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1. Introduction

The study of propagating light beams in liquid crystals, i.e., soft-matter encompass-
ing optical birefringence, nonlocality, anisotropy and all-optical, as well as electro-optic,
magneto-optic and thermo-optic responses, has been the subject of extensive experimental
and theoretical investigations. These studies encompass light beams in liquid crystals, with
applications including imaging, modulation, signal processing, display architectures, lasers,
sensors and so on [1]. Owing to such wide-ranging importance, comprehensive papers are
available in the literature on the optics and photonics of liquid crystals with reference to
solitary waves, random lasing, topological and spin–orbit interactions of light, to cite just a
few [2–5]. This Special Issue collates articles of theoretical and applied relevance to liquid
crystals in the nematic phase, including one- and two-dimensional waveguides, bulk and
periodic geometries and electro-optic and opto-optical phenomena. A brief summary is
provided below.

1.1. Guided Waves and Integrated Optics

D’Alessandro and Asquini take up the important issue of tunable optical circuits [6].
Among the applications of liquid crystals in their nematic mesophase, the propagation of
guided light waves in confined structures is one of the most promising and, therefore, most
investigated. D’Alessandro et al. present an overview of recent achievements in this area,
from materials to models and devices in various waveguide configurations, employing
substrates such as silicon, glass and photo-dimerized monolayers (PDML) [6]. The authors
include all-optical switching and tunable filtering, routers and attenuators, reporting
performances competitive with similar integrated optical devices in other materials.

1.2. Self-Localized Wavepackets

The article by Liang et al. [7] concerns the nonlinear optics of reorientational nematic
liquid crystals, in particular, light self-localization in unconfined samples. A theoretical
review of the nonlocality-controlled transition between self-focusing and defocusing is
provided, with a discussion of modulational instability and solitary waves [7]. The authors
explore features of the model even beyond available regimes in materials currently known,
presenting novel mathematical solutions.

1.3. Nonlinear Propagation in Discrete Arrays

A relatively unexplored area of the nonlinear optics of soft-matter is light propagation
in waveguide arrays based on a liquid crystal substrate. The article by P. Panayotaros [8] is
a comprehensive theoretical treatment detailing how a Wannier function basis associated
with the periodic Schrödinger operator can describe stable light beams propagating in
discrete arrays of waveguides, the latter encompassing nonlinearity in the presence of
nonlocality, such as in nematic liquid crystals.
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1.4. Light Undular Bores

In line with the previous mathematical study of the nonlinear optics of liquid crystals,
Baqer et al. [9] investigate dispersive shock waves in the nematic phase of the medium.
Such shock waves, also termed undular bores, are the dispersive equivalent of shock waves
in compressible flow. Undular bores in nematic liquid crystals are resonant, and six regimes
are identified in this paper, each associated with a range of input beam powers. The authors
specifically address the nonlocal, nonlinear response based on Whitham modulation theory.
The modulation theory solutions are verified using full numerical solutions.

1.5. Ring Pattern Formation

Clerc et al. [10] investigate the amplified coupling of two coherent light beams in
dye-doped liquid crystals. The authors experimentally study how light is able to induce
ring patterns through the photo-isomerization of specific samples with photosensitive
dopants. This process is modeled by a Swift–Hohenberg-type equation. An analysis of this
model shows that the rings arise as a trans-critical bifurcation of the isotropic liquid phase.
The article characterizes the bifurcation diagram of this complex opto-topological system.

1.6. Tunable Thermoplasmonic Heating

Palermo and coauthors [11] experimentally show that plasmonic heating delivered
by a light-illuminated layer of nanoparticles can be adjusted based on the polarization-
dependent refractive index change of nematic liquid crystals. A hybrid system consisting of
gold nanoparticles immobilized on a glass substrate and layered with photo-aligned liquid
crystals is developed, with the photo-aligning material providing molecular reorientation
and tunability.
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Abstract: The structure of optical dispersive shock waves in nematic liquid crystals is investigated as
the power of the optical beam is varied, with six regimes identified, which complements previous
work pertinent to low power beams only. It is found that the dispersive shock wave structure depends
critically on the input beam power. In addition, it is known that nematic dispersive shock waves are
resonant and the structure of this resonance is also critically dependent on the beam power. Whitham
modulation theory is used to find solutions for the six regimes with the existence intervals for each
identified. These dispersive shock wave solutions are compared with full numerical solutions of the
nematic equations, and excellent agreement is found.

Keywords: nematic liquid crystal; dispersive shock wave; solitary wave; soliton; modulation theory

1. Introduction

Nematic liquid crystals form an ideal medium to study nonlinear optics due to their
“huge” nonlinearity, which is orders of magnitude larger than that of optical fibers, so that
nonlinear effects can be observed over millimeter distances [1–4]. In particular, the re-
fractive index of nematic liquid crystals increases with optical intensity, so that they form
a focusing medium. When a light beam propagates through a nematic liquid crystal,
the electric field of the electromagnetic wave induces dipoles in the nematic molecules,
which then rotate, changing the refractive index. In addition, nematic liquid crystals have a
nonlocal response to an optical beam in that the elastic response of the nematic extends far
beyond the optical forcing [4]. An optical beam propagating through a nematic medium
can then form its own waveguide, resulting in a self-guided beam, an optical solitary wave,
termed a “nematicon” [2,3,5,6], which was first experimentally generated and observed
in 2000 [6]. Since this first observation, nematicons, and related solitary-type waves, such
as optical vortices, have become a theme of intense experimental and theoretical research
effort, driven both by interest in the nonlinear optics of nematic liquid crystals and also by
their potential applications in optical devices [7–10]; see Refs. [2,3,5,11] for general reviews
on the nonlinear optics of nematic liquid crystals.

Solitary waves are generic wave forms for nonlinear dispersive wave equations [12],
first observed and studied in the context of water waves [12,13] and fluid dynamics [12],
but are widespread in nature arising, e.g., in solid mechanics [14], biology [15], ecology [16],
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and the aforementioned context of nonlinear optics [2,17,18], for instance. One of the
appealing features of solitary waves, in addition to their widespread occurrence in nature,
is that they are localized waves with steady profiles, which makes them easier to study
theoretically. In addition to this, many generic nonlinear dispersive wave equations, such as
the Korteweg-de Vries (KdV), nonlinear Schrödinger (NLS), and Sine-Gordon equations, are
completely integrable systems via the Inverse Scattering Transform method [12,18]. Thus,
a general initial condition for these equations will form a finite number of solitary waves,
plus dispersive radiation. In addition, solitary wave solutions of integrable nonlinear
dispersive wave equations, solitons, interact “elastically”, i.e., they emerge unscathed out
of the interaction without any change in their form; hence, due to this particle-like behavior,
solitary waves are termed solitons for such equations.

Another generic wave form supported by nonlinear dispersive wave equations are dis-
persive shock waves (DSWs), also termed undular bores; these structures are as widespread
in nature as solitary waves, with well known examples being tidal bores and tsunamis [19].
In contrast to a solitary wave, a DSW is a non-steady wave form which continuously
expands. A DSW is a dispersive regularization of a discontinuity and is a modulated
periodic wavetrain with solitary waves at one edge and linear, dispersive waves at the
other—see Reference [19] for a general review of DSWs. Since DSWs are non-steady wave-
forms, their study is more difficult than that for solitary waves. The development of DSW
solutions of nonlinear dispersive wave equations relies chiefly on Whitham modulation
theory [12,20–22], which is a version of the asymptotic method of multiple scales that is
used to analyze slowly varying periodic wavetrains. Whitham modulation equations
are a system of partial differential equations which govern the parameters of a slowly
varying wavetrain, such as its amplitude, wavenumber, frequency, and mean height. If this
system is hyperbolic, then the underlying wavetrain is modulationally stable, while, if it
is elliptic, the wavetrain is unstable [12]. A major achievement of Whitham modulation
theory was the development of the modulation equations for the KdV equation [12,21].
These modulation equations form a hyperbolic system, so that the cnoidal wave solution of
the KdV equation is modulationally stable. It was subsequently realized that a simple wave
solution of the KdV modulation equations is a DSW [23], even though the initial condition
is a step, which is not slowly varying. This DSW solution is in excellent agreement with
numerical solutions of the KdV equation [24]. The key to the determination of the simple
wave DSW solution is the ability to set the modulation equations in Riemann invariant
form. If the nonlinear dispersive wave equation governing the DSW is integrable, then its
Whitham modulation equations can be automatically set in Riemann invariant form [25],
so that the DSW solution can easily be found.

As mentioned above, the standard DSW form, termed of KdV type [19], is a modulated
periodic wave with solitary waves at one edge and linear dispersive waves at the other. A
non-standard DSW type is a resonant DSW [26,27], for which the waves of the DSW are in
resonance with (linear) dispersive waves, resulting in a resonant wavetrain being emitted
from the DSW. Resonant DSWs also occur for the KdV equation with next higher-order
dispersion, i.e., fifth-order dispersion, namely for the Kawahara equation [28], and the NLS
equation with next order, third-order dispersion [29–32]. If the emitted resonant wavetrain
is of large enough amplitude, the KdV-type DSW structure can be destroyed; this results
in the so-called traveling dispersive shock wave (TDSW) regime [26,27], consisting of a
resonant wavetrain with a negative polarity solitary wave, which is the remnant of the DSW,
linking this to the level behind [26]— see Figure 2d below for an example of such a TDSW.
A nematic liquid crystal is a focusing medium; thus, optical waves are modulationally
unstable; as a result, an optical DSW is not supported. However, the addition of azo dyes
to the nematic medium changes its response so that it becomes defocusing [33]; in this
case, nematics can support DSWs [34–36]. A nematic DSW is an example of a resonant
DSW [34–36]. In these works, the nematic DSW was studied in the highly nonlocal limit,
for which the nematic elastic response extends far beyond the light beam, with the nematic
DSW generated by a step jump in the optical intensity. While the nematic equations are
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of NLS-type [2], in the highly nonlocal limit the nematic bore is of KdV-type and is well
described by the DSW solution of the KdV equation. The nematic DSW structure is highly
dependent on the size of the jump of the optical electric field intensity generating it, with six
distinct DSW types identified [36].

As stated above, in the highly nonlocal limit the nematic DSW is of KdV-type with
the DSW having positive polarity. However, in the limit of weak nonlocality, the nematic
equations reduce to the NLS equation [2,4], and the nematic DSW becomes the NLS DSW,
which is non-resonant. The degree of nonlocality of the optical response of a nematic is
inversely proportional to the power of the optical beam, with the response being highly
nonlocal for lower power beams, transitioning to local as the beam power increases [2,4],
as will be detailed in Section 2. In this work, the evolution of the nematic DSW structure as
the degree of nonlocality ranges from highly nonlocal (low power beams) [34–36] to local
(high power beams) will be studied. As the nonlocality decreases, the changes in the DSW
structure from those previously found [36] in the limit of high nonlocality to the standard
NLS DSW [37] will be identified, and the solutions for these will be derived. It is found
that there exist two additional DSW regimes over those for large nonlocality, including
the NLS DSW for zero nonlocality. The new DSW regime is a transition between the KdV
DSW behavior for large nonlocality and the NLS DSW behavior for very small nonlocality.
In this regime, the DSW structure consists of a resonant wavetrain headed by a partial
DSW which takes the solution to the initial level ahead, similar to the resonant DSW for the
KdV equation with fifth-order dispersion [27,38]. As the nonlocality decreases, the optical
power increases, the resonant wavetrain contracts with the leading partial DSW expanding
and becoming a full NLS DSW. The analytical solutions for the various DSW types will be
compared with full numerical solutions of the nematic equations.

2. Nematic Equations

Let us consider the propagation of a linearly, extra-ordinarily polarized, coherent light
beam of wavenumber k0, wavelength λ0 = 2π/k0, through a planar cell filled with nematic
liquid crystals. The optical beam is assumed to propagate down the cell along in the Z
direction, with its electric field E polarized in the Y direction. The coordinate X then com-
pletes the coordinate system. Nematic liquid crystals are a uniaxial medium consisting of
elongated molecules, with the long axis termed the molecular director. The refractive index
of the medium is n‖ for optical beams polarized along the molecular director and n⊥ for
fields polarized orthogonal to the director. A fundamental property of nematic liquid crys-
tals is the so-called Freédericksz threshold, whereby a minimum optical power is needed
to rotate the nematic molecules, thus changing the refractive index of the medium [1].
However, high optical powers lead to heating of the nematic medium, which can cause
the loss of the nematic state if the temperature change is high enough [1,6]. One method
to overcome this is to pre-tilt the nematic molecules at an angle θ0 with respect to the
Z-direction upon the application of an external static electric field ELF, so that milli-Watt
power beams can rotate the nematic molecules [6]. Let us denote the optically induced
rotation of the nematic by φ, so that, in the presence of an optical beam, the total angle
of the nematic director to the Z direction is θ = θ0 + φ. This configuration of the nematic
cell is illustrated in Figure 1. The dimensional equations governing the propagation of the
optical beam in the nematic cell are then of the following form:

2ik0ne
∂E

∂Z
+∇2E + k2

0

[
n2
⊥ cos2 θ + n2

‖ sin2 θ − n2
⊥ cos2 θ0 − n2

‖ sin2 θ0

]
E = 0, (1)

for the electric field of the beam, and

K∇2φ +

[
1
4

ǫ0∆ǫ|E|2 + 1
2

∆ǫLFE2
LF

]
sin 2(θ0 + φ) = 0, (2)
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for the nematic response [2–5]. Here, the extraordinary refractive index of the nematic is:

n2
e =

n2
⊥n2

‖
n2
‖ cos2 θ + n2

⊥ sin2 θ
. (3)

θo

X
Y

Z

Z

!"!"!"!"

!
"

!
"

!
"

!
"

!

"

!

"

!"!"!"!"

!
"

!
"

!
"

!
"

!

"

!

"

φ

E

VLF

ELF

Figure 1. Sketch of nematic cell. A coherent light beam (yellow region) in which the electric field E

is polarized in the Y direction propagates in the Z direction through a cell filled with a dye-doped
nematic liquid crystal. Thin film electrodes (black) are deposited on the upper and lower cell walls
(grey). An external low frequency voltage bias VLF creates an electric field ELF to pre-tilt the molecules
at an angle θ0 to Z. The nematic molecules which are located at the boundaries are held tightly by
the virtue of the anchoring films. The far right inset (black) dashed box exhibits the angular rotation
of a nematic molecule with respect to the propagation direction Z in the absence (θ0) and presence
(θ0 + φ) of the optical beam.

In the above equations, ∆ǫ = n2
‖ − n2

⊥ is the optical anisotropy, ∆ǫLF is the low-
frequency dielectric anisotropy, and ǫ0 is the electrical permittivity of free space. In addition,
the constant K is the elastic medium constant in the one constant approximation for which
the elastic constants of bend, twist, and splay are taken equal [1,2].

The nematic Equations (1) and (2) are highly nonlinear and difficult to analyze. How-
ever, for milli-Watt power beams, the optically induced rotation φ is small, |φ| ≪ θ0, so that
these equations can be expanded in Taylor series around θ0. In addition, these equations
can be put in dimensionless form using typical scales LZ down the cell and W transverse
to the down cell direction, as well as a typical scale Ab for the electric field of the optical
beam, so that

Z = Lzz, X = Wx, Y = Wy, E = Abu. (4)

Here, (x, y, z) is the non-dimensional coordinate system, and u is the non-dimensional
electric field of the optical beam. The electric field scale is obtained by assuming that the
input optical beam is a Gaussian beam of power Pb, amplitude Ab, and width Wb, so that

A2
b =

2Pb

πΓW2
b

, Γ =
1
2

ǫ0cne, n2
e =

n2
‖n2

⊥
n2
‖ cos2 θ0 + n2

⊥ sin2 θ0
. (5)

Substituting these into the nematic Equations (1) and (2), and expanding in Taylor
series for small |φ|, we find [5,39] that suitable scalings are

LZ =
4ne

∆ǫk0 sin 2θ0
, W =

2
k0
√

∆ǫ sin 2θ0
, (6)
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and the resulting non-dimensional equations read

i
∂u

∂z
+

1
2
∇2u + 2φu = 0, (7)

ν∇2φ − 2qφ = −2|u|2. (8)

Here, the dimensionless elasticity and pre-tilting parameters, ν and q, are given by

ν =
8K

ǫ0∆ǫA2
bW2 sin 2θ0

=
πKΓk2

0W2
b

ǫ0Pb
, q =

4∆ǫLFE2
LF cos 2θ0

ǫ0∆ǫA2
b sin 2θ0

. (9)

Typical experimental beam parameter values are power Pb = 2 mW and half-width
Wb = 1.5µm, with a wavelength λ0 = 2π/k0 = 1.064µm in the near infrared [2,5]. For the
liquid crystal E7, a typical elastic constant is K = 1.2 × 10−11N. These parameter values
give the elasticity parameter ν = O(100), as found in other studies [5,40,41]. This high
value of ν means that the nematic is operating in the highly nonlocal regime, in that the
elastic response of the nematic extends far beyond the waist of the optical beam [2–4].
However, ν is inversely proportional to the beam power Pb. Note that, for ν = 0, the
nematic Equations (7) and (8) reduce to the standard NLS equation

i
∂u

∂z
+

1
2
∇2u +

2
q
|u|2u = 0. (10)

This is the local response limit for the nematic. Note that, in (2+ 1)-dimensions, beams
governed by this equation are unstable and can show catastrophic collapse above a critical
power [17]. It is known that a nonlocal response, ν large, stabilizes (2 + 1)-dimensional
optical beams [2–5]. This is because the nematic response Equation (2) is elliptic, so its
solution depends on u in the entire domain, the origin of the physical concept of nonlocality.
Hence, by adjusting the beam power Pb, the response of the medium can be adjusted from
nonlocal to local, as long as the induced heating does not destroy the nematic phase at
high power.

The nematic system (7) and (8) is a focusing NLS-type system, that is the refractive
index in the dimensional Equation (1) increases with beam intensity |u|2. Since focusing
NLS equations do not possess (stable) DSW solutions, the equation needs to be defocusing;
in such a case, the refractive index decreases with beam intensity, and DSW solutions do
exist [19]. The nematic medium can feature a defocusing response through the addition
of azo-dyes [33]. The change in the nematic response due to the addition of the azo-dye
is physically complicated, with the “order parameter” change being opposite to that in
the absence of the dye. A simple model of this response change is to modify the electric
field Equation (7) from focusing to defocusing. In addition, the analysis of DSWs is
simplest in (1 + 1)-dimensions as then there are no geometric spreading effects. With these
assumptions and simplifications, the nematic equations become

i
∂u

∂z
+

1
2

∂2u

∂x2 − 2φu = 0, (11)

ν
∂2φ

∂x2 − 2qφ = −2|u|2. (12)

The same system of equations also describes optical beam propagation in thermal
optical media for which the refractive index depends on the temperature of the medium [42].
Such thermal optical media typically have a defocusing response. For these defocusing
nematic equations, a suitable initial condition which will generate a DSW is the intensity
jump initial condition
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u =

{
u−, x < 0
u+, x > 0

, φ =





u2
−
q , x < 0

u2
+
q , x > 0

. (13)

The DSW solution of the defocusing nematic Equations (11) and (12) has been studied
in the highly nonlocal limit ν ≫ 1 in previous work [34–36]. As stated above, in the
local limit ν ≪ 1, this system reduces to a perturbed defocusing NLS equation and
becomes the defocusing NLS equation for ν = 0. The DSW solution of the defocusing
NLS equation is known [37], so that the perturbed local DSW solution can be found using
perturbed Whitham modulation theory [43]. Before studying the behavior of the nematic
DSW as ν varies from large to small, some previously derived results [34–36] will be
briefly summarized.

The analytical DSW solutions derived in this work will be compared with full nu-
merical solutions of the nematic Equations (11) and (12) with the initial condition (13).
The electric field Equation (11) was solved using the pseudo-spectral method of Fornberg
and Whitham [24], as extended [44,45] to improve the stability for high wavenumbers
through the use of an integrating factor. The x derivatives were calculated using the Fast
Fourier Transform (FFT), and the solution was advanced in z in Fourier space employing
the fourth-order Runge-Kutta method, as detailed in previous work [36,46]. The step
initial condition (13) was smoothed using the hyperbolic tangent function, as detailed in
Reference [36,46]. The director Equation (12) was also solved using the FFT, as the equation
does not have a singularity at zero wavenumber due to the 2qθ term.

Figure 2 displays a summary of the nematic DSW types as the nonlocality ν varies
from large ν, corresponding to a highly nonlocal response for low beam power, to small
ν, pertinent to a local medium response for high beam power. The terminology for the
DSW regimes will be taken from previous work on radiating DSWs [26,36]. In particular,
the DSW regimes from nonlocal to local response will now be detailed, for u− = 1 and
u+ = 0.8, with the existence intervals for the various DSW types given in Table 1.

• PDSW (perturbed DSW): This regime is illustrated in Figure 2a. The nematic DSW
is essentially a KdV DSW governed by the Kawahara Equation (44) and its solution
can be found as a perturbed KdV DSW [36,47]. This DSW regime is non-resonant and
there is no resonant wavetrain attached to the leading edge of the DSW.

• RDSW (radiating DSW): As the nonlocality ν decreases, the DSW becomes resonant
with a resonant wavetrain attached to the leading edge of the DSW, as illustrated
in Figure 2b. As all individual waves in the DSW are resonant, resonant waves are
emitted from the DSW, which results in the DSW not being rank ordered [36].

• CDSW (crossover DSW): As the nonlocality decreases and the amplitude of the res-
onant wavetrain grows, the DSW becomes unstable with a total loss of the rank
ordering of the waves of the DSW [26,36]. This regime is illustrated in Figure 2c.

• TDSW (traveling DSW): As the amplitude of the resonant wavetrain grows, the shed-
ding of conserved quantities into resonant radiation eventually destroys the DSW,
leaving a high amplitude resonant wavetrain with a negative polarity solitary wave
linking this wavetrain to the intermediate level [26] as seen in Figure 2d. While there
is a solitary wave linking the resonant wavetrain to the intermediate level, this linking
can be conveniently treated as a Whitham shock [48], a shock wave in the Whitham
modulation equation variables. The resonant wavetrain is brought down to the level
u+ ahead by a partial DSW [36]. This partial DSW has linear dispersive waves at its
leading edge but has a finite wavelength wave at its trailing edge, that is, it is not
bounded by solitary waves at the trailing edge [38,49], as for a standard DSW.

• RNLS DSW (radiating NLS DSW): Further decrease in the nonlocality results in the
amplitude of the linking solitary wave becoming negligible, so that the wave form
consists of a (stable) resonant wavetrain headed by a partial DSW which brings the
wavetrain down to the level u+ ahead, as seen in Figure 2e. This DSW regime does not
occur in the high nonlocality limit as it is a “bridge” to the local NLS DSW for ν = 0.
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• NLS DSW: As the nonlocality ν decreases to ν = 0 and the nematic Equations (11)
and (12) reduce to the NLS equation, the resonant wavetrain length contracts and
the leading partial DSW evolves to a full DSW, with linear dispersive waves at the
leading edge and solitary waves at the trailing edge. The resonant wavetrain then
disappears and the leading DSW bringing the wavetrain down to the level u+ ahead
attaches to the intermediate level with |u| = ui, as in Figure 2f. The resulting DSW is
essentially an NLS DSW, which completes the transition from the KdV-type DSW for
high nonlocality, that is for low power beams, to a NLS DSW for low nonlocality, that
is for high power beams.
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Figure 2. Numerical solutions of nematic Equations (11) and (12) for initial condition (13) with
u+ = 0.8 and u− = 1.0. Red (solid) lines: |u| at z = 1000; green (dashed) lines: φ at z = 1000; blue
(dotted) lines: |u| at z = 0 (upper) and φ at z = 0 (lower). (a) PDSW with ν = 200, (b) RDSW with
ν = 40, (c) CDSW with ν = 10, (d) TDSW with ν = 3.0, (e) resonant NLS type DSW with ν = 1.0,
(f) NLS type DSW with ν = 0.5. Here, q = 2.

In addition to these six DSW types, when u− − u+ is large enough as u+ → 0,
there is an additional DSW type which is a sub-case of the TDSW regime, the vacuum
DSW (VDSW) [37], for which the electric field u of the resonant radiation vanishes at
a point [35,36]. As the solution for this DSW type has been previously analyzed [36],
and it is a sub-case of the TDSW regime, it will not be considered here. In addition,
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the analytical work of this manuscript is based on u− − u+ being small, which is not valid
in the VDSW regime.

Table 1 shows that the transition regimes of the TDSW and RNLS DSWs which evolve
the DSW from the KdV-type DSW for high nonlocality to the NLS-type DSW for weak
nonlocality exist for very restricted ranges of ν, so that this transition is rapid. Over most
of the range of ν the DSW is of KdV-type, one of the PDSW, RDSW, and CDSW types.
As noted, the first four DSW regimes also occur for the Kahawara equation and the nematic
equations in the low power, high nonlocality limit.

Table 1. Regime boundaries for type classifications of Figure 2. Here, u− = 1.0, u+ = 0.8 and q = 2.

PDSW 88 < ν
RDSW 34 < ν < 88
CDSW 4.1 < ν < 34
TDSW 1.53 < ν < 4.1

RNLS DSW 0.60 < ν < 1.53
NLS DSW 0 ≤ ν < 0.60

The standard method to analyze DSW solutions of nonlinear dispersive wave equa-
tions of defocusing NLS-type is to transform the equation into hydrodynamic form using
the Madelung transformation [19]

u =
√

ρeiψ, v = ψx, (14)

where the real functions ρ and ψ denote the density and phase of the field u, while v is
the fluid velocity. Upon substituting, it is found that the nematic Equations (11) and (12)
become

∂ρ

∂z
+

∂

∂x
(ρv) = 0, (15)

∂v

∂z
+ v

∂v

∂x
+ 2

∂φ

∂x
− ∂

∂x

(
ρxx

4ρ
− ρ2

x

8ρ2

)
= 0, (16)

ν
∂2φ

∂x2 − 2qφ = −2ρ. (17)

The nematic equations are characterized by the linear dispersion relation [34,35]

ω = kv̄ +

√
ρ̄k√

νk2 + 2q

[
νk2 + 2q

4ρ̄
k3 + 4k

]1/2

, (18)

for waves around the mean level ρ̄ for ρ and v̄ for v. In the short wave and high nonlocality
limit, νk2 ≫ 1, this dispersion relation can be approximated by

ω = kv̄ +
1
2

k2 + · · · . (19)

In the opposite local limit with ν small, the dispersion relation can be expanded as

ω = kv̄ + k2
[

1
4

k2 +
2
q

ρ̄

]1/2

− νρ̄k3

2q2

[
1
4

k2 +
2
q

ρ̄

]−1/2

+ · · · . (20)

As expected, at the leading-order, O(1), this dispersion relation is the same as that for
the NLS equation [19,50]. These dispersion relations are needed for the determination of
the resonant wavetrain generated by the nematic DSW by which the linear phase velocity
is matched to the velocity of the DSW front.

As seen from Figure 2, the solution outside of the DSW and the resonant wavetrain
is non-dispersive. On neglecting dispersion, the nematic Equations (15)–(17) become the
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shallow water equations [12], with ρ playing the role of fluid depth and v the (horizontal)
fluid velocity. In Riemann invariant form, the dispersionless nematic equations read:

v +
2
√

2√
q

√
ρ = R+ = constant on C+ :

dx

dz
= V+ = v +

√
2√
q

√
ρ, (21)

v − 2
√

2√
q

√
ρ = R− = constant on C− :

dx

dz
= V− = v −

√
2√
q

√
ρ. (22)

The initial level behind u− is linked to the intermediate shelf by a simple wave on the
characteristic C−. This simple wave solution has been derived previously [34–36] and is of
the form:

|u| = √
ρ =





u−, x
z < −

√
2u−√

q√
q

3
√

2

[
2
√

2u−√
q − x

z

]
, −

√
2u−√

q ≤ x
z ≤

√
2√
q

(
2u− − 3

√
ρi

)
,

√
ρi,

√
2√
q

(
2u− − 3

√
ρi

)
<

x
z ≤ si

(23)

with v = 2
√

2(u− −√
ρ)/

√
q, where si is the velocity of the trailing edge of the DSW which

lies on the intermediate level ui. This level can be determined by the requirement that the
Riemann invariant along the characteristics C−, that is, R−, is conserved across the nematic
DSW [34], giving

ui =
1
2
(u− + u+). (24)

We can see from the above calculations that the phase gradient on the intermediate
level vi is then

vi =
2
√

2√
q
(u− −√

ρi). (25)

In the small jump limit |u− − u+| ≪ 1, the nematic Equations (11) and (12) can be
reduced—in the high nonlocality regime (ν ≫ 1) under consideration—to a KdV equation
with fifth-order dispersion [35,51]. This will be justified below upon employing a multiscale
expansion method.

2.1. Derivation of the Extended KdV and Kawahara Equations

We seek solutions of Equations (15)–(17) in the form of the following asymptotic
expansions in the formal small parameter ε ≡ √

ui − u+ (with 0 < ε ≪ 1):

|u|2 = ρ = ρ+ + ε2ρ1(ξ, η) + ε4ρ2(ξ, η) + · · · , (26)

v = ε2V1 + ε4V2 + ε6V3 + · · · , (27)

φ =
ρ+
q

+ ε2φ1 + ε4φ2 + ε6φ3 + · · · , (28)

where ρ+ = u2
+, and the unknown functions ρj, Vj, and φj (j = 1, 2, 3, . . .) depend on the

stretched variables
ξ = ε(x − Uz), η = ε3z. (29)

Here, U will be treated as an unknown velocity, which will be determined self-
consistently.

Substituting the expansions (26)–(28) into Equations (15)–(17), and using the stretched
coordinates (29), we obtain a set of equations at the different orders in ε. In particular, at the
leading order, we derive the following linear equations:

O(ε2) : ρ1 − qφ1 = 0, (30)
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and
O(ε3) : UV1ξ − 2φ1ξ = 0 and Uρ1ξ − u2

+V1ξ = 0, (31)

where subscripts denote partial derivatives. The compatibility of the above equations
suggests that the squared velocity U2 is given by U2 = 2u2

+/q. Next, Equations (15)–(17)
yield a set of nonlinear equations, namely:

O(ε4) : 2ρ2 − 2qφ2 + νφ1ξξ = 0, (32)

and

O(ε5) :
−u2

+V1η + 3Uρ1V1ξ − u2
+V1V1ξ + Uu2

+V2ξ − 6ρ1φ1ξ − 2u2
+φ2ξ +

1
4

ρ1ξξξ = 0

ρ1η + (ρ1V1)ξ − Uρ2ξ + u2
+V2ξ = 0

. (33)

The compatibility condition at this order can be found upon eliminating the fields ρ2,
V2, and φ2 upon using Equations (32) and (33) and the definition of the velocity U. This
yields the following KdV equation:

ρ1η +
3

2u+

√
2
q

ρ1ρ1ξ +

(
1
q

)3/2 4νu2
+ − q2

8
√

2u+
ρ1ξξξ = 0. (34)

To the next order of approximation, we obtain:

O(ε6) : 2ρ3 − 2qφ3 + νφ2ξξ = 0, (35)

and

O(ε7) : − 3u4
+ρ1V1η − u6

+V2η + 3Uu2
+(ρ

2
1 + u2

+ρ2)V1ξ − 3u4
+ρ1V1V1ξ

− u6
+V2V1ξ + 3Uu4

+ρ1V2ξ − u6
+V1V2ξ + Uu6

+V3ξ − 6u2
+ρ2

1φ1ξ

− 6u4
+ρ2φ1ξ − 6u4

+ρ1φ2ξ − 2u6
+φ3ξ −

1
2

u2
+ρ1ξ ρ1ξξ +

1
2

u2
+ρ1ρ1ξξξ

+
1
4

u4
+ρ2ξξξ = 0, and (36)

ρ2η + (ρ1V2 + ρ2V1)ξ − Uρ3ξ + u2
+V3ξ = 0. (37)

It is now possible to follow the procedure used at the previous order and eliminate
the fields ρ3, V3 and φ3 from Equations (35)–(37). Indeed, solving Equation (35) for φ3,
Equation (37) for ρ3ξ and substituting into Equation (36) eliminates every term with index
3 (recall U2 = 2u2

+/q). Furthermore, employing the equations obtained at the previ-
ous orders, we can express the fields φ1,2 and V1,2 in terms of the amplitudes ρ1 and ρ2,
which yields

1
2U

∫
ρ1ηη dξ + ρ1ξ

∫
ρ1η dξ + 5

2 ρ1ρ1η + ρ2η + 3Uρ2
1ρ1ξ +

3c
2 (ρ1ρ2)ξ +

Uν
2q ρ1ξρ1ξξ

− q−2U2ν

8U2q
ρ1ξξη − q−3U2ν

4Uq ρ1ρ1ξξξ − q−2U2ν
8Uq ρ1ξξξ +

Uν2

8q2 ρ1ξξξξξ = 0.
(38)

To this end, we multiply Equation (38) by ε2 and add it to the KdV equation
Equation (34). Then, introducing the combined amplitude function

P = ρ1 + ε2ρ2, (39)
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we solve for ρ1 = P − ερ2 and substitute the result into the above Equation (38). We, hence,
obtain the nonlinear evolution equation for the field P(ξ, η)

Pη +
3

2u+

√
2
q

PPξ +

(
1
q

)3/2 4νu2
+ − q2

8
√

2u+
Pξξξ

+ ε2
(

b1P2Pξ + b2Pξ Pξξ + b3PPξξξ + b4Pξξξξξ

)
= 0. (40)

The coefficients bj (j = 1, 2, 3, 4) appearing in Equation (40) are given by

b1 = − 3
8u3

+

√
2
q

, b2 = −
(

1
q

)3/2 20νu2
+ − 13q2

32
√

2u3
+

,

b3 =

(
1
q

)3/2 4νu2
+ + q2

16
√

2u3
+

, b4 =

(
1
q

)5/2 48ν2u4
+ + 8νq2u2

+ − q4

256
√

2u3
+

.

Then, we seek an asymptotic expansion in the optical beam intensity |u| as

|u| = u+ + ε2Q + · · · (41)

and use the relation |u| =
√

ρ. This asymptotically gives P = 2u+Q. The reductive
nonlinear Equation (40) can now be written in terms of the field Q(ξ, η) as

Qη + 3

√
2
q

QQξ +

(
1
q

)3/2 4νu2
+ − q2

8
√

2u+
Qξξξ

+ ε2
(

c1Q2Qξ + c2Qξ Qξξ + c3QQξξξ + c4Qξξξξξ

)
= 0. (42)

The coefficients cj (j = 1, 2, 3, 4) appearing in Equation (42) are given by

c1 = 4u2
+b1, c2 = 2u+b2, c3 = 2u+b3, c4 = b4.

Notice that Equation (42) is the so-called extended KdV equation (eKdV), which can
model the evolution of steeper waves, with shorter wavelengths, than those governed by
the KdV equation. As such, the eKdV equation has been used to describe solitary waves in
plasmas [52] and shallow water waves [53] in the presence of higher order effects. We note
that the coefficient of the third derivative dispersive term changes sign when

ν =
q2

4u2
+

. (43)

Hence, in the high nonlocality, low power, limit, such that ν > q2/(4u2
+), the coef-

ficient of the third derivative in eKdV equation is positive, so that its DSW (and solitary
wave) solutions have positive polarity, with solitary waves at its leading edge and linear
dispersive waves at its trailing edge. On the other hand, in the local limit, ν < q2/(4u2

+),
the coefficient of the third derivative is negative and the DSW has negative polarity, with lin-
ear dispersive waves at its leading edge and solitary waves at its trailing edge, so that it
resembles the standard NLS DSW [37]. The nematic DSW then undergoes a change of form
from a KdV-type DSW to an NLS-type DSW as ν decreases at the value of the nonlocality
parameter given by (43).

At this point, it is useful to make the following remarks. First, in the highly nonlocal
limit, the dominant higher-order coefficient is the one of the fifth-order dispersion term,
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namely c4 ∝ ν2. Thus, in this limit, the eKdV Equation (40) may be approximated by the
Kawahara equation

Pη +
3

2u+

√
2
q

PPξ +

(
1
q

)3/2 (4u2
+ν − q2)

8
√

2u+
Pξξξ + ε2 3

16
√

2

(
1
q

)5/2

u+ν2Pξξξξξ = 0, (44)

as was done in previous work [35,36].

3. Nonlocal to Local Nematic DSWs

The form and details of the DSW solution of the defocusing nematic
Equations (11) and (12) will be found as the nonlocality ν changes from O(100) to 0, that is
from the nematic having a highly nonlocal response to a local response as the optical power
increases. For high nonlocality, the DSW is of KdV type, with the leading edge of the DSW
consisting of solitary waves of elevation [34–36]. The reason for this can be seen from the
eKdV Equation (42) as for ν > q2/(4u2

+) the coefficient of the third derivative is positive,
so that the DSW is of KdV type and has positive polarity. For 0 ≤ ν < q2/(4u2

+), the sign of
the third derivative is negative, and the DSW has negative polarity, with solitary waves at
the trailing edge and linear dispersive waves at the leading edge, as for the NLS DSW [37].
A nematic DSW of NLS type is illustrated in Figure 2e for ν = 0.5. Indeed, for ν = 0,
the nematic Equations (11) and (12) reduce to the standard NLS equation on substituting for
φ from (12) into (11). The DSW solution of the NLS equation is well known [37] as the NLS
equation is integrable and so the solution is completely determined. Hence, the solution
for this regime will not be considered here.

The existence regions for the various nematic DSW types as the nonlocality parameter
ν varies (optical power varies), found from full numerical solutions of the nematic Equa-
tions (11) and (12) are shown in Figure 3 as the initial level ahead u+ varies. The range
0.3 ≤ u+ ≤ 0.9 was chosen as this encompassed all six of the DSW types studied here.
In addition, most of the theoretical expressions for the boundaries between these regions
and the solutions within each region were based on u− − u+ small, for example, the bound-
ary (43), which is based on the eKdV Equation (42). It can be seen that, over most of the
(u+, ν) domain, the nematic DSW is of CDSW or TDSW type, so that it is typically unstable.
In addition, it is deduced that the nematic DSW is of NLS-type only for small values of
the nonlocality parameter ν of 2 and below. The nematic DSW is then nonlocal, except for
high enough optical powers for which ν is small. The nonlocality parameter ν is given
by (9). For the nematic liquid crystal 4-(trans-4-n-hexylcyclohexyl)-isothiocyanato-benzene
(6CHBT), the parameter values are K ∼ 10−11N, n‖ = 1.6335 and n⊥ = 1.4967 [54]. Let us
take the pre-tilt angle θ0 to be π/4 so that the nematic response is maximized [2]. A typical
beam wavelength is 1064 nm, and a typical half width Wb is 1.5µm [54]. With these parame-
ter values, it is found that ν = 2 when the beam power Pb is 288 mW, far in excess of typical
beam powers of a few milliWatts to a few tens of milliWatts [2,54]. Such a large optical
power can result in the nematic medium being heated enough so that its temperature
goes above the critical temperature, 43 ◦C for 6CHBT [54], so that it undergoes a phase
change out of the nematic state. In this regard, it should be noted that experimental nematic
cells are small, of the order of 1 mm in the down cell propagation direction of the beam
and 100 µm × 10 mm in cross-section. The thin cross-section is the direction in which
the pre-tilting electric field is applied, which results in a stable and uniform molecular
pre-tilt. We then deduce that, for experimental beam powers, the nematic bore will be in
the nonlocal response regime with ν large, which is low optical power.
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Figure 3. Numerical existence regions for nematic DSW types in terms of the nonlocality parameter
ν as the initial level u+ varies. (a) Full existence regions from highly nonlocal ν = 200 to local ν = 0,
(b) Detail of (a) for the transition to an NLS-type DSW. Theoretical boundary (72) between RDSW
and CDSW regimes: black (dot-dash) line; theoretical boundary Us = cg, (95), between CDSW and
TDSW regimes: red (solid) line; theoretical boundary (43) between KdV-type and NLS-type DSW:
green (dashed) line. Here, u− = 1.0 and q = 2.

4. PDSW and RDSW Regimes

Typical PDSW and RDSW solutions are illustrated in Figure 2a,b. In the PDSW regime,
the DSW is not in resonance with linear diffractive radiation, so that the DSW is of KdV
type, as seen in the boundary (43), and is a perturbed KdV-type DSW. In the RDSW regime,
the DSW is in resonance with diffractive radiation, so that it consists of a KdV-type DSW
with resonant radiation propagating ahead of it. This resonant radiation is not large enough,
however, as to destroy the KdV-type DSW structure, as in the CDSW regime; see Figure 2c.
As the DSW in the PDSW and RDSW regimes are perturbed KdV DSWs [36], the solutions
in these two regimes can be found using the perturbed KdV DSW solution of Reference [47].
In this previous work, the general eKdV equation, a particular case of which is (42), was
asymptotically transformed to the KdV equation, in which the known DSW solution [19,23]
was then used to find the asymptotic DSW solution of the original eKdV equation. This
asymptotic DSW solution can be used here based on the eKdV equation reduction (42)
of the full nematic equations in the limit u− − u+ small. The work [47] then gives the
following PDSW and RDSW nematic DSW solutions. The amplitude of the DSW is

a = 2m(ui − u+) +
1
3 (ui − u+)2{m(1 − m)C1 + m(m − 2)C2

+ mC3 + 2m(8 − 3m)C4},
(45)
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its wavenumber is

k =
π
√

2{ui−u+}
K(m)

√
u+

√
ν
q −

q

4u2
+

{
1 + (ui−u+)

12 C1 +
(ui−u+)(4m2−8m+3)

12 C3

− (ui−u+)(8m2−14m+11)
3 C4

}
,

(46)

and its mean level is

¯|u| = 2u+ − ui + (ui − u+)
{

m + 2E(m)
K(m)

}

− (ui − u+)2C1

{
3m2K(m)+4mE(m)−5mK(m)−2E(m)+2K(m)

18K(m)

}

− (ui − u+)2C3

{
(2−m−m2)K2(m)+(4m−10)E(m)K(m)+8E2(m))

6K2(m)

}

+ 2(ui − u+)2C4

{
(m2−7m+6)K2(m)+2(6m−11)E(m)K(m)+16E2(m)

3K2(m)

}
.

(47)

Here, K(m) and E(m) are complete elliptic integrals of the first and second kinds
of modulus squared m, respectively. The modulus squared m is a parameter in these
amplitude, wavelength, and mean height expressions. It is determined in terms of the
simple wave (similarity) variable x/z by

x
z =

√
2√
q u+ +

√
2(ui−u+)√

q

{
1 + m − 2m(1−m)K(m)

E(m)+(m−1)K(m)

}

+ (ui−u+)2

3
√

2q
C1

{
1 + m − 2m(1−m)K(m)

E(m)+(m−1)K(m)

}

+ (ui−u+)2

3
√

2q
C3

{
2m − 1 − m2 −

(
1 + m − 2m(1−m)K(m)

E(m)+(m−1)K(m)

)

− 4m(1−m)(2E(m)+(m−1)K(m))
E(m)+(m−1)K(m)

}
+ 4(ui−u+)2

3
√

2q
C4

×
{
−1 − m + 2m(1−m)K(m)

E(m)+(m−1)K(m)
+
(

1 + m − 2m(1−m)K(m)
E(m)+(m−1)K(m)

)2

−2(2m − m2 − 1) + 4 m(1−m)[(m−1)K(m)+2E(m)]
E(m)+(m−1)K(m)

}
.

(48)

This expression for x/z derives from the characteristic of the KdV modulation equa-
tions on which the simple wave DSW solution occurs [23,24,47]. The coefficients Cj(j =
1, 2, 3, 4) in the above solutions are connected to cj(j = 1, 2, 3, 4) through the relations

C1 =
√

2qc1, C2 =
8
√

2q3/2u+

(4u2
+ν − q2)

c2, C3 =
8
√

2q3/2u+

(4u2
+ν − q2)

c3, C4 =
64
√

2q5/2u2
+

(4u2
+ν − q2)2

c4. (49)

At the leading, solitary wave edge of the DSW m → 1 and at the trailing, harmonic
wave edge of the DSW m → 0. It can then be found from the characteristics (48) that the
DSW lies in the range

si =

√
2
q

{
4u+ − 3ui − (ui − u+)

2
(

1
2

C1 + C3 −
64
3

C4

)}

≤ x

z
≤
√

2
q

{
2ui − u+ +

1
3
(ui − u+)

2(C1 − C3 + 4C4)

}
= s+, (50)

where si and s+ are the harmonic and solitary wave edge velocities of the DSW, respectively.
Comparisons between the lead solitary wave amplitude a+ as given by the asymptotic

DSW solution (45), with m = 1, and numerical solutions are given in Figure 4 as the
nonlocality parameter ν varies. The existence regions for the PDSW and RDSW types
depend on both u+ and ν, as shown in Figure 3, so that the comparison curves for each u+

were stopped at the boundary between the RDSW and CDSW regimes. Figure 4 shows the
lead solitary wave amplitude for the full eKdV Equation (42) and the Kawahara equation,
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which is (42) with c1 = c2 = c3 = 0. Previous work on the nematic bore [35,36] was based
on the Kawahara equation, that is only the higher order fifth derivative was included
in the asymptotic eKdV equation, so the lead wave amplitude based on this equation is
given in the figure to determine the effect of the extra higher order terms in the full eKdV
Equation (42). A key observation is that the height of the lead wave of the DSW depends
very weakly on the strength of the nonlocality, with little variation even down to ν = O(10)
from the high nonlocality amplitudes with ν = O(100). In some sense, the nematic DSW
is then nonlocal down to small values of ν in the PDSW and RDSW regimes, which was
also deduced above from Figure 3. It can also be seen that the inclusion of the extra
higher order terms in the eKdV Equation (42) over the Kawahara equation improves the
agreement with numerical solutions on the whole, especially as the nonlocality parameter
ν decreases, but the effect of these extra terms is small, with the Kawahara equation
giving good agreement over the whole range of ν and for all values of u+, except near the
RDSW/CDSW borderline at u+ = 0.7. This is expected as the weak dependence on the
nonlocality parameter ν means that the DSW is nonlocal, so that ν can be taken as large.
The dominant higher order term in the eKdV equation is ε2c4Qξξξξξ in this limit, as noted
in (44). As u+ = 0.7 is approached the resonant radiation shed by the DSW is of relatively
large amplitude as in this limit the RDSW/CDSW boundary is approached. This results in
oscillations in the lead wave amplitude as the resonant radiation moves through the DSW
and is shed. In these cases, the numerical amplitude shown in Figure 4 was calculated
as an average in z over the last few amplitude oscillations in the numerical solution. It is
noted that except for u+ = 0.75 and 0.7 the amplitude grows as ν decreases. This change in
behavior is due to the DSW changing form as it transitions from the RDSW to the CDSW
regime, for which the resonant radiation has a major effect on the DSW with its amplitude
decreasing markedly due to the large amount of mass being shed as resonant radiation [36].
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Figure 4. Comparison between lead wave amplitude a+ of PDSW and RSDW with numerical
solutions of the nematic Equations (11) and (12) with the initial condition (13). Numerical amplitude:
red squares; amplitude (45) with m = 1 given by undular bore solution of eKdV Equation (42): red
(solid) line; amplitude given by undular bore solution of Kawahara equation (Equation (42) with
c1 = c2 = c3 = 0): green (dashed) line. Here, u− = 1.0 and q = 2.
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The full linear dispersion relation (18) for the nematic Equations (11) and (12) is

ω = kv̄ +

√
ρ̄k√

νk2 + 2q

[
νk2 + 2q

4ρ̄
k2 + 4

]1/2

+
2ρ̄

q
(51)

when the mean 2ρ̄/q is added. This mean term arises on integrating v = ψx to obtain the
dispersion relation for ψ from that for v [35]. In the limit νk2 large, this dispersion relation
becomes (19)

ω = kv̄ +
1
2

k2 +
2ρ̄

q
+ . . . , (52)

again with the carrier wave phase shift 2ρ̄/q added to obtain the dispersion relation for ψ.
In the RDSW regime, the resonant wavetrain has low amplitude; see Figure 2b. In addition,
this wavetrain has high frequency relative to the DSW; again, see Figure 2b. So, the
appropriate dispersion relation for the resonant wavetrain is (52). In the RDSW regime,
the resonance condition for the resonant wavetrain ahead of the DSW has been set by
matching the phase velocity of the resonant wavetrain to the velocity of the lead wave of
the DSW [34–36], giving

s+ = cr, c = v̄ +
1
2

k +
2ρ̄

qk
, (53)

so that

kr = s+ +

[
s2
+ − 4

q
u2
+

]1/2

(54)

on setting ρ̄ =
√

u+ and v̄+ = 0 as the resonant wavetrain propagates on the level ahead.
This gives the wavenumber of the resonant wavetrain based on this criterion. The resonant
wavetrain then exists if s+ ≥ 2u+/

√
q, so that the borderline between the PDSW and

RDSW regimes is s+ = 2u+/
√

q. Previous work [35,36] has shown that this theoretical
borderline is in excellent agreement with numerical solutions in the high nonlocality limit
ν large. For fixed u+, as ν decreases, a PDSW changes to an RDSW, then to a CDSW; see
Figure 3. For instance, for u+ = 0.8, the DSW changes from PDSW to RDSW at ν = 88, then
to CDSW at ν = 34. However, the resonance condition (53), or (54), gives that the DSW
changes from PDSW to RDSW at ν = 3, which is the TDSW regime according to Table 1.
This resonance condition is based on the limit νk2 ≫ 1, but, even if the full dispersion
relation (51) were used for the resonance condition (53), the predicted PDSW/RDSW
borderline is ν = 2.38, which is still far from the numerical value and close to that for
νk2 ≫ 1. The resonance condition (53) is based on resonance between the lead wave
of the DSW and diffractive radiation. However, as pointed out previously [36], a DSW
is modulated periodic wave so that all waves of the DSW can resonant with diffractive
radiation, not just the lead wave, as seen in Figure 5 for a PDSW. Internal resonance will be
discussed in detail in Section 5. The phase velocity of a component wave of the DSW is (72).
Equating this bore component phase velocity with the nematic diffractive radiation phase
velocity determined from the dispersion relation (18) determines the internal resonance.
However, even using this internal resonance does not result in a borderline between the
PDSW and RDSW regimes in any reasonable accord with numerical solutions; see Figure 3.
A resonant wavetrain will then exist if the internally resonant waves can propagate out of
the DSW, that is their group velocity is greater than the velocity of the lead solitary wave of
the DSW. However, even this condition does not give the correct boundary between the
PDSW and RDSW regimes as the nonlocality parameter ν decreases. The issue of internal
resonance and its relation to the existence of the PDSW and RDSW regimes merits further
study. In this regard, the recent work [55] on the interaction of linear wavepackets and
DSWs could be relevant.
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Figure 5. Numerical solution of nematic Equations (11) and (12) in PDSW regime at z = 1500 for
initial condition (13) with u+ = 0.8 and u− = 1.0. Red (solid) line: |u|; green (dashed) line: φ. Here,
ν = 200 and q = 2.

5. CDSW Regime

For fixed a nonlocality parameter ν, as u+ decreases, the jump height u− − u+ in-
creases, the nematic DSW changes from RDSW to CDSW form; see Figure 3b. The reason
for this is that, as the amplitude of the resonant wavetrain grows, it takes more conserved
quantities from the DSW, so that its amplitude is reduced. In addition, the DSW becomes
unstable in the CDSW regime, as for the Kahawara equation DSW [26], noting that, in the
small jump height limit, the nematic equations reduce to the eKdV Equation (42), which
becomes the Kahawara Equation (44) in the limit of large nonlocality ν. Figure 2c shows
a typical nematic DSW in the CDSW regime. It can be seen that the DSW has changed
from a modulated wavetrain with a monotonically decreasing amplitude from front to
rear to a disordered wavetrain with an essentially uniform amplitude on average, except
at its rear. This structure is in agreement with unstable DSW structure for the focusing
NLS equation [56]. The unstable DSW can then be approximated by a train of equal am-
plitude solitary waves, which has been found to give good results for DSW solutions [57],
particularly unstable DSWs, and for the particular case of the nematic CDSW in the high
nonlocality, low optical power, regime [36]. The amplitude of the solitary waves of the
CDSW is determined from mass and energy conservation equations for the underlying
nonlinear dispersive wave equation [57].

If we set

B2 = 3

√
2
q

, B3 =
4νu2

+ − q2

8
√

2q3/2u+
(55)

for simplicity, the eKdV Equation (42) has the mass conservation equation

∂

∂η
Q +

∂

∂ξ

[
1
2

B2Q2 + B3Qξξ +
1
3

ε2c1Q3 +
1
2

ε2(c2 − c3)Q
2
ξ + ε2c3QQξξ

+ ε2c4Qξξξξ

]
= 0. (56)
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The derivation of the energy conservation for the eKdV Equation (42) is not as straight-
forward. Multiplying the eKdV equation by Q and integrating by parts gives

∂
∂η

1
2 Q2 + ∂

∂ξ

[
1
3 B2Q3 + B3QQξξ − 1

2 B3Q2
ξ +

1
4 ε2c1Q4 + 1

2 ε2c2Q2Qξξ

+ ε2c4QQξξξξ − ε2c4Qξ Qξξξ +
1
2 ε2c4Q2

ξξ

]
+ ε2

(
c3 − 1

2 c2

)
Q2Qξξξ = 0.

(57)

The final term on the right hand side of this equation cannot be expressed as a perfect
derivative. However, it can be approximately expressed in this form on noting that ε is
small, so that, at first order, the eKdV Equation (42) is the KdV equation

∂Q

∂η
+ B2Q

∂Q

∂ξ
+ B3

∂3Q

∂ξ3 = 0. (58)

We then have at leading order that

∂

∂η
Q3 = −3Q2(B2QQξ + B3Qξξξ

)
= − ∂

∂ξ

3
4

B2Q4 − 3B3Q2Qξξξ . (59)

This expression may now be used to eliminate the term in QQξξξ in Equation (57) to
give the final energy conservation equation

∂
∂η

[
1
2 Q2 − ε2 c3− 1

2 c2
3B3

Q3
]
+ ∂

∂ξ

[
1
3 B2Q3 + B3QQξξ − 1

2 B3Q2
ξ +

1
4 ε2c1Q4

+ 1
2 ε2c2Q2Qξξ + ε2c4QQξξξξ − ε2c4Qξ Qξξξ +

1
2 ε2c4Q2

ξξ

− ε2 B2
4B3

(
c3 − 1

2 c2

)
Q4
]
= 0,

(60)

which is accurate to O(ε2).
To obtain an approximation to the nematic CDSW, let us assume that, at position η,

the CDSW consists of N equal solitary waves of amplitude ãs and width w̃s [57], where we
shall use tildes to denote scaled variables in the moving and stretched coordinates (ξ, η). It
is also assumed that the CDSW sheds a uniform downstream resonant wavetrain of (scaled)
amplitude ãr. Then, as ξ → −∞, Q → 1 and as ξ → ∞, Q → ãr cos

(
k̃rξ − ω̃rη

)
, since

|u| = u+ + ε2Q with ε2 = ui − u+. As the CDSW is approximated by a train of solitary
waves, the solitary wave solution of the eKdV Equation (42) is also needed. While there is
no known exact solitary wave solution of this equation, there is an asymptotic solution for
ε ≪ 1 [58]. To use this solution, the eKdV Equation (42) needs to be rescaled to conform
with the eKdV scaling of Reference [58]. Performing this, we find that the asymptotic
solitary wave solution of the eKdV Equation (42) is

Q = γ1 sech2 ξ − Vsη

W
+ γ2 sech4 ξ − Vsη

W
, Vs =

1
3

B2 A
(

1 + 2ε2C4 A
)

, (61)

where

W =

√
12B3√
B2 A

, γ1 = A + ε2C6 A2, γ2 = ε2C7 A2. (62)

The rescaled coefficients ci, i = 1, . . . , 4, of the eKdV Equation (42), denoted by Ci,
i = 1, . . . , 4, are given by

C1 =
6
B2

c1, C2 =
1
B3

c2, C3 =
1
B3

c3, C4 =
B2

6B2
3

c4,

C6 =
2
3

C3 −
1
6

C1 +
1
6

C2 − 5C4, C7 =
15
2

C4 −
1
2

C3 +
1

12
C1 −

1
4

C2. (63)

It is noted that these scaled Ci, i = 1, . . . , 4, are the same as the Ci (49) used for the
perturbed DSW solution (45)–(48) due to the same rescaling from the eKdV Equation (42)
being used for this solution.
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The mass and energy conservation Equations (56) and (60) can now be used to deter-
mine the amplitude of the solitary waves in the nematic CDSW in the equal amplitude
approximation. The mass and energy conservation equations are integrated in ξ from −∞

to ∞. The integral of the mass and energy densities are approximated by N times these for
a single solitary wave (61). The flux terms are calculated using the boundary conditions
stated above, Q = 1 at ξ = −∞ and Q = ãr cos

(
k̃rξ − ω̃rη

)
at ξ = ∞. The resonant

radiation flux at ξ = ∞ is calculated by averaging the periodic radiation over a period [36].
In this manner, integrating the mass conservation equation gives

N

[
2γ1 +

4
3

γ2

]
W =

{
1
2

B2 +
1
3

ε2c1 −
[

1
4

B2 +
1
4

ε2(c2 − 3c3)k̃
2
r

]
ã2

r

}
η (64)

and integrating the energy conservation equation gives

N

[
2
3

γ2
1 +

16
15

γ1γ2 − ε2 16
45

c3 − 1
2 c2

B3
γ3

1

]
W =

{
1
3

B2 +
1
4

ε2c1

− ε2 B2

4B3

(
c3 −

1
2

c2

)
− 1

4

[
−3B3k̃2

r ã2
r +

3
8

ε2c1 ã4
r + 5ε2c4k̃4

r ã2
r

− ε2 3B2

8B3

(
c3 −

1
2

c2

)
ã4

r

]}
η

∼
{

1
3

B2 +
1
4

ε2c1 − ε2 B2

4B3

(
c3 −

1
2

c2

)
− 1

4
c̃g ã2

r

}
η (65)

since ãr is small. In addition, this neglect of quartic terms in ãr is consistent with the radia-
tion being determined by a linear WKB analysis [35]. Here, c̃g is the scaled group velocity of
the resonant radiation based on (29). Dividing the mass and energy Equations (64) and (65)
gives an equation for A

γ2
1 +

8
5 γ1γ2 − ε2 8

15
c3− 1

2 c2
B3

γ3
1

γ1 +
2
3 γ2

= 4
B2 +

3
4 ε2c1 − ε2 3B2

4B3

(
c3 − 1

2 c2

)
− 3

4 c̃g ã2
r

2B2 +
4
3 ε2c1 −

[
B2 + ε2(c2 − 3c3)k̃2

r

]
ã2

r

(66)

in terms of ãr. Once A is determined, the unscaled amplitude as of the solitary waves of
the CDSW is given by

as = ε2
[

A + ε2(C6 + C7)A2
]
= (ui − u+)

[
A + (ui − u+)(C6 + C7)A2

]
, (67)

on using the solitary wave solution (61). Transforming back from the scaled eKdV variables
to the original variables, the relation (66) becomes

γ2
1 +

8
5 γ1γ2 − 8

15 (ui − u+)
c3− 1

2 c2
B3

γ3
1

γ1 +
2
3 γ2

= 4
B2 +

3
4 (ui − u+)c1 − 3B2

4B3
(ui − u+)

(
c3 − 1

2 c2

)
− 3

4

(
cg−

√
2
q u+

)
a2

r

(ui−u+)3

2B2 +
4
3 (ui − u+)c1 − [B2 + (c2 − 3c3)k2

r ]
a2

r
(ui−u+)2

(68)
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on using the scalings (63) for the eKdV equation. Substituting for the higher order solitary
wave coefficients γ1 and γ2 given by (62) gives the final equation determining the amplitude
of the CDSW solitary waves as

A
1 + 2(ui − u+)

(
C6 +

4
5 C7

)
A − 8

15 (ui − u+)
(

C3 − 1
2 C2

)
A

1 + (ui − u+)
(
C6 +

2
3 C7

)
A

= 4
B2 +

1
8 (ui − u+)B2(C1 + 3C2 − 6C3)− 3

4

(
cg−

√
2
q u+

)
a2

r

(ui−u+)3

2B2 +
2
9 (ui − u+)B2C1 − [B2 + (c2 − 3c3)k2

r ]
a2

r
(ui−u+)2

. (69)

The final quantity to determine is the amplitude of ar of the resonant radiation, which
is related to the scaled amplitude ãr by ar = ε2 ãr = (ui − u+)ãr. This resonant radiation
was determined as a WKB solution of the nematic Equations (11) and (12) by linearizing
about the mean level u+ of the resonant radiation [35]. This WKB solution gives the
amplitude of the resonant radiation as

ar =
1
2

u− − u+

1 + 2u+kras

qs+(kr−s+)2

. (70)

Here, s+ is the unscaled velocity of the CDSW, which is [36]

s+ =

√
2
q

u+ +
1
3

B2as(1 + 2C4as). (71)

The resonant radiation wavenumber kr is determined by the resonance condition (54)
and the group velocity of the resonant radiation is given by the k derivative of the short
wave dispersion relation (52). The resonant radiation is a solution of the nematic equations
in the limit νk2 ≫ 1, so that the appropriate group velocity for it is that from the dispersion
relation (52), not the linearized KdV group velocity of the eKdV Equation (42) [36].

Figure 6 displays comparisons of the nematic DSW amplitude as and resonant wave
amplitude ar in the CDSW regime as given by (68) and (70) and numerical solutions.
A typical CDSW is shown in Figure 2c, with details of the actual CDSW of this figure
shown in Figure 7a. It can be seen that the lead waves of the DSW have an approximately
uniform amplitude, with a rapid decrease of the amplitude towards the trailing edge
of the CDSW, as also illustrated in Figure 7b. This solution, and that of Figure 7a, are
typical structures for an unstable DSW [56]. The numerical DSW amplitude for the
comparisons of this figure was calculated as an average over the approximately uniform
waves at the leading edge, which is the same assumption on which the equal amplitude
approximation used to calculate the solitary wave amplitude as was based. Figure 6a
shows comparisons for the amplitude ar of the resonant wavetrain leading the CDSW; see
Figure 2c. It can be seen that there is excellent agreement between the theoretical amplitude
and the numerical amplitude for the larger values of the level ahead u+, with the increase
of ar as the nonlocality parameter ν decreases being correctly given. This agreement
is much improved through the inclusion of the all the higher order terms in the eKdV
Equation (42) than that of previous work [36] based on the Kawahara equation, for which
c1 = c2 = c3 = 0, as given by the green dashed line in the figure. As u+ decreases and
the TDSW regime is approached, the agreement between theory and numerical solutions
decreases. This is shown particularly in the final comparison of Figure 6a for u+ = 0.5,
which is near the TDSW boundary; see Figure 3. The reason for this decreasing agreement
is that, as the TDSW regime is approached, the number of waves in the CDSW decreases so
that only one lead wave is left; see Figure 7c. The approximation that an average can be
taken over an equal amplitude wavetrain then breaks down.
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Figure 6. Comparison between theory and numerical solutions of the nematic Equations (11)
and (12) with the initial condition (13) for the nematic CDSW. Numerical amplitude: red squares;
amplitude (70): red (solid) line; amplitude given by the Kawahara equation (equation (42) with
c1 = c2 = c3 = 0): green (dashed) line. (a) Resonant wave amplitude ar, (b) CDSW solitary wave
amplitude as (67). Note that, for clarity, the numerical DSW amplitude for u+ = 0.55 is denoted by
red open squares. Here, u− = 1.0 and q = 2.

Figure 6b displays similar comparisons for the amplitude as of the nematic CDSW with
numerical solutions. It can be seen that the comparison for the DSW amplitude is similar to
that for the resonant wave amplitude. It should be noted that different values of u+ have
been chosen for the DSW amplitude comparisons for the sake of clarity. The inclusion of
all the higher order terms in the eKdV Equation (42) results in a significant improvement
in the agreement with numerical solutions over that based on the Kawahara equation with
c1 = c2 = c3 = 0 when the level ahead u+ is away from the TDSW/CDSW boundary of
Figure 3. As u+ approaches the TDSW/CDSW boundary, the DSW amplitude as given
by the eKdV equation differs significantly from the numerical amplitude. The reason for
this is that discussed in the previous paragraph for the resonant wave amplitude, the fact
that the CDSW ceases to be a train of equal amplitude solitary waves, but reduces to a
few waves.
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Figure 7. Numerical solution of nematic Equations (11) and (12) in the CDSW regime for the initial condition (13). (a)
u+ = 0.8 at z = 1000, (b) u+ = 0.7 at z = 1500, (c) u+ = 0.5 at z = 1500. Here, u− = 1.0 and q = 2.

The next thing that we discuss is the analytical borderline between the nematic CDSW
and RDSW regimes. This borderline can be found by determining when the resonant
amplitude (70) approaches zero or approaches a minimum as a function of the nonlocality
parameter ν. The determination of this borderline is similar to that of previous work [36]
in which the resonant amplitude was found as a function of the initial state u+, rather than
ν. This approach gave a borderline for u+ ≤ 0.73 for large ν, with the CDSW regime not
existing above this value of u+ for large ν. Above this limit, the resonance condition (53)
ceases to work as a function of ν and an alternative method needs to be found to determine
the borderline. To determine the borderline in this case, we exploit the fact that the (interior)
structure of the nematic DSW is resonant, as evidenced in Figure 5, not only the leading,
solitary wave edge. A DSW is an extended modulated periodic wavetrain, so that all its
component waves can resonant, not just the leading edge. To verify this internal resonance,
the phase velocity of the modulated cnoidal waves forming the DSW needs to be matched
with the nematic linear phase velocity on the local mean level of the DSW. By way of
illustration, we equate the DSW phase velocity [47]

cp =

√
2
q

u+ +
(ui − u+)√

2q

{
2 + 2m − 1

7
(ui − u+)(8C4 − C3)(2m − m2 − 1)

+
1
3
(ui − u+)C4(2 + 2m)2 − 1

6
(ui − u+)(C3 − C1 + 4C4)(2 + 2m)

}
, (72)

where C1, C3, and C4 are given in (49), with the nematic phase velocity from the full linear
dispersion relation (51) on the DSW background (47) and solved for internal resonant
wavenumbers, which are always positive and real, as the modulus m varies from near
zero to near one. As the DSW parameter expressions (47) and (72) are only valid for a
well-ranked DSW (stable DSW), such as the PDSW and the RDSW, and the CDSW is an
ill-ranked DSW (unstable DSW), then a borderline exists when these wave parameter
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expressions result in imaginary internal resonant wavenumbers, which are unphysical, at a
borderline value of ν. The mean flow v̄ in the dispersion relation (51) was determined from
the extended KdV reduction of the nematic equations of Section 4. Substituting the O(ε2)
mean flow v1 given by (31) into the mean flow perturbation expansion (27) for v and then
averaging gives

v̄ =
2
√

2√
q

( ¯|u| − u+
)
. (73)

This then completes the determination of the CDSW/RDSW borderline. A comparison
between the theoretical and numerical borderlines between the RDSW and CDSW regimes
is shown in Figure 3. It can be seen that the theoretical borderline is in excellent agreement
with the numerical borderline for large values of the nonlocality parameter ν down to
around ν = 50, with poorer agreement towards the local limit with ν small for which the
DSW is changing form from KdV type to NLS type.

6. TDSW Regime

Figure 2d displays a typical DSW in the TDSW regime. There is (almost) a constant
amplitude resonant wavetrain which, at its trailing edge, is connected to the intermediate
level ui. At its leading edge there is a modulated wavetrain which takes u down to the
level u+ ahead. This wavetrain leading the resonant wave is a partial DSW [27,36,49].
A partial DSW differs from a standard DSW in that it connects a uniform state to a periodic
wavetrain, unlike a standard DSW which links two different levels. While there is a negative
polarity solitary wave connecting the resonant wavetrain to the intermediate level [26],
this connection can be approximated by a Whitham shock [36,48], a shock, a jump, in the
modulation parameters of the wavetrain, wavelength, frequency, amplitude, and mean
level, of the Whitham modulation equations for the modulated periodic wavetrain [12].
A Whitham shock is determined from the Whitham modulation equations. As noted
above, the nematic DSW is in the nonlocal regime, so the appropriate Whitham modulation
equations are those for ν large.

The Whitham modulation equations in the highly nonlocal limit ν ≫ 1 (low optical
power) have previously been determined [36], so these modulation equations will just be
quoted here. These modulation equations determine the mean level ρ̄ of ρ, the amplitude
a and the wavenumber k of the Stokes’ wave solution of the nematic Equations (15)–(17).
As there is no known general periodic wave solution of the nematic equations, the highly
nonlocal Whitham modulation equations are derived based on the weakly nonlinear Stokes
wavetrain for the nematic equations [36]. It can be seen from Figure 2d that the resonant
wavetrain has small amplitude, so the weakly nonlinear limit is appropriate. In the highly
nonlocal limit ν ≫ 1, the Stokes’ wave solution of the nematic Equations (15)–(17) is

ρ = ρ̄ + a cos ϕ + . . . , (74)

v = v̄ + av1 cos ϕ + . . . , (75)

φ =
ρ̄

q
+ aφ1 cos ϕ + . . . , (76)

ω = ω0 + aω1 + a2ω2 + . . . , (77)

where the uniform phase is ϕ = kx − ωz, and the over bar, ρ̄ and v̄, denotes the mean
value of a wave parameter [36]. The amplitude a of the (Stokes) wave is assumed to be
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small. The work of Reference [36] gives that, at O(a), the nematic Stokes coefficients and
the O(a2) correction to the dispersion relation are

ω0 = kv̄ +
k2

2
+

4ρ̄

νk2 − 8ρ̄q

ν2k4 − 16ρ̄2

ν2k6 + . . . , (78)

v1 =
k

2ρ̄
+

4
ν k3 − 8q

ν2k5 − 16ρ̄

ν2k7 + . . . , (79)

φ1 =
2

νk2 − 4q

ν2k4 + . . . , (80)

ω2 = − k2

8ρ̄2 − 3
ρ̄νk2 +

6q

ρ̄ν2k4 − 20
ν2k6 + . . . (81)

The coefficient ω1 is set to zero, ω1 = 0, to eliminate secular terms. The weakly
nonlinear Whitham modulation equations can then be derived by averaging conservation
laws deduced from Nöther’s Theorem [59]. The Lagrangian for the hydrodynamic form of
the nematic Equations (15)–(17) is

L = −2ρψz −
1
4

ρ2
x

ρ
− ρψ2

x − 4ρφ + νφ2
x + 2qφ2. (82)

Applying Nöther’s Theorem we have that translation invariance with respect to the
phase ψ gives the mass conservation law

∂

∂z

∂L

∂ψz
+

∂

∂x

∂L

∂ψx
= 0, (83)

translation invariance with respect to space x yields the momentum conservation law

∂

∂z

(
∂L

∂ρz

∂ρ

∂x
+

∂L

∂ψz

∂ψ

∂x
+

∂L

∂φz

∂φ

∂x

)
+

∂

∂x

(
∂L

∂ρx

∂ρ

∂x
+

∂L

∂ψx

∂ψ

∂x
+

∂L

∂φx

∂φ

∂x
− L

)
= 0, (84)

and translation invariance with respect to time-like z gives the energy conservation law

∂

∂z

(
∂L

∂ρz

∂ρ

∂z
+

∂L

∂ψz

∂ψ

∂z
+

∂L

∂φz

∂φ

∂z
− L

)
+

∂

∂x

(
∂L

∂ρx

∂ρ

∂z
+

∂L

∂ψx

∂ψ

∂z
+

∂L

∂φx

∂φ

∂z

)
= 0. (85)

Substituting the Stokes expansions (74)–(76) into these conservation laws and aver-
aging by integrating in ϕ from 0 to 2π [12] yields the modulation equations, truncated to
O(1/ν),

∂k

∂z
+

∂

∂x

(
kv̄ +

k2

2
+

2ρ̄

q
+

4ρ̄

νk2 − k2a2

8ρ̄2 − 3a2

νρ̄k2

)
= 0, (86)

∂ρ̄

∂z
+

∂

∂x

(
ρ̄v̄ +

ka2

4ρ̄
+

2a2

νk3

)
= 0, (87)

∂

∂z

(
ρ̄v̄ +

ka2

4ρ̄
+

2a2

νk3

)
+

∂

∂x

(
ρ̄2

q
+ ρ̄v̄2 +

k2a2

4ρ̄
+

v̄ka2

2ρ̄
+

4v̄a2

νk3 +
a2

νk2

)
= 0, (88)

∂
∂z

(
ρ̄v̄2 + 2ρ̄2

q + k2a2

4ρ̄ + kv̄a2

2ρ̄ + 4a2

νk2 +
4v̄a2

νk3

)
+ ∂

∂x

(
ρ̄v̄3 + 4v̄ρ̄2

q + ka2

q + k3a2

4ρ̄

+ 3v̄k2a2

4ρ̄ + 3v̄2ka2

4ρ̄ + 6v̄a2

νk2 + 6v̄2a2

νk3 + 2a2

νk

)
= 0

(89)

for the (slowly varying) amplitude a, wavenumber k, and means ρ̄ and v̄ of the modulated
Stokes wave [12].

The modulation Equation (87) is that, for optical power conservation, Equation (88) is
momentum conservation, and (89) is energy conservation. The modulation Equation (86)
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is the equation for conservation of waves, kz + ωx = 0, on noting that the x derivative term
is just the dispersion relation (77). In this regard, it should be noted that the dispersion
relation for the Stokes’ wave from which the modulation equations are calculated has the
carrier waves’ phase shift term 2ρ̄/q added [35,36], as explained above,

ω = kv̄ +
1
2

k2 +
2ρ̄

q
+

4ρ̄

νk2 − k2a2

8ρ̄2 − 3a2

νk2ρ̄
. (90)

Figure 2d shows that, in the TDSW regime, the KdV-type nematic bore structure of
Figure 2a–c has disappeared, leaving a dominant resonant wavetrain which is linked to the
intermediate level ui by a negative polarity solitary wave [26]. As discussed above, this
link between the resonant wavetrain and the intermediate level can be approximated by a
Whitham shock, a jump in the modulation equation variables [36,48], so that the Whitham
shock links the resonant wavetrain with the level ui behind, in a similar manner to a gas
dynamic shock wave links two compressible flow states [12]. Let us denote the amplitude,
wavenumber, mean level and mean phase gradient of the resonant wavetrain by ar, kr, ρ̄r,
and v̄r, respectively. Matching the Whitham shock velocity Us to the Stokes’ wave velocity
(90), as these are co-propagating, gives

Us = v̄r +
1
2

kr +
2ρ̄r

qkr
+

4ρ̄r

νk3
r
− kra2

r

8ρ̄2
r
− 3a2

r

νk3
r ρ̄r

. (91)

Ahead of the Whitham shock, there is the resonant wavetrain, and behind it is a flat
shelf, the intermediate level, which is a wavetrain of zero amplitude. The mass, momentum,
and energy conservation Equations (87)–(89) then give the jump conditions

Us(ρ̄r − ρi) = ρ̄r v̄r +
kra2

r
4ρ̄r

+ 2a2
r

νk3
r
− ρivi,

Us

(
ρ̄r v̄r +

kra2
r

4ρ̄r
+ 2a2

r

νk3
r
− ρivi

)
= ρ̄2

r
q + ρ̄r v̄2

r +
k2

r a2
r

4ρ̄r
+ v̄rkra2

r
2ρ̄r

+ 4v̄ra2
r

νk3
r

+ a2
r

νk2
r
− ρ2

i
q − ρiv

2
i ,

(92)

Us

(
ρ̄r v̄2

r +
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r
q + k2

r a2
r

4ρ̄r
+ kr v̄ra2

r
2ρ̄r

+ 4a2
r

νk2
r
+ 4v̄ra2

r

νk3
r
− ρiv

2
i −

2ρ2
i

q

)
= ρ̄r v̄3
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q
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r
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4ρ̄r
+ 3v̄2
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νk3
r
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r
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− ρiv
3
i −

4viρ
2
i

q

(93)

across the Whitham shock. Together with the resonance condition (91), these form four
equations for the five unknowns Us, ar, kr, ρ̄r, and v̄r, noting that ρi and vi are given by
(24) and (25), respectively. The final equation is obtained by assuming that the Riemann
invariant R− (22) is conserved through the resonant wavetrain and its lead partial DSW,
which is valid for a full DSW [19,50]. This then determines the mean of the resonant phase
gradient v̄r [36]. This Riemann invariant condition gives

v̄r = 2

√
2
q

(√
ρ̄r −

√
ρ+
)
= 2

√
2
q

(√
ρ̄r − u+

)
. (94)

The above nematic Whitham modulation equation jump conditions (92)–(93) with
(94) can be solved numerically for Us, ar, kr, and ρ̄r using Newton’s method. The full
details for this numerical solution of the Whitham shock jump conditions can be found
in Reference [36]. Figure 8 shows comparisons for the Whitham shock velocity from the
nonlocal to local limits, the optical power increasing, as given by the jump conditions and
full numerical solutions of the nematic Equations (11) and (12). The values of the level
ahead u+ were chosen to lie in the TDSW regime; see Figure 3. It can be seen that there is
excellent agreement between the theoretical and numerical solutions from high nonlocality,
ν large, down to ν = O(10). As for the lead solitary wave amplitude comparison of Figure 4,

29



Appl. Sci. 2021, 11, 4736

there is little change in the Whitham shock velocity as the nonlocality parameter ν varies by
an order of magnitude, with only a small increase in the velocity. There is a small, increasing
deviation between the theoretical and numerical values towards ν = 20. This is due to the
onset on the VDSW regime for which u vanishes at a point, a vacuum point [35,36]. Once
the vacuum point is reached, |u| cannot decrease further, so that the Whitham shock jump
conditions need to be modified [36]. This will not be pursued further here.

For a fixed level ahead u+, as the nonlocality parameter ν decreases (optical power in-
creases), the nematic DSW evolves from CDSW to TDSW type; see Figure 3. The borderline
between the CDSW and TDSW regimes can be determined from the Whitham shock jump
conditions (92)–(93) and the resonance condition (91) based on the following condition.
For a fixed nonlocality parameter ν, as the level ahead u+ increases, it is found that the
Whitham shock velocity becomes greater than the linear group velocity

cg = v̄r + kr −
8ρ̄r

νk3
r

(95)

of the resonant wavetrain. This is unphysical as this would mean that the resonant wave-
train could not form. Figure 3 shows this theoretical bound between the CDSW and TDSW
regimes as a red line. It can be seen that the agreement with numerical solutions is excellent
over the entire range of ν, even for jump heights u− − u+, which are not small.
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Figure 8. Comparison between the Whitham shock velocity Us given by the modulation equation
jump conditions (92)–(93) with (94) and numerical solutions of the nematic Equations (11) and (12) in
the TDSW regime. Solution of jump conditions: red (full) line; numerical solution: red boxes. Here,
u− = 1.0 and q = 2.

As ν decreases, it would be expected that the high nonlocality modulation
Equations (86)–(89) cease to be applicable. The Whitham modulation equations for the
nematic equations in the local limit, ν small, were calculated based on the equivalent of the
Stokes’ wave expansions (74)–(77) and (78)–(81), expanding in ν rather than 1/ν. However,
these were found not to give solutions in good agreement with numerical solutions. This is
expected as Figures 3 and 4 show that the nematic DSW is highly nonlocal down to very
small values of ν, which are unphysical, as discussed at the end of Section 3.

7. RNLS and NLS DSW Regimes

The KdV approximation (44) gives that the DSW changes from KdV to NLS type at ν =
q2/(4u2

+) due to the change in sign of the coefficient of the third derivative, as discussed
above, and as shown in Figure 3. It should be noted that numerical solutions do not show a
distinct change in DSW type, but a transition from a KdV-type DSW to an NLS-type DSW,
as seen in Figure 2d,e and as shown by the two regimes RNLS and NLS type in Figure 3.
The TDSW regime is characterized by a negative polarity solitary wave connecting the
resonant wavetrain to the intermediate level, as in Figure 2d. As the nonlocality ν decreases,
the beam power in increases, and the height of this solitary wave decreases, resulting in
the RNLS regime which consists of a Whitham shock connecting a resonant wavetrain
to the intermediate level ui. Ahead of the resonant wavetrain is a partial NLS-type DSW
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which connects to the level ahead u+; see Figure 2e. As ν decreases further, the resonant
wavetrain shrinks, and the partial DSW becomes a full NLS DSW with solitary waves at its
trailing edge and linear waves at its leading edge, resulting in an NLS DSW for sufficiently
small ν; see Figure 3b. In this limit, the NLS DSW alone links the intermediate level to
the level ahead. As ν decreases in the RNLS regime, the waves at the trailing edge of the
partial DSW evolve from weakly nonlinear Stokes waves to fully nonlinear periodic waves,
and then solitary waves in the NLS DSW regime.

The intermediate RNLS state, illustrated in Figure 2e, consists of a resonant wavetrain
with the height of the negative polarity solitary wave at the Whitham shock negligi-
ble. To compare the KdV-NLS DSW boundary ν = q2/(4u2

+) with numerical solutions,
the choice of the height of this solitary wave being 5 × 10−3 above ui was chosen for the
onset of the RNLS regime in numerical solutions. It can be seen that there is good agree-
ment for this regime boundary for u+ close to u−, but there is increasing disagreement as
u+ decreases. This is expected as the reductive nematic eKdV Equation (42) was derived
under the assumption that |u− − u+| is small.

8. Conclusions

The structure of the nematic DSW (dispersive shock wave) solution of the defocusing
nematic equations governing the propagation of an optical beam through a cell filled with
nematic liquid crystals has been investigated using a combination of numerical solutions
of the equations governing the beam, consisting of an NLS-type equation for the optical
beam and an elliptic medium response equation, and solutions of the governing nematic
equations using Whitham modulation theory and/or asymptotic solutions. In contrast to
previous work [34–36], the evolution of the DSW structure was studied as the power of the
optical beam varied, from the experimental low power for which the nematic response is
nonlocal to high power for which the response is local. As the beam power varies, it was
found that the nematic DSW transitions between six regimes, four of which were studied
in previous work [34–36]. The two NLS-type DSWs do not exist in the low power regime
studied in this previous work. However, the experimental verification of these high power
DSW types is questionable as the powers required for their existence are unrealistic due
to the possible excessive medium heating the high beam powers would cause. Excellent
agreement was found between numerical solutions and analytical solutions for the four
physically relevant DSW regimes, the PDSW, RDSW, CDSW, and TDSW regimes displayed
in Figure 2a–d. In particular, the analytical theory gives good agreement for the boundaries
between the existence regions for five of the DSW types as the nonlocality parameter ν
varies, the exception being the boundary between the PDSW and RDSW regimes.

It has been found that the details of the nematic DSW, for instance, its lead wave
amplitude and velocity and the amplitude of the associated resonant radiation, are well
approximated by the nematic equations in the high nonlocality limit, the nonlocality
parameter ν large, as the DSW transitions to the local limit. This holds for the PDSW,
RDSW, CDSW and TDSW regimes with the nonlocality parameter ν ranging from O(100)
to O(1). As the analysis of the nematic DSW is much easier in the high nonlocality limit
based on asymptotic analyses with ν ≫ 1, this is an important result for future analysis of
the nematic DSW in its various regimes and over its nonlocality range.

There are still a number of issues which could be addressed by future work. An
outstanding issue is the correct determination of resonance between the nematic DSW
and diffractive radiation. In contrast to the high nonlocality limit with ν large [34–36],
as ν decreases from the high to the low nonlocality limit, the beam power increases, and
the resonance condition used in previous work in the RDSW and CDSW regimes that the
velocity of the lead solitary wave of the DSW matches the linear phase velocity of the
resonant waves does not agree with numerical solutions. The theoretical transition from
the PDSW regime for high nonlocality to the RDSW regime due to the onset of resonance
as ν decreases occurs for ν = O(1), while numerical solutions show the transition for
ν = O(100) to O(10). As noted in previous work [36], and in contrast with other work
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on resonant DSWs, not only is the lead wave of the DSW in resonance with diffractive
radiation, but the whole modulated periodic wave which forms the DSW is in resonance.
However, even this observation does not yield the correct resonance condition for the
RDSW regime as the nonlocality parameter ν decreases below the highly nonlocal limit.
The correct resonance condition between the DSW and diffractive radiation requires further
study. This should be an important general issue for all resonant DSWs beyond the specific
application to nematic liquid crystals.
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Abstract: We study properties of an infinite system of discrete nonlinear Schrödinger equations
that is equivalent to a coupled Schrödinger-elliptic differential equation with periodic coefficients.
The differential equation was derived as a model for laser beam propagation in optical waveguide
arrays in a nematic liquid crystal substrate and can be relevant to related systems with nonlocal
nonlinearities. The infinite system is obtained by expanding the relevant physical quantities in a
Wannier function basis associated to a periodic Schrödinger operator appearing in the problem.
We show that the model can describe stable beams, and we estimate the optical power at different
length scales. The main result of the paper is the Hamiltonian structure of the infinite system,
assuming that the Wannier functions are real. We also give an explicit construction of real Wannier
functions, and examine translation invariance properties of the linear part of the system in the
Wannier basis.

Keywords: optical waveguides; nonlocal media; nematic liquid crystals; Wannier functions

1. Introduction

We study properties of an infinite system of discrete nonlinear Schrödinger (DNLS)
equations that is equivalent to a coupled Schrödinger-elliptic system of partial differential
equations with periodic coefficients. The system was derived in [1] as a model for the
propagation of laser light in nematic liquid crystal substrates with a periodic structure in
one of the directions normal to the optical axis. The model was originally motivated by
experimental studies of such waveguide systems [2–4] and leads to extensions of a nonlocal
DNLS equation of Fratalocchi and Assanto [5,6].

The Fratalocchi-Assanto equation has a nonlocal nonlinearity that leads to new ef-
fects when compared to the cubic power DNLS model studied commonly in photonics
and atomic physics [7]. These effects include non-monotonic amplitude profiles of static
(breather) solutions, additional internal modes in the linearization around breathers [8,9],
and enhanced mobility of traveling localized solutions [10]. On the other hand, the mathe-
matical justification of the Fratalocchi-Assanto model, in particular the question of how
well it approximates the partial differential equations with periodic coefficients used to
describe the underlying physics, is less studied. The present paper is a step in studying
this problem.

Schrödinger-elliptic systems of differential equations with a similar nonlocal struc-
ture in the nonlinear term arise in a variety of contexts. Examples from physics in-
clude Bose-Einstein condensates [11], thermal media [12], and matter-wave microwave
systems [13]. The recent review [14] includes further examples describing laser beams in liq-
uid crystals [5,15–17]. A related area of application of such models concerns thermo-optical
interactions induced by beams in liquid crystals [18–20]. The combination of nonlocal
nonlinearity and spatial periodicity or more general inhomogeneity, and the analysis of
relevant equations is therefore a problem of wider interest.
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The Schrödinger-elliptic differential equation we study describes the coupling of the
laser field amplitude to the nematic crystal director angle. The derivation uses approx-
imations of the coupled Oseen-Frank-Maxwell system for a linearly polarized beam [1].
The periodicity of the medium in the direction transverse to the propagation of the laser
beam leads to an elliptic (Poisson-like) equation with periodic coefficients. Our approach is
to expand the laser field and director angle in a Wannier function basis. The system is sub-
sequently written as an infinite system of coupled DNLS equations for the Wannier mode
amplitudes. The Wannier functions we use are defined in terms of a periodic Schrödinger
operator appearing in the elliptic equation [1]. Note that the Wannier functions are integer
translates of an infinite set of localized functions with an increasing degree of oscillation.
Thus Wannier mode amplitudes give information on both the location and the spatial scale
of images. Wannier and the related Bloch functions are a standard tool in the analysis of
periodic Schrödinger operators [21–24], and related linear problems in theoretical physics,
e.g., solid state physics [25].

Wannier functions are increasingly used in the study of nonlinear waves in inhomoge-
neous media. The use of Wannier functions for deriving discrete Schrödinger equations
for nonlinear wave systems with periodic coefficients was first proposed in [26] for the
periodic Gross-Pitaevski equation (NLS with periodic potential). The Wannier expansion
has been used to justify the approximation of this equation by the DNLS equation in the
the tight binding approximation limit for the potential term in [23,27]. Related systems
where the theory applies are described in [11,12]. In the present problem the Wannier
basis leads to a heuristic derivation of the model of [6] and also allows us to derive more
general DNLS-type equations and systems that include additional inter- and intra-band
Wannier mode interactions [1]. However, the Wannier approach does not immediately
justify truncation to the lowest band because the linear part does not have the band gaps
assumed in [23,26,27]. Thus the question of justifying the derivation of finite systems of
(possibly a few) DNLS equations from the infinite system requires some additional analysis,
and also motivates a better understanding of the structure of the infinite system.

A first result of the paper is an outline of the global existence theory, that is the
boundedness of a suitable norm of the solutions. This type of result is a mathematical way
to describe the absence of catastrophic self-focusing (beam collapse) and the possibility
of stable localized beams [28]. The result also implies an estimate for the energy (optical
power) at different length scales and provides a heuristic justification of truncation to a
finite number of DNLS systems, corresponding to Wannier modes of the first bands.

The main result of the paper is a proof that the infinite system resulting from the Wan-
nier basis expansion is a Hamiltonian system. This fact implies the Hamiltonian structure
of the finite band truncations and can useful in analyzing discrete soliton structures, using
for instance methods from [8,9]. The proof assumes that the Wannier functions are real,
and we subsequently give examples of an explicit construction of real Wannier functions in
terms of explicit Bloch functions.

We also examine some features of the linear part of the problem, in particular we show
that it is diagonalized by the trigonometric functions. This observation implies that the
dispersion relation and the coupling between the modes can be computed with relative
ease, and that the linear part of the problem is homogenized in the Wannier basis, i.e.,
is effectively a translation invariant [29,30]. This latter property is an additional motivation
for further developing Bloch-Wannier analysis in nonlinear wave equations.

The paper is organized as follows. In Section 2 we outline the global existence theory
for the coupled Schrödinger-elliptic system and show that the system in the Wannier basis
is Hamiltonian. In Section 3 we discuss the construction of real Wannier functions. We also
discuss translation invariance properties of the linear part of the system. In Section 4 we
discuss some questions for further work.
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2. Hamiltonian Structure of Periodic Nematicon Equations

We consider the system of equations (“nematicon equations”)

∂zu =
1
2

i∂2
yu +

1
2

βiψu (1)

− ∂2
yψ + V(y)ψ + g2ψ = α|u(y)|2, (2)

with α, β, g2 positive constants, and V b−periodic and positive.
The complex amplitude u describes the electric field amplitude of a linearly polarized

laser beam through a nematic liquid crystal sample, while ψ describes the director angle
deviation of the liquid crystal due to the laser beam. The geometry of the problem is
indicated in Figures 1 and 2, see also [3,6]. In Figure 1 we show a vertical direction x,
and the laser beam propagation axis z. The y−axis is perpendicular to the plane of the
figure. The laser beam electric field is polarized along the x−axis, while the the angle ψ
is on the x, z plane. The device (medium) is periodic along the y−axis. The periodicity
can be imposed by an external electric field that is also along the x−axis, see Figure 2.
We also simplify the problem mathematically by ignoring the dependence of u and ψ in
x. Boundary effects in the directions transverse to the beam are also ignored. Equations
(1) and (2) were derived in [1] from Maxwell’s equations coupled to the Oseen-Frank
equations for the director field [16,31]. Schrödinger operator −∂2

y + V. Similar equations
with constant coefficients have been studied widely in the context of optical solitons in
liquid crystals (“nematicons”) and other nonlocal media [5,14–17].

 X = d/2

X = −d/2

Z

Figure 1. View of vertical (x) and optical (z) directions. The laser and external electric fields have only
vertical components, indicated by the arrow. The red line crossing the sample represents the laser
beam, u(y, x, z) is the electric field amplitude of the beam. The nematic director (shaded ovalloids)
is assumed lie on the x, z plane. The angle ψ(y, x, z) is the deviation (from the z−axis) produced
by the laser beam. The second horizontal direction (y−axis) is perpendicular to the plane of the
figure. In (1), (2) we simplify the mathematical problem by ignoring the dependence of u and ψ on
the vertical variable x. Possible effects of the vertical boundaries of the sample are also ignored.

In model (1), (2) the transverse periodicity of the medium is captured by the b−periodic
function V, and our study involves the analysis of the periodic Schrödinger operator
−∂2 + V. More detailed models [1] involve more complicated operators with periodic
coefficients in the second equation. An example is the operator considered in [3]. The sim-
plification used here captures the fact that the periodicity of the medium appears in the
nonlinear term of the beam Equation (1).
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Z

d

Figure 2. The periodicity of the device (or medium) in the horizontal direction (y−axis) is due
to a vertical electric field applied externally. The parallel stripes represent capacitors that apply a
voltage that is uniform along the beam propagation direction (z−axis), and periodic along the y−axis,
see [3,6]. The dependence on the vertical direction is not included in model (1), (2). Horizontal
boundaries are also ignored.

Equation (2) is written in the abstract form A + V, with A = −∂2
y + g2. Assuming

V ∈ L∞(R;R), and non-negative we have that G = (A + V)−1 is bounded symmetric
operator in L2(R;R), and we can write ||G f ||L2 ≤ C|| f ||L2 , ∀ f ∈ L2. Also G maps L2(R;R)
to H2(R;R). see e.g., [31], Lemmas 2.1, 2.2.

The local and global existence theory for the initial value problem of system (1), (2)
follows from standard arguments and similar to the one in 2-D in [31–33]. This theory
implies that the solution avoids catastrophic nonlinear collapse in finite length, see [28].
This is an important feature of nonlinear beam propagation in nematic liquid crystals and
related nonlocal media, and is a prerequisite for the existence of stable nonlinearly focused
beams [17], see [33] for mathematical aspects.

The main ingredient of the global existence theory is the conservation of the Hamilto-
nian of the system (1), (2)

H =
∫

R

(
1
2
|uy|2 −

αβ

4
G(|u|2)|u|2

)
, (3)

and of the (optical) power P =
∫
R
|u|2, the squared L2−norm of u. We use the notation

|| f ||Lp =
(∫

R
| f |p

)1/p, || f ||L∞ = esssupx∈R| f (x)|.
We can use these two conserved quantities to show the boundedness of some simpler

quantities. By the Cauchy-Schwarz inequality we have

∫

R

G(|u|2)|u|2 ≤
(∫

R

|G(|u|2)|2
)1/2(∫

R

|u|4
)1/2

≤ ||G(|u|2)||2L2 ||u||2L4 , (4)

and using the boundedness of G in L2 we obtain
∫

R

G(|u|2)|u|2 ≤ C2||u||4
L4 . (5)

We use that for all y ∈ R

(u(y))2 =
∫ y

−∞
(u2(s))′ds =

∫ y

−∞
2u(s)u′(s)ds, (6)
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therefore

|(u(y))|2 ≤ 2
∫ y

−∞
|u(s)u′(s)|ds ≤ 2

∫

R

|u(s)||u′(s)|ds ≤ 2||u||L2 ||∂yu||L2 , (7)

using the Cauchy-Schwarz inequality. We then have

||u||4
L4 ≤ ||u||2L∞

∫

R

|u|2 ≤ 2||uy||L2 ||u||3L2 , (8)

and by (5) we bound the quartic part of the Hamiltonian as
∫

R

G(|u|2)|u|2 ≤ 2C2||∂yu||L2 ||u||3L2 . (9)

Then

4H ≥ 2||uy||2L2 − 2αβC2||uy||L2 ||u||3L2 = 2||uy||2L2 − 2αβC2P3/2||uy||L2 , (10)

with P the power, a constant. The conservation of H and (10) imply that ||uy||L2 must
remain bounded for all z ∈ R.

Also,
∫
R

V|u|2 ≤ ||V||L∞ P, thus we have a bound

H2 :=
∫

R

(
|uy|2 + V|u|2 + |u|2

)
≤ C0 (11)

for all z ∈ R, with C0 depending on H and P at z = 0.
We now consider an equivalent discrete system using expansions in Wannier functions.

We also examine some consequences of the Hamiltonian structure of system (1), (2) and of
the bound (11).

We start by defining the Wannier functions associated to the Schrödinger operator
−∂2

y + V(y), with V b-periodic, see [21,22]. Bounded solutions φn,k (Bloch functions) and
eigenvalues En,k of the periodic Schrödinger equation satisfy

− ∂2
yφn,k + V(y)φn,k = En,kφn,k, n ∈ N, k ∈ R, (12)

where
φn,k(y) = vn,k(y)e

iky, with vn,k(y + b) = vn,k(y), (13)

for all y ∈ R, n ∈ N, k ∈ R. By V > 0 we have En,k > 0, furthermore

En,k+ 2π
b
= En,k, φn,k+ 2π

b
(y) = φn,k(y), (14)

for all n ∈ N, k, y ∈ R. Then we can consider k in any interval of length 2π/b. The index n
is referred to as band index (or number). For any fixed k in an interval of length 2π/b, En,k
is the n − th largest eigenvalue of (12) with boundary conditions φn,k(y + b) = eikbφn,k(y),
implied by (13).

Also, by (12), (13), the b−periodic functions vn,k satisfy

− (∂y + ik)2vn,k + V(y)vn,k = En,kvn,k, (15)

thus for any k fixed, n labels the eigenvalues En,k in an increasing order. This equation can
be also be used to compute the vn,k, En,k numerically for each k ∈ [0, 2π/b).

For n ∈ N, y ∈ R, we consider the Fourier coefficients

wm
n (y) =

√
b

2π

∫ π
b

− π
b

φn,k(y)e
−imbkdk, m ∈ Z, (16)
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of φn,·(y), and we also have the inversion formula

φn,k(y) =

√
b

2π ∑
m∈Z

wm
n (y)e

imbk, n ∈ N, k, x ∈ R. (17)

The set of functions wm
n : R → C, n ∈ N, m ∈ Z defined by (16) are known as Wannier

functions [21,22,25]. Note that the Bloch functions are not unique. One of the basic results
is that we can define the Bloch functions so that the Wannier functions form an orthonormal
basis for L2(R;C) [23,24]. We discuss the construction of Bloch and Wannier functions in
the next section.

Another property of the Wannier functions is that, by (16), (13),

w
m+p
n (y) = wm

n (y − pb), ∀n ∈ N, m, p ∈ Z, y ∈ R. (18)

Thus, fixing n, the function wm
n is a translation of the function w0

n by mb.
We use expansions of ψ and u in Wannier functions wm

n as

ψ(y, z) = ∑
n∈N

∑
m∈Z

cn,m(z)w
m
n (y), (19)

u(y, z) = ∑
n∈N

∑
m∈Z

un,m(z)w
m
n (y). (20)

By the orthonormality of the Wannier basis, the coefficients cn,m, un,m are obtained
from the physical quantities ψ, u by

cn,m(z) =
∫

R

ψ(y, z)wm∗
n (y) dy, un,m(z) =

∫

R

u(y, z)wm∗
n (y) dy. (21)

The Wannier functions and the integrals must be evaluated numerically (or approxi-
mately).

Note that the definition w0
n and the regularity of the φn,k in k can also lead to strong

localization of the w0
n in y, see [23,24,34] and the discussion of the next section. The decay

of wm
n is more pronounced for larger oscillation V and for the first n. Numerical examples

are shown in [1]. For rapidly decaying Wannier functions, the decay of the coefficients of
cn,m, un,m in m reflect the decay of the spatial profile of ψ, u respectively.

We can also use the orthonormality of the Bloch and Wannier functions to derive a
bound on the optical power of each energy band. Let

u(y, z) = ∑
n∈N

∫ π
b

− π
b

ĉn,k(z)φn,k(y) dk. (22)

By ∫

R

φn,k(y)φ
∗
n′ ,k′(y)dy = δn,n′δ(k − k′) (23)

and (12) we have that H2 of (11) satisfies

H2 =
∫

R

(−uyy + Vu + u)u∗ = ∑
n∈N

∫ π
b

− π
b

(1 + En,k)|ĉn,k|2dk. (24)

Let εn = mink∈[0,2π/b) En,k. We have εn > 0, ∀n ∈ N. Then

H2 ≥ ∑
n∈N

(1 + εn)
∫ π

b

− π
b

|ĉn,k|2dk. (25)
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By the orthornormality of the Bloch and Wannier functions for the n−th band and
(20), (22) we have ∫ π

b

− π
b

|ĉn,k|2 = ∑
m∈Z

|un,m|2. (26)

Combining with (25), (11) we have

∑
n∈N

(1 + εn) ∑
m∈Z

|un,m|2 ≤ C0, (27)

therefore
∑

m∈Z
|un,m|2 ≤ (1 + εn)

−1C0, (28)

for all n ∈ N. For large n we have εn ∼ n2, more precisely, there exist c, C > 0 such that
cn2 ≤ εn ≤ Cn2, ∀n ∈ N. We discuss this estimate in the next section. Therefore

∑
m∈Z

|un,m|2 ≤ (1 + cn2)−1C0, (29)

for all n ∈ N.
This bound gives us the optical power in the higher band components, e.g., we

can estimate number of modes needed to have a given high percentage of the power in
the lowest band modes. This is a heuristic justification of using a finite system where
n ∈ {1, . . . , N}, i.e., a truncation to the Wannier modes of a finite, possibly large, set of
bands. Note that (29) does not give us however an estimate for the difference between
solutions of the full and truncated systems. This question will be examined in future work.

Equations (1) and (2) in the Wannier basis, see [1], are

dun′ ,m′

dz
=

1
2

i ∑
n∈N

∑
m∈Z

Dm,m′

n,n′ un,m

+
1
2

iαβ ∑
n1,n2,n3∈N

∑
m1,m2,m3∈Z

Vm1,m2,m3,m′
n1,n2,n3,n′ un1,m1 u∗

n2,m2
un3,m3 , (30)

where
Dm,m′

n,n′ =
∫

R

(wm
n )

′′(y)wm′∗
n′ (y) dy, (31)

and
Vm1,m2,m3,m′

n1,n2,n3,n′ = ∑
n∈N

∑
m∈Z

Gm,m′
n,n′ Im1,m2,m′

n1,n2,n′ Im,m3,m′

n,n3,n′ , (32)

with

Gm,m′
n,n′ =

b

2π
δn,n′

(∫ π/b

−π/b

ei(m−m′)bk

En′ ,k + g2 dk

)
, (33)

Im1,m2,m′

n1,n2,n′ =
∫

R

wm1
n1 (y)w

m2∗
n2 (y)wm′∗

n′ (y) dy, Im,m3,m′

n,n3,n′ =
∫

R

wm
n (y)w

m3
n3 (y)w

m′∗
n′ (y) dy. (34)

System (30) was obtained in [1], and we describe the steps in the Appendix A. To
show that it is a Hamiltonian system we compare (30) to Hamilton’s equations with the
Hamiltonian H of (3) expressed in the Wannier basis.

By (11) and (31)

H = −1
2 ∑

n,n′∈N
∑

m,m′∈Z
Dm,m′

n,n′ un,mu∗
n′ ,m′ − β

4 ∑
n,n3,n4∈N

∑
m,m3,m4∈Z

Im,m3,m4
n,n3,n4

cn,mun3,m3 u∗
n4,m4

,

(35)
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and by (33)

H = −1
2 ∑

n,n′∈N
∑

m,m′∈Z
Dm,m′

n,n′ un,mu∗
n′ ,m′

− αβ

4 ∑
n1,n2,n3,n4∈N

∑
n1,n2,m3,m4∈Z

Λ
m1,m2,m3,m4
n1,n2,n3,n4 un1,m1 u∗

n2,m2
un3,m3 u∗

n4,m4
, (36)

with
Λ

m1,m2,m3,m4
n1,n2,n3,n4 = ∑

n,n′∈N
∑

m,m′∈Z
Gm,m′

n,n′ Im1,m2,m′

n1,n2,n′ Im,m3,m4
n,n3,n4

. (37)

We show that Hamilton’s equations for (36) coincide with (30), provided the Wannier
basis functions are real.

We first see that the symmetry of G implies that the coefficients Gm,m′
n,n′ of (33) satisfy

Gm,m′
n,n′ = (Gm′ ,m

n′ ,n )∗, for all n, n′ ∈ N, m, m′ ∈ Z.
We use the double index notation j = (n, m), i.e., (19), (20) are written as

ψ = ∑
j

cjwj, u = ∑
j

ujwj (38)

with summation over j = (n, m) ∈ N×Z. Then Gm,m′
n,n′ = Gj,j′ with j = (n, m), j′ = (n′, m′).

Let gj,j′ =
∫
R
(Gwj′)w

∗
j . We will show that Gj,j = gj,j′ and that the symmetry of G

implies gj,j′ = g∗j′ ,j.

We write (2) as ψ = Gv, v = |u|2, and by (38), v = ∑j′ vj′wj′ we have

cj =
∫

R

ψw∗
j =

∫

R

(Gv)w∗
j = ∑

j′

(∫

R

(Gwj′)w
∗
j

)
vj′ = ∑

j′
gj,j′vj′ . (39)

Then

cj = ∑
j′

gj,j′vj′ = ∑
j′

gj,j′

(∫

R

|u|2w∗
j′

)
= ∑

j′
gj,j′ ∑

j1,j2

uj1 u∗
j2

∫

R

wj1 w∗
j2

w∗
j′ , (40)

or

cj = ∑
j1,j2,j3

(
gj,j′

∫

R

wj1 w∗
j2

w∗
j′

)
uj1 u∗

j2
. (41)

By (33) we have gj,j′ = Gj,j′ , ∀j, j′ ∈ N×Z.
Symmetry of the real bounded operator G with respect to standard L2 inner product

implies ∫

R

(G f )g∗ =
∫

R

f (Gg)∗,

for all f , g ∈ L2(R;C), therefore

gj1,j2 =
∫

R

(Gwj2)w
∗
j1
=
∫

R

wj2(Gwj1)
∗ = g∗j2,j1 , ∀j1, j2 ∈ N×Z. (42)

We now examine Hamilton’s equations. We write (36) as H = h2 + h4 with

h2 =
1
2 ∑

j,j′
D

j,j
′ uju

∗
j′ , h4 = −αβ

4 ∑
j1,j2,j3,j4

Λj1,j2,j3,j4 uj1 u∗
j2

uj3 u∗
j4

. (43)

Hamilton’s equation is

dul

dz
= −i

∂H

∂u∗
l

, l ∈ N×Z, (44)
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and we have

− i
∂h2

∂u∗
l

= −i
1
2 ∑

j

Dj,l uj. (45)

We have thus recovered the linear part of (30).
For the nonlinear part we have

−i
∂h4

∂u∗
l

= −i
αβ

4

(

∑
j1,j2,j3

uj1 Λj1,j2,j3,luj1 u∗
j2

uj3 + ∑
j1,j3,j4

Λj1,l,j3,j4 uj1 uj3 u∗
j4

)

= −i
αβ

4 ∑
j1,j2,j3

(
Λj1,j2,j3,l + Λj3,l,j1,j2

)
uj1 u∗

j2
uj3 . (46)

Let f = wj1 w∗
j2

, g = w∗
j3

wl . We omit the dependence of f , g on the indices for simplicity.
Also let f = ∑k fkwk, g = ∑k gkwk. By (37)

Λj1,j2,j3,l = ∑
k1,k2

Gk1,k2

(∫

R

wk1
g∗
)(∫

R

w∗
k2

f

)
= ∑

k1,k2

Gk1,k2
g∗k1

fk2
, (47)

and

Λj3,l,j1,j2 = ∑
k1,k2

Gk1,k2

(∫

R

wk1
wj1 w∗

j2

)(∫

R

w∗
k2

wj3 w∗
l

)
= ∑

k1,k2

Gk1,k2
f ∗k1

gk2
, (48)

so that by symmetry of G,

Λj3,l,j1,j2 = ∑
k1,k2

Gk2,k1
gk1

f ∗k2
= ∑

k1,k2

G∗
k1,k2

gk1
f ∗k2

. (49)

By (47), (49) we then have

Λj3,l,j1,j2 = Λ∗
j1,j2,j3,l . (50)

Clearly, the above hold for any double index j1, j2, j3, l ∈ N×Z. If the Wannier functions
are real, the coefficients Gk1,k2

and Λ∗
j1,j2,j3,j4

are real. By (50), (46) yields the nonlinear part
of (30). This concludes the argument.

We remark that the Hamiltonian structure of (30) easily implies the Hamiltonian
structure of finite band truncations of the (30). The same applies to truncations where we
consider a finite set of sites m. It suffices to restrict the summations in (36) to a finite range
of n, m, also setting modes outside the desired index range to zero.

Also the Hamiltonian of (36) is invariant under the global phase change un,m 7→
eiφun,m, for arbitrary real φ and all n, m. This fact justifies the terminology coupled DNLS
for (30).

As seen in [1], the Wannier expansion leads to a natural extension of the Fratalocchi-
Assanto model [6]. The coupled mode approach of [6] can be also extended to describe more
degrees of freedom per site [7]. Generally, mode expansions have additional structure when
they arise from the solution of some spectral problem. This is the case for Bloch and Wannier
functions. This additional structure however requires substantial computational effort, e.g.
we need to compute Bloch and Wannier functions and evaluate Wannier overlap integrals.
We discuss some of the relevant issues in the next section. We emphasize however that the
general structural features of the equations, e.g., Hamiltonian structure, symmetries, form
of mode interaction terms, are key. Heuristic simplifications that preserve these features
can yield useful models. It is also seems important to be able to justify truncations to
a small number of bands. We have at the moment only a partial justification for such
truncations, relying on the rate of decay of the power in the higher bands (29).
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3. Real Wannier Functions and Dispersive Properties

The Hamiltonion structure of the infinite system for the Wannier coefficients (30)
assumed real functions. In this section we describe the construction of real Wannier
functions using explicit constructions of the Bloch functions. We also observe that the linear
part of (30) will in general couple modes from different bands. This is a main difference
between our system and the equations considered in [11,12,26,27]. We show that we can
still however diagonalize the system using trigonometric functions. In that sense, the
Wannier-Bloch analysis leads to a homogenized , i.e., effectively translation invariant,
linear part, see [29,30].

To construct the Wannier functions we examine the Schrödinger equation

− ∂2
yΨ + V(y)Ψ = EΨ, Ψ : R → C (51)

with V nonegative and b-periodic as a second order ODE with a real parameter E ∈ R.
We assume that V is also piecewise Lipschitz. The spectrum of −∂2

y + V is given by the set
of real E for which all solutions of (51) are bounded, see e.g., [24,35]. The equations for the
real and imaginary parts of Ψ decouple, and all complex valued solutions are of the form
AΨ1(.; E) + BΨ2(.; E), A, B ∈ C, where Ψ1(.; E), Ψ2(.; E) are any two linearly independent
real solutions.

We consider solutions Ψ1(.; E), Ψ2(.; E) with initial conditions

Ψ1(0; E)= 1, Ψ′
1(0; E)= 0, (52)

Ψ2(0; E)= 0, Ψ′
2(0; E)= 1. (53)

By the Hamiltonian structure of (51), seen a non-autonomous ODE on the plane, the
corresponding solutions are linearly independent, i.e., [Ψ1(y; E), Ψ′

1(y; E)], [Ψ2(y; E), Ψ′
2(y; E)]

are linearly independent since the (linear) solution map is symplectic, ∀y ∈ R.
Given E ∈ R, a solution Ψ(.; E) is bounded if and only if there exists λ ∈ C, |λ| = 1,

for which
Ψ(y + b; E) = λΨ(y; E), ∀y ∈ R, (54)

see [21]. Then we must also have

Ψ′(y + b; E) = λΨ′(y; E), ∀y ∈ R. (55)

Let Ψ(y; E) = AΨ1(y; E) + BΨ2(y; E) for A, B complex, then (54), (55) at y = 0 and
(52), (53) imply the system

AΨ1(b; E) + BΨ2(b; E) = λA (56)

AΨ′
1(b; E) + BΨ′

2(b; E) = λB. (57)

Then λ must be an eigenvalue of the matrix M defined by

M =

(
Ψ1(b; E) Ψ2(b; E)
Ψ′

1(b; E) Ψ′
2(b; E)

)
. (58)

If λ is an eigenvalue of M, and λ = eikb, then k and E are related to

µ(E) = cos kb, (59)

where

µ(E) =
Ψ1(b; E) + Ψ′

2(b; E)

2
, (60)

see [21]. The dependence of µ on the choice of Ψ1, Ψ2, i.e., the initial conditions (52), (53) is
supressed from the notation.
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We recall some properties of µ(E), and the solutions of (59), see [21–24]. The function
µ(E), µ is entire and µ′(E) = 0 implies |µ(E)| ≥ 1. Also, µ(E) → ∞ as E → −∞, and
µ(E) → cos(b

√
E) as E → ∞. Also µ(E) → ∞ as E → −∞. For V non-negative µ has no

negative critical points and an infinite set of positive critical points that become equidistant.
A band is a maximal connected interval of R where µ(E) is monotone and satisfies

|µ(E)| ≤ 1. By the above, there is an infinite number of bands Bn, n ∈ N, and a natural
way to enumerate them so that points n < n′, E ∈ Bn, E′ implies En ≤ En′ , with equality
holding for n = n + 1 and E = maxBn, E′ = minBn′ . Every E satisfying (60) must belong
to exactly one band. Also, for every n ∈ N, and k ∈ [0, π/b], there exists a unique E ∈ Bn

satisfying (60). We denote such E ∈ Bn by Ek,n. The large E behavior of µ(E) also implies
that there exist c, C > 0 such that εn = minBn satisfies cn2 ≤ εn ≤ Cn2, ∀n ∈ N.

The solutions of (60) can be then parametrized as En,k, k ∈ [0, π/b], n ∈ N, and Bn =
[En,π/b, En,0]. Also, we let E(−k, n) = Ek,n and extend En,k to k ∈ R by 2π/b−periodicity.
This notation is consistent with (60). For V non-negative all bands belong to R+. By the
implicit function theorem, given n ∈ N, En,k is real analytic for k ∈ (0, π/b), and is continu-
ous in [0, π/b]. The even and 2π/b−periodic extension of En,k to real k is continuous in
R, and real analytic at all points outside the lattice Z

π
b , for all n ∈ N. Regularity of En,k at

points Zπ
b for given n follows under gap conditions for the edges of the band Bn.

Consider now E = En,k as above a solution of (60) for some n ∈ N, k ∈ [0, π/b],
and the corresponding real solutions Ψ1(·; E), Ψ2(·; E). Solving (56), (57) we have

A

B
=

Ψ2(b; E)

λ − Ψ1(b; E)
, (61)

and we obtain

Ψ(y; E) = A

(
Ψ1(y; E) +

Ψ2(b; E)

λ − Ψ1(b; E)
Ψ2(y; E)

)
, (62)

with λ = eikb, E = En,k, n ∈ N, k ∈ (0, π/b). The expression can be extended to the
endpoints k = 0, π/b, under conditions we discuss below. Also, the complex coefficient A
is free, e.g., it can be also chosen to normalize Ψ(y; E). In general it may depend on n, k,
and we write A = An,k.

Denote Ψ(·; E) = Ψ(·; En,k) by Ψn,k, n ∈ N, k ∈ [0, π/b]. Clearly Ψ∗
n,k is also a solution

of (51). We then let

φn,k =

{
Ψn,k if 0 < k <

π
b ,

Ψ∗
n,−k if −π

b < k < 0
. (63)

The functions φn,k are extended by 2π/b−periodicity for k ∈ R \ Zπ
b and are Bloch

functions, see (12), (13), (14).
We check that the corresponding Wannier functions are real. By (18), it suffices to

show that the w0
n are real. By (16)

w0
n(y) =

√
b

2π

∫ π
b

− π
b

φn,k(y) dk, (64)

and by (63)

∫ π
b

− π
b

φn,k(y)dk =
∫ 0

− π
b

Ψ∗
n,−k(y) dk +

∫ π
b

0
Ψn,k(y)dk = 2Re

∫ π
b

0
Ψn,k(y) dk, (65)

∀y ∈ R. It is assumed that the last integral is well defined.
We now give a condition that makes the above construction well defined, leading to

w0
n ∈ L2(R,R), for all n ∈ N. In particular, assume that the limits

lim
k→0+

dEn,k

dk
, lim

k→π/b−

dEn,k

dk
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exist (and are finite). Then the corresponding limits of the fraction Ψ2(b; E)/(λ − Ψ1(b; E))
also exist, and Ψn,k given by the right hand side of (62), with A = 1, is well defined for
all n ∈ N, k ∈ [0, π/b]. We further see that the Ψn,·(·) are continuous in [0, π/b] × R,
∀n ∈ N. Defining φn,k by (63), the integrals in (64), (65) are finite for all y ∈ R. It follows
that φn,·(y) ∈ L2([−π/b, π/b];C), for all n ∈ N, y ∈ R. Then by Percival and (18) we see
that ∫

R

|w0
n(y)|2 dy = 2π

∫ b

0

(√
b

2π

∫ π
b

− π
b

φn,k(y) dk

)
dy,

i.e., finite, for all n. Thus the Wannier functions constructed this way are square-summable.
Normalized Wannier functions are obtained by choosing a suitable coefficient An,k = An

for each n ∈ N.
Note that the condition we used is always satisfied if both En,0, En,π/b belong to the

boundary of the spectrum for some n. In such band gap situations, En,· is real analytic in R,
and we obtain an exponentially decaying Wannier function w0

n [23,24].
The above suggest that several qualitative features of the Wannnier functions can be

deduced by theoretical arguments. The main input is information on the energy band
structure. This information is obtained by solving (59) numerically. The function µ(E)
must be computed numerically from (60). The functions Ψ1(y; E), Ψ2(y; E) are computed
by numerical integration of (51) in the interval y ∈ [0, b] for different values of E, using
the initial conditions (52), (53) respectively. Explicit expressions for the Ψ1(b; E), Ψ2(b; E)
are known for a piece-wise constant potential V with two steps, see [1,23,36], but are
cumbersome in the general case. This calculation also yields En,k, k ∈ [−π/b, π/b], for the
lowest n, numerical plots can be found in several sources, see e.g., [1,26].

Wannier functions are obtained numerically from (62)–(64), see [1,23,26] for some ex-
amples indicating the decay of the Wannier functions (for small n) as V is varied. The eval-
uation of mode interaction coefficients (33), (34) also uses quadrature, see [1]. The main
difficulty here is the large number of coefficients, and the combinatorial nature of their
enumeration. At this stage we need some efficient cut-off criteria, and we typically opt for
some heuristic truncation to a few mode interactions, e.g., with a few nearest neighbors,
justified by the decay of Wannier functions. This part of the analysis is still not as developed.
In the case where we consider truncation to the first band modes, the main question is
distinguishing between a power (on-site-only) and a nonlocal nonlinearity [6], see [1] for
some results. As we already mentioned the two models have properties the can distinguish
them [8–10]. The possibility of long range linear mode interactions, e.g., as in [37], was also
considered. It would be desirable to have a similar study for a model with two or three
bands, inter-band mode interactions could be a more important feature of the problem.

We now examine the linear part of the nematicon system (1), (2). Generally the
Wannier modes of different bands interact, and we want to examine the effect of these
interactions for finite band truncations of the general discrete system (A8).

In what follows we will consider expansions in real Wannier functions and use the
Hamiltonian structure of the linear systems. The linear coefficients of (31), (35) are then
Dm,m′

n,n′ = Dm,m′
n,n′ with

Dm,m′
n,n′ =

∫

R

(wm
n )

′′(y)wm′
n′ (y) dy

=
∫

R

(w0
n)

′′(y − mb)w0
n′(y − m′b) dy

=
∫

R

(w0
n)

′′(ỹ)w0
n′(ỹ − (m − m′)b) dỹ. (66)

Let Dn1,n2(m) = D0,m
n1,n2 , then by (66) we have the symmetries

Dm1,m2
n1,n2 = Dn1,n2(m1 − m2) = Dn2,n1(m2 − m1) = Dm2,m1

n2,n1 , (67)

46



Appl. Sci. 2021, 11, 4420

for all n1, n2 ∈ N, m1, m2 ∈ Z. Linear interaction coefficients for n1 = n2 = n depend on
|m1 − m2|. In general, the linear interactions between bands n1 6= n2 do not vanish.

The linear coefficients Dm1,m2
n1,n2 are contrasted to those of the periodic or perturbed

periodic Schrödinger equation

∂zu =
1
2

i∂2
yu +

1
2

i[V(y) + Ṽ(y)]u, (68)

with Ṽ a perturbation of the b−periodic potential V used to define the Wannier functions.
For Ṽ ≡ 0 the Hamiltonian is

h2,V =
1
2

∫

R

u(−∂2
y + V)u∗, (69)

and we use expansion in the Bloch functions and (12), (13) and the definition of the Wannier
functions to compute

h2,V =
1
2

√
b

2π ∑
n∈N

∑
m1,m2∈Z

Ên(m1 − m2)un,m1 u∗
n,m2

, (70)

with

Ên(m) =

√
b

2π

∫ π
b

− π
b

En,ke−imbk dk, m ∈ Z. (71)

Also, En,k real and even in k, implies Ên(−m) = Ê∗
n(m) = Ên(m), for all n ∈ N, m ∈ Z.

The interaction between different bands therefore vanishes.
The effect of the perturbation Ṽ is described adding to the Hamiltonian the part

hṼ =
1
2

∫

R

uṼu∗. (72)

We have

hṼ =
1
2 ∑

n1,n2∈N
∑

m1,m2∈Z
Ṽm1,m2

n1,n2 un1,m1 u∗
n2,m2

, (73)

with
Ṽm1,m2

n1,n2 =
∫

R

wm1
n1 (y)Ṽ(y)wm2

n2 (y) dy. (74)

The coefficients will in general couple modes from different bands. In the case where
Ṽ is also b−periodic the Ṽm1,m2

n1,n2 have the symmetries that are similar to the ones in (67), i.e.,
Ṽm1,m2

n1,n2 = Ṽm2,m1
n2,n1 = Ṽ0,m1−m2

n1,n2 and will also couple modes from different bands. In the case
where V + Ṽ is periodic a new set of Wannier functions may be defined so that the new
bands decouple.

We remark that the Hamiltonian of the linear part of is denoted by h2, see (43). Clearly,
h2 = h2,V − hV , with the notation of (70), (73). Thus the coefficients Dm1,m2

n1,n2 of (66) can be
expressed in terms of the Ên(m), Vm1,m2

n1,n2 of (71), (74), as

Dm1,m2
n1,n2 = −

√
b

2π
δn1,n2 Ên1(m1 − m2)− Vm1,m2

n1,n2 . (75)

(In the case n1 6= n2, the first term vanishes.) Comparing (66), (75) we thus see that can
then avoid computation of the derivative of the Wannier functions at the cost of computing
the Fourier transform of En,k.

Consider now a truncation of the general discrete system (A8) to the first N bands.
The linear part is

duj,m

dz
=

i

2

N

∑
n1=1

∑
m1∈Z

un1,m1 Dm1,m
n1,j =

i

2

N

∑
n1=1

∑
m1∈Z

Dn1,j(m1 − m)un1,m1 . (76)
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To find the dispersion relation we look for solutions uj,m = Aje
−i(mbκ+ωκz), j ∈

{1, . . . , N}, m ∈ Z, κ ∈ R. Then (76) becomes

ωκ Aj = −1
2

N

∑
n=1

(

∑
l∈Z

Dn,j(l)e
−ilbκ

)
An, j = 1, . . . , N. (77)

Thus ωκ is an eigenvalue of the matrix Tκ defined by

Tκ(j, n) = −1
2 ∑

l∈Z
Dn,j(l)e

−ilbκ , j, n ∈ {1, . . . , N}. (78)

For instance, truncation up to the second band yields

ωκ =
1
2

(
Tκ(1, 1) + Tκ(2, 2)±

√
(Tκ(1, 1)− Tκ(2, 2))2 + 4Tκ(1, 2)Tκ(2, 1)

)
, (79)

κ ∈ R.
By the symmetries (67) Tκ is Hermitian, ∀κ ∈ R, so that the eigenvalues ωκ are real.
Note that the solutions uj,m and Tκ are 2π−periodic in κ so that we may consider only

κ ∈ [0, 2π). Varying κ ∈ [0, 2π) for each of the N eigenvalues ωκ,j, j = 1, . . . , N of Tκ will
produce N intervals.

We finally note that substitution of (31), (67) into (78), and use of (17) leads to some-
what simpler expressions that involve the Bloch functions

Tκ(j, n) =
1
2

√
b

2π

∫

R

(w0
n)

′′(y)φ∗
j,κ(y)dy = −1

2

√
b

2π

∫

R

w0
n(y)(φ

∗
j,κ)

′′(y)dy. (80)

The linear part of the evolution equation is therefore diagonalized by plane wave
(trigonometric) solutions, and is thus effectively translation invariant in the Wannier
basis. This is expected as the periodicity of the medium is absorbed in the nonlinear term.
The range of the ωκ,j, κ ∈ [0, 2π), j = 1, . . . , N, will produce N intervals that must be
computed numerically. These intervals may overlap or have gaps, although in the limit
N → ∞ we expect that their union is the positive real axis, i.e., the spectrum of −∂2

y.
The computation of these intervals involves the computation of linear mode interaction
coefficients and will be considered in future work.

4. Discussion

We have examined some properties of a coupled Schrödinger-elliptic system modeling
optical waveguide arrays in a nematic liquid crystal substrate. The system is studied
by first passing to an equivalent infinite system of discrete describing the interaction
of Wannier mode amplitudes of the relevant physical quantities [1]. The Wannier basis
functions are defined in terms of a periodic Schrödinger operator appearing in the system
and must be computed numerically. The Wannier mode amplitudes are related to the
observed quantities by quadrature formulas (21) that may be evaluated numerically or
using approximations. The Wannier basis approach leads to the derivation of systems of
discrete nonlinear Schrödinger (DNLS) equations by truncation to the mode amplitudes of
the first bands of the periodic Schrödinger operator. We have shown that these systems are
Hamiltonian. The proof uses the reality of Wannier functions, and we have also described
an explicit construction of real Wannier functions. Finally we show that the linear part of
the system of discrete equations is diagonalized by (trigonometric) plane waves.

Bloch-Wannier analysis is a classical subject in theoretical physics, with well-known
applications in classical and quantum mechanics [24,25]. Recently it is increasingly applied
to the study of nonlinear waves in inhomogeneous media [23,26], and in the theory of
homogenization [29,30]. The paper considers a problem in nonlinear waves where the
periodicity appears in the nonlinear interaction. The system includes a natural operator
that allows the use of Bloch-Wannier analysis, but differs from the more commonly stud-
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ied systems [7] where the linear part of the beam propagation equation is the periodic
Schrödinger operator. In that case the band gap structure of the periodic Schrödinger
operator allows us to justify the truncation to a model for the lowest band modes through
a non-resonance argument [23]. In the present case the the most likely justification of
DNLS models will involve truncation to a finite (possibly small) system of DNLS equations.
This fact is also suggested by experimental results of [3]. Note that [3] consider a more
complicated periodic operator in the director field equation that also includes the second
(vertical) direction of the plane perpendicular to the optical axis. The present paper uses a
simplification of the director field equation and takes advantage of the more developed
Bloch analysis of the periodic Schrödinger operator. The idea is that the nonlinear effect of
the transverse periodicity is already present in the simpler version. In addition, the more
tractable Wannier-Bloch analysis of the simpler problem has allowed us to derive multi-
band DNLS systems and to analyze their structure. This a first towards further analysis of
such systems, e.g., along the lines of earlier studies of the Fratalocchi-Assanto model [8,9].
While the paper considers a problem arising from nonlinear optics in liquid crystals, the
combination of nonlocal nonlinearity and periodicity we consider may appear in other
areas where similar systems are studied [14,15].

The paper shows that the Wannier basis expansion is an effective tool for elucidating
the structural features of simplified DNLS equations. We also saw that the Wannier-
Bloch approach requires the numerical computation of several intermediate quantities.
For instance, the computation of Wannier functions uses numerically computed Bloch
functions and numerical integration over Bloch functions, while the nonlinearity of DNLS
systems, as well as the linear interaction between bands also involves the evaluation of
Wannier overlap integrals. Possible simplifications may arise for some limits of V [1],
and there are general ideas such a eliminating non-resonant interactions [23,26] that can
be examined further in this problem. but possibly less practical. Our view is that a good
understanding of the structure of the Wannier coupled mode systems may allow us to
analyze their dynamical properties without computing everything. It is possible that
heuristic simplifications lead to models that capture significant features of the dynamics,
and that a better theoretical understanding can bridge the gap between the simplified and
fuller models. These questions will be addressed in future work.
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Appendix A

We present the steps from the Schrödinger system (1), (2) for the variables u, ψ to the
infinite system (30) for their Wannier coefficients, see also [1],

We first consider the second nematicon Equation (2). We multiply (2) by φ∗
n′ ,k′(y),

integrate over y ∈ R, and use the Schrödinger Equation (12) to obtain
∫

R

ψ(y)(E∗
n′ ,k′ + g2)φ∗

n′ ,k′(y) dy = α
∫

R

|u(y)|2φ∗
n′ ,k′(y) dy, (A1)

hence ∫

R

ψ(y)φ∗
n′ ,k′(y) dy = α(En′ ,k′ + g2)−1

∫

R

|u(y)|2φ∗
n′ ,k′(y) dy. (A2)
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We then multiply (A2) by eimk′b and integrate both sides over k ∈ [−π/b, π/b]. Inter-
changing the order of integration in k, y, and using the definition of Wannier functions we
obtain that ψ is given by (19) with

cn,m = α

√
b

2π ∑
n1,n2∈N

∑
m1,m2∈Z

Km1,m2,m
n1,n2,n un1,m1 u∗

n2,m2
, (A3)

where

Km1,m2,m
n1,n2,n =

∫

R

wm1
n1 (y)w

m2∗
n2 (y)

{∫ π/b

−π/b

φ∗
n,k(y)e

imbk

En,k + g2 dk

}
dy. (A4)

Expanding φn,k in the Wannier basis as in (17) we have

Km1,m2,m
n1,n2,n =

√
b

2π

∫

R

wm1
n1
(y)wm2∗

n2
(y)

{

∑
m′∈Z

(∫ π/b

−π/b

ei(m−m′)bk

En,k + g2 dk

)
wm′∗

n (y)

}
dy

=

√
b

2π

∫

R

wm1
n1
(y)wm2∗

n2
(y)

{

∑
n′∈N

∑
m′∈Z

δn,n′

(∫ π/b

−π/b

ei(m−m′)bk

En′ ,k + g2 dk

)
wm′∗

n′ (y)

}
dy

= ∑
n′∈N

∑
m′∈Z

√
b

2π
δn,n′

(∫ π/b

−π/b

ei(m−m′)bk

En′ ,k + g2 dk

) ∫

R

wm1
n1
(y)wm2∗

n2
(y)wm′∗

n′ (y) dy. (A5)

By (A2), (A5) we then have

cn,m = α ∑
n1,n2,n′∈N

∑
m1,m2,m′∈Z

Gm,m′
n,n′ Im1,m2,m′

n1,n2,n′ un1,m1 u∗
n2,m2

, (A6)

with

Gm,m′
n,n′ = b

2π δn,n′

(∫ π/b
−π/b

ei(m−m′)bk

En′ ,k+g2 dk

)
, Im1,m2,m′

n1,n2,n′ =
∫
R

wm1
n1 (y)w

m2∗
n2 (y)wm′∗

n′ (y) dy. (A7)

To expand the first nematicon Equation (1) in coefficients of Wannier functions, we sub-
stitute the series expansions (19), (20) into (1), multiply (1) by wm′∗

n′ (y), and integrate over
y ∈ R. We obtain

dun′ ,m′

dz
=

1
2

i ∑
n∈N

∑
m∈Z

Dm,m′
n,n′ un,m +

1
2

iβ ∑
n,n3∈N

∑
m,m3∈Z

Im,m3,m′

n,n3,n′ cn,mun3,m3 . (A8)

where

Dm,m′

n,n′ =
∫

R

(wm
n )

′′(y)wm′∗
n′ (y) dy, Im,m3,m′

n,n3,n′ =
∫

R

wm
n (y)w

m3
n3 (y)w

m′∗
n′ (y) dy (A9)

Substitution of (A3) into (A8) leads to the system

dun′ ,m′

dz
=

1
2

i ∑
n∈N

∑
m∈Z

Dm,m′

n,n′ un,m

+
1
2

iαβ ∑
n1,n2,n3∈N

∑
m1,m2,m3∈Z

Vm1,m2,m3,m′
n1,n2,n3,n′ un1,m1 u∗

n2,m2
un3,m3 , (A10)

where by (A4), (31), and (A8), (31)

Vm1,m2,m3,m′
n1,n2,n3,n′ =

√
b

2π ∑
n∈N

∑
m∈Z

Km1,m2,m
n1,n2,n Im,m3,m′

n,n3,n′ = ∑
n∈N

∑
m∈Z

Gm,m′
n,n′ Im1,m2,m′

n1,n2,n′ Im,m3,m′

n,n3,n′ . (A11)

This is the system of (30), with the coefficients (31)–(34).
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Abstract: The use of dye-doped liquid crystals allows the amplification of the coupling of light and
liquid crystals. Light can induce the self-organization of the molecular order. The appearance of
ring patterns has been observed, which has been associated with phase modulation. However, the
morphology and dynamics of the ring patterns are not consistent with self-modulation. Based on
an experimental setup with two parallel coherence beams orthogonal to a liquid crystal cell, one of
which induces photo-isomerization and the other causes illumination, the formation of ring patterns
is studied. To use these two coherent beams, we synthesize methylred methyl ester as a dye-dopant,
which is photosensitive only to one of the light beams, and a commercial E7 liquid crystal as a matrix.
Based on a mathematical model that accounts for the coupling between the concentration of the
cis-state and the order parameter, we elucidate the emergence of the rings as forming patterns in
an inhomogeneous medium. The bifurcation diagram is analytically characterized. The emergence,
propagation of the rings, and the establishment of the ring patterns are in fair agreement with the
experimental observations.

Keywords: photo-isomerization in liquid crystals; pattern formation; light-induced phenomena;
azo-dye-dopant

1. Introduction

The interaction between light and matter has played a fundamental role in the under-
standing and characterization from the early stages of research [1]. Likewise, the interaction
between light and matter has also been the basis of the development of technological el-
ements such as mirrors, lenses, telescopes, microscopes, lasers, and waveguides, among
others. The development of more coherent and monochromatic light sources (lasers) ac-
companied by materials that present stronger nonlinear responses has allowed the creation
of a great variety of devices [2–6]. Liquid crystals are one of the most versatile materials,
because of their strong nonlinear response and reorientation capacity through the applica-
tion of electromagnetic waves and electric and magnetic fields [7–11]. Liquid crystals are
a state of matter in which the molecules have a preferential orientation and can have or
not have a positional order; this organization is also known as soft matter [7–11]. Indeed,
this state of matter shares features of solids and liquids. In particular, fluidity, molecular
reorientation, and birefringence are characteristic properties of liquid crystals. One of the
most studied types of liquid crystals used in technological applications are nematic liquid
crystals (NLC). This state is composed of rod-like organic molecules [7–11]. Because of
an intermolecular interaction, these molecules are arranged to have a similar molecular

53



Appl. Sci. 2021, 11, 5285

orientation without positional order for specific temperature ranges. This results in a sharp
anisotropy of all their physical properties, especially regarding elastic and optical charac-
teristics. Likewise, the ability to reorient the molecular order has allowed the development
of many applications, mainly liquid crystal displays (LCDs) and sensors [12]. The LCD
is perhaps the best known liquid crystal application by the public today. However, in
most of these applications, the control of molecular reorientation is done through electric
fields. LCDs therefore require transparent or reflective electrodes, power sources, and
other elements. Another manner of achieving molecular reorientation is to consider the
application of electromagnetic waves through the liquid crystal sample [13–17]. However,
this type of strategy requires the use of strong electromagnetic fields, which typically
need a power on the order of 100 W/cm2. For these powers, the nonlinear response of
the medium is activated [11,18]. The previous scenario can change radically when one
considers the dye-dopant inside the liquid crystal matrix. Indeed, when nematics are
doped with azo-dyes, their nonlinear response to opto-electrical perturbations is increased
by several orders of magnitude [11,18]. Indeed, azo-dyes mediate the origin of the coupling
of the electromagnetic waves with the liquid crystal; when these molecules are irradiated,
they present an isomeric transition. This phenomenon is known as the Jánossy effect [19].
This transition is characterized by the fact that the molecule changes from an elongated
structure (trans-state) to one with a boomerang shape (cis-state) when the molecule absorbs
a photon. Figure 1 illustrates the typical structure of these molecules.

Figure 1. Ring patterns induced by light in a dye-doped liquid crystal cell (DDLCC). (a) Schematic
representation of the experimental system. The blue and red bars, respectively, account for the
molecules of the liquid crystal and azo-dye. The cell is illuminated by a blue and green beam. The
snapshot accounts for the observed ring patterns. A transversal plane in the DDLCC is schematically
represented. The areas under higher blue laser irradiation are more disordered, while the zones less
illuminated preserve the nematic order. (b) Isomers of the molecule methyl red methyl ester. (c) Two
snapshots showing the observed pattern (upper panel) and snapshot with the beam that induces
photo-isomerization superimposed (bottom panel).

When a sufficiently intense light beam illuminates a thin film of dye-doped nematic
liquid crystal, this can induce molecular disorder, generating a transition from a nematic
phase to an isotropic one [20]. This type of transition is characterized by the emergence of
a front between phases [20]. These fronts are characterized by being a circular spot that
gathers in the center of the beam and spreads outwards and stops in the region where both
states are energetically equivalent, Maxwell point. For intermediate light intensities, which
do not induce isotropic liquid phase, the emergence of a pattern with a stripe shape has
been reported [21,22]. In fact, these patterns correspond to regions that alternate higher
and lower orientational molecular order. This phenomenon is understood as a result of
the different scales in the transport processes of the concentration of the cis state and
the orientational order of the liquid crystal. Thin films of liquid crystals without dye-
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dopants subjected to strong electromagnetic fields in their cross section exhibit diffraction
rings [14,23]. The above phenomenon is associated with phase modulation or autofocusing
of light when is diffracted in the NLC. This medium is a good approximation to a Kerr
medium [2–6,24], that is, the envelope of the light is under the effect of phase modulation,
a cubic term for the envelope and diffraction. Hence, the conjunction of diffraction and
phase modulation produces the emergence of diffraction rings. Note that the thickness of
the observed rings decreases with the square distance from the center of the light beam.
A similar phenomenon is observed in dye-doped liquid crystals when subjected to a
coherent light with a moderate and low light intensity [25–27]. Because of the presence of
dye-dopants, the nonlinear response can be achieved for light power of a few milliwatts
[28]. The emergence of these rings has been associated with phase modulation. However,
the morphology and dynamics of the ring patterns are not consistent with that expected
for self-modulation rings observed for large intensities of light [14,23]. Furthermore, in
this type of description, the dynamical behavior of the cis state concentration is passive. In
other words, this concentration is enslaved to the system dynamics.

The article aims to elucidate and characterize the origin of the ring patterns observed
when illuminating a dye-doped nematic liquid crystal cell with a light beam and planar
anchoring. Based on an experimental setup with two parallel coherent beams, one of
which induces photo-isomerization and the other the illumination, the formation of ring
patterns is studied. Figure 1 illustrates the typical observed ring patterns. This type of
setup allows us to separate the induction of the photo-isomerization and the observation
of the self-organized patterns. To use these two coherent beams, we have synthesized
methyl red methyl ester as dye-dopant, photo sensitive only to one of the light beams, and
a commercial E7 (Instec Inc., Boulder, CO, USA) as a liquid crystal matrix. The methylred
methyl ester was used as a dye-dopant (cf. Figure 1). Unlike methylred, the methylred
methyl ester is more soluble and less viscous in E7 due to the absence of hydrogen bonds
from the carboxylic acid group of the methylred. In addition, this structural modification
prevents an intramolecular hydrogen bonding interaction with one of the nitrogens of
the azo group, causing a faster cis-trans isomerization [29]. Theoretically, based on a
mathematical model that accounts for the coupling between the concentration of the cis
state and the order parameter, we elucidate the emergence of the rings as forming patterns
in an inhomogeneous medium. The bifurcation diagram is analytically characterized. The
emergence, propagation, and establishment of the ring patterns are in fair agreement with
the experimental observations.

2. Experimental Observations of the Ring Patterns

The conventional phototropic transition detection is performed by sampling the
excitation laser beam and extracting the reorientational order parameter with polarized
optical microscopy [19–23,30]. The main inconvenience with those setups arises from
the loss of information of the liquid crystal dynamics outside of the central Gaussian
illuminated zone. Hence, the impossibility of differentiating between polarization changes
in the light filtered out by the analyzer and the absorbed light by the sample. To overcome
these difficulties, we developed an experimental setup with two parallel coherent beams
applied to the dye-doped liquid crystal sample, which is only photo-sensitive to one beam
(excitation beam) while the other is harmless (probing beam).

2.1. Experimental Setup

Figure 2 shows the experimental setup diagram. The dye-doped liquid crystal cell
(DDLCC) undergoes a phototropic transition when it is irradiated by a light source in the
absorption band of the guest dye [19,31]. We used a concentration of methylred methyl
ester 1 wt% as azo-dye guest doping a commercially available E7 NLC (host). The chemical
structure and isomers of methylred methyl ester are illustrated in Figure 1c. The absorption
spectrum of the methylred methyl ester is depicted in Figure 2b (for details about the
chemical synthesis and depuration of the azo-colorant, see Section 2.2).
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Figure 2. Experimental setup for the dye-doped nematic liquid crystal phototropic transition with a
harmless external illumination. (a) A dye-doped liquid crystal cell (DDLCC) is irradiated by a 445 nm
blue laser (excitation light beam) LB and illuminated by a 532 nm green laser (probing light beam) LG.
Two pairs of lenses are placed in a Kepler telescope configuration KB and KG to expand the laser beam
while preserving the collimation. ~PB and ~PG are the polarization of the laser sources. A long-wave
pass dichroic mirror DM is used to set both excitation and probing on the same optical line. After
the DDLCC, another long-wave pass dichroic mirror is used to filter out the excitation beam. An
analyzer in a crossed configuration with respect to ~PG. A set of imaging optics IL consisting on a
×2 Kepler telescope and a ×7 zoom lens is used to enhance the image captured by the 1/2” CCD
camera. (b) Absorption spectrum of methyl red methyl ester in dichloromethane 2.0 × 10−5 mol/L.
The solid vertical lines account for the wavelength of the exciting and probing light, respectively.
Vertical dashed lines account for the absorption maximum.

The mixture was injected into an antiparallel planarly aligned liquid crystal cell with
a thickness of 25µm (Instec Inc., Boulder, CO, USA). A 445 nm Cobolt 90 nW Polarized
Laser was used as an exciting irradiation source to generate a phototropic transition.
The polarization ~PB was fixed, and the laser power was used as a tuning or bifurcation
parameter. Note that the blue laser wavelength was close to the absorbance peak at 420 nm,
enabling us to trigger the isomerization and increase the amount of cis methyl red methyl
ester isomer. There was no relevant temperature change in the DDLCC. The experiment
was conducted at room temperature, approximately 20 ◦C. This meant that only an increase
of the cis-isomer concentration was responsible for a decrease of birefringence on the liquid
crystal. A Kepler telescope KB with a magnification of ×1/5 was used to change the
waist of the blue laser. The orientational molecular order in the dye-doped liquid crystal
interacted with the blue light, making blue light sampling unsuitable for scanning the
optical response of the liquid crystal sample.

To uncouple the excitation and probing fields, we provided illumination with a 532 nm
Verdi V-2 polarized green laser as a probing light. Indeed, the absorbance at 532 nm is
negligible for methyl red methyl ester, as seen in Figure 2. Both the green laser polarization
~PG and its intensity were set fixed. A Kepler telescope with a magnification of ×2 was used
to expand the beam and obtain a more homogeneous illumination. A long-pass dichroic
mirror DM (cutoff wavelength at 500 nm) was mounted in a pitch-yaw kinematic mount to
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control the reflection angle and thus the position of the blue laser on the DDLCC. A second
dichroic mirror was used to filter out the excitation light from the optical path to the 1/2”
CCD camera. To record the images, a set of illumination optics was used to enhance the
image quality. A first pair of lenses in a Kepler telescope configuration with an optical zoom
of ×2 and a secondary zoom lens with a magnification of ×7 was used. This system allowed
s to achieve diffractionless recordings on the elements in the DDLCC plane, ensuring no
diffractive rings on the images were recorded. Likewise, we displaced the liquid crystal
cell parallel to the optical axis with respect to the dichroic mirrors, and no changes were
observed in the ring patterns. This guaranteed that the observed phenomenon was not
diffractive in nature. Figure 1b shows the probing illumination field in the upper panel, and
the lower panel shows both the excitation and probing fields obtained by the CCD camera,
respectively. The dynamical behavior of the order parameter could not be completely
sampled only by measuring the excitation field. A set of imagining lenses was used to
enhance the recorded images. In particular, we used a ×2 magnification telescope coupled
with a zoom lens and density filters. Notice that both excitation and probe illuminations
were collimated when reaching the DDLCC. Thus, diffractive effects induced by changes
in the position along the optical axis of the DDLCC were negligible. This meant that the
position of the DDLCC was not a parameter of the experiment. The dynamics of the cis
concentration and nematic order parameter did not depend on the cell position along the ẑ
axis, which was the axis of light propagation on the dye-doped liquid crystal cell.

2.2. Synthesis and Preparation of Dye-Dopant and Liquid Crystal Mixture

Dye-dopant: The methylred methyl ester was obtained from a Fischer–Spier esterifica-
tion between methyl red (Sigma-Aldrich Inc., St. Louis, MO, USA) and methanol (Merck).
The methanol was used as a reagent and solvent at reflux for 6 h with sulfuric acid (Merck)
as a catalyst [32]. The final compound was characterized by Fourier Transform Infrared
Spectroscopy, and the purity was confirmed by thin layer chromatography. The absorption
spectrum of methyl red methyl ester was measured by employing a Spectroquant Pharo 300
spectrometer with a 1 cm optical path quartz cuvette in dichloromethane (Merck) solutions.
The absorption spectrum is reported in Figure 2b).

Mixture preparation: The 1 wt% mixture was prepared by weighing each component
and dissolving them separately into dichloromethane. The solutions were combined and
homogenized by sonicating for 5 min. The solvent was removed by slow evaporation at
room temperature.

2.3. Light-Induced Ring Patterns

When the dye-doped liquid crystal cell was illuminated with a probing light, the
monitoring CCD camera showed a homogeneous dark greenish color throughout the cell,
as illustrated in the snapshot of Figure 3b at t0. When applying the blue light beam, we
observed that the illuminated area immediately began to transmit more light. Figure 3a
illustrates how the total transmitted intensity measured in the green channel of the CCD
camera (∆Ig) evolved over time with respect to the transmitted light without the blue light
beam (Ig,0). The temporal evolution of the detected light intensity was characterized by
growth and subsequent saturation. Figure 3a shows two regions in which the growth
(region I) and saturation region (I I) could be distinguished. In order to describe the growth
and saturation process, we modeled it using the following expression: ∆Ig(t)/Ig,0 =

A(1 − et/τ), where A = 2.79 and τ = 55.71 s. Namely, the establishment of the stationary
ring pattern required a time period on the order of one minute.
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Figure 3. Experimental ring pattern emergence induced by a blue light (with a 445 nm wavelength)
applied to a dye-doped liquid crystal cell, E7 NLC with azo-dye methyl red methyl ester at a
concentration of 1 wt%. (a) Temporal evolution of transmitted total intensity, measured in the green
channel of the CCD camera (∆Ig) with respect to the transmitted light without the blue light beam
(Ig,0). The points were obtained experimentally, and the continuous curve was acquired using the
expression ∆Ig(t)/Ig,0 = A(1 − et/τ), where A = 2.79 and τ = 55.71 s. Painted areas I and II account
for the growth and saturation regions, respectively. (b) Temporal sequence of snapshots in the ring
pattern formation process (t0 = 0 s, t1 = 1 s, t2 = 5 s, t3 = 84 s, t4 = 360 s, and t5 = 570 s).
(c) Spatiotemporal diagram evolution of a diameter cut section.

When the blue light was applied, a region of light green with a darker center emerged;
as time elapsed, this dark spot became a propagative ring. Note that the lightened region
continued to grow, becoming even larger than the waist of the blue laser. Figure 1b
compares the light green region to the waist size of the blue laser. As time continued to
elapse, the dark ring continued to move away from the center, and a new dark spot emerged
in the center, which then became a new dark ring. Figure 3b summarizes the temporal
sequence of snapshots in the ring pattern formation process. In order to determine the
process of spot emergence and ring propagation, we consider the spatiotemporal evolution
of a diameter cut section. Figure 3c illustrates the observed spatiotemporal diagram
evolution. From this chart, we see how the dark rings emerge, spread, and stop.

When we applied low powers of the blue laser (few mW, cf. Figure 4), the system
did not show the formation of ring patterns, and we only observed the emergence of a
light green spot. As the power was increased, this light green spot increased in size. With
powers close to 40 mW, we began to observe the emergence of a dark spot in the center
of the illuminated region (see Figure 4). Physically, we interpreted this region as a region
of greater orientational disorder due to the consideration of the dye-doped liquid crystal
sample between crossed polarizers. When we further increased the power of the blue laser,
we observed the emergence of the first ring. Figure 4 shows the observed equilibrium ring.
As the power increased, the diameter of the equilibrium ring grew. For powers close to
70 mW, we observed the emergence of a ring with a dark spot in the center as a state of
equilibrium. As the power of the blue laser continued to increase, we observed that the
central dark spot grew, and at a higher power, it became unstable, generating a new ring.
Figure 4 summarizes the equilibria found for different blue laser powers.
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Figure 4. Equilibria ring patterns were experimentally observed for different powers of the blue light
beam. After a long period of evolution, snapshots were observed for different powers, as denoted in
the lower part of each snapshot.

3. Mathematical Modeling for Photo-Isomerization in Dye-Doped Liquid Crystals

Nematic liquid crystals are formed by rod-shaped molecules that—in a temperature
range—can present an orientational rather than positional order. Then, the dynamics of the
NLC can be described by a scalar order parameter S(~r; t) that accounts for the alignment of
the molecules along a given direction [7–9], defined by

S(~r; t) ≡ (3〈cos2 θ〉 − 1)
2

, (1)

where the brackets 〈·〉 mean the spatial average in a microscopic element volume at position
~r and time t, and θ is the angle between the molecules and the local preferred direction [7–9].
Thus, S accounts for the dispersion of the molecules with respect to their average direction.
The scalar order parameter for a perfectly aligned nematic phase is S = 1, and that for an
isotropic phase is S = 0. Note that a negative and large S shows that the molecules are
oriented, but the choice of the current orientation does not coincide with the molecular
average orientation. Close to a phase transition, Landau conjectured that the free energy
can be written as a polynomial expansion of the order parameter [33]. Based on this type
of approach, in the Landau–de Gennes theory, the transition between a nematic and an
isotropic liquid state in a thin film is described by the dimensionless equation [7]

∂tS(r⊥, t) = −AS + BS2 − S3 +∇2S, (2)

where r⊥ accounts for the transversal coordinate of the liquid crystal layer and A is the
bifurcation parameter, which is proportional to the difference between the current and
critical temperature. Note that for large values of A, the isotropic state is favored in
comparison to the nematic state. B is a parameter that characterizes the size of the region
of coexistence between the nematic and isotropic liquid state. The third and fourth terms
on the right-hand side account for the nonlinear response of the medium and the spatial
coupling of the order parameter, respectively. This coupling is diffusive in nature. Namely,
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the flow of the order parameter is proportional to its gradient. This model predicts that the
nematic and the isotropic liquid transition is of a subcritical nature. On the other hand, the
concentration of molecules in the cis-state C(~r, t) at position~r in time t satisfies a relaxation
and diffusion equation of the form [19]

∂tC = −λ[C − C0(I)] + δ∇2C, (3)

where λ is the decay rate related to the transition from a cis to trans state by thermal
relaxation. C0(I) is the equilibrium concentration of molecules in the cis state that is pro-
portional to the total intensity of the incident light I. Indeed, C0(I) ≡ γI/(1 + η I), where
γ and η are dimensional parameters [19]. δ is the diffusion coefficient of the concentration
of the cis state. As a result of the propagation of light, the intensity of the light has the
following form:

I = I0e−r2
⊥/w2

, (4)

where w and I0 are the light beam waist and the light intensity at the beam’s center, respectively.
As we have mentioned, the incorporation of dye-dopants increases the nonlinear

response of liquid crystals under the excitation of external fields [11,18–20,34]. Since the
dye-dopant is not a liquid crystal and may even be immiscible, its excessive inclusion can
prevent the mixture from being a liquid crystal; thus, a dye-dopant should be used in small
amounts. We note that one of the reasons for considering methyl red methyl ester is that
it is more miscible in E7 than other dopants; for example, methyl red. To describe the
dynamics of the photo-isomerization process in the dye-doped nematic layer with planar
anchoring, let us consider the concentration of molecules in the cis-state C(~r⊥, t) and the
scalar order parameter S(~r⊥, t), which satisfy the dimensionless rate equations [21,22]

∂tC = −λ[C − C0(I) + αS] + δ∇2C + D∇2S,
∂tS = −(A + βC)S + BS2 − S3 +∇2S + D∇2C.

(5)

The α parameter accounts for the reduction of the cis-state concentration when the
liquid crystal molecules are more aligned (larger S) because the dye-dopants tend to be
oriented in the direction of the molecules (transition from cis to trans) [19]. Indeed, the
liquid crystal matrix tends to make the dye-dopants orient and stretch in the direction of the
molecular order. The parameter β stands for the entropic effect of the photo-isomerization
process; that is, by increasing the concentration of the cis molecules, the disordered or
non-oriented state is favored. Then, the linear term in S must decrease if the dye-dopant
concentration increases. The parameter D accounts for the mutual transport process;
namely, a gradient in the dopant concentration induces the propagation of the order
parameter [35].

In the limit of the large-scale separation between the order parameter S and the concentra-
tion of the cis-state (λ ≫ 1) and for small α and intensity I, the cis-state concentration satisfies

C = C0(I) ≈ γI = γI0e−r2
⊥/w2

. (6)

Therefore, the cis-state concentration acquires a Gaussian profile. Using this expression
in the equation of the order parameter, S satisfies the Landau–De-Gennes model for the
nematic to isotropic transition induced by photo-isomerization [20]. Indeed, the bifurcation
parameter A(I) ≡ A + βγI is controlled by the light intensity profile. When the sample is
not illuminated, the system is in a NLC phase (S+). When the sample is illuminated, the
light can induce front propagation from the isotropic (SIS) to the nematic phase [20].

3.1. Adiabatic Elimination and Effective Model

To determine the dynamics described by Equation (5), one can consider the adiabatic
elimination of the cis-state concentration [36]. Indeed, by assuming that the temporal
evolution of the cis-state concentration is rapid compared to the dynamics of the order
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parameter—i.e., λ ≫ 1—and by using Neumann series, one can approach, in a dominant
order, the cis concentration by

C ≃ C0(I)− αS +
D − αδ

λ
∇2S. (7)

Introducing this expression in the equation for the order parameter S, at a dominant
order, we obtain

∂tS = −[A + βC0(I)]S + (B − αβ)S2 − S3 + (1 − Dα)∇2S

+
D(D − αδ)

λ
∇4S +

β

λ
(D − δα)S∇2S + D∇2C0(I). (8)

Renormalizing the space~r =~r′[λ/D(δα − D)]1/4, the effective model reads

∂tS = −ÃS + B̃S2 − S3 − ν∇2S −∇4S + bS∇2S + η̃, (9)

where

Ã(~r′) ≡ A + βC0(I(~r′)), (10)

B̃ ≡ (B − αβ), (11)

ν ≡ Dα − 1

√
λ

D(δα − D)
, (12)

b ≡ β(D − δα)√
λD(δα − D)

, (13)

η̃(~r′) ≡ D

√
λ

D(δα − D)
∇2C0(I). (14)

The model in Equation (9) corresponds to a non variational Swift–Hohenberg-type
equation [37,38]. This model has been used to study patterns [39,40], localized, station-
ary [37,41], and propagative structures [42,43], and spatiotemporal chaotic extended [40]
and localized structures [44]. These phenomena have been studied in different contexts
ranging from physics and chemistry to biology. The physical origin of the formation of spa-
tial structures is due to the anti-diffusion coefficient (ν > 0), which represents the different
scales of the transport processes of the cis order and state parameter, which introduces an
intrinsic characteristic scale: the Turing mechanism [45]. Namely, by having two transport
processes with different scales, the system cannot propagate the order parameter and the
cis-state homogeneously; thus, it self-organizes, forming patterns.

3.2. Homogeneous Illumination and Bifurcation Diagram

Considering a spatially homogeneous illumination—that is, C0 is a constant—the
parameters that characterize the nematic and isotropic liquid transition are renormalized
and independent of the space. The effective model has the form

∂tS = −ÃS + B̃S2 − S3 − ν∇2S −∇4S + bS∇2S. (15)

The homogeneous phases of this model have the form S0 = 0 and

S± =
B̃ ±

√
B̃2 − 4Ã

2
, (16)

where S0 and S± account for the liquid isotropic and nematic phase. For high temperatures—
i.e., a large Ã—it is expected that the only stable state is the isotropic liquid phase S0. When
decreasing Ã, the system presents a coexistence between the isotropic and nematic phase
for Ã = Asn ≡ B̃2/4. This bifurcation occurs due to the emergence of two new equilibria:
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the saddle-node bifurcation causes the emergence of a stable nematic state (S+) and an
unstable state (S−). Figure 5 shows the bifurcation diagram of the model in Equation (15).
As Ã continues to decrease, the isotropic liquid state S0 is as favorable as the nematic
phase S+ for A = AM ≡ 2B̃2/9—the Maxwell point [46]. Then, a flat wall between
these two phase states at this critical point is characterized by being motionless. When
further decreasing Ã, the isotropic liquid phase presents a spatial instability. We can study
this instability by linearizing Equation (15) around the isotropic liquid state S0 = 0, and

considering the ansatz S(~r, t) = S′ei~k~r+iσt, we obtain the growth rate equation:

σ = −Ã + ν~k2 −~k4, (17)
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Figure 5. Schematic representation of the bifurcation diagram of the effective model in Equation (15)
with constant coefficients. The order parameter S as a function of the bifurcation parameter Ã. S0, S+,
and S− account for the isotropic liquid and nematic phases, respectively. The continuous and dashed
lines account for stable and unstable states respectively. Asn, AM, and AT are the critical points that
account for the emergence of the nematic phase; both phases are equally favored, with a transcritical
bifurcation of the isotropic liquid phase. Asp, A+

sp, and A−
sp account for the spatial instabilities of the

homogeneous phases. The painted area shows the region of coexistence between the periodic state
and the homogeneous state. The decorated curve explains the amplitude of the patterns.

The instability condition is dσ(kc)/dk = 0 and σ(kc) = 0. The first condition deter-

mines the critical length kc =
√
~k2 ≡

√
ν/2, and the second defines the critical relation of

the parameters for the spatial instability, which has the form Ã = Asp ≡ ν2/4. Weakly
nonlinear analysis shows that this instability is of a supercritical nature for a small B̃. Thus,
despite the fact that the linear term is positive, 0 < Ã < Asp, the isotropic liquid state
is unstable. For Ã = AT ≡ 0, the system presents a transcritical bifurcation between
unstable states.

To study the stability of the nematic phase, we use a similar strategy as in the study of
the spatial stability of the isotropic liquid phase. Let us consider the linear perturbation
S = S± + χ, where χ is a small variable that satisfies the equation

∂tχ = (−Ã + 2B̃ − 3S2
±)χ − (ν + bS±)∇2χ −∇4χ. (18)

Introducing the ansatz χ(~r, t) = χ′ei~k~r+iσt in the above equation, we obtain

σ = −Ã + 2B̃ − 3S2
± + (ν + bS±)~k2 −~k4. (19)

Imposing the spatial instability conditions, we obtain kc =
√
~k2 =

√
(ν + bS±)/2 and

2Ã + B̃S± = − (ν + bS±)2

4
. (20)
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From this expression, we obtain two critical conditions for spatial instability A+
sp and

A−
sp corresponding to each of the nematic states (see Figure 5). Therefore, the effective

model predicts a region of coexistence between a pattern state and a nematic phase. Figure 5
shows this region of coexistence with a painted area.

3.3. Light-Induced Ring Pattern

Figure 5 summarizes the different behaviors presented by the model in Equation (15).
From this chart, we conclude that the system has a coexistence region between the nematic
state and the pattern. Note that this pattern alternates between areas of higher and lower
orientation order [21,22]. This affects the sample’s refractive index; therefore, if a light
beam passes through the sample in a patterned state, one expects to observe interference
fringes. As the light intensity increases, the bifurcation parameter Ã grows. Then, if one
considers a light intensity with a Gaussian profile, the parameter Ã(I) is characterized
by being inhomogeneous, with a bell-like shape. Thus, if the cell is in a nematic phase
when the sample is illuminated, the central part of the light beam can induce the cell to
leave the coexistence region, and only the pattern will be stable. For this type of region, we
would expect to find that the illuminated area shows patterns because the central area of
the light beam is circular, and for a small-waist beam, one would expect to see ring-like
patterns. Figure 6 shows the typical equilibrium ring pattern observed numerically for
the model Equation (9). All numerical simulations presented are obtained by considering
finite differences coded with the Runge–Kutta order-4 algorithm.

If the system is not illuminated, I0 = 0, the uniform nematic phase is the equilibrium
of the system. By illuminating the system with a low intensity, we found numerically that
there was a slight decrease in the reorientation order and an increase in the cis concentration
in the central part of the Gaussian (cf. Figure 7). As the intensity I0 increased, the size of the
central spot showed greater orientation disorder; that is, the order parameter S decreased
in the central zone as I0 increased. Note that the spot of the orientational disorder was
smaller than the waist of the Gaussian forcing. As I0 increased in the central zone, the
parameter of order S approached zero (isotropic liquid). When it hit zero, it generated a
new dynamical behavior; the central point expanded, creating a ring. The origin of the
clearing out of the central zone was due to the fact that the order parameter S became
negative. This could be interpreted as two ordered regions separated by a circular interface
of the disordered state. A dark ring in Figure 7 represents this region. As I0 increased
further, the ring continued to expand. By further increasing the intensity of the Gaussian
forcing, we observed the emergence of a new central spot surrounded by a ring. Note
that for this parameter region, when beginning with a uniform nematic state and applying
Gaussian forcing, a central spot of disorder state initially emerged that expanded, forming
a ring that continued to propagate; later, another central spot of disorder state emerged,
and finally the ring pattern stopped and remained in a stationary state. Experimentally, we
observed a similar behavior to that observed numerically (see Figure 3). As the intensity
of the Gaussian forcing I0 increased further, new central spots emerged, which became
new rings of disordered states (see Figure 7). The waist of the light beam limits the above
process. This process is similar to the experimental process (see Figure 3).
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Figure 6. Numerical stationary ring pattern in a dye-doped nematic liquid crystal using the effective
model in Equation (9) for Ã = −0.5, B̃ = 0.3, ν = 1.05, b = 0.1, I0 = 1.45, and w = 4. (a) Contour
plot of the squared order parameter S. (b) Profile of the cut of the order parameter S in the diameter
of the ring pattern. (c) Surface plot of the squared order parameter S.
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Figure 7. Numerical light-induced ring pattern in a dye-doped nematic liquid crystal using the model
in Equation (9). (a) Temporal evolution of ring pattern using the effective model in Equation (9)
for Ã = −0.5, B̃ = 0.3, ν = 1.05, b = 0.1, I0 = 1.45, and w = 4. (b) Equilibrium of ring patterns
numerically obtained for a different forcing strength I0, and the other parameters are Ã = −0.5,
B̃ = 0.3, ν = 1.05, b = 0.1, and w = 4.

In brief, the effective model in Equation (9) described the dynamics of the light-induced
ring pattern in a dye-doped nematic liquid crystal well in qualitative terms.

64



Appl. Sci. 2021, 11, 5285

4. Discussion

The emergence of ring patterns from an illuminated dye-doped nematic liquid crystal
cell was initially attributed to the phase modulation of the diffractive light [27]. The light
diffraction process is mathematically described by the nonlinear Schrödinger equation,
which corresponds to the paraxial equation with a nonlinear correction associated with
phase modulation. A local disturbance of the homogeneous state is characterized by the
emergence of propagative rings towards the outside of the disturbance; these propagative
rings are concentric with different thicknesses and decay with the square of the distance.
In turn, the outer ring generates the emergence of outer rings with an increasingly smaller
thickness. This type of pattern is similar to those reported for liquid crystal samples
subjected to intense light rays [23]. The morphology of the ring pattern and the exhibited
dynamics are different from those observed experimentally in the dye-doped nematic
liquid crystal sample (see Figures 3 and 4).

The patterns found may allow manipulable interferometric patterns for light rays
outside the absorption range of the dye-dopant. To illustrate the manipulability of the ring
patterns, we adjusted the pitch and yaw of the dichroic mirror. Figure 8 schematizes the
modification of the dichroic mirror, the effect on the light beam, and the observed ring
patterns. Then, the light beam inside the doped liquid crystal sample could be shifted.
Experimentally, we observed from the ring pattern in equilibrium that it moved almost
rigidly. Figure 8b shows the light path scheme used and the ring patterns observed at the
points marked on the path by discs. Likewise, it is important to note that the previous
results showed that an interference mechanism does not cause the observed ring patterns.
Note that the ring patterns caused by phase modulation were deformed with the angle of
incidence [14], which is different from the observations in our setup (see Figure 8).

PB

PG
DM

DDLCC

a) b)

c)
t1 t2 t3 t4

Figure 8. Manipulable ring patterns induced by illumination on a dye-doped liquid crystal sample.
(a) Schematic representation of the mechanism for applying the light beam to the dye-doped liquid
crystal sample. (b) Schematic representation of the path made by the light beam by adjusting the
pitch and yaw of the dichroic mirror. (c) Snapshots of ring patterns observed at different times
(t1 < t2 < t3 < t4).

5. Conclusions

Experimentally and theoretically, we have elucidated and characterized the origin of
the ring patterns observed in a dye-doped nematic liquid crystal cell with planar anchoring
under a light beam in the absorption band of the dye-dopant. To shed light onto the effect
of the coherent excitation beam, we designed an experimental setup that considered two
parallel beams—exciting and probing light—in which the probing light was monitored.

65



Appl. Sci. 2021, 11, 5285

Based on a mathematical model that accounted for the coupling between the concentration
of the cis-state and the orientational order parameter, we established the emergence of
the rings as forming patterns in an inhomogeneous medium. Namely, the origin of the
formation of pattern rings is due to the different scales and transport mechanisms of the
concentration of the cis-state and the orientational order parameter. The formation of
spatial structures induced by light can open up new applications such as the harnessing of
diffraction gratings, masks, and irises. Work in this direction is in progress.

Author Contributions: Conceptualization, M.G.C. and G.G.-C.; methodology, G.G.-C., P.I.H., M.J.M.
and J.V.; numerical analysis, L.A.L.; validation, G.G.-C. and L.A.L.; formal analysis, M.G.C. and
L.A.L.; writing—original draft preparation, M.G.C.; improvement and verification of the manuscript,
all authors. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by FONDECYT grant number 1210353, the National Agency for
Research and Development (ANID) Scholarship Program Becas Doctorado Nacional 2017211716, and
ANID–Millennium Science Initiative Program-ICN17_012.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Acknowledgments: The authors acknowledge the fruitful discussions with Raouf Barboza.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Newton, I. Opticks, or, a Treatise of the Reflections, Refractions, Inflections & Colours of Light; Sam. Smith and Benj. Walford, Printers
to the Royal Society: London, UK, 1704.

2. Boyd, R.W. Nonlinear Optics; Academic Press: San Diego, CA, USA, 2003.
3. Shen, Y.R. The Principles of Nonlinear Optics; Wiley-Interscience: New York, NY, USA, 1984.
4. Mills, D.L. Nonlinear Optics: Basic Concepts; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012.
5. New, G. Introduction to Nonlinear Optics; Cambridge University Press: Cambridge, UK, 2011.
6. Lugiato, L.; Prati, F.; Brambilla, M. Nonlinear Optical Systems; Cambridge University Press: Cambridge, UK, 2015.
7. De Gennes, P.G.; Prost, J. The Physics of Liquid Crystals, 2nd ed.; Oxford Science Publications, Clarendon Press: Oxford, UK, 1993.
8. Chandrasekhar, S. Liquid Crystal; Cambridge University Press: New York, NY, USA , 1992.
9. Oswald, P.; Pieranski, P. Nematic and Cholesteric Liquid Crystals; CRC Press: Boca Raton, FL, USA, 2005.
10. Vertogen, G.; de Jeu, W.H. Thermotropic Liquid Crystals, Fundamentals; Springer Science & Business Media: Berlin/Heidelberg,

Germany, 2012.
11. Khoo, I.C. Liquid Crystals; John Wiley & Sons: Hoboken, NJ, USA, 2007.
12. Takatoh, K.; Sakamoto, M.; Hasegawa, R.; Koden, M.; Itoh, N.; Hasegawa, M. Alignment Technology and Applications of Liquid

Crystal Devices; CRC Press: Abingdon, UK, 2005.
13. Zel’Dovich, B.Y.; Pilipetskii, N.F.; Sukhov, A.V.; Tabiryan, N.V. Giant Optical Nonlinearity in the Mesophase of a Nematic Liquid

Crystal. JETP Lett. 1980, 31, 263–267.
14. Zolot’ko, A.S.; Kitaeva, V.F.; Sobolev, N.K.N.; Chillag, L. The effect of an optical field on the nematic phase of the liquid crystal

OCBP. JETP Lett. 1980, 32, 158–162.
15. Zolot’ko, A.S.; Kitaeva, V.F.; Sobolev, N.N.; Sukhorukov, A.P. Self-focusing of laser radiation in the course of the Fréedericksz

transition in the nematic phase of a liquid crystal. Zh. Eksp. Teor. Fiz. 1981, 81, 933–941.
16. Durbin, S.D.; Arakelian, S.M.; Shen, Y.R. Optical-field-induced birefringence and Freedericksz transition in a nematic liquid

crystal. Phys. Rev. Lett. 1981, 47, 1411–1414. [CrossRef]
17. Frisken, B.J.; Palffy-Muhoray, P. Electric-field-induced twist and bend Freedericksz transitions in nematic liquid crystals.

Phys. Rev. A 1989, 39, 1513–1518. [CrossRef]
18. Khoo, I.C. Nonlinear optics of liquid crystalline materials. Phys. Rep. 2009, 471, 221–267. [CrossRef]
19. Jánossy, I.; Szabados, L. Photoisomerization of azo-dyes in nematic liquid crystals. J. Nonlinear Opt. Phys. 1998, 7, 539–551.

[CrossRef]
20. Odent, V.; Clerc, M.G.; Falcón, C.; Bortolozzo, U.; Louvergneaux, E.; Residori, S. Photo-isomerization fronts in dye-doped nematic

liquid crystals. Opt. Lett. 2014, 39, 1861–1864. [CrossRef]
21. Andrade-Silva, I.; Bortolozzo, U.; Clerc, M.G.; González-Cortés, G.; Residori, S.; Wilson, M. Spontaneous light-induced Turing

patterns in a dye-doped twisted nematic layer. Sci. Rep. 2018, 8, 1–8. [CrossRef]
22. Andrade-Silva, I.; Bortolozzo, U.; Castillo-Pinto, C.; Clerc, M.G.; González-Cortés, G.; Residori, S.; Wilson, M. Dissipative

structures induced by photoisomerization in a dye-doped nematic liquid crystal layer. Phil. Trans. R. Soc. A 2018, 376, 20170382.
[CrossRef]

66



Appl. Sci. 2021, 11, 5285

23. Durbin, S.D.; Arakelian, S.M.; Shen, Y.R. Laser-induced diffraction rings from a nematic-liquid-crystal film. Opt. Lett. 1981,
6, 411–413. [CrossRef]

24. Assanto, G. Nematicons: Spatial Optical Solitons in Nematic Liquid Crystals; John Wiley & Sons: Hoboken, NJ, USA, 2012.
25. Barnik, M.I.; Zolot’ko, A.S.; Kitaeva, V.F. Interaction of light with a dye-doped nematic liquid crystal. J. Exp. Theor. Phys. 1997,

84, 1122–1130. [CrossRef]
26. Deng, L.; He, K.; Su, W.; Sun, H.; Wang, R.; Zhang, H.; Liu, H.K. Optical limiting performances of the methyl-red-dye-doped

nematic liquid crystal films. Mater. Devices Syst. Disp. Lighting 2002, 4918, 79–89.
27. Li, H.; Wang, J.; Wang, C.; Zeng, P.; Cai, P.; Pan, Y.; Yang, Y. Off-resonant nonlinear optical refraction properties of azo dye doped

nematic liquid crystals. Opt. Mater. Express 2016, 6, 459–465. [CrossRef]
28. Serak, S.V.; Tabiryan, N.V.; Assanto, G. Nematicons in azobenzene liquid crystals. Mol. Cryst. Liq. Cryst. 2012, 559, 202–213.

[CrossRef]
29. Park, H.S.; Oh, K.S.; Kim, K.S.; Chang, T.; Spiegel, D.R. Change of internal hydrogen bonding of methyl red upon photoisomeriza-

tion monitored by Forced Rayleigh Scattering. J. Phys. Chem. B 1999, 103, 2355–2360. [CrossRef]
30. Castillo-Pinto, C.; Clerc, M.G.; González-Cortés, G. Extended stable equilibrium invaded by an unstable state. Sci. Rep. 2019,

9, 1–8. [CrossRef] [PubMed]
31. Kosa, T.; Sukhomlinova, L; Su, L.; Taheri, B.; White, T.J.; Bunning, T.J. Light-induced liquid crystallinity. Nature 2012, 485, 347–349.

[CrossRef]
32. Kahl, D.J.; Hutchings, K.M.; Lisabeth, E.M.; Haak, A.J.; Leipprandt, J.R.; Dexheimer, T.; Khanna, D.; Tsou, P.S.; Campbell, P.L.;

Fox, D.A.; et al. 5-Aryl-1,3,4-oxadiazol-2-ylthioalkanoic Acids: A Highly Potent New Class of Inhibitors of Rho/Myocardin-
Related Transcription Factor (MRTF)/Serum Response Factor (SRF)-Mediated Gene Transcription as Potential Antifibrotic Agents
for Scleroderma. J. Med. Chem. 2019, 62, 4350–4369. [CrossRef]

33. Landau, L.D.; Lifshitz, E.M. Statistical Physics (Course of Theoretical Physics, Volume 5); Pergamon Press: New York, NY, USA, 1993.
34. Sasaki, T.; Ikeda, T. Photochemical switching of polarization in ferroelectric liquid crystals: Effect of structure of host FLCs.

Ferroelectrics 1993, 149, 343–351. [CrossRef]
35. Bechhoefer, J.; Simon, A.J.; Libchaber, A.; Oswald, P. Destabilization of a flat nematic-isotropic interface. Phys. Rev. A 1989,

40, 2042–2056. [CrossRef] [PubMed]
36. Haken, H. Synergetics: Introduction and Advanced Topics; Springer: Berlin/Heidelberg, Germany, 1977.
37. Clerc, M.G.; Petrossian, A.; Residori, S. Bouncing localized structures in a liquid-crystal light-valve experiment. Phys. Rev. E 2005,

71, 015205. [CrossRef]
38. Kozyreff, G.; Tlidi, M. Nonvariational real Swift-Hohenberg equation for biological, chemical, and optical systems. Chaos 2007,

17, 037103. [CrossRef] [PubMed]
39. Kozyreff, G.; Chapman, S.J.; Tlidi, M. Interaction of two modulational instabilities in a semiconductor resonator. Phys. Rev. E

2003, 68, 015201. [CrossRef] [PubMed]
40. Clerc, M.G.; Verschueren, N. Quasiperiodicity route to spatiotemporal chaos in one-dimensional pattern-forming systems.

Phys. Rev. E 2013, 88, 052916. [CrossRef]
41. Burke, J.; Dawes, J.H. Localized states in an extended Swift?Hohenberg equation. SIAM J. Appl. Dyn. Syst. 2012, 11, 261–284.

[CrossRef]
42. Alvarez-Socorro, A.J.; Clerc, M.G.; Tlidi, M. Spontaneous motion of localized structures induced by parity symmetry breaking

transition. Chaos 2018, 28, 053119. [CrossRef]
43. Houghton, S.M.; Knobloch, E. Swift-Hohenberg equation with broken cubic-quintic nonlinearity. Phys. Rev. E 2011, 84, 016204.

[CrossRef]
44. Verschueren, N.; Bortolozzo, U.; Clerc, M.G.; Residori, S. Spatiotemporal chaotic localized state in liquid crystal light valve

experiments with optical feedback. Phys. Rev. Lett. 2013, 110, 104101. [CrossRef]
45. Turing, A.M. The chemical basis of morphogenesis. Philos. Trans. R. Soc. B 1952, 237, 37–72.
46. Goldstein, R.E.; Gunaratne, G.H.; Gil, L.; Coullet, P. Hydrodynamic and interfacial patterns with broken space-time symmetry.

Phys. Rev. A 1991, 43, 6700–6721. [CrossRef] [PubMed]

67





Citation: Liang, G.; Liu, J.; Hu, W.;

Guo, Q. Unique Features of

Nonlocally Nonlinear Systems with

Oscillatory Responses. Appl. Sci.

2022, 12, 2386. https://doi.org/

10.3390/app12052386

Academic Editors: Gaetano Assanto

and Noel F. Smyth

Received: 26 August 2021

Accepted: 8 February 2022

Published: 25 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Review

Unique Features of Nonlocally Nonlinear Systems with
Oscillatory Responses

Guo Liang 1,2 , Jinlong Liu 1,3, Wei Hu 1 and Qi Guo 1,*

1 Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, South China
Normal University, Guangzhou 510631, China; liangguo0916@163.com (G.L.); liujldragon@163.com (J.L.);
huwei@scnu.edu.cn (W.H.)

2 School of Physics and Electrical Information, Shangqiu Normal University, Shangqiu 476000, China
3 College of Science, South China Agriculture University, Guangzhou 510642, China
* Correspondence: guoq@scnu.edu.cn

Abstract: We review the recent investigation of a new form of nonlocally nonlinear system with
oscillatory responses. The system has various new features, such as the nonlocality-controllable
transition of self-focusing and self-defocusing nonlinearities, a unique modulational instability and
new forms of solitons. We also discuss the propagation of the optical beam in a nematic liquid crystal
with negative dielectric anisotropy and demonstrate theoretically that propagation can be modelled
by the system.
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PACS: 42.65.Jx; 42.65.Tg; 42.70.Df; 42.65.Ky

1. Introduction

The optical Kerr effect (OKE), a phenomenon that refers to the dependence of the
refractive index on the optical intensity, is one of the most important effects in nonlinear
optics [1,2]. The physical mechanism of OKE includes molecular reorientation, thermal
nonlinearity, photorefractive effect, electronic contribution and electrostriction, etc. No
matter what the physical mechanism is, the caused refractive index can always be phe-
nomenologically represented as n(r, z, t) = n0(r, z) + nnl(r, z, t), with n0 and nnl being,
respectively, the linear refractive index and nonlinear refractive index (NRI). If NRI at a
certain point in space is not determined solely by the optical intensity at that point but also
depends on its vicinity, nonlinearity is spatially nonlocal [3–5]. Mathematically, NRI can
be expressed as an integral of a kernel function (also called the response function) and an
optical intensity [3]. The media of nonlocal nonlinearity are referred to as nonlocally non-
linear media [6–9], which ranges from nematic liquid crystal (NLC) with positive dielectric
anisotropy [10–14], lead glass [15], nonlinear ion gas [16], photorefractive crystal [17], dipo-
lar Bose–Einstein condensate [18] and so on. For the physical systems mentioned above, re-
sponse functions are positive definite, for example, the exponential-decay response function
for the (1 + 1)-dimensional case [19] and the zeroth-order modified Bessel function for the
(1 + 2)-dimensional infinite case [10,20].

In fact, there is the other kind of response function without positive definiteness:
the sine-oscillation function, brought out in the study of quadratic solitons by the formal
equivalence in mathematics between quadratic and nonlocal solitons [21,22]. This kind
of sine-oscillation function was also obtained in a system of coupled Gross–Pitaevskii–
Poission equations [23], which govern the evolutions for matter–wave components and the
microwave magnetic field in atomic Bose–Einstein condensates. Recently, we investigated
the nonlocally nonlinear system with oscillatory responses [24–32] and found various new
features such as the nonlocality-controllable transitions between focusing and defocusing

69



Appl. Sci. 2022, 12, 2386

nonlinearities, unique modulational instabilities (MI) and new kinds of solitons. The
nonlocally nonlinear system with oscillatory responses can model the propagation of
optical beams in NLC with negative dielectric anisotropy.

In this review article, we provide a brief overview of unique features of nonlocally non-
linear system with oscillatory responses, including its mathematical model, the treatment
of the model and the nonlocality-controllable transition between focusing and defocus-
ing nonlinearities in Section 2, the short-term and long-term MI properties in Section 3,
different kind of soliton solutions in Section 4 and a special algorithm for finding soliton
solutions in Section 5. In Section 6, we discuss the nonlinearity characteristic of NLC with
negative dielectric anisotropy and show that it can be modeled by the nonlinear system
with oscillatory responses.

2. Nonlocality-Controllable Kerr Nonlinearities

The model we considered is the dimensionless system in the form of [27,28]

i
∂u

∂z
+

1
2
∇2

Du + ∆nu = 0, (1)

w2
m∇2

D∆n + ∆n − s|u|2 = 0. (2)

The equations are the coupled equations for a dimensionless optical beam u(r, z) and its
(dimensionless) induced NRI ∆n(r, z), where r is D-dimensional transverse coordinate
vectors (D = 1 or 2), ∇2

D is the D-dimensional transverse Laplacian operator, s(= ±1) is
the sign of Kerr coefficient and wm is the nonlinear characteristic length. We will show in
Section 6 that the model, Equation (1) plus (2), can describe the evolutions of optical beams
in the NLC with negative dielectric anisotropy. However, the model discussed extensively
before is the following [3,5]:

w2
m∇2

D∆n − ∆n + s|u|2 = 0, (3)

of which the second term has different signs from that of Equation (2). It is such a difference
in the signs that makes the two nonlinear systems described by Equations (2) and (3) exhibit
utterly different features.

Although the NRI described by Equation (2) in an infinite space can also be expressed
by the following convolution:

∆n(r, z) = sRD ⊗ |u|2, (4)

similarly to the case of Equation (3) [3,5], the D-dimensional response function RD is
completely different. When D = 1, the response takes the sin-oscillatory function as [27]

R1 =
1

2wm
sin
( |x|

wm

)
. (5)

While, when D = 2 [28], the response function is expressed by the following:

R2 =
1

4w2
m

Y0

(
r

wm

)
(6)

with Y0 being the zeroth order Bessel function of the second kind. Substituting Equation (4)
into Equation (1) yields a nonlocally nonlinear Schrödinger equation in the form of

i
∂u

∂z
+

1
2
∇2

Du + suRD ⊗ |u|2 = 0. (7)

We can glimpse at the self-focusing and self-defocusing property of the nonlinear
system described by Equation (7) from two limits where wm = 0 and wm → ∞. When
wm = 0, Equation (2) is reduced to ∆n = s|u|2. Clearly, the focusing nonlinearity occurs
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for s = 1 and the defocusing nonlinearity does for s = −1. When wm → ∞, Equation (2)
changes to w2

m∇2
D∆n = s|u|2, which models the focusing nonlinearity in lead glass for

s = −1 [15] and the defocusing nonlinearity for s = 1. Therefore, the nonlinearities reverse
if wm proceeds from 0 to ∞ for both cases of s = ±1. This indicates that the self-focusing
and self-defocusing property of the nonlinear system described by Equation (7) depends
on the degree of nonlocality, which is defined by σ = wm/w with w being the beam
width [27]. In contrast, for the nonlinear system given by Equation (3), the self-focusing
and self-defocusing property is different. In the case where s = 1, Equation (3) is reduced
to ∆n = |u|2 when wm = 0, and to w2

m∇2
D∆n = −|u|2 when wm → ∞. Under the two

limits, the system (3) exhibits both self-focusing nonlinearity: that is, the local self-focusing
nonlinearity when wm = 0 and the (thermally induced) nonlocal self-focusing nonlinearity
in lead glass wm → ∞ [15]. Conversely, in the case where s = −1, the self-defocusing
nonlinearity exists for the two limits of wm. Therefore, no nonlinearities transition can take
place in the nonlinear system given by Equation (3).

The dependence of the self-focusing and self-defocusing property on the degree of
nonlocality can be obtained by both the variational approach and by numerical simulations.
The Lagrangian density of the system described by Equation (7) is the following: [33,34]

L =
i

2

(
u∗ ∂u

∂z
− u

∂u∗

∂z

)
− 1

2
|∇Du|2 + s

2
|u|2

(
RD ⊗ |u|2

)
. (8)

We introduce a trial Gaussian beam:

u(r, z) = A(z) exp[iα(z)] exp
[
− r2

2w(z)2 + ic(z)r2
]

, (9)

where all meanings of parameters A, α and c can be found in Ref. [28]. According to the
standard procedure of variational approach [33,34], we obtain the evolution of the beam
width w [28]:

d2w

dz2 =
1

w3 − 2sP0

πD
ND(w, wm), (10)

where P0 =
∫ +∞

−∞
|u(r, z)|2dD

r = πD/2 A2wD is the input power, and the mathematical
expression of ND can be found in Ref. [28]. By assuming w|z=0 = w0 = 1 and dw/dz|z=0 =
0, Equation (10) can be solved:

z =
∫ w

1

dw2√
1 − 1/w2

2 − (4sP0/πD)
∫ w2

1 ND(w1, σ0)dw1

, (11)

where σ0 = wm/w0|w0=1 = wm. For linear propagations of the input Gaussian beam, the
beam width w0 = 1 is widened to be w(z) =

√
1 + z2 [35]. If the beam is in a focusing state,

its width is w(z) <
√

1 + z2, while in a defocusing state it is w(z) >
√

1 + z2. Therefore,
when nonlinearities transit between focusing and defocusing as the degree of nonlocality
changes, by replacing w with

√
1 + z2 in Equation (11) transition point σc can be obtained as

z =
∫ √

1+z2

1

dw2√
1 − 1/w2

2 − (4sP0/πD)
∫ w2

1 ND(w1, σc)dw1

. (12)

Equation (12) provides an implicit function of the critical degree of nonlocality σc on
z, P0, s and D. For a given s, D and P0, the function σc(z) can be obtained by numerically
solving the integral Equation (12) at different propagation distances z, which is shown in
Figure 1.
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Figure 1. Critical degree of nonlocality σc as the function of propagation distance z. (a) D = 1,
(b) D = 2. All data of the curves are numerically obtained from Equation (12) (After Ref. [28]).

At the specific distance z = 1, the critical degree of nonlocality for the (1 + 1)- and
(1 + 2)-dimensional cases can be obtained from Equation (12) in that σc|z=1 = 0.82 and
σc|z=1 = 0.63, respectively. The dependence of beam width on the degree of nonlocality
is given in Figure 2. For the case of s = −1, optical beams experience self-defocusing
nonlinearity when σ0 < σc, and self-focusing nonlinearity when σ0 > σc. The case of s = 1
is on the contrary. Figure 3 shows the evolutions of the optical beam for different degree of
nonlocality in two cases of s = 1 and s = −1, where the degree-of-nonlocality-dependence
self-focusing and self-defocusing effects can be obviously observed.
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Figure 2. Beam widths at z = 1 as the function of σ0 for different input powers. (a) D = 1, (b) D = 2.
Solid color curves represent the numerical simulation results, agreeing well with the variational
results denoted by dashed color curves. For comparison, the output beam width at z = 1 in the linear
case is also plotted by the horizontal solid straight line (After Ref. [28]).
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Figure 3. Evolutions of optical beams for both s = −1 (a1,a3) and s = 1 (b1,b3). σ0 = 0.45 in (a1,b1),
whereas σ0 = 1.2 in (a3,b3). The linear evolutions are displayed in (a2,b2) for comparison (After
Ref. [27]).

3. Unique Modulational Instability

In this section, we briefly review the modulational instabilities (MI) of the (1 + 1)-
dimensional nonlocally nonlinear system (7) with oscillatory response (5). The evolution of
perturbations we investigated includes two processes: short-term evolution and long-term
evolution. During the short-term evolution of MI, the perturbation is small enough so that
the linear analysis on the NNLSE (7) is valid [31]. However, after the optical field evolves
for long term, the increasing perturbation is not much lower than the amplitude of plane
wave, and the linear approximation method is not applicable, and the nonlinear evolution
of MI should be considered: that is, the long-term evolution of MI [32].

3.1. Short-Term Evolution of MI

According to the standard procedure [36], we add a random perturbation ψ
(|ψ(x, z)|2 ≪ I0) on the plane wave:

u(x, z) =
[

I1/2
0 + ψ(x, z)

]
exp

[
i2πsI0R̃(0)z

]
, (13)

where R̃(0) = R̃(kx)|kx=0 and R̃(kx) represents the Fourier transform of the response func-
tion (5). After calculations, the gain coefficient of perturbation is obtained as follows [31]:

g = Re

[
2|kx|

(
sI0

1 − w2
mk2

x
− k2

x

4

)1/2]
, (14)

which only exists when sI0/(1 − w2
mk2

x) > k2
x/4. When s = −1, MI occurs when the

following is the case:

1 < w2
mk2

x <
1
2

(
1 + 16w2

m I0

)1/2
+

1
2

, (15)

which is shown Figure 4. When s = 1 and the light intensity is small enough to meet the
following condition:

0 < I0 ≤ 1
16w2

m
, (16)

there are two MI gain bands, as shown in Figure 5, at each side of the origin.
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0 < w2
mk2

x <
1
2 − 1

2

(
1 − 16w2

m I0
)1/2,

1 > w2
mk2

x >
1
2 + 1

2

(
1 − 16w2

m I0
)1/2.

(17)

Furthermore, after I0 exceeds the critical value of 1/16w2
m, the MI gain bands combine

into one as follows:
0 < w2

mk2
x < 1, (18)

which is shown Figure 5. MI in the nonlocally nonlinear system with oscillatory responses
is found to have two unique properties. First, MI exists both when the Kerr coefficient is
positive and when it is negative. Second, the maximum gain points of MI do not shift with
light intensity. The physical mechanism behind the properties of MI has been revealed by
utilizing the theory of four-wave mixing in Ref. [31].
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Figure 4. Gain spectra of MI under different values of I0 when s = −1.
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Figure 5. Gain spectra of MI under different values of I0 when s = 1.

3.2. Long-Term Evolution of MI

To show the long-term evolution of MI, we take an infinite plane wave with perturba-
tion [32]:

u(x, z)|z=0 = 1 + 10−4 cos(kxx), (19)

as the initial input of Equation (7) with s = −1 and D = 1, where the first term, the second
term and kx represent plane wave, perturbation and frequency of perturbation, respectively.
In the following numerical simulation, we assume that wm = 1 and I0 = 1. Then, MI
appears in the range of 1 < |kx| < 1.61. |kx| = 1 is the singular point at which the gain
coefficient g is infinite and |kx| = 1.61 is the cutoff point. The nonlinear evolutionary
process of initial input (19) of different perturbation frequencies is shown in Figure 6.
In the short-term evolution, the curve of intensity obtained through linear processing
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is consistent with the numerical simulation, which means that linear approximation is
applicable. However, in long-term evolution, the results obtained by linear approximation
gradually deviated from numerical simulations. Additionally, the perturbation of the
frequency close to the singular point increases more quickly to a larger peak; by contrast,
the perturbation of the frequency close to the cutoff point presents a slower growth of a
lower peak. The reason why the numerical simulations deviate from the analytical result is
that, during the nonlinear evolutions of perturbation higher-order, harmonic waves appear.
In this case, the linear approximation of perturbation is not appropriate, and harmonic
waves with higher frequencies should be taken into account.
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Figure 6. Evolution of the optical field at x = 0 under input condition (19) when wm = 1 (solid
line: analytical results obtained through linear approximation method; dashed line: results attained
through simulation) (After Ref. [32]).

We can obtain the stable solution of induced MI by considering the input modulated
wave to be composed of harmonics with various frequencies:

u(x, z) =
+∞

∑
n=−∞

An(z) exp(ikxnx).

For stable solutions, the amplitudes An of various harmonic do not vary with propa-
gation distance z; then, we assume An = an exp(iβz). Substitution into Equation (7) with
D = 1 and s = −1 yields the following:

− βan −
1
2

ank2
xn2 + s

+∞

∑
m=−∞

am In−m(z)
1

1 − w2
mk2

x(n − m)2 = 0. (20)

If only the first harmonic is taken into account, the analytical solution to Equation (20)
can be obtained as

u(x, z) =




√√√√
(

1
1−w2

mk2
x
− k2

x
4

)
(1 − w2

mk2
x)

2
+

√(
1

1−w2
mk2

x
+ k2

x
4

)
(1 − w2

mk2
x)

4
cos(kxx)




exp
[
−i

(
1

1 − w2
mk2

x
+ 1 +

k2
x

4

)
z

]
. (21)

By using u(x, 0) as the initial conditions, the evolution of stable solution is displayed in
Figure 7. As shown in the figure, only the solutions when the modulation frequency is near
the cutoff frequency are able to be stably propagated, while the ones when the modulation
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frequency departs from the cutoff frequency will fluctuate greatly during propagations;
in this case, an increased number of harmonics should be considered. In this case, it is
impossible to obtain the analytical solution, and the numerical method is required in order
to solve Equation (20) [32].

Figure 7. Evolution of stable solution when wm = 1 at different modulation frequencies: (a) kx = 1.6;
(b) kx = 1.4 (After Ref. [32]).

4. Characteristics of Solitons

The MI of the nonlocally nonlinear system (7) always exists for cases of s = ±1 [31].
In consequence, due to the MI [36], the dark solitons [27,37] in self-defocusing sides of
such a nonlocally nonlinear system are unstable [27], while the bright solitons existing in
self-focusing sides can propagate stably. Concretely, in the case of s = −1, self-focusing
and self-defocusing nonlinearities are, respectively, exhibited in high (σ0 > σc) and low
(σ0 < σc) ranges of the degree of nonlocality, while in the case of s = 1, the self-focusing and
self-defocusing properties are on the contrary. In the following, we will review our works
on the bright solitons in the self-focusing sides of such a system described by Equation (7) in
cases of s = ±1. In addition to fundamental solitons [27,28], there are new kinds of solitons
including the in-phase and out-of-phase bound-state solitons [29] and multi-peak (more
than four peaks) solitons [30] in the nonlocally nonlinear system with oscillatory responses.

The variational approach is used to obtain the approximate solutions of bright soli-
tons, including the fundamental solitons [28] and and Hermite–Gaussian-type multi-peak
solitons [30]. The variational results have been confirmed by the numerical ones. We
used the imaginary time evolution method to iterate the fundamental solitons [27,28] and
the in-phase and out-of-phase bound-state solitons [29]. To iterate the multi-peak soli-
tons with arbitrary peak numbers [30], we specifically developed a perturbation-iteration
method [38].
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4.1. Fundamental Solitons

Integrating Equation (10) once yields 1
2

(
dw
dz

)2
+ VD(w) = 0, where VD(w) is the

equivalent potential in the form of [28]

VD(w) = −
∫ w

1

[
1

w3
1
− 2sP0

πD
ND(w1, σ0)

]
dw1. (22)

The soliton solutions correspond to the extremum points of the equivalent
potential [28,33]; therefore, by allowing ∂wVD = 0 the critical power of the solitons can be
obtained as

Pc =
πD

2sND(1, σ0)
. (23)

It should be noted that, in Equation (23), the critical power Pc must be positive, which
requires ND > 0 for s = 1 and ND < 0 for s = −1. Furthermore, the solitons are stable at
the minimum points of VD(w), then we have:

d2VD

dw2

∣∣∣∣
w=1,P0=Pc

> 0. (24)

From Equation (24), the existence ranges of the degree of nonlocality σ0 for the solitons
can be determined, which depend on the values of D and the sign of s. When D = 1,
the solitons exist if σ0 ∈ [0, 0.76] for s = 1 and [1.05,+∞) for s = −1. When D = 2, the
existence ranges of σ0 are [0.33, 0.61] for s = 1 and [0.90,+∞) for s = −1. These variational
results agree well with the numerical ones, which are given in the following.

In order to numerically iterate the soliton solution, we assume u(x, z) = u(x) exp(iλz).
Substitution of the solution into Equations (1) and (2) yields the following:

1
2

d2u

dx2 − λu + ∆nu = 0, (25)

w2
m

d2∆n

dx2 + ∆n − su2 = 0. (26)

By the imaginary-time method, the solitons can be numerically found in higher ranges
of the degree of nonlocality, σ0 ∈ [1.05,+∞] for D = 1 and σ0 ∈ [1.11,+∞] for D = 2 in the
case of s = −1. These ranges of σ0 are all within the self-focusing sides of such a nonlinear
system and agree well with the variational results. The bright solitons have two abnormal
properties. The first one is the negative propagation constants, while it is the opposite of
the cases in local nonlinear media [39] and nonlocally nonlinear media with the positively
defining attenuating response functions [3]. The other is the negative slope of the Pc(λ)
(Pc and λ being the critical power and the propagation constant), as shown in Figure 8.
By means of linear stability analysis, all solitons are shown to be stable [27]. This means
that the stability criterion obeys an anti-Vakhitov–Kolokolov stability criterion [40], which
is also obeyed by the in-phase and out-of-phase bound-state solitons and the multi-peak
solitons reviewed in the next two sections. However, in nonlocally nonlinear media with
the positively defining attenuating response functions, stable solitons should comply with
the Vakhitov–Kolokolov criterion [9]. We have noticed that the evolutions for matter–wave
components and the microwave magnetic field in the atomic Bose–Einstein condensates
can also be governed by the mathematical model of Equation (1) plus (2) with s = −1 in
some specific conditions [23,41,42], and in such a system, bright solitons are obtained in
strongly nonlocal cases.
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Figure 8. Critical power Pc and the soliton propagation constant λ versus the degree of nonlocality σ.
The inset shows Pc versus λ. All plots are for D = 1. The obtained solitons are stable (After Ref. [27]).

Although what Equations (25) and (26) determine are the solitons of the nonlocally
nonlinear system (7), the coupled equations with s = 1 are formally the same as the model
governing parametric spatial solitary waves in quadratic nonlinear materials [21,22,43]. The
fundamental and the second harmonic waves are mathematically equivalent to the paraxial
beam and its induced NRI [21]. Esbensen et al. employed the formal equivalence between
two distinct physical systems to investigate the stabilities of solitons and found that the
solitons are all unstable. However, it should be noted that equivalence is limited only to
the solitary waves, while their dynamic properties, such as the stability, are completely
different. In quadratic nonlinear materials, there is the energy and phase exchange between
the fundamental and the second harmonic waves. Therefore, for the second harmonic wave,
its z-dependant evolution should be taken into account, which is not the case for the NRI
shown in Equation (2). Detailed discussions on this point can be found in Ref. [10]. Our
group also made some improvements on the issue of quadratic solitons [24–26]. We found
that the boundary confinement of media can support stable solitons [24]. Furthermore, the
fundamental waves even can be multipole solitons [25], the existence of which depends
closely on the sample size and the degree of nonlocality. If nonlocality is fixed and the
sample size is varied, soliton width varies piecewise and approximately periodically [26].

4.2. In-Phase and Out-of-Phase Bound-State Solitons

In the case of s = 1, the nonlinear system exhibits self-focusing nonlinearity in lower
ranges of degree of nonlocality, that is, σ0 < σc. In these ranges, we obtained bright
solitons with complicated structures, which are the in-phase bound-state solitons when
σ0 ∈ [0.28, 0.78] and the out-of-phase bound-state solitons when σ0 ∈ [0.38, 0.78] [29]. The
in-phase bound-state soliton, shown in Figure 9, owns the symmetrical profile and the
nonzero central value. On the other hand, the out-of-phase bound-state soliton, shown in
Figure 10, owns the antisymmetrical profile and the zero central value. When the degree of
nonlocality decreases, the in-phase bound-state soliton approaches the sech profile shown
in Figure 9, and the out-of-phase bound-state soliton tends toward the first-order Hermite–
Gaussian profile shown in Figure 10. The above-mentioned abnormal properties in the
previous section, that is, the negative propagation constants and the negative slope of the
power-propagation constant (the so-called anti-Vakhitov–Kolokolov stability criterion),
also exist for bound-state solitons, which is shown in Figure 11a. Furthermore, it can be
found from Figure 11b that the power-propagation constant diagrams are the same for both
the in-phase and the out-of-phase bound-state solitons. In other words, we can say that
two forms of bound-state solitons form degenerate modes.

78



Appl. Sci. 2022, 12, 2386

−50 −25 0 25 50
0

0.03

0.06

u
(x

)

x
−50 0 50

−4

0

4

x 10
−3

−50 −25 0 25 50
0

0.1

0.2

u
(x

)

x
−50 0 50

−0.04

0

0.04

−50 −25 0 25 50
0

1.5

∆
n

(x
) 

u
(x

)

x
−50 0 50

−2

0

2

∆
n

(x
)

−50 −25 0 25 50
0

5

∆
n

(x
) 

u
(x

)

x
−50 0 50

−20

0

20

∆
n

(x
)

(a) (c)

(d)(b)

Figure 9. Profiles of in-phase bound-state solitons (solid red lines) and their induced NRI (dashed
black lines) for the case that s = 1. (a) σ0 = 0.472, (b) σ0 = 0.700, (c) σ0 = 0.773 and (d) σ0 = 0.778.
The obtained solitons are stable (After Ref. [29]).
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Figure 10. Profile of out-of-phase bound-state solitons (solid red lines) and the induced NRI (dashed
black lines) for the case that s = 1. (a) σ0 = 0.453, (b) σ0 = 0.731, (c) σ0 = 0.777 and (d) σ0 = 0.778.
The obtained solitons are stable (After Ref. [29]).
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The obtained solitons are stable (After Ref. [29]).
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4.3. Multi-Peak Solitons

The Hermite–Gaussian soliton solutions with multipeaks in fact have been discussed in
nonlocally nonlinear media with positively-definiting attenuating response functions [44,45].
However, the upper thresholds of the peak number of the stable solitons in nonlocally
nonlinear media are different, which closely depend on the response function of media.
For instance, in the nonlocal system with the Gaussian response, the multipeak solitons
with any peak number [4] are stable [44]. In nematic liquid crystals with positive dielectric
anisotropy, the response function is an exponential decay one for the (1 + 1) case, and
the peak-number of the solitons supported is only less than five [44]. In the nonlocally
nonlinear system with oscillatory responses described by Equations (1) and (2), we found
the upper thresholds of the peak number of the stable solitons are five and four in the cases
of s = −1 and 1, respectively [30].

The variational approach can be applied to find solitons and discuss their stabili-
ties. The Hermite–Gaussian solitons of the (1 + 1)-dimensional NNLSE (7) are of the
following profiles:

un =

(
Pnc

√
2n + 1

2nn!
√

π

)1/2

Hn(
√

2n + 1x) exp
[
− (2n + 1)x2

2

]
. (27)

The critical power is obtained as follows:

Pnc =
(2n + 1)(

√
π2nn!)2

sN(n)(1, σ0)
, (28)

where function N(n) is the Nn given in Ref. [30]. The degree of nonlocality range within
which HG solitons exist is obtained by the variational approach, which is summarized in
Table 1, where the numerical results are also given for a comparison.

Table 1. The ranges of σ0 within which the HG-type solitons exist.

n = 0 n = 1 n = 2 n ≥ 3

s = −1 variational (1.05,+∞) (1.06,+∞) (1.06,+∞) (1.06,+∞)
numerical (1.05,+∞) (1.05,+∞) (1.05,+∞) (1.05,+∞)

s = +1 variational (0, 0.77) (0.38, 0.79) (0.39, 0.79) (0.39, 0.79)
numerical (0.05, 0.78) (0.38, 0.78) (0.39, 0.78) (0.40, 0.78)

Note: self-focusing nonlinearity is exhibited when σ0 ∈ (σc,+∞) for s = −1, and [0, σc] for s = 1 (for example,

σc|z=1 = 0.82).

Multipeak solitons can be numerically obtained for two cases of s = ±1, which are
shown in Figures 12 and 13, respectively. Clearly, the multipeak solitons in the case of
s = −1 exhibit Hermite–Gaussian structures and are in good agreement with numerical
ones. While, the profiles of solitons in the case of s = 1 deviate from the Hermite–Gaussian
form, especially when σ0 becomes large. Likely, for multipeak solitons, the propagation
constants and the slope of the power-propagation constant are both negative, which is
shown in Figure 14. By linear stability analyses, the ranges of the degree of nonlocality σ0
within which the stable multi-peak solitons exist are summarized in Table 2.

80



Appl. Sci. 2022, 12, 2386

 

 

(c) (d) 

(a) (b) 

Figure 12. Profiles of the numerical multi–peak solitons u(x) (the solid red curves) for s = −1 and
wm = 5. (a–d) for n = 1, 4, 5, 6 and σ0 = 1.13, 1.43, 3.52, 1.08, respectively. The variational results (the
dashed black curves) with the same parameters are also given for comparison. Soliton in (b) is stable,
while the ones in the other three figures are unstable.
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Figure 13. Profiles of the numerical multi–peak solitons u(x) (the solid red curves) for s = 1 and
wM = 10. (a–d) for n = 2, 3, 5, 6 and σ0 = 0.74, 0.48, 0.75, 0.51, respectively. The corresponding
numerical results are denoted in the same manner as in Figure 5. Soliton in (b) is stable, while the
ones in the other three figures are unstable.
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Figure 14. Dependencies of the power Pc on the degree of nonlocality σ0 (a,c) and the propagation
constant b on the degree of nonlocality σ0 (b,d) for the multi–peak solitons. (a,b) and (c,d) for s = −1
and s = 1, respectively.)

Table 2. The ranges of σ0 within which the HG–type solitons are stable.

n = 0 n = 1 n = 2 n = 3 n = 4 n ≥ 5

s = −1 (1.05,+∞) (1.41,+∞) (1.10,+∞) (1.10,+∞) (1.10, 1.61) no
s = 1 (0.05, 0.78) (0.38, 0.78) (0.42, 0.45) (0.48, 0.49) no no

5. Perturbation-Iteration Method

In the nonlocally nonlinear system with oscillatory responses governed by Equation (7),
the Hermite–Gauss-like solitons with arbitrary peak numbers are hardly obtained by the
usual numerical algorithms such as the Newton-conjugate-gradient method. Therefore, we
developed a special numerical method by which we called the perturbation-iteration method
to solve this problem [38]. The key idea behind the perturbation-iteration method is to
treat the NNLSE as a perturbed model of the harmonic oscillator, and soliton solutions
can be obtained by perturbation theory in quantum mechanics [46]. The procedure for the
perturbation-iteration method is briefly reviewed. Substituting the following soliton solutions:

un(x, z) =
√

Anψn(x) exp(−iβnz) (n = 0, 1, 2, 3. . .) (29)

into the NNLSE (7) yields the following:

[
−1

2
d2

dx2 − An

∫ ∞

−∞
R(x − ξ)ψ2

n(ξ)dξ

]
ψn(x) = βnψn(x), (30)

where An is a coefficient related to the power of soliton, ψn(x) and βn are, respectively, the
transverse distribution and propagation constant of soliton and n is the order of soliton.
We can treat Equation (30) as a perturbed model of the harmonic oscillator:

[
−1

2
d2

dx2 +
1

2µ4 x2 + fn(x)

]
ψn(x) = Enψn(x), (31)

where ψn(x) and En are, respectively, eigenfunctions and eigenvalues, fn(x) is the pertur-
bation compared to the potential of the harmonic oscillator. Starting from the perturbed
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model of the harmonic oscillator, we determine the “minimum” perturbation, then use the
formal expression of infinite-order perturbation expansions to numerically calculate the
eigenfunctions and eigenvalues of the perturbed model and iterate this perturbation to
obtain multipeak solitons with enough high accuracy.

This form of perturbation-iteration method developed for the (1 + 1)-dimensional
NNLSE also has been extended to the (1 + 2)-case [47]. In fact, the method we developed
might also be extended to the numerical integration of the Schrödinger equations in any
type of potentials.

6. Optical Beams in NLC with Negative Dielectric Anisotropy

6.1. Evolution Equation for Optical Beams in NLC

The physical mechanism of nonlinearity in NLC is the optically induced molecular
reorientation and nonlocality comes from the interactions between NLC molecules [3]. We
consider the propagation of optical beams in the sample cell of NLC shown in Figure 15.
NLC molecules exhibit anisotropy in both the low-frequency domain and the optical

frequency domain, which is expressed by ǫ
r f
a (= ǫ‖ − ǫ⊥) and ǫ

op
a (= n2

‖ − n2
⊥), respectively.

Anisotropy ǫ
r f
a can be either positive [10,48] or negative [48,49], while ǫ

op
a is always positive.

X=L/2

X=-L/2

V

input
beam

X

Z

Y

Figure 15. X-Z cross-section of the planar cell of the NLC with negative dielectric anisotropy, and the
cell can be considered invariant along Y. Two pieces of glasses sandwiches NLC. Polymer coatings
provide molecules anchoring θ|X=L/2 = θ|X=−L/2 = π/2 at the boundaries, and ITO films allow for
the application of low frequency bias. An optical beam propagating inside the cell along Z induces
an index perturbation.

When an external low-frequency electrical field ~Er f = Er f~eX and an optical field
~Eop = Eop~eX are present, the molecular director ~n expressed by ~n(θ) = (sin θ, 0, cos θ)
(θ is the tilt angle between ~n and z) will be reorientated. NLC molecules approach the
equilibrium state when the three torques are balanced, i.e., ~Γop +~Γl f +~Γel = 0, where
~Γop,~Γl f and~Γel are the optical field-induced torque, low-frequency electrical field induced
torque and the elastic torque, respectively. Using the one-constant approximation [48], we
can have the following:

~Γel = K∇2θ~eY,

where K is the NLC average elastic constant. We can also obtain the following [48]:

~Γl f = ~Dr f × ~Er f = ǫ0ǫ
r f
a sin θ cos θE2

r f~eY,

~Γop = < ~Dop × ~Eop >=
1
2

ǫ0ǫ
op
a sin θ cos θ|Eop|2~eY,

where ~Dr f = ǫ0ǫ⊥~Er f + ǫ0ǫ
r f
a (~n ·~Er f )~n and ~Dop = ǫ0n2

⊥~Eop + ǫ0ǫ
op
a (~n ·~Eop)~n are the electric

displacements, and <> denotes the time average.
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In the absence of light, from the balance of torques of ~Γel and ~Γl f , the pretilt angle
θ̂ produced by the low-frequency electric field ~Er f can be determined, which is the only
function of X [48]

2K
d2θ̂

dX2 + ε0ǫ
r f
a E2

r f sin(2θ̂) = 0. (32)

If ǫ
r f
a > 0 (the NLC with positive dielectric anisotropy), d2θ̂/dX2 < 0, which indicates

that the angle at the center (X = 0) of the cell θ0(= θ̂|X=0) is at the maximum and decreases

as it proceeds closer to the boundaries. The opposite happens for the case that ǫ
r f
a < 0

(the NLC with negative dielectric anisotropy), the angle at the center of the cell θ0 is at
the minimum and increases as it approaches the boundaries. As a result, NLC molecules
should be anchored at the boundaries in a manner where θ|X=L/2 = θ|X=−L/2 = 0 for
the positive dielectric anisotropy, as was observed in Refs. [3,10,50], and where θ|X=L/2 =
θ|X=−L/2 = π/2, as shown in Figure 15, for negative dielectric anisotropy. In addition,
the dependence of θ0 on low-frequency voltage Vr f (≈ Er f L) is different for the NLC with
positive and the negative dielectric anisotropy, when Vr f is higher than the Fréedericks

threshold Vf r = π

√
K/ε0|ǫr f

a |. For the NLC with positive dielectric anisotropy [51], θ0 ≈

(π/2)
[

1 −
(

Vf r/Vr f

)3
]

, and for the NLC with negative dielectric anisotropy, we have

the following

θ0 ≈ (π/2)
(

Vf r/Vr f

)3
. (33)

Although the molecule anchoring at the boundaries is different, the physical processes
for both the positive and the negative are the same. Following the procedure to deal with
the propagation of optical beams in an NLC with positive dielectric anisotropy [3,10,50],
we obtained the equations for that in the NLC with negative dielectric anisotropy and
found that the two cases can be uniformly expressed. In the presence of an externally
applied (low-frequency) electric field Er f , the propagation of the slowly varying envelope
Φ of the optical field linearly polarized along the X-direction (the extraordinary light) and
propagating along the Z-direction in the NLC-cell can be described by the following system:

2ik
∂Φ

∂Z
+∇2

XYΦ + k2
0ǫ

op
a

[
sin2 θ − sin2 θ0

]
Φ = 0, (34)

2K

(
∂2θ

∂Z2 +∇2
XYθ

)
+ ǫ0

(
ǫ

r f
a E2

r f + ǫ
op
a
|Φ|2

2

)
sin(2θ) = 0, (35)

where k = k0n0 with k0 being the vacuum wavenumber and n0 being the (linear) refractive
index of the extraordinary light. Although it looks the same in form for both cases, Equa-
tion (35) is in fact different for either the positive or the negative cases because the sign of

ǫ
r f
a is different. The term ∂2

Zθ in Equation (35) was proven to be negligible compared to
∇2

XYθ [50]. Furthermore, we can write θ = θ̂ + (θ̂/θ0)Ψ, where Ψ represents optically in-
duced angle perturbation. By simple substitution into Equation (35), we have the following:

2K
θ̂

θ0
∇2

⊥Ψ +
4K

θ0

∂θ̂

∂x

∂Ψ

∂x
− ε0ǫ

r f
a E2

r f sin(2θ̂)

[
1 − cos(2

θ̂

θ0
Ψ) +

Ψ

θ0
− cot(2θ̂)sin(2

θ̂

θ0
Ψ)

]

+ε0ǫ
op
a
|Φ|2

2

[
sin(2θ̂)cos(2

θ̂

θ0
Ψ) + cos(2θ̂)sin(2

θ̂

θ0
Ψ)

]
= 0, (36)

which is the exact result after direct substitution without any approximation. Supposing
that the beam width is far smaller than cell thickness L and noting that θ̂ ≈ θ0 and ∂x θ̂ ≈ 0
in the middle of the cell, we can simplify Equation (36) into the following form:
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∇2
XYΨ −

ε0ǫ
r f
a E2

r f sin(2θ0)[1 − 2θ0 cot(2θ0)]

2Kθ0
Ψ + ε0ǫ

op
a

sin(2θ0)

4K
|Φ|2 = 0, (37)

where we also made sucn an assumption of ǫ
op
a |Φ|2/2 ≪ ǫ

r f
a E2

r f [3]. Multiplied by

θ0ǫ
op
a /E2

r f ǫ0ǫ
r f
a n0[1 − 2θ0 cot(2θ0)], the equation can be re-expressed as follows:

sgn(ǫr f
a )W2

mL∇2
XYnnl − nnl + n2|Φ|2 = 0, (38)

where

nnl =
ǫ

op
a sin(2θ0)Ψ

2n0
, (39)

n2 =
(ǫ

op
a )2θ0 sin(2θ0)

4n0ǫ
r f
a E2

r f [1 − 2θ0 cot(2θ0)]
, (40)

WmL =
1

Er f

(
2θ0K

ǫ0|ǫr f
a | sin(2θ0)[1 − 2θ0 cot(2θ0)]

)1/2

, (41)

are the NRI, the Kerr coefficient and the nonlinear characteristic length for the NLC. When
WmL → 0, Equation (38) above will be reduced to nnl = n2|Φ|2 for the local limit [39].
Therefore, our definition of n2 in Equation (40) can guarantee that its expression form is
consistent when the degree of nonlocality transitions from the nonlocal case to the local
case. On the other hand, the propagation equation for optical beams, Equation (34), is
simplified as

i
∂Φ

∂Z
+

1
2k

∇2
XYΦ + k0nnlΦ = 0. (42)

When ǫ
r f
a > 0, the Kerr coefficient n2 given by Equation (40) is positive, and

Equation (38) becomes W2
mL∇2

XYnnl − nnl + n2|Φ|2 = 0. This equation is that of the molucu-
lar reorientation for NLC with positive dielectric anisotropy and has been discussed exten-

sively [3,10,19,20,50–52]. For the NLC with negative dielectric anisotropy, however, ǫ
r f
a < 0,

the Kerr coefficient n2 is negative, and Equation (38) becomes W2
mL∇2

XYnnl + nnl − n2|Φ|2 =

0, which has been rarely investigated so far. In this case (ǫr f
a < 0), by the introduction of

the dimensionless transform u = Φ/Φ0, ∆n = nnl/NL0, x(y) = X(Y)/W0, z = Z/kW2
0 ,

and wm = WmL/W0, where Φ0 =
√

n0/|n2|/kW0, NL0 = 1/k2
0W2

0 n0, and W0 is the beam
width in Lab coordinate system, Equations (42) and (38) can be transformed as the dimen-
sionless form i∂zu + (1/2)∇2

xyu + ∆nu = 0 and w2
m∇2

xy∆n + ∆n + |u|2 = 0, which does be
Equations (1) and (2) with s = −1.

6.2. Optical Nonlinearities of NLC with Negative Dielectric Anisotropy

By substitution of Equation (33) and Er f ≈ Vr f /L, the nonlinear characteristic length
WmL given by Equation (41) for the NLC with negative dielectric anisotropy is reduced to
the following:

WmL =
L

π4/3

√
γ5/3

sin γ − γ cos γ
, (43)

where γ = π4K3/2/[ε0(−ǫ
r f
a )]3/2V3

r f . WmL is, obviously, the function of the cell thickness L,
the bias voltage Vr f and the material parameters of the NLC. By setting dWmL(Vr f )/dVr f =
0, we obtain γmin = 2.35 at which WmL/L takes the minimum 0.29, which does not
depend on the material parameters of the NLC and is confirmed in Figure 16. Since
model Equations (42) and (38) are obtained with the assumption that the beam width
in the lab coordinate system, W0, is far smaller than NLC thickness L, we can assume
that W0 = 0.1L so that the weakest degree of nonlocality σmin [= (WmL)min/W0] is 2.9,
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and the degree of nonlocality σ0 (= WmL/W0) is always higher than σc (for an example,
σc|z=1 = 0.63 for the (1 + 2)-dimensional case). Therefore, the NLC with negative dielectric
anisotropy can only behave with self-focusing nonlinearity, and the transition from the
self-focusing to the self-defocusing when σ0 decreases across the critical point σc, which
was predicted by the system of Equations (1) and (2) with s = −1, cannot be observed in
the system of Equations (38) and (42) for the negative dielectric anisotropy, because the
condition σ0 < σc cannot be realized in such a NLC. We also numerically investigated the
propagation of the optical beam in the NLC with negative dielectric anisotropy described
by Equations (34) and (35) without simplification and found that the beam can always
sample the self-focuing nonlinearity indeed [53]. Consequently, the nonlinear refractive
index due to reorientation in the pure NLC is always self-focusing, despite the sign of the
anisotropy in the low-frequency domain.

KY1-008

KY19-008

KY6-008

1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0
Vrf0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

Wml/L

Figure 16. Dependence of WmL/L on bias voltage Vr f for different NLC samples. The values of ǫ
r f
a are

−5.9, −5.3 and −3.8 for KY1-008, KY19-008 and KY6-008-type NLCs, respectively. K = 1 × 10−11N

for all materials.

It is a well-known fact [54–56] that only dark solitons can exist in nonlocally nonlinear
media with the positively defining attenuating response and the negative Kerr coefficient
(n2 < 0) described by Equations (1) and (3) for s = −1, no matter how much the de-
gree of nonlocality is. However, as discussed above, the nonlocally nonlinear system of
Equations (1) and (2) with s = −1, that is, Equations (42) and (38) for the NLC with negative
dielectric anisotropy, can exhibit self-focusing nonlinearity in high ranges of the degree of
nonlocality (σ0 > σc) and support the bright solitons. It is the unique feature of a nonlocally
nonlinear system with oscillatory responses. By the relation of the input optical power

between the Lab coordinate system P
(Lab)
0 and the dimensionless system P0

P
(Lab)
0 =

k

ωµ0

∫ ∫
|Φ|2dXdY = n0

√
ǫ0

µ0
Φ2

0W2
0

∫ ∫
|u|2dxdy =

√
ǫ0

µ0

1
(−n2)k

2
0

P0,

we can have the theoretical value of the critical power Ptc via the variational result, i.e.,
Equation (23) for s = −1:

Ptc =

√
ǫ0

µ0

1
(−n2)k

2
0

Pc|s=−1 =

√
ε0

µ0

4n0ǫ
r f
a V2

r f [1 − 2θ0 cot(2θ0)]

(2π/λ)2L2(ǫ
op
a )2θ0 sin(2θ0)

π2

2N2(1, σ0)
, (44)

where n0 = n‖n⊥/
√

n2
‖ cos2 θ0 + n2

⊥ sin2 θ0, and N2(1, σ0) =
π

16σ2
0

[
1

σ2
0

exp(− 1
2σ2

0
)Ei( 1

2σ2
0
)− 2

]

with Ei being the exponential integral function [28]. By using the parameters for the NLC

KY19-008 [57], K = 1 × 10−11 N, ǫ
op
a = 0.74106, ǫ

r f
a = −5.3, L = 80 µm, and beam parame-

ters including λ = 532 nm and W0 = 4 µm, we obtain Ptc ≈ 6.37 mW when voltage bias
Vr f ≈ 3.4 V is applied.
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7. Conclusions

We reviewed recent research on the nonlocally nonlinear system with oscillatory
responses. This nonlinear system exhibits various new features, such as the nonlocality-
controllable transitions of nonlinearities, unique modulational instabilities and new kinds
of solitons. The unique features of nonlocally nonlinear system come from oscillatory
responses without positive definiteness, which are quite different from the positively
defining attenuating ones discussed so far. In particular, in nonlocally nonlinear media
with oscillatory responses, we theoretically predicted that bright solitons can exist even
when the Kerr coefficient is negative, where only dark solitons were supposed to exist if
the response functions are positively defining and attenuating. We find that oscillatory
responses can describe the interaction between the optical beam and the nematic liquid
crystal with negative dielectric anisotropy, although self-defocusing nonlinearity cannot
be exhibited in such a nematic liquid crystal. These new and unexpected behaviors found
in the nonlocally nonlinear system with oscillatory responses are of significance at a
fundamental level, especially for the relevance between the nonlocality and the focusing-
defocusing nonlinearities, which appears to be promising for tailoring optical properties
in materials.
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Abstract: Liquid crystals are interesting linear and nonlinear optical materials used to make a wide
variety of devices beyond flat panel displays. Liquid crystalline materials can be used either as
core or as cladding of switchable/reconfigurable waveguides with either an electrical or an optical
control or both. In this paper, materials and main device structures of liquid crystals confined in
different waveguide geometries are presented using different substrate materials, such as silicon,
soda lime or borosilicate glass and polydimethylsiloxane. Modelling of the behaviour of liquid
crystal nanometric molecular reorientation and related refractive index distribution under both
low-frequency electric and intense optical fields is reported considering optical anisotropy of liquid
crystals. A few examples of integrated optic devices based on waveguides using liquid crystalline
materials as core for optical switching and filtering are reviewed. Reported results indicate that low-
power control signals represent a significant feature of photonic devices based on light propagation
in liquid crystals, with performance, which are competitive with analogous integrated optic devices
based on other materials for optical communications and optical sensing systems.

Keywords: liquid crystals; optical waveguides; optoelectronics; integrated optics; electro-optics;
nonlinear optics

1. Introduction

It is well known that the most important application of liquid crystals (LCs) nowadays
is flat panel displays (FPD), which is a very mature industry. Recently, other FPD technolo-
gies, such as OLED and micro-LED, are competing with LC-FPD in many applications.
However, LCs are excellent materials for light phase modulation which cannot be achieved
by OLED and micro-LED. Indeed, many photonic devices/systems and applications based
on LC modulations are developing.

Liquid crystalline materials used for most applications are usually made of mixtures of
different compounds to optimize their electro-optical performance. LC molecules, made of
ring systems, linking groups, substituents and terminal groups as sketched in Figure 1,
are designed in order to optimize LC physical and optical properties.

LCs have low optical losses from UV to IR with scattering decreasing as λ−2.34 [1] gain-
ing interest for guide wave devices [2,3]. LC have been demonstrated as effective materials
to make both electrically [4] and optically [5] controlled cores for switchable and reconfig-
urable waveguides to be used at the wavelength of 1.55 µm in optical communications for
their attractive optical properties. The efficient electro-optical effect with the additional
advantage of negligible electrical current absorption and the nonlinear optical properties
allow very low power consumption without appreciable energy dissipation. Linear optical
properties stimulated the study and development of LC-based waveguides [6–15].

Nonlinear optical properties fostered intense research activity on the development of
solitonic propagation in LC with many potential applications [16–22]. Photonic bandgap
structures obtained by infiltrating LC in hollow optical fibres, the so-called photonic LC
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fibres, were also intensely studied, generating another broad research line [23–27]. The light
characteristics make LC-based photonic devices interesting potential candidates for both
datacom and optofluidic applications [28–32]. LC propagation properties were also inter-
estingly investigated to generate optical vortices [33,34], which may result in an important
breakthrough in the development of optical tweezers, high-order quantum entanglement
and novel nonlinear optic effects with competing nonlinearities [35,36]. Another interesting
effect of light propagation in LC is related to all-optical angular control of the molecular
alignment in LC films due to light and matter angular momentum conservation [37,38].

λ−

Figure 1. Schematic molecular structure of thermotropic LCs.

More recently, LC-based optical sources were demonstrated to envision full integration
of optical functionalities in a single chip using liquid crystalline materials. OLEDs were
reported by employing liquid-crystalline host matrix in the emission layer [39]. Lasers were
demonstrated by means of a novel approach to generate actively Q-switched laser pulses
based on an integrated waveguide chip and an LC cell in the deformed helix ferroelectric
(DHF) mode, able to behave like an active Q-switch modulator under a wide range of
repetition frequencies [40]. Vertical cavity surface-emitting laser, including LC as a tuning
medium, was also reported [41].

Despite the many interesting optical properties of LCs, it is no small undertaking to
make waveguiding devices in which input and output signals can be coupled in and out
by using standard optical fibres. In this paper, a review of proposed devices is presented
to make optical switches and filters based on propagation properties of nematic LCs in
which a signal is transmitted between two standard single mode fibres. Such devices
can be integrated in many systems for several applications such as communications and
sensor microsystems. In Section 2, materials and main device structures of LCs confined in
different waveguide geometries are presented by focusing on fabrication issues. Section 3
reports on modelling for designing guide wave LC devices and simulations of their opera-
tion. Section 4 shows some examples of optical switches and tunable filters in which light
beams are confined in oriented nematic LC channels. Section 5 reports some perspective
conclusions on further research development of LC-based guided wave devices.

2. Materials and LC Waveguide Structures

LC materials can be used either to make a core of optical waveguides, in which light
beams can be confined, or to make a cladding [42]. In both cases tunable or reconfigurable
optical channels can be obtained by exploiting the LC electro-optic effect. LCs can be
infiltrated by capillarity in different confined geometries of optical waveguides [8–10] or
optical fibres [43].
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2.1. Nematic LC Confined in SiO2/Si V-grooves

A channel waveguide can be obtained by infiltrating a nematic LC in a SiO2/Si groove
as shown in Figure 2a. The ITO layer and the n-Si substrate act as electrodes to apply
an external electric field. A silicon V-groove is made by exploiting anisotropic etching
of silicon. Typical groove width ranges from 5 to 15 µm. A native thermal oxide SiO2,
obtained in an oven at about 1100 ◦C acts as a low index cladding, considering that a
nematic LC has a refractive index higher than 1.45. The V-groove is fabricated by means of
a micromachining process whose details are described in ref [44].
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Figure 2. Optical waveguide made of LC infiltrated in a SiO2/Si V-groove: (a) Three-dimensional exploded schematic, showing
the orientation of the nematic LC molecules along the V-groove; (b) Electron microscope scanning of a SiO2/Si V-groove.

Figure 2b shows a scanning electron microscope picture of the V-groove in which
smoothness of SiO2/Si surfaces is able to minimize defects in the embedded LC molecules,
consequently attenuating light scattering in the final LC waveguide.

The etching of Si creates a V-groove with an angle α = 54.7◦ using (100) Si wafer as
schematically shown in Figure 3a. A glass cover of 0.5 mm is then placed on top of the V-
groove [4]. A D263 borosilicate glass substrate is used with a refractive index nD263 = 1.516
(at the at wavelength λ = 1.55 µm) intermediate between the values of the extraordinary and
the ordinary refractive index of the LC used, such as E7 (ne = 1.69, no = 1.5 at wavelength
λ = 1.55 µm), which allows the creation of an optical switch [4]. A thin film of Nylon 6 is
spanned and rubbed on top of the ITO film, to align the LC along the groove. Nematic LC
E7 in the isotropic phase is infiltrated in the covered V-groove by capillarity in vacuum at
80 ◦C and then cooled down to the room temperature. Figure 3b shows the orientation of
nematic LC molecules, whose tilt angle θ is controlled by the applied voltage between the
ITO and n-Si.

  

(a) (b) 

Figure 3. Schematic images of an LC waveguide in SiO2/Si groove: (a) cross-section indicating the etching angle of the Si
groove; (b) longitudinal section showing the orientation of the nematic LC molecules under applied electric field between
ITO and n-Si.
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Light is coupled to LC waveguides in Si/SiO2 grooves, referred to as LCW (Liquid
Crystal Waveguide), by fibre butt-coupling, as shown in Figure 4. Since LC-NOA61 inter-
face was used, total coupling losses, including input and output, of 4.5 dB or better were
measured, as a result of minimization of LC molecular random orientation representing
a source of light scattering at the input and output faces of the LCW, which determined
higher coupling losses in previous samples without LC-NOA61 interface [45]. Propagation
losses resulted to be about 6 dB/cm which can be further lowered by using photoalignment
techniques, able to improve the optical quality of the LCW [46,47].

 

Figure 4. Picture of a single-mode optical fiber which is butt-coupled to a chip, including a set of LC
waveguides on SiO2/Si grooves. Waveguide width is 8–12 µm.

2.2. Nematic LC in PDMS Waveguides

Optical waveguides can be made by infiltrating a nematic LC in polydimethylsiloxane
(PDMS) channels by capillarity. Such waveguides are referred as LC:PDMS waveguides.
Use of PDMS is motivated since it is a material often used for microfluidic applications
with high optical quality [48]. PDMS is optical transparent, with low surface energy in the
range of 20–23 mJ/m2 at 20 ◦C [49], low dielectric constant in the range of 2.32–2.40 [50]
and Young’s modulus, which is between 0.57 MPa and 3.7 MPa [51], and thermally and
optically enabled polymerization. PDMS is also reliable for soft lithographic fabrication of
many microfluidic and micro-optical devices [52].

Flexibility is another attractive feature of PDMS which is effectively used in robotics,
automation, consumer electronics and in novel applications, such as health care and
biomedical technologies. PDMS is used in optical interconnections for datacom applications
to replace metallic connections whose performance in terms of bit rate are very low and
suffer problems related to high heat dissipation [53].

PDMS channels to be filled with a nematic LC are fabricated by the cast and moulding
technique involving several technological phases as shown in Figure 5 and described in
ref. [31].

The PDMS channels are filled with a nematic LC by capillarity which results in
homeotropically alignment as shown in Figure 6a. Homeotropic alignment of LC is due to
the hydrophobic characteristic of the PDMS inner surface. A fabricate sample including
LC:PDMS waveguides with widths of 8, 10 and 15 µm is reported in Figure 6b. The optical
characterization to check the LC alignment in the LC:PDMS waveguides is performed using
a polarized microscope. Polarized light is transmitted through the channels, revealing the
homeotropic arrangement of the LC molecules. Such orientation of the LC is proven by the
black part in the central region for the waveguides indicating that polarization of input light
is not changed when transmitted through the LC and is stopped by the crossed analyser,
as it can be observed in Figure 6c. Light leaks through the edges of the waveguides because
of the optical retardation induced by the LC molecules homeotropically aligned on the
vertical sides of the PDMS channels.
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Figure 5. Technological phases to make PDMS microchannels used obtain LC:PDMS waveguides.

  

(a) (b) (c) 

Figure 6. LC:PDMS waveguides: (a) oriented LC molecules inside the PDMS channel; (b) PDMS chip with optical
waveguides with widths of 8, 10 and 15 µm; (c) image of LC:PDMS waveguides with a width of 10 µm observed under the
microscope in transmission.

LC molecular orientation inside the PDMS channel induces a refractive index distri-
bution which determines polarization-independent light propagation [31]. Green laser
light at a wavelength of 532 nm and red light using an He-Ne laser source at a wavelength
of 632.8 nm were efficiently fibre butt-coupled to the LC:PDMS waveguide as shown in
Figure 7a. Propagation in the C-band was also studied using a tunable laser source between
1510 nm and 1590 nm. Light transmission versus polarization orientation was measured
using a set-up including a polarization controller, consisting of a half-wave plate between
two quarter-wave plates, an optical power meter and a polarizer at the output of the
waveguide. It has been observed that light polarization does not vary as it propagates
along the LC:PMDS channel for any polarization at the input. A polarization differential
loss of only 0.3 dB, as shown in Figure 7b, was measured with propagation losses of about
8 dB/cm.

It is possible to control LC:PDMS waveguides by means of coplanar electrodes. Pre-
liminary measurements show that LC molecules can be switched by applying a square
voltage of 1 kHz with an amplitude of about 2 V. In this case, only change of modal
propagation was affected without a substantial light transmission of light, since the core
refractive index remains above the PDMS refractive index. By choosing a PDMS with a
refractive index intermediate between the ordinary and the extraordinary refractive of the
LC, light modulation or switching is possible.
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Figure 7. Propagation properties of an LC:PDMS waveguide with a width of 15 µm: (a) green laser light (wavelength = 532 nm)
beam butt−coupled by using a single mode optical fiber of 125 µm; (b) output power versus polarization at a wavelength of
1550 nm.

3. Modelling of Light Propagation in Nematic LC Waveguides

Light propagation in LC waveguides is affected by the LC molecular orientation
represented by a unity vector referred to as director n, as shown in Figure 8. Typical dimen-
sions are a few nanometres along the molecular axis and about 1 nm in the perpendicular
direction. Locally, a refractive index n‖ along the molecular axis and a refractive index n⊥
perpendicular to the molecular axis are defined. In the bulk LC, an extraordinary refractive
index ne and an ordinary refractive index no are defined along and perpendicularly to the
director n, respectively, showing a birefringence ranging between 0.15 and 0.5, depending
on the chemical compounds and wavelengths.

−

‖ ⊥

Figure 8. Molecular director n and refractive index at the molecular level.

The optical anisotropy and the molecular orientation of the LC molecules induce the
refractive index spatial distribution nLC (x,y) in the LCW determined by the electric field
Eac related to the ac voltage applied to the electrodes and the optical electric field Eopt of the
propagating light beam when its intensity is relatively high. The electric field dependence
enables both an electro-optic and an all-optical control. The LC molecular orientation is the
result of the balance between the electric torques and the elastic restoring torque when an
electric field is applied. The deformation pattern affected by the elastic torque is the result
of a combination of three basic deformations, which are splay, twist and bend.

The orientation of the LC is imposed by the minimum of the free energy F given by:

F = Fel − Fdiel − Fopt (1)

in which Fel is the elastic term, Fdiel is the dielectric term and Fopt is the optical term related
to the electric field of the optical beam propagating in the LC.
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The Oseen–Frank theory indicates that the elastic energy is given by [54]:

Fel =
1
2

y [
k11(∇ · n)2 + k22(n · ∇ × n)2 + k33(n ×∇× n)2

]
dv (2)

where k11, k22 and k33 are the elastic constants corresponding to the splay, twist and bend,
respectively, in which v is the volume. The dielectric energy is given by:

Fdiel =
1
2

y [
ε0ε⊥,ac|Eac|2 + ε0∆εac(Eac · n)2

]
dv (3)

where ε0 is the dielectric permittivity in vacuum, ε⊥,ac is the dielectric permittivity perpen-
dicular to the optical axis, ∆εac is the dielectric anisotropy, and Eac is the applied electric
field at low frequency. The optical term of the energy is given by:

Fopt =
1
2

y [
ε0ε⊥,opt

∣∣Eopt

∣∣2 + ε0∆εopt

(
Eopt · n

)2
]

dv (4)

where ε0 is the dielectric permittivity in vacuum, ε⊥,opt is the dielectric permittivity perpen-
dicular to the optical axis, ∆εopt is the dielectric anisotropy, and Eopt is the electric field at
the optical frequencies. The minimum of F is determined by solving the Euler—Lagrange
equation coupled with the solution of the Poisson equation for the distribution of the
electric potential Φ in the LC structure:

∇ · [ε⊥,ac∇Φ + ∆εac(∇Φ · n)n] = 0 (5)

The resulting output is the spatial distribution of the LC director orientation, from which
the refractive index profile can be obtained. Figure 9 shows the typical refractive index dis-
tribution for an LCW in a SiO2/Si groove with an upper width of 10 µm without (Figure 9a)
and with an intense optical power of 25 mW at 1550 nm (Figure 9b). The possibility to
have a refractive index distribution allows to design any optical device, and this is more
crucial in LC waveguide-based integrated optic devices. The advantage of this model is
that we do not make any hypothesis or simplification of the director and electric potential
distributions. Therefore, this fully consistent model can be used for any type of geometry,
either two- or three-dimensional, provided the boundary conditions are correctly stated.
Alternatively, a study of the molecular director distribution can be obtained by means of
Monte Carlo simulation techniques [55,56], also taking into account the external applied ac
field [57].

  

(a) (b) 

Figure 9. Computed all-optical dependence of the refractive index distribution in a SiO2/Si LCW
with upper width of 10 µm: (a) without input optical signal; (b) with input optical signal.

After computing the refractive index distribution, the beam propagation method can
be used to simulate light propagation in LC waveguides, allowing design of photonic de-
vices [58–60]. Figure 10 shows a typical contour map of the fundamental mode (Figure 10a)
and a higher order mode (Figure 10b), evaluated at a wavelength of 1550 nm in a 10 µm
wide LCW with an applied voltage of 10 V for which 35 modes were found.
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Figure 10. Computed contour map of TM-like propagation of 1550 nm wavelength in a 10 µm
wide LCW with applied lines of electric field force (red arrows) for an applied voltage of 10 V:
(a) fundamental mode; (b) higher order mode. The color maps show the field intensity distribution.

4. Device Applications

4.1. On-Off Optical Switch and Variable Optical Attenuator

Light propagation can be controlled in a SiO2/Si LCW by either electrooptic or nonlin-
ear optical effect or both. Since LC molecules can be reoriented along an external electric
field, a square wave voltage is applied between the ITO electrode and the n-type Si sub-
strate acting as a second electrode. An ac field is required to avoid electrolysis of the LC.
Figure 11 shows the working principle of LCW acting as an on-off switch. A vertically
polarized light signal runs into an increasing refractive index of the LC approaching the
value of ne of the LC along the molecular director n as the voltage increases.

If voltage is not applied, the polarized light beam comes across the ordinary refractive
index no of the LC, which is lower than the glass refractive index, as shown in Figure 11a.
When a voltage is applied, the LC molecules are mostly reoriented perpendicularly to the
propagation direction and to the glass plates, and confined light propagates in the LC core,
as shown in Figure 11b. In fact, as shown in Figure 12, when a voltage is higher than just 2
V, light starts to propagate, and transmission increases with an on-off extinction ratio (ER)
above 40 dB at a voltage of about 8 V, with ER defined as:

ER = 10 log10
P(V)− Pdark

P(0)− Pdark
(6)

where P(V) is the waveguide output power at voltage V and Pdark is the optical power at
the photodetector without any input signal. The LCW acts both as an on-off switch and as
a variable attenuator for voltages from 2 to 5 V as shown in Figure 12. The switching time
is related to reorientation dynamics of the LC in the range of a few ms depending on the
viscosity and elastic properties of the LC mixture. The applied voltage controls the number
of supported optical modes, which increase as the voltage amplitude increases.
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Figure 11. Operation of a SiO2/Si groove LCW, with an electric field applied between n-Si substrate
and an ITO layer: (a) case of no external voltage applied; (b) case of voltage above threshold to
tilt LC molecules which allows light propagation. Reprinted with permission from Ref. [4]. Copy-
right 2010 IEEE.

 

Figure 12. Plot of the extinction ratio (ER) as a function of the applied voltage for a SiO2/Si LCW.

4.2. Electro-Optic Router

An integrated LC guided-wave electro-optic router based on a zero-gap directional
coupler structure sketched in Figure 13 has been successfully designed [61] and experimen-
tally demonstrated [62]. The device is made from a thin layer of nematic LC sandwiched
between two glass plates to operate as a planar waveguide.
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Figure 13. Electro-optic router: (a) three-dimensional view; (b) side view; (c) top view.

The working principle is based on an optical addressing, exploiting the relative wave-
vector difference between two copropagating TM-polarized modes. The device works
as an adjustable Y junction in a nematic LC, with an input bimodal stem from which
two identical single-mode channels depart at a small angle, thus providing two output
ports, as illustrated in Figure 14. When it is properly biased, this structure can route an
optical signal towards any of the two output ports, switching between them by means of a
small voltage modulation over a short propagation distance. In absence of bias, instead,
the device does not provide transverse light confinement.

− −

Figure 14. Image of the field distribution due to two superimposed TM guided modes in a 1 × 2
optical switch encompassing an output Y-junction.

A near infrared switching and signal routing at the wavelength of 1064 nm with a
positive uniaxial nematic LC 5CB has been experimentally demonstrated, with modulations
of 210 mV for a device length of 160 µm. The balanced superposition of TM00 and TM01
modes has been excited with a 0.4 mW power beam focused on the waveguide facet. The tilt
and offset with respect to the channel axis was carefully adjusted using a 10× microscope.
The propagating modes gain a relative phase ∆φ = 2π after 160 µm, and the output intensity
peaks on the same side of the excitation when a bias of Vl = 0.98 V is set, as reported in
Figure 15a,b, which shows a clear switching for V = Vh = 1.19 V. Finally, the transverse
intensity profiles acquired in z = L for the two previous cases, reported in Figure 15c,
highlight the substantial lateral shift achieved, with a modulation ∆V = 210 mV in 0.16 mm.
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− −Figure 15. LC guided−wave electro−optic router light propagation in the (y; z) plane: (a) V = Vl = 0.98 V;
(b) V = Vh = 1.19 V; (c) corresponding output intensity distributions.

An optical switch based on the same principle as the previous device has been de-
signed by using a zero-gap directional coupler based on LC:PDMS technology [63]. The cou-
pling condition depends on LC refractive index controlled by in-plane voltage applied to
coplanar electrodes. Figure 16a shows the top view of the device, in which two-input single
mode optical waveguides are brought together at zero distance between them to form a
two-mode region. The 3 µm × 3 µm square cross-section of the bimodal region is reported
in Figure 16b, in which coupling occurs because of the interference between the two modes
propagating controlled by a voltage applied to coplanar electrodes. Light can be switched
to either of the two output waveguides with an extinction ratio higher than 16 dB over
a coupling length of 0.5 mm; an applied voltage of just 1.62 V is required to route light
to the right-hand output waveguide (Pout 2), while 1.76 V are needed to route light to
the left-hand output waveguide (Pout 1). The coupler can also be designed to behave as
a demultiplexer for wavelengths 980 nm and 1550 nm by separating them into the two
different output ports with a contrast better than 10 dB. Coplanar gold electrodes are used
and consist of gold thin films deposited by electroplating, which can switch LC in a PDMS
channel by applying only 2.85 V.

(a) (b) 

−Figure 16. LC:PDMS zero−gap directional coupler switch with bimodal central waveguide and coplanar electrodes:
(a) device top view; (b) cross-section of the bimodal LC waveguide.

4.3. Nematic LC Electrically Tunable Bragg Reflectors

Tunable Bragg reflector structures based on an LC waveguide between two glass
plates have been demonstrated, where the peak reflection wavelength tuning is driven
electro-optically by modifying the LC refractive index [64,65]. Hereinafter, relying on the
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same physical model, two possible arrangements of electrodes are reported: a top–bottom
electrode disposition and a coplanar electrode configuration. The working principle is
based on a refractive index modulation to obtain a Bragg grating along the propagation
direction, which allows a wavelength-selective propagation of an optical signal inside the
LC layer. Estimation of the reorientation of the LC molecular director has been evaluated
as described in Section 2 by considering only an elastic term and an electrostatic term in
the expression of F. Coupled mode theory was used for both configurations to evaluate
both resonant Bragg wavelength and back-reflected power for TM or TE polarized input
light at a specific grating length. A wide wavelength tuning range and a high wavelength
selectivity can be achieved in both structures through application of low voltages.

The configuration of the Bragg reflector device based on top–bottom electrodes to
obtain an electro-optic distributed feedback waveguide (DFBW) with full adjustability
of confinement and Bragg resonance wavelength is shown in Figure 17 [66]. It consists
of a planar glass cell with a nematic LC layer and a top–bottom configuration of trans-
parent electrodes allowing an external voltage application. LC molecules are arranged
with a planar alignment with the director n parallel to the propagation direction. Two-
dimensional optical confinement of propagating transverse-magnetic TM light polarization
is ensured through a graded-index channel by a suitable voltage applied between the
comb-shaped top electrode periodic along the propagation direction and the ground plane
at the opposite boundary.

Figure 17. Tunable Bragg reflector with top–bottom electrode configuration with planarly anchored
nematic LC.

A Bragg grating can be induced through LC refractive index modulation over a finite
propagation distance and for a given operation wavelength to allow a one-dimensional
photonic lattice entailing Bragg reflection via distributed feedback. The structure can
be optimized in terms of electrode dimensions, periodicity and duty-cycle along the
propagation direction and the LC layer thickness to meet the required operation mode as
wavelength-selective reflector and tunable drop-multiplexer.

Modulation of the refractive index 100 nm below the top electrode experienced by
the TM00 mode versus propagation distance or applied voltages from 2 to 3 V (in 0.2 V
steps) is reported in Figure 18a. As reported in Figure 18b, a wavelength tuning of 14 nm
(1536–1550 nm) is achievable with applied voltages ranging from 2.5 V to 3 V (further
details on technology parameters can be found in ref [66]).
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(a) (b) 

Figure 18. Tuning characteristics of the nematic LC tunable Bragg reflector with top–bottom electrode configuration:
(a) refractive index profile modulation along propagation direction for applied voltages between 2 V (bottom line) and 3 V
(top line) in 0.2 V steps; (b) normalized grating reflectivity for 2.5 V (red), 2.8 V (green) and 3 V (blue). Reprinted with
permission from Ref. [66]. Copyright 2009 OSA.

Another structure of LC tuneable Bragg reflector with a coplanar electrode configura-
tion has been investigated and demonstrated allowing a wavelength tuning range of more
than 100 nm in the near infrared with about 10 V applied [67]. Figure 19a is a schematic
three-dimensional view of the device.

−Figure 19. Tunable Bragg reflector with coplanar electrode configuration and planarly anchored nematic LC: (a) three-
dimensional view; (b) molecular orientation above the electrodes without (V = 0) and with (V > 0) applied electric field.

The arrangement is made with a nematic LC planar waveguide restrained between
two parallel glass slides. A pair of coplanar comb-shaped 100 nm thick ITO transparent
electrodes are deposited and patterned on the inner face of the bottom substrate periodically
positioned along the propagation direction. The nematic LC molecules lie with their director
aligned along the propagation direction when no voltage is applied, while the field arising
when a voltage is applied induces the LC molecular reorientation in the longitudinal
plane, resulting in a pure twist deformation that finally leads to a bidimensional optical
confinement of the propagating TE polarized beam in the xy plane, as shown in Figure 19b.
In Figure 20a, the sinusoidal behaviour of the refractive index modulation achieved along the
direction propagation is plotted, corresponding to a phase grating for distributed feedback.
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−

Figure 20. Performance of a tunable Bragg reflector with coplanar electrode configuration: (a) refrac-
tive index modulation along the propagation direction for applied voltages between 2.8 V (bottom
line) and 3 V (top line); (b) longitudinal modulation versus applied voltage; (c) spectral reflectivity
for propagation over 1.5 mm (3000 periods) and for different voltages. Reprinted with permission
from Ref. [67]. Copyright 2010 OSA.

The resulting index contrast versus voltage between 0 and 13 V is reported in Figure 20b.
The nematic LC reorientation effect is almost negligible up to 2.4 V, leading to little index
modulation, but this changes rapidly after this threshold: at V = 5 V, the nematic LC molecules
are completely reoriented, reaching their maximum twist φ = 90◦. Further voltage increase
allows LC reorientation which also occurs in the regions that have not yet been completely
reoriented, yielding a decrease in modulation. Above 12.4 V, almost all the nematic LC
molecules are reoriented parallel to y, and the index contrast is zero.

The back-reflected power (spectral reflectivity) as a function of the resonant wave-
length for a device length of 1.5 mm, corresponding to 3000 periods, is reported in
Figure 20c. A wide tuning range of 104 nm (1521–1625 nm) can be obtained by vary-
ing the applied voltage between 2.9 and 10.2 V, keeping the back-reflection above 50%,
with a good spectral selectivity.

5. Conclusions

LC materials can be successfully used beyond the well-known FPD applications.
Superb linear and nonlinear optical properties of LC materials have been deeply explored
to make a wide range of integrated optic devices. Optical waveguides with an electro-
optically or all-optically controlled core enable the development of many integrated optic
devices which can be driven by sub-milliwatt signals. Straightforward modelling allows
to design simulate several photonic functions, such as switching and filtering and light
generation. In this paper, a few examples of photonic devices either for optical switching
with extinction ratios over 40 dB, or for optical filtering over 100 nm tuning range have
been reported to demonstrate the great LC application potentialities in integrated optics
for optical communications and optical sensing systems with low power consumptions.
Innovative integrated photonic devices based on LC include combinations of LC with
metal nanoparticles for novel sensing systems based on photothermal therapies. Further
research could be devoted to the development of integrated optic devices for 3D sensing,
augmented reality, terahertz communication and terahertz imaging. The generated vortex
beam via q-plates of LCs and vortex gratings could help in studying the interaction of
spin-orbital angular momentum for quantum information applications.
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Abstract: We experimentally demonstrate that the plasmonic heat delivered by a single layer of
homogeneously distributed gold nanoparticles (AuNPs), immobilized on a glass substrate, can be
optically tuned by taking advantage of the properties of an organic layer based on azobenzene
and nematic liquid crystal (NLC) molecules. The effect, which exploits the dependence of the
NLC refractive index value on the molecular director orientation, is realized using the polarization-
dependent, light-induced molecular reorientation of a thin film of photo-aligning material that the
NLC is in contact with. The reversibility of the optically induced molecular director reorientation of
the NLC enables an active modulation of the plasmonic photo-induced heat.

Keywords: thermoplasmonics; metallic nanoparticles; liquid crystals; reconfigurability; photo-
aligning materials

1. Introduction

Thermoplasmonics has become one of the most renowned research topics in plasmon-
ics and nano-optics, thanks to the possibility of generating and controlling a great amount
of heat at the nanoscale. Thermoplasmonics deals with the heat produced by metallic
nanoparticles (NPs) when a radiation with suitable (resonant) wavelength impinges on
them [1,2]. Indeed, when the electrons of the conduction band of a metallic NP oscillate
coherently with the electric field of the incident radiation, an increase of the absorption in
the corresponding frequency range occurs (ωp) that leads to a rapid rise in the temperature
of the NP, followed by a heat dissipation into surrounding media [3,4]. The temperature
increase (∆T) of a single spherical NP can be easily expressed as ∆T = Q/(4πkH RNP),
where RNP is the NP radius, kH is the thermal conductivity of the host medium, and Q
is the heat power density. Q depends on the absorption cross-section (σabs) of the NP,
and on the intensity (I) of the incident light through the equation: Q = σabs I [1–4]. For a
metallic NP with spherical or rod-like shape, σabs can be easily calculated using the Mie or
Gans theories, respectively, ref. [1–4] while for different geometries more complex theo-
retical models are required. Nowadays, the thermoplasmonic heating is used in several
research fields such as high precision medicine [5–7], electronics [8–10] optics [11–13],
biology [14,15], and catalysis [16,17]. All above applications are based on the possibility to
finely tune the photo-thermal efficiency of the NPs that can be done by acting on several
control parameters such as the intensity of the impinging beam [1–4], the number (N) of
involved NPs, and the dielectric function of the surrounding medium εH [18]. The latter
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can be achieved by exploiting the properties of smart and thermo-responsive materials
such as thermotropic liquid crystals (LCs). These are organic and anisotropic materials
responsive to different external perturbations such as electric, optical and magnetic fields,
and temperature variation. LCs have been largely used in various research fields rang-
ing from displays [19–21] to plasmonics [22,23]. Notably, the temperature sensitivity of
the optical properties of LCs have been used as a compelling solution to realize novel
methodologies for monitoring and controlling the light-induced heat of NPs [24]. In this
work, we report and discuss on the realization of a thermoplasmonic-based optical device
made of an array of gold nanoparticles (AuNPs) immobilized on a glass substrate and
layered with a photo-aligned NLC. This hybrid system, which represents an all-optical
thermoplasmonic device, ingeniously realized through the combination of hard-matter
(plasmonic NPs) and soft matter (LCs), is characterized in terms of morphological, optical,
and thermo-optical properties. It turns out that the thermoplasmonic heating can be easily
controlled by controlling the refractive index of the surrounding LC medium, thanks to the
presence of the thin surface command layer. Indeed, starting from a single layer of metal
NPs the photothermal response can be controlled by varying the intensity in a specific
range, but also with the same power of the resonant radiation through subtle control of the
refractive index of the surrounding medium, obtainable using the photo-aligning material
and liquid crystal. The all-optical thermoplasmonic device forecasts exciting applications
in the field of light-driven thermoplasmonics.

2. Materials and Methods

Synthesis of spherical gold nanoparticles: Spherical gold nanoparticles have been
prepared according to the conventional Turkevich method [25]. This is the most commonly
used approach for the synthesis of size-defined spherical gold nanoparticles through
chemical reduction by sodium citrate. Briefly, in a round-bottomed flask, 600 mL of an
aqueous solution of tetrachloroauric (III) acid (0.25 mM) were brought to boiling under
vigorous magnetic stirring. When the boiling temperature was reached, the gold has been
reduced by quickly adding 15 mL of aqueous sodium citrate solution (0.03 M). In about
15 min, the solution colour slowly turned from yellow to deep red, as a result of the full
reduction of the gold salt into monodisperse gold nanoparticles with an average diameter
of 20 nm. The reaction was then removed from the hot oil bath and allowed to cool down
to room temperature overnight.

Functionalization of substrates: The glass substrates were cleaned and hydroxylated
with piranha solution (3:1 mixture of sulphuric acid to hydrogen peroxide 30%) for 30 min.
Then, the substrates were rinsed several times, first with distilled water and then with
milli-Q water before being dried under nitrogen flow. To alter the surface chemistry,
the substrates were immersed in a 5% (v/v) solution of N-[3-(trimethoxysilyl)propyl]
ethylenediamine in ethanol for 30 min and then rinsed with milli-Q water. Excess of water
was removed using a stream of nitrogen followed by drying in a furnace at 120 ◦C for
30 min to assure good silanization.

Gold nanoparticles arrays on planar substrates: Gold nanoparticles were deposited
on glass slides by immersing the functionalized substrates in the colloidal solution for two
and a half hours. The gold covered substrates were then washed with milli-Q water and
dried under a stream of nitrogen.

Deposition of the photoaligning material: PAAD-27 by BeamCo. dissolved in dimethyl-
formamide (C3H7NO), which possesses a broad absorption band centered at 415 nm, has
been deposited by means of a spin coater (2000 rpm for 30 s). A polarized UV lamp
(λ = 395 nm; I = 30 mW/cm2) is used for a suitable time interval (typically 7 min) to reori-
ent the PAAD-27 molecules perpendicularly to its polarization direction. The characteristics
average polar anchoring energies of nematic LC on PAAD materials (Beamco., Orlando,
FL, USA) are ≈10−2 J/m2, a weaker alignment than on polyimide layer [26].

Preparation of the sample cell: The thermotropic nematic liquid crystal (NLC) E7,
by Merck has been used. The sample cell was fabricated by gluing together a functionalized
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glass slide and the PAAD-27 coated AuNPs monolayer, spaced by 10 µm glass microspheres.
The NLC has been then introduced by means of capillary flow. The surface of the glass
substrate is covered with a thin organic film, such as polyimide (PI-AL1454 by JSR), using
a spin coating (4000 rpm, 60 s) deposition technique. After the deposition of the coating
film, a cloth (velvet) with short fibers is moved over the surface to create microgrooves
that make the surface unidirectionally anisotropic. The rubbing process induces a specific
orientation of the polymer molecules, which is transmitted to the LC molecules anchored
on the substrates; moreover, this kind of orientational order propagates in the bulk of the
LC molecules via intermolecular forces [27].

Thermographic analysis: The thermographic analysis has been performed by means
of a thermocamera (E40 by FLIR), which is characterized by a sensitivity of 0.07 ◦C and
a spatial resolution of 2.72 mrad. The steady-state condition was reached after about
5 min of exposure of the sample cell to a green laser beam (λ = 532 nm) —Verdi G-Series
by Coherent, linearly polarized—polarization direction: vertical, ±5◦, when no further
temperature variations were detected in the limit of the thermo-camera sensitivity.

3. Results and Discussion

AuNPs monolayers on glass substrates have been prepared by following the proce-
dure described in the Materials and Methods section. The samples were then characterized
by performing a morphological analysis by means of an Atomic Force Microscope (AFM).
Figure 1a shows a representative AFM image of uniformly distributed AuNPs with an av-
erage diameter of about 20 nm. The inset of Figure 1a shows a photo of the realized sample,
which exhibits a distinctive pinkish color associated with the presence of well-dispersed
AuNPs. Indeed, the spectral response of the sample (Figure 1b) shows the typical absorp-
tion peak of spherical AuNPs centered at the wavelength λLPR = 522 nm, corresponding
to the localized plasmon resonance of the AuNPs [1,2]. Figure 1c shows the absorption
spectrum of the photoaligning material PAAD-27 (by BeamCo), dissolved in dimethylfor-
mamide, which possesses a broad absorption band centered at 420 nm. PAAD-27 is an
azo-based material that is used to promote planar alignment of nematic liquid crystals
(NLC); its optical and all-optical properties have been reported elsewhere [28,29].

The AuNPs monolayer has been then covered with the PAAD-27 material (see Mate-
rials and Methods section): the absorbance of the obtained sample (AuNPs + PAAD 27)
is reported in Figure 1d (green curve). The absorption peak of AuNPs is significantly red
shifted, from 522 nm to 544 nm. In general, when metallic nanoparticles are immersed in a
large refractive index medium, the resonance is shifted toward longer wavelengths [30].
In fact, the shift observed in Figure 1d is related to a change in the refractive index n of the
surrounding medium: from the air value (nair = 1) to the PAAD-27 value (nPAAD = 1.73).
This behavior well agrees with the Mie theory [31], which provides an analytical solution
of Maxwell’s equations used to calculate the scattering and the absorption of electromag-
netic radiation due to a spherical and isolated metallic NP. Figure 2a sketches the AuNPs
monolayer on glass substrate before (top-left) and after the deposition of the PAAD-27
(top-right), whose molecules are randomly aligned. When the sample is illuminated with a
polarized UV light (10 min, 2.7 J/cm2), a PAAD-27 molecular alignment is induced, which
turns out to be perpendicular to the light polarization direction. In fact, when PAAD-27
molecules are optically activated by a light beam whose polarization direction is parallel to
their absorption oscillators, they become excited and relax several times with a random
alignment; this process results in a new orientation of the PAAD molecules with respect
to the initial one, with a consequent excess of molecules in the direction in which the
absorbing oscillators are perpendicular to the polarization of the incident radiation. It is a
consequence of this process that the PAAD-27 alignment direction can be easily modified by
changing the polarization direction of the incident UV light beam. Figure 2b highlights that
once the sample is exposed to polarized UV radiation, a further red shift of the plasmonic
band is observed with respect to the position registered for the sample in which the AuNPs
are covered by amorphous (not aligned) PAAD-27; this further red shift of about 16 nm
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can be attributed to the change of the refractive index of the medium surrounding the
AuNPs, following the alignment of the PAAD-27 molecules. Finally, we have observed
that there is no difference in the shift of the plasmonic band of the sample covered with a
PAAD-27 layer when this is acted on by radiations with different (orthogonal) polariza-
tions (blue and magenta curves of Figure 2b). This result points out that the plasmonic
response of the AuNPs is not substantially affected by the actual in-plane orientation of the
PAAD-27 molecules.
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Figure 1. (a) AFM image of the AuNPs monolayer on a glass substrate. In the inset, a photograph
of the sample. Spectral response of the AuNPs monolayer surrounded by (b) air and (c) PAAD-27;
In the inset, a photograph of the photo-aligning material. (d) Absorbance response of the AuNPs
monolayer covered by the PAAD-27.

A very interesting behavior is observed when monitoring the photothermal response
of the sample. The thermo-optical setup used for the experiments is sketched in Figure 2c:
A CW green laser (λ = 532 nm, spot size 2.25 ± 0.22 mm), impinges perpendicularly onto
the sample and excites simultaneously the plasmonic band of the irradiated AuNPs, with a
consequent increase (∆T) of the macroscopic temperature of the sample with respect to the
environment temperature (T0). In general, to calculate the temperature variation at a point
r from a single NP, it is necessary to solve the heat transfer equation [4], where the solution
results are:

∆T(r) =
QR3

NP

3rkH
(1)

where Q is the heat production due to the Joule effect, RNP is the NP radius and KH is the
thermal conductivity of the host medium. Thus, by illuminating a macroscopic surface
region of the AuNPs layer with a laser spot w in radius, a considerable number of AuNPs
are acted on by the light; in this case, as a matter of fact, the temperature increase has to
be calculated by adding the contribution of all the irradiated AuNPs as specified in this
formula [18]:
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∆T(r) = 2πwnNP
VNP Im(χNP)

2λkH
√

εH
| 3εH

2εH + εNP
|2 I (2)

where nNP is the AuNPs surface density, VNP is the average AuNP volume, KH is the ther-
mal conductivity of the host medium, χNP is the AuNPs dielectric permeability, εNP and
εH are the AuNPs and host medium dielectric permittivity, respectively. From Equation (2),
it is evident that the temperature variation exhibits a strong enhancement under the Frölich
condition, in which the quantity |2εH + εNP| assumes a minimum value, a condition that
occurs if Re[εNP(ω)] = −2εH [32]. Equation (2) shows also that the temperature variation
∆T varies linearly with the intensity of the pump beam (I), used to excite the resonance
of the AuNPs, and strongly depends on the optical and thermal characteristics of the
medium that hosts the AuNPs, expressed by εH and kH , respectively. This behavior was
experimentally demonstrated by illuminating the AuNPs with different pump beam inten-
sities I and by monitoring the maximum induced ∆T for each I value. By monitoring the
temperature values Tmax of the central pixel of each hot-spot of the thermographic images
(Figure 2c), which corresponds to the warmest point, we plotted the temperature variation
∆T = Tmax − T0 versus the impinging intensity I. Successively, we repeated the photo-
thermal experiments (Figure 2d) by fixing the intensity range (I = 0.05 − 1.2 W/cm2) for
the cases of AuNPs monolayer in air (red sphere) and covered by the PAAD-27 molecules
before (green sphere) and after exposure to UV light of two different polarization directions
(blue and magenta spheres). As predicted by Equation (2), the behavior of ∆T as a function
of I can be easily fitted with a linear curve. For the maximum I considered we acquire a
∆T of about (3.2 ± 0.3) ◦C for the AuNPs monolayer in air, (32.6 ± 0.3) ◦C for the sample
where AuNPs are covered by PAAD-27, and of about (49.0 ± 0.3) ◦C and (38.0 ± 0.3) ◦C for
AuNPs-PAAD-27 samples acted on by UV light with two different polarization directions.
The differences in the measured ∆T values acquired for the four different cases is related to
the variation of the AuNPs plasmonic band induced by changes in the characteristics of the
host medium surrounding the AuNPs. In particular, Figure 2b shows that in the case of not
aligned PAAD-27, there is an increase of the sample absorbance, and this is also observed
when the PAAD-27 molecules are aligned. However, in this latter case, the difference in the
temperature variations are not due to a change in the sample absorbance but to a different
value of kH in the two cases: as a matter of fact, the observation that the plasmonic band
does not change for the two different alignment conditions indicates that no variations
occur in the refractive index of the PAAD-27, which corresponds to no variation in the
Frölich condition. Therefore, a prediction of the sample temperature variation goes through
a determination of the kH value of the medium hosting the AuNPs, which is made of glass
and PAAD-27 layer. We can say that the PAAD-27 alignment induces a reversible and
repeatable thermal anisotropy due to an induced change in the thermal conductivity value
of the PAAD-27, which turns out to be different for the two different polarization directions
of the resonant impinging light. As demonstrated in a previous work [18], we are able to
calculate the thermal conductivity value by detecting variations of sample temperature
as a function of the laser intensity; thus, we can determine the thermal anisotropy of the
PAAD-27 layer using Equations (1) and (2). Following the procedure illustrated in [18],
the kH values of the PAAD-27 in the three cases are measured as: 0.77 W(◦ m)−1 for the
amorphous PAAD-27, 0.32 W(◦ m)−1 for the Ex aligned PAAD-27 and 0.40 W(◦ m)−1 for
the Ey aligned PAAD-27. These results confirm that it is possible to modulate the thermal
behavior of PAAD-27 material by means of polarized light. As mentioned above, PAAD-27
can be used to align liquid crystals; for this reason, we have studied the behavior of a
sample of AuNPs + PAAD-27 modified by adding a nematic liquid crystal (NLC, see
Materials and Methods section) to investigate how a variation of the optical properties
of the new medium (represented now by PAAD-27 plus NLC) surrounding the AuNPs,
determines variations of the thermal efficiency of the whole system that are not related to a
change in the value of the thermal conductivity kH of some of its components.
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Figure 2. (a) Sketch of the AuNPs monolayer on a glass substrate before (top, left) and after the
deposition of the PAAD-27 material (top, right); orientation of the PAAD-27 molecules after the
exposure to UV radiation for two different polarizations (bottom). (b) Absorbance response of the
AuNPs monolayer in the air (red curve), after the deposition of the PAAD-27—before (green curve)
and after the exposure to polarized UV radiation with different polarizations (blue and magenta
curves); (c) Sketch of the photothermal measurement. (d) Photo-thermal response of the AuNPs
monolayer in air and after the deposition and alignment of the PAAD-27.

A sketch of the photo-alignment process of the NLC molecules is reported in Figure 3a.
Two limit cases are considered for the configuration of the NLC director as determined
by the PAAD-27 photalignement: a planar one, in which the directions of the molecular
director on the two sides of the cell are parallel to each other, and a twisted one, in which
these directions are perpendicular to each other; details on cell fabrication are reported in
the Materials and Methods section. Figure 3b shows polarized optical microscope (POM)
images of the photo-exposed area of the sample. The original planar aligned area is outside
the red circled zone, while inside, there is a twisted aligned area after it has been exposed
to an external light source for 7 min (λmax = 405 nm; I = 30 mW/cm2). The spectral
response of the sample shows a decrease of the absorbance in the plasmonic band and a
blue shift with respect to the AuNPs+PAAD-27 sample (Figure 3c). This behavior can be
ascribed to a reduction of the effective refractive index that the AuNPs monolayer sees
in the surrounding medium in both (planar and twisted) alignment configurations due
to the presence of the NLC. As a consequence, the corresponding temperature variation
results are lower with respect to the sample with PAAD-27 alone (Figure 3d) but still
totally tunable in a given range. In fact, the ∆T obtained at the maximum intensity of the
impinging light are about (13.0 ± 0.3) ◦C for the planar cell and (28.2 ± 0.3) ◦C for the
twisted cell. Interestingly, all intermediate temperature variations highlighted in Figure 3d
by the yellow region can be obtained by continuously varying the polarization of the
aligning UV light which reorients the PAAD-27 and therefore the NLC director from the
planar to twisted cases.
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Figure 3. (a) Sketch of the AuNPs+PAAD-27+NLC cell in planar and twisted configuration. (b) POM
view of the planar (left and right images, outside the red circle) and twist (left and right images,
inside the red circle) alignment along with a high magnification of the transition zone (from planar
to twist, bottom photo) of the sample. Left and right images have been acquired between crossed
and parallel polarizers, respectively. (c) Absorbance of the AuNPs monolayer in air, covered by
PAAD-27 and with NLC; (d) Photo-thermal response of the sample in air and after the deposition
and alignment of PAAD-27 and the infiltration and photo-alignment of NLC.

As we can see in Table 1, the combination of an AuNPs layer with a photoaligning
material as PAAD-27, demonstrates the potential response of the system to the change of
the refractive index of the surrounding medium. From the linear fit of the temperature
variation ∆T as a function of the intensity of the pump beam, it is possible to calculate the
Sensitivity (α) of the system, defined as ∆T/∆I, representing the slope of the linear fit. This
parameter can help to better understand the performance of the proposed device; just an
example: the highest thermal response is obtained in the case of AuNPs + PAAD-27 Ex
aligned characterized by a sensitivity of (35.38 ± 0.41) ◦C m2/W; if, on the other hand,
it is necessary to have greater control of the temperature in a very precise range and for
a specific intensity range of the pump beam, the choice of inserting the liquid crystal
in the system produces a higher thermal variation range if compared to the case of the
PAAD-27 alone.

Table 1. Maximum temperature variation ∆T of the samples and the corresponding Sensitivity.

Sample ∆T = Tmax − T0 [◦C] α: Sensitivity (∆T/∆I) [◦C m2/W]

AuNPs 3.2 ± 0.3 2.35 ± 0.02
AuNPs + PAAD-27 amorphous 32.6 ± 0.3 9.43 ± 0.07

AuNPs + PAAD-27 Ex align. 49.0 ± 0.3 35.38 ± 0.41
AuNPs + PAAD-27 Ey. Align. 38.0 ± 0.3 27.26 ± 0.53

AuNPs + PAAD-27 + NLC (planar) 13.0 ± 0.3 10.95 ± 0.33
AuNPs + PAAD-27 + NLC (twisted) 28.2 ± 0.3 20.63 ± 0.43
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4. Conclusions

We proved that: (a) by exploiting a photo-aligning material (PAAD-27) alone it is
possible to modify the photo-thermal efficiency of a monolayer of gold nanoparticles
(AuNPs); (b) the photo-aligning material, as driven by a polarized UV light, can be exploited
to reorient the director of NLC molecules used as host medium of an AuNPs monolayer;
this director reorientation induces a modification of the effective refractive index of the
NLC as seen by the AuNPs; in turn, this variation affects the photothermal response of the
monolayer of AuNPs. In particular, for the maximum intensity considered (I = 1.2 W/cm2)
a ∆T of about (3.2 ± 0.3) ◦C is detected for the AuNPs monolayer in air, (32.6 ± 0.3) ◦C
for the sample where AuNPs are covered by PAAD-27, and of about (49.0 ± 0.3) ◦C
and (38.0 ± 0.3) ◦C for AuNPs-PAAD-27 samples acted on by UV light of two different
polarization directions. The presence of the PAAD-27 leads to a modulation of the photo
thermal response whose photo-thermal range extension can be maximized using the PAAD-
27 as photoaligning layer for NLC. In this case the ∆T obtained at the maximum intensity
of the impinging light are about (13.0 ± 0.3) ◦C for the planar cell and (28.2 ± 0.3) ◦C
for the twisted cell. In conclusion, we have shown that a particular interaction of light
with nematic liquid crystals, mediated by a photo-aligning material, can be exploited to
control an effect of thermoplasmonic heating. Indeed, by simply varying the polarization
direction of the UV light that drives the reorientation of the NLC director (by means of
photosensitive PAAD-27 molecules), it is possible to control in a simple and fast way the
heat produced at the nanoscale by a monolayer of gold nanoparticles.
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