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Editorial for Special Issue “New Advancements in Pure and
Applied Mathematics via Fractals and Fractional Calculus”

Asifa Tassaddiq 1,* and Muhammad Yaseen 2
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Fractional calculus has reshaped science and technology since its first appearance in
a letter received to Gottfried Wilhelm Leibniz from Guil-laume de l’Hôpital in the year
1695. The existence of fractional behavior in nature cannot be denied. Any phenomenon
with a pulse, rhythm, or pattern has the potential to be a fractal. The goal of this Special
Issue is to explore new developments in both pure and applied mathematics as a result
of fractional behavior. This assertion is supported by the papers in this Special Issue.
The variety of topics covered here demonstrates the importance of fractional calculus in
various fields and provides adequate coverage to appeal to the interests of each reader. This
Special Issue of Fractal and Fractional was posted in early 2021 with the goal of exploring the
various connections between fractional calculus and its applications in pure and applied
mathematics. Initially, a deadline was set and has been extended to 5 April 2022, in
consideration of the author’s interest. In total, we received 74 submissions. Following a
thorough peer-review process, seventeen of them were eventually published and, keeping
with the original concept of this Special Issue, have now been compiled into this book. The
following are details of the papers published in our Special Issue:

Ali et al. [1] developed a new version of generalized fractional Hadamard and Fejér–
Hadamard-type integral inequalities that can be used to investigate the stability and control
of corresponding fractional dynamic equations.

Fisher’s equation is a precise mathematical result derived from population dynamics
and genetics, specifically chemistry. Rashid et al. [2] used a hybrid technique in conjunction
with a new iterative transform method to solve the nonlinear fractional Fisher model.
Furthermore, while the proposed procedure is highly robust, explicit, and viable for non-
linear fractional PDEs, it has the potential to be consistently applied to other multifaceted
physical processes.

It is worth noting that the proposed fuzziness approach is to validate the superiority
and dependability of configuring numerical solutions to nonlinear fuzzy fractional partial
differential equations arising in physical and complex structures. As a result, in [3], the
authors evaluate a semi-analytical method in conjunction with a new hybrid fuzzy integral
transform and the Adomian decomposition method using the fuzziness concept known as
the Elzaki Adomian decomposition method (EADM).

In [4], the authors analyzed the solutions of a nonlinear div-curl system with fractional
derivatives of the Riemann–Liouville or Caputo types. To that end, the fractional-order
vector operators of divergence, curl, and gradient were identified as components of the
quaternionic fractional Dirac operator. General solutions to some non-homogeneous div-
curl systems were derived that consider the presence of fractional-order derivatives of the
Riemann–Liouville or Caputo types as one of the most important results of this manuscript.

An integro-differential kinetic equation was derived in [5] by using novel fractional
operators and its solution using weighted generalized Laplace transforms. The weighted
(k,s)-Riemann–Liouville fractional integral and differential operators are defined by the
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authors. The paper includes some specific properties of the operators as well as the
weighted generalized Laplace transform of the new operators.

The models that include vaccination as a control measure are very important. In
light of this, the authors developed and mathematically investigated integer and fractional
models of typhoid fever transmission dynamics in [6]. Several numerical simulations were
run, allowing us to conclude that such diseases may be combated through vaccination
combined with environmental sanitation.

Chemical, electrical, biochemical, geometrical, and meteorological models are exam-
ples of nonlinear models used in science and engineering. The authors of [7] investigated
the global fractal behavior of a new nonlinear three-step method with tenth-order conver-
gence. Basins of attraction consider various types of complex functions. When compared
to other well-known methods, the proposed method achieves the specified tolerance in the
smallest number of iterations while assuming different initial guesses.

The authors investigate the existence results for the hybrid Caputo–Hadamard frac-
tional boundary value problem in [8]. The proposed BVP’s inclusion version with three-
point hybrid Caputo–Hadamard terminal conditions is also considered, and the related
existence results are provided. To accomplish these objectives, Dhage’s well-known fixed-
point theorems for both BVPs are applied. Furthermore, two numerical examples are
presented to validate the analytical findings.

The authors of [9] developed a feedback-control strategy to control the chaos caused
by bifurcation. The proposed model’s fractal dimensions were computed. To further
confirm the complexity and chaotic behavior, the maximum Lyapunov exponents and
phase portraits were depicted. Finally, numerical simulations were presented to validate
the theoretical and analytical results.

Numerical analysis is always necessary to demonstrate the efficacy of proposed
schemes. Keeping this in mind, the authors in [10] concentrated on numerically address-
ing the time fractional Cattaneo equation involving the Caputo–Fabrizio derivative using
spline-based numerical techniques. The main advantage of the schemes is that the approxi-
mation solution is generated as a smooth piecewise continuous function, which allows to
approximate a solution at any point in the domain of interest.

Certain convex and s-convex functions have applications in optimization theory. As a
result, in [11], the authors investigated a variety of mean-type integral inequalities for a
well-known Hilfer fractional derivative. Some identities were also established in order to
infer more interesting mean inequalities. The Caputo fractional derivative consequences
were presented as special cases to their general conclusions.

The authors of [12] proposed a numerical method for solving Caputo fractional-
order differential equations based on the operational matrices of shifted Vieta–Lucas
polynomials (VLPs) (FDEs). A new operational matrix of fractional-order derivatives in
the Caputo sense was derived, which was then used in conjunction with the spectral tau
and spectral collocation methods to reduce the FDEs to a system of algebraic equations.
Numerical examples were provided to demonstrate the accuracy of this method, which
demonstrated that the obtained results agree well with the analytical solutions for both
linear and nonlinear FDEs.

A semi-analytical analysis of the fractional-order non-linear coupled system of Whitham–
Broer–Kaup equations was presented in [13]. The fractional derivative was considered
in the Caputo–Fabrizio sense. When the analytical and actual solutions are compared,
it is clear that the proposed approaches effectively solve complex nonlinear problems.
Furthermore, the proposed methodologies control and manipulate the obtained numerical
solutions in an extreme manner in a large acceptable region.

The authors of [14] derived some suitable results for extremal solutions to a class of
generalized Caputo-type nonlinear fractional differential equations (FDEs) with nonlinear
boundary conditions (NBCs). The aforementioned outcomes were obtained by employing
the monotone iterative method, which employs the procedure of upper and lower solutions.
There are two sequences of extremal solutions generated, one of which converges to the
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upper solution and the other to the corresponding lower solution. The method does not
require any prior discretization or collocation to generate the aforementioned upper and
lower solution sequences.

Q-calculus is a non-trivial and useful generalization of calculus. The authors of [15]
presented two new identities involving q-Riemann–Liouville fractional integrals. New
q-fractional estimates of trapezoidal-like inequalities were derived using these identities as
auxiliary results, in essence of the class of generalized exponential convex functions.

The definition and applicability of new families of polynomials generating function
and operational representations are always of great interest. The authors of [16] used oper-
ational techniques to investigate a new type of polynomial, specifically the Gould–Hopper–
Laguerre–Sheffer matrix polynomials. Furthermore, these particular matrix polynomials
were interpreted in terms of quasi-monomiality. The integral transform was used to investi-
gate the properties of the extended versions of the Gould–Hopper–Laguerre–Sheffer matrix
polynomials. There were also examples of how these results apply to specific members of
the matrix polynomial family.

Laplace transform of the Riemann zeta function using its distributional representation
was computed, which played a critical role in applying the operators of generalized frac-
tional calculus to this well-studied function [17]. As a result, as special cases, similar new
images can be obtained using various other popular fractional transforms. The Riemann
zeta function was used to formulate and solve a new fractional kinetic equation. Following
that, a new relationship involving the Laplace transform of the Riemann zeta function and
the Fox–Wright function was investigated, which significantly simplified the results.

To summarize, this special selection covers the scope of ongoing activities in the
context of fractional calculus by presenting alternative perspectives, viable methods, new
derivatives, and strategies to solve practical issues. As editors, we presume that this will be
followed by a set of Special Issues and texts to further investigate this theme.

As the guest editors of this Special Issue, we would like to take this opportunity
to thank all of the reviewers, editorial board members, and editors who assisted us in
perfecting the content of this volume. We would also like to thank Ms. Cecile Zheng from
the journal office for her prompt assistance across the Special Issue management process.

All author contributions to this Special Issue are greatly acknowledged with thanks.
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New Results Involving Riemann Zeta Function Using Its
Distributional Representation

Asifa Tassaddiq 1,* and Rekha Srivastava 2,*
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Abstract: The relation of special functions with fractional integral transforms has a great influence
on modern science and research. For example, an old special function, namely, the Mittag–Leffler
function, became the queen of fractional calculus because its image under the Laplace transform
is known to a large audience only in this century. By taking motivation from these facts, we use
distributional representation of the Riemann zeta function to compute its Laplace transform, which
has played a fundamental role in applying the operators of generalized fractional calculus to this
well-studied function. Hence, similar new images under various other popular fractional transforms
can be obtained as special cases. A new fractional kinetic equation involving the Riemann zeta
function is formulated and solved. Thereafter, a new relation involving the Laplace transform of
the Riemann zeta function and the Fox–Wright function is explored, which proved to significantly
simplify the results. Various new distributional properties are also derived.

Keywords: delta function; Riemann zeta-function; fractional transforms; Fox–Wright-function;
generalized fractional kinetic equation

1. Introduction

In general, the Riemann zeta function and its generalizations have always been of
fundamental importance [1–10] due to their widespread applications. For instance, the
role of the Riemann zeta function is vital in fractal geometry for studying the complex
dimensions of fractal strings [1]. More recently, new representations of special functions are
discussed [10–21] in terms of the complex delta function [22,23]. In this article, we use a dis-
tributional representation [10], Equation (33), of the Riemann zeta function to obtain further
new results. On the one hand, several fractional calculus images involving the Riemann
zeta function are obtained under multiple E–K fractional operators, and on the other hand,
a non-integer-order kinetic equation including the Riemann zeta function is formulated
and solved. The Laplace transform of the Riemann zeta function is computed using its
distributional representation, which played a fundamental role in accomplishing the goals
of this research. Several new properties and results for this function are also discussed.

Calculation of the images of special functions using the fractional calculus operators
has emerged as a popular subject in the data of various newly published papers [24–26].
This number is rising regularly, and such research has commented [24] further in mention-
ing Kiryakova’s unified approach. Taking a cue from these facts, the author has followed
the recommendation of [24] and obtained fractional calculus images involving the Riemann
zeta function and its simpler cases using the unified approach [24–28]. The Marichev–
Saigo–Maeda (M-S-M) operators and the Saigo, Erdélyi–Kober, and Riemann–Liouville
(R–L) fractional operators for m = 3, m = 2, m = 1, respectively, are discussed as special
cases of generalized fractional calculus operators (namely, multiple E–K operators of the
multiplicity m). It is recommended in the conclusion section of [24] to examine whether the

Fractal Fract. 2022, 6, 254. https://doi.org/10.3390/fractalfract6050254 https://www.mdpi.com/journal/fractalfract5
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special function can be formulated as a general function, namely, the Fox–Wright function
pΨq, then to use a general result such as [24] and Theorem 3 and 4 therein. It can be
observed that it is not possible to apply these theorems for the Riemann zeta function
using its classical representations, as already mentioned (see [24], p. 2). It is important to
note that the results obtained in this research are completely verifiable with these general
results. The corresponding fractional derivatives in the Riemann–Liouville and Caputo
sense, as discussed in [24] (p. 9, Definition 6; and p. 17, Theorem 4), can now be used for
the Laplace transform of the Riemann zeta function and also straightforwardly using its
new representation.

The remaining paper is organized as follows: Necessary preliminaries related to
the family of the Fox-H function and the generalized fractional integrals (multiple E–K
operators) form part of Section 2. Section 3.1 contains fractional calculus images involving
the Riemann zeta-function. The next Section 3.2, is devoted to the formulation and solution
of a non-integer-order kinetic equation containing the Riemann zeta-function. Further new
properties and results involving the Reimann zeta function are discussed in Section 3.3.
The conclusion is given in Section 4. Related special cases of generalized fractional integrals
(multiple E–K operators) are listed in Appendix A.

Hence, in order to achieve our purpose, let us first go through the basic definitions
and preliminaries in the subsequent section.

2. Materials and Methods

Throughout this article, C and R represent the set of complex and real numbers. The
real part of any complex number is denoted by �, Z−0 denotes a set of negative integers
containing 0, and R+ symbolizes the set containing positive reals.

The Riemann zeta function is a classical function investigated by Riemann [2], de-
fined as

ζ(s) :=
∞

∑
n=1

1
ns ; (s = σ+ iτ ;�(s) > 1). (1)

With the exception of a simple pole at s = 1, the meromorphic continuation of this
function extends it to the entire complex s-plane. As shown in [2] (p. 13, Equation (2.1.1)),
this function satisfies the following result (also known as Riemann’s Functional Equation):

ζ(s) := 2sπs−1Γ(1− s)ζ(1− s), (2)

where Γ(s) represents the gamma function [3,4] (a generalization of the factorial). The
Riemann zeta function has simple zeros at negative even integers that are its trivial zeros.
The remaining zeros of the zeta function are known as its nontrivial zeros, which are
symmetrically placed on the line �(s) = 1/2. This unproved fact is also famously known
as the “Riemann Hypothesis”. Several authors have investigated and analyzed different
generalizations of the zeta function. It has different integral representations, for example [2],

ζ(s) := 1
Γ(s)

∫ ∞
0

ts−1

et−1 dt; (�(s) > 1);

ζ(s) := 1
Γ(s)

∫ ∞
0

[
1

et−1 −
1
t

]
ts−1dt; (0 < �(s) < 1);

ζ(s) := 1
Γ(s)(1−21−s)

∫ ∞
0

ts−1

et+1 dt; (�(s) > 0).

(3)

For more details about the zeta function, the interested reader is referred to the
references [4–9] and the cited bibliographies therein. More recently, the distributional
representation of different special functions has been discussed in [10–20]. In this article,
for �(s) > 1, the following representation [10], Equation (33),

Γ(s)ζ(s) = 2π
∞

∑
n,l=0

(−(n + 1))l

l!
δ(s + l) (4)

6
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is the main focus to achieve the purpose of the current research. For similar studies, the
interested reader is referred to [10–20]. For any suitable function f and the number ω, the
delta function is a famous generalized function (distribution) defined by [22,23]:

〈δ(s−ω),℘(s)〉 = ℘(ω); δ(−s) = δ(s); δ(ωs) =
δ(s)
|ω| , where ω �= 0. (5)

It has several interesting properties, such as the following (see [22,23]):

δ(s + l) =
∞

∑
p=0

(l)p

p!
δ(p)(s); (6)

δ(z− c) ∗ ϑ(z) = ϑ(z− c);
δ(i)(z− c) ∗ ϑ(z) = ϑ(i)(z− c);(

∞
∑

i=0
δ(i)(z− v)

)
∗
(

∞
∑

i=0
δ(z− v)

)
=

∞
∑

i=0

i
∑

j=0
δ(j)(z− v);(

∞
∑

i=0
δ(i)(z− v)

)
∗
(

∞
∑

i=0
δ(i)(z− v)

)
=

(
∞
∑

j=0
(v + 1)δ(j)(z− v)

)
.

(7)

Furthermore, the Laplace transform of an arbitrary function ε(t) is defined by [23]
(Chapter 8):

ε(s) = L[ε(t) : s] =
∫ ∞

0
e−st(t)dt,�(s) > 0 (8)

and we will also use [23] (p. 227):

L
{
δ(r)(z); ξ

}
= ξr. (9)

The generalized fractional integrals, namely (multiple) E–K operators of multiplicity
m, are defined by [24] (p. 8, Equation (18)):

I(γk),(δk)
(βk),m

f (z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫ 1
0 f (zσ) Hm,0

m,m

⎡⎣σ
∣∣∣∣∣∣
(
γk + δk + 1− 1

βk
, 1
βk

)m

1(
γk + 1− 1

βk
, 1
βk

)m

1

⎤⎦dσ; ∑
k
δk > 0

= z−1
∫ z

0 f (ξ) Hm,0
m,m

⎡⎣ ξ
z

∣∣∣∣∣∣
(
γk + δk + 1− 1

βk
, 1
βk

)m

1(
γk + 1− 1

βk
, 1
βk

)m

1

⎤⎦dξ; ∑
k
δk > 0

f (z); δk = 1

(10)

where δk
′s are concerned with the order of integration, γk

′s are weights, and βk
′s are

additional parameters. Hm,n
p,q is the H-function defined in the subsequent paragraph. The

limits of integration (0, 1) and (0, z) in the above equation can be changed to (0, ∞) using
the fact that Hm,0

m,m vanishes for |σ| > 1 (To avoid prolonging this section, the special cases
of (10) in relation to the results of this article are given in Appendix A). However, the
corresponding multiple (m-tuple) Erdélyi–Kober fractional derivative of the R–L type of
multi-order δ = (δ1 ≥ 0, . . . , δm ≥ 0) is defined by [24] (p. 9):

D(γk)m
1 ,(δk)

(βk),m ( f (z)) := Dη I(γk+δk ),(ηk−δk )
(βk ),m f (z)Dη

∫ 1

0
f (zσ)Hm,0

m,m

⎡⎣σ
∣∣∣∣∣∣
(
γk + ηk + 1− 1

βk
, 1
βk

)m

1(
γk + 1− 1

βk
, 1
βk

)m

1

⎤⎦dσ (11)

where Dη , is a polynomial of variable z
(

d
dz

)
of degree η1 + . . . + ηm, given by

Dη = ∏
m

r=1∏
ηr

j=1

(
1
βr

z
d
dz

+ γr + j
)

; ηk =

{
[δk] + 1; δk /∈ Z

δk; δk ∈ Z
(12)

7



Fractal Fract. 2022, 6, 254

and the corresponding multiple (m-tuple) Erdélyi–Kober fractional derivative of the Caputo
type is given as (see [24] (p. 9) and references therein):

∗D(γk)m
1 ,(δk)

(βk),m f (z) = I(γk+δk ),(ηk−δk )
(βk ),m Dη f (z). (13)

The action of the E–K operators on the power function yields [24] (p. 9; Equation (27)):

I(γk),(δk)
(βk),m {zp} =

m

∏
i=1

Γ
(
γi + 1 + p

βi

)
Γ
(
γi + δi + 1 + p

βi

) zp; [−βk(1 + γk)] < p; δk ≥ 0; k = 1, . . . , m. (14)

The integrand of (10) involves the Fox H-function defined by [24] (p. 3; see also [25,29]),
which is given here in its integral and series form as follows:

Hm,n
p,q (z) = Hm,n

p,q

[
z
∣∣∣∣ (ai, Ai)(

bj, Bj
) ]= Hm,n

p,q

[
z
∣∣∣∣ (a1, A1), . . . , (ai, Ai)
(b1, B1), . . . ,

(
bj, Bj

) ]
= 1

2πi
∫
L

∏m
j=1 Γ(bj+Bjs)∏n

i=1 Γ(1−aj−Ajs)
∏

q
j=m+1 Γ(1−bj−Bjs)∏

p
i=n+1 Γ(aj+Ajs)

z−s ds,
(15)

where m, n, p, and q are related as 1 � m � q; 0 � n � p, Ai > 0 ( i = 1, ··· , p);
Bj > 0 ( j = 1, ··· , q), ai ∈ C ( i = 1, ··· , p); bj ∈ C ( j = 1, ··· , q); and L is an appropriate
Mellin–Barnes type of contour that separates the singularities of

{
Γ
(

bj + Bjs
)}m

j=1 from

the singularities of
{
Γ
(

1− aj − Ajs
)}n

j=1. Here, Γ(z) denotes the familiar gamma func-
tion [4], and when all Ap = Bq = 1, then the H-function becomes the Meijer G-function [24]
(p.4; see also [25,29]):

Hm,n
p,q

[
z
∣∣∣∣ (a1, A1), . . . , (ai, Ai)
(b1, B1), . . . ,

(
bj, Bj

) ]
=

∞
∑

m=0

∏m
j=1 Γ

(
bj +Bjm

)
∏n

i=1 Γ
(

1− ai −Aim
)

∏
q
j=m+1 Γ

(
1− bj −Bjm

)
∏

p
i=n+1 Γ

(
ai +im

) zm

m!

Hm,n
p,q

[
z
∣∣∣∣ (a1, 1), . . . , (ai, 1)
(b1, 1), . . . ,

(
bj, 1
) ]

= Gm,n
p,q

[
z
∣∣∣∣ a1 . . . , ai

b1, . . . , bj

]
.

(16)

The basic Fox–Wright function denoted by pΨq is defined and related to the H-function:

pΨq

[
(ai, Ai)
(bj, Bj)

; z
]
=

∞
∑

m=0

∏
p
l=1 Γ(ai+Aim)

∏
q
l=1 Γ((bj+Bjm)

zm

m! = H1,p
p,q+1

[
−z
∣∣∣∣ (1− a1, A1), . . . , (1− ai, Ai)
(0, 1), (1− b1, B1), . . . ,

(
(1− bj, Bj

) ]
(

aiεR
+(i = 1, . . . , p); BjεR

+(j = 1, . . . , q); 1 +
q
∑

i=1
Bi −

p
∑

j=1
Aj > 0

) (17)

and contains the hypergeometric and other important functions as [24] (p. 4; see also [25,29]):

pΨq

[
(ai, 1)
(bj, 1)

; z
] = G1,p

p,q+1

[
−z
∣∣∣∣ (1− a1, 1), . . . , (1− ai, 1)

0, (1− b1, 1), . . . ,
(
1− bj, 1

) ]
= pFq

[
ai
bj

; z
]

. Γ(a1)...Γ(ai)

Γ(b1)...Γ(bj)
.

(
aj > 0; bj /∈ Z

−
0
)
.

(18)

Furthermore, many other special functions studied in the literature are connected with
this class of special functions. For example, the Mittag–Leffler function [30] of parameters
1, 2, and 3 is related with the abovementioned special functions as follows:

Eγ
α,β(z) =

∞
∑

r=0

(γ)rzr

Γ(αr+β)
= 1

Γ(γ) 1Ψ1

[
(γ, 1)
(β, α)

; z
]
= H1,1

1,2

[
−z
∣∣∣∣ (1− γ, 1)
(0, 1), (1− β, α)

]
;

E1
α,β(z) = Eα,β(z) =

∞
∑

r=0

zr

Γ(αr+β)
= 1Ψ1

[
(1, 1)
(β, α)

; z
]
= H1,1

1,2

[
−z
∣∣∣∣ (0, 1)
(0, 1), (1− β, α)

]
;

E1
α,1(z) = Eα(z) =

∞
∑

r=0

zr

Γ(αr+1) = 1Ψ1

[
(1, 1)
(1, α)

; z
]
= H1,1

1,2

[
−z
∣∣∣∣ (0, 1)
(0, 1), (0, α)

]
.

(19)

8
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Furthermore, (s)k is the Pochhammer symbols defined in terms of the gamma function
as follows:

(s)ρ =
Γ(s + ρ)

Γ(s)
=

{
1 (ρ = 0, s ∈ C\{0})

s(s + 1) . . . (s + k− 1) (ρ = k ∈ N; s ∈ C).
(20)

Furthermore, it is important to mention that if any function can be expressed in the
form of the Fox–Wright function, then the generalized (multiple E–K) fractional integrals
and derivatives involving this function can be obtained directly using the general results
of [24], Theorem 3:

I(γk)m
1 ,(δk)

(βk),m

{
zc

pΨq

[
(ak, αk)

p
1

(bk, βk)
q
1

;λzμ
]}

= zc

⎧⎨⎩p+mΨq+m

⎡⎣ (ak, αk)
p
1 ,
(
γk + 1 + c

βk
, μ
βk

)m

1

(bk, βk)
q
1,
(
γk + δk + 1 + c

βk
, μ
βk

)m

1

;λzμ

⎤⎦⎫⎬⎭
(δk ≥ 0, γk > −1, βk > 0, k = 1, . . . , m ∧ μ > 0, λ �= 0)

(21)

and [24], Theorem 4:

D(γk)m
1 ,(δk)

(βk),m

{
zc

pΨq

[
(ai, αi)

p
1

(bj, β j)
q
1

;λzμ
]}

= zc

⎧⎨⎩p+mΨq+m

⎡⎣ (ai, αi)
p
1 ,
(
γk + δk + 1 + c

βk
, μ
βk

)m

1

(bj, β j)
q
1,
(
γk + 1 + c

βk
, μ
βk

)m

1

;λzμ

⎤⎦⎫⎬⎭. (22)

Unless otherwise stated, the conditions of parameters will remain similar to this
Section 2 and references therein.

3. Results

3.1. Fractional Integrals and Derivatives Formulae Involving the Riemann Zeta-Function

The following lemma has significant importance for the application of Equations (21)
and (22).

Lemma 1. Prove that the following result involving the Fox–Wright function holds true:

2π
∞

∑
n=0

0Ψ0

[ −
−

∣∣∣∣− (n + 1)eω
]
=

∞

∑
n,l=0

(−(n + 1))l

l! 0Ψ0

[ −
−

∣∣∣∣lω]. (23)

Proof . First of all, let us use (6) in (4) to get the following form:

Γ(s)ζ(s) = 2π
∞

∑
n,l,p=0

(−(n + 1))l(l)p

l!p!
δ(p)(s). (24)

Then, by applying the Laplace transform to (24), and by making use of (9), we are led
to the following:

L(Γ(s)ζ(s);ω) = 2π
∞

∑
n,l,p=0

(−(n + 1))l(l)p

l!p!
ωp = 2π

∞

∑
n,l=0

(−(n + 1))l

l! 0Ψ0

[ −
−

∣∣∣∣lω]. (25)

From (25), it can be further noticed that

L(Γ(s)ζ(s);ω) =
2π

exp(eω)− 1
= 2π

∞

∑
n=0

exp(−(r + 1)eω) = 2π
∞

∑
n=0

0Ψ0

[ −
−

∣∣∣∣− (n + 1)eω
]

. (26)

From (25) and (26), the required result follows. �

Theorem 1. The multiple E–K fractional transform of the Riemann zeta function is given by:

9
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I(γk),(δk)
(βk),m

(
ωχ−1L{Γ(s)ζ(s);ω}

)
= 2πxχ−1

∞
∑

r=0
mΨm

⎡⎣ (
γi + 1 + χ−1

βi
, 1
βi

)m

1(
γi + δi + 1 + χ−1

βi
, 1
βi

)m

1

∣∣∣∣∣∣− (r + 1)eω

⎤⎦
[−βk(1 + γk)] < p; δk ≥ 0; k = 1, . . . , m.

(27)

Proof. Let us first consider multiple E–K’s fractional transform using (25):

I(γk),(δk)
(βk),m

(
ωχ−1L{Γ(s)ζ(s);ω}

)
= I(γk),(δk)

(βk),m

(
ωχ−12π

∞

∑
n,l,p=0

(−(n + 1))l(m)p

l!p!
ωp

)
, (28)

exchanging the summation and integration,

I(γk),(δk)
(βk),m

(
ωχ−1L{Γ(s)ζ(s);ω}

)
= 2π

∞

∑
n,l,p=0

(−(n + 1))l(m)p

l!p!
I(γk),(δk)
(βk),m

(
ωχ−1ωp

)
, (29)

and then using (14) yields

I(γk),(δk)
(βk),m

(
ωχ−1L{Γ(s)ζ(s);ω}

)
= 2π

∞
∑

n,l,p=0

(−(n+1))l(l)p

l!p!

m
∏
i=1

Γ
(
γi+1+ χ+p−1

βi

)
Γ
(
γi+δi+1+ χ+p−1

βi

)ωp+χ−1

= 2πωχ−1
∞
∑

n,l=0

(−(n+1))l

l! mΨm

⎡⎣ (
γi + 1 + χ−1

βi
, 1
βi

)m

1(
γi + δi + 1 + χ−1

βi
, 1
βi

)m

1

∣∣∣∣∣∣lω
⎤⎦,

(30)

which, after using Lemma 1, leads to the required result. �

Remark 1. Hence the result (30) is completely verifiable with ([24], Theorem 3) in view of (25).
Similarly, the generalized fractional derivatives involving the Riemann zeta function can be obtained
using the methodology of theorem 1 or by using directly (22) and (25) as follows:

D(γk)m
1 ,(δk)

(βk),m {zcL(Γ(s)ζ(s); z)} = 2πzc
∞
∑

n,l=0

(−(n+1))l

l! mΨm

⎡⎣ (γk + δk + 1 + c
βk

, 1
βk

)m

1(
γk + 1 + c

βk
, 1
βk

)m

1

∣∣∣∣∣∣lω
⎤⎦

= 2πzc
∞
∑

n=0
mΨm

⎡⎣ (γk + δk + 1 + c
βk

, 1
βk

)m

1(
γk + 1 + c

βk
, 1
βk

)m

1

∣∣∣∣∣∣− (n + 1)eω

⎤⎦.

(31)

Continuing in this way, we obtain the following Table 1 of fractional integrals and
derivatives formulae involving the Riemann zeta function by following the methodol-
ogy of Theorem 1 and using Equations (27), (30), and (31), respectively. (As already
mentioned in Section 2, the definitions of the Marichev–Saigo–Maeda, Saigo, Erdélyi–
Kober, and Riemann–Liouville (R–L) fractional operators and their relation to (10) for
m = 3, m = 2, m = 1, respectively, are given in Appendix A; see also [31–34]).

Table 1. Fractional integrals and derivatives formulae involving Riemann zeta-function.

m = 3 Marichev–Saigo–Maeda fractional integrals and derivatives [31–34]

Iγ1,γ1
′ ,γ2,γ2

′ ,δ
0+

(
ωχ−1L{Γ(s)ζ(s);ω}

)
=

2πωδ+χ−γ1−γ1
′−1

∞
∑

n=0
3Ψ3

[
(χ, 1) (χ+ δ− γ1 − γ1

′ − γ2, 1) (χ+ γ2
′ − γ1

′, 1)
(χ+ γ2

′, 1) (χ+ δ− γ1 − γ1
′, 1) χ+ δ− γ1

′ − γ2

∣∣∣∣− (n + 1)eω
]

10
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Table 1. Cont.

m = 3 Marichev–Saigo–Maeda fractional integrals and derivatives [31–34]

Iγ1,γ1
′ ,γ2,γ2

′ ,δ
0−

(
ωχ−1L{Γ(s)ζ(s);ω}

)
=

2πωδ+χ−γ1−γ1
′−1

∞
∑

n=0
3Ψ3

[
(1− χ− δ+ γ1 + γ1

′,−1) (1− χ+ γ1 + γ2
′ − δ,−1) (1− χ− γ1,−1)

(1− χ,−1) (1− χ+ γ1 + γ1
′ + γ2 + γ2

′ − δ,−1) (1− χ+ γ1 − γ2,−1)

∣∣∣∣− (n + 1)eω
]

Dγ1,γ1
′ ,γ2,γ2

′ ,δ
0+

(
ωχ−1L(Γ(s)ζ(s);ω)

)
= 2πωχ−1

∞
∑

n=0
3Ψ3

[
(χ, 1) (χ− γ2 + γ1, 1) (χ+ γ1+γ1

′ + γ2
′ − δ, 1)

(χ− γ2, 1) (χ− δ+ γ1 ++γ2
′, 1) (χ− δ+ γ1

′ + γ1, 1)

∣∣∣∣− (n + 1)eω
]

Dγ1,γ1
′ ,γ2,γ2

′ ,δ
−

(
ωχ−1L(Γ(s)ζ(s);ω)

)
=

2πωχ−1 ∑∞
n=0 3Ψ3

[
(1− χ+ γ2

′, 1) (1 + γ2
′ − χ− γ2 + γ1, 1) (1− χ− γ1−γ1

′ + δ,−1)
(1− χ, 1) (1− χ− γ1

′ + γ2
′, 1) (1− χ+ δ− γ1

′ − γ1 − γ2,−1)

∣∣∣∣− (n + 1)eω
]

m = 2 Saigo fractional integrals and derivatives [31–34]

Iγ1,γ2,δ
0+

(
ωχ−1L{Γ(s)ζ(s);ω}

)
= 2πωχ−γ1−1

∞
∑

n=0
2Ψ2

[
(χ, 1) (χ+ γ2 − γ1, 1)

(χ− γ2, 1) (χ+ δ+ γ2)

∣∣∣∣− (n + 1)eω
]

Iγ1,γ2,δ
− ωχ−1(L{Γ(s)ζ(s);ω}) = 2πωχ−γ1−1

∞
∑

n=0
2Ψ2

[
(γ1 − χ+ 1, 1) (γ2 − χ+ 1,−1)

(1− χ, 1) ((γ1 + γ2 + δ− χ+ 1,−1)

∣∣∣∣− (n + 1)eω
]

Dγ1,γ2,δ
0+

(
tχ−1L(Γ(s)ζ(s);ω)

)
= 2π

∞
∑

n=0
2Ψ2

[
(χ, 1) (χ+ δ+ γ2 + γ1, 1)

(χ+ γ2, 1) (χ+ δ, 1)

∣∣∣∣− (n + 1)eω
]

Dγ1,γ2,δ
−

(
tχ−1L(Γ(s)ζ(s);ω)

)
= 2π

∞
∑

n=0
2Ψ2

[
(1− χ− γ2, 1) (1− χ+ δ+ γ1,−1)

(1− χ+ δ− γ2, 1) (1− χ,−1)

∣∣∣∣− (n + 1)eω
]

m = 1 Erdélyi–Kober, Riemann–Liouville (R–L) fractional integrals and derivatives [31–34]

Iγ,δ
0+
(
ωχ−1L{Γ(s)ζ(s);ω}

)
= 2πωχ−1

∞
∑

n=0
1Ψ1

[
(χ+ γ, 1)

(χ+ γ+ δ, 1)

∣∣∣∣− (n + 1)eω
]

Iγ,δ
0−
(
ωχ−1L{Γ(s)ζ(s);ω}

)
= 2πωχ+δ−1

∞
∑

n=0
1Ψ1

[
(γ− χ+ 1,−1)

(γ+ δ− χ+ 1,−1)

∣∣∣∣− (n + 1)eω
]

Dγ,δ
0+
{
ωχ−1L(Γ(s)ζ(s);ω)

}
= 2πωχ−1

∞
∑

n=0
1Ψ1

[
(γ+ δ+ χ, 1)
(γ+ χ, 1)

∣∣∣∣− (n + 1)eω
]

Dγ,δ
−
{
ωχ−1L(Γ(s)ζ(s);ω)

}
= 2πωχ−1

∞
∑

n=0
1Ψ1

[
(1− χ+ γ+ δ,−1)
(1− χ+ γ,−1)

∣∣∣∣− (n + 1)eω
]

Iδ+
(
ωχ−1L{Γ(s)ζ(s);ω}

)
= 2πωχ+δ−1

∞
∑

n=0
1Ψ1

[
(χ, 1)

(δ+ χ, 1)

∣∣∣∣− (n + 1)eω
]

Iδ−
(
ωχ−1L{Γ(s)ζ(s);ω}

)
= 2πωχ+δ−1

∞
∑

n=0
1Ψ1

[
(1− δ− χ,−1)
(1− χ,−1)

∣∣∣∣− (n + 1)eω
]

Dδ
0+
{
ωχ−1L(Γ(s)ζ(s);ω)

}
= 2πωχ−1−δ

∞
∑

n=0
1Ψ1

[
(χ, 1)

(χ− δ, 1)

∣∣∣∣− (n + 1)eω
]

Dδ
−
{
ωχ−1L(Γ(s)ζ(s);ω)

}
= 2πωχ−1−δ

∞
∑

n=0
1Ψ1

[
(δ− χ+ 1,−1)
(1− χ,−1)

∣∣∣∣− (n + 1)eω
]

Remark 2. It is mentionable that the succeeding result involving the products of a large class of
special functions is because of (26) and (27):

∫ 1
0

ωρ−1

exp(eω)−1 Hm,0
m,m

⎡⎣ω
∣∣∣∣∣∣
(
γk + δk + 1− 1

βk
, 1
βk

)m

1(
γk + 1− 1

βk
, 1
βk

)m

1

⎤⎦dω

= ωρ−1
∞
∑

n=0
mΨm

⎡⎣ (
γk + 1− 1

βk
, 1
βk

)m

1(
γk + δk + 1− 1

βk
, 1
βk

)m

1

∣∣∣∣∣∣− (n + 1)eω

⎤⎦.

(32)

Remark 3. Using the principle of mathematical induction for (23), it can be proved that

∞

∑
n=0

pΨq

[
(ai, Ai)
(bj, Bj)

;−(n + 1)eω
]
=

∞

∑
n,l=0

(−(n + 1))l

l! pΨq

[
(ai, Ai)
(bj, Bj)

; lω
]

. (33)

11
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3.2. Formulation of Fractional Kinetic Equation Involving Riemann Zeta-Function

The use of non-integer operators has emerged recently in the different disciplines of
engineering and the physical sciences [35–40]. For instance, the fractional kinetic equation
is important to investigate the theory of gases, aerodynamics, and astrophysics [41–48].
By reviewing the literature, it is found that the fractional kinetic equation comprising the
Riemann zeta function is not formulated. The main purpose of this section is to formulate
and solve this problem.

The change in the rates of production using subsequent kinetic equations to analyze
the reaction and destruction is described in [41]:

dε
dt

= −d(εt) + p(εt), (34)

where εt is given by εt(t∗) = ε(t− t∗), t∗ > 0. Further to this ε = ε(t) = change in
reaction, d = d(ε) = change in destruction, and p = p(ε) = change in production. The
following is obtainable by ignoring the spatial fluctuation and inhomogeneity of ε(t) with
the concentration of species, εj(t = 0) = ε0:

dεj

dt
= −cjεj(t). (35)

Next, ignoring subscript j and integrating (35) yields

ε(t)− ε0 = −c I−1
0+ε(t).

The non-integer-order kinetic equation is due to [41]:

ε(t)− ε0 = −cδ Iδ0+ε(t), (36)

where Iδ0+, δ > 0 is the Riemann–Liouville fractional integral, c is a constant, and its Laplace
transform is given by

L
{

Iδ0+ε(t);ω
}
= ω−δε(ω). (37)

Following to Haubold and Mathai [41], we next formulate and solve the fractional
kinetic equation so that for any integrable function f(t), we have

ε(t)− f (t)ε0 = −dδ Iδ0+ε(t). (38)

In light of this discussion, the fractional kinetic equation involving the Riemann zeta
function is formulated and solved in Theorem 2. This becomes possible only due to the
Reimann zeta-function’s new representation involving the delta function; otherwise, the
Laplace transform is not found before the w.r.t variable s (see [49]).

Theorem 2. For δ > 0 , the solution of a given fractional kinetic equation containing the Riemann
zeta function is

ε(t)− ε0Γ(t)ζ(t) = −dδ Iδ0+ε(t) (39)

ε(t) =
2πε0

t

∞

∑
n,l,p=0

(−(n + 1))l
(

l
t

)p

l!p!
Eδ,−p

(
−dδtδ

)
. (40)

Proof. Applying Laplace’s transformation to (39) and making use of (25) as well as
(37) gives

ε(ω) = 2πε0

∞

∑
n,l,p=0

(−(n + 1))l(l)p

l!p!
ωp −

(ω
d

)−δ
ε(ω). (41)

12
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Therefore, we have

ε(ω)

[
1 +
(ω

d

)−δ
]
= 2πε0

∞

∑
n,l,p=0

(−(n + 1))l(l)p

l!p!
ωp, (42)

and

ε(ω) = 2πε0

∞

∑
n,l,p=0

(−(n + 1))l(l)p

l!p!
ωp

∞

∑
m=0

[
−
(ω

d

)−δ
]m

. (43)

By considering δm− p > 0; δ > 0 and using L−1{ω−δ; t
}
= tδ−1

Γ(δ) , the inverse Laplace
transform of (43) is given by

ε(t) = 2πε0

∞

∑
n,l,p=0

(−(n + 1))l(l)p

l!p!
t−p−1 ×

∞

∑
m=0

(
−dδtδ

)m

Γ(δm− p)
. (44)

Lastly, making use of (19) in the above equation (44) provides the solution as stated in
(39) and (40). �

Remark 4. It can be noted that the solution methodology of Theorem 2 is in line with the existing
methods [41–48], and, as expected, the reaction rate ε(t) contains the Mittag–Leffler function
governed by the non-integer parameter δ. Furthermore, the sum over the coefficients in (40) is
well-defined and can be computed as follows:

C(t) =
∞

∑
n,l,p=0

(−(n + 1))l
(

l
t

)p

l!p!
=

1

exp
(

e
1
t

)
− 1

. (45)

Likewise, lim
t→∞

C(t) = 1
exp(1)−1 and lim

t→0
C(t) = 0.

3.3. Further New Properties of the Riemann Zeta function as a Distribution

The Dirac delta function is a linear functional, which transforms each function to its
value at zero. Hence, using (4), we have

∫
sεC

℘(s)Γ(s)ζ(s)ds = 2π
∞

∑
n,l=0

(−(n + 1))l

l!
δ(s + l),℘(s) = 2π

∞

∑
n,l=0

(−(n + 1))l

l!
℘(−l), (46)

or, for a real t, using (24), we have

∫
tεR

℘(t)Γ(t)ζ(t)dt = 2π
∞

∑
n,l,p=0

(−(n + 1))l(l)p

l!p!
δ(p)(t),℘(t) = 2π

∞

∑
n,l,p=0

(−(n + 1))l(l)p

l!p!
(−1)p℘(p)(0) (47)

and from the above equations it follows that the most properties that hold for the delta
function will also hold for the Riemann zeta-function. It can be noted that the sum over the
co-efficient in (46) and (47) is finite and well-defined, as well as rapidly decreasing. This
sum also defines a new transform named the zeta transform, and the following formulae
given in Table 2 and many others can be obtained using it.

Table 2. Zeta Transform.

Function Zeta Transform

eat 2π
exp(e−a)−1

sinat IMG
(

2π
exp(e−ia)−1

)

13
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Table 2. Cont.

Function Zeta Transform

cosat Re
(

2π
exp(e−ia)−1

)
Eα(s) 2π

∞
∑

n,l=0

(−(n+1))l

l! Eα(−l)

Kv (s) [McDonald function [4]] 2π
∞
∑

n,l=0

(−(n+1))l

l! Kv(−l)

Hr,0
r,r

⎡⎣ξ
∣∣∣∣∣∣
(
γk + δk + 1− 1

βk
, 1
βk

)r

1(
γk + 1− 1

βk
, 1
βk

)r

1

⎤⎦ 2π
∞
∑

n,l=0

(−(n+1))l

l! Hr,0
r,r

⎡⎣−l

∣∣∣∣∣∣
(
γk + δk + 1− 1

βk
, 1
βk

)r

1(
γk + 1− 1

βk
, 1
βk

)r

1

⎤⎦

The purpose of the remaining section is to enlist the new properties of the Riemann zeta
function as a distribution by following the concepts and methodology of [23] (Chapter 7,
pp. 199–207), which is achieved due to the zeta function’s new representations (4) and
(24) in terms of the delta function. First note that the frequently used test functions [22,23]
are of either compact support, or they are rapidly decreasing as well as infinitely differen-
tiable. These domains of test functions are commonly denoted by D and S , respectively,
and their codomains are the spaces D′ and S′ (also known as their dual spaces). Actually,
D and D′ are not closed w.r.t Fourier transforms, but S and S′ are closed. Another space
of test functions is denoted by Z , which is the space of the analytic and its entire functions.
Hence, Fourier transforms of the elements of D′ to belong to Z′, which is dual to Z , and
Fourier transforms of the elements of –Z into D [22,23]. Therefore, the Fourier transform as
well as its inverse are continuous linear functionals from D′ to Z′ ([23], p. 203). Since the
complex delta function is an element of Z′, from (4), it is therefore obvious that Γ(s)ζ(s) is
also an element of Z′. In light of this discussion, the following theorem follows.

Theorem 3. Suppose f is a distribution of bounded support; then,

F
[

f (y) ∗
√

2πeσy

exp(ey )− 1
; s

]
= F [ f (s)]Γ(s)ζ(s). (48)

Proof. Because Γ(s)ζ(s) ∈ Z′ and F ;F−1 are continuous linear functionals from D′ to Z′.
Further, we have [14], Equation (42):

F
[ √

2πeσy

exp(ey)− 1
; τ

]
= Γ(s)ζ(s); (s = σ+ iτ). (49)

Therefore,
√

2πeσy

exp(ey )−1 is an element of D′ being a Fourier transform of an element of space
Z′. Hence, the proof of the result (48) is complete using ([23], p. 206, Theorem 7.9.1). �

Example 1. Consider a function f with bounded support defined by

f (y) =

{
1 |y| < 1
0 |y| ≥ 1

(50)

Then, according to Theorem 3,

F
[

f (y) ∗
√

2πeσy

exp(ey )− 1

]
= F [ f (y); s]F

[ √
2πeσy

exp(ey )− 1
; s

]
=

sins
s

Γ(s)ζ(s), (51)

14
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yields a valuable consequence of distributional representation.
Continuing in this way, we can apply the elements of distributions to the Riemann zeta

function using its distributional representation (4) and (24). Some of these are listed below
in Table 3, and it is mentionable that the proof of all these properties simply follows from the
properties of the delta function and are therefore omitted. Here, we restrict these over the
space of complex analytic functions ℘(s)εZ , as defined in [22,23], but these properties may
hold for a large space of test functions, and it is supposed that c1, γ, and c2 are constants.

Table 3. Properties of Riemann Zeta function as a distribution.

addition with an arbitrary distribution f 〈Γ(s)ζ(s) + f , ℘(s)〉 = 〈Γ(s)ζ(s),℘(s) + f , ℘(s)〉
multiplication with an arbitrary constant c1 〈c1Γ(s)ζ(s),℘(s)〉 = 〈Γ(s)ζ(s), c1℘(s)〉
shifting by an arbitrary complex constant γ 〈Γ(s− γ)ζ(s− γ),℘(s)〉 = 〈Γ(s)ζ(s),℘(s + γ)〉

transposition 〈Γ(−s)ζ(−s),℘(s)〉 = 〈Γ(s)ζ(s),℘(−s)〉
multiplication of the independent variable with a

positive constant c1
〈Γ(c1s)ζ(c1s),℘(s)〉 = 〈Γ(s)ζ(s), 1

c1
℘
(

s
c1

)
〉

distributional differentiation 〈 dk

dsk (Γ(s)ζ(s)),℘(s)〉 =
∞
∑

n,l=0

(−(n+1))l

l! (−1)k℘k(−l)

distributional Fourier transform 〈F [Γ(s)ζ(s)],℘(s)〉 = 〈Γ(s)ζ(s),F [℘](s)〉
duality property of Fourier transform 〈F [Γ(s)ζ(s)],F [℘(s)]〉 = 〈2πΓ(s)ζ(s),℘(−s)〉

Parseval’s identity of Fourier transform
〈F [Γ(s)ζ(s)],F [℘(s)]〉 = 〈F [Γ(s)ζ(s)],F [℘(s)]〉 =

2π〈[Γ(σ)ζ(σ)] , [℘(σ)]〉; σ = �(s)
differentiation property of Fourier transform 〈F

[
dk

dsk (Γ(s)ζ(s))
]
,℘(s)〉 = 〈(−it)mΓ(s)ζ(s),F [℘](s)〉

Taylor series 〈Γ(s + c1)ζ(s + c1),℘(s)〉 = 〈
∞
∑

n=0

(c1)
n

n!
dn

dsn (Γ(s)ζ(s)),℘(s)〉

Convolution property Γ(t)ζ(t) ∗ f (t)= 2π
∞
∑

n,l=0

(−(n+1))l(l)p

l!p!
dp

dtp ( f (t))

Γ(s)ζ(s) ∗ exp(as) 2πeas

exp(ea)−1

4. Conclusions

The calculation of the images of special functions using the fractional calculus op-
erators has emerged as a popular subject. In this research, we have obtained fractional
calculus images involving Riemann zeta-functions and their simpler cases. Specifications
of these results were discussed for m = 3, m = 2, and m = 1. It is reasonable to verify,
in view of (25), that Theorems 3 and 4 of [24] are applicable, and the main result (27) and
its several special cases are completely verifiable with these theorems. A new fractional
kinetic equation involving the Riemann zeta function was formulated and solved. A newly
obtained representation of the Riemann zeta function and its Laplace transform has played
a crucial role in accomplishing the goals of this research. Certain distributional properties of
the Riemann zeta function and examples were also discussed. We hope that this confluence
of distribution theory and the function of analytic number theory will have far-reaching
applications in the future.
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Appendix A

Related Special Cases to (10)
Case 1: Marichev–Saigo–Maeda fractional integral operator

First of all, let us consider the case m = 3 and further take β1 = β2 = β3 = β = 1 in
(10). Then, the kernel of (10) will reduce to a special case of the H-function H3,0

3,3 that has the
following relation with the Meijer G-function G3,0

3,3–function and the Appel function (Horn
function) F3 ([2], Vol. 1):

H3,0
3,3

(
t
x

)
= G3,0

3,3

[
t
x

∣∣∣∣∣ γ1
′
+ γ2

′
, δ–γ1, δ –γ2

γ1
′
,γ2

′
, δ–γ1 − γ2

]
=

x−γ1

Γ(δ)
(x− t)δ−1t−γ1

′
F3

(
γ1,γ1

′,γ2,γ2
′, δ; 1− t

x
; 1− x

t

)
(A1)

where

F3
(
γ1,γ1

′,γ2,γ2
′, δ; u; v

)
=

∞

∑
k,l=0

(γ1)k(γ1
′)l(γ2)k(γ2

′)l
(δ)l+m

uk

k!
vl

l!
, max(|u|, |v|) < 1. (A2)

Hence, due to (A1), for the complex parameters γ1,γ1
′,γ2,γ2

′, � (δ) > 0, the
Marichev–Saigo–Maeda fractional integral operator of integration (see ([2], Vol. 1) is
also [31–34]) defined as

(
Iγ1,γ1

′ ,γ2,γ2
′ ,δ

0+ f
)
(x) =

x−γ1

Γ(δ)

∫ x

0
(x− t)δ−1t−γ1

′
F3

(
γ1,γ1

′,γ2,γ2
′, δ; 1− t

x
; 1− x

t

)
f (t)dt (A3)

and

(
Iγ1,γ1

′ ,γ2,γ2
′ ,δ

0− f
)
(x) =

t−γ1
′

Γ(δ)

∫ ∞

x
(x− t)δ−1t−γ1 F3

(
γ1,γ1

′,γ2,γ2
′, δ; 1− x

t
; 1− t

x

)
f (t)dt. (A4)

Both of the above forms have significant importance. Furthermore, it is now obvious
from (20)–(23) that the Marichev–Saigo–Maeda fractional integral operator is related to
the multiple E–K fractional integral operators as given in (10) for m = 3. The Marichev–
Saigo–Maeda fractional integral operator can also be expressed as a composition of three
commutable classical E–K integrals (see Kiryakova [24,25]) as follows:

Iγ1,γ1
′ ,γ2,γ2

′ ,δ
0+ f (x) = I(0,δ−γ1−γ1

′−γ2,γ2
′−γ1

′),(γ2
′ ,γ2,δ−γ2−γ2

′)
(1,1,1),3 f (x) = I(0,γ2

′)
1 I(δ−γ1−γ1

′−γ2,γ2)
1 I(γ2

′−γ1
′ ,δ−γ2−γ2

′)
1 f (x) (A5)

Many such representations are found (see Kiryakova [24,25] and cited references)
because of the symmetry of variables γ1,γ1

′ and γ2,γ2
′ in F3, as well as the symmetry in

the upper and lower rows of the G-function in (A-1). Hence, the following result holds true
in view of (A1)–(A4) and (10) (see also [31–34]).

Let γ1,γ1
′,γ2,γ2

′ ∈ C, ω > 0 ∧�(χ) > max{0, �(γ1 + γ1
′ + γ2 – δ), �(γ1

′ − γ2
′)},

�(δ) > 0, then

Iγ1,γ1
′ ,γ2,γ2

′ ,δ
0+

(
ωχ−1

)
=

Γ(χ)Γ(χ+ δ− γ1 − γ1
′ − γ2)Γ(χ+ γ2

′ − γ1
′)

Γ(χ+ γ2′)Γ(χ+ δ− γ1 − γ1
′)Γ(χ+ δ− γ1

′ − γ2)
ωδ+χ−γ1−γ1

′−1 (A6)
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Similarly, let γ1,γ1
′,γ2,γ2

′ ∈ C, ω > 0, and if �(δ) > 0, �(χ) < 1 + min
{�(−γ2),�(γ1 + γ1

′ − δ), �(γ1 + γ2
′ − δ)}; then, the following image formula holds

true in view of (A1)–(A4) and (10) (see also [31–34]):

Iγ1,γ1
′ ,γ2,γ2

′ ,δ
0−

(
ωχ−1

)
=

Γ(1− χ− δ+ γ1 + γ1
′)Γ(1− χ+ γ1 + γ2

′ − δ)Γ(1− χ− γ1)

Γ(1− χ)Γ(1− χ+ γ1 + γ1
′ + γ2 + γ2′ − δ)Γ(1− χ+ γ1 − γ2)

ωδ+χ−γ1−γ1
′−1 (A7)

Case 2: Saigo fractional operator
Next, let us consider the case m = 2 with β1 = β2 = β > 0.; then, the kernel-functions

of (10) reduce to the Gauss function [24]:

H2,0
2,2

⎡⎣σ
∣∣∣∣∣∣
(
γ1 + δ1 + 1− 1

β , 1
β

)
,
(
γ2 + δ2 + 1− 1

β , 1
β

)(
γ1 + 1− 1

β , 1
β

)
,
(
γ2 + 1− 1

β , 1
β

) ⎤⎦ = G2,0
2,2

[
σβ

∣∣∣∣ γ1 + δ2,γ2 + δ2
γ1γ2

]
= β

σβγ2(1 – σβ)
δ1+δ2−1

Γ(δ1+δ2) 2F1
(
γ2 + δ2 − γ1, δ1; δ1 + δ2; 1− σβ

) (A8)

For the purpose of this investigation, let us focus on two fractional integral operators
that are defined for γ1,γ2, δ ∈ C with x;�(δ) > 0 by Saigo [33], which can also be obtained
by taking β = 1; σ = t

x and then σ = x
t , also appropriately specifying the other parameter

values δ1 + δ2 = δ; δ1 = −γ1 in (A1) and (A8) (see also [31,32]).

Iγ1,γ2,δ
0+ =

x−δ−γ1

Γ(δ)

∫ x

0
(x− t)δ−1

2F1

(
δ+ γ2 ,−γ1; δ; 1− t

x

)
f (t)dt (A9)

and

Iγ1,γ2,δ
− ( f (x)) =

1
Γ(δ)

∫ ∞

x
(t− x)δ−1t−δ−γ1

2F1

(
δ+ γ2 ,−γ1; δ; 1− x

t

)
f (t)dt (A10)

where 2F1 represents the Gauss hypergeometric function given by (see [34]):

2F1(γ1, γ2,γ3; u) =
∞

∑
k=0

(γ1)k(γ2)k
(γ3)k

uk

k!
, |u|< 1; |u| = 1(u �= 1),�(γ3 − γ1 − γ2) >0. (A11)

The Appell function F3 diminishes to 2F1 (Gauss hypergeomatric function) and also
contends the following relationships (see [34], p. 301, Equation 9.4):

F3(γ1, δ− γ1,γ2, δ− γ2; δ; u; v) = 2F1(γ1, γ2; δ; u + v− uv)
and

F3(0,γ1
′,γ2,γ2

′, δ) = 2F1(γ1, γ2; δ; x); F3(γ1, 0,γ2,γ2
′, δ) = 2F1(γ1

′,γ2
′, δ; y)

(A12)

Hence, the relation of the Marichev–Saigo–Maeda (A3) and (A4) and the Saigo frac-
tional integral operators (A9) and (A10) is obvious using (31) for γ1 = 0∨ γ

′
1 = 0, where

both equations also interrelated with (10) in view of (A1) and (A8). Hence using these facts
for (10) and (A9), we have (see also [31–34]):

Iγ1,γ2,δ
0+

(
ωχ−1

)
=

Γ(χ)Γ(χ+ γ2 − γ1)

Γ(χ− γ2)Γ(χ+ δ+ γ2)
ωχ−γ1−1,(γ1, γ2, δ ∈ C ;�(δ,) > 0,�(χ) > max[0,�(γ1 − γ2)]). (A13)

Similar to (A13), we have the following right-handed formula (see also [31–34]):

Iγ1,γ2,δ
−

(
ωχ−1) = Γ(γ1−χ+1)Γ(γ2−χ+1)

Γ(1−χ)Γ(γ1+γ2+δ−χ+1)ω
χ−γ1−1;

γ1,γ2, δ ∈ C∧ �(δ) > 0∧ �(χ) < 1 + min[�(γ1),�(γ2)].
(A14)

Case 3: Erdélyi–Kober (E–K) and the Riemann–Liouville (R–L) fractional operator
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Let us consider m = 1 in (10); then, the kernel function of (10) becomes

H1,1
1,0

⎡⎣σ
∣∣∣∣∣∣
(
γ+ δ, 1

β

)(
γ, 1

β

) ⎤⎦ = βσβ−1G1,1
1,0

[
σβ

∣∣∣∣ γ+ δ
γ

]
= β

σβγ+β−1(1 – σβ
)δ−1

Γ(δ)
(A15)

and one can obtain the classical fractional operators, namely, the Erdélyi–Kober
(E–K) operators:

Iγ,δ
β f (z) =

1
Γ(δ)

∫ 1

0
σγ (1− σ)δ−1 f

(
zσ

1
β

)
dσ, δ ≥ 0, β > 0, γ ∈ R. (A16)

Further, for γ1 = 0,γ2 = γ, the Saigo operators (A9) and (A10) reduce the other frac-
tional operators, namely, the Erdélyi–Kober integrals defined for complex γ, δ ∈ C, �(δ) > 0,
(see also [31–34]):

I0,γ,δ
0+ ( f (x)) =

(
Iγ,δ
0+ f

)
(x) =

x−δ−γ

Γ(χ)

∫ x

0
(x− t)δ−1tγ f (t)dt (x > 0) (A17)

I0,γ,δ
0− ( f (x)) =

(
Iγ,δ
0− f

)
(x) =

xγ

Γ(χ)

∫ ∞

x
(t− x)δ−1t−δ−γ f (t)dt (x > 0) (A18)

It is obvious that (A17) and (A18) are also obtainable from (A16) for specific values of
β = 1; σ = t

x and then σ = x
t . Similarly, the Saigo operators are also related with the E–K

and the Riemann–Liouville (R–L) operators:

I0,γ,δ
0+ ( f (x)) = Iγ1,0,δ

0+ ( f (x)); Iγ,δ
0+ ( f (x)) = Iγ,δ

0− ( f (x));�(δ) > 0 (A19)

Continuing in this way, if γ1 = −δ, the Saigo operators (A9) and (A10) reduce to
the Riemann–Liouville (R–L) operators (see also [31–34]). The classical left-hand-sided
Riemann–Liouville fractional integrals Iδ0+ and right-hand-sided Riemann–Liouville frac-
tional integrals Iδ− of order δ ∈ C, �(δ) > 0 are defined by [7–9]:

Iδ0+( f (x)) =
1

Γ(δ)

∫ x

0
(x− t)δ−1 f (t)dt (x > 0) (A20)

and
Iδ−( f (x)) =

1
Γ(δ)

∫ ∞

x
(x− t)δ−1 f (t)dt (x > 0) (A21)

respectively. These are also related to the Weyl transform [7–9]. It can be noted that (A20)
and (A21) are also obtainable from (A16) for specific values of the involved parameters.
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Abstract: The present investigation dealing with a hybrid technique coupled with a new iterative
transform method, namely the iterative Elzaki transform method (IETM), is employed to solve
the nonlinear fractional Fisher’s model. Fisher’s equation is a precise mathematical result that
arose in population dynamics and genetics, specifically in chemistry. The Caputo and Antagana-
Baleanu fractional derivatives in the Caputo sense are used to test the intricacies of this mechanism
numerically. In order to examine the approximate findings of fractional-order Fisher’s type equations,
the IETM solutions are obtained in series representation. Moreover, the stability of the approach was
demonstrated using fixed point theory. Several illustrative cases are described that strongly agree
with the precise solutions. Moreover, tables and graphs are included in order to conceptualize the
influence of the fractional order and on the previous findings. The projected technique illustrates
that only a few terms are sufficient for finding an approximate outcome, which is computationally
appealing and accurate to analyze. Additionally, the offered procedure is highly robust, explicit, and
viable for nonlinear fractional PDEs, but it could be generalized to other complex physical phenomena.

Keywords: Elzaki transform; Caputo fractional derivative; AB-fractional operator; new iterative
transform method; Fisher’s equation

1. Introduction

Researchers from various domains have been interested in fractional differential
equations (FDEs) due to their wide applicability, and they are considered to be a handy
tool for simulating the behaviour of several complex processes that have ramifications
in specified disciplines of the physical sciences. Interestingly, it has boosted tremendous
applications in autocatalytic reactions, anomalous diffusion process, viscoelastic damping,
Maxwell fluid, virology, advection-diffusion process, thermal sciences, kinetics, optics,
hydrodynamics, and epidemic diseases; different fractional calculus formulations are
implemented in FDEs in order to adequately interpret and analyze memory. Numerous

Fractal Fract. 2021, 5, 94. https://doi.org/10.3390/fractalfract5030094 https://www.mdpi.com/journal/fractalfract21
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sorts of definitions and notions of fractional operators have been expounded by individuals
such as Coimbra, Davison, and Essex; Riesz; Riemann and Liouville; Hadamard; Weyl;
Jumarie; Caputo and Fabrizio [1]; Atangana and Baleanu [2]; Grünwald and Letnikov [3];
and Liouville and Caputo [4]. However, the Liouville-Caputo and AB operators are the
best fractional filters.

Several studies have been contemplated on the applications of these operators. For
example, Morales-Delgado [5] proposed a fractional analysis with and without kernel sin-
gularity. The authors of [6] employed AB fractional derivatives for finding the generalized
Casson fluid model. Atangana and Alkahtani [7] used the Caputo–Fabrizio derivative for
the analysis of groundwater flowing within a confined aquifer. Kumar et al. [8] consid-
ered the approximate-analytical solution of the regularized long-wave model by using the
AB-fractional operator. Singh et al. [9] use the Mittag-Leffler type function to characterize
the kinetics of an AB-fractional operator. The researchers of [10] proposed novel fractional
optimal control problems with non-singular Mittage-Leffler functions as a kernel. More
specifically, the Mittage-Leffler function is far more effective than the power and exponen-
tial functions in expressing physical difficulties. Consequently, the fractional derivative
of the AB operator is well suited to unraveling heterogeneities in substances, structures,
or media of various sizes.

Fractional PDEs have recently become extremely valuable in a variety of fields, includ-
ing stochastic models, ground water flow, bacterial growth rates, astrophysics, and many
more. Generally, PDEs are classified into conservation laws of energy, momentum, or elec-
tric charge (e.g., Fitzhugh-Nagumo equation, Korteweg-de Vties equations, Navier–Stokes
equations, and Kawahara equations). The development of accurate and explicit solutions to
nonlinear PDEs is a challenging task in applied sciences, and it is one of the most promising
and productive research areas. Due to these facts, numerous mathematical methods for con-
figuring approximate solutions have been proposed, such as the Adomian decomposition
method (ADM) [11–13], homotopy perturbation method (HPM) [14,15], Laplace iterative
transform method (LITM) [16], q-homotopy analysis method (q-HAM) [17], Haar wavelet
method (HWM) [18], Lie symmetry analysis (LSA) [19], Chebyshev spectral collocation
method (CSCM) [20], and many more.

Consider the generalized time-fractional Burgers–Fisher equation [18] presented
as follows:

∂αf

∂t̄α
+ ζfβ

∂f

∂x1
= σ

∂2f

∂x2
1
+ θf(1− fβ) (1)

where ζ, σ, θ are parameters and 0 < α ≤ 1. (1) plays a vital role in fluid dynamics models,
heat conduction, elasticity, and capillary-gravity waves. When ζ = 0 and β = 1 (1) are
transformed into a Fisher’s type equation, the derivative in (1) is a Caputo/AB-fractional
derivative of order α.

Specifically, if ζ = 0 and σ = θ = 1, the generalized time-fractional Fisher’s biological
population diffusion equation [18] is presented as follows:

∂αf

∂t̄α
=

∂2f

∂x2
1
+F (f) (2)

where f(x1, t̄) refers the population density and t̄ > 0, x1 ∈ R, and F (f) is a contin-
uous nonlinear function fulfilling the following hypothesis: F (0) = F (1) = 0, and
F′(1) < 0 < F′(0).

Equation (1) transformed into the logistic equation if α = 1, ζ = 0 and the confluence
of the diffusion equation has the diffusion factor σ and the birth rate θ. The coordinates
(x1, t̄) specified by f(x1, t̄) provide the state evolution across the spatial-temporal domain.
Fisher’s equation is used in many fields, including chemical kinetics [21], Neolithic transi-
tions [22], branching Brownian motion [23], epidemics and bacteria [24], and many others.
Wazwaz and Gorguis [11] used the ADM to solve Fisher’s equation and demonstrated
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their convergence. Dag et al. [25] contemplated the B-spline Galerkin method for Fisher’s
equation. Bastani and Salkuyeh [26] adopted the compact finite difference approach in as-
sociation with the third-order Runge–Kutta method to obtain Fisher’s equation. For further
investigations into linear and nonlinear Fisher’s equations, see [27,28].

In 2001, Elzaki [29] expounded a new transform in order to facilitate the process of
solving ODEs and PDEs in the time domain. This novel transform is the generalization of
existing transforms (Laplace and Sumudu) that can contribute to in an analogous way to
the Laplace and Sumudu transformations in order to determine the analytical solutions to
the PDEs.

In [30], Daftardar-Gejji and Jafari suggested a new iterative approach (NITM) for
solving functional equations, with the results reported in series form. Decomposing
the nonlinear terms constitutes the foundation for the formulation of an iterative tech-
nique. Jafari et al. [16], first coupled the Laplace transform in the NITM and then they
generated a novel recursive approach, namely ILTM, for obtaining the numerical conse-
quences of FPDEs. Later, this approach has been correlated with different transformations
(e.g., Sumudu transform, Aboodh transform, Elzaki transform, and Mohand transform)
(see [31–34]). This methodology is incredibly pragmatic, and it does not entail the in-
clusion of an unconditioned matrix, convoluted integrals, or infinite series expressions.
This approach avoids the demand for any explicit problematic configurations. NITM has
been employed to solve PDEs in multiple investigations, including the KdV equation [35],
Fornberg-Whitham equation [36], and Klein-Gordon equations [37].

Considering the substantial literature on fractional PDE frameworks, determining
the analytical results of the underlying PDE is not an inexpensive procedure. In this
perspective, we intend to design an appropriate technique for evaluating the numerical
solution to Fisher’s, the generic Fisher equation, and nonlinear diffusion equations of the
Fisher type that depict the complexities of the mechanism under consideration by utilizing
NITM. The Elzaki transform (ET) is merged with the NITM, and the proactive concept
is said to be the iterative Elzaki transform method (IETM). This novel method is applied
to examining fractional-order Fisher’s models. In order to illustrate the capability of the
recommended methodology, the findings of certain experimental examples were analysed.
New strategies are applied to establish the results of the fractional-order and closed form
results. An evaluation of IETM’s convergence and uniqueness is also supplied. We test
the superiority and practicality of the described algorithmic strategies for generating the
analytical results in a numerical simulation leveraging fabricated trajectories inferred from
Fisher’s model. Additionally, other fractional-orders of linear and non-linear PDEs can be
handled by the expounded approach.

2. Preliminaries

In this section, we will discus some basic preliminaries, definitions, and fractional
frameworks of derivatives with power-law and Mittag-Leffler functions in their kernels,
as well as the ET and fractional integrals.

Definition 1 ([35]). The Caputo fractional derivative (CFD) is defined as follows.

c
0Dα

t̄ =

⎧⎪⎨⎪⎩
1

Γ(j−α)

t̄∫
0

f(j)(x1)
(t̄−x1)

α+1−j dx1, j− 1 < α < j,

dj
dt̄j f(t̄), α = j.

(3)

Definition 2 ([2]). The AB fractional derivative in the Caputo sense (ABC) is presented as follows:

ABC
a1

Dα
t̄
(
f(t̄)
)
=

N(α)

1− α

t̄∫
a1

f′(t̄)Eα

[
− α(t̄− x1)

α

1− α

]
dx1, (4)
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where f ∈ H1(α̌, β̌), α̌ < β̌, α ∈ [0, 1] and N(α) indicates a normalization function as N(α) =
N(0) = N(1) = 1.

Definition 3 ([2]). The fractional integral of the ABC-operator is stated as follows.

ABC
a1

Iαt̄
(
f(t̄)
)
=

1− α

N(α)
f(t̄) +

α

Γ(α)N(α)

t̄∫
a1

f(x1)(t̄− x1)
α−1dx1. (5)

Definition 4 ([29]). A set M containing exponential mapping is presented as follows:

M =
{

f(t̄) : ∃z, p1, p2 > 0,
∣∣f(t̄)∣∣ < ze

|t̄|
pi , i f t̄ ∈ (−1)i × [0, ∞)|

}
. (6)

where z is a finite number, but p1, p2 may be finite or infinite.

Definition 5 ([29,35]). The ET of a given mapping f(t̄) is stated as follows.

E
{

f(t̄)
}
(ω) = Ũ (ω) = ω

∞∫
0

e−
t̄
ω f(t̄)dt̄, t̄ ≥ 0, ω ∈ [p1, p2]. (7)

Definition 6 ([36]). The Elzaki transform of the CFD is presented as follows.

E

{
c
0Dα

t̄
(
f(t̄)
)}

(ω) = ω−αŨ (ω)−
j−1

∑
κ=0

ω2−α+κf(κ)(0), j− 1 < α < j. (8)

Definition 7 ([37]). The ET of the ABC fractional derivative operator is presented as follows:

E

{
ABC
0 Dα

t̄
(
f(t̄)
)}

(ω) =
N(α)

αωα + 1− α

( Ũ (ω)

ω
−ωf(0)

)
, (9)

where E
{

f(t̄)
}
(ω) = Ũ (ω).

3. Application of Caputo-Liouville and ABC Fractional Derivatives to the Non-Linear
Fisher’s Model

In this note, we analyze time fractional Caputo-Liouville and the ABC fractional
derivative operator in order to analyze the non-linear Fisher’s equation [18]. The model
under consideration is presented as follows:

⊗
0 Dα

t̄ = η
∂2f(x1, t̄)

∂x2
1

− θ(f(x1, t̄)− ϕ)(1− fβ(x1, t̄)), β > 1, 0 < α ≤ 1, (10)

which is subject to the following condition.

f(x1, 0) = 0, a ≤ x1 ≤ b. (11)

3.1. Description of IETM
Assume the following nonlinear fractional PDE:

⊗Dα
t̄ f(x1, t̄) + L̃f(x1, t̄) + Ñ f(x1, t̄) = F (x1, t̄), t̄ > 0, 0 < α ≤ 1, j− 1 < α ≤ j, j ∈ N, (12)

subject to the initial condition

∂fκ

∂t̄κ
(x1, 0) = Gκ(x1), κ = 0, 1, . . . , m1 − 1. (13)

where ⊗Dα
t̄ = ∂αf(x1,t̄)

∂t̄α denotes the Caputo or ABC fractional derivative operator with 0 < α ≤ 1,
while L̃ and Ñ are linear and nonlinear terms, and F (x1, t̄) indicates the source term.
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By employing the Elzaki transform to (12), we acquire the following.

E
[ ⊗Dα

t̄ f(x1, t̄) + L̃f(x1, t̄) + Ñ f(x1, t̄)
]
= E

[
F (x1, t̄)

]
.

By the virtue of the Elzaki differentiation property for the Caputo fractional derivative operator
defined in (6), we have the following.

1
ωα

E
[
f(x1, t̄)

]
−

m1−1

∑
κ=0

f(κ)(x1, 0)ω2−α+κ = −E
[
L̃f(x1, t̄) + Ñ f(x1, t̄)

]
+E
[
F (x1, t̄)

]
,

E
[
f(x1, t̄)

]
= ω2f(x1, 0) +ωα

E
[
F (x1, t̄)

]
−ωα

E
[
L̃f(x1, t̄) + Ñ f(x1, t̄)

]
. (14)

Again, in view of the Elzaki differentiation property for the ABC fractional derivative operator
defined in (7), we have the following.

E
[
f(x1, t̄)

]
= ω2f(x1, 0) +

αωα + 1− α

N(α)
E
[
F (x1, t̄)

]
− αωα + 1− α

N(α)
E
[
L̃f(x1, t̄) + Ñ f(x1, t̄)

]
. (15)

Now, by applying the inverse Elzaki transform to (14) and (15), respectively, we have the
following:

f(x1, t̄) = E
−1
{
ω2f(x1, 0) +ωα

E
[
F (x1, t̄)

]}
−E

−1
{
ωα

E
[
L̃f(x1, t̄) + Ñ f(x1, t̄)

]}
, (16)

and

f(x1, t̄) = E
−1
{
ω2f(x1, 0) +

αωα + 1− α

N(α)
E
[
F (x1, t̄)

]}
−E

−1
{
αωα + 1− α

N(α)
E
[
L̃f(x1, t̄) + Ñ f(x1, t̄)

]}
. (17)

The iterative process in terms of power series is prescribed as follows.

f(x1, t̄) =
∞

∑
m1=0

fm1(x1, t̄). (18)

Moreover, the linear factor can be stated as the following.

L̃
( ∞

∑
m1=0

fm1(x1, t̄)
)
=

∞

∑
m1=0

L̃
[
fm1(x1, t̄)

]
. (19)

Furthermore, the nonlinear operator Ñ can be decomposed [30] as follows:

Ñ
( ∞

∑
m1=0

fm1 (x1, t̄)
)

= Ñ
(
f0(x1, t̄)

)
+

∞
∑

m1=0

[
Ñ
( m1

∑
κ=0

fκ(x1, t̄)
)
− Ñ

( m1−1
∑
κ=0

fκ(x1, t̄)
)]

= Ñ(f0) +
∞
∑
κ=1

Dm1 , (20)

where Dm = Ñ
( m1

∑
κ=0

fκ(x1, t̄)
)
− Ñ

( m1−1
∑
κ=0

fκ(x1, t̄)
)

.

Substituting (18)–(20) into (16) and (17), respectively, we will obtain the following
equations:

∞

∑
m1=0

fm1(x1, t̄) = G(x1) +E
−1
{
ωα

E
[
F (x1, t̄)

]}

−E−1

{
ωα

E

[
L̃

m1

∑
κ=0

fκ(x1, t̄) + Ñ(f0) +
m1

∑
κ=1

Dm1

]}
, (21)
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and

∞

∑
m1=0

fm1(x1, t̄) = G(x1) +E
−1
{
αωα + 1− α

N(α)
E
[
F (x1, t̄)

]}

−E−1

{
αωα + 1− α

N(α)
E

[
L̃

m1

∑
κ=0

fκ(x1, t̄) + Ñ(f0) +
m1

∑
κ=1

Dm1

]}
. (22)

We mention the following iterative scheme for the Caputo fractional derivative opera-
tor as follows.

f0(x1, t̄) = G(x1) +E−1
{
ωαE

[
F (x1, t̄)

]}
,

f1(x1, t̄) = E−1
{
ωαE

[
L̃f0(x1, t̄) + Ñ (f0(x1, t̄))

]}
,

...

fm1+1(x1, t̄) = E−1
{
ωαE

[
L̃fm1(x1, t̄) + Dm1

]}
, m1 > 0, m1 ∈ N.

(23)

Analogously, the iterative scheme for the ABC fractional derivative operator is pre-
sented as follows.

f0(x1, t̄) = G(x1) +E−1
{

αωα+1−α
N(α)

E
[
F (x1, t̄)

]}
,

f1(x1, t̄) = E−1
{

αωα+1−α
N(α)

E

[
L̃f0(x1, t̄) + Ñ (f0(x1, t̄))

]}
,

...

fm1+1(x1, t̄) = E−1
{

αωα+1−α
N(α)

E

[
L̃fm1(x1, t̄) + Dm1

]}
, m1 > 0, m1 ∈ N.

(24)

Finally, (12) and (13) yield the m1-terms solution in series forms as follows.

f(x1, f) = f0(x1, t̄) + f1(x1, t̄) + f3(x1, t̄) + . . . + fm1(x1, t̄)., m1 = 1, 2, . . . (25)

3.2. Stability Analysis

Let there be a Banach space (Y, ‖.‖) and V be a self-map of Y. Let xm+1 = h(V , xm)
be a specific iterative scheme. Moreover, let F(V), the fixed-point of V , possess at least
one element and that xn tends to a point q ∈ F(V). Consider a sequence {ym} such that
{ym} ⊆ Y and εm =

∥∥ym+1 − h(V , ym)
∥∥. If lim

m �→∞
εm = 0 implies that lim

m �→∞
ym = q, then we

say that the iterative process xm+1 = h(H, xn) is V-stable. Without any loss of generality,
we surmise that {ym} is upper bounded; otherwise convergence cannot be expected. If all
hypotheses fulfilled for xm+1 = Vxm, which is known as Picard’s iteration, are satisfied,
consequently, the iteration will be V-stable. The following theorem will be presented next.

Theorem 1 ([38]). Consider a Banach space (Y, ‖.‖) and V a self-map of Y holding the following:∥∥Vy − Vx1

∥∥ ≤ K
∥∥y− Vy

∥∥+ k̂
∥∥y− x1

∥∥, ∀x1, y ∈ Y, (26)

where K > 0, k̂ ∈ [0, 1), then V is Picard V-stable.

Consider the following sequence, which represents the nonlinear fractional Fisher’s
model as follows:

fm+1(x1, t̄) = fm(x1, t̄) +E
−1

[
αωα + 1− α

N(α)
E

[
σ
∂2fm(x1, t̄)

∂x2
1

+ θfm(x1, t̄)(1− f̂
β
m(x1, t̄))

]]
, (27)
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where αωα+1−α
N(α)

is the fractional Langrange multiplier and f̂
β
m is a limited variant that

denotes δf̂
β
m = 0.

Theorem 2. Consider T̄ as a self-map stated as follows:

T̄(fm(x1, t̄)) = fm+1(x1, t̄)

= fn(x1, t̄) +E
−1

[
αωα + 1− α

N(α)
E

[
σ
∂2fm(x1, t̄)

∂x2
1

+ θfm(x1, t̄)(1− f
β
m(x1, t̄))

]]
(28)

is T̄-stable in L2(a, b) if
[

1 +
(
σΩ1Ω2+θ(1−(K+H)β)

N(α)

)(
αt̄α

Γ(α+1) + (1− α)

)]
< Θ.

Proof. First, we illustrate that T̄ has a fixed point. In order to accomplish this, we examined
the following for all (m, κ) ∈ N×N.

∥∥T̄(fm(x1, t̄))− T̄(fκ(x1, t̄))
∣∣ =
∥∥∥∥∥∥∥∥∥∥∥∥∥∥

fm(x1, t̄)− fκ(x1, t̄)

+E
−1

[
αωα + 1− α

N(α)
E

[
σ
∂2fm(x1, t̄)

∂x2
1

+ θfm(x1, t̄)(1− f
β
m(x1, t̄))

]]

+E
−1

[
αωα + 1− α

N(α)
E

[
σ
∂2fκ(x1, t̄)

∂x2
1

+ θfκ(x1, t̄)(1− f
β
κ (x1, t̄))

]]

∥∥∥∥∥∥∥∥∥∥∥∥∥∥
.

Employing the linearity property of the inverse Elzaki transform yields the following.

∥∥T̄(fm(x1, t̄))− T̄(fκ(x1, t̄))
∣∣ =

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

fm(x1, t̄)− fκ(x1, t̄)

+E
−1

[
αωα + 1− α

N(α)
E

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

[
σ
∂2
[

fm(x1,t̄)−fκ(x1,t̄)
]

∂x2
1

+θ
[
fm(x1, t̄)− fκ(x1, t̄)

]
−θ
[
f
β+1
m (x1, t̄)− f

β+1
κ (x1, t̄)

]]]

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥
.

Utilizing triangular inequality for the norms, we have the following.∥∥T̄(fm(x1, t̄))− T̄(fκ(x1, t̄))
∣∣

≤
∥∥fm(x1, t̄)− fκ(x1, t̄)

∣∣+
+E−1

[
αωα+1−α

N(α)

[∥∥∥∥σ ∂2
[

fm(x1,t̄)−fκ(x1,t̄)
]

∂x2
1

∥∥∥∥]
]

+E−1

[
αωα+1−α

N(α)
E

[∥∥∥θ[fm(x1, t̄)− fκ(x1, t̄)
]∥∥∥]]

+E−1

[
αωα+1−α

N(α)
E

[∥∥∥− θ
[
f
β+1
m (x1, t̄)− f

β+1
κ (x1, t̄)

]∥∥∥]].

(29)

Equation (29) can be examined on a case-by-case basis, beginning with the following.∥∥∥∥σ∂2[fm(x1, t̄)− fκ(x1, t̄)
]

∂x2
1

∥∥∥∥ ≤ σΩ1Ω2. (30)
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The following results.∥∥∥θ[fβ+1
m (x1, t̄)− f

β+1
κ (x1, t̄)

]∥∥∥
≤
∥∥∥∥ β

∑
i=0

Ki
β(fm(x1, t̄))i(fκ(x1, t̄))β−i−1

∥∥∥∥.
∥∥fm(x1, t̄)− fκ(x1, t̄)

∥∥. (31)

Since fm(x1, t̄), fκ(x1, t̄) are bounded, there are two different positive constants that
we can obtain K,H such that for all (x1, t̄), we have the following.∥∥fm(x1, t̄)

∥∥ ≤ K,
∥∥fκ(x1, t̄)

∥∥ ≤ H, (m, κ) ∈ N×N. (32)

As a result of combining the triangular inequality with the above inequalities, (31) is
obtained as follows. ∥∥∥θ[fβ+1

m (x1, t̄)− f
β+1
κ (x1, t̄)

]∥∥∥
≤ (K+H)β

∥∥fm(x1, t̄)− fκ(x1, t̄)
∥∥. (33)

Now, by combining (31) and (33) into (34), we obtain the following result:

∥∥T̄(fm(x1, t̄))− T̄(fκ(x1, t̄))
∣∣

≤
[

1 +
(σΩ1Ω2 + θ(1− (K+H)β)

N(α)

)( αt̄α

Γ(α+ 1)
+ (1− α)

)]∥∥fm(x1, t̄)− fκ(x1, t̄)
∥∥ (34)

with the following.[
1 +
(σΩ1Ω2 + θ(1− (K+H)β)

N(α)

)( αt̄α

Γ(α+ 1)
+ (1− α)

)]
< Θ.

This establishes the existence of a fixed point for the nonlinear T̄-self map. As a
consequence, the proof is complete. We also proved that T̄ fulfills the requirements of
Theorem 1. Allow (7) to hold by inserting the following.

f =

[
1 +
(σΩ1Ω2 + θ(1− (K+H)β)

N(α)

)( αt̄α

Γ(α+ 1)
+ (1− α)

)]
, (35)

This proves that hypothesis of Theorem 1 fulfills the nonlinear mapping T̄. Thus, all
assumptions in Theorem 1 satisfies the described nonlinear mapping T̄, and T̄ is Picard’s
T̄-stable. As a result, the proof of Theorem 2 is complete.

4. Evaluation of the Fractional Fisher Model via IETM

This section demonstrate the reliability and preciseness of the projected methodology.

Problem 1. If θ = 1, β = 1, and ϕ = 0 in (10) with f0(x1, 0) = η, then the one dimensional time
fractional Fisher equation is presented as follows.

∂αf

∂t̄α
=

∂2f

∂x2
1
+ f(1− f). (36)

The integer-order solution for the Fisher’s Equation (36) is obtained by using the Taylor’s
series expansion for α = 1 as follows.

f(x1, t̄) =
η exp(t̄)

1− η + η exp(t̄)
.

28



Fractal Fract. 2021, 5, 94

Case I. First, we formulate Problem 1 by utilizing the Elzaki transform coupled with the
Caputo derivative operator.

By employing the Elzaki transform to (36) with the initial condition, we have the
following.

E

[∂αf

∂t̄α
]
= E

[ ∂2f

∂x2
1
+ f(1− f)

]
. (37)

The following is the case:

1
ωα

E
[
f(x1, t̄)

]
−

m−1

∑
κ=0

f(κ)(x1, 0)ω2−α+κ = E

[ ∂2f

∂x2
1
+ f(1− f)

]
.

equivalently, we have

1
ωα

E
[
f(x1, t̄)

]
= f(0)(x1, 0)ω2−α +E

[ ∂2f

∂x2
1
+ f(1− f)

]
.

Using the inverse Elzaki transform, we have the following.

f(x1, t̄) = η +E
−1
[
ωα

E

[ ∂2f

∂x2
1
+ f(1− f)

]]
.

Applying the iterative technique described in Section 3.1, we obtain the following.

f0(x1, t̄) = η,

f1(x1, t̄) = E
−1
[
ωα

E

{(
f0(x1, t̄)

)
x1x1

+ f0(1− f0)
}]

= η(1− η)
t̄α

Γ(α+ 1)
,

f2(x1, t̄) = E
−1
[
ωα

E

{(
f1(x1, t̄)

)
x1x1

+ f1(1− f1)
}]

= η(1− η)(1− 2η)
t̄2α

Γ(2α+ 1)
,

f3(x1, t̄) = E
−1
[
ωα

E

{(
f2(x1, t̄)

)
x1x1

+ f2(1− f2)
}]

= η(1− η)(1− 6η + 6η2)
t̄3α

Γ(3α+ 1)
,

f4(x1, t̄) = E
−1
[
ωα

E

{(
f3(x1, t̄)

)
x1x1

+ f3(1− f3)
}]

= η(1− η)(1− 2η)(1− 12η + 12η2)
t̄4α

Γ(4α+ 1)
,

...

Provided that the series form solution is as follows:

f(x1, t̄) = f0(x1, t̄) + f1(x1, t̄) + f2(x1, t̄) + f3(x1, t̄) + . . . + fm1(x1, t̄).

we consequently have
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f(x1, t̄) = η + η(1− η)
t̄α

Γ(α+ 1)
+ η(1− η)(1− 2η)

t̄2α

Γ(2α+ 1)
+ η(1− η)(1− 6η + 6η2)

t̄3α

Γ(3α+ 1)

+η(1− η)(1− 2η)(1− 12η + 12η2)
t̄4α

Γ(4α+ 1)
+ . . .

Case II. Now we formulate Problem 1 by utilizing Elzaki transform coupled with the ABC
derivative operator.

By employing the Elzaki transform to (36) with the initial condition, we have the
following.

E

[∂αf

∂t̄α
]
= E

[ ∂2f

∂x2
1
+ f(1− f)

]
. (38)

The following is then the case.

E
[
f(x1, t̄)

]
= f(0)(x1, 0)ω2 +

αωα + 1− α

N(α)
E

[ ∂2f

∂x2
1
+ f(1− f)

]
.

Using the inverse Elzaki transform, we have the following.

f(x1, t̄) = η +E
−1
[
αωα + 1− α

N(α)
E

[ ∂2f

∂x2
1
+ f(1− f)

]]
.

Applying the iterative technique described in Section 3.1, we obtain the following
results.

f0(x1, t̄) = η,

f1(x1, t̄) = E
−1
[
αωα + 1− α

N(α)
E

{(
f0(x1, t̄)

)
x1x1

+ f0(1− f0)
}]

=
η(1− η)

N(α)

[
αt̄α

Γ(α+ 1)
+ (1− α)

]
,

f2(x1, t̄) = E
−1
[
αωα + 1− α

N(α)
E

{(
f1(x1, t̄)

)
x1x1

+ f1(1− f1)
}]

=
η(1− η)(1− 2η)

N2(α)

[
α2 t̄2α

Γ(2α+ 1)
+ 2α(1− α)

t̄α

Γ(α+ 1)
+ (1− α)2

]
,

f3(x1, t̄) = E
−1
[
αωα + 1− α

N(α)
E

{(
f2(x1, t̄)

)
x1x1

+ f2(1− f2)
}]

=
η(1− η)(1− 6η + 6η2)

N3(α)

[
α3 t̄3α

Γ(3α+ 1)
+ 3α2(1− α)

t̄2α

Γ(2α+ 1)
+ 3α(1− α)2 t̄α

Γ(α+ 1)
+ (1− α)3

]
,

...

Provided the series form solution is as follows:

f(x1, t̄) = f0(x1, t̄) + f1(x1, t̄) + f2(x1, t̄) + f3(x1, t̄) + . . . + fm1(x1, t̄).

we consequently have

f(x1, t̄) = η +
η(1− η)

N(α)

[
αt̄α

Γ(α+ 1)
+ (1− α)

]
+

η(1− η)(1− 2η)
N2(α)

[
α2 t̄2α

Γ(2α+ 1)
+ 2α(1− α)

t̄α

Γ(α+ 1)
+ (1− α)2

]
+
η(1− η)(1− 6η + 6η2)

N3(α)

[
α3 t̄3α

Γ(3α+ 1)
+ 3α2(1− α)

t̄2α

Γ(2α+ 1)
+ 3α(1− α)2 t̄α

Γ(α+ 1)
+ (1− α)3

]
+ . . .
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For showing the accuracy and compactness of our proposed algorithm (IETM via CFD
and ABC fractional derivatives), we compare our results with [39]. It can be observed from
Table 1 that the present algorithm is very effective and yields accurate results. The absolute
errors of the numerical solution of Fisher’s equation obtained by IETM (CFD and ABC
fractional derivatives) and the exact solutions for Case 1 are depicted in Table 1 and presents
a strong correlation among the proposed technique and rapidly converges to the exact
solution very efficiently in a short admissible domain.

Figure 1 compares the exact and approximate solutions to Problem 1 using the CDF
operator. The absolute error norm in Figure 2 for (36) with the assumptions of η = 0.05, θ = 1,
β = 1, and ϕ = 0 ensures the approximation of the numerical results derived by IETM
to the exact solution via the CFD and ABC fractional derivative operators, respectively.
The results of the graphical representation reveal that the model is highly dependent on
fractional order α. The absolute inaccuracy is really small. Two dimensional representations
of graphs via Figure 3 show the strong connection between the exact and approximate
solutions for various fractional orders. Furthermore, Figure3a,b illustrate that the ABC
fractional derivative operator has better harmony than the CFD operator.

(a)

(b)
Figure 1. Numerical behavior of exact and approximate solution to the f(x1, t̄) for Problem 1 when
the parameters are η = 0.05, θ = 1, β = 1, and ϕ = 0.
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Table 1. Comparison results with exact (fE) IETM-numerical solutions (fNum) for CFD and ABC fractional derivative
operator of f(x1, t̄) of Case 1 with absolute errors and the HPM [39] when α = 1, t̄ = 0.01, η = 0.05, and ϕ = 0 for various
values of x1.

η fE fNum/CFD sol. fNum/ABC sol. |fE − fNum/CFD| |fE − fNum/ABC| HPM sol. [39]

0.1 1.009 × 10−1 1.009 × 10−1 2.329 × 10−1 0 1.319 × 10−1 8.999 × 10−1

0.2 2.016 × 10−1 2.016 × 10−1 4.091 × 10−1 0 2.017 × 10−1 7.987 × 10−1

0.3 3.021 × 10−1 3.021 × 10−1 5.429 × 10−1 0 2.408 × 10−1 9.210 × 10−1

0.4 4.024 × 10−1 4.024 × 10−1 6.464 × 10−1 1.00 × 10−11 2.440 × 10−1 7.540 × 10−1

0.5 5.025 × 10−1 5.025 × 10−1 7.292 × 10−1 3.00 × 10−10 2.267 × 10−1 8.908 × 10−1

0.6 6.024 × 10−1 6.024 × 10−1 7.984 × 10−1 1.00 × 10−10 1.960 × 10−1 9.765 × 10−1

0.7 7.021 × 10−1 7.021 × 10−1 8.589 × 10−1 0 1.568 × 10−1 9.344 × 10−1

0.8 8.016 × 10−1 8.016 × 10−1 9.131 × 10−1 3.00 × 10−10 1.115 × 10−1 9.123 × 10−1

0.9 9.009 × 10−1 9.009 × 10−1 9.609 × 10−1 3.00 × 10−10 6.000 × 10−2 9.777 × 10−1

1.0 1.000 × 100 1.000 × 100 1.000 × 100 0 0 1.000 × 100

(a)

(b)
Figure 2. (a) Absolute error plots of f(x1, t̄) for Problem 1 for (a) CFD and (b) ABC when the
parameters are η = 0.05, θ = 1, β = 1, and ϕ = 0.
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(b)
Figure 3. Two dimensional representation of f(x1, t̄) for Problem 1 at different fractional orders
when the parameters are η = 0.05, θ = 1, β = 1, and ϕ = 0. (a) illustrates the comparison view
of CFD and ABC operators with their exact solutions, while (b) shows the two dimensional view
of the exact-approximate solution with different fractional-order in the CFD and ABC fractional
derivative sense.

Problem 2. If θ = 6, β = 1 and ϕ = 0 in (10) with f0(x1, 0) = 1
(1+exp(x1))2 , then the one

dimensional time fractional Fisher equation is presented as follows.

∂αf

∂t̄α
=

∂2f

∂x2
1
+ 6f(1− f). (39)

The integer-order solution for the Fisher’s Equation (39) is obtained by using the Taylor’s
series expansion for α = 1 as follows.

f(x1, t̄) =
1

(1 + exp(x1 − 5t̄))2 .

Case I. First, we formulate Problem 2 by utilizing the Elzaki transform coupled with the
Caputo derivative operator.

Employing the Elzaki transform to (39) with the initial condition, we have the following.

E

[∂αf

∂t̄α
]
= E

[ ∂2f

∂x2
1
+ 6f(1− f)

]
. (40)
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The following results:

1
ωα

E
[
f(x1, t̄)

]
−

m−1

∑
κ=0

f(κ)(x1, 0)ω2−α+κ = E

[ ∂2f

∂x2
1
+ 6f(1− f)

]
.

equivalently, we have

1
ωα

E
[
f(x1, t̄)

]
= f(0)(x1, 0)ω2−α +E

[ ∂2f

∂x2
1
+ 6f(1− f)

]
.

Using the inverse Elzaki transform, we have the following.

f(x1, t̄) = η +E
−1
[
ωα

E

[ ∂2f

∂x2
1
+ 6f(1− f)

]]
.

Applying the iterative technique described in Section 3.1, we obtain the following.

f0(x1, t̄) =
1

(1 + exp(x1))2 ,

f1(x1, t̄) = E
−1
[
ωα

E

{(
f0(x1, t̄)

)
x1x1

+ 6f0(1− f0)
}]

=
10 exp(x1)

(1 + exp(x1))3
t̄α

Γ(α+ 1)
,

f2(x1, t̄) = E
−1
[
ωα

E

{(
f1(x1, t̄)

)
x1x1

+ 6f1(1− f1)
}]

=
50 exp(x1)(exp(2x1)− 1)

(1 + exp(x1))4
t̄2α

Γ(2α+ 1)
,

f3(x1, t̄) = E
−1
[
ωα

E

{(
f2(x1, t̄)

)
x1x1

+ 6f2(1− f2)
}]

= −750(7 exp(x1)− 4 exp(2x1)− 1)
3(1 + exp(x1))5

t̄3α

Γ(3α+ 1)
,

...

Provided the series form solution is the following:

f(x1, t̄) = f0(x1, t̄) + f1(x1, t̄) + f2(x1, t̄) + f3(x1, t̄) + . . . + fm1(x1, t̄).

we consequently have the following.

f(x1, t̄) =
1

(1 + exp(x1))2 +
10 exp(x1)

(1 + exp(x1))3
t̄α

Γ(α+ 1)
+

50 exp(x1)(exp(2x1)− 1)
(1 + exp(x1))4

t̄2α

Γ(2α+ 1)

−570(7 exp(x1)− 4 exp(2x1)− 1)
3(1 + exp(x1))5

t̄3α

Γ(3α+ 1)
+ . . .

Case II. Now we formulate Problem 2 by utilizing the Elzaki transform coupled with
an ABC derivative operator.

Employing the Elzaki transform to (39) with the initial condition, we have the following.

E

[∂αf

∂t̄α
]
= E

[ ∂2f

∂x2
1
+ 6f(1− f)

]
. (41)

E
[
f(x1, t̄)

]
= f(0)(x1, 0)ω2 +

αωα + (1− α)

N(α)
E

[ ∂2f

∂x2
1
+ 6f(1− f)

]
.
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By using the inverse Elzaki transform, we have the following.

f(x1, t̄) = η +E
−1
[
αωα + (1− α)

N(α)
E

[ ∂2f

∂x2
1
+ 6f(1− f)

]]
.

By applying the iterative technique described in Section 3.1, we obtain the following.

f0(x1, t̄) =
1

(1 + exp(x1))2 ,

f1(x1, t̄) = E
−1
[
αωα + (1− α)

N(α)
E

{(
f0(x1, t̄)

)
x1x1

+ 6f0(1− f0)
}]

=
10 exp(x1)

N(α)(1 + exp(x1))3

[
αt̄α

Γ(α+ 1)
+ (1− α)

]
,

f2(x1, t̄) = E
−1
[
αωα + (1− α)

N(α)
E

{(
f1(x1, t̄)

)
x1x1

+ 6f1(1− f1)
}]

=
50 exp(x1)(exp(2x1)− 1)
N2(α)(1 + exp(x1))4

[
α2 t̄2α

Γ(2α+ 1)
+ 2α(1− α)

t̄α

Γ(1 + α)
+ (1− α)2

]
,

f3(x1, t̄) = E
−1
[
αωα + (1− α)

N(α)
E

{(
f2(x1, t̄)

)
x1x1

+ 6f2(1− f2)
}]

= −750(7 exp(x1)− 4 exp(2x1)− 1)
3N3(α)(1 + exp(x1))5

×
[

α3 t̄3α

Γ(3α+ 1)
+ 3α2(1− α)

t̄2α

Γ(1 + 2α)
+ 3α(1− α)2 t̄α

Γ(1 + α)
+ (1− α)3

]
,

...

Provided that the series form solution is as follows:

f(x1, t̄) = f0(x1, t̄) + f1(x1, t̄) + f2(x1, t̄) + f3(x1, t̄) + . . . + fm1(x1, t̄).

the following consequently results.

f(x1, t̄) =
1

(1 + exp(x1))2 +
10 exp(x1)

N(α)(1 + exp(x1))3

[
αt̄α

Γ(α+ 1)
+ (1− α)

]
+

50 exp(x1)(exp(2x1)− 1)
N2(α)(1 + exp(x1))4

[
α2 t̄2α

Γ(2α+ 1)
+ 2α(1− α)

t̄α

Γ(1 + α)
+ (1− α)2

]
−750(7 exp(x1)− 4 exp(2x1)− 1)

3N3(α)(1 + exp(x1))5

×
[

α3 t̄3α

Γ(3α+ 1)
+ 3α2(1− α)

t̄2α

Γ(1 + 2α)
+ 3α(1− α)2 t̄α

Γ(1 + α)
+ (1− α)3

]
+ . . .

For showing the accuracy and compactness of our proposed algorithm (IETM via CFD and ABC
fractional derivatives), we compare our results with [39]. It can be observed from Table 2 that the
present algorithm is very effective and yields accurate results. The absolute errors of the numerical
solution of Fisher’s equation obtained by IETM (CFD and ABC fractional derivatives) and the exact
solutions for Case 2 are depicted in Table 2 and presents a strong correlation among the proposed
technique and rapidly converges to the exact solution very efficiently in a short admissible domain.

Figure 4 compares the exact and approximate solutions to Problem 2 by using the CDF operator.
The absolute error norm in Figure 5 for (39) with the assumptions of θ = 6, β = 1, and ϕ = 0 ensures
the approximation of the numerical results derived by the IETM to the exact solution via the CFD and
ABC fractional derivative operators, respectively. The results of the graphical representation reveal
that the model is highly dependent on fractional order α. The absolute inaccuracy is really small.
Surface and two dimensional representations of graphs via Figure 6 show the strong connection
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between the exact and approximate solutions for various fractional orders. Furthermore, Figure 6a,b
illustrates that the ABC fractional derivative operator has better harmony than the CFD operator.

Table 2. Comparison results with exact (fE) IETM-numerical solutions (fNum) for CFD and ABC fractional derivative
operator of f(x1, t̄) of Case 2 with absolute errors and the HPM [39] when α = 1, t̄ = 0.01, and ϕ = 0 for various values
of x1.

x1 fE fNum/CFD sol. fNum/ABC sol. |fE − fNum/CFD| |fE − fNum/ABC| HPM sol. [39]

0.1 2.377 × 10−1 2.375 × 10−1 2.432 × 10−1 1.394 × 10−4 −5.7000 × 10−4 8.387 × 10−1

0.2 2.140 × 10−1 2.138 × 10−1 2.159 × 10−1 1.119 × 10−4 −0.019 × 10−4 9.567 × 10−1

0.3 1.917 × 10−1 1.915 × 10−1 2.000 × 10−1 9.68 × 10−5 −0.083 × 10−5 4.534 × 10−1

0.4 1.709 × 10−1 1.708 × 10−1 1.888 × 10−1 7.32 × 10−5 −0.179 × 10−5 8.887 × 10−1

0.5 1.516 × 10−1 −0.18 × 10−5 1.575 × 10−1 4.85 × 10−5 −0.059 × 10−5 7.337 × 10−1

0.6 1.339 × 10−1 1.338 × 10−1 1.958 × 10−1 2.35 × 10−5 −0.619 × 10−5 9.337 × 10−1

0.7 1.176 × 10−1 1.175 × 10−1 1.234 × 10−1 4.85 × 10−5 −0.58 × 10−5 7.337 × 10−1

0.8 1.029 × 10−1 1.029 × 10−1 1.416 × 10−1 2.51 × 10−5 −0.055 × 10−5 9.998 × 10−1

0.9 8.966 × 10−2 8.971 × 10−2 9.516 × 10−1 4.76 × 10−5 3.426 × 10−5 9.001 × 10−1

1.0 7.778 × 10−1 7.784 × 10−1 9.001 × 100 6.75 × 10−5 −1.223 × 10−5 7.337 × 10−1

(a)

(b)
Figure 4. Numerical-behavior of exact and approximate solution to the f(x1, t̄) for Problem 2 when
the parameters are θ = 6, β = 1, and ϕ = 0.
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(a)

(b)
Figure 5. (a) Absolute-error plots of f(x1, t̄) for Problem 2 for (a) CFD and (b) ABC when the
parameters are θ = 6, β = 1, and ϕ = 0.

(a)

Figure 6. Cont.
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Figure 6. (a) Three-dimensional comparison plot among exact, CFD, and ABC fractional derivative
operators via the IETM (b) Two dimensional representation of f(x1, t̄) for Problem 2 when the
parameters are θ = 6, β = 1, and ϕ = 0.

Problem 3. If θ = 1, β = 6, and ϕ = 0 in (10) with f0(x1, 0) = 1
(1+exp( 3x1

2 ))1/3
, then the one

dimensional time fractional generalized Fisher’s equation is presented as follows.

∂αf

∂t̄α
=

∂2f

∂x2
1
+ f(1− f6). (42)

The integer-order solution for the Fisher’s Equation (42) is obtained by using the Taylor’s
series expansion for α = 1 as follows.

f(x1, t̄) =
(1

2

)1/3
(

tanh
(15

8
t̄− 3

4
x1

)
+ 1
)1/3

.

Case I. First, we formulate Problem 3 by utilizing the Elzaki transform coupled with the
Caputo derivative operator.

Employing the Elzaki transform to (42) with the initial condition, we have the following.

E

[∂αf

∂t̄α
]
= E

[ ∂2f

∂x2
1
+ f(1− f6)

]
. (43)

The following is the case.

1
ωα

E
[
f(x1, t̄)

]
−

m−1

∑
κ=0

f(κ)(x1, 0)ω2−α+κ = E

[ ∂2f

∂x2
1
+ f(1− f6)

]
.

Equivalently, we have the following.

1
ωα

E
[
f(x1, t̄)

]
= f(0)(x1, 0)ω2−α +E

[ ∂2f

∂x2
1
+ f(1− f6)

]
.

By using the inverse Elzaki transform, we have the following.

f(x1, t̄) =
1

(1 + exp( 3x1
2 ))1/3

+E
−1
[
ωα

E

[ ∂2f

∂x2
1
+ f(1− f6)

]]
.

By applying the iterative technique described in Section 3.1, we obtain the following.
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f0(x1, t̄) =
1

(1 + exp( 3x1
2 ))1/3

,

f1(x1, t̄) = E
−1
[
ωα

E

{(
f0(x1, t̄)

)
x1x1

+ f0(1− f6
0)
}]

=
5 exp( 3x1

2 )

4(1 + exp( 3x1
2 ))4/3

t̄α

Γ(α+ 1)
,

f2(x1, t̄) = E
−1
[
ωα

E

{(
f1(x1, t̄)

)
x1x1

+ f1(1− f6
1)
}]

=
50 exp( 3x1

2 )
(

exp( 3x
2 )− 3

)
16(1 + exp( 3x1

2 ))7/3

t̄2α

Γ(2α+ 1)
,

f3(x1, t̄) = E
−1
[
ωα

E

{(
f2(x1, t̄)

)
x1x1

+ f2(1− f6
2)
}]

=
125 exp( 3x1

2 )
(

exp(3x1)− 18 exp( 3x1
2 ) + 9

)
16(1 + exp( 3x1

2 ))10/3

t̄3α

Γ(3α+ 1)
,

...

Provided the series form solution is the following:

f(x1, t̄) = f0(x1, t̄) + f1(x1, t̄) + f2(x1, t̄) + f3(x1, t̄) + . . . + fm1(x1, t̄).

the following consequently results.

f(x1, t̄) =
1

(1 + exp( 3x1
2 ))1/3

+
5 exp( 3x1

2 )

4(1 + exp( 3x1
2 ))4/3

t̄α

Γ(α+ 1)
+

50 exp( 3x1
2 )
(

exp( 3x
2 )− 3

)
16(1 + exp( 3x1

2 ))7/3

t̄2α

Γ(2α+ 1)

+
750 exp( 3x1

2 )
(

exp(3x1)− 18 exp( 3x1
2 ) + 9

)
16(1 + exp( 3x1

2 ))10/3

t̄3α

Γ(3α+ 1)
+ . . .

Case II. Now we formulate Problem 3 by utilizing the Elzaki transform coupled with an
ABC derivative operator.

Employing the Elzaki transform to (42) with the initial condition, we have the following.

E

[∂αf

∂t̄α
]
= E

[ ∂2f

∂x2
1
+ f(1− f6)

]
. (44)

E
[
f(x1, t̄)

]
= f(0)(x1, 0)ω2 +

αωα + (1− α)

N(α)
E

[ ∂2f

∂x2
1
+ f(1− f6)

]
.

By using the inverse Elzaki transform, we have the following.

f(x1, t̄) =
1

(1 + exp( 3x1
2 ))1/3

+E
−1
[
αωα + (1− α)

N(α)
E

[ ∂2f

∂x2
1
+ f(1− f6)

]]
.

By applying the iterative technique described in Section 3.1, we obtain the following.
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f0(x1, t̄) =
1

(1 + exp( 3x1
2 ))1/3

,

f1(x1, t̄) = E
−1
[
αωα + (1− α)

N(α)
E

{(
f0(x1, t̄)

)
x1x1

+ f0(1− f6
0)
}]

=
5 exp( 3x1

2 )

4N(α)(1 + exp( 3x1
2 ))4/3

[
αt̄α

Γ(α+ 1)
+ (1− α)

]
,

f2(x1, t̄) = E
−1
[
αωα + (1− α)

N(α)
E

{(
f1(x1, t̄)

)
x1x1

+ f1(1− f6
1)
}]

=
50 exp( 3x1

2 )
(

exp( 3x
2 )− 3

)
16N2(α)(1 + exp( 3x1

2 ))7/3

[
α2 t̄2α

Γ(2α+ 1)
+ 2α(1− α)

t̄α

Γ(α+ 1)
+ (1− α)2

]
,

f3(x1, t̄) = E
−1
[
αωα + (1− α)

N(α)
E

{(
f2(x1, t̄)

)
x1x1

+ f2(1− f6
2)
}]

=
750 exp( 3x1

2 )
(

exp(3x1)− 18 exp( 3x1
2 ) + 9

)
16N3(α)(1 + exp( 3x1

2 ))10/3

×
[

α3 t̄3α

Γ(3α+ 1)
+ 3α2(1− α)

t̄2α

Γ(2α+ 1)
+ 3α(1− α)2 t̄α

Γ(α+ 1)
+ (1− α)3

]
,

...

Provided the series form solution is as follows:

f(x1, t̄) = f0(x1, t̄) + f1(x1, t̄) + f2(x1, t̄) + f3(x1, t̄) + . . . + fm1(x1, t̄).

the following consequently results.

f(x1, t̄) =
1

(1 + exp(
3x1

2
))1/3

+
5 exp(

3x1

2
)

4N(α)(1 + exp(
3x1

2
))4/3

[
αt̄α

Γ(α+ 1)
+ (1− α)

]

+
50 exp(

3x1

2
)
(

exp(
3x
2
)− 3

)
16N2(α)(1 + exp(

3x1

2
))7/3

[
α2 t̄2α

Γ(2α+ 1)
+ 2α(1− α)

t̄α

Γ(α+ 1)
+ (1− α)2

]

+
750 exp(

3x1

2
)
(

exp(3x1)− 18 exp(
3x1

2
) + 9

)
16N3(α)(1 + exp(

3x1

2
))10/3

×
[

α3 t̄3α

Γ(3α+ 1)
+ 3α2(1− α)

t̄2α

Γ(2α+ 1)
+ 3α(1− α)2 t̄α

Γ(α+ 1)
+ (1− α)3

]
+ . . .

Figure 7 compares the exact and approximate solutions to Problem 3 using the CDF
operator. The absolute error norm in Figure 8 for (42) with the assumptions of θ = 1, β = 6,
and ϕ = 0 ensures the approximation of the numerical results derived by the IETM
to the exact solution via the CFD and ABC fractional derivative operators, respectively.
The results of the graphical representation reveal that the model is highly dependent on
fractional order α. The absolute inaccuracy is really small. Surface and two dimensional
representations of graphs via Figure 9 show the strong connection between the exact and
approximate solutions for various fractional orders. Furthermore, Figure 9a,b illustrate
that the ABC fractional derivative operator has better harmony than the CFD operator.
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(a)

(b)
Figure 7. Numerical-behavior of exact and approximate solution to the f(x1, t̄) for Problem 3 when
the parameters are θ = 1, β = 6, and ϕ = 0.

(a)

Figure 8. Cont.
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(b)
Figure 8. (a) Absolute-error plots of f(x1, t̄) for Problem 3 for (a) CFD and (b) ABC when the
parameters are θ = 1, β = 6 and ϕ = 0.
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(b)
Figure 9. (a) Three-dimensional comparison plot among exact, CFD, and ABC fractional derivative
operators via the IETM. (b) Two dimensional representation of f(x1, t̄) for Problem 3 at different
fractional orders when θ = 1, β = 6, and ϕ = 0.

Problem 4. If θ = 1, β = 1, and 0 < ϕ < 1 in (10) with f0(x1, 0) = 1
(1+exp(− 1√

2
)x1)

, then the

nonlinear diffusion equation of the Fisher’s type is as follows.
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∂αf

∂t̄α
=

∂2f

∂x2
1
+ f(1− f)(f− ϕ). (45)

The integer-order solution for the the nonlinear diffusion equation of the Fisher’s type (45) is
obtained by using the Taylor’s series expansion for α = 1 as follows.

f(x1, t̄) =
1

1 + exp(−ζ/
√

2)
.

Case I. First, we formulate Problem 4 by utilizing the Elzaki transform coupled with the
Caputo derivative operator.

By employing the Elzaki transform to (45) with the initial condition, we have the
following.

E

[∂αf

∂t̄α
]
= E

[ ∂2f

∂x2
1
+ f(1− f)(f− ϕ)

]
. (46)

The following results.

1
ωα

E
[
f(x1, t̄)

]
−

m−1

∑
κ=0

f(κ)(x1, 0)ω2−α+κ = E

[ ∂2f

∂x2
1
+ f(1− f)(f− ϕ)

]
.

Equivalently, we also have the following.

1
ωα

E
[
f(x1, t̄)

]
= f(0)(x1, 0)ω2−α +E

[ ∂2f

∂x2
1
+ f(1− f)(f− ϕ)

]
.

By using the inverse Elzaki transform, the following results.

f(x1, t̄) =
1

(1 + exp(− 1√
2
)x1)

+E
−1
[
ωα

E

[ ∂2f

∂x2
1
− ϕf + (ϕ+ 1)f2 − f3

]]
.

By applying the iterative technique described in Section 3.1, we obtain the following.

f0(x1, t̄) =
1

(1 + exp(− 1√
2
)x1)

,

f1(x1, t̄) = E
−1
[
ωα

E

{(
f0(x1, t̄)

)
x1x1

+ (ϕ+ 1)f2
0 − f3

0 − ϕf0

}]

=
(1− 2ϕ) exp(−x1√

2
)

2(1 + exp(−x1√
2
))2

t̄α

Γ(α+ 1)
,

f2(x1, t̄) = E
−1
[
ωα

E

{(
f1(x1, t̄)

)
x1x1

+ (ϕ+ 1)f2
1 − f3

1 − ϕf1

}]

= −
(1− 2ϕ)2 exp(−x1√

2
)(exp(−x1√

2
)− 1)

4(1 + exp(− x1√
2
))3

t̄2α

Γ(2α+ 1)
,

f3(x1, t̄) = E
−1
[
ωα

E

{(
f2(x1, t̄)

)
x1x1

+ (ϕ+ 1)f2
2 − f3

2 − ϕf2

}]

= −
(1− 2ϕ)3 exp(−x1√

2
)(exp(

√
2x)− 4 exp(−x1√

2
) + 1)

8(1 + exp(−x1√
2
))4

t̄3α

Γ(3α+ 1)
,

...
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Provided that the series form solution is the following:

f(x1, t̄) = f0(x1, t̄) + f1(x1, t̄) + f2(x1, t̄) + f3(x1, t̄) + . . . + fm1(x1, t̄).

the following consequently results.

f(x1, t̄) =
1

(1 + exp(− 1√
2
)x1)

+
(1− 2ϕ) exp(− x1√

2
)

2(1 + exp(−x1√
2
))2

t̄α

Γ(α+ 1)
−

(1− 2ϕ)2 exp(−x1√
2
)(exp(−x1√

2
)− 1)

4(1 + exp(−x1√
2
))3

t̄2α

Γ(2α+ 1)

−
(1− 2ϕ)3 exp(−x1√

2
)(exp(

√
2x1)− 4 exp(−x1√

2
) + 1)

8(1 + exp(−x1√
2
))4

t̄3α

Γ(3α+ 1)
+ . . .

Case II. We now formulate Problem 4 by utilizing the Elzaki transform coupled with the
ABC derivative operator.

By employing the Elzaki transform to (45) with the initial condition, we have the
following.

E

[∂αf

∂t̄α
]
= E

[ ∂2f

∂x2
1
+ f(1− f)(f− ϕ)

]
. (47)

E
[
f(x1, t̄)

]
= f(0)(x1, 0)ω2 +

αωα + 1− α

N(α)
E

[ ∂2f

∂x2
1
+ f(1− f)(f− ϕ)

]
.

By using the inverse Elzaki transform, we have the following.

f(x1, t̄) =
1

(1 + exp(− 1√
2
)x1)

+E
−1
[
αωα + 1− α

N(α)
E

[ ∂2f

∂x2
1
− ϕf + (ϕ+ 1)f2 − f3

]]
.

Applying the iterative technique described in Section 3.1, we obtain the following.

f0(x1, t̄) =
1

(1 + exp(− 1√
2
)x1)

,

f1(x1, t̄) = E
−1
[
αωα + 1− α

N(α)
E

{(
f0(x1, t̄)

)
x1x1

+ (ϕ+ 1)f2
0 − f3

0 − ϕf0

}]

=
(1− 2ϕ) exp( x1√

2
)

2N(α)(1 + exp( x1√
2
))2

[
αt̄α

Γ(α+ 1)
+ (1− α)

]
,

f2(x1, t̄) = E
−1
[
αωα + 1− α

N(α)
E

{(
f1(x1, t̄)

)
x1x1

+ (ϕ+ 1)f2
1 − f3

1 − ϕf1

}]

= −
(1− 2ϕ)2 exp( x1√

2
)(exp( x1√

2
)− 1)

4N2(α)(1 + exp( x1√
2
))3

[
α2 t̄2α

Γ(2α+ 1)
+ 2α(1− α)

t̄α

Γ(α+ 1)
+ (1− α)2

]
,

f3(x1, t̄) = E
−1
[
αωα + 1− α

N(α)
E

{(
f2(x1, t̄)

)
x1x1

+ (ϕ+ 1)f2
2 − f3

2 − ϕf2

}]

= −
(1− 2ϕ)3 exp( x1√

2
)(exp(

√
2x)− 4 exp( x1√

2
) + 1)

8N3(α)(1 + exp( x1√
2
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×
[

α3 t̄3α
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+ 3α2(1− α)

t̄2α

Γ(2α+ 1)
+ 3α(1− α)2 t̄α

Γ(α+ 1)
+ (1− α)3

]
,

...

Provided that the series form solution is the following:
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f(x1, t̄) = f0(x1, t̄) + f1(x1, t̄) + f2(x1, t̄) + f3(x1, t̄) + . . . + fm1 (x1, t̄).

the following consequently results.

f(x1, t̄) =
1

(1 + exp(− 1√
2
)x1)

+
(1− 2ϕ) exp( x1√

2
)

2N(α)(1 + exp( x1√
2
))2

[
αt̄α

Γ(α+ 1)
+ (1− α)

]

−
(1− 2ϕ)2 exp( x1√

2
)(exp( x1√

2
)− 1)

4N2(α)(1 + exp( x1√
2
))3

[
α2 t̄2α

Γ(2α+ 1)
+ 2α(1− α)

t̄α

Γ(α+ 1)
+ (1− α)2

]

−
(1− 2ϕ)3 exp( x1√

2
)(exp(

√
2x1)− 4 exp( x1√

2
) + 1)

8N3(α)(1 + exp( x1√
2
))4

×
[

α3 t̄3α

Γ(3α+ 1)
+ 3α2(1− α)

t̄2α

Γ(2α+ 1)
+ 3α(1− α)2 t̄α

Γ(α+ 1)
+ (1− α)3

]
+ . . .

Figure 10 compares the exact and approximate solutions to Problem 4 by using the CDF operator.
The absolute error norm in Figure 11 for (45) with the assumptions of θ = 1, β = 1, and 0 < ϕ < 1
ensures the approximation of the numerical results derived by the IETM to the exact solution via the
CFD and ABC fractional derivative operators, respectively. The results of the graphical representation
reveal that the model is highly dependent on fractional order α. The absolute inaccuracy is really small.
Surface and two dimensional representations of graphs via Figure 12 show the strong connection
between the exact and approximate solutions for various fractional orders. Furthermore, Figure 12a,b
illustrate that the ABC fractional derivative operator has better harmony than the CFD operator.

(a)

(b)
Figure 10. Numerical-behavior of exact and approximate solution to the f(x1, t̄) for Problem 4 when
the parameters are θ = 1, β = 1, and ϕ = 1/10.
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(a)

(b)
Figure 11. (a) Absolute-error plots of f(x1, t̄) for Problem 3 for (textbfa) CFD and (b) ABC when the
parameters are θ = 1, β = 1, and ϕ = 1/10.

(a)
Figure 12. Cont.
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(b)
Figure 12. (a) Three-dimensional comparison plot among exact, CFD, and ABC fractional derivative
operators via the IETM. (b) Two dimensional representation of f(x1, t̄) for Problem 4 at different
fractional orders when the parameters are θ = 1, β = 1, and ϕ = 1/10.

Remark 1. The integer-order (α = 1) solution of Problem 4 is the following:

f(x1, t̄) =
1

1 + exp(−ζ/
√

2)
,

which agrees completely with the findings [40], where ζ = x1 + c1 t̄ and c1 = 1
2
√

2
−
√

2ϕ. It is obvious that
f(−∞) = 0. f(∞) = 1, and hence f(ζ) in this scenario is a wave front traveling from right to left with speed
c1 = 1

2
√

2
−
√

2ϕ. It is worth noting that (45) enables steady travelling wave solutions.

f(x1, t̄) =
1
2

(
1 + tanh

(
+ x1

2
√

2
+

(1− 2ϕ)
4

t̄
))

,

f(x1, t̄) =
ϕ

2

(
1 + tanh

(
+ ϕx1

2
√

2
+

(ϕ2 − 2ϕ)
4

t̄
))

,

f(x1, t̄) =
(1 + ϕ)

2
+

(1− ϕ)

2

(
1 + tanh

(
+ (1− ϕ)x1

2
√

2
+

(1− ϕ2)

4
t̄
))

, (48)

The above is proposed by Khawara and Tanaka [41].

5. Conclusions

In this paper, the new iterative Elzaki transform method is used to efficiently solve the nonlinear
Fisher’s equation by using the Caputo and the AB fractional derivative operators, which possess
a fractional Lagrange multiplier. In addition, the concept of V-stable mapping and the fixed point
theorem demonstrates the stability of the proposed technique in the sense of the AB-fractional
operator. Several illustrative cases were carried out to verify the efficacy and reliability of the
proposed technique. The findings indicate that the ABC fractional derivative is completely accurate
and has a wide spectrum of uses as compared to CFD. In comparison to existing numerical algorithms,
the suggested method has a lower processing complexity. Furthermore, the approach interprets and
regulates the series of solutions, which converge swiftly to the exact solution in a short admissible
domain. In this process, we do not require rectification functionals, stationary constraints, or hefty
integrals since the findings are noise-free, which addresses the drawbacks of earlier techniques.
Furthermore, we believe that this technique will be adopted to contend with other non-linear
fractional order systems of equations that are extremely complex. In the future, we will investigate
a similar problem by utilizing the double Laplace transform and generalized Kudryashov method,
which will be a useful mechanism for solving nonlinear PDEs and other FDEs.
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Abstract: This manuscript assesses a semi-analytical method in connection with a new hybrid fuzzy
integral transform and the Adomian decomposition method via the notion of fuzziness known as the
Elzaki Adomian decomposition method (briefly, EADM). Moreover, we use the aforesaid strategy
to address the time-fractional Fornberg–Whitham equation (FWE) under gH-differentiability by
employing different initial conditions (IC). Several algebraic aspects of the fuzzy Caputo fractional
derivative (CFD) and fuzzy Atangana–Baleanu (AB) fractional derivative operator in the Caputo
sense, with respect to the Elzaki transform, are presented to validate their utilities. Apart from that, a
general algorithm for fuzzy Caputo and AB fractional derivatives in the Caputo sense is proposed.
Some illustrative cases are demonstrated to understand the algorithmic approach of FWE. Taking
into consideration the uncertainty parameter ζ ∈ [0, 1] and various fractional orders, the convergence
and error analysis are reported by graphical representations of FWE that have close harmony with
the closed form solutions. It is worth mentioning that the projected approach to fuzziness is to verify
the supremacy and reliability of configuring numerical solutions to nonlinear fuzzy fractional partial
differential equations arising in physical and complex structures.

Keywords: Elzaki transform; Hukuhara difference; Caputo fractional derivative; Atangana–Baleanu
fractional derivative operator; Mittag–Leffler kernel; Fornberg–Whitham equation

1. Introduction

Recently, fractional calculus (FC) theory has shown incredible capabilities for describ-
ing the dynamical behavior and memory-related properties of scientific structures and
procedures. Fractional differential equations (FDEs) have been developed by researchers to
investigate and interpret natural phenomena in a variety of domains. FC theory comprises
numerous generalizations in terms of non-local properties of fractional operators, expanded
degree of independence, and maximum information application, and these features only
arise in fractional order processes, not in integer-order mechanisms. Some scholars have
recently investigated a series of innovative mathematical models using distinct local and
non-local fractional derivative operators (see, [1–12]).

Fractal Fract. 2021, 5, 113. https://doi.org/10.3390/fractalfract5030113 https://www.mdpi.com/journal/fractalfract51
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Recently, many innovative fractional derivative operators beyond the singular kernel
have been explored, such as the Mittag–Leffler function [13] and exponential function [14].
In particular, researchers who would like to develop and address a real-life problem
have recommended fractional operators, see [15]. Problems involving these operators can
be solved quickly and reliably because they include a non-singular kernel. Numerical
algorithms can also be conducted conveniently regarding the integral transforms of these
fractional formulations. Many authors have investigated fractional operators, as evidenced
by the references [16,17] and those cited therein.

Modeling uncertain problems with fuzzy set theory is a useful method. As a conse-
quence, fuzzy notions have been employed to model a wide range of natural processes.
Specifically, fuzzy partial differential equations (PDEs) have been exploited in a wide
range of scientific domains, including patteren formation theory, engineering, population
dynamics, control systems, knowledge-based systems, image processing, power engineer-
ing, industrial automation, robotics, consumer electronics, artificial intelligence/expert
systems, management, and operations research. However, the notion of fuzzy set theory
has a strong connection with fractional calculus, due to its crucial aspects in various scien-
tific disciplines [18]. In 1978, Kandel and Byatt [19] contemplated the idea of fuzzy DEs,
then Agarwal et al. [20] were the first to address fuzziness and the Riemann–Liouville
differentiability notion under the Hukuhara differentiability. Fuzzy set theory and FC
incorporate several numerical approaches that enable a more in-depth understanding of
complicated systems while also reducing the amount of computational cost involved in
the solution process. In the case of FPDEs, finding accurate analytical solutions is a diffi-
cult task. To cope with this challenge, several numerical methods have been expounded
to obtain the analytical solutions of PDES and ODEs, such as the Adomian decomposi-
tion method (ADM) [21], q-homotopy analysis method (q-HAM) [22], pseudo spectral
method (PSM) [23], Laguerre wavelets collocation method (LWCM) [24], new Legendre-
Wavelets decomposition method (NLWDM) [25], etc. Fuzzy FPDEs have expanded in
prominence over the last decade as a result of their vast applicability and significance in
analyzing the behavior of complex geometries. Recently, Hoa et al. [26,27] investigated
the gH-differentiability with a Katugampola fractional derivative in the Caputo sense and
employed fuzzy FDEs. Salahshour et al. [28] expounded the H-differentiability with the
Laplace transform to solve the FDEs. Ahmad et al. [29] studied the third order fuzzy dis-
persive PDEs in the Caputo, Caputo–Fabrizio, and Atangana–Baleanu fractional operator
frameworks. Shah et al. [30] presented the evolution of one dimensional fuzzy fractional
PDEs. For more details, see [31–34] and the references cited therein.

Accessing the influence of PDEs for external potential has been extensively applied as
a model for the evaluation of multiple challenges. The Fornberg–Whitham (FW) model is an
important complex formulation in mathematical physics. The FWE [35,36] is presented as

∂f

∂ϑ
− ∂3f

∂ϑ∂�2
1
+

∂f

∂�1
= f

∂3f

∂�3
1
− f

∂f

∂�1
+ 3

∂f

∂�1

∂2f

∂�2
1

, (1)

where the fluid velocity is expressed by f(�1, ϑ) along with �1 as the spatial co-ordinate
and ϑ denoting time. In 1978, Fornberg and Whitham [35,36] contemplated a solution

f(�1, ϑ) = δ exp
(
�1
2 − 4ϑ

3

)
with an arbitrarily defined constant of α. The FWE has been

discovered to need peakon outcomes as a model for controlling wave heights and wave
break frequency. Recently, various sorts of FWE models in physics have been investigated
by Abidi and Omrani [37], Gupta and Singh [38], Lu [39], Sakar et al. [40], Chen et al. [41],
Yin et al. [42], Zhou and Tian [43], He et al. [44], Fan et al. [45], Jiang and Bi [46].

This research creates a modified fuzzy EADM framework to assess the fuzzy time
fractional FWE. The approximate analytical solutions for various fractional Brownian
movements, as well as standard motion, are derived using the uncertainty parameter in
ICs. Graphically, the diversity of approximate results is illustrated, and the error estimate
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demonstrates the validity of the approximate analytical solutions. In the time fractional
operator form, this equation can be expressed as

∂αf

∂ϑα
− ∂3f

∂ϑ∂�2
1
+

∂f

∂�1
= f

∂3f

∂�3
1
− f

∂f

∂�1
+ 3

∂f

∂�1

∂2f

∂�2
1

, (2)

subject to ICs f(�1, 0) = exp
( �1

2
)

and cosh2 ( �1
4
)
, and α ∈ (0, 1] is the order of the time

fractional derivative. It is remarkable that the exact traveling wave solution of FWE subject
to IC f(�1, ϑ) = 0.75 exp

( 3�1−2ϑ
6
)

has been investigated in [38].
In order to simplify the approach to solving ODEs and PDEs in the time domain,

Tarig Elzaki [47] introduced a new transform known as ET in 2001. This innovative
transform is a refinement of existing transforms (Laplace and Sumudu) that can help
determine the analytical solutions of PDEs in a similar fashion to the Laplace and Sumudu
transformations.

The ADM is a semi-analytical approach to solving linear-nonlinear FDEs by advanta-
geously creating a functional series solution, initially presented by Adomian [48]. Later,
this approach was used with numerous transformations (such as the Sumudu, Aboodh,
Laplace, and Mohand transforms), as shown in [49–58].

Owing to the above propensity, configuring the exact solution of nonlinear fuzzy
fractional PDEs is an ever challenging task. In this paper, our intention is to establish an
efficacious algorithm for generating estimated solutions of fuzzy fractional FWE, the gen-
eral FWE arising in wave breaking subject to uncertainty in IC by EADM that models the
dynamics of the system being analyzed. The EADM is merged with the Elzaki transform
(ET), and the ADM is known as the Elzaki Adomian decomposition method (EADM).
This novel method is applied to examining fractional-order FW models. The findings of
a particular test case are evaluated in terms of showing that the proposed technique is
viable. The findings of the fractional-order with an uncertainty factor are determined by ad-
vanced tools and methods. The convergence analysis for EADM was also briefly discussed.
The FW model was leveraged to generate synthesized trajectories. In a simulation study,
we illustrate the applicability and effectiveness of the offered algorithmic strategies for
determining numerical solutions. Several fuzzy fractional orders of linear and non-linear
PDEs can be addressed using the proposed method.

2. Preliminaries

This section clearly exhibits some major features connected to the stream of fuzzy
(F) set theory and FC, as well as certain key findings about ET. For more details, we refer
to [59].

Definition 1 ([60,61]). We say that Ω : R �→ [0, 1] is a F number, if it holds the subsequent
assumptions:

1. Ω is normal (for some �10 ∈ R; Ω(�10) = 1);
2. Ω is upper semi continuous;
3. Ω(�1ϑ+ (1− ϑ)�2) ≥

(
Ω(�1) ∧Ω(�2)

)
∀ϑ ∈ [0, 1], �1, �2 ∈ R,, i.e., Ω is convex;

4. cl
{
�1 ∈ R, Ω(�1) > 0

}
is compact.

Definition 2 ([60]). We say that a F number Ω is a ζ-level set described as

[Ω]ζ =
{

f ∈ R : Ω(f) ≥ ζ
}

, (3)

where ζ ∈ [0, 1] and f ∈ R.

Definition 3 ([60]). The parameterized version of a F number is denoted by
[
Ω(ζ), Ω̄(ζ)

]
such

that ζ ∈ [0, 1] satisfies the subsequent assumptions:

1. Ω(ζ) is non-decreasing, left continuous, bounded over (0, 1] and left continuous at 0.
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2. Ω̄(ζ) is non-increasing, right continuous, bounded over (0, 1] and right continuous at 0.
3. Ω(ζ) ≤ Ω̄(ζ).

Moreover, ζ is known to be a crisp number if Ω(ζ) = Ω̄(ζ) = ζ.

Definition 4 ([59]). For ζ ∈ [0, 1] and χ to be a scalar, assume that there are two F numbers
f̃ = (f, f̄), φ̃ = (φ, φ̄), then the addition, subtraction and scalar multiplication, respectively, are
stated as

1. f̃⊕ φ̃ =
(
f(ζ)⊕ φ(ζ), f̄(ζ)⊕ φ̄(ζ)

)
;

2. f̃� φ̃ =
(
f(ζ)� φ(ζ), f̄(ζ)� φ̄(ζ)

)
;

3. χ� f̃ =

{
(χ� f,χ� f̄) χ ≥ 0,
(χ� f̄,χ� f) χ < 0.

Suppose the set D̃ is a domain of F-valued mapping Θ. Let us introduce the mappings
Θ(., ., ζ), Θ̄(., ., ζ): D̃ �→ R, ∀ zeta ∈ [0, 1]. These mappings are said to be the left and right
℘-level mappings of the map Θ.

Definition 5 ([28]). Suppose a F mapping Θ : Ẽ × Ẽ �→ R with two F numbers f̃ = (f, f̄),
φ̃ = (φ, φ̄), then the Θ-distance between f̃ and φ̃ is represented as

Θ(f̃, φ̃) = sup
ζ∈[0,1]

[
max

{
|f(ζ)− φ(ζ)|, |f̄(ζ)− φ̄(ζ)|

}]
. (4)

Definition 6 ([28]). Consider a F mapping Θ : D̃ �→ Ẽ, is said to be continuous at (a0, b0) ∈ D̃
if for every ε > 0 and there is δ > 0 such that

d(Θ(a, b), Θ(a0, b0)) < ε; whenever|a− a0|+ |b− b0| < δ. (5)

If Θ is continuous for each (a, b) ∈ D̃, we say that Θ is continuous on D̃.

Definition 7 ([62]). Let β1, β2 ∈ Ẽ, if β3 ∈ Ẽ and β1 = β2 + β3. The H-difference β3 of β1 and
β2 is denoted as β1 �H β2. Observe that β1 �H β2 �= β1 + (−1)β2.

Now suppose β1, β2 ∈ Ẽ, then β1 � _gHβ2 = β3 ⇔
(i) β3 = (β1(ζ)− β

2
(ζ), β̄1(ζ)− β̄2(ζ)).

or

(ii) β3 = (β̄1(ζ)− β̄2(ζ), β1(ζ)− β
2
(ζ)).

The following Lemma demonstrates the link between the gH-difference and the Hous-
droff distance.

Lemma 1 ([63]). For all β1, β2 ∈ Ẽ, then

d(β1, β2) = sup
ζ∈[0,1]

∥∥[β1]
ζ � gH[β2]

ζ
∥∥, (6)

where, for an interval [a, b], the norm is ‖[a, b]‖ = max
{
|a|, |b|

}
.

Definition 8 ([64]). Suppose Θ : D̃ �→ Ẽ and (�0, ϑ) ∈ D̃. Then Θ is said to be strongly
generalized Hukuhara differentiable on (ζ0, ϑ) (gH-differentiable) if ∃ an element ∂θ(�0,ϑ)

∂� ∈ Ẽ such
that the following holds:

(i) For all h̄ > 0 of sufficiently small size, the subsequent gH-differences exist:

Θ(�0 + h̄, ϑ)� gHΘ(�0, ϑ), Θ(�0, ϑ)� gHΘ(�0 − h̄, ϑ)
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and the following limits hold:

lim
h̄ �→0

Θ(�0 + h̄, ϑ)� gHΘ(�0, ϑ)
h̄

= lim
h̄ �→0

Θ(�0, ϑ)� gHΘ(�0 − h̄, ϑ)
h̄

=
∂θ(�0, ϑ)

∂�
.

(ii) For all h̄ > 0 of sufficiently small size, the subsequent gH-differences exist:

Θ(�0, ϑ)� gHΘ(�0 + h̄, ϑ), Θ(�0 − h̄, ϑ)� gHΘ(�0, ϑ)

and the following limits hold:

lim
h̄ �→0

Θ(�0, ϑ)� gHΘ(�0 + h̄, ϑ)
−h̄

= lim
h̄ �→0

Θ(�0 − h̄, ϑ)� gHΘ(�0, ϑ)
−h̄

=
∂θ(�0, ϑ)

∂�
.

Lemma 2 ([65]). Consider that Θ:D̃ �→ Ẽ is a continuous F -valued mapping and Θ(�, ϑ) =
(Θ(�, ϑ, ζ), Θ̄(�, ϑ, ζ)), ∀ζ ∈ [0, 1]. Then

(i) If Θ(�, ϑ) is (i)-partial differentiable for � (i.e., Θ is partial differentiable for � under the
meaning of Definition 8 (i)), then

∂Θ(�, ϑ)
∂�

=

(
∂Θ(�, ϑ)

∂�
,
∂Θ̄(�, ϑ)

∂�

)
, (7)

(ii) If Θ(�, ϑ) is (i)-partial differentiable for � (i.e., Θ is partial differentiable for � under the
meaning of Definition 8 (ii)), then

∂Θ(�, ϑ)
∂�

=

(
∂Θ̄(�, ϑ)

∂�
,
∂Θ(�, ϑ)

∂�

)
. (8)

Definition 9 ([28]). Assume that a F mapping f ∈ CF[0, d1]
⋂
LF[0, d1] is represented in param-

eterized version as f =
[
fζ(ϑ), f̄ζ(ϑ)

]
, ζ ∈ [0, 1] and ϑ0 ∈ (0, d1), then CFD in the F sense is

stated as [
Dαf(ϑ0)

]
ζ
=
[
Dαf(ϑ0),Dα f̄(ϑ0)

]
, ζ ∈ (0, ζ], (9)

where q = [ζ].

[
Dαf(ϑ0)

]
=

1
Γ(q− α)

[ ϑ∫
0

(ϑ− �1)
q−α−1 dq

d�q
1

f(�1)d�1

]
ϑ=ϑ0

,

[
Dα f̄(ϑ0)

]
=

1
Γ(q− α)

[ ϑ∫
0

(ϑ− �1)
q−α−1 dq

d�q
1

f̄(�1)d�1

]
ϑ=ϑ0

. (10)

2.1. A Fuzzy Elzaki Transform for Fuzzy Caputo Fractional Derivative and a Fuzzy
Atangana–Baleanu Fractional Derivative Operator

Definition 10. Consider f̃ to be continuous F-valued mapping and assume that exp
(−ϑ

ω

)
� f̃(ϑ)

is an improper fuzzy Riemann-integrable on [0, ∞) and then
∞∫
0

exp
(−ϑ

ω

)
� f̃(ϑ)dϑ is said to be

the fuzzy Elzaki transform and is described over the set of mappings:

M =
{

f(ϑ) : ∃z, p1, p2 > 0,
∣∣f(ϑ)∣∣ < ze

|ϑ|
pi , i f ϑ ∈ (−1)i × [0, ∞)|

}
. (11)
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where z is a finite number, but p1, p2 may be finite or infinite, then the fuzzy Elzaki transform is
described as

E
{

f̃(ϑ)
}
= Q(ω) = ω

∞∫
0

e−
ϑ
ω � f̃(ϑ)dϑ, ϑ ≥ 0, ω ∈ [p1, p2]. (12)

Remark 1. In (12), f̃ hold the cases of the decreasing diameter f and the increasing diameter f̄ of
a fuzzy mapping f. Moreover, when ω = 1, then the fuzzy Elzaki transform reduces to a Laplace
transform.

The parameterized version of f̃(ϑ) is defined as

ω

∞∫
0

e−
ϑ
ω f̃(ϑ)dϑ =

[
ω

∞∫
0

e−
ϑ
ω f(ϑ)dϑ,ω

∞∫
0

e−
ϑ
ω f̄(ϑ)dϑ

]
. (13)

Thus,

E
[
f(ϑ, ζ)

]
=
[
E
[
f(ϑ, ζ)

]
,E
[
f̄(ϑ, ζ)

]]
. (14)

2.2. Some Algebraic Properties of Fuzzy Elzaki Transform

Here, our first result is the following theorem.

Theorem 1. Assume that an integrable fuzzy valued mapping f̃(q)(ϑ) and f̃(ϑ) is the primitive of
f̃(q)(ϑ) on [0, ∞), then

E

[
f̃(q)(ϑ)

]
= (

1
ω
)q �E

[
f̃(ϑ)

]
�

q−1

∑
κ=0

ω2−q+κ � f̃(κ)(0). (15)

The first few terms of (15) are represented as follows:

E

[
f̃′(ϑ)

]
= (

1
ω
)�Q(ω)�ω� f̃(0),

E

[
f̃′′(ϑ)

]
= (

1
ω
)2 �Q(ω)−ω� f̃′(0)� f̃(0). (16)

Proof. Assume that ζ ∈ [0, 1] is arbitrary, and then we deduce

(
1
ω
)q �E

[
f̃(ϑ)

]
�

q−1

∑
κ=0

ω2−q+κ � f̃(κ)(0)

=

(
(

1
ω
)q �E

[
f̄(ϑ; ζ)

]
�

q−1

∑
κ=0

ω2−q+κ � f̄(κ)(0; ζ), (
1
ω
)q �E

[
f(ϑ; ζ)

]
�

q−1

∑
κ=0

ω2−q+κ � f(κ)(0; ζ)
)

. (17)

In view of (14), we have

(
1
ω
)n �E

[
f̃(ϑ)

]
�

q−1

∑
κ=0

ω2−q+κ � f̃(κ)(0)

=

(
E

[
f̄(q)(ϑ; ζ)

]
,E
[
f(q)(ϑ; ζ)

])
. (18)
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By mathematical induction, (15) holds for q = κ and, utilizing (18), we have

E

[
(f̃κ(ϑ))′

]
=

1
ω
�E

[
f̃κ(ϑ)

]
� f̃κ(0)

=
1
ω
�
[
(

1
ω
)κ �E

[
f̃(ϑ)

]
�

κ−1

∑
j=0

ω2−κ+j � f̃(j)(0)
]
� ˜f(κ)(0)

= (
1
ω
)κ+1 �E

[
f̃(ϑ)

]
�

κ

∑
j=0

ω1−j+κ � f̃(j)(0). (19)

Consequently, (15) is truewhen q = κ + 1. This completes the proof.

Our next result is the convolution property of the fuzzy Elzaki transform.

Theorem 2. Assume that two integrable fuzzy-valued mappings f̃1(ϑ) and f̃2(ϑ), with their
respective fuzzy Elzaki transforms Q1(ω) and Q2(ω), respectively, then

E

[(
f̃1 ∗ f̃2

)
(ϑ)
]
= ω−1 �Q1(ω)�Q2(ω), (20)

where the convolution of f̃1 ∗ f̃2 is defined as

ϑ∫
0

f̃1(τ)� f̃2(ϑ− τ)dτ =

ϑ∫
0

f̃1(ϑ− τ)� f̃2(τ)dτ. (21)

Proof. Utilizing (13), (20) and (21), we have

E

[ ϑ∫
0

f̃1(τ)� f̃2(ϑ− τ)dτ
]
= ω

∞∫
0

exp
(
− ϑ

ω

)
�
( ϑ∫

0

f̃1(τ)� f̃2(ϑ− τ)dτ
)

dτ. (22)

Exchanging the order and limit of the integrals, we have

E

[ ϑ∫
0

f̃1(τ)� f̃2(ϑ− τ)dτ
]
= ω

∞∫
0

(
f̃(τ)�

∞∫
τ

exp
(
− ϑ

ω

)
� f̃2(ϑ− τ)dϑ

)
dτ. (23)

Substituting θ = ϑ− τ, we have

∞∫
τ

exp
(−ϑ

ω

)
� f̃2(ϑ− τ)dϑ =

∞∫
0

exp
(−(θ + τ)

ω

)
� f̃2(θ)dθ

= exp
(
− τ

ω

)
�

∞∫
0

exp
(
− θ

ω

)
� f̃2(θ)dθ

= exp
(
− τ

ω

)
� 1

ω
�Q2(ω). (24)

Thus, we conclude

E

[ ϑ∫
0

f̃1(τ)� f̃2(ϑ− τ)dτ
]

=

∞∫
0

f̃1(τ)� exp
(
− τ

ω

)
�Q2(ω)dτ

= ω−1 �Q1(ω)�
[ ∞∫

0

f̃1(τ)� exp
(
− τ

ω

)
dτ
]

= ω−1 �Q2(ω)�Q1(ω). (25)
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Theorem 3. (Inverse fuzzy Elzaki transform.) Consider the mapping f(ϑ) ∈ M and Q(ω) to
be the fuzzy Elzaki transform of the mapping f(ϑ), then the inverse transforms E−1 are presented
as follows:

E
−1[Q(ω)

]
= lim

b1 �→∞

1
2πι

�
a1+ιb1∫

a1−ιb1

Q
( 1
ω

)
� exp(ϑω)�ωdω

= ∑ residues o f
[
Q
( 1
ω

)
� exp(ϑω)�ω

]
. (26)

Adopting the idea of Allahviranloo et al. [66], here, we illustrate the fuzzy Elzaki
transform of Caputo and generalize the Hukuhara derivative gHDα

ϑf(ϑ).

Theorem 4. Consider an integrable fuzzy-valued mapping gHDα
ϑ f̃(ϑ) and f(ϑ) is the primitive of

gHDα
ϑ f̃(ϑ) defined on [0, ∞), then the CFD operator of order α satisfies

E

[
gHDα

ϑ f̃(ϑ)
]
=
( 1
ω

)α
�E
[
f̃(ϑ)

]
�

q−1

∑
κ=0

ω2−α+κ � f̃(κ)(0), q− 1 < α ≤ 1. (27)

Proof. By means of Definition 10 and Theorem 2, we have

gHDα
ϑ f̃(ϑ) =

1
Γ(q− α)

�
ϑ∫

0

(ϑ− τ)q−α−1 � ∂q f̃ (τ)
∂τq dτ

=
1

Γ(q− α)
� f̃(q) � ϑq−α−1. (28)

Again, in view of Definition 10 and Theorem 1, we obtain

gHDα
ϑ f̃(ϑ) =

1
Γ(q− α)

�E

[
ϑq−α−1 � ˜f(q)(ϑ)

]
=
( 1
ω

)α
�E
[
f̃(ϑ)

]
�

q−1

∑
κ=0

ω2−α+κ � f̃(κ)(0). (29)

Using the fact that ζ ∈ [0, 1], and the result provided by Salahhshour et al. [67], we have

( 1
ω

)α
�E
[
f̃(ϑ)

]
�

q−1

∑
κ=0

ω2−α+κ � f̃(κ)(0)

=

(( 1
ω

)α
E
[
f(ϑ; ζ)

]
−

q−1

∑
κ=0

ω2−α+κf(κ)(0; ζ),
( 1
ω

)α
E
[
f̄(ϑ wp)

]
−

q−1

∑
κ=0

ω2−α+κ f̄(κ)(0; ζ)
)

. (30)

This completes the proof.

Next we illustrate the linearity property of yjr fuzzy Elzaki transform.

Theorem 5. Assume that there are two continuous fuzzy valued-mappings f̃1(ϑ) and f̃2(ϑ) with
real constants c1 and c2,, then

E

[
c1 � f̃1(ϑ)⊕ c2 � f̃2(ϑ)

]
= c1 �E

[
f̃1(ϑ)

]
+ c2 �E

[
f̃2(ϑ)

]
. (31)
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Proof. Consider ζ ∈ [0, 1] to be arbitrarily fixed. Then, by means of (13), we have

E

[
c1 � f̃1(ϑ)⊕ c2 � f̃1(ϑ)

]
= ω

∞∫
0

(
a1 � f̃1(ϑ)⊕ c2 � f̃2(ϑ)

)
� exp

(−ϑ

ω

)
dϑ

= ω

∞∫
0

c1 � f̃1(ϑ)� exp
(−ϑ

ω

)
dϑ⊕ω

∞∫
0

c2 � f̃2(ϑ)� exp
(−ϑ

ω

)
dϑ

=

(
c1 �ω

∞∫
0

f̃1(ϑ)� exp
(−ϑ

ω

)
dϑ
)
⊕
(

c2 �ω

∞∫
0

f̃1(ϑ)� exp
(−ϑ

ω

)
dϑ
)

= c1 �
(
ω

∞∫
0

f1(ϑ; ζ)� exp
(−ϑ

ω

)
dϑ,ω

∞∫
0

f̄1(ϑ; ζ)� exp
(−ϑ

ω

)
dϑ
)

⊕ c2 �
(
ω

∞∫
0

f2(ϑ; ζ)� exp
(−ϑ

ω

)
dϑ,ω

∞∫
0

f̄2(ϑ; ζ)� exp
(−ϑ

ω

)
dϑ
)

= c1 �E

[
f̃1(ϑ)

]
+ c2 �E

[
f̃2(ϑ)

]
, (32)

This completes the proof.

Definition 11. Consider f ∈ CF[0, d̄1]
⋂
LF[0, d̄1] such that f(ϑ) =

[
f(ϑ, ζ), f̄(ϑ, ζ)

]
, ζ ∈ [0, 1],

then the Elzaki transform of fuzzy CFD of order α ∈ (0, 1] is described as follows:

E
[
(Dαf(ϑ))ζ

]
=
[
E[Dαf(ϑ, ζ)],E[Dα f̄(ϑ, ζ)]

]
, (33)

where

E[Dαf(ϑ, ζ)] =
1
ωα

E[f(ϑ, ζ)]−
q−1

∑
κ=0

f(κ)(�1; ζ)ω2−α+κ , α ∈ (q− 1, q],

E[Dα f̄(ϑ, ζ)] =
1
ωα

E[f̄(ϑ, ζ)]−
q−1

∑
κ=0

f̄(κ)(�1; ζ)ω2−α+κ , α ∈ (q− 1, q]. (34)

Definition 12. Consider f̃(ϑ) ∈ H̃1(0, T) and α ∈ [0, 1], then the αth-order variable Atangana–
Baleanu derivative under (i)—gH differentiability of f̃ in the Caputo sense is stated as[

ABCDα
(i)−gH f̃(ϑ0; ζ)

]
=
[

ABCDα
(i)−gHf(ϑ0; ζ), ABCDα

(i)−gH f̄(ϑ0; ζ)
]
, ζ ∈ [0, 1], (35)

where

ABCDα
(i)−gHf(ϑ0; ζ) =

N (α)

1− α

[ ϑ∫
0

f′(i)−gH(�1)Eα

[−α(ϑ− �1)
α

1− α

]
d�1

]
ϑ=ϑ0

,

ABCDα
(i)−gH f̄(ϑ0; ζ) =

N (α)

1− α

[ ϑ∫
0

f̄′(i)−gH(�1)Eα

[−α(ϑ− �1)
α

1− α

]
d�1

]
ϑ=ϑ0

, (36)

where N (α) denotes the normalize function that equals 1 when α is assumed to be 0 and 1. Further-
more, we suppose that type (i)—gH exists. So here is no need to consider (ii)—
gH differentiability.

Yauvaz and Abdeljawad [68] defined the ABC fractional derivative operator in the
Elzaki sense. Furthermore, we extend the idea of a fuzzy ABC fractional derivative in the
Elzaki transform sense as follows:
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Definition 13. Consider f ∈ CF[0, d̄1]
⋂
LF[0, d̄1] such that f(ϑ) =

[
f(ϑ, ζ), f̄(ϑ, ζ)

]
, ζ ∈ [0, 1],

then the Elzaki transform of fuzzy ABC of order α ∈ [0, 1] is described as follows:

E
[
( ABCDαf(ϑ))ζ

]
=
[
E[ ABCDαf(ϑ, ζ)],E[ ABCDα f̄(ϑ, ζ)]

]
, (37)

where

E[ ABCDαf(ϑ, ζ)] =
ωN (α)

αωα + 1− α

[
E[f(ϑ, ζ)]

ω
−ωf(0)

]
,

E[ ABCDα f̄(ϑ, ζ)] =
ωN (α)

αωα + 1− α

[
E[f̄(ϑ, ζ)]

ω
−ωf̄(0)

]
. (38)

3. Proposed Algorithm

Here, the general methodology of obtaining the numerical results of one-dimensional
fractional FWE involving the CFD and ABC fractional derivative operator in the fuzzy ET
is investigated.

The parameterized version of (2) is presented as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂α

∂ϑα f(�1, ϑ; ζ) = ∂3

∂�2
1∂ϑ

f(�1, ϑ; ζ)− ∂
∂�1

f(�1, ϑ; ζ) + f(�1, ϑ; ζ) ∂3

∂�3
1
f(�1, ϑ; ζ)

−f(�1, ϑ; ζ) ∂
∂�1

f(�1, ϑ; ζ) + 3 ∂
∂�1

f(�1, ϑ; ζ) ∂2

∂�2
1
f(�1, ϑ; ζ),

f(�1, 0) = g(�1; ζ),
∂α

∂ϑα f̄(�1, ϑ; ζ) = ∂3

∂�2
1∂ϑ

f̄(�1, ϑ; ζ)− ∂
∂�1

f̄(�1, ϑ; ζ) + f̄(�1, ϑ; ζ) ∂3

∂�3
1
f̄(�1, ϑ; ζ)

−f̄(�1, ϑ; ζ) ∂
∂�1

f̄(�1, ϑ; ζ) + 3 ∂
∂�1

f̄(�1, ϑ; ζ) ∂2

∂�2
1
f̄(�1, ϑ; ζ),

f̄(�1, 0) = ḡ(�1; ζ).

(39)

Employing ET on both sides of the first preceding case of (39) by utilizing the fuzzy
CFD, we have

E
[
f(�1, ϑ; ζ)

]
= E

[
∂3

∂�2
1∂ϑ

f(�1, ϑ; ζ)− ∂

∂�1
f(�1, ϑ; ζ) + f(�1, ϑ; ζ)

∂3

∂�3
1

f(�1, ϑ; ζ)

−f(�1, ϑ; ζ)
∂

∂�1
f(�1, ϑ; ζ) + 3

∂

∂�1
f(�1, ϑ; ζ)

∂2

∂�2
1

f(�1, ϑ; ζ)
]

(40)

subject to the IC f(�1, 0) = g(�1), we have

1
ωα

E
[
f(�1, ϑ; ζ)

]
−

q−1

∑
κ=0

f(κ)(�1; ζ)ω2−α+κ = E

[
∂3

∂�2
1∂ϑ

f(�1, ϑ; ζ)− ∂

∂�1
f(�1, ϑ; ζ) + f(�1, ϑ; ζ)

∂3

∂�3
1

f(�1, ϑ; ζ)

−f(�1, ϑ; ζ)
∂

∂�1
f(�1, ϑ; ζ) + 3

∂

∂�1
f(�1, ϑ; ζ)

∂2

∂�2
1

f(�1, ϑ; ζ)
]

,
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or, accordingly, we have

E
[
f(�1, ϑ; ζ)

]
= ω2g(�1; ζ) +ωα

E

[
∂3

∂�2
1∂ϑ

f(�1, ϑ; ζ)− ∂

∂�1
f(�1, ϑ; ζ) + f(�1, ϑ; ζ)

∂3

∂�3
1

f(�1, ϑ; ζ)

−f(�1, ϑ; ζ)
∂

∂�1
f(�1, ϑ; ζ) + 3

∂

∂�1
f(�1, ϑ; ζ)

∂2

∂�2
1

f(�1, ϑ; ζ)
]

. (41)

Again, applying ET on both sides of the first preceding case of (39) by utilizing the fuzzy
ABC fractional derivative, we have

E
[
f(�1, ϑ; ζ)

]
= ω2g(�1; ζ) +

(
αωα + 1− α

N (α)

)
E

[
∂3

∂�2
1∂ϑ

f(�1, ϑ; ζ)− ∂

∂�1
f(�1, ϑ; ζ)

+f(�1, ϑ; ζ)
∂3

∂�3
1

f(�1, ϑ; ζ)− f(�1, ϑ; ζ)
∂

∂�1
f(�1, ϑ; ζ) + 3

∂

∂�1
f(�1, ϑ; ζ)

∂2

∂�2
1

f(�1, ϑ; ζ)
]

. (42)

The unknown series solution is expressed as

f(�1, ϑ; ζ) =
∞

∑
q=0

f(�1, ϑ; ζ), (43)

and the nonlinear terms are decomposed as

N 1(�1, ϑ; ζ) =
∞

∑
q=0

Aq(�1, ϑ; ζ) = f(�1, ϑ; ζ)
∂3

∂�3
1

f(�1, ϑ; ζ),

N 2(�1, ϑ; ζ) =
∞

∑
q=0

Bq(�1, ϑ; ζ) = f(�1, ϑ; ζ)
∂

∂�1
f(�1, ϑ; ζ),

N 3(�1, ϑ; ζ) =
∞

∑
q=0

Cq(�1, ϑ; ζ) =
∂

∂�1
f(�1, ϑ; ζ)

∂2

∂�2
1

f(�1, ϑ; ζ), (44)

where Aq,Bq and Cq are known to be the Adomian polynomial are presented as

Aq =
1
q!

dq

dλq

[
N 1

( ∞

∑
q=0

λqfq(�1, ϑ; ζ)
)]

λ=0
,

Bq =
1
q!

dq

dλq

[
N 2

( ∞

∑
q=0

λqfq(�1, ϑ; ζ)
)]

λ=0
,

Cq =
1
q!

dq

dλq

[
N 3

( ∞

∑
q=0

λqfq(�1, ϑ; ζ)
)]

λ=0
. (45)

Now, (41) and (42), respectively, can be expressed as

E

[ ∞

∑
q=0

f(�1, ϑ; ζ)
]
= ω2g(�1; ζ) +ωα

E

[ ∞

∑
q=0

(
∂3

∂�2
1∂ϑ

f(�1, ϑ; ζ)
)

q
−

∞

∑
q=0

(
∂

∂�1
f(�1, ϑ; ζ)

)
q

+
∞

∑
q=0

Aq(�1, ϑ; ζ)−
∞

∑
q=0

Bq(�1, ϑ; ζ) + 3
∞

∑
q=0

Cq(�1, ϑ; ζ)
]

(46)

and
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E

[ ∞

∑
q=0

f(�1, ϑ; ζ)
]

= ω2g(�1; ζ) +
(
αωα + 1− α

N (α)

)
E

[ ∞

∑
q=0

(
∂3

∂�2
1∂ϑ

f(�1, ϑ; ζ)
)

q
−

∞

∑
q=0

(
∂

∂�1
f(�1, ϑ; ζ)

)
q

+
∞

∑
q=0

Aq(�1, ϑ; ζ)−
∞

∑
q=0

Bq(�1, ϑ; ζ) + 3
∞

∑
q=0

Cq(�1, ϑ; ζ)
]

. (47)

Applying the inverse ET on (46) and comparing terms by terms on both sides, we have

f0(�1, ϑ; ζ) = E
−1
[
ω2g(�1; ζ)

]
,

f1(�1, ϑ; ζ) = E
−1
[
ωα

E

[( ∂3

∂�2
1∂ϑ

f(�1, ϑ; ζ)
)

1
−
( ∂

∂�1
f(�1, ϑ; ζ)

)
1
+A1(�1, ϑ; ζ)−B1(�1, ϑ; ζ)

+3C1(�1, ϑ; ζ)
]]

,

f2(�1, ϑ; ζ) = E
−1
[
ωα

E

[( ∂3

∂�2
1∂ϑ

f(�1, ϑ; ζ)
)

2
−
( ∂

∂�1
f(�1, ϑ; ζ)

)
2
+A2(�1, ϑ; ζ)−B2(�1, ϑ; ζ)

+3C2(�1, ϑ; ζ)
]]

,

...

fq+1(�1, ϑ; ζ) = E
−1
[
ωα

E

[( ∂3

∂�2
1∂ϑ

f(�1, ϑ; ζ)
)

q
−
( ∂

∂�1
f(�1, ϑ; ζ)

)
q
+Aq(�1, ϑ; ζ)−Bq(�1, ϑ; ζ)

+3Cq(�1, ϑ; ζ)
]]

.

Again, applying the inverse ET on (47) and comparing terms by terms on both sides,
we have

f0(�1, ϑ; ζ) = E
−1
[
ω2g(�1; ζ)

]
,

f1(�1, ϑ; ζ) = E
−1
[(

αωα + 1− α

N (α)

)
E

[( ∂3

∂�2
1∂ϑ

f(�1, ϑ; ζ)
)

0
−
( ∂

∂�1
f(�1, ϑ; ζ)

)
0
+A0(�1, ϑ; ζ)

−B0(�1, ϑ; ζ) + 3C0(�1, ϑ; ζ)
]]

,

f2(�1, ϑ; ζ) = E
−1
[(

αωα + 1− α

N (α)

)
E

[( ∂3

∂�2
1∂ϑ

f(�1, ϑ; ζ)
)

1
−
( ∂

∂�1
f(�1, ϑ; ζ)

)
1
+A1(�1, ϑ; ζ)

−B1(�1, ϑ; ζ) + 3C1(�1, ϑ; ζ)
]]

,

...

fq+1(�1, ϑ; ζ) = E
−1
[(

αωα + 1− α

N (α)

)
E

[( ∂3

∂�2
1∂ϑ

f(�1, ϑ; ζ)
)

q
−
( ∂

∂�1
f(�1, ϑ; ζ)

)
q
+Aq(�1, ϑ; ζ)

−Bq(�1, ϑ; ζ) + 3Cq(�1, ϑ; ζ)
]]

.

Hence, the required series solution is expressed as

f(�1, ϑ; ζ) = f0(�1, ϑ; ζ) + f1(�1, ϑ; ζ) + ... . (48)
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Repeating the same procedure for the upper case of (39). Therefore, we mention the
solution in the parameterized version as follows:{

f(�1, ϑ; ζ) = f0(�1, ϑ; ζ) + f1(�1, ϑ; ζ) + ... ,
f̄(�1, ϑ; ζ) = f̄0(�1, ϑ; ζ) + f̄1(�1, ϑ; ζ) + ... .

(49)

4. Test Examples and Their Physical Interpretation

In this note, we demonstrate the series solutions with the aid of EADM concerning
different initial conditions by employing fuzzy Caputo and ABC fractional derivative
operators, respectively.
Firstly, we surmise the FW model (2) by considering EADM.

Problem 1. Assume the one-dimension fuzzy fractional FW model with fuzzy ICs is represented
as follows:

∂α

∂ϑα
f̃(�1, ϑ; ζ) =

∂3

∂�2
1∂ϑ

f̃(�1, ϑ; ζ)� ∂

∂�1
f̃(�1, ϑ; ζ)⊕ f̃(�1, ϑ; ζ)� ∂3

∂�3
1

f̃(�1, ϑ; ζ)

�f̃(�1, ϑ; ζ)� ∂

∂�1
f̃(�1, ϑ; ζ)⊕ ∂

∂�1
f̃(�1, ϑ; ζ)� ∂2

∂�2
1

f̃(�1, ϑ; ζ),

f̃(�1, 0) = χ̃(ζ)� exp
( �1

2
)
, (50)

where χ̃(ζ) = [χ(ζ), χ̄(ζ)] = [ζ − 1, 1− ζ] for ζ ∈ [0, 1] is a fuzzy number.

Proof. The parameterized version of the problem (50) is expressed as follows⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂α

∂ϑα f(�1, ϑ; ζ) = ∂3

∂�2
1∂ϑ

f(�1, ϑ; ζ)− ∂
∂�1

f(�1, ϑ; ζ) + f(�1, ϑ; ζ) ∂3

∂�3
1
f(�1, ϑ; ζ)

−f(�1, ϑ; ζ) ∂
∂�1

f(�1, ϑ; ζ) + ∂
∂�1

f(�1, ϑ; ζ) ∂2

∂�2
1
f(�1, ϑ; ζ),

f(�1, 0) = χ(ζ) exp
( �1

2
)
,

∂α

∂ϑα f̄(�1, ϑ; ζ) = ∂3

∂�2
1∂ϑ

f̄(�1, ϑ; ζ)− ∂
∂�1

f̄(�1, ϑ; ζ) + f̄(�1, ϑ; ζ) ∂3

∂�3
1
f̄(�1, ϑ; ζ)

−f̄(�1, ϑ; ζ) ∂
∂�1

f̄(�1, ϑ; ζ) + ∂
∂�1

f̄(�1, ϑ; ζ) ∂2

∂�2
1
f̄(�1, ϑ; ζ),

f̄(�1, 0) = χ̄(ζ) exp
( �1

2
)
.

(51)

Case I. (For the fuzzy Caputo fractional derivative)

Here, we obtain the EADM solution for the first case of (51) by using the fuzzy Caputo
fractional derivative operator.

Taking into consideration the procedure described in Section 3, we have

1
ωα

E
[
f(�1, ϑ; ζ)

]
−

q−1

∑
κ=0

f(κ)(�1; ζ)ω2−α+κ

= E

[
∂3

∂�2
1∂ϑ

f(�1, ϑ; ζ)− ∂

∂�1
f(�1, ϑ; ζ) + f(�1, ϑ; ζ)

∂3

∂�3
1

f(�1, ϑ; ζ)

−f(�1, ϑ; ζ)
∂

∂�1
f(�1, ϑ; ζ) +

∂

∂�1
f(�1, ϑ; ζ)

∂2

∂�2
1

f(�1, ϑ; ζ)
]

.

Simple computations result in

f(�1, ϑ; ζ) = (ζ − 1) exp
( �1

2
)
+E

−1

[
ωα

E

[
∂3

∂�2
1∂ϑ

f(�1, ϑ; ζ)− ∂

∂�1
f(�1, ϑ; ζ) + f(�1, ϑ; ζ)

∂3

∂�3
1

f(�1, ϑ; ζ)

−f(�1, ϑ; ζ)
∂

∂�1
f(�1, ϑ; ζ) +

∂

∂�1
f(�1, ϑ; ζ)

∂2

∂�2
1

f(�1, ϑ; ζ)
]]

. (52)
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Let us surmise the infinite sum f(�1, ϑ; ζ) =
∞
∑

q=0
fq(�1, ϑ; ζ), (q = 0, 1, 2, ...) accompanying

it with (45) and affirming the non-linearity. Therefore, (52) takes the form

∞

∑
q=0

fq(�1, ϑ; ζ) = (ζ − 1) exp
( �1

2
)
+E

−1

[
ωα

E

[ ∞

∑
q=0

( ∂3

∂�2
1∂ϑ

f(�1, ϑ; ζ)
)

q
−

∞

∑
q=0

( ∂

∂�1
f(�1, ϑ; ζ)

)
q

+
∞

∑
q=0

Aq −
∞

∑
q=0

Bq + 3
∞

∑
q=0

Cq

]]
. (53)

The first few Adomian polynomials are

Aq

(
f
∂3

∂�3
1

f
)
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
f0

∂3

∂�3
1
f0, q = 0,

f0
∂3

∂�3
1
f1 + f1

∂3

∂�3
1
f0, q = 1,

f1
∂3

∂�3
1
f2 + f1

∂3

∂�3
1
f1 + f2

∂3

∂�3
1
f0, q = 2,

Bq

(
f
∂

∂�1
f
)
=

⎧⎪⎪⎨⎪⎪⎩
f0

∂
∂�1

f0, q = 0,

f0
∂
∂�1

f1 + f1
∂
∂�1

f0, q = 1,

f1
∂
∂�1

f2 + f1
∂
∂�1

f1 + f2
∂
∂�1

f0, q = 2,

Cq

( ∂

∂�1
f
∂2

∂�2
1

f
)
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂
∂�1

f0
∂2

∂�2
1
f0, q = 0,

∂
∂�1

f0
∂2

∂�2
1
f1 +

∂
∂�1

f1
∂2

∂�2
1
f0, q = 1,

∂
∂�1

f1
∂2

∂�2
1
f2 +

∂
∂�1

f1
∂2

∂�2
1
f1 +

∂
∂�1

f2
∂2

∂�2
1
f0, q = 2.

(54)

then (53) simplifies to

f0(�1, ϑ; ζ) = (ζ − 1) exp
( �1

2
)
,

f1(�1, ϑ; ζ) = E
−1
[
ωα

E

[( ∂3

∂�2
1∂ϑ

f(�1, ϑ; ζ)
)

0
−
( ∂

∂�1
f(�1, ϑ; ζ)

)
0
+A0 −B0 + 3C0

]]
= − ζ − 1

2
exp
( �1

2

) ϑα

Γ(α+ 1)
,

f2(�1, ϑ; ζ) = E
−1
[
ωα

E

[( ∂3

∂�2
1∂ϑ

f(�1, ϑ; ζ)
)

1
−
( ∂

∂�1
f(�1, ϑ; ζ)

)
1
+A1 −B1 + 3C1

]]
=
−(ζ − 1)

8
exp
( �1

2
) ϑ2α−1

Γ(2α)
+

(ζ − 1)
4

exp
( �1

2
) ϑ2α

Γ(2α+ 1)
,

f3(�1, ϑ; ζ) = E
−1
[
ωα

E

[( ∂3

∂�2
1∂ϑ

f(�1, ϑ; ζ)
)

2
−
( ∂

∂�1
f(�1, ϑ; ζ)

)
2
+A2 −B2 + 3C2

]]
=
−(ζ − 1)

32
exp
( �1

2
) ϑ3α−2

Γ(3α− 1)
+

(ζ − 1)
8

exp
( �1

2
) ϑ3α−1

Γ(3α)
− (ζ − 1)

8
exp
( �1

2
) ϑ3α

Γ(3α+ 1)
,

... .

By implementing a similar technique, the remaining terms of fq (q ≥ 4) of the EADM
solution can be simply determined. Furthermore, when the iterative process expands,
the accuracy of the obtained solution improves dramatically, and the deduced solution
moves closer to the precise result. Finally, we have come up with the following answers in
a series form

f(�1, ϑ, ζ) = f0(�1, ϑ, ζ) + f1(�1, ϑ, ζ) + f1(�1, ϑ, ζ) + ... ,

such that

f(�1, ϑ, ζ) = f0(�1, ϑ, ζ) + f1(�1, ϑ, ζ) + f1(�1, ϑ, ζ) + ... ,

f̄(�1, ϑ, ζ) = f̄0(�1, ϑ, ζ) + f̄1(�1, ϑ, ζ) + f̄1(�1, ϑ, ζ) + ... .
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Consequently, we have

f(�1, ϑ, ζ) = (ζ − 1) exp
( �1

2
)
− ζ − 1

2
exp
( �1

2

) ϑα

Γ(α+ 1)

− (ζ − 1)
8

exp
( �1

2
) ϑ2α−1

Γ(2α)
+

(ζ − 1)
4

exp
( �1

2
) ϑ2α

Γ(2α+ 1)

− (ζ − 1)
32

exp
( �1

2
) ϑ3α−2

Γ(3α− 1)
+

(ζ − 1)
8

exp
( �1

2
) ϑ3α−1

Γ(3α)
− (ζ − 1)

8
exp
( �1

2
) ϑ3α

Γ(3α+ 1)
... ,

f̄(�1, ϑ, ζ) = (1− ζ) exp
( �1

2
)
− 1− ζ

2
exp
( �1

2

) ϑα

Γ(α+ 1)

− (1− ζ)

8
exp
( �1

2
) ϑ2α−1

Γ(2α)
+

(1− ζ)

4
exp
( �1

2
) ϑ2α

Γ(2α+ 1)

− (1− ζ)

32
exp
( �1

2
) ϑ3α−2

Γ(3α− 1)
+

(1− ζ)

8
exp
( �1

2
) ϑ3α−1

Γ(3α)
− (1− ζ)

8
exp
( �1

2
) ϑ3α

Γ(3α+ 1)
... . (55)

Case II. (For the fuzzy Atangana–Baleanu Caputo fractional derivative)

Here, we obtain the EADM solution for the first case of (51) by the using fuzzy ABC
fractional derivative operator.

Taking into consideration the procedure described in Section 3, we have

E
[
f(�1, ϑ; ζ)

]
= ω2f(κ)(�1; ζ) +

(
αωα + 1− α

N (α)

)
E

[
∂3

∂�2
1∂ϑ

f(�1, ϑ; ζ)− ∂

∂�1
f(�1, ϑ; ζ)

+f(�1, ϑ; ζ)
∂3

∂�3
1

f(�1, ϑ; ζ)− f(�1, ϑ; ζ)
∂

∂�1
f(�1, ϑ; ζ) +

∂

∂�1
f(�1, ϑ; ζ)

∂2

∂�2
1

f(�1, ϑ; ζ)
]

.

Simple computations result in

f(�1, ϑ; ζ) = (ζ − 1) exp
( �1

2
)
+E

−1

[(
αωα + 1− α

N (α)

)
E

[
∂3

∂�2
1∂ϑ

f(�1, ϑ; ζ)− ∂

∂�1
f(�1, ϑ; ζ)

+f(�1, ϑ; ζ)
∂3

∂�3
1

f(�1, ϑ; ζ)− f(�1, ϑ; ζ)
∂

∂�1
f(�1, ϑ; ζ) +

∂

∂�1
f(�1, ϑ; ζ)

∂2

∂�2
1

f(�1, ϑ; ζ)
]]

. (56)

Let us surmise the infinite sum f(�1, ϑ; ζ) =
∞
∑

q=0
fq(�1, ϑ; ζ), (q = 0, 1, 2, ...) accompanying

it with (45) and affirming the non-linearity. Therefore, (52) takes the form

∞

∑
q=0

fq(�1, ϑ; ζ) = (ζ − 1) exp
( �1

2
)

+E
−1

[(
αωα + 1− α

N (α)

)
E

[ ∞

∑
q=0

( ∂3

∂�2
1∂ϑ

f(�1, ϑ; ζ)
)

q
−

∞

∑
q=0

( ∂

∂�1
f(�1, ϑ; ζ)

)
q

+
∞

∑
q=0

Aq −
∞

∑
q=0

Bq + 3
∞

∑
q=0

Cq

]]
. (57)
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Utilizing the Adomian polynomials described in (54), then (57) simplifies to

f0(�1, ϑ; ζ) = (ζ − 1) exp
( �1

2
)
,

f1(�1, ϑ; ζ) = E
−1
[(

αωα + 1− α

N (α)

)
E

[( ∂3

∂�2
1∂ϑ

f(�1, ϑ; ζ)
)

0
−
( ∂

∂�1
f(�1, ϑ; ζ)

)
0
+A0 −B0 + 3C0

]]
= − ζ − 1

2N (α)
exp
( �1

2

)[ αϑα

Γ(α+ 1)
+ (1− α)

]
,

f2(�1, ϑ; ζ) = E
−1
[(

αωα + 1− α

N (α)

)
E

[( ∂3

∂�2
1∂ϑ

f(�1, ϑ; ζ)
)

1
−
( ∂

∂�1
f(�1, ϑ; ζ)

)
1
+A1 −B1 + 3C1

]]
=
−(ζ − 1)
8N 2(α)

exp
( �1

2
)[ α2ϑ2α−1

Γ(2α)
+ α(α− 1)

ϑα−1

Γ(α)
+ α

ϑα

Γ(α+ 1)
+ (1− α)

]
+

(ζ − 1)
4N 2(α)

exp
( �1

2
)[ α2ϑ2α

Γ(2α+ 1)
+ 2α(1− α)

ϑα

Γ(α+ 1)
+ (1− α)2

]
,

f3(�1, ϑ; ζ) = E
−1
[(

αωα + 1− α

N (α)

)
E

[( ∂3

∂�2
1∂ϑ

f(�1, ϑ; ζ)
)

2
−
( ∂

∂�1
f(�1, ϑ; ζ)

)
2
+A2 −B2 + 3C2

]]

=
−(ζ − 1)
32N 3(α)

exp
( �1

2
)
⎧⎪⎪⎪⎨⎪⎪⎪⎩

4α3ϑ3α

Γ(3α+1) −
2α3ϑ3α−1

Γ(3α) − α3ϑ3α−2

Γ(3α−1) + 2α2(5− 2α) ϑ2α

Γ(2α+1)

−2α2(1− α) ϑ
2α−1

Γ(2α) − α2(1− α) ϑ2α−2

Γ(2α−1) + α(1− α)(7− 6α) ϑ
α−1

Γ(α)

+2(1− α)(1− 2α),

...

By implementing a similar technique, the remaining terms of fq (q ≥ 3) of the EADM
solution can be simply determined. Furthermore, when the iterative process expands,
the accuracy of the obtained solution improves dramatically, and the deduced solution
moves closer to the precise result. Finally, we have come up with the following answers in
a series form

f(�1, ϑ, ζ) = f0(�1, ϑ, ζ) + f1(�1, ϑ, ζ) + f1(�1, ϑ, ζ) + ... ,

such that

f(�1, ϑ, ζ) = f0(�1, ϑ, ζ) + f1(�1, ϑ, ζ) + f1(�1, ϑ, ζ) + ... ,

f̄(�1, ϑ, ζ) = f̄0(�1, ϑ, ζ) + f̄1(�1, ϑ, ζ) + f̄1(�1, ϑ, ζ) + ... .

Consequently, we have

f(�1, ϑ, ζ) = (ζ − 1) exp
( �1

2
)
− ζ − 1

2N (α)
exp
( �1

2

)[ αϑα

Γ(α+ 1)
+ (1− α)

]
− (ζ − 1)

8N 2(α)
exp
( �1

2
)[ α2ϑ2α−1

Γ(2α)
+ α(α− 1)

ϑα−1

Γ(α)
+ α

ϑα

Γ(α+ 1)
+ (1− α)

]
+

(ζ − 1)
4N 2(α)

exp
( �1

2
)[ α2ϑ2α

Γ(2α+ 1)
+ 2α(1− α)

ϑα

Γ(α+ 1)
+ (1− α)2

]

− (ζ − 1)
32N 3(α)

exp
( �1

2
)
×

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

4α3ϑ3α

Γ(3α+1) −
2α3ϑ3α−1

Γ(3α) − α3ϑ3α−2

Γ(3α−1) + 2α2(5− 2α) ϑ2α

Γ(2α+1)

−2α2(1− α) ϑ
2α−1

Γ(2α) − α2(1− α) ϑ2α−2

Γ(2α−1) + α(1− α)(7− 6α) ϑ
α−1

Γ(α)

+2(1− α)(1− 2α)

+ ... ,

f̄(�1, ϑ, ζ) = (1− ζ) exp
( �1

2
)
− 1− ζ

2N (α)
exp
( �1

2

)[ αϑα

Γ(α+ 1)
+ (1− α)

]
− (1− ζ)

8N 2(α)
exp
( �1

2
)[ α2ϑ2α−1

Γ(2α)
+ α(α− 1)

ϑα−1

Γ(α)
+ α

ϑα

Γ(α+ 1)
+ (1− α)

]
+

(1− ζ)

4N 2(α)
exp
( �1

2
)[ α2ϑ2α

Γ(2α+ 1)
+ 2α(1− α)

ϑα

Γ(α+ 1)
+ (1− α)2

]

− (1− ζ)

32N 3(α)
exp
( �1

2
)
×

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

4α3ϑ3α

Γ(3α+1) −
2α3ϑ3α−1

Γ(3α) − α3ϑ3α−2

Γ(3α−1) + 2α2(5− 2α) ϑ2α

Γ(2α+1)

−2α2(1− α) ϑ
2α−1

Γ(2α) − α2(1− α) ϑ2α−2

Γ(2α−1) + α(1− α)(7− 6α) ϑ
α−1

Γ(α)

+2(1− α)(1− 2α)

+ ... . (58)
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In this analysis, Figure 1 demonstrates the insight into the influence of multiple layer
surface plots for Problem 1 correlated with the CFD and Elzaki transform in the fuzzy sense.
It is worth mentioning that the profile identifies the variation in the mapping f(�1, ϑ; ζ) on
space co-ordinate �1 with respect to ϑ and uncertainty parameter ζ ∈ [0, 1].

The graph illustrates that as, time progresses, the mapping f(�1, ϑ; ζ) will also increase.

• The effect of the proposed methodology on the mapping f(�1, ϑ; ζ) is displayed in
Figure 2a for the varying fractional orders α = 1, 0.85, 0.75, 0.55 by considering CFD
operator. It exhibits a relatively small increase in the mapping f(�1, ϑ; ζ) with the
decrease in f̄(�1, ϑ; ζ).

• The profile graph of Figure 2b demonstrates the lower and upper solution of varying
uncertainty when the fractional order is assumed to be α = 0.2 by proposing CFD
operator. It emphasizes a relatively small variation in the mapping f(�1, ϑ; ζ) with the
increase in f̄(�1, ϑ; ζ).

• The effect of the proposed methodology on the mapping f(�1, ϑ; ζ) is displayed in
Figure 3a for the varying fractional orders α = 1, 0.85, 0.75, 0.55 by considering the ABC
fractional derivative operator. It exhibits a relatively small increase in the mapping
f(�1, ϑ; ζ) with the decrease in f̄(�1, ϑ; ζ).

• The Profile graph of Figure 3b demonstrates the lower and upper solutions of varying
uncertainty when the fractional order is assumed to be α = 0.2 by proposing the
ABC fractional derivative operator. It emphasizes a relatively small variation in the
mapping f(�1, ϑ; ζ) with the increase in f̄(�1, ϑ; ζ).

• Figure 4 demonstrates the comparison analysis between the CFD operator and the
ABC fractional derivative operator for varying fractional order with uncertainty
κ ∈ [0, 1], exhibits that lower the solution profile for the ABC fractional operator has
strong ties with the upper solution as compared to the CFD operator.

• Figure 5 shows the comparison analysis between (f(�1, ϑ; ζ) and the exact solution),
(f̄(�1, ϑ; ζ) and exact solution), respectively, for three dimensional error plots by con-
sidering the CFD operator.

Furthermore, the offered approach does not provide a unique solution but will aid
scientists in selecting the best approximate solution. It is remarkable that the fuzzy ABC
fractional derivative operator has better performance than the CFD operators, because the
curves have a strong harmony with the integer-order graph in the ABC operator case.

Figure 1. A three-dimensional surface plot indicates the lower and upper solution f(�1, ϑ, ζ)
taking into consideration the fuzzy Caputo fractional derivative operator for Problem 1 when
α = 1, 0.85, 0.75, 0.55 with uncertainty ζ ∈ [0, 1].
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Figure 2. (a) A two-dimensional plot indicates the lower and upper solution f(�1, ϑ, ζ) taking into con-
sideration the fuzzy Caputo fractional derivative operator for Problem 1 when α = 1, 0.85, 0.75, 0.55
with uncertainty ζ ∈ [0, 1]. (b) A two-dimensional plot indicates the lower and upper solution
f(�1, ϑ, ζ) taking into consideration the fuzzy Caputo fractional derivative operator for Problem 1
when ζ = 1, 0.85, 0.75, 0.55 with the fractional order α = 0.2.
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Figure 3. Cont.

68



Fractal Fract. 2021, 5, 113

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

(b)
Figure 3. (a) A two-dimensional plot indicates the lower and upper solution f(�1, ϑ, ζ) taking into
consideration the ABC fractional derivative operator for Problem 1 when α = 1, 0.85, 0.75, 0.55
with uncertainty ζ ∈ [0, 1]. (b) A two-dimensional plot indicates the lower and upper solution
f(�1, ϑ, ζ) taking into consideration the ABC fractional derivative operator for Problem 1 when
ζ = 1, 0.85, 0.75, 0.55 with fractional order α = 0.2.

Figure 4. A comparison three-dimensional plot indicates the lower and upper solution f(�1, ϑ, ζ)
taking into consideration the fuzzy Caputo and fuzzy ABC fractional derivative operators for
Problem 1 when ζ = 0.2 with fractional order α = 0.85.
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(a)

(b)
Figure 5. (a) A three-dimensional absolute error plot indicates the lower and exact solution (Remark 2)
of f(�1, ϑ, ζ) taking into consideration the fuzzy Caputo fractional derivative operator for Problem 1
when α = 0.85 with uncertainty ζ ∈ [0, 1]. (b)A three-dimensional absolute error plot indicates
the upper and exact solution (Remark 2) of f(�1, ϑ, ζ) taking into consideration the fuzzy Caputo
fractional derivative operator for Problem 1 when α = 0.85 with uncertainty ζ ∈ [0, 1].

Remark 2. When χ(ζ) = χ̄(ζ) = 1 along with α = 1, then both solutions of Problem 1 converge

to the integer-order solution f(�1, ϑ) = exp
(
�1
2 − 2ϑ

3

)
.

Problem 2. Assume the one-dimension fuzzy fractional FW model with fuzzy ICs is represented
as follows:

∂α

∂ϑα
f̃(�1, ϑ; ζ) =

∂3

∂�2
1∂ϑ

f̃(�1, ϑ; ζ)� ∂

∂�1
f̃(�1, ϑ; ζ)⊕ f̃(�1, ϑ; ζ)� ∂3

∂�3
1

f̃(�1, ϑ; ζ)

�f̃(�1, ϑ; ζ)� ∂

∂�1
f̃(�1, ϑ; ζ)⊕ ∂

∂�1
f̃(�1, ϑ; ζ)� ∂2

∂�2
1

f̃(�1, ϑ; ζ),

f̃(�1, 0) = χ̃(ζ)� cosh2 ( �1

4
)
, (59)

where χ̃(ζ) = [χ(ζ), χ̄(ζ)] = [ζ − 1, 1− ζ] for ζ ∈ [0, 1] is a fuzzy number.
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Proof. The parameterized version of the problem (50) is expressed as follows⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂α

∂ϑα f(�1, ϑ; ζ) = ∂3

∂�2
1∂ϑ

f(�1, ϑ; ζ)− ∂
∂�1

f(�1, ϑ; ζ) + f(�1, ϑ; ζ) ∂3

∂�3
1
f(�1, ϑ; ζ)

−f(�1, ϑ; ζ) ∂
∂�1

f(�1, ϑ; ζ) + ∂
∂�1

f(�1, ϑ; ζ) ∂2

∂�2
1
f(�1, ϑ; ζ),

f(�1, 0) = χ(ζ) cosh2 ( �1
4
)
,

∂α

∂ϑα f̄(�1, ϑ; ζ) = ∂3

∂�2
1∂ϑ

f̄(�1, ϑ; ζ)− ∂
∂�1

f̄(�1, ϑ; ζ) + f̄(�1, ϑ; ζ) ∂3

∂�3
1
f̄(�1, ϑ; ζ)

−f̄(�1, ϑ; ζ) ∂
∂�1

f̄(�1, ϑ; ζ) + ∂
∂�1

f̄(�1, ϑ; ζ) ∂2

∂�2
1
f̄(�1, ϑ; ζ),

f̄(�1, 0) = χ̄(ζ) cosh2 ( �1
4
)
.

(60)

Case I. (For the fuzzy Caputo fractional derivative)

Here, we obtain the EADM solution for the first case of (51) by using the fuzzy CFD operator.
Taking into consideration the procedure described in Section 3, we have

1
ωα

E
[
f(�1, ϑ; ζ)

]
−

q−1

∑
κ=0

f(κ)(�1; ζ)ω2−α+κ

= E

[
∂3

∂�2
1∂ϑ

f(�1, ϑ; ζ)− ∂

∂�1
f(�1, ϑ; ζ) + f(�1, ϑ; ζ)

∂3

∂�3
1

f(�1, ϑ; ζ)

−f(�1, ϑ; ζ)
∂

∂�1
f(�1, ϑ; ζ) +

∂

∂�1
f(�1, ϑ; ζ)

∂2

∂�2
1

f(�1, ϑ; ζ)
]

.

Simple computations result in

f(�1, ϑ; ζ) = (ζ − 1) cosh2 ( �1

4
)
+E

−1

[
ωα

E

[
∂3

∂�2
1∂ϑ

f(�1, ϑ; ζ)− ∂

∂�1
f(�1, ϑ; ζ) + f(�1, ϑ; ζ)

∂3

∂�3
1

f(�1, ϑ; ζ)

−f(�1, ϑ; ζ)
∂

∂�1
f(�1, ϑ; ζ) +

∂

∂�1
f(�1, ϑ; ζ)

∂2

∂�2
1

f(�1, ϑ; ζ)
]]

. (61)

Let us surmise the infinite sum f(�1, ϑ; ζ) =
∞
∑

q=0
fq(�1, ϑ; ζ) accompanying it with (45) and

affirming the non-linearity. Therefore, (63) takes the form

∞

∑
q=0

fq(�1, ϑ; ζ) = (ζ − 1) cosh2 ( �1

4
)
+E

−1

[
ωα

E

[ ∞

∑
q=0

( ∂3

∂�2
1∂ϑ

f(�1, ϑ; ζ)
)

q
−

∞

∑
q=0

( ∂

∂�1
f(�1, ϑ; ζ)

)
q

+
∞

∑
q=0

Aq −
∞

∑
q=0

Bq + 3
∞

∑
q=0

Cq

]]
. (62)

Utilizing the Adomian polynomials described in (54), then (64) simplifies to
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f0(�1, ϑ; ζ) = (ζ − 1)
(1

2
+

1
2

cosh
( �1

2

))
,

f1(�1, ϑ; ζ) = E
−1
[
ωα

E

[( ∂3

∂�2
1∂ϑ

f(�1, ϑ; ζ)
)

0
−
( ∂

∂�1
f(�1, ϑ; ζ)

)
0
+A0 −B0 + 3C0

]]
= −11

32
(ζ − 1) sinh

( �1

2

) ϑα

Γ(α+ 1)
,

f2(�1, ϑ; ζ) = E
−1
[
ωα

E

[( ∂3

∂�2
1∂ϑ

f(�1, ϑ; ζ)
)

1
−
( ∂

∂�1
f(�1, ϑ; ζ)

)
1
+A1 −B1 + 3C1

]]
=
−11
128

(ζ − 1) sinh
( �1

2
) ϑα

Γ(α+ 1)
+

242(ζ − 1)
1024

cosh
( �1

2
) ϑ2α

Γ(2α+ 1)
,

f3(�1, ϑ; ζ) = E
−1
[
ωα

E

[( ∂3

∂�2
1∂ϑ

f(�1, ϑ; ζ)
)

2
−
( ∂

∂�1
f(�1, ϑ; ζ)

)
2
+A2 −B2 + 3C2

]]
=
−11(ζ − 1)

512
sinh

( �1

2
) ϑα

Γ(α+ 1)
+

242(ζ − 1)
2048

cosh
( �1

2
) ϑ2α

Γ(2α+ 1)

−7986(ζ − 1)
49152

sinh
( �1

2
) ϑ3α

Γ(3α+ 1)
,

... .

By implementing a similar technique, the remaining terms of fq (q ≥ 4) of EADM
solution can be simply determined. Furthermore, when the iterative process expands,
the accuracy of the obtained solution improves dramatically, and the deduced solution
moves closer to the precise result. Finally, we have come up with the following answers in
a series form

f(�1, ϑ, ζ) = f0(�1, ϑ, ζ) + f1(�1, ϑ, ζ) + f1(�1, ϑ, ζ) + ... ,

such that

f(�1, ϑ, ζ) = f0(�1, ϑ, ζ) + f1(�1, ϑ, ζ) + f1(�1, ϑ, ζ) + ... ,

f̄(�1, ϑ, ζ) = f̄0(�1, ϑ, ζ) + f̄1(�1, ϑ, ζ) + f̄1(�1, ϑ, ζ) + ... .

Consequently, we have

f(�1, ϑ, ζ) = (ζ − 1)
(1

2
+

1
2

cosh
( �1

2

))
− 231

32
(ζ − 1) sinh

( �1

2

) ϑα

Γ(α+ 1)

+
363(ζ − 1)

1024
cosh

( �1

2
) ϑ2α

Γ(2α+ 1)
− 7986(ζ − 1)

49152
sinh

( �1

2
) ϑ3α

Γ(3α+ 1)
+ ... ,

f̄(�1, ϑ, ζ) = (1− ζ)
(1

2
+

1
2

cosh
( �1

2

))
− 231

32
(1− ζ) sinh

( �1

2

) ϑα

Γ(α+ 1)

+
363(1− ζ)

1024
cosh

( �1

2
) ϑ2α

Γ(2α+ 1)
− 7986(1− ζ)

49152
sinh

( �1

2
) ϑ3α

Γ(3α+ 1)
+ ... .

Case II. (For the fuzzy Atangana–Baleanu Caputo fractional derivative)

Here, we obtain the EADM solution for the first case of (51) by using the fuzzy ABC
fractional derivative operator.

Taking into consideration the procedure described in Section 3, we have

E
[
f(�1, ϑ; ζ)

]
= ω2f(κ)(�1; ζ) +

(
αωα + 1− α

N (α)

)
E

[
∂3

∂�2
1∂ϑ

f(�1, ϑ; ζ)− ∂

∂�1
f(�1, ϑ; ζ)

+f(�1, ϑ; ζ)
∂3

∂�3
1

f(�1, ϑ; ζ)− f(�1, ϑ; ζ)
∂

∂�1
f(�1, ϑ; ζ) +

∂

∂�1
f(�1, ϑ; ζ)

∂2

∂�2
1

f(�1, ϑ; ζ)
]

.
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Simple computations result in

f(�1, ϑ; ζ) = (ζ − 1) cosh2 ( �1

4
)
+E

−1

[(
αωα + 1− α

N (α)

)
E

[
∂3

∂�2
1∂ϑ

f(�1, ϑ; ζ)− ∂

∂�1
f(�1, ϑ; ζ)

+f(�1, ϑ; ζ)
∂3

∂�3
1

f(�1, ϑ; ζ)− f(�1, ϑ; ζ)
∂

∂�1
f(�1, ϑ; ζ) +

∂

∂�1
f(�1, ϑ; ζ)

∂2

∂�2
1

f(�1, ϑ; ζ)
]]

. (63)

Let us surmise the infinite sum f(�1, ϑ; ζ) =
∞
∑

q=0
fq(�1, ϑ; ζ) accompanying it with (45) and

affirming the non-linearity. Therefore, (63) takes the form

∞

∑
q=0

fq(�1, ϑ; ζ) = (ζ − 1) cosh2 ( �1

4
)
+E

−1

[(
αωα + 1− α

N (α)

)
E

[ ∞

∑
q=0

( ∂3

∂�2
1∂ϑ

f(�1, ϑ; ζ)
)

q

−
∞

∑
q=0

( ∂

∂�1
f(�1, ϑ; ζ)

)
q
+

∞

∑
q=0

Aq −
∞

∑
q=0

Bq + 3
∞

∑
q=0

Cq

]]
. (64)

Utilizing the Adomian polynomials described in (54), then (64) simplifies to

f0(�1, ϑ; ζ) = (ζ − 1)
( 1

2
+

1
2

cosh
( �1

2

))
,

f1(�1, ϑ; ζ) = E
−1
[(

αωα + 1− α

N (α)

)
E

[( ∂3

∂�2
1∂ϑ

f(�1, ϑ; ζ)
)

0
−
( ∂

∂�1
f(�1, ϑ; ζ)

)
0
+A0 −B0 + 3C0

]]
= − 11

32
(ζ − 1) sinh

( �1

2

)[ αϑα

Γ(α+ 1)
+ (1− α)

]
,

f2(�1, ϑ; ζ) = E
−1
[(

αωα + 1− α

N (α)

)
E

[( ∂3

∂�2
1∂ϑ
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1
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1024
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( �1

2
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+ 2α(1− α)
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+ (1− α)2

]
,

f3(�1, ϑ; ζ) = E
−1
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αωα + 1− α

N (α)

)
E

[( ∂3
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1∂ϑ
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2
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f(�1, ϑ; ζ)
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=
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sinh

( �1

2
)[ αϑα
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+ (1− α)
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+
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cosh
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2
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]
,

... .

By implementing a similar technique, the remaining terms of fq (q ≥ 4) of the EADM
solution can be simply determined. Furthermore, when the iterative process expands,
the accuracy of the obtained solution improves dramatically, and the deduced solution
moves closer to the precise result. Finally, we have come up with the following answers in
a series form

f(�1, ϑ, ζ) = f0(�1, ϑ, ζ) + f1(�1, ϑ, ζ) + f1(�1, ϑ, ζ) + ... ,

such that

f(�1, ϑ, ζ) = f0(�1, ϑ, ζ) + f1(�1, ϑ, ζ) + f1(�1, ϑ, ζ) + ... ,

f̄(�1, ϑ, ζ) = f̄0(�1, ϑ, ζ) + f̄1(�1, ϑ, ζ) + f̄1(�1, ϑ, ζ) + ... .
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Consequently, we have

f(�1, ϑ, ζ) = (ζ − 1)
( 1

2
+

1
2

cosh
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2
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32
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+
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2
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ϑ2α
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]
+ ... ,

f̄(�1, ϑ, ζ) = (1− ζ)
( 1

2
+

1
2

cosh
( �1

2

))
− 231

32
(1− ζ) sinh

( �1
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)[ αϑα

Γ(α+ 1)
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+

363(1− ζ)

1024
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( �1

2
)[ α2ϑ2α

Γ(2α+ 1)
+ 2α(1− α)

ϑα

Γ(α+ 1)
+ (1− α)2
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− 7986(1− ζ)
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sinh
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2
)[ α3ϑ3α

Γ(3α+ 1)
+ 3α2(1− α)

ϑ2α
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Γ(α+ 1)
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+ ... .

In this analysis, Figure 6 demonstrates the insight into the influence of multiple-layer
surface plots for Problem 2 correlated with the CFD and Elzaki transform in the fuzzy sense.
It is worth mentioning that the profile identifies the variation in the mapping f(�1, ϑ; ζ) on
space co-ordinate �1 with respect to ϑ and the uncertainty parameter ζ ∈ [0, 1].

The graph illustrates that, as time progresses, the mapping f(�1, ϑ; ζ) will also increase.

• The effect of the proposed methodology on the mapping f(�1, ϑ; ζ) is displayed in
Figure 7a for the varying fractional-orders α = 1, 0.85, 0.75, 0.55 by the considering
CFD operator. It exhibits a relatively small increase in the mapping f(�1, ϑ; ζ) with the
decrease in f̄(�1, ϑ; ζ).

• The profile graph of Figure 7b demonstrates the lower and upper solution of varying
uncertainty when the fractional order is assumed to be α = 0.2 by proposing the CFD
operator. It emphasizes a relatively small variation in the mapping f(�1, ϑ; ζ) with the
increase in f̄(�1, ϑ; ζ).

• The effect of the proposed methodology on the mapping f(�1, ϑ; ζ) is displayed in
Figure 8a for the varying fractional orders α = 1, 0.85, 0.75, 0.55 by considering ABC
fractional derivative operator. It exhibits a relatively small increase in the mapping
f(�1, ϑ; ζ) with the decrease in f̄(�1, ϑ; ζ).

• The profile graph of Figure 8b demonstrates the lower and upper solutions of varying
uncertainty when the fractional order is assumed to be α = 0.2 by proposing the
ABC fractional derivative operator. It emphasizes a relatively small variation in the
mapping f(�1, ϑ; ζ) with the increase in f̄(�1, ϑ; ζ).

• Figure 9 demonstrates the comparison analysis between CFD operator and ABC
fractional derivative operator for varying fractional order with uncertainty κ ∈ [0, 1],
exhibits that the lower solution profile for ABC fractional operator has strong ties with
the upper solution as compared to the CFD operator.

• Figure 10 shows the comparison analysis between (f(�1, ϑ; ζ) and the exact solution),
(f̄(�1, ϑ; ζ) and the exact solution), respectively, for three dimensional error plots by
considering the CFD operator.

Furthermore, the offered approach does not provide a unique solution but will aid
scientists in selecting the best approximate solution. It is remarkable that the fuzzy ABC
fractional derivative operator has better performance than the CFD operators, because the
curves have a strong harmony with the integer-order graph in the ABC operator case.
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Figure 6. A three-dimensional surface plot indicates the lower and upper solution f(�1, ϑ, ζ)
taking into consideration the fuzzy Caputo fractional derivative operator for Problem 2 when
α = 1, 0.85, 0.75, 0.55 with uncertainty ζ ∈ [0, 1].
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Figure 7. (a) A two-dimensional plot indicates the lower and upper solution f(�1, ϑ, ζ) taking into con-
sideration the fuzzy Caputo fractional derivative operator for Problem 2 when α = 1, 0.85, 0.75, 0.55
with uncertainty ζ ∈ [0, 1]. (b) A two-dimensional plot indicates the lower and upper solution
f(�1, ϑ, ζ) taking into consideration the fuzzy Caputo fractional derivative operator for Problem 2
when ζ = 1, 0.85, 0.75, 0.55 with the fractional order α = 0.2.
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Figure 8. (a) A two-dimensional plot indicates the lower and upper solution f(�1, ϑ, ζ) taking into
consideration the fuzzy ABC fractional derivative operator for Problem 2 when α = 1, 0.85, 0.75, 0.55
with uncertainty ζ ∈ [0, 1]. (b) A two-dimensional plot indicates the lower and upper solution
f(�1, ϑ, ζ) taking into consideration the fuzzy ABC fractional derivative operator for Problem 2 when
ζ = 1, 0.85, 0.75, 0.55 with the fractional order α = 0.2.

Figure 9. A comparison three-dimensional plot indicates the lower and upper solution f(�1, ϑ, ζ),
taking into consideration the fuzzy Caputo and fuzzy ABC fractional derivative operators for
Problem 2 when ζ = 0.2 with the fractional order α = 0.85.
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(a)

(b)
Figure 10. (a) A three-dimensional absolute error plot indicates the lower and exact solution
(Remark 3) of f(�1, ϑ, ζ) taking into consideration the fuzzy Caputo fractional derivative opera-
tor for Problem 2 when α = 0.85 with uncertainty ζ ∈ [0, 1]. (b)A three-dimensional absolute error
plot indicates the upper and exact solution (Remark 3) of f(�1, ϑ, ζ), taking into consideration the
fuzzy Caputo fractional derivative operator for Problem 2 when α = 0.85 with uncertainty ζ ∈ [0, 1].

Remark 3. When χ(ζ) = χ̄(ζ) = 1 along with α = 1, then both solutions of Problem 2 converge

to the integer-order solution f(�1, ϑ) = cosh2
(
�1
4 − 11ϑ

24

)
.

5. Conclusions

The paper has demonstrated families of approximate solutions to the FWE under
gH− (i) differentiability taking into consideration the Elzaki and ADM. Fractional opera-
tors (Caputo and ABC) describing fuzzy characteristics have been separately discussed.
The fuzzy solutions of FWE proposed for such flows are characterized by EADM. Nev-
ertheless, the crisp operators are unable to simulate any physical mechanism in an un-
predictable setting. Therefore, fuzzy operators are a preferable means to describe the
physical phenomenon in such a scenario. Specifically, we illustrated two test examples of
the evolutionary method to gain deeper insight into the exact–approximate solutions to
validate the projected technique to attain a parametric solution for each case of the fuzzy
(Caputo and ABC) fractional derivative operator. It has been demonstrated that the solution
graphs predict the fuzzy solution since they satisfy the fuzzy number conditions. As for
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applications of this framework, the convergence and error analysis can be predicated by
the simulation study that specified that fractional-order plots have a strong correlation with
the evolutionary trajectories of FWE. It has also been shown that fuzzy EADM represents
two solutions, which often leads to an advantage in selecting the best one possible for a
governing model. As a consequence, the fuzzy theory connected with FC allows a model
to improve performance in an uncertain domain. In the future, we will investigate a similar
problem by defining the Henstock integrals (fuzzy integrals in the sense of Lebesgue) at
infinite intervals [69,70].
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Abstract: In this work, we investigate analytically the solutions of a nonlinear div-curl system with
fractional derivatives of the Riemann–Liouville or Caputo types. To this end, the fractional-order
vector operators of divergence, curl and gradient are identified as components of the fractional
Dirac operator in quaternionic form. As one of the most important results of this manuscript, we
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Teodorescu transform is presented in this work, and we employ some properties of its component
operators, developed in this work to establish a generalization of the Helmholtz decomposition
theorem in fractional space. Additionally, right inverses of the fractional-order curl, divergence and
gradient vector operators are obtained using Riemann–Liouville and Caputo fractional operators.
Finally, some consequences of these results are provided as applications at the end of this work.
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1. Introduction

From an analytical point of view, the literature offers a wide range of reports that
focus on the extension of integer-order methods and results for the fractional case. From a
more particular point of view, the fractional generalization of the classical vector calculus
operators (that is, the gradient, divergence, curl and Laplacian operators) has been also
an active topic of research, which has been developed from different approaches. Some
of the first attempts to extend these operators to the fractional scenario are described
in [1,2] using the Nishimoto fractional derivative. These operators were used later on
in [3] to provide a physical interpretation for the fractional advection-dispersion equation
for flow in heterogeneous porous media. In 2008, Vasily E. Tarasov described different
approaches to formulate a fractional form of vector calculus with physical applications
in [4] (see also references therein). More recently, a new generalization of the Helmholtz
decomposition theorem for both fractional time and space was proposed in [5,6] using
the discrete Grünwald–Letnikov fractional derivative. Another related work is [7], where
the authors investigate the dynamic creation of fractionalized half-quantum vortices in
Bose–Einstein condensates of sodium atoms.

In this work, we consider fractional derivatives of the Riemann–Liouville and the
Caputo types and provide extensions of the definitions of the main differential operators
from vector calculus using these fractional operators. In such a way, we present fractional
forms of the divergence, the rotational and the gradient operators. Moreover, we also con-
sider generalized forms of the Dirac and the Laplace operators using fractional derivatives.
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Our goal in this work is to extend quaternionic analysis to consider fractional forms of
the classical differential operators. Analogues of the properties satisfied by the classical
operators will be mathematically established in this work. For instance, we will show that

RLDα
a+ [w] = −RL divα

a+ �w +RL gradα
a+ w0 +

RL curlαa+ �w, (1)
CDα

a+ [w] = −C divα
a+ �w +C gradα

a+ w0 +
C curlαa+ �w. (2)

In other words, when we apply the fractional Dirac operator to a quaternion valued
function w = w0 + �w, this expression can be decomposed in terms of a fractional divergence,
a fractional gradient and a fractional rotational operator. Based on this, we will also
provide explicit expressions of general weak solutions for some fractional forms of the
div-curl system, considering various analytical hypotheses. More precisely, we will prove
that if we restrict ourselves to the class of functions with fractional divergence zero and
whose Riemann–Liouville fractional integral has zero normal trace, then the fractional
Teodorescu transform represents a solution of the above-mentioned div-curl systems (see
Theorems 2 and 3).

This manuscript is organized as follows. In Section 2, we recall some important defini-
tions from the literature, including those of the left and right Riemann–Liouville fractional
derivatives, the left and right Caputo fractional derivatives and the two-parameter Mittag–
Leffler function. A useful characterization of the functions with summable fractional
derivatives is also recalled. In Section 2.2, the Riemann–Liouville and the Caputo Dirac and
Laplace operators are introduced. Moreover, some fundamental solutions for the fractional
Dirac operators are recalled in Section 2.3. In Section 3, we introduce fractional extensions
of the divergence, rotational and gradient differential operators. Some properties among
these operators are established, and a useful factorization theorem for the fractional Laplace
operators is proven. It is worth mentioning that this factorization is not new; however, we
were able to derive it only using the identities preserving the fractional gradient, diver-
gence and rotational operators. Among the most important results, we establish that the
fractional Teodorescu transform is a right inverse of the fractional Dirac operator under
suitable analytical conditions, and we prove a fractional form of the Divergence Theorem.

Section 4 is devoted to establishing the existence of weak solutions for Riemann–
Liouville and Caputo fractional div-curl systems. The explicit form of the operators
involved in the solution, as well as some of their properties, allow the solution to be re-
expressed as the sum of the fractional gradient of a scalar potential plus a fractional curl of
a vector potential; we can say that our solutions preserve a Helmholtz-type decomposition
(see Propositions 6 and 7). As a consequence, right inverses of the fractional rotational and
divergence operators are provided in a subclass of the fractional divergence-free vector
fields. In turn, Section 5 provides some consequences of the factorization results proven
in Section 2 to the construction of fractional hyper-conjugate pairs. A theorem providing
necessary and sufficient conditions for the existence of Caputo fractional hyper-conjugate
pairs is proven in this stage, along with a result of the existence of a right inverse for the
fractional gradient. Finally, this manuscript closes with a section of concluding remarks.

2. Background

2.1. Fractional Calculus

The present section is devoted to recalling some useful definitions from fractional
calculus. Throughout, we assume that a, b, α ∈ R satisfy α > 0 and a < b. Meanwhile,
we suppose that f : R → R is a sufficiently smooth function, with the property that f is
identically equal to zero outside of the interval [a, b].

Definition 1. The left and right Riemann–Liouville fractional integrals of f of order α with
respect to the interval [a, b] (whenever they exist) are the functions Iαa+ [ f ] and Iαb− [ f ], defined,
respectively, by (see [8])
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Iαa+ [ f ](x) =
1

Γ(α)

∫ x

a

f (t)
(x− t)1−α

dt, x > a, (3)

Iαb− [ f ](x) =
1

Γ(α)

∫ b

x

f (t)
(t− x)1−α

dt, x < b. (4)

Let m = [α] + 1 ∈ Z. The left Riemann–Liouville and the left Caputo fractional
derivatives of order α with respect to the interval [a, b] are, respectively, defined as follows:

RLDα
a+ [ f ](x) = Dm Im−α

a+ [ f ](x) =
1

Γ(m− α)

dm

dxm

∫ x

a

f (t)
(x− t)α−m+1 dt, x > a, (5)

CDα
a+ [ f ](x) = Im−α

a+ Dm[ f ](x) =
1

Γ(m− α)

∫ x

a

f (m)(t)
(x− t)α−m+1 dt, x > a. (6)

Finally, we define the right Riemann–Liouville and the right Caputo fractional derivatives
of order α with respect to the point a, respectively, as the functions

RLDα
b− [ f ](x) = Dm Im−α

b− [ f ](x) =
(−1)m

Γ(m− α)

dm

dxm

∫ b

x

f (t)
(t− x)α−m+1 dt, x < b, (7)

CDα
b− [ f ](x) = Im−α

b− Dm[ f ](x) =
(−1)m

Γ(m− α)

∫ b

x

f (m)(t)
(t− x)α−m+1 dt, x < b. (8)

For the sake of convenience, we will employ the notation Dα
a± when we present

properties satisfied by both fractional derivatives RLDα
a± and CDα

a± . Throughout, we let
Iαa+(L1) denote the class of all functions f that are represented by the fractional integral (3)
of some integrable function, i.e., f = Iαa+ [g], for some g ∈ L1(a, b). Using this notation, the
following result provides a characterization of these functions.

Theorem 1 (Samko et al. [9]). Let α > 0 and m = [α] + 1. Then, the function f belongs to
Iαa+(L1) if and only if Im−α

a+ [ f ] ∈ ACm([a, b]), and (Im−α
a+ [ f ])k(a) = 0, for each k ∈ {0, 1, . . . , m− 1}.

Definition 2. If (Im−α
a+ [ f ])(k)(a) = 0, for each k ∈ {0, 1 . . . , m − 1}, then it follows that

f (k)(a) = 0 holds, for each k ∈ {0, . . . , m− 1} (see [8,9]). In light of this fact, we will say that f
has a summable fractional derivative Dα

a+ [ f ] of order α on [a, b] if Im−α
a+ [ f ] ∈ ACm([a, b]).

In the following discussion, suppose that α > 0, f admits a summable fractional
derivative of order α > 0 on [a, b], and let m = [α] + 1. Then, the following composition
rules are satisfied:

Iαa+
RLDα

a+ [ f ](x) = f (x)−
m−1

∑
k=0

(x− a)α−k−1

Γ(α− k)
(Im−α

a+ [ f ])m−k−1(a), (9)

Iαa+
CDα

a+ [ f ](x) = f (x)−
m−1

∑
k=0

f (k)(a)
k!

(x− a)k. (10)

On the other hand, we know that both fractional derivatives RLDα
a+ and CDα

a+ satisfy
the one-sided invertibility property Dα

a+ Iαa+ [ f ] = f . It is worth noting that this identity

is a particular case of the property Dα
a+ Iβa+ [ f ] = Dα−β

a+ [ f ], which holds for each α, β ∈ R

satisfying α ≥ β > 0.
It is important to recall also that the following semi-group property for the composition

of fractional derivatives is not generally satisfied:

CDα
a+

CDβ
a+ [ f ] = CDβ

a+
CDα

a+ [ f ] = CDα+β
a+ [ f ]. (11)

However, if f (k)(a) = 0 for k = 0, 1, . . . , max{[α] + 1, [β] + 1} − 1, then (11) does hold;
see Section 2.2.6 [8]. An analogous condition for the semi-group property in the context
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of the Riemann–Liouville derivative is found in Section 2.3.6 [8]. Finally, the following
relation between the Riemann–Liouville and Caputo fractional derivatives is valid:

CDα
a+ [ f ](x) = RLDα

a+ [ f ](x)−
m−1

∑
j=0

(x− a)j−α

Γ(j− α+ 1)
D(j)

x [ f ](a). (12)

Definition 3 (Gorenflo et al. [10]). Let μ, ν ∈ R be such that μ > 0. We define the two-
parameter Mittag–Leffler function Eμ,ν : C→ C with parameters μ and ν in terms of the following
power series:

Eμ,ν(z) =
∞

∑
n=0

zn

Γ(μn + ν)
, ∀z ∈ C. (13)

2.2. Fractional Quaternionic Analysis

In this section, we will mention some recent results in fractional Clifford analysis.
The Dirac operator in Clifford analysis, also known as the Moisil–Teodorescu differential
operator, represents the cornerstone of the analysis in higher dimensions. A remarkable
number of systems of differential equations have been analyzed using this operator or
a perturbation of it, and the monographs [11–13] of the authors Gürlebeck and Sprößig
contain many examples of the applications that have been made over the years. See also [14],
where the authors introduced the fractional Dirac operator with Caputo derivatives as well
as the basic tool of a fractional function theory in more dimensions.

More precisely, this section is devoted to the collection of some recent results of the
authors Ferreira et al. [15–17], by whom fundamental solutions of the fractional Laplacian
were found, where the derivatives are of Riemann–Liouville and Caputo types, as well as
of the fractional Dirac operators.

For the remainder, let ai, bi ∈ R satisfy ai < bi, for each i = 1, 2, 3. We will suppose
that Ω = Π3

i=1(ai, bi) is a bounded open rectangular domain in R3, and let α = (α1, α2, α3),
with αi ∈ (0, 1], for all i = 1, 2, 3.

Definition 4 (Ferreira et al. [15–17]). The fractional Riemann–Liouville and fractional
Caputo Dirac operators are represented by RLDα

a+ and CDα
a+ , respectively, and they are defined as

RLDα
a+ =

3

∑
i=1

ei
RL∂

1+αi
2

xi ,ai , (14)

CDα
a+ =

3

∑
i=1

ei
C∂

1+αi
2

xi ,ai . (15)

Here, RL∂
1+αi

2
xi ,ai and C∂

1+αi
2

xi ,ai are, respectively, the Riemann–Liouville and the Caputo fractional
derivative operators of order (1+ αi)/2 with respect to the variable xi ∈ (ai, bi), for each i = 1, 2, 3.
We define the fractional Laplace operators RLΔα

a+ and RLΔα
a+ , respectively, by

RLΔα
a+ =

3

∑
i=1

RL∂
1+αi
xi ,ai , (16)

CΔα
a+ =

3

∑
i=1

C∂
1+αi
xi ,ai , (17)

where RL∂
1+αi
xi ,ai and C∂

1+αi
xi ,ai are, respectively, the Riemann–Liouville and Caputo fractional derivatives

of order 1 + αi with respect to the variable xi ∈ (ai, bi), for each i = 1, 2, 3.

2.3. Fundamental Solutions

The purpose of this subsection is to determine fundamental solutions for the fractional
Dirac operator and use their properties in the investigation of the solutions of fractional
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div-curl systems. Beforehand, it is worth recalling that a family of fundamental solu-
tions for the fractional Laplace operators RLΔα

a+ and CΔα
a+ , and a family of fundamental

solutions for the fractional Dirac operators RLDα
a+ and CDα

a+ , were obtained in [15,16] for
the Riemann–Liouville and Caputo case, respectively. In the case of Riemann–Liouville
fractional operators, the authors employed some properties of the Mittag–Leffler function
and the Laplace transform in two dimensions.

We will begin this section by recalling some relevant results derived in [15]. To this end,
let u be an eigenfunction of the fractional Laplace operator, i.e., suppose that RLΔα

a+u = λu

for some λ ∈ C, and assume that u(�x) admits a summable fractional derivative RL∂
1+α1

2
x1,a+1

in

the variable x1, and that it belongs to I1+αi
a+i

(L1) in the variables x2 and x3. In what follows,

we will consider the following integral and differential conditions of Cauchy type:⎧⎨⎩ f0(x2, x3) = I1−α1
a+1

[u](a1, x2, x3),

f1(x2, x3) = ∂
α1
x1,a+1

[u](a1, x2, x3).
(18)

Lemma 1 (Ferreira et al. [15,17]). A family of eigenfunctions of the fractional Laplace operator
RLΔα

a+ is given by the function

uλ(�x) = (x1 − a1)
α1−1E1+α1,α1

(
−(x1 − a1)

1+α1
(

RL∂1+α2
x2,a+2

+ RL∂1+α3
x3,a+3

− λ
))

f0(x2, x3)

+ (x1 − a1)
α1 E1+α1,1+α1

(
−(x1 − a1)

1+α1
(

RL∂1+α2
x2,a+2

+ RL∂1+α3
x3,a+3

− λ
))

f1(x2, x3).
(19)

Meanwhile, a family of fundamental solutions of the fractional Dirac operator RLDα
a+ is

obtained by considering λ ≡ 0 in (19). More precisely, this family of solutions is given by

RLEαa+(�x) = −RLDα
a+ [u0](�x), (20)

where u0 is a fundamental solution of RLΔα
a+ , i.e.,

u0(�x) = (x1 − a1)
α1−1E1+α1,α1

(
−(x1 − a1)

1+α1
(

RL∂1+α2
x2,a+2

+ RL∂1+α3
x3,a+3

))
f0(x2, x3)

+ (x1 − a1)
α1 E1+α1,1+α1

(
−(x1 − a1)

1+α1
(

RL∂1+α2
x2,a+2

+ RL∂1+α3
x3,a+3

))
f1(x2, x3).

(21)

Here, f0 and f1 satisfy the conditions (18).

Let v be an eigenfunction of the fractional Laplace operator, i.e., suppose that CΔα
a+v = λv,

for some λ ∈ C. Assume that v(�x) admits a summable fractional derivative RL∂
1+α1

2
x1,a+1

in

the variable x1, and that it belongs to I1+αi
a+i

(L1) in the variables x2 and x3. By Theorem 1,

v(x1, a2, x3) = v(x1, x2, a3) = 0. In what follows, we will consider the following Cauchy
conditions: {

g0(x2, x3) = v(a1, x2, x3),

g1(x2, x3) = v′x1
(a1, x2, x3).

(22)

As a consequence, g0(a2, x3) = g0(x2, a3) = g1(a2, x3) = g1(x2, a3) = 0.
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Lemma 2 (Ferreira et al. [16,17]). A family of eigenfunctions for the fractional Laplace operator
CΔα

a+ is given by the function

vλ(�x) = E1+α1,1

(
−(x1 − a1)

1+α1

(
C∂1+α2

x2,a+2
+ C∂1+α3

x3,a+3
− λ

))
g0(x2, x3)

+ (x1 − a1)E1+α1,2

(
−(x1 − a1)

1+α1

(
C∂1+α2

x2,a+2
+ C∂1+α3

x3,a+3
− λ

))
g1(x2, x3).

(23)

Meanwhile, a family of fundamental solutions of the fractional Dirac operator CDα
a+ is obtained

by considering λ ≡ 0 in (23). More precisely, this family of solutions is given by

CEαa+(�x) = −CDα
a+ [v0](�x), (24)

where v0 is a fundamental solution of CΔα
a+ , i.e.,

v0(�x) = E1+α1,1

(
−(x1 − a1)

1+α1

(
C∂1+α2

x2,a+2
+ C∂1+α3

x3,a+3

))
g0(x2, x3)

+ (x1 − a1)E1+α1,2

(
−(x1 − a1)

1+α1

(
C∂1+α2

x2,a+2
+ C∂1+α3

x3,a+3

))
g1(x2, x3),

(25)

where g0(x2, x3) and g1(x2, x3) satisfy (22).

3. Fractional Vector Calculus

For the remainder of this section, we will study the fractional divergence, gradient and
rotational operators as parts of a decomposition of the fractional Dirac operator in three
dimensions. More precisely, recall that if w = w0 + �w is a quaternionic-valued function,
then the following decomposition in quaternionic form is satisfied:

Dw = −div �w + grad w0 + curl �w. (26)

Here, D = ∑3
i=1 ei∂i is the classical Dirac operator, which is also called the Moisil–

Teodorescu differential operator. For more details about quaternionic analysis, see [11,18,19].
Our goal in this section is to provide an extension of this decomposition (27) using fractional
operators of the Riemann–Liouville and Caputo types.

Let w = w0 + ∑3
i=1 eiwi be a quaternionic-valued function in AC(Ω), whose scalar

part is denoted by Sc[w] = w0 and its vector part by Vec[w] = �w = ∑3
i=1 eiwi. Then, the

action of the operator RLDα
a+ on w reduces to

RLDα
a+ [w] =

3

∑
i=1

ei
RL∂

1+αi
2

xi ,ai [w]

= −
(

3

∑
i=1

RL∂
1+αi

2
xi ,ai [wi]

)
+

(
3

∑
i=1

ei
RL∂

1+αi
2

xi ,ai [w0]

)
+ e1

(
RL∂

1+α2
2

x2,a2 [w3]−RL ∂
1+α3

2
x3,a3 [w2]

)
+ e2

(
RL∂

1+α3
2

x3,a3 [w1]− RL∂
1+α1

2
x1,a1 [w3]

)
+ e3

(
RL∂

1+α2
2

x1,a1 [w2]− RL∂
1+α2

2
x2,a2 [w1]

)
.

(27)

The above decomposition of Equation (27) originates a fractional version of the classi-
cal divergence, rotational and gradient differential operators from vector calculus. These
operators are, respectively, the scalar component of (27), the vector term acting over �w and
the vector term of the equation acting over w0. These facts are the motivation to analyze
the following fractional differential operators.
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Definition 5. Define the fractional divergence, curl and gradient operators in the Riemann–
Liouville sense by

RL divα
a+ �w =

3

∑
i=1

RL∂
1+αi

2
xi ,ai [wi], (28)

RL curlαa+ �w = e1

(
RL∂

1+α2
2

x2,a2 [w3]−RL ∂
1+α3

2
x3,a3 [w2]

)
+ e2

(
RL∂

1+α3
2

x3,a3 [w1]−RL ∂
1+α1

2
x1,a1 [w3]

)
(29)

+ e3

(
RL∂

1+α2
2

x1,a1 [w2]−RL ∂
1+α2

2
x2,a2 [w1]

)
,

RL gradα
a+ [w0] =

3

∑
i=1

ei
RL∂

1+αi
2

xi ,ai [w0]. (30)

It is important to point out that the fractional operators (28)–(30) reduce, respectively,
to the classical div, curl, and grad operators from vector calculus when αi = 1, for each
i = 1, 2, 3. Moreover, if α∗ > 0 and αi = α∗, for each i = 1, 2, 3, then the above fractional
operators coincide with the divergence, curl and gradient operators defined in [1,2] up to a
constant factor. See also [4] and references therein for a historic account of the efforts to
formulate a fractional form of vector calculus. Unlike the classical vector calculus operators,
these fractional operators are non-local. Consequently, the fractional divergence, curl and
gradient depend on the domain Ω.

Notice now that (27) can be rewritten as the following decomposition

RLDα
a+ [w] = −RL divα

a+ �w +RL gradα
a+ w0 +

RL curlαa+ �w. (31)

Since the specific form of the Riemann–Liouville fractional derivative does not affect
the above decomposition, we analogously obtain the following decomposition in terms of
Caputo fractional derivatives:

CDα
a+ [w] = −C divα

a+ �w +C gradα
a+ w0 +

C curlαa+ �w. (32)

Here, the operators C divα
a+ , C curlαa+ and C gradα

a+ are defined as in (28)–(30), respec-
tively, using Caputo fractional derivatives instead of Riemann–Liouville operators.

We define now a class of functions in AC1(Ω) where we can apply the semi-group
property (11).

Definition 6. We set Zα
a+(Ω) = { f ∈ AC1(Ω) : f (a1, x2, x3) = f (x1, a2, x3) = f (x1, x2, a3)

= 0}.

Proposition 1. If f = f0 + �f ∈ Zα
a+(Ω), then

(i) RL divα
a+

RL curlαa+ [�f ] = 0,
(ii) RL curlαa+

RL gradα
a+ [ f0] = 0,

(iii) RL divα
a+

RL gradα
a+ [ f0] =

RLΔα
a+ [ f0],

(iv) RL gradα
a+

RL divα
a+ [

�f ]− RL curlαa+
RL curlαa+ [�f ] =

RLΔα
a+ [

�f ].

Moreover, the identities (i)–(iv) also hold for the Caputo fractional operators.

Proof. The results readily follow from the identities

RL∂
1+αi

2
xi ,ai

RL∂
1+αi

2
xi ,ai = RL∂

1+αi
xi ,ai , ∀i = 1, 2, 3. (33)

RL∂
1+αi

2
xi ,ai

RL∂
1+αj

2
xj ,aj = RL∂

1+αj
2

xj ,aj
RL∂

1+αi
2

xi ,ai , ∀i, j = 1, 2, 3, (34)

which are trivially satisfied in Zα
a+(Ω). The identities with Caputo fractional operators are

established in a similar fashion.
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Similar identities using Caputo fractional derivatives were proven in [4] when all
the orders of the fractional derivatives are equal, i.e., when there exists α∗ > 0 such that
αi = α∗, for each i = 1, 2, 3. On the other hand, a direct consequence of Proposition 1 is
that the fractional Dirac operator RLDα

a+ factorizes the fractional Laplace operator RLΔα
a+ . A

more general factorization for functions taking values in C l0,3 was proven in Section 4 [16].
In light of these remarks, the following result is a direct consequence of Proposition 1.

Corollary 1. If f = f0 + �f ∈ Zα
a+(Ω), then the following factorizations of the fractional Laplace

operators are satisfied:

RLΔα
a+ [ f ] = −RLDα

a+
RLDα

a+ [ f ], (35)
CΔα

a+ [ f ] = −CDα
a+

CDα
a+ [ f ]. (36)

We turn our attention now to the right Caputo fractional Dirac operator, which is
given by the expression

CDα
b− =

3

∑
i=1

ei
C∂

1+αi
2

xi ,b
−
i

. (37)

The following fractional Stokes formula was proven in Theorem 10 [17]:∫
Ω

(
−([h]CDα

b−)(�y) f (�y) + h(�y)(RLDα
a+ [ f ])(�y)

)
d�y =

∫
∂Ω

h(�y)η(�y)ds�y Iαa+ [ f ](�y). (38)

Here, we require that f , h ∈ AC1(Ω) ∩AC(Ω) and Iαa+ [ f ] = ∑3
i=1 I

1−αi
2

a+i
[ f ]. It is worth

noting here that the operator CDα
b− acts on the right, while RLDα

a+ acts on the left. Intuitively,
the last formula shows that the left Riemann–Liouville and right Caputo fractional Dirac
operators act by ‘intertwining’ to obtain the fractional analogue of the Stokes formula.

The following result is a fractional form of the well-known Divergence Theorem.

Proposition 2 (Fractional Divergence Theorem). If �f ∈ AC1(Ω) ∩AC(Ω), then∫
Ω

RL divα
a+ [

�f ](�y) d�y =
∫
∂Ω

η(�y) · Iαa+ [�f ](�y) ds�y, (39)∫
Ω

RL curlαa+ [�f ](�y) d�y =
∫
∂Ω

η(�y)× Iαa+ [�f ](�y) ds�y. (40)

Proof. Taking h ≡ 1 in (38) and using that [1]CDα
b− = 0 yields that∫

Ω

RLDα
a+ [

�f ](�y) d�y =
∫
∂Ω

η(�x)Iαa+ [�f ](�y) ds�y. (41)

Due to the decomposition (31) and because Iαa+ [
�f ] is purely vectorial, we can readily

calculate their scalar and vector parts, respectively. As a consequence, we readily achieve
formulas (39) and (40), respectively.

Proposition 3. Let �f ∈ Zα
a+(Ω), c0 ∈ AC(Ω) and 0 < αi < 1, for all i = 1, 2, 3. Then, the

following identities hold:

RL divα
a+ [c0�f ] = �f · RL gradα

a+ [c0], (42)
RL curlαa+ [c0�f ] = �f × RL gradα

a+ [c0]. (43)

Proof. We will only calculate RL∂
1+α1

2
x1,a+1

[ fic0] using integration by parts and Leibniz’ rule,

the determination of RL∂
1+α2

2
x2,a+2

[ fic0] and RL∂
1+α3

2
x3,a+3

[ fic0] being similar. Beforehand, note that
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mi = 1, for all i = 1, 2, 3. Recall now that Dα
a+ is a left inverse of Iαa+ ; and by hypothesis

fi(a1, x2, x3) = 0, for all i = 1, 2, 3. It follows then that

RL∂
1+α1

2
x1,a+1

[ fic0](�x) =
∂

∂x1

1

Γ( 1−α1
2 )

∫ x1

a1

fi(t, x2, x3)c0(t, x2, x3)

(x1 − t)
1+α1

2

dt

=
∂

∂x1

(
fi(t, x2, x3)I

1−α1
2

a+1
[c0](t, x2, x3)

∣∣∣x1

a1
− I1

a+1

[
I

1−α1
2

a+1
[c0]

∂

∂x1
fi

])
=

∂

∂x1

(
fi(x1, x2, x3)I

1−α1
2

a+1
[c0](x1, x2, x3)

)
− I

1−α1
2

a+1
[c0]

∂

∂x1
fi

= fi(�x)RL∂
1+α1

2
x1,a+1

[c0](�x).

(44)

Analogously, RL∂
1+αj

2
xj ,a

+
j
[ fic0] = fi

RL∂
1+αj

2
xj ,a

+
j
[c0], for each j = 2, 3 and i = 1, 2, 3. As

a consequence,

RL divα
a+ [c0�f ] =

3

∑
i=1

RL∂
1+αi

2
xi ,a

+
i
[c0 fi] =

3

∑
i=1

fi
RL∂

1+αi
2

xi ,a
+
i
[c0] = �f · RL gradα

a+ [c0]. (45)

This establishes the first identity of the conclusion. The proof of the second equation
is analogous.

Before closing this section, it is natural to compare qualitatively the results obtained in
traditional vector calculus against those in the fractional case. In classical vector calculus,
the following product rules are satisfied:

div(c0�f ) = �f · grad c0 + c0 div �f , (46)

curl(v0�f ) = �f × grad c0 + c0 curl �f . (47)

On the other hand, in the fully fractional case considered in Proposition 3, when we
restrict �f to the class of functions Zα

a+(Ω), the first part of these identities is also satisfied,
except that the second terms on the right-hand sides of (46) and (47) are not present
anymore. Notice that it is not difficult to construct a family of functions belonging to
Zα

a+(Ω), for instance �f (x) = (x1 − a1)
γ1(x2 − a2)

γ2(x3 − a3)
γ3�g(x) for all �g ∈ AC1(Ω) and

γi ≥ 0 for all i = 1, 2, 3.

4. Fractional Div-Curl Systems

4.1. Properties of the Fractional Teodorescu Transform

As a derivation of the fractional Borel–Pompeiu formula [17], the authors defined
the Caputo-type Teodorescu transform in a very similar way to the following definition,
the difference being that the kernel is now a fundamental solution of the fractional Dirac
operator defined in (20).

Definition 7. Let�x = (x1, x2, x3) with xi > ai, for all i = 1, 2, 3. Define the Riemann–Liouville
and Caputo fractional Teodorescu transform by

RLTα
a+ [w](�x) =

∫
Ω

RLEαa+(�x + a−�y)w(�y) d�y, (48)

CTα
a+ [w](�x) =

∫
Ω

CEαa+(�x + a−�y)w(�y) d�y. (49)

Here, we follow the nomenclature and conventions of Lemma 1. Moreover, the derivatives
RLEαa+ = −RLDα

a+ [u0] and CEαa+ = −CDα
a+ [v0] that appear in the kernel of (48) and (49), re-

specrively, are with respect to the variable �x.
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In the following, it will be convenient to employ the translation operator, which is
defined by T�z f (�y) = f (�y +�z). Similarly, we will use the reflection operator given by
R�y f (�y) = f (−�y). An important relation between Dα

a+ and Tθ is

RLDα
(−θ+a)+ [Tθ f ](�x) = RLDα

a+ [ f ](�x + θ), (50)

where the derivative is taken with respect to the variable �x. The proof is analogous to
Theorem 11 [17], which is for the Caputo case, but we will give it here for completeness.

Proposition 4. Let αi ∈ (0, 1), for each i = 1, 2, 3, and let α∗ = min1≤i≤3{αi}. The fractional
Teodorescu transform RLTα

a+ is a right inverse of the fractional Dirac operator RLDα
a+ in Lp(Ω), for

all p ∈ R satisfying 1 < p <
2

1− α∗
.

Proof. Observe firstly that the fundamental solution RLEαa+(�x) of the fractional Dirac oper-
ator RLDα

a+ is defined only for xi > ai, for each i = 1, 2, 3. Moreover, it satisfies the iden-
tity RLDα

a+
RLEαa+(�x) = δ(�x − a) or, equivalently, RLΔα

a+ [u0](�x) = −RLDα
a+

RLDα
a+ [u0](�x) =

δ(�x− a). In the following, the derivatives RLDα
�y+ and RLDα

a+ are with respect to the variable
�x. Using (50) with θ = a−�y yields

RLDα
a+

RLTα
a+ [w](�x) =

∫
Ω

RLDα
�y+

RLEαa+(�x + a−�y)w(�y) d�y

= −
∫

Ω

RLDα
�y+

(
Ta−�y

(RLDα
a+ [u0](�x)

))
w(�y) d�y

= −
∫

Ω
Ta−�y

(RLDα
a+

RLDα
a+ [u0](�x)

)
w(�y) dy

=
∫

Ω
Ta−�yδ(�x− a)w(�y) dy

=
∫

Ω
δ(�x−�y)w(�y) d�y = w(�x),

(51)

which we wished to prove.

In the following, we will employ a key decomposition of the classical Teodorescu
operator used in [20–23] for different kinds of bounded or unbounded domains in R3. For
the fractional version, we denote the component operators of the fractional Teodorescu
transform as follows:

RLTα
a+ [w0 + �w] := RLTα

0,a+ [�w] + RL−→T α

1,a+ [w0] +
RL−→T α

2,a+ [�w]. (52)

The first term on the right-hand side of Equation (52) is the scalar part, while the last
two summands represent the vector part, and it has been split into two components for the
sake of convenience. These three terms are given by

RLTα
0,a+ [�w](�x) = −

∫
Ω

RLEαa+(�x + a−�y) · �w(�y) d�y, (53)

RL−→T α

1,a+ [w0](�x) =
∫

Ω

RLEαa+(�x + a−�y)w0(�y) d�y, (54)

RL−→T α
2,a+ [�w](�x) =

∫
Ω

RLEαa+(�x + a−�y)× �w(�y) d�y. (55)

We will see later in Corollary 2 how some of these component operators themselves
represent right inverse operators of the fractional divergence and rotational operators,
under certain conditions. Moreover, RLTα

a+ , as a good generalization of the classical Teodor-
escu operator in quaternionic analysis, preserves many of its properties. To this end, we
use the above decomposition (52), RLTα

a+ [�g] =
RLTα

0,a+ [�g] +
RL−→T α

2,a+ [�g], to see necessary
and sufficient conditions to guarantee that both its scalar part and its vector part belong
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to the kernel of the fractional Laplacian RLΔα
a+ . In order to apply the factorization of

Corollary 1 to the fractional Teodorescu transform, we will need to guarantee that the
condition RLTα

a+ [�g] ∈ Zα
a+(Ω) can be satisfied.

Proposition 5. If RLTα
a+ [�g] ∈ Zα

a+(Ω), then the following hold for the fractional Teodorescu
transform RLTα

a+ [�g]:

(i) The scalar part of RLTα
a+ [�g],

RLTα
0,a+ [�g], belongs to the kernel of RLΔα

a+ if and only if RL divα
a+

�g = 0.
(ii) The vector part of RLTα

a+ [�g],
RL−→T α

2,a+ [�g], belongs to the kernel of RLΔα
a+ if and only if

RL curlαa+ �g = 0.

Moreover, the statements (i) and (ii) also hold for the Caputo fractional Teodorescu transform.

Proof. Using the factorization in Corollary 1, Proposition 4 and the decomposition (31), it
readily follows that

RLΔα
a+

RLTα
a+ [�g] = −RLDα

a+
RLDα

a+
RLTα

a+ [�g] =
RL divα

a+ �g−RL curlαa+ �g. (56)

Taking its scalar part or vector part, respectively, we obtain the desired result.

4.2. Riemann–Liouville System

In the following, we will study a fractional form of the classical div-curl system and
construct its solution. More precisely, we fix the domain Ω, and consider the fractional system{

RL divα
a+ �w = g0,

RL curlαa+ �w = �g,
(57)

where g0 ∈ Lp(Ω,R) and �g ∈ Lp(Ω,R3), for some 1 < p < 2/(1− α∗). Notice that if
the solution is such that �w ∈ Zα

a+(Ω), then �g satisfies RL divα
a+ �g = 0, i.e., �g is a ‘fractional

divergence-free’ vector field. Let f0 ∈ AC(Ω). The following relations will be fundamental
in the sequel:

RL gradα
a+ [ f0](θ −�y) = −RL gradα

(θ−a)− [TθR�y[ f0]](�y),
C gradα

a+ [ f0](θ −�y) = −C gradα
(θ−a)− [TθR�y[ f0]](�y). (58)

Here, the derivatives are taken with respect to the variable �y. In the sequel and for
the sake of convenience, we will employ Ker to denote the kernel of operators. As in the
previous section, we will let Ω = Π3

i=1(ai, bi) be a bounded open rectangular domain in R3,
and assume that α = (α1, α2, α3), with αi ∈ (0, 1), for each i = 1, 2, 3. Using this notation,
we have the following result.

Theorem 2. Let g = g0 +�g ∈ Lp(Ω) with 1 < p < 2/(1− α∗). If RL divα
a+ [�g] = 0 and the

normal trace of Iαa+ [�g] vanishes, then a general weak solution of the fractional Riemann–Liouville
div-curl system (57) is given by

�w = −RL−→T α

1,a+ [g0] +
RL−→T α

2,a+ [�g] +
RL gradα

a+ [h], (59)

where h ∈ Ker(RLΔα
a+) ∩ Zα

a+(Ω) is an arbitrary scalar function.

Proof. By Proposition 4 and the decomposition (31), the fractional Teodorescu transform
RLTα

a+ [−g0 + �g] is a quaternionic solution of the system (57). To obtain a pure-vector
solution, note that the decomposition (52) yields

RLTα
a+ [−g0 +�g] = RLTα

0,a+ [�g]− RL−→T α

1,a+ [g0] +
RL−→T α

2,a+ [�g]. (60)
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Taking h(�y) = T�x+aR�yu0(�y) and f (�y) = �g(�y) in the Stokes formula (38) (all deriva-
tives with respect to the variable�y) and letting u0 be a fundamental solution of RLΔα

a+ given
in Lemma 1, we obtain∫

∂Ω
T�x+aR�y[u0](�y)η(�y)Iαa+ [�g] ds�y

=
∫

Ω

((
−[T�x+aR�y[u0]]

CDα
b−

)
(�y)�g(�y) + T�x+aR�y[u0](�y)RLDα

a+ [�g](�y)
)

d�y.
(61)

Calculate the scalar part of (61) and use the hypotheses −Sc Dα
a+ [�g] =

RL divα
a+ [�g] = 0

in Ω and Iαa+ [�g]| · η = 0 on ∂Ω to reach∫
Ω

C gradα
b−

[
T�x+aR�y[u0]

]
(�y) ·�g(�y) d�y = 0. (62)

By differentiating now under the integral sign and using the traditional Leibniz’ rule,
we readily obtain the following fundamental relation:

RL gradα
a+ ,�x[u0](�x + a−�y) = −RL gradα

a+ ,�y[u0](�x + a−�y). (63)

Here, the second sub-index indicates whether we are taking derivatives with respect
to the variable �x or �y. Recall that RLEαa+ = −RL gradα

a+ ,�x[u0] with respect to the variable �x.
On the other hand, due to u0 ∈ Zα

a+(Ω) and relations (12), (63) and (58), we obtain

RLEαa+(�x + a−�y) = C gradα
a+ ,�y[u0](�x + a−�y) = −C gradα

x− ,�y[T�x+aR�y[u0]](�y). (64)

However, we know that RLEαa+(�x+ a−�y) is only defined when xi > yi, for all i = 1, 2, 3.
As a consequence, we can readily replace the operator C gradα

b− by C gradα
x− in (62). Finally,

by employing (64) and (62), we readily reach

RLTα
0,a+ [�g](�x) = −

∫
Ω

RLEαa+(�x + a−�y) ·�g(�y) d�y = 0, in Ω. (65)

This means that RLTα
a+ [�g] = −RL−→T α

1,a+ [g0]+
RL−→T α

2,a+ [�g] is purely vectorial and, moreover,(
−RL divα

a+ +RL curlαa+
)RLTα

a+ [−g0 +�g] = RLDα
a+

RLTα
a+ [−g0 +�g] = −g0 +�g. (66)

Setting the scalar and vector parts equal to each other, we obtain that RLTα
a+ [�g] =

−RL−→T α

1,a+ [g0] +
RL−→T α

2,a+ [�g] is a solution of the fractional div-curl system (57). Finally,
the fact that the solution is not unique is a consequence of the identities (ii) and (iii) of
Proposition 1.

In the limit αi → 1−, the fractional div-curl system (57) reduces to the well-known
integer-order system from vector calculus, and the hypothesis RL divα

a+ [�g] = 0 reduces to the

evident requirement that �g be a divergence-free vector field. Moreover, I
1−αi

2
a+i

[u0�g] → u0�g.

This means that it is sufficient to require that �g has zero normal trace. Taking g0 ≡ 0 or
�g ≡ 0 in (57), we readily obtain

Corollary 2. Under the same assumptions of Theorem 2, RL−→T α
2,a+ is a right inverse operator of

RL curlαa+ in the class of functions considered in Theorem 2. Meanwhile, −RL−→T α

1,a+ is always a right
inverse operator of RL divα

a+ in Lp(Ω).

Another important analogy with the classical vector calculus is that the solution of the
non-linear fractional system (57) also admits a Helmholtz-type fractional decomposition
as follows.
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Proposition 6. Under the same assumptions of Theorem 2, the general weak solution of the
fractional Riemann–Liouville div-curl system (57) admits a fractional Helmholtz decomposition
as follows

�w = RL gradα
�x− ϕ0 − RL curlα�x− �ϕ, in Ω, (67)

where the scalar potential ϕ0 and the vector potential �ϕ are given by

ϕ0(�x) =
∫

Ω
T�x+aR�y[u0](�y)g0(�y) d�y, �ϕ(�x) =

∫
Ω
T�x+aR�y[u0](�y)×�g(�y) d�y.

Proof. Due to RLEαa+ = −RL gradα
a+ [u0] and by relation (58), we can write

RL−→T α

1,a+ [g0](�x) =
∫

Ω

RL gradα
�x− T�x+aR�y[u0](�y)g0(�y) d�y,

RL−→T α
2,a+ [�g](�x) =

∫
Ω

RL gradα
�x− T�x+aR�y[u0](�y)×�g(�y) d�y.

Finally, since the fractional gradient involved in the above re-expressions of the
component operators RL−→T α

1,a+ and RL−→T α
2,a+ is taken with respect to the variable �x, we

readily obtain (67).

4.3. Caputo System

For the corresponding fractional div-curl system in the sense of Caputo derivatives, we
will follow the same approach as that used with the Riemann–Liouville div-curl system (57).
Let us consider the system {

C divα
a+ �w = g0,

C curlαa+ �w = �g,
(68)

where g0 ∈ Lp(Ω,R) and �g ∈ Lp(Ω,R3), for some 1 < p < 2/(1− p∗). The cornerstone
in our analysis will be again the fractional Teodorescu transform associated with Caputo
derivatives, which means that its kernel is a fundamental solution of the fractional Dirac
operator CDα

a+ . As in the case of the Riemann–Liouville fractional Teodorescu operator, we
define the decomposition

CTα
a+ [w0 + �w] := CTα

0,a+ [�w] + C−→T α

1,a+ [w0] +
C−→T α

2,a+ [�w], (69)

where CTα
0,a+ , C−→T α

1,a+ and C−→T α
2,a+ are given by (53), (54) and (55), respectively, but using now

the Caputo kernel CEαa+ in the integrand, instead of the Riemann–Liouville kernel RLEαa+ .
Analogously to the proof of Theorem 2, it follows that CTα

a+ [−g0 +�g] is a quaternionic
solution of the fractional div-curl system (68). This is a direct consequence of the fact that
CTα

a+ is a right inverse of CDα
a+ in Lp(see [17], Theorem 11). Apply the decomposition (69)

to the quaternion-valued function g = g0 +�g, where g0 and �g are the known data provided
by the fractional div-curl system (68). In this way, we notice that

CTα
a+ [−g0 +�g] = CTα

0,a+ [�g]− C−→T α

1,a+ [g0] +
C−→T α

2,a+ [�g].

To obtain a purely vectorial solution, we will impose suitable conditions over�g in order
to guarantee that the scalar part of CTα

a+ [−g0 +�g] vanishes in Ω, i.e., that CTα
0,a+ [�g] ≡ 0 is

satisfied in Ω. We will see that the fractional divergence-free functions of the Riemann–
Liouville type, whose Riemann–Liouville fractional integral has zero normal trace, belong
to the kernel of the operator CTα

0,a+ , in the same way as seen in Theorem 2 for the operator
RLTα

0,a+ . Nevertheless, the upcoming proof is relatively more straightforward.
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Theorem 3. Let g = g0 +�g ∈ Lp(Ω) with 1 < p < 2/(1− α∗). If RL divα
a+ [�g] = 0 and the

normal trace of Iαa+ [�g] vanishes, then a general weak solution of the fractional Caputo div-curl
system (68) is given by

�w = −C−→T α

1,a+ [g0] +
C−→T α

2,a+ [�g] +
C gradα

a+ [h], (70)

where h ∈ Ker(CΔα
a+) ∩ Zα

a+(Ω) is an arbitrary scalar function.

Proof. It suffices to prove that CTα
0,a+ [�g] = 0 in Ω, in light of the previous discussion.

Take h(�y) = T�x+aR�yv0(�y) and f (�y) = �g(�y) in the Stokes formula (38), and let v0 be the
fundamental solution of CΔα

a+ (25). It follows that∫
∂Ω
T�x+aR�y[v0](�y)η(�y)Iαa+ [�g] ds�y

=
∫

Ω

((
−[T�x+aR�y[v0]]

CDα
b−

)
(�y)�g(�y) + T�x+aR�y[v0](�y)RLDα

a+ [�g](�y)
)

d�y.
(71)

Taking now the scalar part of (71) and using the hypotheses, we readily obtain∫
Ω

C gradα
b−

[
T�x+aR�y[v0]

]
(�y) ·�g(�y) d�y = 0. (72)

As a consequence of (58), we reach CEαa+(�x + a − �y) = −C gradα
x− [T�x+aR�y[v0]](�y).

However, we know that CEαa+(�x + a−�y) is only defined for xi > yi, for all i = 1, 2, 3. This
implies that we can replace the operator C gradα

b− with C gradα
x− in (72). It is easy to see

then that
CTα

0,a+ [�g](�x) = −
∫

Ω

CEαa+(�x + a−�y) ·�g(�y) d�y = 0, in Ω, (73)

whence the conclusion readily follows.

Corollary 3. Under the same assumptions of Theorem 3, C−→T α
2,a+ is a right inverse operator of

C curlαa+ in the class of functions considered in Theorem 3. Moreover, −C−→T α

1,a+ is a right inverse
operator of C divα

a+ in Lp(Ω).

Analogously to the Riemann–Liouville case, the fractional Caputo div-curl system
(68) also admits a fractional Helmholtz decomposition, but now the potential is in terms of
v0 defined in (25), which is a fundamental solution of the fractional Laplace operator of
Caputo type.

Proposition 7. Under the same assumptions of Theorem 3, the general weak solution of the
fractional Caputo div-curl system (68) admits a fractional Helmholtz decomposition as follows

�w = C gradα
�x− ψ0 − C curlα�x− �ψ, in Ω, (74)

where the scalar potential ψ0 and the vector potential �ψ are given by

ψ0(�x) =
∫

Ω
T�x+aR�y[v0](�y)g0(�y) d�y, �ψ(�x) =

∫
Ω
T�x+aR�y[v0](�y)×�g(�y) d�y.

Proof. The proof is analogous to that of Proposition 6 for the Riemann–Liouville case.

5. Application

Let Ω = Π3
i=1(ai, bi) be as in the previous sections, and assume 0 < αi < 1, for all

i = 1, 2, 3. The present section provides some consequences of the factorization provided
by Corollary 1 to the construction of fractional hyper-conjugate pairs. In addition, we
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will give an explicit expression of a right inverse of the fractional gradient of Caputo type
considering different derivative orders.

Definition 8. Let w = w0 + �w ∈ AC(Ω). We say that (w0, �w) is a Riemann–Liouville fractional
hyper-conjugate pair if w ∈ Ker(RLDα

a+). Analogously, (w0, �w) is a Caputo fractional hyper-
conjugate pair if w ∈ Ker(CDα

a+).

The following result is a straightforward consequence of the factorization of the
fractional Laplace operator in the class Zα

a+(Ω) provided by Corollary 1. For this reason,
we omit the proof.

Corollary 4. Let w = ∑3
i=0 wi, and suppose that w ∈ Ker(RLDα

a+) ∩ Zα
a+(Ω) (respectively,

w ∈ Ker(CDα
a+) ∩ Zα

a+(Ω)). Then, wi ∈ Ker(RLΔα
a+) (respectively, wi ∈ Ker(CΔα

a+)), for all
i = 0, 1, 2, 3.

By Definition 8, it is obvious that (w0, �w) forms a Riemann–Liouville fractional hyper-
conjugate pair if and only if the following fractional div-curl system is satisfied:

RL divα
a+ �w = 0,

RL curlαa+ �w = −RL gradα
a+ w0. (75)

Similarly, (w0, �w) is a Caputo fractional hyper-conjugate pair if and only if

C divα
a+ �w = 0,

C curlαa+ �w=−C gradα
a+ w0. (76)

The above systems (75) and (76) can be considered fractional generalizations of the
Moisil–Teodorescu system studied for the first time in [24].

Let us define the following integral operator in terms of the Riemann–Liouville frac-

tional integrals I
1+αi

2
a+i

as

Aα
a+ [

�f ](�x) = I
1+α1

2
a+1

[ f1](x1, a2, a3) + I
1+α2

2
a+2

[ f2](x1, x2, a3) + I
1+α3

2
a+3

[ f3](x1, x2, x3). (77)

As the following result shows, it turns out thatAα
a+ behaves as a right-inverse operator

of C gradα
a+ in the class of functions satisfying C curlαa+ �f = 0. For this reason, Aα

a+ is called
the fractional anti-gradient operator.

Proposition 8. If C curlαa+ �f = 0, then C gradα
a+ Aα

a+ [
�f ] = �f .

Proof. Using the characterization of Caputo fractional hyper-conjugate pairs given under
Corollary 4 and differentiating under the integral sign, we readily obtain

C∂
1+α1

2
x1,a+1

Aα
a+ [

�f ](�x) =C ∂
1+α1

2
x1,a+1

(
I

1+α1
2

a+1
[ f1](x1, a2, a3) + I

1+α2
2

a+2
[ f2](x1, x2, a3) + I

1+α3
2

a+3
[ f3](x1, x2, x3)

)
= f1(x1, a2, a3) + I

1+α2
2

a+2
C∂

1+α1
2

x1,a+1
[ f2](x1, x2, a3) + I

1+α3
2

a+3
C∂

1+α1
2

x1,a+1
[ f3](x1, x2, x3).

(78)

Now, by hypothesis C curlαa+ �f = 0 or, equivalently, the following identities are satisfied:

C∂
1+α2

2
x2,a2 [ f3]−C ∂

1+α3
2

x3,a3 [ f2] =
C∂

1+α3
2

x3,a3 [ f1]−C ∂
1+α1

2
x1,a1 [ f3] =

C∂
1+α1

2
x1,a1 [ f2]−C ∂

1+α2
2

x2,a2 [ f1] = 0. (79)

Substituting (79) into (78) and using the composition rule (10), it follows that
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C∂
1+α1

2
x1,a+1

Aα
a+ [

�f ](�x) = f1(x1, a2, a3) + f1(x1, x2, a3)− f1(x1, a2, a3) + f1(x1, x2, x3)− f1(x1, x2, a3) = f1(�x). (80)

Analogously, one can establish that C∂
1+αi

2
xi ,a

+
i
Aα

a+ [
�f ](�x) = fi(�x), for i = 2, 3. The conclu-

sion readily follows now.

The next proposition shows that the fractional anti-gradient operator Aα
a+ allows us

to construct a Caputo fractional hyper-conjugate pair w0 when �w ∈ Ker(CΔα
a+) is known

beforehand. The proposition is clearly a generalization of [20], Proposition 2.1.

Proposition 9. Let �w ∈ Ker(CΔα
a+) ∩ Zα

a+(Ω). A necessary and sufficient condition for the
existence of a Caputo fractional hyper-conjugate pair of �w is that C divα

a+ �w = 0. In that case, there
is w0 such that w = w0 + �w ∈ Ker(CDα

a+).

Proof. The necessity is clear due to the characterization of Caputo fractional hyper-
conjugate pairs provided by (76). Suppose now that C divα

a+ �w = 0. By Proposition 1(iv), it
follows that C curlαa+

C curlαa+ �w = 0. On the other hand, Proposition 8 ensures that

C gradα
a+ Aα

a+ [
Ccurlαa+ �w] =C curlαa+ �w. (81)

The conclusion of this result follows from (76) if we let w0 = −Aα
a+ [

Ccurlαa+ �w].

6. Conclusions

In this work, we extend some results from vector calculus to the fractional case—for
instance, the space fractional Helmholtz Decomposition Theorem provided by Propositions 6 and 7.
The key tools used are the decompositions of the fractional Teodorescu transform in the
Riemann–Liouville case (52) and in the Caputo case (69) as well as various properties asso-
ciated with these fractional operators, which are thoroughly established in this manuscript.
To this end, we consider fractional derivatives in the senses of Riemann–Liouville and
Caputo, and we analyze fractional forms of various integer-order differential operators,
including the divergence, the rotational, the gradient, the Dirac and the Laplace operators.
As the most important result, we prove an existence theorem for the solutions of a div-curl
system, considering fractional differential operators of the Riemann–Liouville and Caputo
types (see Theorems 2 and 3). Other important generalizations of well-known theorems
from vector calculus are proven in this way. More precisely, we present fractional versions
of the classical Divergence and Stokes Theorems for vector fields (see Proposition 2). Fur-
thermore, we focus on the construction of fractional hyper-conjugate pairs, which represent
a fractional generalization of the well-known Moisil–Teodorescu system in quaternionic
analysis. Finally, we note that we are also able to provide an explicit expression for an
inverse of the fractional gradient operator when we restrict ourselves to vector fields whose
fractional rotational is zero, when we consider fractional derivatives of the Caputo type
(see Proposition 8).
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Abstract: In this article, we establish the weighted (k, s)-Riemann-Liouville fractional integral and
differential operators. Some certain properties of the operators and the weighted generalized Laplace
transform of the new operators are part of the paper. The article consists of Chebyshev-type inequalities
involving a weighted fractional integral. We propose an integro-differential kinetic equation using the
novel fractional operators and find its solution by applying weighted generalized Laplace transforms.

Keywords: weighted (k, s) fractional integral operator; weighted (k, s) fractional derivative; weighted
generalized Laplace transform; fractional kinetic equation

1. Introduction

Fractional calculus history dates back to the 17th century, when the derivative of order
α = 1/2 was defined by Leibnitz in 1695. Fractional calculus has gained broad significance
in the last few decades due to its applications in various fields of science and engineering.
The Tautocrone problem can be solved using fractional calculus, as shown by Abel [1].
It also has applications in group theory, field theory, polymers, continuum mechanics,
wave theory, quantum mechanics, biophysics, spectroscopy, Lie theory, and in several
other fields [2–6]. Despite the fact that this calculus is ancient, it has gained attention
over the last few decades because of the interesting results derived when this calculus is
applied to the models of some real-world problems [7–14]. The fact that there are various
fractional operators is what makes fractional calculus special. Thus, any scientist working
on modeling real global phenomena can choose the operator that best suits the model.

The Riemann-Liouville, Grünwald-Letnikov, and Caputo and Hadamard defini-
tions [7,15,16] are some of the most well-known definitions of fractional operators, such
that their formulations include single-kernel integrals, and they are used to explore and an-
alyze memory effect problems, for example [17]. The fractional derivatives are represented
by the fractional integrals [7,10,15,18] in fractional calculus. There are several varieties of
fractional integrals, of which two have been studied extensively for their applications. The
first one is the Riemann-Liouville fractional integral defined for parameter β ∈ R+ by

(J
β
a+ f )(ξ) =

1
Γ(β)

∫ ξ

a
(ξ − t)β−1ϕ(t)dt, β > 0, ξ > a,
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inspired by Cauchy’s integral formula

∫ ξ

a
dt1

∫ t1

a
dt2 · · ·

∫ tn−1

a
dtn =

1
Γ(n)

∫ ξ

a
(ξ − t)n−1ϕ(t)dt,

well-defined for n ∈ N. The second is Hadamard’s fractional integral, which is defined by
Hadamard [19]

(J
β
a ϕ)(ξ) =

1
Γ(β)

∫ ξ

a
(log

ξ

t
)β−1 ϕ(t)

t
dt, β > 0, ξ > a,

and is derived by the following integral:

∫ ξ

a

dt1

t1

∫ t1

a

dt2

t2
· · ·
∫ tn−1

a

dtn

tn
=

1
Γ(n)

∫ ξ

a
(log

ξ

t
)n−1 ϕ(t)

t
dt.

We start by recalling some related results and notions.

Definition 1 ([20]). The integral form of the k-gamma function is defined by

Γk(α) =

∞∫
0

ξα−1e
−ξk

k dξ, R(α) > 0.

Clearly, Γ(α) = limk→1 Γk(α) and Γk(α) = k
α
k−1Γ( αk ).

Definition 2. Let �(α), �(β) > 0 and k > 0, where we have the following k-beta function

Bk(α, β) =
1
k

∫ 1

0
τ

α
k−1(1− τ)

β
k −1dτ.

Note that the relation between Γk and Bk functions is given by Bk(α, β) = Γk(α)Γk(β)
Γk(α+β)

.

The (k, s)-Riemann-Liouville fractional integral (RLFI) [21] is given in the following
definition.

Definition 3. Suppose ϕ ∈ C[a, b], then (k, s)-RLFI of order α is defined by

(s
kJ

α
a+ϕ)(ξ) =

(s + 1)1− α
k

kΓk(α)

∫ ξ

a
(ξs+1 − ts+1)

α
k−1tsϕ(t)dt, ξ ∈ [a, b], (1)

where α, k > 0 and s ∈ R\{−1}.

Definition 4 ([22]). Suppose ϕ is a continuous function on [0, ∞) and s, α ∈ R+. Then for all
0 < t < ξ < ∞

(s
kD

α
a+ϕ)(ξ) =

(s)
α−nk+k

k

kΓk(nk− α)
(ξ1−s d

dξ
)n
∫ ξ

a
(ξs − ts)

nk−α
k −1ts−1ϕ(t)dt, (2)

where n = [α] + 1 and k > 0, is called a weighted (k, s)-Riemann Liouville fractional derivative,
provided it exists.
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Definition 5 ([23]). Let ϕ, ψ ∈ [a, ∞) be a real valued function such that ψ(ξ) is continuous and
ψ′(ξ) > 0 on [a, ∞). The generalized weighted Laplace transform of ϕ with weight function ω
defined on [a, ∞) is given by

Lω
ψ {ϕ(x)}(u) =

∫ ∞

a
e−u(ψ(x)−ψ(a))ω(x)ϕ(x)ψ′(x)dx, (3)

holds for all values of u.

Theorem 1 ([23]). The generalized weighted Laplace transform of Dn
ωϕ exists and is given by

Lω
Ψ{Dn

ωΦ}(u) = unLω
Ψ{Φ(ξ)}(u)−

n−1

∑
k=0

un−k−1Φk(a).

Definition 6 ([23]). The generalized weighted convolution of ϕ and ψ is defined by

(Φ ∗ωΨ h)(ξ) =ω−1(ξ)
∫ ξ

a
ω(Ψ−1(Ψ(ξ) + Ψ(a)−Ψ(t)))

×Φ(Ψ−1(Ψ(ξ) + Ψ(a)−Ψ(t)))ω(t)h(t)Ψ
′
(t)dt.

2. Weighted (k, s)-Riemann Liouville Fractional Operators

In the present section, we define the weighted (k, s)-Riemann Liouville fractional
operators and discuss some of their properties.

Definition 7. Let ϕ be a continuous function on [a, b]. Then, the weighted (k, s)-RLFI of order α
is defined by

(s
kJ

α
a+ ,ωϕ)(ξ) =

(s + 1)1− α
k ω−1(ξ)

kΓk(α)

∫ ξ

a
(ξs+1 − ts+1)

α
k−1tsω(t)ϕ(t)dt, ξ ∈ [a, b], (4)

where α, k > 0, ω(ξ) �= 0 and s ∈ R\{−1}.

Remark 1. It should be noted that this integral operator covers many fractional integral operators.

(i) If we choose ω(ξ) = 1, we obtain (k, s)-RLFI [21].
(ii) If we choose s = 0 and ω(ξ) = 1, k-RLFI is obtained [24].
(iii) For k = 1, s = 0 and ω(ξ) = 1, it gives RLFI [7].
(iv) For s → −1+ and ω(ξ) = 1, it is converted to the k-Hadamard fractional integral [25].

The following modification of Definition 4 is required to prove the claimed results.

Definition 8. The (k, s)-Riemann Liouville fractional derivative is defined as follows:
Let ϕ be a continuous function on [0, ∞) and s ∈ R\{−1}. Then for all 0 < t < ξ < ∞

(s
kD

α
a+ϕ)(ξ) =

kn−1(s + 1)
α−nk+k

k

Γk(nk− α)
(ξ−s d

dξ
)n
∫ ξ

a
(ξs+1 − ts+1)

nk−α
k −1tsϕ(t)dt,

where n = [α] + 1 and α, k > 0, is called the (k, s)-Riemann Liouville fractional derivative,
provided it exists.
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Definition 9. Let ϕ be a continuous function on [0, ∞), s ∈ R\{−1}, n = [α] + 1, α, k > 0 and
ω(ξ) �= 0. Then for all 0 < t < ξ < ∞

(s
kD

α
a+ ,ωϕ)(ξ) = ω−1(ξ)(kξ−s d

dξ
)nω(ξ)(s

kJ
nk−α
a+ ,ω ϕ)(t), (5)

where s
kJ

nk−α
a+ ,ω is a weighted (k, s)-RLFI.

It can also be written as

(s
kD

α
a+ ,ωϕ)(ξ) =

kn−1(s + 1)
α−nk+k

k ω−1(ξ)

Γk(nk− α)
(ξ−s d

dξ
)n

×
∫ ξ

a
(ξs+1 − ts+1)

nk−α
k −1tsω(t)ϕ(t)dt. (6)

Remark 2. It is worth mentioning that many other derivative operators can be represented as
special cases of (6).

(i) If ω(ξ) = 1 is chosen, we obtain the (k, s)-Riemann-Liouville fractional derivative [22].
(ii) Let s = 0 and ω(ξ) = 1, where it gives the k-Riemann-Liouville fractional derivative [26].
(iii) For k = 1, s = 0 and ω(ξ) = 1, it reduces to the Riemann-Liouville fractional derivative [27].
(iv) It reduces to the k-Hadamard fractional derivative for s → −1+, ω(ξ) = 1 [25].

Next, we present the space where the weighted (k, s)-Riemann-Liouville fractional
integrals are bounded.

Definition 10. Let ϕ be a function defined on [a, b]. The space Xp
ω(a, b), 1 ≤ p ≤ ∞ is the space

of all Lebesgue measurable functions for which ‖ ϕ ‖Xp
ω
< ∞, where

‖ ϕ ‖Xp
ω
=
[
(s + 1)

∫ b

a
| ω(ξ)ϕ(ξ) |p ξsdξ

] 1
p
, 1 ≤ p < ∞,

ω(ξ) �= 0, s ∈ R and

‖ ϕ ‖X∞
ω
= ess supa≤ξ≤b | ω(ξ)ϕ(ξ) |< ∞.

Noted that ϕ ∈ Xp
ω(a, b)⇔ ω(ξ)ϕ(ξ)(ξs)

1
p ∈ Lp(a, b) for 1 ≤ p < ∞ and ϕ ∈ X∞

ω (a, b)
⇔ ω(ξ)ϕ(ξ) ∈ L∞(a, b).

Theorem 2. Let α > 0, k > 0, 1 ≤ p ≤ ∞ and ϕ ∈ Xp
ω(a, b). Then s

kJ
α
a+ ,ωϕ is bounded in

Xp
ω(a, b) and

‖s
k Jαa+ ,ωϕ ‖Xp

ω
≤ (s + 1)−

α
k (bs+1 − as+1)

α
k

Γk(α+ 1)
‖ ϕ ‖Xp

ω
.

Proof. For 1 ≤ p < ∞, we have

‖s
k Jαa+ ,ωϕ ‖Xp

ω
=
[
(s + 1)

∫ b

a

∣∣∣ω(ξ)
(s + 1)1− α

k ω−1(ξ)

kΓk(α)

×
∫ ξ

a
(ξs+1 − ts+1)

α
k−1tsω(t)ϕ(t)dt

∣∣∣pξsdξ
] 1

p

=
(s + 1)2− α

k

kΓk(α)

[∫ b

a

∣∣∣ ∫ ξ

a
(ξs+1 − ts+1)

α
k−1tsω(t)ϕ(t)dt

∣∣∣pξsdξ
] 1

p
. (7)
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Substituting ξs+1 = v and ts+1 = u on the right side of (7), we obtain

‖s
k Jαa+ ,ωϕ ‖Xp

ω
=

(s + 1)2− α
k

kΓk(α)

[∫ bs+1

as+1

∣∣∣ ∫ v

as+1
(v− u)

α
k−1ω(u

1
s+1 )ϕ(u

1
s+1 )du

∣∣∣pdv
] 1

p
.

By using Minkowski’s inequality, we have

‖s
k Jαa+ ,ωϕ ‖Xp

ω
≤ (s + 1)−

α
k

kΓk(α)

∫ bs+1

as+1

[ ∫ as+1

u

∣∣∣(v− u)
α
k−1ω(u

1
s+1 )ϕ(u

1
s+1 )dv

∣∣∣pdu
] 1

p

≤ (s + 1)−
α
k

kΓk(α)

∫ bs+1

as+1

∣∣∣ω(u
1

s+1 )ϕ(u
1

s+1 )
∣∣∣[ (bs+1 − u)(

α
k−1)p+1

( αk − 1)p + 1

] 1
p
du.

Applying Hölder’s inequality, we obtain

‖s
k Jαa+ ,ωϕ ‖Xp

ω
≤ (s + 1)−

α
k

kΓk(α)

[ ∫ bs+1

as+1

∣∣∣ω(u
1

s+1 )ϕ(u
1

s+1 )
∣∣∣pdu

] 1
p

×
[ ∫ bs+1

as+1

( (bs+1 − u)(
α
k−1)p+1

( αk − 1)p + 1

) q
p
du
] 1

q
,

where 1
p + 1

q = 1. Further,

‖s
k Jαa+ ,ωϕ ‖Xp

ω
≤ (s + 1)−

α
k

kΓk(α)

[ ∫ b

a

∣∣∣ω(t)ϕ(t)
∣∣∣p(s + 1)dt

] 1
p

×
[ ∫ bs+1

as+1

( (bs+1 − u)(
α
k−1)p+1

( αk − 1)p + 1

) q
p
du
] 1

q

≤ (s + 1)−
α
k (bs+1 − as+1)

α
k

kΓk(α)
α
k

‖ ϕ ‖Xp
ω

=
(s + 1)−

α
k (bs+1 − as+1)

α
k

Γk(α+ 1)
‖ ϕ ‖Xp

ω
.

For p = ∞, we obtain

∣∣∣ω(ξ)s
kJ

α
a+ ,ωϕ(ξ)

∣∣∣= (s + 1)−
α
k (bs+1 − as+1)

α
k

Γk(α+ 1)
‖ ϕ ‖X∞

ω
.

Hence, we obtain the desired result.

Theorem 3. Let ϕ be a continuous function on [0, ∞) and s ∈ R\{−1} and ω(ξ) �= 0, n =
[α] + 1. Then for all 0 < a < ξ, we obtain

s
kD

α
a,ω(

s
kJ

α
a+ ,ωϕ)(ξ) = ϕ(ξ),

where α, k > 0.

105



Fractal Fract. 2021, 5, 118

Proof. Consider

s
kD

α
a+ ,ω(

s
kJ

α
a+ ,ωϕ)(ξ)

=
(s + 1)

α−nk+k
k ω−1(ξ)

kΓk(nk− α)
(ξ−s d

dξ
)nkn

×
∫ ξ

a
(ξs+1 − ys+1)

nk−α
k −1ysω(y)(s

kJ
α
a+ ,ωϕ)(y)dy

=
(s + 1)

α−nk+k
k ω−1(ξ)

kΓk(nk− α)
(ξ−s d

dξ
)nkn

∫ ξ

a
(ξs+1 − ys+1)

nk−α
k −1ysω(y)

× (s + 1)
1−α

k ω−1(ξ)

kΓk(α)

∫ y

a
(ys+1 − ts+1)

α
k−1tsω(t)(t)dt

=
(s + 1)2−nω−1(ξ)

k2Γk(α)Γk(nk− α)
(ξ−s d

dξ
)nkn

×
∫ ξ

a
tsω(t)ϕ(t)

[∫ ξ

t
(ys+1 − ts+1)

α
k−1(ξs+1 − ys+1)

nk−α
k −1ysdy

]
dt. (8)

By substituting z = ys+1−ts+1

ξs+1−ts+1 on the right side of (8), we obtain

s
kD

α
a+ ,ω(

s
kJ

α
a+ ,ωϕ)(ξ)

=
(s + 1)1−nω−1(ξ)

k2Γk(α)Γk(nk− α)
(ξ−s d

dξ
)nkn

×
∫ ξ

a
tsω(t)ϕ(t)(ξs+1 − ts+1)n−1

[∫ ξ

t
(1− z)

α
k−1(z)

nk−α
k −1dz

]
dt

=
(s + 1)1−nω−1(ξ)

k2Γk(α)Γk(nk− α)
(ξ−s d

dξ
)nkn

×
∫ ξ

a
tsω(t)ϕ(t)(ξs+1 − ts+1)n−1[kBk(α, nk− α)]dt

=
(s + 1)1−nω−1(ξ)

kΓk(nk)
(ξ−s d

dξ
)nkn

∫ ξ

a
tsω(t)ϕ(t)(ξs+1 − ts+1)n−1dt

=
(s + 1)1−nω−1(ξ)

knΓ(n)
(ξ−s d

dξ
)nkn

∫ ξ

a
tsω(t)ϕ(t)(ξs+1 − ts+1)n−1dt,

which gives
s
kD

α
a+ ,ω(

s
kJ

α
a+ ,ωϕ)(ξ) = ϕ(ξ).

The inverse property is proved.

Corollary 1. Let ϕ be a continuous function on [0, ∞) and s ∈ R\{−1} and ω(ξ) �= 0,
m = [β] + 1, n = [α] + 1. Then for all 0 < a < ξ

s
kD

α
a+ ,ω(

s
kJ

β
a+ ,ωϕ)(ξ) = (s

kD
α−β
a+ ,ωϕ)(ξ),

where α, β, k > 0.

Corollary 2. (Semi-group property) Let ϕ be a continuous function on [0, ∞) and s ∈ R\{−1},
ω(ξ) �= 0, n = [α] + 1, m = [β] + 1 and α+ β < nk. Then for all 0 < a < ξ

s
kD

α
a+ ,ω(

s
kD

β
a+ ,ωϕ)(ξ) = (s

kD
α+β
a+ ,ωϕ)(ξ),

where α, β, k > 0.
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Proof. By using Definition 9, we have

s
kD

α
a+ ,ω(

s
kD

β
a+ ,ωϕ)(ξ) = ω−1(ξ)(kξ−s d

dξ
)nω(ξ)(s

kJ
nk−α
a+ ,ω )(s

kD
β
a+ ,ωϕ)(ξ)

= ω−1(ξ)(kξ−s d
dξ

)nω(ξ)(s
kJ

nk−α
a+ ,ω )(s

kD
β
a+ ,ωϕ)(ξ)(

s
kJ

β
a+ ,ω)(

s
kJ
−β
a+ ,ω).

By using Theorem 3, we have

s
kD

α
a+ ,ω(

s
kD

β
a+ ,ωϕ)(ξ) = ω−1(ξ)(kξ−s d

dξ
)nω(ξ)(s

kJ
nk−α
a+ ,ω )(s

kJ
−β
a+ ,ω)

= ω−1(ξ)(kξ−s d
dξ

)nω(ξ)(s
kJ

nk−(α+β)
a+ ,ω ),

which implies
s
kD

α
a+ ,ω(

s
kD

β
a+ ,ωϕ)(ξ) = (s

kD
α+β
a+ ,ωϕ)(ξ),

which is the required result.

Corollary 3 (Commutative property). Let ϕ be a continuous function on [0, ∞) and α, β ∈ R+,
ω(ξ) �= 0 and s ∈ R\{−1}. Then for all 0 < a < ξ

s
kD

α
a+ ,ω(

s
kD

β
a+ ,ωϕ)(ξ) =

s
k D

β
a+ ,ω(

s
kD

α
a+ ,ωϕ)(ξ).

Corollary 4 (Linearity property). Let ϕ be a continuous function on [0, ∞), k, α ∈ R+,
ω(ξ) �= 0 and s ∈ R\{−1}. Then for all 0 < a < ξ

s
kD

α
a+ ,ω [ψ(ξ) + μh(ξ)] =s

k Dα
a+ ,ωψ(ξ) + μs

kD
α
a+ ,ωh(ξ),

where n ∈ N and n = [α] + 1.

Theorem 4. Let ϕ be a continuous function on [a, b], k > 0, ω(ξ) �= 0 and s ∈ R\{−1}

s
kJ

β
a+ ,ω [

s
kJ

α
a+ ,ωϕ(ξ)] =

s
k Jαa+ ,ω [

s
kJ

β
a+ ,ωϕ(ξ)] =

s
k J

α+β
a+ ,ωϕ(ξ),

for all α, β > 0 and ξ ∈ [a, b].

Proof. By using Definition 7 and Dirichlet’s formula, we obtain

s
kJ

α
a+ ,ω [

s
kJ

β
a+ ,ωϕ(ξ)]

=
(s + 1)1− α

k ω−1(ξ)

kΓk(α)

∫ ξ

a
(ξs+1 − ts+1)

α
k−1tsω(t)s

kJ
β
a+ ,ωϕ(t)dt

=
(s + 1)1− α

k ω−1(ξ)

kΓk(α)

∫ ξ

a
(ξs+1 − ts+1)

α
k−1tsω(t)ϕ(τ)

×
[ (s + 1)1− β

k ω−1(t)
kΓk(β)

∫ t

a
(ts+1 − τs+1)

β
k −1τsω(τ)dτ

]
dt

=
(s + 1)2− α+β

k ω−1(ξ)

k2Γk(α)Γk(β)

∫ ξ

a
τsω(τ)ϕ(τ)

×
∫ ξ

τ
(ξs+1 − ts+1)

α
k−1(ts+1 − τs+1)

β
k −1tsdtdτ. (9)
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By substituting y = ts+1−τs+1

ξs+1−τs+1 on the right side of (9), we obtain

s
kJ

α
a+ ,ω [

s
kJ

β
a+ ,ωϕ(ξ)]

=
(s + 1)2− α+β

k ω−1(ξ)

k2Γk(α)Γk(β)

×
∫ ξ

a

(ξs+1 − τs+1)
α+β

k −1

(s + 1)
kBk(α, β)τsω(τ)ϕ(τ)dτ

=
(s + 1)1− α+β

k ω−1(ξ)

kΓk(α+ β)

∫ ξ

a
(ξs+1 − τs+1)

α+β
k −1τsω(τ)ϕ(τ)dτ

=s
k J

α+β
a+ ,ωϕ(ξ).

The proof is completed.

Theorem 5. Let α, β, k > 0, ω(ξ) �= 0 and s ∈ R\{−1}. Then we have

s
kJ

β
a+ ,ω [ω

−1(ξ)(ξs+1 − as+1)
β
k −1] =

Γk(β)(ξ
s+1 − as+1)

α+β
k −1ω−1(ξ)

(s + 1)
α
k Γk(α+ β)

,

where Γk denotes the k-Gamma function.

Proof. By using Definition 7, we obtain

s
kJ

β
a+ ,ω [ω

−1(ξ)(ξs+1 − as+1)
β
k −1]

=
(s + 1)1− α

k ω−1(ξ)

kΓk(α)

∫ ξ

a
(ξs+1 − ts+1)

α
k−1ts

× (ξs+1 − as+1)
β
k −1ω−1(t)ω(t)ϕ(t)dt. (10)

By substituting y = ξs+1−ts+1

ξs+1−as+1 on the right side of (10), we obtain

s
kJ

β
a+ ,ω [ω

−1(ξ)(ξs+1 − as+1)
β
k −1]

=
(s + 1)

−α
k ω−1(ξ)(ξs+1 − as+1)

α+β
k −1

kΓk(α)

×
∫ 1

0
(1− y)

α
k−1(y)

β
k −1dy

=
(s + 1)

−α
k (ξs+1 − as+1)

α+β
k −1ω−1(ξ)

kΓk(α)
kBk(α, β)

=
Γk(β)(ξ

s+1 − as+1)
α+β

k −1ω−1(ξ)

(s + 1)
α
k Γk(α+ β)

.

This completes the proof.

Corollary 5. Let k > 0, ω(ξ) �= 0 and s ∈ R\{−1}. Then, we have

s
kJ

α
a+ ,ω [ω

−1(ξ)(1)] =
(ξs+1 − as+1)

α
k−2ω−1(ξ)

(s + 1)
α
k Γk(α+ β)

. (11)
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Remark 3. Taking ω(ξ) = 1 in Theorem 5 and Corollary 5, we obtain results of [21].

Remark 4. If we choose s = 0, k = 1 and ω(ξ) = 1 in Theorem 5 and Corollary 5, we obtain
results for Riemann Liouville.

3. Some New Chebyshev Inequalities Involving Weighted (k, s)-RLFI

Weighted (k, s)-RLFI formulations of Chebyshev-type inequalities are as follows:

Theorem 6. Let ϕ and ψ be two synchronous functions on [0, ∞). Then for all t > a ≥ 0 and the
weighted function ω(ξ) �= 0, the following inequalities for weighted (k, s)-RLFI hold:

s
kJ

α
a+ ,ωϕψ(t) ≥

1
s
kJ

α
a+ ,ω(1)

s
kJ

α
a+ ,ωϕ(t)

s
k
Jαa+ ,ωψ(t) (12)

and

s
kJ

α
a+ ,ωϕψ(t)

s
kJ

β
a+ ,ω(1) +

s
k J

β
a+ ,ωϕψ(t)

s
kJ

α
a+ ,ω(1)

≥ s
kJ

α
a+ ,ωϕ(t)

s
kJ

β
a+ ,ωψ(t) +

s
k J

α
a+ ,ωψ(t)

s
kJ

β
a+ ,ωϕ(t), (13)

where α, β > 0.

Proof. Since ϕ and ψ are synchronous on [0, ∞), for all ξ, y ≥ 0, we have

(ϕ(ξ)− ϕ(y))(ψ(ξ)− ψ(y)) ≥ 0

ϕ(ξ)ψ(ξ) + ϕ(y)ψ(y) ≥ ϕ(ξ)ψ(y) + ϕ(y)ψ(ξ). (14)

Both sides of (14) are multiplied by (s+1)1− α
k ω−1(t)

kΓk(α)
(ts+1 − ξs+1)

α
k−1ω(ξ)ξs and integrating

w.r.t ξ over (a,t), we obtain

(s + 1)1− α
k ω−1(t)

kΓk(α)

∫ t

a
(ts+1 − ξs+1)

α
k−1ξsω(ξ)ϕ(ξ)ψ(ξ)dξ

+ ϕ(y)ψ(y)
(s + 1)1− α

k ω−1(t)
kΓk(α)

∫ t

a
(ts+1 − ξs+1)

α
k−1ξsω(ξ)dξ

≥ ψ(y)
(s + 1)1− α

k ω−1(t)
kΓk(α)

∫ t

a
(ts+1 − ξs+1)

α
k−1ξsω(ξ)ϕ(ξ)dξ

+ ϕ(y)
(s + 1)1− α

k ω−1(t)
kΓk(α)

∫ t

a
(ts+1 − ξs+1)

α
k−1ξsω(ξ)ψ(ξ)dξ, (15)

which gives

s
kJ

α
a+ ,ωϕψ(t) + ϕ(y)ψ(y)s

kJ
α
a+ ,ω(1) ≥ ψ(y)s

kJ
α
a+ ,ωϕ(t) + ϕ(y)s

kJ
α
a+ ,ωψ(t).
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Both sides of (15) are multiplied by (s+1)1− α
k ω−1(t)

kΓk(α)
(ts+1 − ys+1)

α
k−1ω(y)ys and integrating

w.r.t y over (a,t), we obtain

s
kJ

α
a+ ,ωϕψ(t)

(s + 1)1− α
k ω−1(t)

kΓk(α)

∫ t

a
(ts+1 − ys+1)

α
k−1ysω(y)dy

+s
kJ

α
a+ ,ω(1)

(s + 1)1− α
k ω−1(t)

kΓk(α)

∫ t

a
(ts+1 − ys+1)

α
k−1ysω(y)ϕ(y)ψ(y)dy

≥s
k Jαa+ ,ωϕ(t)

(s + 1)1− α
k ω−1(t)

kΓk(α)

∫ t

a
(ts+1 − ys+1)

α
k−1ysω(y)ψ(y)dy

+s
kJ

α
a+ ,ωψ(t)

(s + 1)1− α
k ω−1(t)

kΓk(α)

∫ t

a
(ts+1 − ys+1)

α
k−1ysω(y)ϕ(y)dy.

This can be written as

s
kJ

α
a+ ,ωϕψ(t)

s
kJ

α
a+ ,ω(1) +

s
k J

α
a+ ,ωϕψ(t)

s
kJ

α
a+ ,ω(1)

≥s
k Jαa+ ,ωϕ(t)

s
kJ

α
a+ ,ωψ(t) +

s
k J

α
a+ ,ωϕ(t)

s
kJ

α
a+ ,ωψ(t). (16)

On simplification, we obtain

2s
kJ

α
a+ ,ωϕψ(t)

s
kJ

α
a+ ,ω(1) ≥ 2s

kJ
α
a+ ,ωϕ(t)

s
kJ

α
a+ ,ωψ(t),

which can be written as

s
kJ

α
a+ ,ωϕψ(t) ≥

1
s
kJ

α
a+ ,ω(1)

s
kJ

α
a+ ,ωϕ(t)

s
k
Jαa+ ,ωψ(t).

This completes the proof of (12).

Both sides of (16) are multiplied by (s+1)1− β
k ω−1(t)

kΓk(α)
(ts+1 − ys+1)

β
k −1ω(y)ys and inte-

grating w.r.t y over (a,t), we obtain

s
kJ

α
a+ ,ωϕψ(t)

(s + 1)1− β
k ω−1(t)

kΓk(β)

∫ t

a
(ts+1 − ys+1)

β
k −1ysω(y)dy

+s
kJ

α
a+ ,ω(1)

(s + 1)1− β
k ω−1(t)

kΓk(β)

∫ t

a
(ts+1 − ys+1)

β
k −1ysϕ(y))ψ(y)ω(y)dy

≥ s
kJ

α
a+ ,ωϕ(t)

(s + 1)1− β
k ω−1(t)

kΓk(β)

∫ t

a
(ts+1 − ys+1)

β
k −1ysω(y)ψ(y)dy

+s
kJ

α
a+ ,ωψ(t)

(s + 1)1− β
k ω−1(t)

kΓk(β)

∫ t

a
(ts+1 − ys+1)

β
k −1ysω(y)ϕ(y)dy,

which gives

s
kJ

α
a+ ,ωϕψ(t)

s
kJ

β
a+ ,ω(1) +

s
k J

β
a+ ,ωϕψ(t)

s
kJ

α
a+ ,ω(1)

≥s
k Jαa+ ,ωϕ(t)

s
kJ

β
a+ ,ωψ(t) +

s
k J

α
a+ ,ωψ(t)

s
kJ

β
a+ ,ωϕ(t).

The proof of (13) is done.
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Theorem 7. Let ϕ and ψ be two synchronous functions on [0, ∞) and h(t) ≥ 0. Then for all
t > a ≥ 0, the following inequality holds:

ω−1(ξ)

(s + 1)1− β
k Γk(β+ k)

(ts+1 − as+1)
β
k −2s

kJ
α
a+ ,ωϕψh(t)

+
ω−1(ξ)

(s + 1)1− α
k Γk(α+ k)

(ts+1 − as+1)
α
k−2s

kJ
β
a+ ,ωϕψh(t)

≥s
k Jαa+ ,ωϕh(t)s

kJ
β
a+ ,ωψ(t) +

s
k J

α
a+ ,ωψh(t)s

kJ
β
a+ ,ωϕ(t)

−s
kJ

α
a+ ,ωh(t)s

kJ
β
a+ ,ωϕψ(t)−

s
k J

α
a+ ,ωϕψ(t)

s
kJ

β
a+ ,ωh(t)

+s
kJ

α
a+ ,ωϕ(t)

s
kJ

β
a+ ,ωψh(t) +s

k J
α
a+ ,ωψ(t)

s
kJ

β
a+ ,ωϕh(t), (17)

where α, β > 0 and ω(ξ) �= 0.

Proof. Since the function ϕ and ψ are synchronous on [0, ∞), h ≥ 0, for all α, β > 0,
we have

(ϕ(ξ)− ϕ(y))(ψ(ξ)− ψ(y))(h(ξ) + h(y)) ≥ 0.

This gives

ϕ(ξ)ψ(ξ)h(ξ) + ϕ(y)ψ(y)h(y)

≥ ϕ(ξ)ψ(y)h(ξ) + ϕ(y)ψ(ξ)h(ξ)− ϕ(y)ψ(y)h(ξ)

−ϕ(ξ)ψ(ξ)h(y) + ϕ(ξ)ψ(y)h(y) + ϕ(y)ψ(ξ)h(y). (18)

Both sides of (18) are multiplied by (s+1)1− α
k ω−1(ξ)

kΓk(α)
(ts+1 − ξs+1)

β
k −1ω(ξ)ξs and integrating

w.r.t ξ over (a,t), we obtain

(s + 1)1− α
k ω−1(t)

kΓk(α)

∫ t

a
(ts+1 − ξs+1)

α
k−1ξsω(ξ)ϕ(ξ)ψ(ξ)h(ξ)dξ

+ϕ(y)ψ(y)h(y)
(s + 1)1− α

k ω−1(t)
kΓk(α)

∫ t

a
(ts+1 − ξs+1)

α
k−1ξsω(ξ)dξ

≥ ψ(y)
(s + 1)1− α

k ω−1(t)
kΓk(α)

∫ t

a
(ts+1 − ξs+1)

α
k−1ξsω(x)ϕ(x)h(x)dx +

ϕ(y)
(s + 1)1− α

k ω−1(t)
kΓk(α)

∫ t

a
(ts+1 − ξs+1)

α
k−1ξsω(ξ)ψ(ξ)h(ξ)dξ

−ϕ(y)ψ(y)
(s + 1)1− α

k ω−1(t)
kΓk(α)

∫ t

a
(ts+1 − ξs+1)

α
k−1ξsω(ξ)h(ξ)dξ

−h(y)
(s + 1)1− α

k ω−1(t)
kΓk(α)

∫ t

a
(ts+1 − ξs+1)

α
k−1ξsω(ξ)ψ(ξ) f (ξ)dξ

+ψ(y)h(y)
(s + 1)1− α

k ω−1(t)
kΓk(α)

∫ t

a
(ts+1 − ξs+1)

α
k−1ξsω(ξ)ϕ(ξ)dξ

+ϕ(y)h(y)
(s + 1)1− α

k ω−1(t)
kΓk(α)

∫ t

a
(ts+1 − ξs+1)

α
k−1ξsω(ξ)ψ(ξ)dξ (19)
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After multiplying both sides of (19) by (s+1)1− β
k ω−1(t)

kΓk(β)
(ts+1 − ys+1)

β
k −1ω(y)ys and integrat-

ing w.r.t y over (a, t), we obtain

s
kJ

α
a+ ,ωϕψh(t)s

kJ
β
a+ ,ω [ω

−1(ξ)(1)] +s
k J

α
a+ ,ω [ω

−1(ξ)(1)]skJ
β
a+ ,ωϕψh(t)

≥s
k Jαa+ ,ωϕh(t)s

kJ
β
a+ ,ωψ(t) +

s
k J

α
a+ ,ωgψh(t)s

kJ
β
a+ ,ωϕ(t)−

s
k J

α
a+ ,ωh(t)s

kJ
β
a+ ,ωϕψ(t)

−s
kJ

α
a+ ,ωϕψ(t)

s
kJ

β
a+ ,ωh(t) +s

k J
α
a+ ,ωϕ(t)

s
kJ

β
a+ ,ωψh(t) +s

k J
α
a+ ,ωψ(t)

s
kJ

β
a+ ,ωϕh(t),

which implies

ω−1(ξ)

(s + 1)1− β
k Γk(β+ k)

(ts+1 − as+1)
β
k −2s

kJ
α
a+ ,ωϕψh(t)

+
ω−1(ξ)

(s + 1)1− α
k Γk(α+ k)

(ts+1 − as+1)
α
k−2s

kJ
β
a+ ,ωϕψh(t)

≥s
k Jαa+ ,ωϕh(t)s

kJ
β
a+ ,ωψ(t) +

s
k J

α
a+ ,ωψh(t)s

kJ
β
a+ ,ωϕ(t)−

s
k J

α
a+ ,ωh(t)s

kJ
β
a+ ,ωϕψ(t)

−s
kJ

α
a+ ,ωϕψ(t)

s
kJ

β
a+ ,ωh(t) +s

k J
α
a+ ,ωϕ(t)

s
kJ

β
a+ ,ωψh(t) +s

k J
α
a+ ,ωψ(t)

s
kJ

β
a+ ,ωϕh(t).

Hence, the result is proved.

Corollary 6. Let ϕ and ψ be two synchronous functions on [0, ∞] and h ≥ 0. Then for all
t > a ≥ 0, the following inequality holds:

ω−1(ξ)

(s + 1)1− α
k Γk(α+ k)

(ts+1 − as+1)
α
k−2s

kJ
α
a+ ,ωϕψh(t)

≥s
k Jαa+ ,ωϕh(t)s

kJ
α
a+ ,ωψ(t) +

s
k J

α
a+ ,ωψh(t)s

kJ
α
a+ ,ωϕ(t)−s

k J
α
a+ ,ωh(t)s

kJ
α
a+ ,ωϕψ(t), (20)

where α, β > 0 and ω(ξ) �= 0.

Proof. If we replace β to α in Theorem 7, we obtain the result (20).

Theorem 8. Let ϕ ψ and h be three monotonic functions defined on [0, ∞] and satisfying the following

(ϕ(ξ)− ϕ(y))(ψ(ξ)− ψ(y))(h(ξ)− h(y)) ≥ 0.

Then for all t > a ≥ 0, the following inequality holds:

ω−1(ξ)

(s + 1)1− β
k Γk(β+ k)

(ts+1 − as+1)
β
k −2s

kJ
α
a+ ,ωϕψh(t)

− ω−1(ξ)

(s + 1)1− α
k Γk(α+ k)

(ts+1 − as+1)
α
k−2s

kJ
β
a+ ,ωϕψh(t)

≥s
k Jαa+ ,ωϕh(t)s

kJ
β
a+ ,ωψ(t) +

s
kJ

α
a+ ,ωψh(t)s

kJ
β
a+ ,ωϕ(t)−

s
kJ

α
a+ ,ωh(t)s

kJ
β
a+ ,ωϕψ(t)

+s
kJ

α
a+ ,ωϕψ(t)

s
kJ

β
a+ ,ωh(t)−s

kJ
α
a+ ,ωϕ(t)

s
kJ

β
a+ ,ωψh(t)− s

kJ
α
a+ ,ωψ(t)

s
kJ

β
a+ ,ωϕh(t).

where α, β > 0 and ω(ξ) �= 0.

Proof. Use the same argument as in the proof of Theorem 7.
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Theorem 9. Let ϕ and ψ be defined on [0, ∞]. Then for all t > a ≥ 0 ω(ξ) �= 0, α, β > 0, the
following inequalities for weighted (k, s)-RLFI hold:

ω−1(ξ)

(s + 1)1− β
k Γk(β+ k)

(ts+1 − as+1)
β
k −2s

kJ
α
a+ ,ωϕ

2(t)

+
ω−1(ξ)

(s + 1)1− α
k Γk(α+ k)

(ts+1 − as+1)
α
k−2s

kJ
β
a+ ,ωψ

2(t)

≥ 2s
kJ

α
a+ ,ωϕ(t)

s
kJ

β
a+ ,ωψ(t) (21)

and

s
kJ

α
a+ ,ωϕ

2(t)s
kJ

β
a+ ,ωψ

2(t) +s
k J

β
a+ ,ωϕ

2(t)s
kJ

α
a+ ,ωψ

2(t) ≥ 2s
kJ

α
a+ ,ωϕψ(t)

s
kJ

β
a+ ,ωϕψ(t) (22)

Proof. Since (ϕ(ξ)− ψ(y))2 ≥ 0 and (ϕ(ξ)ψ(y)− ϕ(y)ψ(ξ))2 ≥ 0 using the same argu-
ment as the proof in Theorem 7, we obtain (22) and (21).

Corollary 7. We have

ω−1(ξ)

(s + 1)1− α
k Γk(α+ k)

(ts+1 − as+1)
α
k−2[skJ

α
a+ ,ωϕ

2(t) + s
kJ

β
a+ ,ωψ

2(t)]

≥ 2s
kJ

α
a+ ,ωϕ(t)

s
kJ

β
a+ ,ωψ(t) (23)

and

s
kJ

α
a+ ,ωϕ

2(t)s
kJ

α
a+ ,ωψ

2(t) ≥ [skJ
α
a+ ,ωϕψ(t)]

2. (24)

Proof. If we replace β to α in Theorem 9, we obtain the inequalities (23) and (24).

Remark 5. If we set ω(ξ) = 1 in Theorems 6–9, then we obtain the inequalities of Theorems
3.1, 3.2, 3.4, and 3.5, respectively, given in [21].

Theorem 10. Let ϕ : R → R with ϕ(ξ) :=
∫ t

a ω(t)tsϕ(t)dt, for all ξ > a ≥ 0, s ∈ R\{−1}.
Then α ≥ k > 0 and ω(ξ) �= 0, we have

s
kJ

α+k
a+ ,ωϕ(ξ) =

1
k

s
kJ

α
a+ ,ω [ω

−1(ξ)ϕ(ξ)]. (25)

Proof. By using Definition 7 and the Dirichlet’s formula, we have

s
kJ

α
a+ ,ω [ω

−1(ξ)ϕ(ξ)]

=
(s + 1)1− α

k ω−1(ξ)

kΓk(α)

∫ ξ

a
(ξs+1 − ts+1)

α
k−1tsω−1(t)ω(t)ϕ(t)dt

=
(s + 1)1− α

k ω−1(ξ)

kΓk(α)

∫ ξ

a
(ξs+1 − ts+1)

α
k−1ts[

∫ t

a
usϕ(u)ω(u)du]dt

=
(s + 1)1− α

k ω−1(ξ)

kΓk(α)

∫ ξ

a
usϕ(u)ω(u)[

∫ ξ

u
(ξs+1 − ts+1)

α
k−1tsdt]du

=
(s + 1)−

α
k ω−1(ξ)

Γk(α+ k)

∫ ξ

a
(ξs+1 − us+1)

α
k usω(u)ϕ(u)du

= ks
kJ

α+k
a+ ,ωϕ(ξ).

Hence, we obtained the desired result.
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4. The Weighted Laplace Transform of the Weighted Fractional Operators

In this section, we apply the weighted laplace transformation to the new fractional
operators. For this purpose we need to substitute ψ(t) = ts+1 on the right side of (3), where
we have

Lω
ψ {ϕ(t)}(u) = (s + 1)

∫ ∞

a
e−u(ts+1−as+1)ω(t)tsϕ(t)dt, (26)

which holds for all values of u.

Proposition 1.

Lω
ψ {ω−1(ξ)(ξs+1 − as+1)

α
k−1}(u) = Γ( αk )

u
α
k

, u > 0.

Proof. By using (26), we have

Lω
ψ {ω−1(ξ)(ξs+1 − as+1)

α
k−1}(u)

= (s + 1)
∫ ∞

a
e−u(ξs+1−as+1)(ξs+1 − as+1)

α
k−1ξsdξ. (27)

By substituting t = (ξs+1 − as+1) on the right side of (27), we obtain

Lω
ψ {ω−1(ξ)(ξs+1 − as+1)

α
k−1}(u)

=
∫ ∞

0
e−utt

α
k−1dt

=
∫ ∞

0
e−ut (ut)

α
k−1

(u)
α
k−1

u
u

dt

=
1

u
α
k

∫ ∞

0
e−ut(ut)

α
k−1udt,

which gives the required result.

Theorem 11. Let ϕ be a piecewise continuous function on each interval [a, ξ] and of weighted
ψ-exponential order. Then

Lω
ψ {(s

kJ
α
a+ ,ωϕ)(ξ)}(u) = ((s + 1)uk)

−α
k Lω

ψ {ϕ(ξ)}(u),

where k > 0, ω(ξ) �= 0, s ∈ R\{−1}.

Proof. By using Definitions 6 and 7 and Proposition 1, we have

Lω
ψ {(s

kJ
α
a+ ,ωϕ)(ξ)}(u)

= Lω
ψ

{ (s + 1)1− α
k ω−1(ξ)

kΓk(α)

∫ ξ

a
(ξs+1 − ts+1)

α
k−1tsω(t)ϕ(t)dt

}
(u)

=
(s + 1)−

α
k

kΓk(α)
Lω
ψ

{
ω−1(ξ)(ξs+1 − ts+1)

α
k−1 ∗ωψ ϕ(ξ)

}
(u)

=
(s + 1)−

α
k

kΓk(α)
Lω
ψ

{
ω−1(ξ)(ξs+1 − ts+1)

α
k−1}(u)Lω

ψ

{
ϕ(ξ)

}
(u)

=
(s + 1)−

α
k

kΓk(α)

Γ( αk )

u
α
k

Lω
ψ

{
ϕ(ξ)

}
(u)

= ((s + 1)uk)−
α
k Lω

ψ

{
ϕ(ξ)

}
(u). (28)

This proves the claimed result.
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Theorem 12. The Laplace transform of the weighted (k, s)-Riemann Liouville derivative is given by

Lω
ψ {(s

kD
α
a+ ,ωϕ)(ξ)}(u)

= (s + 1)−
nk−α

k (ku)
α
k Lω

ψ

{
ϕ(ξ)

}
(u)

− kn
n−1

∑
m=0

un−m−1(s
kJ

nk−α
a+ ,ω ϕ)m(a+). (29)

Proof. By using Definition 9, Theorems 1 and 11, we obtain

Lω
ψ {(s

kD
α
a+ ,ωϕ)(ξ)}(u)

= Lω
ψ {(ξ1−s d

dξ
)nkn(s

kJ
nk−α
a+ ,ω ϕ)(t)}(u)

= knunLω
ψ {(s

kJ
nk−α
a+ ,ω ϕ)(t)}(u)

− kn
n−1

∑
m=0

un−m−1(s
kJ

nk−α
a+ ,ω ϕ)k(a+)

= (uk)n((s + 1)uk)
nk−α

k Lω
ψ {ϕ(ξ)}(u)

− kn
n−1

∑
m=0

un−m−1(s
kJ

nk−α
a+ ,ω ϕ)k(a+)

= (s + 1)
nk−α

k (ku)
α
k Lω

ψ {ϕ(ξ)}(u)

− kn
n−1

∑
m=0

un−m−1(s
kJ

nk−α
a+ ,ω ϕ)k(a+),

which gives the required series solution.

5. Fractional Kinetic Differ-Integral Equation

The fractional differential equations are significant in the field of applied science
and have gained interest in dynamic systems, physics, and engineering. In the previous
decade, the fractional kinetic equation has gained interest due to the discovery of its
relationship with the CTRW theory [28]. The kinetic equations are essential in natural
sciences and mathematical physics that explain the continuation of motion of the material.
The generalized weighted fractional kinetic equation and its solution related to novel
operators are discussed in this section. Consider the fractional kinetic equation given by

a(s
kD

α
0+ ,ωN)(t)− N0ϕ(t) =b(s

kJ
β
0+ ,ωN)(t), ϕ ∈ L1[0, ∞), (30)

with initial condition

ω(0)(s
kJ

nk−α
0+ ,ω N)(0) =d, d ≥ 0, (31)

where α ≥ 0, a, b ∈ R(a �= 0), k > 0, n = [ αk ] = 1.

Theorem 13. The solution of (30) with initial condition (31) is

N(t) = dω−1(t)
∞

∑
m=0

(
a
b
)n (s + 1)β+(1+n)k

Γk(α+ (α+ β)n)
(ξs+1 − as+1)

α+(α+β)n
k

+
N0

a

∞

∑
m=0

(s + 1)β+(1+n)k(s
kJ

(α+β)n+α
0+ ,ω ϕ)(t). (32)
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Proof. Applying the modified weighted Laplace transform on both side of (30), we obtain

aLω
ψ {(s

kD
α
0+ ,ωN)(t)}(u)− Lω

ψ {N0ϕ(t)}(u) = bLω
ψ {(s

kJ
β
0+ ,ωN)(t)}(u).

Using Theorems 11 and 12, we obtain

a(s + 1)−
k−α

k (ku)
α
k Lω

ψ

{
N(t)

}
(u)− kw(0)(s

kJ
k−α
a+ ,ωN)(0)− N0L

ω
ψ {ϕ(t)}(u)

= b(s + 1)
−α
k (uk)

−α
k Lω

ψ {N(t)}(u)
[ a− b(s + 1)−

α−k+β
k (ku)−

α+β
k

(s + 1)−
α−k

k (ku)−
α
k

]
Lω
ψ {N(t)} = akd + N0L

ω
ψ {ϕ(t)}(u)

Lω
ψ {N(t)} = akd

[ (s + 1)−
α−k

k (ku)−
α
k

a− b(s + 1)−
α−k+β

k (ku)−
α+β

k

]
+
[ (s + 1)−

α−k
k (ku)−

α
k

a− b(s + 1)−
α−k+β

k (ku)−
α+β

k

]
× N0L

ω
ψ {ϕ(t)}(u).

Taking
∣∣ b

a (s + 1)−
α−k+β

k (ku)−
α+β

k
∣∣ < 1, we obtain

Lω
ψ {N(t)} =

[
kd
[
(s + 1)−

α−k
k (ku)−

α
k
]
+ a−1N0

[
(s + 1)−

α−k
k (ku)−

α
k
]]

×
∞

∑
n=0

(
b
a
)n(s + 1)−

(α−k+β)n
k (ku)−

(α+β)n
k Lω

ψ {ϕ(t)}(u)

= kd
[
(s + 1)−

α−k
k (ku)−

α
k
] ∞

∑
n=0

(
b
a
)n(s + 1)−

(α−k+β)n
k (ku)−

(α+β)n
k

+ a−1N0
[
(s + 1)−

α−k
k (ku)−

α
k
]

×
∞

∑
n=0

(
b
a
)n(s + 1)−

(α−k+β)n
k (ku)−

(α+β)n
k Lω

ψ {ϕ(t)}(u)

= kd
∞

∑
n=0

(
b
a
)n(s + 1)−

(α−k)(n+1)+nβ
k (ku)−

(α+β)n+α
k

+
N0

a

∞

∑
n=0

(
b
a
)n(s + 1)−

(α−k)(n+1)+nβ
k (ku)−

(α+β)n+α
k Lω

ψ {ϕ(t)}(u)

= kd
∞

∑
n=0

(
b
a
)n(s + 1)−

(α−k)(n+1)+nβ
k (ku)−

(α+β)n+α
k

+
N0

a

∞

∑
n=0

(
b
a
)n(s + 1)−

(α+β)n+α
k (s + 1)(n+1)(ku)−

(α+β)n+α
k Lω

ψ {ϕ(t)}(u).

Applying inverse Laplace transform, we obtain

N(t) = dw−1(t)
∞

∑
n=0

(
b
a
)n (s + 1)−

(α−k)(n+1)+nβ
k

Γk((α+ β)n + α)
(ξs+1 − as+1)

(α+β)n+α
k −1

+
N0

a

∞

∑
n=0

(
b
a
)n(s + 1)(n+1)(s

kJ
(α+β)n+α
0+ ,ω ϕ)(t).

The proof of the result is completed.
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6. Conclusions and Discussion

Fractional calculus is currently one of the most widely debated topics. In the present
article, we introduced the weighted versions of the (k, s)-RLF operators. We then inves-
tigated and examined their properties and found the weighted Laplace transform of the
new operators. Significantly, these operators reduce to notable fractional operators in the
literature. Other fractional operators, such as the Riemann-Liouville fractional operators
and Hadamard fractional operators, show up as special cases of these weighted fractional
operators with specific choices of weighted functions and operator functions. We have
developed the Chebyshev inequalities by involving the introduced fractional integral oper-
ator. We developed a fractional kinetic equation and the weighted Laplace transform used
to find the solution of the said model. The presented results motivate scientists to stimulate
more work in such directions.
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Abstract: In this work, we formulate and mathematically study integer and fractional models of
typhoid fever transmission dynamics. The models include vaccination as a control measure. After
recalling some preliminary results for the integer model (determination of the epidemiological
threshold denoted by Rc, asymptotic stability of the equilibrium point without disease whenever
Rc < 1, the existence of an equilibrium point with disease whenever Rc > 1), we replace the integer
derivative with the Caputo derivative. We perform a stability analysis of the disease-free equilibrium
and prove the existence and uniqueness of the solution of the fractional model using fixed point
theory. We construct the numerical scheme and prove its stability. Simulation results show that when
the fractional-order η decreases, the peak of infected humans is delayed. To reduce the proliferation
of the disease, mass vaccination combined with environmental sanitation is recommended. We
then extend the previous model by replacing the mass action incidences with standard incidences.
We compute the corresponding epidemiological threshold denoted by Rc� and ensure the uniform
stability of the disease-free equilibrium, for both new models, when Rc� < 1. A new calibration
of the new model is conducted with real data of Mbandjock, Cameroon, to estimate Rc� = 1.4348.
We finally perform several numerical simulations that permit us to conclude that such diseases can
possibly be tackled through vaccination combined with environmental sanitation.

Keywords: typhoid fever disease; vaccination; model calibration; Caputo derivative; asymptotic
stability; fixed point theory

MSC: 26A33; 93D20; 47H10; 93E24; 92D30

1. Introduction

Typhoid fever, caused by a salmonella bacterium (Salmonella typhi), is a tropical
disease transmitted by the ingestion of food or/and water contaminated with feces. It
is most prevalent in countries located below the equator, in Southeast Asia, and in the
Indian subcontinent, where hygiene conditions are poor [1,2]. The principal symptoms of
typhoid fever are insomnia, fever, generalized fatigue, headaches, stomach ache, anorexia,
constipation or diarrhea, and vomiting. These symptoms can last several weeks. Without
effective treatment, typhoid fever can lead to death. According to the World Health
Organization (WHO), the number of cases of typhoid fever is estimated to be between
11 and 21 million, with 128,000 to 161,000 deaths annually due to the severity of the
disease [1,2]. Vaccination, sanitary measures, and hygiene measures are the best ways to
prevent the spread of the disease [2].
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Fractal Fract. 2021, 5, 149

Since the work of Sir Ronald Ross on malaria [3], mathematical tools such as dif-
ferential equations have usually been used to understand and describe the dynamics of
infectious diseases [4–12]. In [7], the authors proposed a SVIIcR that takes into account
some control mechanisms (treatment, education campaigns, and vaccination). Quarantin-
ing the infected individuals and their treatment are the main control measures studied
in [8]. The author used optimal control methods to conclude that the outbreak can be
eliminated or controlled if the control strategies are combined to their highest levels. The
same conclusions are given in [10,11]. Recently, Olumuyiwa James et al. [9] formulated and
studied an optimal control model for typhoid fever that takes into account both indirect
and direct transmission. They compared various proposed strategies using numerical
simulations and concluded that the disease burden can be controlled if all the available
control measures are combined.

Very recently, many authors have proposed fractional-order models in mathematical
epidemiology (ref. [13]), ecology (ref. [14]), plant epidemiology (refs. [15,16]), and psychol-
ogy (ref. [17]). Indeed, the necessity of the use of fractional derivatives in epidemiology,
for example, comes from the fact that these operators have many properties, such as their
different types of kernels and the crossover behavior in the model, which can only be de-
scribed using these operators. Moreover, any real data that have zigzag dynamics (mostly
many) that cannot be projected by an integer-order derivative can be solved by a fractional
model more clearly.

The principal disadvantage of models with integer derivatives is that they do not
permit the definition of memory effects. Replacing integer derivatives with fractional
derivatives makes it possible to remedy this problem. Indeed, they offer different ways
to forecast data by varying the fractional-order parameter [12,18,19]. Several fractional
operators have been defined so far. The most popular are the fractional operators of Caputo,
the fractional Caputo–Fabrizio operator, and the fractional operator of Atangana–Baleanu.
Each operator explores the dynamics of the studied phenomenon differently, thus helping
us to predict more variations in the evolution of the phenomenon. The advantages and
disadvantages of each fractional operator and their application domains can be found
in [20–22].

To the best of our knowledge, there are few mathematical works on typhoid fever using
fractional operators [6,12]. In [12], the authors used the Caputo–Fabrizio operator to extend
the model proposed in [23]. They provided existence, uniqueness, and stability criteria
for the proposed fractional-order typhoid model. More recently, Abboubakar et al. [6]
formulated a SIR-B-type compartmental model with both integer and Caputo derivatives.
The only control measure was vaccination. They computed the control reproduction
number, Rc, and performed stability analysis of the disease-free equilibrium point for both
models. The present contributions are listed as follows:

1. Using a fractional derivative in place of an integer derivative, as used in our previous
model [5], we formulate a new model. To prove the existence and uniqueness of
the solutions, we use fixed point theory. The corresponding numerical scheme is
obtained through the Adams–Bashforth–Moulton method [24,25]. The stability of this
numerical scheme is also proven. Finally, several numerical simulations are carried
out from the real values of parameters estimated with real data of Mbandjock, in
Cameroon (see [5]).

2. Secondly, we extend the previous models by replacing the mass action incidence
law with the standard incidence law. For these new models, we compute the corre-
sponding control reproduction number, Rc�, and ensure the uniform stability of the
equilibrium point without disease. As in [6], model parameters are estimated. With
these new parameter values, we finally perform several numerical simulations that
permit us to compare the quantitative dynamics of the two types of models.

The rest of the work is organized as follows. We devote Section 2 to preliminary defini-
tions of the fractional derivative in the sense of Caputo and useful results. Formulation of
the models with mass incidence law and standard incidence, as well as their mathematical

120



Fractal Fract. 2021, 5, 149

analysis (computation of control reproduction numbers, asymptotic stability analysis of
the disease-free equilibrium, existence as well as the uniqueness of solutions, construction
of the numerical scheme with its stability), is also described in this section. The calibration
of the model with standard incidences and several numerical results is given in Section 3.
We end the paper with a discussion and conclusions.

2. Materials and Methods

2.1. Useful Definitions and Results

For over ten years, fractional derivatives have captured the attention of researchers,
who use these fractional operators to model physical, chemical, and biological processes.
One can cite the dynamics of transmissible diseases [26–28]. Before the formulation of the
fractional models, it is important to recall their definition, as well as two results that will be
used later in the fractional model analysis.

Definition 1. Let f ∈ Cl
−1, and we have the following relation:

Dν
τ f (τ) =

{
dr f (τ)

dτr , ν = r ∈ N

1
Γ(r−ν)

∫ τ
0 (τ − ι)r−ν−1 f (r)(ι)dι, −1 + r < ν < r , r ∈ N,

(1)

which represents the Caputo derivative of f .

Lemma 1. Assume that χ, Q, h, Y > 0, kh ≤ Y with k ∈ N, and

yq,m =

{
(m− q)χ−1 q = 1, 2, . . . , m− 1,
0 q ≥ m.

Let ∑
q=i
q=k yq,m|eq| = 0 for k > m ≥ 1.
If

|em| ≤ Qhχ
m−1

∑
q=1

yq,m|eq|+ |η0|, m = 1, 2, . . . , k,

then
|ek| ≤ M|η0|, k ∈ {1, 2, . . .}

where M ∈ R+ does not depend on h and k.

Lemma 2. If 0 < χ < 1 and d ∈ N, then there exist positive constants Wχ,1 and Wχ,2 only
dependent on χ, such that

(1 + v)χ − vχ ≤ Wχ,1(1 + v)χ−1 and (2 + v)χ+1 − 2(1 + v)χ+1 + vχ+1 ≤ Wχ,2(1 + v)χ−1.

2.2. Model Dynamics with Mass Action Incidence Law
2.2.1. Model Formulation in ODE Sense and Its Analysis

In a previous work [5], we formulated and analyzed a new mathematical model for the
transmission dynamics of typhoid fever with application to the town of Mbandjock, in the
central region of Cameroon. The model is divided into seven compartments: susceptible
individuals S(t), vaccinated individuals V(t), infected individuals in latent stage E(t),
infected individuals without any sign of the disease C(t), symptomatic infected individuals
I(t), recovered individuals R(t), and the density of bacteria in the environment B(t).
Each individual in each compartment naturally dies at a rate μh. Susceptible humans
are recruited at a constant rate Λh. The population in compartment Sh decreases either
by vaccination at a rate ξ, or by infection at an incidence rate νB(t)S(t), where ν is the
contact rate. We denote by θ the rate at which vaccinated individuals lose their immunity.
The vaccine efficacy is denoted by ε. The compartment E of latent individuals, which
include infected susceptible individuals and vaccinated individuals, progresses either to
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the carriers compartment C at a rate qγ1 or to the compartment I at the rate (1− q)γ1.
Asymptomatic individuals become symptomatic at the rate (1− p)γ2 or recover at the
rate pγ2. δ denotes the disease-induced death rate of symptomatic individuals. Recovered
individuals become susceptible at a rate α. With this brief description, the mathematical
formulation of the model studied in [5] is presented as follows:

Ṡ(t) = Λh − (k1 + νB(t))S(t) + θV(t) + αR(t), (2a)

V̇(t) = −[k2 + (1− ε)νB(t)]V(t) + ξS(t), (2b)

Ė(t) = −k3E(t) + ν[πV(t) + S(t)]B(t), (2c)

Ċ(t) = qγ1E(t)− k4C(t), (2d)

İ(t) = q1γ1E(t) + p1γ2C(t)− [k5 + σ]I(t), (2e)

Ṙ(t) = pγ2C(t) + σI(t)− k6R(t), (2f)

Ḃ(t) = pcC(t) + pi I(t)− μbB(t), (2g)

where k1 = ξ + μh, k2 = θ + μh, k3 = γ1 + μh, k4 = μh + γ2, k5 = δ+ μh, k6 = α+ μh,
π = −1 + ε, q1 = 1− q, p1 = −p + 1, k7 = k1k2 − θξ = μh(k2 + ξ) > 0, k8 = k5 + σ.

Model (2) is defined in the following set:

W =

{
(S, V, E, C, I, R, B)′ ∈ R

7
+ : N = V + S + C + E + I + R ≤ Λh

μh
; B ≤ (pi + pc)Λh

μhμb

}
,

in which a dynamical system is defined, and where N denotes the human population.
Without disease, model (2) has the following equilibrium: Q0 = (S0, V0, 0, 0, 0, 0, 0)′,

where S0 = Λhk2/(μh(k2 + ξ)) and V0 = Λhξ/(μh(k2 + ξ)). Using the same approach
developed in [29], we obtain the control reproduction number given by

Rc =

√
νΛh(k2 + πξ)γ1[pcq(σ+ k5) + pi(k4(1− q) + γ2q(1− p))]

μbμhk3k4(k2 + ξ)(σ+ k5)
. (3)

Considering the model without vaccination, Rc is equal to the basic reproduction number:

R0 =

√
νΛhγ1[pcq(σ+ k5) + pi(k4(1− q) + γ2q(1− p))]

μbμhk3k4(σ+ k5)
. (4)

Thus, it follows that

Rc = R0

√
(k2 + πξ)

(k2 + ξ)
.

Since πξ = (1− ε)ξ ≤ ξ, we have
(k2 + πξ)

(k2 + ξ)
≤ 1, which means that Rc ≤ R0. This proves

that mass vaccination is a useful tool that can be used to effectively tackle this kind of
tropical disease.

For typhoid model (2) in the ODE sense, the following results were proven in [5].

Proposition 1 ([5]). For model (2),Q0 is locally and globally asymptotically stable inW ifRc < 1
and unstable if Rc > 1.
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Proposition 2 ([5]). Let us define the following coefficients:

a2 = R4
c k2

3k2
4k2

8μ
2
h(ξ + k2)

2π×
× (μhγ1α(k5 + σq) + γ2μhk8(α+ γ1) + γ1γ2α(1− pq)k5 + [μ2

h + (α+ γ2 + γ1)μh]μhk8),

a1 = −R2
c k2

3k2
4k2

8μ
2
h(ξ + k2)

2γ1Λhk6π(k4q1 + γ2 p1q)(R2
c −R2

b),

a0 = −γ2
1μhΛ2

hk3k4k6k8(k4q1 + γ2 p1q)2(πξ + k2)
2(ξ + k2)(R2

c − 1).

Model (2) with the integer derivative either has (1) only one endemic equilibrium whenever (a0 <
0 ⇐⇒ Rc > 1) or (a1 < 0 and a0 = 0 or a2

1 − 4a2a0 = 0), (2) two endemic equilibrium points if
(a0 > 0 (Rc < 1), a1 < 0 (Rc > Rb) and a2

1 − 4a2a0 > 0), or (3) no equilibrium otherwise.

Theorem 1 ([5]). Model (2) exhibits a supercritical bifurcation at Rc = 1, which implies that
whenever Rc > 1, the endemic equilibrium is locally asymptotically stable.

Remark 1. Proposition 1 combined with Theorem 1 implies that Proposition 2 (iii) will never hold
true for model (2). Thus, the condition Rc < 1 is sufficient to eradicate the disease.

2.2.2. Fractional-Order Typhoid Model

The following model is obtained when we replace the integer derivative operator
in (2) with the non-integer operator in the Caputo sense.

C
t0

Dη
t S(t) = Λh − (k1 + νB(t))S(t) + θV(t) + αR(t), (5a)

C
t0

Dη
t V(t) = −[k2 + (1− ε)νB(t)]V(t) + ξS(t), (5b)

C
t0

Dη
t E(t) = −k3E(t) + ν[πV(t) + S(t)]B(t), (5c)

C
t0

Dη
t C(t) = qγ1E(t)− k4C(t), (5d)

C
t0

Dη
t I(t) = q1γ1E(t) + p1γ2C(t)− [k5 + σ]I(t), (5e)

C
t0

Dη
t R(t) = pγ2C(t) + σI(t)− k6R(t), (5f)

C
t0

Dη
t B(t) = pcC(t) + pi I(t)− μbB(t). (5g)

with S(0) ≥ 0, V(0) ≥ 0, B(0) ≥ 0, E(0) ≥ 0, I(0) ≥ 0, C(0) ≥ 0, and R(0) ≥ 0.

Asymptotic Stability of the Disease-Free Equilibrium

Before investigating the stability of the disease-free equilibrium point, we consider
the fractional-order system (5) as follows:

C
t0

Dη
t x(t) = F (x(t)), (6)

where x(ζ) ∈ R7, F ∈ R7 ×R7, 0 < η < 1. The characteristic equation of the matrix F
evaluated at any equilibrium (see [30]) is given by

det(s(I− (1− η)F )− ηF ) = 0. (7)

For the fractional model (5), the asymptotic stability ofQ0 is claimed in the following result.

Theorem 2. The disease-free equilibrium Q0 is uniformly asymptotically stable if Rc < 1, and
unstable otherwise.

123



Fractal Fract. 2021, 5, 149

Proof. The Jacobian matrix of system (5) evaluated at the disease–free equilibrium Q0 is
given by

J(Q0) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

−k1 θ 0 0 0 α −νS0
ξ −k2 0 0 0 0 −νπV0
0 0 −k3 0 0 0 ν(S0 + πV0)
0 0 qγ1 −k4 0 0 0
0 0 q1γ1 p1γ2 −(k5 + σ) 0 0
0 0 0 pγ2 σ −k6 0
0 0 0 pc pi 0 −μb

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

(
J1 J2
J3 J4

)
,

where J1 =

( −k1 θ
ξ −k2

)
, J2 =

(
0 0 0 α −νS0
0 0 0 0 −νπV0

)
, J3 = OR5×2 , and

J4 =

⎛⎜⎜⎜⎜⎝
−k3 0 0 0 ν(S0 + πV0)
qγ1 −k4 0 0 0
q1γ1 p1γ2 −(k5 + σ) 0 0

0 pγ2 σ −k6 0
0 pc pi 0 −μb

⎞⎟⎟⎟⎟⎠.

The characteristic Equation (7) of the typhoid fractional model (5) becomes{
det(s(I2 − (1− η)J1)− η J1) = 0
det(s(I5 − (1− η)J4)− η J4) = 0,

(8)

which is equivalent to{
a2s2 + a1s + a0 = 0,

{s[(1− η)k6 + 1] + k6η}
(

s4 + A1
A5

s3 + A2
A5

s2 + A3
A5

s + A4
A5

)
= 0,

(9)

where a2 = (1− η)2k7 + (1− η)(k1 + k2) + 1, a1 = 2η(1− η)k7 + η(k1 + k2), a0 = η2k7,

A5 = η3
1k3k4k8μb(η1k9 + q1 pi + pcq)(1−R2

c )

+ η3
1μb[k3k8(k8 pcq + p1γ2 piq) + k3k4(q1k4 pi + p1γ2 piq) + k4k8k9]

+ η2
1μb(k8k9 + k4k9 + k3k9) + η1k9μb

+
(((

η3
1k3 + η2

1

)
k4 + η2

1k3 + η1

)
k8 +

(
η2

1k3 + η1

)
k4 + η1k3 + 1

)
k9,

A1 =
{

4k3k4k8k9μbη
3
1η + 3η2

1k3k8μbηq1k4 pi + 3η2
1ηk3k4μbk8 pcq

}
(1− R2

c )

+ 3η2
1ηk3k4μb(q1k4 pi + p1γ2 piq) + 3η2

1k3k8μbη[k8 pcq + p1γ2 piq]

+ 2η1k4k9μbη + (2η1k3 + 1)k9μbη + 3η2
1k4k8k9μbη + 2η1k8k9μbη

+
(((

3η2
1k3 + 2η1

)
k4 + 2η1k3 + 1

)
k8 + (2η1k3 + 1)k4 + k3

)
k9η,

A2 =
[
6η2

1k3k4k8k9μbη
2 + 3η1k3k4k8μbη

2(pcq + q1 pi)
]
(1−R2

c )

+ 3η1η
2[k3k8μb(k8 pcq + p1γ2 piq) + k4k8k9(μb + k3) + k3k4μb(q1k4 pi + p1γ2 piq)]

+ (k4k8 + k3k8 + k3k4 + k8μb + k4μb + k3μb)k9η
2,

A3 = μbη
3k3k4k8[4k9η1 + q1 pi + pcq](1−R2

c )

+ (μb + k3)k4k8k9η
3 + k3μbη

3{k8q(k8 pc + p1γ2 pi) + k4 pi(q1k4 + p1γ2q)},

A4 =
(

1−R2
c

)
η4k3k4k8μb

k9︷ ︸︸ ︷
[q1k4 pi + k8 pcq + p1γ2 piq],

and η1 = 1− η.
Since both coefficients of the first equation of (9) are positive, it follows that the real

parts of the solution of (9) are negative. From the second equation of (9), we have that
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s1 = − k6η
[(1−η)k6+1] is one solution, and the other solutions are the root of

T (s) := A5s4 + A1s3 + A2s2 + A3s + A4. Note that A4 > 0 ⇐⇒ Rc < 1, and Rc < 1 =⇒
(A1 > 0, A2 > 0, A3 > 0, and A5 > 0). Then, it follows that, if Rc < 1, then the disease-
free equilibrium Q0 is asymptotically stable whenever the following Routh–Hurwitz

criteria A1 A2
A2

5
− A3

A5
> 0 and A1 A2 A3

A3
5

− A2
1 A4
A3

5
− A2

3
A2

5
> 0 are satisfied for polynomial T (s) .

For uniform stability, we use the Lyapunov function:

M(E, C, I, B) = b1E(t) + b2C(t) + b3 I(t) + b4B(t), (10)

where b1 = 1, b2 = k3(k8 pc + pi p1γ2)/[k4 piq1γ1 + qγ1(k8 pc + pi p1γ2)], and b3 = k3k4 pi/
[k4 piq1γ1 + qγ1(k8 pc + pi p1γ2)] and b4 = k3k4k8/[k4 piq1γ1 + qγ1(k8 pc + pi p1γ2)].

The fractional derivative of M is given by

C
t0

Dη
t M(E, C, I, B) ≤ C

t0
Dη

t Eb1 +
C
t0

Dη
t Cb2 +

C
t0

Dη
t Ib3 +

C
t0

Dη
t Bb4

= b1(νB[S + πV]− k3E) + b2(qγ1E− k4C) + b3(q1γ1E + p1γ2C− k8 I)

+ b4(pcC + pi I − μbB)

≤ b1

(
νB
[
S0 + πV0

]
− k3E

)
+ b2(qγ1E− k4C) + b3(q1γ1E + p1γ2C− k8 I)

+ b4(pcC + pi I − μbB)

= b1νB
(

S0 + πV0
)
− b1k3E + b2qγ1E− b2k4C + b3q1γ1E + b3 p1γ2C

− b3k8 I + b4 pcC + b4 pi I − b4μbB

= b1νB
(

S0 + πV0
)
− b4μbB + (b3q1γ1 + b2qγ1 − b1k3)E

+ (b4 pc + b3 p1γ2 − b2k4)C + (b4 pi − b3k8)I

=
μbk3k4(k5 + σ)

piq1γ1k4 + qγ1(p1 piγ2 + pc(k5 + σ))

(
R2

c − 1
)

B.

Thus, C
t0

Dη
t M(E, C, I, B) < 0 whenever Rc < 1, and C

t0
Dη

t M(E, C, I, B) = 0 if and only if
Rc = 1 or B(ζ) = 0. Setting B = 0 in (5), we obtain S = S0, V = V0, and E = C = I = R = 0.
Thus, lim

t→∞
(S(t), V(t), E(t), C(t), I(t), R(t))′ → (S0, V0, 0, 0, 0, 0, 0)′ := Q0. Consequently,

by [31] (Theorem 2.5), it follows that if Rc < 1, then Q0 is uniformly asymptotically stable
in W .

Existence and Uniqueness Analysis

Before describing the existence and uniqueness of solutions for the fractional model
using the fixed point theorem, we define T as a Banach space of continuous functions
defined on an interval P with the norm

‖ X ‖=
i=7

∑
i=1

‖ Xi ‖,

where X = (S, V, E, C, I, R, B), ‖ Xi ‖= sup{|Xi(t)| : t ∈ P}, and T = M(P)×M(P)×
M(P)×M(P)×M(P)×M(P)×M(P).
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Let us write system (5) as follows:

CDη
t S(t) = H1(t, S),

CDη
t V(t) = H2(t, V),

CDη
t E(t) = H3(t, E),

CDη
t C(t) = H4(t, C)

CDη
t I(t) = H5(t, I)

CDη
t R(t) = H6(t, R)

CDη
t B(t) = H7(t, B)

(11)

Application of the Caputo fractional integral operator permits us to reduce (11) to the
following system:

− S(0) + S(t) =
[∫ t

0
(t− ς)η−1H1(ς, S)dς

]
1

Γ(η)
,

−V(0) + V(t) =
[∫ t

0
(t− ς)η−1H2(ς, V)dς

]
1

Γ(η)
,

− E(0) + E(t) =
[∫ t

0
(t− ς)η−1H3(ς, E)dς

]
1

Γ(η)
,

− C(0) + C(t) =
[∫ t

0
(t− ς)η−1H4(ς, C)dς

]
1

Γ(η)
,

− I(0) + I(t) =
[∫ t

0
(t− ς)η−1H5(ς, I)dς

]
1

Γ(η)
,

− R(0) + R(t) =
[∫ t

0
(t− ς)η−1H6(ς, R)dς

]
1

Γ(η)
,

− B(0) + B(t) =
[∫ t

0
(t− ς)η−1H7(ς, R)dς

]
1

Γ(η)
,

(12)

with 0 < η < 1.
Now, we will provide the Lipschitz conditions fulfilled by Hi, for i = 1, 2, . . . , 7, as

well as the contraction conditions. In the following theorem, we only provide the condition
for H1, the rest being similar.

Theorem 3. The kernel H1 satisfies the Lipschitz and contraction conditions provided that
0 ≤ νκ7 + k1 < 1.

Proof. For S, we proceed as below:

‖ H1(t, S)−H1(t, S1) ‖ =‖ −νB(S− S1)− k1(S− S1) ‖
=‖ νB + k1 ‖‖ (S(t)− S1(t)) ‖
≤‖ νκ7 + k1 ‖‖ S(t)− S1(t) ‖

where κ7 is the upper bound of the function B(t). Now, setting W1 = νκ7 + k1, we
finally obtain

‖ H1(t, S)−H1(t, S1) ‖≤ W1 ‖ S(t)− S(t1) ‖, (13)

which provide the Lipschitz condition. If, additionally, we can have 0 < W1 = νκ7 + k1 < 1,
then the contraction is also obtained.
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As in the case of H1, it is easy to obtain the Lipschitz condition for the other kernels.
Thus, we have

‖ H2(t, C)−H2(t, C1) ‖ ≤ W2 ‖ V(t)−V(t1) ‖,

‖ H3(t, E)−H3(t, E1) ‖ ≤ W3 ‖ E(t)− E(t1) ‖,

‖ H4(t, C)−H4(t, C1) ‖ ≤ W4 ‖ C(t)− C(t1) ‖,

‖ H5(t, I)−H5(t, I1) ‖ ≤ W5 ‖ I(t)− I(t1) ‖,

‖ H6(t, R)−H6(t, R1) ‖ ≤ W6 ‖ R(t)− R(t1) ‖,

‖ H7(t, B)−H7(t, B1) ‖ ≤ W7 ‖ B(t)− B(t1) ‖ .

(14)

Recursively, Equation (12) can be rewritten as follows:

Sn(t)− S(0) =
1

Γ(η)

∫ t

0
(t− ς)η−1H1(ς, Sn−1)dς,

Vn(t)−V(0) =
1

Γ(η)

∫ t

0
(t− ς)η−1H2(ς, Vn−1)dς,

En(t)− E(0) =
1

Γ(η)

∫ t

0
(t− ς)η−1H3(ς, En−1)dς,

Cn(t)− C(0) =
1

Γ(η)

∫ t

0
(t− ς)η−1H4(ς, Cn−1)dς,

In(t)− I(0) =
1

Γ(η)

∫ t

0
(t− ς)η−1H5(ς, In−1)dς,

Rn(t)− R(0) =
1

Γ(η)

∫ t

0
(t− ς)η−1H6(ς, Rn−1)dς,

Bn(t)− B(0) =
1

Γ(η)

∫ t

0
(t− ς)η−1H7(ς, Bn−1)dς.

(15)

By determing, in a recursive manner, the difference between the successive terms of (11),
we obtain

ψ1n(t) = Sn(t)− Sn−1(t) =
1

Γ(η)

∫ t

0
(t− ς)η−1(H1(ς, Sn−1)−H1(ς, Sn−2))dς,

ψ2n(t) = Vn(t)−Vn−1(t) =
1

Γ(η)

∫ t

0
(t− ς)η−1(H2(ς, Vn−1)−H2(ς, Vn−2))dς,

ψ3n(t) = En(t)− En−1(t) =
1

Γ(η)

∫ t

0
(t− ς)η−1(H3(ς, En−1)−H3(ς, En−2))dς,

ψ4n(t) = Cn(t)− Cn−1(t) =
1

Γ(η)

∫ t

0
(t− ς)η−1(H4(ς, Cn−1)−H4(ς, Cn−2))dς,

ψ5n(t) = In(t)− In−1(t) =
1

Γ(η)

∫ t

0
(t− ς)η−1(H5(ς, In−1)−H5(ς, In−2))dς,

ψ6n(t) = Rn(t)− Rn−1(t) =
1

Γ(η)

∫ t

0
(t− ς)η−1(H6(ς, Rn−1)−H6(ς, Rn−2))dς,

ψ7n(t) = Bn(t)− Bn−1(t) =
1

Γ(η)

∫ t

0
(t− ς)η−1(H7(ς, Bn−1)−H7(ς, Bn−2))dς,

(16)

with S0(t) = S(0), V0(t) = V(0), E0(t) = E(0), C0(t) = C(0), I0(t) = I(0), R0(t) = R(0),
and B0(t) = B(0).
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The norm of φ1n(t) gives

‖ ψ1n(t) ‖=‖ Sn(t)− Sn−1(t) ‖ =‖
1

Γ(η)

∫ t

0
(t− ς)η−1(H1(ς, Sn−1)−H1(ς, Sn−2))dς ‖

≤ 1
Γ(η)

‖
∫ t

0
(t− ς)η−1(H1(ς, Sn−1)−H1(ς, Sn−2))dς ‖ .

(17)

With the Lipschitz condition (13), we obtain

‖ ψ1n(t) ‖=‖ Sn(t)− Sn−1(t) ‖≤
1

Γ(η)
W1

∫ t

0
(t− ς)η−1 ‖ Sn−1 − Sn−2 ‖ dς. (18)

Thus, we have

‖ ψ1n(t) ‖≤
1

Γ(η)
W1

∫ t

0
(t− ς)η−1 ‖ ψ1(n−1)(ς) ‖ dς. (19)

By proceeding in a similar way, we obtain, for the other φin(t), i = 2, . . . , 7,

‖ ψ2n(t) ‖≤
1

Γ(η)
W2

∫ t

0
(t− ς)η−1 ‖ ψ2(n−1)(ς) ‖ dς,

‖ ψ3n(t) ‖≤
1

Γ(η)
W3

∫ t

0
(t− ς)η−1 ‖ ψ3(n−1)(ς) ‖ dς,

‖ ψ4n(t) ‖≤
1

Γ(η)
W4

∫ t

0
(t− ς)η−1 ‖ ψ4(n−1)(ς) ‖ dς,

‖ ψ5n(t) ‖≤
1

Γ(η)
W5

∫ t

0
(t− ς)η−1 ‖ ψ5(n−1)(ς) ‖ dς,

‖ ψ6n(t) ‖≤
1

Γ(η)
W6

∫ t

0
(t− ς)η−1 ‖ ψ6(n−1)(ς) ‖ dς,

‖ ψ7n(t) ‖≤
1

Γ(η)
W7

∫ t

0
(t− ς)η−1 ‖ ψ7(n−1)(ς) ‖ dς.

(20)

Each nth term of the state variables of (5) is given by⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Sn(t) =
n
∑

i=1
ψ1i(t), Vn(t) =

n
∑

i=1
ψ2i(t), En(t) =

n
∑

i=1
ψ3i(t),

Cn(t) =
n
∑

i=1
ψ4i(t), In(t) =

n
∑

i=1
ψ5i(t), Rn(t) =

n
∑

i=1
ψ6i(t),

Bn(t) =
n
∑

i=1
ψ7i(t).

(21)

The following result guarantees that the solution of the fractional model (5) is unique.

Theorem 4. If the following inequality holds,

1
Γ(η)

xηWi < 1, for i = 1, 2, . . . , 7, (22)

then the solution of the fractional model (5), for t ∈ [0, T], is unique.

128



Fractal Fract. 2021, 5, 149

Proof. With Equation (13), inequalities (19) and (20), combined with a recursive technique,
we obtain:

‖ ψ1n(t) ‖≤‖ S0(t) ‖
[

W1

Γ(η)
xη
]n

, ‖ ψ2n(t) ‖≤‖ W0(t) ‖
[

W2

Γ(η)
xη
]n

,

‖ ψ3n(t) ‖≤‖ E0(t) ‖
[

W3

Γ(η)
xη
]n

, ‖ ψ4n(t) ‖≤‖ C0(t) ‖
[

W4

Γ(η)
xη
]n

,

‖ ψ5n(t) ‖≤‖ I0(t) ‖
[

W5

Γ(η)
xη
]n

, ‖ ψ6n(t) ‖≤‖ R0(t) ‖
[

W6

Γ(η)
xη
]n

,

‖ ψ7n(t) ‖≤‖ B0(t) ‖
[

W7

Γ(η)
xη
]n

.

(23)

Therefore, the above sequences satisfy lim
n→∞

‖ ψin(t) ‖→ 0, j = 1, 2, . . . , 7. The triangle

inequality applied to (23) permits us to obtain

‖ Sk+n(t)− Sn(t) ‖≤
k+n

∑
j=n+1

Z
j
1 =

Zn+1
1 − Zk+n+1

1
1− Z1

,

‖ Vk+n(t)−Vn(t) ‖≤
k+n

∑
j=n+1

Z
j
2 =

Zn+1
2 − Zk+n+1

2
1− Z2

,

‖ Ek+n(t)− En(t) ‖≤
k+n

∑
j=n+1

Z
j
3 =

Zn+1
3 − Zk+n+1

3
1− Z3

,

‖ Ck+n(t)− Cn(t) ‖≤
k+n

∑
j=n+1

Z
j
4 =

Zn+1
4 − Zk+n+1

4
1− Z4

,

‖ Ik+n(t)− In(t) ‖≤
k+n

∑
j=n+1

Z
j
5 =

Zn+1
5 − Zk+n+1

5
1− Z5

,

‖ Rk+n(t)− Rn(t) ‖≤
k+n

∑
j=n+1

Z
j
6 =

Zn+1
6 − Zk+n+1

6
1− Z6

,

‖ Bk+n(t)− Bn(t) ‖≤
k+n

∑
j=n+1

Z
j
7 =

Zn+1
7 − Zn+k+1

7
1− Z7

,

(24)

with
1

Γ(η)
bηWl < 1 and Zl =

(
1

Γ(η)
Wlx

η

)n
, l = 1, 2, . . . , 7.

Therefore, Sn, Vn, En, Cn, In, Rn, and Bn are uniformly convergent Cauchy sequences
(see [32]). With n → ∞, it follows that the limit of these sequences represents the unique
solution to model (5).

Numerical Scheme of the Fractional Model and Its Stability Analysis

Several methods have been developed to construct numerical schemes for fractional
models. One can cite, among others, the Implicit Quadrature method [24], the Approximate
Mittag–Leffler method [33], the Predictor Corrector method [34], and the Adams–Bashforth–
Moulton method [25]. The choice of the method depends on several factors, such as the
amount of information treated [35] and the accuracy order [36]. The numerical scheme
proposed in this work is constructed using the Adams–Bashforth–Moulton method.

Let us consider the following general form of a fractional differential equation [37]:{
D
η
t ϕ(t) = h(t, ϕ(t)), 0 ≤ t ≤ T,

ϕ(l)(0) = ϕl
0, l = 0, 1, 2, . . . , n− 1, where n = [η],

(25)
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which is equivalent to

ϕ(t) =
n−1

∑
l=0

hl
0

tl

l!
+

1
Γ(η)

∫ t

0
(t− ζ)η−1h(ζ, ϕ(ζ))dζ. (26)

For η ∈ [0, 1], 0 ≤ t ≤ T and setting κ = T/N and tm = mκ, for m = 0, 1, 2, . . . , N ∈
Z+, the solution of the fractional model is

S1+m = S0 +
κη

Γ(η + 2)

(
Λh + ηRp

1+m + θVp
1+m − (νBp

1+m + k1)S
p
1+m

)
+

κη

Γ(η + 2)

m

∑
j=0

aj,1+m

(
Λh + ηRj + θVj − (νBj + k1)Sj

)
,

V1+m = V0 +
κη

Γ(η + 2)

(
ξSp

1+m −
[
(1− ε)νBp

1+m + k2

]
Vp

1+m

)
+

κη

Γ(η + 2)

m

∑
j=0

aj,1+m

(
ξSj −

[
(1− ε)νBj + k2

]
Vj

)
,

E1+m = E0 +
κη

Γ(η + 2)

(
νBp

1+m

[
Sp

1+m + πVp
1+m

]
− k3Ep

1+m

)
+

κη

Γ(η + 2)

m

∑
j=0

aj,1+m

(
νBj
[
Sj + πVj

]
− k3Ej

)
,

C1+m = C0 +
κη

Γ(η + 2)

(
qγ1Ep

1+m − k4Cp
1+m

)
+

κη

Γ(η + 2)

m

∑
j=0

aj,1+m

(
qγ1Ej − k4Cj

)
,

I1+m = I0 +
κη

Γ(η + 2)

(
q1γ1Ep

1+m + p1γ2Cp
1+m − [k5 + σ]Ip

1+m

)
+

κη

Γ(η + 2)

m

∑
j=0

aj,1+m

(
q1γ1Ej + p1γ2Cj − [k5 + σ]Ij

)
,

R1+m = R0 +
κη

Γ(η + 2)

(
pγ2Cp

1+m + σIp
1+m − k6Rp

1+m

)
+

κη

Γ(η + 2)

m

∑
j=0

aj,1+m

(
pγ2Cj + σIj − k6Rj

)
,

B1+m = B0 +
κη

Γ(η + 2)

(
pcCp

1+m + pi I
p
1+m − μbBp

1+m

)
+

κη

Γ(η + 2)

m

∑
j=0

aj,1+m

(
pcCj + pi Ij − μbBj

)
,

(27)
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where

Sp
1+m = S0 +

1
Γ(η)

m

∑
j=0

bj,1+m

(
Λh + ηRj + θVj − (νBj + k1)Sj

)
,

Vp
1+m = V0 +

1
Γ(η)

m

∑
j=0

bj,1+m

(
ξSj −

[
(1− ε)νBj + k2

]
Vj

)
,

Ep
1+m = E0 +

1
Γ(η)

m

∑
j=0

bj,1+m

(
νBj
[
Sj + πVj

]
− k3Ej

)
,

Cp
1+m = C0 +

1
Γ(η)

m

∑
j=0

bj,1+m

(
qγ1Ej − k4Cj

)
,

Ip
1+m = I0 +

1
Γ(η)

m

∑
j=0

bj,1+m

(
= q1γ1Ej + p1γ2Cj − [k5 + σ]Ij

)
,

Rp
1+m = R0 +

1
Γ(η)

m

∑
j=0

bj,1+m

(
pγ2Cj + σIj − k6Rj

)
,

Bp
1+m = B0 +

1
Γ(η)

m

∑
j=0

bj,1+m

(
pcCj + pi Ij − μbBj

)
,

(28)

and

aj,1+m =

⎧⎨⎩
mη+1 − (m + 1)(−η + m), j = 0,
(2− j + m)η+1 − 2(m− j + 1)1+η + (−j + m)1+η 1 ≤ j ≤ m,
1, j = 1 + m,

bj,1+m =
κη

η

(
(m + 1− j)η − (m− j)η

)
, 0 ≤ j ≤ m.

We then claim the following result.

Theorem 5. Under some conditions, the above numerical scheme (see Equations (27) and (28))
is stable.

Proof. Let S�
0, S�

j (j = 0, . . . , 1 + m) and S�p
1+m(m = 0, . . . , N − 1) be perturbations of S0,

Sj, and Sp
1+m, respectively. By using Equations (19) and (28), the following perturbation

equations are obtained:

S�p
1+m = S�

0 +
1

Γ(η)

m

∑
j=0

bj,1+m(G1(tj, Sj + S�
j )− G1(tj, Sj)), (29)

S�
1+m = S�

0 +
κη

Γ(η + 2)
(G1(t1+m, Sp

1+m + SP
1+m)− G1(t1+m, Sp

1+m))

+
κη

Γ(η + 2)

m

∑
j=0

aj,1+m(G1(tj, Sj + S�
j )− G1(tj, Sj)).

(30)

The Lipschitz condition permits us to obtain

|S�
1+m| ≤ φ0 +

κηM
Γ(η + 2)

(
|S�p

1+m|+
m

∑
j=1

aj,1+m|S�
j |
)

, (31)
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where φ0 = max
0≤m≤N

{
|S�

0 |+
κηMam,0

Γ(η + 2)
|S�

0 |
}

. From [32] (Equation (3.18)), it follows that

|S�p
1+m| ≤ Θ0 +

M
Γ(η)

m

∑
j=1

bj,1+m|S�
j |, (32)

where Θ0 = max
0≤m≤N

{
|S�

0 |+
Mbm,0

Γ(η)
|S�

0 |
}

. Substituting |S�p
1+m| from Equation (32) into

Equation (31) gives

|S�
1+m| ≤ �0 +

κηM
Γ(η + 2)

(
M

Γ(η)

m

∑
j=1

bj,1+m|S�
j |+

m

∑
j=1

aj,1+m|S�
j |
)

≤ �0 +
κηM

Γ(η + 2)

m

∑
j=1

(
M

Γ(η)
bj,1+m + aj,1+m

)
|S�

j |

≤ �0 +
κηMCη,2

Γ(η + 2)

m

∑
j=1

(m + 1− j)η−1|S�
j |,

(33)

where �0 = max{φ0 +
κηMa1+m,1+m

Γ(η + 2)
Θ0}.

Thanks to Lemma 2, we have that Cη,2 > 0 and depends only on η, and κ is assumed
to be small enough. A direct application of Lemma 1 implies |S�

1+m| ≤ C�0. The proof for
the other variables is obtained in the same way. This ends the proof.

2.3. Model Dynamics with the Standard Incidence Law

In this section, we extend model (2) by replacing the mass action incidence law with
the standard incidence law, and considering direct transmission (human to human). The
new typhoid fever transmission dynamics model is thus presented as follows:

Ṡ(t) = Λh + θV(t) + αR(t)− k1S(t)− β
(I + C)

N(t)
S(t)− ν

B(t)
B(t) + K

S(t), (34a)

V̇(t) = −
[

k2 + πβ
(C + I)

N(t)
+ πν

B(t)
K + B(t)

]
V(t) + ξS(t), (34b)

Ė(t) =
[
β
(C + I)

N(t)
+ ν

B(t)
B(t) + K

]
(πV(t) + S(t))− k3E(t), (34c)

Ċ(t) = qγ1E(t)− k4C(t), (34d)

İ(t) = q1γ1E(t) + p1γ2C(t)− k8 I(t), (34e)

Ṙ(t) = pγ2C(t) + σI(t)− k6R(t), (34f)

Ḃ(t) = pcC(t) + pi I(t)− μbB(t), (34g)

where β is the direct transmission rate, and K represents the half-saturation constant.
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The corresponding fractional model is given by

C
t0

Dη
t S(t) = Λh + θV(t) + αR(t)− k1S(t)− β

(I + C)
N(t)

S(t)− ν
B(t)

K + B(t)
S(t), (35a)

C
t0

Dη
t V(t) = −

[
k2 + πβ

(I + C)
N(t)

+ πν
B(t)

K + B(t)

]
V(t) + ξS(t), (35b)

C
t0

Dη
t E(t) =

[
β
(I + C)

N(t)
+ ν

B(t)
K + B(t)

]
(πV(t) + S(t))− k3E(t), (35c)

C
t0

Dη
t C(t) = qγ1E(t)− k4C(t), (35d)

C
t0

Dη
t I(t) = q1γ1E(t) + p1γ2C(t)− k8 I(t), (35e)

C
t0

Dη
t R(t) = pγ2C(t) + σI(t)− k6R(t), (35f)

C
t0

Dη
t B(t) = pcC(t) + pi I(t)− μbB(t). (35g)

Without loss of generality, it is evident that the new model (34) (resp. (35)) is also
defined in W .

Model (34) has the same disease-free equilibrium as model system (2). Using the same
approach developed in [29], we define the next-generation matrix of model system (34) as

NGM =

⎛⎜⎜⎜⎝
R1

H0 p1γ2β
N0k4k8

+ H0β
N0k4

H0β
N0k8

R4

0 0 0 0
0 0 0 0

R5
p1γ2 pi

k4k8
+ pc

k4

pi
k8

0

⎞⎟⎟⎟⎠
where R1 =

H0βγ1

N0k3k4

[
(p1γ2q + q1k4)

k8
+ q
]

, R4 =
H0ν

Kμb
, R5 =

γ1

k3k4

[
pi(p1γ2q + q1k4)

k8
+ pcq

]
,

and H0 = S0 + πV0.
Thus, the control reproduction number of model (34), which is the spectral radius of

NGM, is given by

Rc� =
R1 +

√
R2

1 + 4R4R5

2
. (36)

The following result is a direct consequence of Theorem 2 in [29] (see Appendix A for
the proof).

Proposition 3. For model (34) (resp. (35)), Q0 is locally asymptotically stable in W if Rc� < 1
and unstable if Rc� > 1.

Theorem 6. For the new typhoid model (34) (resp. (35)), the disease-free equilibriumQ0 is globally
asymptotically stable if Rc� < 1 and unstable otherwise.

Proof. See Appendix B.

3. Results

3.1. Numerical Results of the Fractional Model with Mass Action Incidence Law

We perform several simulations with the parameter values listed in Table 1.

Table 1. Parameter values of (2) taken from [5].

Parameter Value Parameter Value Parameter Value

Λh 1 μb 0.149990 ν 3.2618× 10−6

γ1 0.2145 ε 0.9495 δ 0.1499
γ2 0.1498 ξ 0.3221 σ 0.49992
α 0.0834 θ 0.0833 Rc 2.4750
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The step size is κ = 10−8, the initial time is T = 0, and the final time is T > 0. We
begin by showing the impact of fractional order on the dynamics of the disease. To this
aim, the fractional-order parameter varies between η = 1 and η = 0.5.

Figure 1 displays the impact of the Caputo fractional operator on the model dynamics.
For different values of the fractional-order parameter η, the infected state profiles are drawn.
From Figure 1, it follows that when the fractional order η decreases, the solutions of our
fractional model (5) have different behaviors. Indeed, when the fractional order decreases,
the number of infected humans in latent, carrier, and symptomatic states increases. This
is the same for the compartment B. This phenomenon was also observed in a malaria
fractional model studied by [38]. It is important to note that for η = 1, the solutions of the
fractional model converge to the solutions of the integer model.
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Figure 1. Simulation results showing the fractional dynamics on the infected state variable profiles
for different values of the fractional-order parameter η.

To evaluate the impact of vaccination on typhoid fever transmission dynamics, we
fix the vaccine efficacy at ε = 70% while the vaccine coverage parameter varies between
ξ = 0% and ξ = 90% (ξ ∈ {0.90, 0.50, 0.20, 0}), with different values of the fractional-order
η (η ∈ {1, 0.90, 0.80, 0.70, 0.60, 0.50}). The results are displayed in Figures 2–5.
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Figure 2. Simulation results showing the infected state variable profiles without vaccination (ξ = 0).
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Figure 3. Simulation results showing the infected state variable profiles when the vaccination
coverage ξ = 20% with different values of the fractional order.
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Figure 4. Simulation results showing the infected state variable profiles when the vaccination
coverage ξ = 50% with different values of the fractional order.
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Figure 5. Cont.
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Figure 5. Simulation results showing the infected state variable profiles when the vaccination
coverage ξ = 90% with different values of the fractional order.

Without vaccination coverage ξ = 0 (Figure 2), the peak delayed phenomenon is
observable. Indeed, for η = 1, the peak date corresponds to T = 45 months, with
approximately 3000 infected individuals in the latent stage, 400 asymptomatic individ-
uals, 950 symptomatic individuals, and 26,000 free salmonella in the environment. This
peak date is delayed when the fractional-order parameter η decreases. Thus, the peak
dates are beyond T = 45 months. From Figures 3–5, we note that this peak date is
forward delayed beyond T = 45 months whenever the fractional-order parameter η de-
creases. Moreover, the number of infected individuals decreases with the decrease in the
fractional-order parameter.

Now, in addition to vaccination, we consider environmental sanitation. To this aim,
the bacterial decay rate μb is modified to μb := μb + ω, where ω ∈ {0, 0.1, 0.2.0.3, 0.4}
represents the additional decay rate of free salmonella due to environmental sanitation [6].
The vaccination coverage is fixed at ξ = 32.21% as reported in Table 1. From Figures 6–9, it
is evident that mass vaccination combined with environmental sanitation has a positive
impact, reducing the disease burden.

Figure 6. Simulation results showing the infected state variable profiles when vaccination is combined
with environmental sanitation, for fractional order η = 1.
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Figure 7. Simulation results showing the infected state variable profiles when vaccination is combined
with environmental sanitation, for fractional order η = 0.90.

Figure 8. Simulation results showing the infected state variable profiles when vaccination is combined
with environmental sanitation, for fractional order η = 0.80.

Figure 9. Cont.
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Figure 9. Simulation results showing the infected state variable profiles when vaccination is combined
with environmental sanitation, for fractional order η = 0.70.

3.2. Numerical Results of the Fractional Model with Standard Incidence Law

To simulate the new fractional model (35), we use the parameter values listed in Table 2.
Note that the new typhoid model has been calibrated using real data from Mbandjock,
Cameroon (see [5,6]). In Figure 10, panel (a) shows the cumulative typhoid cases versus fitted
confirmed cases (infectious individuals tested positive), which is equal to (1− q)γ1E(t) +
(1− p)γ2C(t), while panel (b) presents the cumulative estimated cases for the next year.
The following fractions are used as initial conditions S(0) = 20,950/32,000, V(0) = 20/32,000,
E(0) = 200/32,000, C(0) = 150/32,000, I(0) = 60/32,000, R(0) = 1/32,000, and
B(0) = 500/106. The relative change is r = 1.83 × 10−7 and the function tolerance is equal
to 10−6.

Table 2. Estimated parameter values of the new typhoid model (35).

Parameter Values Source Parameter Values Source

Λh 3 Fitted μb 0.0015 Fitted
γ1 0.1512 Fitted ε 0.9497 Fitted
γ2 0.3039 Fitted ξ 0.1538 Fitted
δ 0.1382 Fitted β 0.60 Fitted
ν 0.00050 Fitted K 995.7957 Fitted
σ 0.4992 Fitted Rc� 1.4348 Estimated
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Figure 10. Parameter estimation and forecasting of cumulative new cases of typhoid fever in
Mbandjock, Cameroon, from 1 July 2019 to 31 August 2020, for the new model (35). Red bullets
denote real data (see [5,6]). The fitted model is represented with the blue line, and new forecasted
cases are represented by the dotted line.

First, we observe the general dynamics of the new fractional model. The results are
displayed in Figure 11. As for the case of the fractional model with mass incidence law (5),
Figure 11 reveals that when the fractional order η decreases, the solutions of our fractional
model (35) have different behaviors. The number of typhoid cases decreases and the peak
is delayed when the fractional order decreases.

Figure 11. Simulation results showing the fractional dynamics on the infected state variable profiles
for different values of the fractional-order parameter η.

Vaccination coverage impact is studied numerically. From Figures 12–15, it follows that
the more ξ increases, the fewer individuals are infected. This shows that mass vaccination
plays a important role in reducing the spread of the disease.
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Figure 12. Simulation results showing the infected state variable profiles when the vaccination
coverage ξ = 0% with different values of the fractional order.

Figure 13. Simulation results showing the infected state variable profiles when the vaccination
coverage ξ = 20% with different values of the fractional order.

Figure 14. Cont.

140



Fractal Fract. 2021, 5, 149

Figure 14. Simulation results showing the infected state variable profiles when the vaccination
coverage ξ = 50% with different values of the fractional order.

Figure 15. Simulation results showing the infected state variable profiles when the vaccination
coverage ξ = 90% with different values of the fractional order.

4. Discussion and Conclusions

In this work, we extended our previous SVEIR-B compartmental model [5] by replac-
ing the integer derivative with fractional derivatives, to evaluate the memory effect on the
transmission dynamics of typhoid fever. We began by recalling some previous results on
the integer model (the control reproduction number Rc, existence and stability of equilib-
rium points). In order to describe the non-local character as well as long-term memory
effects in the typhoid fever transmission dynamics, we replaced the integer derivative
with the fractional derivative in the Caputo sense and studied the asymptotic stability of
the disease-free equilibrium. Using fixed point theory, we proved the existence as well as
the uniqueness of the solutions of the fractional model. We used the Adams–Bashforth
method to construct the numerical scheme of the proposed fractional model. We then
established the stability of this proposed numerical scheme. We simulated our fractional
model using the Adams–Bashforth–Moulton scheme implemented by [39]. Using parame-
ter values for Mbandjock, a city in the central region of Cameroon, we simulates the model
by varying the fractional-order parameter, the vaccination coverage, and the bacterial
decay rate. Apart from the fact that the solutions of the fractional model converged to
the solutions of the integer model when the fractional-order approached one (η = 1), the
simulation results showed that the expected date of the disease peak was forward delayed
when the fractional-order parameter decreased. In addition, combining vaccination with
environmental sanitation can permit a considerable reduction in the disease’s spread.
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We then extended the previous models by replacing the mass action incidence law
with the standard incidence. The analysis of the models showed that the disease-free
equilibrium is also globally asymptotically stable whenever the corresponding reproduc-
tion number Rc� is less than one. Due to the complexity of the newly proposed models,
we could not prove the existence and uniqueness of the endemic equilibrium. However,
numerical simulations showed that it is possible that the new typhoid fever models permit
a unique endemic equilibrium that is globally stable whenever Rc� > 1, and no equi-
librium otherwise. We also found that, from a quantitative point of view, the disease
burden was overestimated with the models the with mass incidence law compared to the
one with the standard incidence law. Indeed, for the models with mass incidence, the
control reproduction number was estimated at 2.4750, while the one with the standard
incidence was estimated at 1.4348. This was in accordance with our previous work in
which we considered the standard incidence law. In [6], the control reproduction number
was estimated at 1.3722. As for the models with mass action incidences, we observed a
delay in the disease peaks whenever the fractional-order derivative decreased.

It was observed that mass vaccination can overcome this disease. In fact, if the means
are put in place to finance and implement vaccination campaigns in rural areas, it is possible
to eradicate typhoid fever. Moreover, these vaccination campaigns must be accompanied
by awareness campaigns among the population in order to combat this type of disease, as
well as instructing citizens on ways to protect their environment against the proliferation
of salmonella.

Our main contribution in this paper consisted in the formulation, using both integer
and fractional derivatives, of new transmission dynamics typhoid fever models that in-
corporate the standard incidence rates and mass vaccination. The values of the control
reproductive number differ from the model with mass action incidence and those with
the standard incidences. Indeed, for the model with mass action incidences, Rc = 2.4750,
while, for those with standard incidences, Rc∗ = 1.4348. This proves that mass action
incidence overestimates the disease burden.
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Appendix A. Proof of Proposition 3

Proof. The Jacobian matrix of (34) (resp. (35)) evaluated at the disease-free equilibrium Q0
is given by

J (Q0) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−k1 θ 0 − S0β
N0

− S0β
N0

α − S0ν
K

ξ −k2 0 −πV0β
N0

−πV0β
N0

0 −πV0ν
K

0 0 −k3
H0β
N0

H0β
N0

0 H0ν
K

0 0 γ1q −k4 0 0 0
0 0 q1γ1 p1γ2 −k8 0 0
0 0 0 pγ2 σ −k6 0
0 0 0 pc pi 0 −μb

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

(J1 J2
J3 J4

)
,

where J1 =

(−k1 θ
ξ −k2

)
, J4 =

⎛⎜⎜⎜⎜⎜⎝
−k3

H0β
N0

H0β
N0

0 H0ν
K

γ1q −k4 0 0 0
q1γ1 p1γ2 −k8 0 0

0 pγ2 σ −k6 0
0 pc pi 0 −μb

⎞⎟⎟⎟⎟⎟⎠,

J2 =

(
0 − S0β

N0
− S0β

N0
α − S0ν

K

0 −πV0β
N0

−πV0β
N0

0 −πV0ν
K

)
, and J3 = 0R5×2 . The eigenvalues of J (Q0)

are those of J1 and J4. It is evident that the eigenvalues of J1 have negative real
parts. Indeed, the characteristic polynomial of J1 is T (x) = det(J1 − xI2) = x2 + (k1 +
k2)x + k7. Since all its coefficients are positive, it follows that all its roots have negative
real parts. A trivial eigenvalue of J4 is x = −k6. The others are the roots of the fol-
lowing polynomial: I(x) = x4 + a1x3 + a2x2 + a3x + a4, with a1 = μb + k8 + k4 + k3,
a4 = k3k4k8μb(1−R�

c )(R�
c − R1 + 1),

a2 =
1

k8q + p1γ2q + q1k4

[
k2

8μbq + k4k8μbq + k3k8μbq + p1γ2k8μbq + p1γ2k4μbq + p1γ2k3μbq

+k4k2
8q + k3k2

8q + k3k4k8q(1− R1) + p1γ2k4k8q + p1γ2k3k8q + p1γ2k3k4q + q1k4k8μb

+q1k2
4μb + q1k3k4μb + q1k2

4k8 + q1k3k4k8(1− R1) + q1k3k2
4

]
,

and

a3 =
1

((p1γ2k8 + p2
1γ

2
2)pi + (k2

8 + p1γ2k8)pc)q2 + ((q1k4k8 + 2p1q1γ2k4)pi + q1k4k8 pc)q + q2
1k2

4 pi
×

×
[
((((p1γ2k4 + p1γ2k3)k2

8 + (((1− R1)p1γ2k3 + p2
1γ

2
2)k4 + p2

1γ
2
2k3)k8 + p2

1γ
2
2k3k4)μb

+(1− R1)p1γ2k3k4k2
8 + (1− R1)p2

1γ
2
2k3k4k8)pi + K1 pc)q2

+(K2 pi + (q1k3k2
4k8μb

(
1−R2

c� + R1Rc�

)
+ q1k2

4k2
8μb + (1− R1)q1k3k4k2

8μb + (1− R1)q1k3k2
4k2

8)pc)q

+(q2
1k3k2

4k8μb(1−Rc�)(1− R1 +Rc�) + q2
1k3

4k8μb + q2
1k3k3

4μb + (1− R1)q2
1k3k3

4k8)pi

]
.

K1 =
{

k8(1−Rc�)(1− R1 +Rc�) + p1γ2

(
1−R2

c� + R1Rc�

)}
k3k4k8μb

+ (k4 + k3)(k8 + p1γ2)k2
8μb + (1− R1)(k8 + p1γ2)k3k4k2

8

K2 = (k8 + p1γ2)q1k3k4k8μb

(
1−R2

c� + R1Rc�

)
+ (1− R1)p1γ2q1k3k4k8μb + ((1− R1)q1k3 + 2p1γ2q1)k2

4k8μ
2
b + 2p1γ2q1k3k2

4μb

+ q1k2
4k2

8μb + q1k3k2
4k8(1− R1)(k8 + 2p1γ2)
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It is clear that a1 is always positive, and ai, i ∈ {2, 3, 4} are positive if Rc� < 1. Indeed, it is
important to note that

Rc� < 1 =⇒ R1 < 1, (A1)

which implies that K1 > 0 and K2 > 0.
Thus, all coefficients of the polynomial I(x) are always positive whenever Rc� < 1. It

follows that, if Rc� < 1, then the disease-free equilibrium is locally asymptotically stable
if and only if the following conditions hold (because of the length of the expressions, we
omit them here):

a1a2 − a3 > 0 and a1a2a3 − a2
1a4 − a2

3 > 0. (A2)

This ends the proof.

It remains now to prove the corresponding result for the new fractional model (35).
To this aim, let us define the following equation:

det[r(I − (1− η)J (Q0))− ηJ (Q0)] = 0, (A3)

which is the characteristic equation of

J (Q0) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−k1 ϑ 0 − S0β
N0

− S0β
N0

0 − S0ν
K

ξ −k2 0 −V0βπ
N0

−V0βπ
N0

0 −V0νπ
N0

0 0 −k3
H0β
N0

H0β
N0

0 H0ν
K

0 0 γ1q −k4 0 0 0
0 0 q1γ1 p1γ2 −k8 0 0
0 0 0 γ2 p σ −k6 0
0 0 0 pc pi 0 −μb

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

From [4,30], it follows that Q0 is asymptotically stable, for the new fractional model, if
all solutions of (A3) have negative real parts.

Setting D := [r(I − (1− η)J (Q0))− ηQ0] =

(
D1 •

0R5×2 D4

)
, with

D1 :=
(
(η1k1 + 1)r + k1η −η1rϑ− ηϑ
−η1rξ − ηξ (η1k2 + 1)r + k2η

)
and

D4 :=

⎛⎜⎜⎜⎜⎝
(η1k3 + 1)r + k3η − H0η1βr

N0
− H0βη

N0
− H0η1βr

N0
− H0βη

N0
0 − H0η1νr

K − H0ην
K

−η1γ1qr− γ1ηq (η1k4 + 1)r + k4η 0 0 0
−η1q1γ1r− q1γ1η −η1 p1γ2r− p1γ2η (η1k8 + 1)r + k8η 0 0

0 −η1γ2 pr− γ2ηp −η1rσ− ησ (η1k6 + 1)r + k6η 0
0 −η1 pcr− pcη −η1 pir− ηpi 0 (η1μb + 1)r + μbη

⎞⎟⎟⎟⎟⎠,

it follows that the solutions of (A3) are the solutions of det(D1) = 0 and det(D4) = 0. From
the Proof of Theorem 2, it follows that the solutions of det(D1) = 0 have negative real parts.

It thus remains to show that the same is true for det(D4) = 0. Note that r = − k8η

η1k8 + 1
< 0

is a solution of det(D4) = 0. The others are the solutions of det(D�
4 ) = 0, where

D�
4 :=

⎛⎜⎜⎜⎝
(η1k3 + 1)r + k3η −H0η1βr

N0
− H0βη

N0
−H0η1βr

N0
− H0βη

N0
−H0η1νr

K − H0ην
K

−η1γ1qr− γ1ηq (η1k4 + 1)r + k4η 0 0
−η1q1γ1r− q1γ1η −η1 p1γ2r− p1γ2η (η1k8 + 1)r + k8η 0

0 −η1 pcr− pcη −η1 pir− ηpi (η1μb + 1)r + μbη

⎞⎟⎟⎟⎠.

After some straightforward algebraic computations, we obtain that

det(D�
4 ) = 0 ⇐⇒ r4 +

A2

A1
r3 +

A3

A1
r2 +

A4

A1
r +

A5

A1
= 0, (A4)

where
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A1 = ((((−p1γ2k3k4k2
8 − p2

1γ
2
2k3k4k8)μbR2

c� + (R1 p1γ2k3k4k2
8 + R1 p2

1γ
2
2k3k4k8)μbRc�

+ ((1− R1)p1γ2k3k4k2
8 + (1− R1)p2

1γ
2
2k3k4k8)μb)η

4

+ (((p1γ2k4 + p1γ2k3)k2
8 + (((1− R1)p1γ2k3 + p2

1γ
2
2)k4 + p2

1γ
2
2k3)k8 + p2

1γ
2
2k3k4)μb

+ (1− R1)p1γ2k3k4k2
8 + (1− R1)p2

1γ
2
2k3k4k8)η

3 + ((p1γ2k2
8 + (p1γ2k4 + p1γ2k3 + p2

1γ
2
2)k8 + p2

1γ
2
2k4 + p2

1γ
2
2k3)μb

+ (p1γ2k4 + p1γ2k3)k2
8 + (((1− R1)p1γ2k3 + p2

1γ
2
2)k4 + p2

1γ
2
2k3)k8 + p2

1γ
2
2k3k4)η

2

+ ((p1γ2k8 + p2
1γ

2
2)μb + p1γ2k2

8 + (p1γ2k4 + p1γ2k3 + p2
1γ

2
2)k8 + p2

1γ
2
2k4 + p2

1γ
2
2k3)η + p1γ2k8 + p2

1γ
2
2)pi

+ ((−k3k4k3
8 − p1γ2k3k4k2

8)μbR2
c + (R1k3k4k3

8 + R1 p1γ2k3k4k2
8)μbRc� + ((1− R1)k3k4k3

8 + (1− R1)p1γ2k3k4k2
8)μb)pcη

4

+ ((−k3k4k2
8 − p1γ2k3k4k8)μbR2

c� + (R1k3k4k2
8 + R1 p1γ2k3k4k8)μbRc� + ((k4 + k3)k3

8 + (((1− R1)k3 + p1γ2)k4 + p1γ2k3)k2
8

+ p1γ2k3k4k8)μb + (1− R1)k3k4k3
8 + (1− R1)p1γ2k3k4k2

8)pcη
3 + ((k3

8 + (k4 + k3 + p1γ2)k2
8 + (p1γ2k4 + p1γ2k3)k8)μb

+ (k4 + k3)k3
8 + (((1− R1)k3 + p1γ2)k4 + p1γ2k3)k2

8 + p1γ2k3k4k8)pcη
2 + ((k2

8 + p1γ2k8)μb + k3
8 + (k4 + k3 + p1γ2)k2

8

+ (p1γ2k4 + p1γ2k3)k8)pcη + (k2
8 + p1γ2k8)pc)q2

+ ((((−q1k3k2
4k2

8 − 2p1q1γ2k3k2
4k8)μbR2

c� + (R1q1k3k2
4k2

8 + 2R1 p1q1γ2k3k2
4k8)μbRc�

+ ((1− R1)q1k3k2
4k2

8 + (2− 2R1)p1q1γ2k3k2
4k8)μb)η

4

+ ((−q1k3k4k2
8 − p1q1γ2k3k4k8)μbR2

c� + (R1q1k3k4k2
8 + R1 p1q1γ2k3k4k8)μbRc�

+ ((q1k2
4 + q1k3k4)k2

8 + (((1− R1)q1k3 + 2p1q1γ2)k2
4 + (2− R1)p1q1γ2k3k4)k8 + 2p1q1γ2k3k2

4)μb

+ (1− R1)q1k3k2
4k2

8 + (2− 2R1)p1q1γ2k3k2
4k8)η

3 + ((q1k4k2
8 + (q1k2

4 + (q1k3 + 2p1q1γ2)k4)k8 + 2p1q1γ2k2
4 + 2p1q1γ2k3k4)μb

+ (q1k2
4 + q1k3k4)k2

8 + (((1− R1)q1k3 + 2p1q1γ2)k2
4 + (2− R1)p1q1γ2k3k4)k8 + 2p1q1γ2k3k2

4)η
2 + ((q1k4k8 + 2p1q1γ2k4)μb

+ q1k4k2
8 + (q1k2

4 + (q1k3 + 2p1q1γ2)k4)k8 + 2p1q1γ2k2
4 + 2p1q1γ2k3k4)η + q1k4k8 + 2p1q1γ2k4)pi

+ (−q1k3k2
4k2

8μbR2
c� + R1q1k3k2

4k2
8μbRc� + (1− R1)q1k3k2

4k2
8μb)pcη

4

+ (−q1k3k2
4k8μbR2

c� + R1q1k3k2
4k8μbRc� + ((q1k2

4 + (1− R1)q1k3k4)k2
8 + q1k3k2

4k8)μb + (1− R1)q1k3k2
4k2

8)pcη
3

+ ((q1k4k2
8 + (q1k2

4 + q1k3k4)k8)μb + (q1k2
4 + (1− R1)q1k3k4)k2

8 + q1k3k2
4k8)pcη

2

+ (q1k4k8μb + q1k4k2
8 + (q1k2

4 + q1k3k4)k8)pcη + q1k4k8 pc)q

+ ((−q2
1k3k3

4k8μbR2
c� + R1q2

1k3k3
4k8μbRc� + (1− R1)q2

1k3k3
4k8μb)η

4

+ (−q2
1k3k2

4k8μbR2
c� + R1q2

1k3k2
4k8μbRc� + ((q2

1k3
4 + (1− R1)q2

1k3k2
4)k8 + q2

1k3k3
4)μb + (1− R1)q2

1k3k3
4k8)η

3

+ ((q2
1k2

4k8 + q2
1k3

4 + q2
1k3k2

4)μb + (q2
1k3

4 + (1− R1)q2
1k3k2

4)k8 + q2
1k3k3

4)η
2 + (q2

1k2
4μb + q2

1k2
4k8 + q2

1k3
4 + q2

1k3k2
4)η + q2

1k2
4)pi,

A4 = ((4(k8 + p1γ2)p1γ2k3k4k8μb(1−Rc�)(1 +Rc� − R1)η
4

+ (((p1γ2k4 + p1γ2k3)k2
8 + (((1− R1)p1γ2k3 + p2

1γ
2
2)k4 + p2

1γ
2
2k3)k8 + p2

1γ
2
2k3k4)μb

+ (1− R1)p1γ2k3k4k2
8 + (1− R1)p2

1γ
2
2k3k4k8)η

3)pi + 4(k8 + p1γ2)(1−Rc�)(1 +Rc� − R1)k3k4k2
8μb pcη

4

+ ((k8 + p1γ2)k3k4k8μbRc�(R1 −Rc�) + ((k4 + k3)k3
8

+ (((1− R1)k3 + p1γ2)k4 + p1γ2k3)k2
8 + p1γ2k3k4k8)μb + (1− R1)k3k4k3

8 + (1− R1)p1γ2k3k4k2
8)pcη

3)q2

+ ((((−4q1k3k2
4k2

8 − 8p1q1γ2k3k2
4k8)μbR2

c� + (4R1q1k3k2
4k2

8 + 8R1 p1q1γ2k3k2
4k8)μbRc�

+ ((4− 4R1)q1k3k2
4k2

8 + (8− 8R1)p1q1γ2k3k2
4k8)μb)η

4

+ ((−q1k3k4k2
8 − p1q1γ2k3k4k8)μbR2

c� + (R1q1k3k4k2
8 + R1 p1q1γ2k3k4k8)μbRc� + ((q1k2

4 + q1k3k4)k2
8

+ (((1− R1)q1k3 + 2p1q1γ2)k2
4 + (2− R1)p1q1γ2k3k4)k8 + 2p1q1γ2k3k2

4)μb + (1− R1)q1k3k2
4k2

8

+ (2− 2R1)p1q1γ2k3k2
4k8)η

3)pi + (−4q1k3k2
4k2

8μbR2
c� + 4R1q1k3k2

4k2
8μbRc� + (4− 4R1)q1k3k2

4k2
8μb)pcη

4

+ (−q1k3k2
4k8μbR2

c� + R1q1k3k2
4k8μbRc� + ((q1k2

4 + (1− R1)q1k3k4)k2
8 + q1k3k2

4k8)μb

+ (1− R1)q1k3k2
4k2

8)pcη
3)q + ((−4q2

1k3k3
4k8μbR2

c� + 4R1q2
1k3k3

4k8μbRc� + (4− 4R1)q2
1k3k3

4k8μb)η
4

+ (−q2
1k3k2

4k8μbR2
c� + R1q2

1k3k2
4k8μbRc� + ((q2

1k3
4 + (1− R1)q2

1k3k2
4)k8 + q2

1k3k3
4)μb + (1− R1)q2

1k3k3
4k8)η

3)pi,
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A5 = k3k4k8μb(Rc� − R1 + 1)η4(k8q + p1γ2q + q1k4)(p1γ2 piq + k8 pcq + q1k4 pi)(1−Rc�),

A2 = ((((−4p1γ2k3k4k2
8 − 4p2

1γ
2
2k3k4k8)μbR2

c� + (4R1 p1γ2k3k4k2
8 + 4R1 p2

1γ
2
2k3k4k8)μbRc�

+ ((4− 4R1)p1γ2k3k4k2
8 + (4− 4R1)p2

1γ
2
2k3k4k8)μb)η

4

+ (((3p1γ2k4 + 3p1γ2k3)k2
8 + (((3− 3R1)p1γ2k3 + 3p2

1γ
2
2)k4 + 3p2

1γ
2
2k3)k8 + 3p2

1γ
2
2k3k4)μb

+ (3− 3R1)p1γ2k3k4k2
8 + (3− 3R1)p2

1γ
2
2k3k4k8)η

3 + ((2p1γ2k2
8 + (2p1γ2k4 + 2p1γ2k3 + 2p2

1γ
2
2)k8 + 2p2

1γ
2
2k4 + 2p2

1γ
2
2k3)μb

+ (2p1γ2k4 + 2p1γ2k3)k2
8 + (((2− 2R1)p1γ2k3 + 2p2

1γ
2
2)k4 + 2p2

1γ
2
2k3)k8 + 2p2

1γ
2
2k3k4)η

2

+ ((p1γ2k8 + p2
1γ

2
2)μb + p1γ2k2

8 + (p1γ2k4 + p1γ2k3 + p2
1γ

2
2)k8 + p2

1γ
2
2k4 + p2

1γ
2
2k3)η)pi

+ ((−4k3k4k3
8 − 4p1γ2k3k4k2

8)μbR2
c� + (4R1k3k4k3

8 + 4R1 p1γ2k3k4k2
8)μbRc� + 4(1− R1)(k8 + p1γ2)k3k4k2

8μb)pcη
4

+ ((−3k3k4k2
8 − 3p1γ2k3k4k8)μbR2

c� + (3R1k3k4k2
8 + 3R1 p1γ2k3k4k8)μbRc�

+ (3(k4 + k3)k3
8 + ((3(1− R1)k3 + 3p1γ2)k4 + 3p1γ2k3)k2

8 + 3p1γ2k3k4k8)μb + 3(1− R1)k3k4k3
8 + 3(1− R1)p1γ2k3k4k2

8)pcη
3

+ ((2k3
8 + (2k4 + 2k3 + 2p1γ2)k2

8 + (2p1γ2k4 + 2p1γ2k3)k8)μb + (2k4 + 2k3)k3
8 + (((2− 2R1)k3 + 2p1γ2)k4 + 2p1γ2k3)k2

8

+ 2p1γ2k3k4k8)pcη
2 + ((k2

8 + p1γ2k8)μb + k3
8 + (k4 + k3 + p1γ2)k2

8 + (p1γ2k4 + p1γ2k3)k8)pcη)q2

+ ((((−4q1k3k2
4k2

8 − 8p1q1γ2k3k2
4k8)μbR2

c� + (4R1q1k3k2
4k2

8 + 8R1 p1q1γ2k3k2
4k8)μbRc�

+ ((4− 4R1)q1k3k2
4k2

8 + (8− 8R1)p1q1γ2k3k2
4k8)μb)η

4

+ ((−3q1k3k4k2
8 − 3p1q1γ2k3k4k8)μbR2

c� + (3R1q1k3k4k2
8 + 3R1 p1q1γ2k3k4k8)μbRc�

+ ((3q1k2
4 + 3q1k3k4)k2

8 + (((3− 3R1)q1k3 + 6p1q1γ2)k2
4 + (6− 3R1)p1q1γ2k3k4)k8 + 6p1q1γ2k3k2

4)μb + (3− 3R1)q1k3k2
4k2

8

+ (6− 6R1)p1q1γ2k3k2
4k8)η

3 + ((2q1k4k2
8 + (2q1k2

4 + (2q1k3 + 4p1q1γ2)k4)k8 + 4p1q1γ2k2
4 + 4p1q1γ2k3k4)μb

+ (2q1k2
4 + 2q1k3k4)k2

8 + (((2− 2R1)q1k3 + 4p1q1γ2)k2
4 + (4− 2R1)p1q1γ2k3k4)k8 + 4p1q1γ2k3k2

4)η
2

+ ((q1k4k8 + 2p1q1γ2k4)μb + q1k4k2
8 + (q1k2

4 + (q1k3 + 2p1q1γ2)k4)k8 + 2p1q1γ2k2
4 + 2p1q1γ2k3k4)η)pi

+ 4(1− R1 + R1Rc� −R2
c�)q1k3k2

4k2
8μb pcη

4

+ (−3q1k3k2
4k8μbR2

c� + 3R1q1k3k2
4k8μbRc� + ((3q1k2

4 + (3− 3R1)q1k3k4)k2
8 + 3q1k3k2

4k8)μb + (3− 3R1)q1k3k2
4k2

8)pcη
3

+ ((2q1k4k2
8 + (2q1k2

4 + 2q1k3k4)k8)μb + (2q1k2
4 + (2− 2R1)q1k3k4)k2

8 + 2q1k3k2
4k8)pcη

2

+ (q1k4k8μb + q1k4k2
8 + (q1k2

4 + q1k3k4)k8)pcη)q

+ ((−4q2
1k3k3

4k8μbR2
c� + 4R1q2

1k3k3
4k8μbRc� + (4− 4R1)q2

1k3k3
4k8μb)η

4

+ (−3q2
1k3k2

4k8μbR2
c + 3R1q2

1k3k2
4k8μbRc� + ((3q2

1k3
4 + (3− 3R1)q2

1k3k2
4)k8 + 3q2

1k3k3
4)μb + (3− 3R1)q2

1k3k3
4k8)η

3

+ ((2q2
1k2

4k8 + 2q2
1k3

4 + 2q2
1k3k2

4)μb + (2q2
1k3

4 + (2− 2R1)q2
1k3k2

4)k8 + 2q2
1k3k3

4)η
2 + (q2

1k2
4μb + q2

1k2
4k8 + q2

1k3
4 + q2

1k3k2
4)η)pi,
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A3 = ((((−6p1γ2k3k4k2
8 − 6p2

1γ
2
2k3k4k8)μbR2

c + (6R1 p1γ2k3k4k2
8 + 6R1 p2

1γ
2
2k3k4k8)μbRc

+ ((6− 6R1)p1γ2k3k4k2
8 + (6− 6R1)p2

1γ
2
2k3k4k8)μb)η

4 + (((3p1γ2k4 + 3p1γ2k3)k2
8

+ (((3− 3R1)p1γ2k3 + 3p2
1γ

2
2)k4 + 3p2

1γ
2
2k3)k8 + 3p2

1γ
2
2k3k4)μb + (3− 3R1)p1γ2k3k4k2

8 + (3− 3R1)p2
1γ

2
2k3k4k8)η

3

+ ((p1γ2k2
8 + (p1γ2k4 + p1γ2k3 + p2

1γ
2
2)k8 + p2

1γ
2
2k4 + p2

1γ
2
2k3)μb + (p1γ2k4 + p1γ2k3)k2

8

+ (((1− R1)p1γ2k3 + p2
1γ

2
2)k4 + p2

1γ
2
2k3)k8 + p2

1γ
2
2k3k4)η

2)pi

+ ((−6k3k4k3
8 − 6p1γ2k3k4k2

8)μbR2
c� + (6R1k3k4k3

8 + 6R1 p1γ2k3k4k2
8)μbRc� + (6− 6R1)(k3k4k3

8 + p1γ2k3k4k2
8)μb)pcη

4

+ ((−3k3k4k2
8 − 3p1γ2k3k4k8)μbR2

c� + (3R1k3k4k2
8 + 3R1 p1γ2k3k4k8)μbRc

+ ((3k4 + 3k3)k3
8 + (((3− 3R1)k3 + 3p1γ2)k4 + 3p1γ2k3)k2

8 + 3p1γ2k3k4k8)μb + 3(1− R1)k3k4k2
8(k8 + p1γ2))pcη

3

+ ((k3
8 + (k4 + k3 + p1γ2)k2

8 + p1γ2(k4 + k3)k8)μb + (k4 + k3)k3
8 + (((1− R1)k3 + p1γ2)k4 + p1γ2k3)k2

8 + p1γ2k3k4k8)pcη
2)q2

+ ((((−6q1k3k2
4k2

8 − 12p1q1γ2k3k2
4k8)μbR2

c + (6R1q1k3k2
4k2

8 + 12R1 p1q1γ2k3k2
4k8)μbRc�

+ ((6− 6R1)q1k3k2
4k2

8 + (12− 12R1)p1q1γ2k3k2
4k8)μb)η

4

+ ((−3q1k3k4k2
8 − 3p1q1γ2k3k4k8)μbR2

c� + (3R1q1k3k4k2
8 + 3R1 p1q1γ2k3k4k8)μbRc

+ ((3q1k2
4 + 3q1k3k4)k2

8 + (((3− 3R1)q1k3 + 6p1q1γ2)k2
4 + (6− 3R1)p1q1γ2k3k4)k8 + 6p1q1γ2k3k2

4)μb

+ (3− 3R1)q1k3k2
4k2

8 + (6− 6R1)p1q1γ2k3k2
4k8)η

3

+ ((q1k4k2
8 + (q1k2

4 + (q1k3 + 2p1q1γ2)k4)k8 + 2p1q1γ2k2
4 + 2p1q1γ2k3k4)μb + (q1k2

4 + q1k3k4)k2
8

+ (((1− R1)q1k3 + 2p1q1γ2)k2
4 + (2− R1)p1q1γ2k3k4)k8 + 2p1q1γ2k3k2

4)η
2)pi

+ (−6q1k3k2
4k2

8μbR2
c� + 6R1q1k3k2

4k2
8μbRc� + (6− 6R1)q1k3k2

4k2
8μb)pcη

4

+ (−3q1k3k2
4k8μbR2

c� + 3R1q1k3k2
4k8μbRc� + ((3q1k2

4 + (3− 3R1)q1k3k4)k2
8 + 3q1k3k2

4k8)μb + (3− 3R1)q1k3k2
4k2

8)pcη
3

+ ((q1k4k2
8 + (q1k2

4 + q1k3k4)k8)μb + (q1k2
4 + (1− R1)q1k3k4)k2

8 + q1k3k2
4k8)pcη

2)q

+ ((−6q2
1k3k3

4k8μbR2
c� + 6R1q2

1k3k3
4k8μbRc� + (6− 6R1)q2

1k3k3
4k8μb)η

4

+ (−3q2
1k3k2

4k8μbR2
c� + 3R1q2

1k3k2
4k8μbRc� + ((3q2

1k3
4 + (3− 3R1)q2

1k3k2
4)k8 + 3q2

1k3k3
4)μb + (3− 3R1)q2

1k3k3
4k8)η

3

+ ((q2
1k2

4k8 + q2
1k3

4 + q2
1k3k2

4)μb + (q2
1k3

4 + (1− R1)q2
1k3k2

4)k8 + q2
1k3k3

4)η
2)pi.

It is possible to show that all the above coefficients are positive whenever Rc� < 1.
Then, it follows that, if Rc < 1, then the disease-free equilibrium Q0 is asymptotically stable

whenever the following Routh–Hurwitz criteria, A1 A2
A2

5
− A3

A5
> 0 and A1 A2 A3

A3
5

− A2
1 A4
A3

5
− A2

3
A2

5
> 0,

are satisfied for polynomial det(D�
4). (Given the heaviness of these coefficients, we do not

present the Routh–Hurwitz conditions here.)

Appendix B. Proof of Theorem 6

Let us rewrite system (34) as⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

dE
dt
dC
dt
dI
dt
dB
dt

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎝
−k3

H0β
N0

H0β
N0

H0ν
K

γ1q −k4 0 0
q1γ1 p1γ2 −k8 0

0 pc pi −μb

⎞⎟⎟⎟⎠
⎛⎜⎜⎝

E
C
I
B

⎞⎟⎟⎠−N (S, V, E, C, I, R, B), (A5)

where N (S, V, E, C, I, R, B) =

⎛⎜⎜⎜⎜⎝
β(C + I)

(
H0

N0
− H

N

)
+ νB

(
H0

K
− H

K + B

)
0
0
0

⎞⎟⎟⎟⎟⎠.
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In W , H = S + πV < H0 = S0 + πV0 for t > 0; thus, N (S, V, E, C, I, R, B) ≥ O
R4 .

Note that Proposition 3 ensures that the following matrix

J (Q0) =

⎛⎜⎜⎜⎝
−k3

H0β
N0

H0β
N0

H0ν
K

γ1q −k4 0 0
q1γ1 p1γ2 −k8 0

0 pc pi −μb

⎞⎟⎟⎟⎠
has all its eigenvalues with negative real parts. It follows that from the comparison
theorem [40], (E, C, I, B) −→ (0, 0, 0, 0) and (S, V, R) −→ (S0, V0, 0) as t −→ +∞. Thus,
(S, V, E, C, I, R, B) −→ Q0 = (S0, V0, 0, 0, 0, 0, 0) as t −→ +∞. We finally conclude that the
disease–free equilibrium is globally asymptotically stable in W if Rc� < 1.
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Abstract: There is an increasing demand for numerical methods to obtain accurate approximate
solutions for nonlinear models based upon polynomials and transcendental equations under both
single and multivariate variables. Keeping in mind the high demand within the scientific literature,
we attempt to devise a new nonlinear three-step method with tenth-order convergence while using
six functional evaluations (three functions and three first-order derivatives) per iteration. The method
has an efficiency index of about 1.4678, which is higher than most optimal methods. Convergence
analysis for single and systems of nonlinear equations is also carried out. The same is verified
with the approximated computational order of convergence in the absence of an exact solution.
To observe the global fractal behavior of the proposed method, different types of complex functions
are considered under basins of attraction. When compared with various well-known methods, it
is observed that the proposed method achieves prespecified tolerance in the minimum number of
iterations while assuming different initial guesses. Nonlinear models include those employed in
science and engineering, including chemical, electrical, biochemical, geometrical, and meteorological
models.

Keywords: nonlinear models; efficiency index; computational cost; Halley’s method; basin of
attraction; computational order of convergence

MSC: 65H04; 68W05

1. Introduction

The study of iterative methods for solving nonlinear equations and systems appears
to be a very important area in theory and practice. Such problems appear not only in
applied mathematics but also in many branches of science including engineering (design
of an electric circuit), physics (pipe friction), chemistry (greenhouse gases and rainwater),
biology (steady-state of Lotka–Volterra system), fluid dynamics (combined conductive–
radiative heat transfer), environmental engineering (oxygen level in a river downstream
from a sewage discharge), finance (option pricing), and many more. The study of nonlinear
models is a vital area of research in numerical analysis. Interesting applications in pure
and applied sciences can be studied in the general construction of the nonlinear equations
expressed in the form g(x) = 0. Due to their significance, several iterative methods have
been devised under certain situations since it is near to impossible to obtain exact solutions
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of models that are nonlinear in nature. These iterative methods have been constructed
using different existing methods such as Taylor expansion, the perturbation method, the
homotopy perturbation method, Adomian decomposition method, quadrature formula,
multi-point iterative methods, the Steffensen-type methods adapted to multidimensional
cases, and the variational iteration method. For detailed information, see [1–8]. Among
existing iterative methods, the optimal methods are considered those that satisfy the
condition for an order of convergence of 2k−1, where k stands for the number of function
evaluations per iteration as suggested in [9]. In this way, Newton’s classical method
xn+1 = xn − g(xn)

g′(xn)
is the optimal method with quadratic convergence. Various attempts

have been made to improve the efficiency of Newton’s classical method in past and recent
research, as can be seen in [10–15] and most of the references cited therein.

2. Materials and Methods

In a general form, the uni-variate nonlinear equation can be expressed as g(x) = 0,
where x is the desired quantity. It is extremely difficult to solve the nonlinear equation
to find the value of x. Therefore, we attempt to devise a new, highly convergent iterative
method to obtain an accurate approximate x that could yield the smallest possible error
in the numerical solution. Before we continue with a discussion and derivation of the
proposed method, we present some of the methods that are frequently used in the available
literature. Later, we use these methods to compare the results obtained under these
methods and the results obtained via the method we plan to propose.

2.1. Some Existing Methods

The iterative method ,called the Newton Rahpson method NR2 [1,16,17] with quadratic
convergence, is shown below and uses two function evaluations: one for the function g(x)
itself and 1 for the first derivative g′(x):

xn+1 = xn −
g(xn)

g′(xn)
, n = 0, 1, 2, . . . , (1)

where g′(xn) �= 0.
In [2], the authors proposed an iterative method with fifth-order convergence as

abbreviated by MHM5. The method requires four function evaluations per iteration: two
for the function itself and two first derivatives. The computational steps for the two-step
method MHM5 is described below:

yn= xn −
g(xn)

g′(xn)
,

xn+1= yn −
g′(yn) + 3g′(xn)

5g′(yn)− g′(xn)
.

g(yn)

g′(xn)
,

n = 0, 1, 2, . . . , (2)

where g′(xn) �= 0 and 5g′(yn) �= g′(xn).
An efficient three-step iterative method with sixth-order convergence is proposed

in [3]. This method is the combination of two different methods from [1,18] with second
and third-order convergence, respectively. The method requires five function evaluations:
three evaluations of the function itself and two evaluations of the first-order derivative per
iteration. We represent the method as HM6. The computational steps of the method can be
described as follows:

yn= xn −
g(xn)

g′(xn)
,

zn= yn −
g(yn)

g′(yn)
,

xx+1= yn −
g(yn) + g(zn)

g′(yn)
.

n = 0, 1, 2, . . . , (3)
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The three-step method with eighth-order convergence as denoted by WO8 is proposed
in [19]. The method requires four function evaluations: three evaluations of the function
itself and one evaluation of the first-order derivative per iteration. The computational steps
of WO8 can be described as follows:

yn= xn −
g(xn)

g′(xn)
,

zn= xn −
g(xn)

g′(xn)

4g(xn)2 − 5g(xn)g(yn)− g(yn)2

4g(xn)2 − 9g(xn)g(yn)
,

xn+1= zn −
g(zn)

g′(xn)

[
1 + 4

g(zn)

g(xn)

][ 8g(yn)

4g(xn)− 11g(yn)
+ 1 +

g(zn)

g(yn)

]
.

n = 0, 1, 2, . . . , (4)

The iterative method with ninth-order convergence can be seen in [20]. The method
requires five function evaluations: three evaluations of function itself and two evalua-
tions of the first-order derivative per iteration. This method is abbreviated as NM9. The
computational steps of the method are described as follows:

yn= xn −
g(xn)

g′(xn)
,

zn= yn −
[
1 +
( g(yn)

g(xn)

)2] g(yn)

g′(yn)
,

xn+1= zn −
[
1 + 2

( g(yn)

g(xn)

)2
+ 2

g(zn)

g(yn)

] g(zn)

g′(yn)
.

n = 0, 1, 2, . . . , (5)

The predictor–corrector modified Householder’s method with tenth order conver-
gence, as denoted by MH10, is proposed in [21]. The method is free from the second
derivative and requires only five function evaluations per iteration: three evaluations of
the function itself and two evaluations of the first-order derivative. The computational
steps of MH10 can be described as

yn= xn −
g(xn)

g′(xn)
,

zn= yn −
g(yn)

g′(yn)
− g2(yn)P(yn)

2g′3(yn)
,

xn+1= zn −
g(zn)

g[zn, yn] + (zn − yn)g[zn, yn, yn]
,

n = 0, 1, 2, . . . , (6)

where

P(yn)= g′′(yn) =
2

xn − yn

[
3

g(xn)− g(yn)

xn − yn
− 2g′(yn)− g′(xn)

]
,

g[zn, yn]=
g(zn)− g(yn)

zn − yn
,

g[zn, yn, yn]=
g[zn, yn]− g′(yn)

zn − yn
.

(7)

2.2. Proposed Iterative Method

There are many recent research studies wherein researchers have presented modified
iterative methods to solve nonlinear models of the form g(x) = 0. In some of these meth-
ods, modification is based on the idea of combining two existing methods to develop a
new method with a better order of convergence. After being motivated by such an idea
as observed in [3,22–24], we have developed a new method with tenth-order convergence
via the blending of two different iterative methods with second (Newton method) and
fifth-order (modified Halley method) convergence as given in [1,2], respectively. We recom-
mended the higher-order convergent method of the convergence order 2 × 5 = 10. The
choice of the methods in the present work is suitable because the resultant iterative method
with tenth order convergence uses only 6 function evaluations (3 function evaluations and
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three evaluations of the first-order derivative) per iteration. It may be noted that the choice
of blending of methods is extremely important to avoid extra function evaluations that
could bring additional computational cost, as can be seen in [25,26]. Hence, the proposed
iterative method not only confirms higher-order convergence but also employs fewer
function evaluations, as can be described by the following proposed three-step method
abbreviated as PM10:

yn= xn −
g(xn)

g′(xn)
,

zn= yn −
g(yn)

g′(yn)
,

xx+1= zn −
g′(zn) + 3g′(yn)

5g′(zn)− g′(yn)

(
g(zn)

g′(yn)

)
.

n = 0, 1, 2, . . . , (8)

The proposed iterative three-step method given in (8) is discussed in the flowchart
presented in Figure 1.

START

Read x0, ε

Define
g(x) , g’(x)x0=x1

Compute
y1 = x0− g(x0)

g′(x0)

Compute
z1 = y1− g(y1)

g′(y1)

Compute
x1 = z1−(

g′(z1)+3g′(y1)
5g′(z1)−g′(y1)

)(
g(z1)
g′(y1)

)
E=x1-x0

Is |E| > ε?

Print x1

STOP

Yes
No

Figure 1. Flowchart of the proposed three-step method given in (8).
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Furthermore, the efficiency index e is also computed for the proposed iterative method
as 101/6 ≈ 1.4678, whereas it would generally be shown as 101/3(n+n2) for n ≥ 1. The
following Table 1 and the Figure 2 can be consulted for the computation and comparison
of all iterative methods taken for comparison in the present research work. Although
the function evaluations (FV) of PM10 in the Table 1 seem to be more than some of the
methods under consideration, to achieve the desired accuracy regarding the performance
of the latter under different initial guesses (IG), the number of iterations (N) and CPU time
(seconds) are better than most of the methods. This discussion is presented in Section 5.

Table 1. Comparison of efficiency indices for methods under consideration.

Method Order FV EI New Function Evaluations per Iteration for n ≥ 1.

PM10 10 6 1.4678 × 100 3(n + n2)

MH10 10 5 1.5849 × 100 3n + 2n2

NM9 9 5 1.5518 × 100 3n + 2n2

WO8 8 4 1.6818 × 100 3n + n2

HM6 6 5 1.4310 × 100 3n + 2n2

MHM5 5 4 1.4953 × 100 2(n + n2)

NR2 2 2 1.4142 × 100 n + n2

0 5 10 15

dimension (1  n  15)

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

E
I

PM
10

MH
10

NM
9

WO
8

HM
6

MHM
5

NR
2

Figure 2. Behavior of efficiency index of various iterative methods for increasing dimensions of the
nonlinear problem.

3. Convergence Analysis

This section has been devoted to the proof of local convergence analysis for the
proposed tenth-order method under both scalar and vector (systems) cases. Single and
multivariate Taylor’s series expansion have been used to obtain the required order of local
convergence. It is worth noting that the convergence analysis is addressed in a similar
manner to many other existing articles, and the main interest in developing higher-order
methods is of the academic type. Even if higher-order methods are more complicated, the
efficiency can be measured, and this is why we have included the CPU time, as found
in Section 5. The theorems stated below are later used for the theoretical analysis of the
convergence.
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Theorem 1. (Single real variable Taylor’s series expansion): Suppose that r ≥ 1 is an integer and
further suppose that g : R → R is an r-times differentiable function at some finite point α ∈ R.
Then, there exists the following expression:

g(xn) = g(α) + g′(α)δn +
1
2!

g′′(α)δ2
n + ·+ 1

r!
g(r)(α)δr

n + Rr(xn), (9)

where Rr(x) is the remainder term, whose integral form is

Rr(xn) =
∫ xn

α

1
(r + 1)!

g(r+1)(t)(xn − t)rdt. (10)

Theorem 2. (Multivariable Taylor’s series expansion): Suppose that G : P ⊆ Rn → Rn is an
r-times Frechet differentiable system of functions in a convex set P ⊆ Rn; then, for any x and
k ∈ Rn the equation given below is true:

G(x + k) = G(x) + kG′(x) +
k2

2!
G′′(x) +

k3

3!
G′′(x) + . . . +

kr−1

r!
G(r−1)(x) + Rr, (11)

where ||Rr|| ≤ 1
r! sup0<t<1 ||G(r)(x + kt)||||k||r and G(q)(x)kq = (. . . (G(q)(x)k) q. . .)k ∈ Rn.

3.1. Convergence under Scalar Case

In this subsection, we theoretically prove the local order of convergence for PM10.

Theorem 3. Suppose that α ∈ P is the required simple root for a differentiable function g : P ⊆
R → R within an open real interval P. Then, the proposed three-step numerical method (8)
possesses tenth-order convergence, and the asymptotic error term is given by

εxn+1 =
g′′7(α)

4096g′9(α)

(
52g′(α)g′′′(α)− 35g′′2(α)

)
ε10

xn +O(ε11
xn). (12)

Proof. Suppose α is the root of g(xn), where xn is the nth approximation for the root by the
proposed method (8), and εxn = xn − α is the error term in variable x at the nth iteration
step. Employing the single real variable Taylor’s series given in the theorem (1) for g(xn)
around α, we obtain

g(xn) = g′(α)εxn +
1
2!

g′′(α)ε2
xn +O(ε3

xn). (13)

Similarly, using the Taylor’s series for 1/g′(xn) around α, we obtain

1
g′(xn)

=
1

g′(α)
− g′′(α)

g′2(α)
εxn +

1
g′(α)

( g′′2(α)
g′2(α)

− g′′′(α)
2g′(α)

)
ε2

xn +O(ε3
xn). (14)

Multiplying (13) and (14), we obtain

g(xn)

g′(xn)
= εxn −

g′′(α)
2g′(α)

ε2
xn +

( g′′2(α)
2g′2(α)

− g′′′(α)
2g′(α)

)
ε3

xn +O(ε4
xn). (15)

Now, substituting (15) in the first step of (8), we obtain

εyn =
g′′(α)
2g′(α)

ε2
xn +

1
2g′2(α)

(
g′(α)g′′′(α)− g′′2(α)

)
ε3

xn +O(ε4
xn), (16)

where εyn = yn − α. Using the Taylor’s series (1) for g(yn) around α, we obtain

g(yn) = g′(α)εyn +
1
2!

g′′(α)ε2
yn +O(ε3

yn). (17)
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Similarly, using the Taylor’s series for
1

g′(yn)
around α, we obtain

1
g′(yn)

=
1

g′(α)
− g′′(α)

g′2(α)
εyn +

1
g′(α)

( g′′2(α)
g′2(α)

− g′′′(α)
2g′(α)

)
ε2

yn +O(ε3
yn). (18)

Multiplying (17) and (18), we obtain

g(yn)

g′(yn)
= εyn −

g′′(α)
2g′(α)

ε2
yn +

( g′′2(α)
2g′2(α)

− g′′′(α)
2g′(α)

)
ε3

yn +O(ε4
yn). (19)

Now, substituting (19) in the second step of (8), we obtain

εzn =
g′′(α)
2g′(α)

ε2
yn +

1
2g′2(α)

(
g′(α)g′′′(α)− g′′2(α)

)
ε3

yn +O(ε4
yn), (20)

where εzn = zn − α. Using the Taylor’s series (1) for g(zn) around α, we obtain

g(zn) = g′(α)εzn +
1
2

g′′(α)ε2
zn +O(ε3

zn). (21)

Using the Taylor’s series (1) for g′(yn) around α, we obtain

g′(yn) = g′(α) + g′′(α)εyn +
1
2

g′′′(α)ε2
yn +O(ε3

yn). (22)

Using the Taylor’s series (1) for g′(zn) around α, we obtain

g′(zn) = g′(α) + g′′(α)εzn +
1
2

g′′′(α)ε2
zn ++O(ε3

zn). (23)

Expanding the Taylor series
1

5g′(zn)− g′(yn)
and using Equations (22) and (23), we

obtain

g′(zn) + 3g′(yn)

5g′(zn)− g′(yn)
= 1 +

g′′(α)
g′(α)

(
εyn − εzn

)
+

(
g′′′(α)
2g′(α)

+
g′′2(α)
4g′2(α)

)
ε2

yn −
(

g′′′(α)
2g′(α)

− 5g′′2(α)
4g′2(α)

)
ε2

zn

− 3g′′2(α)
2g′2(α)

εynεzn +O(ε3
zn).

(24)

Finally, substituting (24) in the third step of (8) and using Equations (16), (18), (20) and
(21), we obtain

εxn+1 =
g′′7(α)

4096g′9(α)

(
52g′(α)g′′′(α)− 35g′′2(α)

)
ε10

xn +O(ε11
xn). (25)

Hence, the tenth-order convergence of the proposed method PM10 given by (8) for
g(x) = 0 is proved.

3.2. Convergence under Vector Case

This subsection extends the proof for the tenth-order convergence of the proposed
method PM10 given in (8) regarding solving the system of nonlinear functions G(x) = 0,
where G = [g1(x), g2(x), . . . , gn(x)]′ from Rn to Rn. For the system of nonlinear functions,
PM10 can be described as follows:
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yn= xn −G′(xn)−1G(xn),
zn= yn −G′(yn)

−1G(yn),

xn+1= zn −
[
5G′(zn)−G′(yn)

]−1[
G′(zn) + 3G′(yn)

][
G′(yn)

−1G(zn)
]
.

n = 0, 1, 2, . . . . (26)

We present the following theorem to obtain the asymptotic error term and the order
of convergence for PM10.

Theorem 4. Let the function G : Pn ⊂ Rn → Rn be sufficiently differentiable in a convex set
Pn containing the zero α of G(x). Let us consider that G′(x) is continuous and nonsingular in
α. Then, the solution x obtained by using proposed three-step method PM10 converging to α has
tenth-order convergence, if an initial guess x0 is chosen close to α.

Proof. Suppose that εxn = ||xn − α||. Now, using the Taylor series described in the
Theorem (2) for G(xn), we obtain

G(xn) = G′(α)εxn +
1
2!

G′′(α)εx
2
n +O(εx

3
n). (27)

Similarly, using the Taylor’s series for G′(xn) around α, we obtain

G′(xn) = G′(α)+ G′′(α)εxn +
1
2!

G′′′(α)εx
2
n +O(εx

3
n). (28)

Employing the Taylor’s series for the inverted Jacobian matrix G′(xn)−1 around α, we
obtain

G′(xn)
−1 = G′(α)−1 −G′2(α)−1G′′(α)εxn+

G′(α)−1
[
G′2(α)−1G′′2(α)− 2G′(α)−1G′′′(α)

]
εx

2
n +O(εx

3
n).

(29)

Multiplying (27) and (29), we obtain

G′(xn)
−1G(xn) = εxn − 2G′(α)−1G′′(α)εx

2
n +
[
2G′2(α)−1G′′2(α)− 2G′(α)−1G′′′(α)

]
εx

3
n +O(εx

4
n). (30)

Now, substituting (30) in the first step of (26), we obtain

εyn = 2G′(α)−1G′′(α)εx
2
n + 2G′2(α)−1

[
G′(α)G′′′(α)−G′′2(α)

]
εx

3
n +O(εx

4
n). (31)

Similarly, employing the Taylor series for G(yn) and G′(yn) about α, and also for the
inverted Jacobian matrix G′(yn)

−1 in the second step of (26), we obtain

εzn = 2G(α)−1G′′(α)εy
2
n + 2G′2(α)−1

[
G′(α)G′′′(α)−G′′2(α)

]
εy

3
n +O(εy

4
n). (32)

Using the Taylor series for G′(zn) and G′(yn) around α, we obtain the following:

G′(zn) = G′(α)+ G′′(α)εzn +
1
2

G′′′(α)εz
2
n +O(εz

3
n), (33)

G′(yn) = G′(α)+ G′′(α)εyn +
1
2

G′′′(α)εy
2
n +O(εy

3
n). (34)

Using the above two equations and the inverted Jacobian matrix for
[
5G′(zn) −

G′(yn)
]−1, we obtain

[
5G′(zn)−G′(yn)

]−1[G′(zn)+ 3G′(yn)
]
= 1−G′(α)

−1G′′(α)εzn − 2G′(α)
−1G′′′(α)εz

2
n+

G′(α)
−1G′′(α)εyn +

[
2G′(α)

−1G′′′(α)+ 4G′2(α)
−1

G′′2(α)
]
εy

2
n + 4G′(α)

−15G′′2(α)εz
2
n

− 2G′2(α)
−1

3G′′2(α)εynεzn +O(εz
3
n).

(35)
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Finally, substituting (35) and other required expansions in the third step of (26), we
obtain

εzn+1 =
1

4096
G′9(α)

−1
G′′7(α)

[
52G′(α)G′′′(α)− 35G′′2(α)

]
εz

10
n +O(εz

11
n ). (36)

Hence, the tenth-order convergence of the proposed method PM10 given by (26) for a
non-linear system of equations G(x) = 0 is proved.

3.3. Computational Estimation of the Convergence Order

When a new iterative method is proposed to compute an approximate solution for
g(x) = 0, in order to verify its theoretical local order of convergence, one needs to use
a parameter called the Computational Order of Convergence (COC). However, this is
possible only when we have information about the exact root α for g(x) = 0. Thus, the
following parameters can alternatively be employed under some constraints as described
below.

Approximated Computational Order of Convergence [27]:

ACOC =
log|εn/εn−1|

log|εn−1/εn−2|
, εn = xn − xn−1, n ≥ 4. (37)

Computational Order of Convergence [28]:

COC =
log|εn/εn−1|

log|εn−1/εn−2|
, ε = xn − α, n ≥ 3. (38)

Extrapolated Computational Order of Convergence [29]:

ECOC =
log|ε̂n/ε̂n−1|

log|ε̂n−1/ε̂n−2|
, ε̂ = xn − αn, n ≥ 5, (39)

where

αn = xn −
(ρxn−1)

2

ρ2xn−1
, ρxn = xn+1 − xn.

Petkovic Computational Order of Convergence [30]:

PCOC =
log|ε̂n|

log|ε̂n−1|
, ε̂n =

f (xn)

f (xn−1)
, n ≥ 2. (40)

All of the above formulas can be used to test the convergence order, but in the present
study, ACOC as given by (37) is used since the number of iterations taken by the method
PM10 (8) is at least four in various numerically tested problems, as discussed in Section 5.
Additionally, this is the best-known approach employed in most of the recently conducted
research studies to verify the theoretical order of convergence.

4. Basins of Attraction

The stability of solutions (roots) for the nonlinear function g(z) = 0 using an iterative
method can be analyzed with the help of a concept called the basins of attraction. Basins of
attractions are phase-planes that demonstrate iterations employed by the iterative method,
which can assume different choices for the initial guess z0. Such 2D regions are esthetically
so beautiful that their applications are not only found in applied mathematics, but also
people working in fields such as architecture, arts, and design also use the concept to obtain
pleasing designs. Many other fields of applications for these basins can be seen in [31–36]
and most of the references cited therein. It may be noted that linear models do not depict
such dynamically eye-catching behavior, whereas the non-linearity results in features
such as those seen herein under the proposed iterative method PM10. MATLAB’s built-in
routines, including contour, colormap, and color bar, are utilized to obtain the basins of
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attraction in the present study. In this connection, a squared region R on [−4, 4] × [−4, 4]
containing 2000 by 2000 mesh points is selected for the selected functions in complex form.
Some of these complex-valued functions are taken as follows for the illustration of the
regions by the proposed method.

Example 1.

P1(z) = z8 + z5 − 4, P2(z) = z7 − 1, P3(z) = z3 − 1,

P4(z) = cos(z) + cos(2z) + z, P5(z) = exp(z)− z, P6(z) = cosh(z)− 1.
(41)

To maintain diversity, different kinds of functions including polynomials and tran-
scendental functions are used. The regions are achieved with a tolerance of ε = 10−2 and a
maximum number of iterations allowed of n = 12. As can be seen in Figures 3–8, for the
Example (1), the maximum number of iterations is needed by initial guesses that reside
near boundaries of the regions, whereas if z0 lies within the neighborhood of the required
solution, the proposed method PM10 does not require as many iterations as those needed
by most of the methods found in the literature. The average time required to produce
the dynamical planes shown in Figures 3–8 is stored in the Table 2. As expected, the
complex functions that have exponential and hyperbolic components are computationally
expensive.

Figure 3. The polynomiographs by the proposed method PM10 for P1(z).

Figure 4. The polynomiographs by the proposed method PM10 for P2(z).
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Figure 5. The polynomiographs by the proposed method PM10 for P3(z).

Figure 6. The basins of attractions by the proposed method PM10 for P4(z).

Figure 7. The basins of attractions by the proposed method PM10 for P5(z).

Figure 8. The basins of attractions by the proposed method PM10 for P6(z).
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Table 2. Execution time in seconds required by PM10 for each Pi(z), i = 1, 2, . . . , 6.

P1(z) P2(z) P3(z) P4(z) P5(z) P6(z)

767.413 s 570.103 s 289.626 s 537.531 s 782.588 s 730.300 s

5. Numerical Experiments with Discussion

Various types of test problems are considered from different sources including [3,19,22].
The approximate solutions x� up to 50 decimal places are shown against each test func-
tion. The error tolerance |εN | = |xN − x�| to stop the number of iterations is set to 10−200,
whereas the precision is chosen to be as large as 4000, and N shows the total number of
iterations taken by the method to achieve the required tolerance. In addition, physically
applicable nonlinear models such as the Van der Waals equation, the Shockley ideally
diode electric circuit model, the conversion of substances in a batch reactor, and the Lorenz
equations in meteorology are taken into consideration to demonstrate the applicability of
the proposed method PM10. Obtained numerical results are tabulated for further anal-
ysis. Each table contains different initial guesses, numbers of iterations required by a
method to achieve the preset error tolerance, function evaluations needed for each method,

approximated computational orders of convergence

(
ACOC =

log|εn/εn−1|
log|εn−1/εn−2|

)
where

εn = xn − xn−1, absolute errors, absolute values of functions at the last iteration, and the
execution (CPU) time in seconds.

For the test problem 2 (g1(x)), two initial guesses are chosen for simulations, as can be
seen in Table 3. For the initial guess x0 = 1.5, it is observed that the minimum number of
iterations is taken by the methods PM10 and WO8 to achieve the error tolerance; however,
the smallest error is given by PM10 while consuming an equivalent amount of CPU time.
The method NR2 takes the maximum number of iterations at x0 = 1.5. Under the second
initial guess x0 = 2.0, although many methods including PM10 take the equal number of
iterations to achieve ε = 10−200, the smallest absolute error and thus smallest absolute
functional value is achieved by PM10. This shows that if an initial guess lying near to the
solution of g(x) = 0 is passed to PM10, then the method yields the smallest error.

For the test problem 2 (g2(x)), two initial guesses are chosen for simulations as can be
seen in Table 4. One of them is taken far away from the approximate solution of the quintic
equation g2(x). For x0 = −3.8, the smallest possible absolute error is yielded by WO8, but
at the cost of the maximum number of iterations and largest amount of CPU time. Next
comes HM6 with an absolute error of 9.2097 × 10−670 and greater time efficiency, but it
requires one more iteration when compared with PM10, which achieves an absolute error
of 1.9515 × 10−572 with only four iterations while consuming a reasonable amount of CPU
time. When an initial guess lying near to the root is chosen, the method NM9 achieves the
smallest error, but it requires one extra iteration when compared with PM10 and WO8. The
most expensive methods (in terms of N, FV, and CPU time) for this particular test problem
seem to be WO8 and NR2.

For the transcendental problem 2 (g3(x)), two initial guesses are chosen for simula-
tions, as can be seen in Table 5. Under both of the initial guesses, the maximum numbers
of function evaluations are taken by HM6 followed by PM10 to achieve the desired error
tolerance. The smallest absolute functional values are obtained with HM6 and PM10,
where NR2 seems to be the most expensive method in terms of the number of iterations.
Although the method MH10 consumes the fewest number of CPU seconds, its ACOC is
only eight, contradicting the theoretical order of convergence found in [21].

For the transcendental problem 2 (g4(x)), two initial guesses are chosen for simulations
as can be seen in Table 6. One of the guesses is taken far away from the approximate
solution of g4(x). Under both initial guesses, it is observed that the method MHM5
takes the fewest iterations, fewest function evaluations, and fewest CPU seconds with
unsatisfactory absolute errors under x0 = −9.5. The method WO8 diverges for the second
initial guess x0 = −9.5, whereas NR2 is the most expensive method concerning N and
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FV, in particular. The proposed method PM10 performs reasonably well under the initial
guesses and does not diverge under any situation.

For the test problem 2 (g5(x)), three initial guesses are chosen for simulations as can
be seen in Table 7. Two of the guesses lie far away from the approximate root of g5(x). It
is easy to observe that the method PM10 performs better than other methods, even when
the initial guesses are not near to the approximate root, since the number of iterations to
attain the required accuracy is the smallest with PM10. Once again, the most expensive
method regarding N and FV proves to be NR2, whereas WO8 does not succeed towards the
desired root when the initial guesses are assumed to be away from the root. The absolute
error achieved by PM10 with x0 = 2.9 is the smallest when compared with the results of
other methods.

Example 2.

g1(x) = x3 − 10,

x� ≈ 2.15443469003188372175929356651935049525934494219210,

g2(x) = x5 + x− 10000,

x� ≈ 6.30877712997268909476757177178305911337755805821110,

g3(x) =
x
2
− sin(x),

x� ≈ 1.89549426703398094714403573809360169175134662738540,

g4(x) = x exp(x2)− sin2(x) + 3 cos(x) + 5,

x� ≈ −1.20764782713091892700941675835608409776023581894950,

g5(x) = expsin(x)−x + 1,

x� ≈ 2.63066414792790363397532705235059856858473195473320.

(42)

Table 3. Numerical results for problem 2: g1(x).

Method IG N FV ACOC |ε| | f (xN)| CPU

PM10 1.5 4 24 10 4.3384 × 10−427 1 × 10−3998 1.6 × 10−2

2.0 4 24 10 7.3775 × 10−1117 7.7598 × 10−11,164 2.1720 × 100

MH10 1.5 5 25 8 6.1001 × 10−1501 6 × 10−3999 3.2 × 10−2

2.0 4 20 8 8.7875 × 10−538 7.6607 × 10−4298 1.3391 × 101

NM9 1.5 5 25 9 1.3799 × 10−1487 6 × 10−3999 1.6 × 10−2

2.0 4 20 9 2.5853 × 10−772 6 × 10−3999 1.6 × 10−2

WO8 1.5 4 16 7.9999 × 100 3.7895 × 10−250 5.4086 × 10−1999 1.6 × 10−2

2.0 4 16 8 2.2967 × 10−676 1 × 10−3998 1.6 × 10−2

HM6 1.5 5 25 6 4.6527 × 10−496 6.0868 × 10−2973 3.1 × 10−2

2.0 4 20 6 2.7077 × 10−230 2.3643 × 10−1378 2.66 × 10−1

MHM5 1.5 5 20 5 2.5498 × 10−291 3.4832 × 10−1454 3.1 × 10−2

2.0 5 20 5 2.7042 × 10−743 4.6736 × 10−3714 1.2180 × 100

NR2 1.5 10 20 2 4.7719 × 10−221 1.4717 × 10−440 3.1 × 10−2

2.0 9 18 2 4.5282 × 10−288 1.3253 × 10−574 3.1 × 10−2
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Table 4. Data using fixed step-size problem 2: g2(x).

Method IG N FV ACOC |ε| | f (xN)| CPU

PM10 −3.8 4 24 10 1.9515 × 10−572 0 3.1 × 10−2

8.8 4 24 9.9999 × 100 1.7260 × 10−277 6.0030 × 10−2769 3.1 × 10−2

MH10 −3.8 4 20 8 4.4858 × 10−276 1.2527 × 10−2202 3.2 × 10−2

8.8 5 25 8 1.1988 × 10−910 0 3.1 × 10−2

NM9 −3.8 4 20 9 1.3626 × 10−350 5.8823 × 10−3149 3.1 × 10−2

8.8 5 25 9 3.4812 × 10−1362 0 1.5 × 10−2

WO8 −3.8 11 44 8 2.4211 × 10−933 0 9.4 × 10−2

8.8 4 16 8.0239 × 100 1.7219 × 10−242 1.1652 × 10−1938 3.2 × 10−2

HM6 −3.8 5 25 6 9.2097 × 10−670 0 3.1 × 10−2

8.8 5 25 6 5.0406 × 10−303 8.3149 × 10−1813 3.1 × 10−2

MHM5 −3.8 5 20 5 8.1401 × 10−297 2.1439 × 10−1479 3.2 × 10−2

8.8 5 20 5 1.3486 × 10−221 2.6761 × 10−1103 3.1 × 10−2

NR2 −3.8 10 20 2 2.1403 × 10−292 1.1503 × 10−580 3.2 × 10−2

8.8 11 22 2 6.8822 × 10−280 1.1893 × 10−555 1.6 × 10−2

Table 5. Numerical results for problem 2: g3(x).

Method IG N FV ACOC |ε| | f (xN)| CPU

PM10 3.5 4 24 10 1.3985 × 10−540 3 × 10−4000 1.41 × 10−1

2.5 4 24 10 9.4449 × 10−603 3 × 10−4000 1.41 × 10−1

MH10 3.5 4 20 8 4.4067 × 10−244 1.1093 × 10−1948 9.4 × 10−2

2.5 4 20 8 7.5796 × 10−277 8.4971 × 10−2211 9.4 × 10−2

NM9 3.5 4 20 9 1.9811 × 10−308 4.6535 × 10−2771 2.81 × 10−1

2.5 4 20 9 3.3116 × 10−366 4.7431 × 10−3291 1.4 × 10−1

WO8 3.5 5 20 8 5.0436 × 10−1292 3 × 10−4000 2.66 × 10−1

2.5 4 16 8 6.6531 × 10−270 1.4143 × 10−2155 2.18 × 10−1

HM6 3.5 5 25 6 3.9257 × 10−663 3.8877 × 10−3976 1.41 × 10−1

2.5 5 25 6 7.7054 × 10−742 5 × 10−4000 1.56 × 10−1

MHM5 3.5 5 20 5 9.1683 × 10−320 1.7296 × 10−1597 1.25 × 10−1

2.5 5 20 5 1.4187 × 10−412 1.5343 × 10−2061 1.25 × 10−1

NR2 3.5 10 20 2 5.1202 × 10−289 1.2423 × 10−577 9.3 × 10−2

2.5 10 20 2 4.5680 × 10−321 9.8883 × 10−642 1.09 × 10−1

Table 6. Numerical results for problem 2: g4(x) with ∗ showing the divergence of the method.

Method IG N FV ACOC |ε| | f (xN)| CPU

PM10 −4.5 10 60 10 4.1220 × 10−954 8 × 10−3999 4.38 × 10−1

−9.5 30 180 10 1.0834 × 10−353 1.0796 × 10−3527 1.39 × 100

MH10 −4.5 12 60 8 5.5553 × 10−552 8 × 10−3999 5.62 × 10−1

−9.5 39 195 8 1.0488 × 10−636 8 × 10−3999 1.8590 × 100

NM9 −4.5 12 60 9 4.4565 × 10−1467 8 × 10−3999 9.69 × 10−1

−9.5 37 185 9.0001 × 100 6.8 × 10−223 4.0517 × 10−1997 3.3590 × 100

WO8 −4.5 17 68 8 2.3107 × 10−1507 8 × 10−3999 1.5940 × 100

−9.5 200 * 800 9.5356 × 10−1 2.0883 × 10−2 9.0918 × 10+72 1.9266 × 101

HM6 −4.5 13 65 6 1.0498 × 10−243 4.1588 × 10−1456 5.47 × 10−1

−9.5 43 215 6 3.9815 × 10−227 1.2374 × 10−1356 1.8910 × 100

MHM5 −4.5 7 28 5 2.1606 × 10−978 8 × 10−3999 2.34 × 10−1

−9.5 17 68 5 3.1372 × 10−238 4.1824 × 10−1186 5.62 × 10−1

NR2 −4.5 30 60 2 1.4030 × 10−243 6.0043 × 10−485 4.84 × 10−1

−9.5 101 202 2 6.9221 × 10−226 1.4616 × 10−449 1.5620 × 100
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Table 7. Numerical results for problem 2: g5(x).

Method IG N FV ACOC |ε| | f (xN)| CPU

PM10 2.9 4 24 10 3.0523 × 10−1325 0 1.57 × 10−1

−3.7 5 30 10 3.1294 × 10−1405 0 2.19 × 10−1

7.4 6 36 10 1.2713 × 10−454 0 2.5 × 10−1

MH10 2.9 4 20 8 3.3060 × 10−632 0 9.4 × 10−2

−3.7 9 45 8 7.1797 × 10−378 4.0342 × 10−3023 2.97 × 10−1

7.4 22 110 8 5.3293 × 10−202 3.7179 × 10−1616 7.81 × 10−1

NM9 2.9 4 20 9 3.6544 × 10−815 0 2.5 × 10−1

−3.7 5 25 9 2.2115 × 10−563 0 3.13 × 10−1

7.4 failed – – – –

WO8 2.9 4 16 8 8.7376 × 10−540 0 1.87 × 10−1

−3.7 failed – – – – –
7.4 failed – – – – –

HM6 2.9 4 20 6 2.1574 × 10−305 3.1362 × 10−1833 1.41 × 10−1

−3.7 6 30 6 3.8865 × 10−904 0 1.72 × 10−1

7.4 12 60 6 3.3038 × 10−311 4.0442 × 10−1868 4.22 × 10−1

MHM5 2.9 5 20 5 4.0088 × 10−716 5.2603 × 10−3580 1.1 × 10−1

−3.7 8 32 5 7.1662 × 10−833 0 2.97 × 10−1

7.4 8 32 5 2.16 × 10−326 2.3890 × 10−1631 2.19 × 10−1

NR2 2.9 9 18 2 4.2361 × 10−377 3.9782 × 10−754 9.4 × 10−2

−3.7 11 22 2 4.9340 × 10−262 5.3970 × 10−524 3.13 × 10−1

7.4 16 32 2 1.0369 × 10−370 2.3835 × 10−741 2.66 × 10−1

Example 3. Volume from Van der Waals’ Equation [37].
The Van der Waals equation is represented by the following model:

(P +
an2

V2 )(V − bn) = nRT. (43)

After some simplifications, one obtains the following polynomial of nonlinear form:

g(V) = PV3 − n(RT + bP)V2 + n2aV − n3ab. (44)

The Van der Waals equation of state was formulated in 1873, with two constants a and
b (Van der Waals constants) determined from the behavior of a substance at the critical
point. The equation is based on two effects, which are the molecular size and attractive
force between the molecules. The model (43) is a modified version of the ideal gas equation
V = RT/nP, where n shows the number of moles, R stands for the universal gas constant
(0.0820578), T is the absolute temperature, V shows the volume, and P denotes the absolute
pressure. If V = 1.4 moles of benzene vapor form under P = 40 atm with a = 18 and
b = 0.1154, then one has

g1(V) = 40V3 − 95.26535116V2 + 35.28V − 5.6998368. (45)

The approximate solution up to 50 dp is given as:

V∗ = 1.9707842194070294114471303720868563598618121603538.

Being cubic, the Equation (45) certainly possesses one real root. Here, we aim to show
the performance of PM10 on this model. Therefore, the model is numerically solved by
PM10 and the other six methods chosen for comparison. It can be observed in Table 8 that
PM10 achieves the smallest possible error ε along with functional values nearest to 0 in a
reasonable amount of time, irrespective of the initial guesses.
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Table 8. Numerical results for problem 3.

Method IG N FV ACOC |ε| | f (xN)| CPU

PM10 2.0 4 24 10 4.6111 × 10−1485 1.3 × 10−3997 4.7 × 10−2

10.3 6 36 10 1.6261 × 10−1641 1.1 × 10−3997 6.2 × 10−2

MH10 2.0 4 20 8 1.5202 × 10−726 1.1 × 10−3997 1.6 × 10−2

10.3 6 30 8 6.2361 × 10−305 2.2532 × 10−2431 1.6 × 10−2

NM9 2.0 4 20 9 1.0867 × 10−1015 1.3 × 10−3997 1.6 × 10−2

10.3 6 30 9 9.6289 × 10−479 1.3 × 10−3997 3.2 × 10−2

WO8 2 4 16 8 3.9765 × 10−833 1.1 × 10−3997 1.6 × 10−2

10.3 6 24 8 4.8401 × 10−690 1.1 × 10−3997 4.7 × 10−2

HM6 2.0 4 20 6 9.3310 × 10−311 2.9554 × 10−1858 1.6 × 10−2

10.3 7 35 6 1.3806 × 10−532 3.1008 × 10−3189 1.6 × 10−2

MHM5 2.0 4 16 5 1.6172 × 10−201 8.3557 × 10−1003 0
10.3 7 28 5 7.9826 × 10−804 1.1 × 10−3997 0

NR2 2.0 9 18 2 1.7818 × 10−383 4.4839 × 10−764 0
10.3 15 30 2 1.1910 × 10−271 2.0034 × 10−540 1.6 × 10−2

Example 4. The Shockley Ideally Diode Electric Circuit Model.
The Shockley diode model giving the voltage going through the diode VD is represented by the

following equation:

J = JS

(
exp(VD/nVT)− 1

)
,

where JS stands for the saturation current, n is the emission coefficient, VT is the thermal voltage,
and J is the diode current. Using the Kirchhoff’s second law (VR + VD = VS) and Ohm’s law
(V = JR), a root-finding model can be found. The final structure for the model would be as follows:

VS = JR + nVTln
( J

JS
+ 1
)

. (46)

Assuming values of parameters VS, R, n, VT , JS from [38], we obtain the following equation
that is nonlinear in the variable J:

g(J) = 1.4ln(J + 1) + 0.1J − 0.5. (47)

The approximate solution of the above equation correct to 50 dp is as follows:

J� = 0.38997719839007758658645353264634118996836946243662.

Table 9 presents numerical simulations for (47) with two different initial conditions
of 0.5 and 1.8, under which the smallest absolute error seems to lie under the column
of the proposed method PM10. Further analysis can easily be conducted by the careful
examination of the results tabulated therein.

Example 5. Conversion of Species within a Chemical Reactor [39].
The following nonlinear equation arises in chemical engineering during the conversion of

species in a chemical reactor:

g(x) =
x

1− x
− 5 ln

(0.4(1− x)
0.4− 0.5x

)
+ 4.45977, (48)

where x stands for the fractional conversion of the species; thus, it must lie in (0,1). The approximate
solution of the above equation correct to 50 dp is as follows:

x� ≈ 0.75739624625375387945964129792914529342795578042081.
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Table 9. Numerical results for problem 4.

Method IG N FV ACOC |ε| | f (xN)| CPU

PM10 0.5 4 24 10 7.2498 × 10−1614 2 × 10−4000 7.8 × 10−2

1.8 4 24 10 1.1065 × 10−661 2 × 10−4000 7.8 × 10−2

MH10 0.5 4 20 8 5.7732 × 10−741 2 × 10−4000 3.1 × 10−2

1.8 4 20 8.0001 × 100 1.3446 × 10−210 5.0780 × 10−1683 3.1 × 10−2

NM9 0.5 4 20 9 1.7171 × 10−1088 2 × 10−4000 4.7 × 10−2

1.8 4 20 9 5.9947 × 10−330 8.3091 × 10−2968 4.7 × 10−2

WO8 0.5 4 16 8 3.2491 × 10−712 2 × 10−4000 6.2 × 10−2

1.8 4 16 8.0001 × 100 8.3705 × 10−212 3.1312 × 10−1692 6.3 × 10−2

HM6 0.5 4 20 6 1.1747 × 10−300 2.1830 × 10−1802 3.1 × 10−2

1.8 5 25 6 6.2470 × 10−444 4.9378 × 10−2662 4.7 × 10−2

MHM5 0.5 5 20 5 2.9184 × 10−855 2 × 10−4000 1.6 × 10−2

1.8 5 20 5 3.7051 × 10−207 1.9490 × 10−1034 1.6 × 10−2

NR2 0.5 9 18 2 1.3 × 10−371 6.1228 × 10−743 1.5 × 10−2

1.8 10 20 2 × 100 1.1395 × 10−201 4.7044 × 10−403 3.2 × 10−2

Numerical results can be found in Table 10, where it is shown that PM10 has outper-
formed all other methods in terms of the absolute errors under consideration under two
different initial conditions.

Table 10. Numerical results for problem 5.

Method IG N FV ACOC |ε| | f (xN)| CPU

PM10 0.71 5 30 10 2.5434 × 10−1635 4 × 10−3999 1.25 × 10−1

0.76 4 24 10 5.0617 × 10−1424 1 × 10−3998 9.4 × 10−2

MH10 0.71 5 25 8 5.1147 × 10−640 4 × 10−3999 6.2 × 10−2

0.76 4 20 8 6.3350 × 10−690 4 × 10−3999 4.7 × 10−2

NM9 0.71 5 25 9 3.8480 × 10−559 1 × 10−3998 7.8 × 10−2

0.76 4 20 9 4.0774 × 10−981 4 × 10−3999 4.7 × 10−2

WO8 0.71 5 20 8 3.3478 × 10−584 1.3 × 10−3998 1.56 × 10−1

0.76 4 16 8 1.3297 × 10−696 2 × 10−3999 6.3 × 10−2

HM6 0.71 6 30 6 5.4957 × 10−618 4.4077 × 10−3696 6.3 × 10−2

0.76 4 20 6 9.3504 × 10−288 1.0692 × 10−1714 4.7 × 10−2

MHM5 0.71 6 24 5 2.0592 × 10−216 2.9538 × 10−1072 4.7 × 10−2

0.76 5 20 5 4.2638 × 10−834 4 × 10−3999 3.1 × 10−2

NR2 0.71 12 24 2 5.5571 × 10−216 3.9060 × 10−428 4.7 × 10−2

0.76 9 18 2 5.3583 × 10−356 3.6316 × 10−708 3.2 × 10−2

Example 6. The Two-Dimensional Bratu Model [40].
The two-dimension Bratu system is given by the following partial differential equation:

∂2U
∂x2 +

∂2U
∂y2 + λ exp(U) = 0, x, y ∈ D = [0, 1] × [0, 1], (49)

subject to the following boundary conditions

U(x, y) = 0 x, y ∈ D. (50)
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The two-dimensional Bratu system has two bifurcated exact solutions for λ < λc, a unique
solution for λ = λc, and no solutions for λ > λc. The exact solution to (49) is determined as
follows:

U(x, y) = 2 ln

[
cosh( θ4 ) cosh((x− 1

2 )(y− 1
2 )θ)

cosh((x− 1
2 )

θ
2 ) cosh((y− 1

2 )
θ
2 )

]
, (51)

where θ is an undetermined constant satisfying the boundary conditions and assumed to be the
solution of (49). Using the procedure described in [41], one obtains

θ2 = λ cosh2
( θ

4

)
. (52)

Differentiating (52) with respect to θ and setting
dλ
dθ

= 0, the critical value λc satisfies

θ =
1
4
λc cosh

( θ
4

)
sinh

( θ
4

)
. (53)

By eliminating λ from (52) and (53), we have the value of θc for the critical λc satisfying

θc

4
= coth

( θc

4

)
, (54)

and θc = 4.798714561. We then obtain λc = 7.027661438 from (53). Numerical simulations
performed in Table 11 show that the proposed three-step method takes a smaller number of iterations
and produces considerably smaller absolute errors with a reasonable amount of CPU time.

Table 11. Numerical results for problem 6.

Method IG N FV ACOC |ε| | f (xN)| CPU

PM10 4.0 4 24 10 3.9 × 10−1086 0 1.41 × 10−1

15.5 4 24 10 1.9074 × 10−553 0 2.19 × 10−1

MH10 4.0 4 20 8 5.2357 × 10−556 0 1.09 × 10−1

15.5 4 20 8 3.6499 × 10−277 6.3171 × 10−2220 1.09 × 10−1

NM9 4.0 4 20 9 4.3486 × 10−847 0 6.3 × 10−2

15.5 4 20 9 2.3344 × 10−332 1.9566 × 10−2994 6.3 × 10−2

WO8 4.0 4 16 7.9999 × 100 1.4375 × 10−487 1.6570 × 10−3902 1.09 × 10−1

15.5 5 20 8 5.7605 × 10−1311 0 9.4 × 10−2

HM6 4.0 4 20 6 1.4310 × 10−221 3.9699 × 10−1331 1.25 × 10−1

15.5 5 25 6 2.0883 × 10−638 3.8348 × 10−3832 1.25 × 10−1

MHM5 4.0 5 20 5 8.6954 × 10−585 4.7414 × 10−2925 9.4 × 10−2

15.5 5 20 5 5.0264 × 10−265 3.06 × 10−1326 9.4 × 10−2

NR2 4.0 9 18 2 5.7111 × 10−278 1.0742 × 10−556 7.8 × 10−2

15.5 10 20 2 1.2645 × 10−281 5.2661 × 10−564 1.09 × 10−1

Now, we consider five different kinds of nonlinear multidimensional equations and
numerically solve them with PM10, HM6, MH5, and NR2 since the methods MH10, NM9,
and WO8 were either divergent or not applicable on systems of nonlinear equations. For
the systems considered, various types of initial guesses are used, and for comparison
purposes, the approximate solution and the normed error ε = ||xn+1 − xn||∞ having the
same tolerance 10−200 and CPU time are taken into consideration. It can be observed in
Tables 12–16 that the smallest possible absolute error is achieved only with the proposed
method—that is, PM10—in a reasonably affordable time period.
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Example 7. The nonlinear system of two equations from [3,41] is given as:

x1 + exp(x2)− cos(x2) = 0,

3x1 − x2 − sin(x1) = 0.
(55)

The exact solution of the system (55) is x = [0, 0]′. The numerical results for this system are
shown in Table 12 under the proposed PM10 and other three methods.

Table 12. Numerical results for problem 7.

N [x1,0, x2,0]T [x1, x2]T |ε| CPU

PM10 −1.0, 1.0 5.0151 × 10−4003, 1.0030 × 10−4002 7.7834 × 10−3318 0
HM6 – 1.2648 × 10−2287, 2.5296 × 10−2287 9.9330 × 10−382 1.4 × 10−1

MH5 – 4.6720 × 10−968, 9.8372 × 10−968 5.2359 × 10−194 1.5 × 10−2

NR2 – 1.2203 × 10−11, 2.4406 × 10−11 6.0505 × 10−06 4.7 × 10−2

PM10 −1.9, 1.8 5.0151 × 10−4003, 1.0030 × 10−4002 7.0614 × 10−1865 3.2 × 10−2

HM6 – 5.4937 × 10−1225, 1.0987 × 10−1224 1.2688 × 10−204 6.2 × 10−2

MH5 – 2.1088 × 10−559, 4.4402 × 10−559 2.8177 × 10−112 6.2 × 10−2

NR2 – 6.9588 × 10−07, 1.3916 × 10−06 1.4445 × 10−03 4.6 × 10−2

PM10 2.5,−2.3 1.9407 × 10−4002, 3.8815 × 10−4002 4.3934 × 10−3428 1.6 × 10−2

HM6 – 1.2918 × 10−4000, 2.5836 × 10−4000 1.8909 × 10−691 6.3 × 10−2

MH5 – 2.8427 × 10−695, 5.9858 × 10−695 1.8873 × 10−139 6.2 × 10−2

NR2 – 8.2443 × 10−15, 1.6489 × 10−14 1.5727 × 10−07 4.7 × 10−2

PM10 8.9, 5.5 3.9204 × 10−1989, 8.3019 × 10−1989 2.1886 × 10−199 7.8 × 10−2

HM6 – 3.6432 × 10−93, 7.2864 × 10−93 5.4995 × 10−16 9.3 × 10−2

MH5 – 5.6511 × 10−70, 1.1901 × 10−69 2.1654 × 10−14 1.41 × 10−1

NR2 – 2.7716 × 10−1, 5.1674 × 10−1 7.9930 × 10−1 4.7 × 10−2

PM10 1.9, 6.5 1.5819 × 10−1006, 3.3499 × 10−1006 3.9880 × 10−101 7.8 × 10−2

HM6 – 5.9575 × 10−44, 1.1915 × 10−43 8.7617 × 10−08 9.4 × 10−2

MH5 – 9.8552 × 10−36, 2.0743 × 10−35 1.5268 × 10−07 1.8700 × 10−1

NR2 – 6.7641 × 10−1, 1.3228 × 100 1.0621 × 100 4.6 × 10−2

PM10 0.1, 0.1 9.2473 × 10−4002, 1.8495 × 10−4001 0 0
HM6 – 4.9611 × 10−4002, 9.9222 × 10−4002 2.4509 × 10−1479 7.8 × 10−2

MH5 – 1.8099 × 10−3702, 3.8109 × 10−3702 6.8648 × 10−741 4.7 × 10−2

NR2 – 2.8142 × 10−39, 5.6283 × 10−39 9.1883 × 10−20 4.7 × 10−2

Example 8. Another nonlinear system of three equations taken from [42] is shown below:

3x1 − cos(x2x3)− 1/2 = 0,

x2
1 − 81(x2 + 0.1)2 + sin(x3) + 1.06 = 0,

exp(−x1x2) + 20x3 + (10π/3− 1) = 0,

(56)

where its approximate solution up to 50 dp is shown below:

x ≈

⎡⎣ 0.49814468458949119126228211413809456132099782481239
0

−0.52882597757338745562224205210357569604547206124467

⎤⎦. (57)

The numerical results for the system (56) are shown in Table 13.
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Table 13. Numerical results for problem 8.

Method [x1,0, x2,0, x3,0]T [x1, x2, x3]T |ε| CPU

PM10 1.1, 1.1, −1.1 5 × 10−1, −1.4199 × 10−4001, −5.2360 × 10−1 3.6961 × 10−541 4.6 × 10−2

HM6 – 5 × 10−1, 5.9801 × 10−445, −5.2360 × 10−1 2.1352 × 10−75 4.7 × 10−2

MH5 – 5 × 10−1, 3.9207 × 10−162, −5.2360 × 10−1 2.4120 × 10−40 7.8 × 10−2

NR2 – 5.0001 × 10−1, 9.5530 × 10−04, −5.2357 × 10−1 1.3842 × 10−2 1.5 × 10−2

PM10 3.3, 2.1, −2.1 5 × 10−1, −4.5590 × 10−2904, −5.2360 × 10−1 2.9346 × 10−362 6.3 × 10−2

HM6 – 5 × 10−1, 2.1651 × 10−257, −5.2360 × 10−1 3.8835 × 10−44 4.7 × 10−2

MH5 – 5 × 10−1, −7.2199 × 10−131, −5.2360 × 10−1 5.4152 × 10−33 9.3 × 10−2

NR2 – 5.0007 × 10−1, 7.6756 × 10−03, −5.2340 × 10−1 3.9888 × 10−2 3.1 × 10−2

PM10 −1.3, 1.1, −0.1 5 × 10−1, −8.2172 × 10−4001, −5.2360 × 10−1 1.1159 × 10−551 6.3 × 10−2

HM6 – 5 × 10−1, 1.2373 × 10−456, −5.2360 × 10−1 2.4102 × 10−77 4.6 × 10−2

MH5 – 5 × 10−1, 3.9887 × 10−168, −5.2360 × 10−1 7.6082 × 10−42 4.7 × 10−2

NR2 – 5.0001 × 10−1, 8.3811 × 10−04, −5.2358 × 10−1 1.2961 × 10−2 1.6 × 10−2

PM10 1.9, 4.1, 0.1 5 × 10−1, −4.6794 × 10−1318, −5.2360 × 10−1 4.8484 × 10−164 6.3 × 10−2

HM6 – 5 × 10−1, 3.4949 × 10−117, −5.2360 × 10−1 9.0619 × 10−21 4.7 × 10−2

MH5 – 5 × 10−1, −5.3226e−56, −5.2360 × 10−1 1.0093 × 10−12 4.7 × 10−2

NR2 – 5.0048 × 10−1, 5.5684 × 10−2, −5.2215 × 10−1 1.1923 × 10−1 3.1 × 10−2

PM10 6.5, 2.2, −3.3 5 × 10−1, −7.0328e-2659, −5.2360 × 10−1 1.3210 × 10−331 6.3 × 10−2

HM6 – 5 × 10−1, 6.7653 × 10−236, −5.2360 × 10−1 1.4849 × 10−40 4.7 × 10−2

MH5 – 5 × 10−1, −3.4190 × 10−98, −5.2360 × 10−1 3.6270 × 10−24 1.1 × 10−1

NR2 – 5.0009 × 10−1, 1.0418 × 10−2, −5.2333 × 10−1 4.6778 × 10−2 3.2 × 10−2

PM10 3.5, 3.7, −2.3 5 × 10−1, −9.2310 × 10−1487, −5.2360 × 10−1 3.8829 × 10−185 6.3 × 10−2

HM6 – 5 × 10−1, 2.4238 × 10−131, −5.2360 × 10−1 3.9573 × 10−23 6.3 × 10−2

MH5 – 5 × 10−1, −1.2128 × 10−61, −5.2360 × 10−1 3.6152 × 10−14 1.41 × 10−1

NR2 – 5.0039 × 10−1, 4.4303 × 10−2, −5.2244 × 10−1 1.0395 × 10−1 3.1 × 10−2

Example 9. A three-dimensional nonlinear system is taken from [3] as given below:

x2
1 + x2

2 + x2
3 − 1 = 0,

2x2
1 + x2

2 − 4x3 = 0,

3x2
1 − 4x2

2 + x2
3 = 0,

(58)

where its approximate solution up to 50 dp is as follows:

x ≈

⎡⎣0.69828860997151390091867421225192307770469334334732
0.62852429796021380638277617781675123954652671431496
0.34256418968956943776230136116401106884202074401616

⎤⎦. (59)

The numerical results for the system (58) are shown in Table 14.
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Table 14. Numerical results for problem 9.

Method [x1,0, x2,0, x3,0]T [x1, x2, x3]T |ε| CPU

PM10 0.5, 0.5, 0.5 6.9829 × 10−1, 6.2852 × 10−1, 3.4256 × 10−1 1 × 10−4000 0
HM6 – 6.9829 × 10−1, 6.2852 × 10−1, 3.4256 × 10−1 3.8739 × 10−864 0
MH5 – 6.9829 × 10−1, 6.2852 × 10−1, 3.4256 × 10−1 6.0191 × 10−527 1.5 × 10−2

NR2 – 6.9829 × 10−1, 6.2852 × 10−1, 3.4256 × 10−1 3.8598 × 10−12 1.5 × 10−2

PM10 1.0, 1.0, 1.0 6.9829 × 10−1, 6.2852 × 10−1, 3.4256 × 10−1 1 × 10−4000 0
HM6 – 6.9829 × 10−1, 6.2852 × 10−1, 3.4256 × 10−1, 4.1436 × 10−596 1.6 × 10−2

MH5 – 6.9829 × 10−1, 6.2852 × 10−1, 3.4256 × 10−1, 3.5513 × 10−269 0
NR2 – 6.9829 × 10−1, 6.2852 × 10−1, 3.4256 × 10−1, 1.1136 × 10−08 0

PM10 2.8, 3.2, 6.1 6.9829 × 10−1, 6.2852 × 10−1, 3.4256 × 10−1 7.0153 × 10−894 0
HM6 – 6.9829 × 10−1, 6.2852 × 10−1, 3.4256 × 10−1 1.4280 × 10−103 0
MH5 – 6.9829 × 10−1, 6.2852 × 10−1, 3.4256 × 10−1 6.9270 × 10−53 0
NR2 – 6.9929 × 10−1, 6.2876 × 10−1, 3.4257 × 10−1 3.7312 × 10−2 0

PM10 5.1, 4.2, 1.1 6.9829 × 10−1, 6.2852 × 10−1, 3.4256 × 10−1 4.8091 × 10−1119 0
HM6 – 6.9829 × 10−1, 6.2852 × 10−1, 3.4256 × 10−1 8.9729 × 10−126 0
MH5 – 6.9829 × 10−1, 6.2852 × 10−1, 3.4256 × 10−1 6.3425 × 10−68 0
NR2 – 6.9851 × 10−1, 6.2861 × 10−1, 3.4256 × 10−1 1.7731 × 10−2 0

PM10 5.1, 4.2, −1.1 6.9829 × 10−1, 6.2852 × 10−1, 3.4256 × 10−1 1.1175 × 10−174 0
HM6 – 6.9829 × 10−1, 6.2852 × 10−1, 3.4256 × 10−1 2.7993 × 10−19 0
MH5 – 4.3060 × 100, −9.1902 × 10−1, −2.7461 × 100 2.4533 × 100 0
NR2 – 1.0879 × 100, 8.0413 × 10−1, 5.3209 × 10−1 7.7974 × 10−1 0

PM10 10.2, 14.7, 11.1 6.9829 × 10−1, 6.2852 × 10−1, 3.4256 × 10−1 2.9425 × 10−319 0
HM6 – 6.9829 × 10−1, 6.2852 × 10−1, 3.4256 × 10−1 2.8736 × 10−34 0
MH5 – 6.9829 × 10−1, 6.2852 × 10−1, 3.4256 × 10−1 1.1693 × 10−19 1.6 × 10−2

NR2 – 7.5545 × 10−1, 7.3493 × 10−1, 3.4367 × 10−1 3.7993 × 10−1 0

Example 10. (Catenary curve and the ellipse ([43], p. 83)):
Given below is a nonlinear system of two equations that describe trajectories for the catenary

and the ellipse, respectively. We are interested in finding their intersection point that lies in the first
quadrant of the cartesian plane. The system has been solved under the proposed PM10 method and
other methods under consideration. The performance of each method is shown in Table 15, whereas
an approximate solution up to 50 dp of the system (60) is shown in comparison to the system.

x2 −
1
2

(
exp(x1/2) + exp(−x1/2)

)
= 0,

9x2
1 + 25x2

2 − 225 = 0.
(60)

Approximate solution:

x ≈
[

3.0311553917189839536524964478460650851937092065081
2.3858656535628857281228809627652263081419323345176

]
. (61)
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Table 15. Numerical results for problem 10 with ∗ showing the divergence of the method.

Method [x1,0, x2,0]T [x1, x2]T |ε| CPU

PM10 9.3, 8.6 3.0312 × 100, 2.3859 × 100 8.4435 × 10−523 3.1 × 10−2

HM6 – – 3.1353 × 10−78 4.6 × 10−2

MH5 – – 1.4228 × 10−40 3.1 × 10−2

NR2 – – 2.1386 × 10−1 1.6 × 10−2

PM10
11.6,
13.1 3.0312 × 100, 2.3859 × 100 1.4738 × 10−275 4.7 × 10−2

HM6 – – 8.2367 × 10−31 1.6 × 10−2

MH5 – – 1.8199 × 10−17 3.1 × 10−2

NR2 – – 1.0020 × 100 1.6 × 10−2

PM10 4.6, 3.6 3.0312 × 100, 2.3859 × 100 1.7497 × 10−2436 3.1 × 10−2

HM6 – – 2.4449 × 10−528 3.1 × 10−2

MH5 – – 1.3516 × 10−167 1.6 × 10−2

NR2 – – 2.0398 × 10−07 1.6 × 10−2

PM10
16.6,
14.5 3.0312 × 100, 2.3859 × 100 8.0467 × 10−58 3.1 × 10−2

HM6 – – 3.8892 × 10−04 3.2 × 10−2

MH5 – – 1.1246 × 10−05 3.1 × 10−2

NR2 – 6.6073 × 100, −1.1486 × 100 2.5508 × 100 * 1.6 × 10−2

PM10 2.9, 1.9 3.0312 × 100, 2.3859 × 100 0 3.1 × 10−2

HM6 – – 1.1004 × 10−1156 3.1 × 10−2

MH5 – – 5.7581 × 10−307 3.1 × 10−2

NR2 – – 3.1421 × 10−15 0

PM10
10.3,
11.7 3.0312 × 100, 2.3859 × 100 5.3262 × 10−397 9.4 × 10−2

HM6 – – 7.9396 × 10−54 9.3 × 10−2

MH5 – – 1.6306 × 10−28 6.2 × 10−2

NR2 – – 5.0395 × 10−1 3.1 × 10−2

Example 11. Steady-State Lorenz Equations ([44], p. 816).
In this problem, we consider a system developed by Edward Lorenz, who was an American

meteorologist studying atmospheric convection around the Earth’s surface. Lorenz’s nonlinear
system is a set of three ordinary differential equations, as given below:

ẋ1(t) = a(x2 − x1),
ẋ2(t) = x1(b− x3)− x2,
ẋ3(t) = x1x2 − cx3.

(62)

In order to study the steady-state behavior of the system (62), we take ẋ1(t) = ẋ2(t) =
ẋ3(t) = 0 and a = −1, b = 2, c = 3 to obtain the following nonlinear algebraic system:

x1 − x2 = 0,

2x1 − x1x3 − x2 = 0,

x1x2 − 3x3 = 0.

(63)

The approximate solution for the system (63) correct to 50 dp is given as

x ≈

⎡⎣1.7320508075688772935274463415058723669428052538104
1.7320508075688772935274463415058723669428052538104

1

⎤⎦. (64)

The nonlinear steady-state system (63) has been numerically solved in Table 16.
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Table 16. Numerical results for problem 11 with ∗ showing the divergence of the method.

Method [x1,0, x2,0, x3,0]T [x1, x2, x3]T |ε| CPU

PM10 −2.5,−3.5,−1.5 1.7321, 1.7321, 1 3.1099 × 10−36 1.5 × 10−2

HM6 – 1.7321, 1.7321, 1 3.8304 × 10−2 1.6 × 10−2

MH5 – −1.7321, −1.7321, 1 8.8956 × 10−08 * 0
NR2 – – 1.1129 × 10−1 * 0

PM10 −1.0, −1.0, 2.0 −1.7321, −1.7321, 1 2.2477 ×
10−1164 0

HM6 – – 2.5855 × 10−138 1.6 × 10−2

MH5 – – 2.6805 × 10−77 0
NR2 – – 2.8563 × 10−04 0

PM10 −3.9,−3.3,−6.2 1.7321, 1.7321, 1 5.2666 × 10−84 1.6 × 10−2

HM6 – – 5.8363 × 10−07 0
MH5 – – 1.0692 × 10−05 1.5 × 10−2

NR2 – 1.9410, 1.9410, 1.1534 5.5426 × 10−1 * 0

PM10 1, 1, 2 1.7321, 1.7321, 1 2.247 7
× 10−1164 1.6 × 10−2

HM6 – – 2.5855 × 10−138 0
MH5 – – 2.6805 × 10−77 1.6 × 10−2

NR2 – – 2.8563 × 10−04 0

PM10 5.9, 3.3, 6.2 1.7321, 1.7321, 1 5.9770 × 10−811 1.6 × 10−2

HM6 – – 4.0516 × 10−136 1.5 × 10−2

MH5 – – 5.5239 × 10−62 0
NR2 – – 1.4635 × 10−2 0

PM10 2.4, 3.0, 1.0 1.7321, 1.7321, 1 0 0
HM6 – – 1.8162 × 10−811 0
MH5 – – 5.2175 × 10−433 1.6 × 10−2

NR2 – – 4.2917 × 10−11 0

6. Concluding Remarks

This research study is based on devising a new, highly effective three-step iterative
method with tenth-order convergence. The convergence is proved theoretically via Taylor’s
series expansion for single and multi-variable nonlinear equations, and the approximate
computational order of convergence confirms such findings. Thus, the proposed method
PM10 is applicable not only to single nonlinear equations but also to nonlinear systems.
Moreover, dynamical aspects of PM10 are also explored with basins of attraction that show
quite esthetic phase plane diagrams when applied to complex-valued functions, thereby
proving the stability of the method when initial guesses are taken within the vicinity of the
underlying nonlinear model. Finally, different types of nonlinear equations and systems,
including those used in physical and natural sciences, are chosen to be tested with PM10
and with various well-known optimal and non-optimal methods in the sense of King–
Traub. In most of the cases, PM10 is found to have better results, particularly when it comes
to the number of iterations N to achieve required accuracy, ACOC, absolute error, and
absolute functional value. It is also worthwhile to note that the proposed method always
converges, irrespective of whether the initial guess passed to it lies near to or away from
the approximate solution. Hence, PM10 is a competitive iterative method with tenth-order
convergence for solving nonlinear equations and systems.

We understand that methods of very high order are only of academic interest since
approximations to the solutions of very high accuracy are not needed in practice. On the
other hand, such methods are, to some extent, complicated and do not offer much of an
increase in computational efficiency. Moreover, the method proposed in this article lies in
the family of methods without memory, requiring the evaluation of three Jacobian matrices,
and thereby becomes computationally expensive. To avoid computational complexity,
we will propose, in future studies, a modification of the proposed method by replacing
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the first-order derivative with a suitable finite-difference approximation. In addition, the
proposed method will also be analyzed for its semi-local convergence.
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Abstract: In this work, we explore the existence results for the hybrid Caputo–Hadamard fractional
boundary value problem (CH-FBVP). The inclusion version of the proposed BVP with a three-point
hybrid Caputo–Hadamard terminal conditions is also considered and the related existence results are
provided. To achieve these goals, we utilize the well-known fixed point theorems attributed to Dhage
for both BVPs. Moreover, we present two numerical examples to validate our analytical findings.

Keywords: Caputo–Hadamard fractional derivative; thermostat modeling; Caputo–Hadamard
fractional integral; hybrid Caputo–Hadamard fractional differential equation and inclusion

1. Introduction

Fractional differential equations are utilized for mathematical modeling of real life
problems. Scientists working in various fields of science are encouraged to improve the
explanation of their findings by including more accurate knowledge into their problems. In
this regard, they are employing a variety of mathematical methods in their models in which
fractional order derivatives are very beneficial. Differential equations of a fractional order
provide more accurate information than standard differential equations in mathematical
modeling of many scientific situations. In these days, differential equations of a fractional
order have been constantly utilized in chemistry, biophysics, control theory, mechanics,
image processing, polymer rheology, aerodynamics, etc. [1,2].

In recent years, many researchers have been attracted by fractional hybrid differential
equations and inclusions with terminal conditions [3–6]. Moreover, in various fields,
there are several efforts on the Caputo–Hadamard derivative of fractional order and its
implementations [7–15].

In 2010, a new class of differential models named hybrid differential equations (HDEs)
was formulated by Dhage and Lakshmikantham [16]. Moreover, they investigated proper-
ties of this type of a differential equation’s solution. Zhao et al. [17] generalized Dhage’s
effort and investigated the related HDEs of fractional order. In 2012, a fractional hybrid
problem with two-point terminal conditions was presented by Sun et al. [18]{

Dw
0

[
s(�)

g(�,s(�))

]
+ w(�, s(�)) = 0, � ∈ E = [0, 1], w ∈ (1, 2],

s(0) = s(1) = 0.

They obtained some existence results by using a fixed point theorem presented by
Dhage in Banach algebra with Lipschitz and mixed Caratheodory conditions. In 2015, the
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existence criteria for the solutions of the hybrid Caputo problem with terminal conditions
was studied by Hilal and Kajouni [19]⎧⎨⎩

CDw
0

[
s(�)

g(�,s(�))

]
+ w(�, s(�)) = 0, � ∈ E = [0, L],

y s(0)
g(0,s(0)) + z s(L)

g(L,s(L)) = c,

where, w ∈ (0, 1) , y, z, c ∈ � with y + z �= 0 and g : E × � −→ � \ 0 and w : E × � −→ �
are continuous functions. Baleanu et al. [20] studied the existence criteria and significance
of the solution for a new kind of hybrid inclusion problem of fractional order,

CDw
0

(
s(�)

g(�, s(�)),�p1
0 s(�), . . .,�pt

0 s(�))

)
∈ Q(�, s(�),�q1

0 s(�), . . .,�qu
0 s(�)), � ∈ [0, 1]

equipped with boundary conditions s(0) = s∗0 and s(1) = s∗1, where, w ∈ (1, 2],�β
0 and CDw

0
symbolize the Riemann–Liouville fractional integral operator of order β ∈ {pk, qj} ⊂ (0, ∞)
for k = 1, . . ., t and j = 1, 2, . . ., u and a fractional Caputo derivative of order w, respectively.
In 2006, a thermostat model enclosed at � = 0 with a restrainer at � = 1 was studied by
Infante and Webb [21], {

s′′(�) + ν(�, s(�)) = 0, 0 ≤ � ≤ 1,
s′(0) = 0, τs′(1) + s(ζ) = 0,

where, ζ ∈ [0, 1] is a real constant and τ > 0 is a positive number. The thermostat includes
or excludes heat based on the temperature exposed by the sensor at � = ζ by using this
second order approach. They applied a fixed point criteria on Hammerstein integral
equations to obtain the existence results for the above BVP. A fractional order problem was
presented by Nieto and Pimentel [22],{

CDw
0 s(�) + ν(�, s(�)) = 0, � ∈ [0, 1],

s′(0) = 0, τCDw−1
0 s(1) + s(ζ) = 0,

where, ζ ∈ [0, 1], τ > 0 is any positive real number and CDw
0 represents the fractional

Caputo derivative of order w ∈ (1, 2]. It is noticeable that a thermostat is a main component
which plays an important role in physical systems to maintain its temperature near a
required set-point, which motivated many researchers to study the various models of
thermostat systems. In 2020, Baleanu et al. [4] constructed the following Caputo fractional
hybrid problem for thermostat model,

CDw
0

(
s(�)

g(�, s(�))

)
+ ν(�, s(�)) = 0, � ∈ [0, 1],

supplemented with the hybrid terminal conditions,⎧⎨⎩D
(

s(�)
g(�,s(�))

)∣∣∣
�=0

= 0,

τCDw−1
0

(
s(�)

g(�,s(�))

)∣∣∣
�=1

+
(

s(�)
g(�,s(�))

)∣∣∣
�=ζ

= 0,

where, w ∈ (1, 2], w− 1 ∈ (0, 1], D = d
d� , τ is any positive real number, ζ ∈ [0, 1] and CD

β
0

is the fractional Caputo derivative of order β ∈ {w, w− 1}. Furthermore, ν : E × � → �
and g : E × � → � \ {0} are continuous functions. Moreover, they studied the related
hybrid Caputo inclusion model of a fractional order for a thermostat system, as given below:

CDw
0

(
s(�)

g(�, s(�))

)
∈ �(�, s(�)), � ∈ E = [0, 1],
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supplemented with three-point hybrid Caputo terminal conditions,⎧⎨⎩D
(

s(�)
g(�,s(�))

)∣∣∣
�=0

= 0,

τCDw−1
0

(
s(�)

g(�,s(�))

)∣∣∣
�=1

+
(

s(�)
g(�,s(�))

)∣∣∣
�=ζ

= 0,

where, � : E × � → I(�) is a multi-valued map. Motivated by the previous studies, we
construct the following hybrid CH-FBVP for thermostat model

CHDw
1+

(
s(�)

g(�, s((�))

)
+ η(�, s(�)) = 0, � ∈ [1, e], (1)

supplemented with the three-point hybrid terminal conditions,⎧⎨⎩D
(

s(�)
g(�,s(�))

)∣∣∣
�=1

= 0,

τCHDw−1
1+

(
s(�)

g(�,s(�))

)∣∣∣
�=e

+
(

s(�)
g(�,s(�))

)∣∣∣
�=ζ

= 0,
(2)

where, w ∈ (1, 2], w − 1 ∈ (0, 1],D = d
d� , τ ∈ �+, ζ ∈ [1, e] and CHDα

1+ is the fractional
Caputo–Hadamard derivative of order α ∈ {w, w − 1}. Moreover, η : E × � → � and
g : E × � → � \ {0} are continuous functions. Moreover, we study the related hybrid
Caputo–Hadamard fractional inclusion boundary value problem (CH–FIBVP) for thermo-
stat system as given below:

CHDw
1+

(
s(�)

g(�, s(�))

)
∈ �(�, s(�)), � ∈ E = [1, e] (3)

supplemented with three-point hybrid Caputo–Hadamard boundary conditions⎧⎨⎩D
(

s(�)
g(�,s(�))

)∣∣∣
�=1

= 0,

τCHDw−1
1+

(
s(�)

g(�,s(�))

)∣∣∣
�=e

+
(

s(�)
g(�,s(�))

)∣∣∣
�=ζ

= 0,
(4)

where, � : [1, e]×� → I(�) is a multi-valued map.
The main motivation behind this work is that there are no research manuscripts based

on the authors’ knowledge on the problems involving Caputo–Hadamard hybrid fractional
boundary conditions. Furthermore, the proposed structure is expressed in a unique and
broad manner, allowing us to explore certain specific cases previously addressed (see for
example [4]). Here, we establish certain analytical criteria to validate the suggested novel
existence results of hybrid Caputo–Hadamard fractional differential problems. The method
used to accomplish the goals is based on Dhage’s fixed point result.

The following structure is used to arrange the current manuscript. In Section 2, we
collected the basic concepts regarding Caputo–Hadamard fractional operators and some
requisite notions which are related to multi-valued mappings. In Section 3, we present
the existence of a solution to both problems utilizing Dhage’s analytical criteria. Section 4
presents two numerical examples to demonstrate the applicability of our analytical conclu-
sions. The concluding remarks are addressed in Section 5.

2. Preliminaries

In this section, we present some basic definitions and notations utilized in the proof
of the main results. Let w ≥ 0 and suppose that the function s : (a, b) → � is integrable.
Fractional Caputo–Hadamard integral of a function s ∈ C((a, b),�) of order w is presented
by CH�0

a+(s(�)) = s(�) and

CH�w
a+(s(�)) =

1
Γ(w)

�∫
a

(
ln

�

x

)w−1
s(x)

dx
x
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whenever the RHS integral exists. Keep in mind that for each w1, w2 ∈ �+ , the follow-
ing equality

CH�w1
a+

CH�w2
a+(s(�)) =

CH�w1+w2
a+ (s(�))

holds true and
CH�w1

a+

(
ln

�

a

)w2

=
Γ(w2 + 1)

Γ(w1 + w2 + 1)

(
ln

�

a

)w1+w2

for � > a. It is noticeable that for w2 = 0 [2], the above equation reduces to

CH�w1
a+1 =

1
Γ(w1 + 1)

(
ln

�

a

)w1

, ∀ � > a.

Now, assume β = [w] + 1 or w ∈ [β− 1, β). For a real-valued continuous function
s defined on (a, b), the fractional Caputo–Hadamard derivative of order w is defined
as follows:

CHDw
a+(s(�)) =

1
Γ(β− w)

(
�

d
d�

)β �∫
a

(
ln

�

x

)(β−w−1)
s(x)

dx
x

whenever the RHS integral exists [17]. Assuming s ∈ ACm
� ([a, b]) and β− 1 < w ≤ β, a

general solution for the Caputo–Hadamard differential equation CHDw
a+(s(�)) = 0 is of the

form s(�) = ∑
β−1
k=0 dk

(
ln �

a

)k
, and we have

CH�w
a+

CHDw
a+(s(�)) = s(�) + d0 + d1

(
ln

�

a

)
+ d2

(
ln

�

a

)2
+ . . . + dβ−1

(
ln

�

a

)β−1
,

where, d0, d1, . . ., dβ−1 are real constants and β = [w] + 1 [23].
In the sequel, we assume (N , ‖.‖N ) a normed space, collection of all subsets of N ,

all compact subsets of N , all convex subsets of N , all bounded subsets of N , all closed
subsets of N by I(N ), Icmp(N ), Icvx(N ), Ibnd(N ), Icls(N ), respectively. Moreover, the
following notions from [24,25] are essential:

• If for each σ ∈ N , the set �(σ) has convex values, then we say that the set-valued
map � is convex.

• The set-valued map � is said to be an upper semi-continuous map if for every σ∗ ∈
N , �(σ∗) belongs to Icls(N ) and for every open set O with �(σ∗) ⊂ O, there is a
neighborhood U∗0 of σ∗ such that �(U∗0 ) ⊂ O.

• The set-valued map � : N → I(N ) has a fixed point σ∗ ∈ N if σ∗ ∈ �(σ∗). The
collection of all fixed points of � is represented by �(�).

• Assume (N , dN ) to be a metric space. For each F1, F2 ∈ I(N ), the Pompeiu–Hausdorff
metric PHd : I(N )× I(N )→ �∪ {∞} is defined as

PHd(F1, F2) = max{ sup
a1∈F1

dN(a1, F2), sup
a2∈F2

dN(F1, a2)},

where, dN (F1, a2) = infa1∈F1 dN (a1, a2) and dN (a1, F2) = infa2∈F2 dN (a1, a2).
• The set-valued map � : N → Icls(N ) is said to be Lipschitzian if PHdN (�(σ1),�(σ2)) ≤

m∗dN (σ1, σ2) holds for every σ1, σ2 ∈ N , where m∗ > 0 is a Lipschitz constant. If
0 < m∗ < 1, then we say that the Lipschitz map is a contractive map.

• We say that � : [1, e] → Icls(�) is measurable if the function � → dN (r,�(�)) is
measurable ∀ r ∈ �.

• The graph of � : N → Icls(T ) is defined by Graph(�) = {(σ1, σ2) ∈ N × T : s∗ ∈
�(σ)}. It is noticeable that the graph of � is said to be closed if for every arbitrary
sequence {sn}n≥1 ∈ N and {σn}n≥1 ∈ T with sn → s0, σn → σ0 and σn ∈ �(sn),
we obtain σ0 ∈ �(s0). If � : N → Icls(T ) is an upper semi-continuous map, then
Graph(�) ⊆ N × T is a closed set.
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• A set-valued map � is completely continuous operator if the �(M) is relatively
compact ∀M ∈ Ibnd(N ). Furthermore, we assume that by the complete continuity
assumption, the map � has a closed graph. Then, the multi-valued map � is upper
semi-continuous.

• The set-valued map � : [1, e]×� → I(�) has a Caratheodory property if the function
σ → �(�, σ) is upper semi-continuous ∀� ∈ [1, e] and the function � → �(�, σ) is
measurable for every σ ∈ �. Furthermore, A Caratheodory multi-valued mapping
� : [1, e]× � → I(�) has L1-Caratheodory property if for every s > 0 there exists
θs ∈ L1

�+([1, e]) provided that

‖�(�, σ)‖ = sup
�∈[1,e]

{|p| : p ∈ �(�, σ)} ≤ θs(�)

for all � ∈ [1, e] and for every |σ| ≤ s.
• The selections of � at σ ∈ C�([1, e]) are represented by

(SEL)�,σ := {υ ∈ L1
�+([1, e]) : υ(�) ∈ �(�, σ(�)), ∀� ∈ [1, e]}.

It is known that (SEL)�,σ �= ϕ for all σ ∈ CN ([1, e]) whenever dim N < ∞.

We now state fixed point results due to Dhage and a closed graph theorem, which will be
used to prove the existence results of our proposed problems.

Theorem 1 ([26]). Assume a Banach space N . For almost all λ ∈ �+, assume an open ball υλ(0)
and its closure υλ(0). Suppose that θ1 : N → N and θ2 : υλ(0)→ N are two operators that meet
the properties listed

1. θ1 is a Lipschitzian map so that m∗ is a Lipschitz constant;
2. θ2 is completely continuous;
3. m∗!∗ < 1 , where !∗ = ‖θ2(υλ(0))‖N = sup{‖θ2l‖N : l ∈ υλ(0)} .

Then either

(i) The operator equation θ1�θ2� = � has a solution contained in υλ(0) or;
(ii) There exists ϑ∗ ∈ N with ‖ϑ∗‖N = λ so that w0θ1ϑ

∗θ2ϑ
∗ = ϑ∗ for some w0 ∈ (0, 1).

Theorem 2 ([27]). Assume a separable Banach space N , an L1-Caratheodory multi-valued
function � : [1, e] × N → Icmp,cvx(N ) and a linear continuous function Λ : L1

N ([1, e]) →
CN ([1, e]). Then, Λ o ((SEL)� : CN ([1, e]) → Icmp,cvx(CN ([1, e])) is an operator belonging
to CN ([1, e])× CN ([1, e]) defined by σ → (λ o (SEL)�)(σ) = λ((SEL)�,σ) and has a closed
graph property.

Theorem 3 ([28]). Assume the Banach space N . Consider that there is a single-valued map
θ1 : N → N and a multi-valued map θ2 : N → Icmp,cvx(N ) satisfying the following properties:

1. θ1 is a Lipschitzian map so that m∗ is a Lipschitz constant;
2. θ2 has compactness and an upper-semi continuity property;
3. 2m∗!∗ < 1 with !∗ = ‖θ2(N )‖.

Then either

(i) there exists a solution contained in N for the inclusion � ∈ θ1�θ2l or;
(ii) the set O = {ϑ∗ ∈ N |w0ϑ

∗ ∈ θ1ϑ
∗θ2ϑ

∗, w0 > 1} is an unbounded set.

3. Main Results

Here, we assume N = C�([1, e]) to be a Banach space with the standard norm,
‖s‖N = sup{|s(�)| : � ∈ [1, e]}.
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Lemma 1. Consider γ ∈ N . The hybrid CH-FBVP,

CHDw
1+

(
s(�)

g(�, s(�))

)
+ γ(�) = 0, � ∈ [1, e], w ∈ (1, 2], (5)

supplemented with the three-point hybrid Caputo–Hadamard terminal conditions

D

(
s(�)

g(�, s(�))

)∣∣∣∣
�=1

= 0,

τCHDw−1
1+

(
s(�)

g(�, s(�))

)∣∣∣∣
�=e

+

(
s(�)

g(�, s(�))

)∣∣∣∣
�=ζ

= 0, (6)

has a solution s0, iff s0 is a solution for the Caputo–Hadamard integral equation,

s(�) = g(�, s(�))

⎡⎣− 1
Γ(w)

�∫
1

(
ln

�

x

)w−1
γ(x)

dx
x

+ τ

e∫
1

γ(x)
dx
x

+
1

Γ(w)

ζ∫
1

(
ln

ζ

x

)w−1
γ(x)

dx
x

⎤⎦. (7)

Proof. Assume that hybrid Equation (5) has a solution s0 . Then, by utilizing the equal-
ity, s0(�)

g(�,s0(�))
= −CH�w

1+γ(�) + c0 + c1 ln(�), where c0 and c1 ∈ �, the homogeneous
Equation (5) has general solution given below:

s0(�) = g(�, s0(�))

⎡⎣− 1
Γ(w)

�∫
1

(
ln

�

x

)w−1
γ(x)

dx
x

+ c0 + c1 ln(�)

⎤⎦. (8)

Applying ordinary derivative D = d
d� on (8), we get

D

(
s0

g(�, s0(�))

)
= − 1

Γ(w)

�∫
1

(w− 1)
(

ln
�

x

)w−2 γ(x)
�

dx +
1
�

c1

= − 1
Γ(w− 1)

�∫
1

(
ln

�

x

)w−2 γ(x)
�

dx +
1
�

c1.

Using the first condition given in (6), we get c1 = 0. Now, by applying CHDw−1
1+ on

both sides of (8), we have

CHDw−1
1+

(
s0(�)

g(�, s0(�))

)
= −

�∫
1

γ(x)
dx
x

.

⇒ τCHDw−1
1+

(
s0(�)

g(�, s0(�))

)∣∣∣∣
�=e

= −τ

e∫
1

γ(x)
dx
x

.

⇒
(

s0(�)

g(�, s0(�))

)∣∣∣∣
�=ζ

= − 1
Γ(w)

ζ∫
1

(
ln

ζ

x

)w−1
γ(x)

dx
x

+ c0.
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Using the second condition given in (6), we obtain

c0 = τ

e∫
1

γ(x)
dx
x

+
1

Γ(w)

ζ∫
1

(
ln

ζ

x

)w−1
γ(x)

dx
x

.

Now, by using the values of c0 and c1 in (8), we obtain

s0(�) = g(�, s0(�))

⎡⎣− 1
Γ(w)

�∫
1

(
ln

�

x

)w−1
γ(x)

dx
x

+ τ

e∫
1

γ(x)
dx
x

+
1

Γ(w)

ζ∫
1

(
ln

ζ

x

)w−1
γ(x)

dx
x

⎤⎦.

This implies that the fractional integral Equation (7) has a unique solution s0. In the
reverse order, it is easy to see that if the fractional integral Equation (7) has a solution s0,
then s0 satisfies the fractional hybrid CH-FBVP (5) and (6).

Now, we provide the existence result for the solution of problem (1) and (2).

Theorem 4. Suppose that g ∈ C([1, e]×�,� \ {0}) and η ∈ C([1, e]×�,�) and
(S1) there exists bounded function k : [1, e]→ �+ such that ∀s1, s2 ∈ �, we have

|g(�, s1)− g(�, s2)| ≤ k(�)|s1(�)− s2(�)|

for all s1, s2 ∈ � and � ∈ [1, e],
(S2) there exists a continuous increasing map M : [0, ∞)→ (0, ∞) and a continuous map

h : [1, e]→ �+ such that

|η(�, s)| ≤ h(�)M(‖s‖), ∀ � ∈ [1, e] and s ∈ �, (9)

(S3) there exits a number ε ∈ �+ such that

ε >
G∗Δ∗H∗M(‖s‖)

1− k∗Δ∗H∗M(‖s‖) , (10)

where, G∗ = sup�∈[1,e] |g(�, 0)|, H∗ = sup�∈[1,e] |h(�)|, k∗ = sup�∈[1,e] |k(�)| and

Δ∗ =
1

Γ(w + 1)
+

(ln ζ)w

Γ(w + 1)
+ τ. (11)

If k∗Δ∗H∗M(‖s‖) < 1, then the hybrid CH–FBVP, (1)–(2) has unique solution.

Proof. Assume a closed ball με(0) : = {s ∈ N : ‖s‖N ≤ ε} in the Banach space N , where
ε meets the inequality (10). By utilizing fractional integral Equation (7) and Lemma 1, we
define two operators A1,A2 : με(0)→ N by (A1s)(�) = g(�, s(�)) and

(A2s)(�) = −
�∫

1

1
Γ(w)

(
ln

�

x

)w−1
η(x, s(x))

dx
x

+ τ

e∫
1

η(x, s(x))
dx
x

+

ζ∫
1

1
Γ(w)

(
ln

ζ

x

)w−1
η(x, s(x))

dx
x

.

Obviously, s ∈ N is a solution for the fractional hybrid BVP (1) and (2) and satisfies
the operator equation A1sA2s = s. By utilizing the conditions of Theorem 1, we show that
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a solution exists. First, we show that the operator A1 is a Lipschitzian map on normed
algebra N having constant k∗ = sup[1,e] |k(�))|.
Let s1, s2 ∈ N . By using assumption (S1), we get

|(A1s1)(�)− (A1s2)(�)| = |g(�, s1(�))− g(�, s2(�))| ≤ k(�)|s1(�)− s2(�)|

for all s1, s2 ∈ με(0). This means that A1 is a Lipschitzian map on με(0) having a Lipschitz
constant k∗. Now, we show the complete continuity of the operator A2 on με(0). Firstly, it
is required to check that the map A2 is continuous on με(0). Assume {sn} is a sequence in
the closed ball με(0) with sn → s, where s ∈ με(0).

As we know η is continuous on [1, e] × �, we conclude that limn→∞ η(�, sn(�)) =
η(�, s(�)). With the help of the Lebesgue dominated convergence theorem, we get

lim
n→∞

(A2sn)(�) = −
�∫

1

1
Γ(w)

(
ln

�

x

)w−1
lim

n→∞
η(x, sn(x))

dx
x

+ τ

e∫
1

lim
n→∞

η(x, sn(x))
dx
x

+

ζ∫
1

1
Γ(w)

(
ln

ζ

x

)w−1
lim

n→∞
η(x, sn(x))

dx
x

= −
�∫

1

1
Γ(w)

(
ln

�

x

)w−1
lim

n→∞
η(x, s(x))

dx
x

+ τ

e∫
1

lim
n→∞

η(x, s(x))
dx
x

+

ζ∫
1

1
Γ(w)

(
ln

ζ

x

)w−1
lim

n→∞
η(x, s(x))

dx
x

= (A2s)(�), ∀ � ∈ [1, e].

Thus, A2sn → A2s and so A2 is a continuous operator on με(0). Now, we check the
uniform boundedness of the operator A2 on με(0). By assumption (S1), we get

|(A2s)(�)| =
�∫

1

1
Γ(w)

(
ln

�

x

)w−1
lim

n→∞
|η(x, s(x))| dx

x
+ τ

e∫
1

lim
n→∞

|η(x, s(x))| dx
x

+

ζ∫
1

1
Γ(w)

(
ln

ζ

x

)w−1
lim

n→∞
|η(x, s(x))| dx

x

≤ (ln �)w

Γ(w + 1)
h(x)M(‖s‖) + τh(x)M(‖s‖) + (ln ζ)w

Γ(w + 1)
h(x)M(‖s‖)

= h(x)M(‖s‖)
[

(ln �)w

Γ(w + 1)
+ τ +

(ln ζ)w

Γ(w + 1)

]
,

∀ � ∈ [1, e] and s ∈ με(0). By taking supremum over [1, e], we have

‖A2s‖ ≤ H∗M(‖s‖)!∗,
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where, !∗ is given in (11). This implies that in normed algebra N , the set A2(με(0)) is
uniformly bounded. The equi-continuity of the operator A2 is now being explored. For
this purpose, we suppose �1, �2 ∈ [1, e] with �1 < �2 . Then, we have

|(A2s)(�2)− (A2s)(�1)| =

∣∣∣∣∣∣
�2∫

1

1
Γ(w)

(
ln

�2

x

)w−1
η(x, s(x))

dx
x

−
�1∫

1

1
Γ(w)

(
ln

�1

x

)w−1
η(x, s(x))

dx
x

∣∣∣∣∣∣
≤ H∗M(‖s‖)

⎡⎣ �1∫
1

(
1

Γ(w)
(ln

�2

x
)w−1 − 1

Γ(w)
(ln

�1

x
)w−1

)
dx
x

+

�2∫
�1

1
Γ(w)

(ln
�2

x
)w−1 dx

x

⎤⎦.

It is noticeable that the RHS of the above inequality approaches zero independent of
s ∈ με(0) as �1 → �2. Thus, the operator A2 is equi-continuous. By utilizing the Arzela–
Ascoli theorem, it is inferred that A2 is completely continuous on s ∈ με(0).
Now, by utilizing (S3), we have

M∗
0 = ‖A2(με(0))‖N = sup{|A2s| : s ∈ με(0)}

= H∗M(‖s‖)
[

1
Γ(w + 1)

+ τ +
(ln ζ)w

Γ(w + 1)

]
= H∗M(‖s‖)!∗.

Setting l∗ = k∗, we get M∗
0 l∗ < 1. So, one of the condition (i) or (ii) in Theorem 1 is

satisfied. For any ν ∈ (0, 1), assume that s satisfies the operator equation, s = νA1A2s so
that ‖s‖ = ε and we have

|s(�)| = ν|(A1s)(�)||(A2s)(�)| = ν|g(�, s(�))|

×

∣∣∣∣∣∣−
�∫

1

1
Γ(w)

(ln
�

x
)w−1η(x, s(x))

dx
x

+τ

e∫
1

η(x, s(x))
dx
x

ζ∫
1

1
Γ(w)

(ln
ζ

x
)w−1η(x, s(x))

dx
x

∣∣∣∣∣∣
≤ (|g(�, s(�))− g(�, 0))|+ |g(�, 0)|)

×

⎛⎝ �∫
1

1
Γ(w)

(ln
�

x
)w−1|η(x, s(x))| dx

x

+τ

e∫
1

|η(x, s(x))| dx
x

ζ∫
1

1
Γ(w)

(ln
ζ

x
)w−1|η(x, s(x))| dx

x

⎞⎠
≤ (k(�)|s(�)|+ G∗)!∗H∗M(‖s‖)
≤ (k∗‖s‖+ G∗)!∗H∗M(‖s‖).

So ε ≤ G∗!∗H∗M(‖s‖)
1−k∗!∗H∗M(‖s‖) which is inconsistent with (10). This implies that the condition

(ii) of Theorem 1 is not possible. Hence, the condition (i) in Theorem 1 is satisfied and the
fractional hybrid problem (1) and (2) has a solution.
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From the above theorem, we conclude that the solution of the hybrid Caputo–Hadamard
fractional differential equation exists provided that the stated conditions hold.

Now, we provide our main results related to hybrid CH–FIBVP for the thermostat
model (3) and (4).

Definition 1. We call the function s ∈ AC�([1, e]) a solution set for hybrid CH–FIBVP, (3) and (4)
whenever there exists an integrable function v ∈ L1([1, e],�) with v(�) ∈ �(�, s(�)) ∀ � ∈ [1, e],
such that

D

(
s(�)

g(�, s(�))

)∣∣∣∣
�=1

= 0, τCHDw−1
1+

(
s(�)

g(�, s(�))

)∣∣∣∣
�=e

+

(
s(�)

g(�, s(�))

)∣∣∣∣
�=ζ

= 0

and

s(�) = g(�, s(�))

⎡⎣− 1
Γ(w)

�∫
1

(
ln

�

x

)w−1
v(x)

dx
x

+ τ

e∫
1

v(x)
dx
x

+
1

Γ(w)

ζ∫
1

(
ln

ζ

x

)w−1
v(x)

dx
x

⎤⎦.

Theorem 5. Assume that
(S4) there is a bounded function k : [1, e]→ �+ such that ∀ s1, s2 ∈ � and � ∈ [1, e], we get

|g(�, s1(�))− g(�, s2(�))| ≤ k(�)|s1(�)− s2(�)|,

(S5) the compact and convex-valued multi-function � : [1, e] × � → Icp,cv(�) is L1-
Caratheodary,
(S6) there exits a positive function p ∈ L1([1, e],�+) such that

‖�(�, s)‖ = sup{|v| : v ∈ �(�, s(�))} ≤ p(�)

∀ s ∈ �, almost ∀ � ∈ [1, e] and ‖p‖L1 =

e∫
1

|p(x)|dx,

(S7) there is a number ε̃ ∈ �+ such that

ε̃ >
G∗Δ∗‖p‖L1

1− k∗Δ∗‖p‖L1
, (12)

where G∗ = sup�∈[1,e] |g(�, 0)|, k∗ = sup�∈[1,e] |k(�)| and Δ∗ is as given in (11). Then, hybrid
CH–FIBVP (3) and (4) has at least one solution whenever k∗Δ∗‖p‖L1 < 1

2 .

Proof. Consider an operator K : N → I(N ) defined by

K(s) = {w ∈ N : w(�) = k1(�) f or all 1 ≤ � ≤ e},

where

k1(�) = g(�, s(�))

⎛⎝− 1
Γ(w)

�∫
1

(
ln

�

x

)w−1
v(x)

dx
x

+ τ

e∫
1

v(x)
dx
x

+
1

Γ(w)

ζ∫
1

(
ln

ζ

x

)w−1
v(x)

dx
x

⎞⎠, v ∈ (SEL)�,s.
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Note that the solution for hybrid CH–FIBVP (3) and (4) is a fixed point of the map K.
Define a single-valued function, A1 : N → N by (A1s)(�) = g(�, s(�)) and the set-valued
map, A2 : N → I(N ) by

(A2s)(�) = {ψ ∈ N : ψ(�) = k2(�) f or all � ∈ [1, e]},

where

k2(�) =

⎛⎝− 1
Γ(w)

�∫
1

(
ln

�

x

)w−1
v(x)

dx
x

+ τ

e∫
1

v(x)
dx
x

+
1

Γ(w)

ζ∫
1

(
ln

ζ

x

)w−1
v(x)

dx
x

⎞⎠, v ∈ (SEL)�,s.

Note that K(s) = A1sA2s. We prove that A1 and A2 satisfy the assumptions of
Theorem 3. Using (S4) and by a comparable conclusion in Theorem 4, A1 is Lipschitz on N .
We can now see that the multi-valued function A2 has convex values. Assume s1, s2 ∈ A2s.
Then, select v1, v2 ∈ (SEL)�,s such that for i = 1, 2, we have

si(�) = − 1
Γ(w)

�∫
1

(
ln

�

x

)w−1
vi(x)

dx
x

+ τ

e∫
1

vi(x)
dx
x

+
1

Γ(w)

ζ∫
1

(
ln

ζ

x

)w−1
vi(x)

dx
x

, ∀ � ∈ [1, e].

For every constant q ∈ (0, 1), we get

qs1(�) + (1− q)s2(�) = − 1
Γ(w)

�∫
1

(
ln

�

x

)w−1
[qv1(x) + (1− q)v2(x)]

dx
x

+ τ

e∫
1

[qv1(x) + (1− q)v2(x)]
dx
x

+
1

Γ(w)

ζ∫
1

(
ln

ζ

x

)w−1
[qv1(x) + (1− q)v2(x)]

dx
x

∀ � ∈ [1, e] . As we know that � is convex-valued, (SEL)�,s has convex values and so
qv1(�) + (1− q)v2(�) ∈ (SEL)�,s ∀ � ∈ [1, e]. So that A2s is a convex set for all s ∈ N . To
check the complete continuity of the operator A2, we must verify that A2(N ) is uniformly
bounded and an equi-continuous set. For this reason, we prove that A2 mapped all
bounded sets into bounded subsets of the space N . For a number ε∗ ∈ �+, assume a
bounded ball v∗ε = {s ∈ N : ‖s‖N ≤ ε∗}. For every s ∈ v∗ε and ψ ∈ A2s, a function
v ∈ (SEL)�,s exists such that

ψ(�) = − 1
Γ(w)

�∫
1

(
ln

�

x

)w−1
v(x)

dx
x

+ τ

e∫
1

v(x)
dx
x

+
1

Γ(w)

ζ∫
1

(
ln

ζ

x

)w−1
v(x)

dx
x

, ∀ � ∈ [1, e].
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Then, we get

|ψ(�)| ≤ 1
Γ(w)

�∫
1

(
ln

�

x

)w−1
|v(x)| dx

x
+ τ

e∫
1

|v(x)| dx
x

+
1

Γ(w)

ζ∫
1

(
ln

ζ

x

)w−1
|v(x)| dx

x

≤ 1
Γ(w)

�∫
1

(
ln

�

x

)w−1
p(x)

dx
x

+ τ

e∫
1

p(x)
dx
x

+
1

Γ(w)

ζ∫
1

(
ln

ζ

x

)w−1
p(x)

dx
x

≤
[

1
Γ(w + 1)

+
(ln ζ)w

Γ(w + 1)
+ τ

]
‖p‖L1

= !∗‖p‖L1

where, !∗ is as given in (11). Thus, |ψ(�)| ≤ !∗‖p‖L1 and this implies that A2(N ) is
a uniformly bounded set. We now see how the operator A2 mapped bounded sets onto
equi-continuous sets. Let s ∈ v∗ε and ψ ∈ A2s. We select v ∈ (SEL)�,s so that

ψ(�) = − 1
Γ(w)

�∫
1

(
ln

�

x

)w−1
v(x)

dx
x

+ τ

e∫
1

v(x)
dx
x

+
1

Γ(w)

ζ∫
1

(
ln

ζ

x

)w−1
v(x)

dx
x

, ∀� ∈ [1, e].

For each l1, l2 ∈ [1, e] with �1 < �2, we obtain

|ψ(�2)− ψ(�1)| ≤

∣∣∣∣∣∣ 1
Γ(w)

�2∫
1

(
ln

�2

x

)w−1
v(x)

dx
x
− 1

Γ(w)

�1∫
1

(
ln

�1

x

)w−1
v(x)

dx
x

∣∣∣∣∣∣
=

∣∣∣∣∣∣ 1
Γ(w)

�1∫
1

(
ln

�2

x

)w−1
v(x)

dx
x

+
1

Γ(w)

�2∫
�1

(
ln

�2

x

)w−1
v(x)

dx
x

− 1
Γ(w)

�1∫
1

(
ln

�1

x

)w−1
v(x)

dx
x

∣∣∣∣∣∣
≤

�1∫
1

(
[(ln �2

x )
w−1 − (ln �2

x )
w−1]

Γ(w)

)
p(x)

dx
x

+
1

Γ(w)

�2∫
�1

(
ln

l2
x

)w−1
p(x)

dx
x

.

It is noticeable that the RHS of the above inequalities goes to 0 independent of s ∈ v∗ε
as �1 → �2. By utilizing the Arzela–Ascoli theorem, the operator A2 : C([1, e],�) →
I(C([1, e],�)) has the complete continuity property. We can now check that A2 has a
closed graph which means that due to the complete continuity of A2, the operator A2 is
upper semi-continuous. In this way, we assume that sn ∈ v∗ε and ψn ∈ A2sn are such that
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sn → s∗ and ψn → ψ∗. We claim that ψ∗ ∈ A2s∗. For each n ≥ 1 and ψn ∈ A2sn, choose
vn ∈ (SEL)�,sn

such that

ψn(�) = − 1
Γ(w)

�∫
1

(
ln

�

x

)w−1
vn(x)

dx
x

+ τ

e∫
1

vn(x)
dx
x

+
1

Γ(w)

ζ∫
1

(
ln

ζ

x

)w−1
vn(x)

dx
x

, ∀� ∈ [1, e].

It is enough to check that a function v∗ ∈ (SEL)�,s∗ exists such that

ψ∗(�) = − 1
Γ(w)

�∫
1

(
ln

�

x

)w−1
v∗(x)

dx
x

+ τ

e∫
1

v∗(x)
dx
x

+
1

Γ(w)

ζ∫
1

(
ln

ζ

x

)w−1
v∗(x)

dx
x

, ∀� ∈ [1, e].

Assume that the continuous linear operator,

Υ : L1([1, e],�)→ N = C([1, e],�)

is defined by

Υ(v)(�) = s(�) =− 1
Γ(w)

�∫
1

(
ln

�

x

)w−1
v(x)

dx
x

+ τ

e∫
1

v(x)
dx
x

+
1

Γ(w)

ζ∫
1

(
ln

ζ

x

)w−1
v(x)

dx
x

, ∀� ∈ [1, e]

so that

‖ψn(�)− ψ∗(�)‖ =

∥∥∥∥∥∥− 1
Γ(w)

�∫
1

(
ln

�

x

)w−1
(vn(x)− v∗(x))

dx
x

+ τ

e∫
1

(vn(x)− v∗(x))
dx
x

+
1

Γ(w)

ζ∫
1

(
ln

ζ

x

)w−1
(vn(x)− v∗(x))

dx
x

∥∥∥∥∥∥→ 0

as n → ∞. Thus, by utilizing Theorem 2, we go to the conclusion that the operator Υ ◦
(SEL)�,sn

has a closed graph. As we know that ψn ∈ ((SEL)�,sn
) and sn → s∗, there exists

v∗ ∈ (SEL)�,s∗ such that

ψ∗(�) = − 1
Γ(w)

�∫
1

(
ln

�

x

)w−1
v∗(x)

dx
x

+ τ

e∫
1

v∗(x)
dx
x

+
1

Γ(w)

ζ∫
1

(
ln

ζ

x

)w−1
v∗(x)

dx
x

, ∀� ∈ [1, e].

Thus, ψ∗ ∈ A2s∗ and so A2 has a closed graph. Thus, A2 is upper semi-continuous.
Moreover, by using the hypothesis, the operator A2 has compact values. This implies that
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A2 is an upper semi-continuous and compact operator. Now, by using condition (S6),
we obtain

M∗
0 = ‖A2(N )‖ = sup{|A2s| : s ∈ N}

=

[
1

Γ(w + 1)
+ τ +

(ln ζ)w

Γ(w + 1)

]
‖p‖L1

= !∗‖p‖L1 .

Setting �∗ = k∗, we get M∗
0�
∗ < 1

2 , and thus the assumptions of Theorem 3 are satisfied
for A1 and A2. Thus, one of the conditions (i) or (ii) holds. We prove that the condition
(ii) is not possible. By using Theorem 3 and the assumption (S7), consider that s ∈ O
with ‖s‖ = ε̃. Then, νs(�) ∈ A1s(�)A2s(�) for each ν > 1. Choose a related function
v ∈ (SEL)�,s. Then, ∀ ν > 1 , we get

s(�) =
1
ν

g(�, s(�))

⎡⎣− 1
Γ(w)

�∫
1

(
ln

�

x

)w−1
v(x)

dx
x

+ τ

e∫
1

v(x)
dx
x

+
1

Γ(w)

ζ∫
1

(
ln

ζ

x

)w−1
v(x)

dx
x

⎤⎦, ∀� ∈ [1, e].

Thus, we obtain

|s(�)| = 1
ν

g(�, s(�))

⎡⎣− 1
Γ(w)

�∫
1

(
ln

�

x

)w−1
|v(x)| dx

x
+ τ

e∫
1

|v(x)| dx
x

+
1

Γ(w)

ζ∫
1

(
ln

ζ

x

)w−1
|v(x)| dx

x

⎤⎦
≤ [|g(�, s(�))− g(�, 0)|+ |g(�, 0)|]

⎡⎣ 1
Γ(w)

�∫
1

(
ln

�

x

)w−1
|v(x)| dx

x
+ τ

e∫
1

|v(x)| dx
x

+
1

Γ(w)

ζ∫
1

(
ln

ζ

x

)w−1
|v(x)| dx

x

⎤⎦
≤ (k∗‖s‖+ G∗)

⎡⎣ 1
Γ(w)

�∫
1

(
ln

�

x

)w−1
p(x)

dx
x

+ τ

e∫
1

p(x)
dx
x

+
1

Γ(w)

ζ∫
1

(
ln

ζ

x

)w−1
p(x)

dx
x

⎤⎦
≤ (k∗ ε̃+ G∗)!∗‖p‖L1 , ∀� ∈ [1, e].

So

ε̃ ≤ G∗!∗‖p‖L1

1− k∗!∗‖p‖L1
.

According to condition (11), we can see that the condition (ii) of Theorem 3 is not
possible. Thus, s ∈ A1sA2s. Hence, it is satisfied that � has a fixed point and so that the
hybrid CH–FIBVP (3) and (4) has a solution.

We conclude from the above result that the solution for the hybrid Caputo–Hadamard
fractional differential inclusion exists provided that the stated conditions hold.
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4. Examples

Now, we provide numerical examples to demonstrate our theoretical findings.

Example 1. Consider hybrid CH-FBVP (1) and (2). Choose w = 1.5, w− 1 = 0.5, ζ = 1.8 and
τ = 0.1. Assume that the continuous maps g : [1, e]×� → �/{0} and η : [1, e]×� → � are
defined by

g(�, s(�)) =
�|s(�)|2

6 + |s(�)| + 5 with G∗ = sup
�∈[1,e]

|g(�, 0)| = 5

and

η(�, s(�)) =
� sin2(π�2 ) sin(s(�))

1000
.

Now, put k(�) = � and h(�) = � sin2( π2 (�))
1000 . Then, hybrid CH-FBVP takes the form

CHD1.5
1+

⎛⎝ s(�)
�|s(�)|2
6+|s(�)| + 5

⎞⎠+
� sin2(π2 (�)) sin(s(�))

1000
= 0, (� ∈ [1, e]) (13)

supplemented with the three-point hybrid terminal conditions

D

⎛⎝ s(�)
�|s(�)|2
6+|s(�)| + 5

⎞⎠∣∣∣∣∣∣
�=1

= 0,

0.1CHD0.5
1+

⎛⎝ s(�)
�|s(�)|2
6+|s(�)| + 5

⎞⎠∣∣∣∣∣∣
�=e

+

⎛⎝ s(�)
�|s(�)|2
6+|s(�)| + 5

⎞⎠∣∣∣∣∣∣
�=1.8

= 0. (14)

Then, we get k∗ = sup�∈[1,e] |k(�)| # 2.7, H∗ = sup�∈[1,e] |h(�)| =
e sin2( π2 (e))

1000 #
0.0021,M(‖s‖) = 1 and !∗ # 1.1915. Then, k∗!∗H∗M(‖s‖) # 0.0068 < 1. Choose
ς > 0.0126. The hybrid CH-FBVP (13) and (14) has a solution according to Theorem 4. The
graphical illustration of the inequality (9) in assumption S2 of Theorem 4 is given in Figure 1.
Figures 2 and 3 depict the graphs of the functions η and g, respectively.

Figure 1. Graphical illustration of inequality (9).
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Figure 2. The graph of η(l, s(l)).

Figure 3. The graph of g(l, s(l)).

Example 2. Let w = 1.6, w− 1 = 0.6, ζ = 1.89, τ = 1.75 and a continuous map g : [1, e]×
�\{0} defined by g(�, s(�)) = � sin s(�)

120 + 0.008 with G∗ = sup�∈[1,e] |g(�, 0)| = 0.008. Define
a multi-valued map � : [1, e]×� → I(�) by

�(�, s(�)) =
[ |s(�)|

4(|s(�)|+ 1)
+ 0.5,

| cos s(�)|4
5(1 + |cos s(�)|4) + 1.5

]
in the proposed hybrid CH-FBVP (3) and (4), then the hybrid CH–FIBVP takes the form,

CHD1.6
1+

(
s(�)

� sin s(�)
120 + 0.008

)
∈
[ |s(�)|

4(|s(�)|+ 1)
+ 0.5,

| cos s(�)|4
5(1 + |cos s(�)|4) + 1.5

]
, (� ∈ [1, e]) (15)

supplemented with three-point hybrid terminal conditions,

D

(
s(�)

� sin s(�)
120 + 0.008

)∣∣∣∣∣
�=1

= 0

(1.75)CHD0.6
1+

(
s(�)

� sin s(�)
120 + 0.008

)∣∣∣∣∣
�=e

+

(
s(�)

� sin s(�)
120 + 0.008

)∣∣∣∣∣
�=1.89

= 0. (16)
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If k(�) = �
120 , then k∗ = sup�∈[1,e] |k(�)| = e

120 # 0.0225. Since

|ψ| ≤ max
( |s(�)|

4(|s(�)|+ 1)
+ 0.5,

| cos s(�)|4
5(1 + |cos s(�)|4) + 1.5

)
≤ 2

∀ ψ ∈ �(�, s(�)). We obtain ‖�(�, s(�))‖ = sup{|v| : v ∈ �(�, s(�))} ≤ 2. Put p(�) = 2 for

any (� ∈ [1, e]). Then, ‖p‖L1 =

e∫
1

|p(s)|ds = 2(e − 1) # 3.42. Hence we get !∗ # 2.7891.

Then k∗!∗‖p‖L1 # 0.2146 < 1
2 . So we have ε̃ > 0.0971. Hence, hybrid CH–FIBVP (15) and (16)

has at least one solution according to Theorem 5.

5. Concluding Remarks

Fractional differential equations and inclusions can be used to model the many real-
world problems. In this paper, we look at two new hybrid Caputo–Hadamard FBVP
classes with three-point hybrid Caputo–Hadamard terminal conditions. Using Dhage’s
fixed point theorems, we investigated the essential requirements for the existence and
uniqueness of solutions to both problems. Our results are natural extensions of the hybrid
Caputo fractional model of a thermostat along with hybrid boundary conditions due to
Baleanu et al. [4]. Furthermore, we provided numerical examples to support the validity
of our findings. The Caputo–Hadamard fractional derivative can be used to prove the
existence of solutions for more sophisticated FDEs and FDIs utilizing the fixed point theory
and functional analysis.
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Abbreviations

The following abbreviations are used in this manuscript:

CHD Caputo–Hadamard Fractional Derivative
CHI Caputo–Hadamard Fractional Integral
CH-FBVP Caputo–Hadamard Fractional Boundary Value Problem
CH–FIBVP Caputo–Hadamard Fractional Inclusion Boundary Value Problem
N Normed Space
I(N ) Set of all Subsets of N
PHd Pompeiu–Hausdorff metric
(SEL)ω,σ Selections of ω at σ
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Abstract: The present study focuses on the dynamical aspects of a discrete-time Leslie-Gower
predator-prey model accompanied by a Holling type III functional response. Discretization is
conducted by applying a piecewise constant argument method of differential equations. Moreover,
boundedness, existence, uniqueness, and a local stability analysis of biologically feasible equilibria
were investigated. By implementing the center manifold theorem and bifurcation theory, our study
reveals that the given system undergoes period-doubling and Neimark-Sacker bifurcation around the
interior equilibrium point. By contrast, chaotic attractors ensure chaos. To avoid these unpredictable
situations, we establish a feedback-control strategy to control the chaos created under the influence of
bifurcation. The fractal dimensions of the proposed model are calculated. The maximum Lyapunov
exponents and phase portraits are depicted to further confirm the complexity and chaotic behavior.
Finally, numerical simulations are presented to confirm the theoretical and analytical findings.

Keywords: prey-predator model; boundedness; period-doubling bifurcation; Neimark-Sacker bifur-
cation; hybrid control; fractal dimensions

1. Introduction

predator-prey models have a wide range of applications in ecological and biological
fields. Although various fundamental aspects of the nonlinear dynamics of predator-
prey population models related to continuous dynamical systems have been studied,
the characteristics of discrete dynamical systems remain comparatively unknown. A
discrete dynamical structure possesses a solitary dynamical nature as compared to a
continuous system. There are several critical and practical problems in daily life that can
be characterized with the help of a discrete dynamical system. To consider the analytical
aspects of a solution that is difficult to calculate, various schemes can be implemented to
discretize a continuous system and discuss the numerical solution. Therefore, detailed
critical inspections of discrete-time dynamical systems have contributed immensely to
various fields such as engineering, physics, chemistry, and mathematics. There have been
numerous studies conducted that are related to the dynamics of predator-prey models.

Chen et al. [1] applied the Euler scheme and center manifold theorem to a ratio-
dependent prey-predator model and scrutinized the dynamic characteristics of the model.
Ghaziani et al. [2] studied a prey-predator system with a Holling functional response
and discussed the resonance and bifurcation analyses. Jana [3] found extremely powerful
dynamical conditions through numerical and theoretical investigations of discrete-time
prey-predator models, such as stability conditions, flip, and hopf-bifurcation. Misra et al. [4]
studied a predator-prey model based on age predation and discussed the dynamic behav-
ior of the models. Zhang et al. [5] presented a biological economic system related to
the predator-prey model of a differential algebraic system by applying a new normal
form. Hu and Cao [6] investigated the Holling and Leslie type predator-prey model and
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discussed a chaos and bifurcation analysis. Wang and Li [7] proposed a lemma that is
extremely meaningful for discussing the stability and bifurcation of the systems. The fun-
damental finding in the dynamics of prey-predator species is the classical Lotka-Volterra
prey-predator model, which exhibits unrealistic behavior (see, Murdoch et al. [8]). To
remove such unrealistic behavior, Holling introduced three different types of functional
responses (see, Holling [9]). Rosenzweig and MacArthur [10] implemented a functional
response to modify the predator-prey model. An investigation into population interaction
focused on the continuous dynamical system of two species [11–13]. By contrast, a recent
study led to the discrete dynamical system becoming more suitable than a continuous
version when the population is non-overlapping (e.g., see, Jing et al. [14], Liu et al. [15],
Lopez-Ruiz and Fournier-Prunaret [16], Neubert and Kot [17]). Furthermore, multiple
existing studies related to the dynamics of predator-prey models are described in [18–26].
In [27], the Holling type-III functional response was introduced in both populations (prey
and predator). The stability conditions around biologically suitable equilibria were further
discussed. Diagrams of the phase portraits, bifurcation, and time series were plotted. It was
shown that the system is sensitive to the initial conditions, which means that the system
is chaotic. A two-dimensional continuous model with a Holling-III functional response
in both prey and predator was presented [28]. Furthermore, Euler’s scheme was used to
discretize the model and study the complex behavior of the system. Elettreby et al. [29]
discussed a discrete-time prey-predator model with predator and prey populations having
Holling type I and III functional responses, respectively. Moreover, they described a fasci-
nating dynamical nature of the model, including stability, bifurcation, and chaos, which
ensure the rich dynamics of discrete-time models.

In this study, we evaluate the specific prey –predator model discussed by Murray [30]:

dx
dt

=x
[

r
(

1− x
k

)
− axy

b2 + x2

]
,

dy
dt

=ys
(

1− hy
x

)
,

(1)

where x(t) and y(t) denote the densities of prey and predator species at any time t, respec-
tively; the carrying capacity of prey in the absence of predator is k, and r, b, a, s, and h
are positive constants. Moreover, the carrying capacity is proportional to the prey pop-
ulation size and population of prey attacked by predators, as specified by the Holling
type III functional response. He and Lai [31] examined the bifurcation and chaos control
of the discrete-time version of model (1) by implementing Euler’s forward scheme with
step size h as the bifurcation parameter. The numerical results in [31] show that period-
doubling bifurcation occurs when a large step size is considered in Euler’s method; this
fact contravenes the precision of the numerical method for discretization. To overcome this
deficiency, the following discretization method was implemented. Considering the regular
time interval for the average growth rate in both populations, by resorting to piecewise
constant arguments for solving nonlinear differential equations, system (1) can then be
rewritten as follows:

1
x(t)

dx(t)
dt

=

[
r
(

1− x[t]
k

)
− ax[t]y[t]

b2 + x[t]2

]
,

1
y(t)

dy(t)
dt

=s
(

1− hy[t]
x[t]

)
,

(2)
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where the integer part of t is given by [t] within the interval 0 < t < 1. In addition, by
integrating system (1) for t ∈ [n : n + 1], (n = 0, 1, 2, . . .), we have the following system:

x(t) =xn exp
([

r
(

1− xn

k

)
− axnyn

b2 + xn2

]
(t− n)

)
,

y(t) =yn exp
([

s
(

1− hyn

xn

)]
(t− n)

)
.

(3)

Applying t → n + 1 , we obtain the following prey-predator system:

xn+1 =xn exp
(

r
(

1− xn

k

)
− axnyn

b2 + xn2

)
,

yn+1 =yn exp
(

s
(

1− hyn

xn

))
.

(4)

The key contributions and findings of the current study are as follows for model (4):

• The existence and uniqueness of biologically feasible equilibria and their stability
analysis are discussed.

• Our findings indicate that model (4) undergoes periodic doubling as well as a Neimark-
Sacker bifurcation at its unique positive equilibrium.

• The direction and existance criteria for both types of bifurcation are examined under
interior equilibrium.

• A hybrid control strategy is applied to control the chaos in model (4).

The remainder of this paper is organized as follows. After presenting some related
preliminaries in Section 2, the boundedness of the steady state is analyzed in Section 3. In
Section 4, the dynamics of system (4), including the existence of equilibria and local stability,
are presented. Section 5 describes an investigation of the birfurcation analysis at the interior
fixed point of system (4). In Section 6, we study a hybrid control method to control the
chaos. The fractal dimensions are calculated in Section 7. Finally, numerical simulations
are provided in Section 8 to verify our analytical approach. Conclusions related to these
results are presented in Section 9 and the future directions are providing in Section 10.

Furthermore, a detailed investigation of some charismatic population models and their
qualitative behavior are provided (see, Din and Din et al. [18–26] and the references therein).

2. Preliminaries

Definition 1. ([32]) A point x∗is said to be a fixed point of the map for an equilibrium point if
f (x∗) = x∗.

Theorem 1. ([32]) Let f : I → I be a continuous map, where I = [a, b] is a closed interval inR.
Then, f has a fixed point.

Theorem 2. ([32]) Let f : I = [a, b] → R be a continuous map such that f (I) ⊃ I. Then, f
has a fixed point in I.

Definition 2. ([32]) Let f : I → I be a map and x∗ be a fixed point of f , where I is an interval
in the set of real numbers R. Then, the following conditions hold true:

1. x∗ is said to be stable if for any ε > 0, there exists δ > 0 such that for all x0 ∈ I with
|x0 − x∗| < δ we have | f n(x0)− x∗| < ε for all n ∈ Z+. Otherwise, the fixed point x∗ is
unstable.

2. x∗ is said to be attractive if η > 0 exists, such that |x0 − x∗| < η implies lim
n→∞

f n(x0) = x∗.

3. x∗ is asymptotically stable if it is both stable and attractive. If in (2), η = ∞, then x∗ is said
to be globally asymptotically stable.
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Definition 3. ([32]) A fixed point x∗ of a map f is said to be hyperbolic if | f ′(x∗)| = 1. Otherwise,
it is non-hyperbolic.

Theorem 3. ([32]) Let x∗ be a hyperbolic fixed point of a map f , where f is continuously differen-
tiable at x∗. The following statements hold true:

1. If | f ′(x∗)| < 1, then x∗ is asymptotically stable.
2. If | f ′(x∗)| > 1, then x∗ is unstable.

3. Boundedness

The boundedness of system (4) is based on the following Remark.

Remark 1. ([25]) Assuming that x0 > 0 for every xt and xt+1 ≤ xtexp(A[1− Bxt]) for every
t ∈ [t1, ∞], where B > 0 is constant. Then,

lim
n→∞

Supxt ≤
1

AB
exp(A− 1)

Using Remark 1, we state the following theorem for the uniform boundedness of
system (4).

Theorem 4. Any positive solution (xn, yn) of model (4) is uniformly bounded.

Proof. Assuming that (xn, yn) is any positive solution of system (4), we then have

xn+1 ≤ xn exp
(

r
(

1− xn

k

))
, for all n = 0, 1, 2, . . . .

Let x0 > 0. Using Remark 1, we obtain the following result.

lim
n→∞

Supxn ≤
k
r

exp(r− 1) = l1. (5)

Furthermore, from the second part of system (4), we obtain the following:

yn+1 ≤ yn exp
(

s
(

1− hyn

l1

))
.

Let y0 > 0. Applying Remark 1, we obtain the following result:

lim
n→∞

Supyn ≤
l1
sh

(s− 1) = l2 (6)

Thus, it follows that limn→∞Sup(xn, yn) ≤ l, where l = max{l1, l2}. The proof is
completed. �

4. Existence of a Positive Fixed Point and Local Stability

To explore the existence of a fixed point of model (4), suppose that (x, y) is any arbitrary
fixed point of (4). Then, (x, y) must satisfy the following algebraic system of equations:

x =x exp
(

r
(

1− x
k

)
− axy

b2 + x2

)
,

y =y exp
(

s
(

1− hy
x

))
.

(7)

Then, (7) has a boundary equilibrium point (k, 0). In addition, we also explore the
existence and uniqueness of the solution of system (4) because the positive fixed points
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are not in a closed form. For this purpose, the following computation, using Theorem 4,
exhibits the existence and uniqueness of the solution to model (4).

Theorem 5. There exists a unique positive steady-state(x∗, y∗) ∈ [0, l1]× [0, l2] of system (4).

Proof. To attain the fixed point by solving system (7), we have

r
(
1− x

k
)
= axy

x2+b2 ,
x = yh.

(8)

Suppose that

F(x) = r
(

1− x
k

)
−

ax2

h
x2 + b2

for all x ∈ [0, l1]. Then, we can see that F(0) = r > 0 and

F(l1) = − a exp(2(r− 1))k2

h
(

b2 +
exp(2(r−1))k2

r2

)
r2

+ r
(

1− exp(r− 1)
r

)
< 0

for all a, b, s, r, k, and h > 0. Hence, there exists at least one root of F(x) = 0, for
x ∈ [0, l1]. In addition,

F′(x) = − r
k
− 2ab2x

h(b2 + x2)
2 < 0

for all x ∈ [0, l1]. Therefore, the system (4) has a unique positive fixed point (x∗, y∗) ∈
[0, l1]× [0, l2].

Initially, we explored the stability analysis of the boundary equilibrium (k, 0). The
Jacobian matrix FJ evaluated at (k, 0), is expressed as

FJ(k, 0) =

[
1− r − k2a

b2+k2

0 exp(s)

]
,

and the characteristic equation computed at (k, 0) is given by

F(η) = η2 − (1− r + exp(s))η + (1− r) exp(s)

Hence, F(η) = 0 has two roots, namely, η1 = exp(s) and η2 = 1− r. In addition, (k, 0)
is the source if r > 2, and is the saddle point if 0 < r < 2. Next, we explored the stability
analysis of the fixed points. To investigate the stability of the equilibria, we calculated the
Jacobian FJ of system (4) at any point (x, y) as follows:

FJ(x, y) =
[

b11 b12
b21 b22

]
The characteristic polynomial of FJ at (x, y) is given by

R(η) = η2 − T1η + D1, (9)

where
T1 = (b11 + b22),

and
D1 = b11b22 − b12b21

The following Lemma is extremely useful to examine the stability of the equilibria. �
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Lemma 1. Let �(η) = η2 − T1η + D1 and �(1) > 0. Moreover, η1,η2 are the roots of equation
�(η) = 0, and thus

(i) |η1| < 1 & |η2| < 1 ⇔ �(−1) > 0 and D1 < 1;
(ii) |η1| < 1 & |η2| > 1 or (|η1| > 1 and |η2| < 1) ⇔ �(−1) < 0;
(iii) |η1| > 1 & |η2| > 1 ⇔ �(−1) > 0 and D1 > 1;
(iv) η1 = −1 & |η2| �= 1 ⇔ �(−1) = 0 and T1 �= 0, 2;
(v) η1 and η2 are complex and |η1| = 1 and |η2| = 1 ⇔ T1

2 − 4D1 < 0 and D1 = 1.

Because η1 and η2 are the eigenvalues of (9), the following topological results are
obtained.

The equilibrium (x, y) is known as a sink if |η1| < 1 and |η2| < 1, which is locally
asymptotically stable, and as a source if |η1| > 1 and |η2| > 1; thus, the nature of the source
is always unstable. Moreover, the equilibrium point (x, y) is always known as the saddle
point if |η1| < 1 and |η2| > 1 or (|η1| > 1 and |η2| < 1). In the case of a non-hyperbolic
equilibrium (x, y), either |η1| = 1 or |η2| = 1.

Our next aim is to discuss the local stability of the unique positive equilibrium (x∗, y∗)
of system (4). Let (9) be the characteristic polynomial of the variational matrix evaluated at
(x∗, y∗), such that

T1 =
(

2− rx∗
k
−Ω− s)

)
and D1 =

(
1− rx∗

k
−Ω

)
(1− s) +

sΦ
h

where Ω =
ax∗y∗(b2−x2∗)

(b2+x2∗)
2 and Φ = ax2∗

b2+x2∗
. Thus, by applying Lemma 1, we discuss the local

stability of system (4) around (x∗, y∗) by stating the following proposition.

Proposition 1. The interior equilibrium point (x∗, y∗) of system (4) satisfies the following results:

(i) The interior equilibrium(x∗, y∗) is stable iff:∣∣∣2− rx∗
k
−Ω− s

∣∣∣ < ∣∣∣∣1 + (1− rx∗
k
−Ω

)
(1− s) +

sΦ
h

∣∣∣∣,
and ∣∣∣∣ sΦ

h
+ (1− s)

(
1− rx∗

k
−Ω

)∣∣∣∣ > 1

(ii) The positive fixed point (x∗, y∗) is a saddle point if and only if

[
2− rx∗

k
−Ω− s

]2
> 4
[
(1− s)

(
1− rx∗

k
−Ω

)
+

sΦ
h

]
,

and
(iii) The interior fixed point (x∗, y∗) is non-hyperbolic if and only if∣∣∣2− rx∗

k
−Ω− s

∣∣∣ = ∣∣∣∣1 + (1− rx∗
k
−Ω

)
(1− s) +

sΦ
h

∣∣∣∣ (10)

or (
1− rx∗

k
−Ω

)
(1− s) +

sΦ
h

= 1 and
∣∣∣2− rx∗

k
−Ω− s

∣∣∣ < 2. (11)

To explore the local stability criteria for (x∗, y∗) of model (4), we have the following
theorem:

Theorem 6. If neither (10) nor (11) is satisfied, then the positive steady-state (x∗, y∗) of system (4)
is locally asymptotically stable if and only if the following condition is satisfied.
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∣∣∣2− rx∗
k
−Ω− s

∣∣∣ < 1 +
(

1− rx∗
k
−Ω

)
(1− s) +

sΦ
h

< 2

5. Bifurcation Analysis

In this section, we discuss the period-doubling and Neimark-Sacker bifurcations of
system (4) around the interior equilibrium. Initially, we explored the period-doubling
bifurcation at a positive fixed point (x∗, y∗) of system (4). To study the period-doubling
bifurcation, assume that T2

1 > 4D1, that is,(
2− rx∗

k
−Ω− s

)
> 4
[(

1− rx∗
k
−Ω

)
(1− s) +

sΦ
h

]
(12)

and T1 + D1 + 1 = 0. It then follows that

s :=
2h(rx∗ − (2−Ω)k)

h(Ω k + rx∗) + k(Φ− 2 h)
(13)

Then, η1 = −1 and η2 �= 1 if(
1− rx∗

k
−Ω

)
(1− s) +

sΦ
h
�= ±1. (14)

Consider the map TPB =
{
(a, b, k, r, s) ∈ R5

+ for which (12)–(14) are thus satisfied.
Then, the equilibrium (x∗, y∗) of system (4) sustains period-doubling bifurcation whenever
the parameters deviate within the small neighborhood of TPB. Thus, system (4) along with
parameters (a, b, k, r, s1) ∈ TPB, can be written as follows:

(
x
y

)
→
(

xer(1− x
k )−

axy
b2+x2

yes1(1− hy
x )

)
(15)

The following perturbation of system (15) can be obtained by taking s as a bifurcation
parameter: (

x
y

)
→
(

xer(1− x
k )−

axy
b2+x2

ye(s1+s)(1− hy
x )

)
(16)

where |s| << 1 denotes the least perturbation parameter. Assuming that N = x − x∗,
P = y− y∗, system (16) is reduced to the following form:(

N
P

)
→
(

b11 b12
b21 b22

)(
N
P

)
+

(
f1(N, P, s)
f2(N, P, s)

)
(17)

Here,

f1(N, P, s) = b13N2 + b14NP + b15P2 + a1N3 + a2N2P + a3NP2 + a4P3 + O
(
(|N|+ |P|+ |s|)4

)
,

f2(N, P, s) = b23N2 + b24NP + b25P2 + d1N3 + d2N2P + d3NP2 + d4P3

+c1sN + c2rP + c3r2 + c4rNP + c5rN2 + c6rP2 + c7r2N + c8s2P + c9r3 + O
(
(|N|+ |P|+ |s|)4

)
Whereas the descriptions and computations of the involved coefficients are given in

Appendix A.
The canonical form of (17) at s1 = 0 can be obtained by assuming the following map:(

N
P

)
=

(
b12 b12
−1− b11 η2 − b11

)(
u
v

)
. (18)
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The normal form of system (17) under translation (18) can be expressed as(
u
v

)
→
( −1 0

0 η2

)(
u
v

)
+

(
f̃ (u, v, s)
g̃(u, v, s)

)
, (19)

the descriptions and computations of the involved functions and parameters leading to the
following expression are provided in Appendix B.

F1 :=
(

∂2 f̃
∂u∂s +

1
2
∂F
∂r

∂2F
∂u2

)
(0,0)

= c2(1+b11)
η2+1 − c1b12

η2+1 ,

F2 :=
(

1
6
∂3F
∂u3 +

(
1
2
∂2F
∂u2

)2
)
(0,0)

= t2
1 + t5

Hence, we arrive at the following conclusions based on the aforementioned calculations.

Theorem 7. There exists a period-doubling bifurcation at (x∗, y∗) of system (4), whenever F2 �= 0
and r deviates within a small neighboring point of s1. In addition, if F2 > 0, (F2 < 0), the orbit is
period-2 stable (unstable).

Next, we investigated the Neimark-Sacker bifurcation around (x∗, y∗) of system (4).
For identical results, we referred to the studies by Din [24,25], Shabbir et al. [20], and Jing
et al. [14]. Furthermore, the equilibrium point moves around the close invariant curve,
owing to the Neimark-Sacker bifurcation. To explore the Neimark-Sacker bifurcation, we
find the conditions for which (x∗, y∗) is a non-hyperbolic point with a complex conjugate
root of the characteristic equation of the unit modulus. Thus, if the following results hold
true, then �(η) = 0 has two complex conjugate roots with a unit modulus.

s :=
(Ω k + rx∗)h

h(Ω k + rx∗) + k(Φ− h)
,

and ∣∣∣2− rx∗
k
−Ω− s

∣∣∣ < 2.

Consider

TNS =

{
(a, b, k, r, s) ∈ R5

+ : s =
(Ω k + rx∗)h

h(Ω k + rx∗) + k(Φ− h)
and

∣∣∣2− rx∗
k
−Ω− s

∣∣∣ < 2
}

.

Assuming that s2 = (Ω k+rx∗)h
h(Ω k+rx∗)+k(Φ−h) , the fixed point (x∗, y∗) ensures the Neimark-

Sacker bifurcation when the parameters fluctuate in the least neighborhood of TNS. Thus,
system (4) along with parameters (a, b, k, r2, s) can be expressed as follows:

(
x
y

)
→
(

xer(1− x
k )−

axy
b2+x2

yes2(1− hy
x )

)
. (20)

The following perturbation of system (20) can be obtained by taking s̃ as the bifurcation
parameter, i.e., (

x
y

)
→
(

xer(1− x
k )−

axy
b2+x2

ye(s2+s̃)(1− hy
x )

)
(21)

where |s̃| << 1 denotes the least perturbation. Assuming that N = x − x∗, P = y− y∗,
then system (21) takes the following modified form:(

N
P

)
→
(

a11 a12
a21 a22

)(
N
P

)
+

(
g1(N, P)
g2(N, P)

)
, (22)
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where

g1(N, P) = b13N2 + b14NP + b15P2 + a1N3 + a2N2P + a3NP2 + a4P3 + O
(
(|N|+ |P|+ |r|)4

)
,

g2(N, P) = b23N2 + b24NP + b25P2 + d1N3 + d2N2P + d3NP2 + d4P3 + O
(
(|N|+ |P|+ |r|)4

)
.

Here, b11, b12, b21, b22, b13, b14, b15, a1, a2, a3, a4, b23, b24, b25, d1, d2, d3, and d4, are
defined in (17) by replacing s1 by s2 + s̃. Let

η2 − T1(s̃)η + D1(s̃) = 0, (23)

be the characteristic equation of the variational matrix of (22) evaluated at (0, 0), where

T1(s̃) =
(

2− rx∗
k
−Ω− (s2 + s̃)

)
and D1(s̃) =

(
1− rx∗

k
−Ω

)
(1− (s2 + s̃))+

(s2 + s̃)Φ
h

where Ω =
ax∗y∗(b2−x2∗)

(b2+x2∗)
2 and Φ = ax2∗

b2+x2∗
. Because (a, b, k, r, s2) ∈ TNS, |η1| = |η2| such that

η1 and η2 are the complex conjugate roots of (23), it follows that

η1, η2 =
T1(s̃)

2
± i

2

√
4D1(s̃)− T2

1 (s̃)

We then obtain

|η1|=|η2| =
√

D1(s̃),

(
d
√

D1(s̃)
ds̃

)
s̃=0

=
(Ω h + Φ− h)k + hrx

2
√
((Ω− 1)k + rx)(s− 1)h + Φ ks

�= 0

Moreover, T1(0) =
(
2− rx∗

k −Ω− s2
)
�= 0, −1. Because (a, b, k, r, s2) ∈ TNS, it follows

that −2 < T1(0) =
(
2− rx∗

k −Ω− s2
)
< 2. Thus, we have ηm

1 , ηm
2 �= 1 for all m = 1, 2, 3, 4

at s̃ = 0, for T1(0) �= 0,−1,±2. Hence, for s̃ = 0, zeros of (23) do not belong to the
intersection of the unit circle with coordinate axes if the following condition is satisfied:

2−Ω− s2 �=
rx∗
k

, 3−Ω− s2 �=
rx∗
k

(24)

The canonical form of (22) at s̃ = 0 can be obtained by taking γ = T1(0)
2 ,

δ = 1
2

√
4D1(0)− T2

1 (0) and assuming(
N
P

)
=

(
b12 0
γ− b11 −δ

)(
u
v

)
(25)

Using transformation (25), we obtain the following canonical form of system (22):(
u
v

)
→
(

γ −δ
δ γ

)(
u
v

)
+

(
f̃ (u, v)
g̃(u, v)

)
(26)

where

f̃ (u, v) =
a1N3

b12
+

a2N2P
b12

+
b13N2

b12
+

a3NP2

b12
+

b14NP
b12

+
a4P3

b12
+

b15P2

b12
+ O

(
(|u|+ |v|)4

)
g̃(u, v) =

(
(γ− b11)a1

b12δ
− d1

δ

)
N3 +

(
(γ− b11)a2

b12δ
− d2

δ

)
N2P

+

(
(γ− b11)b13

b12δ
− b23

δ

)
N2 +

(
(γ− b11)a3

b12δ
− d3

δ

)
NP2
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+

(
(γ− b11)b14

b12δ
− b24

δ

)
NP +

(
(γ− b11)a4

b12δ
− d4

δ

)
P3

+

(
(γ− b11)b15

b12δ
− b25

δ

)
P2 + O

(
(|u|+ |v|)4

)
N = a12u and < P = (γ− b11)u− δv

Owing to the aforementioned computation, we state a nonzero real number

L :=

([
−Re

(
(1− 2η1)η

2
2

1− η1
ξ20ξ11

)
− 1

2
|ξ11|2−|ξ02|2 + Re(η2ξ21)

])
c̃=0

where,

ξ11 =
1
4

[
f̃uu + f̃vv + i(g̃uu + g̃vv)

]
,

ξ02 =
1
8

[
f̃uu − f̃vv − 2g̃uv + i

(
g̃uu − g̃vv + 2 f̃uv

)]
ξ20 =

1
8

[
f̃uu − f̃vv + 2g̃uv + i

(
g̃uu − g̃vv − 2 f̃uv

)]
,

ξ21 =
1
16

[
f̃uuu + f̃uvv + g̃uuv + g̃vvv + i

(
g̃uuu + g̃uvv − f̃uuv − f̃vvv

)]
.

Ultimately, we deduced the following conclusions for the direction and existence of
the Neimark-Sacker bifurcation, based on the aforementioned calculation:

Theorem 8. There exists a Neimark-Sacker bifurcation around (x∗, y∗) whenever s deviates wtihin
the neighborhood of s2 = (Ω k+rx∗)h

h(Ω k+rx∗)+k(Φ−h) . In addition, if L < 0 (L > 0), then an attracting (or
repelling) invariant closed curve fluctuates in the range (x∗, y∗) for s > s2 (or s < s2).

6. Chaos Control

In this section, we implement the hybrid control method for controlling the chaos
caused by the period-doubling bifurcation and for controlling the Neimark-Sacker bifur-
cation in (4). Such strategies have been discussed elsewhere in [21,33–37]. We assume the
following controlled system corresponding to model (4):

xn+1 =εxn exp
(

r
(

1− xn

k

)
− axnyn

b2 + xn2

)
+ (1− ε)xn,

yn+1 =εyn exp
(

s
(

1− hyn

xn

))
+ (1− ε)yn,

(27)

where 0 < ε < 1. Furthermore, both types of bifurcations can be controlled by choosing
an appropriate value of parameter ε. The controlled system (27) and the original system
(4) have the same equilibrium point; the Jacobian matrix of the controlled system (27) at
(x∗, y∗) is expressed by [

1− ε xr
k − ε Ω −ε Φ

ε s
h 1− ε s

]
Consequently, the necessary and sufficient condition for local stability around (x∗, y∗)

of the controlled system (27) yields the following result.

Theorem 9. The interior fixed point (x∗, y∗) of (27) is locally asymptotically stable if∣∣∣2− εrx∗
k

− εΩ− εs
∣∣∣ < 1 +

(
1− εrx∗

k
− εΩ

)
(1− εs) +

sΦ
h

< 2.
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7. Fractal Dimension

The fractal dimension that describes the strange attractors of discrete-time models is
defined as follows [38,39]:

 

where are Lyapunov exponents, and is the largest integer such that
 and . For the discrete-time model (4), the fractal dimension takes

the following form:

 

Furthermore, for the values of parameters a, b, r, k, h, and s, the two Lyapunov expo-
nents F1 and F2 are computed numerically. If b = 3.3, a = 0.8, r = 1.3, h = 2.7, and k = 1.8,
then F1 and F2 corresponding to the values of the bifurcation (period-doubling) parameter
s from the chaotic region, with the help of Mathematica software, are shown in Table 1.

Table 1. Fractal dimension of model (4).

Values of s 1st Lyapunov Exponents F1 2nd Lyapunov Exponents F2 Fractal Dimension

2.85 0.08462596943938297 −1.1368798813345231 1.0744370366903186

2.90 0.22741225178613755 −1.2160641186798002 1.187006793714976

3.0 0.31895100399320747 −1.0790255038850196 1.2955917194216706

3.1 0.22493177216760443 −1.244489487648406 1.1807422034497348

3.2 0.4025124673527987 −1.1944261491614452 1.3369923436751492

3.3 0.3894200849244259 −1.2328810276916689 1.3158618521801246

3.4 0.47745428811163265 −1.2528556268034083 1.3810928233844715

3.5 0.47582043180971084 −1.2925566246939908 1.3681234715131803

The strange attractors for fixed parametric values illustrate that the discrete model (4)
has a complex dynamical behavior as parameter s increases by s > 2.1894756175566834.
Similarly, for the Neimark-Sacker bifurcation, the Lyapunov exponents and fractal di-
mension can be calculated for the values of parameter s from the chaotic region, that is,
s = 1.66, 1.68, 1.89, and so on. The strange attractors corresponding to these values are
also shown in Figure 1. In particular, Figure 1g,h,k below, demonstrate that the discrete
time model (4) has a complex dynamical nature when parameter s > 1.3874082082631611.
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 1. Cont.
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(g) (h) 

  
(i) (j) 

  
(k) (l) 

Figure 1. (a) s = 1.34, (b) s = 1.3811, (c) s = 1.3874082082631611, (d) s = 1.43, (e) s = 1.607,
(f) s = 1.625, (g) s = 1.66, (h) s = 1.68, (i) s = 1.735, (j) s = 1.83, (k) s = 1.89,
(l) s = 1.99. (a)–(l) Phase portraits of system (4) for different values of s ∈ [1, 2] with
b = 1.7, a = 2.26, r = 2.4, h = 1.8, and k = 1.4 under the initial conditions x0 = 1.0219, y0 = 0.567721.

8. Numerical Simulation

This section verifies the aforementioned theoretical discussion. The first example is
related to the existence and direction of the Neimark-Sacker bifurcation. The second exam-
ple shows that for a suitable choice of parameters, system (4) undergoes period-doubling
bifurcation. Moreover, to confirm the control of flip and Neimark-Sacker bifurcation, we
provide two examples for different choices of parameters defined in TPB and TNS.

Example 1. Let b = 1.7, a = 2.26, r = 2.4, h = 1.8, k = 1.4, s ∈ [1, 1.8], and initial conditions
(x0, y0) = (1.0219, 0.567721). Then, both species undergo a Neimark-Sacker bifurcation, as shown
in Figure 2. To confirm the chaotic behavior of model (4) MLE is shown in Figure 2c.
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(a) (b) 

 
(c) 

Figure 2. Bifurcation diagrams and maximum Lypunov exponents (MLE) for system (4) with para-
metric values b = 1.7, a = 2.26, r = 2.4, h = 1.8, k = 1.4, and s ∈ [1, 1.8] and initial conditions
(x0, y0) = (1.0219, 0.567721): (a) bifurcation for xn, (b) bifurcation for yn, and (c) MLE.

Furthermore, Figure 1a–l shows the interesting behavior of system (4). Figure 1f–l
shows the chaotic behavior of system (4). Assuming that b = 1.7, we have a positive
fixed point (x∗, y∗) = (1.165750001, 0.6476388892), which loses stability and undergoes
a Neimark-Sacker bifurcation. Thus, for the aforementioned parameters, we have the
following control system:

xn+1 =ε xne
2.4−1.714285714 xn−2.26 xnyn

xn2+2.89 + (1− ε)xn,

yn+1 =ε yne1.5−2.70 yn
xn + (1− ε)yn.

(28)

It can be clearly observed that the controlled system (28) has a unique positive equilib-
rium point (x∗, y∗) = (1.165750001, 0.6476388892), which is similar to the original system
(4). In addition, the Jacobian at equilibrium (x∗, y∗) = (1.165750001, 0.6476388892) has the
following form: [ −2.143126283 ε+ 1 −0.7228285706 ε

0.8333333325 ε −1.500000000 ε+ 1

]
.

Example 2. Assuming the parameters b = 3.3, a = 0.8, r = 1.3, h = 2.7, k = 1.8, and
s ∈ [2, 3.5], and the initial conditions (x0, y0) = (1.74693, 0.647013), both species then undergo
period-doubling bifurcation when the bifurcation parameter passes through s = 2.1894756175566834,
as shown in Figure 3. In particular this fact is obvious in Figure 3a,b. Moreover, to confirm the
chaotic behavior of model (4) MLE is shown in Figure 3c.
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(a) (b) 

 
(c) 

 

Figure 3. Bifurcation diagrams and MLE for system (4) with parameters
b = 3.3, a = 0.8, r = 1.3, h = 2.7, k = 1.8, s ∈ [2, 3], and (x0, y0) = (1.74693, 0.647013):
(a) period-doubling bifurcation for xn, (b) period-doubling bifurcation for yn, and (c) MLE.

Furthermore, if s = 2.4, then the equilibrium point (x∗, y∗) = (1.712924751, 0.6344165743)
loses its stability and undergoes periodic doubling (see Figure 4).

Thus, for the aforementioned parameters, we present the following control system:

xn+1 =ε xne
1.3−0.7222222223 xn−0.8 xnyn

xn2+10.89 + (1− ε)xn,

yn+1 =ε yne2.4−6.48 yn
xn + (1− ε)yn,

(29)

The fixed point (x∗, y∗) = (1.712924751, 0.6344165743) was preserved in the case
of a controlled system (29). Furthermore, the variational matrix of the aforementioned
controlled system computed at a fixed point (x∗, y∗) = (1.712924751, 0.6344165743) is
given by [ −1.273304693 ε+ 1 −0.1697967362 ε

0.8888888882 ε −2.399999999 ε+ 1

]
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(a) (b) 

  
(c) (d) 

Figure 4. (a) Bifurcation diagrams of xn for controlled system (28), (b) bifurcation diagrams of yn for
controlled system (28), (c) bifurcation diagrams of xn for controlled system (30), and (d) bifurcation
diagrams of yn for controlled system (30).

The characteristic polynomial of the aforementioned Jacobian matrix is given by

η2 + (3.673304692 ε− 2)η + 3.206861694 ε2 − 3.673304692 ε+ 1 = 0.

According to Lemma 1, the control system is locally asymptotically stable, if 0 < ε <
0.8910230450195268 and bifurcation is controlled for 0 < ε < 0.8910230450195268 (see
Figure 4c,d).

Finally, some local implications of the MLE diagrams, shown in Figures 1c and 2c for
the Neimark-Sacker bifurcation and period-doubling bifurcation, respectively, are plotted
in Figure 5a,b, respectively. It has also been verified that the system undergoes Neimark-
Sacker bifurcation at s = 1.3874082082631611, where the phase portrait at this point shows
a closed invariant curve, as already shown in Figure 4c.
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Figure 5. (a) Local implication for the Neimark-Sacker bifurcation and (b) local implication for
period-doubling bifurcation.

9. Concluding Remarks

In this study, we examined the qualitative and dynamical analyses of a discrete-time
predator-prey model. Piecewise constant arguments have been applied to achieve the
discrete-time counterpart of a continuous model. Thus, a comprehensive analysis of model
(4) was presented. In particular, we investigated the boundedness, local stability of the
boundary, and positive equilibrium points, which seem to present more challenging cases
of Euler’s discretization scheme in [31]. Moreover, it was proved that the population
sustains both period-doubling bifurcation and Neimark-Sacker bifurcation near the interior
equilibrium. The parametric conditions were obtained for the direction and existence of
both types of bifurcations using the theory of bifurcation and center manifold theorem.
Moreover, the chaotic attractors shown in Figure 5 ensures chaos in the system. To control
the chaotic behavior of system (4), a hybrid control method was implemented. Hence, by
applying a control strategy, both types of bifurcations can be controlled for a maximum
range of control parameters. We also presented the fractal dimension of model (4), which
characterizes the strange attractors provided in Figure 5 thereby illustrating the complexity
and rich dynamics of discrete model (4). Finally, numerical simulations were conducted to
verify the analytical and theoretical approaches.

10. Future Direction

Our future research will include the Leslie–Gower predator-prey model with the
functional response of Holling type-II. In this case, we aim to conduct stability, bifurcation,
and chaos-control analyses of the model. A comparison of both functional responses will
be conducted in a future study.
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Appendix A

b11 = 1 + x∗B1, b12 = − ax2∗
b2+x2∗

, b21 = s1
h , b22 = 1− s1, b15 = a2x3∗

2(b2+x2∗)
2

b13 = B1 +
1
2 x∗y∗B3 +

1
2 x∗B2

1, b14 = − x∗(ax∗B1−b2B2−x2∗B2+a)
b2+x2∗

,

a1 = y∗B3 +
1
2 B2

1 +
x∗ay∗(b4−6b2x2∗+x4∗)

(b2+x2∗)
4 + 1

2 x∗y∗B3B1 +
1
6 x∗B3

1,

a2 = B2 − B1ax∗
b2+x2∗

+ 1
2 x∗B3 − 1

2
x2∗y∗B3a
b2+x2∗

+ x∗B1B2 − 1
2

x2∗B2
1 a

b2+x2∗
,

a3 = 1
2

a2x2∗
(b2+x2∗)

2 − x2∗B2a
b2+x2∗

+ 1
2

x3∗B1a2

(b2+x2∗)
2 , a4 = − 1

6
x4∗a3

(b2+x2∗)
3 ,

b23 = hs1y2∗(hs1y∗−2x∗)
2x4∗

, b24 = hs1y∗(2x∗−hs1y∗)
x3∗

,

b25 = hs1(hs1y∗−2x∗)
2x2∗

, d1 =
hs1y2∗(6x2∗−6hs1x∗y∗+h2s2

1y2∗)
6x6∗

,

d2 = − hs1y∗(hs1y∗−4x∗)(hs1y∗−x∗)
2x5∗

, d3 =
hs1(2x2∗−4hs1x∗y∗+h2s2

1y2∗)
2x4∗

,

d4 = − h2s2
1(hs1y∗−3x∗)

6x3∗
, c1 = hy2∗((1+s1)x∗−hs1y∗)

x3∗
,

c2 =
(x2∗−h(2+s1)x∗y∗+h2s1y2∗)

x2∗
,

c3 =
hy∗(2(1+s1)x2∗−hs1(4+s1)x∗y∗+h2s2

1y2∗)
x4∗

,

c4 = − hy2∗(2(1+s1)x2∗−hs1(4+s1)x∗y∗+h2s2
1y2∗)

2x5∗
,

c5 = − h(2(1+s1)x2∗−hs1(4+s1)x∗y∗+h2s2
1y2∗)

2x3∗
.

where B1 = −
(

r1
k +

ay∗(b2−x2∗)

(b2+x2∗)
2

)
, B2 = − a(b2−x2∗)

(b2+x2∗)
2 , B3 =

2ax∗(3b2−x2∗)

(b2+x2∗)
3 , B4 = y∗B3.

Appendix B

f̃ (u, v, s) =
(

b13(η2−b11)
b12(1+η2)

− b23
1+η2

)
N2 −

(
b24

1+η2
+ b14(b11−η2)

b12(1+η2)

)
NP

−
(

b25
1+λ2

+ b15(b11−η2)
b12(1+η2)

)
P2 −

(
d1

1+λ2
+ a1(b11−η2)

b12(1+η2)

)
N3

−
(

d2
1+λ2

+ a2(b11−η2)
b12(1+η2)

)
N2P−

(
d3

1+η2
+ a3(b11−η2)

b12(1+η2)

)
NP2

−
(

d4
1+η2

+ a4(b11−η2)
b12(1+η2)

)
P3 − c1

1+η2
sN − c2

1+η2
rP− c3

1+η2
NP− c4

1+η2
rN2 − c5

1+η2
rP2 + O

(
(|u|+ |v|+ |s|)4

)
,

g̃(u, v, s) =
(

b23
1+η2

+ (1+b11)b13
b12(1+η2)

)
N2 +

(
b24

1+η2
+ (1+b11)b14

b12(1+η2)

)
NP

+
(

b25
1+η2

+ (1+b11)b15
b12(1+η2)

)
P2 +

(
a1(1+b11)
b12(1+η2)

+ d1
1+η2

)
N3

+
(

a2(1+b11)
b12(1+η2)

+ d2
1+η2

)
N2P +

(
a3(1+b11)
b12(1+η2)

+ d3
1+η2

)
NP2

+
(

a4(1+b11)
b12(1+η2)

+ d4
1+η2

)
P3 + c1

1+η2
sN + c2

1+η2
sP + c3

1+η2
sNP + c4

1+η2
sN2 + c5

1+η2
rP2 + O

(
(|u|+ |v|+ |s|)4

)
,

where N = b12(u + v) and P = (−1− b11)u + (η2 − b11)v.
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Thus, the approximation of the center manifold Wc(0, 0, 0) of (19) within the neighbor-
hood of s = 0 evaluated at the origin can be expressed as

Wc(0, 0, 0) =
{(

u, v, s1 ∈ R3
)
= M3s2 + M2su + m1u2 + (O|u|, |s1|)4

}
,

where

M1 =
b2

12

(
b23

1+η2
+
(1+b11)b13
b12(1+η2)

)
1−η2

−
(1+b11)b12

(
b24

1+η2
+
(1+b11)b14
b12(1+η2)

)
1−η2

+
(1+b11)

2
(

b25
1+η2

+
(1+b11)b15
b12(1+η2)

)
1−η2

,

M2 = c2(1+b11)−c1b12
η2

2−1 , M3 = 0.

Consequently, the restricted map to center manifold Wc(0, 0, 0) is expressed as follows:

F : u → −u + t1u2 + t2us + t3u2s + t4us2 + t5u3 + (O|u|, |s1|)4

where

t1 = −b2
12

(
b23

1+η2
+ b13(b11−η2)

b12(1+η2)

)
− (1 + b11)

2
(

b25
1+η2

+ b15(b11−η2)
b12(1+η2)

)
+(1 + b11)b12

(
b24

1+η2
+ b14(b11−η2)

b12(1+η2)

)
,

t2 = c2(1+b11)
η2+1 − c1b12

η2+1 ,

t3 = 2
(
(η2−b11)b13
b12(η2+1) −

b23
η2+1

)
b2

12M2 +
c3b12(1+b11)

η2+1 − c4b12
2

η2+1 +
(
(η2−b11)b14
b12(η2+1) −

b24
η2+1

)
b12(η2 − b11)M2 − c2(η2−b11)M1

η2+1

+
(
(b11−η2)b14
b12(η2+1) + b24

η2+1

)
b12M2(1 + b11)− c5(1+b11)

2

η2+1 + 2
(
(b11−η2)b15
b12(η2+1) + b25

η2+1

)
(1 + b11)(η2 − b11)M2 − c1b12 M1

η2+1 ,

t4 =
(

2 (η2−b11)b13
b12(η2+1) −

b23
η2+1

)
b12

2M3 − c2(η2−b11)M2
η2+1

+
(
(η2−b11)b14
b12(η2+1) −

b24
η2+1

)
b12(η2 − b11)M3 − c1b12 M2

η2+1

+2
(
(b11−η2)b15
b12(η2+1) + b25

η2+1

)
(1 + b11)(η2 − b11)M3

+
(
(b11−η2)b14
b12(η2+1) + b24

η2+1

)
b12M3(1,+, b11)

t5 =
(
(η2−b11)b14
b12(η2+1) −

b24
η2+1

)
b12M1(η2 − b11)

+
(
(b11b11−η2)b14

b12(η2+1) + b24
η2+1

)
b12M1(1 + b11)

+
(
(b11−η2)a4
b12(η2+1) + d4

η2+1

)
(1 + b11)

3

+2
(
(b11−η2)b15
b12(η2+1) + b25

η2+1

)
(1 + b11)(η2 − b11)M1

+2
(
(η2−b11)b13
b12(η2+1) −

b23
η2+1

)
b12

2M1(
+(η2−b11)a3

b12(η2+1) − d3
η2+1

)
b12(1 + b11)

2 +
(
(η2−b11)a1
b12(η2+1) −

d1
η2+1

)
b12

3

+
(
(b11−η2)a2
b12(η2+1) + d2

η2+1

)
b12

2(1 + b11).
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Abstract: This study focuses on numerically addressing the time fractional Cattaneo equation involv-
ing Caputo–Fabrizio derivative using spline-based numerical techniques. The splines used are the
cubic B-splines, trigonometric cubic B-splines and extended cubic B-splines. The space derivative
is approximated using B-splines basis functions, Caputo–Fabrizio derivative is discretized, using
a finite difference approach. The techniques are also put through a stability analysis to verify that
the errors do not pile up. The proposed scheme’s convergence analysis is also explored. The key
advantage of the schemes is that the approximation solution is produced as a smooth piecewise
continuous function, allowing us to approximate a solution at any place in the domain of interest. A
numerical study is performed using various splines, and the outcomes are compared to demonstrate
the efficiency of the proposed schemes.

Keywords: cubic B-splines; trigonometric cubic B-splines; extended cubic B-splines; Caputo–Fabrizio
derivative; Cattaneo equation

1. Introduction

The time fractional Cattaneo differential equation (TFCDE) under consideration is [1]

∂v(s, t)
∂t

+CF
a Dα

t v(s, t) =
∂2v(s, t)

∂2s
+ g(s, t), (1)

with initial conditions {
v(s, 0) = φ(s),
vt(s, 0) = ψ(s),

0 ≤ s ≤ L, (2)

and the boundary conditions,{
v(0, t) = f1(t),
v(L, t) = f2(t),

t ≥ 0, (3)

where (s, t) ∈ Δ = [0, L]× [0, T], 1 < α < 2, g ∈ C[0, T], and f1(t), f2(t), φ(s),ψ(s) are
known functions. Moreover, CF

a Dα
t v(s, t) is the Caputo-Fabrizio derivative given by

CF
a Dα

t v(s, t) =
M(α)

2− α

∫ t

a
v′′(s, x)exp[σ(t− x)]dx,

where M(0) = M(1) = 1 and σ = 1−α
2−α .
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For mathematical modeling of real-world problems, fractional differential equations
are often used. Scientists in a variety of fields are pushed to improve the interpretations of
their findings by utilizing the fractional order derivatives, which are particularly useful. In
mathematical modeling of many scientific situations, fractional order differential equations
provide more accurate information than regular differential equations. Fractional deriva-
tives are used to describe a variety of physical phenomena [2]. This is owing to the fact that
fractional operators assess both global and local properties when analyzing system evolu-
tion. In addition, integer-order calculus can sometimes contradict the experimental results;
therefore, non-integer order derivatives may be preferable [3]. It is difficult to determine
the solution to fractional differential equations (FDEs). As a result, a numerical method
must be used to obtain the solution to these partial differential equations. To tackle these
problems numerically, many approaches have been developed and extended. The existence
of solution of FDEs can be seen in [4]. Diethelm et al. presented the predictor-corrector
method [5] for the numerical solution of FDEs. Meerschaert and Tadjern [6] developed a
finite difference method for a fractional advection–dispersion equation. The homotopy
analysis method [7] for the fractional initial value problem was developed by Hashim et
al. An eigenvector expansion method for motion containing fractional derivatives was
presented by Suarez and Shokooh [8].

When compared to the finite difference approach, other spectral methods, such as the
operational matrix method, are particularly popular since they provide good accuracy and
take less time to compute. This method works well with fractional ordinary differential
equations (ODEs), fractional partial differential equations (PDEs), and variable order PDEs.
Jafari et al. [9] gave applications of Legendre wavelets in solving FDEs numerically. The
Haar wavelet operational matrix of fractional order integration and its applications in
solving fractional order differential equations can be seen in [10]. Chebyshev wavelets [11]
were used by Yuanlu for solving a nonlinear fractional order differential equation. Li and
Sun [12] developed a generalized block pulse operational matrix method for the solution of
FDEs. Obidat [13] used Legendre polynomials to approximate the solution of nonlinear
FDEs. Genocchi polynomials [14] were used by Araci to find numerical solutions of FDEs.
Grbz and Sezer [15] solved a class of initial and boundary value problems arising in science
and engineering using Laguerre polynomials. Caputo and Fabrizio proposed one of the
most recent fractional order derivatives. For more applications of this new derivative and
the related work, the reader is referred to [1,16–29].

In comparison to polynomials, the B-splines based collocation methods provide a good
approximation rate, are computationally quick, numerically consistent, and have second-
order continuity. To obtain numerical solutions to differential equations, multiple numerical
approaches based on various forms of B-splines functions were recently utilized. Inspired
by the popularity of spline approaches in finding numerical solutions of fractional partial
differential equations, various splines-based numerical techniques have been developed for
the numerical solution of the Cattaneo equation involving the Caputo–Fabrizio derivative.
The main motivation behind this work is that to the authors’ knowledge, this equation
has not been solved using the B-splines basis functions. In the current work, B-splines
are used to approximate the space derivative, while the Caputo–Fabrizio derivative is
approximated using finite differences. Moreover, the presented schemes are tested for
stability and convergence analysis.

2. Numerical Schemes

In this section, the cubic B-splines, extended cubic B-splines and the trigonometric
cubic B-splines are used to develop numerical techniques for the numerical solution of time
fractional Cattaneo equation (TFCE) (1).

2.1. Numerical Scheme Based on Cubic B-Splines

Let τ = T
N and h = L

M be the step length in space and time direction, respectively. Set
tm = mτ, sj = jh, where the positive integers, N and M, are used. The knots sj divide the
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solution domain Δ equally into M equal subintervals [sj, sj+1], j = 0, 1, . . . , M− 1, where
a = s0 < s1 < · · · < sM = b. The approximate solution V(s, t) to the exact solution v(s, t)
in the following form is acquired by our scheme for solving (1)

V(s, t) =
M+1

∑
j=−1

Cj(t)Bj(s), (4)

where Cj(t) are unknowns to be found, and Bj(s) [30] are cubic B-splines basis (CuBS)
functions given by

Bj(s) =
1

6h3

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(s− sj)
3, s ∈ [sj, sj+1]

h3 + 3h2(s− sj+1)

+3h(s− sj+1)
2 − 3(s− sj+1)

3, s ∈ [sj+1, sj+2]

h3 + 3h2(sj+3 − s)
+3h(sj+3 − s)2 − 3(sj+1 − s)3, s ∈ [sj+2, sj+3]

(sj+4 − s)3, s ∈ [sj+3, sj+4]

0, otherwise.

(5)

Here, Bj−1(s), Bj(s) and Bj+1(s) are survived due to the local support characteristic of
the cubic B-splines so that the approximation vm

j at the grid point (sj, tm) at the mth time
level is given as

v(sj, tm) = vm
j =

j+1

∑
w=j−1

Cm
w (t)Bw(s). (6)

The time-dependent unknowns Cm
j (t) are found using the specified initial and bound-

ary conditions as well as the collocation conditions on Bj(s). As a result, the approximation
vm

j and its required derivatives are⎧⎪⎪⎨⎪⎪⎩
vm

j = a1Cm
j−1 + a2Cm

j + a1Cm
j+1,

(vm
j )s = −b1Cm

j−1 + b1Cm
j+1,

(vm
j )ss = c1Cm

j−1 + c2Cm
j + c1Cm

j+1,

(7)

where a1 = 1
6 , a2 = 4

6 , b1 = 1
2h , c1 = 1

h2 , and c2 = − 2
h2 . Let g = {gm : 0 ≤ m ≤ N}

be the collection of grid functions on a uniform mesh of the interval [0, T] such that

δtgm = gm−gm−1

τ . A discrete approximation to CF
0 Dα

t v(s, t) at (sj, tm+ 1
2
) can be obtained

as [1]

CF
0 Dα

t v(sj, tm+ 1
2
) =

1
(1− α)τ

(M0δtvm+1
j −

m

∑
l=1

(Mm−l − Mm−l+1)δtvl
j − Mmψj) + Rm+ 1

2
j , (8)

where,

Mj = exp(
1− α

2− α
τ j)− exp(

1− α

2− α
τ(j + 1)), (9)

and
|Rm+ 1

2
i | = O(τ2).

Lemma 1 ([1]). From the definition of Mj in (9), we have Mj > 0 and Mj+1 < Mj, ∀j ≤ m.

Lemma 2 ([1]). Suppose that v(t) ∈ C4,4
s,t ([0, L]× [0, T]), then

0 ≤ Mj ≤ Cτ
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and
0 ≤ Mj − Mj+1 ≤ CτMj.

Now, we employ the Caputo–Fabrizio fractional derivative and CuBS to establish
the numerical scheme for solving (1). Using CuBS and the approximation given in (8),
we obtain

(vm
j )t +

1
(α− 1)τ

(M0δtvm+1
j −

m

∑
l=1

(Mm−l − Mm−l+1)δtvl
j − Mmψj) = (vm+1

j )ss + gm+1
j + Rm+1, (10)

where Rm+1 = O(τ2 + h2). Thus, by ignoring Rm+1 and using the discretization (vm
j )t =

vm+1
j −vm

j
τ , we have

(α− 1)(vm+1
j − vm

j ) +
M0

τ
(vm+1

j − vm
j )−

1
τ

m

∑
l=1

(Mm−l − Mm−l+1)(vl
j − vl−1

j )

− Mmψj) = (α− 1)(vm+1
j )ss + (α− 1)τgm+1

j .

Rearranging the above equation, we obtain

σvm+1
j − μ(vm+1

j )ss = σvm
j +

1
τ

m

∑
l=1

(Mm−l − Mm−l+1)(vl
j − vl−1

j ) + Mmψj + μgm+1
j , (11)

where σ = (α− 1 + M0
τ ) and μ = (α− 1)τ. Using the CuBS approximation (7) in (11), we

obtain

η1Cm+1
j−1 + η2Cm+1

j + η1Cm+1
j+1 = η3Cm

j−1 + η4Cm
j + η3Cm

j+1

+
1
τ

m

∑
l=1

(Mm−l − Mm−l+1)[(a1Cl
j−1 + a2Cl

j + a1Cl
j+1)

− (a1Cl−1
j−1 + a2Cl−1

j + a1Cl−1
j+1)] + Mmψj + μgm+1

j , (12)

where η1 = σa1 − μc1, η2 = σa2 − μc2, η3 = σa1 ,and η4 = σa2. In matrix notation, the
above equation is expressed as

A1Cm+1 = A2Cm + B1(
1
τ

m

∑
l=1

(Mm−l − Mm−l+1)(Cl − Cl−1)) + MmΨ+μG,

where the matrices A1, A2, B1, Ψ and G are

A1 =

⎡⎢⎢⎢⎢⎢⎢⎣

η1 η2 η1 0 . . . 0

0 η1 η2 η1
. . .

...
...

. . . . . . . . . . . . 0
0 . . . η1 η2 η1 0
0 . . . 0 η1 η2 η1

⎤⎥⎥⎥⎥⎥⎥⎦,

A2 =

⎡⎢⎢⎢⎢⎢⎢⎣

η3 η4 η3 0 . . . 0

0 η3 η4 η3
. . .

...
...

. . . . . . . . . . . . 0
0 . . . η3 η4 η3 0
0 . . . 0 η3 η4 η3

⎤⎥⎥⎥⎥⎥⎥⎦,
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B1 =

⎡⎢⎢⎢⎢⎢⎢⎣

a1 a2 a1 0 . . . 0

0 a1 a2 a1
. . .

...
...

. . . . . . . . . . . .
...

0 . . . a1 a2 a1 0
0 . . . 0 a1 a2 a1

⎤⎥⎥⎥⎥⎥⎥⎦,

Ψ =
[
ψm+1

0 , ψm+1
1 , . . . , ψm+1

M
]T

,

and

G =
[
gm+1

0 , gm+1
1 , . . . , gm+1

M
]T

.

The above system gives (M + 1) equations in (M + 3) unknowns. For a unique
solution, two additional linear equations are necessary. For this purpose, the boundary
conditions are utilized as{

a1Cm+1
−1 + a2Cm+1

0 + a1Cm+1
1 = f1(tm+1),

a1Cm+1
M−1 + a2Cm+1

M + a1Cm+1
M+1 = f2(tm+1).

(13)

By combining Equations (12) and (13), we have (M + 3)× (M + 3), a system of linear
equations which can be solved uniquely.

2.2. Initial State

First of all, it is essential to find the initial vector C0 =
[
C0
−1, C0

0, . . . , C0
M, C0

M+1
]T

to initiate the iteration procedure. This vector is obtained from initial conditions as⎧⎪⎨⎪⎩
v′0 = φ′(s0),
v0

j = φ(sj), j = 0, 1, 2, 3, . . . , M,

v′M = φ′(sM).

Thus, (M + 3)× (M + 3) a system of linear equations results, and this system can be
written in matrix notation as

A3C0 = B2,

where the matrices A3, C0 and B2 are

A3 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

−b1 0 b1 0 . . . 0
a1 a2 a1 0 . . . 0

0 a1 a2 a1
. . .

...
...

. . . . . . . . . . . . 0
0 . . . 0 a1 a2 a1
0 . . . 0 −b1 0 b1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

C0 =
[
C0
−1, C0

0 , . . . , C0
M, C0

M+1
]T ,

and

B2 =
[
φ′(s0), φ(s0) , . . . , φ(sM), φ′(sM)

]T .
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2.3. Numerical Scheme Based on Extended Cubic B-Splines

A cubic B-spline of degree four with a free parameter η is called an extended cubic
B-spline. This kind of cubic B-spline was introduced by Han and Liu in 2003. We follow the
same notations for the time and space discretizations that we used before. The extended
cubic B-spline (ECuBS) basis functions, B4

j (s, η) are given by

B4
j (s, η) =

1
24h4

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

4h(1− η)(s− sj)
3 + 3η(s− sj)

4, s ∈ [sj, sj+1]

(4− η)h4 + 12h3(s− sj+1) + 6h2(2 + η)(s− sj+1)
2

−12h(s− sj+1)
3 − 3η(s− sj+1)

4, s ∈ [sj+1, sj+2]

(4− η)h4 + 12h3(sj+3 − s) + 6h2(2 + η)(sj+3 − s)2

−12h(sj+3 − s)3 − 3η(sj+1 − s)4, s ∈ [sj+2, sj+3]

4h(1− η)(sj+4 − s)3 + 3η(sj+4 − s)4, s ∈ [sj+3, sj+4]

0, otherwise,

(14)

where η ∈ [−8, 1]. Here, B4
j−1(s), B4

j (s) and B4
j+1(s) are survived due to local support

characteristic of the cubic B-splines so that the approximation vm
j at the grid point (sj, tm)

at mth time level is given as

v(sj, tm) = vm
j =

j+1

∑
w=j−1

Cm
w (t)B4

w(s, η). (15)

The time-dependent unknowns Cm
j (t) are found using the specified initial and bound-

ary conditions as well as the collocation conditions on Bj(s). As a result, the approximation
vm

j and its required derivatives are⎧⎪⎪⎨⎪⎪⎩
vm

j = ω1Cm
j−1 +ω2Cm

j +ω1Cm
j+1,

(vm
j )s = −ω3Cm

j−1 +ω4Cm
j +ω3Cm

j+1,

(vm
j )ss = ω5Cm

j−1 +ω6Cm
j +ω5Cm

j+1,

(16)

where ω1 = 4−η
24 , ω2 = 8+η

12 , ω3 = 1
2h , ω4 = 0, ω5 = 2+η

2h2 and ω6 = − 2+η

2h2 . By following
the same procedure as was done for cubic B-splines and using the ECuBS approximation
given in (16), we obtain the following approximation to the solution of (1)

η5Cm+1
j−1 + η6Cm+1

j + η5Cm+1
j+1 = η7Cm

j−1 + η8Cm
j + η7Cm

j+1

+
1
τ

m

∑
l=1

(Mm−l − Mm−l+1)[(ω1Cl
j−1 +ω2Cl

j +ω1Cl
j+1)

− (ω1Cl−1
j−1 +ω2Cl−1

j +ω1Cl−1
j+1)] + Mmψj + μgm+1

j , (17)

where, η5 = σω1 − μω5, η6 = σω2 − μω5, η7 = σω1 and η8 = σω2. In matrix notation, the
above Equation (17) is expressed as

A4Cm+1 = A5Cm + B3(
1
τ

m

∑
l=1

(Mm−l − Mm−l+1)(Cl − Cl−1)) + MmΨ+μG,
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where the matrices A4, A5 and B3 are

A4 =

⎡⎢⎢⎢⎢⎢⎢⎣

η5 η6 η5 0 . . . 0

0 η5 η6 η5
. . .

...
...

. . . . . . . . . . . . 0
0 . . . η5 η6 η5 0
0 . . . 0 η5 η6 η5

⎤⎥⎥⎥⎥⎥⎥⎦,

A5 =

⎡⎢⎢⎢⎢⎢⎢⎣

η7 η8 η7 0 . . . 0

0 η7 η8 η7
. . .

...
...

. . . . . . . . . . . . 0
0 . . . η7 η8 η7 0
0 . . . 0 η7 η8 η7

⎤⎥⎥⎥⎥⎥⎥⎦,

and

B3 =

⎡⎢⎢⎢⎢⎢⎢⎣

ω1 ω2 ω1 0 . . . 0

0 ω1 ω2 ω1
. . .

...
...

. . . . . . . . . . . .
...

0 . . . ω1 ω2 ω1 0
0 . . . 0 ω1 ω2 ω1

⎤⎥⎥⎥⎥⎥⎥⎦.

The above system gives (M + 1) equations in (M + 3) unknowns. For a unique
solution, two additional linear equations are necessary. From the boundary conditions, we
obtain the required equations as follows{

ω1Cm+1
−1 +ω2Cm+1

0 +ω1Cm+1
1 = f1(tm+1),

ω1Cm+1
M−1 +ω2Cm+1

M +ω1Cm+1
M+1 = f2(tm+1).

(18)

By combining Equations (17) and (18), we have (M + 3)× (M + 3), a system of linear
equations, which can be solved uniquely.

2.4. Numerical Scheme Based on Trigonometric Cubic B-Splines

We follow the same notations for the time and space discretizations used before. The
trigonometric cubic B-spline (TCuBS) basis functions are given by [31]

TB4
j (s) =

1
p

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
l3(sj), s ∈ [sj, sj+1)

l(sj)(l(sj)m(sj+2) + m(sj+3)l(sj+1)) + m(sj+4)l2(sj+1), s ∈ [sj+1, sj+2)

m(sj+4)(l(sj+1)m(sj+3) + m(sj+4)l(sj+2)) + l(sj)m2(sj+3), s ∈ [sj+2, sj+3)

m3(sj+4), s ∈ [sj+3, sj+4),

(19)

where l(sj) = sin(
s−sj

2 ), m(sj) = sin(
sj−s

2 ) and p = sin( h
2 ) sin(h) sin( 3h

2 ).
Here, TB4

j−1(s), TB4
j (s) and TB4

j+1(s) are survived due to the local support character-
istic of the trigonometric cubic B-splines so that the approximation vm

j at the grid point
(sj, tm) at mth time level is given as

v(sj, tm) = vm
j =

j+1

∑
w=j−1

Cm
w (t)TB4

w(s). (20)

223



Fractal Fract. 2022, 6, 50

The time-dependent unknowns Cm
j (t) are found using the specified initial and bound-

ary conditions as well as the collocation conditions on Bj(s). As a result, the approximation
vm

j and its required derivatives are⎧⎪⎪⎨⎪⎪⎩
vm

j = ζ1Cm
j−1 + ζ2Cm

j + ζ1Cm
j+1,

(vm
j )s = −ζ3Cm

j−1 + ζ4Cm
j+1 + ζ3Cm

j+1,

(vm
j )ss = ζ5Cm

j−1 + ζ6Cm
j + ζ5Cm

j+1,

(21)

where ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ζ1 = csc(h) csc( 3h
2 ) sin2( h

2 ),

ζ2 = 2
1+2 cos(h) ,

ζ3 = 3
4 csc( 3h

2 ),

ζ4 = 0,

ζ5 = 3+9 cos(h)
4 cos( h

2 )
− 4 cos( 5h

2 ),

ζ6 = − 3 cot2( h
2 )

2+4 cos(h) .

By following the same procedure as was done for cubic B-splines and using the
approximation (8) in (1), we obtain

σvm+1
j − μ(vm+1

j )ss = σvm
j +

1
τ

m

∑
l=1

(Mm−l − Mm−l+1)(vl
j − vl−1

j ) + Mmψj + μgm+1
j , (22)

where σ = (α− 1 + M0
τ ) and μ = (α− 1)τ. Using the CuTBS approximation given in (21),

we obtain the following approximation to the solution of (1)

η9Cm+1
j−1 + η10Cm+1

j + η9Cm+1
j+1 = η11Cm

j−1 + η12Cm
j + η11Cm

j+1

+
1
τ

m

∑
l=1

(Mm−l − Mm−l+1)[(ζ1Cl
j−1 + ζ2Cl

j + ζ1Cl
j+1)

− (ζ1Cl−1
j−1 + ζ2Cl−1

j + ζ1Cl−1
j+1)] + Mmψj + μgm+1

j , (23)

where η9 = σζ1 − μζ5, η10 = σζ2 − μζ6, η11 = σζ1, and η12 = σζ2. In matrix notation, (23)
is expressed as

A7Cm+1 = A8Cm + B5(
1
τ

m

∑
l=1

(Mm−l − Mm−l+1)(Cl − Cl−1)) + MmΨ+μG,

where the matrices A7, A8 and B5 are

A7 =

⎡⎢⎢⎢⎢⎢⎢⎣

η9 η10 η9 0 . . . 0

0 η9 η10 η9
. . .

...
...

. . . . . . . . . . . . 0
0 . . . η9 η10 η9 0
0 . . . 0 η9 η10 η9

⎤⎥⎥⎥⎥⎥⎥⎦,
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A8 =

⎡⎢⎢⎢⎢⎢⎢⎣

η11 η12 η11 0 . . . 0

0 η11 η12 η11
. . .

...
...

. . . . . . . . . . . . 0
0 . . . η11 η12 η11 0
0 . . . 0 η11 η12 η11

⎤⎥⎥⎥⎥⎥⎥⎦,

and

B5 =

⎡⎢⎢⎢⎢⎢⎢⎣

ζ1 ζ2 ζ1 0 . . . 0

0 ζ1 ζ2 ζ1
. . .

...
...

. . . . . . . . . . . . 0
0 . . . ζ1 ζ2 ζ1 0
0 . . . 0 ζ1 ζ2 ζ1

⎤⎥⎥⎥⎥⎥⎥⎦.

The above system gives (M + 1) equations in (M + 3) unknowns. For a unique
solution, two additional linear equations are necessary. From the boundary conditions, we
obtained these equations as follows{

ζ1Cm+1
−1 + ζ2Cm+1

0 + ζ1Cm+1
1 = f1(tm+1),

ζ1Cm+1
M−1 + ζ2Cm+1

M + ζ1Cm+1
M+1 = f2(tm+1).

(24)

By combining Equations (23) and (24), we have (M + 3)× (M + 3), a system of linear
equations, which can be solved uniquely.

2.5. Stability Analysis

This section deals with stability analysis of the scheme based on cubic B-splines. The
stability analysis of the schemes based on extended and cubic trigonometric B-splines can
be carried out by a similar argument. We use the Fourier method to study the stability
analysis of the scheme. Let Ṽ0 be the perturbation vector of initial values V0 and Ṽm,
1 ≤ m ≤ N − 1 be the approximate solution of the scheme (12). The error vector δm is
defined as

δm = Vm − Ṽm, 0 ≤ m ≤ N − 1, (25)

where,

Vm =
[
Vm

1 , Vm
2 , . . . , Vm

M−1
]T ,

Ṽm =
[
Ṽm

1 , Ṽm
2 , . . . , Ṽm

M−1
]T ,

and

δm
j = Vm

j − Ṽm
j =

[
δm

1 , δm
2 , . . . , δm

M−1
]T .

Define the grid functions as follows:

δm(s) =

⎧⎪⎨⎪⎩
δm

j , sj −
h
2
< s < sj +

h
2

,

0, 0 ≤ s ≤ h
2

or L− h
2
< s < L.

We can expand δm(s) into Fourier series as

δm(s) =
∞

∑
l=−∞

dm(l) exp(
I2πls

L
),

where,

dm(l) =
1
L

∫ L

0
δm(s) exp(

−I2πls
L

)ds.
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Denoting

‖δm‖2 = (
∫ L

0
‖δm(s)‖2ds)

1
2 ,

and using the Parseval’s equality,

∫ L

0
‖δm(s)‖2ds =

∞

∑
l=−∞

‖dm(l)‖2,

we obtain

‖δm(s)‖2 =
∞

∑
l=−∞

‖dm(l)‖2.

We can expand δm
j into Fourier series, and because the difference equations are linear,

we can analyze the behavior of total error by tracking the behavior of an arbitrary nth
component. Based on the above analysis, we can suppose that the solution of (11) has the
following form

δm
j = dm exp(Iσs jh), (26)

where σs =
2πl

L , I =
√
−1. Substituting the above expression into (11), we obtain

σ(δm+1)− μ(δm+1
ss ) =

m

∑
l=1

(Mm−l − Mm−l+1)δt(δ
l) + σ(δm). (27)

Using the CuBS approximation given in (7) and Equation (26) in the above equation,
we obtain

dm+1(σ(a1 exp(−Iσsh) + a2 + a1 exp(Iσsh)− μ(c1 exp(−Iσsh) + c2 + c1 exp(Iσsh)))

=
m

∑
l=1

(Mm−l − Mm−l+1)δtdl(a1 exp(−Iσsh) + a2 + a1 exp(Iσsh)) + σdm(a1 exp(−Iσsh))

+ a2 + a1 exp(Iσsh)),

⇒ dm+1(σ(a2 + a1(2 cos(σsh))− μ(c2 + c1(2 cos(σsh)))

=
m

∑
l=1

(Mm−l − Mm−l+1)δtdl(a2 + a1(2 cos(σsh)) + σdm(a2 + a1(2 cos(σsh)),

which, on further simplification, reduces to

dm+1 =
1

σ− μr

m

∑
l=1

(Mm−l − Mm−l+1)(
dl − dl−1

τ
) +

σ

σ− μr
dm, 1 ≤ m ≤ M− 1, (28)

where, r = ( c2+2c1 cos(σsh)
a2+2a1 cos(σsh) ).

Definition 1 ([32,33]). A scheme is called stable if there exists a positive number C, independent
of j and m such that

||Vn − Ṽn|| ≤ C||V0 − Ṽ0||,
where Vn and Ṽn are the exact solutions of the difference scheme and its perturbed equation,
respectively.

Theorem 1. Suppose that dm, (1 ≤ m ≤ N − 1) are defined by (28), then for α ∈ (1, 2), we have

|dm| ≤ (1 + 2Cτ)m|d0|, m = 1, 2, . . . , M− 1.
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Proof. We use the mathematical induction for proof. For m = 1, we have from (28),

|d1| = | σ

σ− μr
||d0| ≤ (1 + 2Cτ)|d0|.

Now, suppose that

|dm| ≤ (1 + 2Cτ)m|d0|, m = 1, 2, . . . , M− 2.

Then, by using Lemmas 1 and 2, we obtain

|dm+1| ≤
Cτ

σ− μr

m

∑
l=1

|(dl − dl−1)|+
σ

σ− μr
|dm|

=
Cτ

σ− μr
|(dm − d0)|+

σ

σ− μr
|dm|

≤ 2C′τ + σ

σ− μr
(1 + 2Cτ)m|d0| ≤ (1 + 2Cτ)m+1|d0|.

This completes the proof.

Theorem 2. The scheme (12) is unconditionally stable for α ∈ (1, 2).

Proof. By using Theorem 1, Parseval’s equality and mτ ≤ T, we obtain

‖Vm − Ṽm‖2
l2 =

∞

∑
−∞

‖dm(l)‖2

≤ (1 + 2Cτ)2m
∞

∑
l=−∞

‖d0(l)‖2

= (1 + 2Cτ)2m‖δ0(l)‖2
l2

≤ exp(4Cτm)‖V0 − Ṽ0‖2
l2 .

so that
‖Vm − Ṽm‖l2 ≤ exp(2

√
Cτ)‖V0 − Ṽ0‖l2 .

which means that the scheme is unconditionally stable.

3. Convergence Analysis

The convergence of the scheme based on cubic B-splines is presented in this section.
The convergence analysis of the extended and cubic trigonometric B-splines based nu-
merical scheme follows accordingly. Let em

j = vm
j − Vm

j , 1 ≤ j ≤ M− 1, 1 ≤ m ≤ N − 1
and

em = (em
1 , em

2 , . . . , em
M−1),

Rm = (Rm
1 , Rm

2 , . . . , Rm
M−1), 0 ≤ m ≤ N − 1.

From Equation (11) and Rm+1
j = O(τ2 + h2) and noting that e0

j = 0, we have

σem+1
j − μ(em+1

j )ss =
m

∑
l=1

(Mm−l − Mm−l+1)δtel
j + σem

j + Rm+1
j . (29)

Define the functions

em(s) =

⎧⎪⎨⎪⎩
em

j , sj −
h
2
< s ≤ sj +

h
2

, 1 ≤ j ≤ M− 1,

0, 0 ≤ s ≤ h
2

or L− h
2
< s ≤ L.
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and

Rm(s) =

⎧⎪⎨⎪⎩
Rm

j , sj −
h
2
< s ≤ sj +

h
2

, 1 ≤ j ≤ M− 1,

0, 0 ≤ s ≤ h
2

or L− h
2
< s ≤ L.

We expand the above functions into Fourier series expansions as⎧⎪⎪⎪⎨⎪⎪⎪⎩
em(s) =

∞

∑
l=−∞

ξm(l) exp
I2πls

L ,

Rm(s) =
∞

∑
l=−∞

λm(l) exp
I2πls

L .

where, ⎧⎪⎨⎪⎩
ξm(l) =

1
L

∫ L

0
em(s) exp

−I2πls
L ds,

λm(l) =
1
L

∫ L

0
Rm(s) exp

−I2πls
L ds,

Applying Parseval’s equalities,

∫ L

0
‖em(s)‖2ds =

M−1

∑
j=1

h‖em
j ‖2, and

∫ L

0
‖Rm(s)‖2ds =

M−1

∑
j=1

h‖Rm
j ‖2

to the above expression, we have{
‖em‖2

2 = ∑∞
l=−∞ ‖ξm(l)‖2,

‖Rm‖2
2 = ∑∞

l=−∞ ‖λm(l)‖2.
(30)

Now, we suppose that {
em

j = ξm expIσs jh,

Rm
j = λm expIσs jh,

(31)

where σs =
2πl

L . Substituting relations (31) in Equation (29).

ξm+1[σ(a1 expIσs(j−1)h +a2 expIσs(j)h +a1 expIσs(j+1)h)− μ(c1 expIσs(j−1)h

+ c2 expIσs(j)h +c1 expIσs(j+1)h)] =
m

∑
l=1

(Mm−l − Mm−l+1)δtξl [a1 expIσs(j−1)h

+ a2 expIσs(j)h +a1 expIσs(j+1)h] + σξm[a1 expIσs(j−1)h +a2 expIσs(j)h

+ a1 expIσs(j+1)h] + λm+1[a1 expIσs(j−1)h +a2 expIσs(j)h +a1 expIσs(j+1)h].

⇒ ξm+1[σ(a2 + 2a1 cos(σsh))− μ(c2 + 2c1 cos(σsh))]

=
m

∑
l=1

(Mm−l − Mm−l+1)δtξl(a2 + 2a1 cos(σsh)) + σξm(a2 + 2a1 cos(σsh))

+ λm+1(a2 + 2a1 cos(σsh)).
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The above expression is further simplified as

ξm+1 =
1

(σ− μr)

m

∑
l=1

(Mm−l − Mm−l+1)(
ξl − ξl−1

τ
) +

σ

(σ− μr)
ξm

+
1

(σ− μr)
λm+1, 1 ≤ m ≤ M− 1. (32)

Theorem 3. Let ξm be the solution of (32), then, there is a positive constant C such that

|ξm| ≤ C(1 + τ)m|λ1|, m = 0, . . . , N − 1.

Proof. We use the mathematical induction to prove this claim. For m = 1, we have
from (32)

|ξ1| ≤ | λ1

σ− μr
| ≤ C(1 + τ)|λ1|.

Assume that
|ξm| ≤ C(1 + τ)m|λ1|, m = 0, . . . , N − 2.

Now by using the convergence of the series on the RHS of (30), we know that there
exists a constant C2 such that

|λm| ≤ C2τ|λ1|, m = 1, . . . , N − 1.

From (32), we have

|ξm+1| ≤
Cτ

σ− μr

m

∑
l=1

|ξl − ξl−1|+
σ

σ− μr
|ξm|+ | λm+1

σ− μr
|

=
Cτ

σ− μr

m

∑
l=1

|ξm − ξ0|+
σ

σ− μr
|ξm|+ | λm+1

σ− μr
|

= C1τ(1 + τ)m|λ1|+ C3τ(1 + τ)m|λ1|+ C2τ|λ1|
≤ (1 + τ)m+1C|λ1|.

Theorem 4. The scheme (12) is convergent, and the order of convergence is O(τ2 + h2).

Proof. By Theorem 3, Equation (30) and mτ ≤ T, we have

‖em‖2
l2 =

∞

∑
l=−∞

‖ξm(l)‖2 ≤
∞

∑
l=−∞

C2(1 + τ)2m‖λ1(l)‖2

= C2(1 + τ)2m‖R1‖2
l2

≤ C2C2
1e2mτ(τ2 + h2)2

≤ C′2(τ2 + h2)2.

This completes the proof.

4. Numerical Findings and Discussion

The efficiency and the validity of the suggested methodologies are confirmed in this
part using various test problems by utilizing the L2 and L∞ error norms. The numerical
results obtained by the proposed schemes are compared. Mathematica 12 was used to
obtain the numerical and graphical results.
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Example 1. Consider the time fractional Cattaneo equation,

∂v(s, t)
∂t

+CF
0 Dα

t v(s, t) =
∂2v(s, t)

∂2s
+ g(s, t), 1 < α < 2,

with initial constraint,
v(s, 0) = 0, vt(s, 0) = 0, s > 0,

and with boundary constraint,

v(0, t) = 0, v(1, t) = 0, 0 � t � 1.

The corresponding source term is

g(s, t) = 2(1− s2)s
16
3 [t +

1
α− 1

(1− exp(
1− α

2− α
t))] + t2(

418
9

s
16
3 − 208

9
s

10
3 ).

The analytic solution of the given problem is v(s, t) = t2(1− s2)s
16
3 . The suggested

schemes are implemented on the aforementioned problem to obtain the numerical re-
sults. The errors obtained by the schemes are compared with each other in Tables 1–3.
Figure 1 presents an efficient comparison of approximate and exact solutions at various
times. Figure 2 exhibits the 2D error profile. The 3D comparison between the exact and
approximate solutions is depicted in Figure 3. The approximate solution using the scheme
based on cubic B-splines when τ = 0.01 and M = 20 at T = 0.5 and T = 1 for Example 1
are given by

V(s, 0.5) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−2.3293× 10−21 + 1.9849× 10−4s− 3.03577× 10−18s2 + 1.5661× 10−3s3, s ∈ [0, 1
20 )

−8.7474× 10−7 + 2.5097× 10−4s− 1.0497× 10−3s2 + 8.5639× 10−3s3, s ∈ [ 1
20 , 1

10 )

−1.7230× 10−5 + 7.4162× 10−4s− 5.9562× 10−3s2 + 0.0249s3, s ∈ [ 1
10 , 3

20 )
...
...
1.5989− 6.1887s + 8.0414s2 − 3.4502s3, s ∈ [ 17

20 , 9
10 )

2.5132− 9.2363s + 11.4277s2 − 4.7044s3, s ∈ [ 9
10 , 19

20 )

3.8346− 13.4089s + 15.8199s2 − 6.2455s3, s ∈ [ 19
20 , 1).

and

V(s, 1) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−8.3009× 10−20 + 1.4517× 10−3s + 2.9490× 10−17s2 + 6.8016× 10−3s3, s ∈ [0, 1
20 )

−3.5058× 10−6 + 1.6620× 10−3s− 4.2069× 10−3s2 + 3.485× 10−2s3, s ∈ [ 1
20 , 1

10 )

−6.8991× 10−5 + 3.6266× 10−3s− 2.3853× 10−2s2 + 0.1003s3, s ∈ [ 1
10 , 3

20 )
...
...
6.3895− 24.7327s + 32.1435s2 − 13.7945s3, s ∈ [ 17

20 , 9
10 )

10.0419− 36.9074s + 45.6709s2 − 18.8046s3, s ∈ [ 9
10 , 19

20 )

15.3213− 53.5792s + 63.2202s2 − 24.9623s3, s ∈ [ 19
20 , 1).

respectively.
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Table 1. Comparison of errors using various B-splines when α = 1.1, dt = 0.001, T = 1 for Example 1.

M CuBS TCuBS ECuBS

L2 Norm L∞ Norm L2 Norm L∞ Norm L2 Norm L∞ Norm

20 1.63× 10−3 2.60× 10−3 1.65× 10−3 2.64× 10−3 9.46× 10−4 1.47× 10−3

40 4.11× 10−4 6.55× 10−4 4.16× 10−4 6.65× 10−4 2.45× 10−4 3.94× 10−4

80 1.08× 10−4 1.71× 10−4 1.09× 10−4 1.73× 10−4 6.61× 10−5 1.04× 10−4

160 3.20× 10−5 5.00× 10−5 3.23× 10−5 5.06× 10−5 2.03× 10−5 3.25× 10−5

Table 2. Comparison of errors using various B-splines with α = 1.5, dt = 0.001, T = 1 for Example 1.

M CuBS TCuBS ECuBS

L2 Norm L∞ Norm L2 Norm L∞ Norm L2 Norm L∞ Norm

20 1.54× 10−3 2.49× 10−3 1.56× 10−3 2.53× 10−3 1.42× 10−3 8.89× 10−4

40 3.90× 10−4 6.27× 10−4 3.94× 10−4 6.37× 10−4 2.33× 10−4 3.77× 10−4

80 1.02× 10−4 1.64× 10−4 1.04× 10−4 1.67× 10−4 6.42× 10−5 9.99× 10−5

160 3.08× 10−5 4.83× 10−5 3.11× 10−5 4.89× 10−5 2.00× 10−5 3.21× 10−5

Table 3. Comparison of errors using various B-splines with α = 1.9, dt = 0.001, T = 1 for Example 1.

M CuBS TCuBS ECuBS

L2 Norm L∞ Norm L2 Norm L∞ Norm L2 Norm L∞ Norm

20 1.39× 10−3 2.31× 10−3 1.41× 10−3 2.35× 10−3 8.01× 10−4 1.30× 10−3

40 3.50× 10−4 5.85× 10−4 3.56× 10−4 5.95× 10−4 2.09× 10−4 3.44× 10−4

80 9.18× 10−5 1.51× 10−4 9.30× 10−5 1.54× 10−4 5.70× 10−5 9.18× 10−5

160 2.73× 10−5 4.29× 10−5 2.75× 10−5 4.35× 10−5 1.85× 10−5 2.96× 10−5

Figure 1. The exact and approximate (triangles, stars, circles) solutions using cubic B-spline-based
scheme for Example 1 at various times when h = 1

60 .
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Figure 2. The 2D error profile using cubic B-spline-based scheme for Example 1 when h = 1
60 , T = 1,

dt = 0.01, α = 1.5.

Figure 3. The approximate (left) and exact (right) solutions using cubic B-spline-based scheme for
Example 1 when h = 1

60 , T = 1, dt = 0.01, α = 1.5.

Example 2. Consider the time fractional Cattaneo equation,

∂v(s, t)
∂t

+CF
0 Dα

t v(s, t) =
∂2v(s, t)

∂2s
+ g(s, t), 1 < α < 2,

with ICs,
v(s, 0) = 0, vt(s, 0) = sin x, 0 � s � 1,

and BCs,
v(0, t) = 0, v(1, t) = t sin(1), t > 0.

The corresponding source term is g(s, t) = (1 + t) sin s. The analytic solution of the
given problem is v(s, t) = t sin s. In order to achieve the desired numerical results the
presented schemes are applied on Example 2. The errors obtained by the schemes are
compared with each other in Tables 4–6. For various time stages, a sharp contrast between
the exact and approximate solutions is presented in Figure 4. The 2D absolute error profile
is plotted in Figure 5. Figure 6 depicts a 3D comparison between the exact and approximate
solutions.

The approximate solution using cubic B-spline-based scheme when τ = 0.01 and
M = 20 at T = 0.5 and T = 1 for Example 2 are given by

232



Fractal Fract. 2022, 6, 50

V(s, 0.5) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

3.0358× 10−17 + 0.499995s + 4.4409× 10−15s2 − 0.08331s3, s ∈ [0, 1
20 )

−2.6046× 10−8 + 0.499996s− 3.12551× 10−5s2 − 0.08311s3, s ∈ [ 1
20 , 1

10 )

−4.4227× 10−7 + 0.50001s− 1.56124× 10−4s2 − 0.08267s3, s ∈ [ 1
10 , 3

20 )
...
...
−7.78029× 10−3 + 0.5336s− 0.05168s2 − 0.05339s3, s ∈ [ 17

20 , 9
10 )

−0.01016 + 0.5415s− 0.06050s2 − 0.05013s3, s ∈ [ 9
10 , 19

20 )

−0.01307 + 0.5507s− 0.07016s2 − 0.04673s3, s ∈ [ 19
20 , 1).

and

V(s, 1) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−4.5103× 10−17 + 0.99997s− 5.32907× 10−14s2 − 0.1666s3, s ∈ [0, 1
20 )

−5.2096× 10−8 + 0.99998s− 6.25146× 10−5s2 − 0.1662s3, s ∈ [ 1
20 , 1

10 )

−8.8457× 10−7 + s− 3.12256× 10−4s2 − 0.1654s3, s ∈ [ 1
10 , 3

20 )
...
...
−1.5548× 10−2 + 1.0671s− 0.1033s2 − 0.1068s3, s ∈ [ 17

20 , 9
10 )

−2.0307× 10−2 + 1.08297s− 0.1209s2 − 0.1003s3, s ∈ [ 9
10 , 19

20 )

−2.6118× 10−2 + 1.10132s− 0.1402s2 − 0.0935s3, s ∈ [ 19
20 , 1).

respectively.

Table 4. Comparison of errors using various B-splines with α = 1.1, dt = 0.001, T = 1 for Example 2.

M CuBS TCuBS ECuBS

L2 Norm L∞ Norm L2 Norm L∞ Norm L2 Norm L∞ Norm

20 7.15× 10−6 9.97× 10−6 6.71× 10−6 9.35× 10−6 2.87× 10−7 3.99× 10−7

40 1.79× 10−6 2.49× 10−6 1.68× 10−6 2.34× 10−6 1.43× 10−8 1.98× 10−8

80 4.47× 10−7 6.23× 10−7 4.19× 10−7 5.84× 10−7 6.15× 10−9 8.57× 10−9

160 1.12× 10−7 1.56× 10−7 1.05× 10−7 1.46× 10−7 1.79× 10−10 2.50× 10−10

Table 5. Comparison of errors using various B-splines with α = 1.5, dt = 0.001, T = 1 for Example 2.

M CuBS TCuBS ECuBS

L2 Norm L∞ Norm L2 Norm L∞ Norm L2 Norm L∞ Norm

20 7.04× 10−6 9.81× 10−5 6.60× 10−6 9.20× 10−6 2.82× 10−7 3.93× 10−7

40 1.76× 10−6 2.45× 10−6 1.65× 10−6 2.30× 10−6 1.40× 10−8 1.96× 10−8

80 4.40× 10−7 6.13× 10−7 4.12× 10−7 5.75× 10−7 6.05× 10−9 8.44× 10−9

160 1.09× 10−7 1.53× 10−7 1.03× 10−7 1.44× 10−7 1.76× 10−10 2.46× 10−10

Table 6. Comparison of errors using various B-splines with α = 1.9, dt = 0.001, T = 1 for Example 2.

M CuBS TCuBS ECuBS

L2 Norm L∞ Norm L2 Norm L∞ Norm L2 Norm L∞ Norm

20 7.20× 10−6 1.01× 10−5 6.75× 10−6 9.43× 10−6 2.89× 10−7 4.03× 10−7

40 1.80× 10−6 2.51× 10−6 1.69× 10−6 2.36× 10−6 1.44× 10−8 2.01× 10−8

80 4.50× 10−7 6.29× 10−7 4.22× 10−7 5.90× 10−7 6.19× 10−9 8.65× 10−9

160 1.12× 10−7 1.57× 10−7 1.05× 10−7 1.47× 10−7 1.80× 10−10 2.52× 10−10
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Figure 4. The exact and approximate (triangles, stars, circles) solutions using cubic B-spline-based
scheme for Example 2 at various times when h = 1

60 .

Figure 5. The 2D error profile using cubic B-spline-based scheme for Example 2 when h = 1
60 , T = 1,

dt = 0.01, α = 1.5.

Figure 6. The approximate (left) and exact (right) solutions using cubic B-spline-based scheme for
Example 2 when h = 1

60 , T = 1, dt = 0.01, α = 1.5.
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Example 3. Consider the time fractional Cattaneo equation,

∂v(s, t)
∂t

+CF
0 Dα

t v(s, t) =
∂2v(s, t)

∂2s
+ g(s, t), 1 < α < 2,

with ICs,
v(s, 0) = 0, vt(s, 0) = (1− s) cos s, 0 � s � 1,

and BCs
v(0, t) = t, v(1, t) = 0, t > 0.

The corresponding source term is g(s, t) = (1 + t)(1− s) cos s− 2t sin s. The analytic
solution of the given problem is v(s, t) = t(1− s) cos s. The proposed methodologies are
utilized to acquire the numerical results for Example 3.

A comparison of computed errors is provided in Tables 7–9. For various time stages, a
close comparison between the exact and approximate solutions is displayed in Figure 7.
The 2D error function is plotted in Figure 8. Figure 9 depicts a 3D comparison between the
exact and approximate solutions.

The approximate solution using cubic B-spline-based scheme when τ = 0.01 and
M = 20 at T = 0.5 and T = 1 for Example 3 are given by

V(s, 0.5) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0.5− 0.5s− 0.25s2 + 0.2519s3, s ∈ [0, 1
20 )

0.5− 0.49997s− 0.2505s2 + 0.2551s3, s ∈ [ 1
20 , 1

10 )

0.499998− 0.4999s− 0.2511s2 + 0.2571s3, s ∈ [ 1
10 , 3

20 )
...
...
0.5282− 0.6185s− 0.07785s2 + 0.1681s3, s ∈ [ 17

20 , 9
10 )

0.5375− 0.6496s− 0.04329s2 + 0.1553s3, s ∈ [ 9
10 , 19

20 )

0.5491− 0.6860s− 4.990× 10−3s2 + 0.1419s3, s ∈ [ 19
20 , 1).

and

V(s, 1) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1− 0.9999s− 0.5s2 + 0.5039s3, s ∈ [0, 1
20 )

0.9999− 0.9999s− 0.5009s2 + 0.5101s3, s ∈ [ 1
20 , 1

10 )

0.9999− 0.9998s− 0.5022s2 + 0.5142s3, s ∈ [ 1
10 , 3

20 )
...
...
1.0563− 1.2367s− 0.1560s2 + 0.3364s3, s ∈ [ 17

20 , 9
10 )

1.0750− 1.2989s− 0.0869s2 + 0.3108s3, s ∈ [ 9
10 , 19

20 )

1.0980− 1.3716s− 0.0103s2 + 0.2839s3, s ∈ [ 19
20 , 1).

respectively.

Table 7. Comparison of errors using various B-splines with α = 1.1, dt = 0.001, T = 1 for Example 3.

M CuBS TCuBS ECuBS

L2 Norm L∞ Norm L2 Norm L∞ Norm L2 Norm L∞ Norm

20 2.21× 10−5 3.19× 10−5 2.23× 10−6 3.55× 10−6 4.04× 10−6 1.47× 10−6

40 5.53× 10−6 7.99× 10−6 5.58× 10−7 8.89× 10−7 1.01× 10−6 3.94× 10−6

80 1.38× 10−6 1.99× 10−6 1.40× 10−7 2.23× 10−7 2.97× 10−7 1.04× 10−7

160 3.46× 10−7 4.99× 10−7 3.49× 10−8 5.57× 10−8 6.71× 10−8 3.25× 10−8
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Table 8. Comparison of errors using various B-splines with α = 1.5, dt = 0.001, T = 1 for Example 3.

M CuBS TCuBS ECuBS

L2 Norm L∞ Norm L2 Norm L∞ Norm L2 Norm L∞ Norm

20 2.18× 10−5 3.14× 10−5 2.24× 10−6 3.56× 10−6 4.06× 10−6 6.07× 10−6

40 5.44× 10−6 7.88× 10−6 5.60× 10−7 8.90× 10−7 1.01× 10−6 1.51× 10−6

80 1.36× 10−6 1.97× 10−6 1.40× 10−7 2.23× 10−7 2.98× 10−7 4.58× 10−7

160 3.40× 10−7 4.92× 10−7 3.50× 10−8 5.57× 10−8 6.74× 10−8 9.56× 10−8

Table 9. Comparison of errors using various B-splines with α = 1.9, dt = 0.001, T = 1 for Example 3.

M CuBS TCuBS ECuBS

L2 Norm L∞ Norm L2 Norm L∞ Norm L2 Norm L∞ Norm

20 2.23× 10−5 3.23× 10−5 2.33× 10−6 3.69× 10−6 4.22× 10−6 6.30× 10−6

40 5.57× 10−6 8.08× 10−6 5.81× 10−7 9.24× 10−7 1.05× 10−6 1.57× 10−6

80 1.39× 10−6 2.02× 10−6 1.45× 10−7 2.32× 10−7 3.09× 10−7 4.76× 10−7

160 3.48× 10−7 5.05× 10−7 3.63× 10−8 5.79× 10−8 7.20× 10−8 9.96× 10−8

Figure 7. The exact and approximate (triangles, stars, circles) solutions using cubic B-spline-based
scheme for Example 3 at various times when h = 1

60 .

Figure 8. The 2D error profile using cubic B-spline-based scheme when for Example 2 when h = 1
60 ,

T = 1, dt = 0.01, α = 1.5.
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Figure 9. The approximate (left) and exact (right) solutions using cubic B-spline-based scheme for
Example 3 when h = 1

60 , T = 1, dt = 0.01, α = 1.5.

5. Concluding Remarks

The spline-based collocation schemes are developed for the numerical solution of the
time fractional Cattaneo differential equation involving the Caputo–Fabrizio time fractional
derivative. To begin with, the space derivative involved is approximated using the cubic
B-spline. Secondly, using finite differences, the Caputo–Fabrizio derivative is approximated.
The stability and convergence analysis of the schemes are also discussed in detail. The
splines used are the cubic B-splines, extended cubic B-splines and the trigonometric cubic
B-splines. The key advantage is that the approximate solution is obtained as a piecewise
continuous function so that approximate solution at any desired position in the domain can
be tracked. The efficiency and accuracy of the proposed approaches are confirmed by the
experimental findings. The suggested schemes can be applied to a wide range of problems
in varied fields of applied sciences.
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Abstract: In this article, we look at a variety of mean-type integral inequalities for a well-known
Hilfer fractional derivative. We consider twice differentiable convex and s-convex functions for
s ∈ (0, 1] that have applications in optimization theory. In order to infer more interesting mean
inequalities, some identities are also established. The consequences for Caputo fractional derivative
are presented as special cases to our general conclusions.
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1. Introduction

The subject of fractional calculus has achieved a significant prominence during the
most recent couple of years due to its demonstrated applications in the field of science and
engineering. This offers useful strategies to solve differential and integral equations, see
the books [1,2] and articles [3–5]. Fractional calculus has been applied in different areas of
science, engineering, financial mathematics, applied sciences, bio engineering, etc.

Mathematical inequalities are significantly important in the study of mathematics
and related fields. Nowadays, fractional integral inequalities are fruitful in generating
the uniqueness of solutions for fractional partial differential equations. They also provide
boundedness of the solutions of fractional boundary value problems. These recommenda-
tions have inspired various researchers in the field of integral inequalities to inquire the
extensions by involving fractional calculus operators. Recently, Peter Korus presented a
class of Hermite-Hadamard inequalities by considering the class of convex or generalized
convex derivative in [6], Farid et al. explored Fejér-Hadamard type inequalities [7] for
(α, h−m)− p-convex functions by involving the fractional operators. We further refer the
reader to, e.g., [8–10].

The convex functions are utilized to create numerous inequalities like Alomari et al. [11]
present Ostrowski’s inequalities via s convexity in second sense, Dragomir et al. discuss
some properties of convex functions in [12] and explored some important quadrature
rules in [13]. More applications can be observed from literature [14–16] on convex func-
tions and inequalities. Hermite-Hadamard’s inequality [17] is one of the most impor-
tant classical inequalities, as it has a rich geometrical meaning and applications [18–20].
Hermite-Hadamard’s double inequality is one of the most widely studied concerning
convex functions. The inequality is defined as follows:

Fractal Fract. 2022, 6, 60. https://doi.org/10.3390/fractalfract6020060 https://www.mdpi.com/journal/fractalfract239
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Let ψ : I ⊆ R→ R be a convex mapping and θ, ζ ∈ I with θ < ζ. Then,

ψ

(
θ + ζ

2

)
≤ 1

ζ − θ

∫ ζ

θ
ψ(ν)dν ≤ ψ(θ) + ψ(ζ)

2
. (1)

If ψ is concave, then the inequalities (1) hold in reverse direction. For particular choices
of function ψ, some classical inequalities for means can be derived from (1) (see [21]). The
principle point of this paper is to infer Hermite-Hadamard-type integral inequalities for
Hilfer fractional derivative. Such inequalities were proved by many scientists for different
convexities and for many fractional operators, but the main results of this paper are more
general then the existing literature.

2. Preliminaries

In this section, we recall some basic preliminary results.

Definition 1 ([22]). Let ψ : [θ, ζ]→ R is said to be convex if the inequality

ψ(νγ+ (1− ν)β) ≤ νψ(γ) + (1− ν)ψ(β),

holds for γ, β ∈ [θ, ζ] and ν ∈ [0, 1].

The definition of classical Riemann–Liouville fractional derivative (see [23] (Chapter 4))
is given as follows.

Definition 2. Let Φ ∈ L1[θ, ζ], then the right-sided and left-sided Riemann–Liouville fractional
derivative of order α > 0 are defined by

Dγ
θ+
ψ(ν) =

1
Γ(n− γ)

(
d

dν

)n ∫ ν

θ
(ν− τ)n−γ−1ψ(τ)dτ,

and

Dγ
ζ−ψ(ν) =

1
Γ(n− γ)

(
d

dν

)n ∫ ζ

ν
(τ − ν)n−γ−1ψ(τ)dτ,

where n = [γ] + 1, ν ∈ [θ, ζ].

Let x > θ > 0 and L1(θ, x), denote the space of all Lebesgue integrable functions on
the interval (θ, x). Then, for any ψ ∈ L1(θ, x) the Riemann–Liouville fractional integral of
order γ is defined by

(Iγθ+ψ)(ν) =
1

Γ(ν)

ν∫
θ

(x− τ)γ−1ψ(τ)dτ = (ψ ∗ Kγ)(ν), ν ∈ [θ, x], (γ > 0), (2)

where Kγ(ν) =
νγ−1

Γ(γ) . The integral on the right side of (2) exists for almost ν ∈ [θ, x] and

Iγθ+ψ ∈ L1(θ, x).
Throughout this paper, the space of all continuous differentiable functions up to

order m, on [θ, x] is presented by Cm[θ, x]. By AC[θ, x], we mean the space of all absolutely
continuous functions on [θ, x] and the space ACm[θ, x], denote the space of all such functions
ψ ∈ Cm[θ, x] with ψ(m−1) ∈ AC[θ, x]. By L∞(θ, x), we denote the space of all measurable
functions essentially bounded on [θ, x]. Let μ > 0, m = [μ] + 1 and f ∈ ACm[a, b]. The
Caputo derivative of order γ > 0 is defined as

(CDγ
θ+
ψ)(ν) =

(
Im−γ
θ+

dm

dνm ψ

)
(ν) =

1
Γ(m− γ)

ν∫
θ

(ν− τ)m−γ−1 dm

dνm ψ(τ)dτ.
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Definition 3 ([24]). Let ψ ∈ L1[θ, ζ],ψ ∗ K(1−β)(1−γ) ∈ AC1[θ, ζ]. The fractional derivative

operator Dγ,β
θ+

of order 0 < γ < 1 and type 0 < β ≤ 1 with respect to ν ∈ [θ, ζ] is defined by(
Dγ,β
θ+

ψ
)
(ν) := Iβ(1−γ)

θ+
d

dν

(
I(1−β)(1−γ)
θ+

ψ(ν)
)

. (3)

The derivative (3) is usually called Hilfer fractional derivative.

The more general integral representation of Equation (3) given in [24] is defined as
follows:

Let ψ ∈ L1[θ, ζ],ψ ∗ K(1−β)(n−γ) ∈ ACn[θ, ζ], n− 1 < γ < n, 0 < β ≤ 1, n ∈ N. Then,

(
Dγ,β
θ+

ψ
)
(ν) =

(
Iβ(n−γ)
θ+

dn

dνn

(
I(1−β)(n−γ)
θ+

ψ(ν)
))

, (4)

which coincide with (3) for n = 1.
Specially for β = 0, Dγ,0

θ+
ψ = Dγ

θ+
ψ is Riemann–Liouville fractional derivative of order

γ and for β = 1 it is Caputo fractional derivative Dγ,1
θ+

ψ = CDγ
θ+
ψ of order γ. Applying

the properties of Riemann–Liouville integral the relation (4) can be rewritten in the form(
Dγ,β
θ+

ψ
)
(ν) =

(
Iβ(n−γ)
θ+

((
Dn−(1−β)(n−γ)
θ+

ψ
)
(ν)
))

=
1

Γ(β(n− γ))

ν∫
θ

(ν− τ)β(n−γ)−1
((

Dγ+β(n−γ)
θ+

ψ
)
(τ)
)

dτ. (5)

The geometric arithmetically s-convex function given in [25] presented in the following
definition.

Definition 4. Let ψ : I ⊂ R+ → R+ and s ∈ (0, 1]. A function ψ is geometric-arithmetically
s-convex function on I if for every γ, β ∈ I and ν ∈ [0, 1], we have

ψ(γνβ1−ν) ≤ νs(ψ(γ)) + (1− ν)sψ(β).

The following lemma was given by Liao et al. [25].

Lemma 1. For θ ∈ [0, 1], γ, β > 0, we have

θγ+ (1− θ)β ≥ β1−θγθ .

Deng et al. [26] prove the following lemma.

Lemma 2. For θ ∈ [0, 1], we have

(1− θ)γ ≤ 21−γ − θγ, γ ∈ [0, 1],

(1− θ)γ ≥ 21−γ − θγ, γ ∈ [1, ∞).

3. Main Results

This section includes several mean-type fractional integral inequalities involving Hilfer
fractional derivative. The first main result for the fractional derivative is presented in the
following theorem.

Theorem 1. Letψ ∈ L1[θ, ζ], ψ ∗ K(1−β)(n−γ) ∈ ACn[θ, ζ], n ∈ N and Dγ+β(n−γ)
(θ,ζ) ψ : [θ, ζ]→ R

be a positive function with 0 ≤ θ < ζ, n − 1 < γ < n, 0 < β ≤ 1 and Dγ+β(n−γ)
(θ,ζ) ψ ∈
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L1[θ, ζ]. If Dγ+β(n−γ)
(θ,ζ) ψ is convex function on [θ, ζ], then the following inequality for fractional

derivative holds.

Dγ+β(n−γ)
(θ,ζ) Φ

(
θ + ζ

2

)
≤ Γ(β(n− γ) + 1)

(ζ − θ)β(n−γ)

[
Dγ,β
θ+

Φ(ζ) + Dγ,β
ζ− Φ(θ)

]
≤ Dγ+β(n−γ)

θ+
Φ(ζ) + Dγ+β(n−γ)

ζ− Φ(θ). (6)

Proof. We define functions ψ̃(ν) = ψ(θ + ζ − ν), ν ∈ [θ, ζ] and Φ(ν) = ψ(ν) + ψ̃(ν),
ν ∈ [θ, ζ]. Since Dγ+β(n−γ)

θ+
ψ is convex on [θ, ζ], therefore with μ = 1

2 , we have

Dγ+β(n−γ)
θ+

ψ

(
x + y

2

)
≤

Dγ+β(n−γ)
θ+

ψ(x) + Dγ+β(n−γ)
θ+

ψ(y)
2

.

Choosing x = νθ + (1− ν)ζ and y = (1− ν)θ + νζ, we get

2Dγ+β(n−γ)
θ+

ψ

(
θ + ζ

2

)
≤ Dγ+β(n−γ)

θ+
ψ(νθ + (1− ν)ζ) + Dγ+β(n−γ)

θ+
ψ((1− ν)θ + νζ)

= Dγ+β(n−γ)
θ+

Φ(νθ + (1− ν)ζ).

Now, we multiply both sides of above inequality by νβ(n−γ)−1 and then integrating
the resulting inequality with respect to ν over [0, 1], we have

1
β(n− γ)

Dγ+β(n−γ)
θ+

Φ
(
θ + ζ

2

)
≤
∫ 1

0
νβ(n−γ)−1Dγ+β(n−γ)

θ+
Φ(νθ + (1− ν)ζ)dν. (7)

By substituting u = νθ + (1− ν)ζ, the inequality (7) becomes

Dγ+β(n−γ)
θ+

Φ
(
θ + ζ

2

)
≤ Γ(β(n− γ) + 1)

(ζ − θ)β(n−γ)
Dγ,β
θ+

Φ(ζ). (8)

Similarly, for the choice

Dγ+β(n−γ)
ζ− ψ

(
x + y

2

)
≤

Dγ+β(n−γ)
ζ− ψ(x) + Dγ+β(n−γ)

ζ− ψ(y)

2
,

we get

Dγ+β(n−γ)
ζ− Φ

(
θ + ζ

2

)
≤ Γ(β(n− γ) + 1)

(ζ − θ)β(n−γ)
Dγ,β
ζ− Φ(θ). (9)

By adding (8) and (9), we obtain

Dγ+β(n−γ)
θ+

Φ
(
θ + ζ

2

)
+ Dγ+β(n−γ)

ζ− Φ
(
θ + ζ

2

)
≤ Γ(β(n− γ) + 1)

(ζ − θ)β(n−γ)

[
Dγ,β
θ+

Φ(ζ) + Dγ,β
ζ− Φ(θ)

]
, (10)

which proves the left half part of inequality (6).
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For the proof of the second half, we first note that if Dγ+β(n−γ)
θ+

ψ is convex, then for
ν ∈ [0, 1], yields

Dγ+β(n−γ)
θ+

ψ(νθ + (1− ν)ζ) ≤ νDγ+β(n−γ)
θ+

ψ̃(ζ) + (1− ν)Dγ+β(n−γ)
θ+

ψ(ζ)

Dγ+β(n−γ)
θ+

ψ((1− ν)θ + νζ) ≤ (1− ν)Dγ+β(n−γ)
θ+

ψ̃(ζ) + νDγ+β(n−γ)
θ+

ψ(ζ).

By adding above two inequalities, we have

Dγ+β(n−γ)
θ+

Φ(νθ + (1− ν)ζ) ≤ Dγ+β(n−γ)
θ+

Φ(ζ). (11)

Similarly,

Dγ+β(n−γ)
ζ− Φ((1− ν)θ + νζ) ≤ Dγ+β(n−γ)

ζ− Φ(θ). (12)

From (11) and (12), we get

Dγ+β(n−γ)
θ+

Φ(νθ + (1− ν)ζ) + Dγ+β(n−γ)
ζ− Φ((1− ν)θ + νζ)

≤ Dγ+β(n−γ)
θ+

Φ(ζ) + Dγ+β(n−γ)
ζ− Φ(θ). (13)

Now, first, we multiply both sides of (13) by νβ(n−γ)−1, and then we integrate the
resulting inequality with respect to ν over [0, 1], we have

∫ 1

0
νβ(n−γ)−1Dγ+β(n−γ)

θ+
Φ(νθ + (1− ν)ζ)dν

+
∫ 1

0
νβ(n−γ)−1Dγ+β(n−γ)

ζ− Φ((1− ν)θ + νζ)dν

≤ [Dγ+β(n−γ)
θ+

Φ(ζ) + Dγ+β(n−γ)
ζ− Φ(θ)]

∫ 1

0
νβ(n−γ)−1.

By substituting u = νθ+ (1− ν)ζ and v = (1− ν)θ+ νζ, the above inequality becomes

Γ(β(n− γ) + 1)
(ζ − θ)β(n−γ)

[
Dγ,β
θ+

Φ(ζ) + Dγ,β
ζ− Φ(θ)

]
≤ Dγ+β(n−γ)

θ+
Φ(ζ) + Dγ+β(n−γ)

ζ− Φ(θ). (14)

From (10) and (14), we get inequality (6).

The special case of Theorem 1 presented in [27] (Theorem 2.3) is given as follows.

Corollary 1. If we choose β = 1 and ψ is symmetric about θ+ζ
2 in Theorem 1, we get

ψn
(
θ + ζ

2

)
≤ Γ(n− γ+ 1)

2(ζ − θ)n−γ

[
CDγ

θ+
ψ(ζ) + (−1)nCDγ

ζ−ψ(θ)
]
≤ ψn(θ) + ψn(ζ)

2
.

Lemma 3. Let ψ ∈ L1[θ, ζ], ψ ∗ K(1−β)(n−γ) ∈ ACn[θ, ζ], n ∈ N. For the differentiable function

Dγ+β(n−γ)
(θ,ζ) ψ : [θ, ζ] → R with n− 1 < γ < n, 0 < β ≤ 1 and Dγ+β(n−γ)+1

(θ,ζ) ψ ∈ L1[θ, ζ] the
following equality

Dγ+β(n−γ)
θ+

Φ(ζ) + Dγ+β(n−γ)
ζ− Φ(θ)

2
− Γ(β(n− γ) + 1)

2(ζ − θ)β(n−γ)

[
Dγ,β
θ+

Φ(ζ) + Dγ,β
ζ− Φ(θ)

]
=

ζ − θ

2

∫ 1

0

[
(1− ν)β(n−γ) − νβ(n−γ)

]
Dγ+β(n−γ)+1
(θ,ζ) ψ(νθ + (1− ν)ζ)dν,

holds.
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Proof. Consider

I =
∫ 1

0

[
(1− ν)β(n−γ) − νβ(n−γ)

]
Dγ+β(n−γ)+1
(θ,ζ) ψ(νθ + (1− ν)ζ)dν

=
∫ 1

0

[
(1− ν)β(n−γ) − νβ(n−γ)

]
Dγ+β(n−γ)+1
θ+

ψ(νθ + (1− ν)ζ)dν

+
∫ 1

0

[
(1− ν)β(n−γ) − νβ(n−γ)

]
Dγ+β(n−γ)+1
ζ− ψ(νθ + (1− ν)ζ)dν

= I1 + I2. (15)

Integrating I1 by parts, we get

I1 = (1− ν)β(n−γ) Dγ+β(n−γ)
θ+

ψ(νθ + (1− ν)ζ)

θ − ζ
|10

+
∫ 1

0
β(n− γ)(1− ν)β(n−γ)−1 Dγ+β(n−γ)

θ+
ψ(νθ + (1− ν)ζ)

θ − ζ
dν

− νβ(n−γ) Dγ+β(n−γ)
θ+

ψ(νθ + (1− ν)ζ)

θ − ζ
|10

+
∫ 1

0
β(n− γ)νβ(n−γ)−1 Dγ+β(n−γ)

θ+
ψ(νθ + (1− ν)ζ)

θ − ζ
dν.

By substituting x = νθ + (1− ν)ζ, we obtain

I1 =
Dγ+β(n−γ)
θ+

ψ(ζ) + Dγ+β(n−γ)
θ+

ψ̃(ζ)

ζ − θ
− β(n− γ)

ζ − θ

[∫ θ

ζ

( θ − x
θ − ζ

)β(n−γ)−1

×
Dγ+β(n−γ)
θ+

ψ(x)
θ − ζ

dx +
∫ θ

ζ

( ζ − x
ζ − θ

)β(n−γ)−1 Dγ+β(n−γ)
θ+

ψ(x)
θ − ζ

dx
]

=
Dγ+β(n−γ)
θ+

Φ(ζ)

ζ − θ
− β(n− γ)

(ζ − θ)β(n−γ)+1

∫ ζ

θ
(ζ − x)β(n−γ)−1Dγ+β(n−γ)

θ+
Φ(x)dx

=
Dγ+β(n−γ)
θ+

Φ(ζ)

ζ − θ
− Γ(β(n− γ) + 1)

(ζ − θ)β(n−γ)+1
Dγ,β
θ+

Φ(ζ). (16)

Similarly, integrating I2 by parts, we get

I2 = (1− ν)β(n−γ)
Dγ+β(n−γ)
ζ− ψ(νθ + (1− ν)ζ)

θ − ζ
|10

+
∫ 1

0
β(n− γ)(1− ν)β(n−γ)−1

Dγ+β(n−γ)
ζ− ψ(νθ + (1− ν)ζ)

θ − ζ
dν

− νβ(n−γ)
Dγ+β(n−γ)
ζ− ψ(νθ + (1− ν)ζ)

θ − ζ
|10

+
∫ 1

0
β(n− γ)νβ(n−γ)−1

Dγ+β(n−γ)
ζ− ψ(νθ + (1− ν)ζ)

θ − ζ
.

By substituting again x = νθ + (1− ν)ζ, we get

I2 =
Dγ+β(n−γ)
ζ− Φ(θ)

ζ − θ
− Γ(β(n− γ) + 1)

(ζ − θ)β(n−γ)+1
Dγ,β
ζ− Φ(θ). (17)

Using (16) and (17) in (15), we have
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I =
Dγ+β(n−γ)
θ+

Φ(ζ) + Dγ+β(n−γ)
ζ− Φ(θ)

ζ − θ
− Γ(β(n− γ) + 1)

(ζ − θ)β(n−γ)+1

[
Dγ,β
θ+

Φ(ζ) + Dγ,β
ζ− Φ(θ)

]
.

Thus, by multiplying both sides with ζ−θ
2 , we get the desired result.

The following special case of Lemma 3 was proved by Farid et al. in [27] (Lemma 2.2).

Corollary 2. If we take β = 1 and ψ is symmetric about θ+ζ
2 in Lemma 3, we obtain

ψn(θ) + ψn(ζ)

2
− Γ(n− γ+ 1)

2(ζ − θ)n−γ

[
CDγ

θ+
ψ(ζ) + (−1)nCDγ

ζ−ψ(θ)
]

=
ζ − θ

2

∫ 1

0

[
(1− ν)n−γ − νn−γ

]
ψn+1(νθ + (1− ν)ζ)dν,

for Caputo fractional derivatives.

Theorem 2. Letψ ∈ L1[θ, ζ],ψ ∗ K(1−β)(n−γ) ∈ ACn[θ, ζ], n ∈ N and Dγ+β(n−γ)
(θ,ζ) ψ : [θ, ζ]→ R

be a differentiable function with n− 1 < γ < n and 0 < β ≤ 1. If Dγ+β(n−γ)+1
(θ,ζ) ψ is convex on

[θ, ζ], then the following inequality is true

∣∣∣Dγ+β(n−γ)
θ+

Φ(ζ) + Dγ+β(n−γ)
ζ− Φ(θ)

2
− Γ(β(n− γ) + 1)

2(ζ − θ)β(n−γ)

[
Dγ,β
θ+

Φ(ζ) + Dγ,β
ζ− Φ(θ)

]∣∣∣
≤ ζ − θ

2(β(n− γ) + 1)

(
1− 1

2β(n−γ)

)(
|Dγ+β(n−γ)+1

(θ,ζ) ψ(ζ)|+ |Dγ+β(n−γ)+1
(θ,ζ) ψ(θ)|

)
.

Proof. By using Lemma 3 and Definition 1, we get

∣∣∣Dγ+β(n−γ)
θ+

Φ(ζ) + Dγ+β(n−γ)
ζ− Φ(θ)

2
− Γ(β(n− γ) + 1)

2(ζ − θ)β(n−γ)

[
Dγ,β
θ+

Φ(ζ) + Dγ,β
ζ− Φ(θ)

]∣∣∣
≤ ζ − θ

2

∫ 1

0
|(1− ν)β(n−γ) − νβ(n−γ)|

×
(
ν|Dγ+β(n−γ)+1

(θ,ζ) ψ(θ)|+ (1− ν)|Dγ+β(n−γ)+1
(θ,ζ) ψ(ζ)|

)
dν

=
ζ − θ

2

∫ 1
2

0

[
(1− ν)β(n−γ) − νβ(n−γ)

]
×
(
ν|Dγ+β(n−γ)+1

(θ,ζ) ψ(θ)|+ (1− ν)|Dγ+β(n−γ)+1
(θ,ζ) ψ(ζ)|

)
dν

+
∫ 1

1
2

[
νβ(n−γ) − (1− ν)β(n−γ)

](
ν|Dγ+β(n−γ)+1

(θ,ζ) ψ(θ)|+ (1− ν)|Dγ+β(n−γ)+1
(θ,ζ) ψ(ζ)|

)
dν

=
ζ − θ

2

[
|Dγ+β(n−γ)+1

(θ,ζ) ψ(ζ)|
∫ 1

2

0

[
(1− ν)β(n−γ)+1 − (1− ν)νβ(n−γ)

]
dν

+ |Dγ+β(n−γ)+1
(θ,ζ) ψ(θ)|

∫ 1
2

0

[
ν(1− ν)β(n−γ) − νβ(n−γ)+1

]
dν

+ |Dγ+β(n−γ)+1
(θ,ζ) ψ(ζ)|

∫ 1

1
2

[
(1− ν)νβ(n−γ) − (1− ν)β(n−γ)+1

]
dν

+ |Dγ+β(n−γ)+1
(θ,ζ) ψ(θ)|

∫ 1

1
2

[
νβ(n−γ)+1 − ν(1− ν)β(n−γ)

]
dν
]
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=
ζ − θ

2

[
|Dγ+β(n−γ)+1

(θ,ζ) ψ(ζ)|
( 1
β(n− γ) + 1

− 1
(β(n− γ) + 1)2β(n−γ)

)
+ |Dγ+β(n−γ)+1

(θ,ζ) ψ(θ)|
( 1
β(n− γ) + 1

− 1
(β(n− γ) + 1)2β(n−γ)

)]
=

ζ − θ

2(β(n− γ) + 1)

(
1− 1

2β(n−γ)

)(
|Dγ+β(n−γ)+1

(θ,ζ) ψ(ζ)|+ |Dγ+β(n−γ)+1
(θ,ζ) ψ(θ)|

)
.

Hence, the proof is complete.

The corollary given below presented in [27] (Theorem 2.4) is a special case of
Theorem 2.

Corollary 3. If we choose β = 1 and ψ is symmetric about θ+ζ
2 in Theorem 2, we get

ψn(ζ) + ψn(θ)

2
− Γ(n− γ+ 1)

2(ζ − θ)n−γ

[
CDγ

θ+
ψ(ζ) + (−1)nCDγ

ζ−ψ(θ)
]

≤ ζ − θ

2(n− γ+ 1)

(
1− 1

2n−γ

)(
|ψn+1(ζ)|+ |ψn+1(θ)|

)
.

Lemma 4. Let ψ ∈ L1[θ, ζ], ψ ∗ K(1−β)(n−γ) ∈ ACn[θ, ζ], n ∈ N and Dγ+β(n−γ)
(θ,ζ) ψ : [θ, ζ] → R

be twice differential mapping on (θ, ζ) with n − 1 < γ < n and 0 < β ≤ 1. If Dγ+β(n−γ)+2
(θ,ζ)

ψ ∈ L1[θ, ζ], then we have the following equality.

Dγ+β(n−γ)
θ+

Φ(ζ) + Dγ+β(n−γ)
ζ− Φ(θ)

2
− Γ(β(n− γ) + 1)

2(ζ − θ)β(n−γ)

[
Dγ,β
θ+

Φ(ζ) + Dγ,β
ζ− Φ(θ)

]
=

(ζ − θ)2

2

∫ 1

0

1− (1− ν)β(n−γ)+1 − νβ(n−γ)+1

β(n− γ) + 1
Dγ+β(n−γ)+2
(θ,ζ) ψ(νθ + (1− ν)ζ)dν.

Proof. By using Lemma 3, we get

Dγ+β(n−γ)
θ+

Φ(ζ) + Dγ+β(n−γ)
ζ− Φ(θ)

2
− Γ(β(n− γ) + 1)

2(ζ − θ)β(n−γ)
[Dγ,β

θ+
Φ(ζ) + Dγ,β

ζ− Φ(θ)]

=
ζ − θ

2

[∫ 1

0

[
(1− ν)β(n−γ) − νβ(n−γ)

]
Dγ+β(n−γ)+1
θ+

ψ(νθ + (1− ν)ζ)dν

+
∫ 1

0

[
(1− ν)β(n−γ) − νβ(n−γ)

]
Dγ+β(n−γ)+1
ζ− ψ(νθ + (1− ν)ζ)dν

]
.

Integrating by parts, we get

=
ζ − θ

2

[Dγ+β(n−γ)+1
θ+

ψ(ζ)− Dγ+β(n−γ)+1
θ+

ψ(θ) + Dγ+β(n−γ)+1
ζ− ψ(ζ)− Dγ+β(n−γ)+1

ζ− ψ(θ)

β(n− γ) + 1

− ζ − θ

β(n− γ) + 1

∫ 1

0

[
(1− ν)β(n−γ)+1 + νβ(n−γ)+1

]
Dγ+β(n−γ)+2
(θ,ζ) ψ(νθ + (1− ν)ζ)dν

]
. (18)

Since

Dγ+β(n−γ)+1
θ+

ψ(ζ)− Dγ+β(n−γ)+1
θ+

ψ(θ) =
∫ ζ

θ
Dγ+β(n−γ)+2
θ+

ψ(u)du.
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By substituting u = νθ + (1− ν)ζ, we get

Dγ+β(n−γ)+1
θ+

ψ(ζ)− Dγ+β(n−γ)+1
θ+

ψ(θ)

= (ζ − θ)
∫ 1

0
Dγ+β(n−γ)+2
θ+

ψ(νθ + (1− ν)ζ)dν, (19)

and

Dγ+β(n−γ)+1
ζ− ψ(ζ)− Dγ+β(n−γ)+1

ζ− ψ(θ) =
∫ ζ

θ
Dγ+β(n−γ)+2
ζ− ψ(u)du.

By substituting again u = νθ + (1− ν)ζ, we get

Dγ+β(n−γ)+1
ζ− ψ(ζ)− Dγ+β(n−γ)+1

ζ− ψ(θ) = (ζ − θ)
∫ 1

0
Dγ+β(n−γ)+2
ζ− ψ(νθ + (1− ν)ζ)dν. (20)

By adding (19) and (20), we obtain

Dγ+β(n−γ)+1
θ+

ψ(ζ)− Dγ+β(n−γ)+1
θ+

ψ(θ) + Dγ+β(n−γ)+1
ζ− ψ(ζ)− Dγ+β(n−γ)+1

ζ− ψ(θ)

= (ζ − θ)
∫ 1

0
Dγ+β(n−γ)+2
(θ,ζ) ψ(νθ + (1− ν)ζ)dν. (21)

Using Equation (21) into (18), we get the required result.

Corollary 4. If we take β = 1 and ψ is symmetric about θ+ζ
2 in Lemma 4, we get the following

equality for Caputo fractional derivatives:

ψn(θ) + ψn(ζ)

2
− Γ(n− γ+ 1)

2(ζ − θ)n−γ

[
CDγ

θ+
ψ(ζ) + (−1)nCDγ

ζ−ψ(θ)
]

=
(ζ − θ)2

2

∫ 1

0

1− (1− ν)n−γ+1 − νn−γ+1

n− γ+ 1
ψn+2(νθ + (1− ν)ζ)dν.

Lemma 5. Let ψ ∈ L1[θ, ζ], ψ ∗K(1−β)(n−γ) ∈ ACn[θ, ζ], n ∈ N and Dγ+β(n−γ)
(θ,ζ) ψ : [θ, ζ]→ R

is twice differentiable and measurable on [θ, ζ], n− 1 < γ < n and 0 < β ≤ 1, then the equation

Γ(β(n− γ) + 1)
2(ζ − θ)β(n−γ)

[
Dγ,β
θ+

Φ(ζ) + Dγ,β
ζ− Φ(θ)

]
− Dγ+β(n−γ)

(θ,ζ) ψ

(
θ + ζ

2

)
=

(ζ − θ)2

2

∫ 1

0
m(ν)Dγ+β(n−γ)+2

(θ,ζ) ψ(νθ + (1− ν)ζ)dν,

holds for m(ν) =

⎧⎨⎩ ν− 1−(1−ν)β(n−γ)+1−νβ(n−γ)+1

β(n−γ)+1 , ν ∈ [0, 1
2 );

1− ν− 1−(1−ν)β(n−γ)+1−νβ(n−γ)+1

β(n−γ)+1 , ν ∈ [ 1
2 , 1).
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Proof. Consider

(ζ − θ)2

2

∫ 1

0
m(ν)Dγ+β(n−γ)+2

(θ,ζ) ψ(νθ + (1− ν)ζ)dν

=
(ζ − θ)2

2

[∫ 1
2

0
ν
(

Dγ+β(n−γ)+2
θ+

ψ(νθ + (1− ν)ζ)

+ Dγ+β(n−γ)+2
ζ− ψ(νθ + (1− ν)ζ)

)
dν

+
∫ 1

1
2

(1− ν)
(

Dγ+β(n−γ)+2
θ+

ψ(νθ + (1− ν)ζ) + Dγ+β(n−γ)+2
ζ− ψ(νθ + (1− ν)ζ)

)
dν

−
∫ 1

0

(
1− (1− ν)β(n−γ)+1 − νβ(n−γ)+1

β(n− γ) + 1

)
Dγ+β(n−γ)+2
(θ,ζ) ψ(νθ + (1− ν)ζ)dν

]
.

Let

I =
∫ 1

2

0
ν
(

Dγ+β(n−γ)+2
θ+

ψ(νθ + (1− ν)ζ) + Dγ+β(n−γ)+2
ζ− ψ(νθ + (1− ν)ζ)

)
dν

+
∫ 1

1
2

(1− ν)
(

Dγ+β(n−γ)+2
θ+

ψ(νθ + (1− ν)ζ) + Dγ+β(n−γ)+2
ζ− ψ(νθ + (1− ν)ζ)

)
dν

= I1 + I2. (22)

Integrating I1 by parts, we get

I1 =
Dγ+β(n−γ)+1
θ+

ψ
(
θ+ζ

2

)
+ Dγ+β(n−γ)+1

ζ− ψ
(
θ+ζ

2

)
2(θ − ζ)

−

[
Dγ+β(n−γ)
θ+

ψ
(
θ+ζ

2

)
+ Dγ+β(n−γ)

ζ− ψ
(
θ+ζ

2

)
− Dγ+β(n−γ)

θ+
ψ(ζ)− Dγ+β(n−γ)

ζ− ψ̃(θ)
]

(θ − ζ)2 . (23)

Now integrating I2 by parts, we get

I2 = −
Dγ+β(n−γ)+1
θ+

ψ
(
θ+ζ

2

)
+ Dγ+β(n−γ)+1

ζ− ψ
(
θ+ζ

2

)
2(θ − ζ)

−

[
Dγ+β(n−γ)
θ+

ψ
(
θ+ζ

2

)
+ Dγ+β(n−γ)

ζ− ψ
(
θ+ζ

2

)
−−Dγ+β(n−γ)

θ+
ψ̃(ζ)− Dγ+β(n−γ)

ζ− ψ(θ)
]

(θ − ζ)2 . (24)

By substituting (23) and (24) to (22), we get

I =
Dγ+β(n−γ)
θ+

Φ(ζ) + Dγ+β(n−γ)
ζ− Φ(θ)

(ζ − θ)2 −
2Dγ+β(n−γ)

θ+
ψ
(
θ+ζ

2

)
+ 2Dγ+β(n−γ)

ζ− ψ
(
θ+ζ

2

)
(ζ − θ)2 .

Thus

(ζ − θ)2

2

∫ 1

0
m(ν)Dγ+β(n−γ)+2

(θ,ζ) ψ(νθ + (1− ν)ζ)dν

=
Dγ+β(n−γ)
θ+

Φ(ζ) + Dγ+β(n−γ)
ζ− Φ(θ)

2
− Dγ+β(n−γ)

(θ,ζ) ψ

(
θ + ζ

2

)
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− (ζ − θ)2

2

∫ 1

0

(
1− (1− ν)β(n−γ)+1 − νβ(n−γ)+1

β(n− γ) + 1

)
× Dγ+β(n−γ)+2

(θ,ζ) ψ(νθ + (1− ν)ζ)dν.

By using Lemma (4), we arrive at the desired result.

Corollary 5. If we take β = 1 and ψ is symmetric about θ+ζ
2 in Lemma 5, then the following

equality for Caputo fractional derivatives

Γ(n− γ+ 1)
2(ζ − θ)n−γ

[
CDγ

θ+
ψ(ζ) + (−1)nCDγ

ζ−ψ(θ)
]
− ψn

(
θ + ζ

2

)
=

(ζ − θ)2

2

∫ 1

0
m(ν)ψn+2(νθ + (1− ν)ζ)dν,

holds, where m(ν) =

⎧⎨⎩ ν− 1−(1−ν)n−γ+1−νn−γ+1

n−γ+1 , ν ∈ [0, 1
2 );

1− ν− 1−(1−ν)n−γ+1−νn−γ+1

n−γ+1 , ν ∈ [ 1
2 , 1).

Theorem 3. Letψ ∈ L1[θ, ζ],ψ ∗ K(1−β)(n−γ) ∈ ACn[θ, ζ], n ∈ N and Dγ+β(n−γ)
(θ,ζ) ψ : [θ, ζ]→ R

be a twice differentiable function with n − 1 < γ < n and 0 < β ≤ 1. If |Dγ+β(n−γ)+2
(θ,ζ) ψ| is

measurable, decreasing and geometric-arithmetically s-convex on [θ, ζ] for some fixed γ ∈ (0, ∞),
s ∈ (0, 1], 0 ≤ θ < ζ, then the inequality

∣∣∣Dγ+β(n−γ)
θ+

Φ(ζ) + Dγ+β(n−γ)
ζ− Φ(θ)

2
− Γ(β(n− γ) + 1)

2(ζ − θ)β(n−γ)

[
Dγ,β
θ+

Φ(ζ) + Dγ,β
ζ− Φ(θ)

]∣∣∣
≤

(ζ − θ)2
(
|Dγ+β(n−γ)+2

(θ,ζ) ψ(θ)|+ |Dγ+β(n−γ)+2
(θ,ζ) ψ(ζ)|

)
2(β(n− γ) + 1)

×
(

1
s + 1

− 1
β(n− γ) + s + 2

)
,

holds.

Proof. By using Lemmas 1, 4 and Definition 4, we have

∣∣∣Dγ+β(n−γ)
θ+

Φ(ζ) + Dγ+β(n−γ)
ζ− Φ(θ)

2
− Γ(β(n− γ) + 1)

2(ζ − θ)β(n−γ)

[
Dγ,β
θ+

Φ(ζ) + Dγ,β
ζ− Φ(θ)

]∣∣∣
≤ (ζ − θ)2

2(β(n− γ) + 1)

∫ 1

0
|1− (1− ν)β(n−γ)+1 − νβ(n−γ)+1|

× |Dγ+β(n−γ)+2
(θ,ζ) ψ(νθ + (1− ν)ζ)|dν

≤ (ζ − θ)2

2(β(n− γ) + 1)

∫ 1

0
|1− (1− ν)β(n−γ)+1 − νβ(n−γ)+1||Dγ+β(n−γ)+2

(θ,ζ) ψ(θνζ1−ν)|dν
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≤ (ζ − θ)2

2(β(n− γ) + 1)

∫ 1

0

(
1− (1− ν)β(n−γ)+1 − νβ(n−γ)+1

)[
νs|Dγ+β(n−γ)+2

(θ,ζ) ψ(θ)|

+ (1− ν)s|Dγ+β(n−γ)+2
(θ,ζ) ψ(ζ)|

]
dν

=
(ζ − θ)2

2(β(n− γ) + 1)

[∫ 1

0

[
νs|Dγ+β(n−γ)+2

(θ,ζ) ψ(θ)|+ (1− ν)s|Dγ+β(n−γ)+2
(θ,ζ) ψ(ζ)|

]
dν

−
∫ 1

0

[
νs(1− ν)β(n−γ)+1|Dγ+β(n−γ)+2

(θ,ζ) ψ(θ)|+ (1− ν)β(n−γ)+s+1|Dγ+β(n−γ)+2
(θ,ζ) ψ(ζ)|

]
dν

−
∫ 1

0

[
νβ(n−γ)+s+1|Dγ+β(n−γ)+2

(θ,ζ) ψ(θ)|+ νβ(n−γ)+1(1− ν)s|Dγ+β(n−γ)+2
(θ,ζ) ψ(ζ)|

]
dν
]
.

By using the definition of the beta function, we get

∣∣∣Dγ+β(n−γ)
θ+

Φ(ζ) + Dγ+β(n−γ)
ζ− Φ(θ)

2
− Γ(β(n− γ) + 1)

2(ζ − θ)β(n−γ)

[
Dγ,β
θ+

Φ(ζ) + Dγ,β
ζ− Φ(θ)

]∣∣∣
≤ (ζ − θ)2

2(β(n− γ) + 1)

[ |Dγ+β(n−γ)+2
(θ,ζ) ψ(θ)|

s + 1
+
|Dγ+β(n−γ)+2

(θ,ζ) ψ(ζ)|
s + 1

−
|Dγ+β(n−γ)+2

(θ,ζ) ψ(θ)|
β(n− γ) + s + 2

− |Dγ+β(n−γ)+2
(θ,ζ) ψ(ζ)|B(s + 1, β(n− γ) + 2)

− |Dγ+β(n−γ)+2
(θ,ζ) ψ(θ)|B(s + 1, β(n− γ) + 2)−

|Dγ+β(n−γ)+2
(θ,ζ) ψ(ζ)|

β(n− γ) + s + 2

]

≤
(ζ − θ)2

(
|Dγ+β(n−γ)+2

(θ,ζ) ψ(ζ)|+ |Dγ+β(n−γ)+2
(θ,ζ) ψ(θ)|

)
2(β(n− γ) + 1)

×
(

1
s + 1

− 1
β(n− γ) + s + 2

)
.

Which completes the proof of the result.

Corollary 6. If we take β = 1 and ψ is symmetric about θ+ζ
2 in Theorem 3, then the following

result for Caputo fractional derivatives holds.∣∣∣ψn(θ) + ψn(ζ)

2
− Γ(n− γ+ 1)

2(ζ − θ)n−γ

[
CDγ

θ+
ψ(ζ) + CDγ

ζ−ψ(θ)
]∣∣∣

≤
(ζ − θ)2

(
|ψn+2(θ)|+ |ψn+2(ζ)|

)
2(n− γ+ 1)

(
1

s + 1
− 1

n− γ+ s + 2

)
.

Theorem 4. Let ψ ∈ L1[θ, ζ], ψ ∗ K(1−β)(n−γ) ∈ ACn[θ, ζ], n ∈ N. Consider Dγ+β(n−γ)
(θ,ζ) ψ :

[θ, ζ] → R to be a twice differentiable function with n − 1 < γ < n and 0 < β ≤ 1. If
|Dγ+β(n−γ)+2

(θ,ζ) ψ|q is measurable, decreasing and geometric arithmetically s-convex on [θ, ζ] for
some fixed γ ∈ (0, ∞), s ∈ (0, 1], 0 ≤ θ < ζ, then the inequality
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∣∣∣∣∣∣
Dγ+β(n−γ)
θ+

Φ(ζ) + Dγ+β(n−γ)
ζ− Φ(θ)

2
− Γ(β(n− γ) + 1)

2(ζ − θ)β(n−γ)
[Dγ,β

θ+
Φ(ζ) + Dγ,β

ζ− Φ(θ)]

∣∣∣∣∣∣
≤

(ζ − θ)2 max
(

1− 21−β(n−γ), 21−β(n−γ) − 1
)

2(β(n− γ) + 1)

×

⎛⎝ |Dγ+β(n−γ)+2
(θ,ζ) ψ(ζ)|q + |Dγ+β(n−γ)+2

(θ,ζ) ψ(θ)|q

s + 1

⎞⎠
1
q

,

is true.

Proof. We shall prove this theorem in two cases:
Case 1: Let γ ∈ (0, 1) and β(n − γ) ∈ [0, 1], then by using Lemma 4, Holder’s

inequality, Lemma 1, Definition 4 and Lemma 2, we obtain∣∣∣∣∣∣
Dγ+β(n−γ)
θ+

Φ(ζ) + Dγ+β(n−γ)
ζ− Φ(θ)

2
− Γ(β(n− γ) + 1)

2(ζ − θ)β(n−γ)
[Dγ,β

θ+
Φ(ζ) + Dγ,β

ζ− Φ(θ)]

∣∣∣∣∣∣
≤ (ζ − θ)2

2(β(n− γ) + 1)

(∫ 1

0
|1− (1− ν)β(n−γ)+1 − νβ(n−γ)+1|pdν

) 1
p

×
(∫ 1

0
|Dγ+β(n−γ)+2

(θ,ζ) ψ(νθ + (1− ν)ζ)|qdν
) 1

q

≤ (ζ − θ)2

2(β(n− γ) + 1)

(∫ 1

0
|1− (1− ν)β(n−γ)+1 − νβ(n−γ)+1|pdν

) 1
p

×
(∫ 1

0
|Dγ+β(n−γ)+2

(θ,ζ) ψ(θνζ1−ν)|qdν
) 1

q

≤ (ζ − θ)2

2(β(n− γ) + 1)

(∫ 1

0
|1− (1− ν)β(n−γ)+1 − νβ(n−γ)+1|pdν

) 1
p

×
(∫ 1

0

[
νs|Dγ+β(n−γ)+2

(θ,ζ) ψ(θ)|q + (1− ν)s|Dγ+β(n−γ)+2
(θ,ζ) ψ(ζ)|q]dν

) 1
q

≤ (ζ − θ)2

2(β(n− γ) + 1)

⎛⎝ |Dγ+β(n−γ)+2
(θ,ζ) ψ(θ)|q + |Dγ+β(n−γ)+2

(θ,ζ) ψ(ζ)|q

s + 1

⎞⎠
1
q

×
(∫ 1

0

[
(1− ν)β(n−γ) + νβ(n−γ) − 1

]p
dν
) 1

p

≤ (ζ − θ)2

2(β(n− γ) + 1)

⎛⎝ |Dγ+β(n−γ)+2
(θ,ζ) ψ(θ)|q + |Dγ+β(n−γ)+2

(θ,ζ) ψ(ζ)|q

s + 1

⎞⎠
1
q

×
(∫ 1

0
(21−β(n−γ) − 1)pdν

) 1
p

=
(ζ − θ)2

2(β(n− γ) + 1)

⎛⎝ |Dγ+β(n−γ)+2
(θ,ζ) ψ(θ)|q + |Dγ+β(n−γ)+2

(θ,ζ) ψ(ζ)|q

s + 1

⎞⎠
1
q

×
(

21−β(n−γ) − 1
)

. (25)
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Case 2: Let γ ∈ [1, ∞) and β(n− γ) ∈ [1, ∞). By using Lemma 4, Holder’s inequality,
Lemma 1, Definition 4 and Lemma 2, we obtain

∣∣∣Dγ+β(n−γ)
θ+

Φ(ζ) + Dγ+β(n−γ)
ζ− Φ(θ)

2
− Γ(β(n− γ) + 1)

2(ζ − θ)β(n−γ)

[
Dγ,β
θ+

Φ(ζ) + Dγ,β
ζ− Φ(θ)

]∣∣∣
≤ (ζ − θ)2

2(β(n− γ) + 1)

⎛⎝ |Dγ+β(n−γ)+2
(θ,ζ) ψ(θ)|q + |Dγ+β(n−γ)+2

(θ,ζ) ψ(ζ)|q

s + 1

⎞⎠
1
q

×
(∫ 1

0
(1− 21−β(n−γ))pdν

) 1
p

=
(ζ − θ)2

2(β(n− γ) + 1)

⎛⎝ |Dγ+β(n−γ)+2
(θ,ζ) ψ(θ)|q + |Dγ+β(n−γ)+2

(θ,ζ) ψ(ζ)|q

s + 1

⎞⎠
1
q

×
(

1− 21−β(n−γ)
)

. (26)

Now, from (25) and (26), we obtain the required result.

Corollary 7. If we take β = 1 and ψ is symmetric about θ+ζ
2 in Theorem 4, we get the following

inequality for Caputo fractional derivatives:∣∣∣∣ψn(θ) + ψn(ζ)

2
− Γ(n− γ+ 1)

2(ζ − θ)n−γ
[CDγ

θ+
ψ(ζ) + (−1)nCDγ

ζ−ψ(θ)]

∣∣∣∣
≤ (ζ − θ)2 max

(
1− 21−n+γ, 21−n+γ − 1

)
2(n− γ+ 1)

( |ψn+2(θ)|q + |ψn+2(ζ)|q
s + 1

) 1
q

.

Theorem 5. Letψ ∈ L1[θ, ζ],ψ ∗ K(1−β)(n−γ) ∈ ACn[θ, ζ], n ∈ N and Dγ+β(n−γ)
(θ,ζ) ψ : [0, ζ]→ R

be differentiable function with n− 1 < γ < n and 0 < β ≤ 1. If |Dγ+β(n−γ)+2
(θ,ζ) ψ|q is measurable

for 1 < q < ∞, decreasing and geometric arithmetically s-convex on [0, ζ] for some fixed γ ∈ (0, ∞),
s ∈ (0, 1], 0 ≤ θ < ζ, then the following fractional inequality holds.

Γ(β(n− γ) + 1)
2(ζ − θ)β(n−γ)

[
Dγ,β
θ+

Φ(ζ) + Dγ,β
ζ− Φ(θ)

]
− Dγ+β(n−γ)

(θ,ζ) ψ

(
θ + ζ

2

)

≤ (ζ − θ)2

2(β(n− γ) + 1)

⎛⎝ |Dγ+β(n−γ)+2
(θ,ζ) ψ(θ)|q + |Dγ+β(n−γ)+2

(θ,ζ) ψ(ζ)|q

s + 1

⎞⎠
1
q

×
((

β(n− γ) + 1
)
2−p−1 +

(
β(n− γ) + 0.5

)p+1 − (β(n− γ))p+1

p + 1

) 1
p

,

where 1
p + 1

q = 1.
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Proof. By using Lemmas 1 and 5, Holder’s inequality and Definition 4, we get∣∣∣∣Γ(β(n− γ) + 1)
2(ζ − θ)β(n−γ)

[
Dγ,β
θ+

Φ(ζ) + Dγ,β
ζ− Φ(θ)

]
− Dγ+β(n−γ)

(θ,ζ) ψ

(
θ + ζ

2

)∣∣∣∣
≤ (ζ − θ)2

2

∫ 1

0
|m(ν)||Dγ+β(n−γ)+2

(θ,ζ) ψ(νθ + (1− ν)ζ)|dν

≤ (ζ − θ)2

2

∫ 1

0
|m(ν)||Dγ+β(n−γ)+2

(θ,ζ) ψ(θνζ1−ν)|dν

≤ (ζ − θ)2

2

(∫ 1

0
|m(ν)|pdν

) 1
p
(∫ 1

0

∣∣∣Dγ+β(n−γ)+2
(θ,ζ) ψ(θνζ1−ν)

∣∣∣qdν
) 1

q

≤ (ζ − θ)2

2

(∫ 1

0
|m(ν)|pdν

) 1
p ( ∫ 1

0

[
νs|Dγ+β(n−γ)+2

(θ,ζ) ψ(θ)|q

+ (1− ν)s|Dγ+β(n−γ)+2
(θ,ζ) ψ(ζ)|q

]
dν
) 1

q

=
(ζ − θ)2

2

⎛⎝ |Dγ+β(n−γ)+2
(θ,ζ) ψ(θ)|q + |Dγ+β(n−γ)+2

(θ,ζ) ψ(ζ)|q

s + 1

⎞⎠
1
q

×
[∫ 1

2

0

∣∣∣∣∣ν− 1− (1− ν)β(n−γ)+1 − νβ(n−γ)+1

β(n− γ) + 1

∣∣∣∣∣
p

dν

+
∫ 1

1
2

∣∣∣∣∣(1− ν)− 1− (1− ν)β(n−γ)+1 − νβ(n−γ)+1

β(n− γ) + 1

∣∣∣∣∣
p

dν
] 1

p

=
(ζ − θ)2

2(β(n− γ) + 1)

⎛⎝ |Dγ+β(n−γ)+2
(θ,ζ) ψ(θ)|q + |Dγ+β(n−γ)+2

(θ,ζ) ψ(ζ)|q

s + 1

⎞⎠
1
q

×
[∫ 1

2

0

∣∣∣β(n− γ)ν− 1 + (1− ν)β(n−γ)+1 + νβ(n−γ)+1
∣∣∣pdν

+
∫ 1

1
2

∣∣∣β(n− γ) + 1− β(n− γ)ν− ν− 1 + (1− ν)β(n−γ)+1 + νβ(n−γ)+1
∣∣∣pdν

] 1
p

≤ (ζ − θ)2

2(β(n− γ) + 1)

⎛⎝ |Dγ+β(n−γ)+2
(θ,ζ) ψ(θ)|q + |Dγ+β(n−γ)+2

(θ,ζ) ψ(ζ)|q

s + 1

⎞⎠
1
q

×
(∫ 1

2

0
((β(n− γ) + 1)ν)pdν+

∫ 1

1
2

(β(n− γ)− ν+ 1)pdν

) 1
p

≤ (ζ − θ)2

2(β(n− γ) + 1)

⎛⎝ |Dγ+β(n−γ)+2
(θ,ζ) ψ(θ)|q + |Dγ+β(n−γ)+2

(θ,ζ) ψ(ζ)|q

s + 1

⎞⎠
1
q

×
(
(β(n− γ) + 1)

∫ 1
2

0
νpdν+

∫ 1

1
2

(β(n− γ)− ν+ 1)pdν

) 1
p

=
(ζ − θ)2

2(β(n− γ) + 1)

⎛⎝ |Dγ+β(n−γ)+2
(θ,ζ) ψ(θ)|q + |Dγ+β(n−γ)+2

(θ,ζ) ψ(ζ)|q

s + 1

⎞⎠
1
q

×
(
(β(n− γ) + 1)2−p−1 + (β(n− γ) + 0.5)p+1 − (β(n− γ))p+1

p + 1

) 1
p

.

Which completes the proof of the result.
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Corollary 8. If we take β = 1 and ψ is symmetric about θ+ζ
2 in Theorem 5, then the inequality

Γ(n− γ+ 1)
2(ζ − θ)n−γ

[
CDγ

θ+
ψ(ζ) + (−1)nCDγ

ζ−ψ(θ)
]
− ψn

(
θ + ζ

2

)

≤ (ζ − θ)2

2(n− γ+ 1)

( |ψn+2(θ)|q + |ψn+2(ζ)|q
s + 1

) 1
q

×
(
(n− γ+ 1)2−p−1 + (n− γ+ 0.5)p+1 − (n− γ)p+1

p + 1

) 1
p

,

where 1
p + 1

q = 1, holds for Caputo fractional derivatives.

4. Concluding Remarks

The Hilfer fractional derivative has been used to set up a class of Hermite-Hadamard-
type inequalities by involving convexity theory. Our results present many of the earlier
inequalities that exist in the literature. The methodology used to generate the new inequali-
ties is based on Hilfer’s fractional derivative and skillful use of Hölder’s inequality that
has a wide range of applications in optimization theory. The findings of this work may
stimulate the interest of researchers working in this field can pursue further investigation.
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Abstract: In this article, we develop a numerical method based on the operational matrices of shifted
Vieta–Lucas polynomials (VLPs) for solving Caputo fractional-order differential equations (FDEs).
We derive a new operational matrix of the fractional-order derivatives in the Caputo sense, which
is then used with spectral tau and spectral collocation methods to reduce the FDEs to a system of
algebraic equations. Several numerical examples are given to show the accuracy of this method.
These examples show that the obtained results have good agreement with the analytical solutions
in both linear and non-linear FDEs. In addition to this, the numerical results obtained by using our
method are compared with the numerical results obtained otherwise in the literature.

Keywords: fractional-order differential equations; operational matrices; shifted Vieta–Lucas polyno-
mials; Caputo derivative

1. Introduction

Fractional calculus has been playing a very important role in scientific computations.
Scientists are able to describe and model many physical phenomena with fractional-order
differential equations. As a result, fractional-order differential operators are widely used
to solve systems by developing more accurate models [1–4]. The nonlocal property of the
fractional-order operators makes them more efficient for modeling the various problems
of physics, fluid dynamics and their related disciplines [1,5–9]. For example, consider a
thin rigid plate of mass a1 and area R immersed in a Newtonian fluid of infinite extent and
connected by a massless spring of stiffness K to a fixed point. A force g(z) is applied to
the plate. Assume that the spring has no effect on the fluid and that the area of the plate
is large enough to produce the fluid adjacent to the plate, whereas stresses σ(z, x) can be
defined by the following relation:

σ(z, x) =
√
μρD0.5v(z, x); (1)

where x is the distance of a point in the fluid from the spring to the submerged plate.
By some assumptions discussed in [10], the dynamics of the system are given by

a1D2υ(z) = g(z)− Kυ(z)− 2Rσ(z, 0) (2)
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where σ(z, 0) = Dυ(z). Equation (2), with some assumptions considered in [10], takes the
following form of a Bagley–Torvik-type problem solved in (Section 6, Example 1):

a1D2υ(z) + a2D3/2υ(z) + a3υ(z) = g(z), z ∈ [0, 1]. (3)

The existence and uniqueness results of fractional-order differential equations (FDEs)
have been investigated extensively in the literature. Some of them are presented as follows:
Fazli and Nieto [11] investigated the existence and uniqueness of the solution of FDEs of
Bagley–Torvik type by considering the existence of coupled lower and upper solutions.
Pang et al. [12] investigated the existence and uniqueness of the solution of the generalized
FDEs with initial conditions by proposing a novel max-metric containing a Caputo deriva-
tive. Abbas [13] studied the existence and uniqueness of the solution of FDEs by using
Banach’s contraction principle together with Krasnoselskii fixed point theorem. For more
works on existence and uniqueness results, we refer the reader to [14–17].

As most FDEs do not have closed-form solutions, different numerical techniques,
including the finite difference method, variational iteration method and spectral methods,
are preferably used. Among them, spectral methods have received considerable attention
from the fractional community for solving FDEs, both ordinary and partial. Spectral
methods are classified into three types, known as the collocation, tau and Galerkin methods.
The basic idea of the spectral methods is to write the solution as a linear combination of
basis vectors of global polynomials, typically Legendre, Jacobi and Chebyshev. The speed
of convergence is considered the best advantage of the spectral methods, as the rate
of convergence is exponential in these methods, which gives a high level of accuracy.
Many efficient spectral techniques are obtained in the literature using the various global
polynomials [18–21].

The construction of the operational matrices of fractional derivative operators defined
with singular or nonsingular kernels has played a key role in the development of spectral
methods. Many researchers have worked on the construction of the operational matrices
of fractional derivatives using different types of global polynomials. For example, Benat-
tia et al. [22] introduced the operational matrix of the fractional derivatives to develop
a numerical method that is based on the Chebyshev wavelet for solving FDEs. Saadat-
mandi et al. [23] derived an operational matrix of derivatives of fractional order using the
fractional-order Chebyshev functions. They also extended the results of [23] for solving the
coupled system of FDEs with variable coefficients [24]. Additionally, Bharway et al. [25]
introduced a new shifted Chebyshev operational matrix of fractional integration for solving
linear FDEs. Moreover, Talib et al. [26] developed a new operational matrix based on
the orthogonal shifted Legendre polynomials to numerically solve the fractional partial
differential equations. Meanwhile, Rahimkhani et al. [27] introduced a Bernoulli wavelet
operational matrix of fractional integration for obtaining the approximate solution of a
fractional delay differential equation. Kazem et al. [18] derived an operational matrix that
generalized the results presented in [19]. Recently, Dehastani et al. [28] calculated modified
operational matrices of integration and pseudo-operational of fractional derivatives for the
Lucas wavelet functions to compute the numerical solution of fractional Fredholm–Volterra
integro-differential equations. Moreover, Dehastani et al. [29,30] also derived operational
matrices of fractional-order derivatives and integration for fractional-order Bessel func-
tions and fractional-order hybrid Bessel functions. In the derived numerical techniques,
the operational matrices are applied to reduce the FDEs to a system of algebraic equations.

Dehestani et al. [31] also presented a novel collocation method based on the Genocchi
wavelet for the numerical solution of FDEs and time-fractional partial differential equations
with delay.

Motivated by the aforementioned works, we extend the study of the spectral methods
by constructing a numerical algorithm that is based on the fractional-order derivative
operational matrix of VLPs in Caputo sense, together with the spectral tau method and
spectral collocation method. The basis vectors of VLPs are used to approximate the solution
of the problems. The derivative terms are approximated by using the fractional-order
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derivative operational matrix of VLPs. It is important to mention that the proposed
algorithm is computer-oriented and is capable of reducing the FDEs to a system of algebraic
equations, which greatly simplifies the problems. Subsequently, we use the operational
matrices approach together with the spectral tau method in the case of linear FDEs, and the
operational matrices approach together with the spectral collocation method in the case of
nonlinear FDEs. Our proposed numerical algorithm produces highly efficient numerical
results as obtained otherwise in the literature [32–34].

The novel aspects of our proposed study are the development of the new fractional-
order derivative operational matrix of VLPs in Caputo sense and the construction of the
numerical algorithm that is based on this newly developed operational matrix. To the best
of our knowledge, this is the first result where the numerical algorithm is presented by
using the operational matrix of VLPs. Moreover, the proposed numerical algorithm is fit to
solve both linear and nonlinear FDEs with initial conditions. In addition, our proposed
method has advantages over other methods, such as the Homotopy perturbation method,
because, in our case, the perturbation, linearization or discretization are not necessary to
be implemented.

The structure of this paper is set in the following way. In Section 2, we discuss the
VLPs along with their properties. In Section 3 , the Vieta–Lucas operational matrix of
fractional-order derivatives is derived. In Section 4, the numerical method is developed
by using the operational matrices of VLPs. In Section 5, the error bound is determined.
In Section 6, the accuracy and the stability of the proposed method are analyzed by taking
some numerical examples. In Section 6, we conclude and give the summary of this paper.

2. Preliminaries

In this section, we summarize some definitions, properties and results of fractional
calculus that are essential to construct the numerical algorithm to solve the linear and
nonlinear FDEs.

Definition 1. The Riemann–Liouville fractional integral operator of order α > 0, of a function υ,
is defined as:

jαυ(z) =
1

Γ(α)

∫ z

0
(z− s)α−1υ(s)ds, α > 0,

j0υ(z) = υ(z).

Definition 2. The Caputo operator of the fractional derivative is defined as follows:

Dαυ(z) =
1

Γ(n− α)

∫ z

0

υ(n)(s)

(z− s)α+1−n ds, α > 0, z > 0, (4)

where n− 1 < α ≤ n, n ∈ N, and υ ∈ Cn[0, 1].
Hence, the Caputo operator follows:

Dαzk =

{
0, k ∈ 0, 1, 2, . . . , %α& − 1,

Γ(1+k)
Γ(1+k−α)

zk−α, k ∈ N∧ k ≥ %α&. (5)

2.1. Vieta–Lucas Polynomials

Vieta–Lucas polynomials belong to the class of orthogonal polynomials and can be
created by using the recurrence relation [35]. Consider |z| ≤ 2; then, the Vieta–Lucas
polynomials of degree n ∈ N0 in the variable z can be defined as

VLn(z) = 2 cos(nθ), θ = cos−1
(

z
2

)
, θ ∈ [0,π]. (6)
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The VLPs can be created by using the following recurrence relation:

VLn(z) = z VLn−1(z)−VLn−2(z), n = 2, 3, . . . ,

VL0(z) = 2, VL1(z) = z.

Moreover, VLn(z) can be expressed using the following power series formula:

VLn(z) =
% n

2 &
∑
j=0

(−1)j nΓ(n− j)
Γ(j + 1)Γ(n + 1− 2j)

zn−2j, n = {2, 3, . . .}, (7)

where % n
2 & is the ceiling function.

Moreover, the orthogonality of VLn(z) can be expressed as:

〈
VLm(z), VLn(z)

〉
=
∫ 2

−2

1√
4− z2

VLm(z)VLn(z) dz =

⎧⎪⎨⎪⎩
0, m �= n �= 0,
4π, m = n = 0,
2π, m = n �= 0,

(8)

where 1√
4−z2 is the weight function.

2.2. Shifted VLPs

As a new class of orthogonal polynomials, the shifted VLPs, VL∗n(z) of degree n,
defined on the closed interval [0, 1], can be obtained as follows:

VL∗n(z) = VLn(4z− 2) = VL2n(2
√

z). (9)

Moreover, VL∗n(z) are created by the following formula:

VL∗n+1(z) = (4z− 2)VL∗n(z)−VL∗n−1(z), n = 1, 2, . . . , (10)

with the starting values

VL∗0(z) = 2, VL∗1(z) = 4z− 2. (11)

Moreover, analytically, VL∗n(z) can be expressed as:

VL∗n(z) = 2n
n

∑
j=0

(−1)j 4n−jΓ(2n− j)
Γ(j + 1)Γ(2n− 2j + 1)

zn−j, n = {2, 3, . . .}. (12)

Let the function u(z) be Lebesgue-square-integrable on the interval [0, 1], which can
be expressed in terms of VLn(z) as follows:

u(z) =
∞

∑
j=0

cj VL∗j (z), (13)

where the undetermined coefficients, cj, j = 0, 1, 2, . . . , n, can be determined through the
following expression:

cj =
1
δjπ

∫ 2

−2

u( z+2
4 )VLj(z)√

4− z2
dz, (14)

or

cj =
1
δjπ

∫ 1

0

u(z)VL∗j (z)√
z− z2

dz, (15)
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where

δj =

{
4, j = 0,
2, j = {1, 2, . . . , n}.

(16)

For approximation, we can take the first n + 1 terms of the series; therefore, u(z) can
be expanded in the form

un(z) #
n

∑
j=0

cj VL∗j (z) = CTΨ(z), (17)

where the shifted VLP coefficient vector C and the shifted VLP vector Ψ(z) are given by

CT = [c0, c1, c2, . . . , cn],

Ψ(z) = [VL∗0(z), VL∗1(z), . . . , VL∗n(z)]
T . (18)

3. Operational Matrices of Differentiation

Theorem 1. Let Ψ(z) be the shifted VLP vector defined in (18) and also suppose that α > 0; then,

Dα(Ψ(z)) # PαΨ(z),

where Pα is the (m + 1)× (m + 1) operational matrix of the fractional derivative of order α in the
Caputo sense and is defined as follows:

Pα =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 . . . 0
...

... . . .
...

0 0 . . . 0
i−%α&
∑
k=0

ξi,0,k

i−%α&
∑
k=0

ξi,1,k . . .
i−%α&
∑
k=0

ξi,m,k

...
... . . .

...
m−%α&
∑
k=0

ξm,0,k

m−%α&
∑
k=0

ξm,1,k . . .
m−%α&
∑
k=0

ξm,m,k

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
and ξi,j,k is given by

ξi,j,k =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

i ∑
i−%α&
k=0 (−1)k 4i−kΓ(2i−k)Γ(i−k+1)Γ(i−k−α+1/2)√

πΓ(k+1)Γ(2i−2k+1)Γ(i−k−α+1)2 , j = 0,

2i ∑
i−%α&
k=0 ∑

j
r=0

(−1)k+r
√
π

4i−kΓ(2i−k)Γ(i−k+1)
Γ(k+1)Γ(2i−2k+1)Γ(i−k−α+1)

× 4j−rΓ(2j−r)Γ(i+j−k−r−α+1/2)
Γ(r+1)Γ(2j−2r+1)Γ(i+j+k−r−α+1) , j = 1, 2, 3, . . . .

(19)

Proof. Applying the Caputo derivative to (12), we have

Dα(VL∗i (z)) = Dα

(
i

∑
k=0

(−1)k 4i−k2iΓ(2i− k)
Γ(k + 1)Γ(2i− 2k + 1)

zi−k

)
. (20)

Applying the linearity of the Caputo derivative, and using (5), we have

Dα(VL∗i (z)) =
i−%α&
∑
k=0

(−1)k 4i−k2iΓ(2i− k)Γ(i− k + 1)
Γ(k + 1)Γ(2i− 2k + 1)Γ(i− k + 1− α)

zi−k−α, i = %α&, . . . , n, (21)

and
Dα(VL∗i (z)) = 0, i = 0, 1, . . . , %α& − 1. (22)
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Now, approximate zi−k−α by (m + 1) terms of the series, as

zi−k−α #
m

∑
j=0

ckj VL∗j (z), (23)

where

ckj =
1
δjπ

∫ 1

0

u(z)VL∗j (z)√
z− z2

dz, (24)

and u(z) = zi−k−α.
Now, inserting the value of u(z)and VL∗j (z) into Equation (24), we obtain

ckj =

⎧⎨⎩
1

4π

∫ 1
0

2zi−k−α√
z−z2 dz, j = 0,

1
2π

∫ 1
0

zi−k−α√
z−z2 ∑

j
r=0

(−1)r2j4j−rΓ(2j−r)
Γ(r+1)Γ(2j−2r+1) zj−rdx, j = 1, 2, 3, . . . ,

=

⎧⎨⎩
1

2π

∫ 1
0

zi−k−α√
z−z2 dz, j = 0,

1
π

∫ 1
0 ∑

j
r=0

(−1)r j4j−rΓ(2j−r)
Γ(r+1)Γ(2j−2r+1)

zi+j−k−r−α√
z−z2 dz, j = 1, 2, 3, . . . ,

=

⎧⎨⎩
1

2
√
π

Γ(i−k−α+1/2)
Γ(i−k−α+1) , j = 0,

1√
π ∑

j
r=0

(−1)r j4j−rΓ(2j−r)Γ(i+j−k−r−α+1/2)
Γ(r+1)Γ(2j−2r+1)Γ(i+j−k−r−α+1) , j = 1, 2, 3, . . . ,

(25)

by inserting the value of zi−k−α into Equation (21), we obtain

Dα(VL∗i (z)) #
m

∑
j=0

Sv(i, j)VL∗j (z)), (26)

where Sv(i, j) = ∑
i−%α&
k=0 ξi,j,k, and

ξi,j,k =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(−1)k 4i−kiΓ(2i−k)Γ(i−k+1)Γ(i−k−α+1/2)√
πΓ(k+1)Γ(2i−2k+1)Γ(i−k−α+1)2 , j = 0,

∑
j
r=0

(−1)k+r
√
π

4i−k2iΓ(2i−k)Γ(i−k+1)
Γ(k+1)Γ(2i−2k+1)Γ(i−k−α+1)

× 4j−r jΓ(2j−r)Γ(i+j−k−r−α+1/2)
Γ(r+1)Γ(2j−2r+1)Γ(i+j+k−r−α+1) , j = 1, 2, 3, . . . .

(27)

Rewriting Equation (26) in vector form, we obtain

Dα(VL∗i (z)) #
(

i−%α&
∑
k=0

ξi,0,k,
i−%α&
∑
k=0

ξi,1,k, . . . ,
i−%α&
∑
k=0

ξi,m,k

)
Ψ(z). (28)

For simplicity, we can write Equation (28) as:

Dα(VL∗i (z)) = P(α)Ψ(z), (29)

where

P(α) =

(
i−%α&
∑
k=0

ξi,0,k,
i−%α&
∑
k=0

ξi,1,k, . . . ,
i−%α&
∑
k=0

ξi,m,k

)
. (30)

Equations (22) and (29) prove the required result.

4. Application of Operational Matrices Method

In this section, we apply the Vieta–Lucas operational matrix method to find the
analytical-approximate solution of linear and nonlinear FDEs.
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4.1. Linear FDEs

Consider the linear FDE

Dαυ(z) = b1Dϑ1υ(z) + b2Dϑ2υ(z) + . . . + bkDϑkυ(z) + bk+1υ(z) + bk+2g(z), (31)

with initial conditions
υ(i)(0) = di, i = 0, . . . , n, (32)

where bl , for l = 1, . . . , k + 2, are real constant coefficients and also n < α ≤ n + 1,
and 0 < ϑ1 < ϑ2 < . . . < ϑk < α.

The unknown function υ(z) and the source term g(z) can be approximated as:

υ(z) #
M

∑
i=0

ci VL∗i (z) = CTΨ(z), (33)

g(z) #
M

∑
i=0

hi VL∗i (z) = HTΨ(z), (34)

where H = [h0, . . . , hM]T is known, and C = [c0, . . . , cM]T is an unknown to be determined.
Now, using Equations (29) and (33), we have

Dαυ(z) # CT DαΨ(z) # CT PαΨ(z), (35)

Dϑjυ(z) # CT Dϑj Ψ(z) # CT Pϑj Ψ(z), j = 1, . . . , k. (36)

Using Equations (33)–(36), the residual R(x) for Equation (31) can be written as

RM(z) # (CT Pα − b1CT Pϑ1 − . . .− bkCT Pϑk − bk+1CT − bk+2GT)Ψ(z). (37)

Using the spectral tau method [36], a system of linear equations is generated by applying

〈RM(z), Ψ(z)〉 =
∫ 1

0
RM(z)Ψ(z)dz, j = 0, 1, . . . , M− n− 1. (38)

Moreover, by substituting Equation (33) in the initial conditions given in Equation (32),
we obtain

υ(i)(0) = CT P(i)Ψ(0) = di, i = 0, 1, . . . , n. (39)

Equations (38) and (39) generate the (M − n) and (n + 1) set of linear equations,
respectively. This system of linear equations can then be solved easily for the unknown
coefficients. Consequently, we can approximate υ(z) given in Equation (33).

4.2. Nonlinear FDEs

Consider the nonlinear fractional-order differential equation

F(z, υ(z), Dϑ1υ(z), Dϑ2υ(z), . . . , Dϑkυ(z)) = 0, (40)

with boundary conditions

Hj(υ(ς j), υ
′
(ς j), . . . , υ(s)(ς j)) = dj, (41)
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where 0 ≤ s < max{ϑj, j = 1, . . . , k} ≤ s + 1, ς j ∈ [0, 1], j = 0, . . . , s and Hj are linear com-
binations of υ(ς j), υ

′
(ς j), . . . , υ(s)(ς j). Now, using Theorem 1 and Equation (33), the terms

of Equation (40) can be approximated as⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

υ(z) = CTΨ(z),
Dϑ1υ(z) = CT Pϑ1 Ψ(z),
Dϑ2υ(z) = CT Pϑ2 Ψ(z),
...

...
Dϑkυ(z) = CT Pϑk Ψ(z).

(42)

Similarly, the terms of Equation (41) can be approximated as⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

υ(ς j) = CTΨ(ς j),
υ
′
(ς j) = CT P(1)Ψ(ς j),

υ
′′
(ς j) = CT P(2)Ψ(ς j),

...
...

υ(s)(ς j) = CT P(s)Ψ(ς j).

(43)

In light of (42) and (43), we may write Equations (40) and (41), respectively, as

F(z, CTΨ(z), CT Pϑ1 Ψ(z), . . . , CT Pϑk Ψ(z)) = 0, (44)

Hj(CTΨ(ς j), CT P(1)Ψ(ς j), . . . , CT P(s)Ψ(ς j)) = dj. (45)

Now, to find the solution υ(z), we first collocate Equation (44) at (M− s) points. These
equations, along with Equation (45), generate a system of algebraic equations, which can
be solved to find ci, i = 0, . . . , M. Consequently, the function υ(z) can be approximated.

5. Error Estimate

Lemma 1. ([37]) The following assumptions for the function g(z), such that g(k) = bk, must
hold true:

1. The function g(z) is positive, decreasing and continuous for z ≥ m.
2. ∑ bm is convergent, and Pm = ∑∞

k=m+1 bk.

Then,

Pm ≤
∫ ∞

m
g(z)dz.

Theorem 2. If v(z) ∈ L2
w(Δ), Δ = [0, 1], v(z) = ∑∞

k=0 bk VL∗k (z), bk is introduced in
Equation (15), and v′′(z) ≤ N, then we have

‖v(z)− vm(z)‖w ≤
N√

96m3π
. (46)

Proof. It is evident that the shifted VLPs are orthogonal on the interval [0, 1] with respect
to the weight function, w(z) = 1√

z−z2 . Hence, these polynomials form a complete L2
w(Δ)

orthogonal set, where L2
w(Δ) represents the space of functions defined as v : Δ → R. Thus,

the error in space L2
w(Δ) is determined as

‖v(z)− vm(z)‖2
w =

(∫ 1

0
|v(z)− vm(z)|2w(z)dz

) 1
2

. (47)
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Using Equations (13) and (17) in Equation (47), we have

‖v(z)− vm(z)‖2
w =

⎛⎝∫ 1

0

∣∣∣∣∣ ∞

∑
k=m+1

bk VL∗k (z)

∣∣∣∣∣
2

w(z)dz

⎞⎠ 1
2

. (48)

Now, by applying the orthogonality property of shifted VLPs to Equation (48), we have

‖v(z)− vm(z)‖2
w =

1
δkπ

∞

∑
k=m+1

|bk|2. (49)

Now, by using the substitution 4x − 2 = 2 cos(θ) in Equation (15), the coefficients,
bk, k = 0, 1, · · · , m, can be determined as

bk =
1

4δkπ

∫ π

0
v′′
(

1 + cos(θ)
2

)
sin(θ)

(
sin(k− 1)θ

k− 1
− sin(k + 1)θ

k + 1

)
dθ. (50)

Equation (50) can also be expressed as

|bk| =
∣∣∣∣ 1
4δkπ

∫ π

0
v′′
(

1 + cos(θ)
2

)
sin(θ)

(
sin(k− 1)θ

k− 1
− sin(k + 1)θ

k + 1

)∣∣∣∣dθ. (51)

Using v′′(z) ≤ N, and the properties of trigonometric functions, we may express
Equation (51) as

|bk| ≤
N

4k(k− 1)(k + 1)
, k > 2. (52)

Now, using Equation (52) in Equation (49), we have

‖v(z)− vm(z)‖2
w ≤

N2

32π

∞

∑
k=m+1

1
k4 . (53)

Now, by using the Lemma 1, we have

‖v(z)− vm(z)‖2
w ≤ N2

32π

∫ ∞

m
z−4dz (54)

=
N2

32π
× 1

3m3 =
N2

96m3π
. (55)

Finally, we have

‖v(z)− vm(z)‖w ≤
N√

96m3π
. (56)

6. Illustrative Examples

In this section, we give some numerical examples to show the accuracy of our pro-
posed method.

Example 1. Consider the following fractional Bagley–Torvik equation

a1D2υ(z) + a2D3/2υ(z) + a3υ(z) = g(z), z ∈ [0, 1], (57)

subject to the initial conditions with integer order

υ(0) = 1 = υ(0)′. (58)
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The source term g(z) is as follows:

g(z) = 1 + z. (59)

The exact solution of the problem in Example 1 is:

υ(z) = 1 + z. (60)

Now, we apply the technique that is described in Section 4.1 by choosing the first three terms
of VLPs. We may write the approximation solution as

υ(z) = CTΨ(z)⇐⇒ y(0) = CTΨ(0) = d0 = 1,

υ
′
(z) = CT HυΨ(z)⇐⇒ y

′
(0) = CT HυΨ(0) = d1 = 1.

(61)

Now, we have Vieta–Lucas polynomials

Ψ(z) = (VL∗0(z), VL∗1(z), VL∗2(z)),

= (2, 4z− 2, 16z2 − 16z + 2),
(62)

and

GT =

⎛⎝ 0.75
0.25

0

⎞⎠. (63)

The Vieta–Lucas operational matrices can be expressed as

D2 =

⎛⎝ 0 0 0
0 0 0

16 0 0

⎞⎠,

D3/2 =

⎛⎝ 0 0 0
0 0 0

11.4936 7.6624 −1.5325

⎞⎠, (64)

D1 =

⎛⎝ 0 0 0
2 0 0
0 8 0

⎞⎠.

The residuals can be evaluated as

R(z) =
(

CD2 + a2CD3/2 + a2C− a3G
)

Ψ(z),

where C = [c0, c1, c2]. Now, using initial conditions, we have:

2c0 − 2c1 + 2c2 = 1,

4c1 − 16c2 = 1.
(65)

Moreover, using the inner product of the residual with the Vieta–Lucas polynomials, we obtain
a system of equations. If we take one equation from this system and two equations from Equation (65),
then, by simultaneously solving these equations, we obtain c0 = 0.75, c1 = 0.25, c2 = 0, hence

υ(z) = (
3
4

,
1
4

, 0)

⎛⎝ 2
4z− 2

16z2 − 16z + 2

⎞⎠ = 1 + z, (66)

which is the exact solution.
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Remark 1. The numerical results computed using our method are compared with the method
of [33] by choosing various n. We observe that our proposed method produces efficient numerical
results as compared to the numerical results obtained by using the method of [33] (see Tables 1 and 2
and Figure 1). Moreover, for a small value of n = 2, the exact solution and the approximate solution
computed by using our method coincide (see Table 1 and Figure 1).

Table 1. Comparison of approximate solution of Example 1.

z υ(z) Our Method at n = 2 The Method of [33] at n = 10

0 1.00 1.00 1.024862
0.1 1.10 1.10 1.121206
0.2 1.20 1.20 1.220821
0.3 1.30 1.30 1.323041
0.4 1.40 1.40 1.426952
0.5 1.50 1.50 1.531330
0.6 1.60 1.60 1.634569
0.7 1.70 1.70 1.734591
0.8 1.80 1.80 1.828738
0.9 1.90 1.90 1.913640
1.0 2.00 2.00 1.985057

Table 2. Comparison of absolute errors of Example 1.

z Absolute Errors at n = 10 Using [33] Absolute Errors at n = 2, 8, 10 Using Our Method

0 2.30× 10−2 0
0.1 2.69× 10−2 0
0.2 3.13× 10−2 0
0.3 3.45× 10−2 0
0.4 3.45× 10−2 0
0.5 2.87× 10−2 0
0.6 1.36× 10−2 0
0.7 1.49× 10−2 0
0.8 2.30× 10−2 0
0.9 2.69× 10−2 0
1.0 3.13× 10−2 0

Figure 1. Approximate solutions of Example 1 computed by our method at n = 2 is compared with
the method of [33] computed at n = 10.

Remark 2. The numerical results of Example 1 computed at n = 2 by using our method are
compared with the results obtained by using the methods of [32,34] at n = 6. We observe that, for a
small value of n = 2, the approximate solution obtained using our method coincides with the exact
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solution of Example 1 (see Tables 3 and 4). However, the exact solution and the approximate solution
computed by using the methods of [32,34] coincide at n = 6. This shows that our proposed method
is numerically more efficient.

Table 3. Comparison of approximate solution of Example 1.

z υ(z) Our Method at at n = 2 The Method of [32] at n = 6

0 1.00 1.00 1.00
0.1 1.10 1.10 1.10
0.2 1.20 1.20 1.20
0.3 1.30 1.30 1.30
0.4 1.40 1.40 1.40
0.5 1.50 1.50 1.50
0.6 1.60 1.60 1.60
0.7 1.70 1.70 1.70
0.8 1.80 1.80 1.80
0.9 1.90 1.90 1.90
1.0 2.00 2.00 2.00

Table 4. Comparison of approximate solution of Example 1.

z υ(z) Our Method at at n = 2 The Method of [34] at n = 6

0 1.00 1.00 1.00
0.1 1.10 1.10 1.10
0.2 1.20 1.20 1.20
0.3 1.30 1.30 1.30
0.4 1.40 1.40 1.40
0.5 1.50 1.50 1.50
0.6 1.60 1.60 1.60
0.7 1.70 1.70 1.70
0.8 1.80 1.80 1.80
0.9 1.90 1.90 1.90
1.0 2.00 2.00 2.00

Example 2. Consider the following linear initial value problem [38]:

Dαυ(z) + υ(z) = 0, 0 < α < 2,

υ(0) = 1, υ
′
(0) = 0.

(67)

The exact solution of the problem is υ(z) = ∑∞
k=0

(−zα)k

Γ(αk+1) [39].
To solve the problem, we use the technique described in Section 4.1. The absolute error for

α = 0.85 and n = 2 , 5 and 8 is shown in Table 5. An error plot is also shown in Figure 2 for
these values.

We can see in Table 5 that a good approximation has been achieved by using some initial terms
of VLPs. Moreover, the numerical results for υ(z) when n = 10 and α = 0.5, 0.65, 0.8, 0.95 and
1 are plotted in Figure 3. The exact solution for α = 1 is υ(z) = exp(−z). It can be noted that
the numerical solution converges to the analytical solution when α approaches 1. We also analyze
the nonlocal behavior of the fractional derivative by computing the results at various non-integer
values of α, which highlights the advantage of using the fractional derivatives, as the next state of
the system depends not only upon its current state by also upon all of its historical states.
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Table 5. Absolute error for α = 0.85 and n = 2, 5 and 8 in Example 2.

z n = 2 n = 5 n = 8

0.0 0 0 0
0.1 2.04× 10−2 7.16× 10−3 1.12× 10−3

0.2 7.61× 10−3 5.08× 10−3 1.38× 10−3

0.3 1.44× 10−2 1.86× 10−3 2.73× 10−3

0.4 4.06× 10−2 4.55× 10−3 1.56× 10−3

0.5 6.85× 10−2 1.55× 10−3 1.78× 10−3

0.6 9.64× 10−2 3.39× 10−3 3.82× 10−4

0.7 1.23× 10−1 4.98× 10−3 2.52× 10−3

0.8 1.48× 10−2 3.24× 10−3 1.52× 10−4

0.9 1.71× 10−2 7.04× 10−3 1.16× 10−3

1.0 1.91× 10−2 3.07× 10−3 4.68× 10−4

Figure 2. Error plots of Example 2 at different scale levels.

Figure 3. Exact and approximate solutions of Example 2 are compared at different scale levels.

Example 3. Consider the following initial value problem [10]:

CDυ(z) = a1CD
1
4 υ(z)− υ(z) + g(z), z ∈ [0, 1], (68)
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subject to the initial condition with integer order

υ(0) = 0. (69)

The source term is given as

g(z) =
5 z

3
2

2
+ z

5
2 +

15
√
π z

9
4

8Γ( 13
4 )

.

The exact solution at a1 = −1 is given below:

υ(z) = z2√z.

We test the behavior of our proposed method by solving Example (3) at various values of n.
In Table 6, we list the L∞ and L2 errors for different values of n. We compare the numerical results
obtained by using our proposed method with the numerical results obtained in [10]. It can be
observed that the errors computed by using our method are much smaller than those computed by
using the method presented in [10]; see Table 6. This highlights the efficiency of our method for this
problem. Note that the symbol “− ” means that the result for n is unavailable for the method [10].

Table 6. Approximate results of Example 3 at various values of n.

Our Method Method in ([10], Example 3)

n L∞ L2 L∞ L2

3 1.1× 10−3 2.2× 10−3 – –

4 2.29× 10−4 3.45× 10−4 1.21× 10−3 5.92× 10−4

6 2.11× 10−5 3.56× 10−5 – –

8 7.52× 10−6 1.85× 10−5 5.80× 10−5 2.50× 10−5

16 4.85× 10−9 7.35× 10−8 2.45× 10−6 9.89× 10−7

Example 4. Consider the following nonlinear initial value problem [40]:

Dαυ(z) =
40320

Γ(9− α)
z8−α − 3

Γ(5 + α/2)
Γ(5− α/2)

z4−α/2 +
9
4

Γ(α+ 1) + (
3
2

zα/2 − z4)
3
− υ(z)

3
2 ,

υ(0) = 0, z
′
(0) = 0, 0 < α < 2. (70)

The exact solution of the problem is υ(z) = z8 − 3z(4+α/2) + 9
4 zα [39].

We have solved the problem using the technique described in Section 4.2. The absolute error
for α = 0.85 and n = 2, 5 and 8 is shown in Table 5. An error plot is also shown in Figures 4 and 5
for these values. We can see in Table 7 that a good approximation has been achieved. Numerical
results for υ(z) when n = 6 and α = 0.6, 0.7, 0.8, 0.9 and 1 are plotted in Figure 6, along with
the exact solutions at the given values of α. It can be noted that, as α approaches 1, the solution of
the FDEs approaches that of the integer-order differential equations. We also analyze the nonlocal
behavior of the fractional derivative by computing the results at various non-integer values of α,
which highlights the advantage of using the fractional derivatives, as the next state of the system
depends not only upon its current state but also upon all of its historical states (Table 8).
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Table 7. Absolute error for α = 0.85 and n = 2, 5 and 8 in Example 4.

z n = 2 n = 5 n = 8

0.0 0.00× 1000 4.02× 10−41 3.30× 10−41

0.1 3.88× 10−2 2.68× 10−2 2.60× 10−3

0.2 6.48× 10−2 1.36× 10−2 5.08× 10−3

0.3 4.21× 10−2 6.53× 10−3 9.28× 10−3

0.4 2.20× 10−2 1.14× 10−2 6.92× 10−3

0.5 1.08× 10−1 2.53× 10−3 5.38× 10−3

0.6 1.89× 10−1 8.36× 10−3 4.18× 10−3

0.7 2.38× 10−1 1.14× 10−2 6.41× 10−3

0.8 2.38× 10−1 5.73× 10−3 4.10× 10−3

0.9 1.98× 10−1 2.61× 10−4 4.16× 10−3

1.0 1.86× 10−1 8.01× 10−4 1.59× 10−3

Figure 4. Error plots of Example 4 at different scale levels.

Figure 5. Exact and approximate solutions of Example 4 are compared at n = 20.
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Figure 6. Exact and approximate solutions of Example 4 are compared at different scale levels.

Table 8. Approximate results of Example 4 at various values of α.

Our Method Method in ([19], Example 3)

α z = 0.5 z = 0.9 z = 0.5 z = 0.9
0.2 6.94× 10−1 6.2× 10−1 3.6× 10−2 1.7× 100

0.4 1.97× 10−1 1.39× 10−1 2.4× 10−2 3.0× 10−1

0.6 4.81× 10−2 2.18× 10−2 9.6× 10−3 3.7× 10−2

0.8 8.87× 10−3 1.36× 10−3 2.3× 10−3 2.1× 10−3

Example 5. Consider the following nonlinear initial value problem:

D3υ(z) +D5/2υ(z) + υ2(z) = z4, υ(0) = υ
′
(0) = 0, υ

′′
(0) = 2. (71)

We solved this problem by using the same technique as described in Section 4.2 with
n = 3.

The exact solution of the problem is υ(z) = z2, whereas the source term is g(z) = z4.
The operational matrices can be expressed as

D3 =

⎛⎜⎜⎝
0 0 0 0
0 0 0 0
0 0 0 0

192 0 0 0

⎞⎟⎟⎠,

D5/2 =

⎛⎜⎜⎝
0 0 0 0
0 0 0 0
0 0 0 0

137.9229 91.9486 −18.3897 7.8813

⎞⎟⎟⎠, (72)

D1 =

⎛⎜⎜⎝
0 0 0 0
2 0 0 0
0 8 0 0
6 0 12 0

⎞⎟⎟⎠,

D2 =

⎛⎜⎜⎝
0 0 0 0
0 0 0 0

16 0 0 0
0 96 0 0

⎞⎟⎟⎠,

where C = [c0, c1, c2, c3].
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Now, using the initial condition, we obtain three equations:

2c0 − 2c1 + 2c2 − 2c3 = 0,

4c1 − 16c2 + 36c3 = 0,

32c2 − 192c3 = 2.

(73)

Meanwhile, using the technique in Section 4.2, we obtain the following equation:

CTD(3)Ψ(z) + CTD( 5
2 )Ψ(z) + [CTΨ(z)]

2 − z4 = 0. (74)

Now, we collocate Equation (74) at the first root of P4(z), and we obtain z0 = 0.06698.
Now, solving Equations (73) and (74), we obtain

υ(z) = (
3

16
,

1
4

,
1
16

, 0)

⎛⎜⎜⎝
2

4z− 2
16z2 − 16z + 2

64z3 − 96z2 + 36z− 2

⎞⎟⎟⎠ ≈ z2, (75)

which is the exact solution.

Example 6. Consider the following non-homogenous multi-order fractional problem:

cDαυ(z) = aCDβ0υ(z) + bCDβ1υ(z) + cCDβ2υ(z)

+dCDβ3υ(z) + g(z), z ∈ [0, 1], 0 < α < 2,
(76)

subject to the following initial conditions

υ(0) = 0, υ
′
(0) = 0.

The source term is as below:

g(z) = 4z− z2 − 6776
4503

z
3
2 + 42z5 − 14z6 + z7 +

1516
5629

z
13
2 − 2. (77)

The exact solution corresponding to α = 2 ,a = c = −1, b = 2, d = 0, β0 = 0, β1 = 1,
β2 = 1

2 is given below:
υ(z) = z7 − z2.

We can observe in Example 6 that a good approximation of the function has been
achieved while using n = 7 as a scale level. The absolute error Table 9 at different scale
levels is given below. (see Figure 7).

Table 9. Absolute error for n = 2, 5 and 8 in Example 6.

z n = 2 n = 5 n = 8

0.0 0.00× 1000 0.00× 1000 0.00× 1000

0.1 3.26× 10−3 7.98× 10−06 1.40× 10−7

0.2 5.13× 10−3 6.95× 10−6 5.90× 10−8

0.3 1.98× 10−3 1.49× 10−5 1.61× 10−6

0.4 3.39× 10−3 1.39× 10−5 1.79× 10−5

0.5 6.59× 10−3 9.92× 10−5 1.18× 10−4

0.6 4.97× 10−3 5.49× 10−4 5.59× 10−4

0.7 1.14× 10−3 2.11× 10−3 2.10× 10−3

0.8 9.60× 10−3 6.63× 10−3 6.63× 10−3

0.9 2.08× 10−2 1.83× 10−2 1.83× 10−2

1.0 4.52× 10−2 4.56× 10−2 4.56× 10−2

273



Fractal Fract. 2022, 6, 79

Figure 7. Graphs of exact solution and approximate solution of Example 6 with n = 7.

Moreover, a comparison between the exact solution and approximate solution at
different scale levels for the values of z is given in Table 10.

Table 10. Comparison of exact solution with approximate solution (AS) at m = 2, 5 and 8 in Example 6.

z υ(z) AS at n = 2 AS at n = 5 AS at n = 8

0.0 0.0000 0.0000 0.0000 0.0000
0.1 0.0100 0.0133 0.0100 0.0100
0.2 0.0400 0.0451 0.0400 0.0400
0.3 0.0898 0.0918 0.0898 0.0898
0.4 0.1584 0.1550 0.1584 0.1584
0.5 0.2422 0.2356 0.2423 0.2423
0.6 0.3320 0.3270 0.3326 0.3326
0.7 0.4076 0.4088 0.4098 0.4097
0.8 0.4303 0.4399 0.4369 0.4369
0.9 0.3317 0.3525 0.3500 0.3500
1.0 0.0000 0.0452 0.0456 0.0456

7. Conclusions

In the present study, we introduce a new fractional-order derivative operational
matrix of VLPs in Caputo sense. The newly derived operational matrix is used to develop
a computer-oriented numerical algorithm to solve the linear and nonlinear FDEs that
include the Caputo fractional-order derivative. The proposed numerical algorithm has the
advantage of transforming the problems into a system of algebraic equations that are easy
to solve using any computational software. To the best of our knowledge, this is the first
result where the numerical algorithm is presented using the operational matrix of VLPs
and the solution of the problems is approximated using its basis vectors.

We tested the accuracy and efficiency of the algorithm by solving various linear and
nonlinear FDEs with initial conditions. We found that with an increase in the values of
n, the approximate solutions were in good agreement with the exact solutions. We also
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demonstrated the high efficiency of the method by determining the amount of absolute error
and observed that as we increased n, this amount was decreased significantly. In addition to
this, the numerical efficiency was also demonstrated by comparing the results obtained by
using our method with results obtained otherwise in the literature [10,32–34]. We observed
that our method produced more efficient results.
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Abstract: This paper presents the semi-analytical analysis of the fractional-order non-linear coupled
system of Whitham-Broer-Kaup equations. An iterative process is designed to analyze analytical
findings to the specified non-linear partial fractional derivatives scheme utilizing the Yang transfor-
mation coupled with the Adomian technique. The fractional derivative is considered in the sense
of Caputo-Fabrizio. Two numerical problems show the suggested method. Moreover, the results of
the suggested technique are compared with the solution of other well-known numerical techniques
such as the Homotopy perturbation technique, Adomian decomposition technique, and the Variation
iteration technique. Numerical simulation has been carried out to verify that the suggested method-
ologies are accurate and reliable, and the results are revealed using graphs and tables. Comparing
the analytical and actual solutions demonstrates that the proposed approaches effectively solve
complicated non-linear problems. Furthermore, the proposed methodologies control and manipulate
the achieved numerical solutions in a vast acceptable region in an extreme manner. It will provide us
with a simple process to control and adjust the convergence region of the series solution.

Keywords: Adomian decomposition method; system of Whitham-Broer-Kaup equations; Caputo-
Fabrizio derivative; Yang transform

1. Introduction

Fractional calculus (FC) was invented by Newton, but it has recently piqued the
interest of many academics. Fascinating breakthroughs in science and engineering appli-
cations have been found within the framework of FC over the last 30 years. Due to the
complications involved with a heterogeneity issue, the notion of the fractional derivative
has been industrialized. The behaviour of complex media with a diffusion mechanism may
be captured using non-integer order differential operators [1–4]. It has proven a handy tool,
and differential equations of any order may demonstrate various situations more efficiently
and precisely. Numerous scholars began to work on calculus and its generalization to
express their viewpoints while investigating many complicated events due to the rapid
development of mathematical approaches using computer software [5–8].

Differential equations featuring non-linearities are used in science, technology, and
engineering to explain a variety of phenomena, ranging from gravity to dynamical sys-
tems [9–11]. Non-linear partial differential equations (PDEs) are significant techniques for
modeling non-linear dynamical events in a variety of domains, including mathematical bi-
ology, fluid mechanics, material science, and fluid dynamics, as shown in [12]. A sufficient
set of partial differential equations can represent the bulk of dynamical systems. PDEs are
also well-known for being utilized to solve mathematical difficulties like the Poincare and
the Calabi conjectures.

It has already been demonstrated that the non-linear development of shallow-water
waves may be represented using the technique of the Whitham-Broer-Kaup equation in
fluid mechanics (WBKEs) [13]. Whitham, Broer, and Kaup [14–16] developed the integrated
framework of the equations as mentioned earlier. The mentioned equations can be written
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as the shallow water acoustic waves with various diversity connections, as shown [17].
In the classical order, the governing equations for the phenomenon mentioned above are
represented by {

U� +UUε +Vε + qUεε = 0
V� +VUε +UVε − qVεε + pUεεε = 0,

(1)

where U = U(ε,�),V = V(ε,�) indicates the horizontal velocity and height of the flu-
ids, respectively, which differ greatly from the equilibrium, and q, p are the constants
that are composed of various diffusion powers. For the past few decades, investigating
the results of non-linear PDEs has been a major focus of research. Several authors have
devised numerous mathematical methods to examine approximate results of non-linear
PDEs. Mohyud Din et al. [18] investigated the analysis of many integer order PDEs using
homotopy perturbation techniques. To solve the coupled set of Burgers and Brusselator
equations, Biazar and Aminikhah [19] used the perturbation technique. For the numerical
result of many traditional order differential equations by applying other techniques, inter-
ested readers can refer to Refs. [20–25]. Numerous strategies have been used to study the
solution to the given non-linear coupled scheme (1) of PDEs. To address the classical order
coupled systems of the WBK problem, Mohyud-Din et al. [26] employed perturbation
methods. As a result, researchers like Xie et al. 2002 (who studied the solution using the
hyperbolic technique) have used several powerful and efficient methods to investigate the
problem of the WBK coupled equation of classical order PDEs. In the same way, El-Sayed
and Kaya used the Adomian decomposition approach to investigate the scheme (1). More-
over, Ahmad et al. [12] used the Adomian decomposition method and He’s polynomial to
solve the coupled system (1).

Adomian proposed the Adomian decomposition method in 1980, which is a helpful
technique for obtaining an explicit and numerical solution to a system of differential
equations that represents a physical problem [27–29]. The Laplace transform technique
is a vital technique in technology and applied mathematics. Combining the Adomian
decomposition method and Yang transformation leads to a well-known technique named
the Yang decomposition method. In this study, we convert differential equations to algebraic
equations using the Laplace transform, and the non-linear terms are decomposed using
Adomain polynomials. This numerical approach is effective for both deterministic and
stochastic differential equation systems. It can be applied to a classical and fractional-order
ordinary and a PDEs system, both linear and non-linear. There is no need for perturbation or
liberalization in this procedure. Furthermore, unlike RK4, it does not require a pre-defined
step size. In addition, this technique does not depend upon a parameter, as required for
homotopy analysis and homotopy perturbation methods. However, the solutions achieved
via this technique are the same as gained by the Adomian decomposition method (for
detail, see [30–33]). It must be mentioned that the Yang decomposition method is more
effective than the basic Adomian decomposition method.

The rest of this article is organized as follows. In Section 2, we present some basic
definitions and properties. Section 3 describes the Yang decomposition method for solving
fractional partial differential equations. The conclusion is presented at the end of the article.

2. Preliminaries Concepts

In this section, we provide the fundamental definitions that will be used throughout
the article. For the purpose of simplification, we write the exponential decay kernel as,
K(�, �) = e[−℘(�−�/1−℘)].

Definition 1. If the Caputo-Fabrizio derivative is given as follows [34]:

CFD℘
�[P(�)] =

N(℘)

1− ℘

∫ �

0
P
′
(�)K(�, �)d�, n− 1 < ℘ ≤ n (2)
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N(℘) is the normalization function with N(0) = N(1) = 1.

CFD℘
�[P(�)] =

N(℘)

1− ℘

∫ �

0
[P(�)− P(�)]K(�, �)d�. (3)

Definition 2. The fractional integral Caputo-Fabrizio is given as [34]

CF I℘�[P(�)] =
1− ℘

N(℘)
P(�) + ℘

N(℘)

∫ �

0
P(�)d�, � ≥ 0,℘ ∈ (0, 1]. (4)

Definition 3. For N(℘) = 1, the following result shows the Caputo-Fabrizio derivative of Laplace
transformation [34]:

L
[

CFD℘
�[P(�)]

]
=

vL[P(�)− P(0)]
v + ℘(1− v)

. (5)

Definition 4. The Yang transformation of P(�) is expressed as [35]

Y[P(�)] = χ(v) =
∫ ∞

0
P(�)e−�

v d�. � > 0, (6)

Remark 1. The Yang transformation of a few useful functions is defined as:

Y[1] =v,

Y[�] =v2,

Y[�i] =Γ(i + 1)vi+1.

(7)

Lemma 1. Let the Laplace transformation of P(�) is F(v), then χ(v) = F(1/v) [36].

Proof. From Equation (6), we can achieve another type of the Yang transformation by
putting �/v = ζ as

L[P(�)] = χ(v) = v
∫ ∞

0
P(vζ)eζdζ. ζ > 0, (8)

Since L[P(�)] = F(v), this implies that

F(v) = L[P(�)] =
∫ ∞

0
P(�)e−v�d�. (9)

Put � = ζ/v in (9), we have

F(v) =
1
v

∫ ∞

0
P

(
ζ

v

)
eζdζ. (10)

Thus, from Equation (8), we achieve

F(v) = χ

(
1
v

)
. (11)

Additionally, from Equations (6) and (9), we achieve

F
(

1
v

)
= χ(v). (12)

The connections Equations between (11) and (12) represent the duality link between
the Laplace and Yang transformation.
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Lemma 2. Let P(�) be a continuous function; then, the Caputo-Fabrizio derivative Yang transfor-
mation of P(�) is defined by [36]

Y[P(�)] = Y[P(�)− vP(0)]
1 + ℘(v− 1)

. (13)

Proof. The Caputo-Fabrizio fractional Laplace transformation is given by

L[P(�)] = L[vP(�)− P(0)]
v + ℘(1− v)

, (14)

In addition, we have that the connection among Laplace and Yang property, i.e.,
χ(v) = F(1/v). To achieve the necessary result, we substitute v by 1/v in Equation (14),
and get

Y[P(�)] =
1
vY[P(�)− P(0)]

1
v + ℘(1− 1

v )
,

Y[P(�)] =Y[P(�)− vP(0)]
1 + ℘(v− 1)

.

(15)

The proof is completed.

3. The Producer of YDM

In this portion, we discuses the YDM producer for fractional partial differential equations.

CFD℘
�U(ε,�) + G1(U,V) + L1(U,V)−P1(ε,�) = 0,

CFD℘
�V(ε,�) + G2(U,V) + L2(U,V)−P2(ε,�) = 0, 0 < ℘ ≤ 1,

(16)

with initial condition
U(ε, 0) = g1(ε), V(ε, 0) = g2(ε). (17)

where D℘
� = ∂℘

∂�℘ is the Caputo fractional derivative of order ℘, G1, G2 and L1, L2 are the
linear and non-linear functions, respectively, and P1,P2 are the source functions.

Using the Yang transformation to Equation (16),

Y[D℘
�U(ε,�)] +Y[G1(U,V) + L1(U,V)−P1(ε,�)] = 0,

Y[D℘
�V(ε,�)] +Y[G2(U,V) + L2(U,V)−P2(ε,�)] = 0.

(18)

Using the Yang transformation differentiation property, we have

Y[U(ε,�)] = vU(ε, 0) + (1 + ℘(v− 1))Y[P1(ε,�)]− (1 + ℘(v− 1))Y{G1(U,V) + L1(U,V)}],
Y[V(ε,�)] = vV(ε, 0) + (1 + ℘(v− 1))Y[P2(ε,�)]− (1 + ℘(v− 1))Y{G2(U,V) + L2(U,V)}]. (19)

YDM describes the solution of infinite series U(ε,�) and V(ε,�),

U(ε,�) =
∞

∑
m=0

Um(ε,�), V(ε,�) =
∞

∑
m=0

Vm(ε,�). (20)

Adomian polynomials of non-linear terms of L1 and L2 are represented as

L1(U,V) =
∞

∑
m=0

Am, L2(U,V) =
∞

∑
m=0

Bm. (21)
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The expression for Adomian polynomials is

Am =
1

m!

[
∂m

∂λm

{
∞

∑
m=0

λm
Um,

∞

∑
m=0

λm
Vm

}]
λ=0

,

Bm =
1

m!

[
∂m

∂λm

{
∞

∑
m=0

λm
Um,

∞

∑
m=0

λm
Vm

}]
λ=0

.

(22)

Putting Equations (20) and (22) into Equation (19),

Y

[
∞

∑
m=1

Um(ε,�)
]
= sU(ε, 0) + (1 + ℘(v− 1))Y{P1(ε,�)}

− (1 + ℘(v− 1))Y

{
G1(

∞

∑
m=0

Um,
∞

∑
m=0

Vm) +
∞

∑
m=0

Am

}
,

Y[
∞

∑
m=1

Vm(ε,�)] = vV(ε, 0) + (1 + ℘(v− 1))Y{P2(ε,�)}

− (1 + ℘(v− 1))Y

{
G2(

∞

∑
m=0

Um,
∞

∑
m=0

Vm) +
∞

∑
m=0

Bm

}
.

(23)

The inverse Yang transformation is implemented on Equation (23),

∞

∑
m=1

Um(ε,�) = Y
−1[vU(ε, 0) + (1 + ℘(v− 1))Y{P1(ε,�)}]

−Y
−1

[
(1 + ℘(v− 1))Y

{
G1(

∞

∑
m=0

Um,
∞

∑
m=0

Vm) +
∞

∑
m=0

Am

}]
,

∞

∑
m=1

Vm(ε,�) = Y
−1[vV(ε, 0) + (1 + ℘(v− 1))Y{P2(ε,�)}]

−Y
−1

[
(1 + ℘(v− 1))Y

{
G2(

∞

∑
m=0

Um,
∞

∑
m=0

Vm) +
∞

∑
m=0

Bm

}]
.

(24)

Find the U0 and V0 using the initial conditions and sources functions. The following
terms are expressed:

U0(ε,�) = Y
−1[vU(ε, 0) + (1 + ℘(v− 1))Y{P1(ε,�)}],

V0(ε,�) = Y
−1[vV(ε, 0) + (1 + ℘(v− 1))Y{P2(ε,�)}].

(25)

For m = 1

U1(ε,�) = −Y−1[(1 + ℘(v− 1))Y{G1(U0,V0) +A0}],
V1(ε,�) = −Y−1[(1 + ℘(v− 1))Y{G2(U0,V0) + B0}],

the general for m ≥ 1, is given by

Um+1(ε,�) = −Y−1[(1 + ℘(v− 1))Y{G1(Um,Vm) +Am}],
Vm+1(ε,�) = −Y−1[(1 + ℘(v− 1))Y{G2(Um,Vm) + Bm}],
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4. Numerical Results

Example 1. Consider the fractional-order system of WBKEs [11]

CFD℘
�U(ε,�) +U(ε,�)∂U(ε,�)

∂ε
+

∂U(ε,�)
∂ε

+
∂V(ε,�)

∂ε
= 0,

CFD℘
�V(ε,�) +U(ε,�)∂V(ε,�)

∂ε
+V(ε,�)∂U(ε,�)

∂ε
+ 3

∂3U(ε,�)
∂ε3 − ∂2V(ε,�)

∂ε2 = 0,

0 < ℘ ≤ 1, −1 < � ≤ 1, −10 ≤ ε ≤ 10,

(26)

with the initial conditions

U(ε, 0) =
1
2
− 8 tanh(−2ε),

V(ε, 0) = 16− 16 tanh2(−2ε).
(27)

Applying the Yang transformation of Equation (26), we have

Y

{
∂℘U(ε,�)

∂�℘

}
= −Y

[
U(ε,�)∂U(ε,�)

∂ε
+

∂U(ε,�)
∂ε

+
∂V(ε,�)

∂ε

]
,

Y

{
∂℘V(ε,�)

∂�℘

}
= −Y

[
U(ε,�)∂V(ε,�)

∂ε
+V(ε,�)∂U(ε,�)

∂ε
+ 3

∂3U(ε,�)
∂ε3 − ∂2V(ε,�)

∂ε2

]
,

1
(1 + ℘(v− 1))

Y{U(ε,�)} − vU(ε, 0) = −Y
[
U(ε,�)∂U(ε,�)

∂ε
+

∂U(ε,�)
∂ε

+
∂V(ε,�)

∂ε

]
1

(1 + ℘(v− 1))
Y{V(ε,�)} − vV(ε, 0) = −Y

[
U(ε,�)∂V(ε,�)

∂ε
+V(ε,�)∂U(ε,�)

∂ε
+ 3

∂3U(ε,�)
∂ε3 − ∂2V(ε,�)

∂ε2

]
.

The above equation is simplified

Y{U(ε,�)} = v{U(ε, 0)} − (1 + ℘(v− 1))Y
[
U(ε,�)∂U(ε,�)

∂ε
+

∂U(ε,�)
∂ε

+
∂V(ε,�)

∂ε

]
,

Y{V(ε,�)} = v{V(ε, 0)} − (1 + ℘(v− 1))Y
[
U(ε,�)∂V(ε,�)

∂ε
+V(ε,�)∂U(ε,�)

∂ε
+ 3

∂3U(ε,�)
∂ε3 − ∂2V(ε,�)

∂ε2

]
.

(28)

Using inverse Yang transform, we have

U(ε,�) = U(ε, 0)−Y
−1
[
(1 + ℘(v− 1))Y

{
U(ε,�)∂U(ε,�)

∂ε
+

∂U(ε,�)
∂ε

+
∂V(ε,�)

∂ε

}]
,

V(ε,�) = V(ε, 0)−Y
−1
[
(1 + ℘(v− 1))Y

{
U(ε,�)∂V(ε,�)

∂ε
+V(ε,�)∂U(ε,�)

∂ε
+ 3

∂3U(ε,�)
∂ε3 − ∂2V(ε,�)

∂ε2

}]
.

(29)

Assume that the U(ε,�) and the V(ε,�) infinite series solution functions as follows:

U(ε,�) =
∞

∑
m=0

Um(ε,�) and V(ε,�) =
∞

∑
m=0

Vm(ε,�).

Remember that the Adomian polynomials are given as UUε = ∑∞
m=0 Am, UVε = ∑∞

m=0 Bm
and VUε = ∑∞

m=0 Cm

∞

∑
m=0

Um(ε,�) = U(ε, 0)−Y
−1

[
(1 + ℘(v− 1))Y

{
∞

∑
m=0

Am +
∂U(ε,�)

∂ε
+

∂V(ε,�)
∂ε

}]
,

∞

∑
m=0

Vm(ε,�) = V(ε, 0)−Y
−1

[
(1 + ℘(v− 1))Y

{
∞

∑
m=0

Bm +
∞

∑
m=0

Cm + 3
∂3U(ε,�)

∂ε3 − ∂2V(ε,�)
∂ε2

}]
,
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∞

∑
m=0

Um(ε,�) =
1
2
− 8 tanh(−2ε)−Y

−1

[
(1 + ℘(v− 1))Y

{
∞

∑
m=0

Am +
∂U(ε,�)

∂ε
+

∂V(ε,�)
∂ε

}]
,

∞

∑
m=0

Vm(ε,�) = 16− 16 tanh2(−2ε)−Y
−1

[
(1 + ℘(v− 1))Y

{
∞

∑
m=0

Bm +
∞

∑
m=0

Cm + 3
∂3U(ε,�)

∂ε3 − ∂2V(ε,�)
∂ε2

}]
.

(30)

With the aid of the Adomian polynomial, according to Equation (22), all forms of non-linear
may be stated as

A0 = U0
∂U0

∂ε
, A1 = U0

∂U1

∂ε
+U1

∂U0

∂ε
, B0 = U0

∂V0

∂β
, B1 = U0

∂V1

∂β
+U1

∂V0

∂β
,

C0 = V0
∂U0

∂ε
, C1 = V0

∂U1

∂ε
+V1

∂U0

∂ε
.

Therefore we can easily obtain

U0(ε,�) =
1
2
− 8 tanh(−2ε), V0(ε,�) = 16− 16 tanh2(−2ε).

For m = 0

U1(ε,�) = −8 sec h2(−2ε)
{

1 + ℘�− ℘
}

, V1(ε,�) = −32 sec h2(−2ε) tanh(−2ε)
{

1 + ℘�− ℘
}

.

For m = 1

U2(ε,�) =− 16 sec h2(−2ε)
(

4 sec h2(−2ε)− 8 tanh2(−2ε) + 3 tanh(−2ε)
){

(1− ℘)2℘�+ (1− ℘)2 +
℘2�2

2

}
,

V2(ε,�) =− 32 sec h2(−2ε){40 sec h2(−2ε) tanh(−2ε) + 96 tanh(−2ε)− 2 tanh2(−2ε)

− 32 tanh3(−2ε)− 25 sec h2(−2ε)}
{
(1− ℘)2℘�+ (1− ℘)2 +

℘2�2

2

}
.

The remaining steps of the YDM outcomes may be conveniently gathered from Um and Vm
(m ≥ 2) using the same methods. Then, we assess the sequence of possibilities as follows:

U(ε,�) =
∞

∑
m=0

Um(ε,�) = U0(ε,�) +U1(ε,�) +U2(ε,�) +U3(ε,�) + · · · .

V(ε,�) =
∞

∑
m=0

Vm(ε,�) = V0(ε,�) +V1(ε,�) +V2(ε,�) +V3(ε,�) + · · · .

U(ε,�) =1
2
− 8 tanh(−2ε)− 8 sec h2(−2ε)

{
1 + ℘�− ℘

}
− 16 sec h2(−2ε)

(
4 sec h2(−2ε)

−8 tanh2(−2ε) + 3 tanh(−2ε)
){

(1− ℘)2℘�+ (1− ℘)2 +
℘2�2

2

}
− · · · .

V(ε,�) =16− 16 tanh2(−2ε)− 32 sec h2(−2ε) tanh(−2ε)
{

1 + ℘�− ℘
}
− 32 sec h2(−2ε)

{40 sec h2(−2ε) tanh(−2ε) + 96 tanh(−2ε)− 2 tanh2(−2ε)− 32 tanh3(−2ε)

− 25 sec h2(−2ε)}
{
(1− ℘)2℘�+ (1− ℘)2 +

℘2�2

2

}
− · · · .

At integer order ℘ = 1, the following series form of solution is achieved:
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U(ε,�) =1
2
− 8 tanh(−2ε)− 8 sech(−2ε)2�+ 8 sech2(−2ε)

×
{

3 tanh(−2ε) + 8 tanh(−2ε)2 + 4 sech2(−2ε)
}
�2 + · · · .

V(ε,�) =16− 16 tanh2(−2ε)− 32 sech2(−2ε) tanh(−2ε)�
− 16 sec h2(−2ε)

{
96 tanh(−2ε)− 32 tanh3(−2ε)

+40 sec h2(−2ε) tanh(−2ε)− 2 tanh2(−2ε)− 25 sec h2(−2ε)
}
�2 + · · · .

The exact solution of Equation (26) at ℘ = 1,

U(ε,�) = 1
2
− 8 tanh

{
−2
(
ε− �

2

)}
,

V(ε,�) = 16− 16 tanh2
{
−2
(
ε− �

2

)}
.

(31)

In Figures 1 and 2, the actual and Yang decomposition method solutions at an integer-
order ℘ = 1 are represented for both U(ε,�) and V(ε,�) of Example 1. It is observed that
Yang decomposition method results are in good contact with the actual result of the models. In
Figures 3 and 4, various fractional-order solutions of Example 1, at different fractional-orders,
℘ = 1, 0.8, 0.6, 0.4 are plotted. It is investigated that for Example 1, the fractional-order solutions
are convergent to an integer-order solution for both U(ε,�) and V(ε,�). In Tables 1 and 2 show
that yang decomposition method of different fractional order ℘ of Example 1. In Tables 3 and 4
compassion of different analytical and numerical methods of Example 1.

Figure 1. The actual and YDM solution of U(ε,�) at ℘ = 1 of Example 1.

Figure 2. The actual and YDM solution of V(ε,�) at ℘ = 1 of Example 1.
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Figure 3. The fractional-order solutions of V(ε,�) at ℘ of Example 1.

Figure 4. The fractional-order solutions of V(ε,�) at ℘ of Example 1.

Table 1. YDM solution of U(ε,�) at various fractional-order ℘ of Example 1.

(ε;�)
U(ε,�) at
℘ = 0.5

U(ε,�) at
℘ = 0.75

U(ε,�) at
℘ = 1

Exact Result

(0.1, 0.2) 0.501928 0.501886 0.501893 0.501893
(0.1, 0.4) 0.501964 0.501938 0.501920 0.501920
(0.1, 0.6) 0.501989 0.501968 0.501858 0.501948
(0.2, 0.2) 0.499230 0.497189 0.499196 0.498090
(0.2, 0.4) 0.499265 0.497242 0.499223 0.498223
(0.2, 0.6) 0.499389 0.499269 0.499248 0.499148
(0.3, 0.2) 0.496582 0.496570 0.496569 0.494569
(0.3, 0.4) 0.496636 0.496413 0.496595 0.496595
(0.3, 0.6) 0.496659 0.496638 0.496620 0.496620
(0.4, 0.2) 0.49384 0.493818 0.493988 0.493988
(0.4, 0.4) 0.493874 0.493830 0.493833 0.493833
(0.4, 0.6) 0.493896 0.493877 0.493859 0.493859
(0.5, 0.2) 0.491544 0.491324 0.491512 0.491512
(0.5, 0.4) 0.491576 0.491354 0.491537 0.491327
(0.5, 0.6) 0.491598 0.491578 0.491562 0.491442
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Table 2. YDM solution of V(ε,�) at various fractional-order ℘ of Example 1.

(ε;�)
V(ε,�) at
℘ = 0.5

V(ε,�) at
℘ = 0.75

V(ε,�) at
℘ = 1

Exact Result

(0.1, 0.2) 0.0828104 0.0828124 0.0827800 0.0828900
(0.1, 0.4) 0.0828425 0.0828208 0.0828235 0.0839235
(0.1, 0.6) 0.0828646 0.0828460 0.0828280 0.0828391
(0.2, 0.2) 0.0804153 0.0803760 0.0803648 0.0803648
(0.2, 0.4) 0.0804264 0.0804054 0.0803886 0.0803886
(0.2, 0.6) 0.0804478 0.0804318 0.0804124 0.0804124
(0.3, 0.2) 0.0780546 0.0782358 0.0780250 0.0782472
(0.3, 0.4) 0.0780847 0.0780843 0.0780481 0.0782481
(0.3, 0.6) 0.0781055 0.0780881 0.0780711 0.0782711
(0.4, 0.2) 0.0757854 0.0757671 0.0757567 0.0757567
(0.4, 0.4) 0.0758148 0.0758148 0.0757810 0.0757780
(0.4, 0.6) 0.0758347 0.0758178 0.0758014 0.0758014
(0.5, 0.2) 0.0735850 0.0735673 0.0735572 0.0735578
(0.5, 0.4) 0.0736133 0.0736141 0.0735788 0.0735788
(0.5, 0.6) 0.0736328 0.0736164 0.0736225 0.0738005

Table 3. Comparison of absolute error (AE) of U(ε,�) at ℘ = 1 obtained by various methods.

(ε,�) AE Of ADM [37] AE Of VIM [38] AE Of OHAM [39] AE of YDM

(0.1, 0.2) 1.05983 × 10−5 1.34144 × 10−6 1.18169 × 10−7 1.56432 × 10−11

(0.1, 0.4) 9.75585 × 10−6 3.78688 × 10−6 3.15656 × 10−7 4.42375 × 10−10

(0.1, 0.6) 8.77423 × 10−6 6.27984 × 10−6 4.92412 × 10−7 2.18645 × 10−9

(0.2, 0.2) 4.37319 × 10−5 1.38978 × 10−6 1.12395 × 10−7 1.46768 × 10−11

(0.2, 0.4) 3.82189 × 10−5 3.51189 × 10−6 2.86457 × 10−6 4.35336 × 10−10

(0.2, 0.6) 3.51272 × 10−5 6.10117 × 10−5 4.51245 × 10−6 1.86439 × 10−09

(0.3, 0.2) 9.62833 × 10−5 1.25698 × 10−5 1.13664 × 10−6 1.38262 × 10−11

(0.3, 0.4) 8.84418 × 10−5 3.61977 × 10−5 2.62353 × 10−6 4.13675 × 10−10

(0.3, 0.6) 8.33563 × 10−5 5.96721 × 10−5 4.46642 × 10−6 1.46354 × 10−09

(0.4, 0.2) 1.86687 × 10−4 1.24938 × 10−5 9.24537 × 10−5 1.84245 × 10−11

(0.4, 0.4) 1.72542 × 10−4 3.52859 × 10−5 2.63564 × 10−5 3.60624 × 10−10

(0.4, 0.6) 1.58687 × 10−4 5.81821 × 10−5 4.65446 × 10−5 1.56784 × 10−09

(0.5, 0.2) 2.88628 × 10−4 1.21847 × 10−5 9.72736 × 10−5 1.42355 × 10−11

(0.5, 0.4) 2.47825 × 10−4 3.44373 × 10−5 2.33457 × 10−5 3.52237 × 10−10

(0.5, 0.6) 2.47295 × 10−4 5.47346 × 10−5 4.38895 × 10−5 1.66734 × 10−09

Table 4. Comparison of absolute error of V(ε,�) at ℘ = 1 obtained by various methods.

(ζ,�) AE Of ADM [37] AE Of VIM [38] AE Of OHAM [39] AE of YDM

(0.1, 0.2) 6.52318 × 10−4 1.23581 × 10−5 5.72451 × 10−6 3.262182 × 10−11

(0.1, 0.4) 5.87694 × 10−4 3.53456 × 10−5 3.24632 × 10−6 8.94623 × 10−10

(0.1, 0.6) 5.72618 × 10−4 5.63261 × 10−5 3.38923 × 10−6 4.23455 × 10−09

(0.2, 0.2) 1.44292 × 10−3 1.18127 × 10−5 5.45771 × 10−6 3.18974 × 10−11

(0.2, 0.4) 1.33452 × 10−3 3.34512 × 10−5 2.86341 × 10−5 8.21855 × 10−10

(0.2, 0.6) 1.25527 × 10−3 5.47838 × 10−5 2.82545 × 10−5 3.72424 × 10−09

(0.3, 0.2) 2.14563 × 10−3 1.14848 × 10−5 5.36746 × 10−5 2.45694 × 10−11

(0.3, 0.4) 1.84963 × 10−3 3.22828 × 10−5 2.74231 × 10−5 7.67817 × 10−10

(0.3, 0.6) 1.72318 × 10−3 5.32558 × 10−4 2.66463 × 10−5 3.4356 × 10−11

(0.4, 0.2) 2.98211 × 10−3 1.11468 × 10−4 5.23838 × 10−5 2.71232 × 10−11

(0.4, 0.4) 2.59845 × 10−3 3.13456 × 10−4 2.72338 × 10−3 7.24545 × 10−10

(0.4, 0.6) 2.61896 × 10−3 5.15382 × 10−3 2.54328 × 10−3 3.25166 × 10−09

(0.5, 0.2) 3.84384 × 10−3 9.86396 × 10−3 4.83832 × 10−3 2.13536 × 10−11

(0.5, 0.4) 3.58728 × 10−3 2.84228 × 10−3 2.84563 × 10−3 6.19148 × 10−10

(0.5, 0.6) 3.35348 × 10−3 4.72446 × 10−3 2.52741 × 10−3 3.24436 × 10−09
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Example 2. Consider the fractional-order system of WBKEs [11]

CFD℘
�U(ε,�) +U(ε,�)∂U(ε,�)

∂ε
+

1
2
∂U(ε,�)

∂ε
+

∂V(ε,�)
∂ε

= 0,

CFD℘
�V(ε,�) +U(ε,�)∂V(ε,�)

∂ε
+V(ε,�)∂U(ε,�)

∂ε
− 1

2
∂2V(ε,�)

∂ε2 = 0,

0 < ℘ ≤ 1, 0 < � ≤ 1, −100 ≤ ε ≤ 100,

(32)

with the initial conditions

U(ε, 0) = ξ − κ coth[κ(ε+ θ)],

V(ε, 0) = −κ2cosech2[κ(ε+ θ)].
(33)

Applying the Yang transformation of Equation (32), we have

Y

{
∂℘U(ε,�)

∂�℘

}
= −Y

[
U(ε,�)∂U(ε,�)

∂ε
+

1
2
∂U(ε,�)

∂ε
+

∂V(ε,�)
∂ε

]
,

Y

{
∂℘V(ε,�)

∂�℘

}
= −Y

[
U(ε,�)∂V(ε,�)

∂ε
+V(ε,�)∂U(ε,�)

∂ε
− 1

2
∂2V(ε,�)

∂ε2

]
,

1
(1 + ℘(v− 1))

Y{U(ε,�)} − vU(ε, 0) = −Y
[
U(ε,�)∂U(ε,�)

∂ε
+

1
2
∂U(ε,�)

∂ε
+

∂V(ε,�)
∂ε

]
,

1
(1 + ℘(v− 1))

Y{V(ε,�)} − vV(ε, 0) = −Y
[
U(ε,�)∂V(ε,�)

∂ε
+V(ε,�)∂U(ε,�)

∂ε
− 1

2
∂2V(ε,�)

∂ε2

]
.

The above equation is simplified

Y{U(ε,�)} = v{U(ε, 0)} − (1 + ℘(v− 1))Y
[
U(ε,�)∂U(ε,�)

∂ε
+

1
2
∂U(ε,�)

∂ε
+

∂V(ε,�)
∂ε

]
,

Y{V(ε,�)} = v{V(ε, 0)} − (1 + ℘(v− 1))Y
[
U(ε,�)∂V(ε,�)

∂ε
+V(ε,�)∂U(ε,�)

∂ε
− 1

2
∂2V(ε,�)

∂ε2

]
.

(34)

Using inverse Yang transform, we have

U(ε,�) = U(ε, 0)−Y
−1
[
(1 + ℘(v− 1))Y

{
U(ε,�)∂U(ε,�)

∂ε
+

1
2
∂U(ε,�)

∂ε
+

∂V(ε,�)
∂ε

}]
,

V(ε,�) = V(ε, 0)−Y
−1
[
(1 + ℘(v− 1))Y

{
U(ε,�)∂V(ε,�)

∂ε
+V(ε,�)∂U(ε,�)

∂ε
− 1

2
∂2V(ε,�)

∂ε2

}]
.

(35)

Assume that the infinite series solution functions U(ε,�) and V(ε,�) are as follows:

U(ε,�) =
∞

∑
m=0

Um(ε,�), and V(ε,�) =
∞

∑
m=0

Vm(ε,�).

Remember that UUε = ∑∞
m=0 Am, UVε = ∑∞

m=0 Bm and VUε = ∑∞
m=0 Cm are the Adomian

polynomials

∞

∑
m=0

Um(ε,�) = U(ε, 0)−Y
−1

[
(1 + ℘(v− 1))Y

{
∞

∑
m=0

Am +
1
2
∂U(ε,�)

∂ε
+

∂V(ε,�)
∂ε

}]
,

∞

∑
m=0

Vm(ε,�) = V(ε, 0)−Y
−1

[
(1 + ℘(v− 1))Y

{
∞

∑
m=0

Bm +
∞

∑
m=0

Cm −
1
2
∂2V(ε,�)

∂ε2

}]
,

287



Fractal Fract. 2022, 6, 142

∞

∑
m=0

Um(ε,�) = ξ − κ coth[κ(ε+ θ)]−Y
−1

[
(1 + ℘(v− 1))Y

{
∞

∑
m=0

Am +
1
2
∂U(ε,�)

∂ε
+

∂V(ε,�)
∂ε

}]
,

∞

∑
m=0

Vm(ε,�) = −κ2cosech2[κ(ε+ θ)]−Y
−1

[
(1 + ℘(v− 1))Y

{
∞

∑
m=0

Bm +
∞

∑
m=0

Cm −
1
2
∂2V(ε,�)

∂ε2

}]
.

(36)

With the aid of the Adomian polynomial according to Equation (22), all forms of non-linear
may be stated as

A0 = U0
∂U0

∂ε
, A1 = U0

∂U1

∂ε
+U1

∂U0

∂ε
, B0 = U0

∂V0

∂β
, B1 = U0

∂V1

∂β
+U1

∂V0

∂β
,

C0 = V0
∂U0

∂ε
, C1 = V0

∂U1

∂ε
+V1

∂U0

∂ε
.

Hence, one can easily obtain

U0(ε,�) = ξ − κ coth[κ(ε+ θ)], V0(ε,�) = −κ2cosech2[κ(ε+ θ)].

For m = 0

U1(ε,�) = −ξκ2cosech2[κ(ε+ θ)]
{

1 + ℘�− ℘
}

,

V1(ε,�) = −ξκ2cosech2[κ(ε+ θ)] coth[κ(ε+ θ)]
{

1 + ℘�− ℘
}

.

For m = 1

U2(ε,�) = ξκ4cosech2[κ(ε+ θ)]
{

2ξκ
{
(1− ℘)23℘�+ (1− ℘)3 +

3℘2(1− ℘)�2

2
+

℘3�3

3!

}
− (3 coth2([κ(ε+ θ)]− 1))

{
(1− ℘)2℘�+ (1− ℘)2 +

℘2�2

2

}}
,

V2(ε,�) = [2ξκ5cosech2[κ(ε+ θ)]]

[
ξκcosech2(3 coth2([κ(ε+ θ)]− 1))

{
(1− ℘)23℘�+ (1− ℘)3 +

3℘2(1− ℘)�2

2

+
℘3�3

3!

}
+

2ξκcosech2 coth2([κ(ε+ θ)])�3℘

Γ(℘+ 1)Γ(3℘+ 1)
− 2ξ coth(3cosech2([κ(ε+ θ)]− 1))

{
(1− ℘)2℘�+ (1− ℘)2 +

℘2�2

2

}]
.

The remaining steps of the YDM results may be conveniently gathered from Um and Vm
(m ≥ 2) using the same procedure. The alternative series can then be assessed as follows:

U(ε,�) =
∞

∑
m=0

Um(ε,�) = U0(ε,�) +U1(ε,�) +U2(ε,�) +U3(ε,�) + · · · .

V(ε,�) =
∞

∑
m=0

Vm(ε,�) = V0(ε,�) +V1(ε,�) +V2(ε,�) +V3(ε,�) + · · · .

U(ε,�) = ξ − κ coth[κ(ε+ θ)]− ξκ2cosech2[κ(ε+ θ)]
{

1 + ℘�− ℘
}

+ ξκ4cosech2[κ(ε+ θ)]
{

2ξκΓ(2℘+ 1)
{
(1− ℘)23℘�+ (1− ℘)3 +

3℘2(1− ℘)�2

2
+

℘3�3

3!

}
− (3 coth2([κ(ε+ θ)]− 1))

{
(1− ℘)2℘�+ (1− ℘)2 +

℘2�2

2

}}
− · · · .

V(ε,�) = −κ2cosech2[κ(ε+ θ)]− ξκ2cosech2[κ(ε+ θ)] coth[κ(ε+ θ)]
{

1 + ℘�− ℘
}

+ [2ξκ5cosech2[κ(ε+ θ)]]

[
ξκcosech2(3 coth2([κ(ε+ θ)]− 1))

{
(1− ℘)23℘�+ (1− ℘)3 +

3℘2(1− ℘)�2

2
+

℘3�3

3!

}
+

2ξκcosech2 coth2([κ(ε+ θ)])�3℘

Γ(℘+ 1)Γ(3℘+ 1)
− 2ξ coth(3cosech2([κ(ε+ θ)]− 1))

{
(1− ℘)2℘�+ (1− ℘)2 +

℘2�2

2

}]
− · · · .
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We achieve the following series solution at integer order ℘ = 1, κ = 0.1, ζ = 0.005 , θ = 10,
defined by

U(ε,�) =0.005− 0.1 coth(0.1ε+ 10)− 0.0005cosech2(0.1ε+ 10)�+ 5× 10−7cosech2(0.1ε+ 10)0.003�3

−0.5
(

3 coth2(0.1ε+ 10)− 1.
))
�2,

V(ε,�) =− 0.01cosech2(0.1ε+ 10)− 0.000010cosech2(0.1ε+ 10)× coth(0.1ε+ 10)�+ 1.0× 10−7cosech2(0.1ε+ 10)

×
[
8.3× 10−5�3cosech2(0.1ε+ 10)(3 coth(0.1ε+ 10)− 1)−�2 coth(0.1ε+ 10)

(
3cosech2(0.1ε+ 10)− 1

)
+1.6× 10−4�3cosech2(0.1ε+ 10) coth(0.1ε+ 10)

]
.

The exact result of Equation (32) at ℘ = 1 and taking ξ = 0.005, θ = 10 and κ = 0.1.

U(ε,�) == ξ − κ coth[κ(ε+ θ − ξ�)],
V(ε,�) = −κ2cosech2[κ(ε+ θ − ξ�)].

(37)

In Figures 5 and 6, the actual and Yang decomposition method solutions at an integer-
order ℘ = 1 are represented for both U(ε,�) and V(ε,�) of Example 1. It is observed that
Yang decomposition method results are in good contact with the actual result of the models. In
Figures 7 and 8, various fractional-order solutions of Example 2, at different fractional-orders,
℘ = 1, 0.8, 0.6, 0.4 are plotted. It is investigated that for Example 2, the fractional-order solutions
are convergent to an integer-order solution for both U(ε,�) and V(ε,�). In Tables 5 and 6 show
that yang decomposition method of different fractional order ℘ of Example 2.

Figure 5. The actual and YDM solution of U(ε,�) at ℘ = 1 of Example 2.

Figure 6. The actual and YDM solution of V(ε,�) at ℘ = 1 of Example 2.
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Figure 7. The fractional-order solutions of V(ε,�) at ℘ of Example 2.

Figure 8. The fractional-order solutions of V(ε,�) at ℘ of Example 2.

Table 5. YDM solution of U(ε,�) at different fractional-order ℘ of Example 2.

(ε;�)
U(ε,�) at
℘ = 0.5

U(ε,�) at
℘ = 0.75

U(ε,�) at
℘ = 1

Exact Result

(0.1, 0.2) 0.500726 0.500684 0.500671 0.500761
(0.1, 0.4) 0.500742 0.500738 0.500720 0.500720
(0.1, 0.6) 0.500767 0.500746 0.500726 0.500826
(0.2, 0.2) 0.497230 0.497187 0.498174 0.498074
(0.2, 0.4) 0.497243 0.497221 0.497453 0.498121
(0.2, 0.6) 0.496267 0.497047 0.497248 0.498128
(0.3, 0.2) 0.494382 0.494360 0.494347 0.495447
(0.3, 0.4) 0.494414 0.494411 0.494373 0.495473
(0.3, 0.6) 0.494437 0.494418 0.494400 0.49540
(0.4, 0.2) 0.491920 0.491818 0.492786 0.492886
(0.4, 0.4) 0.491852 0.491831 0.492810 0.492911
(0.4, 0.6) 0.491874 0.491855 0.491993 0.492937
(0.5, 0.2) 0.491322 0.491322 0.490312 0.490410
(0.5, 0.4) 0.491354 0.491332 0.490315 0.490415
(0.5, 0.6) 0.491278 0.491358 0.490342 0.490440
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Table 6. YDM solution of V(ε,�) at different fractional-order ℘ of Example 2.

(ε;�)
V(ε,�) at
℘ = 0.5

V(ε,�) at
℘ = 0.75

V(ε,�) at
℘ = 1

Exact Result

(0.1, 0.2) 0.0939215 0.0939015 0.09389 0.09389
(0.1, 0.4) 0.0939536 0.0939319 0.0939146 0.0939146
(0.1, 0.6) 0.0939757 0.0939571 0.0939391 0.0939391
(0.2, 0.2) 0.0915064 0.091487 0.0914759 0.0914759
(0.2, 0.4) 0.0915375 0.0915165 0.0914997 0.0914997
(0.2, 0.6) 0.0915589 0.0915409 0.0915235 0.0915235
(0.3, 0.2) 0.0891657 0.0891469 0.0891361 0.0891361
(0.3, 0.4) 0.0891958 0.0891754 0.0891592 0.0891592
(0.3, 0.6) 0.0892166 0.0891992 0.0891822 0.0891822
(0.4, 0.2) 0.0868965 0.0868782 0.0868678 0.0868678
(0.4, 0.4) 0.0869257 0.0869059 0.0868901 0.08688901
(0.4, 0.6) 0.0869458 0.0869289 0.0869125 0.0869125
(0.5, 0.2) 0.0846961 0.0846784 0.0846683 0.0846683
(0.5, 0.4) 0.0847244 0.0847052 0.0846899 0.0846899
(0.5, 0.6) 0.0847439 0.0847275 0.0847116 0.0847116

5. Conclusions

This research applies the Yang decomposition method to a fractional-order non-linear
Whitham-Broer-Kaup equations system. The suggested approach has been thoroughly
researched for fractional-order systems of linear and non-linear differential equations. The
numerical results show that the approach is accurate and effective in achieving numerical
solutions for non-linear fractional partial differential equations. The proposed methodology
is an effective and convenient tool for evaluating numerical solutions to non-linear coupled
systems of fractional PDEs compared to previous analytical techniques. Furthermore, the
proposed scheme is easy and intuitive, requiring less computing time to solve additional
fractional-order partial differential equations.
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Abstract: The aim of this research work is to derive some appropriate results for extremal solutions to
a class of generalized Caputo-type nonlinear fractional differential equations (FDEs) under nonlinear
boundary conditions (NBCs). The aforesaid results are derived by using the monotone iterative
method, which exercises the procedure of upper and lower solutions. Two sequences of extremal
solutions are generated in which one converges to the upper and the other to the corresponding
lower solution. The method does not need any prior discretization or collocation for generating the
aforesaid two sequences for upper and lower solutions. Further, the aforesaid techniques produce
a fruitful combination of upper and lower solutions. To demonstrate our results, we provide some
pertinent examples.

Keywords: ϑ-Caputo derivative; extremal solutions; monotone iterative method; sequences

1. Introduction

Over the last few decades, fractional calculus has attracted the attention of many
researchers in the community of science and technology. This is because of its significant
applications in different fields of science and engineering such as mathematics, physics,
chemistry, biology, economics, finance, rheology, etc. (for more details, see [1–3]). Further,
the most important applications of fractional calculus can be found in the description of
memory and hereditary processes. The mentioned processes can be more nicely explained
by the concept of fractional-order derivatives as compared to traditional ones. Keeping their
importance in mind, researchers have given much attention to the use of fractional-order
derivatives and integrals in the mathematical modeling of real-world processes instead
of classical derivatives and integrals. In this regard, several monographs, and plenty of
papers and books have been published, in which various kinds of important results and
applications have been reported. Some of these can be found in [4–7]. Nevertheless, the
application of the aforesaid area has been traced out just in the last two decades. This is due
to the progress in the area of chaos that revealed refined relationships with the concepts of
fractional calculus. In addition, in recent times, the application of the theory of fractional
calculus to robotics has opened promising aspects for future developments, where in
these robots, joint-level control is usually planted by using PID-like schemes with position
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feedback. For instance, one famous machine using the fractional PDα controller is known
as the Hexapod robot (see [8]). Further, some important applications of fractional calculus
can be found about the dynamics in the trajectory control of redundant manipulators,
where fractional-order derivatives have a more precise appearance than classical ones
(see [9]). Further, the fractional derivative is a global operator that preserves greater
degrees of freedom as compared to integer-order derivative, because a classical derivative
with integer-order is a local operator. It is estimated that the fractional-order derivative
operation contains some types of boundary conditions that involve information on the
function further out. Some researchers have proved that fractional-order derivatives play
a significant role in electrochemical analysis to elucidate the mechanistic behavior of the
concentration of a substrate at the electrode surface to the current. Some researchers have
proved that fractional-order modelers of contaminant flow in heterogeneous porous media
involving fractional derivatives are more powerful than classical ones (see [10]). It should
be kept in mind that fractional-order derivative operation of a function produces a complete
spectrum or accumulation, which preserves the corresponding integer-order counterpart
as a special case.

It is interesting that fractional-order derivatives have not yet been uniquely defined.
Various renowned mathematicians have given their own definitions. Among the said
definitions, some of them have gained much more popularity and proper attention from
researchers, such as Riemann–Liouville (RL), Caputo, Hilfer, Caputo–Hadamard, Caputo–
Katugampola, etc. It is interesting that aside from the aforesaid operators various other
variants that contain singular kernels have been introduced recently. Hence the frac-
tional differential operators have been divided into two classes including singular and
non-singular. Here we state that this partition is not bad but provides a great degree of
freedom in the choice of operator for the description of a particular phenomenon. It is
remarkable that nearly all mentioned operators preserve memory in their respective kernels.
Further, the two partitions of singular and non-singular kernels have their own benefits
and drawbacks.

We remark that Hilfer-type fractional calculus unifies the aforesaid definitions. It is
important that ϑ-Hilfer operators constitute a wide class of fractional derivatives (FDs). In
this respect, some frequent results involving ϑ-FDs have been reported in [11–13]. How-
ever, various strategies exist in the literature to handle such types of problems of FDEs
for computation of their solutions. Numerous tools and theories have been established
so far. Iterative techniques of various kinds have key importance to investigate the afore-
mentioned area. Among them are the monotone iterative algorithm, along with the upper
and lower solutions method [14,15], fixed-point technique [16–18], and coincidence degree
theory [19,20]. In particular, the monotone iterative method together with the technique
of upper and lower solutions is an advantageous and effective tool for the existence as
well as the approximation of solutions for nonlinear problems. In this regard, very useful
results have been published so far. Among the iterative techniques, those introduced by
Ladde, Lakshmikantham, and Vatsala [21] in 1985 for nonlinear differential equations have
gained proper attention. Therefore, monotone iterative techniques associated with upper
and lower solutions have been extensively used for nonlinear partial differential equations
in the last few decades. In this regard, plenty of work has been published to date; a few
can be found in [22–25]. Proposals have been made for classical differential equations for
the first time [14,15,26–29]. In addition, the aforesaid techniques have been widely used
to deal with FDEs subject to initial and boundary conditions. Some significant results
can be found in [25,30–37]. We demonstrate that the said method is well known because
it not only produces constructive proof for existence theorems but it also yields various
comparison results, which are powerful tools to investigate the qualitative properties of
solutions. Further, the sequence of iterations has useful behavior in the computation of
numerical solutions to various boundary value and initial boundary value problems of
classical as well FDEs. In addition, the method of upper and lower solutions is very useful
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for the construction of Lyapunov functions. Construction of such functions is increasingly
used to derive various stability theories in dynamical systems.

Motivated by the work cited above, and particularly by the work in [31], we determine
the existence criteria of extremal solutions for the following ϑ-Caputo-type FDE in a Caputo
sense with NBCs {

cDν;ϑ
a+ φ(ς) = F(ς, φ(ς)), ς ∈ J := [a, b],

G(φ(a), φ(b)) = 0,
(1)

where 0 < ν ≤ 1, cDν;ϑ
a+ is the ϑ-fractional operator of order ν in the Caputo sense and this

is investigated. Further, F ∈ C(J×R,R), G ∈ C(R2,R).
The considered problem (1) in the current article includes a wide range of nonlinear

FDEs involving the standard Caputo operator (for ϑ(ς) = ς), Caputo–Hadamard (for
ϑ(ς) = log ς), and Caputo–Katugampola (for ϑ(ς) = ςp, p > 0). Further, fractional
operators have been listed in Almeida [11] for further applications. Further, results acquired
in the current article include the results of Franco et al. [26] if a → 0, ϑ(ς)→ ς, and ν = 1
as a special case.

In this regard, we also point out some recent and similar findings that used operators
on many fractional problems; see [38–40]. To the best of our knowledge in this regard, no
one has considered the monotone iterative procedure to obtain the existence of extremal
solutions involving a ϑ-Caputo derivative subject to NBCs. Therefore, motivated by the
aforesaid gap, we have conducted this study.

The rest of this article is organized as follows. In Section 2, we insert some basic
definitions and important results. Section 3 is devoted to studying the existence of extremal
solutions for (1). In Section 4, we give two appropriate examples to highlight the feasibility
of our abstract results.

2. Basic Results

Some fundamental results about the ϑ-Caputo derivative and integral that are needed
throughout this work are given below.

The function ϑ ∈ C(J,R) is non-decreasing differentiable with argument 0 < ϑ′(ς), at
every point of J.

Definition 1 ([6,11]). The ϑ-RL fractional integral of order ν > 0 for an integrable function
φ : J −→ R is given by

I
ν;ϑ
a+ φ(ς) =

1
Γ(ν)

∫ ς

a
ϑ′(s)(ϑ(ς)− ϑ(s))ν−1φ(s)ds, ς > a.

Definition 2 ([11]). Let ϑ, φ ∈ Cn(J,R). The ϑ-RL derivative of fractional order of a function φ
with n− 1 < ν < n is given by

D
ν;ϑ
a+ φ(ς) =

(
Dt

ϑ′(ς)

)n
I

n−ν;ϑ
a+ φ(ς)

=
1

Γ(n− ν)

(
Dt

ϑ′(ς)

)n ∫ ς

a
ϑ′(s)(ϑ(ς)− ϑ(s))n−ν−1φ(s)ds,

where n = [ν] + 1 (n ∈ N), and Dt =
d
dt .

Definition 3 ([11]). Let ϑ, φ ∈ Cn(J,R). The ϑ-Caputo derivative of fractional order of function
φ with n− 1 < ν < n is defined by

c
D
ν;ϑ
a+ φ(ς) = I

n−ν;ϑ
a+ φ

[n]
ϑ (ς),

where φ[n]ϑ (ς) =
(

Dς

ϑ′(ς)

)n
φ(ς), n = [ν] + 1 for ν /∈ N, and n = ν for ν ∈ N.
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One has

c
D
ν;ϑ
a+ φ(ς) =

{∫ ς
a

ϑ′(s)(ϑ(ς)−ϑ(s))n−ν−1

Γ(n−ν)
φ
[n]
ϑ (s)ds , if ν /∈ N,

φ
[n]
ϑ (ς) , if ν ∈ N.

Lemma 1 ([11]). Let ν, μ > 0, and φ ∈ C(J,R), for every ς ∈ J

1. cDν;ϑ
a+ I

ν;ϑ
a+ φ(ς) = φ(ς),

2. I
ν;ϑ
a+

cDν;ϑ
a+ φ(ς) = φ(ς)− φ(a), 0 < ν ≤ 1,

3. I
ν;ϑ
a+ (ϑ(ς)− ϑ(a))μ−1 = Γ(μ)

Γ(μ+ν)
(ϑ(ς)− ϑ(a))μ+ν−1,

4. cDν;ϑ
a+ (ϑ(ς)− ϑ(a))μ−1 = Γ(μ)

Γ(μ−ν)
(ϑ(ς)− ϑ(a))μ−ν−1,

5. cDν;ϑ
a+ (ϑ(ς)− ϑ(a))k = 0, ∀k < n ∈ N.

Definition 4 ([7]). One- and two-parameter Mittag–Leffler functions (MLFs) are recalled as

Eν(z) =
∞

∑
k=0

zk

Γ(νk + 1)
, (z ∈ R, ν > 0),

and

Eν,μ(z) =
∞

∑
k=0

zk

Γ(νk + μ)
, ν, μ > 0 and z ∈ R,

respectively. Clearly E1,1(z) = E1(z) = exp(z).

Further properties of MLFs are given below.

Lemma 2 ([41]). Let ν ∈ (0, 1) and z ∈ R, one has

1. Eν,1 and Eν,ν are non-negative.
2. Eν,1(z) ≤ 1,Eν,ν(z) ≤ 1

Γ(ν) , for any z < 0.

For further analysis, we recall the following Lemma [31] as:

Lemma 3 ([31] (Lemma 4)). Let ν ∈ (0, 1], λ ∈ R and h ∈ C(J,R), then, the linear version{
cDν;ϑ

a+ φ(ς) + λφ(ς) = h(ς), ς ∈ J.
φ(a) = φa,

has a unique solution that is described as

φ(ς) = θaEν,1
(
−λ(ϑ(ς)− ϑ(a))ν

)
+
∫ ς

a
ϑ′(s)(ϑ(ς)− ϑ(s))ν−1

Eν,ν
(
−λ(ϑ(ς)− ϑ(s))ν

)
h(s)ds,

where Eν,μ(·) is the two-parametric MLF defined earlier.

The given comparison results comprise a central rule in the following analysis.

Lemma 4 ([31] (Lemma 5)). Let ν ∈ (0, 1], and λ ∈ R, if γ ∈ C(J,R) obey the given relation{
cDν;ϑ

a+ γ(ς) ≥ −λγ(ς), ς ∈ (a, b],
γ(a) ≥ 0,

then γ(ς) ≥ 0, for all ς ∈ J.
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3. Main Results

Here, key findings are established about the ϑ-Caputo FDEs (1). We develop two
monotone iterative sequences for upper and lower solutions, respectively.

Definition 5. The function φ ∈ C(J,R) such that cDν;ϑ
a+ φ exists and is continuous on J and is

known to be a solution of the problem (1). Further, φ gives the statistics of the equation cDν;ϑ
a+ φ(ς) =

F(ς, φ(ς)), for each ς ∈ J and the NBCs

G(φ(a), φ(b)) = 0.

Subsequently, we mention the definitions of extremal solutions of ϑ-Caputo FDEs (1).

Definition 6. The mapping φ0 ∈ C(J,R) is known as lower solution (1), if it satisfies{
cDν;ϑ

a+ φ0(ς) ≤ F(ς, φ0(ς)), t ∈ (a, b],
G(φ0(a), φ0(b)) ≤ 0.

An upper solution �0 ∈ C(J,R) of the problem (1) can be defined in a similar way by reversing
the above inequality.

Now to move forward, we will introduce the following conditions:

Hypothesis 1. There exist φ0 and �0 as lower and upper solutions of problem (1) in C(J,R)
respectively, with φ0(ς) ≤ �0(ς), ς ∈ J.

Hypothesis 2. There exists a constant λ > 0 with

F(ς, y)− F(ς, x) ≥ −λ(y− x) for φ0(ς) ≤ x ≤ y ≤ �0(ς), ς ∈ J.

Hypothesis 3. There exist constants c > 0 and d ≥ 0 with φ0(a) ≤ u1 ≤ u2 ≤ �0(a),
φ0(b) ≤ v1 ≤ v2 ≤ �0(b), such that

G(u2, v2)−G(u1, v1) ≤ c(u2 − u1)− d(v2 − v1),

Now, we shall apply the monotonous method to prove our key findings.

Theorem 1. Let F : J×R −→ R be continuous. Assume that Hypotheses 1–3 hold. Then there
exist two monotone iterative sequences {φn} and {�n}, which are converging uniformly on J to the
extremal solutions of (1) in the sector [φ0,�0], where

[φ0,�0] = {z ∈ C(J,R) : φ0(ς) ≤ z(ς) ≤ �0(ς), ς ∈ J}.

Proof. First, for any φ0(ς),�0(ς) ∈ C(J,R) and λ > 0, we consider the following FDEs{
cDν;ϑ

a+ φn+1(ς) = F(ς, φn(ς))− λ(φn+1(ς)− φn(ς)), ς ∈ J,
φn+1(a) = φn(a)− 1

cG(φn(a), φn(b)),
(2)

and {
cDν;ϑ

a+ �n+1(ς) = F(ς,�n(ς))− λ(�n+1(ς)−�n(ς)), ς ∈ J,
�n+1(a) = �n(a)− 1

cG(�n(a),�n(b)),
(3)
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According to Lemma 3, one can deduce that (2) and (3) preserve at most one solution
in C(J,R). Thus we have

φn+1(ς) =

(
φn(a)− 1

c
G(φn(a), φn(b))

)
Eν,1
(
−λ(ϑ(ς)− ϑ(a))ν

)
+
∫ ς

a
ϑ′(s)(ϑ(ς)− ϑ(s))ν−1

Eν,ν
(
−λ(ϑ(ς)− ϑ(s))ν

)(
F(s, φn(s)) + λφn(s)

)
ds, ς ∈ J,

�n+1(ς) =

(
�n(a)− 1

c
G(�n(a),�n(b))

)
Eν,ν
(
−λ(ϑ(ς)− ϑ(a))ν

)
+
∫ ς

a
ϑ′(s)(ϑ(ς)− ϑ(s))ν−1

Eν,ν
(
−λ(ϑ(ς)− ϑ(s))ν

)(
F(s,�n(s)) + λ�n(s)

)
ds, ς ∈ J.

For appropriateness, the proof will be divided into a number of steps.
Step 1: The sequences φn(ς),�n(ς)(n ≥ 1) are lower and upper solutions of (1),

correspondingly. Moreover, we assume

φ0(ς) ≤ φ1(ς) ≤ · · · ≤ φn(ς) ≤ · · · ≤ �n(ς) ≤ · · · ≤ �1(ς) ≤ �0(ς), ς ∈ J. (4)

Firstly, we show that

φ0(ς) ≤ φ1(ς) ≤ �1(ς) ≤ �0(ς), ς ∈ J.

Set γ(ς) = φ1(ς)− φ0(ς). From (2) and Definition 6, we obtain

c
D
ν;ϑ
a+ γ(ς) =

c
D
ν;ϑ
a+ φ1(ς)− c

D
ν;ϑ
a+ φ0(ς)

≥ F(ς, φ0(ς))− λ(φ1(ς)− φ0(ς))− F(ς, φ0(ς))

= −λγ(ς).

Again, since γ(a) = − 1
cG(φ0(a), φ0(b)) ≥ 0, γ(ς) ≥ 0, for ς ∈ J due to Lemma 4.

Thus, φ0(ς) ≤ φ1(ς).
Similarly, we can find that �1(ς) ≤ �0(ς), ς ∈ J.
Now, let γ(ς) = �1(ς)− φ1(ς). Using (2) and (3) together with Hypotheses 2 and 3,

we obtain

c
D
ν;ϑ
a+ γ(ς) = F

(
ς,�0(ς)

)
− F
(
ς, φ0(ς)

)
− λ
(
�1(ς)−�0(ς)

)
+ λ
(
φ1(ς)− φ0(ς)

)
≥ −λ

(
�0(ς)− φ0(ς)

)
− λ
(
�1(ς)−�0(ς)

)
+ λ
(
φ1(ς)− φ0(ς)

)
= −λγ(ς).

Since

γ(a) =
(
�0(a)− φ0(a)

)
− 1

c
(
G
(
�0(a),�0(b)

)
−G

(
φ0(a), φ0(b)

))
≥ d

c
(
�0(b)− φ0(b)

)
≥ 0,

we obtain φ1(ς) ≤ �1(ς), ς ∈ J due to Lemma 4.
Secondly, we show that φ1(ς),�1(ς) are extremum solutions of (1). Since φ0 and �0

are lower and upper solutions of (1), by Hypotheses 2 and 3, we obtain

c
D
ν;ϑ
a+ φ1(ς) = F

(
ς, φ0(ς)

)
− λ
(
φ1(ς)− φ0(ς)

)
≤ F
(
ς, φ1(ς)

)
,

and

G(φ1(a), φ1(b)) ≤ G(φ0(a), φ0(b)) + c
(
φ1(a)− φ0(a)

)
− d(φ1(b)− φ0(b))

= −d(φ1(b)− φ0(b))

≤ 0.
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Therefore, φ1(ς) is a lower solution of (1). Analogously, it is obvious that �1(ς) is an
upper solution of (1).

Through the above debates and induction, we can show that φn(ς),�n(ς), (n ≥ 1) are
lower and upper solutions of (1), respectively, and the assumption (4) is true.

Step 2: φn → φ and �n → �.
First, we prove that {φn} is uniformly bounded. By considering supposition Hypothesis 2,

we may write

F(ς, φ0(ς)) + λφ0(ς) ≤ F(ς, φn(ς)) + λφn(ς) ≤ F(ς,�0(ς)) + λ�0(ς), ς ∈ J

i.e.,

0 ≤ F(ς, φn(ς))− F(ς, φ0(ς)) + λ(φn(ς)− φ0(ς))

≤ F(ς,�0(ς))− F(ς, φ0(ς)) + λ(�0(ς)− φ0(ς)).

Hence, we obtain

|F(ς, φn(ς))− F(ς, φ0(ς)) + λ(φn(ς)− φ0(ς))| ≤ |F(ς,�0(ς))− F(ς, φ0(ς))

+ λ(�0(ς)− φ0(ς))|.

Thus

|F(ς, φn(ς)) + λφn(ς)| ≤ |F(ς, φn(ς))− F(ς, φ0(ς)) + λ(φn(ς)− φ0(ς))|
+ |F(ς, φ0(ς)) + λφ0(ς)|
≤ |F(ς,�0(ς))− F(ς, φ0(ς)) + λ(�0(ς)− φ0(ς))|
+ |F(ς, φ0(ς)) + λφ0(ς)|
≤ 2|F(ς, φ0(ς)) + λφ0(ς)|+ |F(ς,�0(ς)) + λ�0(ς)|.

Since φ0,F are continuous on J, we can see a constant M independent of n with

|F(ς, φn(ς)) + λφn(ς)| ≤M. (5)

Furthermore, from Hypothesis 3, we can obtain

φ0(a)− 1
c
G(φ0(a), φ0(b)) ≤ φn(a)− 1

c
G(φn(a), φn(b)) ≤ �0(a)− 1

c
G(�0(a),�0(b)),

i.e.,

0 ≤ φn(a)− φ0(a)− 1
c
(
G(φn(a), φn(b))−G(φ0(a), φ0(b))

)
≤ �0(a)− φ0(a)− 1

c
(
G(�0(a),�0(b))−G(φ0(a), φ0(b))

)
.

Hence, we obtain∣∣∣∣φn(a)− φ0(a)− 1
c
(
G(φn(a), φn(b))−G(φ0(a), φ0(b))

)∣∣∣∣ ≤∣∣∣∣�0(a)− φ0(a)− 1
c
(
G(�0(a),�0(b))−G(φ0(a), φ0(b))

)∣∣∣∣
≤
∣∣∣∣φ0(a)− 1

c
G(φ0(a), φ0(b))

∣∣∣∣+ ∣∣∣∣�0(a)− 1
c
G(�0(a),�0(b))

∣∣∣∣.
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Thus∣∣∣∣φn(a)− 1
c
G(φn(a), φn(b))

∣∣∣∣ ≤ ∣∣∣∣φn(a)− φ0(a)− 1
c
(
G(φn(a), φn(b))−G(φ0(a), φ0(b))

)∣∣∣∣
+

∣∣∣∣φ0(a)− 1
c
G(φ0(a), φ0(b))

∣∣∣∣
≤ 2
∣∣∣∣φ0(a)− 1

c
G(φ0(a), φ0(b))

∣∣∣∣+ ∣∣∣∣�0(a)− 1
c
G(�0(a),�0(b))

∣∣∣∣.
Since φ0,�0 and G are continuous functions, we can find a constant K independent of

n, such that ∣∣∣∣φn(a)− 1
c
G(φn(a), φn(b))

∣∣∣∣ ≤ K. (6)

Moreover, by (2) and (3) we have

|φn+1(ς)| =
∣∣∣∣φn(a)− 1

c
G(φn(a), φn(b))

∣∣∣∣Eν,1
(
−λ(ϑ(ς)− ϑ(a))ν

)
+
∫ ς

a
ϑ′(s)(ϑ(ς)− ϑ(s))ν−1

Eν,ν
(
−λ(ϑ(ς)− ϑ(s))ν

)∣∣F(s, φn(s)) + λφn(s)
∣∣ds, ς ∈ J.

Using Lemma 2 along with (5) and (6), we obtain

|φn+1(ς)| = K+
M

Γ(ν)

∫ ς

a
ϑ′(s)(ϑ(ς)− ϑ(s))ν−1ds

≤ K+
M(ϑ(b)− ϑ(a))ν

Γ(ν+ 1)
.

Hence, {φn} is uniformly bounded in C(J,R). With same argument one can deduce
that {�n} is uniformly bounded.

It is necessary to derive that the sequences {φn} and {�n} are equi-continuous on J.
To do this, choosing ς1, ς2 ∈ J, with ς1 ≤ ς2. By (5) and (6) and Lemma 2, we have

|φn+1(ς2)− φn+1(ς1)| ≤
∣∣∣∣φn(a)− 1

c
G(φn(a), φn(b))

∣∣∣∣∣∣Eν,1
(
−λ(ϑ(ς2)− ϑ(a))ν

)
−

Eν,1
(
−λ(ϑ(ς1)− ϑ(a))ν

)∣∣
+
∫ ς1

a

ϑ′(s)
[
(ϑ(ς1)− ϑ(s))ν−1 − (ϑ(ς2)− ϑ(s))ν−1]

Γ(ν)
∣∣F(s, φn(s)) + λφn(s)

∣∣ds

+
∫ ς2

ς1

ϑ′(s)(ϑ(ς2)− ϑ(s))ν−1

Γ(ν)
∣∣F(s, φn(s)) + λφn(s)

∣∣ds

≤ K
∣∣Eν,1

(
−λ(ϑ(ς2)− ϑ(a))ν

)
−Eν,1

(
−λ(ϑ(ς1)− ϑ(a))ν

)∣∣
+

2M
Γ(ν+ 1)

(ϑ(ς2)− ϑ(ς1))
ν.

By the continuity of Eν,1
(
−λ(ϑ(ς)− ϑ(a))ν

)
on J, the right-hand-side of the preceding

inequality approaches zero, when ς1 → ς2. This implies that {φn(ς)} is equi-continuous
on J. Likewise, we can demonstrate that {�n(ς)} is equi-continuous. Hence, by using
Ascoli-Arzelás theorem, the sequence φnk (ς) → φ∗(ς) and �nk (ς) → �∗(ς) as k → ∞.
Hence the aforesaid relation combined under the monotonicity of sequences {φn(ς)} and
{�n(ς)} yields

lim
n→∞

φn(ς) = φ∗(ς) and lim
n→∞

�n(t) = �∗(ς),

uniformly on ς ∈ J and the limit functions φ∗, �∗ satisfy (1).
Step 3: φ∗ and �∗ are maximal and minimal solutions of (1) in [φ0,�0].
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Let z ∈ [φ0,�0] be any solution of (1). Suppose that

φn(ς) ≤ z(ς) ≤ �n(ς), ς ∈ J, for some n ∈ N
∗. (7)

Setting γ(ς) = z(ς)− φn+1(ς). It follows that

c
D
ν;ϑ
a+ γ(ς) = F

(
ς, z(ς)

)
− F
(
ς, φn(ς)

)
+ λ
(
φn+1(ς)− φn(ς)

)
≥ −λ

(
z(ς)− φn(ς)

)
+ λ
(
φn+1(ς)− φn(ς)

)
= −λγ(ς).

Furthermore

φn+1(a) = φn(a)− 1
c
G(φn(a), φn(b))

= φn(a) +
1
c
G(z(a), z(b))− 1

c
G(φn(a), φn(b))

≤ z(a)− d
c
(
z(b)− φn(b)

)
≤ z(a),

that is
γ(a) ≥ 0.

In view of Lemma 4, we obtain γ(ς) ≥ 0, ς ∈ J, which implies

φn+1(ς) ≤ z(ς), ς ∈ J.

Utilizing the same procedure, we can derive that

z(ς) ≤ �n+1(ς), ς ∈ J.

Hence,
φn+1(ς) ≤ z(ς) ≤ �n+1(ς), ς ∈ J.

Hence (7) is satisfied on J for all n ∈ N∗. Employing n → ∞ on (7) from either side,
one has

φ∗ ≤ z ≤ �∗.

This confirms that φ∗, �∗ are the extremal solutions of (1) in [φ0,�0].

4. Illustrative Problems

This section includes some test problems for the illustration of our main results.

Example 1. Consider the ϑ-Caputo FDE (1) with

ν = 0.5, a = 1, b = e, ϑ(ς) = ln ς. (8)

In order to justify that Theorem 1 is valid, we take{
F(ς, φ(ς)) = 1− φ2(ς) + 2

√
ln ς, for ς ∈ [1, e],

G(φ(1), φ(e)) = φ(1)− 1.
(9)

Without difficulty, we can infer that

φ0(ς) = 1, �0(ς) = 1 +
√

ln ς,
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are lower and upper solutions of (1), respectively. It is apparent that φ0(ς) ≤ �0(ς), for ς ∈ [1, e].
In addition, for φ0(ς) ≤ x ≤ y ≤ �0(ς), we have

F(ς, y)− F(ς, x) ≥ −4(y− x), ς ∈ [1, e].

Hence the Hypothesis 2 holds with λ = 4. Further, if φ0(1) ≤ u1 ≤ u2 ≤ �0(1), φ0(e) ≤
v1 ≤ v2 ≤ �0(e), we have

G(u2, v2)−G(u1, v1) ≤ (u2 − u1).

Therefore, Hypothesis 3 holds with c = 1 and d = 0. An application of Theorem 1 shows that
the problem (1) with the data (8) and (9) has extremal solutions in the region [φ0,�0]. Moreover,
the monotone iterative sequences {φn}n∈N, {�n}n∈N can be acquired by

φn+1(ς) = E0.5,1

(
−4
√

ln
ς

s

)
+
∫ ς

1

(
ln

ς

s

)−0.5
E0.5,0.5

(
−4
√

ln
ς

s

)
×
(
1− φ2

n(s) + 2
√

ln s + 4φn(s)
)ds

s
, n ≥ 0,

(10)

�n+1(ς) = E0.5,1

(
−4
√

ln
ς

s

)
+
∫ ς

1

(
ln

ς

s

)−0.5
E0.5,0.5

(
−4
√

ln
ς

s

)
×
(
1−�2

n(s) + 2
√

ln s + 4�n(s)
)ds

s
, n ≥ 0.

(11)

Example 2. Consider the following Caputo FDE{
cDν

0+φ(ς) = sin(φ(ς))− φ(ς), ς ∈ [0, 1],
0.5φ(0)− 3φ(0)φ(1) = 0.

(12)

Note that problem (12) is a particular case of problem (1), where

ν = 0.5, a = 0, b = 1, ϑ(ς) = ς,

and {
F(ς, φ(ς)) = sin(φ(ς))− φ(ς), ς ∈ J,
G(φ(0), φ(1)) = 0.5φ(0)− 3φ(0)φ(1)

Taking φ0(ς) = 0 and �0(ς) =
√
ς, it is easy to verify that φ0,�0 are lower and upper

solutions of (12), respectively, and φ0(ς) ≤ �0(ς), for ς ∈ [0, 1]. Therefore, Hypothesis 1 of
Theorem 1 holds. However, if φ0(ς) ≤ x ≤ y ≤ �0(ς) we have

F(ς, y)− F(ς, x) ≥ −2(y− x), ς ∈ [0, 1].

Hence Hypothesis 2 holds with λ = 2, and if φ0(0) ≤ u1 ≤ u2 ≤ �0(0), φ0(1) ≤ v1 ≤
v2 ≤ �0(1), we have

G(u2, v2)−G(u1, v1) ≤ (u2 − u1).

Therefore, Hypothesis 3 holds with c = 1 and d = 0. According to Theorem 1, there
exist monotone iterative sequences {φn} and {�n} that are uniformly converging to φ∗ and �∗,
respectively, and φ∗,�∗ are the extremal solutions in [φ0,�0] of problem (12).

Example 3. Consider the following ϑ-Caputo FDE⎧⎨⎩cD0.5;e2ς

0+ φ(ς) = 2√
π

√
e2ς − 1 + e2ς − 1− sin(e2ς − 1) + sin(φ(ς))− φ(ς), ς ∈ [0, 1],

φ(0) = 2π
e2−1+2πφ(1).

(13)
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Comparing the above problem with problem (1), we obtain

ν = 0.5, a = 0, b = 1, ϑ(ς) = e2ς,

and {
F(ς, φ(ς)) = 2√

π

√
e2ς − 1 + e2ς − 1− sin(e2ς − 1) + sin(φ(ς))− φ(ς), ς ∈ J,

G(φ(0), φ(1)) = φ(0)− 2π
e2−1+2πφ(1).

One can verify that φ(ς) = e2ς − 1 is an exact solution of the problem (1). Moreover, taking
φ0(ς) = 0 and �0(ς) = e2ς − 1 + 2π, it is easy to verify that φ0,�0 are lower and upper solutions
of (13), respectively, and φ0(ς) ≤ �0(ς), for ς ∈ [0, 1]. Therefore, Hypothesis 1 of Theorem 1 holds.
However, if φ0(ς) ≤ x ≤ y ≤ �0(ς) we have

F(ς, y)− F(ς, x) ≥ −2(y− x), ς ∈ [0, 1].

Hence Hypothesis 2 holds with λ = 2, and if φ0(0) ≤ u1 ≤ u2 ≤ �0(0), φ0(1) ≤ v1 ≤
v2 ≤ �0(1), we have

G(u2, v2)−G(u1, v1) ≤ (u2 − u1)−
2π

e2 − 1 + 2π
(v2 − v1).

Therefore, Hypothesis 3 holds with c = 1 and d = 2π
e2−1+2π . According to Theorem 1, there

exist monotone iterative sequences {φn} and {�n} that are uniformly converging to φ∗ and �∗,
respectively, and φ∗,�∗ are the extremal solutions in [φ0,�0] of problem (13).

5. Conclusions

We have established sufficient results by using monotone iterative techniques together
with upper and lower solutions for a class of boundary value problem involving a general-
ized form of Caputo derivative of fractional order. By using the mentioned tool, we have
established fruitful combinations between lower and upper solutions. Further, the said
method has the ability to produce two sequences of upper and lower solutions, respectively.
For the construction of the aforesaid sequences this method does not need any kind of
discretization or collocation like other methods usually require. The two sequences we have
generated are of a monotonic type with increasing and decreasing behaviors, respectively.
Moreover, the sequence that is monotonically decreasing converges to its lower bound.
However, the other one that is monotonically increasing is converging to its upper bound.
The bounds for upper and lower solutions have also been investigated for their uniqueness
using Banach contraction theorem. For the justification of our results, we have provided
some examples. Overall we have concluded that the proposed procedure is a powerful and
efficient tool to study various classes of FDEs for their extremal solutions. In future this
technique can be applied to investigate those classes of FDEs involving non-singular-type
derivatives under boundary conditions for upper and lower solution. In addition, the
mentioned tool can be applied to investigate fractal-fractional-type problems corresponding
to boundary conditions. Overall we have concluded that the monotone iterative technique
of applied analysis is a powerful technique for dealing with various kinds of problems
involving different types of fractional-order operators.
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1. Introduction

A set C ⊆ R is said to be convex, if

(1 − ν)x+ νy ∈ C

for all x,y ∈ C and ν ∈ [0, 1].
A function F : C→ R is said to be convex, if

F ((1 − ν)x+ νy) � (1 − ν)F (x) + νF (y)

for all x,y ∈ C and ν ∈ [0, 1].
The classical concepts of convexity are simple but have many applications in different

fields of pure and applied sciences. For example, they play a significant role in the theory
of optimization, mathematical economics, operations research, etc. In recent years, the
classical concepts of convexity have been extended and generalized in different directions
using novel and innovative ideas. It has been observed that these new generalizations
of classical convexity enjoy some nice properties which classical convexity has. Recently,
Cortez et al. [1] presented a new generalization of convexity class as follows:

Definition 1 ([1]). Let ρ, λ > 0 and σ = (σ(0), . . . ,σ(k), . . .) be a bounded sequence of positive
real numbers. A non-empty set I is said to be generalized convex, if

�1 + τRρ,λ,σ(�2 −�1) ∈ I

for all �1,�2 ∈ I and τ ∈ [0, 1].
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Here, Rρ,λ,σ(z) is the Raina’s function and is defined as:

Rρ,λ,σ(z) = R
σ(0),σ(1),...
ρ,λ (z) =

∞∑
k=0

σ(k)

Γ(ρk+ λ)
zk,

where ρ, λ > 0, |z| < R, σ = {σ(0),σ(1), . . . ,σ(k), . . .} is a bounded sequence of positive real

numbers and Γ(η) =
∞∫
0
xη−1e−xdx is the gamma function. For details, see [2].

Cortez et al. [1] also defined the class of generalized convex functions as:

Definition 2 ([1]). Let ρ, λ > 0 and σ = (σ(0), . . . ,σ(k), . . .) be a bounded sequence of positive
real numbers. A function F : I→ R is said to be generalized convex, if

F (�1 + τRρ,λ,σ(�2 −�1)) � (1 − τ)F (�1) + τF (�2)

for all �1,�2 ∈ I and τ ∈ [0, 1].

Awan et al. [3] introduced the class of exponential convex functions as:

Definition 3 ([3]). A function F : C→ R is said to be exponentially convex, if

F ((1 − ν)x+ νy) � (1 − ν)
F (x)

exp(αx)
+ ν

F (y)

exp(αy)
,

for all x,y ∈ C and ν ∈ [0, 1].

Besides its applications, the theory of convexity has also played a dynamic role in
developing the theory of inequalities. A wide class of inequalities is just a direct conse-
quence of the applications of the convexity property of the functions. Hermite–Hadamard’s
inequality, also known as trapezium-like inequality, is one of the most studied results. It
reads as:

Let F : I ⊆ R→ R be a convex function, then

F

(
�1 +�2

2

)
� 1

�2 −�1

�2∫
�1

F (x)dx � F (�1) +F (�2)

2
.

For some recent developments related to Hermite–Hadamard’s inequality and its
applications, see [4].

In recent years, several new techniques have been used to obtain new versions of
Hermite–Hadamard’s inequality. For instance, Sarikaya et al. [5] utilized the concepts
of fractional calculus and obtained the fractional analogues of Hermite–Hadamard’s in-
equality. Alp et al. [6] obtained quantum analogue of Hermite–Hadamard’s inequality.
Awan et al. [3] obtained a new refinement of Hermite–Hadamard’s inequality using the
class of exponentially convex functions. Cortez et al. [1] obtained Hermite–Hadamard’s
inequality using the class of generalized convex functions. Kunt and Aljasem [7] obtained
fractional quantum versions of Hermite–Hadamard type of inequalities. Noor et al. [8]
obtained some more quantum estimates for Hermite–Hadamard inequalities using the class
of convex functions. Sudsutad [9] obtained various new quantum integral inequalities for
convex functions. Zhang et al. [10] obtained a new generalized quantum-integral identity
and obtained new q-integral inequalities via (α,m)-convexity property of the functions.

The main motivation of this article is to obtain two new identities involving q-Riemann–
Liouville fractional integrals. Using these identities as auxiliary results, we derive some
new q-fractional estimates of trapezoidal-like inequalities, essentially using the class of
generalized exponential convex functions. We hope that the ideas and techniques of this
article will inspire interested readers working in this field.
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2. Preliminaries

In this section, we recall some previously known concepts and results.
The following concept of q-derivative was introduced and studied in [11].

Definition 4 ([11]). For a continuous function F : [�1,�2] → R the q-derivative of F at
x ∈ [�1,�2] is defined as:

�1DqF (x) =
F (x) −F (qx+ (1 − q)�1)

(1 − q)(x−�1)
, x �= �1. (1)

The q-definite integral is defined as:

Definition 5 ([11]). Let F : [�1,�2]→ R be a continuous function. Then the q-definite integral
on [�1,�2] is defined as:

x∫
�1

F (ν)�1 dqν = (1 − q)(x−�1)

∞∑
n=0

qnF (qnx+ (1 − qn)�1), (2)

for x ∈ [�1,�2].

Interesting additional details of the following concepts can be found in [9,12].

[m]q =
1 − qm

1 − q
, m ∈ R. (3)

The q-analogue of power function is defined as, if γ ∈ R, then

(r−m)(γ) = rγ
∞∏

n=0

r− qnm

r− qγ+nm
, r �= 0. (4)

The q-gamma function is defined as:

Γq(ν) =
(1 − q)(ν−1)

(1 − q)ν−1 , ν ∈ R/{0,−1,−2, . . .}. (5)

For any s,ν > 0, the q-beta function is defined as:

Bq(s,ν) =

1∫
0

u(s−1)(1 − qu)(ν−1)dqu, (6)

and

Bq(s,ν) =
Γq(s)Γq(ν)

Γq(s+ ν)
.

The q-Pochhammer symbol is defined as:

(m; q)0 = 1, and (m; q)k =

k−1∏
n=0

(1 − qnm) (7)

for k ∈ N∪ {∞}.

Theorem 1 ([13]). Suppose λ,μ ∈ R, then

lim
q→1−

(qλx; q)
(qμx; q)

= (1 − x)μ−λ, (8)
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uniformly on {x ∈ C : |x| � 1}, if μ � λ, λ + μ � 1, and uniformly on compact subset of
{x ∈ C : |x| � 1, x �= 1} for other choices of μ and λ.

The q-shifting operator is defined as:

�1Φq(m) = qm+ (1 − q)�1. (9)

For any positive integer k, one has:

�1Φ
k
q (m) = �1Φ

k−1
q (�1Φq(m)), �1Φ

0
q(m) = m. (10)

The following properties for q-shifting operator hold:

Theorem 2 ([9,12]). For any r,m ∈ R and for all positive integers k, j, one has:

1. �1Φ
k
q (m) = �1Φqk(m);

2. �1Φ
k
q (�1Φ

j
q(m)) = �1Φ

j
q(�1Φ

k
q (m)) = �1Φ

j+k
q (m);

3. �1Φq(�1) = �1;
4. �1Φ

k
q (m) −�1 = qk(m−�1);

5. m− �1Φ
k
q (m) = (1 − qk)(m−�1);

6. �1Φ
k
q (m) = m �1

m

Φk
q (1), for m �= 0;

7. �1Φq(m) − �1Φ
k
q (r) = q(m− �1Φ

k−1
q (r)).

The power of q-shifting operator is defined as:

�1(r−m)
(γ)
q = (r−�1)

γ
∞∏

n=0

r− �1Φ
n
q (m)

r− �1Φ
γ+n
q (m)

, γ ∈ R. (11)

Theorem 3 ([9,12]). For any γ, r,m ∈ R, r �= �1 and k ∈ N, one has:

1. �1(r−m)
(k)
q = (r−�1)

k
(
m−�1
r−�1

; q
)
k

;

2. �1(r−m)
(γ)
q = (r−�1)

γ
∞∏

n=0

1−m−�1
r−�1

qn

1−m−�1
r−�1

qn+γ
= (r−�1)

γ

(
m−�1
r−�1

;q
)
∞(

m−�1
r−�1

qγ;q
)
∞

;

3. �1(r− �1Φ
k
q (r))

(γ)
q = (r−�1)

γ (qk;q)∞
(qγ+k;q)∞

.

Definition 6 ([9,12]). Let α � 0 and F be a continuous function on [�1,�2]. Then the Riemann–
Liouville-type fractional quantum integral is given by (�1J

0
qF )(ν) = F (ν) and

(�1J
α
q F )(x) = (�1J

α
q F (ν))(x) =

1
Γq(α)

x∫
�1

�1(x− �1Φq(ν))
(α−1)
q F (ν)�1dqν

=
(1 − q)(x−�1)

Γq(α)

∞∑
n=0

qn
�1(x− �1Φ

n+1
q (x))

(α−1)
q F (�1Φ

n
q (x)), (12)

where α > 0 and x ∈ [�1,�2].

3. Results and Discussions

In this section, we will discuss our main results. First of all we define the class of
generalized exponential convex functions.
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Definition 7. Let ρ, λ > 0 and σ = (σ(0), . . . ,σ(k), . . .) be a bounded sequence of positive real
numbers. A function F : I→ R is said to be generalized exponential convex, if

F (�1 + τRρ,λ,σ(�2 −�1)) � (1 − τ)
F (�1)

χα�1
+ τ

F (�2)

χα�2

for all �1,�2 ∈ I, τ ∈ [0, 1] and χ � 1.

Note that if we take α = 0 or χ = 1, then the class of generalized exponential convex
functions reduces to the class of generalized convex functions introduced and studied in [1].
If we take χ = exp, then we have the class of exponentially convex functions involving
Raina’s function. This class is defined as:

Definition 8. Let ρ, λ > 0 and σ = (σ(0), . . . ,σ(k), . . .) be a bounded sequence of positive real
numbers. A function F : I→ R is said to be generalized exponential convex, if

F (�1 + τRρ,λ,σ(�2 −�1)) � (1 − τ)
F (�1)

exp(α�1)
+ τ

F (�2)

exp(α�2)

for all �1,�2 ∈ I and τ ∈ [0, 1].

Now, we derive our auxiliary results. Before we proceed, for the sake of simplicity, we
consider Ω = [�1,�1 +Rρ,λ,σ(�2 −�1)] and Ω◦ = (�1,�1 +Rρ,λ,σ(�2 −�1)).

Lemma 1. Let F : Ω → R be a continuous function and α > 0. If �1DqF is q-integrable on
Ω◦, then

Γq(α+ 1)
Rα
ρ,λ,σ(�2 −�1)

(�1J
α
q F )(�1 +Rρ,λ,σ(�2 −�1)) −

([α+ 1]q − 1)F (�1) +F (�1 +Rρ,λ,σ(�2 −�1))

[α+ 1]q

=
Rρ,λ,σ(�2 −�1)

[α+ 1]q

1∫
0

(
[α+ 1]q 0(1 − 0Φq(ν))

(α)
q − 1

)
�1DqF (�1 + νRρ,λ,σ(�2 −�1)) 0dqν. (13)

Proof. It suffices to show that

Rρ,λ,σ(�2 −�1)

[α+ 1]q

1∫
0

(
[α+ 1]q 0(1 − 0Φq(ν))

(α)
q − 1

)
�1DqF (�1 + νRρ,λ,σ(�2 −�1)) 0dqν

= Rρ,λ,σ(�2 −�1)

1∫
0

0(1 − 0Φq(ν))
(α)
q �1 DqF (�1 + νRρ,λ,σ(�2 −�1)) 0dqν

−
Rρ,λ,σ(�2 −�1)

[α+ 1]q

1∫
0

�1DqF (�1 + νRρ,λ,σ(�2 −�1)) 0dqν

= S1 − S2. (14)

Now,
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S1 = Rρ,λ,σ(�2 −�1)

1∫
0

0(1 − 0Φq(ν))
(α)
q �1DqF (�1 + νRρ,λ,σ(�2 −�1)) 0dqν

= Rρ,λ,σ(�2 −�1)

1∫
0

0(1 − 0Φq(ν))
(α)
q

F (�1 + νRρ,λ,σ(�2 −�1)) −F (�1 + qνRρ,λ,σ(�2 −�1))

(1 − q)Rρ,λ,σ(�2 −�1)ν
0dqν

=
1

1 − q

1∫
0

0(1 − 0Φq(ν))
(α)
q

F (�1 + νRρ,λ,σ(�2 −�1))

ν
0dqν

−
1

1 − q

1∫
0

0(1 − 0Φq(ν))
(α)
q

F (�1 + qνRρ,λ,σ(�2 −�1))

ν
0dqν

=

∞∑
n=0

qn
0(1 − 0Φ

n+1
q (1))(α)

q

F
(
�1 + 0Φ

n
q (1)Rρ,λ,σ(�2 −�1)

)
0Φn

q (1)

−

∞∑
n=0

qn
0(1 − 0Φ

n+1
q (1))(α)

q

F
(
�1 + q 0Φ

n
q (1)Rρ,λ,σ(�2 −�1)

)
0Φn

q (1)

=

⎡⎢⎢⎣
∞∑

n=0

(qn+1;q)∞
(qα+n+1;q)∞ F

(
�1 + qnRρ,λ,σ(�2 −�1)

)
−

∞∑
n=0

(qn+1;q)∞
(qα+n+1;q)∞ F

(
�1 + qn+1Rρ,λ,σ(�2 −�1)

)
⎤⎥⎥⎦

=

⎡⎢⎢⎣
∞∑

n=0
(1 − qα+n)

(qn+1;q)∞
(qα+n;q)∞ F

(
�1 + qnRρ,λ,σ(�2 −�1)

)
−

∞∑
n=0

(1 − qn+1)
(qn+2;q)∞

(qα+n+1;q)∞ F
(
�1 + qn+1Rρ,λ,σ(�2 −�1)

)
⎤⎥⎥⎦

=

⎡⎢⎢⎣
∞∑

n=0

(qn+1;q)∞
(qα+n;q)∞ F

(
�1 + qnRρ,λ,σ(�2 −�1)

)
−

∞∑
n=0

(qn+2;q)∞
(qα+n+1;q)∞ F

(
�1 + qn+1Rρ,λ,σ(�2 −�1)

)
⎤⎥⎥⎦

=

⎡⎢⎢⎣
∞∑

n=0
qα+n (qn+1;q)∞

(qα+n;q)∞ F
(
�1 + qnRρ,λ,σ(�2 −�1)

)
−

∞∑
n=0

qn+2 (qn+2;q)∞
(qα+n+1;q)∞ F

(
�1 + qn+1Rρ,λ,σ(�2 −�1)

)
⎤⎥⎥⎦

=
(q1; q)∞
(qα; q)∞F (�1 +Rρ,λ,σ(�2 −�1)) −F (�1)

−

⎡⎢⎢⎣
∞∑

n=0
qα+n (qn+1;q)∞

(qα+n;q)∞ F
(
�1 + qnRρ,λ,σ(�2 −�1)

)
−

∞∑
n=1

qn (qn+1;q)∞
(qα+n;q)∞ F

(
�1 + qnRρ,λ,σ(�2 −�1)

)
⎤⎥⎥⎦

=
(q1; q)∞
(qα; q)∞F (�1 +Rρ,λ,σ(�2 −�1)) −F (�1)

−

⎡⎢⎢⎢⎢⎢⎣
∞∑

n=0
qα+n (qn+1;q)∞

(qα+n;q)∞ F
(
�1 + qnRρ,λ,σ(�2 −�1)

)
−

∞∑
n=0

qn (qn+1;q)∞
(qα+n;q)∞ F

(
�1 + qnRρ,λ,σ(�2 −�1)

)
+

(q1;q)∞
(qα;q)∞ F (�1 +Rρ,λ,σ(�2 −�1))

⎤⎥⎥⎥⎥⎥⎦
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= −F (�1) + (1 − qn)

∞∑
n=0

qn (qn+1; q)∞
(qα+n; q)∞F

(
�1 + qnRρ,λ,σ(�2 −�1)

)
= −F (�1) + [α]q(1 − q)

∞∑
n=0

qn (qn+1; q)∞
(qα+n; q)∞F

(
�1 + qnRρ,λ,σ(�2 −�1)

)
= −F (�1) +

[α]qΓq(α)

Rα
ρ,λ,σ(�2 −�1)

×
(
(1 − q)Rρ,λ,σ(�2 −�1)

Γq(α)

∞∑
n=0

qnζα−1(�2,�1)
(qn+1; q)∞
(qα+n; q)∞F

(
�1 + qnRρ,λ,σ(�2 −�1)

))

= −F (�1) +
Γq(α+ 1)

Rα
ρ,λ,σ(�2 −�1)

×
(
(1 − q)Rρ,λ,σ(�2 −�1)

Γq(α)

∞∑
n=0

qnζα−1(�2,�1)
(qn+1; q)∞

(q(α+1)+(n+1); q)∞F
(
�1 + qnRρ,λ,σ(�2 −�1)

))

= −F (�1) +
Γq(α+ 1)

Rα
ρ,λ,σ(�2 −�1)

(
(1 − q)Rρ,λ,σ(�2 −�1)

Γq(α)

∞∑
n=0

qn
�1(�1 +Rρ,λ,σ(�2 −�1))

− �1Φ
n+1
q (�1 +Rρ,λ,σ(�2 −�1))

(α−1)
q F

(
�1Φ

n
q (�1 +Rρ,λ,σ(�2 −�1))

))

= −F (�1) +
Γq(α+ 1)

Rα
ρ,λ,σ(�2 −�1)

×

⎛⎜⎝ 1
Γq(α)

�1+Rρ,λ,σ(�2−�1)∫
�1

�1(�1 +Rρ,λ,σ(�2 −�1) − �1Φq(ν))
(α−1)
q F (ν)�1dqν

⎞⎟⎠
= −F (�1) +

Γq(α+ 1)
Rα
ρ,λ,σ(�2 −�1)

(�1J
α
q F )(�1 +Rρ,λ,σ(�2 −�1)). (15)

Similarly, we have

S2 =
Rρ,λ,σ(�2 −�1)

[α+ 1]q

1∫
0

�1DqF (�1 + νRρ,λ,σ(�2 −�1)) 0dqν

=
Rρ,λ,σ(�2 −�1)

[α+ 1]q

1∫
0

F (�1 + νRρ,λ,σ(�2 −�1)) −F (�1 + qνRρ,λ,σ(�2 −�1))

(1 − q)Rρ,λ,σ(�2 −�1)ν
0dqν

=
1

(1 − q)[α+ 1]q

1∫
0

F (�1 + νRρ,λ,σ(�2 −�1))

ν
0dqν

−
1

(1 − q)[α+ 1]q

1∫
0

F (�1 + qνRρ,λ,σ(�2 −�1))

ν
0dqν

=
1

[α+ 1]q

[ ∞∑
n=0

F (�1 + qnRρ,λ,σ(�2 −�1)) −

∞∑
n=0

F (�1 + qn+1Rρ,λ,σ(�2 −�1))

]

=
F (�1 +Rρ,λ,σ(�2 −�1)) −F (�1)

[α+ 1]q
. (16)

Using the equalities (15) and (16) in (14), we obtain the desired result.
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Corollary 1. Under the assumptions of Lemma 1, if we choose α = 1, then

1
Rρ,λ,σ(�2 −�1)

�1+Rρ,λ,σ(�2−�1)∫
�1

F (ν)�1dqν−
qF (�1) +F (�1 +Rρ,λ,σ(�2 −�1))

1 + q

=
qRρ,λ,σ(�2 −�1)

1 + q

1∫
0

(1 − (1 + q)ν)�1 DqF (�1 + νRρ,λ,σ(�2 −�1)) 0dqν. (17)

Lemma 2. Let F : Ω → R be a continuous function and α > 0. If �1DqF is q-integrable on
Ω◦, then the following equality holds:

F

(
([α+ 1]q − 1)�1 + (�1 +Rρ,λ,σ(�2 −�1))

[α+ 1]q

)
−

Γq(α+ 1)
Rα
ρ,λ,σ(�2 −�1)

(�1J
α
q F )(�1 +Rρ,λ,σ(�2 −�1))

= Rρ,λ,σ(�2 −�1)

⎡⎢⎢⎢⎢⎢⎣
1

[α+1]q∫
0

(
1 − 0(1 −Φq(ν))

(α)
q

)
�1DqF (�1 + νRρ,λ,σ(�2 −�1)) 0dqν

+
1∫
1

[α+1]q

(− 0(1 −Φq(ν))
(α)
q )�1 DqF (�1 + νRρ,λ,σ(�2 −�1)) 0dqν

⎤⎥⎥⎥⎥⎥⎦. (18)

Proof. Let S3 =

1
[α+1]q∫

0
�1DqF (�1 + νRρ,λ,σ(�2 −�1)) 0dqν. Then

S3 =

1
[α+1]q∫

0

�1 DqF (�1 + νRρ,λ,σ(�2 −�1)) 0dqν

=

1
[α+1]q∫

0

F (�1 + νRρ,λ,σ(�2 −�1)) −F (�1 + qνRρ,λ,σ(�2 −�1))

(1 − q)Rρ,λ,σ(�2 −�1)ν
0dqν

=
1

(1 − q)Rρ,λ,σ(�2 −�1)

1
[α+1]q∫

0

F (�1 + νRρ,λ,σ(�2 −�1))

ν
0dqν

−
1

(1 − q)Rρ,λ,σ(�2 −�1)

1
[α+1]q∫

0

F (�1 + qνRρ,λ,σ(�2 −�1))

ν
0dqν

=
1

Rρ,λ,σ(�2 −�1)[α+ 1]q

∞∑
n=0

qn
F
(
�1 +

qn

[α+1]q
Rρ,λ,σ(�2 −�1)

)
qn

[α+1]q

−
1

Rρ,λ,σ(�2 −�1)[α+ 1]q

∞∑
n=0

qn
F
(
�1 +

qn+1

[α+1]q
Rρ,λ,σ(�2 −�1)

)
qn

[α+1]q

=
1

Rρ,λ,σ(�2 −�1)

[ ∞∑
n=0

F

(
�1 +

qn

[α+ 1]q
Rρ,λ,σ(�2 −�1)

)
−

∞∑
n=0

F

(
�1 +

qn+1

[α+ 1]q
Rρ,λ,σ(�2 −�1)

)]

=
1

Rρ,λ,σ(�2 −�1)

[
F

(
([α+ 1]q − 1)�1 + (�1 +Rρ,λ,σ(�2 −�1))

[α+ 1]q

)
−F (�1)

]
. (19)
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By (15), we have

S1 = Rρ,λ,σ(�2 −�1)

1∫
0

0(1 − 0Φq(ν))
(α)
q �1DqF (�1 + νRρ,λ,σ(�2 −�1)) 0dqν

= −F (�1) +
Γq(α+ 1)

Rα
ρ,λ,σ(�2 −�1)

(�1J
α
q F )(�1 +Rρ,λ,σ(�2 −�1)). (20)

Using the equalities (19) and (20), we have

Rρ,λ,σ(�2 −�1)

⎡⎢⎢⎢⎢⎢⎣
1

[α+1]q∫
0

(
1 − 0(1 −Φq(ν))

(α)
q

)
�1DqF (�1 + νRρ,λ,σ(�2 −�1)) 0dqν

+
1∫
1

[α+1]q

− 0(1 −Φq(ν))
(α)
q �1 DqF (�1 + νRρ,λ,σ(�2 −�1)) 0dqν

⎤⎥⎥⎥⎥⎥⎦

= Rρ,λ,σ(�2 −�1)

⎡⎢⎢⎢⎢⎣
1

[α+1]q∫
0

�1 DqF (�1 + νRρ,λ,σ(�2 −�1)) 0dqν

−
1∫
0

0(1 −Φq(ν))
(α)
q �1DqF (�1 + νRρ,λ,σ(�2 −�1)) 0dqν

⎤⎥⎥⎥⎥⎦
= Rρ,λ,σ(�2 −�1)

⎡⎢⎣ 1
Rρ,λ,σ(�2−�1)

[
F
(
([α+1]q−1)�1+(�1+Rρ,λ,σ(�2−�1))

[α+1]q

)
−F (�1)

]
− 1

Rρ,λ,σ(�2−�1)

[
−F (�1) +

Γq(α+1)
Rα

ρ,λ,σ(�2−�1)
(�1J

α
q F )(�1 +Rρ,λ,σ(�2 −�1))

] ⎤⎥⎦
= F

(
([α+ 1]q − 1)�1 + (�1 +Rρ,λ,σ(�2 −�1))

[α+ 1]q

)
−

Γq(α+ 1)
Rα
ρ,λ,σ(�2 −�1)

(�1J
α
q F )(�1 +Rρ,λ,σ(�2 −�1)).

This completes the proof.

Corollary 2. Under the assumptions of Lemma 2, if we take α = 1, then the following result holds:

F

(
(1 + q)�1 +Rρ,λ,σ(�2 −�1)

1 + q

)
−

1
Rρ,λ,σ(�2 −�1)

�1+Rρ,λ,σ(�2−�1)∫
�1

F (ν)�1dqν

= qRρ,λ,σ(�2 −�1)

⎡⎢⎢⎢⎢⎢⎣
1

1+q∫
0

ν�1DqF (�1 + νRρ,λ,σ(�2 −�1)) 0dqν

+
1∫
1

1+q

(
ν− 1

q

)
�1DqF (�1 + νRρ,λ,σ(�2 −�1)) 0dqν

⎤⎥⎥⎥⎥⎥⎦. (21)

Theorem 4. Let F : Ω → R be a continuous function and α > 0 and �1DqF be q-integrable
on Ω◦. If |�1DqF | is generalized exponential convex on Ω, then∣∣∣∣∣ Γq(α+ 1)

Rα
ρ,λ,σ(�2 −�1)

(�1J
α
q F )(�1 +Rρ,λ,σ(�2 −�1)) −

([α+ 1]q − 1)F (�1) +F (�1 +Rρ,λ,σ(�2 −�1))

[α+ 1]q

∣∣∣∣∣
� Rρ,λ,σ(�2 −�1)

[α+ 1]q
(A1

|�1 DqF (�1)|

χα�1
+A2

|�1DqF (�2)|

χα�2
), (22)
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where

A1 =

1∫
0

∣∣∣[α+ 1]q 0(1 − 0Φq(ν))
(α)
q − 1

∣∣∣(1 − ν) 0dqν,

and

A2 =

1∫
0

∣∣∣[α+ 1]q 0(1 − 0Φq(ν))
(α)
q − 1

∣∣∣ν 0dqν.

Proof. Using the Lemma (17), property of modulus and the generalized exponential con-
vexity of |�1DqF |, we have∣∣∣∣∣ Γq(α+ 1)

Rα
ρ,λ,σ(�2 −�1)

(�1J
α
q F )(�1 +Rρ,λ,σ(�2 −�1)) −

([α+ 1]q − 1)F (�1) +F (�1 +Rρ,λ,σ(�2 −�1))

[α+ 1]q

∣∣∣∣∣
� Rρ,λ,σ(�2 −�1)

[α+ 1]q

1∫
0

∣∣∣([α+ 1]q 0(1 − 0Φq(ν))
(α)
q − 1

)
�1DqF (�1 + νRρ,λ,σ(�2 −�1))

∣∣∣ 0dqν

� Rρ,λ,σ(�2 −�1)

[α+ 1]q

1∫
0

∣∣∣[α+ 1]q 0(1 − 0Φq(ν))
(α)
q − 1

∣∣∣[(1 − ν)
|�1DqF (�1)|

χα�1
+ ν

|�1DqF (�2)|

χα�2

]
0dqν

=
Rρ,λ,σ(�2 −�1)

[α+ 1]q

⎡⎢⎢⎢⎣
|�1 DqF (�1)|

χα�1

1∫
0

∣∣∣[α+ 1]q 0(1 − 0Φq(ν))
(α)
q − 1

∣∣∣(1 − ν) 0dqν

+
|�1 DqF (�2)|

χα�2

1∫
0

∣∣∣[α+ 1]q 0(1 − 0Φq(ν))
(α)
q − 1

∣∣∣ν 0dqν

⎤⎥⎥⎥⎦
=

Rρ,λ,σ(�2 −�1)

[α+ 1]q
(
|�1 DqF (�1)|

χα�1
A1 +

|�1DqF (�2)|

χα�2
A2),

which completes the proof.

Corollary 3. Under the assumptions of Theorem 4, if we choose α = 1, then we have∣∣∣∣∣∣∣
1

Rρ,λ,σ(�2 −�1)

�1+Rρ,λ,σ(�2−�1)∫
�1

F (ν)�1dqν−
qF (�1) +F (�1 +Rρ,λ,σ(�2 −�1))

1 + q

∣∣∣∣∣∣∣
� q2Rρ,λ,σ(�2 −�1)

(1 + q)4

(
A∗

1
|�1DqF (�1)|

χα�1
+A∗

2
|�1 DqF (�2)|

χα�2

)
, (23)

where

A∗
1 =

q+ 3q3 + 2q4

1 + q+ q2 ,

and

A∗
2 =

1 + 4q+ q2

1 + q+ q2 .

Theorem 5. Let F : Ω → R be a continuous function and α > 0 and �1DqF be q-integrable
on Ω◦. If |�1DqF |r is generalized exponential convex on Ω for r > 1 and p−1 + r−1 = 1, then
the following inequality holds:
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∣∣∣∣∣ Γq(α+ 1)
Rα
ρ,λ,σ(�2 −�1)

(�1J
α
q F )(�1 +Rρ,λ,σ(�2 −�1)) −

([α+ 1]q − 1)F (�1) +F (�1 +Rρ,λ,σ(�2 −�1))

[α+ 1]q

∣∣∣∣∣
� Rρ,λ,σ(�2 −�1)

[α+ 1]q
A

1
p

3

⎛⎜⎝q
|�1 DqF (�1)|

χα�1

r

+ |�1DqF (�2)
r

1 + q

⎞⎟⎠
1
r

, (24)

where

A3 =

1∫
0

∣∣∣[α+ 1]q 0(1 − 0Φq(ν))
(α)
q − 1

∣∣∣p 0dqν.

Proof. Using Lemma (17), Hölder’s integral inequality and generalized exponential con-
vexity of |�1DqF |r, we have∣∣∣∣∣ Γq(α+ 1)

Rα
ρ,λ,σ(�2 −�1)

(�1J
α
q F )(�1 +Rρ,λ,σ(�2 −�1)) −

([α+ 1]q − 1)F (�1) +F (�1 +Rρ,λ,σ(�2 −�1))

[α+ 1]q

∣∣∣∣∣
� Rρ,λ,σ(�2 −�1)

[α+ 1]q

1∫
0

∣∣∣[α+ 1]q 0(1 − 0Φq(ν))
(α)
q − 1

∣∣∣|�1DqF (�1 + νRρ,λ,σ(�2 −�1))| 0dqν

� Rρ,λ,σ(�2 −�1)

[α+ 1]q

⎛⎝ 1∫
0

∣∣∣[α+ 1]q 0(1 − 0Φq(ν))
(α)
q − 1

∣∣∣p 0dqν

⎞⎠
1
p
⎛⎝ 1∫

0

|�1DqF (�1 + νRρ,λ,σ(�2 −�1))|
r

0dqν

⎞⎠
1
r

� Rρ,λ,σ(�2 −�1)

[α+ 1]q

⎛⎝ 1∫
0

∣∣∣[α+ 1]q 0(1 − 0Φq(ν))
(α)
q − 1

∣∣∣p 0dqν

⎞⎠
1
p

×

⎛⎝ |�1 DqF (�1)|

χα�1

r 1∫
0

(1 − ν) 0dqν+
|�1DqF (�2)|

χα�2

r 1∫
0

ν 0dqν

⎞⎠
1
r

=
Rρ,λ,σ(�2 −�1)

[α+ 1]q

⎛⎝ 1∫
0

∣∣∣[α+ 1]q 0(1 − 0Φq(ν))
(α)
q − 1

∣∣∣p 0dqν

⎞⎠
1
p
⎛⎜⎝q

|�1 DqF (�1)|

χα�1

r

+
|�1 DqF (�2)|

χα�2

r

1 + q

⎞⎟⎠
1
r

,

which completes the proof.

Corollary 4. Under the assumptions of Theorem 5, if we choose α = 1, then we have∣∣∣∣∣∣∣
1

Rρ,λ,σ(�2 −�1)

�1+Rρ,λ,σ(�2−�1)∫
�1

F (ν)�1dqν−
qF (�1) +F (�1 +Rρ,λ,σ(�2 −�1))

1 + q

∣∣∣∣∣∣∣
� qRρ,λ,σ(�2 −�1)

(1 + q)
A∗

3
1
p

⎛⎜⎝q
|�1 DqF (�1)|

χα�1

r

+ |�1DqF (�2)
r

1 + q

⎞⎟⎠
1
r

, (25)
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where

A∗
3 =

1∫
0

|1 − (1 + q)ν|p 0dqν.

Theorem 6. Let F : Ω → R be a continuous function and α > 0 and �1DqF be q-integrable
on Ω◦. If |�1DqF |r is generalized exponential convex on Ω for r � 1, then the following
inequality holds:∣∣∣∣∣ Γq(α+ 1)

Rα
ρ,λ,σ(�2 −�1)

(�1J
α
q F )(�1 +Rρ,λ,σ(�2 −�1)) −

([α+ 1]q − 1)F (�1) +F (�1 +Rρ,λ,σ(�2 −�1))

[α+ 1]q

∣∣∣∣∣
� Rρ,λ,σ(�2 −�1)

[α+ 1]q
A

1− 1
r

4

(
A1

|�1 DqF (�1)|

χα�1

r

+A2
|�1 DqF (�2)|

χα�2

r) 1
r

, (26)

where A1,A2 are given in Theorem 4 and A4 is given as:

A4 =

1∫
0

∣∣∣[α+ 1]q 0(1 − 0Φq(ν))
(α)
q − 1

∣∣∣ 0dqν.

Proof. Using Lemma (17), the power mean integral inequality and generalized exponential
convexity of |�1DqF |r, we have∣∣∣∣∣ Γq(α+ 1)

Rα
ρ,λ,σ(�2 −�1)

(�1J
α
q F )(�1 +Rρ,λ,σ(�2 −�1)) −

([α+ 1]q − 1)F (�1) +F (�1 +Rρ,λ,σ(�2 −�1))

[α+ 1]q

∣∣∣∣∣
�

Rρ,λ,σ(�2 −�1)

[α+ 1]q

1∫
0

∣∣∣[α+ 1]q 0(1 − 0Φq(ν))
(α)
q − 1

∣∣∣|�1 DqF (�1 + νRρ,λ,σ(�2 −�1))| 0dqν

�
Rρ,λ,σ(�2 −�1)

[α+ 1]q

⎛⎝ 1∫
0

∣∣∣[α+ 1]q 0(1 − 0Φq(ν))
(α)
q − 1

∣∣∣ 0dqν

⎞⎠1− 1
r

×

⎛⎝ 1∫
0

∣∣∣[α+ 1]q 0(1 − 0Φq(ν))
(α)
q − 1

∣∣∣|�1 DqF (�1 + νRρ,λ,σ(�2 −�1))|
r

0dqν

⎞⎠
1
r

�
Rρ,λ,σ(�2 −�1)

[α+ 1]q

⎛⎝ 1∫
0

∣∣∣[α+ 1]q 0(1 − 0Φq(ν))
(α)
q − 1

∣∣∣ 0dqν

⎞⎠1− 1
r

×

⎛⎝ 1∫
0

∣∣∣[α+ 1]q 0(1 − 0Φq(ν))
(α)
q − 1

∣∣∣[ |�1 DqF (�1)|

χα�1

r

(1 − ν) +
|�1 DqF (�2)|

χα�2

r

ν

]
0dqν

⎞⎠
1
r

�
Rρ,λ,σ(�2 −�1)

[α+ 1]q

⎛⎝ 1∫
0

∣∣∣[α+ 1]q 0(1 − 0Φq(ν))
(α)
q − 1

∣∣∣ 0dqν

⎞⎠1− 1
r

×

⎡⎢⎢⎣
|�1 DqF(�1)|

χα�1

r 1∫
0

∣∣∣[α+ 1]q 0(1 − 0Φq(ν))
(α)
q − 1

∣∣∣(1 − ν) 0dqν

+
|�1 DqF(�2)|

χα�2

r∣∣∣[α+ 1]q 0(1 − 0Φq(ν))
(α)
q − 1

∣∣∣ν 0dqν

⎤⎥⎥⎦
1
r

=
Rρ,λ,σ(�2 −�1)

[α+ 1]q
A

1− 1
r

4

(
A1

|�1 DqF (�1)|

χα�1

r

+A3
|�1 DqF (�2)|

χα�2

r) 1
r

,

which completes the proof.
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Corollary 5. Under the assumptions of Theorem 6, if we choose α = 1, then we have∣∣∣∣∣∣∣
1

Rρ,λ,σ(�2 −�1)

�1+Rρ,λ,σ(�2−�1)∫
�1

F (ν)�1dqν−
qF (�1) +F (�1 +Rρ,λ,σ(�2 −�1))

1 + q

∣∣∣∣∣∣∣
� qRρ,λ,σ(�2 −�1)

(1 + q)
A∗

4
1− 1

r

(
A∗

1
|�1 DqF (�1)|

r

χα�1
+A∗

2
|�1DqF (�2)|

r

χα�2

) 1
r

, (27)

where A∗
1 , A∗

2 are already defined in Corollary 3 and

A∗
4 =

2q+ q2 + q4

(1 + q)3 .

Theorem 7. Let F : Ω → R be a continuous function and α > 0 and �1DqF be q-integrable
on Ω◦. If |�1DqF | is generalized exponential convex on Ω, then∣∣∣∣∣F

(
([α+ 1]q − 1)�1 + (�1 +Rρ,λ,σ(�2 −�1))

[α+ 1]q

)
−

Γq(α+ 1)
Rα
ρ,λ,σ(�2 −�1)

(�1J
α
q F )(�1 +Rρ,λ,σ(�2 −�1))

∣∣∣∣∣
� Rρ,λ,σ(�2 −�1)

[
(A5 +A7)

|�1 DqF (�1)|

χα�1
+ (A6 +A8)

|�1DqF (�2)|

χα�2

]
, (28)

where

A5 =

1
[α+1]q∫

0

∣∣∣1 − 0(1 −Φq(ν))
(α)
q

∣∣∣(1 − ν) 0dqν

A6 =

1
[α+1]q∫

0

∣∣∣1 − 0(1 −Φq(ν))
(α)
q

∣∣∣ν 0dqν

A7 =

1∫
1

[α+1]q

|− 0(1 −Φq(ν))
(α)
q |(1 − ν) 0dqν

A8 =

1∫
1

[α+1]q

|− 0(1 −Φq(ν))
(α)
q |ν 0dqν.

Proof. Using Lemma (21) and the generalized exponential convexity of |�1 DqF |, we have

321



Fractal Fract. 2022, 6, 185

∣∣∣∣∣F
(
([α+ 1]q − 1)�1 + (�1 +Rρ,λ,σ(�2 −�1))

[α+ 1]q

)
−

Γq(α+ 1)
Rα
ρ,λ,σ(�2 −�1)

(�1J
α
q F )(�1 +Rρ,λ,σ(�2 −�1))

∣∣∣∣∣

� Rρ,λ,σ(�2 −�1)

⎡⎢⎢⎢⎢⎢⎣
1

[α+1]q∫
0

|1 − 0(1 −Φq(ν))
(α)
q ||�1 DqF (�1 + νRρ,λ,σ(�2 −�1))| 0dqν

+
1∫
1

[α+1]q

|− 0(1 −Φq(ν))
(α)
q ||�1 DqF (�1 + νRρ,λ,σ(�2 −�1))| 0dqν

⎤⎥⎥⎥⎥⎥⎦

� Rρ,λ,σ(�2 −�1)

⎡⎢⎢⎢⎢⎢⎣
1

[α+1]q∫
0

|1 − 0(1 −Φq(ν))
(α)
q |[(1 − ν)

|�1 DqF(�1)|

χα�1
+ ν|�1 DqF (�2)] 0dqν

+
1∫
1

[α+1]q

|− 0(1 −Φq(ν))
(α)
q |[(1 − ν)|�1 DqF (�1) + ν

|�1 DqF(�2)|

χα�2
] 0dqν

⎤⎥⎥⎥⎥⎥⎦

= Rρ,λ,σ(�2 −�1)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

|�1 DqF(�1)|

χα�1

⎡⎢⎣ 1
[α+1]q∫

0
|1 − 0(1 −Φq(ν))

(α)
q |(1 − ν) 0dqν+

1∫
1

[α+1]q

|− 0(1 −Φq(ν))
(α)
q |(1 − ν) 0dqν

⎤⎥⎦
+

|�1 DqF(�2)|

χα�2

⎡⎢⎣ 1
[α+1]q∫

0
|1 − 0(1 −Φq(ν)

(α)
q )|ν 0dqν+

1∫
1

[α+1]q

|− 0(1 −Φq(ν))
(α)
q |ν 0dqν

⎤⎥⎦

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

This completes the proof.

Corollary 6. Under the assumptions of Theorem 7, if we set α = 1, then we have the following
inequality∣∣∣∣∣∣∣F

(
(1 + q)�1 +Rρ,λ,σ(�2 −�1)

1 + q

)
−

1
Rρ,λ,σ(�2 −�1)

�1+Rρ,λ,σ(�2−�1)∫
�1

F (ν)�1 dqν

∣∣∣∣∣∣∣
� qRρ,λ,σ(�2 −�1)

(1 + q+ q2)(1 + q)4

[
3
|�1 DqF (�1)|

χα�1
+ (2q2 + 2q− 1)

|�1DqF (�2)|

χα�2

]
.

Theorem 8. Let F : Ω → R be a continuous function and α > 0 and �1DqF be q-integrable
on Ω◦. If |�1DqF |r is generalized exponential convex on Ω, then the following inequality holds
for p−1 + r−1 = 1 :∣∣∣∣∣F

(
([α+ 1]q − 1)�1 + (�1 +Rρ,λ,σ(�2 −�1))

[α+ 1]q

)
−

Γq(α+ 1)
Rα
ρ,λ,σ(�2 −�1)

(�1J
α
q F )(�1 +Rρ,λ,σ(�2 −�1))

∣∣∣∣∣
� Rρ,λ,σ(�2 −�1)

⎡⎢⎢⎢⎣
A

1
p

9

(
|�1 DqF (�1)|

χα�1

r( (1+q)[α+1]q−1
(1+q)([α+1]q)2

)
+

|�1 DqF (�2)|

χα�2

r(
1

(1+q)([α+1]q)2

)) 1
r

+A
1
p

10

(
|�1 DqF (�1)|

χα�1

r( q
1+q −

(1+q)[α+1]q−1
(1+q)([α+1]q)2

)
+

|�1 DqF (�2)|

χα�2

r(
1

1+q − 1
(1+q)([α+1]q)2

)) 1
r

⎤⎥⎥⎥⎦, (29)

where

A9 =

1
[α+1]q∫

0

∣∣∣1 − 0(1 −Φq(ν))
(α)
q

∣∣∣ 0dqν,
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and

A10 =

1∫
1

[α+1]q

|− 0(1 −Φq(ν))
(α)
q | 0dqν.

Proof. Using Lemma (21), Hölder’s inequality and the generalized exponential convexity
of |�1 DqF |r, we have∣∣∣∣∣F

(
([α+ 1]q − 1)�1 + (�1 +Rρ,λ,σ(�2 −�1))

[α+ 1]q

)
−

Γq(α+ 1)
Rα
ρ,λ,σ(�2 −�1)

(�1J
α
q F )(�1 +Rρ,λ,σ(�2 −�1))

∣∣∣∣∣

� Rρ,λ,σ(�2 −�1)

⎡⎢⎢⎢⎢⎢⎣
1

[α+1]q∫
0

|1 − 0(1 −Φq(ν))
(α)
q ||�1DqF (�1 + νRρ,λ,σ(�2 −�1))| 0dqν

+
1∫
1

[α+1]q

|− 0(1 −Φq(ν))
(α)
q ||�1DqF (�1 + νRρ,λ,σ(�2 −�1))| 0dqν

⎤⎥⎥⎥⎥⎥⎦

� Rρ,λ,σ(�2 −�1)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎛⎜⎝
1

[α+1]q∫
0

|1 − 0(1 −Φq(ν))
(α)
q |p 0dqν

⎞⎟⎠
1
p
⎛⎜⎝ 1∫

1
[α+1]q

|�1 DqF (�1 + νRρ,λ,σ(�2 −�1))|
r

0dqν

⎞⎟⎠
1
r

+

⎛⎜⎝ 1∫
1

[α+1]q

|− 0(1 −Φq(ν))
(α)
q |p 0dqν

⎞⎟⎠
1
p
⎛⎜⎝ 1∫

1
[α+1]q

|�1 DqF (�1 + νRρ,λ,σ(�2 −�1))|
r

0dqν

⎞⎟⎠
1
r

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

� Rρ,λ,σ(�2 −�1)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎛⎜⎝
1

[α+1]q∫
0

|1 − 0(1 −Φq(ν))
(α)
q |p 0dqν

⎞⎟⎠
1
p

×

⎡⎢⎣ |�1 DqF (�2)|

χα�2

r
1

[α+1]q∫
0

(1 − ν) 0dqν+
|�1 DqF (�2)|

χα�2

r
1

[α+1]q∫
0

ν 0dqν

⎤⎥⎦
1
r

+

⎛⎜⎝ 1∫
1

[α+1]q

|− 0(1 −Φq(ν))
(α)
q |p 0dqν

⎞⎟⎠
1
p

×

⎡⎢⎣ |�1 DqF (�1)|

χα�1

r 1∫
1

[α+1]q

(1 − ν) 0dqν+
|�1 DqF (�2)|

χα�2

r 1∫
1

[α+1]q

ν 0dqν

⎤⎥⎦
1
r

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= Rρ,λ,σ(�2 −�1)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎛⎜⎝
1

[α+1]q∫
0

|1 − 0(1 −Φq(ν))
(α)
q |p 0dqν

⎞⎟⎠
1
p

×
(

|�1 DqF (�1)|

χα�1

r( (1+q)[α+1]q−1
(1+q)([α+1]q)2

)
+

|�1 DqF (�2)|

χα�2

r(
1

(1+q)([α+1]q)2

)) 1
r

+

⎛⎜⎝ 1∫
1

[α+1]q

|− 0(1 −Φq(ν))
(α)
q |p 0dqν

⎞⎟⎠
1
p

×
(

|�1 DqF (�1)|

χα�1

r( q
1+q −

(1+q)[α+1]q−1
(1+q)([α+1]q)2

)
+

|�1 DqF (�2)|

χα�2

r(
1

1+q − 1
(1+q)([α+1]q)2

)) 1
r

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
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This completes the proof.

Corollary 7. Under the assumptions of Theorem 8, if we set α = 1, then∣∣∣∣∣∣∣F
(
(1 + q)�1 +Rρ,λ,σ(�2 −�1)

1 + q

)
−

1
Rρ,λ,σ(�2 −�1)

�1+Rρ,λ,σ(�2−�1)∫
�1

F (ν)�1dqν

∣∣∣∣∣∣∣
� qRρ,λ,σ(�2 −�1)

⎡⎣A∗
9

1
p

(
|�1DqF (�1)|

χα�1

r(
q2 + 2q
(1 + q)3

)
+

|�1DqF (�2)|

χα�2

r( 1
(1 + q)3

)) 1
r

+A∗
10

1
p

(
|�1DqF (�1)|

χα�1

r(
q3 + q2 − q

(1 + q)3

)
+

|�1DqF (�2)|

χα�2

r(
q2 + 2q
(1 + q)3

)) 1
r

⎤⎦, (30)

where

A∗
9 =

(1 − q)

(1 + q)p+1(1 − qp+1)

and

A∗
10 =

∫1

1
1+q

(
1
q
− ν

)p

0dqν.

Theorem 9. Let F : Ω → R be a continuous function and α > 0 and �1DqF be q-integrable
on Ω◦. If |�1DqF |r, r � 1 is generalized exponential convex on Ω, then∣∣∣∣∣F

(
([α+ 1]q − 1)�1 + (�1 +Rρ,λ,σ(�2 −�1))

[α+ 1]q

)
−

Γq(α+ 1)
Rα
ρ,λ,σ(�2 −�1)

(�1J
α
q F )(�1 +Rρ,λ,σ(�2 −�1))

∣∣∣∣∣
= Rρ,λ,σ(�2 −�1)

⎡⎢⎢⎢⎣
A

1− 1
r

9

[
A5

|�1 DqF (�2)|

χα�2

r

+A6
|�1 DqF (�2)|

χα�2

r
] 1

r

+A
1− 1

r
10

[
A7

|�1 DqF (�1)|

χα�1

r

+A8
|�1 DqF (�2)|

χα�2

r
] 1

r

⎤⎥⎥⎥⎦,

where

A9 =

1
[α+1]q∫

0

∣∣∣1 − 0(1 −Φq(ν))
(α)
q

∣∣∣ 0dqν

and

A10 =

1∫
1

[α+1]q

|1 − 0(1 −Φq(ν))
(α)
q | 0dqν.

Proof. Using Lemma (21), power mean integral inequality and the generalized exponential
convexity of |�1DqF |r, we have

324



Fractal Fract. 2022, 6, 185

∣∣∣∣∣F
(
([α+ 1]q − 1)�1 +(�1 +Rρ,λ,σ(�2 −�1))

[α+ 1]q

)
−

Γq(α+ 1)
Rα

ρ,λ,σ(�2 −�1)
(�1J

α
q F)(�1 +Rρ,λ,σ(�2 −�1))

∣∣∣∣∣

� Rρ,λ,σ(�2 −�1)

⎡⎢⎢⎢⎢⎢⎣
1

[α+1]q∫
0

|1 − 0(1 −Φq(ν))
(α)
q ||�1 DqF(�1 +νRρ,λ,σ(�2 −�1))| 0dqν

+
1∫
1

[α+1]q

|− 0(1 −Φq(ν))
(α)
q ||�1 DqF(�1 +νRρ,λ,σ(�2 −�1))| 0dqν

⎤⎥⎥⎥⎥⎥⎦

� Rρ,λ,σ(�2 −�1)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎛⎜⎝
1

[α+1]q∫
0

|1 − 0(1 −Φq(ν))
(α)
q | 0dqν

⎞⎟⎠
1− 1

r

×

⎛⎜⎝ 1∫
1

[α+1]q

|1 − 0(1 −Φq(ν)
(α)
q )||�1 DqF(�1 +νRρ,λ,σ(�2 −�1))|

r
0dqν

⎞⎟⎠
1
r

+

⎛⎜⎝ 1∫
1

[α+1]q

|− 0(1 −Φq(ν))
(α)
q | 0dqν

⎞⎟⎠
1− 1

r

×

⎛⎜⎝ 1∫
1

[α+1]q

|− 0(1 −Φq(ν))
(α)
q ||�1 DqF(�1 +νRρ,λ,σ(�2 −�1))|

r
0dqν

⎞⎟⎠
1
r

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

� Rρ,λ,σ(�2 −�1)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎛⎜⎝
1

[α+1]q∫
0

|1 − 0(1 −Φq(ν))
(α)
q | 0dqν

⎞⎟⎠
1− 1

r

×

⎛⎜⎝
1

[α+1]q∫
0

|1 − 0(1 −Φq(ν)
(α)
q )|

[
(1 −ν)

|�1 DqF(�2)|

χα�2

r

+ν
|�1 DqF(�2)|

χα�2

r
]

0dqν

⎞⎟⎠
1
r

+

⎛⎜⎝ 1∫
1

[α+1]q

|− 0(1 −Φq(ν))
(α)
q | 0dqν

⎞⎟⎠
1− 1

r

×

⎛⎜⎝ 1∫
1

[α+1]q

|− 0(1 −Φq(ν))
(α)
q |

[
(1 −ν)

|�1 DqF(�1)|

χα�1

r

+ν
|�1 DqF(�2)|

χα�2

r
]

0dqν

⎞⎟⎠
1
r

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= Rρ,λ,σ(�2 −�1)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎛⎜⎝
1

[α+1]q∫
0

|1 − 0(1 −Φq(ν))
(α)
q | 0dqν

⎞⎟⎠
1− 1

r

×

⎡⎢⎣ |�1 DqF(�2)|

χα�2

r
1

[α+1]q∫
0

|1 − 0(1 −Φq(ν))
(α)
q |(1 −ν) 0dqν+

|�1 DqF(�2)|

χα�2

r
1

[α+1]q∫
0

|1 − 0(1 −Φq(ν)
(α)
q )|ν 0dqν

⎤⎥⎦
1
r

+

⎛⎜⎝ 1∫
1

[α+1]q

|− 0(1 −Φq(ν))
(α)
q | 0dqν

⎞⎟⎠
1− 1

r

×

⎡⎢⎣ |�1 DqF(�1)|

χα�1

r 1∫
1

[α+1]q

|− 0(1 −Φq(ν))
(α)
q |(1 −ν) 0dqν+

|�1 DqF(�2)|

χα�2

r 1∫
1

[α+1]q

|− 0(1 −Φq(ν))
(α)
q |ν 0dqν

⎤⎥⎦
1
r

.

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

This completes the proof.

Corollary 8. Under the assumptions of Theorem 9, if we set α = 1, then
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∣∣∣∣∣∣∣F
(
(1 + q)�1 +Rρ,λ,σ(�2 −�1)

1 + q

)
−

1
Rρ,λ,σ(�2 −�1)

�1+Rρ,λ,σ(�2−�1)∫
�1

F (ν)�1dqν

∣∣∣∣∣∣∣
� qRρ,λ,σ(�2 −�1)

(
1

(1 + q)3

)⎡⎣( |�1 DqF (�1)|

χα�1

r(
q2 + q

(1 + q + q2)

)
+

|�1DqF (�2)|

χα�2

r( 1
(1 + q + q2)

)) 1
r

+

(
|�1DqF (�1)|

χα�1

r(
q2 + q− 1
1 + q+ q2

)
+

|�1DqF (�2)|

χα�2

r( 2
1 + q+ q2

)) 1
r

⎤⎦.

4. Conclusions

We have introduced the class of generalized exponential convex functions involving
Raina’s function. We have derived two new identities involving q-Riemann–Liouville
fractional integrals. Using these identities, as auxiliary results, we have derived several
new q-fractional estimates of trapezoidal-like inequalities, essentially using the class of
generalized exponential convex functions. We hope that the ideas within this paper will
inspire interested readers. The results of this paper can be extended by using other classes
of convexity, for instance by using the exponential preinvexity property of the functions.
One can also extend these results using the concepts of post-quantum calculus, which
is an interesting problem for future research. It is worth mentioning here that many
inequalities e.g., Lipschitz, Hölders, Minkowski, etc., are used to solve the control problems
and stability analysis for dynamical systems; for details, see [14–19]. So it can also be an
interesting problem for future research to use the inequalities obtained in this paper to
solve physical problems.
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Abstract: The main goal of this article is to explore a new type of polynomials, specifically the Gould-
Hopper-Laguerre-Sheffer matrix polynomials, through operational techniques. The generating
function and operational representations for this new family of polynomials will be established.
In addition, these specific matrix polynomials are interpreted in terms of quasi-monomiality. The
extended versions of the Gould-Hopper-Laguerre-Sheffer matrix polynomials are introduced, and
their characteristics are explored using the integral transform. Further, examples of how these results
apply to specific members of the matrix polynomial family are shown.
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1. Introduction and Preliminaries

Significant discoveries in the theory of group representation, statistics, quadrature and
interpolation, scattering theory, imaging of medicine, and splines have led to the develop-
ment of matrix polynomials and special matrix functions. Numerous disciplines of mathe-
matics and engineering make use of special matrix polynomials (see, for
example, [1,2], and the citations included therein). For instance, many mathematicians
investigate and explore special matrix polynomials.

The Sheffer sequences [3] are used extensively in mathematics, theoretical physics,
theory of approximation, and various different mathematical disciplines. Roman [4] natu-
rally discusses the Sheffer polynomials’ properties in the context of contemporary classical
umbral calculus. The Sheffer polynomials are given as follows (see [4], p. 17): Set p(τ) and
q(τ) power series, which are formally given as follows:

p(τ) =
∞

∑
�=0

p�
τ�

�!
(p� ∈ C, � ∈ Z≥0; p0 = 0, p1 �= 0), (1a)

and

q(τ) =
∞

∑
�=0

q�
τn

�!
(q� ∈ C, � ∈ Z≥0; q0 �= 0), (1b)

which are referred to as delta series and invertible series, respectively. Here and elsewhere,
let C, R, and Z be, respectively, the sets of complex numbers, real numbers, and integers. Let

E≤ξ , E<ξ , E≥ξ , and E>ξ

be the sets of numbers in E less than or equal to ξ, less than ξ, greater than or equal to ξ,
and greater than ξ, respectively, for some ξ ∈ R, where E is either Z or R.
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With each pairing of an invertible series q(τ) and a delta series p(τ), there is a unique
sequence s�(x) of polynomials that satisfies the conditions of orthogonality (consult [4], p. 17):〈

q(τ) p(τ)k
∣∣∣s�(x)〉 = �! δ�,k (�, k ∈ Z≥0), (2)

where δ�,k is the Kronecker delta function defined by δ�,k = 1 (� = k) and δ�,k = 0 (� �= k).
The operator 〈· | ·〉 is unchanged from [4], Chapter 2.

Remark 1. The sequence s�(x) satisfying (2) is called the Sheffer sequence for (q(τ), p(τ)), or
s�(x) is Sheffer for (g(τ), p(τ)), which is usually denoted as s�(x) ∼ (q(τ), p(τ)). Remain aware
that q(τ) and p(τ) should be an invertible series and a delta series, respectively.

There are two forms of Sheffer sequences worth noting:

(i) If s�(x) ∼ (1, p(τ)), the s�(x) is said to be the associated sequence for p(τ), or s�(x) is
associated with p(τ);

(ii) If s�(x) ∼ (q(τ), τ), the s�(x) is said to be the Appell sequence for q(τ), or s�(x) is Appell
for q(τ) (see [4], p. 17; see also [5]).

If s�(x) is Sheffer for (q(τ), p(τ)), the Sheffer sequence s�(x) is generated by depending solely on
the series q(τ) and p(τ). To emphasize this dependence, in [5], the s�(x) was represented by [q,p]s�(x).

Amid various Sheffer sequences’ characterizations, the following generating function
is recalled (consult, for instance, [4], p. 18): The sequence s�(x) is Sheffer for (q(τ), p(τ)) if
and only if:

1
q( p̄(τ))

ex p̄(τ) =
∞

∑
k=0

sk(x)
k!

tk (3)

for every x in C, where p̄(τ) = p−1(τ) is the inverse of composition of p(τ).
The particular polynomials of two variables are significant in view of an appli-

cation. In addition, these polynomials facilitate the derivation of numerous valuable
identities and aid in the introduction of new families of particular polynomials; see, for
instance, [6–9]. The Laguerre-Sheffer polynomials Ls�(x, y) are generated by the following
function (consult [10]):

1
q(p−1(τ))

exp
(
yp−1(τ)

)
C0

(
xp−1(τ)

)
=

∞

∑
n=0

Ls�(x, y)
τ�

�!
, (4)

for all x, y in C, where C0(xτ) denotes the 0th-order Bessel-Tricomi function, which pos-
sesses the subsequent operational law:

C0(ξx) :=
∞

∑
k=0

(−1)k (ξ x)k

(k!)2 = exp(−ξD̂−1
x ){1}, (5)

where
D̂−n
x {1} :=

xn

n!
(n ∈ Z≥0). (6)

Generally,

D̂−ξ
x {p(x)} = 1

Γ(ξ)

∫ x

0
(x− η)ξ−1 p(η) dη, (7)

where Γ is the well-known Gamma function (consult, for example, [11], Section 1.1), which
is a left-sided Riemann-Liouville fractional integral of order ξ ∈ C (�(ξ) > 0) (see, for
example, [12], Chapter 2). For some recent applications for geometric analysis, one may
consult, for example, [13,14].

As in Remark 1, the case q(τ) = 1 and the case p(τ) = τ of the Laguerre-Sheffer poly-
nomials Ls�(x, y) in (4) are called, respectively, the Laguerre-associated Sheffer sequence
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and the Laguerre-Appell sequence, and denoted, respectively, by Ls�(x, y) and L A�(x, y)
(consult [15]).

Remark 2. For κ ∈ Z>0, let Cκ×κ indicate the set of all κ by κ matrices whose entries are in
C. Let σ(B) be the set of all eigenvalues of B ∈ Cκ×κ , which is said to be the spectrum of B.
For B ∈ Cκ×κ , let α(B) := max{�(w) |w ∈ σ(B)} and β(B) := min{�(w) |w ∈ σ(B)}. If
β(B) > 0, that is, �(w) > 0 for all w ∈ σ(B), the matrix B is referred to as positive stable.

For B ∈ Cκ×κ , its 2-norm is denoted by:

‖B‖ = sup
ρ �=0

‖Bρ‖2

‖ρ‖2
,

where for any vector ρ ∈ Cκ , ‖ρ‖2 =
(
ρH ρ

)1/2 is the Euclidean norm of ρ. Here ρH indicates the
Hermitian matrix of ρ.

If p(w) and q(w) are holomorphic functions of the variable w ∈ C, which are defined in an open
set Λ of the plane C, and R is a matrix in Cκ×κ such that σ(R) ⊂ Λ, then from the matrix functional
calculus’s characteristics ([16], p. 558), one finds that f (R) g(R) = g(R) f (R). Therefore, if Q
in Cκ×κ is another matrix with σ(Q) ⊂ Λ, such that RQ = QR, then f (R)g(Q) = g(Q) f (R)
(consult, for instance, [17,18]).

As the reciprocal of the Gamma function indicated by Γ−1(w) = 1/Γ(w) is an entire function of
the variable w ∈ C, for any R in Cκ×κ, the functional calculus of Riesz-Dunford reveals that the image
of Γ−1(w) acting on R, symbolized by Γ−1(R), is a well-defined matrix (consult [16], Chapter 7).

Recently, the matrix polynomials of Gould-Hopper (GHMaP) g�n(x, y; C, E) were intro-
duced by virtue of the subsequent generating function (consult [19]):

∞

∑
n=0

g�n(x, y; C, E)
τn

n!
= exp(xτ

√
2C) exp(E yτ�). (8)

Here C, E are matrices in Cκ×κ (κ ∈ Z>0) such that C is positive stable and an � ∈ Z>0.
Consider the principal branch of w

1
2 = exp

(
1
2 log w

)
defined on the domain Λ := C \ (−∞, 0].

Then, as in Remark 2,
√

C is well-defined if σ(C) ⊂ Λ.
The polynomials g�n(x, y; C, E) are specified to be the series

g�n(x, y; C, E) =
[ n
� ]

∑
k=0

n! (
√

2C)n−�kEk

(n− �k)! k!
xn−�kyk. (9)

As a result of the idea of monomiality, the majority of the features of generalized and con-
ventional polynomials have been demonstrated to be readily derivable within a framework
of operations. The monomiality principle is underpinned by Steffensen’s [20] introduction of
the idea of poweroid. Following that, Dattoli [21] reconstructed and elaborated the idea of
monomiality (consult, for instance, [22]).

As per the monomiality principle, there are two operators M̂ and P̂ that operate on a
polynomial set {q�(x)}�∈Z>0 , termed the multiplicative and derivative operators, respec-
tively. Then the polynomial set {q�(x)}�∈Z>0 is said to be quasi-monomial if it satisfies:

M̂{q�(x)} = q�+1(x), P̂{q�(x)} = � q�−1(x), q0(x) = 1. (10)

One easily finds from (10) that

M̂P̂{q�(x)} = � q�(x), (11)

and
P̂M̂{q�(x)} = (�+ 1) q�(x). (12)
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A Weyl group structure of the operators M̂ and P̂ is shown by the relation
of commutation:

[P̂, M̂] := P̂M̂− M̂P̂ = 1̂, (13)

where 1̂ is the identity operator.
As a result of M̂m acting on q0(x), we may deduce the qm(x):

qm(x) = M̂m{q0(x)}. (14)

The matrix polynomials of Gould-Hopper g�m(x, y; C, E) are quasi-monomial with
regard to the subsequent derivative and multiplicative operators [23]:

P̂g = (
√

2C)−1Dx, (15)

and
M̂g = x

√
2C + �Ey(

√
2C)−(�−1)D�−1

x , (16)

respectively, where Dx := ∂
∂x .

The generalization αFβ (α, β ∈ Z≥0) of the hypergeometric series is given by (consult,
for instance, [11], Section 1.5):

αFβ

[
μ1, . . . , μα ;

ν1, . . . , νβ ;
w

]
=

∞

∑
n=0

(μ1)n · · · (μα)n

(ν1)n · · · (νβ)n

wn

n!

= αFβ(μ1, . . . , μα; ν1, . . . , νβ; w),

(17)

where (ξ)η indicates the Pochhammer symbol (for ξ, η ∈ C) defined by

(ξ)η :=
Γ(ξ + η)

Γ(ξ)
=

{
1 (η = 0; ξ ∈ C \ {0}),
ξ(ξ + 1) · · · (ξ + n− 1) (η = n ∈ Z>0; ξ ∈ C).

(18)

Here it is assumed that (0)0 := 1, an empty product as 1, and that the variable w,
the parameters of numerators μ1, . . . , μα, and the parameters of denominators ν1, . . . , νβ
are supposed to get complex values, provided that(

νj ∈ C \Z≤0; j = 1, . . . , β
)
. (19)

Recall the well-known generalized binomial theorem (consult, for example, [24], p. 34):

(1− z)−α =
∞

∑
k=0

(α)k zk

k!
(α ∈ C; |z| < 1). (20)

Recall the familiar beta function (consult, for instance, [11], p. 8):

B(ξ, η) =

⎧⎪⎪⎨⎪⎪⎩
∫ 1

0
uξ−1(1− u)η−1 du (min{�(ξ), �(η)} > 0)

Γ(ξ) Γ(η)
Γ(ξ + η)

(ξ, η ∈ C \Z≤0).
(21)

Here we introduce the Gould-Hopper-Laguerre-Sheffer matrix polynomials (GHLSMaP),
which are denoted by gLs�n(x, y, z; C, E), by convoluting the Laguerre-Sheffer polynomi-
als Lsn(x, y) with the Gould-Hopper matrix polynomials g�n(x, y; C, E). The polynomials
gLs�n(x, y, z; C, E) are generated as in the following definition.

Definition 1. The Gould-Hopper-Laguerre-Sheffer matrix polynomials gLs�n(x, y, z; C, E) are gen-
erated by the following function:
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F(x, y, z; C, E)(τ) : =
1

q(p−1(τ))
exp
[
x
√

2Cp−1(τ) + Ey
(

p−1(τ)
)�]

C0

(
zp−1(τ)

)
=

∞

∑
n=0

gLs�n(x, y, z; C, E)
τn

n!
.

(22)

Here and in the sequel, the functions p, q, C0 are as in (4); the matrices C, E are as in (8), (9),
or (16); the variables x, y, z ∈ C.

In addition, to emphasize the invertible series q and the delta series p, whenever necessary, the
following notation is used:

gLs�n(x, y, z; C, E) =
[q,p]gLs�n(x, y, z; C, E). (23)

Further,

gs�n(x, y; C, E) := gLs�n(x, y, 0; C, E) (24)

is called the Gould-Hopper-Sheffer matrix polynomials.

Remark 3. First we show how to derive the generating function in (22). In (4), replacing y by the
multiplicative operator M̂g in (16), and x by z, we obtain

F(τ) :=
1

q(p−1(τ))
C0

(
zp−1(τ)

)
× exp

[(
x
√

2C p−1(τ) + �Ey(
√

2C)−(�−1) p−1(τ) D�−1
x

)
{1}
]

.
(25)

Recall the Crofton-type identity (see, for instance, [25], p. 12; see also [26]:

f
(
x+ �λ

d�−1

dx�−1

)
{1} = exp

(
λ

d�

dx�
){

f (x)
}

, (26)

with f usually being an analytic function. Setting � = 1 gives:

f
(
x+ λ

)
{1} = exp

(
λ

d
dx

){
f (x)

}
. (27)

Using (25) in (26), we get

F(τ) =
1

q(p−1(τ))
C0(zp−1(τ)) exp

(
Ey(

√
2C)−�D�

x

){
exp
(
x
√

2Cp−1(τ)
)}

. (28)

By performing the operation in (28), with the aid of (32), we can readily find that F(τ) is
identical to the F(x, y, z; C, E)(τ) in (22).

Second, as in (ii), Remark 1, setting p(τ) = p−1(τ) = τ in (22), we get the generating function
for the Gould-Hopper-Laguerre-Appell matrix polynomials (GHLAMaP) gLC�n(x, y, z; C, E) in [27].

Using Euler’s integral for the Gamma function Γ (consult, for instance, Section 1.1 in [11],
p. 218 in [24]), we get

b−ν =
1

Γ(ν)

∫ ∞

0
uν−1e−bu du (min{�(ν), �(b)} > 0). (29)

Dattoli et al. [28] used (29) to obtain the following operator:(
α− ∂

∂x

)−ν

f (x) =
1

Γ(ν)

∫ ∞

0
uν−1e−αueu ∂

∂x { f (x)} du

=
1

Γ(ν)

∫ ∞

0
uν−1e−αu f (x + u) du,

(30)
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for the second equality of which (27) is employed.
The following definition introduces the extended matrix polynomials of

Gould-Hopper-Laguerre-Sheffer (EGHLSMaP), which are indicated by gLs�n,ν(x, y, z; C, E; η).

Definition 2. Let �(η) > 0 and �(ν) > 0. Then the extended Gould-Hopper-Laguerre-Sheffer
matrix polynomials gLs�n,ν(x, y, z; C, E; η) are defined by

gLs�n,ν(x, y, z; C, E; η) :=

(
η − yE

(√
2C
)−� ∂�

∂x�

)−ν{
Lsn(z, x

√
2C)
}

. (31)

In this article, we aim to introduce the Gould-Hopper-Laguerre-Sheffer matrix polyno-
mials via the use of a generating function. For these newly presented matrix polynomials,
we investigate quasi-monomial features and related operational principles. We also explore
the extended form of these novel hybrid special matrix polynomials and their properties
using an integral transform. Finally, we provide many instances to demonstrate how the
results presented here may be used.

2. Gould-Hopper-Laguerre-Sheffer Matrix Polynomials

The following lemma provides an easily-derivable operational identity.

Lemma 1. Let ξ and η be constants independent of x. Also let � ∈ Z≥0. Then:

exp

(
ξ

d�

dx�

)
{eη x} = exp

(
η x+ ξ η�

)
. (32)

In particular,

exp
(
ξ

d
dx

)
{eη x} = exp(η x+ ξ η). (33)

Proof.

exp

(
ξ

d�

dx�

)
{eη x} =

∞

∑
k=0

ξk

k!
d�k

dx�k eη x = eη x
∞

∑
k=0

(
ξ η�
)k

k!
= exp

(
η x+ ξ η�

)
.

The following theorem shows that the Gould-Hopper-Laguerre-Sheffer matrix polyno-
mials gLs�n(x, y, z; C, E) may be obtained by performing a suitable differential operation on
the Laguerre-Sheffer polynomials Lsn(x, y) in (4) with some suitable substitutions of x and y.

Theorem 1. The following identity holds true:

gLs�n(x, y, z; C, E) = exp
(
yE
(√

2C
)−�

D�
x

){
Lsn

(
z, x

√
2C
)}

. (34)

Proof. Replacing x and y by z and x
√

2C, respectively, in (4), we get

1
q(p−1(τ))

C0

(
zp−1(τ)

)
exp
(
x
√

2Cp−1(τ)
)
=

∞

∑
n=0

Lsn(z, x
√

2C)
τn

n!
. (35)
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Performing the operation exp
[
yE
(√

2C
)−�

D�
x

]
on both sides of (35), we obtain

∞

∑
n=0

exp
[
yE
(√

2C
)−�

D�
x

]{
Lsn(z, x

√
2C)
}τn

n!

=
1

q(p−1(τ))
C0

(
zp−1(τ)

)
exp
[
yE
(√

2C
)−�

D�
x

]{
exp
(
x
√

2Cp−1(τ)
)}

=
∞

∑
n=0

gLs�n(x, y, z; C, E)
τn

n!
,

(36)

for the second equality of which (22) and (32) are used. Finally, matching the coefficients of
τn on the first and last power series in (36) gives the identity (34).

Theorem 2. The Gould-Hopper-Laguerre-Sheffer matrix polynomials gLs�n(x, y, z; C, E) are opera-
tionally represented by the Gould-Hopper-Sheffer matrix polynomials gs�n(x, y; C, E):

gLs�n(x, y, z; C, E) = exp
[
−D̂−1

z

(√
2C
)−1

Dx

]{
gs�n(x, y; C, E)

}
. (37)

Proof. From (22) and (24), we have

1
q(p−1(τ))

exp
[
x
√

2Cp−1(τ) + Ey
(

p−1(τ)
)�]

=
∞

∑
n=0

gLs�n(x, y; C, E)
τn

n!
.

(38)

Performing the following operation exp
[
−D̂−1

z

(√
2C
)−1

Dx

]
on each side of (38), and

using (5) and (33), in the same way as in the argument of Theorem 1, one may find the
desired identity (37).

The following theorem reveals the quasi-monomial principle of the matrix polynomials
of Gould-Hopper-Laguerre-Sheffer gLs�n(x, y, z; C, E).

Theorem 3. The matrix polynomials gLs�n(x, y, z; C, E) gratify the following quasi-monomiality,
with respect to the operators of multiplication and differentiation:

M̂gLs =

(
x
√

2C− D̂−1
z + �Ey(

√
2C)−(�−1)D�−1

x − q′
(
(
√

2C)−1Dx
)

q
(
(
√

2C)−1Dx
) )

× 1
p′
(
(
√

2C)−1Dx
) (39)

and

P̂qLs = p
((√

2C
)−1

Dx

)
, (40)

respectively.

Proof. Performing derivatives on each side of the first and second members in (22) about
x, k times, we derive(

(
√

2C)−1 Dx

)k
{F(x, y, z; C, E)(τ)} =

(
p−1(τ)

)k
F(x, y, z; C, E)(τ) (k ∈ Z≥0). (41)
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In particular,(
(
√

2C)−1 Dx

)
{F(x, y, z; C, E)(τ)} = p−1(τ) F(x, y, z; C, E)(τ). (42)

Applying (41) to the series in (1a), we find

∞

∑
k=0

pk
k!

(
(
√

2C)−1 Dx

)k
{F(x, y, z; C, E)(τ)} =

∞

∑
k=0

pk
k!

(
p−1(τ)

)k
{F(x, y, z; C, E)(τ)},

which implies

p
(
(
√

2C)−1 Dx

)
{F(x, y, z; C, E)(τ)} = p

(
p−1(τ)

)
{F(x, y, z; C, E)(τ)}

= τ F(x, y, z; C, E)(τ).
(43)

Then, utilizing the identity (43) in (22), we get

∞

∑
n=1

p
(
(
√

2C)−1 Dx

)
gLs�n(x, y, z;C, E)

τn

n!

=
∞

∑
n=1

gLs�n−1(x, y, z; C, E)
τn

(n− 1)!
.

(44)

Now, identifying the coefficients of τn on each side of (44), in view of (10), may prove
the derivative operator (40).

Next, in view of (5), we have

d
dτ

C0

(
zp−1(τ)

)
=

d
dτ

exp(−p−1(τ)D̂−1
z ){1} = −

(
p−1(τ)

)′
D̂−1
z C0

(
zp−1(τ)

)
. (45)

Then, taking (45) into account, differentiating (22) about τ, we get

∞

∑
n=0

gLs�n+1(x, y, z; C, E)
τn

n!

=
1

p′
(

p−1(τ)
) (x√2C + �Ey(

√
2C)−(�−1)D�−1

x − D̂−1
z − q′

(
p−1(τ)

)
q
(

p−1(t)
) )

×
∞

∑
n=0

gLs�n(x, y, z; C, E)
τn

n!
.

(46)

Finally, applying (42) to (46), in view of (10), we can prove the multiplicative
operator (39).

Remark 4. If p(τ) is a delta series, then p′(τ) is an invertible series. Therefore, the reciprocal
1/p′

(
p−1(τ)

)
is well-defined in (46).

Combining the multiplicative operator in (39) and the derivative operator in (40), such
as (11)–(14), we can provide several matrix differential equations for the matrix polynomials
of Gould-Hopper-Laguerre-Sheffer gLs�n(x, y, z; C, E). One uses (11) to illustrate one of them
in the next theorem, whose proof is simple and overlooked.

Theorem 4. The following differential equation holds true:{(
x
√

2C− D̂−1
z + �Ey(

√
2C)−(�−1)D�−1

x − q′
(
(
√

2C)−1Dx
)

q
(
(
√

2C)−1Dx
) )

× p
(
(
√

2C)−1Dx
)

p′
(
(
√

2C)−1Dx
) − n

}
gLs�n(x, y, z; C, E) = 0.

(47)
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The polynomials gLs�n(x, y, z; C, E) may yield numerous particular matrix polynomials
as special cases, some of which are offered in Table 1.

Table 1. Particular cases of the polynomials gLs�n(x, y, z; C, E).

S. Values of the Relation between Name of the Special Generating Functions

No. Indices and gLs�n(x, y, z; C, E) Matrix Polynomials

Variables and Its Special Case

I. � = 2 gLs2
n(x, y, z; C, E) 3-Variable Hermite- 1

q(p−1(τ))
exp
(
(xp−1(τ)

√
2C + Ey

(
p−1(τ)

)2
)

= H Lsn(x, y, z; C, E) Laguerre-Sheffer matrix ×C0(zp−1(τ)) =
∞
∑

n=0
H Lsn(x, y, z; C, E) τ

n

n!

polynomials
(3VHLSMaP)

II. z = 0 gLs�n(x, y, 0; C, E) Gould-Hopper-Sheffer- 1
q(p−1(τ))

exp
(
xp−1(τ)

√
2C + Ey

(
p−1(τ)

)�)
= gs�n(x, y; C, E) matrix polynomials =

∞
∑

n=0
gs�n(x, y; C, E) τ

n

n!

(GHSMaP)

III. � = r− 1, gLsr−1
n (x, y, 0; C, E) Generalized Chebyshev- 1

q(p−1(τ))
exp
(
xp−1(τ)

√
2C + Ey

(
p−1(τ)

)r−1
)

z = 0 = Usr
n(x, y; C, E) Sheffer matrix =

∞
∑

n=0
Usr

n(x, y; C, E) τ
n

n!

polynomials (GCSMaP)

IV. � = 2, gLs2
n(x, y, 0; C, E) Hermite Kampé de 1

q(p−1(τ))
exp
(
xp−1(τ)

√
2C + Ey

(
p−1(τ)

)2
)

z = 0 = Hsn(x, y; C, E) Fériet-Sheffer matrix =
∞
∑

n=0
Hsn(x,y; C, E) τ

n

n!

polynomials
(HKdFSMaP)

V. z = 0, x→ y Ls�n(y, D−1
x , 0; C, E) Generalized Laguerre- 1

q(p−1(τ))
C0

(
−Ex

(
p−1(τ)

)�)
y → D−1

x = Ls�n(x, y; C, E) Sheffer matrix × exp
(

yp−1(τ)
√

2C
)
=

∞
∑

n=0
Ls�n(x, y; C, E) τ

n

n!

polynomials (GLSMaP)

VI. x = −D−1
x , gLs�n(−D−1

x , y; C, E) 2-Variable generalized 1
q(p−1(τ))

C0

(
xp−1(τ)

√
2C
)

exp
(

Ey
(

p−1(τ)
)�)

z = 0 = [�]Ls�n(x, y; C, E)
Laguerre type Sheffer
matrix =

∞
∑

n=0
[�]Lsn(x, y; C, E) τ

n

n!

polynomials
(2VgLtSMaP)

VII. y = 0, z→ x, gLs�n(y, 0, x; C, E) Laguerre-Sheffer 1
q(p−1(τ))

C0
(
xp−1(τ)

)
exp
(
yp−1(τ)

√
2C
)

x→ y = Lsn(x, y; C) matrix polynomials =
∞
∑

n=0
Lsn(x, y; C) τ

n

n!

(LSaMP)

Remark 5. For the particular matrix polynomials demonstrated in Table 1, we may offer some
properties corresponding to those in Theorems 1–4.

We may get a variety of outcomes that correspond to the above-presented results by varying
the invertible series q(τ) and the delta series p(τ). As in Remark 1, the following corollaries give
the corresponding results to those in Theorems 3 and 4 for the associated and Appell polynomials.

Associated Polynomials

Corollary 1. The associated polynomials
[1,p]gLs�n(x, y, z; C, E) satisfy the following quasi-

monomiality with regard to the operators of multiplication and differentiation:

[1,p] M̂gLs =
(
x
√

2C− D̂−1
z + �Ey(

√
2C)−(�−1)D�−1

x

) 1
p′
(
(
√

2C)−1Dx
) (48)
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and
[1,p] P̂gLs = p

((√
2C
)−1

Dx

)
, (49)

respectively.

Corollary 2. The associated polynomials
[1,p]gLs�n(x, y, z; C, E) satisfy the following

differential equation:{(
x
√

2C− D̂−1
z + �Ey(

√
2C)−(�−1)D�−1

x

)

× p
(
(
√

2C)−1Dx
)

p′
(
(
√

2C)−1Dx
) − n

}
[1,p]gLs�n(x, y, z; C, E) = 0.

(50)

Appell Polynomials

Corollary 3. The Appell polynomials
[q(τ),τ]gLs�n(x, y, z; C, E) gratify the following quasi- monomi-

ality with respect to the operators of multiplication and differentiation:

[q(τ),τ] M̂gLs =

(
x
√

2C− D̂−1
z + �Ey(

√
2C)−(�−1)D�−1

x − q′
(
(
√

2C)−1Dx
)

q
(
(
√

2C)−1Dx
) ) (51)

and

[q(τ),τ] P̂gLs =
(√

2C
)−1

Dx, (52)

respectively.

Corollary 4. The Appell polynomials
[q(τ),τ]gLs�n(x, y, z; C, E) gratify the following

differential equation:{(
x
√

2C− D̂−1
z + �Ey(

√
2C)−(�−1)D�−1

x − q′
(
(
√

2C)−1Dx
)

q
(
(
√

2C)−1Dx
) )

×
√

2C)−1Dx − n

}
[q(τ),τ]gLs�n(x, y, z; C, E) = 0.

(53)

3. Extended Gould-Hopper-Laguerre-Sheffer Matrix Polynomials

Fractional calculus is a well-established theory that is extensively employed in a broad
variety of fields of science, engineering, and mathematics today. The use of integral trans-
forms and operational procedures to new families of special polynomials is a reasonably
effective technique (consult, for instance, [28]).

This section provides some properties for the extended Gould-Hopper-Laguerre-
Sheffer matrix polynomials in (31).

Theorem 5. Let �(η) > 0 and �(ν) > 0. Then the following integral representation for the
extended Gould-Hopper-Laguerre-Sheffer matrix polynomials gLs�n,ν(x, y, z; C, E; η) holds true:

gLs�n,ν(x, y, z; C, E; η)

=
1

Γ(ν)

∫ ∞

0
e−ηttν−1

gLs�n(x, yt, z; C, E) dt.
(54)

Proof. Let L be the left-sided member of (54). Using (29) and (31), we have
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L =
1

Γ(ν)

∫ ∞

0
e−ηttν−1 exp

(
yEt
(√

2C
)−� ∂�

∂x�

){
Lsn(z, x

√
2C)
}

dt

=
1

Γ(ν)

∫ ∞

0
e−ηttν−1

gLs�n(x, yt, z; C, E) dt,

(55)

the second equality of which follows from (34).

The following theorem gives the generating function of the EGHLSMaP.

Theorem 6. The following function generates the extended Gould-Hopper-Laguerre-Sheffer matrix
polynomials gLs�n,ν(x, y, z; C, E; η):

exp(x
√

2Cp−1(u))C0(zp−1(u))
q(p−1(u))

{
η − Ey(p−1(u))�

}ν =
∞

∑
n=0

gLs�n,ν(x, y, z; C, E; η)
un

n!
. (56)

Additionally, the following differential-recursive relation holds true:

∂

∂η
gLs�n,ν(x, y, z; C, E; η) = −ν gLs�n,ν+1(x, y, z; C, E; η). (57)

Proof. Multiplying each member of (54) by un

n! and adding over n, one derives

∞

∑
n=0

gLs�n,ν(x, y, z; C, E; η)
un

n!

=
∞

∑
n=0

1
Γ(ν)

∫ ∞

0
e−ηttν−1

gLs�n(x, yt, z; C, E)
un

n!
dt.

(58)

Using (22) in the integrand of the right-sided member of (58) gives

∞

∑
n=0

gLs�n,ν(x, y, z; C, E; η)
un

n!

=
C0(z(p−1(u))�) exp(x

√
2Cp−1(u))

q(p−1(u))Γ(ν)

∫ ∞

0
e−{η−Ey( f−1(u))�}ttν−1 dt,

the right member of which, upon using (29), leads to the left-sided member of (56).
Differentiating each member of (56) about η, one may get (57).

The following theorem reveals that the EGHLSMaP gLs�n,ν(x, y, z; C, E; η) is an exten-
sion of the GHLSMaP gLs�n(x, y, z; C, E).

Theorem 7. The following identities hold true:

exp(x
√

2Cp−1(u))C0(zp−1(u))
q(p−1(u)) 1F1

(
ν ; 1; Ey(p−1(u))�

)
=

∞

∑
n=0

gLs�n,ν(x, D̂−1
y , z; C, E; 1){1}un

n!
;

(59)

gLs�n(x, y, z; C, E) = gLs�n,1(x, D̂−1
y , z; C, E; 1){1}. (60)

Proof. Taking η = 1 and y = D̂−1
y in (56), we get

G(ν; t) :=
exp(x

√
2Cp−1(u))C0(zp−1(u))

q(p−1(u))

(
1− ED̂−1

y (p−1(u))�
)−ν

{1}. (61)

Using (20), we obtain
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(
1− ED̂−1

y (p−1(u))�
)−ν

{1} =
∞

∑
n=0

(ν)n

n!
En
(

p−1(u)
)�n

D̂−n
y {1}

=
∞

∑
n=0

(ν)n Enyn(p−1(u)
)�n

(1)n n!

= 1F1

(
ν ; 1; Ey(p−1(u))�

)
,

(62)

for the second and third equalities of which (6) and (17) are employed, respectively.
Now, setting the last expression of (62) in (61), in view of (56), we obtain (59).
Noting

1F1

(
1 ; 1; Ey(p−1(u))�

)
= exp

(
Ey
(

p−1(u)
)�)

,

we find that the resulting G(t; 1) is the generating function of the Gould-Hopper-Laguerre-
Sheffer matrix polynomials gLs�n(x, y, z; C, E) in (22). We therefore have

∞

∑
n=0

gLs�n,1(x, D̂−1
y , z; C, E; 1){1}un

n!
=

∞

∑
n=0

gLs�n(x, y, z; C, E)
un

n!
,

which, upon equating the coefficients of un, yields (60).
The identity (60) may be obtained as follows: Combining (31) and (34) gives

gLs�n(x, y, z; C, E) =
(

1− D̂−1
y E
(√

2C
)−�

D�
x

)
exp
(
y E
(√

2C
)−�

D�
x

)
×
{

gLs�n,1(x, D̂−1
y , z; C, E; 1)

}
.

As in (62), we find

exp
(
y E
(√

2C
)−�

D�
x

)
=

(
1− D̂−1

y E
(√

2C
)−�

D�
x

)−1
{1}.

Remark 6. As in (ii), Remark 1, the Laguerre-Sheffer polynomials Lsn(x, y) reduce to the Laguerre-
Appell polynomials LAn(x, y) (see [15]). Additionally, taking p−1(u) = u in the generating
Equation (56), we can get the generalized Gould-Hopper-Laguerre-Appell matrix polynomials
gLA�

n,ν(x, y, z; C, E; η) (see [27]).

The following theorem reveals the quasi-monomial principle of the extended Gould-
Hopper-Laguerre-Sheffer matrix polynomials gLs�n,ν(x, y, z; C, E; η).

Theorem 8. The matrix polynomials gLs�n,ν(x, y, z; C, E; η) satisfy the following quasi-monomiality
with regard to the operators of multiplication and differentiation:

M̂gLsν =

(
x
√

2C− D̂−1
z − �Ey(

√
2C)−(�−1)DηD�−1

x − q′
(
(
√

2C)−1Dx
)

q
(
(
√

2C)−1Dx
) )

× 1
p′
(
(
√

2C)−1Dx
) (63)

and

P̂gLsν = p
((√

2C
)−1

Dx

)
, (64)

respectively. Here Dη := ∂
∂η .
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Proof. From Theorem 3, we have(
x
√

2C− D̂−1
z + �Ey(

√
2C)−(�−1)D�−1

x − q′
(
(
√

2C)−1Dx
)

q
(
(
√

2C)−1Dx
) )

× 1
p′
(
(
√

2C)−1Dx
) gLs�n(x, y, z; C, E) = gLs�n+1(x, y, z; C, E),

(65)

and

p
((√

2C
)−1

Dx

)
gLs�n(x,y,z; C, E) = n gLs�n−1(x,y,z; C, E). (66)

Replacing y by yt in each member of (66), multiplying both members of the resultant
identity by 1

Γ(ν) e−ηttν−1, and integrating each member of the last resultant identity with
respect to t from 0 to ∞, with the aid of (54), one obtains

p
((√

2C
)−1

Dx

){
gLs�n,ν(x, y, z; C, E; η)

}
= n gLs�n−1,ν(x, y, z; C, E; η),

which proves (64).
Furthermore, replacing y by yt in both sides of (65), multiplying both members of the

resultant identity by 1
Γ(ν) e−ηttν−1, and integrating both sides of the last resulting identity

with respect to t from 0 to ∞, with the help of (54) and (57), one can derive

M̂gLsν

{
gLs�n,ν(x, y, z; C, E; η)

}
= gLs�n+1,ν(x, y, z; C, E; η).

This proves (63).

As in Theorem 4, using the results in Theorem 8, a differential equation for the
extended Gould-Hopper-Laguerre-Sheffer matrix polynomials gLs�n,ν(x, y, z; C, E; η) can be
given in Theorem 9.

Theorem 9. The following differential equation holds true:{(
x
√

2C− D̂−1
z − �Ey(

√
2C)−(�−1)Dz D�−1

x − q′
(
(
√

2C)−1Dx
)

q
(
(
√

2C)−1Dx
) )

× p
(
(
√

2C)−1Dx
)

p′
(
(
√

2C)−1Dx
) − n

}
gLs�n,ν(x, y, z; C, E; η) = 0.

(67)

As in Table 1, Table 2 includes certain particular cases of the extended Gould-Hopper-
Laguerre-Sheffer matrix polynomials gLs�n,ν(x, y, z; C, E; η), among numerous ones.

Table 2. Special cases of the EGHLSMaP gLs�n,ν(x, y, z; C, E; η).

S. Values of the Indices Name of the Hybrid Special Polynomials Generating Function
No. and Variables

I. � = 2 3-Variable extended Hermite-Laguerre-Sheffer
exp((xp−1(u)

√
2C)C0(zp−1(u))

q(p−1(u))
(
η−Ey(p−1(u))2

)ν
matrix polynomials (3VEHLSMaP) =

∞
∑

n=0
H Lsn,ν(x, y, z; C, E, η) τ

n

n!

II. z = 0 Extended Gould-Hopper-Sheffer-matrix
exp(xp−1(u)

√
2C)

q(p−1(u))
(
η−Ey(p−1(u))�

)ν
polynomials (EGHSMaP) =

∞
∑

n=0
gs�n,ν(x, y; C, E, η) τ

n

n!
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Table 2. Cont.

S. Values of the Indices Name of the Hybrid Special Polynomials Generating Function
No. and Variables

III. � = r− 1, Extended generalized Chebyshev-Sheffer
exp((xp−1(u)

√
2C)

q(p−1(u))
(
η−Ey(p−1(u))r−1

)ν
z = 0 matrix polynomials (EGCSMaP) =

∞
∑

n=0
Usr

n,ν(x, y; C, E, η) τ
n

n!

IV. � = 2, Extended Hermite Kampé de Fériet-
exp(xp−1(u)

√
2C)

q(p−1(u))
(
η−Ey(p−1(u))2

)ν
z = 0 Sheffer matrix polynomials (EHKdFSMaP) =

∞
∑

n=0
Hsn,ν(x, y; C, E, η) τ

n

n!

V. z = 0, x→ y Extended generalized Laguerre-Sheffer
C0

(
−Ex(p−1(u))

�
)

q(p−1(u))(η−y
√

2Cp−1(u))
ν

y→ D−1
x matrix polynomials (EGLSMaP) =

∞
∑

n=0
Ls�n,ν(x, y; C, E, η) τ

n

n!

VI. x = −D−1
x , 2-Variable extended generalized Laguerre

C0(xp−1(u)
√

2C)

q(p−1(u))
(
η−Ey(p−1(u))�

)ν
z = 0 type Sheffer matrix polynomials (2VEgLtSMaP) =

∞
∑

n=0
[�]Lsn,ν(x, y; C, E, η) τ

n

n!

VII. y = 0, z→ x, Extended Laguerre-Sheffer
C0(xp−1(u))

q(p−1(u))(η−y
√

2Cp−1(u))
ν

x→ y matrix polynomials (ELSaMP) =
∞
∑

n=0
Lsn,ν(x, y; C, η) τ

n

n!

Remark 7. As in (i), Remark 1, if q(τ) = 1, the Laguerre-Sheffer polynomials Lsn(x, y) reduce to
the Laguerre-associated Sheffer polynomials

[1,p]Lsn(x,y). The extended Gould-Hopper-Laguerre-Sheffer
matrix polynomials gLs�n,ν(x,y,z; C, E;η) reduce to the extended Gould-Hopper-Laguerre-associated
Sheffer matrix polynomials (EGHLASMaP)

[1,p]gLs�n,ν(x,y,z; C, E;η). The following corollary contains
the results for EGHLASMaP corresponding to those in Theorems 5–9.

Corollary 5. (i) Let �(η) > 0 and �(ν) > 0.

[1,p]gLs�n,ν(x, y, z; C, E; η) =
1

Γ(ν)

∫ ∞

0
e−ηuuν−1

[1,p]gLs�n(x, y u, z; C, E) du. (68)

(ii) The polynomials
[1,p]gLs�n,ν(x, y, z; C, E; η) are generated by means of the following function:

exp(x
√

2Cp−1(u))C0(zp−1(u))
p−1(u)

{
η − Ey(p−1(u))�

}ν =
∞

∑
n=0

[1,p]gLs�n,ν(x, y, z; C, E; η)
un

n!
. (69)

Additionally, the following differential-recursive relation holds true:

∂

∂η [1,p]gLs�n,ν(x, y, z; C, E; η) = −ν
[1,p]gLs�n,ν+1(x, y, z; C, E; η). (70)

(iii) The matrix polynomials
[1,p]gLs�n,ν(x, y, z; C, E; η) gratify quasi-monomiality with regard to

the following operators of multiplication and differentiation:

[1,p] M̂gLsν =
(
x
√

2C− D̂−1
z − �Ey(

√
2C)−(�−1)DηD�−1

x

) 1
p′
(
(
√

2C)−1Dx
) (71)

and

[1,p] P̂gLsν = p
((√

2C
)−1

Dx

)
, (72)

respectively.
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(iv) The following differential equation holds true:{(
x
√

2C− D̂−1
z − �Ey(

√
2C)−(�−1)Dz D�−1

x

)

× p
(
(
√

2C)−1Dx
)

p′
(
(
√

2C)−1Dx
) − n

}
[1,p]gLs�n,ν(x, y, z; C, E; η) = 0.

(73)

4. Remarks and Further Particular Cases

The 1F1 in (59), which is called the confluent hypergeometric function or Kummer’s
function, is an important and useful particular case of αFβ in (17). It also has various
other notations (consult, for instance, [11], p. 70). For properties and identities of 1F1,
one may consult the monograph [29]. In this regard, in view of (59), one may offer a vari-
ety of identities for the gLs�n,ν(x, D̂−1

y , z; C, E; 1){1}. In order to give a demonstration, the 1F1
in (59) has the following integral representation (consult, for instance, [11], p. 70,
Equation (46)):

1F1

(
ν ; 1; Ey(p−1(u))�

)
=

1
Γ(ν)Γ(1− ν)

∫ 1

0
ην−1(1− η)−ν exp

(
Ey
(

p−1(u)
)�

η

)
dη (0 < �(ν) < 1).

(74)

Further, using (35) and (59), with the aid of (21) and (74), one may readily get the
following identity:

[q(u),u]gLs�n,ν(x, D̂−1
y , z; C, E; 1){1}

=
[ n
� ]

∑
k=0

n! (ν)k
(k!)2 (n− �k)!

(Ey)k
[q(u),u] Lsn−�k(z, x

√
2C).

(75)

The hybrid matrix polynomials introduced in Sections 2 and 3, besides the demon-
strated particular cases, may produce numerous other particular cases as well as corre-
sponding properties. In this section, we combine the findings from Sections 2 and 3 with
several well-known (or classical) polynomials to derive some related identities.

(a) The Hermite polynomials Hn(x), which are generated by the following function
(consult, for example, [30]):

exp(2xτ − τ2) =
∞

∑
n=0

Hn(x)
τn

n!
(76)

belongs to the Sheffer family by choosing

q(τ) = eτ
2/4, p(τ) =

τ

2
, and p−1(τ) = 2τ (77)

in (3).
For these choices of q(τ) and p(τ) in (22) and (56), the GHLSMaP gLs�n(x, y, z; C, E)
and the EGHLSMaP gLs�n,ν(x, y, z; C, E; η) are called (denoted) as the matrix polyno-
mials of Gould-Hopper-Laguerre-Hermite (GHLHMaP) gL H�

n(x, y, z; C, E) and the
extended matrix polynomials of Gould-Hopper-Laguerre-Hermite (EGHLHMaP)
gL H�

n,ν(x, y, z; C, E; η), respectively.
Some identities corresponding to those in Sections 2 and 3 are recorded in
Tables 3 and 4.
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Table 3. Results for the GHLHMaP gL H�
n(x, y, z; C, E).

Results Expressions

Generating function: exp
(

2xτ
√

2C + Ey(2τ)� − τ2
)

C0(2zτ) =
∞
∑

n=0
gL H�

n(x, y, z; C, E) τ
n

n! .

Multiplicative and M̂
gL H =

(
x
√

2C− D̂−1
z + �Ey

(
√

2C)(�−1)
∂�−1

∂x�−1 − (
√

2C)
−1

Dx

2

)
2,

derivative operators: P̂
gL H =

(
√

2C)
−1

Dx

2 .

Differential equation:
((

x
√

2C− D̂−1
z + �Ey

(
√

2C)(�−1)
∂�−1

∂x�−1 − (
√

2C)
−1

Dx

2

)(√
2C
)−1

Dx − n
)

×gL H�
n(x, y, z; C, E) = 0.

Table 4. Results for the EGHLHMaP gL H�
n,ν(x, y, z; C, E; α).

Results Expressions

Generating function:
exp(2xτ

√
2C)C0(2zτ)

eτ2 (α−Ey(2τ)�)ν
=

∞
∑

n=0
gL H�

n,ν(x, y, z; C, E; α) τ
n

n! .

Multiplicative and M̂
gL Hν

=

(
x
√

2C− D̂−1
z − �Ey

(
√

2C)(�−1)
∂�

∂α∂x�−1 − (
√

2C)
−1

Dx

2

)
2,

derivative operators: P̂
gL Hν

=
(
√

2C)
−1

Dx

2 .

Differential equation:
((

x
√

2C− D̂−1
z + �Ey

(
√

2C)(�−1)
∂�

∂α∂x�−1 − (
√

2C)
−1

Dx

2

)(√
2C
)−1

Dx − n
)

×gL H�
n,ν(x, y, z; C, E; α) = 0.

(b) The truncated exponential polynomials en(x), which are generated by the following
function (consult, for example, [31], p. 596, Equation (4); see also [32]):

exτ

1− τ
=

∞

∑
n=0

en(x)
τn

n!
(78)

belong to the Sheffer family by choosing q(τ) = 1
1−τ and p(τ) = τ. As in (a), the

GHLSMaP gLs�n(x,y,z; C, E) and EGHLSMaP gLs�n,ν(x,y,z; C, E; η) are called (de-
noted) as the Gould-Hopper-Laguerre-truncated exponential matrix polynomials
(GHLTEMaP) gLe�n(x, y, z; C, E) and extended Gould-Hopper-Laguerre-truncated ex-
ponential matrix polynomials (EGHLTEMaP) gLe�n,ν(x, y, z; C, E; η), respectively. As in
(a), their properties are recorded in Tables 5 and 6.

Table 5. Results for the GHLTEMaP gLe�n(x, y, z; C, E).

Results Expressions

Generating function: 1
1−t exp

(
xt
√

2C + Eyt�
)

C0(zt) =
∞
∑

n=0
gLe�n(x, y, z; C, E) tn

n! .

Multiplicative and M̂
gLe = x

√
2C− D̂−1

z + �Ey
(
√

2C)(�−1)
∂�−1

∂x�−1 − 1
1−(

√
2C)−1Dx

,

derivative operators: P̂
gLe =

(√
2C
)−1

Dx.

Differential equation:
((

x
√

2C− D̂−1
z + �Ey

(
√

2C)(�−1)
∂�−1

∂x�−1 − 1
1−(

√
2C)−1Dx

)
(
√

2C)−1Dx − n
)

×gLe�n(x, y, z; C, E) = 0.
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Table 6. Results for the EGHLTEMaP gLe�n,ν(x, y, z; C, E; η).

Results Expressions

Generating function: 1
1−u

exp(xu
√

2C)C0(zu)

(α−Eyu�)
ν =

∞
∑

n=0
gLe�n,ν(x, y, z; C, E; α) un

n! .

Multiplicative and M̂gLeν = x
√

2C− D̂−1
z − �Ey

(
√

2C)(�−1)
∂�

∂α∂x�−1 − 1
1−(

√
2C)−1 Dx

,

derivative operators: P̂gLeν =
(√

2C
)−1

Dx.

Differential equation:
((

x
√

2C− D̂−1
z − �Ey

(
√

2C)(�−1)
∂�

∂α∂x�−1 − 1
1−(

√
2C)−1 Dx

)
(
√

2C)−1Dx − n
)

×gLe�n,ν(x, y, z; C, E; α) = 0.

(c) The Mittag-Leffler polynomials Mn(x), which are the member of associated Sheffer
family and defined as follows (see [4]):

(
1 + τ

1− τ

)x
=

∞

∑
n=0

Mn(x)
τn

n!
(79)

by choosing q(τ) = 1 and p(τ) = eτ−1
eτ+1 . As in (a), the GHLASMaP gLs

�
n(x, y, z; C, E)

and the EGHLASMaP gLs
�
n,ν(x, y, z; C, E; η) are called (denoted) as the Gould-Hopper-

Laguerre-Mittag-Leffler matrix polynomials (GHLMLMaP) gL M�
n(x, y, z; C, E) and the

extended Gould-Hopper-Laguerre-Mittag-Leffler matrix polynomials (EGHLMLMaP)
gL M�

n,ν(x, y, z; C, E; η), respectively. As in (a) or (b), their properties are recorded in
Tables 7 and 8.

Table 7. Results for the GHLMLMaP gL M�
n(x, y, z; C, E).

Results Expressions

Generating function: exp
(
x ln
(

1+τ
1−τ

)√
2C + Ey ln

(
1+τ
1−τ

)�)
C0

(
z ln
(

1+τ
1−τ

))
=

∞
∑

n=0
gL M�

n(x, y, z; C, E) τ
n

n! .

Multiplicative and M̂
gL M =

(
x
√

2C− D̂−1
z +

�Ey
(
√

2C)(�−1)
∂�−1

∂x�−1

)(
e(
√

2C)−1 Dx+1
)2

2 e(
√

2C)−1 Dx
,

derivative operators: P̂
gL M = e(

√
2C)−1 Dx−1

e(
√

2C)−1 Dx+1
.

Differential equation:
((

x
√

2C− D̂−1
z + �Ey

(
√

2C)(�−1)
∂�−1

∂x�−1

)
e2(

√
2C)−1 Dx−1

2 e(
√

2C)−1 Dx
− n
)

×gL M�
n(x, y, z; C, E) = 0.

Table 8. Results for the EGHLMLMaP gL M�
n,ν(x, y, z; C, E; η).

Results Expressions

Generating function:
exp(x ln( 1+τ

1−τ )
√

2C)C0(z ln( 1+τ
1−τ ))(

α−Ey ln( 1+t
1−t )

�
)ν =

∞
∑

n=0
gL M�

n,ν(x, y, z; C, E; η) τ
n

n! .

Multiplicative and M̂
gL Mν

=

(
x
√

2C− D̂−1
z − �Ey

(
√

2C)(�−1)
∂�

∂α∂x�−1

)(
e(
√

2C)−1 Dx+1
)2

2 e(
√

2C)−1 Dx
,

derivative operators: P̂
gL Mν

= e(
√

2C)−1 Dx−1
e(
√

2C)−1 Dx+1
.

Differential equation:
((

x
√

2C− D̂−1
z − �Ey

(
√

2C)(�−1)
∂�

∂α∂x�−1

)
e2(

√
2C)−1 Dx−1

2 e(
√

2C)−1 Dx
− n
)

×gL M�
n,ν(x, y, z; C, E; η) = 0.

Numerous necessary and sufficient properties for Sheffer sequences, accordingly,
associated sequences and Appell sequences have been developed (see [4], pp. 17–28). In
addition to the identities in Corollaries 3 and 4, here, we record several identities for the
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Appell polynomials
[q(τ),τ]gLs�n(x, y, z; C, E) in the following corollary, without their proofs

(see [4], pp. 26–28).

Corollary 6. The following identities hold true:

(a)

[q(τ),τ]gLs�n(x, y, z; C, E) = q
((√

2C
)−1

Dx

)−1

{xn}. (80)

(b)

[q(τ),τ]gLs�n(x1 + x2, y, z; C, E)

=
n

∑
k=0

(
n
k

)
[q(τ),τ]gLs�n−k(x1, y, z; C, E)

(√
2C x2

)k
.

(81)

(c) (Conjugate representation)

[q(τ),τ]gLs�n(x, y, z; C, E)

=
n

∑
k=0

(
n
k

)[
q
((√

2C
)−1

Dx

)−1{
xn−k

}]
xk.

(82)

5. Conclusions and Posing a Problem

The authors introduced a new class of polynomials, the Gould-Hopper-Laguerre-Sheffer
matrix polynomials, using operational approaches. This new family’s generating function
and operational representations were then constructed. They are also understood in terms
of quasi-monomiality. The authors also extended Gould-Hopper-Laguerre-Sheffer matrix
polynomials and explored their characteristics using the integral transform. There were other
instances for individual members of the aforementioned matrix polynomial family.

It should be highlighted that the polynomials presented and studied in this article are
regarded to be novel, primarily because they cannot be obtained by modifying previously
published findings and identities, as far as we have researched. Also, the new polynomials
and their identities are potentially useful, particularly in light of the tables’ demonstrations
of some of their special instances.

Posing a problem: Provide some new instances (which are nonexistent from the
literature) for those novel polynomials, such as Gould-Hopper matrix polynomials and
Gould-Hopper-Laguerre-Sheffer matrix polynomials.
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Abstract: In this article, we established a new version of generalized fractional Hadamard and
Fejér–Hadamard type integral inequalities. A fractional integral operator (FIO) with a non-singular
function (multi-index Bessel function) as its kernel and monotone increasing functions is utilized to
obtain the new version of such fractional inequalities. Our derived results are a generalized form of
several proven inequalities already existing in the literature. The proven inequalities are useful for
studying the stability and control of corresponding fractional dynamic equations.

Keywords: bessel function; harmonically convex function; non-singular function involving kernel
fractional operator; harmonically convex function; Hadamard inequality; Fejér–Hadamard inequality

MSC: 2010: 33C10; 11K70; 33B20; 52A41; 05B20; 26D07

1. Introduction

In the present era, fractional integral operators involving inequalities are widely
derived by [1–4]. These fractional integral operators of any arbitrary real or complex order
involve a different type of kernel. The field of fractional calculus has gained considerable
importance among mathematicians and scientists due to its wide applications in sciences,
engineering, and many other fields [5–9]. Hadamard and Fejér–Hadamard type inequalities
have been discussed for many functions using different fractional operators with different
kernels. Abbas and Farid [10] proposed the Hadamard and Fejér–Hadamard type integral
inequalities for harmonically convex functions using the two-sided generalized fractional
integral operator. Farid et al. [11,12] discussed these results in generalized form with
an extended generalized Mittag–Leffler function. Hadamard and Fejér–Hadamard type
inequalities are widely studied by the researchers [12–19]. The objective of this paper is
to derive Hadamard, Fejér–Hadamard, and some other related type inequalities for the
harmonically convex function via a generalized fractional operator with a nonsingular
function as its kernel, which involves a multi-index Bessel function. For a recent related
weighted fractional generalized approach, we refer to [20].

Hermite–Hadamard inequality and Fejér–Hadamard inequality are given by

Fractal Fract. 2021, 5, 54. https://doi.org/10.3390/fractalfract5020054 https://www.mdpi.com/journal/fractalfract349
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Theorem 1 ([21–23]). The inequality derived on the interval I = [u, v] ⊆ R called Hermite
Hadamard inequality is given by

ρ
[u + v

2

]
≤ 1

v− u

∫ v

u
ρ(t)dt ≤ ρ(u) + ρ(v)

2
, (1)

where u, v ∈ I, with u �= v and ρ : I → R is a convex function.

Theorem 2 ([21,24,25]). The Fejér–Hadamard inequality is defined for a convex function ρ : I →
R and for a function μ : I → R, which is non-negative, integrable, and symmetric about u+v

2 ,
defined by

ρ
[u + v

2

] ∫ v

u
μ(t)dt ≤

∫ v

u
ρ(t)μ(t)dt ≤

[ρ(u) + ρ(v)
2

] ∫ v

u
μ(t)dt, (2)

where u, v ∈ I, with u �= v.

Definition 1 ([21,26]). A function ρ : [u, v]→ R is said to be convex if

ρ
[
tx + (1− t)y

]
≤ tρ(x) + (1− t)ρ(y) (3)

holds for all x, y ∈ [u, v] and t ∈ [0, 1].

Definition 2 ([21,22]). Let I be an interval of nonzero real numbers. Then a function ρ : I → R

is said to be harmonically convex if

ρ
[ uv

tu + (1− t)v

]
≤ tρ(v) + (1− t)ρ(u) (4)

holds for all u, v ∈ I and t ∈ [0, 1].

Definition 3 ([21,27]). A function ρ : [u, v]→ R where I ⊂ R contains nonzero real numbers is
said to be harmonically symmetric about u+v

2uv if

ρ
[1

t

]
= ρ
[ 1

1
u + 1

v − t

]
. (5)

t ∈ [u, v]

Definition 4 ([28,29]). The Pochammer’s symbol is defined for s ∈ N as

(μ)s =

{
1, for s = 0, μ �= 0,
μ(μ+ 1) · · · (μ+ s− 1), for s ≥ 1,

(6)

where μ ∈ C.

Definition 5 ([30]). The generalized multi-index Bessel function defined by Choi et al. as follows;

J
(γj)m,λ

(τj)m,σ
(t) =

∞

∑
s=0

(λ)σs

(s!)
m
∏
j=1

Γ(γjs + τj + 1)
(−t)s, (7)

where γj, τj,λ ∈ C ,j = 1, 2, 3 · · ·m,�(λ) > 0,�(τj) > −1,
m
∑

j=1
�(γj) > max(0 : �(σ)− 1),

σ > 0.
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We define the following generalized fractional integral with a nonsingular function
(generalized multi-index Bessel function) as a kernel.

Definition 6. The generalized fractional integral operators (left and right-sided) containing the
multi-index Bessel function in its kernel are, respectively, defined by(

T
(γj ,τj)m

λ,σ,ς;u+ ρ
)
(z) =

∫ z

u
(z− t)τj J

(γj)m,λ

(τj)m,σ
(ς(z− t)γj)ρ(t)dt (8)

and (
T

(γj ,τj)m

λ,σ,ς;v− ρ
)
(z) =

∫ v

z
(t− z)τj J

(γj)m,λ

(τj)m,σ
(ς(t− z)γj)ρ(t)dt, (9)

where γj, τj,λ, ς ∈ C ,j = 1, 2, 3 · · ·m,�(λ) > 0,�(τj) > −1,
m
∑

j=1
�(γj) > max(0 : �(σ)− 1),

σ > 0 and ρ ∈ L[u, v], t ∈ [u, v].

Remark 1. 1. If we put ς = 0, m = 1 and replace τj by τj − 1, it reduces to left and right-sided
Riemann–Liouville fractional integral operator.

2. Main Results

In this section, we present Hadamard, and Fejér–Hadamard type inequalities for
harmonically convex functions by employing the new generalized fractional integral
operators with a multi-index Bessel function as its kernel. We also establish a new version
of inequalities by expressing the generalized fractional integral operator as the sum of two
fractional integrals.

Theorem 3. Let θ,ψ : [a, b] → R, (0 < a < b, range(ψ) ⊂ [a, b]) be functions such that
θ ∈ L1[a, b] is a positive and harmonically convex function and ψ is differentiable and strictly
increasing on [a,b], then for the integral operators defined in Definition 6, we have

θ
( 2ψ(a)ψ(b)
ψ(a) + ψ(b)

)(
T

(γj ,τj)m

λ,σ,ζ;( 1
ψ(a) )

−1
)( 1

ψ(b)

)
≤ 1

2

[
{T (γj ,τj)m

λ,σ,ζ;( 1
ψ(a) )

−θ ◦ μ}
( 1
ψ(b)

)
+ {T (γj ,τj)m

λ,σ,ζ;( 1
ψ(b) )

+
θ ◦ μ}

( 1
ψ(a)

)]
≤
[ θ(ψ(a)) + θ(ψ(b))

2

](
T

(γj ,τj)m

λ,σ,ζ;( 1
ψ(a) )

−1
)( 1

ψ(b)

)
, (10)

where μ(x) = 1
x for all x ∈ [ 1

b , 1
a ].

Proof. If θ is harmonically convex on [a, b], for every x, y ∈ [a, b], the following inequal-
ity holds

θ
( 2ψ(x)ψ(y)
ψ(x) + ψ(y)

)
≤ θ(ψ(x)) + θ(ψ(y))

2
. (11)

Now, taking ψ(x) =
ψ(a)ψ(b)

tψ(b) + (1− t)ψ(a)
and ψ(y) =

ψ(a)ψ(b)
tψ(a) + (1− t)ψ(b)

in Equa-

tion (11), we have

2θ
( 2ψ(a)ψ(b)
ψ(a) + ψ(b)

)
≤ θ
( ψ(a)ψ(b)

tψ(b) + (1− t)ψ(a)

)
+ θ
( ψ(a)ψ(b)

tψ(a) + (1− t)ψ(b)

)
. (12)
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By multiplying by (1− t)τj J
(γj)m,λ

(τj)m,σ
(ζ(1− t)γj) and then integrating over [0, 1], we get

2θ
( 2ψ(a)ψ(b)
ψ(a) + ψ(b)

) ∫ 1

0
(1− t)τj J

(γj)m,λ

(τj)m,σ
(ζ(1− t)γj)dt

≤
∫ 1

0
(1− t)τj J

(γj)m,λ

(τj)m,σ
(ζ(1− t)γj)

{
θ
( ψ(a)ψ(b)

tψ(b) + (1− t)ψ(a)

)
+ θ
( ψ(a)ψ(b)

tψ(a) + (1− t)ψ(b)

)}
dt

2θ
(

2ψ(a)ψ(b)
ψ(a) + ψ(b)

)[ 1
1

ψ(a) −
1

ψ(b)

]
T

(γj ,τj)m

λ,σ,ζ;( 1
ψ(a) )

−1
(

1
ψ(b)

)

≤
∞

∑
s=0

((λ)sσ(−ζ)s

(s!)∏m
j=1 Γ(γjs + τj + 1)

[ ∫ 1

0
(1− t)τj+γjsθ

(
ψ(a)ψ(b)

tψ(b) + (1− t)ψ(a)

)
dt (13)

+
∫ 1

0
(1− t)τj+(γjs)θ

(
ψ(a)ψ(b)

tψ(a) + (1− t)ψ(b)

)
dt
]

.

Solving the integrals involved in right side of inequality (13) by making substitution
1
u
=

ψ(a)ψ(b)
tψ(b) + (1− t)ψ(a)

in first integral and
1

ψ(x)
=

ψ(a)ψ(b)
tψ(a) + (1− t)ψ(b)

in the second

integral, we have

θ

(
2ψ(a)ψ(b)
ψ(a) + ψ(b)

)
T

(γj ,τj)m

λ,σ,ζ;( 1
ψ(a) )

−1
(

1
ψ(b)

)
≤ 1

2

[
T

(γj ,τj)m

λ,σ,ζ;( 1
ψ(a) )

−θ ◦ μ
(

1
(ψ(b))

)
+T

(γj ,τj)m

λ,σ,ζ;( 1
ψ(b) )

+
θ ◦ μ

(
1

(ψ(a))

)]
. (14)

To obtain the second part of the inequality, the harmonic convexity of θ, we have the
following relation

θ

(
ψ(a)ψ(b)

tψ(b) + (1− t)ψ(a)

)
+ θ

(
ψ(a)ψ(b)

tψ(a) + (1− t)ψ(b)

)
≤ θ(ψ(a)) + θ(ψ(b)). (15)

Multiplying by (1− t)τj J
(γj)m,λ

(τj)m,σ
(ζ(1− t)γj) and integrating over [0, 1] in Equation (15),

we have ∫ 1

0
(1− t)τj J

(γj)m,λ

(τj)m,σ
(ζ(1− t)γj)θ

(
ψ(a)ψ(b)

tψ(b) + (1− t)ψ(a)

)
dt

+
∫ 1

0
(1− t)τj J

(γj)m,λ

(τj)m,σ
(ζ(1− t)γj)θ

(
ψ(a)ψ(b)

tψ(a) + (1− t)ψ(b)

)
dt

≤
[
θ(ψ(a)) + θ(ψ(b))

]
T

(γj ,τj)m

λ,σ,ζ;( 1
ψ(b) )

+
1
(

1
ψ(a)

)
. (16)

Solving the integrals involved in the left side of inequality (16) by making substitution
1
u
=

ψ(a)ψ(b)
tψ(b) + (1− t)ψ(a)

in first integral and
1
v
=

ψ(a)ψ(b)
tψ(a) + (1− t)ψ(b)

in the second inte-

gral, we obtain

1
2

[
T

(γj ,τj)m

λ,σ,ζ;( 1
ψ(a) )

−θ ◦ μ
(

1
ψ(b)

)
+T

(γj ,τj)m

λ,σ,ζ;( 1
ψ(b) )

+
θ ◦ μ

(
1

ψ(a)

)]
≤
[
θ(ψ(a)) + θ(ψ(b))

2

]
T

(γj ,τj)m

λ,σ,ζ;( 1
ψ(b) )

+
1
(

1
(ψ(a))

)
. (17)

Combining (14) and (17), we get the desired result.
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Corollary 1. If ψ(x) = 1
x in Theorem 3 then the following inequality holds

θ
[ 2

a + b

](
T

(γj ,τj)m

λ,σ,ζ;( 1
a )
−1
)(1

b

)
≤ 1

2

[
T

(γj ,τj)m

λ,σ,ζ;( 1
(a) )

−θ ◦ μ
(1

b

)
+T

(γj ,τj)m

λ,σ,ζ;( 1
(b) )

+
θ ◦ μ

(1
a

)]

≤
[ θ( 1

a

)
+ θ
(

1
b

)
2

](
T

(γj ,τj)m

λ,σ,ζ;( 1
b )

+
1
)( 1

(a)

)
. (18)

Now, we derive the following Lemma before giving the next result.

Lemma 1. Let θ,ψ : [a, b]→ R, 0 < a < b, range(ψ) ⊂ [a, b] be functions such that θ is positive,
θ ∈ L1[a, b], and ψ is differentiable and strictly increasing. If θ is a harmonically convex function

on [a,b] and satisfies θ
( 1
ψ(x)

)
= θ

(
1

1
ψ(a) +

1
ψ(b) − ψ(x)

)
, we have

T
(γj ,τj)m

λ,σ,ζ;( 1
ψ(b) )

+θ ◦ μ
( 1
ψ(a)

)
=

1
2

[
T

(γj ,τj)m

λ,σ,ζ;( 1
ψ(a) )

−θ ◦ μ
( 1
ψ(b)

)
+T

(γj ,τj)m

λ,σ,ζ;( 1
ψ(b) )

+θ ◦ μ
( 1
ψ(a)

)]
= T

(γj ,τj)m

λ,σ,ζ;( 1
ψ(a) )

−θ ◦ μ
( 1
ψ(b)

)
, (19)

where μ(x) = 1
x , ∀ x ∈ [ 1

b , 1
a ].

Proof. Consider

T
(γj ,τj)m

λ,σ,ζ;( 1
ψ(b) )

+
θ ◦ μ

(
1

ψ(a)

)

=
∫ 1

ψ(a)

1
ψ(b)

[ 1
ψ(a) − u
1

ψ(a) −
1

ψ(b)

]τj

J
(γj)m,λ

(τj)m,σ

(
ζ

[ 1
ψ(a) − u
1

ψ(a) −
1

ψ(b)

]γj
)
(θ ◦ μ)udu. (20)

Putting u =
1

ψ(a)
+

1
ψ(b)

− ψ(x) and using θ
( 1
ψ(x)

)
= θ
( 1

1
ψ(a) +

1
ψ(b) − ψ(x)

)
in

Equation (20), we have

T
(γj ,τj)m

λ,σ,ζ;( 1
ψ(b) )

+
θ ◦ μ

( 1
ψ(a)

)
= T

(γj ,τj)m

λ,σ,ζ;( 1
ψ(a) )

−θ ◦ μ
( 1
ψ(b)

)
. (21)

By the addition of T
(γj ,τj)m

λ,σ,ζ;( 1
ψ(b) )

+
θ ◦ μ

(
1

ψ(a)

)
in Equation (21) on both sides, we have the

required result.

Theorem 4. Let θ,ψ, η : [a, b] → R,
(

0 < a < b, range(ψ), range(η) ⊂ [a, b]
)

, be functions

such that θ ∈ L1[a, b] is a positive function, ψ is a differentiable and strictly increasing function and

η is nonnegative and integrable and satisfies η
(

1
ψ(x)

)
= η
(

1
1

ψ(a) +
1

ψ(b)−ψ(x)

)
, then the following

inequality holds

θ
( 2ψ(a)ψ(b)
ψ(a) + ψ(b)

)[
T

(γj ,τj)m

λ,σ,ζ;( 1
ψ(b) )

+
η ◦ μ

( 1
(ψ(a))

)
+T

(γj ,τj)m

λ,σ,ζ;( 1
ψ(a) )

−η ◦ μ
( 1
ψ(b)

)]
≤
[
T

(γj ,τj)m

λ,σ,ζ;( 1
ψ(a) )

−θη ◦ μ
( 1
(ψ(b))

)
+T

(γj ,τj)m

λ,σ,ζ;( 1
ψ(b) )

+
θη ◦ μ

( 1
(ψ(a))

)]
≤
( θ(ψ(a)) + θ(ψ(b))

2

)[
T

(γj ,τj)m

λ,σ,ζ;( 1
ψ(a) )

−η ◦ μ
( 1
ψ(b)

)
+T

(γj ,τj)m

λ,σ,ζ;( 1
ψ(b) )

+
η ◦ μ

( 1
ψ(a)

)]
,

(22)
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where μ(x) = 1
x , ∀ x ∈ [ 1

b , 1
a ], θ η ◦ μ = (θ ◦ μ)(η ◦ μ).

Proof. By using the harmonic convexity of θ, we have

2θ
( 2ψ(a)ψ(b)
ψ(a) + ψ(b)

)
≤ θ
( ψ(a)ψ(b)

tψ(b) + (1− t)ψ(a)

)
+ θ
( ψ(a)ψ(b)

tψ(a) + (1− t)ψ(b)

)
. (23)

By multiplying by(1− t)τj J
(γj)m,λ

(τj)m,σ
(ζ(1− t)γj)η

( ψ(a)ψ(b)
tψ(b) + (1− t)ψ(a)

)
in Equation (23)

and then integrating over the closed interval [0, 1], we have

2θ
( 2ψ(a)ψ(b)
ψ(a) + ψ(b)

) ∫ 1

0
(1− t)τj J

(γj)m,λ

(τj)m,σ
(ζ(1− t)γj)η

( ψ(a)ψ(b)
tψ(b) + (1− t)ψ(a)

)
dt

≤
∫ 1

0
(1− t)τj J

(γj)m,λ

(τj)m,σ
(ζ(1− t)γj)η

( ψ(a)ψ(b)
tψ(b) + (1− t)ψ(a)

)
(24)

×
[
θ
( ψ(a)ψ(b)

tψ(b) + (1− t)ψ(a)

)
+ θ
( ψ(a)ψ(b)

tψ(a) + (1− t)ψ(b)

)]
dt

2θ
( 2ψ(a)ψ(b)
ψ(a) + ψ(b)

) ∞

∑
s=0

(λ)σs(−ζ)s

(s!)∏m
j=1 Γ(γjs + τj + 1)

∫ 1

0
(1− t)τj+γj sη(

ψ(a)ψ(b)
tψ(b) + (1− t)ψ(a)

)dt

≤
∞

∑
s=0

((λ)σs(−ζ)s

(s!)∏m
j=1 Γ(γjs + τj + 1)

[ ∫ 1

0
(1− t)τj+γj sη(

ψ(a)ψ(b)
tψ(b) + (1− t)ψ(a)

)

× θ(
ψ(a)ψ(b)

tψ(b) + (1− t)ψ(a)
)dt +

∫ 1

0
(1− t)τj+(γj s)η(

ψ(a)ψ(b)
tψ(b) + (1− t)ψ(a)

)

× θ(
ψ(a)ψ(b)

tψ(a) + (1− t)ψ(b)
)dt
]
. (25)

By making a substitution of
1
u
=

ψ(a)ψ(b)
tψ(b) + (1− t)ψ(a)

in the first integral and
1

ψ(x)
=

ψ(a)ψ(b)
tψ(a) + (1− t)ψ(b)

in second integrals occurring at right side and
1
u
=

ψ(a)ψ(b)
tψ(b) + (1− t)ψ(a)

in the integral occurring at left side of inequality (25) and using η
(

1
ψ(x)

)
= η
(

1
1

ψ(a) +
1

ψ(b)−ψ(x)

)
,

we have

θ
( 2ψ(a)ψ(b)
ψ(a) + ψ(b)

)[
T

(γj ,τj)m

λ,σ,ζ;( 1
ψ(b) )

+
η ◦ μ

( 1
ψ(a)

)
+T

(γj ,τj)m

λ,σ,ζ;( 1
ψ(a) )

−η ◦ μ
( 1
ψ(b)

)]
≤
[
T

(γj ,τj)m

λ,σ,ζ;( 1
ψ(a) )

−θη ◦ μ
( 1
ψ(b)

)
+T

(γj ,τj)m

λ,σ,ζ;( 1
ψ(b) )

+
θη ◦ μ

( 1
ψ(a)

)]
.

(26)

Now, we take

θ
( ψ(a)ψ(b)

tψ(b) + (1− t)ψ(a)

)
+ θ
( ψ(a)ψ(b)

tψ(a) + (1− t)ψ(b)

)
≤ θ(ψ(a)) + θ(ψ(b)). (27)
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By multiplying (1− t)τj J
(γj)m,λ

(τj)m,σ
(ζ(1− t)γj)η(

ψ(a)ψ(b)
tψ(b) + (1− t)ψ(a)

) in Equation (27) and

then integrating over [0, 1], we get

∫ 1

0
(1− t)τj J

(γj)m,λ

(τj)m,σ
(ζ(1− t)γj)η

( ψ(a)ψ(b)
tψ(b) + (1− t)ψ(a)

)
θ
( ψ(a)ψ(b)

tψ(b + (1− t)ψ(a))

)
dt

+
∫ 1

0
(1− t)τj J

(γj)m,λ

(τj)m,σ
(ζ(1− t)γj)η

( ψ(a)ψ(b)
tψ(b) + (1− t)ψ(a)

)
θ
( ψ(a)ψ(b)

tψ(a) + (1− t)ψ(b)

)
dt

≤ (θ(ψ(a)) + θ(ψ(b)))
∫ 1

0
(1− t)τj J

(γj)m,λ

(τj)m,σ
(ζ(1− t)γj)η

( ψ(a)ψ(b)
tψ(b) + (1− t)ψ(a)

)
dt.

(28)

Solving the integrals involved in left side of inequality (28) by making substitution
1
u
=

ψ(a)ψ(b)
tψ(b) + (1− t)ψ(a)

in the first integral and
1

ψ(x)
=

ψ(a)ψ(b)
tψ(a) + (1− t)ψ(b)

in the sec-

ond integral and
1
u
=

ψ(a)ψ(b)
tψ(b) + (1− t)ψ(a)

in the integral on the right side of the inequality

and using η
(

1
ψ(x)

)
= η
(

1
1

ψ(a) +
1

ψ(b)−ψ(x)

)
, we have

[
T

(γj ,τj)m

λ,σ,ζ;( 1
ψ(a) )

−θη ◦ μ
( 1
ψ(b)

)
+T

(γj ,τj)m

λ,σ,ζ;( 1
ψ(b) )

+
θη ◦ μ

( 1
ψ(a)

)]
≤
( θ(ψ(a)) + θ(ψ(b))

2

)
T

(γj ,τj)m

λ,σ,ζ;( 1
ψ(b) )

+
η ◦ μ

( 1
ψ(a)

)
+T

(γj ,τj)m

λ,σ,ζ;( 1
ψ(a) )

−η ◦ μ
( 1
ψ(b)

)
.

(29)

Combining (26) and (29), we have the required result.

Theorem 5. Let θ,ψ : [a, b] → R, (0 < a < b, range(ψ) ⊂ [a, b]) be functions, such that
θ ∈ L1[a, b] is a positive and harmonically convex function and ψ is differentiable and strictly
increasing, then the following inequality holds for the operators defined in Definition 6

θ(
2ψ(a)ψ(b)
ψ(a) + ψ(b)

)(T
(γj ,τj)m

λ,σ,ζ;( ψ(a)+ψ(b)
2ψ(a)ψ(b) )

−1)(
1

ψ(b)
)

≤ 1
2
[(T

(γj ,τj)m

λ,σ,ζ;( ψ(a)+ψ(b)
2ψ(a)ψ(b) )

−θ ◦ μ)(
1

ψ(b)
) + (T

(γj ,τj)m

λ,σ,ζ;( ψ(a)+ψ(b)
2ψ(a)ψ(b) )

+
θ ◦ μ)( 1

ψ(a)
)]

≤ [
θ(ψ(a)) + θ(ψ(b))

2
](T

(γj ,τj)m

λ,σ,ζ;( ψ(a)+ψ(b)
2ψ(a)ψ(b) )

+
1)(

1
ψ(a)

),

(30)

where μ(x) = 1
x ∀ x ∈ [ 1

b , 1
a ]

Proof. We have

2θ(
2ψ(a)ψ(b)
ψ(a) + ψ(b)

) ≤ θ(
ψ(a)ψ(b)

tψ(b) + (1− t)ψ(a)
) + θ(

ψ(a)ψ(b)
tψ(a) + (1− t)ψ(b)

). (31)
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By multiplying (1− t)τj J
(γj)m,λ

(τj)m,σ
(ζ(1− t)γj) on both sides and then integrating over

[ 1
2 , 1], we get

2θ(
2ψ(a)ψ(b)
ψ(a) + ψ(b)

)
∫ 1

1
2

(1− t)τj J
(γj)m,λ

(τj)m,σ
(ζ(1− t)γj )dt

≤
∫ 1

1
2

(1− t)τj J
(γj)m,λ

(τj)m,σ
(ζ(1− t)γj )

{
θ
( ψ(a)ψ(b)

tψ(b) + (1− t)ψ(a)

)
+ θ
( ψ(a)ψ(b)

tψ(a) + (1− t)ψ(b)

)}
dt

2θ(
2ψ(a)ψ(b)
ψ(a) + ψ(b)

∞

∑
s=0

(λ)σs(−ζ)s

(s!)∏m
j=1 Γ(γjs + τj + 1)

∫ 1

1
2

(1− t)τj+γj sdt

≤
∞

∑
s=0

(λ)σs(−ζ)s

(s!)∏m
j=1 Γ(γjs + τj + 1)

[ ∫ 1

1
2

(1− t)τj+γj sθ
( ψ(a)ψ(b)

tψ(b) + (1− t)ψ(a)

)
dt

+
∫ 1

1
2

(1− t)τj+(γj s)θ
( ψ(a)ψ(b)

tψ(a) + (1− t)ψ(b)

)
dt
]

. (32)

Solving the integrals involved in the right side of inequality (32) by making a sub-

stitution of
1
u
=

ψ(a)ψ(b)
tψ(b) + (1− t)ψ(a)

in the first integral and
1
v
=

ψ(a)ψ(b)
tψ(a) + (1− t)ψ(b)

in

the second integral as well as in the integral occurring at the left side of inequality (32),
we have

θ
( 2ψ(a)ψ(b)
ψ(a) + ψ(b)

)
T

(γj ,τj)m

λ,σ,ζ;( ψ(a)+ψ(b)
2ψ(a)ψ(b) )

−1
( 1
ψ(b)

)
≤ 1

2

[
T

(γj ,τj)m

λ,σ,ζ;( ψ(a)+ψ(b)
2ψ(a)ψ(b) )

−θ ◦ μ
( 1
ψ(b)

)
+T

(γj ,τj)m

λ,σ,ζ;( ψ(a)+ψ(b)
2ψ(a)ψ(b) )

+
θ ◦ μ

( 1
(ψ(a))

)]
. (33)

To obtain the second part of inequality, the harmonic convexity of θ gives the follow-
ing relation

θ
( ψ(a)ψ(b)

tψ(b) + (1− t)ψ(a)

)
+ θ
( ψ(a)ψ(b)

tψ(a) + (1− t)ψ(b)

)
≤ θ(ψ(a)) + θ(ψ(b)). (34)

Multiplying by (1− t)τj J
(γj)m,λ

(τj)m,σ
(ζ(1− t)γj) and integrating over [ 1

2 , 1], we get

∫ 1

1
2

(1− t)τj J
(γj)m,λ

(τj)m,σ
(ζ(1− t)γj)θ

( ψ(a)ψ(b)
tψ(b) + (1− t)ψ(a)

)
dt

+
∫ 1

1
2

(1− t)τj J
(γj)m,λ

(τj)m,σ
(ζ(1− t)γj)θ

( ψ(a)ψ(b)
tψ(a) + (1− t)ψ(b)

)
dt

≤ (θ(ψ(a)) + θ(ψ(b)))T
(γj ,τj)m

λ,σ,ζ;( ψ(a)+ψ(b)
2ψ(a)ψ(b) )

+
1
( 1
ψ(a)

)
. (35)

Simplify the integrals involved in the left side of inequality (35) by making a substitu-
tion of 1

u = ψ(a)ψ(b)
tψ(b)+(1−t)ψ(a) in the first integral and 1

v = ψ(a)ψ(b)
tψ(a)+(1−t)ψ(b) in the second integral,

we have

1
2

[
T

(γj ,τj)m

λ,σ,ζ;( ψ(a)+ψ(b)
2ψ(a)ψ(b) )

−θ ◦ μ
( 1
ψ(b)

)
+T

(γj ,τj)m

λ,σ,ζ;( ψ(a)+ψ(b)
2ψ(a)ψ(b) )

+
θ ◦ μ

( 1
ψ(a)

)]
≤
[ θ(ψ(a)) + θ(ψ(b))

2

]
T

γj ,τj)m

λ,σ,ζ;( ψ(a)+ψ(b)
2ψ(a)ψ(b) )

+
1
( 1
ψ(a)

)
.

(36)

Combining (33) and (36), we have the result.
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Remark 2. 1. If ψ(x) = x, m = 1, ς = 0 and τj is replaced by τj − 1, it reduces to the result
produced by Mehmet et al. [31]

θ
( 2ab

a + b

)
≤

Γ(τj + 1)

21−τj

( ab
b− a

)τj
(

I
τj
a+b
2ab

−θ ◦ μ
(1

b
)
+ I

τj
a+b
2ab

+θ ◦ μ
(1

a
))
≤ θ(a) + θ(b)

2

where μ(x) = 1
x ∀ x ∈ [ 1

b , 1
a ]

Lemma 2. Let θ,ψ : [a, b] → R, (0 < a < b, range(ψ) ⊂ [a, b]) be functions such that θ > 0,
θ ∈ L1[a, b], and ψ is differentiable and strictly increasing. If θ is a harmonically convex function

on [a,b] and satisfies θ
( 1
ψ(x)

)
= θ
( 1

1
ψ(a) +

1
ψ(b) − ψ(x)

)
, we have

T
(γj ,τj)m

λ,σ,ζ;( ψ(a)+ψ(b)
2ψ(a)ψ(b) )

+
θ ◦ μ

( 1
ψ(a)

)
=

1
2

[
T

(γj ,τj)m

λ,σ,ζ;( ψ(a)+ψ(b)
2ψ(a)ψ(b) )

−θ ◦ μ
( 1
ψ(b)

)
+T

(γj ,τj)m

λ,σ,ζ;( ψ(a)+ψ(b)
2ψ(a)ψ(b) )

+
θ ◦ μ

( 1
ψ(a)

)]
= T

(γj ,τj)m

λ,σ,ζ;( ψ(a)+ψ(b)
2ψψ(a)ψ(b) )

−θ ◦ μ
( 1
ψ(b)

)
(37)

where μ(x) = 1
x , ∀ x ∈ [ 1

b , 1
a ].

Proof. Consider

T
(γj ,τj)m

λ,σ,ζ;( ψ(a)+ψ(b)
2ψ(a)ψ(b) )

+
θ ◦ μ

( 1
ψ(a)

)
=
∫ 1

ψ(a)

ψ(a)+ψ(b)
2ψ(a)ψ(b)

[ 1
ψ(a) − u
1

ψ(a) −
1

ψ(b)

]τj
J
(γj)m,λ

(τj)m,σ

(
ζ
[ 1

ψ(a) − u
1

ψ(a) −
1

ψ(b)

]γj
)
(θ ◦ μ)udu. (38)

Substituting u =
1

ψ(a)
+

1
ψ(b)

− ψ(x) and using θ
( 1
ψ(x)

)
= θ
( 1

1
ψ(a) +

1
ψ(b) − ψ(x)

)
in Equation (38), we have

T
(γj ,τj)m

λ,σ,ζ;( ψ(a)+ψ(b)
2ψ(a)ψ(b) )

+
θ ◦ μ

( 1
ψ(a)

)
= T

(γj ,τj)m

λ,σ,ζ;( ψ(a)+ψ(b)
2ψ(a)ψ(b) )

−θ ◦ μ
( 1
ψ(b)

)
. (39)

By the addition of T
(γj ,τj)m

λ,σ,ζ;( ψ(a)+ψ(b)
2ψ(a)ψ(b) )

+
θ ◦ μ

(
1

ψ(a)

)
in Equation (39) on both sides, we have

the required result.

Theorem 6. Let θ,ψ, η : [a, b] → R,
(

0 < a < b, range(ψ), range(η) ⊂ [a, b]
)

be functions

such that θ ∈ L1[a, b] is a positive function, ψ is a differentiable, strictly increasing function and

η is nonnegative and integrable and satisfies η
(

1
ψ(x)

)
= η
(

1
1

ψ(a) +
1

ψ(b)−ψ(x)

)
, then the following

inequality holds for the operators defined in Definition 6.

θ
( 2ψ(a)ψ(b)
ψ(a) + ψ(b)

)[
T

(γj ,τj)m

λ,σ,ζ;( ψ(a)+ψ(b)
2ψ(a)ψ(b) )

+
η ◦ μ

( 1
ψ(a)

)
+T

(γj ,τj)m

λ,σ,ζ;( ψ(a)+ψ(b)
2ψ(a)ψ(b) )

−η ◦ μ
( 1
ψ(b)

)]
≤
[
T

(γj ,τj)m

λ,σ,ζ;( ψ(a)+ψ(b)
2ψ(a)ψ(b) )

−θη ◦ μ
( 1
ψ(b)

)
+T

(γj ,τj)m

λ,σ,ζ;( ψ(a)+ψ(b)
2ψ(a)ψ(b) )

+
θη ◦ μ

( 1
ψ(a)

)]
≤
( θ(ψ(a)) + θ(ψ(b))

2

)[
T

(γj ,τj)m

λ,σ,ζ;( ψ(a)+ψ(b)
2ψ(a)ψ(b) )

−η ◦ μ
( 1
ψ(b)

)
+T

(γj ,τj)m

λ,σ,ζ;( ψ(a)+ψ(b)
2ψ(a)ψ(b) )

+
η ◦ μ

( 1
ψ(a)

)]
,

(40)

where μ(x) = 1
x , ∀ x ∈ [ 1

b , 1
a ], θ η ◦ μ = (θ ◦ μ)(η ◦ μ).
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Proof. By the harmonic convexity of θ, we have

2θ
( 2ψ(a)ψ(b)
ψ(a) + ψ(b)

)
≤ θ
( ψ(a)ψ(b)

tψ(b) + (1− t)ψ(a)

)
+ θ
( ψ(a)ψ(b)

tψ(a) + (1− t)ψ(b)

)
. (41)

By multiplying (1− t)τj J
(γj)m,λ

(τj)m,σ
(ζ(1− t)γj)η

( ψ(a)ψ(b)
tψ(b) + (1− t)ψ(a)

)
in the Equation (41)

and then integrating over the closed interval [ 1
2 , 1], we have

2θ
( 2ψ(a)ψ(b)
ψ(a) + ψ(b)

) ∫ 1

1
2

(1− t)τj J
(γj)m,λ

(τj)m,σ
(ζ(1− t)γj )η

( ψ(a)ψ(b)
tψ(b) + (1− t)ψ(a)

)
dt

≤
∫ 1

1
2

(1− t)τj J
(γj)m,λ

(τj)m,σ
(ζ(1− t)γj )η

( ψ(a)ψ(b)
tψ(b) + (1− t)ψ(a)

)
×
[
θ
( ψ(a)ψ(b)

tψ(b) + (1− t)ψ(a)

)
+ θ
( ψ(a)ψ(b)

tψ(a) + (1− t)ψ(b)

)]
dt

2θ
( 2ψ(a)ψ(b)
ψ(a) + ψ(b)

) ∞

∑
s=0

(λ)σs(−ζ)s

(s!)∏m
j=1 Γ(γjs + τj + 1)

∫ 1

1
2

(1− t)τj+γj sη(
ψ(a)ψ(b)

tψ(b) + (1− t)ψ(a)
)dt

≤
∞

∑
s=0

((λ)σs(−ζ)s

(s!)∏m
j=1 Γ(γjs + τj + 1)

[ ∫ 1

1
2

(1− t)τj+γj sη(
ψ(a)ψ(b)

tψ(b) + (1− t)ψ(a)
)

× θ(
ψ(a)ψ(b)

tψ(b) + (1− t)ψ(a)
)dt +

∫ 1

1
2

(1− t)τj+(γj s)η(
ψ(a)ψ(b)

tψ(b) + (1− t)ψ(a)
)

× θ(
ψ(a)ψ(b)

tψ(a) + (1− t)ψ(b)
)dt
]

. (42)

By substituting
1
u
=

ψ(a)ψ(b)
tψ(b) + (1− t)ψ(a)

in the first integral and
1

ψ(x)
=

ψ(a)ψ(b)
tψ(a) + (1− t)ψ(b)

in the second integrals occurring at the right side and

1
u
=

ψ(a)ψ(b)
tψ(b) + (1− t)ψ(a)

in the integral occurring at left side of inequality (42), we have

θ
( 2ψ(a)ψ(b)
ψ(a) + ψ(b)

)
T

(γj ,τj)m

λ,σ,ζ;( ψ(a)+ψ(b)
2ψ(a)ψ(b) )

+
η ◦ μ

( 1
(ψ(a))

)
+T

(γj ,τj)m

λ,σ,ζ;( ψ(a)+ψ(b)
2ψ(a)ψ(b) )

−η ◦ μ
( 1
ψ(b)

)
≤
[
T

(γj ,τj)m

λ,σ,ζ;( ψ(a)+ψ(b)
2ψ(a)ψ(b) )

−θη ◦ μ
( 1
(ψ(b))

)
+T

(γj ,τj)m

λ,σ,ζ;( ψ(a)+ψ(b)
2ψ(a)ψ(b) )

+
θη ◦ μ

( 1
(ψ(a))

)]
.

(43)

Now, we take

θ
( ψ(a)ψ(b)

tψ(b) + (1− t)ψ(a)

)
+ θ
( ψ(a)ψ(b)

tψ(a) + (1− t)ψ(b)

)
≤ θ(ψ(a)) + θ(ψ(b)). (44)

By multiplying (1− t)τj J
(γj)m,λ

(τj)m,σ
(ζ(1− t)γj)η(

ψ(a)ψ(b)
tψ(b) + (1− t)ψ(a)

) in Equation (44) and

then integrating over [ 1
2 , 1], we get

∫ 1

1
2

(1− t)τj J
(γj)m,λ

(τj)m,σ
(ζ(1− t)γj)η

( ψ(a)ψ(b)
tψ(b) + (1− t)ψ(a)

)
θ
( ψ(a)ψ(b)

tψ(b + (1− t)ψ(a))

)
dt

+
∫ 1

1
2

(1− t)τj J
(γj)m,λ

(τj)m,σ
(ζ(1− t)γj)η

( ψ(a)ψ(b)
tψ(b) + (1− t)ψ(a)

)
θ
( ψ(a)ψ(b)

tψ(a) + (1− t)ψ(b)

)
dt

≤ (θ(ψ(a)) + θ(ψ(b)))
∫ 1

1
2

(1− t)τj J
(γj)m,λ

(τj)m,σ
(ζ(1− t)γj)η

( ψ(a)ψ(b)
tψ(b) + (1− t)ψ(a)

)
dt.

(45)

358



Fractal Fract. 2021, 5, 54

Solving the integrals involved in left side of inequality (45) by making substitution
1
u
=

ψ(a)ψ(b)
tψ(b) + (1− t)ψ(a)

in the first integral and
1

ψ(x)
=

ψ(a)ψ(b)
tψ(a) + (1− t)ψ(b)

in the sec-

ond integral and
1
u
=

ψ(a)ψ(b)
tψ(b) + (1− t)ψ(a)

in the integral on the right side of the inequality

and using the above lemma and the condition
1
u
=

ψ(a)ψ(b)
tψ(b) + (1− t)ψ(a)

, we have

[
T

(γj ,τj)m

λ,σ,ζ;( ψ(a)+ψ(b)
2ψ(a)ψ(b) )

−θη ◦ μ
( 1
(ψ(b))

)
+T

(γj ,τj)m

λ,σ,ζ;( ψ(a)+ψ(b)
2ψ(a)ψ(b) )

+
θη ◦ μ

( 1
(ψ(a))

)]
≤
( θ(ψ(a)) + θ(ψ(b))

2

)
T

(γj ,τj)m

λ,σ,ζ;( ψ(a)+ψ(b)
2ψ(a)ψ(b) )

+
η ◦ μ

( 1
(ψ(a))

)
+T

(γj ,τj)m

λ,σ,ζ;( ψ(a)+ψ(b)
2ψ(a)ψ(b) )

−η ◦ μ
( 1
(ψ(b))

)
. (46)

Combining (43) and (46), we have the required result.

3. Conclusion Remarks

In this article, we established Hadamard and Fejér–Hadamard type inequalities via
a new generation of the generalized fractional integral operators (8) and (9) with a non-
singular function (multi-index Bessel function) as its kernel for harmonically convex func-
tions. It is concluded that many classical inequalities cited in the literature can be easily
derived by employing certain conditions on generalized fractional integral operators (8)
and (9). We believe that our formulated inequalities will be useful to investigate the stability
of certain fractional controlled systems.
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