figure 4). Generally, the Dn values increase as the time scale lengthens, with
the largest values occurring on the annual time scale (Figure 4). However, the change
in Dn values depends on the Impact. Temperature-driven Impacts (heatwaves, drought)
exhibit an increase in magnitude from synoptic to annual time scales, with heatwaves
resulting in approximately three times the Dn value at the annual time scale versus the
synoptic (0.60 compared to 2.01, Table 3, Figure 4). On the other hand, precipitation-driven
Impacts (low flows, flooding) exhibit only a slight increase when moving from synoptic to
annual time scales (e.g., 0.21 compared to 0.32 for low flows, Table 3, Figure 4). This may
be because precipitation-driven extremes have a shorter memory in the climate system
than temperature-driven extremes, which often occur over longer periods of time and have
longer memories in terms of both reoccurrence and frequency [77].

Figure 4. The multi-model average Dn value across the CRB for each impact and timescale. The
whiskers represent +/− one standard deviation between the different ESMs.
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Figure 5. The Dn value results across the CRB at an annual timescale for each ESM and Impact. The
average Dn value and spatial standard deviation is also shown for each panel.

Figure 6. The Dn value results across the CRB at a seasonal timescale for each ESM and Impact. The
average Dn value and spatial standard deviation is also shown for each panel.
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Figure 7. The Dn value results across the CRB at a monthly timescale for each ESM and Impact. The
average Dn value and spatial standard deviation is also shown for each panel.

Figure 8. The Dn value results across the CRB at a synoptic timescale for each ESM and Impact. The
average Dn value and spatial standard deviation is also shown for each panel.
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Table 4. Multi-Model Average Dn values for each impact and timescale. The table includes Dn values
for the entire CRB, Upper CRB, and Lower CRB as well as the standard deviation between GCMs
in parenthesis.

Synoptic Monthly Seasonal Annual

CRB Heatwaves 0.60 (0.09) 0.75 (0.11) 1.10 (0.23) 2.01 (0.12)
Drought 0.50 (0.12) 0.61 (0.14) 0.86 (0.24) 1.42 (0.28)

Low Flows 0.21 (0.14) 0.22 (0.13) 0.26 (0.12) 0.32 (0.08)
Flooding 0.14 (0.15) 0.20 (0.17) 0.29 (0.20) 0.40 (0.25)

Upper CRB Heatwaves 0.60 (0.08) 0.75 (0.10) 1.11 (0.19) 2.02 (0.13)
Drought 0.44 (0.13) 0.55 (0.15) 0.79 (0.25) 1.35 (0.29)

Low Flows 0.14 (0.15) 0.15 (0.15) 0.19 (0.15) 0.27 (0.14)
Flooding 0.27 (0.20) 0.34 (0.22) 0.44 (0.24) 0.60 (0.29)

Lower CRB Heatwaves 0.60 (0.10) 0.75 (0.12) 1.09 (0.27) 2.00 (0.14)
Drought 0.55 (0.12) 0.66 (0.14) 0.92 (0.25) 1.49 (0.28)

Low Flows 0.27 (0.15) 0.28 (0.14) 0.31 (0.13) 0.36 (0.08)
Flooding 0.04 (0.12) 0.09 (0.15) 0.16 (0.18) 0.24 (0.23)

Figures 5–8 show the spatial detail of Dn value results across the CRB for each of the
Impacts, ESMs, and time scales. The Dn values show strong and spatially coherent increases
in both heatwaves and drought across the entire basin for each of the four time scales. As
temperature increases is occurring across the CRB, maximum temperature presumably
drives many of the spatially consistent increases for both drought and heatwaves [73].
MIROC-ESM, the ESM with the warmest projected temperature across the basin, also
showed the largest Impacts and Dn values of the six ESMs (2.18, Figure 5 and repeated in
Figures 6–8).

The Dn values of drought often exhibit more spatial variability than heatwaves. Of
the six ESMs, IPSL-CM5A-LR is the driest of the ESMs (1.88, Figure 5 but repeated in
Figures 6–8), generally exhibiting the highest Dn values and showing especially severe
drought in the Little Colorado River basin and in areas along the southern half of the CRB
and the Colorado headwaters (e.g., Figure 5, column 3). Of the indicators, minimum soil
moisture generally exhibited the largest Dn values in these areas as well, and was the most
spatially variable indicator contributing to drought (see Figure 3). Both of the GFDL ESMs
exhibited the lowest Dn values for drought, likely due to the more modest temperature
increases exhibited by these ESMs (1.19 and 1.28, Figure 5, Table 3).

In contrast, low flows and flooding exhibited both positive and negative values
throughout the CRB, although the entirety of the CRB, when averaged, exhibited positive
Dn values for both Impacts at all time scales (Figures 5–8). Flooding is the stronger indicator
at annual time scales in the entire CRB, but low flows have higher Dn values at the synoptic
scales, and both indicators have a similar magnitude of response at monthly and seasonal
scales (Table 4). Agreement across ESMs illustrates higher coherency (lower variances) in
low flows at longer time scales, while lower coherency (higher variance) is shown at longer
time scales for flooding. Figures 5–8 show the spatial variations in responses across ESMs,
with the driest ESM having the strongest responses for low flows (0.50, IPSL-CM5A-LR),
and the wettest ESM (0.80, GFDL-ESM-2G) having the strongest responses for flooding.

The high-elevation, snow-dominated upper CRB and the low-elevation, arid lower
CRB respond differently to climate change effects, and this dichotomy carries through the
Dn results for Impacts and time scales for the Upper and Lower CRB (Table 4). Heatwaves
show very little difference between Upper and Lower CRB (0.00 to 0.03) and generally have
very little spatial variance, as discussed above. Both drought (−0.11 to −0.14) and low
flows (−0.10 to −0.13) exhibited lower Dn values in the Upper CRB than in the Lower CRB.
Flooding exhibits the greatest difference between Upper and Lower basins (0.23 to 0.37),
with larger Dn values in the Upper CRB. Overall, the lowest Dn values are flooding in the
Lower CRB at synoptic time scales (0.04), while low flows is lowest in the Upper CRB at
synoptic time scales (0.14).
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To account for the regions of the CRB where cumulative concurrent changes are
occurring, we summed the instances when the Impacts or ESMs for HUC8 watersheds were
greater than the 95th percentile of mean Dn value (Figure 9). The watersheds with the
highest count of these instances are the Blue River basin (10), followed by Little Colorado
River Headwaters (7). After these two HUC8 watersheds, the East-Taylor, Uncompahgre,
San Miguel, and Big Chino-Williamson Valley basins each have six instances of critical
concurrent extreme Impacts. Gunnison, Dolores, Verde, Lower Salt, and all the other
watersheds identified in Figure 9 not already discussed have 4 concurrent extreme Impacts.
The Uncompahgre had the most instances of criticality for low flows (4), followed by
the adjacent San Miguel basin (3). San Miguel also had the greatest number of instances
of drought of any watershed (3). Across the Impacts heatwaves has the most instances
of criticality, with Blue River having the greatest (5), followed by the Little Colorado
River Headwaters, East-Taylor, and the Big Chino-Williamson Valley watersheds (3 for
each HUC8).

Figure 9. Critical basins in the Colorado River basin.

4. Discussion

The projected changes in temperature in the CRB over the historical to future time peri-
ods are drastic, but not unexpected. The average increase in temperature reflects estimates
of regional change over the same period [78]. While there is some uncertainty between
the ESMs in the magnitude of temperature increase, it is relatively small compared to the
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uncertainty in the ESM’s estimates of future precipitation, a result that is also found across
many studies of climate change [79]. Unlike estimated changes in temperature, estimated
changes in precipitation vary greatly between the ESMs, and there is no agreement on the
direction of change, with an almost equal average annual precipitation decrease modeled by
IPSL-CM5A-LR and an annual precipitation increase modeled by GFDL-ESM2G. However,
it should be noted that a wet ESM projection for precipitation may not lead to a less arid
environment in the CRB, as potential increases in evaporation due to air temperature
increases could skew the region towards greater aridity despite precipitation increases [80].

Despite the wide range of climate projections from a range of ESMs, the Dn values
show (with a few minor exceptions) a remarkably similar spatial pattern for the extremes
that include temperature indicators, such as heatwaves and drought. These Impacts also
have the strongest signal of extremes across the CRB [81]. Therefore, heatwaves and
drought will likely affect the CRB on a uniform basis and most strongly, with some pockets
of higher and lower responses related to antecedent moisture conditions owing to drier or
wetter soils in the case of droughts [82].

On the other hand, the spatial pattern for low flows and flooding is more variable
across the CRB, owing to their spatially varying drivers and indicators such as precipitation,
streamflow, and soil moisture. For both Impacts, soil moisture (minimums or maximums
for low flows or flooding, respectively) had the strongest response among the indicators,
illustrating the importance of soil moisture on these extremes. The effect of antecedent
soil moisture on flooding is well documented in studies of historical events, forecast-
ing, and climate change [83–85]. Although studies on low flows appear less common,
Castillo, et al. [86] suggest that antecedent soil moisture is an important control on runoff,
particularly during medium- and low-intensity storms, which are common in semi-arid
locations such as the Lower CRB. These Impacts were thus dependent upon the intensity
of those indicators in time within particular regions of the CRB, with notable differences
between the Upper and the Lower CRB, indicating the need to examine these Impacts
within specific regions or watersheds.

In general, the time scale of responses for concurrent extreme events was strongest
for Dn values at the annual time scale. Impacts such as heatwaves and drought more than
doubled from synoptic to annual time scales. This may be because temperature-driven
extremes, which often occur over longer periods of time have longer memories in climate
systems in terms of both reoccurrence and frequency [77]. Consequently, researchers
looking to examine these temperature-driven extremes, the annual time scale is perhaps
the most appropriate scale at which to examine these Impacts. Although results for low
flows and flooding were also strongest at the annual time scale, these Impacts had much
less change in their response across time scales across the CRB, suggesting that the time
scale of analysis for these may be aligned with research drivers and/or science questions
at hand. For example, a forecasting research method should examine flooding Impacts at
a synoptic time scale, since forecasting is most concerned with synoptic scale changes in
extremes. Additionally, important was the fact that flooding and low flows, also had the
greatest disagreement across ESMs at annual time scales.

The Upper CRB and Lower CRB responded differently to concurrent extreme events
for both spatial patterns and time scales. Within the Upper CRB, the coherency of low
flows did not shift much across time scales, while, for the Lower CRB, coherency decreased
(spatial variability increased). Flooding response was higher and low flows was lower in
the Upper CRB, a pattern that was reversed for the Lower CRB, indicating the importance
of changing floods for the Upper basin, while low flows are a larger issue for the Lower
CRB. This result is not unexpected owing to the moisture deficits regimes of the Lower
CRB, and the moisture excess regime of the Upper Colorado [48].

Our findings concur with the previous, limited research on extreme concurrent events,
although to our knowledge, studies have not been undertaken specifically for the CRB.
For example, univariate conditions for temperature and droughts showed no change,
but concurrent droughts and heatwaves were shown to be occurring across the US [22];
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a similar study showed that wind speeds were not increasing univariately across the
Midwest, hot, dry, and windy events were increasing [87]. Analysis of concurrent extreme
events was undertaken in a study by Hao, AghaKouchak and Phillips [26] where they used
13 CMIP5 models to examine concurrent extremes as scenarios, showing that concurrent
warm/dry and warm/wet global extreme events have increased gradually since the ~1960s
and substantially since the ~1990s, with warm/wet extreme events increasing in high
latitudes and tropical regions, and warm/dry extremes increasing in many areas, including
central Africa, eastern Australia, northern China, parts of Russia, and the Middle East [26].
Recent extremes in California were examined by Diffenbaugh, Swain and Touma [42], who
highlights the role of record high annual mean temperatures in combination with record
low annual mean precipitation in 2013, which led to increased evapotranspiration, more
intense drought, and intensifying wildfire occurrences. Likewise, studies that consider
changes such as forest disturbances under a warming climate are also looking at concurrent
extreme events [88], although studies may not necessarily self-identify as examples of
concurrent extreme event analysis.

Identifying critical regions within the CRB is important to determine the vulnerability
of specific watersheds to concurrent extreme events. The watersheds identified in this work
had instances of multiple ESMs and/or multiple Impacts projected to occur under the annual
interval, a time scale most noted for its implications for water management of the system
χ. Examining the entire CRB and being able to rank the most critical watersheds allows
us to focus more closely on those systems in terms of resources and research. The critical
basins identified in this work are indeed systems that have been well studied and/or
have important water resources located within them. For example, Livneh, et al. [89]
examined the Uncompahgre River basin in his investigation of forest disturbance and dust-
on-snow implications, a study on concurrent events, although not specifically identified
as such. The East-Taylor basin was selected as a ‘representative community watershed’
for intensive study by The Watershed Function project, funded by the USDOE Biological
and Environmental Research Subsurface Biogeochemistry Program [90]. Additionally,
the Salt/Verde complex has experienced damaging extreme events leading to effects on
humans and economy [91–93]. The Blue River watershed is an important system as it
includes the largest reservoir in the Upper CRB, and has been identified as threatened by
climate change such as increasing temperatures [94].

This paper examines future changes in concurrent extreme events for different time
scales in the CRB, focusing largely on a basic statistical metric to combine extremes. Our
study is limited in that is leaves out important work to understand which extreme indicators
to combine together to represent Impacts, and also more advanced statistics metrics, is
fundamental to testing the applications and results illustrated herein. The next phase of
this work includes a more advanced statistical method using copulas to characterize and
describe changing concurrent extremes across the CRB. Under the same project, we have
developed an economic model to consider the effects of modeled flooding in the CRB on
the US economy under future climate change.

5. Conclusions

We analyzed extreme concurrent Impacts of heatwaves, drought, low flows, and flood-
ing for the CRB under multiple future (2070–2099) climate change scenarios. Temperature
and precipitation are projected to change dramatically in the CRB: all ESMs predict tem-
perature increases, but different ESMs predict either significant increases or significant
decreases in precipitation. Despite this range in response, extreme concurrent events are
projected to increase across the CRB in all time scales and for all Impacts.

Temperature-driven concurrent extremes (heatwaves and drought) are strongest and
most spatially coherent across the CRB, while precipitation-driven concurrent extremes
(flooding and low flows) are less strong and more spatially variable across the CRB. Annual
time scales for analysis of concurrent extremes show the strongest responses for all variables.
Temperature-driven concurrent extreme Impacts shift the most across the time scales of
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analysis, with a more than doubling of response from synoptic to annual time scales.
Precipitation-driven concurrent extremes do not show as much of a change across time
scales, with a slight increase in response moving from synoptic, monthly, seasonal, to
annual time scales. However, there is generally greater agreement moving from the annual
to synoptic time scales; with the exception of low flows that has greater ESM coherence at
annual time scales.

The Upper and Lower CRB act similarly temperature-driven concurrent extremes,
again, but different in their response to changes in precipitation-driven concurrent extremes;
with flooding having the strongest response in the Upper CRB, and low flows having a
stronger response in the Lower CRB. We identified critical watersheds in the CRB that are
projected to experience compounded concurrent extreme events, watersheds that include
important water management structures in the Upper CRB, such as the Blue River basin,
and where vital water research resources are located, such as the Uncompahgre and the
East-Taylor basins. In the Lower CRB, the Salt/Verde basin provide important sources of
in-basin surface water flow in an otherwise arid environment, and water for agriculture and
hydropower at the Roosevelt Dam [95]. Our work verifies that concurrent extreme events
are likely to increase in frequency and magnitude under future climate change [7,96,97].

As the science of extreme events evolves, examining concurrent events will likely
be an important step in understanding the changing nature of extremes, capturing and
analyzing the largest and most damaging of these events, tying instances of extremes
in climate and land surface model simulations to observations, and linking the physical
responses to other indicators of instability, such as economy and society.
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Abstract: The thirty-eight-year record (1984–2021) of glacier mass balance measurement indicates
a significant glacier response to climate change in the North Cascades, Washington that has led to
declining glacier runoff in the Nooksack Basin. Glacier runoff in the Nooksack Basin is a major source
of streamflow during the summer low-flow season and mitigates both low flow and warm water
temperatures; this is particularly true during summer heat waves. Synchronous observations of
glacier ablation and stream discharge immediately below Sholes Glacier from 2013–2017, indepen-
dently identify daily discharge during the ablation season. The identified ablation rate is applied
to glaciers across the North Fork Nooksack watershed, providing daily glacier runoff discharge to
the North Fork Nooksack River. This is compared to observed daily discharge and temperature data
of the North Fork Nooksack River and the unglaciated South Fork Nooksack River from the USGS.
The ameliorating role of glacier runoff on discharge and water temperature is examined during 24
late summer heat wave events from 2010–2021. The primary response to these events is increased
discharge in the heavily glaciated North Fork, and increased stream temperature in the unglaciated
South Fork. During the 24 heat events, the discharge increased an average of +24% (±17%) in the
North Fork and decreased an average of 20% (±8%) in the South Fork. For water temperature the
mean increase was 0.7 ◦C (±0.4 ◦C) in the North Fork and 2.1 ◦C (±1.2 ◦C) in the South Fork. For
the North Fork glacier runoff production was equivalent to 34% of the total discharge during the
24 events. Ongoing climate change will likely cause further decreases in summer baseflow and
summer baseflow, along with an increase in water temperature potentially exceeding tolerance levels
of several Pacific salmonid species that would further stress this population.

Keywords: glacier ablation; North Cascade Range; climate change; salmon; glacier mass balance;
heat wave

1. Introduction

Climate observations in the Pacific Northwest (United States) show an accelerated
warming for the 1970–2012 time periods of approximately 0.2 ◦C per decade [1]. Analysis of
key components of the alpine North Cascade hydrologic system indicate significant changes
in glacier mass balance, terminus behavior, alpine snowpack, and alpine streamflow from
1950–2015 [2,3]. Glacier runoff is of particular importance to aquatic life late in the summer
when other water sources are at a minimum, raising minimum streamflow and reducing
maximum temperatures [4]. Contributions from groundwater, precipitation, and non-glacier
snowmelt reach a minimum after 1 July [4]. Whereas annual glacier runoff peaks during the
late summer and is highest in warm, dry summers and lowest during wet, cool summers [5].

Watersheds in the Pacific Northwest are comprised of pluvial streams that experience
peak flow in winter due to the winter storm events [6], nival streams that peak in the May
and June due to high snowmelt, and glacially fed streams which peak in July and August
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during peak glacier melt [5–8]. A comparison of hydrographs from glaciated and unglaciated
basins indicates a similar progression through June when runoff is dominated by non-glacier
snowmelt, followed by increasing divergence as glacier runoff minimizes declines in glaciated
watersheds until October when the hydrographs converge again [7,8]. The loss of a glacier
from a watershed reduces streamflow primarily during late summer minimum flow peri-
ods [5,8,9]. The volume of glacier runoff is the product of surface area and ablation rate [2].
Glacier volume loss contributes to changes in streamflow, leading to an increase in overall
streamflow if the rate of volume loss is sufficiently large [7], or a decline in streamflow if
the area of glacier cover declines sufficiently to offset any increase in ablation rate [2]. It is
evident that glaciers have a substantially larger role than the area they cover in August based
on the identifiable glacier fingerprint on hydrographs for a watershed where glacier cover
exceeds 1% of total watershed area [8]. The amount of summer runoff generated per unit area
in the Nooksack River was 0.036 m3s−1km−2, in the unglaciated South Fork Nooksack (SFN)
discharge was 0.045 m3s−1km−2, increasing to 0.312 m3s−1km−2 in the heavily glaciated
North Fork Nooksack (NFN). This represents nearly a seven-fold increase in runoff from
glacier versus non-glacier areas in the Nooksack Basin [2].

Climate change is altering late summer streamflow in the North Cascades. There
has been a coherent shift toward earlier runoff in snow fed basins across the western US,
including a 10–30-day earlier date of the center of mass for annual flow for each water
year [10]. A reduction in summer streamflow in six North Cascade basins from 1956–2006
has been observed [2]. In the North Cascades glacier volume loss has contributed up to
6% of the total August–September streamflow [11]. The loss in glacier area in the North
Cascades and British Columbia is greater than the increased rate of ablation, as a result
peak runoff in these same regions has been reached and the dominant ongoing change in
glacier runoff is a decline in summer streamflow due to glacier area reductions [2,7,12].

Thermal regimes in streams reflect the balance of numerous physical processes that
cause heating or cooling. Rates of warming in the Pacific Northwest’s rivers have been
highest during the summer, an increase of 0.17 ◦C per decade [4]. Air temperature was
the dominant factor in both long term and inter-annual variability for Pacific Northwest
rivers [4]. Discharge and air temperature appear additive and the seasonal variation in
stream warming rates is determined by the degree of concert between these two vari-
ables [4]. For example, the largest warming trend during the summer resulted from the
effects of the largest air temperature increases added to the largest river discharge decreases.
This is further supported by Luce et al. [13] who identified a pattern where water temper-
ature in cold streams had low sensitivity to air temperature, while warm streams had a
tendency for higher sensitivity to air temperature.

An important impact of changing glacier runoff in the Nooksack River is the stress of
warming stream temperatures on salmon populations [13,14]. Temperature thresholds for
changes in fish communities in the Fraser River region of British Columbia were noted as
12 ◦C and 19 ◦C [14]. The reduction of the glacial melt component augmenting summer
low flows is already resulting in more low-flow days in the North Cascade region as has
occurred other alpine regions with small glaciers [12,15]. In the Skykomish River from
1950–2013, there were 230 days during the summer melt season with discharge below 10%
of mean annual flow (14 m3s−1); of these, 99% (228 days) had occurred since 1985 [12]. Of
great concern for aquatic life is the occurrence of extended periods of low flow [14] that
have increased in frequency.

Climate change is a growing threat that has caused and will cause increases in win-
ter flow, earlier spring snowmelt, decreased summer baseflow, and increased maximum
summer water temperature in North Cascade watersheds [14]. Without mitigating steps,
climate change will increase the frequency of low flow conditions and water temperatures
that exceed the salmon tolerance levels. The impact is most acute during summer heat
waves that result in minimum flow conditions coincident with maximum stream temper-
atures. This research identifies the specific response in glaciers ablation, glacier runoff
and the resultant evolving water temperature threat during summer heat waves in the
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Nooksack River Basin. In this study, heat events are identified as any period of five or
more consecutive days where the average daily temperature observed at the Middle Fork
Nooksack SNOTEL site (MFN) exceeds 14 ◦C, and precipitation is less than 3 mm for the
entire period. A shorter heat event due to lagging responses would not yield a robust
measure of streamflow response. The temperature threshold is simply chosen based on
relation to locally identified heat waves. More than 3 mm of precipitation could influence
discharge and complicate understanding the contrasting response of SFN and NFN. This
is accomplished by monitoring ablation and runoff directly from Sholes Glacier and ex-
amining the simultaneous United States Geological Survey (USGS) discharge and stream
temperature record in the two of the three principal forks of the Nooksack River, having
varying amounts of glacier cover, for 24 summer heat waves. This includes the most intense
heat wave the region has experienced occurring at the end of June 2021. The exceptional
nature of the June 2021 heat wave is identified using summer air temperature reanalysis
using ERA5.

2. Study Area

The Nooksack River consists of the North, South, and Middle Fork which combine
near Deming to create the main stem Nooksack River. The Nooksack River empties into
Birch Bay near Bellingham, Washington. The Nooksack River Basin is a hybrid basin
with the various sub-basins dominated by pluvial, nival, and glacial runoff contributions,
resulting in differing seasonal timing of maximum discharge, reducing the magnitude and
duration of the summer minimum flow period. The USGS has gaging stations on each of
the three main forks and the main stem of the Nooksack Basin. There are no significant
reservoirs or flow diversions upstream of the gaging locations. From October-March is a
storage period characterized by precipitation exceeding discharge, whereas April-August is
a period of excess runoff release [6,16]. In the Nooksack River basin, glacier runoff supplied
10–20% of summer streamflow in the late 20th century [16]. The primary focus is on glacier
runoff for the North Fork Nooksack River with 6.1% glacier cover above the gaging station
(Figure 1). The Nooksack River system is home to five species of Pacific salmon including:
Chinook, Coho, Pink, Chum, and Sockeye, with Chinook listed as Threatened under the
Endangered Species Act (ESA) [14]. In the last two centuries the numbers of salmon that
return to spawn in the Nooksack watershed have greatly diminished due to substantial
loss of habitat primarily from human-caused alteration [14].

Thirty-seven years of mass balance work in the basin identify glacier ablation that
yields an average of 11 m3s−1–12 m3s−1 from July–September [3]. This is 10–20% of the
total summer discharge of the Nooksack River at Ferndale, Washington, depending on the
specific year. The glaciated area coverage in 2015 was 6.1% in North Fork Nooksack River
(NFN) basin, 0% in South Fork Nooksack River (SFN) basin, and 1.1% in the Nooksack
River basin at Ferndale (Figure 1). This difference in glacier covered area allows assessment
of the impact of glaciers on stream discharge and temperature.

The NFN is a 65-km long tributary, with salmon habitat extending to the base of
Nooksack Falls (Figure 1). From 1985 to 2017 mean July-September discharge is 25.9 m3s−1.
In 2015, the NFN watershed had a glacier area of 16.9 km2, with 12.3 km2 of that glacier
area located above the USGS gage site. On the NFN at Nooksack Falls there is a run of river
hydropower plant constructed in 1906 that is rated at a production of 3.5 MW. There is no
reservoir for this plant, just a low weir diverting water into a penstock above the falls. The
1.25 km long penstock returns diverted water to the river below the falls.

The SFN is a 57-km long tributary with salmon habitat extending 52 km upstream of
the junction of with the Nooksack River. From 1985 to 2017 mean July–September discharge
is 8.8 m3s−1. There are currently no glaciers in the watershed. There are no hydropower
plants in the basin.
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Figure 1. Map of Mount Baker glaciers and the Nooksack River Watershed. USGS gage locations for
the Nooksack River (NR), North Fork Nooksack River (NFN), and South Fork Nooksack River (SFN)
are indicated with blue dot. The Middle Fork Nooksack SNOTEL station (MFN) also indicated with
blue dot, on inset also. Yellow dots mark cities, Red line is the I−5 highway and the red star is the
Nooksack Indian Tribal Center.

From 1950–1980 the areal extent of glaciers in the NFN basin increased, with all
Mount Baker glaciers advancing [17,18]. Since 1980, all glaciers in the basin have retreated
significantly, with the retreat accelerating since 2000 [17,18]. On Mount Baker the average
glacier retreat was 430 m during 1979–2015 [19]. Mass balance measurements indicate the
cumulative loss as −17.3 m water equivalent (w.e.), equivalent to 20–30% of glacier volume
lost during 1984–2015 [3].

3. Methods and Data Sources

3.1. Glacier Mass Balance

The North Cascade Glacier Climate Project (NCGCP) has monitored the annual mass
balance during 1984–2021 on Lower Curtis and Rainbow Glacier in the Baker Lake water-
shed adjacent to the NFN and from 1990–2021 mass balance on Sholes Glacier in the NFN
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and Easton Glacier in the Baker Lake watershed [3,18,20]. Rainbow Glacier, which abuts
Sholes Glacier, and Easton Glacier 8 km south in the Baker Lake Watershed are two of the
42 reference glaciers for the World Glacier Monitoring Service (WGMS). Accumulation
and ablation measurements are completed yearly during the summer on each glacier at
a density of over 100 pointskm−2, and changes in glacier area are assessed every three
to five years. The program relies on consistent methods applied to the same network of
data points on the glacier’s each year [20], with an uncertainty of 0.15 ma−1 falling in
the typical range [21,22]. Direct measurement of ablation is accomplished using ablation
stakes, changes in snow depth from repeat probing measurements and from snowline
migration [19]. Ablation stakes are distributed across the entire elevation span of the
glacier [3]. Stake measurement error over the shorter periods of observation determined
here and in the Swiss Alps is 0.05 m [22,23], but less than 0.11 m to 0.14 m errors reported
for annual stake observations [21,24]. These data, including the specific glacier area, are
reported annually to the WGMS. Sholes Glacier had a mean elevation of 1840 m in 2015,
while the mean elevation of glaciers in the NFN above the USGS gaging station was 1820 m
in 2015 [19].

Overall Sholes Glacier has had a mass balance of −24.9 m w.e. during 1990–2021, this is
a substantial loss for a glacier that averages 40–60 m in thickness [19]. The highest rate of loss
occurred from 2013 to 2021 with a 13 m w.e. loss. The correlation in annual mass balance is
from 0.96–0.98 between Sholes Glacier and Lower Curtis, Rainbow and Easton for 1990–2017,
indicating the nearly identical response to annual climate conditions [3,20]. Glacier ablation
measurements occurring simultaneously with discharge measurements below the glacier
provide independent measures of glacier runoff. Here we report on observations during
specific time periods that overlap with heat wave periods at ablation stakes.

The degree day function (DDF) is the most common means of modelling ablation on
glaciers [25]. In this study both daily ablation and multi-day ablation observations are used
to identify how much glacier runoff is produced. All daily ablation measurements from
Easton, Sholes, and Rainbow Glacier completed during the summer have been used in
combination with daily mean temperatures at MFN to derive a degree day factor (DDFs
and DDFi) for daily snow and ice ablation respectively. In this study a specific heat event
DDF is derived for snow and ice ablation for days where the temperatures average is 13 ◦C
or above at MFN. This is 1 ◦C below the heat event threshold and expands the data set
while maintaining the high temperature selection. The DDF Equation (1) is based on the
average daily ablation (DA) at multiple sites between 1700 and 1900 m and the daily mean
temperature (DT) at MFN. Neither ablation nor temperature is adjusted to the specific stake
elevation. If there was a greater range in elevation of the ablation sites a lapse rate would be
appropriate. Daily ablation measurements have been completed on 48 separate days, yielding
178 location specific observations when temperatures have exceeded this threshold. Of the
24 heat events we have collected ablation data throughout 10 of them. These data are used to
generate a DDF model for ablation conditions during warm, dry periods.

DA = (DDFs × DT) or (DDFi × DT) (1)

3.2. USGS Stream Data

Both daily and monthly records of stream temperature and discharge are available
from USGS stations at: North Fork Nooksack River at Glacier, South Fork Nooksack River
at Saxon Bridge and Nooksack River at Ferndale and Cedarville [16,19]. Table 1 indicates
the gage location characteristics, data type, and period of record utilized. This allows
comparison of stream response to specific weather conditions and comparison between
basins. The stream temperature records from the USGS only exist since 2008; hence no
temporal trend analysis is performed.
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Table 1. USGS stations characteristics and data records utilized.

Basin USGS Station ID
Mean Elevation

m a.s.l.
Basin Area km2 Glacier Cover %

Discharge
Records

Stream Temperature
Records

Nooksack 12213100 800 2036 1.1 1970–2013 None
SF Nooksack 12210000 914 334 0 2008–2013 2008–2013
NF Nooksack 12205000 1311 272 6.1 1950–2013 2008–2013

3.3. SNOTEL Data

The United States Department of Agriculture-SNOTEL program has two stations
in the Nooksack Basin that provide daily air temperature and precipitation. The Middle
Fork Nooksack (MFN) station provides a consistent measure of hourly temperature and
precipitation at an elevation 300 m below the glacier and 9 km west of Sholes Glacier, while
Wells Creek is 600 m below the glacier and 6 km northwest.

3.4. ERA5 Data

There is no weather station above 1600 m in the area, below all but the lowest areas
of a few glaciers. To understand the temperatures at higher elevations required use of an
ERA5 dataset. Three-hourly air temperatures and geopotential height on pressure levels
were obtained for the ablation season May–September from May 1979 to July 2021 from
the 0.25 × 0.25◦ ERA5 dataset, the latest and highest resolution reanalysis produced by the
European Centre for Medium Range Weather Forecasting [26]. Both fields were interpolated
to −121.8◦ E, 48.8◦ N. The geopotential height, indicating the elevation of the pressure
levels, was then used as the vertical coordinate to linearly interpolate temperature to the
3000 m contour. Daily maximum temperatures were computed from these interpolated
data. The temperature lapse rates were defined as the slope coefficient in a regression of air
temperature against the corresponding geopotential height [27]. We summarized the daily
mean lapse rate as the arithmetic average of these (eight) slope coefficients computed on the
three-hourly data. We caution that our use of ERA5 reanalysis in place of direct observations
is a source of uncertainty, however given the lack of a long or consistent temperature record
at elevation, this provides the most comparable data record for evaluating the significance
of specific heat events. A good general agreement between station-based estimates of
temperature and ERA5 in Western U.S. region, overlapping our region of study has been
noted [28]. The highest seasonal correlation between stations and ERA5 for environmental
lapse rate was 0.7 during the summer [28]. The highest correlations for specific temperature
differences between stations and ERA was 0.9 for maximum temperatures [28]. This
indicates that maximum temperatures in summer are one of the most reliable products of
ERA5 in the Western US [28]. We also note that ERA5 is used here only to identify periods
of highest temperatures, hence any mean biases will not affect our conclusions.

4. Results

4.1. Glacier Ablaiton

A few specific examples are reviewed below. In 2014 measurements of ablation
daily during the 27 July–7 August period at a series of 12 stakes on the Sholes Glacier
indicated a mean ablation rate for snow of 0.055 m w.e.d−1. The ice melt was of the same
thickness as noted for snow, but because of the greater density the water equivalent loss is
higher, it indicated a mean ablation of 0.75 m w.e.d−1. Between 29 July and 4 August 2015
measurements of ablation at a series of 6 stakes on the Sholes Glacier indicated a mean
ablation rate for snow of 0.057 m w.e.d−1 and for ice of 0.078 m w.e.d−1. In 2016, ablation
measurement during the 12–21 August period at a series of 12 stakes on the Sholes Glacier
yielded average snow ablation of 0.048 m w.e.d−1 and ice ablation of 0.070 m w.e.d−1. In
2020, from 29 July to 5 August mean snow ablation at six stakes was 0.055 md−1 w.e.
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4.2. Ablation Modelling

From 1990 to 2018, daily ablation measurements on Sholes Glacier and daily mean
temperature reported at the Middle Fork Nooksack SNOTEL station, are utilized to generate
a DDF for ablation. This model is generated from 148 days of observations of both ablation
and air temperature (Figure 2). The focus on the observations for this study is specific
daily to weekly observations of ablation during heat waves at the network of stakes spread
across the glacier (Figure 3).

Figure 2. Daily mean air temperature at the Middle Fork Nooksack SNOTEL site and daily snow ab-
lation measured on Sholes Glacier. The DDFs are derived from the linear regression slope coefficients.

The correlation coefficient between observed ablation and daily mean temperature
is 0.82, for the entire ablation data set regardless of mean daily temperature. The overall
DDFs for snow is 0.0035 m w.e. ◦C−1d−1. For ice, the DDFi is 0.0053 m w.e. ◦C−1d−1 [20].

This is similar to the reported relationship for nearby South Cascade Glacier
during the 2003–2007 period; for snow was 0.0038 m w.e. ◦C−1d−1 and for ice was
0.0054 m w.e. ◦C−1d−1 [29]. Both ablation rates and DDF relationship in the limited ele-
vation range of North Cascades glaciers have been found to be consistent from glacier to
glacier [3,12,20,29]. The DDFs for Rainbow Glacier and Easton Glacier each with extensive
mass balance records are between 0.0033 and 0.0039 m w.e. ◦C−1d−1. Both the annual
balance and DDF relationships indicate it is reasonable to utilize Sholes Glacier ablation
as a proxy for ablation on other glaciers in the watershed [3,19]. Sholes Glacier’s mean
elevation is also within ~20 m of the mean elevation of glaciers in the watershed in 2015.

For heat waves we have derived a separate DDF relationship based only on the
48 days when the average temperature at the Middle Fork Nooksack SNOTEL station
exceeded 13 ◦C and we were measuring ablation. During heat waves, the DDF relationship
changes yielding higher values with DDFs snow of 0.0043 m w.e. ◦C−1d−1. For ice, the
DDFi is 0.0067 m w.e. ◦C−1d−1.This underscores the observation on other glaciers that
incorporating weather types into a degree day model improves performance [30]
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Figure 3. Limited retained snow cover on 8 August 2015 on Sholes Glacier above, with the discharge
and weather station in foreground. Below is the stake network on Sholes Glacier annotated on this
2014 image.

The daily air temperature is scaled by the DDF to provide a daily value for ablation
that can in turn be multiplied by the area of glacier ice and glacier snow to calculate the
volume of runoff from Sholes Glacier and from all NFN glaciers. The model is further
validated by comparison with periods of detailed ablation field observations (Table 2),
yielding a mean daily ablation rate within 10% of observed ablation rates. Overall glacier
runoff is the sum of the product of DDFs and snow-covered area, and DDFi and ice-covered
area (Table 3). For each of the periods in Table 2, field work was completed during or within
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three days of the heat event allowing mapping of the snow and ice area. The area of snow
and ice is a significant variable from year to year and through the melt season (Figure 3).

Table 2. Ablation rates determined from field measurements and degree day modeling on Sholes
Glacier during portions of the 2012–2020 melt seasons.

Dates
Snow Ablation
Rate-Measure

(m w.e.d−1)

Snow Ablation
Rate-Model
(m w.e.d−1)

Ice Ablation
Rate-Model
(m w.e.d−1)

Ice Ablation
Rate-Measure

(m w.e.d−1)

8−6−2013 to 8−13−2013 0.049 0.045 0.064 0.073
7−27−2014 to 8−7−2014 0.055 0.053 0.075 0.077
7−29−2015 to 8−4−2015 0.057 0.053 0.075 0.078
7−25−2016 to 7−30−2016 0.053 0.054 None None
8−12−2016 to 8−21−2016 0.048 0.050 0.070 0.067
7−31−2017 to 8−12−2017 0.056 0.060 0.084 0.078
8−5−2018 to 8−10−2018 0.061 0.051 0.072 None
8−4−2019 to 8−9−2019 0.051 0.051 0.072 0.073

7−29−2020 to 8−5−2020 0.055 0.053 0.075 None

Table 3. Impact of 24 heat events on North Fork Nooksack (NFN) and South Fork Nooksack discharge
and temperature, glacier ablation, glacier runoff, and overall glacier contribution to flow of NFN.

Start Date End Date
NFK Discharge

(%)
SFK Discharge

(%)
NFK Temp

(◦C)
SFK Temp

(◦C)

NFK Glacier
Ablation
(md−1)

Glacier
Discharge

(m3s−1)

NFK
Discharge

(m3s−1)

Glacier
Runoff

(%)

7/20/09 8/5/09 50% −34% 1 4.7 0.058 8.46 28.05 30%
7/25/10 8/1/10 7% −25% 0.3 1.0 0.048 7.00 41.7 17%
8/14/10 8/19/10 19% −14% 0.7 1.8 0.055 8.02 29.2 27%
9/5/11 9/14/11 30% −8% 0.4 1.2 0.055 8.02 24.2 33%
7/7/12 7/14/12 40% −29% 0.2 1.5 0.057 8.31 88.6 9%

8/11/12 8/19/12 18% −16% 0.3 1.5 0.063 9.18 35.3 26%
8/6/13 8/13/13 15% −14% 0.6 0.7 0.045 6.56 25.5 26%
7/7/14 7/18/14 13% −29% 2.1 4.7 0.054 7.87 45.9 17%

7/27/14 8/7/14 5% −44% 0.8 2.7 0.053 7.72 25.3 31%
6/25/15 7/21/15 53% −30% 0.7 3.9 0.051 7.26 18.8 39%
7/29/15 8/4/15 16% −16% 0.6 1.4 0.053 7.54 13 58%
7/25/16 7/30/16 10% −11% 0.8 1.6 0.054 7.69 24.2 32%
8/12/16 8/21/16 18% −20% 0.7 1.7 0.05 7.12 17.5 41%
7/31/17 8/12/17 13% −22% 0.5 0.06 8.26 21.8 38%
8/26/17 9/8/17 20% −11% 1 0 0.055 7.57 16.4 46%
7/12/18 7/18/18 4% −16% 0.6 1.4 0.053 7.30 29.3 25%
7/22/18 8/2/18 19% −18% 1 4 0.057 7.85 25.6 31%
8/5/18 8/10/18 11% −9% 0.6 2.1 0.059 8.12 22.4 36%

8/14/18 8/23/18 2% −19% 0.5 1 0.052 7.16 19.3 37%
8/4/19 8/9/19 10% −20% 0.6 1.2 0.051 7.02 17.3 41%

7/26/20 8/3/20 47% −21% 0.6 2.6 0.053 7.30 26.6 27%
8/15/20 8/20/20 69% −12% 1.5 4.2 0.059 8.13 17.2 47%
6/25/21 7/1/21 27% −21% 0.8 2 0.072 9.92 73.1 14%
7/26/21 8/6/21 22% −19% 0.3 1.2 0.055 7.58 26.3 34%

Avg. 24% −20% 0.7 2.0 0.055 7.66 27.08 32%

4.3. Nooksack River Discharge and Stream Temperature

The 24 heat events are noted in Table 3. The change in discharge is reported as
the percentage change in discharge from the start of the heat event to the maximum or
minimum discharge during the event at the USGS gages in both NFN and SFN. For the
NFN, discharge increased by more than 10% during 20 of the 24 periods, with a mean
increase of 23%. In the SFN, discharge decreased by more than 10% during 22 of the
24 periods (Figure 4).

The stream temperature change is the difference between the daily stream temperature
at the beginning of the period to the maximum daily temperature during the heat period
at the USGS gage in both the NFN and SFN. Stream temperature rose by more than 1 ◦C
during 5 of the 24 events in the NFN and during 21 of 23 events on SFN, temperature data
were missing for one event for SFN (Figure 5). The mean stream temperatures change was
0.7 ◦C in NFN and 2.0 ◦C in SFN, quantifying the ameliorating impact of glaciers on stream
temperature in NFN.
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Figure 4. Change in discharge in the North Fork Nooksack (NFK) and South Fork Nooksack (SFK)
during the 23 heat events. The percent of North Fork Nooksack discharge generated by glacier runoff
is also indicated.

 

Figure 5. Change in daily stream temperature in the North Fork Nooksack (NFK) and South Fork
Nooksack (SFK) during the 23 heat events from the beginning of the period to the maximum observed
daily temperature.

The product of the observed or modelled daily glacier ablation and glacier area yields
daily glacier discharge generated. Ablation measurements and modelling during these
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events indicate a mean daily ablation ranging from 0.045 md−1 w.e. to 0.063 md−1 w.e.,
with a mean rate of 0.055 md−1 w.e. The daily glacier discharge generated is then reported
as a percent of the total observed NFN discharge. The daily melt is not all conveyed
downstream to the gage the same day, hence the comparison to daily discharge is to glacier
runoff generated. This analysis indicates that glacier runoff during these heat events
generated discharge equivalent to more than 15% of total river flow during 22 of 23 events,
with a mean of 34% (Figure 4; Table 3). Two of the events generated over 50% of the river
discharge, both occurring during periods of particularly low flow.

4.4. ERA5 Temperature Data

The summer daily maximum temperature and daily lapse rate generated from ERA5
reanalysis for the 1979–2021 period yield a mean summer maximum temperature during
1979–2021 of 1.93 ◦C and a mean lapse rate of −5.73 ◦C km−1. Maximum temperatures of
greater than 10 ◦C approximates the 14 ◦C mean daily temperature threshold at the Middle
Fork SNOTEL station for heat waves identification. From 1979–2021 there have been 378 days
of the 6500 total days exceeding this threshold with an average lapse rate of −6.3 ◦C km−1.
During this period, 13 of the 20 highest maximum daily temperatures have been reported
since 2015, with six of them (30%) occurring in 2021 (Table 4). This included a 141 h period
from 25 June to 2 July 2021 where the temperature remained above 12 ◦C at 3000 m.

Table 4. The twenty highest maximum summer days with the highest maximum temperature at
3000 m from the ERA5 reconstruction for Mount Baker, Washington for May 1979 to July 2021. The
lapse rate (◦C km−1) is also reported.

Date
Lapse Rate
(◦C km−1)

Maximum Temperature (◦C)

6/30/2021 −5.99 18.88
6/29/2021 −7.89 18.66
6/28/2021 −7.47 17.55
7/1/2021 −4.12 15.86
9/5/1988 −6.71 15.53
7/13/2002 −6.54 15.33
6/27/2021 −6.53 15.33
9/4/1988 −7.87 14.95
7/22/2006 −7.10 14.86
9/3/1988 −7.70 14.49
9/7/2017 −6.14 14.39

6/28/2015 −7.67 14.36
9/5/2017 −7.53 14.33

6/26/2021 −5.87 14.29
9/6/2017 −7.13 14.12

8/10/2018 −6.66 14.04
9/23/2009 −6.54 13.81
6/27/2015 −6.50 13.70
5/29/1983 −8.29 13.64
7/31/2020 −7.24 13.36

5. Discussion

In a glaciated watershed, glaciers are important to maintaining sufficient discharge and
stream temperature that are critical for salmon populations. This is illustrated in the NFN
where the 24 heat events have led to an increased discharge and a stream temperature rise
of less than 1 ◦C. The increased discharge in NFN during heat waves while SFN discharge
decreased demonstrates the impact of glaciers on the NFN reversing the discharge trend
during heat events. This is the result of increased glacier ablation during the heat waves.
The continued loss of glacier area will lead to a decline in this mitigating effect of glaciers
on NFN stream conditions. How will this impact fish species?
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Some cold-water trout and salmon species are already constrained by warm water
temperatures and additional warming will result in net habitat loss [4,14,26]. In the Fraser
River and Thompson River, British Columbia fish community thresholds were observed for
mean weekly average temperatures of about 12 ◦C and again above 19 ◦C [26]. Below 12 ◦C,
the community were characterized by bull trout and some cold-water species, between
12 ◦C and 19 ◦C by salmonids and sculpins, and above 19 ◦C by minnows and some
cold-water salmonids [31]. The temperature threshold above which mortality increases
markedly for Pacific salmon in the region is 15 ◦C [32,33]. These thresholds indicated that
small temperature changes can be expected to drive substantial changes in fish communities.
During the 24 heat events noted in the North Fork only two events exceeded 12 ◦C, while
in the South Fork 14 of the events exceeded 19 ◦C, which is well above the threshold where
mortality increases [32,33]. This suggests that both rivers are near a threshold that could
alter the fish community composition.

In Pacific Northwest rivers, air temperature drives 82–94% of the long-term stream
temperature trends [4,34]. Summer discharge and air temperature both account for ap-
proximately half of the inter-annual variation in stream temperatures [34,35]. In spring,
no temperature increase was observed and the rate of warming was highest during the
summer at 0.17–0.22 ◦C increase in temperature per decade [4].

Nooksack River salmon begin and end their life cycle in the Nooksack River. The
Washington Department of Fish and Wildlife [36] SalmonScape project maps the distribution
of salmon in the Nooksack River basin. Each population is mapped separately for spawning,
rearing, and presence. Chinook, Coho, and Chum salmon in the North Fork can migrate up
to the base of Nooksack Falls 40 km upstream of the NFN-Nooksack River Junction. The SFN
has the most extensive network of salmon streams with the presence of salmon extending
52 km upstream of the junction of SFN with the Nooksack River (Figure 6).

Figure 6. From the WDFW SalmonScape, this map indicates the extent of Chinook salmon in the
Nooksack (N) and Baker River (BR) watersheds. Including the Nooksack sub-basins; MF = Middle
Fork, NF = North Fork, SF = South Fork. Red = documented spawning, Blue = Documented presence,
Green = Documented rearing, Yellow = Modelled presence, Purple = Blocked.

Chinook salmon surveys in the Nooksack River are conducted annually by the Wash-
ington Department of Fish and Wildlife. In the NFN Chinook spawn mainly in a 30 km
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stretch from Mosquito Lake Road to Wells Creek at the base of Nooksack Falls [36]. In
the NFN, the number of returning Chinook is divided into natural and hatchery spawned
salmon; the WDFW [37] report that 88% of recent spawning Chinook salmon originate
from the Kendall Creek Hatchery at the junction of Kendall Creek and the NFN. From 2000
to 2011 the number of Chinook released in the Middle Fork and NFN watershed averaged
1,036,000 sub-yearling fish [37]. Though overall populations and escapements increased
as a result, natural-origin spawning Chinooks have not increased from 1995 to 2016 and
remained threatened in the NFN River [37].

For salmon, both their riverine and marine environments are experiencing physical
changes due to climate change, compounding human alteration of the aquatic habitat. This
is a consistent stress throughout their life cycle [14,32,33]. In late summer of 2021, the SFN
experienced a ~2500 Chinook die off from warm water lowering resistance to columnaris
disease [38]. There was no die off in the NFN potentially indicative of the ameliorating
impact of glaciers on stressful stream conditions.

6. Conclusions

The increasing frequency and intensity of Pacific Northwest heat waves underscores
the need to quantify the impact on all alpine watersheds; in this case the Nooksack Basin
a glaciated alpine watershed. Alpine glaciers in the NFN drive an increase in discharge
during heat events averaging 24%, while limiting water temperature rise to a mean of 0.7 C.
This contrasts with the unglaciated SFN where during the same heat events discharge
declined 20% and temperatures increased 2.1 C. During the heat events increased ablation
drove an increase in glacier runoff and the importance of glacier runoff to overall river
discharge. Heat events are of importance, because the low discharge and high temperatures
that characterize heat events are stressful for salmon populations.

Mass balance losses in the basin are driving glacier area decline [3], that has already
led to a declining glacier runoff [3,8,19]. The result of continued glacier area loss will be a
reduction in the enhanced discharge, leading to reduced flow during warm-dry low flow
events. Ongoing loss of glacier area will also lead to a greater increase in overall stream
temperature in NFN. The summer of 2021 brought the highest observed air temperatures
to the region further highlighting the importance of this issue [39]. The ERA5 maximum
temperatures identified that the three hottest summer days of the 1979–2021 period were
28, 29 June, and 30 June 2021.

This study is the first detailed quantification of glacier ablation, glacier runoff, and
consequent alpine river discharge during heat waves in this region. The study highlights
the importance of completing additional ablation measurements of bare ice surfaces and
consistent repeat mapping of the distribution of snow-covered area on these glaciers using
remote sensing products to effectively apply melt models.
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Abstract: Climate change can affect different drivers of flooding in low-lying coastal areas of the
world, challenging the design and planning of communities and infrastructure. The concurrent
occurrence of multiple flood drivers such as high river flows and extreme sea levels can aggravate
such impacts and result in catastrophic damages. In this study, the individual and compound
effects of riverine and coastal flooding are investigated at Stephenville Crossing located in the
coastal-estuarine region of Newfoundland and Labrador (NL), Canada. The impacts of climate
change on flood extents and depths and the uncertainties associated with temporal patterns of
storms, intensity–duration–frequency (IDF) projections, spatial resolution, and emission scenarios
are assessed. A hydrologic model and a 2D hydraulic model are set up and calibrated to simulate the
flood inundation for the historical (1976–2005) as well as the near future (2041–2070) and far future
(2071–2100) periods under Representative Concentration Pathways (RCPs) 4.5 and 8.5. Future storm
events are generated based on projected IDF curves from convection-permitting Weather Research
and Forecasting (WRF) climate model simulations, using SCS, Huff, and alternating block design
storm methods. The results are compared with simulations based on projected IDF curves derived
from statistically downscaled Global Climate Models (GCMs). Both drivers of flooding are projected
to intensify in the future, resulting in higher risks of flooding in the study area. Compound riverine
and coastal flooding results in more severe inundation, affecting the communities on the coastline
and the estuary area. Results show that the uncertainties associated with storm hyetographs are
considerable, which indicate the importance of accurate representation of storm patterns. Further,
simulations based on projected WRF-IDF curves show higher risks of flooding compared to the ones
associated with GCM-IDFs.

Keywords: climate change; uncertainty; riverine flooding; coastal flooding; compound flooding;
projected IDF curves; design storm; Stephenville Crossing

1. Introduction

Flooding accounts for 43% of natural disasters, affecting around 2.3 billion people
worldwide between 1995 and 2015 [1]. With $673 million estimated annual costs, floods
comprise the highest proportion (75%) of extreme weather-related expenses in Canada [2].
In Newfoundland and Labrador (NL), over 600 flood events were recorded during 1950–
2011. These events were associated with intense rainfall (72%), coastal flooding (17%),
ice jams, and snowmelt (7%), as well as other factors [3]. NL’s estuaries and coastal
lands are commonly considered as flood-prone areas affected by both inland (riverine and
pluvial flooding) and coastal extreme water levels associated with high tides, storm surges,
and waves.
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It is widely recognized that climate change can affect the drivers of flood events,
including heavy rainfall [4–7], river discharge [8–10], and coastal water levels [11–14].
These flood risks are expected to increase across Canada because of more intense rainfall
events, warmer temperatures that can cause sudden snowmelt, and sea-level rise, among
others [15]. Nonetheless, there are considerable uncertainties associated with GCMs,
future emission scenarios, downscaling, and hydrologic/hydraulic modeling [16–20] that
can challenge the design and planning of communities and infrastructure systems in a
changing climate.

Traditionally, research on flood impacts has been mostly focused on individual flood
types, including pluvial [21–23], riverine [24,25], and coastal flooding [14,26,27]. However,
compound flooding, caused by multiple flood drivers such as the concurrent occurrence of
river overflows and extreme coastal water levels, can lead to more severe impacts, especially
in densely populated low-elevation coastal zones [28,29]. In recent years, several studies
have been conducted to assess compound flood effects at regional [30–34], continental [35],
and global scales [36]. Statistical and process-based models are developed and applied to
assess the characteristics and impacts of such events, including the simultaneous occurrence
of river overflows and extreme water levels globally [37], and in different regions around
the world including Canada [38], Australia [39], the U.S. [40–43], and Asia [44], among
others. Kumbier et al. (2018) [39] investigated compound flood effects on an Australian
estuarine environment by considering the storm surge and extreme river discharge using
the Delft3D hydrodynamic model. Pasquier et al. (2019) [45] integrated the 1D-2D HEC-
RAS model to assess the sensitivity of different drivers of flooding in the UK coastal regions,
and found that storm surge is likely the main driver.

A few studies have investigated the impacts of climate change on compound coastal
and fluvial flooding [46–49]. However, there are major gaps in understanding the combined
effects of sea-level rise and future changes in the pattern and intensity of precipitation
associated with climate change. Further, comprehensive assessments of the contribution of
GCMs, design storm methods, hydrodynamic models, and projected intensity–duration–
frequency (IDF) curves to the overall uncertainties are lacking. Besides, in an engineering
context, projected IDF curves provide essential information on short-duration rainfall
events. Statistically downscaled GCMs, however, may not accurately represent such
events [50]. To address these research gaps, we assess the individual and compound
effects of riverine and coastal flooding by setting up and calibrating a hydrologic and
a two-dimensional hydrodynamic model for Stephenville Crossing located on the west
coast of Newfoundland. The uncertainties associated with GCMs, design storm methods,
projected IDF curves, and hydrodynamic modeling (i.e., terrain data, model structure, and
roughness coefficient) are analyzed. Further, we investigate the flood characteristics based
on projected IDF curves generated using downscaled GCMs as well as high-resolution,
convection-permitting, WRF simulations.

In the remainder of this paper, the study area and data are presented in Section 2.
Section 3 discusses the hydrologic and hydraulic model setup, calibration, and validation.
The sensitivity analysis, design storm methods, and projected IDF curves are further
discussed in this section. The results are provided in Section 4, followed by conclusions in
Section 5.

2. Study Area and Data

Stephenville Crossing is located on the western coast of Newfoundland Island at
48◦31′ N latitude and 58◦27′ W longitude (Figure 1). It has a total area of 80.8 km2, with
most of the population (~1700 people) living close to the coastline and along Harry’s
river [51]. There are many properties and commercial premises along the coastline and
the mouth of the river. The average monthly temperature varies between around −7 ◦C
and 16 ◦C, and the annual average relative humidity is 81%. The lowest and highest
temperatures occur in February (−10 ◦C) and August (20 ◦C), respectively. The annual
precipitation rate is 1340 mm based on the 1981 to 2020 normal climate at Stephenville
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Airport’s station. Precipitation in March, April, and May is lower compared to the other
months. The region has experienced a slight increasing trend in both temperature and
precipitation from the period of 1961–1990 to 1981–2010. During the winter, winds are
stronger than in other seasons, and the maximum wind gust can reach approximately
140 km/h. Stephenville has been frequently affected by riverine and coastal flooding based
on historical flood records [52]. The frequency of 50-year water level events is projected to
double in Newfoundland due to around 10 cm of sea-level rise [53].

Figure 1. (a) Study area including the Town of Stephenville Crossing, (b) land cover map, and (c)
location of available climate (green), hydrometric (red), and tide (blue) gauges.

Harry’s river discharges into St. George’s River from the north, which then flows
westward into Rothesay Bay through a narrow channel called Main Gut (Figure 1). The
drainage area corresponding to the upstream gauge (Harry’s River below Highway Bridge)
is 640 km2 [52]. There are two bridges across the Main Gut to link the town of Stephenville
Crossing with other communities. The study area is mainly covered by forest, followed by
shrubland and wetland across the river system. The land cover map is classified into eight
types (Figure 1) and the corresponding roughness values are provided in Table S1 [54]. Only
a small part of the domain between the bay and the estuary of Harry’s River is developed.

Flooding has repeatedly impacted this area in the past. In late December 1951, coastal
flooding affected the area, resulting in the displacement of ~600 people. The severe storm
caused high-speed winds of 177 km per hour that swept through the railway station and
destroyed 15 surrounding electrical poles. In addition to seawater overtopping the coastal
area of Stephenville Crossing, heavy rainfall resulted in Harry’s River overflow, which
inundated the streets. Many fishermen lost their boats and tools, and some stores and
house interiors were damaged. In December 1977, another coastal flood event forced
families to evacuate and caused house damages. High winds and tides caused flooding
and washed out the roads and streets [3]. Other examples include flood events in March
2003 and November 2014 generated by high river flows and gusty winds of up to 110 km
per hour respectively, which resulted in bridge damage, inundated pavements, highway
closure, and basement flooding [3].

2.1. Data

We used three Digital Elevation Models (DEMs), including Shuttle Radar Topography
Mission (SRTM), Canadian Digital Elevation Model (CDEM), and TanDEM-X. CDEM is
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a pan-Canadian product provided by Natural Resources Canada. In areas south of 68◦
N latitude, the spatial resolution is 0.75 arc-seconds (~20 m). The measured altimetric
accuracy of CDEM in the study area is within a range of 5–10 m. SRTM, produced by the
National Aeronautics and Space Administration (NASA), provides global elevation data at
three arc-seconds (~90 m) and one arc-second (30 m) resolution. We use the 30 m SRTM
data covering Stephenville Crossing, which has an absolute vertical accuracy of below
16 m and absolute horizontal accuracy of less than 20 m. The German Aerospace Center’s
TanDEM-X is a synthetic aperture radar mission that provides global elevation data at
three arc-seconds spatial resolution. The absolute horizontal and vertical accuracies are
below 10 m within a 90% confidence interval. We interpolated 46 detailed cross-sections,
surveyed along Harry’s River in 2010, to generate the river bathymetry. The bathymetry
was then fused into the DEMs for hydraulic simulations.

Sub-daily ground-based precipitation records at Stephenville Airport, available for
1953–present, and streamflow data from the hydrometric station located at Harry’s River
Below Highway Bridge, available for 1968–present, were used for hydrologic and hydraulic
model simulations. The climate station data at Stephenville Airport were also used by
ECCC to generate the historical IDF curves. There are no gauges within the simulation
area for calibration, except the one used as the upstream boundary. Therefore, we used
water level measurements along the river channel available for 25 September 2010 and 3
November 2010 [52] to calibrate and validate the hydraulic model.

Tides are the cyclic rise and fall of seawater caused by the gravitational attraction
between the moon, the sun, and the Earth. Oceans are expected to experience two high
tides and low tides every tidal period, moving westwards. However, continents block the
water movement, causing different tidal patterns at each location. Two major tide patterns
are observed in the Canadian shoreline: semidiurnal tides along the eastern coastline
and mixed-semidiurnal tides along the western coastline. A semi-diurnal tidal cycle
represents two high tides and two low tides each day, while a mixed-semi-diurnal tidal
cycle shows different tide sizes. Daily tide prediction data is available at the tide station,
Port Harmon, which is the nearest station located between the towns of Stephenville and
Stephenville Crossing.

2.1.1. Climate Projections

We considered nine GCMs that participated in the Coupled Model Intercomparison
Project Phase 5 (CMIP5), following Perez et al. (2014) [55], who evaluated the perfor-
mance of GCMs over the northwestern Atlantic region, including Stephenville Crossing.
They applied the scatter index and relative entropy to assess the skill of GCM datasets
to reproduce synoptic situations, historical seasonal variability, and the consistency of
future projections. The selected GCMs include: ACCESS1.0, HadGEM2-CC, HadGEM2-ES,
GFDL-CM3, MPI-ESM-LR, HadGEM-AO, CSIRO-Mk3.6.0, GFDL-ESM2G, and CanESM-2
(Table S2). Statistically downscaled daily minimum and maximum temperatures from 1950
to 2100 under Representative Concentration Pathways (RCPs) 4.5 and 8.5 are provided by
the Pacific Climate Impacts Consortium. The downscaled climate data is created based on
the Bias Correction/Constructed Analogues with Quantile mapping reordering version 2
(BCCAQ-V2) and is available at 300 arc-seconds (roughly 10 km).

2.1.2. Intensity–Duration–Frequency (IDF) Curves

IDF curves are essential for the design and maintenance of sewers, stormwater ponds,
and catchment basins, among other various types of engineering infrastructures. We used
the 2007 IDF curve corresponding to the weather station at Stephenville Airport, which is
generated based on in situ data from 1967 to 2007. The 24 h extreme rainfall events with
return periods of 25 and 100 years for the historical period (1976–2005) and two future
periods of 2041–2070 (2050s) and 2071–2100 (2080s) are considered in this study.
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IDF curves generated by Environment and Climate Change Canada are based on
Bernard’s equation:

Bernard′s formula: i(t) =
a
tb (1)

where i (mm/h) is the rainfall intensity at time t (hour) and a, b are parameters for each
return period.

2.1.3. Projected IDF Curves

Traditionally, IDF curves are generated based on historical rainfall observations, as-
suming that the historical variations can represent the future climate system. However,
this stationarity assumption might not be valid because the future rainfall patterns are
projected to change [56,57]. It is important to consider the impacts of climate change on IDF
curves for future infrastructure design and planning, and management of water resources.

Statistically downscaled General Circulation Models (GCMs) have been used to assess
the projected impacts of climate change on hydrological processes. However, GCM resolu-
tion is too coarse to represent small-scale physical processes, and the short-duration rainfall
extremes may not be adequately represented in the downscaled data. In this study, we
compare the flood characteristics based on IDFs generated from statistically downscaled
GCMs [58] and a high-resolution climate model to assess the corresponding uncertain-
ties. In the first approach, the observed sub-daily maximum rainfall data (from 5 min to
24 h) and GCM simulated daily maximum rainfall from historical and future GCMs are
extracted. Generalized Extreme Value distribution (GEV) is fitted to the sub-daily/daily
maxima using the L-moments method. Next, an equidistant quantile-matching approach
is applied to downscale precipitation data by establishing a direct statistical relationship
between daily maximum precipitation simulated by GCM (at the reference period) and
sub-daily historical observations. Similarly, the relationship between maximum rainfall
for historical and future GCM simulations is established. The relative change in simulated
precipitation between GCM baseline and future scenarios is calculated and applied on the
established relationship between observations and historical GCM simulations to generate
the projected IDF curves [58].

The second approach to generate projected IDF curves is based on the Weather Re-
search and Forecasting (WRF) system, which is a numerical weather prediction model
designed to simulate meteorological processes, and provide weather forecasting and cli-
mate change analyses based on actual atmospheric or idealized conditions, across scales
from tens of meters to thousands of kilometers. WRF model simulations used here were
conducted by Rasmussen (2017) [59] to assess the impacts of climate change on convec-
tive population and thermodynamic environments over the North American domain at
a relatively high resolution of 4 km. The adopted WRF model explicitly characterizes
convective precipitation events. WRF CTRL (control) represents the historical control
run, forced with ERA-Interim boundary conditions, and PGW represents future climate
simulations based on a Pseudo-Global Warming approach, which uses boundary condi-
tions that superimpose coarse-resolution differences between present and GCM-projected
warming conditions overtop ERA-Interim data [60]. Several studies have assessed the
WRF model’s convective and non-convective rainfall simulations, and the results show
that it can adequately represent the features of rainfall events [61–63]. In the context of
IDF curves specifically, Cannon et al. (2019) [64] used sub-daily precipitation outputs from
the WRF CTRL and PGW simulations to investigate future changes in IDF curves over
North America. A novel parsimonious Generalized Extreme Value Simple Scaling (GEVSS)
model was fitted to annual maxima from 1 to 24 h duration, and future changes in the
resulting IDF curve parameters were estimated [64]. The study showed an increase in the
scaling exponent of the GEVSS parameter, indicating that the return levels corresponding
to the short-duration rainfall events can increase to a larger extent compared to the ones
associated with longer duration events (e.g., 24 h). Further, this approach is not bound by
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the stationarity assumption made by Simonovic et al. (2016) [58] above—the estimated
scaling factors can change for events with different durations.

Cannon et al. (2019) [64] expressed projected relative changes in sub-daily precipita-
tion extremes from the WRF simulations for different return levels based on temperature
changes, and assessed the adherence to the theoretical Clausius–Clapeyron (CC) relation.
Under theoretical CC relation, the atmosphere can “hold” approximately 7% more moisture
for every 1 K warming of air temperature [65]. The temperature scaling rate, defined as
the percent change of precipitation rate per degrees Celsius, is determined for different
return periods and rainfall durations. In this study, we used the scaling rates determined
by Cannon et al. (2019) [64] to perturb the observed IDF curve at Stephenville Crossing
based on projected temperature changes from the GCMs. We first found the average
temperature of the region over the historical and future periods based on downscaled
GCMs. The scaling factor per degree Celsius was then applied to the temperature changes
between future and historical periods to estimate the projected increases in rainfall events
at different durations. Then, the final change rate of precipitation in the future period was
used to update historical IDF curves. Depending on the design storm method, the scaling
rate is either directly applied to the total rainfall amount calculated from IDF curves or
rainfall intensity obtained from IDF equations, with a constant rate of change at each time
step of the storm event.

2.1.4. Coastal Components

We assessed the individual and compounding effects of coastal and riverine flooding
considering tidal effects as well as changes in storm surge, waves, and sea-level rise. Glacier
melt and thermal expansion of seawater due to climate change are expected to increase
the global sea level. Besides, the population and economic growth in the low-lying coastal
areas make the cities and communities more vulnerable to coastal flooding. Batterson
et al. (2010) [66] studied the historical and future sea-level changes in Newfoundland
and Labrador considering the effects of land subsidence and global sea-level rise. They
showed that sea level is projected to increase by 30 and 80 cm by 2050 and 2099, respec-
tively [66]. The projected local ground subsidence rate is 2 mm/year for the main area of
Newfoundland Island [67]. Probability density functions of water levels due to astronomic
tides and atmospheric forcing are combined to generate a new frequency distribution of
water levels corresponding to tide, surge, and wave [52]. High tide levels obtained from
tide predictions of Port Harbor station are used to generate the tidal probability density
function. Although Port Harmon is the nearest tide station, it does not have sufficient
observation data for surge analysis, therefore the observed water levels obtained from
the Lark Harbor gauge were used to conduct a surge frequency analysis. Surge is cal-
culated based on the difference between water level observation and tide prediction at
each time. Wave analysis involves the frequency analysis of wind data and wind hindcast
(Table 1). We considered the worst-case scenario by applying a triangular shape hydro-
graph on tide prediction graphs, assuming that the peaks of surge and tide occur at the
same time, consistent with Karim and Mimura (2008) [68]. Figure 2 shows the downstream
boundary condition estimated by imposing the triangular shape of super-elevation and
constant future SLR on tide predictions.

Table 1. The components considered in coastal flood assessments under climate change.

Coastal Components Scenarios

Storm surge and wave (m)
25-year event 100-year event

5.25 6.34

Sea-level rise (m)
2050s period 2080s period

0.3 0.8
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Figure 2. Coastal boundary condition with the tide, storm surge, wave, and future sea-level rise
(SLR) corresponding to a 25-year event by the 2050s.

2.1.5. Satellite Imagery

The Sentinel-1 mission by the European Space Agency (ESA) provides enhanced
revisit frequency and coverage with interferometry capability. The satellite covers the
entire world’s land at different frequencies, i.e., bi-weekly for sea and ice zones, and
daily frequency for European coastal regions. The first and second Sentinel satellites were
launched in 2014 and 2016 respectively, and the corresponding imagery is used to evaluate
the flood event on 14 January 2018.

Long et al. (2014) [69] proposed a change detection and thresholding approach to
extract the flood extents using Sentinel-1 images. The method identifies the brightness
changes between the flood event image and the imagery corresponding to the normal
conditions (i.e., the reference image; Table S3). River volume generally varies between
seasons, and therefore the reference images are selected for the same season of the flood
event (from 8 January 2017 to 20 January 2019). The HH polarization of the transmitter-
receiver is preferred to other polarizations [70]. A reference image is generated by taking
the median of all available selected images. A speckle filter is applied for both reference and
flood images to remove speckle and improve the smoothness of the image with reduced
resolution and blurred features. Speckle noise is a granular interference in synthetic
aperture radar (SAR) images due to random interference [71]. Senthilnath et al. (2013) [72]
evaluated different speckle filters (Lee filter, Frost filter, and Gamma MAP filter) in flood
extent extraction from the Sentinel-1 C band image. Accordingly, the Gamma MAP filter,
based on Bayesian analysis and Gamma distribution, is considered in this study as it filters
more speckles and provides relatively better performance. Google Earth Code Editor is
used for image collection, reference image calculation, and image generation. In addition,
speckle removal is completed through multiple types of filters in the Sentinel Application
Platform toolbox (SNAP). The difference image is filtered based on a threshold in ArcGIS
to identify the actual flooded area.

3. Methodology

This study characterizes the riverine and coastal flooding in Stephenville Crossing
using the Hydrologic Engineering Center-Hydrologic Modeling System (HEC-HMS) hy-
drologic model and Hydrologic Engineering Center-River Analysis System (HEC-RAS)
hydraulic model. Both models, developed by the U.S. Army Corps of Engineers (USACE),
have been widely applied for flood hazard modeling across the world [73–75], including
the study of Hurricane Ike 2008 [41] and Typhoon Maemi 2008 [44]. The hydraulic model
is driven by the observed and simulated streamflow at the upstream and (coastal) water
levels downstream. The calibrated hydrological model [52] was applied to simulate the
hydrological response of the river system to short-duration extreme rainfall events. Further,
the two-dimensional hydraulic model was calibrated and validated against water level
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observations and compared with simulation results of a calibrated one-dimensional model.
A sensitivity analysis of the hydraulic model was conducted considering different terrain
data, simulation cell size, and roughness coefficients.

3.1. Design Storms

We considered three methods to generate design storms, i.e., Soil Conservation Service
(SCS), Huff, and Alternative Block Method (ABM), to assess the corresponding uncertainties
in flood inundation modeling [76]. The required input parameters and procedures to
generate hyetographs, the corresponding features and limitations, and their effects on
model simulations are discussed.

3.1.1. Method of SCS

The method of Soil Conservation Service (SCS) is widely used in engineering designs
of dams and urban facilities, among others, which uses standardized rainfall intensities
arranged to maximize the peak runoff at a given storm depth. The SCS rainfall distribution
was developed in 1986 and applied for a single storm event with 6 or 24 h duration across
the U.S. Four different distribution types were generated based on the data in multiple
areas. Considering that Stephenville Crossing is on the Atlantic coast, the SCS curve Type
III is applied to generate the design storm. The curves are applied for storm events for up
to 24 h. The required information includes storm duration (24 h), design return periods (25
and 100 years), distribution type (Type III is used for the Atlantic coast), and total rainfall
amount (using the IDF curves). The hyetograph was generated by first estimating the total
precipitation amount for a given duration and return period. The SCS curve was then
applied to generate the cumulative precipitation, followed by determining the increments
between each time step and plotting the precipitation amount vs. time.

3.1.2. Method of Huff

The Huff method is similar to the SCS method, as they both use a standardized
distribution type to describe rainfall patterns. However, the method of Huff provides more
flexibility because there is no restriction in the duration of design storms. The Huff method
was developed based on approximately 300 storms with durations ranging from 3 to 48 h.
Four types of distribution curves describe the relationship between the cumulative fraction
of precipitation and time, with the timing of peak intensity varying between each type. The
distribution is selected based on the duration of the design storm with Type III used for 12
to 24 h storm duration. The drawback of the Huff method is that the generated hyetograph
may lose the rainfall features such as extreme peak intensity because it flattens the peak of
precipitation during an event.

3.1.3. Alternating Block Method (ABM)

The precipitation pattern produced by the Alternating Block Method maximizes the
rainfall depth for different storm durations using the IDF curve functions. The duration of
the storm event and the time step of hyetographs are first selected. Methods of Huff and
SCS have variations in the time of peak rainfall by choosing different distribution curves,
however, the ABM method always generates the peak rainfall in the middle of the storm
event. The required information includes storm duration (24 h), design return periods (25
and 100 years), time interval (1 h increment for the 24 h event), and equation expression
of IDF curves. To generate the design storm patterns based on ABM, the precipitation
amount (mm) for a specific duration is determined based on the corresponding rainfall
intensity (mm/h). The increments of precipitation amount between each time interval
are calculated and the highest precipitation increment (maximum block) is placed in the
middle of the hyetograph. The second-highest increment is placed to the right of the
maximum block, and the third-highest increment to the left of the maximum block, and so
on until the last block is located. In this study, design storms based on projected WRF-IDF
curves were updated in two ways, resulting in two types of hyetographs generated through
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ABM. The first approach applies a constant temperature scaling rate to the entire event
(ABM1), and the other approach applies different temperature scaling rates at different
time steps (ABM2).

3.2. Hydrologic and Hydraulic Model Setup and Calibration
3.2.1. HEC-HMS

The HEC-HMS model represents the drainage basin of Harry’s River up to Black
Duck Siding, which consists of 33 sub-basins, 10 river reaches, and 17 junctions, including
the hydrometric gauge of 02YJ001, Harry’s River, below the highway bridge. For each
reach, the required inputs of channel characteristics, which include the length, shape,
and slope of the channel, and Manning’s n coefficient are determined. All reaches are
represented by trapezoidal cross-sections, and the longitudinal slopes vary between 0.001
and 0.025, with a Manning’s n value of 0.04. The loss, transform, base-flow, and routing
methods are represented by the U.S. Soil Conservation Service (SCS) Curve Number, SCS
Unit Hydrograph, Constant Monthly rates, and Muskingum-Cunge routing, respectively.
A weighted Curve Number is estimated for each sub-basin based on soil group and land
use types. An area reduction factor of 0.9 is applied over the precipitation inputs to drive
the model. The model is calibrated using measured hydrographs corresponding to the
1990 event (December 8–9) and validated based on the events on 8 June 1995 and 26–27
September 2005. During calibration and validation, base flow is estimated from flow
records at the hydrometric gauge (02YJ001) before the date of the simulation event. Further
details are provided in the Hydrotechnical study of Stephenville Crossing (2012) by the
Atlantic Canadian Adaptation Solutions Association (Government of Newfoundland and
Labrador, 2012).

3.2.2. HEC-RAS

The HEC-RAS 1D model simulates river flow from the downstream of Harry’s River
to the Main Gut (Government of Newfoundland and Labrador, 2012). Eleven surveyed
bathymetric cross-sections across the reach are used to describe the channel geometry and
floodplains (Figure S1). Roughness coefficients of the channel and floodplain are estimated
based on the type of channel and overbank. The model is driven by the flow hydrograph as
the upstream and stage hydrograph as the downstream boundary conditions. The 1D HEC-
RAS model was calibrated based on several water level measurements at cross-sections
of 10–12, 14, and 16–17 during 25 to 28 September 2010 and validated for 3–7 November
(Figure S1; [52]).

Further, we set up and calibrated the two-dimensional HEC-RAS model, which
represents floodplain flow as a 2D cell, by assuming that the third dimension of water
depth is relatively shallow. The conservation of mass and momentum equations are
expressed as follows:

Mass Conservation :
∂H
∂t

+
∂(hu)

∂x
+

∂(hv)
∂y

+ q = 0 (2)

where t is time, x and y represent spatial dimensions, the 2D vector (u,v) represents the
velocity components in two dimensions, q is flux, H is water surface elevation, and h is
water depth [77].

Momentum Conservation:

∂u
∂t

+ u
∂u
∂x

+ v
∂u
∂y

= −g
∂H
∂x

+ vt

(
∂2u
∂x2 +

∂2u
∂y2

)
− c f u + f v (3)

∂v
∂t

+ u
∂v
∂x

+ v
∂v
∂y

= −g
∂H
∂y

+ vt

(
∂2v
∂x2 +

∂2v
∂y2

)
− c f v + f u (4)

where g is the gravitational acceleration, c f represents the bottom friction, f is the Coriolis
parameter, and vt is the horizontal eddy viscosity coefficient [77].
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DEM, channel bathymetry, and land cover map with spatially varied roughness
coefficients were used to set up the 2D model. The 20 m resolution Canadian Digital
Elevation Model (CDEM) was used to represent the terrain’s topography. Considering
that the DEM does not include the bathymetric details under the water surface, surveyed
cross-sections are interpolated into a surface profile and then fused into the topography
data (Figure S1). The 30 m resolution Canada’s Land Cover map was used to generate
spatially varied Manning’s n values for each cell. Table S1 lists all types of land cover
in the study region with the corresponding roughness coefficients. A value of 0.035 was
considered for the reach along Harry’s River. We set up the 2D model considering a
20 × 20 m cell size consistent with the 20 m resolution DEM. Break-lines are added along
the river centerline and right and left of the overbank. The cell size around the break-
line includes smaller irregular meshes for a more accurate simulation of the channel and
overbank area.

The 2D model is driven using the upstream flow hydrographs at Harry’s River below
the Highway Bridge and coastal water levels as the downstream boundary condition.
The flow hydrographs of the upstream boundary were obtained from HEC-HMS at the
hydrometric station of Harry’s River below the Highway Bridge. The coastal boundary
condition was constructed based on hourly tidal records, which were collected from the
tide gauge at Port Harmon, an active station close to St. George’s Bay.

4. Results and Discussion

4.1. Model Performance

The roughness coefficients in the channel and floodplain were calibrated based on
water surface elevation (WSE) measurements at specific points along the channel on 27
September 2010 (Figure 3). 2D model simulations are consistent with the results of the 1D
model, including the peak values, and both models represent the observed levels quite
well. At the lowest levels, the maximum difference between 2D- and 1D-model simulations
is about 0.1 m. The results are further evaluated based on observations on 3–7 November
2010 (Figure S2).

Further, we assessed the sensitivity of the simulations to changes in the cell size, DEM
product, and the Manning’s n roughness factors in the HEC-RAS 2D model. The sensitivity
analysis was conducted for the November 2010 event with higher peak flow rates (80 m3/s)
than the September 2010 event (30 m3/s). Sensitivity analysis results show that DEM can
considerably affect the model simulations. The effects of the DEMs are most pronounced
at the upstream reach, and the distinction between inundated areas based on different
DEMs gradually decreases from upstream to downstream. Similarly, the comparison of
simulations based on different cell sizes shows the considerable effects of spacing (Figure 4).
Run 4 (20 m in 2D area and 15 m around break-line) has the largest simulated inundation
area. Further, we investigate the sensitivity to Manning’s n values for river channel and
floodplain. It was found that the lower part of the reach in the HEC-RAS 2D model is less
sensitive to Manning’s n values.

4.2. GCM-IDF vs. WRF-IDF Simulations
4.2.1. Uncertainties in Storm Patterns

A total of 432 hyetographs (288 for WRF-IDF curves and 144 for GCM-IDF curves)
were generated for Stephenville Crossing, based on projected IDF curves, three design
storm methods, Representative Concentration Pathways (RCP) 4.5 and 8.5, and two future
periods of 2041–2070 (2050s) and 2071–2100 (2080s) (Table S4). As discussed before, nine
GCMs are selected in climate change analysis using WRF-IDF curves. Six of those models
were available for the GCM-IDF curve assessment (using IDF-Tools). Common GCMs
were used to compare WRF- and GCM-simulated results. The hyetographs based on the
historical and future IDF curves were then used to drive the HEC-HMS model based on
the three design storm methods, including Soil Conservation Service (SCS), Huff, and
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Alternative Block Method (ABM). Figure S5 shows an example of hyetographs generated
from three methods, which result in different magnitudes and timing of peak rainfall.

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 3. Observed Water Surface Elevations on 27 September 2010 and the corresponding HEC-RAS 1D and 2D model
simulations (from 25 to 28 September). Orange represents HEC-RAS 2D results, blue represents HEC-RAS 1D results; obs1,
2, and 3 represent observations along the cross-section during different times. The horizontal line represents the duration of
taking the measurements from 3 to 7 pm. Results are shown for different cross-sections (a–f representing crosssections 17,
16, 14, 12–10, respectively) along the river (Figure 1 and Figure S1). The exact time of the measurements is available for
Cross-section 10 (at 1 pm).

The variations of total rainfall amount between GCM- and WRF-IDFs are shown in
Table 2. For a 25-year event, WRF-IDF generates higher rainfall amounts. The upper bound
of WRF-IDF curves is similar to GCM-IDF curves, however, the lower bound is much
higher than GCM-IDF curves (26% higher for the RCP8.5 scenario in the 2080s). For a
100-year event, WRF-IDF generates a lower rainfall amount (except for RCP8.5 in the 2080s)
with a narrower uncertainty range than GCM-IDF for future scenarios.
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Figure 4. Comparison between 2D simulated flood inundation extents using different mesh sizes
(around break line): (a) 100 m (70 m), (b) 50 m (30 m), (c) 30 m (30 m), (d) 20 m (15 m).

Table 2. Comparison of 24 h rainfall (mm) amounts generated based on WRF- and GCM-IDF curves based on six GCMs.

Return Period
(Years)

Historical
(mm)

Future (mm)

Period RCP

The Multi-Model Ensemble Average of GCMs
(Minimum and Maximum)

GCM-IDF WRF-IDF

25 107.94

2050s
4.5 131.44 (111.38, 152.31) 137.17 (121.80, 147.35)

8.5 135.75 (118.8, 169.00) 143.03 (126.65, 154.14)

2080s
4.5 129.93 (105.00, 153.94) 141.62 (127.04, 151.94)

8.5 142.50 (113.86, 176.36) 163.05 (145.5, 176.54)

100 142.79

2050s
4.5 184.82 (144.33, 233.31) 169.73 (150.15, 182.70)

8.5 185.32 (149.58, 241.31) 177.20 (156.33, 191.35)

2080s
4.5 181.76 (124.37, 237.56) 175.40 (156.83, 188.55)

8.5 200.00 (133.85, 333.34) 202.70 (180.34, 219.89)

The resulting hyetographs generated based on three design storm methods for a
25-year event over the historical and future (2050s corresponding to the RCP4.5 emission
scenario) periods are compared in Figure 5. The figure shows the average, minimum,
and maximum values of hyetographs based on multiple GCMs. The peak rainfall oc-
curs at around the 11th hour for both ABM and SCS design storms, however, the peak
rainfall corresponding to the Huff design storms occurs at around the 14th hour. Design
hyetographs based on ABM have the highest peak rainfall and peak intensity, followed by
the hyetographs based on SCS. In general, the peak precipitation values generated from
Huff are relatively low, with smaller variations in magnitude. The overall rainfall pattern
in the Huff method is more even and flat compared to the other two methods. This can
cause an underestimation of the peak flood volume in the hydraulic model simulation. The
overall pattern of rainfall hyetographs is similar between ABM-1 and ABM-2, however,
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ABM2 generated by different scaling rates shows slightly higher peak values. Overall,
the peak values corresponding to the GCM- and WRF-IDFs for the 25-year event in the
2050s are close. However, differences are more distinguishable for larger events. Based on
Figure S6, the lowest hyetograph peak generated by WRF-IDF curves is higher than that
generated by GCM-IDF curves (for a 100-year event in the 2080s), contrary to the highest
values. The uncertainty range of hyetographs based on GCM-IDF curves is larger than that
of the WRF-IDFs because of larger variations in precipitation projections between GCMs
compared to the corresponding temperature simulations, used for temperature scaling
in WRF-IDFs.

 
(a1) 

 
(a2) 

 
(b1) 

 
(b2) 

 
(c1) 

 
(c2) 

Figure 5. Cont.
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(c3) 

Figure 5. Rainfall hyetographs corresponding to a 25-year event for the historical and future (2050s, RCP4.5) periods.
Hyetographs are generated based on (a1) HUFF, (b1) SCS, and (c1) ABM design storm methods for GCM-IDFs, and (a2) SCS,
(b2) HUFF, (c2) ABM-1, and (c3) ABM-2 for WRF-IDFs.

Differences between GCM- and WRF-IDF effects are more pronounced when inves-
tigating the individual GCMs. The resulting design storms for CanESM2 based on the
RCP4.5 emission scenario are shown in Figure S7. All hyetographs (based on ABM, SCS,
and Huff methods) are defined with a one-hour time interval and a total storm duration
of 24 h. Results show a considerable difference in rainfall patterns based on different
approaches. In ABM, high rainfall intensity is maximized within a short duration, which
occurs in the midst of the event, for example, the peak rainfall intensity always occurs
at the 12th hour during the 24 h event. Differences between ABM hyetographs in the
2080s are generally larger than those in the 2050s. The peak rainfall value of the ABM2
hyetograph is always higher than the one in the ABM1 hyetograph because a shorter dura-
tion provides a higher scaling rate, and the difference in the two approaches of WRF-IDF
curve in the ABM varies with RCP scenarios and future periods. The overall pattern of
hyetographs generated by the SCS method is very similar to ABM hyetographs, however,
SCS hyetographs generate a longer time of maximum rainfall. The timing of peak rainfall
value in the hyetographs generated by the Huff method is about 3 h later than the peak time
of ABM and SCS hyetographs. In addition, the magnitude of maximum precipitation of
Huff hyetographs is considerably smaller than the hyetographs generated by the other two
methods. The differences in the peak rainfall can be as high as three times among design
storm methods. The ABM hyetographs have the maximum precipitation peak, followed
by SCS and Huff hyetographs. The maximum rainfall amount in a 25-year event during
the future period of the 2050s ranges from 13 mm, based on the Huff approach, to 39 mm
based on ABM2. Within a 24 h duration storm, the peak rainfall intensities are the largest
in ABM and SCS hyetographs, while Huff hyetographs provide relatively low rainfall
intensities that are distributed over an extended period. Consequently, the variations of
rainfall patterns are highly dependent on the choice of design storm methods. The relative
differences between the projected IDF curves (GCM vs. WRF precipitation simulations)
based on CanESM2 under two future periods and return levels are also shown in Figure S7.
Considering the RCP4.5 scenario, there are slight differences in the 25-year rainfall event
between the hyetographs generated by GCM-IDF and WRF-IDF curves. For simulations
based on CanESM2, the peak rainfall in design storms based on the GCM-IDF curve is
higher than that based on WRF-IDF curves, particularly for a 100-year event. However, it
is not always the case for all GCMs, for example in HadGEM-AO (AO), WRF-IDF curves
can generate higher peak rainfall in design hyetographs than that based on GCM-IDF
curves (Figure S8). Compared with Huff hyetographs, the differences between the two
updated IDF curves are more in ABM and SCS hyetographs. Although the differences in
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peak values between the methods of design storms and projected IDF curves are not large,
they can cause major effects in hydrological simulations.

4.2.2. Uncertainties in Flow Hydrographs

The hyetographs generated based on SCS, Huff, and ABM methods, corresponding to
projected WRF- and GCM-IDF curves, are used as inputs to the HEC-HMS hydrological
model to simulate the upstream basin’s hydrological response (i.e., flow discharge). The
variations of simulated discharge rates among the two types of updated IDF curves and
different design storm methods are shown in Figure 6. Overall, the uncertainties corre-
sponding to different design storm methods are considerable compared to other major
sources of uncertainties, such as GCMs. Based on WRF-IDF curves, the uncertainties
between design storm methods increase from the 2050s to the 2080s, and from RCP4.5
to RCP8.5. Based on GCM-IDF curves, the peak discharge rates in the future periods are
consistent for RCP4.5, and the rates further increase in the 2080s considering the RCP8.5
emission scenario. Overall, the uncertainties corresponding to the design storm methods
are larger in GCM-IDF curves compared to the WRF simulations. The hyetographs gener-
ated from SCS provide the highest peak discharge simulation for future scenarios and two
projected IDF curves, while the method of Huff provides the lowest rates for all cases. The
highest river discharge rates occur in the 2080s under the RCP8.5 emission scenario, while
the lowest values are in the 2050s corresponding to RCP4.5, which indicates more intense
flood events in the future periods under climate change. The simulated rates from WRF-IDF
curves are larger than the ones corresponding to the GCM-IDF curves for 100-year events
in the 2080s under the high emission scenario of RCP8.5. In other scenarios, the overall
peak discharge rates are relatively close between the multi-model means corresponding to
the two projected IDF curves, however, differences in upper quantiles are relatively large.
Further, GCM-IDFs show larger uncertainty ranges for 100-year events and project higher
rates in the upper bounds (Figure 6).

According to WRF-IDF curves, CSIRO-Mk3.6.0 (CSIRO), GFDL-ESM2G (ESM2G),
and MPI-ESM-LR (MPI) provide relatively lower results, whereas the discharge rates are
close for other GCMs. However, for GCM-IDF, except for HadGEM2-ES (ES) that shows
the highest peak discharge rates, the projections of other GCMs vary among different
future periods. GFDL-ESM2G (ESM2G) simulates a low peak flow rate in both projected
IDF curves. The performances of GFDL-CM3 (CM3) and HadGEM-AO (AO) are distinct
between projected IDF curves (Figure S9).

  
(a) (b) 

Figure 6. Cont.
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(c) 

Figure 6. Simulated peak discharge rates corresponding to a 25-year event based on different design storm methods
corresponding to (a) WRF-IDF and (b) GCM-IDF curves. ABM1 (Alternative Block Method) represents constant temperature
scaling rate applied to the entire event, and ABM2 shows varied temperature scaling rates applied at each time step.
(c) Simulated peak discharge rates between WRF- and GCM-IDFs corresponding to 25- and 100-year events.

Further, the uncertainties between design storms and GCMs are compared for a
25-year event during the 2050s under the RCP8.5 emission scenario (Figure 6 and Figure S8).
The means of peak flow rates among the three design storm methods range from 1300 to
1700 m3/s for WRF-IDF curves and from 1125 to 1475 m3/s for GCM-IDF curves, while
the mean peak discharges among GCMs vary from 1150 to 1650 m3/s for WRF-IDF curves
and from 1100 to 1900 m3/s for GCM-IDF curves. The uncertainties from the choice of
design storm methods are slightly larger than the uncertainties brought by GCMs when
using WRF-IDF curves, however, different GCMs have larger variations than design storm
methods in using GCM-IDF curves.

The flow hydrographs for a 100-year event in the 2050s corresponding to the RCP8.5
emission scenario were compared between three design storm methods (Figure S10). The
figure shows the average values of hydrographs generated based on nine GCMs and
the corresponding minimum and maximum values. The overall pattern of simulated
hydrographs generated based on the three design storm methods is similar, however, the
magnitude and timing of peak discharge rates are different. The peak discharge occurs at
around the 16th hour for both ABM and SCS design storms, however, peak discharge of
Huff design storms occurs around the 19th hour. The 3 h time lag is the same as the time lag
of peak rainfall between Huff hyetographs and the other two hyetographs. Simulated peak
runoff by SCS hyetographs exceeds the peak discharge by ABM hyetographs. The peak
discharge rates simulated by Huff hyetographs are much smaller, with less variation in the
magnitude. Relatively low rainfall intensities evenly distributed over the event allow the
watershed more time to respond, and thus, the simulated results of Huff hyetographs result
in lower peak runoff. Consequently, the estimated flow discharge is much smaller, and it
may cause an underestimation in peak flood values in the hydraulic model simulations. The
overall pattern and magnitude of peak runoff are similar in ABM-1 and ABM-2. However,
the ABM2 hyetographs generated by varied scaling rates have more variations in peak
flow, as there is a slightly wider higher uncertainty range.

The hydrological response of the two projected IDF curves (WRF- and GCM-IDFs) are
shown in Figure 7 and Figure S10. The hydrographs corresponding to the two projected
IDF curves for the 25-year flood event have a consistent pattern and average peak values,
but GCM-IDF simulations show larger variations between different GCMs, resulting in
differences between lower and higher quantiles. The peak flow corresponding to the GCM-
IDF curve ranges from 900 to 1600 m3/s, while WRF-IDF simulations range between 1100
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and 1500 m3/s. The 100-year flood event simulations show similar behavior. Compared
with the 25-year event, the results of a 100-year event based on GCM-IDF hyetographs
have larger variations, ranging from approximately 1600 to 5500 m3/s. Therefore, the
hyetographs based on the GCM-IDF curve are very sensitive to the choice of GCM. The
multi-model means of the peak discharge values, based on two future IDF curves, is
around 1250 m3/s, corresponding to the 25-year event in the 2050s under RCP4.5. This
value increases to approximately 2500 m3/s for a 100-year event in the 2080s under RCP8.5.
The uncertainties corresponding to ABM-1 and ABM-2 IDF methods are relatively low
compared to the uncertainties between other design storm methods and projected IDF
curves, especially in 100-year flood event simulation.

 
(a) (b) 

Figure 7. Flow hydrographs at the gauge of Harry’s River below the Highway Bridge for a 100-year event corresponding to
the historical and future (2080s, RCP8.5) periods. Hyetographs are generated based on (a) GCM-IDFs and ABM method,
and (b) WRF-IDFs and ABM2 method. The lower and higher bounds represent the minimum and maximum values of
six GCMs.

4.3. Projected Changes in Flood Characteristics and the Corresponding Uncertainties

The maximum flood extent areas corresponding to each design storm are summarized
in Table 3. The Huff method results in the lowest flood inundation area, indicating that it
can be considered as the lower bound of flood risk estimates in floodplain management and
planning. The ABM and SCS approaches result in the largest inundation areas for the 25-
and 100-year events, respectively. These results highlight the importance of characterizing
the uncertainties in design storms for flood risk analysis.

Table 3. Inundation area (square kilometers) for different design storms in the historical period.

Design Storm 25-Year Event
Difference from

Huff Method
100-Year Event

Difference from
Huff Method

ABM 6.221 0.057 6.427 0.178

SCS method 6.21 0.046 6.431 0.182

Huff method 6.164 0 6.249 0

Relative changes of the simulated maximum flood depths between the three design
storm methods and the corresponding mean values are shown in Figure 8. For the future
period of the 2050s under RCP8.5, the SCS method provides the most conservative 100-year
flood estimate, while Huff shows the lowest impacts. ABM2, which applies different scaling
rates at different time steps, provides slightly higher values than the ones from ABM1.

We assessed the projected changes of the maximum flood depths corresponding to 25-
and 100-year events based on WRF- and GCM-IDF curves (Figures 9 and 10). The projected
changes of flood depths for a 25-year event based on GCM-IDFs are relatively small for both
future periods of the 2050s and 2080s under RCP4.5 (Figure 9 and Figure S11), with changes
slightly higher at the middle region of Harry’s River under RCP8.5. Results from WRF-IDF
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curves are relatively similar for future scenarios, except in the 2080s under RCP8.5, which
shows larger inundation at the upstream and middle of the river. Overall, GCM-IDF
under RCP4.5 provides the lowest projected changes of flood depth, while the WRF-IDF
curve results in the highest values in the 2080s under RCP8.5. The inundation areas of the
upstream are projected to increase for a 100-year event, however, WRF-IDF under RCP4.5
shows milder changes in the 2050s. Further, the coastal regions are inundated based on
the two projected IDF curves in the 2050s and 2080s under RCP8.5, however GCM-IDFs
project lower inundation extents in the 2080s under RCP8.5. The multi-model mean peak
discharge corresponding to GCM-IDF curves is considerably lower than simulations from
WRF-IDF curves. Therefore, the relative changes of projected flood depths are considerably
different between the two IDF approaches under a high emission scenario of RCP8.5 in the
2080s (Figure 10).

Figure 8. Relative changes in simulated maximum flood depths (m) between different design storm
methods and the average of maximum depths from all methods. Results correspond to a 100-year
event in the 2050s based on WRF-IDF under the RCP8.5 emission scenario.

Although differences between the mean rainfall amount corresponding to a 100-year
event in the 2080s under RCP8.5 are not very large (Table 2), GCM-simulations show
relatively large variations in rainfall values in both the upper and lower bounds. Therefore,
differences in the simulated hydrographs and corresponding peak flows become relatively
large, which translate into considerable changes between estimated flood depths (Figure 10).
These results suggest that the uncertainties associated with GCMs contribute considerably
to the total uncertainties in future flood risk analyses, particularly for GCM-IDFs.

162



Water 2021, 13, 1774

Figure 9. Projected changes in maximum flood depths corresponding to a 25-year event between
the future (2080s) and historical periods: (a) GCM-IDF and RCP4.5, (b) WRF-IDF and RCP4.5,
(c) GCM-IDF and RCP8.5, (d) WRF-IDF and RCP8.5.

4.4. Compound Flood Assessment

The simulation of fluvial flooding is conducted by considering historical tide estimates
as the downstream boundary condition and projected flow hydrographs generated based
on future design storms as the upstream boundary condition. As discussed previously,
increases in both rainfall intensity and coastal water levels, associated with climate change,
can lead to higher risks of flooding in the low-lying areas.

The compounding effects of riverine and coastal flooding can result in severe damages
to communities and infrastructure. We quantify the return periods of such events by
developing the joint distribution of both flood drivers and characterizing the dependencies
using copula functions [33,57,78–81]. A set of 41 copulas are considered in this study and
the best function is selected using the AIC criterion. Results show that the probability of
such events, as suggested by the estimated joint return periods, is higher if the dependencies
between the variables are considered compared to the conventional approach, which
assumes that different flood drivers are independent. For example, the joint return period of
a 10-year riverine and a 10-year coastal flood event is 88 years (considering the dependence
structure), as opposed to 100 years (based on the independence assumption). Such an
event has a 70-year return period considering extreme rainfall and coastal events. The joint
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return periods are 520 years (vs. 625 years considering independence) and 416 years for
25-year riverine and coastal, and 25-year rainfall and coastal extremes, respectively.

Figure 10. Projected changes in maximum flood depths corresponding to a 100-year event between
future (2080s) and historical periods: (a) GCM-IDF and RCP4.5, (b) WRF-IDF and RCP4.5, (c) GCM-
IDF and RCP8.5, (d) WRF-IDF and RCP8.5.

Further, we quantified the return period of the occurrence of either extreme dis-
charge/rainfall or coastal events considering the dependence structure of the flood drivers.
Results show that in the OR scenario, the return period is almost half of the univariate
return periods, for example, the return period of a 100-year fluvial OR 100-year coastal
flooding is ~50 years. This indicates that assessments of different flood types in isolation
can result in a major underestimation of their impacts.

We added the effects of projected coastal flood drivers (storm surge, wave, and sea-
level rise) and assessed compound flooding under climate change. We assume that the
peak of the stage hydrograph coincides with the peak of flow hydrographs, which is a
conservative assumption. Table 4 lists the simulated flood inundation areas corresponding
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to rainfall-only and compound flooding simulations under future climate scenarios. In all
scenarios, the compound flooding simulation estimates a larger flooded area compared to
the rainfall-only analysis, which increases from RCP4.5 to RCP8.5 and from the 2050s to
the 2080s.

Table 4. Projected flood inundation extents (square meter) based on WRF-IDF curves (multi-model
means of six GCMs).

Return Level RCP
Future
Period

Fluvial Flood
Scenario

Compound
Flood Scenario

Mean Mean

25-year event

4.5
2050s 6.16 6.66

2080s 6.29 6.87

8.5
2050s 6.28 6.75

2080s 6.78 7.3

100-year event

4.5
2050s 6.97 7.63

2080s 7.88 8.7

8.5
2050s 7.81 8.49

2080s 8.98 9.78

A comparison between the impacts of fluvial flooding (25-year event, 2050s RCP4.5)
and the compound scenario is shown through a flood inundation map of the estuarine area
(Figure 11). The blue area represents the simulation under the changes of future extreme
rainfall events. With the addition of the coastal components (i.e., storm surge, wave, and
local sea-level rise), the inundation extent increases considerably in coastal areas, which
extends further upstream of Harry’s River, affecting the urban zone between the coastline
and the estuary area. The results show that the upstream area of Harry’s River suffers more
from riverine flooding, while the estuary and the mouth of the river are mainly affected by
both coastal and riverine flooding.

Figure 11. Flood inundation areas corresponding to fluvial flooding (blue) and compound fluvial
and coastal flooding (blue and green).
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5. Conclusions

In this study, the individual and compounding effects of riverine and coastal flooding
were analyzed over Stephenville Crossing on the west coast of Newfoundland. The area is
located between St. George’s River estuary and Rothesay Bay. In the past, this community
suffered from floods due to storm surge, high river flows caused by heavy rainfall, and their
combination. With increases in extreme rainfall events and sea-level rise associated with
climate change, such impacts are expected to be exacerbated. A two-dimensional hydraulic
model (HEC-RAS 2D) was set up and coupled with a hydrologic model (HEC-HMS) to
simulate the historical and projected changes in flood events and analyze the corresponding
uncertainties. The 2D model is driven by the flow hydrographs as the upstream boundary
condition and coastal water levels at the downstream boundary. The model was validated
using water surface elevation (WSE) measurements at surveyed locations along the river.
Further, Sentinel-1 satellite imagery was used to assess simulated inundation extents.

Identifying different sources of uncertainties and understanding their influences are
crucial for floodplain management in a changing climate. In this study, the uncertainties
associated with GCMs (ACCESS1.0, HadGEM2-CC, HadGEM2-ES, GFDL-CM3, MPI-ESM-
LR, HadGEM-AO, CSIRO-Mk3.6.0, GFDL-ESM2G, and CanESM2), future scenarios (RCPs
4.5 and 8.5), design storms (SCS, Huff, ABM), and projected IDF curves (WRF- and GCM-
IDF) were investigated. Results suggest that all components have a major contribution
to the uncertainties in flood risk assessments. The uncertainties in design storms can be
as large as the ones associated with GCMs in climate change impact assessments. The
results show that the Huff method can underestimate the peak flood volume, which is
consistent with a study of design storms on urban flood simulation conducted by Pan
(2017). The differences between the two ways of applying WRF-IDF temperature scales in
the Alternating Block Method (ABM1 and ABM2) were relatively small in our analyses,
and the corresponding means and uncertainty ranges of hydrographs were almost the
same during the two future periods.

Further, analyses show larger uncertainties corresponding to GCM-IDFs compared to
those corresponding to WRF-IDFs, including higher variations in estimated hydrographs
and flood depths. GCMs have limitations in simulating convectional rainfall, and the
uncertainties of simulated short-duration rainfall extremes can translate from projected
GCM-IDF curves into flood modeling analysis. Consequently, analyses show inconsistent
trends between projected WRF- and GCM-IDFs from RCP4.5 to RCP8.5. In some cases,
this results in an underestimation of projected flood impacts, which can undermine future
adaptation plans.

The differences in flood extents for historical and future climate conditions are con-
siderable, with more inundation in the estuarine area. Projected coastal water levels were
estimated by overlaying the storm surge values to future sea level rise. Future analyses
should quantify the non-stationarity of the storm surge as well as changes in the mean
sea level [82–84]. The analyses show positive dependencies between fluvial and coastal
flooding over the region, suggesting that the corresponding compound effects should be
considered in developing mitigation and adaptation measures. While the riverine flooding
mainly affects the inundation area upstream of the study reach, coastal flooding combined
with river overflows can significantly impact the areas close to Harry’s River mouth and the
upstream regions. Further, areas close to the estuary are vulnerable to compound flooding
caused by river overflows, storm surge, wave, and sea-level rise. Future urbanization
growth and population increases in urban low-lying areas can increase the flood risks.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/w13131774/s1, Table S1: Roughness value (manning’s n) for different land cover types,
Table S2: Characteristics of the selected GCMs, Table S3: List of satellite images including the
reference images and the flood image, Table S4: List of scenarios and the simulations, Table S5: Peak
Rainfall (mm) values corresponding to WRF- and GCM-IDF curves based on CanESM2 simulations
in the 2050s, Table S6: Peak Rainfall (mm) values corresponding to WRF- and GCM-IDF curves based
on CanESM2 simulations in the 2080s, Figure S1: (a) Survey cross sections in the HEC-RAS model,
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(b) Additional surveyed cross-sections (red line) with bathymetry-fused DEM, Figure S2: HEC-RAS
1D & 2D model evaluation for 3 November at 8pm 7 November 2010 at 4 pm. Orange represents 1D
HEC-RAS results, blue represents 2D HEC-RAS results; obs represents the measurements at 4 pm, 6
November 2010, Figure S3: Comparison between 2D simulated flood inundation extents based on
different roughness values for channel and floodplain: (a) 0.033 and 0.05; (b) 0.045 and 0.05; (c) 0.033
and 0.08, Figure S4: The detected flood inundated area based on Sentinel-1 imagery (14 January 2018)
compared with HEC-RAS 2D model simulations, Figure S5: Hyetographs corresponding to a 25-year
rainfall event generated by three design methods for the historical and future (2050s; RCP 4.5) periods,
Figure S6: Similar to Figure 5 but for 100-year event and future period of 2080s corresponding to RCP
8.5 emission scenario (a) GCM-IDF (ABM) and (b) WRF-IDF (ABM-2), Figure S7: Rainfall hyetographs
corresponding to CanESM2 simulations for 2050s under RCP4.5, Figure S8: Rainfall hyetographs
corresponding to HadGEM-AO (AO) simulations for 2080s under RCP8.5, Figure S9: Simulated peak
discharge rates corresponding to WRF- and GCM-IDFs for (a) 25-yr event and (b) 100-yr event. Both
simulations correspond to 2050s (2041-2070) under RCP 8.5. emission scenario. The participating
GCMs include: HadGEM-AO (AO), GFDL-CM3 (CM3), CSIRO-Mk3.6.0 (CSIRO), HadGEM2-ES
(ES), GFDL-ESM2G (ESM2G), and CanESM2 (CAN), Figure S10: Projected HEC-HMS hydrographs
corresponding to the 100-year rainfall event for the historical and future (2050s; RCP8.5) conditions.
The results correspond to the WRF-IDF curves based on a. ABM1, b. ABM2, c. Huff, d. SCS design
storm methods, Figure S11: Flow hydrographs at the gauge of Harry’s River below Highway Bridge
(see location in Figure 1) for a 25-year event corresponding to the historical and future (2050s, RCP4.5)
periods. Hyetographs are generated based on the HUFF method and a) GCM-IDFs b) WRF-IDFs,
Figure S12: Projected changes in maximum flood depths corresponding to a 25-year event between
future (2050s) and historical periods; (a) GCM-IDF & RCP 4.5, (b) WRF-IDF & RCP 4.5, (c) GCM-
IDF & RCP 8.5, (d) WRF-IDF & RCP 8.5, Figure S13: Projected changes in maximum flood depths
corresponding to a 100-year event between future (2050s) and historical periods; (a) GCM-IDF & RCP
4.5, (b) WRF-IDF & RCP 4.5, (c) GCM-IDF & RCP 8.5, (d) WRF-IDF & RCP 8.5, Figure S14: Projected
changes in 25-year flood inundation corresponding to RCP 4.5 in 2050s compared to the historical
condition (based on the SCS design storm method).

Author Contributions: Conceptualization, M.R.N. and A.J.C.; methodology, M.R.N., S.W., A.J.C.
and A.A.K.; software, S.W., M.R.N. and A.A.K.; validation, S.W.; formal analysis, S.W. and M.R.N;
investigation, S.W. and M.R.N.; resources, M.R.N. and A.A.K.; data curation, S.W., A.J.C. and M.R.N.;
writing—original draft preparation, S.W.; writing—review and editing, M.R.N., A.J.C. and A.A.K.;
visualization, S.W.; supervision, M.R.N.; project administration, M.R.N.; funding acquisition, M.R.N.
All authors have read and agreed to the published version of the manuscript.

Funding: This project was supported by NSERC CRD, grant number CRDPJ 523924-18.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Acknowledgments: TanDEM data was obtained from Geoservices under the German Aerospace
Center (https://geoservice.dlr.de/web/dataguide/tdm90/ (accessed on 26 June 2021)). SRTM
DEM (https://www2.jpl.nasa.gov/srtm/statistics.html (accessed on 26 June 2021)) was downloaded
from U.S. Geological Survey (USGS) EarthExplorer. Further, tide predictions and coastal water
levels were available from Fisheries and Oceans Canada. We thank the Water Rights, Investigations
and Modelling Section in the Department of Environment, Climate Change and Municipalities
in Newfoundland and Labrador for providing access to the data and the calibrated HEC-HMS
hydrological model.

Conflicts of Interest: The authors declare no conflict of interest and the funders had no role in the
design of the study, analyses, or interpretation of data and results.

References

1. United Nations Office for Disaster Risk Reduction; Centre for Research on the Epidemiology of Disaster. The Human Cost of
Natural Disasters: A Global Perspective; UN Office for Disaster Risk Reduction: Geneva, Switzerland; Centre for Research on the
Epidemiology of Disasters: Brussels, Belgium, 2015.

2. Office of the Parliamentary Budget Officer. Estimate of the Average Annual Cost for Disaster Financial Assistance Arrangements Due to
Weather Events; Office of the Parliamentary Budget Officer: Ottawa, ON, Canada, 2016.

167



Water 2021, 13, 1774

3. Atlantic Climate Adaption Solutions Association. Flood Risk and Vulnerability Analysis Project. 2012. Available online:
https://atlanticadaptation.ca/en/islandora/object/acasa%253A446 (accessed on 26 June 2021).

4. Zhou, Q.; Mikkelsen, P.S.; Halsnæs, K.; Arnbjerg-Nielsen, K. Framework for economic pluvial flood risk assessment considering
climate change effects and adaptation benefits. J. Hydrol. 2012, 414, 539–549. [CrossRef]

5. Kaspersen, P.S.; Ravn, N.H.; Arnbjerg-Nielsen, K.; Madsen, H.; Drews, M. Comparison of the impacts of urban devel-opment and
climate change on exposing European cities to pluvial flooding. Hydrol. Earth Syst. Sci. 2017, 21, 4131–4147. [CrossRef]

6. Pregnolato, M.; Ford, A.; Glenis, V.; Wilkinson, S.; Dawson, R. Impact of Climate Change on Disruption to Urban Transport
Networks from Pluvial Flooding. J. Infrastruct. Syst. 2017, 23, 04017015. [CrossRef]
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Abstract: The hydrologic data series are nonstationary due to climate change and local anthropogenic
activities. The existing nonstationary design flood estimation methods usually focus on the statistical
nonstationarity of the flow data series in the catchment, which neglect the hydraulic approach,
such as reservoir flood regulation. In this paper, a novel approach to comprehensively consider the
driving factors of non-stationarities in design flood estimation is proposed, which involves three main
steps: (1) implementation of the candidate predictors with trend tests and change point detection for
preliminary analysis; (2) application of the nonstationary flood frequency analysis with the principle
of Equivalent Reliability (ER) for design flood volumes; (3) development of a nonstationary most
likely regional composition (NS-MLRC) method, and the estimation of a design flood hydrograph
at downstream cascade reservoirs. The proposed framework is applied to the cascade reservoirs
in the Han River, China. The results imply that: (1) the NS-MLRC method provides a much better
explanation for the nonstationary spatial correlation of the flood events in Han River basin, and
the multiple nonstationary driving forces can be precisely quantified by the proposed design flood
estimation framework; (2) the impacts of climate change and population growth are long-lasting
processes with significant risk of flood events compared with stationary distribution conditions; and
(3) the swift effects of cascade reservoirs are reflected in design flood hydrographs with lower peaks
and lesser volumes. This study can provide a more integrated template for downstream flood risk
management under the impact of climate change and human activities.

Keywords: cascade reservoirs; design flood; nonstationary conditions; equivalent reliability; most
likely regional composition; dependence structure

1. Introduction

Traditional design flood for hydraulic structures such as reservoirs is based on a
stationary hypothesis, meaning that the driving factors (e.g., climate change, urbanization
and reservoir flood regulation) act to generate the hydrological variables in the same way
as in the past, present and likely the future [1–5]. However, the statistical characteristics
of flood series might alter due to a changing environment [6,7]. If hydrological engineers
do not fully consider the nonstationarity of the hydrological series, the results of the
conventional stationary flood frequency analysis would be inaccurate in practice [8]. López
and Francés [9] used climate and reservoir indices as external covariates in nonstationary
flood frequency analysis. Yan et al. [10] considered climate change and population growth
to explain the nonstationary properties of hydrological time series. Global warming, the
primary factor that drives climate change, has altered the meteorological regimes in some
regions [11,12].

Population growth will not only lead urbanization but also lead to increased water
consumption. Rapid urbanization over recent decades has significantly changed the
regional hydrological characteristics of catchments [13–15]. The river network systems have
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been obviously influenced by the process of urbanization, aggravating the hazards of floods
and water degradation [16,17]. Water consumption is broadly reflected in daily life and
productions, which can also affect the hydrological regime in the catchment. Reservoirs, one
of the effective facilities for flood control, hydropower generation and other social functions,
have gradually formed cascade reservoir systems [18,19]. The great impact brought by
reservoir flood regulation has tremendously altered the hydrological characteristics in
rivers [20]. To sum up, it is difficult to find a river basin that is not impacted by global
warming and anthropogenic activities, particularly in rapidly developing China.

Milly et al. have elucidated the challenges about how to deal with design floods
and water resources management under nonstationary conditions [1]. The commonly
used technique to gain the changing knowledge of flood regimes is nonstationary flood
frequency analysis [9,21]. Strupczewski et al. [22–24] presented a nonstationary approach to
at-site flood frequency analysis, in which the distribution parameters are represented as the
functions of explanatory variables to explain the nonstationary hydrological series [25,26].
Stasinopoulos and Rigby proposed “Generalized Additive Models for Location, Scale and
Shape” (GAMLSS), which is a powerful implement for nonstationary frequency analysis of
time series [27]. The meteorological factors (such as precipitation), population growth and
reservoir index (RI) are widely used as explanatory variables incorporated in GAMLSS
as covariates [9,28,29]. Taking RI for an example, López and Francés [9] considered the
effects of RI from two aspects: the data used for flood frequency analysis are observed
daily flow series’ that have been affected by upstream reservoirs; some of the reservoir
characteristic parameters, such as the catchment area and the reservoir total storage capacity,
are integrated to form RI. However, the RI series are piecewise constants in spite of
reservoir operation rules [30]. Although RI has been improved (by a hand of studies) for
greater performance in nonstationary model fitting, the strategies of reservoir operation
are hard to be quantified with the GAMLSS-based nonstationary flood frequency analysis
framework [8,31]. Therefore, the covariates grounded in (or modified by) RI are unable to
accurately consider the impact of cascade reservoir regulation.

The flood regional composition (FRC) combined with reservoir operation rules [32–34]
can overcome this drawback. The aim of the FRC is to study the flood generation mech-
anism at the investigated downstream site. The inflow of the target reservoir consists of
the first upstream reservoir inflow and all interval inflows between adjacent reservoirs.
Then, the outflow of the downstream reservoir can be obtained through the reservoir
operation rules. Among all possible compositions based on the water balance equation,
an appropriate FRC needs to be selected. Guo et al. [33] proposed the most likely regional
composition (MLRC) method and derived theoretical formula for triple cascade reservoirs.
The MLRC method presumes that FRCs are diverse with their occurrence probabilities,
which can be quantified by the multivariate probability density function (PDF) of flood
events occurring at all sub-basins, and the FRC with the largest occurrence probability
should be chosen for representing the actual spatial correlation of flood events. With a
rigorous statistical basis, the MLRC method has been successfully applied in the cascade
reservoirs in the upper Yangtze River [35]. In contrast to the nonstationary flood frequency
analysis applied with RI, the natural flow data restored by the observed data is employed
in the FRC framework. Although the MLRC-based approach takes into full consideration
both FRC and reservoir operation rules, it is based upon a stationary assumption condition
so that the other variables such as climate change and population growth are ignored.

Under nonstationary conditions, the copulas with time-varying dependence structures
have been primarily applied for modeling coincidence probabilities such as the joint
return periods [8,36–38]. In fact, the changing environments might also alter the statistical
correlation of FRC, and the dependence structure of the MLRC-based method is unable
to catch the nonstationary spatial correlation. Therefore, we propose a nonstationary
MLRC (NS-MLRC) method and then compare it with the MLRC method under stationary
distribution conditions. Equivalent Reliability (ER) [39] is employed in this study to

172



Water 2021, 13, 2687

concatenate the stationary and nonstationary design criteria grounded in a given return
period [40].

In a word, this study focuses on three objectives: (1) to propose a nonstationary
design flood estimation framework; (2) to develop and verify the NS-MLRC method; and
(3) to estimate design flood hydrographs at downstream sites. The rest of the paper is
organized as follows: Section 2 describes the methodology used in this study. Section 3
briefly introduces the study area and data acquisition. Section 4 analyzes the nonstationary
design flood estimation results. Section 5 discusses the nonstationary characteristics and
the worst regional flood composition. Finally, Section 6 ends with conclusions.

2. Methodology

The flowchart of nonstationary design flood estimation for cascade reservoirs is shown
in Figure 1, of which there are three main modules. The first module preliminarily analyzes
the nonstationarity of the flood volume series. The second module calculates the design
flood volumes based on nonstationary flood frequency analysis and ER criteria. The last
module solves the flood regional compositions using the NS-MLRC method and derives
the design flood hydrograph regulated by cascade reservoirs.

2.1. Preliminary Analysis Module

This module aims to manipulate the dataset, determine the candidate univariate and
multivariate distributions and covariates, and analyze the nonstationarity preliminarily.

2.1.1. Candidate Distribution Functions, Copulas and Covariates

For nonstationary univariate frequency analysis, the type of the probability distribu-
tion fY(·) determines which form of frequency curves will be generated. Table 1 lists five
probability distributions, namely Gamma, Weibull, Log-normal, Gumbel, and Pearson type
III, which are the alternative distributions for flood frequency analysis with the different
link functions [41–43]. On the other hand, the Archimedean copulas are widely used in
hydrological researches [8,33]. Three mono-parameter Archimedean copulas, i.e., Gumbel-
Hougaard, Frank and Clayton copulas (Table 2) are selected as the candidate copulas for
the time-varying dependence structure modelling.

The multiple covariates (i.e., explanatory variables, predictors or addictive terms)
indicating both population growth and climate change are incorporated to explain the
variation in nonstationary time series. The impact of urbanization and water consumption
on the hydrologic flood series is considered by the population (Pop) [37,43], while the
annual total precipitation (Prcp), one of the important hydro-climate factors, is applied to
quantify the effects of climate change [10,44].

2.1.2. Trend Test and Change Point Detection

The Mann–Kendall trend test [45–47] and Pettitt’s test [48] are widely used for trend
test and change point detection, which can be applied to analyze the nonstationarity of
time series [43,44]. A nonparametric multiple change point analysis approach designed by
Matteson and James [49] is used for change point analysis of multivariate time series in
this study.

2.2. Hydrologic Design Module

This module is responsible for nonstationary flood frequency analysis and design
flood volume estimation.
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Figure 1. Flowchart of nonstationary design flood estimation in response to climate
change, population growth and cascade reservoir regulation.
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2.2.1. Time-Varying Moments

Generally, the nonstationary flood frequency analysis can be established by the time-
varying moments [50,51] based on the GAMLSS model [27]. Furthermore, the time-varying
moments can be improved by replacing time with other physical covariates which have
physical meanings [8,10]. The generalized linear model (GLM) [52] is implemented to
establish the function between distribution parameters and their predictors. To facilitate
understanding, a three-parameter time-varying distribution is taken as an example in the
remainder of this literature.

For the time-varying probability distribution function fY(yt|μt, σt, νt), let yt be the
response variable at time t (t = 1, 2, . . . , n) and the vector [μt, σt, νt] be the three time-
varying parameters. Then each parameter can be expressed as a function of the covariates
xt

i (i = 1, 2, . . . , m) via a link function as follows:
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

g1
(
μt) = α10 +

m
∑

i=1
α1ixt

i

g2
(
σt) = α20 +

m
∑

i=1
α2ixt

i

g3
(
νt) = α30 +

m
∑

i=1
α3ixt

i

(1)

where gi(·) are the link functions of distribution parameters for restricting the sam-
ple space [8]; αki(k = 1, 2, 3; i = 0, 1, 2, . . . , m) are the GLM parameters. The time-
varying moments are fitted by maximum penalized likelihood estimation [27,53]. The
centile curve [54] and worm plot [55] are used for the goodness-of-fit test of univariate
nonstationary distributions.

2.2.2. Selection of Time-Varying Distributions

The selection of the covariates and the type of probability distribution are the two
steps for seeking the best time-varying moment model. For one specific time-varying
distribution, the selection of covariates contains two aspects:

(1) The selection of the best GLM for a single parameter, which is conducted by the
forward procedure [27]. In the forward procedure, all variables not currently in the model
are considered for addition at each step, while all variables currently in the model are
individually considered for deletion.

(2) For a given distribution, there exist diverse strategies to select the GLMs used to
model all the parameters, i.e., μ, σ, and ν. The strategy proposed by Stasinopoulos and
Rigby [27] is executed for GLMs selection of all the distribution parameters.

Since the shape parameter ν is too sensitive to the data series, it is often assumed as
constant as other studies have done [10,56]. In practice, only the first two moments (i.e., μ
and σ) are taken to consider nonstationary data series. The optimal probability distribution
is selected from these five distributions mentioned in Table 1 based upon the Bayesian
information criterion (BIC) [57]:

BIC = −2ML + ln(n)× df (2)

where ML denotes the log-likelihood within a likelihood-based inferential procedure; df
represents the total effective degrees of freedom and; n is the length of the data series.
Comparing with the widely used Akaike information criterion (AIC) [58], the BIC has a
larger penalty on the over-fitting phenomenon.

After the above selection procedures is performed for each probability distribution,
then the distribution corresponding to the smallest BIC value is selected as the optimal
univariate distribution.
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2.2.3. Equivalent Reliability (ER)

The hydrologic design criteria according to the definition of return period under
stationary conditions might be modified to adapt nonstationarity [43,59]. To ensure that
the nonstationary flood frequency analysis is closely relevant to the practical condition, the
flood events can be linked with the design lifespan of hydraulic projects [39]. The project
reliability in the no flood event exceeds the specific design value zp during the life period
T1 − T2 of the project, which is defined as follows [59]:⎧⎪⎪⎪⎨

⎪⎪⎪⎩
RES

T1∼T2
=

T2
∏

t=T1

(1 − pt) =
T2
∏

t=T1

FZ(zp|μ0, σ0, ν0)

RENS
T1∼T2

=
T2
∏

t=T1

FZ(zp|μt, σt, νt)

(3)

where pt is the exceedance probability at year t for design value zp; the superscript S and
NS represent stationary and nonstationary conditions, respectively.

If a project is designed to withstand a flood event that occurs once in m years under
stationary conditions, then the reliability within the design life period T1 − T2 of the project
is given by

RES
T1∼T2

=
T2

∏
t=T1

(1 − pt) = (1 − 1
m
)

T2−T1+1
(4)

The ER supposes that the hydrological design values derived using stationary and
nonstationary flood control design standard should have the same reliability during the
life time of hydraulic structures [39]. Assuming that RES

T1∼T2
= RENS

T1∼T2
, the nonstationary

design value for a specific return period m is denoted by zT1∼T2
(m), which is measured by

the following equation:

T2

∏
t=T1

FZ(zT1∼T2
(m)|μt, σt, νt) = (1 − 1

m
)

T2−T1+1
(5)

For given design life period T1 − T2 and return period m, the stationary ER criteria
is calculated by Equation (4) firstly, and then the nonstationary design value zT1∼T2

(m)
corresponding to m can be obtained eventually by solving Equation (5).

2.3. Design Flood Estimation Module

This module is used to establish the time-varying copula and derive the nonstationary
design flood hydrographs based on the NS-MLRC method.

2.3.1. Time-Varying Dependence Parameter of Copulas

Traditional joint hydrological frequency analysis assumes that the parameters of
both marginal distributions and copula functions are constant. Nevertheless, either the
individual series or the dependence structure between the multiple series might be also
nonstationary under changing environments [8,38]. To consider such possibility, a general
form of the joint distribution of multiple random variables (Yt

1, Yt
2, . . . , Yt

n) at any time
t, is built. According to Sklar’s theorem [60], the joint PDF can be expressed in terms of
its marginal distributions and the associated dependence function, i.e., the time-varying
copula can be expressed as follows:

HNS(yt
1 , yt

2, . . . , yt
n)= C[F1(yt

1|μ1
t, σ1

t, ν1
t), . . . , Fn(yt

n|μn
t, σn

t, νn
t)]

= C(ut
1 , ut

2, . . . , ut
n|θt

c)
(6)

where HNS(·) denotes the cumulative distribution function (CDF) that defines the depen-
dence structure of multiple variables; C(·) represents the CDF of copula function; F(·)
represents the CDF of the hydrological random variables; [μi

t, σi
t, νi

t] (i = 1, 2, . . . ., n) are
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the time-varying marginal distribution parameters; θt
c denotes the time-varying copula

parameter; and ut
1 , ut

2, . . . , ut
n are the marginal CDFs of the time-varying copula, which

should range on [0,1].
Like the univariate distribution parameters expressed in Equation (1), the time-

varying copula parameter θc
t can also be expressed as a GLM function of the covariates xt

i
(i = 1, 2, . . . , m) via a proper link function gc(·) as follows:

gc
(
θt

c
)
= β0 +

m

∑
i=1

βixt
i (7)

where gc(·) relies on the limits of θt
c (Table 2); βi(i = 0, 1, 2, . . . , m) are the GLM parameters.

The copula-based GAMLSS with non-random sample selection is applied in this study
so that the non-stationarities of marginal distributions can be considered [61,62]. The
time-varying dependence parameter of copula is estimated by a penalized likelihood
framework with integrated automatic multiple smoothing parameter selections [63]. It is
hard to calculate the distance between the fitted and the empirical frequency so that the
Probability Integral Transformation (PIT) is used for the goodness-of-fit test of time-varying
copula [64,65]. The forward procedure is applied for the selection of θc

t based on GLM,
while the BIC criteria is used to select the optimal copula function.

2.3.2. Nonstationary Most Likely Regional Composition (NS-MLRC) Method

The sketch of flood regional composition with cascade reservoirs is shown in Figure 2,
in which the random variables X1, X2, . . . , Xn,Y1, Y2, . . . , Yn and Z represent the natural
inflow of reservoirs A1, A2, . . . , An, intermediate basins B1, B2, . . . , Bn, and downstream
site C with the corresponding values x1, x2, . . . , xn, y1, y2, . . . , yn and z, respectively.

For the A1-A2 sub-partition, the inflow of downstream reservoir A2(x2) consists of
the inflow of reservoir A1(x1) and the inflow of intermediate basin B1(y1). The inflow of
downstream reservoir A2 is affected by the operation of upstream reservoir A1. Then
(x1, y1) is determined as the FRC of x2, in which inflow x1 can be turned into discharge
based on the operation strategy of reservoir A1. Thus, the discharge of reservoir A2 is
relevant to the FRC of A2, i.e.,(x1, y1). For the cascade reservoir system, all the FRC
(x1, y1, y2, . . . , yn, z) should satisfy the principle of the water balance equation [33]:

⎧⎪⎪⎨
⎪⎪⎩

x1 + y1 = x2
x1 + y1 + y2 = x3

. . .
x1 + y1 + y2 + . . . + yn = z

(8)

Figure 2. Sketch diagram of the flood regional composition with cascade reservoirs.

For the inherently stochastic mechanism of the flood generation, there exists multiple
compositions of (x1, y1, y2, . . . , yn, z) in compliance with the water balance equation.
The output of the MLRC method is the FRC with the largest occurrence probability. Never-
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theless, under changing environments, the FRC derived by the MLRC method may vary
over time. According to Sklar’s theorem, the time-varying copula is expressed as follows
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The joint PDF f (xt
1, xt

2, . . . , xt
n−1, xt

n, zt) is maximized when its first-order derivative
equals zero so that the following equation should be satisfied:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ f (xt
1, xt

2, ..., xt
n−1, xt

n , zt)

∂xt
1

= 0
∂ f (xt

1, xt
2, ..., xt

n−1, xt
n , zt)

∂xt
2

= 0

. . .
∂ f (xt

1, xt
2, ..., xt

n−1, xt
n , zt)

∂zt = 0
xt

1 + yt
1 = xt

2
xt

1 + yt
1 + yt

2 = xt
3

. . .
xt

1 + yt
1 + yt

2 + . . . + yt
n = zt = zp

(11)

After deriving the composition (xt
1, xt

2, . . . , xt
n−1, xt

n, zt) from Equation (11), the
NS-FRC (xt

1, yt
1, yt

2, . . . , yt
n) can be obtained subsequently using NS-MLRC method. The

Newton iteration algorithm is adopted to solve Equation (11) [33].
According to the flood prevention standard of cascade reservoirs, the design flood hydro-

graphs of each sub-system are calculated by the peak and volume amplitude method [67,68]
based on the results of the NS-MLRC method. River channel flood routing and reser-
voir flood control regulations are adopted to derive the design flood hydrograph at the
downstream site C [34,69].

3. Study Area and Data

The Han River basin in China is located between 106–115◦ E and 30–35◦ N (see
Figure 3), and has a total length of 1530 km. As one of the most important tributaries of
the Yangtze River, The Han River rises in the southern of Qinling mountains, and flows
from the northwest to the southeast. This mountainous region lies in the humid zone with
a subtropical monsoonal climate. The annual average temperature is between 14 and 16 ◦C.
The annual precipitation varies from 700 to 1100 mm, and about 70 to 80% of the annual
precipitation occurs during the flood season (May to October), in which heavy rains in
early summer and continuous rainfall in autumn often cause major floods.
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Figure 3. (a) Map of the Han River basin and (b) sketch diagram of the flood regional composition with AK and DJK
cascade reservoirs.

3.1. Cascade Reservoirs

The Ankang (AK) and Danjiangkou (DJK) cascade reservoirs are located at the upper
and middle reach of the Han River basin, respectively. The AK reservoir was built in 1992
and provides hydropower generation and flood control, while the DJK reservoir was built
in 1973 and its primary functions are flood control, water supply, hydropower generation,
and irrigation. These two reservoirs are selected for the case study because their inflow
data is lengthy enough (over 60 years) and they have large storage capacities.

The basic information of AK and DJK cascade reservoirs is listed in Table 3. The
characteristic parameter values and current flood control operation rules of the AK and DJK
reservoirs are provided by the Changjiang (Yangtze River) Water Resources Commission
(CWRC), Ministry of Water Resource [70]. More information about AK and DJK reservoirs
can be found in the references [71,72].
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Table 3. Characteristic parameter values of the cascade reservoirs in the Han River basin.

Characteristic Parameters Ankang (AK) Reservoir Danjiangkou (DJK) Reservoir

Normal pool water level (m) 330 170
Flood limited water level in summer (m) 325 160
Flood limited water level in autumn (m) 325 163.5

Design flood water level (m) 333.1 172.2
Total storage capacity (billion m3) 3.34 33.91

Flood control capacity in summer (billion m3) 0.36 14.1
Flood control capacity in autumn (billion m3) 0.36 11.1

Installed hydropower capability (MW) 800 900
Flood control design standard (year) 1000 1000

3.2. Dataset

Four categories of data series were collected, including restored streamflow data,
observed hydro-climate data, population growth data and GCMs outputs from CMIP5.
The observed data series provide information up to 2020, while a projected dataset of the
future period from 2021 to 2095 is also used in this study.

(1) Restored mean daily streamflow data from both the inflow of AK reservoir and the
inflow of DJK reservoir were provided by the Hydrology Bureau of the Changjiang (Yangtze
River) Water Resources Commission during 1954–2020. The restoration of streamflow data
can be taken as a natural flow series that eliminates the regulation impact of reservoirs.

(2) Observed daily precipitation series from 27 stations during 1951–2020 were ob-
tained from the National Climate Center of the China Meteorological Administration
(source: http://data.cma.cn/ (accessed on 16 April 2021)).

(3) Given the unavailability of population data at the basin scale, the total registered
population of all the prefecture-level cities amidst in the Han River basin was collected.
These cities include Wuhan, Shiyan, Jingmen, Xiangyang in Hubei province, Hanzhong,
Ankang and Shangluo in Shanxi province, and Nanyang in Henan province. The annual
registered population data in Han River basin were obtained from the China Compendium
of Statistics 1949–2008 [73], the website of the National Bureau of Statistics of China (source:
http://www.stats.gov.cn/tjsj/ndsj/ (accessed on 1 July 2021)) and the websites of statistical
bureaus of the provinces and cities mentioned above. For future projection, the logistic
growth model that adapts the growth restriction resulting from limited natural resources is
applied to predict the growth of population [74]. Based on the logistic growth model, the
evolution of the population for the period 1950–2100 is illustrated in Figure 4.

(4) Future daily precipitation is simulated by GCM using climate change scenar-
ios [75]. Our lab research team, Tian et al. (2021) used 10 different GCMs (see Table 4)
and two representative concentration pathways (RCPs) of 4.5 and 8.5 from the IPCC Fifth
Assessment to project climate change for the Han River basin, which are employed in this
study [76–78]. The RCP 4.5 scenario represents a future of medium emission where climate
policies limit [79]. Without climate change policies, RCP 8.5 scenario presumes that high
emissions of greenhouse gases continue in the future.

181



Water 2021, 13, 2687

Figure 4. Evolution of the population in Han River basin during 1950–2100.

Table 4. Description of the 10 GCMs used in this study.

Model Name Department Country
Spatial Resolution (Number of Meridional

Cells × Number of Latitudinal Lattices)

BCC-CSM1.1(m) BCC China 128 × 64
BNU-ESM GCESS China 128 × 64
CanESM2 CCCMA Canada 128 × 64
CCSM4 NCAR USA 288 × 192

CNRM-CM5 CNRM-CERFACS Canada 256 × 128
CSIRO-Mk3.6.0 CSIRO-QCCCE Australia 192 × 96
GFDL-ESM2G NOAA-GFDL USA 144 × 90
MRI-CGCM3 MRI Japan 320 × 160
MPI-ESM-LR MPI-M Germany 192 × 96
NorESM1-M NCC Norway 144 × 96

The outputs of the GCMs not only involve the historical period before 2006 as a
reference, but also cover 2021–2095 for future projection. A daily bias correction method
is applied in this study for statistical downscaling [80]. Six statistics containing mean,
standard deviation, 85th, 90th, 95th and 99th percentiles of future precipitation series
are used to test the performance of the daily bias correction method [80]. Taking the
BCC-CSM1-1 model as an example, the bias of raw and the corrected model for daily
precipitation series during 1991–2005 are illustrated in Figure 5, where the horizontal and
vertical coordinates follow the 27 meteorological stations and the bias about the six statistics,
respectively. These findings indicate the great performance of the statistical downscaling
method so that it can be employed for future projection. Figure 6 shows the projected
future precipitation under RCP 4.5 and RCP 8.5 scenarios. The arithmetic mean values of
the 10 GCMs are employed in this study for nonstationary flood frequency analysis.
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Figure 5. The bias of (a) raw and (b) corrected BCC-CSM1-1 outputs during 1991–2005.

Figure 6. Projected annual precipitation under (a) RCP 4.5 and (b) RCP 8.5 scenarios for 2021–2095. The bold red lines are
the arithmetic mean value of the 10 GCMs.
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4. Result Analysis

4.1. Preliminary Analysis

According to the regulation characteristics of cascade reservoirs in the Han River
basin, the annual maximum 15-day (denoted as W15) flood volume series of the AK and
DJK reservoir are selected for flood frequency analysis. Indicated by the fitted trend lines,
the overall decreasing trends of W15 series in both AK and DJK reservoirs are shown in
Figure 7. The significance of trends in the flood volume series and explanatory variables
(i.e., Pop and Prcp) during 1954–2020 is analyzed by the Mann–Kendall test, and the
Pettitt’s test is employed to detect the change points in the W15 series, which is summarized
in Table 5. Findings show decreasing trends of the W15 series in both the AK and DJK
reservoirs and the detected change-points are located at 1985–1986 (p-value < 0.05) for
two reservoirs. The nonparametric multiple change point analysis method detects the
change point of the W15 series between AK and DJK reservoirs, which takes place in 1985
(p-value < 0.05). This preliminary analysis demonstrates that both the univariate series and
the dependence structure between the W15 series are all nonstationary.

Table 5. Results of trend test, change-point detection and multiple change point analysis for the W15 series for the years
1954–2020 (* means the maximum of the absolute value of the vector U).

Reservoir
Mann-Kendall Test Pettitt’s Test

Nonparametric Multiple Change
Point Analysis

S p-Value Change Point/Year U * p-Value Change Point/Year p-Value

AK −555 0.0027 32/1985 564 0.0038
32/1985 <0.05DJK −613 0.0009 32/1985 596 0.0018

Figure 7. The W15 series with the fitted linear trend lines of (a) AK and (b) DJK reservoirs.

4.2. Nonstationary Design Flood Volumes
4.2.1. Univariate Nonstationary Flood Frequency Analysis

Based on the selection procedure mentioned in Section 2.2.2, we assume that the lower
bounds of forward stepwise procedure for both μ and σ are constant (i.e., μ ~1, σ ~1), while
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the upper bounds are (Pop + Prcp). Table 6 lists the distribution parameters and BIC values
for W15 at the AK and DJK reservoirs, in which the time-varying BICNS and constant BICS
are also calculated. According to the minimum BICNS values, the Log-normal distribution
is the best one for the W15 series in both the AK and DJK reservoirs. To demonstrate
the fitting process, the detailed forward procedure applied in Log-normal distribution
parameter μ is displayed in Table 7. The worm plot and centile curves for the Log-normal
distribution are plotted in Figure 8. In the worm plot, all scatter points are within the 95%
confidence intervals, illustrating a good fit between the optimal distribution and empirical
frequency series. In terms of centile curves, the percentages of observation points within
the 5th, 25th, 50th, 75th and 95th intervals are 5.97%, 26.86%, 59.70%, 70.14% and 94.02%
(5.97%, 28.35%, 53.73%, 71.64% and 94.02%) for AK (DJK), respectively. The above results
indicate that the selected optimal Log-normal distribution is more adequate to model the
nonstationarity of the W15 series, and to express the similar type of GLMs for both AK and
DJK reservoirs. As presented in Table 6, the location parameter of Log-normal distribution
for modelling the W15 series is linked to Prcp and Pop while the scale parameter of W15
is constant. Furthermore, the BICNS value is always smaller than the BICS value for the
same distribution. Compared to the stationary distributions, the optimal nonstationary
Log-normal distribution can satisfactorily capture the nonstationarity in flood frequency
analysis for both the AK and DJK reservoirs.

Table 6. Distribution parameters and BIC values for W15 at the AK and DJK reservoirs.

Reservoir
Probability

Distribution

Distribution Parameters
BICNS BICS

ln(μ) ln(σ) ν

AK Gamma 2.3979 + 0.2352 × Prcp − −0.1615 × Pop −0.9393 548.57 574.00
Weibull 2.6101 + 0.2199 × Prcp − −0.1562 × Pop 0.9802 554.79 574.55

Log-normal exp(2.2262 + 0.2456 × Prcp − −0.1544 × Pop) −0.9300 546.41 575.94
Gumbel exp(−0.2612 + 9.029 × Prcp − −6.2479 × Pop) 2.6700 575.45 596.75

Pearson type III 2.0914 + 0.2527 × Prcp − −0.1451 × Pop −0.9480 −0.7595 550.09 578.12
DJK Gamma 2.5707 + 0.2874 × Prcp − −0.1442 × Pop −1.0020 619.73 657.38

Weibull 2.6964 + 0.2749 × Prcp − −0.1185 × Pop 1.0350 626.52 656.78
Log-normal exp(2.4567 + 0.2967 × Prcp − −0.1508 × Pop) −0.9900 618.39 661.21

Gumbel exp(−54.34 + 19.15 × Pop) 3.2450 646.41 678.77
Pearson type III 2.4442 + 0.2977 × Prcp − −0.1510 × Pop −0.9903 −0.1016 622.57 660.86

Table 7. The detailed forward procedure of Log-normal distribution for W15 at the DJK reservoir.

Steps μ σ BIC

Step 1 Start μ ~1 σ ~1 661.21
+Prcp μ ~Prcp σ ~1 623.95
+Pop μ ~Pop σ ~1 656.82

Step 2 Start μ ~Prcp σ ~1 623.95
+Pop μ ~Prcp + Pop σ ~1 618.39

Step 3 Start μ ~Prcp + Pop σ ~1 618.39
+Prcp μ ~Prcp + Pop σ ~Prcp 615.69
+Pop μ ~Prcp + Pop σ ~Pop 622.47

Step 4 Start μ ~Prcp + Pop σ ~1 618.39
−Pop μ ~Prcp σ ~1 623.95
−Prcp μ ~Pop σ ~1 656.82

Optimal μ ~ Prcp + Pop σ ~1 618.39

185



Water 2021, 13, 2687

Figure 8. Diagnostic plots (worm plot and centile curves) for evaluating the goodness-of-fit of the optimal nonstationary
Log-normal distribution for the W15 series in the AK and DJK reservoirs.

4.2.2. Design Flood Volumes in DJK Reservoir

The nonstationary design value is essential for handling changing environments in
considering future flood risk management. Since the total storage capacity of the DJK
reservoir is approximately 31 times larger than that of the AK reservoir (Table 3), the
DJK reservoir is considered as the key flood prevention project in the Han River basin.
If we assume that the design lifespan for the DJK reservoir is 100 years (from 1973 to
2072), then the years of 2021–2072 are chosen as future projections. The design flood
volume under nonstationary conditions is calculated by the ER criteria. Three scenarios,
i.e., stationary distribution condition (S1), nonstationary conditions based on RCP 4.5 (S2),
or RCP 8.5 (S3), are compared. It is worth noting that the S1 scenario only takes cascade
reservoir regulation into account while the nonstationary attributes of climate change and
population growth are omitted. To produce an intuitive comparison among these scenarios,
Figure 9 plots the stationary and nonstationary design flood volumes W15 for return period
m ∈ [2, 1000]. It should be noted that the design flood volumes in the stationary reference
scenario are estimated by the Pearson type III distribution and curve-fitting estimation
method recommended by the Ministry of Water Resources in China [32]. It is found that
the design flood volumes of S2 (S3) are lower than S1 when the return periods are less than
300 (200) years, respectively. The design flood volumes of S3 are always larger than S2.
Compared with the nonstationary distribution scenarios (i.e., S2 and S3), the method used
under the S1 scenario overestimates the flood volumes at a lower return period while the
extreme event is underestimated at a higher return period. For the 1000-year return period,
the design W15 in the DJK reservoir under S1, S2 and S3 scenarios are 20.041, 21.680 and
22.352 billion m3, respectively. These results indicate that climate change and population
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growth have greater impact on the features of future W15 under the S2 and S3 scenarios so
that the large uncertainty and flood hazard should be considered for future hydrological
design and water resources management.

Figure 9. Comparison of design W15 with different return periods and scenarios for the DJK reservoir.

4.3. Design Flood Estimation at Downstream Site
4.3.1. Nonstationary Flood Regional Composition

After the estimation of the design flood volumes at the DJK reservoir, the flood regional
composition method can be applied for analyzing the flood generation mechanism of the
cascade reservoirs in the Han River basin. For nonstationary analysis of the dependence
structure, the forward selection procedure is implemented to model the dependence
parameter of three copulas, i.e., the Gumbel-Hougaard, Frank, and Clayton copula. The
lower and upper bounds of forward stepwise procedure for θc are constant (i.e., θc ~1)
and (Pop + Prcp), respectively. Table 8 summarizes the fitted dependence parameters and
the goodness-of-fit results for the optimal copulas under three scenarios for nonstationary
modeling of the W15 series in AK and DJK reservoirs. The p-KS(Z1) and p-KS(Z2) are p-
values of the KS test for the two Rosenblatt’s probabilities integral transformations Z1 and
Z2, which should be uniformly and independently distributed on [0,1]. The p-Kendall is the
p-value of the Kendall rank correlation test for Z1 and Z2. Table 8 shows that the p-KS(Z1),
p-KS(Z2) and the p-Kendall values are larger than 0.05, which statistically supports the
validity of the hypothetical models. The time-varying Gumbel-Hougaard copula is the
optimal copula to model the dependence structure of the W15 series by comparing the BIC
values. Obviously, the nonstationary spatial correlation of flood events can be sufficiently
explained by the NS-MLRC method.
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Table 8. Dependence parameters and goodness-of-fit results for candidate copulas in nonstationary modeling.

Copula θc p-KS(Z1) p-KS (Z2) p-Kendall BICNS BICS

Gumbel-
Hougaard

exp(−0.3019 + 0.2642
× Pop) + 1 0.674 0.464 0.783 1092.48 1128.20

Frank 5.515 + 1.144 × Pop 0.674 0.644 0.935 1095.81 1137.03
Clayton 0.9647 0.674 0.852 0.249 1096.95 1132.60

Figure 3b illustrates that the flood volumes of the DJK reservoir are decomposed to
the outflow of the AK reservoir and the inflow of the AK-DJK inter-basin. It is noted that
the return period of the design flood is 1000 years in both the AK and DJK reservoirs,
as shown in Table 3. The Log-normal distributions with explanatory variables shown in
Table 6 are applied as the marginal distributions of the time-varying copulas. Following
the procedures described in Section 2.3.2, the NS-MLRC results of the cascade reservoirs
can be estimated.

Based on the NS-MLRC method, the nonstationary FRC of the AK and DJK reservoirs
with the maximum occurrence probabilities are derived. It should be noted that there are
one hundred (from 1973 to 2072) FRCs derived by the NS-MLRC method, compared with
the individual result calculated by the MLRC method. Table 9 compares the FRC results
under three scenarios during design lifespan with the same flood prevention standard
according to ER. It is shown that the designed W15 in the AK reservoir (X1) of S2 and S3 is
greater than that of nonstationary cases, while the design W15 at the (Y1) are overestimated
when compared with S1.

Table 9. The FRC results derived by the MLRC (S1 scenario) and NS-MLRC (S2 and S3 scenarios) methods during design
lifespan with the same flood prevention standards based on ER. X1, Y1 and X2 represent the designed flood volume W15 at
the AK reservoir, inter-basin, and the DJK reservoir, respectively.

Method Scenario
Volumes (Billion

m3)
X1 Y1 X2

The MLRC S1 10.605 9.435 20.041
The NS-MLRC S2 Minimum 10.760 6.779 21.680

Median 12.990 8.693
Mean 12.960 8.724

Maximum 14.900 10.921
S3 Minimum 11.120 6.944 22.352

Median 13.210 9.144
Mean 13.120 9.232

Maximum 15.410 11.321

4.3.2. Design Flood Hydrographs at Downstream Site

The estimation of design floods at downstream sites can be obtained using design
inflow hydrographs and cascade reservoir regulations based on the derived FRC results.
Different FRCs may differ in terms of their occurrence probabilities [35], and the FRCs
with maximum occurrence probabilities among the lifespan of projects are analyzed. To
generate the design flood at the downstream site C (Figure 3), the current flood control
regulation and the commonly used Muskingum model provided by the CWRC are used.
After flood control operation, 1000-year design flood hydrographs for the downstream
sites under three scenarios with or without reservoir regulation are plotted in Figure
10. Table 10 lists the results of the 1000-year design floods under three scenarios with or
without reservoir regulation.
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Figure 10. Design flood hydrographs of 1000-year return period at downstream under three scenarios with (dash line) or
without (solid line) cascade reservoir regulation.

Table 10. Comparison of 1000-year design floods under three scenarios with or without reservoir regulation.

Scenario Variable Reservoir Regulation Ankang Reservoir Danjiangkou Reservoir

S1 Qmax (m3/s) no 31,393 59,323
yes 28,093 −10.51% 30,000 −49.43%

W1 (billion m3) no 2.663 5.031
yes 2.515 −5.53% 2.398 −52.35%

W3 (billion m3) no 6.497 12.277
yes 6.141 −5.48% 5.594 −54.43%

S2 Qmax (m3/s) no 31,846 64,175
yes 30,236 −5.06% 30,000 −53.25%

W1 (billion m3) no 2.701 5.443
yes 2.550 −5.60% 2.592 −52.38%

W3 (billion m3) no 6.591 13.282
yes 6.200 −5.92% 5.875 −55.76%

S3 Qmax (m3/s) no 32,919 66,164
yes 31,171 −5.31% 30,000 −54.66%

W1 (billion m3) no 2.792 5.612
yes 2.632 −5.71% 2.592 −53.81%

W3 (billion m3) no 6.813 13.69
yes 6.526 −4.21% 6.350 −53.62%

Figure 10 shows that the 1000-year design flood hydrographs vary considerably
with less peaks and gentler flood processes at downstream sites after cascade reservoir
regulation. As shown in Table 10, the design floods of the cascade reservoirs decrease
significantly on account of the regulation of the AK and DJK reservoirs. Taking Qmax as
an example, under the S1, S2, and S3 scenarios, the 1000-year design Qmax of AK (DJK)
at downstream sites decreased by 10.97% (49.43%), 5.06% (53.25%) and 5.31% (54.66%),
respectively due to cascade reservoir regulation. Furthermore, the W1 and W3 flood
volumes are less than half of these without cascade reservoir regulation.

5. Discussion

5.1. Nonstationary Characteristics

Flood events differ according to climate, reservoir regulation, water consumption, and
land use, which are the potential driving forces that link to flood design. When traditional
hydrologic design criteria are extended for accommodating nonstationary conditions, the
future covariates should be obtained on account of the hydraulic lifespan. However, it is
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difficult to predict the changes of some variables, such as deforestation, so that other land
use indices are not considered in this study. Based on the case study in the Han River, the
influence of climate change, population growth and cascade reservoir regulation on the
design flood at the downstream site are discussed as follows.

Many studies have identified how the changing pattern brings diverse control on
a flow process [28,33], which can be classified as either a direct and/or indirect impact.
Climate change and population growth will alter the regional hydrological characteristics
of the basin, and affect the flood data series as well as the flood design (Figure 8) [43].
Compared to these prolonged effects, the cascade reservoir regulation clips the flood
peak and decreases the flood volumes in a transitory and swift way (Figure 10). Among
the multiple driving patterns, the cascade reservoir regulation plays a dominant role in
affecting the design floods at downstream sites. Furthermore, the cascade reservoir flood
control strategies can be re-regulated for adapting the slow-to-change non-stationarity
(such as climate change and population growth) in future work.

5.2. The Worst FRC during Reservoir Lifespan

In practical operations, the worst FRC during reservoir lifespan is more noteworthy
in comparison with the most likely FRC. The reservoir water level is at the flood limited
water level during flood season to provide sufficient storage for possible floods [81]. When
a flood event occurs, the highest water level during the period of reservoir flood regulation
can quantificationally indicate the flood hazard, such as dam-break risk, downstream
inundation risk and so on. In this study, the highest water level of the DJK reservoir during
the whole flood regulation process is applied as an indicator to specifically represent the
hazard of flood events.

Although the MLRC method has a strong statistical basis and generates a single
regional composition, it is unable to evaluate the composition of the worst regional flood.
The NS-MLRC method can include varying factors such as precipitation and population
growth. In this study, variant FRCs derived by the NS-MLRC method are used to amplify
the typical flood hydrograph, forming one hundred (from 1973 to 2072) FRC types. After
cascade reservoir regulation, the comparison of the highest water levels derived from
both the most likely FRCs and the worst FRCs at the DJK reservoir during its lifespan is
demonstrated in Table 11. It indicates that the highest water level estimated by the most
likely FRC is lower than that of the worst FRC, which means the worst FRC under the S2
and S3 scenarios is more adverse than the most likely FRC. In practice, the worst FRC in S3
is worthy of noting for future flood risk management.

Table 11. Comparison of the highest water level derived from both the most likely FRC and the worst
FRC during reservoir lifespan at the DJK reservoir for different scenarios.

Flood Regional Composition (FRC) S1 S2 S3

The most likely FRC 168.27 m 168.97 m 168.96 m
The worst FRC - 169.02 m 169.37 m

6. Conclusions

There is an increasing need to develop an effective design flood estimation framework
to deal with nonstationary data series caused by climate change and anthropogenic ac-
tivities. In this study, the univariate flood frequency analysis, nonstationary hydrologic
design criteria and the NS-MLRC method were adopted to derive the nonstationary design
flood volumes in the Han River. The design flood hydrographs at the downstream site
were estimated after cascade reservoir regulation. The main conclusions are summarized
as follows:

(1) The proposed NS-MLRC method can be effectively implemented as an extension of
the MLRC method for explaining the nonstationary spatial correlation of the flood events.
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The multiple nonstationary driving forces, i.e., climate change and population growth, can
be captured and precisely quantified by the proposed design flood estimation framework.

(2) The slow-to-change impacts of climate change and population growth are presented
in design flood volumes according to the nonstationary flood frequency analysis method
and ER criteria. The long-lasting driving factors imply the larger risks of the flood hazard.
The 1000-year design W15 of the DJK reservoir under the stationary distribution scenario
(S1), RCP 4.5-based (S2), and the RCP 8.5-based (S3) nonstationary scenario are 20.041,
21.680 and 22.352 billion m3, respectively.

(3) The swift effects of cascade reservoirs are reflected in design flood hydrographs
with lower peaks and less volumes based on the NS-MLRC method and flood control
operation rules. For instance, the 1000-year design Qmax of the AK (DJK) downstream site
under the stationary distribution scenario (S1), RCP 4.5-based (S2), and RCP 8.5-based (S3)
nonstationary scenario decrease by 10.97% (49.43%), 5.06% (53.25%) and 5.31% (54.66%),
respectively due to cascade reservoir regulation.

As the dominant element affecting flood design, the current cascade reservoir oper-
ation strategies can be improved to accommodate the slow-to-change nonstationarity in
further research.
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Abstract: The topic of uncertainties in water management tasks is a very extensive and highly dis-
cussed one. It is generally based on the theory that uncertainties comprise epistemic uncertainty and
aleatoric uncertainty. This work deals with the comprehensive determination of the functional water
volumes of a reservoir during extreme hydrological events under conditions of aleatoric uncertainty
described as input data uncertainties. In this case, the input data uncertainties were constructed
using the Monte Carlo method and applied to the data employed in the water management solution
of the reservoir: (i) average monthly water inflows, (ii) hydrographs, (iii) bathygraphic curves and
(iv) water losses by evaporation and dam seepage. To determine the storage volume of the reservoir,
a simulation-optimization model of the reservoir was developed, which uses the balance equation
of the reservoir to determine its optimal storage volume. For the second hydrological extreme, a
simulation model for the transformation of flood discharges was developed, which works on the
principle of the first order of the reservoir differential equation. By linking the two models, it is
possible to comprehensively determine the functional volumes of the reservoir in terms of input
data uncertainties. The practical application of the models was applied to a case study of the Vír
reservoir in the Czech Republic, which fulfils the purpose of water storage and flood protection.
The obtained results were analyzed in detail to verify whether the reservoir is sufficiently resistant
to current hydrological extremes and also to suggest a redistribution of functional volumes of the
reservoir under conditions of measurement uncertainty.

Keywords: multi-purpose reservoir; functional volume; uncertainties; Monte Carlo method; hy-
drological extremes; simulation-optimization model; optimal storage volume; simulation model;
retention volume; transformation of flood discharges

1. Introduction

According to the latest evaluated data on the state of weather and climate in the world
by the World Meteorological Organization [1], warming is continuing to increase, which
has been observable for several decades. According to the Intergovernmental Panel on
Climate Change (IPCC) [2], one of the five reasons for concern (RFCs) that illustrate the
consequences of global warming and summarize key impacts and risks across sectors and
regions is extreme weather events. These include, for example, an increase in the number
of heat waves and an increase in the periodicity and intensity of droughts and floods.
Currently, due to global warming, water scarcity is growing very rapidly worldwide and
an increasing number of drought-affected areas are emerging. Problems with the security
of water resources are beginning to be evident, even in areas where the population has not
been very aware of drought. On the other hand, there is also a more frequent incidence of
floods worldwide.

The people of Central Europe are also beginning to feel these problems more strongly [3].
Drought periods have appeared in Central Europe in recent years, in 1949, 1961 and 1963,
from 1991 to 1994 and in 2003 [4], and they have been repeated to a greater extent since
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about 2011 [4], persisting until now. In the climate of Central Europe, the reduction in aver-
age precipitation is not recorded, but there are changes in the distribution of precipitation.
In other words, the periods of drought are becoming more prolonged, alternating with
more intense precipitation, which can cause floods from torrential rains. The above is also
intensified by the extensive regional floods that Central Europe has faced in recent years;
for instance, the regional floods in 1997, 2002, 2006, 2009, 2010 and 2013 [5].

The values of annual river flow trends in Central Europe have a negative tendency,
especially in the spring and summer months [6]. In the future, a further decrease in flows is
probable, especially in low-water periods [7], and the probability of lower flow occurrence
will increase. In addition, the prospects for the coming years are not very optimistic given
the frequency and length of droughts and the occurrence of floods, even if estimates from
climate models are not completely fulfilled. This is confirmed by the IPCC Fifth Assessment
Report [8]. According to this report, climate change is expected to increase drought risks
and water scarcity in urban areas with a very high degree of reliability. Indicators of a
medium degree of reliability point to higher flood risks at the regional level [8]. In addition,
the longer the period without the occurrence of major regional floods, the more likely it
becomes that this event will occur.

From the point of view of hydrological extremes, a large degree of uncertainty affects
water management applications, whether it is uncertainty stemming from climate change
or from the measurement of input data. The overall concept of uncertainty can currently be
perceived from several perspectives, and there are many applications of uncertainty. Uncer-
tainty can be classified [9] into two categories, namely aleatoric and epistemic uncertainty.
The application of the aleatoric and epistemic uncertainty typology is complex in technical
tasks but it can be determined by the author when creating a model based on many factors,
knowledge of the problem and the decision-making process [9]. Uncertainty arising from
measurements falls into the group of aleatoric uncertainty. This category of uncertainties
is tied to a certain probability distribution and shows the variability associated with the
system or the environment. Therefore, it can be described using stochastic simulations [10].

No major watercourses flow into the Czech Republic and the only basic source of
water is precipitation that falls on its territory. Under these hydroclimatic conditions, water
resources management must be focused primarily on increasing the retention capacity of
water in the landscape and its subsequent infiltration into underground sources, but also
on strengthening surface water resources. One of the appropriate adaptation measures
for the future change of climatic conditions is water reservoirs, either in the sense of
appropriate management of existing reservoirs or the construction of new reservoirs. This
is confirmed by the Strategy on Adaptation to Climate Change in the Czech Republic [11],
which represents a national adaptation strategy including water management. One of the
recommended strategies in the document [11] is the optimization of the function of existing
reservoirs and water management systems with regard to the more intensive occurrence of
hydrological extremes.

In the Czech Republic, water reservoirs have been designed according to historical
or derived hydrological time series, and individual volumes in reservoirs were designed
separately. Water reservoir handling codes are outdated and do not take into account the
uncertainties arising from the processing of input data and the uncertainty of future climate
change. These uncertainties can jeopardize the reliability of water supply. It is therefore
appropriate to undertake thorough analyses of reservoir volumes and revisions of handling
codes and the Czech Technical Standards [12].

The aim of this study was to present a complex solution for the design of functional
volumes of a multi-purpose reservoir under conditions of uncertainty of input data mea-
surement. To meet the main objective, it was first necessary to meet two sub-objectives:

(a) The first sub-objective was to develop a simulation-optimization model of the reser-
voir to determine the optimal storage volume of the reservoir under conditions of
input data uncertainty (UNCE_RESERVOIR). The reservoir model is based on the
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balance equation of the reservoir and involves optimization using the grid method
with the required temporal reliability.

(b) The second sub-objective was to develop a simulation model for the transformation of
uncertain flood discharges to determine the retention volume of the reservoir under
conditions of input data uncertainty (TRANSFORM_WAVE). The model is based on
the first order of the reservoir differential equation.

(c) The main objective was to link the two models and analyze what effect the optimized
reservoir storage volume will have on the transformation effect of the reservoir.

The main model integration comprises the development of a comprehensive solution
for the functional volumes of the reservoir in terms of input data uncertainties applied to
the input data. This innovative approach responds to changes in future climatic conditions
and contributes to reducing the risk of water supply disturbances during low-water periods
with a safe design for the size of the retention volume in extreme floods. The combination
of both models creates a procedure and, subsequently, a tool, which can be applied to the
design of any new reservoirs or to the redistribution of volumes of existing multi-purpose
reservoirs, not only in Central Europe but also across the world. Adequate input data is an
important condition. The procedure and models were applied and tested on the real Vír
reservoir in the basin of the Morava River in the Czech Republic.

2. Background

The uncertainties themselves, from the point of view of current knowledge, were first
described in the work “Risk, Uncertainty, and Profit” [13]. Measurement uncertainties as
we know them today became common practice in calibration laboratories only in 1990
with the Western European Calibration Association publication “WECC 19/90” [14], which
outlined, for the first time, the general principles of uncertainty and defined further proce-
dures for introducing uncertainty theory into metrological practice. This was followed by
other regulations and guidelines [15,16], according to which the theory of measurement
uncertainties developed two classifications: so-called type A uncertainty and type B un-
certainty. This classification is based on the method of obtaining the given uncertainty.
Reference [17] deals with the distribution and promotion of measurement uncertainties
using simulation with the stochastic Monte Carlo method.

Worldwide, research on uncertainties in hydrology and water management is exten-
sive, including the uncertainty of measurement of hydrological quantities, uncertainties in
hydrological applications and the influence of measurement uncertainties on multi-purpose
reservoirs. In hydrology itself, estimates of uncertainties in the form of uncertain and in-
complete data or ignorance of systems were first described by the GLUE method [18,19].
Uncertainties of flow measurements or possible approaches to fill in missing flow series
have been discussed [20–24]. Uncertainties applied to predict water flow in streams and
floods using the Monte Carlo method have been mentioned in other studies [25,26]. Hydro-
logical applications involving the investigation of the effects of hydrological uncertainties
arising from measurements on the volume of water in reservoirs have been discussed in
two articles [27,28]. The most recent publications have examined the risks of uncertainty
and its effect on the storage volume of reservoirs using Monte Carlo simulations [29,30].
Based on uncertain future flood inflows to a reservoir, an analysis of the probable risks
for a reservoir was performed in [31] and an analysis of flood control risks with an un-
certain prognosis of water inflows was undertaken through Monte Carlo simulation of
the reservoir system in [32]. A simultaneous solution for storage and retention volume
under uncertainty conditions was investigated in [33] for the largest multi-purpose water
reservoir in Vietnam using the simulation model MIKE 11. Other articles that evaluate new
approaches to decision-making methods for solving problems involved in multi-purpose
reservoirs under conditions of uncertainties are [34–36].

In general, the models for determining the storage volumes of reservoirs are based on
the balance between the inflow of water into the reservoir and the outflow of water from
the reservoir, including abstractions. The model approaches include simulation [37,38] and
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an unconventionally statistical approach [39]. For the transformation of flood discharges or
the determination of the retention volume of the reservoir, the approaches of the models
generally involve simulation and can be solved with numerical Runge–Kutta differential
methods [40–42], Klemeš graphical methods based on a differential equation [43,44] or
mathematical and physical modeling.

Further similar research dealing with the volumes of multi-purpose reservoirs under
uncertain conditions can be found in articles [45–51]. The results obtained generally show
that current reservoirs and optimal operating rules for the water supply system cannot
deal with the problem of performance degradation under uncertainties associated with
inflow conditions and water demand growth. The search for the trade-off between water
supply and flood protection leads to individual approaches and to the improvement of
reservoirs’ optimal operation models. Articles [45–51] further develop models at tropical
monsoon climate locations or in areas with significant annual periods of dry and wet
seasons. Current climate conditions in Central Europe are changing. The frequencies of
drought and floods episodes are increasing and the problem focus on the trade-off between
water supply and flood protection can only be solved when the issues are treated separately.
Under these climate change conditions, newly joined water supply and flood modeling
including uncertain input data will be an issue for water science in the Czech Republic.

In the Czech Republic, the influence of random errors in hydrological data for the
value of the reservoir storage volume was first investigated in 1984 [52]. This report
introduced the principle of random errors into time series using the Monte Carlo method
and their subsequent application to reservoir storage volume calculations was defined.
This method was developed in [53–57] where a detailed analysis of the influence of the
uncertainties of the input data on the simulation model of the storage volume of the
reservoir was undertaken. In articles [52–57], comprehensive models were constructed to
address the issues described above in sub-objectives (a) and (b). These models were first
tested in isolation, as described in [58,59], and these articles present the development of
their integration.

The research in [54–57] has shown that the uncertainties of the input hydrological
data can: (i) negatively affect or underestimate the size of the storage volume of a reservoir,
(ii) realistically cause unexpected operational failure of a reservoir, (iii) result in high
economic damage and (iv) lead under certain conditions to reservoirs being erroneously
classified into the more significant classes of waterworks according to the Czech Technical
Standard [12] based on storage volumes. This standard classifies water reservoirs based on
their strategic importance. The classification is evaluated by the time reliability RT, which is
defined as the ratio of months without water failures, represented as water deficit, and the
number of all months for a given time series [60–62]. Category A, with the highest priority,
is for RT ≥ 99.5% and category D, with the lowest priority, is for RT ≥ 95.0%. A water
deficit is identified when the storage volume of the reservoir is in an unsatisfactory state.

3. Case Study

A case study was undertaken on the Vír I multi-purpose reservoir located on the
Svratka River in the basin of the Morava River in the Czech Republic. The reservoir is
located 150 km east of the capital city of Prague (see Figure 1) and supplies water to
Brno, the second largest city. The concrete gravity dam falls under the administration of
the Morava River Basin State Enterprise. The long-term inflow QA is 3.28 m3 s−1. The
required water outflow from the reservoir OR is 2.5 m3 s−1. The storage volume VZ is
44.056 million m3 at an elevation of 464.45 m above sea level, the volume of inactive storage
is 3.80 million m3, the retention volume VR is 8.337 million m3 and the total volume of the
reservoir VTOT is 56.193 million m3. The reservoir has two bottom outlets with diameters
of 1800 mm. At the maximum water level, the flow rate of the bottom outlets is maximally
2 × 40 m3 s−1. The emergency spillway of the reservoir is an uncontrolled crest structure
at an elevation of 467.05 m above sea level, with a total length of 60.5 m (5 × 12.1 m) and a
capacity of 180.5 m3 s−1 at the level of the uncontrollable retention volume. According to
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the Czech Technical Standard [12], the reservoir falls into category A, the highest priority,
i.e., with a time reliability RT ≥ 99.5%. The main purposes of the reservoir are storage of
drinking water and flood protection.

Figure 1. Location of the Vír I water reservoir.

Hydrological data regarding the inflow of water into the reservoir used for the deter-
mination of the storage volume of the reservoir was in the form of historical monthly flows
for the last 66 years and an updated flood discharge from 2008 was used to calculate the
retention volume of the reservoir. Specifically, this was a flood discharge of Q1000 accord-
ing to the classical regression without seasonality differentiation and with a time step of
360 min. Hydrological data were acquired from the Czech Hydrometeorological Institute.

The calculation of the storage volume of the reservoir aimed to take into account the
losses of water from the reservoir, specifically evaporation from the water surface and
seepage through the body of the dam. The amount of the evaporation was determined
by the annual evaporation, i.e., 613 mm, and the seepage size through the dam body was
0.15 l s−1 per 1000 m2 [63].

To calculate the retention volume of a reservoir, it is necessary to determine its control
maximum water level (CML) according to [63,64]. This CML value corresponds to the level
of the dam crest, i.e., 470.45 m above sea level.

4. Methodology

4.1. Problem Formulation

The operation of multi-purpose reservoirs is complicated due to the conflict between
different objectives. In recent years, it has become desirable to maximize both storage
volume and protective volume, as multi-purpose reservoirs may not fully respond to
current and future climatic conditions. The solution is to find a suitable ratio between
the size of the storage and the retention volume of water in the reservoir in conditions
of uncertainty. In other words, we need to comprehensively determine the functional
volumes of the reservoir. For this purpose, the models presented below apply input data
uncertainties to their solution through the Monte Carlo method. The connection of both
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models for the determination of the functional volumes of the reservoir, including an
example of the introduction of input uncertainties, is shown in the flow chart in Figure 2.

Figure 2. Flow chart of a complex solution for the functional volumes of a reservoir.

4.2. UNCE_RESERVOIR—Simulation-Optimization Model of the Reservoir for Determining the
Storage Volume of the Reservoir

The developed simulation-optimization model determines the optimal storage volume
of the reservoir VZ in conditions of uncertainty. To determine the optimal storage volume
of the reservoir VZ = f (OR, RT), which is a function of the required outflow OR and
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predetermined temporal reliability RT < 100%, repeated calculations determining the
temporal reliability RT = f (OR, VZ) at the predetermined required outflow OR and storage
volume VZ were used.

The parameter sought was therefore the storage volume VZ. The criterion was tempo-
ral reliability according to the temporal reliability RT and the water management solution
allowed water failures in the reservoir according to the categorization of the reservoir. The
initial condition was a full reservoir at the beginning of the test period (a value of 0 on
the left side of Equation (1) characterizes the full storage volume of the reservoir) and the
boundary condition was a series of water inflows into the reservoir at the appropriate
time steps. For each time step, a balance was made between the required outflow OR
and the historical inflow of water into the reservoir Q. In addition, the limiting condition
∑(OR − Q) was tested, i.e., whether or not the reservoir was emptied at the end of each
month (the VZ,MAX value on the right side of Equation (1) characterizes the empty storage
volume of the reservoir). If it was emptied, a failure of the water outflow from the reservoir
was judged to exist. This meant that in all months when the outflow of water Oi was
less than the required outflow OR, the reservoir failed to supply enough water to the
distribution system. The total sum of all failure months according to Equation (2) was
recorded and the temporal reliability RT was calculated (see Equation (3)).

The basis of the simulation model of the subtask RT = f (OR, VZ) is the modified
balance equation of the reservoir in the sum form converted into the following inequality
(Equation (1)) [65]:

0 ≤
k

∑
i=0

(Oi − Qi)Δt ≤ VZ,MAX , (1)

where Oi is the water outflow from the reservoir (m3 s−1) in a given month for i = 1, . . . , k;
Qi is the inflow of water into the reservoir (m3 s−1) in a given month for i = 1, . . . , k and Δt
is the time step of the calculation of one month.

The classification of the reservoir storage volume failure for the calculation of temporal
reliability is expressed by Equation (2) [53]:

Zt,i =

{
Zt,i = 1, Oi > OR
Zt,i = 0, Oi < OR

, (2)

where Zt,i = 1 describes the state of the VZ reservoir in the fault-free (satisfactory) time
step of the calculation and Zt,i = 0 describes the state of the VZ reservoir in the faulty
(unsatisfactory) time step of the calculation.

The degree of temporal reliability of the improved outflow OR as a result of the
outflow control is the probability that the actual outflow of water from the reservoir will
not fall below the value of the improved outflow OR. In this case, the temporal reliability is
applied according to the temporal reliability RT, which can be calculated from the values
Zt,i according to Equation (2) [66]:

RT =

(
∑k

i=1 Zt,i

)
− 0.3

k + 0.4
· 100, [%], (3)

where ∑k
i=1 Zt,i is the sum of the records of the faulty and fault-free months and k is the

number of all months of the input time series.
First, the value of the parameter (storage volume) is selected and a new variant of reser-

voir operation is repeatedly simulated according to Equation (1), and then the monitored cri-
terion π (decrease in temporal reliability RT) is evaluated according to Equations (2) and (3).
The solution is a variant in which the criterion coincides with the required value. In this
variant, the selected parameter becomes the result of the solution. The task leads to an
optimization in which the solved parameter is unknown and the criterion is the difference
between the calculated and the required temporal reliability, which is minimized. The
reservoir model uses a simple optimization method called the grid method, where param-
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eters with a fixed step are selected at allowable intervals. The calculation also includes,
among other things, water losses from the reservoir, specifically water losses by evapora-
tion from the water surface and seepage of the dam body. The principle for introducing
water losses from the reservoir into the solution is that the loss flows are counted using
repeated simulation.

4.3. TRANSFORM_WAVE—Reservoir Simulation Model for Determining the Retention Volume
of the Reservoir

For the second hydrological extreme, flooding, a simulation model was developed
for the transformation of uncertainty-affected flood discharges. In the model, the transfor-
mation of the flood discharge is performed by mathematical modification of the original
Klemeš graphical method [43]. The Klemeš graphical method (see Figure 3) is based on
the first order of the reservoir differential equation and expresses the relationship between
the inflow and outflow of water from the reservoir as a function of time and the volume of
water retained in the reservoir.

Figure 3. Principle of the Klemeš graphical method [43].

The following simplifications were introduced to construct the model: (i) Although the
inflow and outflow values change continuously over a period of time during the process,
they were considered to be constant in a given time interval. The inflow (marked as P and
Q in Figure 3) and outflow in each interval are thus represented by a single instantaneous
value; (ii) The Klemeš method was set to enter the calculation only when the emergency
spillway is exceeded. If the water is below the level of the emergency spillway, then
the calculation only balances the volume of water inflow and outflow to the previous
reservoir volume.

The main data for the Klemeš method are the hydrograph of the flood, the parameters
of the bottom outlets, the emergency spillway and the line of flooded volumes for the
construction of the so-called transformation curve, which can be seen in the right part of
Figure 3 and is marked as Q′. The transformation curve expresses the total outflow of
water from the reservoir depending on its filling. It characterizes the potential outflow of
water from the reservoir and is a function of the volume of the reservoir. To determine it,
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according to [67], the capacity of the bottom outlets OB should be calculated according to
Equation (4) and the emergency spillway capacity QES according to Equation (5):

OB = μ S
√

2 g hw, (4)

QES = m b
√

2 g h
3
2
es, (5)

where μ is the outflow coefficient (-), S is the area of the outlet opening (bottom outlets)
(m2), g is the gravity acceleration (m s−2), hw is the height of the water above the bottom
outlets (m), m is the overflow coefficient (-), b is the width of the emergency spillway (m)
and hes is the height of the water above the spillway (m).

Furthermore, it is necessary to use the Klemeš method to construct the reduction
angle α for the transformation, which is based on the size of the flow and the time interval
and characterizes the proportionality between the created area surrounded by inflow and
outflow in a given time interval and the length of the horizontal line of the transforma-
tion curve of the given time interval. The graphical construction by the Klemeš method
takes place gradually in individual time intervals, first on the ascending and then on the
descending branch of the flood discharge, through the mentioned transformation curve
and the reduction angle α.

4.4. Monte Carlo Method for Applying Input Uncertainties to the Reservoir Simulation Model

The following assumptions were introduced to create an algorithm that generates
random series with a burden in the form of uncertainties. The general input value X
resulting from the measurement was considered as a random (stochastic) quantity. This
assumption makes it possible to generate new Xi values around the input value X result-
ing from the measurement completely randomly and independently of each other. The
quantity Xi is therefore random and independent of the previous and following values.
The randomly generated quantities Xi are the result of a number of mutually independent
phenomena, which makes it possible to describe the input value with a corresponding
normal probability distribution N(μ(X),σ(X)). The introduction of a normal probability
distribution makes it possible to enter the vicinity of the resulting value of a random
variable using the mean value μ(X) as the measured value and the standard deviations
σ(X) as the standard uncertainty. Only the standard measurement uncertainty of type B
uB,X was considered in the calculations. Finally, a simplification was introduced, whereby
the standard uncertainty of measurement uB,X is deployed using the relative value of the
coefficient of variation Cv(X) (see Equation (10)) and the resulting standard deviation σ(X)
is then calculated according to Equation (9).

The essence of the random series generator is repeated use of the Monte Carlo method.
Subsequently, for each mean value μt(X), distribution curves Ft(X) of the normal standard-
ized probability distribution N(μ(X),σ(X)) are created for t = 1, 2, . . . , NE, where NE is
the total number of elements (e.g., the total number of average monthly inflows or the
total number of points from the flooded volume line). Using a pseudo-random number
generator, generating random numbers from the interval ξ ∈ 〈0,1〉, random waveforms of a
number of elements Xt are repeatedly generated, which are referred to as random positions
of NXt,i values, in the interval of specified uncertainty for i = 1, 2, . . . , NG, where NG is
the total number of repetitions (generations). The general principle for generating random
positions of input parameters can be found in previous studies [52,53]. This described
procedure for generating random elements can be applied to all quantities entering the
water management solution for the storage and retention volume of the reservoir, except
the bathygraphic curves of the reservoir. In this case, a compilation of two independent
Monte Carlo generators was required. Each generator constructs a random point position
(e.g., water level height) with a second random point position added to it (e.g., the vol-
ume of water in the reservoir). Together, the random positions of two points then create
a random point coordinate (e.g., a random point coordinate of a flooded volume line).
A series of random points then form random lines of flooded volumes burdened with
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uncertainties. A symbolic depiction of the introduction of considered quantities burdened
with uncertainties is shown Figure 4.

Figure 4. Symbolic depiction of the introduction of considered quantities burdened with uncertainties.

4.5. Methods for Evaluation

The generated input uncertainties in the data for the calculation of the water manage-
ment solution of the reservoir provide spectra of storage and retention volume sizes. For a
suitable presentation of the achieved results, the calculations were statistically evaluated
and quantiles and the overshoot probability curve were also used.

4.5.1. Mean Value

The mean value is the value of the first general moment, denoted as μ(X), and is
expressed in the following form (Equation (6)):

μ(x) =
∫ .

x
x fx(x)dx. (6)

The mean value belongs to the so-called position characteristics and its value is the
x-coordinate of the center of gravity of the probability density. The method of moments
involves an estimate of the mean value, as expressed by Equation (7):

μ(x) ≈ x =
∑n

i=1 xi

n
, (7)

where x is the sample mean or mean value, xi are elements of random selection and n is the
number of elements of random selection.

4.5.2. Variance and Standard Deviation

The standard deviation is expressed as the square root of the variance D(X). The vari-
ance rate of the random variable X regarding the diameter μX is given by the second central
moment, or the variance D(X), which is expressed in the following form (Equation (8)):

D(x) =
∫ .

x
(x − μ(x))2 fx(x)dx. (8)

The standard deviation is also based on the second central moment and is denoted by
σ(x). Using the method of moments, the standard deviation is expressed by Equation (9):

σ(x) =
√

D(x) =

√
∑n

i=1 (xi − μ(x))2

(n − 1)
. (9)
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4.5.3. Coefficient of Variation

Similar to the variance and standard deviation, the coefficient of variation is based
on the second central moment. The coefficient of variation is denoted by Cv(x) and is
expressed as the ratio of the standard deviation and the mean value (Equation (10)):

Cv(x) =
σ(x)
μ(x)

=

√
∑n

i=1 (ki − μ(x))2

(n − 1)
, f or ki =

xi
μ(x)

. (10)

4.5.4. Coefficient of Variation

The overshoot probability function or overshoot probability curve determines the
probability that a random variable will be greater than or equal to the value of A. The
overshoot probability curve is a decreasing function and takes values from one to zero. It
can be obtained by integration from the probability density on the right. The shape of the
overshoot probability is given in Equation (11):

P(A) = P[x ≥ A] =

A∫
b

f (x)dx. (11)

4.5.5. Quantile

The quantile indicates the measure of the position of the probability distribution of a
random variable. In other words, quantiles describe the points at which the distribution
function of a random variable passes through a given value. In the case of a continuous
distribution having the distribution function Fx(x), the p-quantile xp is a value of a random
variable X for which values less than xp occur only with probability p, i.e., for which the
distribution function Fx(xp) is equal to the probability p (Equation (12)):

P
(
X < xp

)
= Fx

(
xp

)
= p. (12)

When presenting the results of quantiles in the overshoot probability function, 5,
10, 15, 20 and 25% quantiles correspond to the 95, 90, 85, 80 and 75% quantiles of the
distribution function.

5. Results and Discussion

5.1. Storage Volume Modeling

It was first necessary to determine the inputs into the UNCE_RESERVOIR model
for the updated length of the historical series of water inflows into the Vír reservoir up
to 2018. In other words, it was necessary to determine the required water outflow from
the OR reservoir for temporal reliability RT ≥ 99.5% and existing VZ. The calculation was
performed without input uncertainties, including consideration of water losses from the
reservoir. As a result, the OR had to be reduced to achieve a satisfactory RT = f (OR, VZ), as
shown in Table 1.

Table 1. Temporal reliability RT results for changing input OR for the updated data regarding water
inflow into the reservoir.

OR (m3 s−1) >>> RT (%)

2.5 98.776
2.4 99.028
2.3 99.533

2.31 99.404

In the next step, VZ was calculated deterministically and without input uncertainties,
including the consideration of water losses from the reservoir for the calculated OR based
on Table 1 and for RT ≥ 99.5%, i.e., the calculation of VZ = f (OR, RT = 99.5%). The resulting
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optimized VZ should be close to the real reservoir volume. Based on the comparison of
the optimized VZ with the real VZ, the OR was slightly changed. These values are given in
Table 2 along with the OR value for the further calculations that follow.

Table 2. OR results for varying input OR and RT ≥ 99.5% for the updated data regarding water inflow
into the reservoir.

OR (m3 s−1) >>> VZ (m3)

2.3 43,657,000
2.31 44,371,700

2.305 44,069,000

After determining the exact value of OR needed to meet the significance of the reservoir
with regard to the updated line of water inflow into the reservoir and the resulting VZ
approaching the real VZ, the optimized storage volumes VZ of the reservoir for the whole
range of water inflow into the reservoir and with input uncertainties were calculated and
evaluated. Input uncertainties from the measurements were applied: (i) constantly for
all inputs with sizes uB = ±1, ±2, ±3, ±5 and ±7% and (ii) differently for entered values
according to the probable size of uncertainty for each input; specifically, ±3% for the inflow
of water into the reservoir, ±5% for bathygraphic curves, ±4% for evaporation and ±3%
for seepage through the reservoir body. The number of repetitions (generations) NG was
always set to 300 repetitions.

Figure 5 shows the calculated filling and emptying curves. These curves are shown
for all considered input uncertainties and Table 3 shows the calculated mean values of the
optimized stock volumes, including standard deviations. Furthermore, these results were
evaluated by adding the upper and lower limits through a coefficient of expansion k = 2,
which corresponds to a probability density coverage of approximately 95%. The last line
also shows the 95% quantile of the optimized storage volume of the tested reservoir.

Table 3. Results of the analysis of optimal storage volumes VZ of the tested reservoir.

(m3) uB = ±0% uB = ±1% uB = ±2% uB = ±3% uB = ±5% uB = ±7% uB Different

μ(Vz) 44,069,000 44,098,652 44,121,960 44,154,544 44,010,168 44,078,572 44,148,504
±2σ(Vz) 0 545,346 1,137,567 1,627,581 2,574,596 3,958,923 1,621,724

Vzbottom 2σ(Vz) 44,069,000 43,553,306 42,984,393 42,526,963 41,435,572 40,119,649 42,526,780
Vzupper 2σ(Vz) 44,069,000 44,643,998 45,259,527 45,782,125 46,584,764 48,037,495 45,770,228
95%quant. Vz 44,069,000 44,673,900 45,114,800 45,496,700 46,569,400 47,560,700 45,628,200

The reservoir filling and emptying courses shown in Figure 5 effectively demonstrate
the increase in the variance of possible solutions with increasing input uncertainties, which
is also evident in Table 3. Different input uncertainty settings according to the probable
uncertainty affected the reservoir filling and emptying courses as an approximate uniform
input uncertainty setting of uB = ±3%.

For the probable sizes of the input data uncertainty (different), the resulting optimized
storage volume of the reservoir for 95% probability coverage was 44.149 million m3 ±
1.622 million m3, i.e., the result lay in the interval {42.527 million m3; 45.771 million m3}. To
be on the safe side, it is desirable to work with the resulting upper interval, i.e., a higher
storage volume, in a stochastic solution. Expressed by the 95% quantile, the resulting
optimized volume was 45.628 million m3; compared to the upper quantile, this value of VZ
is 0.31% lower. The relatively safe and therefore recommended final value of the storage
volume from this analysis was 45.770 million m3. Based on the updated input series of
water inflows into the reservoir and the introduction of input uncertainties, including
consideration of water losses from the reservoir, it is therefore recommended that the
existing storage volume of the Vír I reservoir be increased by up to 3.9%, specifically by
1.71 million m3.
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Figure 5. Courses of filling and emptying of the optimized VZ of the tested reservoir for constant uB = ±1, ±2, ±3, ±5 and
±7% and for different uB.

The results from Table 3 are also presented in the form of a bar chart in Figure 6, where
the resulting optimized stock volumes for all tested input uncertainties are plotted. The
lower and upper limits for ±2 standard deviations of the storage volumes are marked in
yellow and the solution using the 95% quantiles in red. The final bar in blue depicts the
results for VZ with the probable different input uncertainties.

Figure 6. Bar chart of the resulting optimized storage volumes μ(VZ) of the Vír I reservoir for ±2σ(VZ) and 95% quantiles of
the tested input uncertainties uB.
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Furthermore, increases in the values of the variances of the resulting optimized storage
volumes ±2σ(VZ) compared to the existing VZ depending on the input uncertainties uB
were expressed as percentages. The results are shown in Table 4.

Table 4. Percentage increases (%) of the resulting variances ±2σ(VZ) of the optimized reservoir
volume depending on the input uncertainties uB for the tested reservoir and another reservoir.

uB = ±1% uB = ±2% uB = ±3% uB = ±5% uB = ±7% uB Different

Vír 1.24 2.58 3.69 5.84 8.99 3.68

Vranov 8.04 8.35 9.14 10.89 13.42 9.20

Table 4 shows that, for the tested reservoir Vír (line two), the results in the form of
±2σ(VZ) demonstrate a steady increase depending on uB. Testing on another reservoir,
Vranov (line three), showed that there are not always such steady increases in results but
that these depend on the growing uncertainties of the input data. Thus, different reservoirs
can react completely differently to input uncertainties.

The results for the sets of optimal reservoir storage volumes obtained from the reser-
voir filling and emptying process depicted in Figure 5 are shown in Figure 7 in the form
of an empirical overshoot probability curve. Each empirical curve consists of 300 final
values for optimal storage volumes VZ, which were sorted from minimum to maximum.
Each overshoot probability curve corresponds to one type of input uncertainty setting.
Furthermore, the 95% quantile (i.e., 5%) used for evaluation is marked on each curve.

Figure 7. Overshoot probability curves for the resulting optimized storage volumes of the tested reservoir for different sizes
of input uncertainties.

In Figure 7 we can see that, for the probability P = 50%, the optimized values of
VZ for all courses take on values just above 44 million m3, which is similar to the deter-
ministic solution VZ = 44.056 million m3. This confirms the correctness of the random
number generator. The courses of the individual curves are relatively symmetrical. The
resulting mean values of the optimized storage volumes μ(VZ) in Table 3 increase in com-
parison with the current value of the storage volumes by percentage values from 0.10%
(for uB = ±5%) to + 0.22% (for uB = ±3%). The average of deviations for all input uncertain-
ties was about + 0.09%. The obtained results for the stochastic optimized storage volumes
reach only slightly higher values than in the deterministic solution. These factors again
confirm the correctness of the random number generator and the appropriateness of using
the Monte Carlo method.
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5.2. Retention Volume Modeling

Further calculations were performed to determine how increasing the storage volume
of the reservoir can affect the transformation of the flood discharge and the change in the
retention volume of the reservoir. For this calculation, several variants of the design of the
storage volume of the reservoir were considered. The developed simulation optimization
model UNCE_RESERVOIR (described in Section 4.2) makes it possible to store all calculated
optimal storage volumes according to the number of set repetitions and then to calculate the
retention volume of the reservoir for any number of repetitions for each of these volumes
using the second simulation model, TRANSFORM_WAVE (described in Section 4.3). To
simplify and shorten the calculation time, only a few optimal storage volumes were selected
to obtain a single complex solution of functional volumes out of 300 possible solutions with
input uncertainties entered differently (according to the probable size of uncertainty at each
input), i.e., the blue course of the probability curve in Figure 7. Specifically, the optimal
storage volumes resulting from 75, 80, 85, 90 and 95% quantiles (i.e., 25, 20, 15, 10 and
5% in the overshoot probability function) and the upper limit of the resulting expanded
uncertainty +2σ were selected from this calculation setting (see Figure 8).

Figure 8. Optimal VZ values selected from the overshoot probability curve of the obtained optimized storage volumes of
the Vír I reservoir.

For the selected optimal VZ values of the reservoir, Table 5 shows the specific VZ values
of the optimal storage volumes in column three and the corresponding water heights in the
reservoir hVz in column two. It is clear that, with the increasing quantile (downwards in
Table 5), the optimal value of VZ increases and therefore the height of water in the reservoir
hVz also increases. Since the emergency spillway of the reservoir is always considered at
the same height hVRC (column four) in accordance with the chosen location, the increase of
controllable retention VRC (column five) and hVRC is at the expense of the uncontrollable
retention volume hVRU (column six) and VRU (column seven).
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To calculate the retention volume, a flood discharge Q1000 with an input standard
uncertainty uB = ±10% was selected, which was chosen as the minimum following [68], in
which the reliability classes of hydrological data are given, including the probable variance
of errors. The calculation was performed in the variant without pre-drainage of water
from the reservoir. The number of uncertainties generated for the flood discharge was
chosen to be 300 repetitions. The starting water level in the reservoir at the beginning of
the flood discharge transformation solution was always the full storage volume VZ, i.e.,
the newly calculated height hVz. Based on the above information on bottom outlets and the
emergency spillway along with Equations (4) and (5), the outlet coefficient of the bottom
outlets or the outflow coefficient μ and the overflow coefficient m were determined. Specif-
ically, for the tested reservoir, the outflow coefficient μ = 0.435 (-) and overflow coefficient
m = 0.407 (-). In the variant without pre-drainage, the level is kept at the level of the full
storage volume and, as soon as this level is exceeded, the bottom outlets are opened to
a harmless flow QNE. When the emergency spillway is exceeded, the bottom outlets are
smoothly closed and, after the flooding, they are smoothly opened to a water height of
0.5 m above the emergency spillway. The level after the flood is again kept at the level of
the full storage volume.

Figure 9 shows the results of individual transformations for selected optimal VZ
values. The generated courses of these flood discharges are shown here in red, the results
of the transformed waves in blue and the courses of the water heights in the reservoir
during the transformations in green.

In Figure 9, the transformations of the generated flood discharges have similar courses
and there are also similar courses in the heights reached, with the only difference being
that the starting level is from the selected optimal VZ. The input uncertainty has a clear
effect on flood discharges but also on the results of transformed floods and water heights
in the reservoir.

5.3. Summary of Results

It is worth noting the creation of several bundles of transformed flood discharges
(blue lines), which are probably caused by the size of the time step. When the emergency
spillway is exceeded in another time step, the difference is at least one time step, i.e.,
6 h, which is a consequence of the formation of bundles and jumps in the peaks of the
transformed floods. If the time step were finer, these bundles would not be formed and the
courses of the transformed floods, including peaks, would be spread more smoothly.

Comparing the results for the starting height of 63 m from the existing storage volume,
a slight decrease in the peak of the water heights in the reservoir is evident. This decrease
is also confirmed in Table 5, specifically in column six, i.e., the height hVRU, the height
of the uncontrollable retention volume or the achieved peak of the height of the water
in the reservoir during the transformations of flood discharges. These values include
the expanded uncertainty of ±2σ. In Table 5, column seven then shows the results of
the uncontrollable retention volume VRU, including the upper limit of the expanded
uncertainty +2σ. Furthermore, column eight shows the total volume of the retention
volume VR, including the upper limit of the expanded uncertainty +2σ (bold), and the
total volume of the reservoir VTOTAL is shown in column nine. Finally, the last columns,
10 and 11, show the values of Q1000 flood peaks, including the expanded uncertainty ±2σ,
and the height between the uncontrollable retention volume (maximum water level in the
reservoir) and the control maximum level CML (dam height), including the upper limit of
the expanded uncertainty +2σ (bold).

In Table 5, we can see the results from the transformations of the generated flood
discharges for selected optimal values VZ. Specifically, the first row shows the values for
the current state of the reservoir according to [63] and the second row contains the results
of the transformation of the flood discharge Q1000 for the current state of VZ. The following
rows show the results for selected quantiles of optimal VZ values.
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Figure 9. Results of the transformation of generated Q1000 waves and water heights in the reservoir for
the input uB = ±10% for the 75, 80, 85, 90, 95% quantiles and for the upper limit +2σ of the optimal VZ.

The results in Table 5 show that, with a higher storage volume at a constant emergency
spillway height (hVRC level), the following decrease: (i) the controllable retention volume
VRC, (ii) the height of the uncontrollable retention volume hVRU, (iii) the uncontrollable
retention volume of the reservoir VRN, (iv) the retention volume of the reservoir VR and
(v) the total reservoir volume VTOTAL. The decrease in hVRU has the effect of increasing the
difference in size between the hVRU and CML (column 11), which is desirable for the solu-
tion. On the other hand, the peak flow QPEAK increases. It should be noted that, although
the values of volumes and heights decrease (columns five to nine), they are significantly
higher (lower for column 11) than the actual values of the existing tested reservoir.
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This is because a given higher value VZ (starting level) corresponds to a larger volume
from the line of flooded volumes and, therefore, more water is captured in the initial
flood step and subsequent steps than at the starting height of 63 m. As a result, the
resulting retention volume and total reservoir volume decrease with increasing height VZ.
In contrast, the difference between the hVRU and CML increases, which is a key parameter
when designing or changing the functional volumes of a reservoir. This suggests a design
for the safest solution in terms of optimal VZ, i.e., either the 95% quantile of VZ or the
upper limit of VZ (+2σ). In these designs, the increases in the retention volume VR by
1.37 million m3 and 1.09 million m3 would correspond to increases of 16.5% and 13.1%
compared to the actual VR. However, we must not forget that with this choice the peak
flow of the transformed flood discharge increases. For example, for the transformation
from the current state, the peak flow of the upper limit of the expanded uncertainty (+2σ)
is 234.65 m3 s−1 and, for the transformation from the 95% quantile of VZ, the peak flow
is 248.82 m3 s−1, which is another key parameter in the design of functional volumes of
a reservoir.

Finally, the calculated retention volumes of water in the reservoir for selected op-
timal VZ values were also evaluated using quantiles, as was the case with the storage
volume of the reservoir. Figure 10 shows the results of water height peaks in the reservoir
during transformations of generated flood discharges burdened with input uncertainties
uB = ±10% in the form of the probabilities of exceeding these peaks for selected optimal
storage volumes (black and white shades) and for the current reservoir storage volume
(brown shade).

 

Figure 10. Lines indicating the probabilities of exceeding the calculated water height peaks in the reservoir during the
transformation of the uncertain flood discharge Q1000 for selected optimized storage volumes.

In Figure 10 we can see again that at a higher starting height (higher percentage of
VZ quantiles) lower peaks of the water level in the reservoir are achieved, i.e., the hVRU
level or the maximum water level in the reservoir does not rise so high. At the same time,
selected quantiles and the upper limit +2σ are marked on the plotted curves, similarly to the
selection of optimized VZ. The complete results for the water height peaks in the reservoir
with possible functional volumes are summarized in detail in Table 6, which is designed in
the same form as Table 5. This table shows the results of flood discharge transformations
for selected quantiles and the upper limit +2σ. Peak flow QPEAK is expressed for the given
variants in the form +2σ.
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Table 6 shows that the most suitable solution is at the bottom of the table. It consists
in a significant increase in VZ at the expense of the size of the flood peak because, with
such a solution, higher water height peaks in the reservoir during the transformation are
achieved but, at the same time, there is a greater height between the hVRU and CML. In the
case of large floods, which the Q1000 undoubtedly is, the safety of the dam itself must be
considered, i.e., elimination of the overflow of the CML.

6. Conclusions and Recommendations

This article applied the uncertainties resulting from the measurements that enter into
water management solutions to a case study of the Vír reservoir, Czech Republic. For this
reservoir, the following were developed and tested: (i) a simulation-optimization model
that determines the optimal storage volume of the reservoir and (ii) a simulation model for
the transformation of uncertain flood discharges that determines the retention volume of
the reservoir. The obtained results lead to the following key conclusions:

• Input uncertainty significantly affects the results of VZ and VR calculations.
• To be on the safe side, it is appropriate to increase the values of either VZ or VR in

accordance with the calculated uncertainties. Specifically, the input uncertainties
discussed here highlighted the need to increase the existing VZ of the tested reservoir
by up to 1.71 million m3 (3.9%) and the existing VR by up to 1.37 million m3 (16.5%).

• For a comprehensive determination of functional volumes, calculations of the transfor-
mation of the updated flood discharge burdened with uncertainty for selected optimal
values of VZ were performed. These led to the determination of how an increase in
VZ can affect the transformation of the flood discharge and the change in the VR of
the reservoir.

• Based on the above, Table 6 was created with solution options for VZ and VR under
conditions of uncertainty, including possible flood peaks and water height peaks in
the reservoir.

• The developed simulation-optimization (i) and simulation (ii) models of the reservoir,
the methods used and the introduction of uncertainties on the input data proved their
functionality in solving the functional volumes of the water in the reservoir.

• Uniqueness can be observed in the connection between the solutions of the functional
volumes of the reservoir for input data under conditions of uncertainty.

• The source codes of both models are written in such a way as to maintain generality
and thus can be quickly used to test other existing or planned reservoirs anywhere in
the world, if suitable data are available.

The introduction of uncertainties into the input data and their subsequent analysis
proved the influence of extreme values on the final solution. It can be assumed, that
even for other reservoirs with different input uncertainties, such uncertainties will have
an impact on the existing functional volumes of these reservoirs. This only confirms the
importance of this issue and highlights the need for detailed analyses of waterworks.

The models were applied to an updated historical series dating up to the present,
i.e., in a period that can be considered a period with ongoing climate change. In addition,
the assumption of uncertainty in the measurement of input data was incorporated into
the solution.

From the point of view of measurement uncertainty and climate change uncertainty,
the achieved results are relevant to the first stage of water management analyses, which
involves capturing possible changes in the development of hydroclimatic extremes. In other
words, the volumes of reservoirs are assessed with regard to their current state but with
the assumption that they must incorporate the already ongoing process of climate change.

In the second stage of the solution, inputs can be inserted into the models to capture
the future uncertainty of climate change thanks to the general notation of the source codes
of the models. Instead of historical series of water inflows into the reservoir, simulations of
non-stationary hydrological flow series, hydrological time series with negative trends of
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flow development or directly hydrological simulations describing climate change based on
climate model scenarios can be used.

Likewise, flood discharges can be entered in the form of real extreme floods, artificial
flood hydrographs or predicted floods affected by climate change.

Although the present analysis was performed for only one reservoir and the results
cannot be generalized at present, the created software tool as a whole allows the analysis of
existing reservoirs, or the dimensioning of new reservoirs, during the ongoing process of
climate change under conditions of extreme fluctuation and for non-stationary hydrological
data around the world.
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Hydrologickou Bilanci v ČR a Možná Adaptační Opatření; Výzkumný Ústav Vodohospodářský T. G. Masaryka, v.v.i: Praha, Czech
Republic, 2011; ISBN 978-80-87402-22-1.

8. IPCC. Summary for Policymakers, Climate Change 2014, Synthesis Report. Contribution of Working Groups I, II and III to the Fifth
Assessment Report of the Intergovernmental Panel on Climate Change; Core Writing Team, Pachauri, R.K., Meyer, L.A., Eds.; IPCC:
Geneva, Switzerland, 2014.

9. Der Kiureghian, A.; Ditlevsen, O. Aleatory or epistemic? Does it matter? Struct. Saf. 2009, 31, 105–112. [CrossRef]
10. Dantan, J.; Gayton, N.; Qureshi, A.; Lemaire, M.; Etienne, A. Tolerance Analysis Approach based on the Classification of

Uncertainty (Aleatory/Epistemic). Procedia CIRP 2013, 10, 287–293. [CrossRef]
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Abstract: The identification of homogeneous flood regions is essential for regional flood frequency
analysis. Despite the type of regionalization framework considered (e.g., region of influence or
hierarchical clustering), selecting flood-related attributes to reflect flood generating mechanisms
is required to discriminate flood regimes among catchments. To understand how different
attributes perform across Canada for identifying homogeneous regions, this study examines five
distinctive attributes (i.e., geographical proximity, flood seasonality, physiographic variables, monthly
precipitation pattern, and monthly temperature pattern) for their ability to identify homogeneous
regions at 186 gauging sites with their annual maximum flow data. We propose a novel region
revision procedure to complement the well-known region of influence and L-Moments techniques
that automates the identification of homogeneous regions across continental domains. Results are
presented spatially for Canada to assess patterning of homogeneous regions. Memberships of two
selected regions are investigated to provide insight into membership characteristics. Sites in eastern
Canada are highly likely to identify homogeneous flood regions, while the western prairie and
mountainous regions are not. Overall, it is revealed that the success of identifying homogeneous
regions depends on local hydrological complexities, whether the considered attribute(s) reflect
primary flooding mechanism(s), and on whether catchment sites are clustered in a small geographic
region. Formation of effective pooling groups affords the extension of record lengths across the
Canadian domain (where gauges typically have <50 years of record), facilitating more comprehensive
analysis of higher return period flood needs for climate change assessment.

Keywords: regional flood frequency analysis; flood-related attribute; region of influence; flood region
revision process; Canadian annual maximum flow

1. Introduction

Designing future infrastructure for flood resiliency is necessary and crucial for emerging design
standards. Flood frequency analysis (FFA) is often used to estimate flood quantiles for river
infrastructure design to prevent structural failure or inadequacy during extreme flood events. Given its
importance, a growing number of countries have carried out nation-wide study for advanced methods
of FFA to improve design flood estimation [1–3]. Outcomes from these studies can be generalized
into published guidelines, which are beneficial for domestic end-users in terms of simplicity and
consistency and for reducing the element of subjectivity within the design process [4,5].

In Canada, flooding has been recognized as the most frequent and costliest of natural disasters
over the past 100 years, claiming considerable economic and social losses for cities, urban clusters,
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and agricultural land use [6]. Consistent with the recent assessment of 23 unsolved problems in
hydrology led by the International Association for Hydrological Sciences (IAHS), improved analysis of
the magnitude of extreme (flood and drought) events and the variability in these events is a critical
area of research in hydrology [7]. General requirements for design floods at primary crossings or for
floodplain delineation in Canada necessitate a one in 50 year or 100 year event [8,9]. The 2T rule of
traditional at-site FFA recommends at least 100 years flood data [4], while only 1.05% of flow gauging
sites (67/6379) in the Canadian HYdrologic DATabase (HYDAT) satisfy this criterion [10]. As a result,
FFA based on regional information, or regional flood frequency analysis (RFFA), is a particularly
important method for Canadian design flood estimation.

The identification of homogeneous flood regions is of paramount importance for RFFA, as it marks
the first step in the FFA process, forming the period of record for analysis [11,12]. The homogeneous
region is a collection of hydrologically similar catchments so that flood information, such as annual
maximum flow, can be reasonably and effectively transferred within the defined flood region
using transformation methods, such as index-flood [13–17]. Many studies [18–20] have focused
on investigating different regionalization frameworks and techniques; for example, in Canada, the
statistical hydrology research group in Québec (Groupe de Recherche en Hydrologie Statistique,
GREHYS) [11] compared four different regionalization techniques, including region of influence (ROI),
canonical correlation analysis, hierarchical cluster analysis, and L-Moments statistics, for delineating
homogeneous flood regions in Québec and Ontario. For the same study area, Wazneh et al. [21]
endorsed catchment regionalization based on statistical depth function over ROI and canonical
correlation approaches because of robust region identification process and improved accuracy of
pooled estimation. Zadeh and Burn [22] delineated 1114 Canadian gauging sites into six super
hydrological regions based on flood seasonality statistics, drainage area, and mean annual precipitation.
The concept of delineated super regions was later adopted to calibrate a nonparametric model for
ungauged pooled estimation [23,24]. Though regionalization techniques may differ, the selection of
arbitrary, flood-related attributes is required for all regionalization techniques in order to effectively
discriminate between flood behaviors among catchments sites. Geographical contiguity has been
frequently used as an attribute because hydrological variability tends to be smaller within smaller
geographical regions [4,19,25]. For large catchments with fewer gauging stations, however, cohesive
flood behavior associated with geographic contiguity is often reduced. This is often the case for rural
and northern Canada and regions with highly dynamic flood response, such as the Prairie Pothole
region [26,27].

Other widely used flood attributes include physiographic, climatic, and statistical types. Each type
of attribute can effectively measure flood similarity, and thus be used to identify homogeneous flood
regions. Burn [28] considered coincident annual peak flood values as the prime flood-related variable
for 41 sites in southern Manitoba, Canada. Catchment geographical distribution and local empirical
knowledge were also embedded in the regionalization process. Three homogeneous regions were
formulated, acknowledged by a statistical homogeneity test. In the same study area, Burn [29] derived
a composite attribute to group catchments. The attribute comprised coefficient of variation (CV) of
floods, mean annual flow divided by drainage area (QDA), and latitude and longitude of the gauging
station. The results also showed that CV and QDA were relatively more effective than geographical
proximity for forming homogeneous regions, with the CV attribute being more informative than
the QDA. The type or the method of forming a composite attribute to describe multiple aspects of
flood characteristics is often considered more informative for dividing catchments into distinct flood
regions [19]. Weighting each variable within the composite attribute, however, introduces the element
of subjectivity. Additionally, variable selection is often identified mostly on localized physiographic
and climatic knowledge rather than analytical reasoning [11,29,30].

Recent studies of RFFA in Canada tend to focus on deriving a robust quantile regression model
for ungauged frameworks [23,24,31–34]. Among these studies, the following variables were frequently
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considered in their quantile regression model as flood influential attributes: latitude and longitude of
gauging stations, CV, QDA, mean annual precipitation, and basin slope.

The geographic extent of Canada means that water resources engineering practice is generally
governed at the provincial level and the boundary, as opposed to federal jurisdiction, which is more
common in other countries [35,36]. As a result, methods of RFFA have been inconsistently applied
among government agencies, academic communities, and industrial partners [8,11,37]. To tackle this
problem, the Natural Sciences Engineering Research Council of Canada (NSERC) funded FloodNet
Strategic Network project unified researchers across Canada to develop nation-wide flood forecasting
and water resources management strategies. An important mandate was to research standardized
FFA methods and techniques tailored for Canadian hydrological environments [38]. Within this
network, Sandink et al. and Zahmatkesh at al. [23,24] examined FFA using a quantile regression
model that considered ungauged catchments across Canada. Zhang et al. [39] demonstrated the
generalized extreme value (GEV) distribution fits Canadian annual maximum flow data considerably
better than other well-known distributions, including generalized logistic, Pearson type III, and log
Pearson type III distributions. Others [40–44] focused on developing regionalization techniques
using peaks-over-threshold (POT) flood data, which is advantageous for gauging sites where annual
maximum flood records are limited. Little attention has been paid to the examination of different
flood-related attributes and their characteristics for identifying homogeneous flood regions.

Here, we consider five distinct categories of frequently used attributes (i.e., geographical proximity,
physiographic variables, flood seasonality, monthly precipitation pattern, and monthly temperature
pattern) and investigate their relevance in identifying homogeneous flood regions for RRFA applications
on a continental, Canada-wide scale. Their abilities to identify homogenous regions are investigated
across major hydrological sub-regions of Canada. Regional hydrological characteristics are used as
input to analyze homogeneous region identification results. To increase efficiency of our analysis and
minimize the element of subjectivity, a novel automated regionalization process that combines the
well-known ROI [45,46] approach with a proposed automatic region revision algorithm (ARRA) is
introduced and demonstrated for applicability to continental domains. Memberships of two regions
are selected as a case study to provide insight into membership characteristics. Findings of this study
are deemed to be an important contribution toward the Canadian statistical flood estimation guideline
under the FloodNet project.

2. Materials and Methods

2.1. Rationale for Attribute Selection

Geographical proximity is selected based on the rationale that catchments closer to each
other generally encompass similar hydrological and physiographical characteristics, and, therefore,
catchments with smaller geographical proximity are likely to exhibit a similar flood regime and to
form a homogeneous region. The presence of large spatial variability in flood characteristics might
question the use of geographical proximity, therefore, directly using physiographic variables that exert
key influence on the dominant flood generating mechanisms provides another way to group sites with
similar flood behavior. Geographical proximity and physiographic variables are the most common
flood-related attributes for catchment regionalization and thus are included in this study.

As previously noted, flood seasonality has the advantage of convenience in attribute extraction.
In addition, it has been previously applied and was found to be beneficial for flood studies in Canada
for catchment classification [42,47,48] and in the formation of homogeneous regions [49,50].

Monthly precipitation and temperature patterns consider monthly average precipitation and
temperature for the location of the catchment site. These values are provided by Environment and
Climate Change Canada (ECCC) [51], computed for each catchment site in this study using historical
monthly climate grids for North America [52,53].
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Flood generating mechanisms in Canada are generally dominated by either rainfall (pluvial),
snowmelt (nival), and rain-on-snow (mixed) events [42,54]. The monthly patterning of precipitation
and temperature are considered to contain key information concerning the dominant flood generation
process. For example, precipitation accumulation during winter months dominates the magnitude
of the spring melt event. Large precipitation values in summer and fall suggest rainfall-driven peak
floods. Temperature values in the melt season influence the timing and the magnitude of spring peak
floods. Therefore, we explore these attributes given their potential usefulness in mapping regional
flood characteristics.

2.2. Datasets

Annual maxima flood samples are taken from the Canadian Reference Hydrometric Basin Network
(RHBN). Developed by Water Survey of Canada, the RHBN constitutes 223 gauging sites in total
at the start of this study, and is only a small subset of the Canadian hydrometric gauging network
(6379 gauging with flow record sites in total) [10]. RHBN sites are identified as near pristine catchments,
high quality flow measurements, with an absence of anthropogenic control [55,56]. These merits make
their flood data ideal for RFFA. In addition to the 223 RHBN sites, only 186 sites have corresponding
physiographic variables available, supported by ECCC [51]. Therefore, we consider a total of
186 gauging sites in this study, generating a total of 186 annual maximum flood samples. Although
RHBN stations generally have flow records that are greater than 20 years in length, some sites are
seasonally operated, which means that not all calendar years are able to derive the annual maximum
flood. The average station record length among our samples is 48 years, with a maximum of 103 years
and a minimum of eight years. More than 80% of samples have station record lengths greater than
30 years.

The geographical distribution of the 186 sites is presented in Figure 1, with corresponding record
length distributions of the 186 sites presented in Figure 2 (the x-axis corresponding to the longitude,
from west to east, noted by province or territory. Figures 1 and 2 indicate that most study sites in
British Columbia and the Atlantic provinces have relatively higher record lengths compared to other
regions. The prairie provinces, particularly Saskatchewan and Manitoba, have relatively fewer stations
and relatively shorter record lengths. The three northern territories have the fewest number of gauging
sites and an average record length of 40 years.

 
Figure 1. Geographical location of 186 study sites identifying primary cause of flood response.
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Figure 2. Distribution of record length for the 186 flood samples. Sites in the ten provinces are plotted
in order of longitude from west (left) to east (right). Sites in the three territories are plotted to the right
most of the figure, with three sites in northeast Québec embedded within the Atlantic provinces.

2.3. Defining Attribute Similarity Distance

2.3.1. Geographical Proximity

The latitude and the longitude of the gauging stations are used to calculate the geographical
distance between two catchments. The similarity distance between catchment m and n is defined as:

dmn =
[
(Latm − Latn)

2 + (Lonm − Lonn)
2
]0.5

(1)

where Latm and Latn are the latitude and the longitude coordinates for the gauging site of catchment m.
We use geographical coordinates for the above equation, which can cause minor discrepancies in the
calculation or the comparison of one-degree longitude approaching the polar region.

2.3.2. Physiographic Variables

The selection of physiographic variables is based on the stepwise regression method, which has
been used to select flood-related attributes in previous studies [57–59]. The stepwise regression
method is an automatic procedure used to select explanatory variables based on the development of a
multilinear regression model. Candidate variables are iteratively added and removed based on the
use of statistical t-test until the predictive power of the regression model is optimized. In this study,
66 sets of different physiographic variables at each site are obtained from ECCC [51]. Because different
variables have different units and scale, variables are normalized by their standard deviation prior to
the regression. The dependent variable for the stepwise regression considers the median value of each
flood sample, which corresponds to a 2-year return period flood. The median value is considered a
robust indicator of flood characteristics and is meant to reduce impact from outlier flood values [4,34].
Consequently, the stepwise method recognizes the following variables as sufficiently explanatory of
flood characteristics: (1) catchment area, (2) waterbody area in the catchment, (3) standard deviation of
elevation across the catchment, (4) average annual air temperature for the catchment, and (5) average
annual precipitation for the catchment. Variables (2) and (3) are derived from the ECCC National
Hydrology Network database. Variables (4) and (5) are computed based on 10 km historical gridded
climate data representing a 30 year period of record from 1981 to 2010. Data provided by ECCC are
computed using historical monthly climate grids for North America [52,53].
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The similarity distance between catchment m and n is calculated based on a weighted Euclidean
distance formula defined as:

dmn =

⎡⎢⎢⎢⎢⎢⎢⎣
k∑

j=1

wj
(
xmj−xnj

)2⎤⎥⎥⎥⎥⎥⎥⎦
0.5

(2)

where k is the number of physiographic variables, wj is the weighting factor for the physiographic
variable j, and xmj is the standardized value for the physiographic variable j of catchment m. wj controls
the relative importance of variable j. Here, weights of 0.4 were assigned to the basin area and 0.15 to
the remaining four variables. These weights corresponded to variable coefficients in the computed
stepwise model, rounding to the nearest 0.05 digit.

2.3.3. Flood Seasonality

Similarity between catchments is measured using a unit polar coordinate system. A catchment is
presented as a point in the polar coordinate space and can be positioned by angular and radial values.
The angular value reflects the average date of flood occurrence, whereas the radial value reflects
the variability in the occurrence date of floods. A larger radial value indicates smaller variability in
occurrence date; a radial value of one indicates no variability in occurrence date, implying that all
floods occur on the same day of each year.

Based on Burn [49], for a single flooding event, the date of occurrence of the event is transformed
from Julian day to an angular value, where Julian day one is 1 January and day 365 is 31 December, using:

θi = (JulianDate)i

( 2π
365

)
(3)

For a given catchment flood sample composed of k flooding events, its Cartesian coordinates x
and y in the unit circle are calculated as:

x =
1
k

k∑
i=1

cos(θi) (4)

y =
1
k

k∑
i=1

sin(θi) (5)

Therefore, the similarity distance between catchments m and n is calculated as:

dmn =
[
(xm − xn)

2 +
(
ym − yn

)2]0.5
(6)

Followed by the Durocher et al. [42] classification, sites used in this study are further classified into
nival, pluvial, and mixed regimes based on their flood seasonality statistics and localized geographic and
climatic environments (i.e., classifications noted on Figures 1 and 3, respectively). Nival sites are subject
to regular flood occurrence dates for the spring snowmelt period. These sites are generally located
in cold regions of Canada such as continental interior, mountainous British Columbia, and northern
Canada. A smaller number of sites are exclusively pluvial-driven with average annual flood occurrence
from November to February. These sites are in the warmest regions of Canada, which are coastal
southwest British Columbia and Vancouver Island. A substantial number of study sites are classified
as mixed response. These sites experience warm to mild winters and are predominately located in
southeastern Ontario, southern Québec, and the Atlantic provinces. Peak floods for these sites can be
either spring snowmelt, rain-on-snow, or single heavy rainfall events. Their wide range of regularity
in the flood seasonality space provides an effective indication of annual peak floods driven by multiple
flood responses.
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Figure 3. The 186 study sites plotted in flood seasonality space.

2.3.4. Monthly Precipitation Pattern

Similarity measures based on precipitation patterns are attributed to the values of monthly average
precipitation from January to December for each catchment site. The correlation coefficient is selected to
assess the similarity measure between two catchments. In contrast to Euclidean distance, the correlation
coefficient is considered more effective when characterizing the pattern of two datasets, as it measures
the degree of linearity of the datasets, while the Euclidean distance measures the distance between two
points in a matric space. The correlation coefficient between catchment n and m is described as:

rnm =

∑12
i=1(xni − xn)(xmi − xm)√∑12

i=1(xni − xn)
2
√∑12

i=1(xmi − xm)
2

(7)

where xni is the monthly average precipitation value for month i of catchment n, and xn is the average
of the 12 monthly average precipitation values for catchment n expressed as:

xn =
1

12

12∑
i=1

xni (8)

rnm ranges from −1 to 1, with values exactly equal to 1 (−1) indicating a perfect positive (negative)
linear relationship between two datasets, and values exactly equal to 0 indicating no linear relationship.
For the similarity measure of catchment m and n, rnm closer to 1 indicates a stronger positive linear
relationship between catchment m and n, therefore, the similarity distance based on the correlation
coefficient is computed as:

dnm = 1− rnm (9)

2.3.5. Monthly Temperature Pattern

In common with the similarity measure for precipitation patterning, temperature patterning is
computed from monthly average temperature for each catchment. Monthly average temperature data
for catchment n and m are then input into Equations (7) and (8); Equation (9) is used to calculate the
similarity distance between the two catchments.
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2.4. Region of Influence Approach

The ROI approach [45,46] is used given its flexibility of identifying flood regions for each study site.
The ROI defines target sites as having a unique flood region. The addition of other sites to the region
proceeds in order of the shortest similarity distance to the greatest. Determining the number of sites in
a region requires a trade-off between the size of the region and the quality of the region. A larger region
benefits flood estimation at larger return periods (i.e., generates longer records), however, the quality
of the region (i.e., homogeneity in flood characteristics) generally decreases as more sites are added to
the region. For RFFA, the 5T rule for region size (i.e., total station-year of record of the region) states
that regions should optimally have five times greater record length than the return period of interest
(T) and has been widely accepted as a guideline for optimal trade-off [4,12]. The 5T rule was adopted
in this study.

2.5. Generalized Extreme Value (GEV) Distribution and L-Moment Estimation Method

The GEV distribution is used to estimate flood quantiles. The GEV distribution has been determined
to be more robust for fitting annual maximum flow at RHBN stations than other commonly used three
parameter distributions [39]. The index flood L-Moment parameter estimation method is recommended
by many studies for its simplicity, robustness, nearly unbiased estimation, and convenient integration
with the GEV and the L-Moment homogeneity test [16,60,61].

2.6. L-Moment Homogeneity Test

The homogeneity test aims to verify if sites in the flood region exhibit similar flood characteristics
at an acceptable level of statistical significance. Since L-Moments are considered unbiased
statistics of flood data, the L-Moment homogeneity test has received much attention in RFFA
applications [4,12,19,30,49,62]. Based on Hosking and Wallis [16], the first step of the homogeneity test
is to determine the regional L-Moment ratios tR, tR

3 , and tR
4 , denoted as the regional L-CV, L-skewness,

and L-kurtosis, respectively. For a region comprises N sites, the regional L-Moment tR (similarly apply
for tR

3 and tR
4 ) is calculated as:

tR =
N∑

i=1

nit(i)/
N∑

i=1

ni (10)

where t(i) is the at-site L-Moment ratio for site i, and ni is the record length for site i.
Dispersion can then be expressed as:

V =

⎡⎢⎢⎢⎢⎢⎣
N∑

i=1

ni
(
t(i) − tR

)2
/

N∑
i=1

ni

⎤⎥⎥⎥⎥⎥⎦
0.5

, (11)

To assess if the dispersion, V, is within the limit of region homogeneity, two variables are required:
μV, the expected mean o f V; and σV, the expected standard deviation of V. μV and σV are estimated
through many reproductions of the original region. To do this, a Kappa distribution fit by L-Moment
ratios of 1, tR, tR

3 , and tR
4 is used to reproduce the Nsim, or number of original regions (Nsim = 1000 used

in this study). Each reproduced region has the same region size (N sites in a region) and the same
record length, ni for site i, with respect to the original region.

For each reproduced region, the dispersion, V, is calculated using Equations (10) and (11). Based
on the Nsim number of V values, the expected mean σV and the expected standard deviation μV can
be obtained.

Lastly, the homogeneity statistic is defined as:

H =
V − μV

σV
(12)
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where H is the homogeneity statistic. A region is regarded as acceptably homogeneous if H < 1,
possibly homogeneous if 1 ≤ H < 2, and heterogeneous if H ≥ 2. In this study, H < 1 was used to
determine if the region was homogeneous.

2.7. Automatic Region Revision Algorithm (ARRA)

For a given target site and ROI and any attribute, the initial flood region formation often still
tests heterogeneous. Many studies have reported this situation, and, subsequently, a region revision
process is needed to reduce region heterogeneity by editing the initial group membership [12,28,29,44].
The revision process includes steps such as adding, deleting, and replacing site(s) within the initially
formed region, subsequently testing for homogeneity after each progressive change. In past studies,
this is largely carried out through a heuristic process, meaning there is no set procedure regarding
the order of steps or the methodology of revision [12,17,29,63]. For our large-scale study, however,
it is ineffective to proceed via a heuristic process for each region, therefore, an automatic region
revision algorithm (ARRA) was /designed with the intent of reducing region heterogeneity through an
automatic and non-subjective modification of the region membership.

A heterogeneous region is input into the ARRA, and a revised region with improved homogeneity
is output from the first iteration. If the output region does not meet the homogeneous criteria
(i.e., H < 1), the ARRA can be reapplied to the region to further reduce heterogeneity. Each time
the region membership is modified, the homogeneity of the membership increases, but the attribute
similarity decreases because the newly added site(s) have larger attribute distance(s) compared to the
replaced site. As a region should be formed primarily based on attribute similarity, the number of ARRA
iterations needs to be constrained to ensure an appropriate trade-off between region homogeneity
and attribute similarity. We perform a sensitivity analysis on the number of ARRA iterations used to
revise 186 randomly formed initial pooling regions by counting the number of homogeneous regions
produced after each ARRA iteration. From this sensitivity analysis, we determine that a maximum
of five iterations of the ARRA should be applied (see Section 3.1. ARRA performance). If, after five
iterations of the ARRA, a region still tests heterogeneous, this region is regarded as unable to form a
homogeneous region.

Figure 4 illustrates methodological procedure followed by the ARRA. The L-Moment homogeneity
test is embedded in the ARRA and used to identify sites that should be removed and new sites that
should be added to achieve the greatest improvement in region homogeneity. The order of searching
for a newly added site depends on attribute similarity, such that shorter attribute similarities are tested
first. The process terminates once an improved region is formed and the 5T region size rule is satisfied.

 

Figure 4. Schematic of the automatic region revision algorithm (ARRA) process.
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2.8. Flood Region Identification Process

For each of the five considered attributes, the process of identifying flood regions is demonstrated
below. First is the identification of the initial flood region for a study site, which uses the ROI approach
to group regions based on attribute similarity alone. To be specific, catchment sites having the shortest
attribute distance to the target site are pooled into the initial region. The region size is set to 500 station
years of record, which allows for accurate estimation up to the 100-year flood according to the 5T rule.
Next, the homogeneity of the initial region is assessed using the L-Moment homogeneity test. If the
initial region is heterogeneous, the ARRA is applied to revise region membership, up to a maximum
of five iterations. The homogeneity of the revised region is re-evaluated using the homogeneity test.
This process was repeated for all 186 study sites, and the total number of homogeneous regions
identified for each attribute was determined.

Annual maximum flows for all region members are typically used for the homogeneity test
and the subsequent flood quantile estimation. In this study, however, we purposely exclude annual
maximum flows at the target site to afford more robust and rigorous evaluations of homogeneity and
flood quantiles (i.e., a leave-one-out analysis), and therefore, our methodology can later be applied for
ungauged regional analyses.

2.9. Assessing the Accuracy of Regional Flood Quantiles

Estimated regional flood quantiles are compared to “true” flood quantile determined by at-site
samples. It is common, in practice, to determine “true” quantiles from at-site FFA when the return period
of interest is below half the at-site record length (i.e., a 2T rule) [4]. Comparison of regional and at-site
quantiles provides a means to assess the accuracy of regional estimates relative to standard practice.

There were only 11 sites with record lengths greater than 90 years included in this study, therefore,
for the purpose of reliable at-site estimation, the return periods selected for comparison could not be
extreme quantiles; we selected a range of 20 to 45 years. For each return period, T, the selected sites
were those that were able to identify 5T homogeneous regions across all attributes and those having
record lengths greater than 2T for reliable at-site estimation. A homogeneous region is easier to form
for smaller region sizes, therefore, the number of sites available for analysis for each return period
differed, with more sites meeting our criteria at smaller return periods.

Table 1 lists the return periods considered for comparison, the number of sites considered at each
return period, and the required record lengths for adequate at-site and regional quantile estimates.
It is noteworthy that flood estimation for both at-site and regional methods was subject to sampling
uncertainty, with the uncertainty bound decreasing with decreasing return period. Thus, the smaller
return periods provided improved reliability for assessing results.

Table 1. Required record length for at-site and regional estimate at different return periods used
in analysis.

Return Period for
Comparison

Required Record Length
for at-Site Estimate

Number of Sites
Available

Station-Years of Record
for Regional Estimate

20 40 88 100
25 50 47 125
30 60 29 150
35 70 15 175
40 80 14 200
45 90 11 225

Relative bias =
1
n

n∑
i=1

Qi − qi

qi
× 100% (13)
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Relative RMSE =

⎡⎢⎢⎢⎢⎢⎣1n
n∑

i=1

(
Qi − qi

qi

)2⎤⎥⎥⎥⎥⎥⎦
0.5

× 100% (14)

where Qi is the quantile of regional estimate for site i, qi is the quantile of at-site estimate for site i,
and n is the number of available sites that analyses for each return period.

3. Results and Discussion

3.1. ARRA Performance

Table 2 shows the resulting number of homogeneous regions produced by the attribute and the
number of ARRA iterations. When the ARRA is not applied and the regions are formed based on
shortest attribute distance alone, it results in only five to ten sites (of 186) sites that form homogeneous
regions across all attributes. Forming homogeneous regions based on attribute similarity alone is,
therefore, found to be unproductive, and the use of the region revision process (i.e., the ARRA) to
revise initial regions is deemed necessary.

Table 2. The number of homogeneous regions identified for each attribute with target region size 500
station years of record. For each ARRA iteration, bold italicized number(s) indicate the best outcome
across the five considered attributes; if two attributes tested equally, they were both best outcomes.

Number of
ARRA Iterations

Considered Flood-Related Attributes
Alternative Series

(Initial Regions
Randomly Formed)

Geographical
Proximity

Flood
Seasonality

Physiographic
Variables

Monthly
Precipitation

Pattern

Monthly
Temperature

Pattern

0 10 6 5 6 10 0
1 26 22 17 23 21 1
2 49 43 35 50 54 9
3 70 50 52 69 80 22
4 83 66 69 82 88 43
5 89 78 83 99 94 63
6 97 98 97 110 97 74
7 106 110 104 118 105 98
8 106 116 106 120 109 112

Once implemented, the number of homogeneous regions the ARRA identifies non-linearly
increases with the number of ARRA iterations for all attributes. In general, the number of homogeneous
regions increases significantly for one to three iterations of the ARRA and increases less from four
to eight iterations. Two to four iterations of the ARRA results in identification of relatively more
homogeneous regions when considering geographical proximity, precipitation, and temperature
patterning than for flood seasonality and physiographic attributes. For five or more iterations, monthly
precipitation pattern produces the most homogeneous regions.

To determine a suitable threshold for the number of ARRA iterations, an alternative series
composed of 186 regions, for which membership was randomly formed (i.e., without the use of
attribute similarity), is used and one to eight iterations of the ARRA applied (last column, Table 2).
Comparing results between the five attributes and the alternative series, we find that attribute similarity
is largely irrelevant to the identification of homogenous regions after eight iterations. At five iterations,
approximately half of the sites form homogenous regions across all attributes, and the number of
regions associated with each attribute remains greater than the alternative series. This suggests
reasonable preservation of attribute similarity as a selection criterion. We therefore find a maximum
of five iterations of the ARRA to be a suitable balance between maintaining attribute similarity for a
region and leveraging the revision power of the ARRA.

With appropriate use of the ARRA (i.e., five iterations), approximately 79 to 99 sites of 186 sites
identify homogeneous regions across all attributes. This is significantly higher than the five to ten sites
identified prior to the use of the ARRA.
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3.2. Identification of Homogeneous Regions

When the ARRA is applied for five times (or less), monthly precipitation pattern identifies the
largest number of homogeneous regions among all other attributes, followed by temperature pattern,
geographical proximity, and flood seasonality. Physiographic variables produce the fewest number of
homogeneous flood regions. Differences among the attribute results are relatively small, where the
total difference between the two most extreme results (flood seasonality and monthly precipitation
pattern) is 21 sites, which is ~11% of the 186 study sites.

Figure 5 shows homogeneous region identification across Canada for each attribute. Note that
sites that could not identify a homogeneous region but may be members of another site’s homogeneous
region are also indicated in blue. Catchment sites are non-uniformly distributed across Canada,
with clusters in southern Canada aligned with urban development and large populations, while remote
and sparsely gauged regions are often found in the continental interior and mid to high latitudes of the
continental landmass.

 

Figure 5. Sites achieving homogeneous regions (red) relative to those that did not (blue), shown by
geographic location for each attribute. Note that ARRA was applied up to a maximum five iterations.
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Results are generally similar across all attributes at the national scale, with regionalized
discrepancies identified. In general, all attributes readily identify homogeneous regions in eastern
Canada, while, in western Canada (particularly the interior and the northern regions), the identification
of homogeneous regions is more problematic. Catchment sites in eastern Canada are generally clustered
in small geographical areas, therefore, they experience more similar flooding behavior. Site clusters are
also found in Vancouver Island and southeast British Columbia, where considerable homogeneous
regions were also identified across all attributes.

As catchment sites in eastern Canada are more tightly clustered, less variability in flood attributes
is expected. Figure 6 presents three boxplots comparing catchment physiographic variables between
eastern and western sites with respect to catchment area, water body area in the catchment, and standard
deviation of elevation across catchment. The variability in attribute physiography for the eastern sites
is noticeably less than that for the western sites, particularly for the standard deviation of elevation
across catchment.

Figure 6. Boxplots comparing physiographic variability of eastern and western sites across Canada.
Eastern (Western) computed based on 76 (110) sites; Ontario-Manitoba border is considered the
east–west divide, respectively. Boxes represent 25th and 75th percentiles and the median (black line);
whiskers extend to extreme values without outliers, where outliers are defined as 1.5 the interquartile
range (outliers are removed for scaling purposes).
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Some site clusters are found across the southern Canadian prairies in Alberta, Saskatchewan,
and Manitoba, where annual peak floods are predominated during the spring snowmelt period.
The geographical proximity attribute is typically effective when sites are clustered. Important nival
regime influences, such as snowpack accumulation and timing and rate of snowmelt, are reflected in
attributes such as monthly precipitation pattern, monthly temperature pattern, and flood seasonality.
The regional pooling results, however, show that not many catchment sites within the cluster groups
identified homogeneous regions across all attributes. Though site clusters are found in both eastern
Canada and the southern prairie region, homogeneity often occurs across large regions, indicating
geographical contiguity cannot always warrant effective homogeneous region identification.

Literature indicates that the Canadian Prairies are known for their hydrological complexity,
mainly attributed to the presence of potholes and hummocks, which results in highly variable fill
and spill runoff process and dynamic effective drainage area, leading to highly non-linear flooding
generating mechanisms [26,27,64,65]. Zhang et al. [39] provided statistical evidence that annual
maximum flows from prairie RHBN stations are difficult to adequately fit robust distributions as well,
including GEV, log Pearson type III, and generalized logistic distributions. This is a strong indication
of multiple flood responses occurring at a single catchment site. Ehsanzadeh et al. [66] studied prairie
flood response based on nine prairie sites and revealed noteworthy non-linear flood frequency curves.

In addition, flood record length across the Prairies is generally limited (Figure 2). The average
record length over 28 prairie sites is 25 years, which is substantially lower than the rest of the 158 sites
examined across Canada (having an average record length of 52 years). In order to develop a flood
region with 500 station years, more catchment sites must be pooled into these flood regions. This adds
an additional challenge for developing homogeneous regions, since more sites leads to more variable
flood responses within the flood region.

In Burn [28,29], wherein successfully identified homogeneous regions were formed for southern
Manitoba, region identification did not simply rely on attribute similarity measures. A heuristic
membership revision process was applied with subjective trial and error to improve region homogeneity.
Such region revision approaches are more statistically rigorous than our proposed ARRA, however,
they require practitioners to have sound knowledge of local hydrology and are more statistically
sophisticated [67]. Our method, on the other hand, is designed to be accessible to all water resource
practitioners seeking to perform food frequency analysis.

For the mountainous western Canada region, annual peak floods are predominately snowmelt
and rain-on-snow regimes, though rare heavy rainstorms can also trigger annual peak floods in
smaller basins [54]. Homogeneous region identification maps are noisy along the cordillera mountain
chain for all attributes, namely, it is difficult to interpret a distinctive spatial pattern. In southern
British Columbia and Alberta, some sites identify homogeneous regions, however, locations of these
sites differ amongst attributes. In central British Columbia and Alberta, and south of Northwest
Territories, only flood seasonality and monthly precipitation patterns identify homogeneous regions,
and just for a few sites. The western mountain chain is subject to highly variable climate and basin
characteristics. Flood generation mechanisms are influenced by combined basin features including
catchment size, drainage topography (e.g., channel slope, floodplains, alluvial fans, canyons), localized
snow accumulation and distribution, as well as glaciation and avalanches [8]. These basin features,
as well as temperature and precipitation, are highly variable spatially and temporally in mountainous
environments [54]. Attributes selected in this study capture flood behavior from a limited set of
physiographic characteristics and are likely not rigorous enough for catchment regionalization in
the mountains.

In northern Manitoba, Northwest Territories, and Nunavut, catchment sites are characterized
by cold subarctic climate, barren and tundra rolling landscape, as well as long-lasting (five or six
months of the year) snow and ice cover underlain by permafrost [54]. Annual peak floods are primarily
snowmelt driven; therefore, the duration and the rate of snowmelt are key characteristics for grouping
catchment sites. Homogeneous region identification shows that monthly temperature pattern is more
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effective than other attributes because it captures timing, rate, and duration of snowmelt driven flood
behavior. Some sites also identify homogeneous regions using flood seasonality, possibly because
duration and rate of snowmelt are inherently correlated with the average and the variation of peak
flood dates.

We find two general and probable causes that account for the inability to identify homogeneous
flood regions in Canada. First, the clustering or the proximity of gauge sites has considerable impact on
the outcome of identifying homogeneous regions, regardless of the attribute considered. The tendency
for attributes to be more similar within smaller geographical regions is significant, despite the fact that
regions (for attributes other than geographical proximity) can also include sites that are non-proximal.
Second, attributes selected in this study measure a distinctive hydrological feature, however, across large
spatial domains (e.g., Canadian landmass), there exist significant local-scale hydrological complexities
that influence flood generation mechanisms. For sites that are influenced by multiple hydrological
characteristics, our attribute selection is not rigorous enough to capture the particulars of flood behavior
and is thus unable to group catchment sites with similar flood frequency regimes. Related to this,
Table 2 indicates that most sites identify homogeneous regions as an outcome of ARRA interactions;
ARRA revises region membership based on a specified attribute. If the specified attribute does not
capture primary flood characteristics, the subsequent ARRA enhancement becomes ineffective.

3.3. Analyzing Membership Characteristics

To gain insight into membership characteristics, two catchment sites along with their region
memberships were selected for more detailed case studies. Flood regions for both sites are
identified based on flood seasonality and five ARRA iterations, with only one of the two regions
being homogeneous.

Target catchment site Water Survey of Canada (WSC) gauge 03MB002–Whale River at 40.2 km
from the Mouth in northern Québec, cannot identify a homogeneous flood region with flood seasonality
attribute and ARRA iterations. This site and its 12 members are plotted in geographically (Figure 7a)
and in flood seasonality space (Figure 7b) and are summarized in Table 3 based on physiography.
Figure 8 provides a group of boxplots showing the spread of physiographical variables of this flood
region. Flood seasonality space indicates that member sites share similar annual average occurrence
dates for flooding, resulting in the formation of this flood region.

Based on geographical proximity (Figure 7a), site membership is supported from a climatic
perspective. The map shows that target and member sites broadly span across Canada, from Pacific
to Atlantic and from southern British Columbia to the northern edge of the Northwest Territories.
All member sites are, however, situated near an ocean or a coastal region and receive substantial
annual precipitation (see Table 3). Since member sites span a broad range of latitude, there is
variation in annual temperature range that alters the amount and the temporal distribution of rain
and snowfall, thus affecting the dominant runoff mechanism during the annual peak flood season.
Expected differences in flood behavior are also reflected in the varying physiography among member
sites (Table 3).

Four member sites in southeastern British Columbia have high mean annual precipitation
and noticeably higher mean annual temperatures compared to other members further north.
These four member sites are exposed to more pluvial or mixed rain-on-snow floods. Basin area
also substantially varies among the membership; five member sites are small basins (i.e., <500 km2),
whereas the seven others and the target site have basin areas ranging between 3500 km2 and 49, 000 km2.
Four of the five small basins are located in southeastern British Columbia. The basin compactness
ratio (BasinArea/Perimeter2) is a surrogate measure for time to peak flow and is significantly greater
(as expected) for the smaller basins, indicating much shorter routing times than what is seen for
the larger basins. A wide spectrum of mean basin slope also exists, ranging from 3.3% to 45.4%,
across member sites. Smaller basins in British Columbia mountains are remarkably steeper than
member sites from other areas of Canada. Mean basin slope affects time to peak flow, as well as runoff
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ratios. Member sites that are highly variable in such physiographic characteristics are less likely to
exhibit similar flood behavior.

Figure 7. Region membership for study sites 03MB002 and 06DA004, presented by (a) geographical
extent and in (b) flood seasonality space. Members for the 03MB002 (06DA004) region are labeled in
(a) with numbers (alphabets) as they are referenced in Table 3.
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Table 3. Physiographic variables for WSC 03MB002 and WSC 06DA004 and their regions formed based
on flood seasonality.

WSC ID
Flood

Region of
Province Map ID

Catchment
Area
(km2)

Catchment
Perimeter

(km)

Compactness
Ratio

(Area/Perimeter2)
(%)

Mean
Basin
Slope

(%)

Mean
Annual

Precipitation
(mm)

Mean
Annual

Temperature
(◦C)

03MB002 Target Site QC Target Site 29,124 1417 1.5 2.6 732.3 −4.6
03KC004 03MB002 QC 1 39,371 1901 1.1 3.3 654.9 −5.4
03MD001 03MB002 QC 2 22,440 1627 0.8 3.5 815.2 −4.4
03NF001 03MB002 NL 3 7322 780.6 1.2 8.2 881.0 −3.8
10LA002 03MB002 NT 4 18,746 1173 1.4 18.1 385.9 −6.6
10ND002 03MB002 NT 5 65 44.4 3.3 3.5 220.0 −8.7
09BC001 03MB002 YT 6 48,867 1752 1.6 15.9 456.5 −3.9
08CD001 03MB002 BC 7 3555 488.9 1.5 7.4 562.1 −1.8
07EC002 03MB002 BC 8 5559 597.8 1.6 23.2 648.7 0.2
08NE006 03MB002 BC 9 330 103.3 3.1 45.4 1326 1.4
08NF001 03MB002 BC 10 416 105.1 3.8 31.3 796.1 0.0
08NH005 03MB002 BC 11 442 130.5 2.6 44.5 1218 1.2
08NN015 03MB002 BC 12 233 100.3 2.3 12.1 941.7 2.1

06DA004 Target Site SK Target Site 7729 684.0 1.7 2.2 506.7 −2.5
05AA008 06DA004 AB A 403 105.2 3.6 25.4 753.2 1.9
05LJ005 06DA004 MB B 348 115.5 2.6 2.5 522.7 1.7
05PB014 06DA004 ON C 4768 585.6 1.4 2.4 718.7 2.6
05TG002 06DA004 MB D 886 157.7 3.6 0.8 449.6 −1.4
05UH002 06DA004 MB E 2191 369.4 1.6 0.4 466.1 −4.4
06BD001 06DA004 SK F 3670 395.8 2.3 2.6 483.4 −1.5
06FB002 06DA004 MB G 4274 355.4 3.4 0.4 478.5 −4.7
07CD001 06DA004 AB H 30,792 1548 1.3 1.5 469.4 0.1
07KE001 06DA004 AB I 9856 614.0 2.6 0.7 443.1 −0.3
07OB003 06DA004 AB J 36,901 1278 2.3 0.9 450.8 −0.9
10FA002 06DA004 NT K 9213 553.4 3.0 0.7 474.9 −3.2
10GB006 06DA004 NT L 20,696 1146 1.6 0.9 351.3 −4.6

In contrast, target catchment site WSC gauge 06DA004 (Geikie River below Wheeler River)
identifies as a homogeneous region consisting of 12 catchment sites, excluding the target site
(i.e., leave-one-out analysis). The target site is in northern Saskatchewan with very few other sites
nearby. The climatology is described as sub-arctic, cold temperature, with physiography consisting of
flat to rolling topography with numerous surface water bodies present in the catchment. The sub-arctic,
cold climate causes annual peak flooding that is predominately snowmelt driven; the amount of
accumulated winter snowpack, as well as timing and rate of snowmelt are influential to flood
generation. The geographical extent of the 12 site membership is shown (Figure 7a), along with
flood seasonality (Figure 7b), physiographic values (Table 3), and boxplots of physiographical values
(Figure 8). Flood seasonality space indicates the membership has good consistency in the regularity of
date of occurrence, suggesting these 12 member sites likely have similar flood type and characteristics.
Geographically, member sites are situated in the interior of Canada with most located in mid-to-northern
Alberta, Saskatchewan, and Manitoba. This area is subject to prolonged, colder, sub-arctic climate;
hence the annual peak flood is a nival flood regime. Although catchment area and perimeter span
a large range (Table 3 and Figure 8), catchment compactness ratio, mean basin slope, mean annual
precipitation, and mean annual temperature are within the same order of magnitude. The spread of
06DA004 box plots is noticeably smaller than the spread observed for the 03MB002 region among all
physiographic variables, which reflects their contrasting results in terms of homogeneity.

The above case studies provide examples of the application of catchment physiographic
variables to further investigate membership characteristics, which can potentially diagnose causes
for region (homo)heterogeneity. We conduct a similar member physiographic analysis for other
considered attributes, and for prairie and mountainous sites that cannot identify homogeneous regions.
Member sites in heterogeneous regions often displayed large physiographic variability. Therefore, it is
generally found that our selected attributes and ARRA regionalization approach are not rigorous
enough to identify homogeneous flood regions for catchments with significant hydrological complexity,
which, in Canada, are those primarily located in prairie and mountainous regions.
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Figure 8. Boxplots for physiographic variability of 03MB002 and 06DA004 flood regions. Boxes represent
25th/75th percentiles with the median (black line); whiskers extend to the extreme values without
outliers; outliers (circles in plot) are defined as 1.5 the interquartile range.

3.4. Predictive Measures for Regional Quantile Estimation

Predictive measures for regional quantile estimation are presented as relative bias and relative
RMSE for return periods ranging from 20 to 45 years (Table 4 and Figure 9). In general, relative bias
across all considered attributes is small for all return periods (ranging from−0.6% to 3.7%). As biases are
within ±5% deviation, regional estimation accuracy is considered satisfactory. Bias is generally positive,
suggesting that regional estimates tend to overestimate “true” flood quantiles, but are uncorrelated
with the magnitude of the flood quantile. Comparing bias among attributes, flood seasonality and
physiographic variables exhibit larger bias than geographical proximity, monthly precipitation pattern,
and monthly temperature pattern, in general.
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Table 4. Relative bias and relative RMSE performance measures (in percentages) for quantiles produced
from regionalized estimates. Bold italicized numbers indicate the best outcome for each return period.

Statistic Return Period

Attribute

Geographic
Proximity

Flood
Seasonality

Physiographic
Variables

Precipitation
Pattern

Temperature
Pattern

Relative
Bias

20 0.3% 1.0% 0.9% 0.6% 0.6%
25 0.8% 2.0% 0.5% 0.4% 1.0%
30 0.5% 2.5% 3.3% 1.1% 1.9%
35 1.1% 3.1% 2.8% −0.6% −0.1%
40 0.9% 1.8% 2.3% 0.2% 0.8%
45 0.1% 2.1% 3.7% 0.004% −0.2%

Relative
RMSE

20 6.5% 6.7% 6.6% 6.4% 6.7%
25 7.9% 7.7% 7.6% 7.7% 7.6%
30 7.5% 7.9% 8.7% 8.5% 8.0%
35 9.5% 8.9% 9.6% 8.4% 8.1%
40 9.4% 9.7% 10.0% 8.8% 8.7%
45 8.6% 11.1% 13.0% 9.9% 10.1%

Figure 9. Relative bias and relative RMSE results by return period.

RMSE generally increases with increasing return period across all attributes. Similar RMSE
among attributes is found within each return period equal to and less than 35 years. At larger
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return periods (i.e., 40 and 45 years), flood seasonality and physiographic variables show noticeably
larger RMSE than geographical proximity, monthly precipitation pattern, and monthly temperature
pattern attributes. Though the “true” quantile is modeled by at-site estimates using accepted methods,
estimation uncertainties caused by statistical extrapolation increase with increasing quantiles for both
at-site and regional estimates. Therefore, higher relative RMSE at larger return periods is anticipated.

Geographical proximity, monthly precipitation pattern, and monthly temperature pattern perform
better across both metrics than flood seasonality and physiographic variables, possibly because regions
identified based on the first three attributes often have a higher degree of geographic proximity.
Flood seasonality and physiographic measures end up grouping sites across a wider geographical
extent, therefore, the degree of hydrological similarity between sites may be lower, resulting in slightly
poorer (but acceptable) regional flood estimation results.

Overall, all considered attributes produced satisfactory regional flood quantile estimates for
Canada based on acceptable range of bias and a reasonable range of estimation uncertainty. The success
in regional quantile estimation demonstrates the applicability of proposed regionalization process
based on ROI and ARRA.

4. Conclusions

This study provides insight into five distinctive flood-related attributes for their behavior in
identifying homogeneous flood regions across Canada. All considered attributes show similar results
regarding the number of homogeneous regions identified and locations where homogeneous regions
could be identified. In general, the success of homogeneous region identification is relevant to local
hydrological complexities and whether the considered attribute reflects primary flood generation
mechanisms and geographic clustering of the sites.

Through combinations of these factors, results of homogeneous region identification are highly
distinctive when mapped for Canada. Catchment sites in eastern Canada are generally clustered in small
geographic regions and are more likely to exist within similar hydrological environments. Annual peak
floods in northern Canada are predominately snowmelt driven, which is sensitive to temperature
variation, making monthly temperature pattern important for homogeneous region identification.
The Prairie region and the western mountains are subject to highly variable physiographic characteristics,
resulting in difficultly in identifying homogeneous regions, regardless of the attribute considered.

Use of a regionalization revision process to revise initial group membership was found to be
important. We proposed an automated process, the ARRA, to efficiently revise group membership
across large domains and showed it successfully increased the number of homogeneous regions.
Flood quantiles obtained from the identified homogeneous regions were reasonably close to estimated
at-site “true” quantiles, further demonstrating success of the regionalization process. The ARRA can
be readily adopted for other types of regionalization frameworks (e.g., clustering) when subsequent
region revision is required.

Findings of this study, on the basis of 186 catchment sites across Canada, provide valuable input
on the identification of homogeneous flood regions as well as their attribute behaviors and spatial
characteristics. The success of identifying homogeneous flood regions is essential for RFFA and thus
for reliable flood quantile estimation. Within the FloodNet project, work on refining RFFA techniques
will aid in appropriate sizing of flood resilient infrastructures, which is crucial to proactive protection
of lives and properties against flood risk.
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