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Preface to ”Air Pollution Control and Sustainable

Development: Pollution Control and Economic

Growth”

Our world is facing the growing threat of air pollution. On the one hand, particulate matter with

a diameter of less than 10 (so-called respirable particulate matter PM10) can enter the bronchi of the

lower respiratory tract of the human body. The different types of PM10 includes particulate matter

with a diameter of less than 2.5 (PM2.5), which can enter the alveoli of human lungs. When PM2.5

particles reach human lungs, they attach themselves to the alveoli and stay within the human body

for years. They can even travel to other organs of the human body through blood circulation and

therefore can cause major damage to people’s health.

On the other hand, air pollution also poses a huge threat to the economic growth of the world.

The dust and fumes contained in waste gases seriously impact agricultural and industrial production

as well as transportation. Hazardous substances such as SO2 and NOx become acid deposition and

cause damage and erosion to soil, vegetables, and industrial plants and other buildings. Moreover,

the particles in waste gas cause direct and indirect climatic effects and result in an imbalance in solar

irradiance between the Earth and the Sun so that drought regions will suffer more drought while

flood-prone regions will suffer more floods.

In the face of the serious consequences of air pollution, governments have adopted various

policies and measures to control and mitigate the adverse effects of air pollution, including China’s

“Blue Sky Defense War” action plan, India’s “National Clean Air Program”, Brazil’s new “Air Quality

standards (PI−1, PI−2, PI−3, PF)”, etc. These policies have played positive roles in improving the air

quality and promoting economic growth.

Therefore, we have edited and published this book to discuss air pollution control and

sustainable development in the world, especially in terms of the relationship between pollution

control and economic growth. Scholars from different countries have delved into the issues of

pollution control and economic growth in the 10 academic papers, which provide excellent materials

for students at the level of BSc, MSc, and PhD level, as well as researchers to understand the situation

of air pollution control and its impacts on economic growth in different countries all over the world.

Weixin Yang, Guanghui Yuan, and Yunpeng Yang

Editors

ix





sustainability

Article

Research on Air Pollution Control in China: From the
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Abstract: By constructing a quadrilateral evolutionary game model involving the central government,
local governments, polluting enterprises, and the public, this paper attempts to comprehensively
analyze the development and implementation of China’s air pollution control policies. Through the
quadrilateral evolutionary game model, this paper systematically studies the evolutionary stable
strategies of the four parties involved and obtains 27 equilibrium points, strategy sets, and their
corresponding policy performance with the help of the four-dimensional dynamic system. The
research results show that there are five equilibrium points that represent the least ideal scenarios, 14
equilibrium points that represent the less than ideal scenarios, four equilibrium points that represent
the ideal scenarios, three equilibrium points that represent the more than ideal scenarios, and one
equilibrium point that represents the most ideal scenarios. By analyzing the eight equilibrium points
that represent the ideal, more than ideal and most ideal scenarios, especially the four stable points,
this paper has obtained the conditions as well as policy implications of the four stable points in
China’s air pollution control campaign.

Keywords: evolutionary game; quadrilateral game; air pollution; pollution control policy

1. Introduction

Severe air pollution will not only lead to a high incidence of diseases and low level of social welfare
but also impose immeasurable negative impacts on sustainable development in the long run [1–3]. As
a large developing country that is at a critical stage of economic transformation, China has realized the
significance of air pollution problems. The top leadership has clearly stated that we must “speed up
structural reform on ecological civilization and build a beautiful China” [4].

In order to fight against severe air pollution, the Chinese government has issued a large number
of air pollution control policies, such as the “Air Pollution Prevention and Control Action Plan”
implemented in 2013 [5]; the “Temporary Provisions on the Management of Pollutant Discharge
Permits” issued in December 2016 that has accelerated the implementation of a permit system for
pollutant emission control [6]; the revised “Air Pollution Prevention and Control Law” effective 26
October 2018 that requires clean production inspection in key industries including the steel, cement,
and chemical industries, the adoption of advanced technologies, processes, and equipment, as well as
clean production technology transformation for key areas and weak links in energy conservation and
emission reduction campaigns [7]; and the “Key Points on 2019 Nation-wide Air Pollution Prevention
and Control” published in March 2019 that requires various local governments to make efforts on air
pollution prevention and control and continuously improve air quality [8]. Assessing the results of
these policies is of paramount importance, to check if these are delivering results. This can be done
using air quality models [9], satellite data [10], or measurements [11].

Sustainability 2020, 12, 1756; doi:10.3390/su12051756 www.mdpi.com/journal/sustainability
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At the same time, the Chinese government also attaches great importance to the public participation
in air pollution control. In 2016, China established the “12369 Environmental Protection Whistleblowing
Inter-Connected Management Platform,” which has integrated multiple information channels including
hotlines, WeChat, and the Internet, realized the sharing of whistleblowing information among the four
levels of “national-provincial-city-district,” and encouraged the public to play an active role in air
pollution control by blowing the whistle [12]. In November 2019, the platform received a total of 34,942
environment-related reports, including 14,277 reports through hotlines, 16,475 reports through WeChat,
and 4190 reports through the Internet. In terms of pollution types, air pollution is most frequently
reported, accounting for 51.5% of total reports (see Figure 1) [13].
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Figure 1. Whistleblowing Reports on China’s “12369 Environmental Protection Whistleblowing
Inter-Connected Management Platform” in November 2019.

Therefore, throughout the development and implementation of existing air pollution control
policies, there are four participants: the central government, the local government, polluting enterprises,
and the public (whistleblowers). During the overall process of policy development and implementation,
the relationship between these four parties is quite complicated.

1. There is to information asymmetry with the central government [14–16], competition between
local governments for official promotion and in the area of environmental regulation, and local
governments not only take orders from the central government but also have countermeasures
and non-cooperation relationships with the central government [17–19].

2. From the perspective of polluting enterprises, which are one of the main sources of air pollution
in China [20,21] and the main source of pollution explored in this paper, because a large number
of polluting enterprises are the major tax-payers that the local government relies heavily on, and
some are even state-owned enterprises directly under the State-Owned Assets Supervision and
Administration Commission (SASAC), the local governments have a certain collusion relationship
with the polluting enterprises [22–24].
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3. From the perspective of public participation, on the one hand, air pollution should cause the
public (the direct victims of pollution) to blow the whistle; on the other hand, the personal
information leakage during whistleblowing and harassment and retaliation by polluters after
whistleblowing would weaken the public’s initiative to participate. Therefore, it might be the
case that some victims of pollution did not blow the whistle [25–28].

So far, in the academia, there have been quite a few studies on the multi-party relationship in
air pollution control based on Game Theory. For example, Shi et al. constructed a transboundary
air pollution model based on game theory to analyze the cooperative SO2 reduction in three cities
of Hunan province, China. Their results proved that those cities would fully cooperate to reduce
emissions when the welfare from full cooperation was reasonably allocated. Therefore, the welfare
allocation may affect the sustainability of cooperation significantly in environment protection [29].
Chang et al. established a transboundary pollution game model, including emission permits trading
and pollution abatement costs. Based on the model, they studied the optimal emission paths and
pollution abatement strategies under cooperative and noncooperative games [30]. Wang et al. have
presented a generalized Nash equilibrium game model to study the SO2 reduction in Yangtze River
Delta region in China. This new model resulted in an optimal SO2 removal solution with savings
of $4.8 × 107 USD. They also simulated the effects of changes in the SO2 reduction targets to help
policy makers develop more effective pollutant reduction strategies [31]. Hong et al. studied the links
between air pollution, interpersonal trust, and preferences to buy stock in companies emitting air
pollutants. By recruiting volunteers in 31 provinces of mainland China and testing their behavior using
game models, they have found the robust main effect of pollution and an interaction effect between
participants’ subjective socioeconomic status and real-time PM2.5 levels in China. They argued that
the environment pollution could establish a bad norm, which would undermine interpersonal trust
and environmental protection behavior [32]. Shi et al. have used the agent-based model in a complex
network to simulate the behavior of enterprises to policies spurring low-carbon technology diffusion.
Playing evolutionary games with their neighbors, those enterprises demonstrated adaptiveness and
equilibrium. Their results showed that all these policies turn out to be inefficient or even harmful to
enterprises because of the adaptiveness of the whole system. Nonetheless, policymakers could choose
measures to enlarge the size of green markets to solve the problem [33].

Unfortunately, existing studies usually construct the game model for the government and
enterprises based on exogenous mechanisms, and therefore have the following shortcomings:

1. Most studies focused on dual party games and did not consider the participation and influence
of the public [34–36]. Although this simplifies theoretical derivation, it cannot reflect the actual
situation in China’s air pollution control.

2. Although many studies have further expanded dual-party games to tri-party games covering
the central government, local governments, and polluting enterprises, these studies still failed to
fully reflect the complex process of air pollution control in China [37]. In our tri-party game study
in 2019, although we innovatively included the public into the pollution control game, regretfully,
we did not include polluting enterprises as a game participant in the research framework [38].

In view of this, based on above studies, this paper has made further innovations by constructing a
Quadrilateral Evolutionary Game Model covering the central government, local governments, polluting
enterprises, and the public in order to comprehensively analyze the development and implementation
process of China’s air pollution control policies. By adopting the Quadrilateral Evolutionary Game
Model, this paper has systematically studied the evolutionary stable strategy of the four parties
involved, and proposed solutions to air pollution control in China, making theoretical and practical
contributions to the construction of air pollution control systems in developing countries.

The structure of this paper is as follows: Section 2 constructs the Quadrilateral Evolutionary
Game Model, Section 3 obtains the evolutionary stable strategies and stability conditions of various
parties, Section 4 reveals the condition and process of formation of evolutionary stable strategies

3
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by constructing and solving the four-dimensional dynamic system of dynamic game evolution, and
Section 5 concludes the paper and provided relevant policy recommendations based on the results of
game analysis.

2. Materials and Methods

2.1. The Parties in the Game and Their Strategy Choices

2.1.1. The Central Government

The central government determines the performance of local governments in environmental
supervision by checking whether the local government’s supervision report is consistent with on-site
inspection results and determines whether the enterprises comply with the regulations on emissions
by monitoring various emission indicators of the polluting enterprises [39]. Given the strategies of
the local government and polluting enterprises, the central government can choose to monitor (let
the probability be x) or not to monitor (let the probability be (1 − x)) the air pollution control work
in different places. Let the long-term social welfare brought by the long-term monitoring of the
central government on environmental protection be S1, the monitoring cost be C1, and the cost of not
monitoring be 0; let the reputation loss due to lack of monitoring by the central government be L1.

2.1.2. The Local Government

When the central government requires local governments to supervise whether enterprises comply
with regulations on emissions, the local governments may implement regulations for the improvement
of local environment. However, the local government may also choose not to regulate due to the
high regulatory cost or concerns that strict regulations might result in lower fiscal revenues [40,41].
Therefore, the local governments’ behavior strategies include regulating (let the probability be y) and
not regulating (let the probability be (1 − y)). When the local governments choose to regulate, this
will pressure the enterprises to comply with regulations on emissions, so that improve the long-term
reputation and political achievement of the local government (let it be S2), but this will incur regulatory
cost at the same time (let it be C2). When the local government chooses not to regulate, public health
will be adversely impacted, and the local government will face reputation loss and other losses due
to population migration and labor force decrease in the long term (let it be L2). If the fact that the
local government chooses not to regulate takes place during the central government’s environmental
inspection, the local government will be subject to political penalties (let it be P2).

2.1.3. Enterprises

When the local government requires enterprises to strictly follow the stated emission allowance,
the enterprises may, out of a sense of responsibility to the environment or fear of supervision by the
central and local governments, choose to comply with the regulations (let the probability be z); the
enterprises may also choose not to comply due to technology investment cost and potential negative
impacts on their operation income (let the probability be (1− z)) [42,43]. If the illegal polluting activity
of enterprises is discovered by the central or local governments, the enterprises will be subject to
economic penalties (let it be P3) collected by the central government [44] and suffer from a reputation
loss (let it be L3).

2.1.4. The Public

When the public interest is violated due to the excessive emissions of polluting enterprises
within the jurisdiction of the local government, the public could not blow the whistle, i.e., tolerate the
enterprises’ non-compliant emissions and hope the local government would enforce the regulations.
In this case, the public will suffer a health loss of L4. The public could also choose to blow the whistle
in order to protect their legitimate rights and interests. If the non-compliant emissions or illegal

4
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polluting activities of the enterprise are confirmed, the whistleblower will receive a reward of B4 [45].
Therefore, the public’s behavior strategies include blowing the whistle (let the probability be θ) and not
blowing the whistle (let the probability be (1−θ)). As for the local government, regarding the excessive
emissions of polluting enterprises within its jurisdiction, it may choose to regulate for the benefit of
public interests; it may also choose not to regulate due to concerns that the local economy might suffer
from strict environmental regulations [46,47]. When the public chooses to blow the whistle and the
local government chooses to regulate, the whistleblower will receive an extra compensation from the
polluting enterprise for negative externalities (let it be R4). However, when the public choose to blow
the whistle, they face a cost of C4.

2.2. The Game Tree and Parameters

Based on the above-mentioned game participants and strategy choices, this paper has obtained
the Quadrilateral Game Tree related to air pollution whistleblowing and air pollution control and
supervision, as shown in Figure 2.

θ
1−θ

θ

θ

θ
θ

θ
θ

θ
θ

θ
θ

θ
θ

θ
θ

Figure 2. Quadrilateral Game Tree for air pollution whistleblowing, air pollution control,
and supervision.

Further, Table 1 has listed the parameter description, definition, and value range of different game
participants in Section 2.1, in which the parameters x, y, z,θ are dimensionless ones, while the other
parameters S1, C1, . . . , P3, L4, etc. are economic variables of the same order of magnitude. This paper
has not set specific units for them, which will not affect model calculations and results analysis.
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Table 1. Definition of parameters related to different game strategies.

Parameter Definition Range

x The probability that the central government chooses
to monitor x ∈ [0, 1]

1− x The probability that the central government chooses
not to monitor

(1− x) ∈ [0, 1]

y The probability that the local government chooses to
regulate y ∈ [0, 1]

1− y The probability that the local government chooses
not to regulate

(1− y) ∈ [0, 1]

z The probability that enterprises comply with the
regulations z ∈ [0, 1]

1− z The probability that enterprises violate the
regulations

(1− z) ∈ [0, 1]

θ
The probability that the public choose to blow the
whistle θ ∈ [0, 1]

1− θ The probability that the public choose not to blow the
whistle

(1− θ) ∈ [0, 1]

S1

The long-term social welfare due to air quality
improvement when the central government monitors,
the local government regulates polluting activities,
and enterprises comply with the regulations

S1 �
max{C1, L1, P2, P3, B4} > 0

C1 The monitoring cost of the central government C1 > 0

L1
The reputation loss if the central government chooses
not to monitor L1 > 0

S2

The long-term reputation gain and political
achievement of the local government if it chooses to
regulate polluting activities and encourage emission
reduction

S2 > 0

C2

The cost of the local government if it chooses to
regulate polluting activities and the economic loss
brought by strict regulation

C2 > 0

L2
The reputation loss if the local government chooses
not to regulate L2 ≥ 0

P2

The punishment on the local government if the local
government chooses not to regulate and enterprises’
polluting activity is caught by the central government

P2 ≥ 0

C3

The technology investment cost required by
enterprises to comply with the regulations and
related impacts on their main operation income

C3 > 0

L3
The reputation loss of the enterprise if it chooses to
violate the regulations L3 > 0

P3

The penalty on enterprises if their illegal polluting
activity is caught by the local government or central
government, which belongs to the central
government

P3 > 0

C4 The cost of the public to blow the whistle C4 > 0

B4
The reward granted to the whistleblower by the
central government B4 > 0

R4

The compensation to the whistleblower from
polluting enterprises if the local government chooses
to regulate

R4 > 0

L4
The adverse health impact on the public if the local
government chooses not to regulate L4 > 0

6
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2.3. The Game Model

2.3.1. The PayoffMatrix of Quadrilateral Game Participants

Based on the parameters introduced in Section 2.2, the payoff matrix of the Quadrilateral
Evolutionary Game for air pollution control is shown in Table 2.

Table 2. The payoffmatrix of the quadrilateral evolutionary game for air pollution control.

The Central Government (a)

Monitor (x) Not Monitor (1− x)

The Local Government (b)

Regulate (y)
Not

Regulate
(1− y)

Regulate (y) Not Regulate
(1− y)

Enterprises
(c)

Comply
with

Regulations
(z) The Public

(d)

Blow the Whistle
(θ)

(a1, b1, c1, d1) (a5, b5, c5, d5) (a9, b9, c9, d9) (a13, b13, c13, d13)

Not Blow the
Whistle (1− θ) (a2, b2, c2, d2) (a6, b6, c6, d6) (a10, b10, c10, d10) (a14, b14, c14, d14)

Violate
Regulations

(1− z)

Blow the Whistle
(θ)

(a3, b3, c3, d3) (a7, b7, c7, d7) (a11, b11, c11, d11) (a15, b15, c15, d15)

Not Blow the
Whistle (1− θ) (a4, b4, c4, d4) (a8, b8, c8, d8) (a12, b12, c12, d12) (a16, b16, c16, d16)

The elements of the PayoffMatrix are shown in Equation (1).

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

S1 −C1 − B4 S2 −C2 −C3 −C4 + B4

S1 −C1 S2 −C2 −C3 0
−C1 − B4 + P3 −C2 −P3 −R4 − L3 −C4 + B4 + R4 − L4

−C1 − P3 −C2 −P3 − L3 −L4

S1 −C1 − B4 0 −C3 −C4 + B4

S1 −C1 0 −C3 0
−C1 − B4 + P2 + P3 −P2 −P3 −R4 − L3 −C4 + B4 + R4 − L4

−C1 + P3 + P2 −L2 − P2 −P3 − L3 −L4

−L1 S2 −C2 −C3 −C4

−L1 S2 −C2 −C3 0
−L1 + P3 −C2 −P3 −R4 − L3 −C4 + R4 − L4

−L1 + P3 −C2 −P3 − L3 −L4

−L1 −L2 −C3 −C4

−L1 −L2 −C3 0
−L1 −L2 −L3 −C4 − L4

−L1 −L2 −L3 −L4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(1)

In the above payoffmatrix, the four parties will continuously adjust their strategies in order to
maximize their expected return. According to the Evolutionary Game Theory, when the return of
a certain strategy is higher than the average return of the game system, this strategy will gradually
evolve and develop in the system [48–50], i.e., the proportion of individuals adopting such strategy
will grow at a rate greater than zero. This process is called the replicator dynamics equation, which
is a dynamic differential equation of the frequency with which a particular strategy is adopted in a
system [51–53].

dx
dt

= x
(
UX1 −UX

)
(2)

Based on the different strategies of the four parties and their corresponding payoff, this paper has
established the replicator dynamics equation of each party as follows:

7
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2.3.2. The Replicator Dynamics Equation of the Central Government

The expected return of the central government a when it chooses to monitor can be expressed as

UA1 = y ∗ z ∗ θ ∗ a1 + y ∗ z ∗ (1− θ) ∗ a2 + y ∗ (1− z) ∗ θ ∗ a3 + y ∗ (1− z) ∗ (1− θ) ∗ a4

+(1− y) ∗ z ∗ θ ∗ a5 + (1− y) ∗ z ∗ (1− θ) ∗ a6 + (1− y) ∗ (1− z) ∗ θ ∗ a7

+(1− y) ∗ (1− z) ∗ (1− θ) ∗ a8

(3)

The expected return of the central government a when it chooses not to monitor can be expressed as

UA2 = y ∗ z ∗ θ ∗ a9 + y ∗ z ∗ (1− θ) ∗ a10 + y ∗ (1− z) ∗ θ ∗ a11 + y ∗ (1− z) ∗ (1− θ) ∗ a12

+(1− y) ∗ z ∗ θ ∗ a13 + (1− y) ∗ z ∗ (1− θ) ∗ a14 + (1− y) ∗ (1− z) ∗ θ ∗ a15

+(1− y) ∗ (1− z) ∗ (1− θ) ∗ a16

(4)

Let the probability of the central government a choosing to monitor and not to monitor be x and
(1− x) respectively, then the expected return of the central government can be expressed as

UA = x ∗UA1 + (1− x) ∗UA2 (5)

The growth rate of the monitoring strategy by the central government dx
dt is positively correlated

to the payoff of this strategy and difference in payoffwith other strategies. Therefore, the replicator
dynamics equation of the central government can be calculated as follows:

{ dx
dt = F(x) = x(UA1 −UA) = (1− x)xA(y, z,θ)
A(y, z,θ) = −(θB4 + C1 − L1 − P2 + yP2 + zP2 − yzP2 − P3 + yP3 + zP3 − yzP3 − zS1)

(6)

2.3.3. The Replicator Dynamics Equation of the Local Government

The expected return of the local government b when it chooses to regulate emissions can be
expressed as

UB1 = x ∗ z ∗ θ ∗ b1 + x ∗ z ∗ (1− θ) ∗ b2 + x ∗ (1− z) ∗ θ ∗ b3 + x ∗ (1− z) ∗ (1− θ) ∗ b4

+(1− x) ∗ z ∗ θ ∗ b9 + (1− x) ∗ z ∗ (1− θ) ∗ b10 + (1− x) ∗ (1− z) ∗ θ ∗ b11

+(1− x) ∗ (1− z) ∗ (1− θ) ∗ b12

(7)

The expected return of the local government b when it chooses not to regulate emissions can be
expressed as

UB2 = x ∗ z ∗ θ ∗ b5 + x ∗ z ∗ (1− θ) ∗ b6 + x ∗ (1− z) ∗ θ ∗ b7 + x ∗ (1− z) ∗ (1− θ) ∗ b8

+(1− x) ∗ z ∗ θ ∗ b13 + (1− x) ∗ z ∗ (1− θ) ∗ b14 + (1− x) ∗ (1− z) ∗ θ ∗ b15

+(1− x) ∗ (1− z) ∗ (1− θ) ∗ b16

(8)

Let the probability of the local government b choosing to regulate and not to regulate emissions
be y and (1− y) respectively, then the expected return of the local government can be expressed as

UB = y ∗UB1 + (1− y) ∗UB2 (9)

The growth rate of the regulating strategy by the local government dy
dt is positively correlated

to the payoff of this strategy and difference in payoffwith other strategies. Therefore, the replicator
dynamics equation of the local government can be calculated as follows:

⎧⎪⎪⎨⎪⎪⎩
dy
dt = F(y) = y(UB1 −UB) = (1− y)yB(x, z,θ)
B(x, z,θ) = −(C2 + (−1 + x(z + θ− zθ))L2 − xP2 + xzP2 − zS2)

(10)

8
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2.3.4. The Replicator Dynamics Equation of Enterprises

The expected return of the enterprise c when it chooses to comply with regulations on emissions
can be expressed as

UC1 = x ∗ y ∗ θ ∗ c1 + x ∗ y ∗ (1− θ) ∗ c2 + x ∗ (1− y) ∗ θ ∗ c5 + x ∗ (1− y) ∗ (1− θ) ∗ c6

+(1− x) ∗ y ∗ θ ∗ c9 + (1− x) ∗ y ∗ (1− θ) ∗ c10 + (1− x) ∗ (1− y) ∗ θ ∗ c13

+(1− x) ∗ (1− y) ∗ (1− θ) ∗ c14

(11)

The expected return of the enterprise c when it chooses to violate the regulations on emissions can
be expressed as

UC2 = x ∗ y ∗ θ ∗ c3 + x ∗ y ∗ (1− θ) ∗ c4 + x ∗ (1− y) ∗ θ ∗ c7 + x ∗ (1− y) ∗ (1− θ) ∗ c8

+(1− x) ∗ y ∗ θ ∗ c11 + (1− x) ∗ y ∗ (1− θ) ∗ c12 + (1− x) ∗ (1− y) ∗ θ ∗ c15

+(1− x) ∗ (1− y) ∗ (1− θ) ∗ c16

(12)

Let the probability of the enterprise c choosing to comply with and violate the regulations on
emissions be z and (1− z) respectively, then the expected return of the enterprise can be expressed as:

UC = z ∗UC1 + (1− z) ∗UC2 (13)

The growth rate of the compliance strategy by the enterprise dz
dt is positively correlated to the

payoff of this strategy and difference in payoffwith other strategies. Therefore, the replicator dynamics
equation of the enterprise can be calculated as follows:

{ dz
dt = F(z) = z(UC1 −UC) = (1− z)zC(x, y,θ)

C(x, y,θ) = −(C3 − L3 + (x(−1 + y) − y)(P3 + θR4))
(14)

2.3.5. The Replicator Dynamics Equation of The Public

The expected return of the public d when they choose to blow the whistle can be expressed as

UD1 = x ∗ y ∗ z ∗ d1 + x ∗ y ∗ (1− z) ∗ d3 + x ∗ (1− y) ∗ z ∗ d5 + x ∗ (1− y) ∗ (1− z) ∗ d7

+(1− x) ∗ y ∗ z ∗ d9 + (1− x) ∗ y ∗ (1− z) ∗ d11 + (1− x) ∗ (1− y) ∗ z ∗ d13

+(1− x) ∗ (1− y) ∗ (1− z) ∗ d15

(15)

The expected return of the public d when they choose not to blow the whistle can be expressed as

UD2 = x ∗ y ∗ z ∗ d2 + x ∗ y ∗ (1− z) ∗ d4 + x ∗ (1− y) ∗ z ∗ d6 + x ∗ (1− y) ∗ (1− z) ∗ d8

+(1− x) ∗ y ∗ z ∗ d10 + (1− x) ∗ y ∗ (1− z) ∗ d12 + (1− x) ∗ (1− y) ∗ z ∗ d14

+(1− x) ∗ (1− y) ∗ (1− z) ∗ d16

(16)

Let the probability of the public d choosing to blow the whistle and not blow the whistle be θ and
(1− θ) respectively, then the expected return of the public can be expressed as

UD = θ ∗UD1 + (1− θ) ∗UD2 (17)

The growth rate of the whistleblowing strategy by the public dθ
dt is positively correlated to the

payoff of this strategy and difference in payoffwith other strategies. Therefore, the replicator dynamics
equation of the public can be calculated as follows:

{ dθ
dt = F(θ) = θ(UD1 −UD) = (1− θ)θD(x, y, z)
D(x, y, z) = (xB4 −C4 + (x(−1 + y) − y)(−1 + z)R4)

(18)

9
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3. Results

Based on the game model constructed in Section 2, this paper will discuss the stable strategies
and stability conditions from the perspective of all parties.

3.1. The Dynamic Trend and Evolutionary Stable Points of the Central Government

It can be seen from Equation (6) that the main factors that determine the central government’s
tendency to choose the monitoring strategy include the following:

1. The probability of the other parties’ strategy decisions, such as the probability of the local
government choosing to regulate y, the probability of the enterprise choosing to comply with
regulations on emissions z, and the probability of the public choosing to blow the whistle θ;

2. The costs and benefits of the central government’s strategies, including the monitoring cost C1,
the long-term social welfare due to long-term monitoring S1, the reputation loss due to lack of
monitoring L1, the economic or political penalties on local governments P2, the penalties on
non-compliant enterprises P3, and the reward to whistleblowers B4.

According to Equation (6), let A(y, z,θ) = 0, and when any of the three conditions listed in
Equation (19) is met:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
y = y1 = θB4+C1−L1−P2+zP2−P3+zP3−zS1

(−1+z)(P2+P3)
, or

z = z1 =
θB4+C1−L1−P2+yP2−P3+yP3
−P2+yP2−P3+yP3+S1

, or

θ = θ1 =
−C1+L1+P2−yP2−zP2+yzP2+P3−yP3−zP3+yzP3+zS1

B4

(19)

It can be obtained that F(x) ≡ 0, which means that when any of the probabilities listed above
meets the specified conditions, the central government will choose not to monitor, and the game system
will be in a stable state, as shown in Figure 3a, below.

xo xo

( )F x

xo

( )F x ( )F x

(a) (b) (c) 

Figure 3. The evolutionary phase diagram of the central government’s strategy choices: (a) 0 < y =

z1 < 1, 0 < z = z1 < 1, 0 < θ = θ1 < 1; (b) 0 < y1 < y < 1, 0 < z1 < z < 1, 0 < θ1 < θ < 1; (c)
0 < y < y1 < 1, 0 < z < z1 < 1, 0 < θ < θ1 < 1.

In the case of A(y, z,θ) � 0, let F(x) = 0, two stable points of x can be obtained: 0 and 1. It can be
inferred from Equation (6) that

⎧⎪⎪⎨⎪⎪⎩
dF(x)

dx = (1− 2x)A(y, z,θ)
A(y, z,θ) = −(θB4 + C1 − L1 − P2 + yP2 + zP2 − yzP2 − P3 + yP3 + zP3 − yzP3 − zS1)

(20)

In Equation (20), if A(y, z,θ) < 0, i.e., y > y1, z > z1, θ > θ1, then dF(x)
dx |x− 0 < 0 and dF(x)

dx |x− 1 > 0.
In this case, x = 0 is the evolutionary stable point, which represents the only global evolutionary stable
strategy, that is, the central government will tend to choose the stable strategy of not monitoring, as
shown in Figure 3b. This means that when the probability of the local government choosing to regulate
is higher than the critical value y1, when the probability of the enterprise choosing to comply with
regulations on emissions is higher than the critical value z1, or when the probability of the public
choosing to blow the whistle is higher than the critical value θ1, the enterprises will have a higher

10



Sustainability 2020, 12, 1756

probability of compliant emissions, the air pollution will be effectively controlled, and the central
government will reduce its monitoring efforts. In this case, the optimal strategy choice of the central
government is “not monitoring”.

Conversely, if A(y, z,θ) > 0, i.e., y < y1, z < z1, θ < θ1, then dF(x)
dx |x− 0 < 0 and dF(x)

dx |x− 0 > 0. In
this case, x = 1 is the evolutionary stable point, which represents the only global evolutionary stable
strategy—that is, the central government will tend to choose the stable strategy of monitoring, as shown
in Figure 3c. This means that when the probability of the local government choosing to regulate is lower
than the critical value y1, when the probability of the enterprise choosing to comply with regulations
on emissions is lower than the critical value z1, or when the probability of the public choosing to blow
the whistle is lower than the critical value θ1, the local government will spend less efforts on regulatory
activities, the public will have less incentive to blow the whistle, resulting in a lower probability of
compliant emissions by polluting enterprises, the air pollution will not be effectively controlled. In this
case, the optimal strategy choice of the central government is “monitoring”.

3.2. The Dynamic Trend and Evolutionary Stable Points of the Local Government

It can be seen from Equation (10) that the main factors that determine the local government’s
tendency to choose the regulating strategy include:

1. The probability of the other parties’ strategy decisions, such as the probability of the central
government choosing to monitor x, the probability of the enterprise choosing to comply with
regulations on emissions z, and the probability of the public choosing to blow the whistle θ;

2. The costs and benefits of the local government’s strategies, including the regulatory cost of the
local government C2, the reputation and political achievement due to long-term regulatory efforts
S2, the reputation loss due to insufficient regulatory efforts L2, and the economic or political
penalties on local governments P2.

According to Equation (10), let B(x, z,θ) = 0, and when any of the three conditions listed in
Equation (21) below is met:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
x = x2 = C2−L2−zS2−zL2−θL2+zθL2+P2−zP2

, or
z = z2 = C2−L2+xθL2−xP2−xL2+xθL2−xP2+S2

, or
θ = θ2 = C2−L2+xzL2−xP2+xzP2−zS2

x(−1+z)L2

(21)

It can be obtained that F(y) ≡ 0, which means that when any of the probabilities listed above
meets the specified conditions, the local government will choose not to regulate, and the game system
will be in a stable state, as shown in Figure 4a.

yo yo

( )F y
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( )F y ( )F y

(a) (b) (c) 

Figure 4. The evolutionary phase diagram of the local government’s strategy choices: (a) 0 < x =

x2 < 1, 0 < z = z2 < 1, 0 < θ = θ2 < 1; (b) 0 < x < x2 < 1, 0 < z < z2 < 1, 0 < θ2 < θ < 1; (c)
0 < x2 < x < 1, 0 < z2 < z < 1, 0 < θ < θ2 < 1.
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In the case of B � 0, let F(y) = 0, two stable points of y can be obtained: 0 and 1. It can be inferred
from Equation (10) that

⎧⎪⎪⎨⎪⎪⎩
dF(y)

dy = (1− 2y)B(x, z,θ)

B(x, z,θ) = −(C2 + (−1 + x(z + θ− zθ))L2 − xP2 + xzP2 − zS2)
(22)

In Equation (22), if B(x, z,θ) < 0, i.e., x < x2, z< z2,θ >θ2, then dF(y)
dy

∣∣∣y = 0 > 0 and dF(y)
dy

∣∣∣y = 1 < 0.
In this case, y = 1 is the evolutionary stable point, which represents the only global evolutionary stable
strategy, that is, the local government will tend to choose the stable strategy of regulating emissions,
as shown in Figure 4b. This means that, when the probability of the central government choosing to
monitor is lower than the critical value x2, when the probability of the enterprise choosing to comply
with regulations on emissions is lower than the critical value z2, or when the probability of the public
choosing to blow the whistle is higher than the critical value θ2, with less monitoring of the central
government, the enterprises will have a lower probability of compliant emissions, the public will have
a stronger tendency to blow the whistle, the air pollution will not be effectively controlled. In this case,
the optimal strategy choice of the local government is “regulating emissions”.

Conversely, if B(x, z,θ) > 0, i.e., x > x2, z > z2,θ < θ2, then dF(y)
dy

∣∣∣y = 0 < 0 and dF(y)
dy

∣∣∣y = 1 > 0.
In this case, y = 0 is the evolutionary stable point, which represents the only global evolutionary stable
strategy, that is, the local government will tend to choose the stable strategy of not regulating emissions,
as shown in Figure 4c. This means that when the probability of the central government choosing to
monitor is higher than the critical value x2, when the probability of the enterprise choosing to comply
with regulations on emissions is higher than the critical value z2, or when the probability of the public
choosing to blow the whistle is lower than the critical value θ2, the air pollution will be effectively
controlled. In this case, from the cost perspective, the optimal strategy choice of the local government
is “not regulating emissions”.

3.3. The Dynamic Trend and Evolutionary Stable Points of the Enterprises

It can be seen from Equation (14) that the main factors that determine the enterprises’ tendency to
choose the compliance strategy include the following:

1. The probability of the other parties’ strategy decisions, such as the probability of the central
government choosing to monitor x, the probability of the local government choosing to regulate
y, and the probability of the public choosing to blow the whistle θ;

2. The costs and benefits of the enterprises’ strategies, including the cost of complying with
regulations on emissions C3, penalty cost due to non-compliant emissions P3, and compensation
to whistleblowers by polluting enterprises for negative externalities caused R4.

According to Equation (14), let C(x, y,θ) = 0, and when any of the three conditions listed in
Equation (23) below is met: ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

x = x3 =
−C3+L3+yP3+yθR4
(−1+y)(P3+θR4)

, or

y = y3 = −C3+L3+xP3+xθR4
(−1+x)(P3+θR4)

, or

θ = θ3 =
−C3+L3+xP3+yP3−xyP3

(−x−y+xy)R4

(23)

It can be obtained that F(z) ≡ 0, which means that when any of the probabilities listed above
meets the specified conditions, the enterprises will choose to violate the regulations on emissions, and
the game system will be in a stable state, as shown in Figure 5a.

12
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Figure 5. The evolutionary phase diagram of the enterprises’ strategy choices: (a) 0 < x < x3 <

1, 0 < y = y3 < 1, 0 < θ = θ3 < 1; (b) 0 < x3 < x < 1, 0 < y3 < y < 1, 0 < θ3 < θ < 1; (c)
0 < x < x3 < 1, 0 < y < y3 < 1, 0 < θ < θ3 < 1.

In the case of C(x, y,θ) � 0, let F(z) = 0, two stable points of z can be obtained: 0 and 1. It can be
inferred from Equation (14) that

⎧⎪⎪⎨⎪⎪⎩
dF(z)

dz = (1− 2z)C(x, y,θ)
C(x, y,θ) = −(C3 − L3 + (x(−1 + y) − y)(P3 + θR4))

(24)

Because (−1 + y)(P3 + θR4) < 0, (−1 + x)(P3 + θR4) < 0, (−x− y + xy)R4 < 0, if C(x, y,θ) > 0,
i.e., x > x3, y > y3,θ > θ3, then dF(z)

dz |z− 1 < 0 and dF(z)
dz |z− 0 > 0. In this case, z = 1 is the evolutionary

stable point, which represents the only global evolutionary stable strategy, that is, the enterprises will
tend to choose the stable strategy of complying with regulations on emissions, as shown in Figure 5b.
This means that when the probability of the central government choosing to monitor is higher than the
critical value x3, when the probability of the local government choosing to regulate is higher than the
critical value y3, or when the probability of the public choosing to blow the whistle is higher than the
critical value θ3, the supervision and regulation on air pollution is tightening, with closer monitoring
by the central government, stricter regulations on pollution emissions issued by the local government,
and stronger willingness of the public to blow the whistle. In this case, in order to avoid penalties
charged by the central government and compensation paid to the whistleblowers, the enterprises will
choose the optimal strategy of “complying with regulations on emissions”.

Conversely, if C(x, y,θ) < 0, i.e., x < x3, y < y3,θ < θ3, then dF(z)
dz |z− 0 < 0 and dF(z)

dz |z− 1 > 0. In
this case, z = 0 is the evolutionary stable point, which represents the only global evolutionary stable
strategy, that is, the enterprises will tend to choose the stable strategy of not complying with regulations
on emissions, as shown in Figure 5c. This means that when the probability of the central government
choosing to monitor is lower than the critical value x3, when the probability of the local government
choosing to regulate is lower than the critical value y3, or when the probability of the public choosing
to blow the whistle is lower than the critical value θ3, the supervision and regulation on air pollution
is loosening, with less monitoring by the central government, less regulations on pollution emissions
issued by the local government, and less initiative of the public to blow the whistle. In this case, from
the cost perspective, the optimal strategy choice of the enterprises is “violating the regulations on
emissions”.

3.4. The Dynamic Trend and Evolutionary Stable Points of the Public

It can be seen from Equation (18) that the main factors that determine the public’s tendency to
choose the whistleblowing strategy include:

1. The probability of the other parties’ strategy decisions, such as the probability of the central
government choosing to monitor x, the probability of the local government choosing to regulate
y, and the probability of the enterprises choosing to comply with regulations on emissions z;

2. The costs and benefits of the public’s strategies, including the reward from the central government
B4, the cost of whistleblowing C4, and the compensation from polluting enterprises for negative
externalities caused R4.
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According to Equation (18), let D(x, y, z) = 0, and when any of the three conditions listed in
Equation (25) below is met: ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

x = x4 =
C4−yR4+yzR4

B4+R4−yR4−zR4+yzR4
, or

y = y4 = −xB4+C4−xR4+xzR4
(−1+x)(−1+z)R4

, or

z = z4 =
−xB4+C4−xR4−yR4+xyR4

(−x−y+xy)R4

(25)

It can be obtained that F(θ) ≡ 0, which means that when any of the probabilities listed above
meets the specified conditions, the public will choose not to blow the whistle, and the game system
will be in a stable state, as shown in Figure 6a below.
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Figure 6. The evolutionary phase diagram of the public’s strategy choices: (a) 0 < x = x4 < 1, 0 < y =

y4 < 1, 0 < z = z4 < 1; (b) 0 < x4 < x < 1, 0 < y4 < y < 1, 0 < z < z4 < 1; (c)0 < x < x4 < 1, 0 < y < y4 <

1, 0 < z4 < z < 1.

In the case of D(x, y, z) � 0, let F(θ) = 0, two stable points of θ can be obtained: 0 and 1. It can be
inferred from Equation (18) that

⎧⎪⎪⎨⎪⎪⎩
dF(z)

dz = (1− 2θ)D(x, y, z)
D(x, y, z) = (xB4 −C4 + (x(−1 + y) − y)(−1 + z)R4)

(26)

Because (−x− y + xy)R4 < 0, if D(x, y, z) > 0, i.e., x > x4, y > y4, z < z4, then dF(θ)
dθ |θ− 1 < 0 and

dF(θ)
dθ |θ− 0 > 0. In this case, θ = 1 is the evolutionary stable point, which represents the only global

evolutionary stable strategy, that is, the public will tend to choose the stable strategy of blowing the
whistle, as shown in Figure 6b. This means that when the probability of the central government
choosing to monitor is higher than the critical value x4, when the probability of the local government
choosing to regulate is higher than the critical value y4, or when the probability of the enterprises
choosing to comply with regulations on emissions is lower than the critical value z4, most enterprises
would choose to violate the regulations on pollution emissions, so air pollution will not be effectively
controlled. In this case, with stronger monitoring by the central government and growing regulatory
efforts by the local government, from the perspective of health and financial compensation, the optimal
strategy choice of the public is “blowing the whistle”.

Conversely, if D(x, y, z) < 0, i.e., x < x4, y< y4, z >z4, then dF(θ)
dθ |θ− 1 > 0 and dF(θ)

dθ |θ− 0 < 0. In
this case, θ = 0 is the evolutionary stable point, which represents the only global evolutionary stable
strategy, that is, the public will tend to choose the stable strategy of not blowing the whistle, as shown
in Figure 6c. This means that when the probability of the central government choosing to monitor is
lower than the critical value x4, when the probability of the local government choosing to regulate is
lower than the critical value y4, or when the probability of the enterprises choosing to comply with
regulations on emissions is higher than the critical value z4, most enterprises would choose to comply
with the regulations on pollution emissions, so air pollution will be effectively controlled and the
public’s health will be protected. In this case, from a cost perspective, the optimal strategy choice of
the public is “not blowing the whistle”.
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4. Discussion

4.1. The Four-Dimensional Dynamic System and Its Equilibrium Points

In order to reveal the condition and process of the formation of above evolutionary stable strategies,
this section will expand the analysis by constructing and solving a four-dimensional dynamic system
of dynamic game evolution. According to Friedman, the stability of the equilibrium point of a group
dynamic system represented by a differential equation can be determined by the stability analysis
of the Jacobian matrix [54]. Therefore, this paper has adopted the Jacobian matrix stability analysis
method to study the stability of the equilibrium points in the evolutionary game. A four-dimensional
dynamic system is obtained based on the replicator dynamics equations of the four parties, as shown
in Equation (27), which is the combination of Equation (6), (10), (14), and (18).

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

dx
dt = F(x) = (1− x)xA(y, z,θ)
dy
dt = F(y) = (1− y)yB(x, z,θ)
dz
dt = F(z) = (1− z)zC(x, y,θ)

dθ
dt = F(θ) = (1− θ)θD(x, y, z)

(27)

This paper solves this four-dimensional dynamic system made up of the game strategies of the central
government, the local government, enterprises, and the public. When F(x) = 0, F(y) = 0, F(z) =
0, F(θ) = 0, this paper has obtained multiple feasible solutions:

1. There are 16 equilibrium points for four-party pure strategy solutions, which are:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

E0(x = 0, y = 0, z = 0,θ = 0)
E1(x = 0, y = 0, z = 0,θ = 1)
E2(x = 0, y = 0, z = 1,θ = 0)
E3(x = 0, y = 1, z = 0,θ = 0)
E4(x = 1, y = 0, z = 0,θ = 0)
E5(x = 0, y = 0, z = 1,θ = 1)
E6(x = 0, y = 1, z = 1,θ = 0)
E7(x = 1, y = 1, z = 0,θ = 0)
E8(x = 1, y = 0, z = 0,θ = 1)
E9(x = 1, y = 0, z = 1,θ = 0)
E10(x = 0, y = 1, z = 0,θ = 1)
E11(x = 1, y = 1, z = 1,θ = 0)
E12(x = 1, y = 1, z = 0,θ = 1)
E13(x = 1, y = 0, z = 1,θ = 1)
E14(x = 0, y = 1, z = 1,θ = 1)
E15(x = 1, y = 1, z = 1,θ = 1)

(28)

Equation (28) indicates the four-party pure strategy solutions, which mean that the probability of
the strategy selection of quadrilateral game participants is a certain value of 0 or 1. According to
Equation (28), it can be seen that the probability of the quadrilateral game participants is all 0 or 1,
and there are 16 strategy sets.
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2. There are at least eight equilibrium points for dual-party pure strategy solutions, which are

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

E16
(
x = 0, y = 1, z = −C4+R4

R4
,θ = C3−L3−P3

R4

)
E17
(
x = 0, y = C3−L3

P3
, z = −C2+L2+xP2

xP2−S2
,θ = 0

)
E18
(
x = 0, y = C3−L3

P3+R4
, z = −C2+L2+xP2

xP2−S2
,θ = 1

)
E19
(
x = 1, y = 0, z = B4−C4+R4

R4
,θ = C3−L3−P3

R4

)
E20
(
x = C4

B4+R4
, y = 0, z = 0,θ = −C1+L1+P2+P3

B4

)
E21
(
x = C4

B4
, y = 0, z = 1,θ = −C1+L1+S1

B4

)
E22
(
x = C3−L3

P3
, y = 0, z = −C1+L1+P2+P3

P2+P3−S1
,θ = 0

)
E23
(
x = C3−L3

P3+R4
, y = 0, z = −B4−C1+L1+P2+P3

P2+P3−S1
,θ = 1

)

(29)

Equation (29) indicates the dual-party pure strategy solutions, which mean that only two parties
in the quadrilateral game participants have a strategy selection probability of 0 or 1, and the
remaining two parties have a policy selection probability of uncertain values. According to
Equation (29), there are at least eight strategy sets.

3. There are at least two equilibrium points for single-party pure strategy solutions, which are

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

E24

(
x = 0, y = − C4(xP2−S2)

R4(−C2+L2+S2)
, z = −C2+L2+xP2

xP2−S2
,θ = −xC4P2P3+C2C3R4−C3L2R4−C2L3R4+L2L3R4+C4P3S2−C3R4S2+L3R4S2

C4R4(xP2−S2)

)

E25

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x = −B4C3+B4L3+C4P2+C4P3−C4S1
B4P2+C1R4−L1R4−B4S1−R4S1

,
y = 0,

z =
B2

4C3−B2
4L3−B4C4P3+B4C3R4+C1C4R4−C4L1R4−B4L3R4−C4P2R4−C4P3R4

R4(B4C3−B4L3−C4P2−C4P3+C4S1)
,

θ =
−B4C3P2+B4L3P2−B4C3P3+B4L3P3+C4P2P3+C4P2

3−C1C3R4+C3L1R4+C1L3R4−L1L3R4+B4C3S1−B4L3S1−C4P3S1+C3R4S1−L3R4S1

R4(B4C3−B4L3−C4P2−C4P3+C4S1)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(30)

Equation (30) indicates the single-party pure strategy solutions, which mean that only three
parties in the quadrilateral game participants have a strategy selection probability of 0 or 1.
According to Equation (30), there are at least two strategy sets.

4. There may be a mixed strategy solution E26(x∗, y∗, z∗), whose existence requires the following
conditions to be satisfied:

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

A(y, z,θ) = 0
B(x, z,θ) = 0 and x∗, y∗, z∗,θ∗ε(0, 1)
C(x, y,θ) = 0
D(x, y, z) = 0

(31)

To summarize, when solving Equation (27), we can get a large number of feasible solutions.
However, many solutions have only mathematical meaning rather than practical significance. Therefore,
this paper choses feasible solutions that can represent real situations and can be represented by
mathematical expressions, which include 16 feasible solutions for four-party pure strategy solutions (E0

to E15), eight feasible solutions for dual-party pure strategy (E16 to E23) and two feasible for single-party
pure strategy (E24 and E25).

4.2. The Stability of the Four-Dimensional Dynamic System

In a multiple-party evolutionary game, the necessary and sufficient condition for an evolutionary
stable equilibrium E is that E represents a strict Nash equilibrium [55]. If the evolutionary stable
equilibrium E is asymptotically stable, then E must satisfy a strict Nash equilibrium, and the strict Nash
equilibrium must be a pure strategy equilibrium [56]. According to Lyapunov’s stability theory [57,58],
the eigenvalues of the Jacobian matrix can determine the asymptotic stability of the equilibrium points
of the system, that is, the necessary and sufficient condition for an equilibrium point in a replicator
dynamics system to represent an evolutionary stable strategy is that all the eigenvalues of its Jacobian
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matrix are negative real numbers [59]. The Jacobian matrix of the four-dimensional dynamic system is
shown in Equation (32):

J =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(1− 2x)A (1−x)xdA
dy

(1−x)xdA
dz

(1−x)xdA
dθ

(1−y)ydB
dx (1− 2y)B (1−y)ydB

dz
(1−y)ydB

dθ
(1−z)ydC

dx
(1−z)ydC

dy (1− 2z)C (1−z)ydC
dθ

(1−θ)θdD
dx

(1−θ)θdD
dy

(1−θ)θdD
dz (1− 2θ)D

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(32)

When the equilibrium point is E0(x = 0, y = 0, z = 0,θ = 0), the Jacobian matrix is written as
Equation (33).

J =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−C1 + L1 + P2 + P3 0 0 0
0 −C2 + L2 0 0
0 0 −C3 + L3 0
0 0 0 −C4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(33)

Similarly, the Jacobian matrix and its eigenvalues can be obtained for the 27 equilibrium points of
the system, as shown in Table 3. According to Lyapunov’s stability conditions, when all the eigenvalues
of the Jacobian matrix λ is negative (λ < 0), that is, when all the eigenvalues of the Jacobian matrix are
negative real numbers, the corresponding equilibrium point is a stable point; when all the eigenvalues
of the Jacobian matrix are positive real numbers, the corresponding equilibrium point is an unstable
point [60,61]; and when the eigenvalues of the Jacobian matrix contain both negative and positive real
numbers, the corresponding equilibrium point is a saddle point [62,63].

Table 3. The stability of equilibrium points in the quadrilateral evolutionary game.

Equilibrium
Point

Eigenvalues Asymptotic
Stability

Condition
λ1 λ2 λ3 λ4

E0
−C1 + L1 +

P2 + P3
−C2 + L2 −C3 + L3 −C4

λ1 < 0 & λ2 <
0 & λ3 <

0 & λ4 < 0
. . . . . . . . . . . . . . . . . .
E2 −C1 + L1 + S1 −C2 + L2 + S2 C3 − L3 −C4 . . .
. . . . . . . . . . . . . . . . . .
E9 C1 − L1 − S1 −C2 + S2 C3 − L3 − P3 B4 −C4 . . .
. . . . . . . . . . . . . . . . . .
E11 C1 − L1 − S1 C2 − S2 C3 − L3 − P3 B4 −C4 . . .
. . . . . . . . . . . . . . . . . .

E13
B4 + C1 − L1 −

S1
−C2 + S2

C3 − L3 − P3 −
R4

−B4 + C4 . . .

. . . . . . . . . . . . . . . . . .

E15
B4 + C1 − L1 −

S1
C2 − S2

C3 − L3 − P3 −
R4

−B4 + C4 . . .

. . . . . . . . . . . . . . . . . .

In Table 3, it is difficult to determine the evolutionary stability of the quadrilateral evolutionary
game system based on the available information. Considering that this paper mainly focuses on the
compliant emission behavior of the enterprises under the supervision and regulation of governments
and monitoring of the public, this paper has neglected the equilibrium points in which the enterprises
violate or partially comply with the regulations on emissions and only keep the eight equilibrium
points that represent the most ideal, more-than-ideal, and ideal scenarios. Then, this paper studies
stability conditions of these 8 equilibrium points. Taking E2 as an example, the asymptotic stability
condition for E2 is: C1 > L1 + S1 and C2 > L2 + S2, C3< L3, C4 >0. According to the parameter settings
in Section 2.2 based on real world situations, S1 � max{C1, L1, P2, P3, B4} > 0. Therefore, the condition
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of (C1 > L1 + S1) cannot be satisfied, and thus the equilibrium point E2 is not an asymptotically
stable point.

Similarly, the condition for E5 to be asymptotically stable (−B4 −C1 + L1 + S1 < 0) also cannot be
satisfied. After analyzing the rest 6 equilibrium points using the same method, this paper has obtained
4 possible asymptotically stable points: E9(x = 1, y = 0, z = 1,θ = 0), E11(x = 1, y = 1, z = 1,θ = 0),
E13(x = 1, y = 0, z = 1,θ = 1), and E15(x = 1, y = 1, z = 1,θ = 1). However, from the perspective
of the local government and the public, they must require positive payoff. Therefore, only
E15(x = 1, y = 1, z = 1,θ = 1) has the best chance of meeting the asymptotic stability condition:
B4 + C1 − L1 − S1 < 0 and C2 − S2 < 0, C3 − L3 − P3 −R4 < 0,−B4 + C4 < 0.

It can be inferred from the stability conditions of these four equilibrium points that the value
of the environmental political achievement (S2) is critical to the local government. If the value
of the environmental political achievement is lower than the environmental regulatory cost, the
stable equilibrium point of the system will move towards E9 and E13, which will increase the
pressure on the central government to enhance monitoring. The public’s battle against pollution
by enterprises puts restrictions on the enterprises’ environmental behaviors and plays the role of
third-party supervision. The reputation loss of enterprises if the whistle is blown (P3) and the design
of mechanisms of compensation for negative externalities (R4) and reward (B4) are particularly critical.
If the whistleblowing cost is too high, the stable equilibrium point of the system will move towards
E11, greatly reducing the incentive of the public to play an active role in whistleblowing.

Therefore, in China’s air pollution control campaign, in order to achieve the most ideal evolutionary
stable strategy in which the central government monitors, the local governments regulate, and
the enterprises follow the regulations, the key points include emphasizing the environmental
political achievement of the local governments, the environmental reputation of enterprises, and the
whistleblowing incentive mechanism innovation. The environmental management of China should
utilize the third-party supervisory role of the public apart from administrative intervention and
market mechanisms.

4.3. The Ideality of the Solutions for the Four-Dimensional Dynamic System

This paper has classified the outcomes of 16 equilibrium points for four-party pure strategy
solutions, eight equilibrium points for dual-party pure strategy solutions, two equilibrium points for
single-party pure strategy solutions, and the mixed strategy solution into five categories, which in the
order from the best to the worst scenarios are Most Ideal, More than Ideal, Ideal, Less than Ideal, and
Least Ideal (see Table 4).

Among the outcomes, the least ideal scenario is that the enterprises choose to violate the regulations
on emissions regardless of the monitoring, regulations or whistleblowing activities by the governments
and the public, which is represented by five equilibrium points. The less-than-ideal scenario is that the
enterprises choose to violate the regulations on emissions or partially comply with the regulations
with the monitoring, regulations or whistleblowing activities by the governments and the public,
which includes 14 equilibrium points. The ideal scenario is that the enterprises choose to comply with
the regulations on emissions with the monitoring, regulations and whistleblowing activities by the
governments and the public, which is represented by four equilibrium points. The more-than-ideal
scenario is that the enterprises choose to comply with the regulations on emissions with either the
monitoring, regulations or whistleblowing activities by the governments and the public, which covers
three equilibrium points. The most ideal scenario is that the enterprises choose to comply with the
regulations on emissions without the monitoring, regulations or whistleblowing activities by the
governments and the public, which is represented by one equilibrium point.
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Table 4. The equilibrium points, strategy set, and policy performance of the quadrilateral
evolutionary game.

Equilibrium Point Strategy Set of Game Participants Policy Performance

E0(x = 0, y = 0, z = 0,θ = 0) (Not Monitor, Not Regulate, Violate Regulations, Not Blow the
Whistle) Least Ideal

E1(x = 0, y = 0, z = 0,θ = 1) (Not Monitor, Not Regulate, Violate Regulations, Blow the
Whistle) Less than Ideal

E2(x = 0, y = 0, z = 1,θ = 0) (Not Monitor, Not Regulate, Comply with Regulations, Not
Blow the Whistle) Most Ideal

E3(x = 0, y = 1, z = 0,θ = 0) (Not Monitor, Regulate, Violate Regulations, Not Blow the
Whistle) Less than Ideal

E4(x = 1, y = 0, z = 0,θ = 0) (Strictly Monitor, Not Regulate, Violate Regulations, Not Blow
the Whistle) Less than Ideal

E5(x = 0, y = 0, z = 1,θ = 1) (Not Monitor, Not Regulate, Comply with Regulations, Blow
the Whistle) More than Ideal

E6(x = 0, y = 1, z = 1,θ = 0) (Not Monitor, Regulate, Comply with Regulations, Not Blow
the Whistle) More than Ideal

E7(x = 1, y = 1, z = 0,θ = 0) (Monitor, Regulate, Violate Regulations, Not Blow the Whistle) Least Ideal
E8(x = 1, y = 0, z = 0,θ = 1) (Monitor, Not Regulate, Violate Regulations, Blow the Whistle) Least Ideal

E9(x = 1, y = 0, z = 1,θ = 0) (Monitor, Not Regulate, Comply with Regulations, Not Blow
the Whistle) More than Ideal

E10(x = 0, y = 1, z = 0,θ = 1) (Not Monitor, Regulate, Violate Regulations, Blow the Whistle) Less than Ideal

E11(x = 1, y = 1, z = 1,θ = 0) (Monitor, Regulate, Comply with Regulations, Not Blow the
Whistle) Ideal

E12(x = 1, y = 1, z = 0,θ = 1) (Monitor, Regulate, Violate Regulations, Blow the Whistle) Least Ideal

E13(x = 1, y = 0, z = 1,θ = 1) (Monitor, Not Regulate, Comply with Regulations, Blow the
Whistle) Ideal

E14(x = 0, y = 1, z = 1,θ = 1) (Not Monitor, Regulate, Comply with Regulations, Blow the
Whistle) Ideal

E15(x = 1, y = 1, z = 1,θ = 1) (Monitor, Regulate, Comply with Regulations, Blow the
Whistle) Ideal

E16
(Not Monitor, Regulate, Partially Comply with Regulations,

Partially Blow the Whistle) Less than Ideal

E17
(Not Monitor, Partially Regulate, Partially Comply with

Regulations, Not Blow the Whistle) Less than Ideal

E18
(Not Monitor, Partially Regulate, Partially Comply with

Regulations, Blow the Whistle) Less than Ideal

E19
(Monitor, Not Regulate, Partially Comply with Regulations,

Partially Blow the Whistle) Less than Ideal

E20
(Partially Monitor, Not Regulate, Violate Regulations, Partially

Blow the Whistle) Least Ideal

E21
(Partially Monitor, Not Regulate, Comply with Regulations,

Partially Blow the Whistle) Less than Ideal

E22
(Partially Monitor, Not Regulate, Partially Comply with

Regulations, Not Blow the Whistle) Less than Ideal

E23
(Partially Monitor, Not Regulate, Partially Comply with

Regulations, Blow the Whistle) Less than Ideal

E24
(Partially Monitor, Not Regulate, Partially Comply with

Regulations, Partially Blow the Whistle) Less than Ideal

E25
(Partially Monitor, Not Regulate, Partially Comply with

Regulations, Partially Blow the Whistle) Less than Ideal

E26
(Partially Monitor, Partially Regulate, Partially Comply with

Regulations, Partially Blow the Whistle) Less than Ideal

5. Conclusions

This paper has innovatively constructed a quadrilateral evolutionary game model involving
the central government, local governments, polluting enterprises, and the public in order to
comprehensively analyze the development and implementation of China’s air pollution control
policies. By using the quadrilateral evolutionary game model, this paper has systematically studied the
evolutionary stable strategies of the four parties involved and obtains 27 equilibrium points, strategy
sets, and their corresponding policy performance with the help of the four-dimensional dynamic
system. The research results show that the least ideal scenario is that the enterprises choose to violate
the regulations on emissions regardless of the monitoring, regulations or whistleblowing activities by
the governments and the public, which includes five equilibrium points; the less-than-ideal scenario
is that the enterprises choose to violate the regulations on emissions or partially comply with the
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regulations with the monitoring, regulations or whistleblowing activities by the governments and the
public, which includes 14 equilibrium points; the ideal scenario is that the enterprises choose to comply
with the regulations on emissions with the monitoring, regulations and whistleblowing activities by
the governments and the public, which is represented by four equilibrium points; the more-than-ideal
scenario is that the enterprises choose to comply with the regulations on emissions with either the
monitoring, regulations or whistleblowing activities by the governments and the public, which covers
three equilibrium points; and the most ideal scenario is that the enterprises choose to comply with
the regulations on emissions without the monitoring, regulations or whistleblowing activities by the
governments and the public, which is represented by one equilibrium point. By analyzing the eight
equilibrium points that represent the ideal, more-than-ideal, and most ideal scenarios, especially the
four asymptotically stable points among them, this paper has obtained the conditions for these four
stable points as well as related policy implications.

In order to achieve the ideal or most ideal outcome of air pollution control policies when there
are multiple parties involved, on the one hand, costs need to be reduced, including the monitoring
cost, the regulatory cost, the compliance cost, and the whistleblowing cost; on the other hand, the
supervisory responsibility of the central government on air pollution control should be shared with
the local governments and the public, which requires further enhancement in the understanding and
motivation of the local governments on environmental regulation, further reduction in the regulatory
cost of local governments and the compliance cost of enterprises, and further encouraging the public
to actively report air pollution incidents and sources. For the enhancement of local governments’
understanding and motivation of environmental regulation, performance evaluation (to enhance
understanding and motivation) and air pollution special funds (to reduce regulatory and compliance
costs) could be used as well as setting up performance evaluation indicators in addition to economic
indicators such as GDP growth. In order to encourage the public to actively report air pollution
incidents and participate in the battle against air pollution, first of all, it is necessary to strengthen the
public’s awareness of environmental protection. Apart from that, a better reward and compensation
system for whistleblowing activities should be designed, including honors and cash rewards. Finally,
better whistleblowing channels should be provided to the public, such as developing the smartphone
mobile application and WeChat Applet for the “12369 Environmental Protection Whistleblowing
Inter-Connected Management Platform”.

The research in this paper is mainly a theoretical analysis of air pollution control and the
quadrilateral regulatory system. Based on this research, we will evaluate the process of air pollution
control in the future, which may help improve air pollution governance in China.
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Abstract: As a common cardiovascular disease, atrial fibrillation has the characteristics of high
morbidity, high disability, and high fatality rates, seriously endangering human health and sustain-
ability. Some research has confirmed that environmental factors are related to the risk of illness
and death from cardiovascular diseases (including atrial fibrillation), while there is still little com-
parison on the situation of the two cities in China. This research uses medical data in Shanghai
and Kunming establishing, through two-step research, logistic models to compare the impacts on
atrial fibrillation incidence to figure out the association between environmental factors (including
air pollution, weather, temperature, and wind scales) and atrial fibrillation. Finally, this research
shows that environmental impacts on atrial fibrillation prevalence have generality, regionality, and
lagging characteristics. The result is significant for atrial fibrillation patients and provides a reliable
medical theory basis for nursing measures. Besides, this research provides a prospective method of
offering early warning for potential atrial fibrillation patients, helping to maintain human beings’
sustainable development.

Keywords: atrial fibrillation; environmental factors; binary logistic model; sustainable development;
early warning

1. Introduction

Atrial fibrillation (AF) is a disease that seriously endangers human health, recognized
as a common complication of cardiovascular diseases. AF refers to the loss of routine
and regular diastolic and contraction activities of the heart muscle, replaced by fast and
uncoordinated weak peristalsis, causing the atrium to lose normal and effective contraction.
Hence, blood tends to stagnate in the atrium and form a thrombus. The prevalence of AF in
adults is about 3.0%, increasing with age and cardiovascular complications. In 2010, there
were 33.5 million patients with AF worldwide. In the European Union and the United
States, about one quarter of middle-aged people may suffer from AF [1]. In contrast, studies
declare that AF’s prevalence in China has increased by 20 times in the past ten years [2].
The total AF prevalence rate of people over 35 years old is 0.7%, and that of people over 80
is 7.5%, with the overall patient population reaching 4.87 million; however, 34.0% of them
do not realize their AF history [3,4].

What is more, AF has seriously affected the sustainable development of human
life. All-cause mortality caused by AF has increased by 1.5 times in men and 2 times in
women [1]. Thromboembolic complications are the leading cause of death and disability in
AF, and stroke is the most common manifestation, where strokes caused by AF account for
20.0% of all strokes [5–7]. Compared with non-AF-related strokes, AF-related strokes have
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severe symptoms, high disability, high mortality, and high recurrence. Its fatality rate is
twice that of non-AF-related stroke [8].

As an essential part of the natural environment, climate profoundly impacts the
global natural ecosystem and socio-economic system and even restricts all humankind’s
sustainable development. At present, many studies have confirmed that the lag-pattern
impact of air pollutants may lead to the number of outpatients increasing, especially those
who come to the hospital due to cardiovascular diseases, and an increase in the death
rate of patients [9,10]. Besides, many governments have highlighted the importance of
protecting the environment through sustainable development, wherein the air pollution
index is vital [11,12]. With the increasing consciousness of air pollution’s impact on human
health [13,14], many scholars have focused on researching the association between air
pollutant concentration and cardiovascular disease (CVD) prevalence. Nevertheless, as
a sub-category of CVD, the association between environmental factors and AF are less
concentrated. Therefore, this paper concentrates on the impact of environmental factors,
researching the association between environmental factors and AF incidence to protect
human health and provide early warnings.

2. Literature Review and Research Gap

Deeply researching and comprehending the impact of air pollution on the prevalence
of AF is of significance. As AF is a sub-category of CVD, many scholars concentrate on
researching the relationship between air pollution and CVD. Epidemiological studies have
confirmed that air pollution impacts the cardiovascular system, and changes in air pollution
concentrations are significantly related to the mortality and morbidity of CVD [15–18]. The
previous research points out that every 10 μg/m3 increase in the concentration of PM10
in the air would increase the death rate from cardiovascular diseases by 2.4% [19], where
PM10 denotes particulate matter (PM) with aerodynamic diameters ≤ 10 μm, with the
unit of concentration being μg/m3. Similarly, a study evaluated the effects of long-term
exposure to air pollution on Seoul residents’ cardiovascular system, which carried out a
7-year follow-up of 136,094 participants in Seoul, asserting that the risk of cardiovascular
events increased linearly with the increase in the average concentration of PM2.5 [20], where
FPM2.5 denotes PM with aerodynamic diameters ≤ 2.5 μm, recognized as a significant part
of the total suspended particulate (TSP) as PM10 above, with the unit of concentration being
μg/m3. Besides, a prospective cohort study of 189,793 men over the age of 40 in 45 regions
of China figured out that for every 10 μg/m3 increase in PM2.5, cardiovascular disease
mortality increased by 9% [21]. Similarly, in 2010, the American Heart Association (AHA)
published the scientific statement Air Pollution and Cardiovascular Diseases, stating that
fine particulate matter exposure can lead to an increase in the incidence and mortality of
CVD; therefore, fine particulate matter exposure is considered to be a form of controllable
risk factor for the disease [21]. To sum up, it is of significance to develop the impact of air
pollution on the prevalence of AF.

As a common complication of CVD, the prevalence of AF is considerably affected by
air pollution, proven by many scholars. Studies have shown that in the general population
of Asia, long-term exposure to PM2.5 is associated with an increased incidence of new-
onset AF, and the situation for obese male subjects over 60 years of age with a history of
hypertension or myocardial infarction is more serious [22]. It could be explained as ambient
air pollution being positively correlated with elevated blood pressure and hypertension [23].
Furthermore, the Chinese Cardiovascular Health and Disease Report of 2019 points out, a
series of studies based on daily data of air pollution and causes of death from 2013 to 2015
in 272 cities in China found that PM2.5, O3, SO2, and NO2 increased by 10 μg/m3, and for
every 1 mg/m3 increase in CO, the risk of cardiovascular death increased by 0.3%, 0.3%,
0.7%, 0.9%, and 1.1%, respectively [24–28].

Different research figured out a similar result: air pollution’s impact has a lag-effect
pattern. For example, Kim et al. point out that the number of lag days for PM2.5’s effect
on CVD depends on its chemical composition, and different lag times may vary with the
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patient’s health status and disease [29]. Moreover, the correlation between PM2.5 and CVD
mortality mainly occurred in the first 6 days, and the relationship between them lag from
0.5 to 3 days, and mortality was the largest [30].

Adding weather and wind scales into consideration, previous researchers have more
specific conclusions. Y Ma et al. focused on the relationship between different air pollutants
and the incidence of CVD on sandy and dusty days, and announced that PM10 and SO2 lag
1 day, and NO2 lags 2 days [31]. Research by Su Chang et al. asserts that the association
between air pollutants and CVD incidence is more substantial in spring and winter, and the
wind indirectly affects the incidence of CVD; meanwhile, the study also observed that the
reduction in air pollution levels led to a reduction in the incidence of CVD [32]. Similarly,
Ghanizadeh G et al. collected 1021 articles and pointed out that climate change parameters
such as temperature, humidity, and air pollution significantly affect cardiorespiratory
health [33]. What is more, it has been proven that meteorological fluctuations are most
related to heart failure in the first 3 days of hospitalization, and that temperature and heart
failure have a two-way relationship [34].

To sum up, although many studies have linked the increase of single or multiple air
pollutants with adverse cardiovascular outcomes, the correlation between aggravated air
pollution and AF has not been well investigated in China.

Therefore, this study explores the correlation between the concentrations and changes
of different air pollutants (PM, O3, NO2, SO2, CO, et cetera) and AF by performing Holter
monitoring on patients to provide a reliable medical theoretical basis to reduce the preva-
lence of AF, which is helpful for the assessment of the cause of AF in patients and the
nursing measures for some high-risk groups. Those air pollutants are selected based on the
WHO Air Quality Guidelines, which figured out that the four most common air pollutants
are particulate matter (PM), ozone (O3), nitrogen dioxide (NO2), and sulfur dioxide (SO2).

3. Materials and Methods

3.1. Data Collection and Resources

Shanghai MicroPort Medical (Group) Co., Ltd. (Shanghai, China) provided the re-
search data containing the participants’ test location, test time (date), and their health
statuses (whether at a high risk of AF). All the data were collected through the investi-
gation, and there was no private data of the participants. What is more, the duration of
the investigations in Shanghai and Kunming were 1 year and 6 months, respectively. In
addition, the related environmental factors were provided, including the current day and
the previous 14 days’ weather, temperature (with the unit of degrees Celsius), wind force
scales, air quality indexes (AQI), and air pollution concentrations (PM2.5, PM10, NO2, SO2,
O3, CO), where the first five kinds of pollutants used the unit of μg/m3, except for CO,
with the unit of mg/m3. Therefore, there are 11 independent variables for each day, 15 days
involved, and the AF status is the dependent variable.

In this research, two databases of Kunming and Shanghai were used to analyze the
impact of the air pollution issue and the effect of other environmental factors. There were
3518 records collected, and after removing the incomplete records, 3160 records were kept
(732 for Shanghai and 2428 for Kunming, respectively). Meanwhile, the high-risk AF (ICD-
10 code I48) rate for Shanghai and Kunming participants were 9.3% and 2.8%, respectively.
This research divided the data into two parts based on the AF status, as modeling parts
(80%) and checking parts (20%), according to the locations.

3.2. Research Logic and Data Curation

This paper establishes a two-step analysis process, and the variables are categorized
into five types. The first step is to convert the parameters into binary variables and analyze
whether they are significantly related to AF or not. The second step is to use the primary
data to establish a logistic regression model to interrupt the effect quantitatively.
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In the first step, every related factors’ differences were calculated to demonstrate the
changes between the following days, shown in Equation 1 below.

Δ(X)i,B
j,t =

{
1 when (X)i

j,t − (X)i
j,t+1 > 0

0 when (X)i
j,t − (X)i

j,t+1 ≤ 0
(1)

where Δ(X)i,B
j,t is a binary variable recording the increase or decrease of the variable X

between the day t and a day before for participant i, for which 1 means an increase and 0
means a decrease or equal. (X)i

j,t denotes the value of the factor X on the day t for the tester

i in city j. For instance, (AQI)i
5 represents the AQI index for the participant i on the day (5

days before the test day). Hence, if the Δ(X)i,B
j,t is positive, it means that the environment is

getting worse from day t + 1 to day t.
In this research, all Δ(X)i,B

j,t are classified into the first-order difference category. What
is more, to denote AF’s situation, this paper use 1 to represent the patient being at a high risk
of AF (over 50% chance of AF), and 0 for low risk (less than 50%). Furthermore, this research
calculates the second-order differences, categorized into the second-order-difference type,
to illustrate the fluctuating rate, shown in Equation (2) below.

Δ′(X)i,B
j,t =

{
1 when Δ(X)i

j,t−1 − Δ(X)i
j,t > 0

0 when Δ(X)i
j,t−1 − Δ(X)i

j,t ≤ 0
(2)

where Δ′(X)i,B
j,t denotes whether the fluctuating speed of the difference of variable X be-

tween the day t − 1 and t and the difference between the day t and t + 1 for the participant
i in city j. Based on the definition of the second-order-difference variables, if the value is
zero, it means that the change is stable, keeping an unchanging tendency. However, if it is
positive, it could represent one of the following three situations: (1) the value’s decreasing
rate is getting lower. (2) The value’s increasing speed is getting faster. (3) (X)i

j,t is the

smallest compared with (X)i
j,t−1 and (X)i

j,t+1. To sum up, if the second-order-difference
variable is positive, it describes a more complicated environmental degradation.

Therefore, there are 384 variables in this two-step research, divided into five categories
(AF, primary pollution indexes, temperature, weather, and wind scale, first-order difference,
and second-order difference, respectively). This research uses SPSS software (International
Business Machines Corporation. Armonk, NY, USA. Version 25) to analyze the association
between environmental factors and the incidence of AF and establish binary logistic models
to elaborate on the relationship.

In the first step, all differences of variables (first-order difference and second-order
difference) were converted into binary variables for modeling, 1 denoting the increase and
0 for the decrease.

3.3. Binary Logistic Regression

This research established two models through binary logistic regression, one for
Shanghai and one for Kunming (called model 1 and model 2). Many scholars have used
this method to determine the association between the risk factors and CVD [31–33], while
this research concentrates on the changing of environmental factors. With the binary
logistic regression, this research established the models as:

pi
j =

e(c+Di
j+Ui

j,0+Ui
j,1+Ui

j,2)

1 + e(c+Di
j,0+Ui

j,0+Ui
j,1+Ui

j,2)
(3)

Ui
j,0 = ∑t β

j,0
X,t × (X)i

j,t (4)

Ui
j,1 = ∑t β

j,1
X,t × Δ(X)i

j,t (5)
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Ui
j,2 = ∑t β

j,2
X,t × Δ′(X)i

j,t (6)

Di
j =

⎧⎨
⎩

0 if (X)i
j,t = 0

∑
d,l

βl
d,t if (X)i

j,t = 1 (7)

where pi
j denotes the probability that participant i has a high risk of AF, and Ui

j,0, Ui
j,1, and

Ui
j,2 represents the utility of the sum of the primary factors (except for weather and wind

scale), and the utilities of the sum of the first-order category factors and the second-order
category factors, respectively. Di

j is the sum of the dummy variables, representing the

different situations of the weather and wind scales. βj,2
X,t is the coefficients of the factor X

in location j (Shanghai or Kunming, or the composition of the two cities) of the difference
calculating order n (0 or 1 or 2) of the time t. Using the binary variables and the primary
value of the factors, the pi

j value could be calculated.
With 95% confidence interval (95% CI), this research first selected the statistically sig-

nificant variables by checking their Wald statistic. What is more, this research reconsidered
the correlations between every two variables to optimize the models.

With the binary logistic model results, the effect of the factors could be estimated by
the coefficients’ value. Besides, the odds ratio (OR) values were calculated to demonstrate
the factors’ impact, which equaled the exponential of βj,n

X,t. If the OR value was larger
than 1, it represented the specific factor’s increase, positively related to the increase of the
AF risk.

3.4. Model Tests

In this part, the models were tested by three methods, including chi-square tests,
receiver operating characteristic curve (ROC curve) plotting, and applying to the new data
sample to check the accuracy.

This research firstly analyzed the models’ goodness of fit via omnibus tests and the
Hosmer and Lemeshow test. They both use the chi-square value to check whether the
model is further optimized to reject the null hypothesis. By comparing the chi-square
values and the related p-values, it is persuasive to reject the null hypothesis evidently.
Moreover, as many scholars have used the ROC-AUC approach in this field [34–37], this
research used this method to examine this model’s accuracy.

In conclusion, this research firstly checked the significance of all the variables and
then used four methods to determine the models’ statistical significance to determine the
association between environmental factors and AF.

4. Results

This research establishes two models through the analysis methods above, and they
could show three vital results about the environmental factors to AF, from the epidemical,
geographical, and lag-affect pattern aspects.

4.1. Qualitative Models’ Results

Analyzing the data using SPSS, this research figured out the factors that significantly
affect the AF status qualitatively as the first step to establishing the models. The result is
shown in Figures 1 and 2 (the qualitative model is in the Appendix A in Table A1).
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Figure 1. The impact of the air pollutants.

Figure 2. The impact of the weather, wind, and temperature difference.

As mentioned above, the Δ and Δ′ in the two figures above denote the first and
second-time differences. This step is used to figure out the significant factors and the
related variables.

4.2. Quantitative Models Results

Using SPSS 25, the following two models in Table 1 below exhibit the quantitative
relationship between the specific environmental factors and AF.

In the tables above, the OR value is the impact of per 1 unit increase of the particular
variable on AF’s incidence when other conditions are all kept unchanged, which equals to
the exp(β). The following Figures 3 and 4 plot the OR values with their lower and upper
bounds, where the Y-axis shows the variables and the X-axis shows the corresponding OR
values range with 95% CI and the expected OR value.

Figure 3. The odds ratio value in model 1.
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Table 1. The results of the quantitative models.

Description Variables

Shanghai Kunming

B 1 Std. 2 Sig. 3 OR

OR 4 95% CI

β Std. Sig. OR

OR 4 95% CI

Lower
Bound

Upper
Bound

Lower
Bound

Upper
Bound

wind
W5(1) −1.645 0.649 0.011 0.193 0.054 0.689

W6(1) 1.121 0.426 0.009 3.067 1.330 7.076

Temperature

(Th)3 −0.207 0.072 0.004 0.813 0.706 0.936
(Th)4 0.200 0.080 0.012 1.221 1.044 1.427
(Tl)10 0.347 0.153 0.023 1.416 1.048 1.911
(Tl)11 −0.553 0.170 0.001 0.575 0.412 0.802
(Th)13 0.151 0.062 0.015 1.163 1.030 1.313
Δ(Tl)1 −0.190 0.093 0.041 0.827 0.689 0.992
Δ(Tl)4 0.214 0.120 0.075 1.238 0.978 1.567

AQI

(AQI)10 −0.060 0.018 0.001 0.942 0.909 0.975
Δ(AQI)5 0.041 0.011 0.000 1.042 1.019 1.066
Δ(AQI)7 0.029 0.013 0.030 1.029 1.003 1.056
Δ′(AQI)4 0.008 0.005 0.089 1.008 0.999 1.018
Δ′(AQI)11 −0.016 0.008 0.047 0.984 0.968 1.000

TSP
Δ(PM2.5)13 0.125 0.033 0.000 1.133 1.062 1.208
Δ(PM10)1 0.009 0.017 0.602 1.009 0.976 1.043

SO2

Δ(SO2)0 −0.157 0.058 0.007 0.855 0.763 0.958
Δ(SO2)6 0.411 0.130 0.002 1.508 1.168 1.947
Δ′(SO2)9 0.109 0.041 0.008 1.116 1.029 1.209

NO2
(NO2)2 0.060 0.020 0.002 1.062 1.021 1.104 −0.014 0.023 0.531 0.986 0.943 1.031

Δ(NO2)9 −0.080 0.020 0.000 0.923 0.887 0.960

O3

(O3)8 0.031 0.009 0.000 1.031 1.014 1.049
Δ(O3)8 −0.037 0.016 0.024 0.964 0.933 0.995
Δ′(O3)9 0.017 0.009 0.044 1.017 1.000 1.034

Constant c −4.008 0.874 0.000 0.018 −3.098 1.478 0.036 0.045

1 The β in this table represents the coefficients of the variables. 2 The Std. in this table represents the coefficients’ standard deviation value.
3 The sig. in this table denotes the p-value of the variables. 4 The OR in this table denotes the odds ratio value.

Figure 4. The odds ratio value in model 2.

For example, the Δ(SO2)6 in Table 1 model 1 is 1.508 (95% CI: 1.168, 1.947), larger than
1, showing that, with all other variables kept the same, for every 1 unit increase of the SO2
index from the seventh day before the test date to the sixth day, the risk would increase
by 1.508 times. In contrast, for the (Th)3 (OR value as 0.813) in model 2, if the highest
temperature occurred on the third day before the record increasing 1 degree, the patients
in Kunming would have a lower probability of getting AF on the testing day, and the
probability would decrease by about 20%. Therefore, the models’ results could illustrate
the relationship between environmental conditions changing and AF risk changing. What
is more, with the descriptive statistics, the absolute value of the variables and related
variables could be illustrated, showing the results more detailed and evidently.

31



Sustainability 2021, 13, 5247

As air pollution could last for days, and the air quality tendency is ordinarily stable in
a particular city, the correlation between variables in this research is appropriately released.
Hence, some variables may still be kept for the accuracy of the models. Moreover, by
analyzing the data of air quality, wind scale, and temperature to assist in analyzing the
association, this research used Figures 5 and 6 to illustrate the value of those selected
variables. In the two figures, the boxes to the left of the vertical lines are for model 1, and
others for model 2, and they describe the upper and lower bound of the value of the factors
with their 25% to 75% range. The spots and the horizontal lines inside the boxes denote the
mean and median values, respectively.

Figure 5. The description of the primary air quality and temperature data.

Figure 6. The description of the differential variables.

As most coefficients in the two models were from −1 to 1, with a larger value of the
variable, this specific factor would cause a more significant impact. For instance, the (O3)8
in model 1 is statistically significant, and the mean and median value of this variable were
close to 100, larger than other factors’; therefore, the impact of the concentration of O3 (lag
of 8 days) could be evidently shown. Besides, judging by this graph, some insignificant
variables could be explained, for example, Δ(PM10)1 in model 2 (p-value is 0.602). In
Figure 6, it is clear that the variable’s value was close to 0, and half of them distributed
close to 0. Therefore, the impact given by PM10’s concentration changing was limited.
Hence, compared with other factors, it could be statistically insignificant. In conclusion,
these two figures above can explain the models’ results by analyzing the distribution and
value of the variables.

What is more, many variables were insignificant in the models because they could
explain the first step’s results. For example, the second-difference AQI value of four days
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before the test day in Shanghai (denoted as Δ′ (AQI)4) was insignificant, with 95% CI
(p-value as 0.089), which is kept to show the impact of the AQI changing from the fifth day
to the third day before the test day, which was found significant in the first step. Other
insignificant variables played the same role. Besides, all insignificant variables’ OR interval
skipped 1, so it is hard to identify them to judge their impact confidently. Nevertheless,
those variables are vital to support the conclusion achieved in the first step.

According to the tests of the models, the results of the goodness of fit test results are
shown in Table 2. With the omnibus test’s chi-square values and the significance values
of all passing the test, it is evident that we can judge that the models are eloquent. As the
p-values for the omnibus tests are all less than 0.5, this represents that the null hypothesis
test could be rejected. Besides, the Hosmer and Lemeshow test results show that the
information of the data has been fully extracted (all p-values are larger than 0.05), which
means the models have good fitness. Therefore, from the results of these two tests of the
models, all models have been proven to be relatively accurate.

Table 2. The results of models’ goodness of fit tests.

Location
Omnibus Tests of Model Coefficients Hosmer and Lemeshow Test

Chi-Square df Sig. Chi-Square df Sig.

Shanghai 63.89 14 0 15.394 8 0.052
Kunming 44.41 12 0 10.039 8 0.262

The ROC-AUC test results are shown in Table 3 below. As the AUC represents the
degree or measure of separability of the model, it was chosen to be an approach to analyze
the models’ accuracy. Therefore, taking the AUC value for Shanghai’s model as an example,
which is 0.824 (95% CI: 0.771, 0.877), it represents excellent discrimination. Besides, the
AUC value for model 2 is 0.756, denoting that the model is acceptable and has excellent
abilities to separate AF’s risk level.

Table 3. The description of the ROC curves and AUC.

Location Area Std. Error Asymptotic Sig.
Asymptotic 95% Confidence Interval

Lower Bound Upper Bound

Shanghai 0.824 0.027 0 0.771 0.877
Kunming 0.756 0.034 0 0.689 0.822

Furthermore, by calculating the accuracy by checking the sample data, the accuracy
was 88.8% and 97.3% for the two models mentioned above. As this research focused on the
association between environmental factors and AF prevalence, the accuracy could prove
the models’ validity.

In conclusion, all models have shown great accuracy, separability, and information
extraction through these three tests’ results. Hence, these models were selected to analyze
the association between AF and environmental factors.

4.3. Epidemicical Results

The epidemical result is that three of the most common air pollutants mentioned by
the WHO were positively correlated with the prevalence of AF, as PM, NO2, and SO2.
Moreover, as the AQI is a synthetic factor in measuring the pollution level, the OR values
of the AQI could demonstrate the impact of air pollution comprehensively.

Judging by the models, it is clear that with PM and SO2 concentration increasing, it
poses a higher risk for people getting AF, proven by the OR value of the concentration
increase of PM2.5 13 days prior to the test day in Kunming (95% CI: 1.062, 1.208) and SO2
6 days prior in Shanghai (95% CI: 1.168, 1.947), respectively. Moreover, model 1 highlights
that the concentration of O3 had a negative impact, which was proven by the OR value
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for the O3 concentration per 1 unit increase in fluctuation around the ninth day before the
record date (95% CI: 1.000, 1.034). What is more, the AQI’s increase 5 days (95% CI: 1.019,
1.066) and 7 days (95% CI: 1.003, 1.056) previously in model 2 prove that the comprehensive
air pollution increase will cause the patients to get into a more dangerous environment.

Concentrating on the fluctuation of air pollutant concentrations (defined by the second-
order difference category), all coefficients were positive, except for one, the AQI fluctuation
11 days before the test day in model 1. However, by analyzing the primary data, it shows
that the AQI index from the 12 days prior to the 10 days before the test day followed
the increasing trend, while the increasing speed slowed down. Therefore, this research
concludes that if the air pollution situation shows the tendency of going down initially and
then immediately going up, there will be a higher risk of AF.

This paper uses the following Figures 7 and 8 to illustrate the impact of the pollutants
and temperature changes.

Figure 7. The odds change in Shanghai.

Figure 8. The odds change in Kunming.

The X-axis value is the odds change value, representing the changing of AF’s incidence
when the specific variable increases by 1 unit. From the two figures shown above, it is

34



Sustainability 2021, 13, 5247

clear that different cities are sensitive to different parameters. What is more, SO2 is more
significant than the other variables, not only because the odds change is larger than for
the others (close to 0.5), but also because both models contain this pollutant. Besides, as
shown in Figures 7 and 8, it is clear that with the pollution getting severe, regardless of
the absolute index or the polluting speeding up, people will have a higher risk of AF. For
instance, the probability of AF for patients in Kunming will have 4% increase if there is
1 unit increase of the AQI, since from the sixth day to the fifth before the test day. The
SO2 increase 1 day previously played a protective role, because, in Kunming, the SO2
concentration was relatively stable (mean and standard error for the increase is 0.21 and
0.057); if the concentration increases significantly, the impact could be significant.

Finally, both models’ constant coefficients were negative, as a protecting factor from
AF. There are few high-risk patients in the database (67 in Kunming and 68 in Shanghai)
compared to low-risk people through the statistical analysis. Therefore, the constants here
demonstrate that only a few people are at high risk in the initial stage.

To sum up, from the results related to the pollutants’ concentrations, it is clear that air
pollution may cause the prevalence of AF growth. Similarly, the second-order difference
demonstrates that the fluctuating rate of the air pollutants’ concentrations changing can
significantly affect AF prevalence.

4.4. Geographical Results

The geographical effect is clear from the models, mainly represented by the model
variables involved. According to model 1 and model 2, it is clear that they contain different
variables. The following Figure 9 illustrates the comparisons of the odds change of the
temperature and wind on AF.

Figure 9. The odds change by the wind scale and temperature.

Nevertheless, different cities are sensitive to different days. From Figure 9, the AF
incidence in Shanghai was not sensitive to the temperature, while it was closely related
to the weather. In contrast, the situation in Kunming was the opposite. The OR values
of the lowest temperature that occurred in Kunming (10 and 11 days lag for Kunming)
were 1.416 (95% CI: 1.048, 1.911) and 0.575 (95% CI: 0.412, 0.802), showing that the different
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days’ temperature had a different impact. Although the temperature was usually kept at
a relatively stable level, the impacts may have offset each other, and may have caused a
considerable effect when the temperatures were changing a lot during those days.

Concentrating on the wind scales’ impacts, it had a relatively complex influence. If
the wind scale was above level 4 on the sixth day before the test, people had a higher
probability of getting AF (95% CI: 1.330, 7.076) in Shanghai, while the wind on the five
days lag decreased the chance (95% CI: 0.054, 0.689).

In conclusion, the models describe the difference caused by the location of the patients.
The impact of geography is entire, while the negative impact of air pollution is the same.

4.5. Pollution’s Lag-Pattern Impact

In this research, most of the variables were not directly related to the test date, with a
lag of 3 to 12 days. Therefore, it is reasonable to conclude that the risk of AF is associated
with the environment and air pollutions. Comparing the models, nearly all the significant
variables had at least three days lag, representing that the impact of the pollution could not
immediately cause AF.

5. Discussion

5.1. The Influence of Air Pollution Factors on AF

There has been some research concentrating on the medical mechanism of the impact
given by environmental factors on CVD. For example, Bhatnagar [38] in 2004 asserted
that, as important components of PM2.5, metals in the environment deposit in the heart
and blood vessels, and their toxicity increases the risk of CVD. Besides, some gaseous
pollutants can mediate or modify PM, which may cause ischemic heart diseases. Similarly,
it has been proven that O3 is highly related to pulmonary inflammation and edema, but it
is still unclear whether it is associated with CVD [39]. Besides, other research figured out
that environmental factors (especially air pollution) can cause CVD, such as endothelial
dysfunction and the role of oxidative stress [40], which proves this paper’s results. What is
more, PM can cause atherosclerosis via promoting vascular dysfunction and alternating the
vasoactive mediators’ responsiveness [41]. These results explain the medical mechanism
of CVD related to environmental factors, and they highlight the significant impact of
environmental factors, which shows the importance of this paper’s research.

After adjusting for other gaseous pollutants, the significance of PM2.5, PM10, SO2,
NO2, and O3 in research results is highlighted, suggesting that they are currently the main
pollutants in Shanghai and Kunming. There is a positive correlation between the risk of
AF for people in Shanghai and Kunming and the increase in PM concentration [42]. Other
studies have evaluated the impact of six major environmental pollutants on the risk of AF
in patients with cardiac implantable electronic devices (CIED). With a 10 μg/m3 increase
in PM2.5 and PM10 concentrations, the risk of AF increased by 3.8% and 2.7%, respectively;
however, the correlation with other gaseous pollutants (SO2, NO2, CO, O3) was not sta-
tistically significant [43,44], which is similar to this research’s results. Furthermore, this
research emphasizes the impact of air pollution fluctuations in Shanghai and Kunming,
filling the blanks of previous research.

On the other hand, statistics show that the increase in the number of visits for arrhyth-
mia in the emergency room was significantly related to PM2.5 on warm days (>23 ◦C) and
cold days (<23 ◦C), and high levels of PM2.5 would increase the risk of emergency visits
due to arrhythmia [45]. In this research, the average highest temperature in Shanghai on
the seventh and eighth day before was 23.3 ◦C, and 22.8 ◦C (standard error as 0.334 ◦C and
0.312 ◦C), respectively, and the lowest temperature in Kunming was close to 23 ◦C as well,
which meets the conclusion. A large number of studies have explained this impact from the
perspective of pathology, as certain substances can cause oxidative stress, cardiovascular
inflammation, endothelial dysfunction, high C-reactive protein level, myocardial ischemia,
and right atrial pressure [46–50], all of which are related to atrial remodeling and AF
pathophysiology [51–54].
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Therefore, it is persuasive to confirm that air pollution has the risk of increasing the
probability of arrhythmia or other acute cardiac events. Hence, patients at high risk of
AF should be educated to monitor the local air quality index and follow the recommen-
dations to reduce exposure and reduce outdoor activities. What is more, this research
helps prevent AF’s high-risk situation and can give an early warning to the number of
outpatients increasing through the lag-affect analysis of air pollution and wind. Therefore,
this research can further strengthen the theoretical basis of urban air pollution control,
establish air pollution control measures, and optimize community and hospital diagnoses
and treatment configuration.

5.2. AF Risk Factors Are Variable in Different Cities

According to this research, for the results of model 1 and model 2, air pollution
particles’ impact on AF incidence was similar, while the impact of temperature factors
showed opposite laws. Besides, the risk of AF in Shanghai was more sensitive to the effects
wind scale, while that in Kunming was not.

Many studies have shown that the effects of seasons and temperature on the incidence
and mortality of cardiovascular diseases are different in different cities [55,56]. The results
of an epidemiological study containing 16 cities in China showed that PM10 was signifi-
cantly associated with deaths from cardiopulmonary system diseases, and the association
is still statistically significant after adjusting for other gaseous pollutants; additionally, the
relationship between PM10 and death risk in different cities differed due to the different
levels of pollutants in each city [57]. It explains the reason why the impact of PM10’s
concentration increase has different lag periods.

The seasons’ effect on the risk of AF is another consideration. K Spengos et al. ana-
lyzed the symptom onset pattern of more than 300 patients with acute cardiogenic stroke in
Greece for the first time due to AF, figuring out that the patients’ symptoms were cyclically
distributed, with the peak season in winter and the incidence in summer declining [58].
Similarly, J Ahn et al.’s study of the seasonal changes in AF incidence in Seoul also showed
that the frequency of AF in summer was significantly lower than in other seasons [59].
Moreover, a national statistical study in Germany showed that when the outdoor tem-
perature was between 0 and 10 ◦C, the hospital admission rate for arrhythmia, including
AF, reached its peak [60]; however, some studies have shown that in some temperate
countries, cardiovascular diseases in winter are lower than in summer [61]. Although most
participants took the test in autumn in this research, it is hard to show the seasonal impact,
and the different impacts of changing temperature, weather, and wind scale on AF risk
have been pointed out.

In summary, different cities have different effects on the incidence of AF due to the
intensity, mode of action, duration of the effect of cold and heat, and maybe the local
residents’ physical fitness. Therefore, different locations may have their own specific
models to estimate the risk of AF, which might be another way to describe whether a city
is livable or not.

5.3. The Impact’s Lag-Affect Pattern

The lag-effect of environmental factors’ impact on AF is shown by the variables’ OR
values, most of which show a three to twelve days lag. For example, the increase of the
previous six day’s SO2’s concentration is statistically significant in Shanghai. Although
the four kinds of air pollutants (PM2.5, PM10, SO2, and O3) could significantly affect AF
incidence, they all show lag-affect influence.

Many studies have also confirmed that the lag of air pollutants may affect the occur-
rence of CVD and the mortality rate. The correlation between PM2.5 and CVD mortality
mainly occurred in the first 6 days, with the fourth day being the most significant [62].
Additionally, LC Martins and other scholars have asserted that air pollutants’ delayed
effects (CO, PM10, O3, NO2, and SO2) have different effects on different genders. Besides
heart failure inducing diseases, the delayed effects have more noticeable effects on women
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for other cardiovascular diseases [63]. Similarly, M Dastoorpoor et al. announced that for
people over age 60 and under 18, after a delay of 3 days and 13 days, there was also a
significant relationship between the increase in the interquartile range (IQR) of particles
below 10 μm and cardiovascular death. For those under 18 years old (lag 11) and over 60
years old (lag 9), there was a significant relationship between the increase in IQR of NO2
and CO and cardiovascular death, respectively [64]. Kim et al. pointed out that the number
of lag days for the impact of PM2.5 on CVD depended on its chemical composition, and the
different lag times may vary with the patient’s health status and disease [65].

This research selected the medical records in Shanghai and Kunming for statistical
research, and the conclusion showed the similarity with the previous study. Notably, the
pollutants’ delayed impact on AF in the two cities was different, which may be due to
the study cities’ different characteristics, such as indoor air quality, local climate type,
residents’ sensitivity to pollutants (such as economic level, population age, and smoking
rate), pollutant concentration levels, and differences in pollutant composition.

5.4. Research Significance, Limitations and Prospects

This research attempted to figure out the association between environmental factors
and AF, which is of significance to the government, medical research, and patients. As it
emphasizes the hysteresis of air pollutions and weather changes’ impact, the government
and hospitals can use these conclusions to improve and optimize weather reports and
forecasting. Meanwhile, this research uses the data of two cities in China, comparing and
demonstrating the different impacts caused by the different locations. Therefore, other
researchers can follow this direction to determine the overall regularity, boosting AF and
CVD comprehension. Furthermore, patients with a history of AF could be alerted by this
research to pay more attention to air pollution and take self-protection more seriously.
On the other hand, medical workers may also remind the patients to remember the air
pollution conditions in order to protect them in the following days.

However, there were still some limitations to this research. This research used the
average value of each monitoring site in each city as the population exposure level of
pollutants. However, each monitoring site’s pollutant measurement methods may differ, so
the environmental monitoring results and the individual level of pollutant exposure might
not be accurate enough. Hence, this study cannot calculate the precise individual exposure
in each city, affecting the analysis results. Meanwhile, as the participants’ gender and age
level were often misrecorded in the records, this research does not contain those two vital
factors to optimize the model. What is more, as most of the data were collected in the
summer and autumn, some contingents might exist in this paper’s results. Therefore, more
data are being collected by a more extended duration investigation and tracking surveys,
which can help to improve the results. In the subsequent research, more detailed data will
be used to optimize the models and provide more conclusions.

6. Conclusions

Increasing environmental pollution will increase the incidence of atrial fibrillation,
and the concentration of the increase of the two major air pollutants (PM10 and SO2) will
raise the risk significantly. Meanwhile, the environmental impact of each region is regional
and lagging. Besides, the acceleration of air pollution will also increase the probability of
atrial fibrillation. Therefore, continuously monitoring the environmental indexes are of
importance for warning and protecting potential patients. What is more, different cities may
have their unique model to evaluate and estimate the significant factors to improve the local
environmental departments’ working process, as integrating the previous environmental
indexes into the daily weather reports has a strong impact on the sustainability of AF.
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Appendix A

Table A1. The qualitative model results.

Description Variables

Shanghai Kunming

β 1 Std. 2 Sig. 3 OR

OR 4 95% CI

β Std. Sig. OR

OR 4 95% CI

Lower
Bound

Upper
Bound

Lower
Bound

Upper
Bound

Wind
W5(1) −2.900 0.760 0.000 0.055 0.012 0.244
W6(1) 2.498 0.552 0.000 12.162 4.119 35.917

Temperature

Δ(Tl)1 −1.213 0.439 0.006 0.297 0.126 0.703
Δ(Tl)4 1.999 0.455 0.000 7.378 3.022 18.013
(Th)7 1.662 0.454 0.000 5.267 2.162 12.833

Δ(Th)3 −0.906 0.370 0.014 0.404 0.196 0.835
Δ(Tl)10 1.095 0.336 0.001 2.988 1.545 5.777
Δ(Th)12 −1.983 0.541 0.000 0.138 0.048 0.397

AQI

Δ(AQI)5 0.763 0.309 0.014 2.144 1.170 3.928
Δ(AQI)7 −1.105 0.346 0.001 0.331 0.168 0.652
Δ(AQI)12 −1.857 0.453 0.000 0.156 0.064 0.379
Δ′(AQI)4 1.935 0.445 0.000 6.925 2.893 16.578
Δ′(AQI)11 −1.834 0.477 0.000 0.160 0.063 0.407

TSP
Δ(PM2.5)5 0.926 0.422 0.028 2.525 1.105 5.770
Δ(PM2.5)13 0.827 0.316 0.009 2.285 1.230 4.246
Δ′(PM10)2 0.770 0.345 0.026 2.160 1.098 4.248

SO2

Δ(SO2)0 −1.156 0.372 0.002 0.315 0.152 0.652
Δ(SO2)10 1.305 0.424 0.002 3.686 1.606 8.457
Δ′(SO2)7 1.960 0.416 0.000 7.102 3.142 16.056
Δ′(SO2)9 0.763 0.345 0.027 2.145 1.091 4.218

NO2
Δ(NO2)9 −1.264 0.349 0.000 0.283 0.143 0.560

Δ′(NO2)10 −1.419 0.430 0.001 0.242 0.104 0.562

O3
Δ′(O3)9 0.913 0.425 0.032 2.491 1.083 5.726
Δ′(O3)12 −1.363 0.437 0.002 0.256 0.109 0.603

Constant c −4.222 0.854 0.000 0.015 −3.773 0.579 0.000 0.023

1 The β in this table represents the coefficients of the variables. 2 The Std. in this table represents the coefficients’ standard deviation value.
3 The sig. in this table denotes the p-value of the variables. 4 The OR in this table denotes the odds ratio value.
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Abstract: Air pollution is a global concern, especially in cities and urban areas, and has many
implications for human health and for the environment. In common with other industrial sectors, the
construction industry emits air pollutants. In scientific literature, the contribution the construction
industry makes to air pollution is underexposed. This systematic literature review (SLR) paper gives
an overview of the current literature regarding air pollution within the construction industry. Air
pollution is discussed focusing mainly on three levels: (i) buildings and their building life cycle
stages, (ii) construction processes and components, and (iii) building material and interior. The final
sample of the SLR comprises 161 scientific articles addressing different aspects of the construction
industry. The results show that most articles address the use stage of a building. Particulate matter in
different sizes is the most frequently examined air pollutant within the SLR. Moreover, about a third
of the articles refer to indoor air pollution, which shows the relevance of the topic. The construction
industry can help to develop a healthier built environment and support the achievement of cleaner air
within various life cycle stages, e.g., with optimized construction processes and healthier materials.
International agreements and policies such as the Sustainable Development Goals (SDGs) can support
the sustainable development of the construction industry.

Keywords: air pollution; construction industry; sustainable development goals; sustainable construc-
tion; healthy living environment

1. Introduction

Urbanization is a global megatrend. According to the United Nations (UN), around
68% of the world’s population will live in cities and urban areas by 2050 [1]. Urban areas
also need sustainable development, as reflected in the Sustainable Development Goals
(SDGs), especially in SDG11—Sustainable Cities and Communities. All UN member states
have committed themselves to implement the global development agenda of the SDGs [2].
One of the issues reflected in the SDGs is air pollution. The importance of this is highlighted
by its mention in the following SDG targets:

1. SDG target 3.9.: Reduce illnesses and deaths from hazardous chemicals and pollution;
2. SDG target 7.1.: Universal access to modern energy sources;
3. SDG target 11.6.: Reduce the environmental impacts of cities.

In target 11.6, emission-related environmental pollution is addressed via the indicator
particulate matter with the indicator 11.6.2 Annual mean levels of fine particulate matter
(e.g., PM2.5 and PM10) in cities (population weighted) [1].

Particulate matter (PM) is one of the most common air pollutants globally together
with nitrogen oxides (NOx), photochemical oxidants incl. ozone (O3), carbon monoxide
(CO), lead (Pb), and sulfur dioxides (SO2) [2]. Numerous people suffer from diseases such
as acute respiratory diseases, chronic obstructive pulmonary disease, lung cancer, heart
disease, and strokes due to air pollution. Others even die due to household and ambient
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air pollution and its consequences; the number of these fatalities was around 7 million
in 2016 [3]. All regions worldwide are affected by air pollution, and the air pollution
limits set by the World Health Organization (WHO) are met for only 9% of the world’s
people [4]. Most at risk are people living in low- and middle-income countries, where 94%
of all pollution-related deaths occur [5]. According to the European Environmental Bureau,
air pollution is also the reason for over 400,000 premature deaths in the European Union
(EU) [6]. In addition, the health-related economic cost of air pollution is estimated between
330 and 940 billion euros just for Europe [7].

Air pollutants occur e.g., not only in the transport, industry, or coal combustion
sectors [6,8] but also in the construction sector [9–13]. Thereby pollutants have different
sources of origin within the construction sector or the built environment. Outdoor sources
include, e.g., construction activities, which can lead to dust production [14,15], or the
use of construction machinery at sites [16,17], production of building materials [18,19], or
pollutant emergence at other different life cycle stages of buildings such as the end-of-life
stage [20,21]. Pollutants from indoor sources such as the emissions from glues and paints
used for interiors [22], the emissions during cooking [23], heating [24,25], or the emissions
caused by ventilation systems [26], however, are also of great significance in terms of
air pollution.

Due to the authors’ knowledge, there is no research article addressing explicitly
construction industry and air pollution in a comprehensive way in just one literature
review paper. Therefore, this article analyzes the air pollution caused by the construction
industry and gives an outline of trends based on a systematic literature review (SLR). The
aim is to determine the current state of research and thus to present an up-to-date status
of current work in the field. The results of the article facilitate the work of researchers in
this field in a new, comprehensive way and help to identify research gaps or further topics
for discussion in this area. Four research questions (RQs) are addressed to achieve the
defined goals:

• RQ1: How has the number of publications changed in recent years and in which
regions are the most research results published? What are the scientific journals that
cover the area of air pollution in the construction industry?

• RQ2: What have been the most widely used research designs in recent years that have
been applied in current research practice in the field of air pollution in the construction
industry?

• RQ3: What are the most addressed building types in current research on air pollution
in the construction industry? Is a classification in detailed construction processes
possible and how can the research articles be divided according to life cycle stages?

• RQ4: Is the current research focus on indoor or outdoor pollution? Which pollutants
within the construction industry are the most addressed in the published scientific articles?

2. Materials and Methods

2.1. Literature Selection

By using the Preferred Reporting Items for Systematic reviews and Meta-Analyses
(PRISMA) guideline, in this section, the literature selection with the method of systematic
literature review (SLR) and its steps are presented.

2.1.1. Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) and
Systematic Literature Review (SLR)

Following the reporting guideline PRISMA, an SLR about air pollution in the con-
struction industry was conducted. The SLR is a systematic process for identifying relevant
published sources in a special field to provide syntheses of the state of knowledge with
the aim to identify future research priorities, to identify problems in primary research that
should be addressed in future studies, or even for identifying relevant published sources
to obtain a broad and comprehensive review of the literature that has been published for
a given RQ [27–29]. While conducting the SLR and data analysis, the 27 items checklist
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of the PRISMA reporting guideline was followed to conduct a transparent, complete, and
accurate review [27] shows the entire review process using the PRISMA flowchart.

2.1.2. Search Strings and Constraints

Referring to the formulated RQs, relevant search strings are identified and conducted
in a scientific database. This article aims at answering the RQs mentioned in Section 1. In
addition to the defined RQs, the starting point for the SLR is the definition of the keywords
within the search strings. Based on the objectives of the research, the search strings consist
of two term areas.

The database selected for the SLR was ScienceDirect. The search results were restricted
to the English language only and excluded grey literature such as reports, books/chapters,
conference papers, master’s and/or doctoral theses. In addition, a constraint was set for
the year of publication, which only includes articles in the period from January 2000 to
April 2020. To avoid biases, all steps of the SLR were double-checked by the authors. The
search strings used with the associated Boolean operators as well as the constraints are
shown in Figure 1.

Figure 1. PRISMA 2020 flow diagram for new systematic reviews which included searches of databases, registers, and other
sources supplemented by detailed information about the SLR and the snowball approach [27].

2.1.3. Data Analysis and Research Approach

As shown in Figure 1, the SLR results obtained after the first step were filtered in three
further phases: (1) relevance by title, (2) relevance by abstract, and (3) relevance by full
paper. In the first SLR phase, 724 papers were identified as relevant research articles. By
filtering by title in phase two, the scope was limited to 500 papers. After reviewing the
abstracts in phase three, 220 papers were left, and after reviewing the full papers in the last
phase, 118 articles for in-depth analysis of papers were gathered. In addition, we collected
further relevant literature using the “snowball” approach, proposed by Wohlin et al., by
reviewing the references of the collected articles [29]. The identified research articles

45



Sustainability 2021, 13, 10469

after applying the “snowball” approach were also sorted according to the three phases
(title, abstract, full paper). After completion of the SLR and after applying the “snowball”
approach, the final sample for the in-depth analysis included 161 records.

2.2. Literature Background

Air pollution is recognized as serious health and environmental problem for the world
and as a strong risk factor for health [30]. Inhaling particulate matter (PM) of varying sizes,
e.g., can lead to a range of health problems and early death [31]. It was estimated in 2017
that the cause of death for 8.7% of the world population was air pollution, meaning in total
around 4.9 million deaths globally [32]. The global community thus has clear ambitions to
improve the global situation with regard to cleaner air.

2.2.1. Policies for Clean Air and Air Pollution Reduction

Many different international institutions, organizations, and nation-states have issued
policies and roadmaps to address this serious issue.

The United Nations Economic Commissions for Europe is addressing air pollution
through the Geneva Convention on Long-range Transboundary Air Pollution; with this con-
vention from 1979 health and environmental impact of air pollution should be reduced [33].
Another important resolution is the Stockholm Convention on Persistent Organic Pollu-
tants, which was adopted in May 2001. Its goal is to restrict the use of persistent organic
pollutants (POPs) [34].

On the EU level, an important regulation policy has been issued to reduce air pollution
in the Clean Air Policy Package adopted in 2013, which was the result of the evaluation
of the European air policy [35]. Amongst others, the Clean Air Policy Package included a
proposal for the National Emission reduction Commitments directive [34,35]. Moreover,
the Ambient Air Quality Directive and source-specific legislation also play an important
role in European air-related policies and regulations [36,37].

The Agenda 2030 of the United Nations (UN), also known as the Sustainable Devel-
opment Goals (SDGs), was adopted by the UN in 2015 [38]. SDG 3—Good health and
well-being, SDG 7—Affordable and clean energy, SDG 11—Sustainable Cities and Commu-
nities, and SDG 13—Climate action are explicitly addressing the importance of reducing
air pollution within their targets [33].

Moreover, the World Health Organization (WHO) has put in place the initiative The
Global Platform on Air Quality and Health to build up capabilities for monitoring and
assessing air pollution, enhance research and policies addressing and reducing air pollution
and its health consequences [39]. Additionally, the WHO adopted the resolution Health
and the environment: addressing the health impact of air pollution, and a draft road map
for an enhanced global response to the adverse health effects of air pollution by its assembly
in 2016 [33,39].

In December 2017, the UN Environmental Assembly of the United Nations Environ-
ment Programme (UNEP) adopted the resolution for preventing and reducing air pollution
to improve air quality globally [40,41]. The European Commission issued the Action Plan:
“Towards a Zero Pollution for Air, Water and Soil” as part of the European Green Deal called
Pathway to a Healthy Planet on 12 May 2021 [42,43]. The action plan is explicitly referred
to air pollution in the context of buildings as well as indoor air quality.

Two further important global initiatives are the Climate and Clean Air Coalition to
Reduce Short-Lived Climate Pollutants (CCAC) and the BreathLife campaign, issued by
the WHO, CCAC, UNEP, and the World Bank [44,45].

2.2.2. Air Pollutants

The definition of limits for air pollution differs in various countries [46]. The present
article has taken the six defined air pollutants of the U.S. Environmental Protection Agency
(EPA) as the basis for air pollution categories applied for researching and categorizing
literature within the SLR. According to the National Ambient Air Quality Standards of the
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EPA six pollutants are defined as air pollutants: carbon monoxide (CO), lead (Pb), nitrogen
oxides (NOx, mainly nitrogen dioxide-NO2), photochemical oxidants (mainly ground-
level ozone, O3), particulate pollution (often referred to as particulate matter), and sulfur
oxides (SOx, mainly sulfur dioxide (SO2) [2]. Furthermore, volatile organic compounds
(VOC), ultrafine particulate matter (UFP), and ammonia were included in the article as
significant pollutants because they often occur within a building, when addressing indoor
air pollution.

Air pollution and climate change influence each other by complex correlations in the
atmosphere. For example, increasing greenhouse gas (GHG) emissions (i.e., CO2-eq.) can
lead to significantly higher ozone (O3) pollution in the future [47]. Moreover, Steinemann
2017 explicitly addressed climate change in combination with GHG emissions and their
implications for indoor air quality in the context of green buildings [48]. The findings
show that the link between air pollution and GHG emissions is complex and that there
are various GHG emission effects on indoor air quality, whether on indoor pollutants
themselves, building factors such as reduced ventilation rate, or behavior of occupants.
In this context, many articles qualitatively describe the influence of air pollution on GHG
emissions and often state that a reduction of air pollutants also reduces GHG emissions.

Detailed descriptions regarding the most common origin in general as well as about
the effects of air pollutants can be found in [10,16,49–53].

2.2.3. Outdoor (Ambient) Air Pollution

Outdoor air pollution occurs in many different sectors, in cities, and in rural areas.
Air pollution has various health implications for the global population and around 91% of
people on the globe are affected by air pollution according to WHO standards. The WHO
thus suggests reducing air pollution by means of improvement measures in transport,
energy-efficiency, power generation, industry, and municipal waste management in order
to contribute to clean air and better air quality globally [54]. The EU Air quality in
Europe—2020 report shows that the main emission sectors for air pollutions in Europe
are (i) transport (road and non-road), (ii) the residential, commercial, institutional sector,
(iii) energy supply, (iv) manufacturing and extractive industries (including heavy and light
industry), (v) agriculture, and (vi) the waste sector (including wastewater management) [6].

2.2.4. Indoor (Household) Air Pollution

Indoor pollution plays an important role as people are spending most of their lifetime,
according to studies up to 90%, indoors [55,56]. In this context, the sick building syndrome
describes health effects on occupants due to indoor air pollution and poor air quality during
their time spent in buildings, respectively [12,57–60]. Indicators can be e.g., “complain of
symptoms associated with acute discomfort, i.e., headache, eye, nose, or throat irritation;
dry cough; dry or itchy skin; dizziness and nausea; difficulty in concentrating; fatigue; and
sensitivity to odors”. Causes can be inadequate ventilation, chemical contaminants from
indoor or outdoor sources, or biological contaminants. Possible solutions and measures for
better air quality within buildings can include the removal or modification of pollutants,
higher ventilation rates, air cleaning, and education as well as better communication [61].
Further anthropogenic causes for indoor air pollution can include such important and
essential everyday activities as cooking or heating with solid fuels (e.g., wood, charcoal,
animal dung, etc.) [61,62].

2.3. Air Pollution within the Construction Industry

The construction industry emits air pollutants in various life cycle stages of buildings.
In general, it can be stated that the construction industry causes both outdoor air pollution
and indoor air pollution [17,57,63–65]. The construction sector is a major contributor
to air pollution in different countries [10,66,67], and a contributor to particulate matter
pollution [10,68–70]. Air pollution emerges within the construction industry and occurs
within all stages of the building life cycle according to EN 15804 and EN 15978 [71,72].
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From the authors’ point of view, the challenges should be differentiated according to
production, construction, the end-of-life stage, and the use stage in the construction sector.
Production, construction, and the end-of-life phase involve direct air pollution caused by,
e.g., construction site works, construction site transports (fuel combustion and tire wear), or
other dust generation. The construction sector is responsible for nearly 40% of global GHG
emissions. Current studies have shown a significant air-pollutant potential (O3) induced by
increasing GHG (i.e., CO2-eq.) emissions. In order to significantly reduce GHG emissions
in the construction sector, for example, a growing number of countries have put in place
policies to improve buildings' energy performance in recent years. However, a rapidly
growing building sector, especially in developing countries, has offset those improvements.
In other words, efficiency gains are not sufficient to compensate for the increase of total
energy consumption caused by parameters as e.g., increasing population, increasing floor
area, and/or other activities. To overcome these burdens a systemic view and consistency
approach (instead of an efficiency approach) will urgently need to be considered in future
policy strategies.

The European Parliament’s EU policy on air quality presents policy measures for
European cities to improve air quality. In the context of the construction industry and its
contribution to air pollution, the energy efficiency of construction projects is outlined. Con-
tinuous improvement of the energy efficiency of buildings not only reduces the operating
energy in the use phase but also tries to take into account the embodied energy from the
manufacturing, construction, and deconstruction phases.

In the individual best practice recommendations of the European cities, measures for
the construction site and for reducing air pollution during the construction and demolition
of buildings are particularly relevant [73].

European guidelines do not specify mandatory construction requirements for indi-
vidual air pollutants. However, a connection can be made through the mandatory energy
standards [74]. In this context, according to the European Directive on the Energy Perfor-
mance of Buildings (EPBD) new buildings in Europe may only be built to the lowest energy
standard [75].

In addition to the building regulations in the individual countries, numerous building
certification systems have been established in the last two decades, which, for instance,
check criteria such as indoor air pollution or various environmental impacts as part of a
life cycle assessment (LCA) on a voluntary basis.

2.3.1. Product Stage (A1–A3)

Within the product stage, air pollution can occur within the raw material supply,
transport, or manufacturing. Additionally, the production of building, materials such
as cement adds to air pollution and the emission of hazardous gases [19]. Within this
stage transportation from the mining of raw materials to the production plant of building
materials and their pollutants can also have an important role. In this context, construction
machinery and the construction methods used in the extraction of raw materials, as well
as the choice of transport vehicles (air pollution from fuel or tire abrasion), influence the
effect on air pollution.

2.3.2. Construction Process Stage (A4–A5)

During the construction process stage, construction sites and construction-related
traffic play a major role in air pollution. Construction activities and operations emit huge
amounts of particles to the environment, putting both construction workers and people
living in the surrounding construction sites at risk. Moreover, construction machinery and
equipment can also add to air pollution at construction sites [17]. Part of the operation and
supply of construction sites are traffic-related emissions [3].
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2.3.3. Use Stage (B1–B7)

Buildings consume a lot of energy in their use stage and emit pollutants throughout
this period. Heating, ventilation, and air-conditioning (HVAC) systems thus also play an
important role within the use stage and can affect especially indoor air pollution.

Factors that additionally influence indoor air pollution concentrations are building
physics and indoor airflows, ventilation rate, outdoor pollution concentration, and indoor
emission sources [76]. Ruan and Rim state that the ventilation rate affects indoor air
quality especially in polluted urban areas [17]. Furthermore, HVAC systems and their
setup influence indoor air quality [77,78].

Another source for indoor air pollution can be the material used and its specific
functions or interior design, e.g., furniture or decoration [79]. Common indoor air pollu-
tion sources are household products, building materials, or plasticizers [57]. Depending
on the different variables such as the choice of materials, material properties, and the
material-specific function or material treatment (e.g., chemical treatments, coatings) the
built substance itself can also release emissions and can considerably contribute to (indoor)
air pollution [77]. Moreover, the right materials can also favor or reduce pollutants or even
compensate and degrade them [80–82].

For a healthy living environment of tenants in terms of hygienic-sanitary conditions
in the use stage, buildings and rooms need to be properly designed and executed as well
as operated. Energy performance certificates could be a possible instrument to improve
the regulations and energy management to better, comfortable, and healthy well-being of
inhabitants as well as a better building performance. Another solution towards a healthier
interior can be the application of evaluation and monitoring [83].

2.3.4. End-of-Life Stage (C1–C4)

After the use stage of the buildings, building materials, e.g., after demolition, can be
recycled and used in a second (building) life cycle [84]. In practice, however, challenges
regarding circularity and recycling still need to be solved [85]. Moreover, transport is
also a source of pollution in the end-of-life stage of buildings. Additionally, air pollutants
can be emitted during de-construction or the demolition of buildings and infrastructure,
respectively [69,86]. Proper demolition management can decrease air pollution [10,87].

3. Results

3.1. Development of Publications over Time (RQ1)

To give an introductory (metadata) overview of the chronological development of
the research area as well as the geographical distribution of the universities investigating
the addressed research area, the articles were analyzed by their year of publication and
by the affiliation of the first author. In Figure 2, the number of published research articles
in the field of air pollution in the construction industry according to the publication year
is presented. There is a rising trend of relevant research articles published on the topic of
air pollution in the construction industry. The number of research articles published rose
from two in 2001 to a total of 161 by the end of April 2020. In the years 2001 to 2011, the
number of published research articles identified as relevant within the SLR in the field was
less than six research articles per year. In the years 2012 to 2020 publications continued
to increase regularly. This trend clearly shows the increase in relevance of the topic of air
pollution within the construction sector.
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Figure 2. Development of published research articles in the field of air pollution and construction
within the last years (until April 2020).

3.2. Geographic Distribution of Publications (RQ1)

Figure 3 presents the geographic distribution of the first author’s affiliation on a world
map. Most articles of the conducted SLR are published by authors from universities in
China (36), in the United States (19), the United Kingdom (10), in Germany (9), Italy (9), and
Hong Kong (6). It can be deduced that countries facing the challenge of air pollution, such
as China, the United States, and the United Kingdom, are also publishing more scientific
articles about air pollution in the construction industry.

Figure 3. Geographic distribution of published articles by first author’s affiliation.
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3.3. Distribution by Publication Journal (RQ1)

For the identification of scientific journals that frequently address and support the
mentioned field of research, the research articles are classified by journals. This represen-
tation supports prospective scientists in their search for suitable journals in context with
the addressed research area. In Table 1, the distribution of articles on air pollution in the
construction industry according to the publication journals is shown.

Table 1. Overview of research articles and their distribution by publication journals.

No. Journal Title Amount (%)

1 Building and Environment 29 18.0
2 Atmospheric Environment 18 11.2
3 Science of the Total Environment 16 9.3
4 Journal of Cleaner Production 9 5.6
5 Energy and Buildings 6 3.7
6 Environmental Pollution 5 3.1
7 Sustainable Cities and Society 5 3.1
8 Environment International 4 2.5
9 Indoor Air 4 2.5
10 Procedia Engineering 4 2.5
11 Sustainability 4 2.5
12 Applied Energy 3 1.9
13 Energy 3 1.9
14 Energy Procedia 3 1.9
15 Journal of Environmental Management 3 1.9
16 Journal of the Air & Waste Management Association 3 1.9
17 Renewable and Sustainable Energy Reviews 3 1.9
18 Urban Forestry & Urban Greening 3 1.9
19 American Society of Civil Engineers 2 1.2
20 Atmospheric Pollution Research 2 1.2
21 Construction and Building Materials 2 1.2
22 Ecotoxicology and Environmental Safety 2 1.2
23 Environmental Research 2 1.2
24 Journal of Building Engineering 2 1.2
25 Journal of Hazardous Materials 2 1.2
26 Acta Polytechnica Hungarica 1 0.6
27 APCBEE Procedia 1 0.6
28 Applied Geography 1 0.6
29 Atmospheric Environment 1 0.6
30 Atmospheric Research 1 0.6
31 Chemosphere 1 0.6
32 Ecological Indicators 1 0.6
33 Energy Conversion and Management 1 0.6
34 Energy Policy 1 0.6
35 Environmental Chemistry Letters 1 0.6
36 Environmental Monitoring and Assessment 1 0.6
37 Environmental Modelling & Software 1 0.6
38 Environmental Science & Policy 1 0.6
39 Environmental Science & Technology 1 0.6
40 Frontiers of Environmental Science & Engineering 1 0.6
41 IFAC PapersOnLine 1 0.6
42 Indoor Built Environ 1 0.6

43 International Journal of Hygiene and Environmental
Health 1 0.6

44 Journal of Environmental Engineering 1 0.6
45 Journal of Cultural Heritage 1 0.6
46 Journal of Transport & Health 1 0.6
47 Safety Science 1 0.6
48 Urban Climate 1 0.6

Total 161 100.0
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Most of the reviewed research articles were published in the scientific journals Building
and Environment (29), Atmospheric Environment (18), and Science of the Total Environ-
ment (16). Nine articles were published in the Journal of Cleaner Production, six in Energy
and Buildings, and five in the Journal Environmental Pollution and Sustainable Cities
and Society. Environment International, Indoor Air, Procedia Engineering, Sustainability
followed by four published research articles each.

3.4. Research Designs for Air Pollution Research in Construction Industry (RQ2)

In this RQ, the articles of the final sample are classified according to research designs
and an overview of applied methods is presented. Therefore, the articles were assigned to
the defined research designs in Table 2.

Table 2. Overview of research designs.

Research Design Description

Literature reviews
With the application of a literature overview in the study, a summary of the most
relevant scientific literature to the research topic of the study is provided. Moreover, an
introductory chapter with literature references is also considered as a literature review.

Measurement/Method development

Measurements of the air pollutants that occur are conducted in various experimental
and study setups. Moreover, the theoretical development of existing methods,
methodological approaches, or measurement instruments can be advanced to improve
existing (evaluation) methods, methodologies, or measurement instruments.

Model development The development of modeling approaches for air pollution are advanced in the course
of the study to improve existing models.

Case study
(field experiment)

The subject of the study is demonstrated resp. tested with specific case studies, using
(field) experiments on-site to test the hypothesis resp. to answer the research
question(s) posed.

Case studies based on virtual simulation
The topic of the study is demonstrated resp. tested, with specific case studies based on
virtual simulations (such as air flow simulations) to test the hypothesis resp. answer
the research question(s).

Surveys
The study method comprises the conducting of a survey, meaning the relevant topic is
examined through a series of questions (=questionnaire) and sent out to the
appropriate target group to receive answers and, therefore, results.

Interviews The study method is conducting interviews (e.g., with experts, semi-structured or
guideline-based interviews).

Other methods All other methods and methodologies which are not mentioned above are subsumed
within this category.

Figure 4 presents a pie-chart with the number of published research articles assigned
to different research designs.

Some of the research articles are based on several research designs. Since multiple
answers were possible, the sum of the research articles in the pie chart (n = 345) exceeded the
number of identified articles (n = 161). On this basis, 35% of reviewed research articles can
be classified in the category Case study (field experiment), and 28% used Measurement/Method
development to reach their results and findings. In about 10% of the articles Model development
was used and in 9% Case studies based on virtual simulation were the preferred research
design. Literature reviews were conducted in 7% of the overall sample of the SLR and 4%
used surveys as their research design. 1% of the research articles chose interviews as their
preferred research design and 1% used other methods, which cannot be assigned to any of
the defined research designs.
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Figure 4. Overview of articles and applied research designs.

Many papers used field experiments in case studies to illustrate air pollution in cities
or rural areas. In some studies, using case studies (field experiments), construction sites and
construction activities, as well as their polluting influence on air, are the focus. Amongst
others, De Moraes et al. have researched construction sites with a focus on air pollution
in the context of concrete and masonry works [69]. Font et al. studied local air pollution
at road construction works, which occurred as a result of road widening projects [88].
Giunta et al. also examined construction activities in a motorway construction project,
and they identified the most significant air-polluting emissions during this process [89].
They also identified measures to reduce emissions and projected them for the future [89,90].
Moreover, air pollution (particulate matter) at bicycle lanes was researched by Thai et al.,
whereas it was shown that cycle roads were especially polluted next to construction sites
with air pollutants (PM2.5 + PM10) [91]. Furthermore, Yan et al. also investigated the
field of construction activities and dust pollution in China, showing that this topic has
importance also in China [92]. In addition, indoor air quality was measured using case
studies with field tests [9,93].

Tang et al. evaluate building materials and their potential to reduce urban air pol-
lution, specifically the NOx abatement capacity of TiO2-coated granules used in roofing
products and there the method of use measurements [94]. Furthermore, measurements are
applied as well, e.g., in the study Bossa et al. about Titanium dioxide nanomaterial within
photocatalytic cement and its potential to reduce air pollution [95].

Air flow simulations are used e.g., by Bai et al., where ammonia in concrete walls
is evaluated [96]. Moreover, Schripp et al. studied air flow simulations interaction of
ozone (O3) and wooden building products as well as their emissions (e.g., volatile organic
compounds or terpenes) [97].

The study of George et al. used a laboratory, field studies, and a smog chamber to
test the potential of depollution of photocatalysis within construction materials and can be
classified within the category different methods [98].

Surveys were applied, e.g., within a study that examined health problems of office
clerks after relocation to a new office building [99]. The study found that the floor coating
was the source of the air pollutant, with the consequence that it was removed afterward.
Moreover, a survey was also conducted to investigate households in China and to compare
regional differences in heating and air pollution in the different regions [100]. Also, Lind-
gren examined indoor air quality, specifically ammonia pollution in a new office building
in Beijing [12]. Zhao et al. examined indoor air quality in residential buildings [79], and
Sun et al. focused on the perception of public buildings by the occupants and users in the
context of air quality using questionnaires [101].
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Next to the building level and indoor air pollution, dust pollution control and mit-
igation measures were also researched with a survey [14], and also the indoor-outdoor
association of NO2 was examined [102]. Moreover, Chiesa et al. examined PM and NOx
reduction measures and policies in Italy using questionnaires [50]. Summing up, it can
be said that in many papers indoor air quality and its consequences were studied using
surveys. Furthermore, some scientific articles also addressed mitigation measures and
policy with surveys or questionnaires, respectively. Literature reviews were also used
in some of the articles. Cheriyan and Choi give a detailed overview of the construction
industry and its particulate matter pollution using a literature review [10]. Tham reviewed
the past 30 years of indoor air quality research and its and impacts on people [59]. Steine-
mann presented a literature review in the format of 10 questions and addressed green
buildings and indoor air quality [56]. Mukherjee gives an overviewed of global PM sources
and their occurrence and impacts on health in his literature review [53]. Furthermore,
Fan gives a short literature review on silica exposure, its limits, and the most important
guidelines as well as dust control measures connected to concrete drilling, the main topic
of his article [103].

3.5. Addressed Sub-Sectors and Building Types within the Construction Industry (RQ3)

The results based on this RQ present a distribution of the investigated research arti-
cles to sub-sectors in construction sectors. In addition, the research articles are assigned
to different building types and to the life cycle stages according to EN 15978 and EN
15084 [71,72]. In the process of the result analysis, the construction sector was divided into
the sub-sectors buildings and infrastructure.

As shown in Figure 5, 6% of the examined research articles are addressing the sector
infrastructure, most articles (94%) are referring to the sector building. In the sector building,
residential buildings are addressed the most (27%), followed by the category office buildings
(13%), educational buildings (11%), and healthcare buildings (1%). In 34% of the research
articles referring to buildings, no specific building type was mentioned. 14% of the research
articles examined were assigned to the category Others. This category includes buildings
such as shopping centers, factories, or cultural buildings such as museums or theatres.

Figure 5. Addressed sub-sector and building types within the identified research articles.

Articles in the SLR which refer to infrastructure focused mainly on road construction
works. For example, Faber et al. found that construction sites in Germany produce
PM10 emissions and represent a high share (17%) of the overall PM10 emissions of the
country [104]. Font et al. examine air pollution from a road widening scheme during
and after construction [82]. Fuller and Green examined road and construction works and
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addressed PM10 emissions, and Giunta and Giunta et al. refer to gas and dust emissions
of road construction and road works or pavement materials and technologies for urban
roads [89,90,105].

Pollutants within residential and office buildings were examined in detail, as offices
and residential buildings represent the two most important building types according to the
SLR [17,26,50,55,106,107]. Within residential buildings, the most addressed pollutants are
particulate matter (UFP, PM2.5, and PM10), followed by NO2 and NO2 as well as CO. For
office buildings, PM2.5 is mentioned most often, followed by OC and O3 as well as NO2
and CO (see Figure 6).

Figure 6. The most common pollutants in residential buildings and office buildings.

Healthcare buildings are addressed by Jing and Aung [108,109]. The study of Aung,
a medical university, referred to as a healthcare building, is one of the sampling sites of
Yangon, where air pollution measurements are conducted to close data gaps of indoor and
outdoor air pollution [109]. In the study of Jing, the category hospital is among one of the
five research building categories within the Chinese study, which offers supervision and
an approach for evaluation of solid oxide fuel cell-based, combined cooling heating, and
power demonstrations [108].

Educational buildings, which are largely schools, were the context for several different
studies [57,64,65,110,111]. Moreover, Zanoletti’s study was conducted at a university labo-
ratory and proposes a new hybrid material for the sequestration of PM [82]. Additionally,
Kozlovtseva’s study refers to indoor air pollution with PM2.5 and PM10 in academic
buildings at the Volgograd State University of Architecture and Civil Engineering in the
Russian Federation [112].

Industrial construction was not addressed in detail, although one article by Bozkurt
referring to air pollution in an industrial city in Turkey and Ekinci examined cement
production and its implications for urban air pollution measures connected to growing
urban air pollution with growing demand in the construction sector [19,113].

3.6. Construction Processes and Components

A further detailed breakdown was made for construction sites and construction
activities, construction equipment (including machinery), and building components.

Figure 7 shows how many research articles address construction sites and construction activ-
ities (49), construction machinery (7), and building components (157). Articles addressing building
components are again divided into the four sub-categories (i) building envelope, (ii) building
materials, (iii) interior, and (iv) heating, ventilation, and air conditioning (HVAC) systems.
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Figure 7. Overview of construction processes and (technical) components.

The results indicate that the building envelope is addressed 13 times, the building
materials 57 times, the interior 29 times, and the HVAC systems 58 times in the research
articles. The sub-category HVAC systems is again divided up into five more sub-fields,
which are (i) ventilation system (34), (ii) energy system (31), (iii) heating/cooling system (27),
(iv) water system (1), and (v) others (2).

Many studies of the final SLR sample are looking into construction sites and activi-
ties [14,114–116]. Alvanchi et al. are addressing construction management in their study
and how improved construction schedules within infrastructure projects can improve the
situation of urban air pollution [117]. Hassan et al. evaluated fugitive particulate matter
emissions from construction sites in the Middle East, and Kinsey et al. examined fugitive
dust and its relationship to mud or dirt discharge from a particular construction site in
Kansas City [11,70]. Construction dust emission in a motorway project is the focus of
Giunta et al. [89]. Faber et al. examined among other issues road construction in Germany
and its emission effects on local air quality; one of the conclusions drawn from this study
is that there are significant effects on air pollution [104]. Cheriyan and Choi reviewed
PM in the construction industry and provided a summary of this issue in a literature
overview [10]. Moreover, Liu et al. addressed construction activities in terms of construc-
tion as an economic sector. Their sector analysis shows that construction is the major source
for CO2, SO2, NOx, PM2.5, and BC emissions from a consumption perspective [118].

The following articles were referring to construction machinery [10,21,92]. The study
of Faber et al. is looking into local air quality and aerosol emissions from construction sites,
whereby the role of construction machinery is explicitly mentioned and researched in the
study [104]. It shows that construction machinery is adding to air pollution, especially
through organic particles and trace gases. The article of Giunta et al. studied emissions from
construction activities for motorways. In this study, construction machinery was also a part
of the overall emissive balance sheet. The study shows that trucks transit on unpaved or
paved roads has the highest share of particulate emissions in the construction process [90].
Moreover, machinery and plant are responsible for CO pollution in construction activities.
Heidari et al. conducted a cross-exanimation of the measured and the predicted emissions
in their study. They found that significant discrepancies appeared between real-life data
and the forecast emissions from different models [115].
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In Figure 8, air pollutants in the context of the building envelope were examined. The
results show that particulate matter (PM2.5—6 times, PM10—5 times) in various sizes is
mainly addressed in the relevant articles focusing on the building envelope. Furthermore,
also NO2 and SO2 emissions, as well as the category others, are each mentioned 4 times.
Ozone (O3) is addressed 3 times, and the air pollutants UFP, CO, and VOC 2 times each.

Figure 8. Overview of the pollutants mentioned in the building envelope context.

Building materials are addressed in 57 articles of the final sample. The pollutants most
found in these articles were PM2.5 (84 times), PM10 (64 times), and VOC (57 times). Other
pollutants such as CO (34 times), SO2 (32 times), and NO2 (31 times) also play a significant
role. As shown in Figure 9, UFP and O3 are mentioned 26 times. Lead (Pb) and ammonia
(NH3) are of less relevance and are each mentioned only 7 times.

Building interiors are referred to in 29 scientific articles. Figure 10 indicates that
the most significant pollutant in these articles is VOC. VOC was mentioned in 26 out of
29 articles, suggesting a strong correlation between interiors and VOCs. The category
Others is addressed 11 times, ozone 4 times, and PM2.5 3 times. UPF, PM10, and CO are
addressed 2 times each. NO2 and Pb play an even less significant role, while SO2 and NH3
are not mentioned at all.

HVAC, as part of the studies reviewed, is mentioned, e.g., in the study of Che et al.,
who focused on a retrofitted HVAC system and its effects, and where in an office build-
ing, energy consumption and indoor air quality respectively environment are examined
together [77]. Azuma et al. examined building-related symptoms and indoor air quality,
which could affect human health in office buildings equipped with air conditioning in
Japan. One result of the study was the finding that greater quantities of suspended particu-
late matter could enter the building via air conditioning systems in winter and that it is
spread throughout the building with the indoor air. They suggest implementing filters for
an improved air conditioning system and point out that correct maintenance is part of the
solution for air pollution reduction [119].
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Figure 9. Overview of pollutants mentioned in the context of building materials.

Figure 10. Overview of air emissions mentioned in the context of interiors.

Moreover, HVAC systems are targeted in the studies of Gabbe et al. and
Asere et al. [106,120]. Moreover, Asere et al. are assessing indoor air quality in build-
ings in Latvia with an improved energy efficiency of the buildings. One of the results of
the study is that ventilation systems and air exchange rates could be improved, which
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then on the other hand need more energy and contradict the original intention of energy
efficiency measures [120]. Indoor air pollution is also caused by the interior and building
materials with high emission potential [121]. For example, particle boards that are often
used for furniture or floors are sources of formaldehyde and VOC emissions [122]. Ad-
ditionally, decoration or interior elements such as floors or coatings can cause indoor air
pollution [79,99,123].

3.7. Life Cycle Stages of Constructions

A further result of this RQ presents the assignment of the investigated research articles
to the life cycle stages according to EN 15978 and EN 15084 [71,72].

The standard EN 15978 and EN 15084 classify the life cycle of construction works in
the production stage (A1–A3), the construction stage (A4–A5), the use stage (B1–B7), the
end-of-life stage (C1–C4) and benefits (D).

Figure 11 shows that by far the main life cycle stage addressed within the reviewed lit-
erature can be assigned to stage Use (module B1) with 73 mentions, followed by Operational
energy use (module B6) with 31 mentions, and Construction-installation process (module A5)
with 30 mentions. Life cycle modules Transport (module A4) and Manufacturing (module
A3) are mentioned 23 times. Further important stages are Maintenance (module B2) and
Refurbishment (module B5), as well as Raw material supply (module A1). All other life cycle
modules are addressed 5 times or less.

Figure 11. Addressed life cycle stages within the final sample.
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Transport is the most important air emission sector in Europe [6]. Transport occurs in
different phases and modules during the lifecycle of a building [13,104,124]. It is part of the
production stage (module A2) as transport of raw material to the manufacturing company,
as well as part of the construction stage itself, e.g., for the transport to the construction-
installation process/construction site (module A4). Moreover, it can also be part of the
end-of-life stage of a building, i.e., as the transport needed for delivering the demolition or
de-construction material to waste processing (module C2).

The production stage (module A1–A3) is part of the study of Asim et al., where catalyst
geopolymers as a depolluting alternative to the concrete are studied and discussed [125].
Furthermore, Bossa et al. researched building materials, more specifically photocatalytic
cement, as a possible pollution reduction option in the context of TiO2-nanomaterial re-
lease [95]. The study of Guttikunda et al. addressed air pollution and potential air pollution
control measures for brick kilns with cleaner technology for brick production [126], among
others. Böhm et al. are analyzing formaldehyde emissions from wooden products, i.e.,
solid wood, plywood, flooring, and block board [49]; the emissions were different for
various products but highest in the first week after production for all.

The construction stage (module A4–A5) mainly refers to construction sites and con-
struction work as well as the associated air pollution, especially particulate matter. In the
course of the one-year study by Juda-Rezler et al., construction work is identified as one of
the six main origins of everyday PM2.5 pollution in Poland [127]. Further to this, Ahmed
and Arocho compare PM pollution (PM1.0, PM2.5, PM4.0, PM10) on two construction sites,
one using steel and the other cross-laminated timber [128]. In addition, Guttikunda et al.
are mentioning construction activities as important dust and particulate matter source
(PM10 and PM2.5) within the city of Bengaluru [129].

The most widely addressed modules in the use stage (B1–B7) for the final SLR sample
are B1 as the general use stage and B6 as the operational energy use stage.

Järnström et al. researched indoor air pollution concentrations, and measure VOC,
ammonia, and formaldehyde concentrations during the first year of recently erected res-
idential buildings [130]. Asere et al. have studied the effects of energy efficiency on air
quality during the use stage of a building [120]. Du and Sun analyzed the correlation of
regional characteristics of building heating systems and local air quality in China with
different methods [100]. Among others, Guariso and Sangiorgio examine how the residen-
tial building stock should be renovated in terms of energy, looking to environmental and
economic benefits and targets [131]. Additionally, local (air) pollution in the Italian region
of Lombardia is addressed, as well as energy consumption and heating systems [125]. Do-
minikovic et al. are integrating and applying the aspect of air pollution in their optimization
model for the planning of energy systems in tropical regions [126]. The study shows with
its case study Singapore, that integration of energy systems helps to reduce air pollution
and socio-economic costs of energy supply on the city level. Next to that, energy efficiency
is identified as a part of the measures on the building level [48]. Additionally, Tunno et al.
are looking into the topic of wood smoke during days and nights in Christchurch, New
Zealand, which is, amongst others, a source for PM2.5 concentrations [132].

Besides that, Tong et al. are examining a tool, which helps to quantify impacts of
retrofitting measures for buildings, which help to reduce the problem of air pollution in
Ulaanbaatar in Mongolia [133]. Moreover, Shafique et al. investigate potential benefits
of green roofing on air pollution reduction (in terms of CO2) and CO2-sequestration, and
Karteris et al. are researching benefits for Greek large-scale green roof tops [134,135]. Next
to air pollution by CO2, green roofs, respectively their plants, can absorb also other air
pollutants such as ozone, PM10, or NO2.

Fuller et al. referred to the end-of-life phase (module C1–C4) in the context of air
pollution (PM10 and PM2.5) by examining the demolition works for a chemical factory
building and also a road case study in London [108]. Wu et al. also examined in their
study about dust prevention and control, one construction site out of three in the stage of
demolition [14].
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3.8. Distribution by Indoor and Outdoor Pollution (RQ4)

Air pollution can be divided into indoor and outdoor pollution. In a pie chart, the
proportions are shown and then analyzed in more detail.

Figure 12 presents which kind of air pollution is addressed in the analyzed research
articles. Around half (51%) of the articles are addressing outdoor pollution, almost a third
(31%) of the articles are addressing indoor pollution and a further 14% are addressing
indoor and outdoor pollution.

Figure 12. Classification of articles by indoor, outdoor, and indoor/outdoor pollution.

In several cases, indoor air quality (IAQ) measurements were conducted for differ-
ent materials or building elements such as walls or different laboratory tests to better
understand the functions and developments of indoor air pollutants [94–97,136].

Indoor or outdoor air pollutants were also researched in schools or cities such as
the Yangon City in Myanmar [20,57,63,109,111]. As an example, PM2.5. concentrations in
schools were researched in the studies of Amato et al. and Cancha et al. The use of materials
and their effect on air pollution was measured within the study of Rella et al. [65,66,113].
Furthermore, the studies of Vervoort et al. focussed on a decrease of particulate matter in a
school [27,111]. Wargocki and Wyon show in their study that the indoor (air) environment
in schools matters because it can have a significant effect on the performance of school chil-
dren [62]. Additionally, Yang et al. investigated the concentration of various air pollutants
(CO, CO2, PM10, total microbial count, total volatile organic compound, formaldehyde)
in Korean school buildings. It was shown that furnishings, building materials, and insuf-
ficient ventilation were all sources of bad indoor air quality. Moreover, indoor/outdoor
ratios of air pollution were measured [20]. The study of Kim et al. focussed on indoor air
pollution in the pre-occupancy stage of flats [93]. As a reduction measure for VOCs, the
authors suggested better ventilation within the apartments, and the alternative could be
decomposing agents.

Furthermore, office buildings and their indoor air quality were investigated in several
studies. For example, Ruan and Rim examined two office building case studies in the US
and in China [17]. They measured indoor O3 and PM2.5 concentrations in offices in Los
Angeles and in Beijing and the effect of ventilation flow rates from the outside as well as
the efficiency of filters. Hutter et al. investigated the health implication of office workers in
a new office building. One of the findings was that tris-(2-butoxyethyl)-phosphate (TBEP)
pollution developed mainly from floor coatings (90%), which as a result were removed in
order to reduce health issues connected with this material [65,99].
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3.9. Pollutants Analyzed in the Investigated Research Articles (RQ4)

Air pollutants addressed in the research articles are shown in a pie chart in Figure 13
below. The population of investigated research articles (n = 451) exceeds the number of
identified research articles (n = 161) due to multiple answers.

Figure 13. Overview of addressed air pollutants within the final SLR sample.

Particulate matter (PM) in different sizes can be identified in most of the air pollutants
in the examined research articles. Particulate matter (PM2.5) represents a share of 19%,
Particulate matter (PM10) 14%, and Ultrafine particle (UFP), which is PM < 1, constitute 6%
of the population. With 17%, the category of Others is the second biggest category after
PM2.5, which comprises of, e.g., black carbon, NOx, and SOx. The third-largest group is
represented by Volatile Organic Compounds (VOCs). With 7%, Sulphur dioxide (SO2), Nitrogen
dioxide (NO2), and Carbon monoxide (CO) are addressed with equal frequency. Ozone (O3)
with 6% is mentioned as often as UFP. Ammonia (NH3) is only examined in 7 research
articles, which represents a 2% share of the analyzed research articles. Lead (Pb) represents
2% of the overall research articles and is covered in 7 research articles. In 1% (6 research
articles), No pollutant is addressed explicitly

PM of different sizes in construction sites was addressed in the article of Ahmed and
Arocho, which provides clear confirmation that construction sites emit PM in different
sizes (PM1.0, PM2.5, PM4, PM10) [128]. Saliba et al. investigated PM and its composition
at urban sites in Beirut [137]. The study found that construction debris is also a source of
pollution with fine PM. In the study of Azuma et al., air quality and effects on the health
(building-related symptoms) of office workers in offices were examined, whereby UFP, in
particular, had an effect on building-related symptoms, and VOCs or toluene were linked
with health effects on upper respiratory symptoms [119].

In the study of Liu et al., a structural path analysis was conducted, the authors
looked at the embodied emission of supply chains such as NOx or SO2, where on the
consumption side, construction contributed a larger share to this emission (20–38%) [118].
The construction sector and building materials were among the leading areas regarding
important emissions [90,118].
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4. Discussion

The aim of the study was to gain a comprehensive overview of how the construction
industry contributes to air pollution, where air pollution occurs, and what topic-related
research has been conducted in the various fields of the construction industry—in all
its aspects.

Three main areas were analyzed with the final sample of the SLR. Firstly, the building
level and its life cycle stages, secondly, the construction processes and elements (e.g.,
construction sites and building components), and thirdly, construction materials and the
interiors of buildings. Only one review article of the SLR provides a review of PM air
pollution in the explicit context of the construction industry. PM is a prime focus of this
article with particular emphasis on the health impacts due to PM exposure for construction
workers. The second focus of this study was put on construction dust and especially the
monitoring of construction dust from construction activities [10].

Therefore, the first step was to identify important journals and research fields (RQ1).
Their variety shows the multi- and interdisciplinarity of the research topic (air pollution in
the construction industry), which is rooted in building science, air pollution research, and
environmental research. It is in the nature of that topic that no one single research method
or methodology can be used to cover this diverse field. Therefore, the articles conveyed
a variety of methods and research designs (RQ2) from different disciplines and journals.
Another trend observed was that the number of publications in the field of construction
is rising (RQ1). In geographical terms, most of these papers are published by Chinese
universities. The intense research on air pollution is most probably a reflection of the
attempt that is being made to tackle the huge air pollution problem in China. Chinese
publications are followed by publications originating from the United States.

One research interest of the SLR study was to identify types, activities, and stages of
the built environment or buildings in the current literature (RQ3). The research articles
were assigned to different building types and life cycle modules according to EN 15978 and
EN15804. The analysis showed that most of the reviewed articles addressed buildings (94%
of articles) and that only a small percentage addressed infrastructure (6%). Residential
buildings, office buildings, and educational buildings are the most intensively represented
of the building types addressed. Additionally, construction processes and construction
components were addressed. A classification was thus made in the analysis according to
construction component types. Many of the research articles addressed building compo-
nents (157), construction sites and activities (49), or construction machinery (7). In detail
the components were divided into four sub-categories: (i) building envelope, (ii) building
materials, (iii) interior, and (iv) heating, ventilation, and air conditioning (HVAC) systems.

Particulate matter (PM) in various sizes is among the most frequently addressed air
pollutant in the final sample with 17%, the category Other (this category includes, e.g.,
black carbon or NOx and Sox) being the second largest category after PM2.5. As the
third-largest group, Volatile Organic Compounds (VOCs) can be identified. Air pollutants
can be found indoors, outdoors, and in both. Moreover, indoor pollution articles comprised
almost a third of the final sample and in this light, could be regarded as an independent
(sub) research field. Building materials and interiors both play important roles in this area.

Moreover, one of the implicit set questions is how to improve the situation of air
pollution reduction in the construction industry and furthermore to include air pollu-
tion reduction measures for fulfilling international agreements and policies such as the
Agenda 2030, in order to contribute to sustainable development and transformation of the
construction industry.

In the SLR, the scientific articles were also screened for their connection with different
sustainable development goals (SDGs). Measures for cleaner and better air in the con-
struction industry can be set either on a technical and operational level or on a policy
level. The Agenda 2030 can provide a framework for policy instruments and measures for
transforming the construction industry in the interest of a more sustainable and healthier
built environment. As the SDGs are interrelated and there are systemic interactions among
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the SDGs in the construction industry [138,139], some SDGs and their targets refer to air
pollution. The topic of health is addressed in SDG target 3.9. and is also reflected in the
articles, e.g., through the sick building syndrome or the topic of well-being in buildings,
in schools and offices among others, and in the research field of indoor air pollution and
indoor air quality. Sustainable urbanization and air pollution are addressed in SDG target
11.6 with UN indicator 11.6.2., which for example, includes only PM (e.g., PM2.5 and PM10)
in cities but does not address other relevant air pollutants such as NOx, O3, Pb, or SO2,
although they are relevant air pollutants, as outlined in the Section 3. This emphasizes the
need for tackling the challenge of air pollution in the construction industry especially in
cities and urban areas.

As with other sustainability aspects that need to be taken into account at an early
stage in the construction industry, a holistic and systemic view of the influencing criteria is
also required in connection with the reduction of air pollution, as well as awareness-raising
among the stakeholders involved [140,141]. On a technical and operational level, various
measures within the entire life cycle of a building or even an infrastructure contribute
to ensuring cleaner air and to both healthier people and a healthier planet. Measures
for achieving these goals could be e.g., a reduction of transport activities together with
a better management of construction sites or construction schedules in a city in order
to optimize distances and avoid traffic jams, which can contribute to higher emissions.
Further measures include shortening the distances for the transport of building material
by using local enterprises and services and using regional building materials. Technical
measures and improvements such as the humidification of tires on construction sites
to prevent dust emissions or the optimization of construction site equipment to protect
residents and neighbors from dust and noise can be helpful. One possible measure at
the legal and administrative levels is the increased integration of dust and air pollution
control measures into official tendering and awarding procedures, e.g., the use of hybrid or
electrical construction machinery. Measures can be implemented by different actors such
as construction companies or owners of buildings on the level of cities and communities or
even on policy level on a national or international scale. The international and national
guidelines should be implemented at the regional level by local government or at the
individual level, e.g., by building owners and construction companies.

In addition, the cooperation of stakeholders from science to industry can also be
helpful for the creation of knowledge and the implementation of cleaner air measures.
In this context, the Austrian UniNEtZ project can be pointed out, in which a total of
17 universities co-operate in order to implement the SDGs in Austria [142]. One goal of the
project is to propose an options paper to the Austrian government as a recommendation
for the implementation of various measures to achieve the Agenda 2030 goals.

In this context, all of the 161 screened articles contribute directly or indirectly to
sustainable development. However, none of the articles explicitly mentioned the SDGs.
The results of the SLR show that air pollution is receiving increasing attention in the
scientific community. This is probably due to its environmental, economic, and social
implications. Nevertheless, the number of comprehensive reviews on air pollution in the
construction industry could be increased, for example by examining certain specific aspects
or subtopics such as specific pollutants in different life cycle stages or the linkage of air
pollution reduction measures in general or in combination with greenhouse gas (GHG)
emission reduction measures and emphasizing synergies between these two topics. Several
SLR articles mentioned GHG emissions in the construction industry context [56,63,141].
The relationship between air pollutants and GHG emissions, however, is not quantified
in the SLR papers reviewed. It is striking, however, that the connection between GHG
emission (i.e., CO2-eq.) and air pollution is not addressed.

Finally, it can be shown that in both the SLR articles and in policy, e.g., the Agenda
2030 and its SDG targets, a special emphasis on PM can be identified. Other problematic
emissions and air pollutants, which are also heavily burdening the environment, are
underexposed in scientific literature.
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In this context, the question is whether this is because PM is the most harmful air
pollutant in construction, or because it is one of the easiest to measure and research. An
allocation of air pollution to the construction industry is difficult due to the overlapping
system boundaries. Air pollution itself does not consider the construction industry as a
separate sector but is interwoven in different sectors such as transport, industry, or energy.
It is apparent from the SLR that the formulated RQs are not yet being addressed with great
frequency in specific academic fields and universities, or in specific geographical areas
such as African or South American countries.

Limitations

A thematic limitation of the study and the conducted SLR is that it focuses mainly
on buildings and infrastructure. Literature focusing on other topics such as urban forms,
urban planning, the urban built environment in general, and urban greenery such as green
walls, green roofs or trees, was excluded. Moreover, the effect air pollution has on buildings,
building materials, and the built environment is not yet being addressed. Further articles
focusing on cooking, which also contributes to air pollution, were not part of this literature
review. Additional constraints are shown in Figure 1.

5. Conclusions and Future Perspectives

This article is the first comprehensive overview of the literature specifically on air
pollution in the construction industry and its various aspects. It can be concluded that air
pollution is a relevant environmental issue in the construction industry and in the whole
construction process.

The research field of air pollution related to the construction industry still has a lot of
potentials, because, mostly, only single topics or aspects of “air pollution” and “construction
industry” are treated and investigated in individual articles. According to the SLR, the
number of articles on air pollution in the construction industry has been rising in the last
few years. That the combination of both research issues is a broad field can also be seen in
the variety of the journals addressed. There is not just one overall method or methodology
set to explore this interdisciplinary research area, even if case studies with field experiments
and measurements/method development are most often used in the studies of the final SLR
sample. Residential, office, and educational buildings stand out the most in the category
of building types and particulate matter in different sizes represents the most common
pollutant within the SLR. In addition, one of the results is that both outdoor and indoor air
pollution can be considered important for air pollution, the construction industry, and a
healthy living environment.

The implementation of a systemic view (i.e., the consideration of a set of sustainable
development performance indicators in assessing the appropriateness of air pollutant
reduction measures) involves a crucial increase in complexity. The current (scientific) lack
of reliable data, the choice of meaningful system boundaries, and the current prevailing
reductive thinking approaches of air pollution reduction strategies in the construction
sector are the chief limiting factors from the authors’ point of view.

According to the Austrian Federal Environment Agency, the sectors of industry (34%),
small-scale consumption (21%), agriculture (20%), and transport (18%) are responsible for
the generation of particulate matter. In the small-scale consumption sector, combustion
processes (stoves, heaters) and in the transport sector, the operation of engines (mainly
diesel engines), through brake and tire abrasion as well as dust whirling up on the road
are responsible for the emissions. From the point of view of the construction industry,
emissions from domestic heating (due to old solid fuel heating systems) and construction
sites are particularly relevant.

However, the distinction between the sectors industry and transport, which should
be partially within the system boundary of the construction industry, is unclear. Another
obstacle is the insufficient understanding regarding the relocation of “dirty” technologies
to countries that already are struggling with their bad air quality conditions.
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There are different areas, where measures and activities can be taken to reduce air
pollution within the various stages of a life cycle of a building. Building materials also
influence clean air, especially inside a building. In this way, taking measures against air
pollution and for cleanliness, a decrease of premature mortality and different diseases can
be achieved. With the right measures and policies, (co-) benefits and synergies between
health, climate, air quality, and the environment can be used, and, in this way, the building
occupants can also profit. Appropriate actions can achieve and contribute to various
policy agendas such as the SDGs and their targets. This will require better planning and
management of construction projects and buildings by taking their life cycles and the
built environment into consideration. In addition to this, improved materials that are both
reusable and recyclable, together with thoroughly adequate technologies and approaches
will help us to generate a reduced environmental impact.

Possible ways to give an overview about environmental impacts or to reduce the
impact on the environment are methods such as life cycle assessment (LCA), which can be
integrated as a decision tool in the construction planning process at an early stage. Green
and sustainable public procurements policies, which consider social and environmental
criteria and make every effort to avoid negative social and environmental impacts should
be considered and implemented from the beginning of the life cycle.

Furthermore, it is important to integrate findings from different disciplines to provide
a holistic view of sustainable construction practices and construction materials for clean
air and to avoid air pollution in the future. To these terms, the construction industry can
contribute cleaner building practices and help to achieve cleaner air.

In this context, the key remaining question will be how to create a systemic under-
standing of air pollution effects (induced by the construction sector) across all 17 SDGs.
Therefore, and as a basis, the consideration of transdisciplinary effects within the policy-
making process is of particular importance in order to raise awareness between various
sectors and stakeholders.
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Abstract: In this paper, we assess the extent of environmental pollution in terms of PM2.5 particulate
matter and noise in Tikrit University, located in Tikrit City of Iraq. The geographic information
systems (GIS) technology was used for data analysis. Moreover, we built two multiple linear
regression models (based on two different data inputs) for the prediction of PM2.5 particulate matter,
which were based on the explanatory variables of maximum and minimum noise, temperature,
and humidity. Furthermore, the maximum prediction coefficient R2 of the best models was 0.82,
with a validated (via testing data) coefficient R2 of 0.94. From the actual total distribution of PM2.5
particulate values ranging from 35–58 μg/m3, our best model managed to predict values between
34.9–60.6 μg/m3. At the end of the study, the overall air quality was determined between moderate
and harmful. In addition, the overall detected noise ranged from 49.30–85.79 dB, which inevitably
designated the study area to be categorized as a noisy zone, despite being an educational institution.
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1. Introduction

Air pollution is one of the major issues plaguing the world today, which highly
correlates with vast industrialization, in addition to the already existing particulate matter
pollutants [1–3]. There are a variety of air pollution compositions, but the majority contain
PM2.5 and PM10 particulate matter. PM2.5 in particular (with a diameter of 2.5 μm), has
been shown to be harmful to humans based on several epidemiological studies [3–6]. Due
to this, experts put an emphasis on PM2.5 when performing air quality monitoring.

In general, particulate concentration measurements are done by dedicated monitoring
stations that are geographically dispersed [7–9]. Jumaah et al. [10] found such disper-
sions to be problematic as insufficient samples might be collected to come up with any
meaningful analysis. This is supported by Zhao et al. [11] and Hsu et al. [12], where
both assert the importance of more comprehensive area coverage to allow reliable and
continuous sampling.

In addition to location, gauging pollution levels in the chronological structure of a
particular pollutant, such as PM2.5, is highly influenced by atmospheric factors and noise.
Studying the influence or correlation of such variables on particulate matter can provide
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insights for better pollution monitoring [13]. The work in [14], for instance, asserts that the
correlation between particulate matter and traffic noise should be looked into for better air
pollution insights. This is supported by [15], where their work demonstrated how various
air contaminants along with noise led to worsened air quality. In addition to traffic (as the
main cause of noise pollution), weather can be an influential periodic factor that produces
seasonal variations of noise [16].

1.1. Noise Pollution Mapping

Chandrappa and Das [17] define noise as undesired sound. As of 2016, the World
Health Organization (WHO) puts noise contamination as the third greatest environmental
contamination after air and water [18]. Studies have shown the adverse impacts of noise on
human health, such as being destructive to human hearing [19]. Therefore, it is sensible to
reduce (or even eliminate) unnecessary noise for the overall well-being of humanity [20,21].

Advancements in noise pollution mapping has facilitated in noise pollution assess-
ment. Since such maps display the spatial distributions of noise, one can map noise at
different times of the day such as in the morning, mid-day, evening, and night [22]. This
allows researchers and authorities to evaluate locations containing possible noise pollutions
and decide on necessary actions. One practical application is the analysis and assessment
of traffic noise contamination [23]. In other research, noise mapping is performed through
interpolating data from different monitoring stations where noise pollution can then be
assessed through equivalent sound pressure data [24]. An example of such work was done
by Harman et al. [25] where the noise map of Isparta city was generated using inverse
distance weighted (IDW), Kriging, and multiquadric interpolation methods using various
parameters. Location-wise noise analysis was then assessed based on national environmen-
tal noise thresholds. The most applied methodology has always been getting information
on the features of various sample points as much as possible in the particular geographic
region, as well as predicting the value of the unobserved point from the value of the known
point over spatial interpolation [26].

1.2. Geographical Information Systems (GIS)

Environmental modeling possesses significant history and progress, and has many
applications in problems related to ecology [27]. Urban ecological problems relate to study-
ing wide areas that take advantage of geographical information systems (GISs) [28]. GISs
are able to incorporate various information sources allowing data interpretation through
various modeling and visualization techniques [29]. Hence, GISs can be considered de-
cision support systems for the relevant authorities to perform assessments and decision
making [30–33]. The use of spatial modeling and statistics has risen up-to-date [34]. Multi-
ple new techniques for the statistical assessment and model patterns have been developed
currently [35]. For example, modeling air quality is helpful in air pollution problems
controlling [36].

In this study, we evaluate air quality and determine noise distributions in silent zones
inside Tikrit University, Tikrit, Iraq. Building upon GIS techniques, we apply the least-
square model to investigate the impact of noise and meteorological factors on air pollution
and PM2.5 prediction. Specifically, the correlation between noise with climatic parameters
(i.e., as independent variables) is examined in a multivariate regression model for the
PM2.5 particulate quantity estimation. Our data consist of daily manually measured data
around Tikrit University (during July 2019) as well as NASA satellite remotely sensed data
of PM2.5. The month of July is characterized by high temperatures throughout Iraq, and
the university is devoid of students. Therefore, it is possible to determine the extent of
noise pollution with the least amount of sound and the extent of the impact of atmospheric
factors at peak times. Moreover, we can determine the extent of noise from the university’s
surroundings. We expect this study to offer insights for the proposal of future air quality
management protocols in the study area and the city of Tikrit.
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2. Materials and Methods

2.1. Study Area

Tikrit University is chosen as the study area. It is located in Tikrit city, situated in the
Salahuddin province of Iraq, which is 155 km from the capital city of Baghdad [37]. The
study area (Figure 1) lies between 43◦38′56.4′′–43◦39′35.5′′ E and 34◦40′33.3′′–34◦41′2.4′′ N.
The main goal of this study is to evaluate the environmental impacts of air and noise
pollution occurring inside the university area. Tikrit University is selected due to the fact
that it is an important educational region.

 

(a) (b) 

 

(c) 

Figure 1. The Tikrit University study area. (a) Map of Iraq; (b) map of Salahuddin; (c) map of
University of Tikrit.

2.2. Data Acquisition and GIS Techniques

Measurements were taken along the study area, which consist of the following:

1. PM2.5 particulate mass (μg/m3). Source: NASA Worldview data;
2. Maximum and minimum noise (dB);
3. Humidity percentage;
4. Temperature (◦C).

The overall amassed dataset was then processed using ArcGIS10.3. Two methods
were used to represent the data distribution, namely the IDW and least square modeling
(LSM). Figure 2 shows the details of data acquisition/data types, along with the measuring
devices that were used (i.e., mini sound meter and air quality multimeter).
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(a) 

  

(b) (c) 

Figure 2. Data acquisition details. (a) Left to right—mini sound meter and air quality multimeter;
(b) the field dataset distribution; and (c) the remotely sensed PM2.5 data.

In this study, noise levels were measured using the mini sound meter. Fieldwork in-
volved measuring the maximum noise and minimum noise pollutions inside the university
and surrounding areas, which were conducted throughout July 2019. For each sampling
site, noise measurements were continuously taken for 30 days. The data collected from
each location were processed for statistical analysis.

The data that belong to noise pollution are shown in Figure 2b, which depict the
average values of maximum and minimum noise levels in the silence zone of Tikrit city at
various time intervals (i.e., 9:00 a.m., 11:00 a.m., 2:30 p.m., and 4:30 p.m.). Weather data
(temperature and humidity) were measured by the air quality multimeter. To validate our
results, historical data of PM2.5 levels were obtained from air matter, which was provided
by the Global Air Quality Service Provider and downloaded from https://air-matters.com/
(accessed on 20 September 2019).

To assess and evaluate the influence of noise and air pollution, the IDW interpolation
technique was employed. This method was chosen due to its suitability in flat lands where
there is uniformity between the variables. As IDW is a statistical technique, each known
point is assumed to affect the magnitude of unknown points. Therefore, the values of
points near the known points can be calculated [4,38]. Note that the unknown points’
values can be deduced, but with the risk of low accuracy. This is due to the fact that values
of converging points searched by IDW can vary significantly. Therefore, interpolated point
values were collected in small and closely adjacent areas, ensuring higher point distribution
accuracy. The equation for IDW and estimation of z at (x) can be written as Equation (1):

ẑ(x) =
∑n

i wizi

∑n
i wi

(1)
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where zi denotes the control value for the ith sample point, and wi is a weight that defines
the relative importance of the specific control point zi in the interpolation process [30]. The
IDW analysis is generated based on the concept of spatial dependence making it a reliable
interpolation process for air pollution status prediction. IDW also measures the ratio of the
dependency relationships between adjacent and discrete features and specifies the result of
the cell in the segment that requires metadata.

After performing IDW, two empirical linear models are applied to the results where
the first model is constructed based on 100 points from the field data, whereas the second
model is constructed based on remotely sensed PM2.5 data. As for the image properties,
moderate resolution imaging spectroradiometer (MODIS) images were downloaded at a
30 m resolution per pixel, since 7 July 2019 with WGS 84 projections.

2.3. Linear Regression

Linear regression is a statistical prediction technique that models the linear depen-
dence/relationship between a variable with other variables (known as explanatory vari-
ables). Based on training/observed data, a linear fit (i.e., the linear model) is estimated
through an iterative process of parameter/coefficient updates. These parameters are up-
dated based on the concept of error reduction between each iteration’s predicted value
(i.e., hypotheses) and the respective known value in the dataset. Once the overall error
is minimized, the linear model is considered converged and ready to be deployed. The
model we generated correlates PM2.5 to the noise and weather data (i.e., the two explana-
tory variables) to predict PM2.5 values in the specified region inside the university. This
means that the model takes in as input, real-world (previously unseen by the model during
training) values of the explanatory variables to estimate the PM2.5 response. If the purpose
is to interpret the changes in the response features that can be related to changes in the ex-
planatory features, linear regressions can be used to determine the power of the correlation
within the dependent and the explanatory features. Moreover, particularly to ascertain if
some of the explanatory features may not have a linear relation with the response ever or
to distinguish if any subset of explanatory features may include irrelevant information of
the response [39].

Since we consider two explanatory variables (factors), the multiple linear regression
(least-squares) is used. Additionally, we used Cook and Weisberg [4], Weisberg [40], Sen
and Srivastava [41], and Jumaah et al. [42]. The multiple least-squares regression can be
represented by Equation (2).

zi = β0 + β1 x1i + . . . + βk xki + ε (2)

where i represents a point location, zi is the estimated factor at i, x1i . . . xki are the explana-
tory factors at i, β0 is the intercept term, β1, . . . , βk are the factor coefficients, and ε is the
error term.

3. Results

3.1. Resultant Distribution Maps

We generated the map for the PM2.5 distribution in the study area and the PM2.5 con-
centration (as air quality evaluation) was in the range of moderate to unhealthy/harmful.
Figure 3a,b shows the PM2.5 distribution maps in Tikrit University, indicating field dataset
values between 35.01 to 58 μg/m3. Moreover, the satellite imagery distribution validated
this dataset, which ranged between 38–58 μg/m3.
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(a) 

(b) 

Figure 3. The PM2.5 distribution maps in Tikrit University. (a) Field measurements distribution;
(b) remotely sensed PM2.5 distribution.

The analyzed noise dataset is subsequently mapped to visualize clusters that exhibit
different levels of noise (in dB). Two maps of maximum and minimum noise distributions
were produced for Tikrit University, as shown in Figure 4.

78



Sustainability 2021, 13, 9571

(a) 

(b) 

Figure 4. Noise distribution maps in Tikrit University. (a) Maximum noise distribution map; (b) min-
imum noise distribution map.

It is important to note that these maps were produced through field measurements at
pre-defined sites. Maximum noise levels ranged from 53.20–85.79 dB. In particular, higher
maximum noise was observed at location points 48, 76, 77, 78, 79, and 88. Point 48, for
example, is near the engineering college laboratories, where loud noise can be due to the
electrical generator present in the premises. Points 76 and 77 are near a pharmacy college
and a restaurant. Point 78 is located at the sub road between the pharmacy and the science
colleges, where a generator set is accompanied by road noise. Points 79 and 88 are near the
science colleges. Some collected points are positioned near the abandoned buildings in the
university, which might explain why low maximum noise levels were recorded at these
locations (i.e., points 41 and 42).
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Minimum noise levels were recorded between 49.30 and 75.09 dB. Higher minimum
noise levels were recorded at locations 94, 106, 107, and 108. For point 94, the louder
minimum noise is due to its location near construction laboratories. Point 106 is on the
main road of the university. Point 107 was in the sub-road between the veterinary and
science colleges. Point 108 is located near the sports hall and education college lecture
rooms. Low minimum noise levels are noticed at points 24, 38, 41,42, 43, and, 44, which
were in open space areas and near abandoned buildings.

3.2. Generated Regression Maps

The regression results and model performance are shown in Figure 5. This figure
presents the PM2.5 prediction maps at Tikrit University.

(a) 

(b) 

Figure 5. The PM2.5 prediction maps at Tikrit University. (a) PM2.5 prediction map based on field
dataset; (b) PM2.5 prediction map based on remotely sensed data.

The multiple linear regression model estimates the dependent factor (i.e., PM2.5
particulate mass) from the explanatory variables, in this case: Noise and meteorological

80



Sustainability 2021, 13, 9571

parameters. The PM2.5 predicted values ranged between 34.9 and 48.1 μg/m3 based on
100 measured points in the study area. On the other hand, the predicted PM2.5 values based
on satellite imagery ranged between 38.8 and 60.6 μg/m3. Table 1 shows the regression
statistics and Table 2 shows the modeling synopsis outputs.

Table 1. The regression statistics.

Regression Statistics Based on the Field Dataset Based on Remotely Sensed Data

Multiple R 0.71 0.90
R Square 0.51 0.82

Adjusted R Square 0.49 0.82
Standard Error 3.22 2.21

Observation 100 100

Table 2. The modeling synopsis outputs.

Modeling
Synopsis

Based on the Field Dataset Based on Remotely Sensed Data

Coefficients (C) p-Value Coefficients (C) p-Value

Intercept (I) −21.741 0.051 −49.732 2.76 × 10−9

Humidity 0.455 4.14 × 10−5 0.750 3.32 × 10−17

Temperature 0.764 0.002 1.118 1.3 × 10−9

Noise max 0.036 0.542 0.127 0.002
Noise min 0.350 2.04 × 10−9 0.450 1.46 × 10−21

From Table 1, Multiple R refers to the correlation coefficient of the estimated equation.
This output is equal to 0.71 and 0.90 for field dataset and remotely sensed data, respec-
tively. Previous studies indicate that a good correlation has a Multiple R value of 0.70
or greater [43]. R square (R2) values are 0.51 and 0.82, respectively for field dataset and
remotely sensed data. R2 refers to the variance ratio for PM2.5, which is explained by the
other parameters in the regression equation. In our study, the remotely sensed data show
more potential in variance interpretation between variables, where the model correlates
PM2.5 to the noise and weather data to predict PM2.5 values in the specified region within
the university area. The Adjusted R squared is similar to R2, but adjusted for the number
of predictors in the regression model. The Standard Error is the average estimation error of
the model.

One of the synopsis outputs in Table 2 is the p-value. In our work, we determined that
a variable’s p-value must not exceed 0.05 or that particular variable will be excluded from
the model (i.e., deemed statistically insignificant). As a result, the Noise max variable is not
included in the regression equation for the field dataset, as expressed in Equation (3), but
included in the equation for the remotely sensed data (Equation (4)). On the other hand,
each coefficient isolates the role of the respective variable from all of the other variables. The
intercept term is simply the y-intercept where the fitted regression line crosses the y-axis.

PM2.5 Predicted = −I + CH × H + CT × T + CNmin × Nmin (3)

PM2.5Predicted = −I + CH × H + CT × T + CNmax × Nmax + CNmin × Nmin (4)

where I is the intercept term, CH is the humidity coefficient, CT is the temperature coeffi-
cient, CNmax is the maximum noise coefficient, CNmin is the minimum noise coefficient, H is
humidity, T is temperature, Nmax is the maximum noise, and Nmin is the minimum noise.

3.3. Validation

Figure 6a,b shows the linear regression model generated using the field and remotely
sensed datasets, respectively. For Figure 6a, the resultant R2 based on the field dataset
is 0.51. This indicates a low description of the variability, i.e., 51% as the maximum. On
the other hand, the R2 based on remotely sensed dataset is 0.82, indicating a maximum
variability description of 82%, which also indicates higher prediction prowess.

81



Sustainability 2021, 13, 9571

 

(a) 

 

(b) 

Measured PM2.5 g/m3 

Pr
ed

ic
te

d 
PM

2.
5 

g/
m

3  

Remotely Sensed PM2.5 g/m3 

Pr
ed

ic
te

d 
PM

2.
5 

g/
m

3  

Figure 6. Validation. (a) Validation by measured points; (b) validation by remotely sensed points.

3.4. Model Testing

We present the model testing results for both datasets, as shown in Figure 7. R2 were
0.91 and 0.94 for the model based on field data and model based on the remotely sensed
points, respectively. The results indicate that both models fit the test data well and fall
within the confidence range.
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Figure 7. Model testing. (a) Testing of measured points; (b) testing of remotely sensed points.

4. Discussion

Based on both validated models (Figure 5a,b), the predicted PM2.5 levels were between
34.9–48.1 μg/m3 and 38.8–60.6 μg/m3, respectively. This indicates moderate to harmful air
quality (as suggested by the model based on field data) and harmful to unsafe (as suggested
by the model based on remotely sensed data). Although both models differed slightly in
the predicted values, the air quality seems to be within an unsafe and non-standard safety
level, as mentioned in [44,45].

The model in Figure 5a had a low maximum accuracy of 51% obtained by field data
fitting. However, increasing the sampling can potentially increase the accuracy. On the
other hand, the fitting for the model based on remotely sensed data had a maximum
accuracy of 82%. This study tried to attain, at least, a minimum correlation of the noise in
the PM2.5 prediction.

The geospatial analysis by GIS technology is one of the important and effective
methods for determining emissions of pollutants into the air. At the heart of statistical
processes, the regression and estimation models are decision-making tools [46].

This study also looked at noise pollution. Environmental noise in Tikrit University
was measured and then compared with the recommended health standards from WHO.
Figure 4 shows that overall maximum noise levels ranged from 53.20 to 85.79 dB, while
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minimum noise levels were from 49.30 to 75.09 dB. Note that the WHO guidelines state
that noise pollution occurs when levels are above 65 dB [15]. Moreover, according to [47],
silent zones should not exceed 45 dB. Based on these standards, the results clearly show
that the University of Tikrit is categorized as noisy, which is opposite to what a university
should be (i.e., a silent zone). Based on conclusions derived from [48,49], university noise
levels should be within 35–45 dB. Our findings are crucial as high nose levels can cause
non-auditory impacts on students, lecturers, and others alike [50]. Moreover, this can lead
to attention deficits and impaired learning and communication [51]. The overall outcomes
on noise pollution in different areas of Tikrit University indicate that noise levels were high
in the different sampling locations. We posit that this was due to the relevant surrounding
activities involved, large number of motor vehicles, and the existence of generators.

5. Conclusions

Undoubtedly, air and noise pollution have harmful effects on human health. However,
they are unavoidable environmental elements in most urban settings. Researchers are
now actively measuring and analyzing both pollutions to gain insight on the causes, as
well as to possibly propose solutions where possible. Remotely sensed information and
distribution maps can be useful tools for such tasks.

In this paper, air (PM2.5 particulate matter) and noise pollutions are investigated.
Specifically, two multiple linear prediction models are generated based on PM2.5 particulate
matter measurements and environmental variables (i.e., humidity, temperature, maximum
noise, and minimum noise). This study applied the IDW technique and regression analysis
based on field measurements and remotely sensed data. Both trained regression models
indicate that the PM2.5 particulate and noise pollutions are at undesirable levels in Tikrit
University, which could lead to negative consequences if not mitigated. Moreover, and
worryingly, this study designated the university as a noisy zone, rather than its supposed
designation of being a silent zone.

In terms of the generated linear models, the remotely sensed data-based model had a
higher validation accuracy at 82%. Furthermore, model testing showed a 94% accuracy.
However, the final prediction values did not differ significantly from the field data-model
(at 51% accuracy and 91% testing accuracy).

In conclusion, we believe that mitigative measures can be taken to decrease noise
pollutions through planting more trees on both sides of the roads, proper maintenance of
the roads, and ensuring that road pavement is based on standard specifications. Moreover,
the electrical generators can be covered by silencers to further reduce noise.
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Abstract: Based on the PM2.5 haze data of China’s provinces between 2004–2016, this paper
systematically explores the impact of haze pollution on the quality of China’s economic development,
as well as its transmission mechanisms. This is achieved by measuring the quality of economic
development with total factor productivity. Furthermore, this paper innovatively uses precipitation
as an instrumental variable for mitigating the endogeneity of the haze pollution variable, by which
the impact of haze pollution on the quality of China’s economic development is estimated within the
framework of two-stage least squares. It is found that: the haze pollution has degraded the quality of
China’s economic development significantly; the labor supply loss, counter urbanization and human
capital disruption are the three major transmission channels through which haze pollution affects the
quality of China’s economic development; strengthening government’s environmental management
is effective in mitigating the adverse impact of haze pollution on the economic development quality;
and that China’s unique fiscal decentralization system has exacerbated the negative economic effect
of haze pollution. The policy implications of this paper are as follows: Improvement of economic
development quality is a prerequisite for the transition of economic development mode; and the
governmental management of haze is conducive to enhancing the quality of atmospheric environment
and economic development, and to promoting the high-quality development of the Chinese economy.

Keywords: haze pollution; economic development quality; environmental management; PM2.5
concentration

1. Introduction

Since the reform and opening up policies were implemented, China’s economy has grown
continuously at a high pace for many years, with its economic aggregate leaping up to become the
world’s second largest. In terms of per capita income, China has also been ranked as a middle- and
high-income economy. Nevertheless, the extensive rapid growth over the years and the traditional idea
of GDP predominance have also led to a series of problems in China’s economic growth, such as input
factor wastage, low economic efficiency and severe environmental pollution. In particular, the quality
of atmospheric environment has declined, and the occurrence of haze has become frequent. In 2013, the
“haze from all sides” spread to more than 100 large- and medium-sized cities in 25 provinces, which has
threatened people’s daily lives severely. In the 2018 Global Environmental Performance Index rankings,
China ranked 120th among 180 countries and regions. What is worse, the air quality indicator for China
ranked fourth from the bottom. In the meantime, China’s economic growth rate has fallen to around
6% since 2012, signaling a transition towards a stage of high-quality development. Consequently,
the conflicts between economic growth and environment have become ever more complicated and
fiercer. The severe haze pollution is the red flag raised by nature towards the extensive growth mode
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that has been utilized. The only way of improving the environment and enhancing the quality of
economic development is to thoroughly manage various forms of environmental pollution like haze.
Its significance not only lies in the haze itself, but is also linked to the fundamental transformation
of the economic development mode and sustainable high-quality development in China. This paper
attempts to answer the following key questions that have not yet been well answered: Did China’s
aggravating haze pollution harm the quality of its economic development, and what is the mechanism
behind it? Can a win-win be achieved for environmental and economic dividends? Beyond doubt, the
answers to these questions are of profound theoretical and practical significance for China to achieve
the sustainable development path of ‘valuing both the economy and the environment’.

Concerning the relationship between economic development and environmental pollution, the
majority of extant literatures have focused on the unidirectional relationship of how economic
development affects environmental pollution by using the Environmental Kuznets Curve (EKC) model
as the main framework, while the reverse impact of environmental pollution on economic development
has scarcely been studied [1–5]. As a matter of fact, economic growth and the environment constitute a
large interactive system, so it is possible that the environmental degradation affects economic growth
as well. Lopez [6] regarded the environment as an important factor for production input. According to
the Report on Losses from Environmental Pollution in China released by the World Bank in 2007, the
losses arising from air and water pollution in China were equivalent to 5.8% of its actual GDP that
year. An empirical study covering 59 countries by Despina Giannadakia et al. [7] revealed that cutting
agricultural emissions by 50% each year could reduce 200,000 deaths, especially in Europe, Russia,
Turkey, the United States, Canada and China. This was accompanied by billions of dollars in economic
benefits. The research on the economic consequences of environmental pollution has concentrated
on the impact of pollution on residents’ health [8,9]. In contrast, there are few literature articles on
the impact of environmental pollution on economic development, and those on the impact of haze
pollution on economic development are even more scarce [10]. According to Zhang et al. [11], haze
pollution produces a tremendous negative impact on stock returns through the emotional channels of
investors. A static model-based estimation by Jibo et al. [12] showed that the indirect economic losses
caused by haze pollution in Beijing to the transportation sector amounted up to 23.7 million yuan in
2013. In light of this, the present paper carries out a systematic empirical investigation around the
impact of haze pollution on the economic development quality and its relevant mechanism based
on the provincial panel data of China between 2004–2016. This is achieved by taking the total factor
productivity as a measure of economic development quality, and by characterizing the degree of haze
pollution with satellite-monitored PM2.5 concentrations. To be specific, the marginal contribution of
this paper is reflected in the following three aspects: First of all, unlike most research which examined
the impact of economic development on haze pollution, this paper systematically studies the impact
of haze pollution on China’s economic development, and reveals the importance of environmental
surveillance and management, thereby offering an empirical evidence for local governments who seek
a win-win between environmental protection and economic growth. Secondly, a major challenge in
exploring the impact of haze pollution on China’s economic development is endogeneity. In rainy
and snowy weathers, haze pollution tends to decline prominently. Meanwhile, both the rainfall and
snowfall are determined by meteorological system and are well exogenous. Accordingly, this paper
innovatively uses the annual precipitation converted by rain and snow as an instrumental variable of
haze pollution, in order to mitigate the potential endogeneity problem. Thirdly, despite the discussion
on the extent of harm caused by air pollution to the economic development, Yu Hao [10] failed to
analyze the specific path via which the haze pollution harmed the quality of economic development.
After a review of extant literature, this paper puts forward that the air pollution affects economic
development mainly through the “labor supply loss effect”, “counter urbanization effect” and “human
capital disruption effect”, thereby enriching the theoretical literature on the economic consequences of
environmental pollution.
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The reminder of this paper is organized as follows: Section 2 reviews the literature and
proposes research hypotheses; Section 3 presents the econometric models and relevant variables;
Section 4 analyzes the empirical results; and Section 5 summarizes research conclusions and
policy recommendations.

2. Literature Review and Hypothesis Formulation

Unregulated pollutant emissions affect the economic growth in two ways. One way is to give
play to the natural environment’s role of absorbing and depositing wastes. Where other input factors
are given, the economic establishments can increase their output level through depletion of the natural
environment, thereby bringing about an overall positive impact on economic growth. The problem is
that although individual economic establishments can improve their output by increasing pollutant
emissions, the ongoing accumulation of emissions will reduce the environmental carrying capacity of
the entire society continuously, as well as the quality of the natural environment. This will eventually
bring about negative externalities to the output or quality of various economic establishments, and
even the macroeconomy. The ultimate impact of such unregulated pollutant emissions on economic
development depends on the relative changes between positive and negative effects. Specific to haze
pollution, its negative impact on economic development has been discussed in the extant literature
covering at least three aspects. Firstly, air pollution harms the health of individuals and lowers the
supply of labor. Secondly, haze pollution reduces the attractiveness of cities significantly, thereby
limiting the effective exertion of the urban agglomeration effect and ultimately slowing down economic
development [13]. Thirdly, haze pollution damages the accumulation of human capital, which is one
of the foremost drivers of economic development. Thus, clearly, haze pollution can also suppress
economic development by slowing down human capital accumulation [14]. In view of this, this
paper analyzes the specific transmission mechanisms whereby haze pollution affects China’s economic
development quality from the perspectives of labor supply, urbanization and human capital.

2.1. Air Pollution and Loss of Labor Supply

Air pollution has been proven by extensive pathological and sociological studies to have a variety
of negative effects on human health, such as shortening average life expectancy [15], increasing
morbidities of respiratory diseases and lung cancer [16] as well as causing more premature deaths
amongst the working population [17–19]. Therefore, air pollution may reduce the supply of labor by
harming human health. As early as in 1983, Bart conducted a quantitative research on relevant U.S.
data by employing the ordinary least squares model. He claimed that for every 10% increase in total
suspended particulates in the air, the number of lost labor days increased by 4.4%. Utilizing the same
data by controlling the inter-city differences, Hausman et al. [20] reported that the number of lost labor
days increased by 0.1 for each standard deviation of particulate pollutants. Based on the observation of
the external pollution variation resulting from the shutdown of a large Mexican oil refinery, Hanna and
Oliva [21] calculated the SO2 levels as the pollutant. They concluded that the closure of the refinery
has led to a pollution reduction in the surrounding communities by 19.7%, as well as an increase of
weekly working time by 1.3 h (3.5%). Bosi [22] studied the short- and long-term effects of pollution
in the Ramsey model. They determined the sufficient conditions for the existence and uniqueness of
long-term equilibrium based on an argument that the “pollution and labor supply are inseparable
in household preferences”. Furthermore, through the flip branch research model, they proved that a
tremendous negative impact of pollution on labor supply would cause macroeconomic fluctuations,
thereby providing a theoretical basis for the eco-friendly fiscal policies. Carson et al. [23] found from
a survey of 4259 households made by the Bangladesh Bureau of Statistics in 2000 that in rural areas
with severe arsenic exposure, the labor supply level was 7.9% lower than that in non-exposed areas.
Aside from damaging the health of laborers themselves, the long-term exposure to severe air pollution
may also compel the adult laborers to spend more time caring for infected children and elders, thereby
resulting in an increased absenteeism and shortened working hours. Kim et al. [24] studied the
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medium- and long-term effects of air pollution on labor supply based on a natural experiment of the
1997 Indonesian forest fires. They found that the exposure to air pollution shortened the working
hours of laborers, and that the parents with children were more prone to working hour reductions
during severe pollution incidents. In addition, the medium- and long-term effects of pollution were
more drastic. Hence, haze pollution may reduce the labor supply in heavily polluted areas, thereby
endangering the quality of economic development.

2.2. Air Pollution and Counter Urbanization

Tending to benefits and avoiding harms are an instinctual stress response of living organisms.
During the 1960s and 1970s, severe haze pollution broke out in the Los Angeles area of California,
United States. After the 1970s, the state government decided to implement a haze removal plan,
which resulted in a significant increase in population with the reduction of haze, especially in the
underprivileged districts. On the one hand, the settlement of haze problem enhanced people’s
residential willingness remarkably, thereby lowering the population outflow rate. On the other hand,
the demand for labor increased, and the number of immigrants grew accordingly, so that the area
turned from a population outflow region into an inflow region. This implies that people can avoid
harsh living environments through migration. With continuous intensification of urban environmental
pollution, some susceptible people in poor physical conditions have chosen to leave the heavily
polluted cities, since they were worried about the pollution-induced health damage. Chen et al. [25]
examined the migration effect of air pollution from an emigration place perspective. Based on the
China census sampling data, they calculated the population emigration rate at the county level, who
found that the air pollution promoted the outflow of population. A research based on city-level
data by Qin and Zhu [26] confirmed that the frequency of people searching for immigration via the
Internet was elevated during periods of exacerbated air pollution. Unlike the foregoing studies which
were from the perspective of emigration to another place, Kahn [27] investigated the impact of air
quality on population growth by utilizing the California county-level sample data. They found that
the improvement of air quality led to a substantial regional inflow of immigrants, as well as a rapid
growth of population. Urbanization, as a major force driving the improvement of economic quality,
has effectively reduced the surplus rural labor, thereby providing sufficient labor for the development
of manufacturing and service industries while enhancing the efficiency of agricultural production,
which has ultimately driven the overall economy forward. Haze pollution, however, has lowered the
attractiveness of cities. As a result, the migrants’ willingness to stay declined, which further limited
the effect of increasing returns to urban scale and the agglomeration effect, ultimately slowing down
economic development [13].

2.3. Air Pollution and Human Capital Disruption

Air pollution increases the probability of labor migration, and when making migration decisions,
highly qualified laborers are more sensitive to air pollution. This is attributable to the wider choices
and job alternatives offered to these laborers. So they can bear the economic consequences of leaving
the workplace temporarily or reducing working hours when faced with the dangers of air pollution.
In contrast, low-quality laborers have a lower human capital reserve, which reduces the flexibility
of their work choices. Therefore, they will not easily quit existing jobs even in the face of severe air
pollution. Cole et al. [14] found that the high-skilled employees had a stronger ability to avoid air
pollution, who were capable of bearing the corresponding switching costs, and were more inclined to
work in the low polluted industries or regions. As a result, highly polluted cities can hardly retain
high-skilled employees. In fact, some companies already tried to prevent the outflow of employees
by increasing their medical insurance expenses and paying additional “welfare subsidies” for air
pollution [28]. Additionally, air pollution damages the health of individuals, which traps them into
negative emotions to weaken their creativity and work motivation, thereby reducing the output
capacity of human capital. Targeting the Chinese manufacturing firms between 1998–2007, Fu et al. [29]
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estimated the impact of air pollution on the corporate output per capita by using the IV method.
Furthermore, they explained the mechanism whereby air pollution suppressed the corporate output
per capita from the perspective of internal production relationships. Human capital is one of foremost
factors promoting the improvement of economic quality, especially with the consideration that the
economic development has fully entered the era of the knowledge economy. Haze pollution may be
notably detrimental to the accumulation of local human capital.

Based on the above analyses, this paper proposes that the haze pollution hinders the sustainable
development of economy through the “labor supply loss effect”, “counter urbanization effect” and
“human capital disruption effect”.

3. Model Building and Indicator Selection

To investigate the impact of haze pollution on the quality of China’s economic development, this
paper builds the following benchmark regression model:

TFPit = a0 + a1PM2.5it + a2Densityit + a3FDIit + a4Innovit + a5Indusit + γi + μt + εit. (1)

3.1. Dependent Variable

Where TFP stands for total factor productivity of economy, and is used for measuring the quality
of economic growth. The core of economic growth quality is efficiency. The economic total factor
productivity has been recognized universally as a proxy variable. Organizations like the World Bank
and the OECD have also listed total factor productivity as a crucial referential indicator for studying
the quality of China’s economic growth. Based on the DEA-Malmquist index model, we calculated the
economic total factor productivities (TFPs) of various provinces over the studied years using DEAP
2.1. In this paper, the capital (unit: 100 million yuan), labor (unit: 10,000 people) and total energy
consumption (unit: 10,000 tons of standard coal) were selected as the input variables. Meanwhile, the
regional total output value (unit: 100 million yuan) was chosen as the desirable output; and the total
discharge of industrial waste water (unit: 10,000 tons), total discharge of industrial waste gas (unit:
100 million cubic meters) and generation of industrial solid waste (unit: 10,000 tons) were used as the
undesirable outputs.

3.2. Core Explanatory Variable

PM2.5it denotes the PM2.5 concentration of a certain province i in the year t, which was used for
measuring the level of haze pollution. As its coefficient a1 measures the impact of haze pollution on
the economic development quality, it is the kernel parameter of concern in this paper. After controlling
a series of regional characteristic variables, if a1 remains significantly negative, it indicates that the
haze pollution will degrade the quality of economic development, and vice versa. In addition, this
paper also controls the regional and temporal fixed effects, in order to further alleviate the biases of
missing variables. Finally, εit represents the error term. Regarding the haze pollution data, unlike
the conventional haze pollutants like SO2, CO2, CO, TSP, API and PM10 used in the majority of the
literature, this paper selects PM2.5 for empirical research, which is the culprit for haze pollution that
is attracting the most attention from all sectors of society. This not only supplements the existing
literature, but also contributes to the current policy discussions on haze pollution.

3.3. Control Variables

With reference to the extant literature, this paper also adopts four control variables in the
benchmark regression model, namely the foreign direct investment (FDI), industrial structure (Indus),
technological innovation (Innov) and population density (Density), so as to alleviate the biases of
missing variables as much as possible. The level of FDI in a region affects its green TFP, and the
primary reasons include the “pollution haven” hypothesis [30] and the opposite view of the “pollution
halo” hypothesis [31]. Thus, the variable should be considered in the model. Indus is a comprehensive
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influencing factor of TFP proposed by reference [32], which can reflect the industrial layout. In this
paper, Indus is calculated in terms of the output value of secondary industry in proportion to GDP.
The higher the proportion of secondary industry, the more severe the pollution it brings, which will
adversely affect the TFP. Presumably, Indus is negatively correlated with TFP. In addition, factors
like Density and Innov are also common variables in the literature [33,34]. In this paper, Density is
measured by the number of people per unit area, while Innov is calculated by the number of patents
per capita. We presume that Innov is positively correlated with TFP. Meanwhile, a higher Density
means there is a greater pressure imposed on the environment. Presumably, this variable is negatively
correlated with TFP. Table 1 presents descriptions statistics for the main variables.

Table 1. Descriptive Statistics of Variables.

Variable Min Max Mean SD

TFP 0.500 2.249 1.095 0.296
PM2.5 4.8 82.67 32.122 16.843

Density 0.040 1.288 0.483 0.266
FDI 0.008 0.263 0.483 0.266

Innov 2.654 383.68 42.099 51.350
Indus 0.240 2.022 1.203 0.337

In analyzing how the haze pollution affects the quality of economic development through the
transmission mechanisms, the endogeneity of haze pollution is not a serious issue. During direct
analysis of the impact of haze pollution on the economic development quality based on the above
benchmark model, however, the endogeneity of haze pollution variables becomes an inevitable issue to
discuss. Specifically, on the one hand, environmental pollution may drag down the quality of economic
development through channels like the “labor supply loss effect”, “counter urbanization effect” and
“human capital disruption effect”. On the other hand, the quality of economic development itself
also affects environmental pollution through the scale effect, technology effect and structure effect.
An effective way of alleviating the aforementioned endogeneity problem is to find the appropriate
instrumental variables for haze pollution, which is the core explanatory variable. The sought
instrumental variables must be highly correlated with the endogenous variable (PM2.5 concentration),
while not directly relevant to the explained variable (economic development quality). Precipitation can
be used as an instrumental variable for haze pollution because on the one hand, a larger value of
precipitation indicates more local rainwater. In the rainy and snowy weathers, air pollution tends to
decline remarkably, which is negatively correlated with haze pollution, thus satisfying the correlation
hypothesis of valid instrumental variables [35]. On the other hand, precipitation is affected by rainfall
and snowfall, both of which are determined by complex meteorological systems and geographical
conditions, thereby satisfying the exogeneity hypothesis of valid instrumental variables [36].

In summary, to quantitatively explore the impact of air pollution on the economic development
quality, the two-stage least squares (2SLS) regression model in this paper is defined as follows:

PM2.5it = β0 + β1Rainfallit + γi + μt + εit (2)

TFPit = y0 + y1PM2.5it + y2Densityit + y3FDIit + y4Innovit + y5Indusit + γi + μt + εit (3)

where Rainfallit represents the annual rainfall of a certain province i in the year t. In the 2SLS model, it
is an instrumental variable of PM2.5 concentration, the haze pollution variable. All the other variables
are identical to those used in the benchmark model Formula (1).

In this paper, the panel data from 30 provinces, autonomous regions and municipalities (Tibetan
region is excluded due to severe data missing) of China between 2004–2016 are utilized. Regarding
haze pollution, we used the satellite raster data of global average PM concentration published
by the Socioeconomic Data and Applications Center of Columbia University by referring to Van’s
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methodology [37]. With the aid of ArcGIS software, the above data were analyzed into the average
annual concentration of surface PM2.5 for China’s 30 province-level administrative regions from 2004
to 2016. The rest of the raw data were from the China Statistical Yearbooks, China Environmental Statistics
Yearbooks, the official websites of National Bureau of Statistics and the provincial, municipal statistics
bureaus, as well as the GTA CSMAR database. All the value variables in this paper are processed for
to account for inflation with 2004 as the base year.

4. Analyses of Empirical Results

4.1. Benchmark Regression

The columns (1), (2) in Table 2 present the fixed effect estimations for the designed model. The use
of panel data fixed effect model is based primarily on the following two aspects: On the one hand,
since the chi-square value in Hausman test report is 45.324, and its corresponding P value is 0.000, the
random effect model is rejected; on the other hand, the random effect assumes that the individual fixed
effect term is irrelevant to the explanatory variables, which often hardly holds in practice. According to
the results in column 1, haze pollution is significantly negatively correlated with the quality of regional
economic development. The results in column 2, after controlling a series of regional characteristic
variables, still show a significant negative correlation of haze pollution with the quality of regional
economic development. Considering that the economic development mode affects both the quality of
economic development and the haze pollution, especially that the imbalance of industrial structure
is a major reason for the intensification of haze pollution in China, failure to control these factors
effectively may lead to biases of missing variables, which in turn affects the reliability of research
results. In column 3, the proportion of secondary production is added, in order to control the impact of
industrial structure. Its results demonstrate that a significant negative correlation remains between the
haze pollution and the urban economic development quality.

Table 2. The impact of haze pollution on the quality of economic development.

(1) (2) (3) (4) (5) (6)

Fixed Effect 2SLS

TFP TFP TFP
PM2.5

Stage One
TFP

Stage Two
TFP

PM2.5 −0.006 ** −0.005 ** −0.005 ** −0.050 *** −0.545
(−2.58) (−2.28) (−2.45) (−2.61) (−1.23)

PM2.52 0.007
(1.12)

Rainfall −1.974 **
(−2.40)

Density −0.0401 −0.0960 −0.152 −0.160
(−0.32) (−0.77) (−1.23) (−1.29)

FDI −1.381 *** −1.263 *** −1.311 *** −1.381 ***
(−2.83) (−2.63) (−2.73) (−2.85)

Innov 0.008 *** 0.005 ** 0.005 ** 0.005 **
(3.67) (2.52) (2.56) (2.43)

Indus −0.162 *** −0.145 *** −0.143 ***
(−3.59) (−3.20) (−3.17)

_cons 1.301 *** 1.335 *** 1.571 *** 45.22 *** 3.003 *** 11.02
(16.19) (13.47) (13.36) (8.28) (4.81) (1.53)

R2 0.0182 0.0752 0.1076 0.0158 0.1095 0.1126

N 390 390 390 390 390 390

t statistics in parentheses, ** p < 0.05, *** p < 0.01.
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Columns (4) to (6) in Table 2 display the estimation results with the two-stage least squares (2SLS),
since the endogeneity problem of haze pollution to TFP is taken into consideration. In this regard, the
instrumental variables are subjected to rationality tests, including the underidentification test and the
weak instrumental variable test. Initially, according to the LM statistic of 6.357 in the underidentification
test, and its corresponding p value of 0.0117, the hypothesis of non-correlation between instrumental
and endogenous variables can be rejected at the 5% level. Next, the selected instrumental variables are
tested for weak variables. The reported Cragg-Donald F statistic is 6.382, and its corresponding 10%
critical value is 16.38. Therefore, it is impossible to reject the null hypothesis of strong correlations
between instrumental and endogenous variables. This suggests that the selected instrumental variables
are correlated strongly with the endogenous variables. Finally, Sargan’s results demonstrate that the
model conforms to the exact identification and does not require an overidentification test. To sum
up, the instrumental variables selected in this paper are rather reasonable. On the whole, the results
of first-stage regression suggest that the precipitation reduces the haze pollution at a 1% significance
level. According to the results of second-stage regression, the impact of haze pollution on the quality
of China’s economic development resembles the benchmark regression reported in Table 2, both in
terms of direction and significance. This further verifies the adverse effect of haze pollution on the
quality of China’s economic development. However, from a quantitative point of view, the absolute
estimated coefficient of haze pollution has increased nearly ten times compared to the benchmark
regression. This suggests that the potential endogeneity problem tends to cause underestimation of the
adverse effect of haze pollution on China’s economic development quality. According to the linear
regression results of the benchmark model, on the whole, haze pollution has degraded the quality of
China’s economic development strikingly. This leaves us with a question: did haze pollution adversely
impact the quality of China’s economic development just from the beginning, or did this negative
impact appear gradually after the haze pollution reached a certain level? Extensive studies have
found that the destructiveness of environmental pollution depends on its severity to a large extent,
and that there may be a Kuznets curve effect regarding its impact on economic development. In this
respect, we empirically tested the above assumption by further adding the quadratic term of PM2.5
concentration into the benchmark regression model. According to our findings, there is no inverted
U-shaped relationship between PM2.5 concentration and quality of economic development, and the
impact of haze pollution has been only linear to the economic development quality for China in recent
years. This is probably linked to the time interval selected in this paper.

Regarding control variables, regional FDI has a significant negative correlation with TFP,
which agrees with the “pollution haven” hypothesis. This hypothesis has been prevailing in FDI
academia [38]. Given the high environmental pollution costs, developed countries will transfer
some pollution-intensive firms to those developing countries with loose environmental regulations,
so as to cut the pollution control costs. Developing countries, on the other hand, will introduce
some pollution-intensive industries and low-tech industries by lowering the level of environmental
regulations, so as to increase their competitiveness in attracting foreign investment. As a result, the
environmental pollution will be exacerbated to hinder the enhancement of green TFP. This paper
provides evidence for the “pollution haven” hypothesis from China. In terms of other aspects, Indus
is significantly negatively correlated with TFP; Innov is significantly positively correlated with TFP;
and Density is insignificantly negatively correlated with TFP, all of which are basically consistent with
the predictions.

4.2. Analysis of Transmission Mechanisms

Results of the foregoing studies show that the haze pollution is negatively influential to the quality
of China’s economic development. So, what caused this phenomenon? In other words, what are the
transmission mechanisms for haze pollution that affect the quality of China’s economic development?
Based on the foregoing hypotheses, this paper studies the transmission mechanisms whereby haze
pollution affects China’s economic development quality from three aspects: Labor loss, counter
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urbanization and human capital disruption. First of all, haze pollution can affect China’s economic
development through a loss of labor. To verify this mechanism, we selected the proportion of employed
population to total population as the proxy variable for labor (Labor). In Table 3, the corresponding
empirical regressions are reported. As can be seen, the regression coefficient of labor variable in column
1 is significantly positive, indicating that the labor force promotes the enhancement of economic quality.
To alleviate the endogeneity problem, its impact on the quality of economic development is examined
in column 2 of Table 3 by using the quantity of one-phase lagging labor. The two-stage least squares
estimation in column 3 reveals a significant negative correlation of the haze pollution with the labor,
indicating that the haze pollution has caused drastic depletion of the local labor supply. Secondly,
haze pollution can affect China’s economic development through counter urbanization. To verify this
mechanism, the proportion of non-agricultural population to total population is selected as a proxy
variable for urbanization (Urban). In Table 3, the corresponding empirical regressions are reported.
As can be seen, the regression coefficient of urbanization variable in column 4 is significantly positive,
indicating that the urbanization promotes the enhancement of economic quality. Noteworthy is that the
higher the quality of economic development, the more likely it is to attract population agglomeration,
which may adversely affect the urbanization process. To alleviate this endogeneity problem, the impact
of urbanization on the economic development quality is examined in column 4 of Table 3 by using
the one-phase lagging urbanization. For column 5, the 2SLS estimation is still used. The significantly
negative coefficient of urbanization variable indicates that the haze pollution has slowed down the
process of urbanization. Finally, another major mechanism for haze pollution to affect the quality of
China’s economic development is by impacting the human capital accumulation. In this paper, the
average years of education widely used in the literature is chosen as a proxy variable for human capital
(Capital). With this variable, the human capital mechanism through which the haze pollution affects
the quality of China’s economic development is examined empirically. As shown in Table 3, the human
capital transmission mechanism can be verified effectively. That is, the accumulation of human capital
has enhanced the quality of economic development, while the haze pollution has lowered the human
capital strikingly.

Table 3. Verification of Transmission Mechanisms.

(1) (2) (3) (4) (5) (6) (7) (8) (9)

TFP TFP Labor TFP TFP Urban TFP TFP Capital

Labor Supply Loss Counter Urbanization Human Capital Disruption

PM2.5 −0.005 *** −0.028 * −0.181 ***
(−2.74) (−1.66) (−2.62)

Labor 2.534 ***
(5.14)

l.Labor 2.854 ***
(5.76)

Urban 0.433 ***
(7.83)

L.Urban 0.381***
(7.46)

Capital 0.149 ***
(11.92)

l.Capital 0.151 ***
(12.60)

Density −0.211 * −0.195 0.019 −0.424 *** −0.260 ** 0.661 *** −0.462 *** −0.357 *** 2.133 ***
(−1.74) (−1.63) (1.57) (−3.50) (−2.22) (5.98) (−4.23) (−3.43) (4.80)

FDI −0.940 ** −0.875 * −0.267 *** −0.906 ** −0.796 * −0.906 ** −0.179 −0.174 −7.539 ***
(−1.99) (−1.94) (−5.05) (−2.01) (−1.82) (−2.11) (−0.43) (−0.44) (−4.38)

Innov 0.003 0.004 * 0.009 *** 0.00351 * 0.004 * 0.006 *** 0.001 0.0021 0.002 ***
(1.51) (1.80) (4.27) (1.65) (1.86) (3.01) (0.88) (1.09) (3.55)

Indus −0.098 ** −0.071 −0.020 *** −0.095 ** −0.113 *** −0.137 *** −0.0423 0.0141 −0.728 ***
(−2.17) (−1.56) (−4.48) (−2.23) (−2.68) (−3.38) (−1.07) (0.36) (−4.48)

_cons 1.057 *** 0.985 *** 0.299 *** 1.754 *** 1.664 *** 0.0817 0.00136 −0.120 15.13 ***
(9.50) (8.71) (4.66) (17.93) (18.38) (0.15) (0.01) (−0.84) (6.76)

F 25.67 31.27 17.94

R2 0.2175 0.2248 0.2770 0.2261 0.2181 0.3520 0.3520 0.4029 0.2708

N 390 360 390 390 360 390 390 360 390

t statistics in parentheses, * p < 0.1, ** p < 0.05, *** p < 0.01.
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4.3. Robustness Analysis

To further guarantee the reliability of research conclusions, we also performed a series of robustness
tests based on the instrumental variable regression reported in column 5 of Table 2. Table 4 details the
corresponding results. Since the aforementioned variables only target the core explanatory variables, a
related concern is the probable endogeneity problems with the control variables caused by “reverse
causality”. To eliminate this adverse effect, all the control variables are lagged by one phase in column
1 of Table 4, and the regression results are basically unchanged as well. For a better comparability
of study samples, the municipality samples are excluded, and only the provincial-level samples are
retained. The regression results are reported in column 2 of Table 4, which show high consistency with
the benchmark scenario. Another potential problem is the close correlation of PM2.5 concentration, a
core explanatory variable, with the SO2 and soot emissions. As pollutants, SO2 and soot may also
produce an impact on the quality of economic development, thereby leading to biases of missing
variables. To this end, we further controlled the SO2 and soot emissions per unit area, in order to
identify the impact of PM2.5 pollution on the quality of China’s economic development accurately.
Compared to the column 5 in Table 2, the coefficient and significance in the column 3 of Table 4 are
basically unchanged. To examine the sensitivity of the regression results to the model settings, an
empirical analysis is carried out using a logarithmic model, which finds that the negative impact of
haze pollution on the economic development quality still exists at significant levels. Furthermore,
0.5% of samples with the highest and lowest PM2.5 concentrations are excluded from the column 5 of
Table 4, in order to examine the influence of haze pollution outliers on the regression results. Again,
the research results basically remain unchanged. Finally, GDP per capita is also used by some research
for measuring the quality of economic development. As shown in the column 6 of Table 4, the haze
pollution remains negatively correlated with the GDP per capita.

Table 4. Robustness Tests.

(1) (2) (3) (4) (5) (6)

TFP TFP TFP ln TFP TFP GDP

Lag Control
Variable

Delete
Municipality

Control SO2
Absolute

Value
Delete 0.5%

GDP as
Explained
Variable

PM2.5 −0.068 *** −0.054 *** −0.047 *** −0.059 *** −0.598 ***
(−3.62) (−2.67) (−2.61) (−2.61) (−4.27)

lnPM2.5 −1.499 **
(−2.51)

Density 0.028 −0.240 * −0.247 ** −0.094 −0.152 5.668 ***
(0.22) (−1.82) (−2.03) (−0.90) (−1.23) (6.30)

FDI −1.564 *** −1.698 *** −1.077 ** −1.049 ** −1.311 *** −18.89 ***
(−3.31) (−3.10) (−2.39) (−2.58) (−2.73) (−5.41)

Innov 0.004 ** 0.004 * 0.003 0.005 *** 0.005 ** 0.010 ***
(2.14) (1.71) (1.65) (2.65) (2.56) (6.30)

Indus −0.061 −0.152 *** −0.103 ** −0.111 *** −0.145 *** −2.173 ***
(−1.25) (−3.16) (−2.31) (−2.90) (−3.20) (−6.61)

L.x16 −0.003 ***
(−4.47)

_cons 3.419 *** 3.223 *** 3.164 *** 5.222 *** 3.293 *** 23.16 ***
(5.58) (4.84) (5.44) (2.64) (4.48) (5.11)

F 33.71 22.79 37.58 27.38 27.53 16.69

R2 0.1048 0.1139 0.1882 0.1018 0.1095 0.4426

N 360 338 360 390 390 390

t statistics in parentheses, * p < 0.1, ** p < 0.05, *** p < 0.01.
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4.4. Heterogeneity Analysis

The Chinese Government has taken environmental management to an unprecedented level, and
made pollution prevention one of the three major battles for winning a well-off society in an all-round
way. The government called for efforts to address prominent environmental issues, continue to
implement the atmospheric pollution control campaigns and to win the battle for the defense of the blue
sky, so as to promote green development. Given China’s vast territory, local governments show distinct
differences in the enforcement of environmental regulations, which may affect the relationship between
the haze pollution and the economic development quality. With reference to previous research [39],
this paper classifies the environmental regulations into the investment type and the expense type
depending on the perspective of capital investment. Initially, the proportion of industrial pollution
control investment and emission charges in GDP was calculated for various provinces, followed by the
calculation of the median value of the proportion. Using this median as the boundary, regions were
divided into those with high environmental management efforts and low environmental management
efforts. Afterwards, econometric regression was performed on them separately. The columns (1)–(4) in
Table 5 present the regression results. Clearly, the destructive effect of haze pollution on the economic
development quality is present only in the regions with low environmental management efforts.

Under the Chinese-style fiscal decentralization system, local governments are facing both the
core task of developing economy and the sustainability goal of protecting the environment. The local
governments’ awareness and behavior of environmental protection are affected by fiscal decentralization.
The impact of haze pollution on the quality of economic development may vary by the degree of fiscal
decentralization. In this paper, the proportion of a region’s total budgetary fiscal expenditure in the
country’s total budgetary fiscal expenditure is taken as a measure of fiscal decentralization degree, and
then the median value of the proportion is calculated. Using this median as the boundary, regions
are divided into those with high fiscal decentralization and low fiscal decentralization. Afterwards,
econometric regression is performed on them separately. The columns (5)–(6) in Table 5 present the
regression results. As can be seen, the destructive effect of haze pollution on economic development
quality is present only in the regions with high fiscal decentralization.

Table 5. Heterogeneity Analysis.

(1) (2) (3) (4) (5) (6)

Low
Pollutant
Discharge

High
Pollutant
Discharge

Small
Investment

Large
Investment

Great Fiscal
Decentralization

Small Fiscal
Decentralization

PM2.5 −0.080 *** −0.016 −0.067 *** −0.008 −0.088 *** 0.046
(−3.72) (−0.66) (−2.89) (−0.31) (−3.48) (1.61)

Density −0.0543 −0.165 −0.320 ** 0.139 −0.282 * 0.661 **
(−0.40) (−0.87) (−2.22) (0.65) (−1.90) (2.48)

FDI −0.529 −5.818 *** −0.348 −3.981 *** −1.435 ** 0.077
(−1.20) (−4.09) (−0.66) (−4.35) (−2.26) (0.10)

Innov 0.005 ** −0.003 0.004 * 0.001 * 0.005 * 0.005
(2.31) (−0.48) (1.80) (1.98) (1.82) (1.62)

Indus −0.164 *** −0.220 *** −0.124 ** −0.167 ** −0.135 ** −0.128
(−3.27) (−3.04) (−2.37) (−2.14) (−2.35) (−1.58)

_cons 3.924 *** 2.178 *** 3.514 *** 1.668 * 4.331 *** −0.559
(5.64) (2.68) (4.68) (1.87) (5.26) (−0.59)

F 35.45 11.49 27.91 11.78 17.53 41.49

R2 0.1795 0.1832 0.1200 0.2412 0.1223 0.2169

N 244 146 254 136 251 139

t statistics in parentheses, * p < 0.1, ** p < 0.05, *** p < 0.01.

The above empirical results indicate that the environmental regulations can mitigate the damaging
effect of haze pollution on the economic development quality. So through what mechanisms do
environmental regulations play their positive role? This paper next explores the relevant principles
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through the effects of environmental regulations on the three transmission channels of haze pollution.
Depending on the aforementioned proportion of emission charges in GDP, various provinces
were classified into regions with high environmental management efforts and low environmental
management efforts. Then, econometric regression was performed separately on the three channels.
As shown in Table 6, in regions with low environmental management efforts, haze pollution is
significantly negatively correlated with all the three variables of Labor, Urban and Capital, while in
regions with high environmental management efforts, such negative correlations are all insignificant.
It has been widely recognized by academia that strict environmental regulations can improve the
eco-environment and the health of residents [40]. Strengthening of environmental regulations not
only can impact the quality of economic growth by influencing the health and effective labor input
of residents, but also can attract more high-end talented individuals through the improvement of
eco-environment. As the above results suggest, environmental regulations promote the sustainable
economic growth precisely by mitigating the “labor supply loss effect”, “counter urbanization effect”
and “human capital disruption effect” of the haze pollution.

Table 6. Environmental Regulations and Conduction Mechanism.

(1) (2) (3) (4) (5) (6)

Less Sewage Charge Large Sewage Charge
Labor Urban Capital Labor Urban Capital

PM2.5 −0.010 *** −0.022 * −0.280 ** −0.001 −0.003 −0.010
(−3.37) (−2.26) (−3.17) (−0.36) (−0.52) (−0.09)

Density 0.022 0.269 *** 1.258 * 0.023 0.302 *** 2.658 **
(1.21) (4.41) (2.30) (1.55) (5.30) (3.16)

FDI −0.169 * −0.483 * −6.149 ** −0.202 ** −0.987 *** −13.12 ***
(−2.45) (−2.17) (−3.07) (−3.11) (−4.06) (−3.66)

Innov 0.008 * 0.001 ** 0.003 ** 0.002 *** 0.006 ** 0.007 *
(2.58) (2.66) (3.12) (4.60) (3.38) (2.28)

Indus −0.025 *** −0.064 ** −0.522 ** −0.010 −0.070 ** −0.931 **
(−3.70) (−2.93) (−2.62) (−1.93) (−3.38) (−3.03)

_cons 0.474 *** 1.214 *** 18.55 *** 0.128 * 0.545 * 9.345 **
(4.83) (3.82) (6.49) (2.04) (2.31) (2.68)

R2 0.2286 0.2458 0.2326 0.3132 0.5144 0.3603

N 254 254 254 136 136 136

t statistics in parentheses, * p < 0.1, ** p < 0.05, *** p < 0.01.

According to the empirical results in Table 5, the degree of fiscal decentralization is an important
influencing factor of the haze pollution effects. Similarly, to clarify the relevant mechanisms, econometric
regression was performed separately on the three channels of haze pollution. As shown in Table 7, in
the regions with high fiscal decentralization, the haze pollution is significantly negatively correlated
with Labor and Capital, while in the regions with low fiscal decentralization, such negative correlations
are insignificant. The core of Chinese-style fiscal decentralization is the economic decentralization and
political centralization. Encouraged by the political promotion, the central government uses local GDP
growth as a standard for assessing local officials, with the aim of stimulating the economic growth.
Meanwhile, the local officials have made economic construction their main priority, which has led to
the “promotion tournament” phenomenon that is unique to China. The extensive growth mode of
factor input expansion is prone to problems, such as compromised environmental quality, insufficient
public service supply and declining human capital stock. Such negative effects may be stronger with
a heightening degree of fiscal decentralization, where the haze pollution produces a more severe
negative impact on the quality of economic development.
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Table 7. Fiscal Decentralization and Conduction Mechanism.

(1) (2) (3) (4) (5) (6)

High Fiscal Decentralization Low Fiscal Decentralization
Labor Urban Capital Labor Urban Capital

PM2.5 −0.006 * −0.002 −0.092 * −0.001 −0.011 −0.049
(−2.08) (−1.22) (−2.35) (−0.79) (−0.48) (−0.50)

Density 0.051 * 0.429 *** 2.306 *** 0.006 0.226 *** 2.349 ***
(2.13) (6.25) (4.53) (0.57) (4.09) (3.37)

FDI −0.08 −0.421 −0.637 −0.045 −0.266 −6.691 **
(−0.98) (−1.65) (−0.34) (−1.10) (−1.41) (−2.80)

Innov 0.002 *** 0.005 *** 0.008 *** 0.001 0.001 0.002
(3.93) (3.37) (8.34) (0.93) (1.63) (0.21)

Indus −0.028 *** −0.076 ** −0.722 *** 0.006 0.027 0.550 *
(−3.35) (−3.16) (−4.00) (1.27) (1.25) (2.01)

_cons 0.370 *** 0.590 12.32 *** 0.118 * 0.628 * 8.169 *
(3.47) (1.96) (5.51) (2.07) (2.43) (2.50)

R2 0.3788 0.4668 0.6201 0.1255 0.1262 0.1238

N 206 206 206 184 184 184

t statistics in parentheses, * p < 0.1, ** p < 0.05, *** p < 0.01.

5. Conclusions and Policy Recommendations

Environmental protection and economic development are eternal concerns for all of mankind.
In particular, with the entry of China’s development into a new era, the issue has attracted wider
attention from all walks of life. How can we fight the battle against pollution? How should we promote
the high-quality development of economy through governmental management of environment?
Achieving such a win-win goal is inseparable from a systematic grasp of the relationship between
environmental pollution and economic development. The majority of extant studies, however, focus
only on the unidirectional relationship of the impact of economic development on haze pollution,
while ignoring the feedback mechanism of the impact of haze pollution on economic development.
In a literature study closest in scope to this paper [10], the potential endogeneity problems were
not resolved effectively, because of a failure to find the instrumental variables for haze pollution.
In addition, the literature lacked discussion of the mechanism whereby the haze pollution affected the
economic development. To this end, this paper systematically investigates the impact of haze pollution
on the quality of China’s economic development, as well as its transmission mechanisms. This is
accomplished by taking total factor productivity as a proxy variable for the economic development
quality, and by using China’s PM2.5 haze data at the provincial level over a span of 13 years from
2004 to 2016. Furthermore, this paper innovatively uses precipitation as an instrumental variable
for mitigating the endogeneity of haze pollution, and employs 2SLS for estimating the impact of
haze pollution on the quality of economic development. The main conclusions of this paper are as
follows: The intensification of haze pollution degrades the quality of China’s economic development
strikingly; the loss of labor supply, counter urbanization and human capital disruption are the three
major transmission channels through which haze pollution affects the quality of China’s economic
development; strengthening government’s environmental management is effective in reducing the haze
pollution to upgrade the quality of economic development; and Chinese-style fiscal decentralization is
a major reason for the negative economic effect of haze pollution. These research conclusions have
profound policy implications. For a long time, in the grand context of economic construction centricity,
a common view on the relationship between economic development and haze pollution has been that
the reduction of haze pollution inevitably harms economic development. As a result, some places have
adopted a “laissez-faire attitude” towards haze pollution. Given the limited carrying capacity of the
environment, however, boosting the economy persistently through continuous pollutant emissions
is destined to be unsustainable. Today, China is already confronting the dual challenges of severe
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environmental deterioration and the urgent need for enhancement of economic development quality.
Extensive economic growth is the culprit, leading to the exacerbating haze pollution. Haze pollution
in turn further affects the quality of China’s economic development through channels like labor loss,
counter urbanization and human capital disruption. To resolve such a vicious circle and dilemma
fundamentally, the sole measure is the implementation of a reasonable and effective governmental
policy on environmental management. By doing so, the production factors can flow continuously
away from inefficient high energy consumption, from high emission sectors to the efficient low energy
consumption, low emission sectors. In addition, the economic structure can be optimized continuously
and the total factor productivity and economic development quality can be improved constantly.
In this way, the win-win goal of continuous reduction of haze pollution and the transformation of
economic development mode to high-quality development can be attained. Also, this is precisely
the core implication of China’s supply-side structural reform in dealing with the eternal relationship
between environmental protection and economic development.
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Abstract: The intensification of global urbanization has exacerbated the negative impact of atmo-
spheric environmental factors in urban areas, thus threatening the sustainability of future urban
development. In order to ensure the sustainability of urban atmospheric environments, exploring
the changing laws of urban air quality, identifying highly polluted areas in cities, and studying the
relationship between air quality and land use have become issues of great concern. Based on AQI data
from 340 air quality monitoring stations and urban land use data, this paper uses inverse distance
weight (IDW), Getis-Ord Gi*, and a negative binomial regression model to discuss the spatiotemporal
variation of air quality in the main urban area of Lanzhou and its relationship with urban land use.
The results show that urban air quality has characteristics of temporal and spatial differentiation
and spatially has characteristics of agglomeration of cold and hot spots. There is a close relationship
between urban land use and air quality. Industrial activities, traffic pollution, and urban construction
activities are the most important factors affecting urban air quality. Green spaces can reduce urban
pollution. The impact of land use on air quality has a seasonal effect.

Keywords: air quality; spatiotemporal characteristics; urban land use; coupled relationship;
Lanzhou City

1. Introduction

Over 40 years of reform and opening up, China’s urbanization rate increased from
17.92% in 1978 to 60.60% in 2019. According to United Nations statistics and projections,
the global urbanization rate will reach 68% by 2050, China’s urbanization rate will reach
80%, and about 1.1 billion people will live in cities [1]. Rapid urbanization has led to coal-
fired energy consumption and an increased number of vehicles, resulting in increasingly
serious air pollution [2]. Air pollution can lead to respiratory diseases, strokes, cancer,
and cardiovascular diseases; it is one of the main environmental problems affecting people’s
quality of life and physical and mental health [3]. A World Health Organization report
shows that about 4.2 million people died due to health problems caused by air pollution in
2020 [4], and 1.24 million people died due to air pollution in China, accounting for about
30% of global deaths [5]. Air pollution has become an important factor that hinders the
sustainable development of Chinese cities. Understanding the changes in air pollution,
identifying its driving factors, and proposing effective optimization strategies have become
important for geographic, urban, and rural planning and environmental science.

Air quality reflects the degree of air pollution, which is judged based on the con-
centrations of pollutants in the air. At present, SO2, NO2, CO, O3, PM2.5, and PM10 are
defined as the six standard pollutants that quantify the level of air pollution in the world.
The concentrations of pollutants may differ by orders of magnitude, and the impact of
the unit concentration on health also differs significantly. It is difficult for the general
public to directly use these concentrations to characterize air pollution levels. Therefore,
two comprehensive air quality indicators, AQI and API, are often used to reflect the degree
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of air pollution. API is calculated by PM10, SO2, and NO2. PM10 is the main pollutant of
API, accounting for more than 90% [6]. AQI is calculated by PM10, SO2, NO2, PM2.5, O3,
and CO, and PM2.5 is the main pollutant [7]. AQI can better express the impact of human
activities on air quality than API [8]. In 2012, China issued a new ambient air quality
standard, and air quality monitoring data were changed from API to AQI. The AQI is the
most widely used index in the world [9]. According to the Ambient Air Quality Index
(AQI) Technical Regulations (Trial) (HJ 633~2012), the air quality index is divided into
six levels: level 1, excellent, 0–50; level 2, good, 51–100; level 3, slight pollution, 101–150;
level 4, moderate pollution, 151–200; level 5, severe pollution, 201–300; and level 6, severe
pollution, >300 [10].

The research on air quality from the geographical perspective mainly focuses on its
spatiotemporal distribution characteristics and driving factors. Studies are mostly based
on single indicators such as PM2.5 [11] and comprehensive indicators such as AQI [12]
and API [13] using global/local autocorrelation [11], inverse distance weight (IDW) [14],
and statistical analysis methods [15], on spatial scales such as the whole country [11],
provinces [16], urban agglomerations [6], and typical regions [17] and key cities [18],
and time scales such as year, season, month, hour, etc. Scholars have found that China’s
air quality is showing a tendency to change for the better [19]. There are obvious seasonal
characteristics over time, mainly manifested as serious pollution in winter and spring
and lighter pollution in summer and autumn [19]. In terms of space, studies show the
coexistence of high-pollution and low-pollution areas. Air pollution presents a spatial
pattern of high in the north and low in the south [11,14], heavy in the east and light in the
west [11,15], and high inland and low on the coast [20]. Within cities, it also has the charac-
teristics of seasonal and spatial differentiation [3,21]. Affected by urban forms and land use
characteristics [22,23], the air quality in the suburbs is better than in central cities, and resi-
dential areas with more greenery are better than other areas [24]. Natural factors such as
geomorphology, meteorological elements, sand and dust transportation, and hazy weather
and human factors such as industrial emissions, energy structure, motor vehicle emissions,
and the level of urbanization development have jointly caused air pollution [24–28].

In recent years, many studies have focused on the relationship between urban land use
and air quality [29]. The purpose of urban land use is to provide land with a suitable scale
and a reasonable location based on urban planning according to the specific requirements
of various activities in the city: work, residence, recreation, and transportation. Changes
in urban land use are caused by the substitution and vitality of internal urban functions,
and they are more significant on a long-term scale [30,31]. In China, urban planning has
a legal effect once it is approved. Changing land use requires a series of complicated
procedures. Therefore, land use does not change much on an annual or seasonal scale
during the year. To a certain extent, it determines the locations of industrial zones, industrial
enterprises, and heating boilers. Some land-use types can directly cause air pollution,
while others do not but produce air pollutants as a result of human activities connected to
land use; for example, automobile exhaust connected to traffic is an important factor that
affects the air quality [32,33].

Studies have used spatial analysis and statistical methods (e.g., based on 170 regression
models [34]), private air quality monitoring smart sensors [35], stepwise linear regression
models [36,37], and a land use regression (LUR) model [38] to examine the relationship
between urban land use and air quality. In such studies, the air quality data can be refined
to the hourly scale, but the land use data are basically static, even in the LUR model [39,40].
Those studies show that the level of urban land expansion and the proportion of construc-
tion land are positively correlated with the degree of air pollution [29,41,42]. The expansion
of urban construction land and the increase of impervious areas have enhanced the urban
heat island effect, thereby exacerbating urban air pollution. A larger proportion of natural
land coverage, especially water, woodland, farmland, and green space, is helpful to reduce
the concentration of pollutants [29,34,42,43]. Air pollution in cities is mainly caused by
human factors such as industrial pollution and traffic emissions [26]. From the perspective
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of urban land use structure, the proportion and layout of roads and industrial land will
increase air pollution. Urban thermal power plants and steel plants are the biggest sources
of pollution [23,25,44]. Therefore, formulating a strategy for optimizing urban land use
from the perspective of policy guarantees will help to improve urban air quality [45].
Łapko’s research shows that reducing pollution in cities can contribute to increasing their
attractiveness as tourist destinations [46].

The typical geographical features and special industrial structure of Lanzhou City
have attracted the attention of academics, and a great deal of research on the characteristics,
sources, and causes of air pollution has emerged. The research perspective is focused more
on the impact of dust, heating, and motor vehicle emissions on air quality, as well as the
characteristics of air pollution and effectiveness of governance [46–49]. However, there is
no comprehensive and systematic study on the relationship between the spatiotemporal
distribution of air quality and land use in cities. Previous studies often chose PM10 or PM2.5
to assess air quality [39,50], but a single pollutant cannot fully reflect the state of air quality
in a certain place or represent the impact of air pollution on humans; it is more useful to
apply a comprehensive index of air pollutants to the study of air quality [8].

Previous research results provide significant theoretical and practical experience with
regard to air quality distribution and driving factors, but those studies pay more attention
to large-scale air quality in the whole country, urban agglomerations, and typical regions;
there are few studies on the differences in air quality within cities, because most of the air
quality data needed for the research come from satellite measurements and national envi-
ronmental air quality monitoring sites [51]. Satellite measurements are usually obtained
at a fixed time of the day to obtain the spatial distribution of atmospheric pollutant con-
centrations. This method is limited by the imaging time, the spatial resolution is relatively
coarse, and the time resolution is low [52]. It is generally difficult to capture intra-city vari-
ability due to the limited geographic coverage of national ambient air quality monitoring
stations [53]. There are only five monitoring stations in Lanzhou. In studying the relation-
ship between urban land use and air quality, the land use data mostly come from remote
sensing images, and the interpretation of urban land use differences is not ideal due to the
influence of the precision of remote sensing data and image interpretation [8,36]. Therefore,
the purpose of this study was as follows: (1) to use IDW and Getis-Ord Gi* methods based
on data from 340 monitoring locations in the city to explore air quality changes in the city
and identify highly polluted areas and (2) to build a negative binomial regression model
of air quality and land use within a 1000 m buffer zone around the monitoring site to
study the relationship between air quality and land use. Our results are expected to help
policymakers to improve air quality and promote sustainable urban development.

2. Materials and Methods

2.1. Study Area

Lanzhou City is located at 35◦34′–37◦07′ N and 102◦36′–104◦34′ E (Figure 1). It has
a typical continental climate with average annual rainfall of 327 mm, which is mainly
concentrated from June to September. The central city of Lanzhou has high terrain in the
west and low terrain in the east, with two mountains in the north and south. The Yellow
River runs through the entire territory from west to east, connecting the Xigu, Qilihe-
Anning, and Chengguan Basins. The special river valley landform conditions and the
meteorological and climatic conditions, in which the proportion of quiet windy days per
year reaches more than 50%, make it difficult for air pollutants to spread; as a result,
Lanzhou was classified as a severely polluted city by the World Health Organization [54].
As an important industrial base in Northwest China, Lanzhou has formed an industrial
system dominated by oil refining, chemicals, electromechanics, metallurgy, military, energy,
light and textile, and building materials after the construction of the First and Second
Five-Year Plans and the Third Front. The industrial layout of the heavy petrochemical
industry and the structure of coal-fired energy create mixed air pollution. With the launch
of national air pollution prevention and control measures in 2012, the implementation of
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the Air Pollution Prevention and Control Plan in 2015, and the adjustment of the urban
industrial structure, the urban air pollution situation has been significantly improved,
with frequent occurrence of the “Lanzhou blue” phenomenon. Lanzhou City won a reform
and progress award at the Paris Climate Conference in 2015.

Figure 1. Distribution map of study area and air quality monitoring stations: (a) Gansu Province in China; (b) Lanzhou in
Gansu Province; (c) study area in Lanzhou; (d) air quality monitoring stations and land use in the study area.

2.2. Data Sources
2.2.1. Air Quality Data

We selected AQI to quantitatively describe and comprehensively reflect air quality
status. The higher the index, the more serious the air pollution. The AQI data come
from the mobile phone app of the public version of the Lanzhou Urban Atmospheric
Environment Grid Monitoring System (http://sthjj.lanzhou.gov.cn/col/col4210/index.
html (accessed on 31 December 2020)). We obtained the location information and AQI
data of 479 air quality monitoring stations in the central urban area of Lanzhou from
1 January to 31 December 2020. Excluding data outside the study area and incomplete
data, data from 340 air quality monitoring stations were obtained. We transformed the
location information of the monitoring site into longitude and latitude coordinates in a
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data format that could be analyzed by ArcGIS software for later analysis. The study area
and air quality monitoring stations are shown in Figure 1.

2.2.2. Urban Land Use Data

Most of the land use data in previous studies came from 30 m resolution remote
sensing images. According to the Classification of Land Use Status (GB/T 21010-2017),
land use has been subdivided into agricultural, water use, urban construction, unused
land, etc. [8]. Previous studies went beyond the urban built-up area or took the urban area
as a whole, which makes it difficult to reflect differences in land use within a city, and does
not consider the coupled relationship between air quality and land use. According to
the Urban and Rural Land Classification and Planning and Construction Land Standards
(GB50137-2011), this paper subdivides urban construction land into green, residential,
and industrial land, and land for external transportation, public management and public
service facilities, and commercial service facilities. The emission of building dust is an
important part of the dust source [55]. Therefore, we added additional land for construction
sites. The land use data come from the current urban land use and planning maps in the
Lanzhou City master plan.

2.2.3. Other Data

Urban air pollution sources include fixed and mobile sources. Fixed pollution sources
include factories and heating boilers, and the mobile pollution source is motor vehicle
exhaust [56]. For this study, we selected industrial enterprises above a designated size
to characterize industrial pollution sources. The data come from the Chinese industrial
enterprises database and the directory of industrial and commercial enterprises registered
in Lanzhou City, Gansu Province. Heating boiler data come from the Lanzhou directory
of heating service companies for 2019–2020. There are 138 industrial enterprises and
288 heating boilers in total. Traffic pollution is the main source of mobile pollution in
cities. There are more vehicles in areas with dense road networks, producing more air
pollutants [57]. We used road network density within a 1000 m buffer zone around the air
quality monitoring sites to express traffic emissions [39]. Road network data come from
OpenStreetMap (OSM) (www.openstreetmap.org (accessed on 12 March 2021)).

In this paper, the dependent variables are average AQI for the whole year, spring,
summer, autumn, winter, heating period, and non-heating period, which are labeled as Y1,
Y2, Y3, Y4, Y5, Y6, and Y7, respectively. The independent variable is the land use factor
within a 1000 m buffer zone around each air quality monitoring station (Table 1). A total of
seven regression models were constructed for the seven variables.

Table 1. Descriptive statistics of variables.

Factors Variables (1000 m Buffer Zone) Min Max Mean Std. Dev. VIF

X1 Heating emissions Number of heating stations (pieces) 0 48 8.31 9 1.78

X2 Industrial emissions Industrial enterprises above designated
size (pieces) 0 14 2.28 2.34 1.33

X3 Traffic emissions Road network density (km/km2) 0.62 8.22 4.1 1.73 2.16
X4 Industrial land Proportion of industrial land 0 0.73 0.07 0.11 1.87

X5 Land for
construction sites Proportion of land used for construction sites 0 0.58 0.04 0.08 1.19

X6
Land for public

management and
public service facilities

Proportion of land for public management and
public service facilities 0 0.36 0.08 0.07 1.23

X7 Green land Proportion of green land 0 0.35 0.03 0.05 1.32
X8 Residential land Proportion of residential land 0.02 0.86 0.51 0.18 1.85

X9 Land for commercial
service facilities

Proportion of land for commercial
service facilities 0 0.3 0.07 0.06 1.36

X10 Land for external
transportation Proportion of land for external transportation 0 0.31 0.01 0.03 1.29
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2.3. Research Methods
2.3.1. Correlation Analysis

The impact of land use on air quality has a scale effect [36]. The spatial scale is too
large to identify differences in land use. Therefore, we first calculated that the maximum
distance between the monitoring stations is 1971 m and the average distance is 323.49 m.
Then, we built 5 buffer zones with a radius of 330, 500, 1000, 1500, and 2000 m. The Pearson
correlation coefficient was used to investigate the correlation between air quality concen-
tration and land use composition within these 5 buffer zones around the 340 monitoring
stations. Its expression is as follows:

Rxy =
∑n

i=1(xi − x)(yi − y)
√∑n

i=1(xi − x)2 √∑n
i=1(yi − y)2

where n is the number of samples, xi is the observed value of point i corresponding to
variable x, yi is the observed value of point i corresponding to variable y, x is the average
of x samples, and y is the average of y. Rxy is the Pearson correlation coefficient, and its
range is between −1 and 1. There is a negative relationship between two variables (x and y)
when Rxy < 0 and a positive relationship when Rxy > 0. If the absolute value of Rxy is close
to 1, that indicates a strong correlation between variables x and y. If the absolute value of
Rxy is close to 0, then the correlation relationship is weak.

It is found that within 1000 m, the correlation coefficient between land use and air
quality is high and the explanatory power is good (Table 2). In subsequent research,
the 1000 m buffer zone around the monitoring station was used as a spatial scale to explore
the relationship between air quality and land use.

Table 2. Results of Pearson correlation coefficient analysis.

Variable X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

330 m
buffer
zone

Y1 −0.116 * 0.187 ** 0.111 * 0.141 ** 0.018 0.011 −0.123 * −0.047 0.008 −0.04
Y2 −0.201 ** 0.173 ** 0.142 ** 0.161 ** 0.038 0.033 −0.184 ** −0.092 0.029 −0.058
Y3 −0.241 ** 0.162 ** 0.232 ** 0.197 ** 0.03 0.046 −0.297 ** −0.069 0.044 −0.05
Y4 0.102 0.079 −0.049 0.006 0.003 0.023 0.073 0.034 −0.047 0.064
Y5 0.145 ** 0.091 0.129 * 0.043 −0.035 −0.055 0.221 ** 0.027 −0.086 −0.039
Y6 0.091 0.122 * 0.067 0.005 −0.004 −0.033 −0.125 * 0.013 −0.057 −0.032
Y7 −0.203 ** 0.176 ** 0.183 ** 0.181 ** 0.026 0.032 −0.231 ** −0.069 0.022 −0.035

500 m
buffer
zone

Y1 −0.124 * 0.321 ** 0.025 0.221 ** 0.084 0.01 −0.171 ** −0.003 −0.058 0.016
Y2 −0.208 ** 0.332 ** 0.037 0.265 ** 0.129 * 0.008 −0.231 ** −0.077 −0.035 −0.04
Y3 −0.295 ** 0.244 ** 0.153 ** 0.233 ** 0.138 * 0.053 −0.335 ** −0.089 0.045 0.004
Y4 0.133 * 0.137 * 0.130 * 0.051 −0.048 0.016 0.071 0.142 ** −0.157 ** 0.126 *
Y5 0.191 ** 0.168 ** 0.260 ** 0.009 −0.053 −0.059 0.184 ** 0.097 −0.092 0.018
Y6 0.134 * 0.245 ** 0.198 ** 0.1 −0.018 −0.04 −0.09 0.066 −0.126 * 0.034
Y7 −0.237 ** 0.281 ** 0.079 0.232 ** 0.119 * 0.036 −0.273 ** −0.041 −0.004 0.002

1000 m
buffer
zone

Y1 −0.281 ** 0.588 ** 0.151 ** 0.536 ** 0.069 0.199 ** −0.317 ** −0.096 0.081 0.321 **
Y2 −0.393 ** 0.579 ** 0.208 ** 0.559 ** 0.167 ** 0.218 ** −0.375 ** 0.174 ** 0.043 0.360 **
Y3 −0.499 ** 0.496 ** 0.389 ** 0.500 ** 0.260 ** 0.222 ** −0.504 ** 0.288 ** 0.180 ** 0.327 **
Y4 0.170 ** 0.293 ** −0.049 0.164 ** −0.088 0.014 −0.203 ** 0.120 * −0.294 ** 0.068
Y5 0.258 ** 0.225 ** 0.329 ** 0.181 ** −0.302 ** −0.058 0.141 ** −0.245 ** −0.355 ** 0.062
Y6 0.180 ** 0.369 ** 0.174 ** 0.306 ** −0.197 ** −0.097 −0.018 0.154 ** −0.306 ** 0.161 **
Y7 −0.428 ** 0.560 ** 0.295 ** 0.528 ** 0.201 ** 0.205 ** −0.433 ** 0.212 ** 0.066 0.328 **

1500 m
buffer
zone

Y1 −0.207 ** 0.430 ** 0.079 0.329 ** 0.075 0.102 −0.284 ** −0.011 −0.068 0.052
Y2 −0.318 ** 0.424 ** 0.141 ** 0.370 ** 0.141 ** 0.126 * −0.332 ** 0.065 −0.037 0.006
Y3 −0.428 ** 0.317 ** 0.317 ** 0.330 ** 0.205 ** 0.108 * −0.439 ** −0.167 ** 0.046 0.147 **
Y4 0.138 * 0.181 ** −0.083 0.096 −0.042 0.047 −0.005 0.161 ** −0.161 ** 0.098
Y5 0.253 ** 0.136 ** 0.345 ** 0.103 −0.204 ** −0.059 0.132 * −0.242 ** −0.167 ** 0.150 **
Y6 0.146 ** 0.265 ** 0.210 ** 0.113 ** −0.119 * −0.062 0.033 0.188 ** −0.144 ** 0.024
Y7 −0.353 ** 0.386 ** 0.221 ** 0.340 ** 0.166 ** 0.099 −0.380 ** 0.091 −0.007 0.081

2000 m
buffer
zone

Y1 −0.133 * 0.306 ** 0.002 0.172 ** 0.067 0.05 −0.126 * 0.018 −0.033 0.058
Y2 −0.241 ** 0.325 ** 0.061 0.124 ** 0.116 * 0.067 −0.176 ** −0.08 0.006 0.013
Y3 −0.350 ** 0.221 ** 0.218 ** 0.120 ** 0.152 ** 0.025 −0.285 ** −0.112 * 0.09 0.119 *
Y4 0.106 0.180 ** −0.108 * 0.101 −0.033 0.028 0.065 0.089 −0.111 * 0.087
Y5 0.238 ** 0.185 ** 0.323 ** 0.075 −0.125 * −0.073 0.186 * −0.134 * −0.120 * 0.107 *
Y6 0.110 * 0.175 ** 0.223 ** 0.006 −0.069 −0.06 0.006 0.075 −0.138 * 0.04
Y7 −0.274 ** 0.276 ** 0.129 * 0.191 ** 0.127 * 0.032 −0.131 * 0.066 0.034 0.099

** At the 0.01 level (two-tailed), the correlation is significant, * At the 0.05 level (two-tailed), the correlation is significant.
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2.3.2. Inverse Distance Weight (IDW)

It can be seen from Figure 1 that the distribution of air quality monitoring points in
the downtown area of Lanzhou cannot cover the entire city. This research attempts to
analyze the temporal and spatial characteristics of the city’s air quality through spatial
interpolation.

Spatial interpolation is a method of estimating unknown points through known points.
It is derived from the first law of geography, that is, the closer the points in space, the more
similar their characteristics. It has been widely used in many fields, such as environment,
soil, and digital terrain analysis. Commonly used spatial interpolation methods include
inverse distance weight (IDW), kriging, spline, trend surface, and natural neighbor [58].
In order to accurately simulate the time and space distribution of air quality in the city,
these four methods were used to obtain the city’s AQI data, and then the interpolation
results were cross-validated, and the best fit was compared. R2 and root mean square error
(RMSE) were used to determine the optimal interpolation method. The calculation method
is as follows:

R2 =
∑(ŷ − y)2

∑ y2

RMSE =

√
∑n

i (ŷ − y)2

n

where n is the number of test sample points, y is the actual measured value corresponding to
the test interpolation point, ŷ is the estimated value corresponding to the test interpolation
point, and y is the mean AQI value of the test interpolation point. R2 represents the degree
of fit between the interpolation result and the measured value; the closer to 1, the better the
interpolation effect. RMSE represents the degree of deviation between the interpolation
result and the measured value; the smaller the value, the higher the interpolation accuracy.

The calculation results (Table 3) show that the average R2 of IDW is the highest and
the RMSE is the smallest. This paper selected IDW to study the spatial distribution of AQI.

Table 3. Comparison of interpolation methods.

IDW Kriging
Trend

Surface
Spline

Natural
Neighbor

R2 0.985383874 0.977285623 0.621729574 0.828676546 0.961090602
RMSE 2.914003447 2.902368713 2.488706625 2.827320784 2.927091981

When the set of points is dense enough to capture the extent of local surface variation
needed for the analysis, IDW is used [58]. IDW interpolation has the advantages of a
simple principle, convenient calculation, and conformity to the first law of geography. It is
widely used in research of air quality spatial distribution characteristics [59]. IDW takes
the distance between the interpolation points and the sample points as the weighted
average; the closer the sample points to the interpolation points, the greater the weight
given by the sample points [58]. It can model various scales when predicting air quality,
which can reduce the uncertainty of prediction in exposure assessment and is more reliable
than kriging.

Let a series of discrete points be distributed on the plane whose coordinates and
values are called Xi, Yi, Zi (i = 1, 2, . . . , n); then, the value of Z points can be obtained by
weighted distance. According to the value of the surrounding discrete points, the value of
the Z point is calculated by the distance weighted value. Its expression is as follows:

Z0 =

[
n

∑
i=1

Zi

dk
i

]
/

[
n

∑
i=1

1
dk

i

]
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where Z0 is the estimated value of point 0, Zi is the value of control point i, di is the distance
between control point i and point 0, n is the number of control points used in the estimation,
and k is the specified power. In this paper, the inverse distance weighted difference method
provided by ArcGIS10.2 was used to obtain all AQI values in the study area.

2.3.3. Getis-Ord Gi*

IDW can show the spatial distribution of AQI, but it has no statistical significance.
Therefore, an optimized hot spot analysis was performed to show the statistical significance
of highly polluted areas.

Getis-Ord Gi* is an effective method for calculating spatial autocorrelation that was
proposed by mathematicians Getis and Ord in 1992. It is a statistic that identifies the
specific locations of statistically significant point clusters with high data point density
in the vicinity of a given point. Features with a high value density may not represent a
statistically significant hot spot, and a hot spot can be determined if a feature with high
value density is surrounded by other features with high values as well. It can qualitatively
determine spatial hot or cold spot areas on a local scale and increase the confidence
probability. Its expression is as follows [60]:

G∗
i =

∑n
j=1 Wi,jX j − X ∑n

j=1 wi,j

∑n
j Wi,jX j

where Wi,j is the spatial weight between feature i and j. A positive G∗
i value shows that

high values cluster around i; hence, the region is considered a hot spot. A negative value
of G∗

i shows that low values cluster around i; hence, the region is considered a cold spot.
Since the monitoring stations provide point data, this paper uses the inverse distance
weighted difference method provided by ArcGIS 10.2 to obtain all AQI values in the study
area, then constructs a 1000 × 1000 m fishing net using the extraction and analysis tool
in ArcGIS to obtain the AQI value of each fishing net center, and then uses the spatial
joint tool in the Overlay toolset to connect the point data to the fishing net data. Then,
the 1000 × 1000 m fishing net is taken as the spatial scale for Getis-Ord Gi* visualization.

2.3.4. Negative Binomial Regression Model

Regression models such as ordinary linear regression, Poisson regression, negative
binomial regression, and zero inflation models are usually used to analyze data where
the dependent variable is numerical, and ordinary least squares (OLS) is used when the
relationship between them is linear and assumptions are observed. The assumptions of
linear regression modeling include normality, independence, homoscedasticity of errors,
exclusion of spatial autocorrelation, and multicollinearity [61]. When the dependent
variable has a large number of zero values, the zero-inflated Poisson regression model
(ZIP) [62] is useful. The Poisson distribution assumes that the expected and variance values
are equal [63], but this is not always true, causing dispersion of data when the variance is
higher than average, such as in studies linking air quality. When over-dispersion happens,
one way to estimate its parameter is to use negative binomial distribution [64]. The negative
binomial regression model is a continuous mixed Poisson distribution [65] that allows the
Poisson mean to follow the y distribution, and its expression is:

Pr(Y = y) = Γ(y+τ)
y!Γ(τ)

(
τ

λ+τ

)τ(
λ

λ+τ

)y

y = 0, 1, . . . ; λ, λ > 0
λ = E(Y)

where τ is the fuzzy parameter, and Y is the dependent variable, namely air quality, and the
variance of Y is λ + λ2/τ. When τ tends to infinity, the negative binomial is close to
the Poisson distribution. The negative binomial distribution has a very simple property:
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the variance is greater than the mean. This paper uses a negative binomial regression
model to explore the relationship between urban air quality and land use.

3. Results

3.1. Spatiotemporal Characteristics of Urban Air Quality
3.1.1. Temporal Distribution Characteristics

The annual AQI is represented by the continuous “valley–peak” interphase distribu-
tion characteristics of “low pollution–pollution peak–low pollution” (Figure 2a). The daily
average of AQI fluctuated between 45 and 174, and the annual average was 85. There were
6 excellent days, 285 good days, 74 lightly polluted days, and 1 moderately polluted day.
There was a total of 75 polluted days and 291 good days. The rate of excellent and good
days was 79.5%, indicating that the air quality in Lanzhou was good.

Figure 2. Temporal distribution characteristics of air quality: (a) trend of annual air quality change; (b) annual distribution
of air quality by level; (c) seasonal characteristics of AQI; (d) heating and non-heating period characteristics of AQI.
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We divided the year into four seasons, with March to May as spring, June to August
as summer, September to November as autumn, and December to February as winter.
In terms of the seasonal distribution of AQI (Figure 2c), the pollution degree was in the
order of winter > spring > summer > autumn, but in terms of the rate of good air quality,
it was in the order of winter > spring > autumn > summer. The air quality in summer and
autumn was better than in winter and spring, showing the characteristics of a V-shaped
change, and the seasonal average AQI value fluctuated between 74 and 96.

From the beginning of spring, the air quality slowly decreased to its lowest value in
autumn and then rose rapidly to its highest value in winter. In spring, air quality was
dominated by good days and light pollution, with a rate of excellent and good days of
84.78%. In summer, the number of good days with light pollution gradually increased
and the number of good days gradually decreased, with a rate of excellent and good days
of 80.43%. In autumn, atmospheric convection was strong and pollutants were diffuse,
occurring relatively quickly, with significant precipitation, and the city’s air quality was
the best, with a rate of excellent and good days of 83.52%. In winter, the city’s air quality
was the worst, with a rate of excellent and good days of only 69.23% and a pollution rate
of 30.77%.

The fundamental reason lies in the atmospheric circulation and heating in winter.
Northwest wind prevails in Lanzhou in spring. There is much dusty weather, the concen-
tration of particulate matter obviously increases, precipitation and relative humidity are
low, and there is more dust and floating dust on the surface. The superposition of the two
causes 40% of air pollution in spring [54,57]. In summer and autumn, affected by the East
Asian and South Asian monsoons, the atmosphere has good diffusion conditions, which is
conducive to the dilution and diffusion of pollutants. Rainfall increases, vegetation cover-
age significantly increases, and dust from roads and construction is suppressed. In winter,
there is little precipitation, dry climate, dry vegetation, stable atmospheric stratification,
severe temperature inversion, and poor conditions for dilution and diffusion of pollu-
tants [66], and the entire city enters a long heating period, so winter pollution is the most
serious. From the perspective of changes in the heating and non-heating period (Figure 2d),
air quality during the heating period is poor and the pollution rate reaches 27%, and air
quality during the non-heating period is better. This is consistent with research conclusions
in Balıkesir, Turkey, and in the Rhine–Ruhr area of Germany [67,68].

3.1.2. Spatial Clustering Features

AQI has obvious differentiation in space. In general, the degree of air pollution
showed characteristics of heaviness in the west and lightness in the east, in the order of
Xigu District > Anning District > Qilihe District > Chengguan District (Figure 3a). Hot spots
are mainly concentrated in Xigu and Anning and cold spots mainly in Chengguan, while the
agglomeration characteristics of Qilihe District are not significant (Figure 3b). This may
be related to urban functions, land use structure, industrial enterprise layout, and energy
consumption intensity. Xigu District forms the city’s pollution core, dominated by Xiliugou,
Sijiqing, Xigucheng, and Fuli Road Streets, with an AQI over 90. The main reason is that
Xigu is the most important industrial area in Lanzhou, with nearly 50% of the land used
for industry, and there are heavy and chemical industries such as Lanzhou Xigu Thermal
Power Plant, Lanzhou Petrochemical Company, Lanzhou Petrochemical Company of
PetroChina, Fanping Power Plant, Lanzhou Gas Plant, and so on. Most of these enterprises
are in the thermal power, crude oil smelting, and petrochemical industries. Their emission
of pollutants is in excess of the city’s industrial emissions of 50%.
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Anning is the cultural district of Lanzhou City, as well as the distribution area of the
instrument and high-tech industries, so a number of point pollution cores have formed:
Shilidian, Yintan Road, Xilu, and Shajingyi Streets. The AQI of the whole region is over 85,
and the pollution degree decreases from the north bank of the Yellow River to Renshou
Mountain. The main reason is that Anning is close to Xigu and the area along the river is
susceptible to industrial pollution. The high AQI of Shilidian Street in the east is related to
the waste gas emissions of the sewage treatment plant.

Qilihe District is bounded by Xihu Street, where pollution is heavy in the west and
light in the east, high in the north (south bank of the Yellow River), and low in the
south. Xiuchuan, Gongjiawan, Pengjiaping, and Jingangcheng are four low-pollution
areas. Qilihe undertakes the city’s commercial, living, and productive services and other
functions and is also the most important construction and development zone in the built-up
area. There are many construction sites in the “three beaches”, the Matan, Cuijiadandatan,
and Yingmentan areas. Dust has a certain amount of impact on air quality. The air quality in
Chengguan District is better, and the AQI is below 85. The main reason is that Chengguan is
the city’s administrative office and commercial area and is located in the upwind direction
with fewer pollution sources (especially industrial sources).

 
(a) (b) 

Figure 3. Spatial distribution map of air quality throughout the year: (a) spatial distribution and (b) spatial agglomeration
characteristics of AQI.

Air pollution forms an obvious spatial process of clustering–diffusion with seasonal
changes (Figure 4a). The hot spot in spring and summer is Xigu District, and the cold
spot in Anning is Chengguan District. Great changes take place in the hot spot areas in
autumn and winter. The hot spot area in autumn is mainly concentrated in Xigu District
and the central areas of Qilihe and Chengguan Districts, while the cold spot area is mainly
concentrated in the mountainous part of Qilihe and along the river in the northern part of
Chengguan. In winter, two hot spots are formed in Xigu and Chengguan, and Qilihe is a
cold spot area (Figure 4b). In the spring, the AQI of the whole city is between 80 and 97.

Spatially, an industrial pollution area centered on Xigu District and an area around the
central business district of Datan and Peili Square in Anning–Yingmentan–Qilihe District
have formed. For lightly polluted centers, the AQI is above 90. The Anning central business
district and the “Santan” area have been key construction areas in Lanzhou in recent years,
with a distribution of many construction sites, and construction dust has made these areas
highly polluted. The AQI of the eastern part of Qili River and Chengguan District is
basically between 82 and 90, and the pollution level is heavy in the west and light in the
east. In summer, the city’s AQI is between 69 and 92. The low AQI area expands, and the
high pollution area further shrinks in Xigu and Anning. The AQI is greater than 90.
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Lightly polluted areas have formed in Anning District, such as Shajingyi, the central
business district, and sewage treatment plants. Xiuchuan, Pengjiaping, and Xihu Streets in
Qilihe District have even reached excellent grades. The whole area of Chengguan District
is of excellent grade, with AQI below 80, and only light pollution occurs in the railway
station, Yanchangbao, and Dongfanghong Square. In autumn, the city’s AQI is between
64 and 91, with only slight pollution in the surrounding areas of Lanzhou Xigu Thermal
Power Plant, Lanzhou Petrochemical Company, and Anning District Sewage Treatment
Plant. In winter, the city’s AQI is between 81 and 104.

Two moderately polluted areas, Xigu District with mainly industrial emissions and
Chengguan District with mainly heating emissions, have formed, with an AQI of over 95.
A surface pollution area formed in Chengguan dominated by Zhangye Road, Guangwu-
men, Jiuquan Road, Gaolan Road, Wuquan, Railway East Village, Railway West Village,
and other streets. The main reason is that 56.5% of heating stations are gathered in Cheng-
guan. Boilers emit large amounts of dust and SO2, forming low-altitude non-point-source
pollution [69]. The air quality in Anning and Qilihe Districts is relatively good, and the AQI
is basically between 90 and 95. Even marginal areas have low values, such as Chenping
Street in the east of Xigu and Pengjiaping Town in Qilihe.

The heating period in Lanzhou is from the beginning of November to the end of
March, and the non-heating period is from the beginning of April to the end of October.
It can be seen from Figure 5 that air pollution during the heating period is obviously
more serious than during the non-heating period. The AQI of the whole city during the
heating period is between 82 and 104. The AQI of the whole city during the non-heating
period is between 70 and 88. During the heating period, two pollution cores are formed
in Xigu and Chengguan Districts (Figure 5). Anning District is also a heavily polluted
area in the city due to the prevailing wind direction [52]. It is shown that the spatial
variation of air pollutants is affected not only by local emission but also by meteorological
conditions (such as wind), which cause secondary pollution near the emission source [36].
In terms of spatial agglomeration, the core areas of Xigu and Chengguan Districts are hot
spots, the mountainous area in the south of Qilihe District is a cold spot area, and the
agglomeration of Anning District is nonsignificant. The air quality of Lanzhou is gradually
stable during the non-heating period, and the air pollution is heavy in the west and
light in the east. The spatial agglomeration model shows that the stable hot spots of
pollution are Xigu and Anning Districts, the cold spot is Chengguan District, and the
spatial agglomeration characteristics of Qilihe District are not significant.

 
(a) 

Figure 4. Cont.
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(b) 

Figure 4. Seasonal spatial distribution map of air quality: (a) seasonal spatial distribution and (b) agglomeration character-
istics of AQI.

 
(a) 

 
(b) 

Figure 5. Spatial distribution map of air quality during heating and non-heating periods: (a) spatial distribution and
(b) agglomeration characteristics of AQI.
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3.2. Relationship between Urban Air Quality and Land Use

Using SPSS software to test the normality of each dependent variable to determine
whether it was discrete data (Table 4), we found that the significance level of Y1, Y2,
Y3, Y4, Y6, and Y7 was less than 0.05, in a discrete distribution state. Only Y5 had a
significance greater than 0.05 (0.222). The main reason is that Lanzhou has frequent static
winds in winter, a high inversion rate of 99% [69], and poor diffusion conditions, resulting
in seemingly distributed air quality data. Air quality is discrete data, and none of the
data had a value less than 0. This paper used a negative binomial regression model for
regression analysis.

Table 4. Normality test of data.

Variable Mean Variance Wa p

Y1 86 8.529 0.965 0
Y2 88 13.895 0.950 0
Y3 82 36.377 0.889 0
Y4 79 9.144 0.986 0.002
Y5 94 13.544 0.994 0.222
Y6 93 9.113 0.960 0
Y7 80 14.704 0.950 0

Note: Normality tested by Shapiro–Wilk test.

In order to improve the simulation accuracy of the model, it is necessary to check the
collinearity of the respective variables. The analysis results (Table 4) show that the VIF
of each variable is less than 3 and is far less than the critical value of 10, which indicates
that the model has no multicollinearity problem and can be used for negative binomial
regression analysis.

The negative binomial regression model analysis results (Table 5) show that all nega-
tive binomial regressions were statistically significant (p < 0.01) with high fitting precision.

The results of the annual regression model show that air quality is negatively corre-
lated with green land and positively correlated with industrial emissions, traffic emissions,
industrial land, and land for external transportation at the 0.01 significance level and
residential land at the 0.05 significance level. It is positively correlated with land for con-
struction sites at the 0.1 significance level, and the degree of impact shows the order of
industrial land > land for external transportation > traffic emissions > heating emissions >
residential land > land for construction sites. In spring, air quality is negatively correlated
with heating emissions and green land at the 0.01 significance level, and the impact of green
land is greater than heating emissions. It is positively correlated with industrial emissions,
traffic emissions, and land for external transportation at the 0.01 significance level. It is
positively correlated with industrial land at the 0.05 significance level. There is a positive
correlation with land for construction sites and residential land at the 0.1 significance
level, and the degree of influence shows the order of land for external transportation >
industrial emissions > traffic emissions > industrial land > land for construction sites >
residential land.

In summer, air quality is negatively correlated with heating emissions and green land
at the 0.01 significance level, and the impact of green land is greater than heating emissions.
It is positively correlated with industrial emissions, industrial land, land for construction
sites, residential land, and land for external transportation at the 0.01 significance level.
At the 0.05 significance level, it is positively correlated with land for public management
and public service facilities, and land for commercial service facilities, and the degree of
impact shows the order of industrial land > land for construction sites > land for external
transportation > residential land > industrial emissions > land for public management and
public service facilities > land for commercial service facilities.
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In autumn, air quality is positively correlated with heating emissions, industrial emis-
sions, and industrial land at the 0.01 significance level, and the degree of influence shows
the order of industrial land > industrial emissions > heating emissions. In winter, air quality
is positively correlated with traffic emissions at the 0.01 significance level, and positively
correlated with heating emissions and industrial emissions and negatively correlated
with land for public management and public service facilities at the 0.1 significance level.
The degree of impact shows the order of traffic emissions > industrial emissions > heating
emissions. During the heating period, air quality is positively correlated with heating,
industrial, and traffic emissions at the 0.05 significance level, and the degree of influence
shows the order of traffic emissions > industrial emissions > heating emissions. During
the non-heating period, air quality is negatively correlated with green land and positively
correlated with industrial emissions, industrial land, land for construction sites, residential
land, and land for external transportation at the 0.01 significance level. There is a negative
correlation with heating emissions at the 0.05 significance level. There is a positive cor-
relation with traffic emissions, land for public management and public service facilities,
and land for commercial service facilities at the 0.1 significance level, and the degree of
impact is in the order of industrial land > land for construction sites > land for external
transportation > residential land > industrial emissions > land for commercial service
facilities > land for public management and public service facilities > traffic emissions.

Overall, there is a close relationship between urban land use and air quality. Industrial
activities, traffic pollution, and urban construction activities are the most important factors
affecting urban air quality. Green space can reduce urban pollution. Industrial land
has a serious impact on the quality of the air environment in terms of area and spatial
distribution. As the “green lung” of the city, green land can adsorb and settle most air
pollutants; the larger the green land, the better the air quality. The impact of land use
on air quality has a seasonal effect and shows a certain time coupling with local social
and economic activities. There is not a clear positive or negative correlation between all
urban construction land and air quality. Land for public management and public service
facilities has a positive correlation with air quality in summer and non-heating periods,
and a negative correlation in winter, and there is no obvious mathematical relationship
in other models. The land used for commercial service facilities only shows a positive
correlation with air quality in summer and non-heating periods, and there is no obvious
mathematical relationship in other models.

Table 5. Negative binomial model results.

Variables M1 M2 M3 M4 M5 M6 M7

X1 −0.00019816
(−0.92)

−0.0007814 ***
(−3.51)

−0.00173062 ***
(−4.47)

0.00107369 ***
(3.32)

0.00053515 *
(2.19)

0.00057556 **
(2.72)

−0.00086096 **
(−3.15)

X2 0.00429904 ***
(5.19)

0.00540908 ***
(5.48)

0.0066031 ***
(4.59)

0.00310282 ***
(3.84)

0.00224721 *
(1.99)

0.00296906 **
(3.29)

0.00540177 ***
(5.26)

X3 0.00414971 ***
(3.31)

0.00534804 ***
(3.47)

0.00410567
(1.70)

−0.00022114
(−0.14)

0.00664185 ***
(4.04)

0.00421788 **
(3.18)

0.00407687 *
(2.50)

X4 0.18057696 ***
(4.76)

0.12480744 **
(2.63)

0.45315445 ***
(5.19)

0.19876456 ***
(3.53)

−0.02347487
(−0.54)

0.07403405
(1.91)

0.26899138 ***
(4.73)

X5 0.05019174 *
(2.42)

0.06809959 *
(2.55)

0.16797907 ***
(4.09)

−0.02767476
(1.05)

−0.05262646
(−1.82)

−0.00819725
(−0.36)

0.09824626 ***
(3.63)

X6 0.02209244
(0.95 )

0.01899393
(0.65)

0.13869561 **
(3.07)

0.02586483
(0.96)

−0.08079757 **
(−2.87)

−0.03109436
(−1.41)

0.06620023 *
(2.18)

X7 −0.1662874 ***
(−6.95)

−0.21372142 ***
(−7.27)

−0.47167738 ***
(−10.63)

−0.01679669
(−0.51)

0.01593301
(0.51)

−0.03059924
(−1.19)

−0.27981642 ***
(−8.95)

X8 0.03085474 **
(2.66)

0.02762988 *
(2.00)

0.09474067 ***
(3.89)

0.01392373
(0.96)

−0.00599751
(−0.43)

0.00047415
(0.04)

0.05649607 ***
(3.54)

X9 0.02789775
(0.67)

0.03558245
(0.76)

0.24589958 **
(3.29)

−0.08055354
(−1.84)

−0.08187814
(−1.52)

−0.06773554
(−1.57)

0.10692261 *
(2.06)

X10 0.06640575 ***
(3.45)

0.07624238 ***
(3.49)

0.12397266 ***
(3.44)

0.02951012
(1.35)

0.03569024
(1.24)

0.0450457
(1.84)

0.08384093 ***
(3.43)

_cons 4.4093038 ***
(553.85)

4.4330281 ***
(466.38)

4.3374985 ***
(233.47)

4.3384706 ***
(404.55)

4.545 ***
(474.31)

4.5089679 ***
(552.08)

4.3316371 ***
(366.43)

N 340 340 340 340 340 340 340

t statistics shown in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01.
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4. Discussion

Previous studies mostly obtained air quality data from five national air quality mon-
itoring stations in Lanzhou [50,70]. Due to the lack of monitoring stations, it is difficult
to truly and effectively describe the temporal and spatial evolution of air quality in the
city [36]. There are some defects in the identification of polluted area inside the city [3].
In this study, AQI data from 340 air quality monitoring stations in Lanzhou were used to
make up the deficiency of previous studies, which can clearly depict the spatiotemporal
change law of air quality and identify high-pollution areas in the city. The modeling of
the relationship between land use and air quality was mainly based on annual average air
quality data, ignoring seasonal differences, and the research results show that construction
land has a significant effect on urban air quality. There is no detailed classification of
urban construction land, so this paper discusses the relationship between land use and air
quality by using the refined land use data within the buffer zone of 1000 m around the air
quality monitoring station. It is found that not all construction sites cause air pollution,
and different types of land have different effects on air quality. The effect of land use on
air quality also has seasonal differences under different model conditions, to a certain
extent, and this conclusion extends the previous research and provides a practical case for
micro-scale air quality distribution and its driving factors based on land use.

The study found that the rate of excellent and good air quality in Lanzhou reached
79.5%, which is consistent with the research conclusions of Sun, Ma, Guan, and oth-
ers [46,49,50]. This is in line with the development trend of air quality in China [19],
which cannot be separated from air pollution mitigation measures such as central heating,
traffic restrictions, and street sprinkling [39]. In terms of time distribution, it has the char-
acteristics of alternating high and low pollution and obvious seasonal changes throughout
the year. Pollution in winter and spring is more serious than that in summer and autumn,
which is consistent with the results of air quality research in China [12]. It is mainly affected
by monsoon climate conditions and rain and heat conditions.

The air quality in Lanzhou City has spatial differentiation. Pollution in Xigu District
is the most serious, which has been widely recognized by scholars [50,54,70]. The reason is
that Xigu, as the largest heavy chemical industry zone in Lanzhou, has a large discharge of
pollutants. In addition to the special geomorphic conditions of Lanzhou, air pollutants are
not easily diffused, which leads to aggravation of pollution [70]. However, some scholars
have found that there is no spatial heterogeneity in the air pollution in Lanzhou, which may
be related to the research data [3]. Data from five national ambient air quality monitoring
stations cannot identify differences in air quality within cities; a large quantity of data from
monitoring stations is needed to clearly identify the differences in air quality within a city.
The spatial distribution of air quality has seasonal differences, which is consistent with
the conclusion of Shi [71]. However, Shi’s research did not identify where the seasonal
differences in air quality within cities are reflected. The research in this paper found that
in addition to the core of pollution in Xigu District, the air pollution in Lanzhou during
the heating period is mainly concentrated in Chengguan District, which deepens previous
research conclusions.

The spatial changes of air pollution in cities are closely related to land use. Different
types of land use have different effects on air quality, which is consistent with the results
of Jo’s research in Korea [35]. Industrial emissions, traffic emissions, industrial land,
residential land, and land for external transportation cause air pollution, while green land
can control air pollution, which is consistent with the previous yearly model [25,35,43].
Industrial and traffic emissions are the main causes of air pollution in Lanzhou [70].
Residential areas gather large numbers of people, and the high population density leads to
deteriorated air quality [8].

The results of different seasonal models show that land for construction sites, heating
emissions, and green land have seasonal effects on air quality. In winter and heating periods,
only heating emissions, industrial emissions, and traffic emissions are positively correlated
with the degree of air pollution, which is consistent with the research conclusions of Li.
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As the weather gets colder in winter, the inhibitory effect of vegetation on air pollutants
gradually decreases from 16.6% in spring to 10.8% in winter. Traffic emissions are increased
due to the weakened impact of green space [72], and mobile sources such as traffic cause
more pollution than power generation and industry [73].

The secondary pollution in Lanzhou is relatively serious in winter, and the proportion
of pollutants emitted by motor vehicles is relatively large [47]. Therefore, Lanzhou should
adopt different air pollution prevention and control measures according to seasonal vari-
ations. The impact of land for public management and public service facilities and land
for commercial service facilities on air quality is not clear, which is inconsistent with the
research conclusions of Korean scholars [35]. These two studies found that commercial
areas increase the degree of air pollution through real-time big data of smart sensors.
The above inconsistent results may be caused by the accuracy of the data. Future studies
can use smart sensors, big data, and other means to clearly describe the differences between
the two.

5. Conclusions

5.1. Conclusions

Identifying the areas of poor air quality inside cities and their driving factors in terms
of land use is a prerequisite and basis for effective air environmental governance, which is
of great practical significance in order to promote sustainable development of the urban
environment. This study contributes to the research on air quality and land use at the
micro-scale by examining the changing laws of air quality and the relationship between
urban land use and air quality based on data from 340 air quality monitoring stations.

The air quality in Lanzhou has the characteristics of temporal and spatial differenti-
ation. Air quality varies throughout the year with high and low pollution, with obvious
seasonal changes; summer and autumn are better than winter and spring, and air pollution
is the most serious during the heating period. Air pollution presents a spatial pattern of
heavy weight in the west and light weight in the east, characterized by the order of Xigu >
Anning > Qilihe > Chengguan District.

The results of identifying hot and cold spots of air pollution show that the hot spots
are mainly concentrated in Xigu and Anning and the cold spots are mainly concentrated in
Chengguan. With seasonal changes, air pollution undergoes a process of “concentration–
diffusion” in space. During the heating period, two air pollution hot spots form a perennial
pollution core in Xigu and a heating core in Chengguan.

Different land use categories have different effects on air quality with regard to either
the direction, magnitude, or seasonal scale effect of correlation. In general, industrial
activities, traffic pollution, and urban construction activities are the most important factors
affecting urban air quality. Green spaces can reduce urban pollution. The impact of land
use on air quality has a seasonal effect.

The land use types are directly related to pollution emissions, which indirectly affects
air quality. However, due to the influence of regional transmission and secondary conver-
sion, future research should combine primary pollutants such as SO2, NOx, dust (PM10,
PM2.5), etc., and AQI to study their relationships with land use types. The AQI is a com-
prehensive representation of air pollution. Different pollutants have different relative
contributions to the AQI in different seasons. For example, O3 contributes significantly in
summer, while PM contributes significantly in winter, which may lead to differences in
the analysis of the spatial distribution of the AQI. Urban land use is static data, while air
quality is dynamic data. Although studies have found seasonal differences in the impact
of land use on air quality, using only one year of data might affect the stability of the
conclusion. In the future, we need to acquire long-term dynamic data using new methods
such as big data, machine learning, and intelligent sensors and rebuild the air–LUR model
to fully study the coupled relationship between urban air quality and land use.
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5.2. Policy Suggestions

Based on the analysis results of this study, different types of land use have different
impacts on air quality. Similarly, the impact of land use on air quality under different
model conditions has seasonal differences. Therefore, discussing methods to curb the
deterioration of air quality does not mean that, in order to control the scale of urban
construction land, it is necessary to subdivide the types of land, identify the types that
affect air quality, optimize and adjust the land structure, and formulate sustainable urban
land use policies to control air pollution. Specifically, the following should be addressed:
(1) In urban planning, when optimizing the layout of urban functions, we should try to
avoid the “spreading pie” type of urban space expansion, adopt a compact and intensive
development model, alleviate the commuter traffic demand caused by the separation of
work and residence, and implement public transportation. The priority strategy is to
build a complete public transportation system and guide individuals to transfer to using it,
thereby slowing the growth of motor vehicles, reducing traffic emissions, and improving
air quality. (2) In urban land use planning, we should control the scale of industrial land,
construction site land, and foreign-use land; gradually transfer industries in the central
area of the city to the suburbs; reduce the proportion of industrial land; and use water
bodies and land between polluting factories and other land. It is essential to protect and
isolate open spaces to prevent industrial pollution. (3) In the planning of the urban green
space system, we should increase the coverage of urban green space, cover areas with high
concentrations of air pollutants, absorb urban air pollutants, improve air quality, and reduce
the concentration of pollutants in the entire city. (4) We should strengthen the management
of dust from urban roads and construction sites; promote an improved mechanized road
cleaning rate, install atmospheric environment monitoring equipment and atomization
and dust suppression devices on construction sites, and network with the environmental
protection and housing construction departments to improve the management level of
construction dust. (5) We should further optimize the energy structure, replace coal with
clean energy, and reduce air pollution caused by coal burning during the heating period.
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Abstract: Korean law requires at least three levels of control for apartment ventilation systems,
including 0.5 air change per hour (ACH). When this law was enacted, it was believed that a 0.5 ACH
air flow rate would be sufficient for apartments following building completion. However, ventilation
systems cause different air qualities in each space within a unit, depending on infiltration rate and
number of occupants. In addition, the current ventilation rate standard is based on an apartment
unit’s total area, assuming that all room doors are open. In this study, changes in CO2 concentration
were experimentally analyzed based on the number of occupants and various ventilation frequencies
with closed doors to analyze air quality differences among rooms in a typical 85 m2 apartment unit
in Korea. When the 0.5 ACH ventilation was performed, maintaining 1000 ppm or less was difficult
if four people stayed for more than two hours in the living room or two people stayed for more than
one hour in the bedroom with closed doors. Our results indicate that it is challenging to maintain a
CO2 concentration of 1000 ppm when doors are closed as standards are calculated based on a unit’s
total area. Therefore, ventilation systems should be required to provide different air volumes for
each room.

Keywords: mechanical ventilation systems; minimum ventilation level; Korea housing; CO2 concen-
tration; apartment ventilation

1. Introduction

According to the facility standard rules for buildings in Korea [1], housing ventilation
systems must be able to provide a ventilation rate of at least 0.5 air change per hour (ACH).
This corresponds to an air volume of approximately 100 m3/h for the national housing scale
with an area of 85 m2 and ceiling height of 2.3 m, as defined in the Housing Law [2]. This
air volume is similar to that calculated based on ASHRAE 62.2 [3]. Because the volume is
based on all rooms in an apartment unit, it assumes that all room doors are open. However,
when the room doors are closed, the appropriate ventilation rate can vary.

Although there are various methods to obtain the appropriate ventilation rate for
maintaining indoor CO2 concentration requirement, 1000 ppm [4–6], it can be calculated
using the difference between the CO2 concentration generated by the occupants and the
external CO2 concentration. According to the climate change monitoring information
provided by the Korean Meteorological Administration, the external CO2 concentration
has been increasing since 1984 [7].

Applying the average CO2 concentration in Anmyeondo, Korea in December 2019
(421 ppm) [7] and the CO2 expiratory flow generated during the normal activities of one
adult (18 L/h) [8], a ventilation rate of approximately 31 m3/h was calculated. This means
that approximately 124 m3/h is required when a four-member family resides in an 85 m2

house. In addition, the 0.5 ACH ventilation rate of a bedroom with an area of 9 m2 [9]
was calculated to be 10.4 m3/h. A typical small room in Korean housing where a single

Sustainability 2021, 13, 10302. https://doi.org/10.3390/su131810302 https://www.mdpi.com/journal/sustainability125
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bed and a wardrobe are installed has an area of 9 m2 and a ceiling height of 2.3 m. This
corresponds to 33.5% of 31 m3/h, which is the ventilation rate required per person for
one hour. Although the results could vary depending on the room’s infiltration rate, the
fact that CO2 concentrations ranging from 2000 to 3000 ppm have been discovered in field
surveys of existing houses indicates that this issue is difficult to solve by only considering
infiltration differences [10,11].

In many previous studies related to CO2 concentration control in residential buildings,
various demand-controlled ventilation strategies were provided, and their results were
analyzed through simulations [12–16]. Some studies presented control methods using
CO2, humidity, and occupancy sensors, and compared them through simulations [12–14].
Other work presented control methods using CO2 and total volatile organic compounds
sensors and compared them using a simulation [15]. There have also been studies that
investigated control methods using only occupancy conditions and compared them to
simulations [16,17]. Although various conditions can be analyzed using simulations, the
results may differ from real-world situations.

In terms of field experiments, a study adjusted the ventilation rate in two steps by
examining the presence of occupants using the difference between the indoor and outdoor
CO2 concentrations [18]. Field experiments were performed for a typical four-member
family house in Denmark, but the target house had a larger area (140 m2) than a typical
house in Korea, and the standard ventilation rate applied in the experiment was also higher.

Mechanical ventilation systems installed in Korean apartments generally provide
the same ACHs to all rooms in three steps. This is because Korean law requires at least
three levels of control for mechanical ventilation system performance, including 0.5 ACH.
When the law was enacted, it was believed that the risk of sick building syndrome would
decrease following building completion. As such, at present the minimum ventilation level
of 0.5 ACH is used as an intermediate step and a 20–100% smaller or larger air volume has
been provided for the three-step control. However, it is challenging to determine whether
an appropriate air volume is provided in each situation [19]. Therefore, such systems
are highly likely to result in different air qualities within each space, depending on the
infiltration rate and/or the number of occupants.

In this study, the CO2 concentration was experimentally analyzed based on the number
of occupants and various ventilation rates to analyze the differences among the rooms in an
actual 84 m2 apartment unit, which is the typical apartment size in Korea. In addition, case
studies were conducted to investigate the effectiveness of apartment ventilation systems.

2. Materials and Methods

2.1. Experimental Sequence

An analysis was conducted in the following sequence to examine the CO2 concen-
trations in 85 m2 apartment units and the degree of CO2 removal was assessed based on
ventilation frequency.

Step 1: Analysis of residence time for each room
According to a 2019 survey conducted by Statistics Korea [20], a four-member family

generally resides in an 85 m2 house. Thus, in this study, the number of residents in the
target house was assumed to be four, including a couple and two adult children, and the
residence time for each room was analyzed thoroughly.

Step 2: Experimental analysis of the infiltration rate in each room
Because the infiltration rate affects the change in CO2 concentration, the infiltration

rate of each room in the target house was measured using the method proposed by KS F
2603 [21], when room doors were closed.

Step 3: Experimental analysis of the CO2 increment for each room
The infiltration rates confirmed in the field experiments were applied to a formula that

can obtain the pollutant removal results for each ventilation rate. Field experiments were
performed for the residence time and the number of occupants classified in Step 1. The
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error range was identified through a comparison with the CO2 concentrations obtained
through the formula.

Step 4: CO2 analysis at various ventilation frequencies
The CO2 concentration was examined based on the number of occupants and various

ventilation frequencies, using the formula and error range verified in Step 3.

2.2. Experiment Space and Measurement Equiptment

The experiment apartment in this study consisted of one living room and three
additional rooms. The living room and two other rooms were placed on the southern side
and one room was placed on the northern side.

Figure 1 shows the floor plan of the apartment unit used for the experiments. The
volume of each room and the positions of the windows and doors are illustrated. R2 and
R3 (children’s bedrooms) had windows on the southern side, and R1 (couple’s bedroom)
had a small window on the northern side and a sliding door to the dressing room. The
sliding door had a rail at the top and no frame at the bottom. All doors to the living room
had a hinged structure with the top and bottom frames. An exhaust air duct system from
the bathroom in Figure 1 is separate and not included in this experiment.

Figure 1. Apartment unit plan and room sizes for experiments.

Figure 2 shows the positions of the supply and return diffusers and the heat recovery
ventilator as well as the flow metering system (FMS, Taehung M&C, Anyang-si, Korea)
that measures the air volume for each room. The FMS measured the static pressure of the
duct and calculated the air volume based on the value of the self-averaging multi-pitot
tube. The diffusers were motorized and used to adjust the ventilation rate. They enabled
multi-step adjustment from complete closing (an opening rate of zero) to complete opening
(an opening rate of 3000).

The CO2 concentration was measured by connecting the EE820 sensor (E + E Elek-
tronik) for CO2 (Figure 3a) to the Graphtec data logger (Figure 3b). The measurement range
of the EE820 sensor provided by the manufacturer was 0–10,000 ppm, with error ranges of
approximately 2%. The air volume measured at the end of each duct was divided by the
room volume to calculate the air change per hour for each room. This was displayed on a
separate monitor to minimize errors.
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(a) (b) 

(c) 

Figure 2. (a) Flow metering system (*FMS) and supply diffuser; (b) duct plan diagram; (c) heat recovery ventilator.

  
(a) (b) 

Figure 3. Equipment for experiments: (a) CO2 Sensor; (b) data logger.

3. Results

3.1. Analysis of the Residence Time for Each Room

To construct experimental cases, the actual usage schedule was examined based on
the results of the 2019 Residential Status Survey conducted by Statistics Korea [21]. For the
convenience of analysis, the time unit of behavior was divided into 30 min. Key survey
results incorporated in this study included:

• The average bedtime for Korean people was 23:22 and the average wake-up time was
06:55, resulting in an average sleeping time of 7 h and 27 min. The average sleeping
time of people older than 40 was 1 h less than that of their children. In other words, in
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the case of a four-member family, it was assumed that the couple slept for 7 h and the
two children for 8 h each.

• Meal time ranged from 25 to 35 min, resulting in an average of 30 min. The preparation
time for dressing and a shower before meals was assumed to be 30 min.

• School and working hours were from 09:00 to 18:00, and the average commute time
was 1 h and 16 min. In this study, the commute time was assumed to be 1 h and
30 min.

Reflecting the results of the Residential Status Survey we also assumed:

• The couple goes to bed at 23:00 and wakes up at 06:00; the children wakes up at 07:00.
• The family leaves from home at 07:30 and works or studies from 09:00 to 18:00. They

return to home at 19:30.
• The family has dinner for 30 min after a 30-min preparation allotment for dressing,

and shower by approximately 20:30.
• Assuming that they spend 30 min to 1 h out of 2 h and 30 min before bedtime (23:00)

with other family members, the practical continuous residence time in each room was
estimated to be less than 2 h.

• As the target space is indoors, only light activities were assumed.

Based on the various schedules from 19:30 to 23:00 considered using the above con-
ditions, the maximum number of occupants and residence time in each room could be
obtained, as shown in Figure 4. The maximum residence time that occurred most frequently
was 2 h, and the maximum number of occupants was four people in the living room, one
person in R2 and R3, and two people in R1.

(a) (b) (c) 

Figure 4. Maximum residence for three cases: (a) LR + K; (b) R2 + R3; (c) R1.

3.2. Analysis of the Infiltration Rate of Each Room

To calculate the infiltration rates of the living room + kitchen (LR + K), couple bedroom
(R1), room 2 (R2), and room 3 (R3) (Figure 1), measurements were performed in accordance
with KS F 2603 [22]. Equation (1) was specified in KS F 2603 (2016) to calculate the
infiltration rate of a space using CO2 reduction data.

Q = 2.303
V
t

log10
C1 − C0

Ct − C0
(1)

where Q is the supply air volume (m3/h), V is the space volume (m3), t is the time (h), C1
is the initial CO2 level (m3/m3), Ct is the CO2 concentration after hours (m3/m3), and C0 is
the CO2 concentration in supply air (m3/m3).

Notably, the infiltration rate may vary depending on the season [23]; the infiltration
rate calculation experiment in this study was conducted in March and April when the CO2
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experiment was performed for each occupant. To examine the infiltration rate of each room
with the door closed, CO2 gas was injected until its concentration reached 2000 ppm, and
then natural attenuation was allowed. The experiment was repeated five times within
30 min, in accordance with KS F 2603 (2016). Table 1 shows experiment results for the
maximum, minimum, and average infiltration rates of each room.

Table 1. Infiltration rate analyzed by measurements.

Case LR + K R1 R2 R3

Max 0.37 0.61 0.25 0.41
Min 0.25 0.23 0.15 0.23

Average 0.33 0.41 0.20 0.30
Volume (m3) 102.1 33.8 29.0 32.6

3.3. Mass Conservation Equation to Examine Indoor Air Pollution

Based on the mass balance equation, the indoor pollution concentration after time t
can be obtained using Equation (2): The error from the experimental values was analyzed
as follows:

• With no separate ventilation, Q can be considered as the infiltration volume.
• When mechanical ventilation was performed, the value obtained by adding the me-

chanical ventilation rate to the natural infiltration volume by the heat recovery ven-
tilator was applied to Q. In this instance, the supply and return volumes were set
to be equal by adjusting the speed of the supply and return fans before the start of
the experiment. The values were examined using FMS in each room to minimize the
influence of additional pressurization or decompression.

• In Equation (2), the amount of CO2 generated (G) was calculated to be 18 L/h for
adult males and 16 L/h for adult females, in accordance with ASHRAE 62.1 (2019)
and KS F 2603 (2016).

V
∂C
∂T

= QC0 − QCi + G (2)

where V is the space volume (m3), T is the time (h), Q is the air change volume (m3/h), C
represents CO2 level (mg/m3), C0 represents CO2 level outside (mg/m3), Ci represents
CO2 level inside (mg/m3), and G is the CO2 generation (mg/h).

Three cases of ventilation rates were set as follows:

1. No ventilation
2. 0.5 ACH, which is the minimum ventilation frequency required by law
3. 1.0 ACH, which is twice as high as the minimum required ventilation frequency

Each LR + K, R1, R2, and R3 with different infiltration rates was occupied by occupants
for 2 h; the experiment was conducted based on the above three ventilation rates and the
number of occupants as variables. In addition, the measured CO2 concentrations (E.V.s)
were compared to the calculated values (C.V.). The data are summarized in Table 2.

Table 2. Experimental results.

ACH_O *
LR + K

E.V. (C.V.)
(ppm)

Dif.
(%)

R1
E.V. (C.V.)2

(ppm)

Dif.
(%)

R2
E.V. (C.V.)

(ppm)

Dif.
(%)

R3
E.V. (C.V.)

(ppm)

Dif.
(%)

0ACH_1 602(669) −6 1002(1066) −6 1459(1396) +5 1231(1326) −7
0ACH_2 931(966) −1 1875(1873) −1 2385(2372) +1 2389(2458) −3

0.5ACH_1 582(603) −3 806(856) −6 980(1088) −10 982(1096) −10
0.5ACH_2 710(756) −6 1488(1400) +6 1732(1757) −1 1651(1772) −7
1.0ACH_1 520(530) −2 693(736) −6 747(838) −11 860(903) −5
1.0ACH_2 630(667) −5 1002(1130) −11 1476(1361) +6 1361(1385) −2

* ACH: air change per hour, O: occupants (person), E.V.: experimental values, C.V.: calculated values, Dif.: difference between E.V. and C.V.
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As shown in Table 2, the calculated values differed by −6 to +5% from the experimental
values under the no ventilation condition. In the 0.5 and 1.0 ACH ventilation rates, which
are the experimental results during mechanical ventilation, the experimental value also
differed by −11 to +6% from the calculated values.

The maximum number of occupants was analyzed as four for LR + K and two for R1,
R2, and R3, as shown in Figure 4.

As a result of the experimental case analyses, R1, 2, and 3 showed CO2 concentrations
exceeding 1000 ppm even with the highest ventilation case, 1.0 ACH. Accordingly, CO2
concentrations in the 1.5 ACH cases were additionally analyzed according to the formula,
and the possible error ranges were indicated. In addition, the calculation results that
expanded the analysis range considering the maximum residence time and maximum
number of occupants are shown in Figures 5 and 6 with the possible error ranges.

Figure 5. Calculated CO2 concentration rates of LR + K, based on the experimental conditions with
error ranges. * The bold text cases are analyzed by numerical calculations and error ranges without
experiments in Table 2.

Figure 5 shows the increase in CO2 concentration in LR + K depending on the number
of occupants and ventilation frequency, and the error ranges considering the experimental
values are also expressed. The analysis results that considered these error ranges were
as follows:

• With no ventilation in LR + K (0 ACH), the CO2 concentration could exceed 1000 ppm,
if four people stayed for more than 1 h or two people stayed for more than 3 h.

• When a mechanical ventilation of 0.5 ACH was performed, the CO2 concentration
could also exceed 1000 ppm, if four people stayed for more than 2 h.

Figure 6 shows increases in the CO2 concentration in R1, R2, and R3 based on the
number of occupants and ventilation frequency. The key results were as follows:

• With no ventilation, the CO2 concentration could exceed 1000 ppm under all conditions
except when one person stayed for less than 1 h. In the case of R2 and R3, the CO2
concentration could exceed 2000 ppm, if two adult males stayed for 2 h.

• When the minimum required 0.5 ACH ventilation was performed, the CO2 concen-
tration in R2 with the lowest infiltration rate increased to 1089 ppm if one adult male
stayed for 2 h and to 1757 ppm if two adult males stayed for 2 h. In particular, the
CO2 concentration in R1, R2, and R3 exceeded 1000 ppm, if two adult males stayed
for only 1 h.
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• When a 1.5 ACH ventilation was performed, CO2 concentration could be maintained
at a level lower than 1000 ppm in R1, R2, and R3, even if one occupant stayed for more
than 2 h. However, the CO2 concentrations in R1, R2, and R3 exceeded 1000 ppm and
reached 1130, 1361, and 1206 ppm, respectively, if two occupants stayed for 2 h.

• With a ventilation of 1.5 ACH, the indoor CO2 concentration ranged from less than
1000 ppm to slightly higher than 1100 ppm. The latter values occurred if two occupants
stayed for 2 h, the most severe among the experimental conditions.

(a) 

(b) 

Figure 6. Cont.
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(c) 

Figure 6. Calculated CO2 concentration rates of (a) R1, (b) R2, and (c) R3, based on the experimental
conditions with error ranges. * The bold text cases are analyzed by numerical calculations and error
ranges without experiments in Table 2.

4. Discussion

In this study, the occupancy conditions of residents were examined in an 85 m2

apartment unit, which is the representative apartment size in South Korea. In addition, the
improvement in indoor air quality based on occupancy condition and ventilation frequency
was examined, with a focus on CO2 concentration.

The experiment and analysis results of this study can be summarized as follows:

• The room occupancy scenarios of a four-member family living in an 85 m2 apartment
unit were examined using statistical data, and the residence time schedule for each
room was prepared. The maximum number of occupants and the maximum residence
time were found to be four people and 4 h, respectively, for LR + K, and two people
and 2 h, respectively, for each of R1, R2, and R3.

• The infiltration rate for each room was obtained using the CO2 reduction method in
accordance with KS F 2603. The CO2 concentration equation was then constructed for
each case using the mass balance equation that combined these infiltration rates, and
the error range was calculated by performing experiments under several conditions.
In addition, the CO2 concentration was analyzed for various cases using this equation.

• For the minimum required ventilation of 0.5 ACH, analysis results showed that it was
difficult to maintain 1000 ppm or less if four people stay for more than 2 h in LR + K
and if two people stay for more than 1 h in R1, R2, and R3, which is the minimum
ventilation frequency by law.

• Ventilation of 1.0 ACH or more was required for two people to stay in a bedroom for
more than 1 h. Furthermore, 1.5 ACH or more was required for two people to stay for
more than 2 h while maintaining a CO2 concentration of approximately 1000 ppm.

Overall, the findings from this study indicate that it is difficult to maintain a standard
CO2 concentration of 1000 ppm when doors are closed as housing ventilation rates in
domestic and overseas standards were calculated based on an apartment unit’s total area.
In addition, results indicate that ventilation systems that can provide different air volumes
for each room should be required in houses. However, increasing the capacity of fans
or ventilating the total area at a high air volume for this purpose may result in high
energy consumption. Therefore, research on energy-saving technologies is also required.
In this study, only weekday results were analyzed, where residents have a general life
pattern, and in cases except for other activities with higher emissions of CO2 e.g., exercise.
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During holidays, residence time tends to increase, which leads to a further increase in
CO2 concentration when compared to the results of the present study. Future research
should include various scenarios, such as holidays and various activity cases, and analysis
should be conducted through simulations and field experiments. In addition, strategies to
maintain indoor air quality using individual room control should be presented to provide
an optimal indoor air environment with minimal energy use.
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Abstract: This study empirically evaluates the impact of air pollution on China’s economic growth,
based on a province-level sample for the period 2002–2017. Air pollution is measured by the concen-
tration of fine particulate matter (PM2.5), and economic growth is measured by the annual growth rate
of gross domestic product (GDP) per capita. A panel data fixed-effects regression model is built, and
the instrumental variables estimation method is utilized for quantitative analyses. The study reports
a significant negative impact of air pollution on the macroeconomic growth of China. According to
our instrumental variables estimation, holding other factors constant, if the concentration of PM2.5

increases by 1%, then the GDP per capita growth rate will decline by 0.05818 percentage points. In
addition, it is found that the adverse effect of atmospheric pollution is heterogeneous across different
regions. The effect is stronger in the eastern region and in provinces with smaller state-owned
enterprise shares, fewer governmental expenditures for public health services, and fewer medical
resources. The study results reveal that air pollution poses a substantial threat to the sustainable
economic growth of China. Taking actions to abate air pollution will generate great economic benefits,
especially for those regions which are heavily damaged by pollution.

Keywords: air pollution; PM2.5; economic growth rate; GDP per capita; China

1. Introduction

Air pollution is a severe threat to sustainable development in many regions around
the world [1–3]. Previous medical and environmental studies have solidly confirmed that
air pollution damages human health heavily. Air pollution also has a series of considerable
economic consequences. The literature has investigated the influences of air pollution on
several aspects of economic activities, including labor productivity [4,5], housing prices [6],
wage premiums [7], population mobility [8,9], and the tourism industry [10,11]. How-
ever, the impact of air pollution on the growth of the aggregate economy has not been
well studied.

It is important to understand the linkage between air pollution and economic growth,
as good air quality and economic growth are both essential components of sustainable
development. Traditionally, studies on the link between environmental pollution and eco-
nomic growth have been conducted within the framework of the environmental Kuznets
curve (EKC). According to the EKC hypothesis, economic development initially leads to
environmental degradation, but, after a certain income level, the degree of environmental
pollution reduces. In the EKC model, changes in environmental quality are considered to
be a consequence or byproduct of economic growth. However, the relationship between
economic growth and pollution is not unidirectional. Given that many economic activ-
ities are influenced by the surrounding pollution, pollution likely affects the economic
growth rate.

The research objective of this study is to empirically analyze whether and to what
extent air pollution exerts impacts on macroeconomic growth in China. This research
has an apparently realistic background. China is chosen as the target country of research,
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because China’s high economic growth rate and severe air pollution problems are both
worthy of attention. Although China had successfully maintained a high gross domestic
product (GDP) growth rate for decades, the growth rate gradually diminished during the
past decade. It is unsure whether China can hold its leading role as a growth engine of
the world. Besides its economic sustainability issue, the environmental sustainability of
China is also of interest. The poor air quality in some industrialized and population-dense
Chinese cities is widely known. China has taken great efforts to prevent and control air
pollution, and an improvement in air quality can be observed in recent years. However,
China is currently still on the list of heavily polluted countries. What is the relation between
these two phenomena (i.e., declining economic growth rate and severe air pollution in
China)? This research will provide helpful insights.

This study offers marginal contributions to the literature in several aspects. (1) This
study provides explicit evidence that air pollution has a substantial adverse influence
on China’s regional economic growth. On the basis of econometric regression estimates,
this research offers a quantitative evaluation on the magnitude of air pollution’s impact,
which enables us to estimate the economic benefits of pollution abatement. (2) Our analysis
focuses on the effect of atmospheric pollution on the growth rate of the economy. This
feature distinguishes our research from the previous several studies that analyzed the effect
of pollution on the level of GDP or GDP per capita. (3) This study also evaluates whether
there are heterogeneities in different periods and across different districts. This study
obtains a novel finding that the effect of air pollution is not uniform across all districts
but dependent on the economic structures and features of the specific regions. (4) The
regression analyses in this study confirm that the endogeneity issue of air pollution should
be taken into account when using econometric models. Comparing the estimation result
of a standard panel data fixed-effects estimation with that of an instrumental variables
estimation shows that, if we incorrectly ignore the endogeneity of air pollution, the adverse
impact of air pollution will be underestimated.

The remainder of this article is organized as follows. Section 2 develops the research
hypothesis and reviews the existing literature. The empirical model and data are pre-
sented in Section 3. Section 4 provides the detailed estimation results. Finally, Section 5
discusses the research findings, concludes the paper, and offers information for future
research directions.

2. Hypothesis Development and Literature Review

2.1. Hypothesis Development

It is widely known that air pollution poses public health risks. For instance, air
pollution causes a higher incidence of many illnesses and unhealthy symptoms, includ-
ing attention deficits [12,13], cardiovascular problems [14], cognitive impairment [15,16],
headaches [17], irritability [18], mental depression [19], respiratory diseases [20,21], and
so on. Air pollution results in a substantial global burden of diseases, higher morbidity,
and increased mortality [22,23]. The health damages created by air pollution have severe
economic consequences. In particular, previous studies have reported that air pollution re-
duces productivity, causes a loss of human capital, and strongly depresses some industries
which are dependent on a clean environment.

As the health status of laborers becomes worse as a result of atmospheric pollution,
productivity in economic activities declines. Laborers in poor health cannot work in a
sufficiently efficient way. The previous labor economics literature has confirmed that
air pollution has largely reduced the labor productivity in different industries across the
world [4,5]. In addition, a recent study by Zhao and Yuan [24] reported that air pollution
has an inhibitory effect on the total factor productivity (TFP) in China. As labor productivity
and TFP are key determinants of economic growth [25–28], the damage of air pollution on
productivity indicates that economic growth is harmed.

Air pollution also causes a loss of human capital, as some high-skilled laborers may
choose to leave polluted areas and human cognitive abilities are damaged by pollution.
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The environmental literature has found that the degree of perception and concern about
atmospheric pollution rises with the increasing education level of individuals [29–31]. This
implies that highly skilled laborers, such as scientists and technicians, who are usually
well-educated on average, may be significantly responsive to the air pollution issue. Some
of these individuals are likely to leave polluted regions, as previous studies have detected
that air pollution affects people’s mobility and residence decisions [6,8,9]. The leaving
of laborers with high education levels results in a loss of human capital in the society.
Moreover, the medical literature has identified that air pollution causes a decline in human
cognitive abilities [15,16]. In consequence, pollution has an implicit damage on human
capital in industries requiring high cognitive performance. For instance, Luo et al. [32]
reported that air pollution in China reduces inventors’ annual new patent output, reflecting
a decrease in innovative abilities of researchers. Given the importance of human capital
in sustainable economic growth [33–35], a loss of human capital induced by atmospheric
pollution implies that economic growth is reduced.

Furthermore, air pollution directly depresses the development of certain industries
that substantially rely on a clean environment. A particularly notable example is tourism.
Given the fact that good environmental quality is an indispensable characteristic of attrac-
tive tourist destinations [36–40], tourism is heavily hurt by air pollution [10,11,41]. Air
pollution inhibits sightseeing activities, damages the tourist experience, poses potential
health risks, and, thus, reduces the competitiveness of a tourism destination [37–39,42–44].
The number of tourist arrivals and amount of tourism revenue both decline in air-polluted
regions [45,46], as many tourists are unwilling to visit polluted areas. Potential tourists
have explicitly been aware of and concerned with the air pollution in China [10,47]. The
tourists’ perception of air pollution has apparently reduced their willingness to visit China
and the trip satisfaction [48–50]. As tourism is an economic growth engine in numerous
districts [51,52], air pollution depresses economic growth through its damage to tourism.
In addition to tourism, the sustainable development of agriculture is also severely hin-
dered by air pollution [53–55], as crop yields and the diversification of wild species are
adversely impacted.

In short, air pollution reduces economic productivity, causes human capital loss, and
directly hampers the development of several environment-dependent industries. Although
people might partially mitigate the damage of air pollution by taking some protective
actions (e.g., building better infrastructure to prevent the indoor intrusion of outdoor
pollution, using more air purifiers and masks, and being more informed to avoid staying in
severely polluted areas and periods), these actions come at the cost of economic resources
and daily inconvenience, while the harmfulness of pollution can hardly be eliminated
completely. On the basis of the above analyses, it is reasonable to conjecture that air
pollution impedes economic growth. Thus, the research hypothesis in this study was
established as follows:

Hypothesis 1. Air pollution has a negative impact on economic growth.

2.2. Literature Review

Many previous studies, such as Atici [56], Dinda [57], Dong et al. [58], Farhani et al. [59],
Gokmenoglu et al. [60], Luo et al. [61], Millimet et al. [62], and Zhang et al. [63], have
analyzed the environmental Kuznets curve, which discusses the variations of pollutant
emissions and environmental quality at different economic development states, reflected
by the levels of per capita income. However, the impact of pollution on economic growth
has not been sufficiently investigated in the literature.

Some studies have analyzed the influence of carbon dioxide (CO2) emissions on
economic growth; however, the findings were inconclusive. For instance, Abdouli and
Hammami [64] investigated the situation in 17 Middle Eastern and North African (MENA)
countries, Omri et al. [65] explored a global panel of 54 countries, and Omri et al. [66]
analyzed 12 MENA countries. They all reported a significant negative impact of CO2
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emissions on economic growth. Differing from their findings, the study by Ghosh [67]
focused on India and reported that no statistically significant long-term effect of carbon
emissions on economic growth was detected. Similar conclusions were obtained by Ozturk
and Acaravci [68] for Turkey, Zhang and Cheng [69] for China, and so on. Some studies
have reported a positive effect of carbon emissions on economic growth. For example,
Azam et al. [70] found that the impact of CO2 emissions on economic growth was positive in
the US, China, and Japan, although it was negative in India. Ahmad and Du [71] reported a
positive influence of carbon emissions on economic growth in Iran. Muhammad [72] found
that carbon emissions stimulated economic growth in developed and MENA countries.

It is notable that the scale of CO2 emissions may not perfectly reflect the degree of
ambient air pollution affecting human lives, as the actual concentration of air pollutants
is greatly shaped by meteorological and geographical conditions. The volume of carbon
emissions is tightly relevant to the intensity of energy use and the degree of energy effi-
ciency in one region but may not be a satisfactory indicator of the density of pollutants in
ambient air.

A few studies have explicitly used the measured density of atmospheric pollutants to
denote the degree of air pollution. Dechezleprêtre et al. [73] took a sample of European
regions over the period 2000–2015 and reported that a 1 μg/m3 increase in the density of
fine particulate matter (PM2.5) caused a 0.8% reduction in real GDP. Sinha [74] reported
that nitrogen dioxide (NO2) and sulfur dioxide (SO2) emissions significantly harmed
the regional income levels for a panel of 139 Indian cities during the period 2001–2013.
Hao et al. [75] estimated the impact of PM2.5 pollution on the level of GDP per capita in
Chinese cities between 2013 and 2015. They reported a significant negative impact: a 1%
increase in PM2.5 concentration was found to trigger the GDP per capita to decline by
around 0.3–0.8%, depending on the model specifications used. Zhao and Sing [76] further
reported that dust and SO2 emissions in neighboring cities generated a negative spillover
effect on the GDP of local Chinese cities. On the other hand, Gan et al. [77] reported that
the spatial spillover effect of atmospheric pollution is positive. Jiang et al. [78] found
no significant impact of SO2 emissions on local GDP but reported a positive impact of
air pollution in neighboring cities, based on the data for 28 cities in China during 2006–
2015. These six studies provided findings that air pollution affects the level of economic
development. However, we cannot simply say that the impact of air pollution on economic
growth has been confirmed by these above-mentioned studies. It should be noted that the
dependent variable used in these studies was the level of GDP or GDP per capita. Thus, the
estimated regression coefficient of air pollution essentially evaluated its contemporaneous
impact on economic scale, rather than the long-run effect on economic growth [73]. Taking
the economic growth rate as the dependent variable in the regression equation is more
consistent with that used in the economic growth literature (e.g., [79–85]). In our study,
we use this kind of model setup and examine the effect of air pollution on the regional
economic growth rate in Chinese provinces.

In brief, the existing literature has several gaps. (1) Based on the prior studies, although
it is not difficult to infer intuitively that air pollution might negatively affect economic
growth, there is not enough empirical evidence to directly verify this intuition. Particularly,
we lack detailed studies to quantify the effect of air pollution. (2) As mentioned before,
several previous studies used the level of GDP (per capita) as the dependent variable in
regression models. However, the theory of economic growth pointed out the importance of
inspecting the growth rate of GDP (per capita). The several above-mentioned studies did
not consider this. (3) Different districts may own disparate macroeconomic structures and
features, which influence the magnitude of air pollution’s impact. The existing literature
did not pay sufficient attention to the heterogeneous effects of air pollution.

2.3. Key Feature of This Study

The key feature of this study, which differentiates ours from the previous research,
is that we use the GDP (per capita) growth rate, instead of the GDP (per capita), as the
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dependent variable in the econometric regression model. This point is crucial, as models
using different dependent variables tell different stories. To clarify this, let us consider the
following two simplified models:

Model I: GDPt = a0 + a1×AirPollutiont (a0 > 0, a1 < 0),

Model II: GDPGrowthRatet = b0 + b1×AirPollutiont (b0 > 0, b1 < 0)
and GDPt = GDPt−1×(1 + GDPGrowthRatet),

where GDPt refers to the scale of GDP in period t, GDPGrowthRatet is the growth rate of
the GDP, and AirPollutiont is the degree of air pollution which negatively affects GDP or
its growth rate.

First, we consider the scenario described by Model I. In this scenario, a change in the
degree of air pollution alters the scale of the GDP but not the growth rate. This scenario
has at least two important implications regarding economic growth. (1) Holding other
things constant, in order to continuously increase the GDP, the region has to reduce its air
pollution endlessly. If air quality reaches a level that the region can hardly further improve,
the growth of the GDP will stop. (2) Another important implication is that the GDP in
regions with bad air quality can quickly catch up with that in regions with good air quality
by reducing air pollution. This is because variations in air pollution cause corresponding
shifts in the scale of GDP, as reflected by Model I. We use Figure 1 to illustrate these two
implications visually.

Figure 1. An illustrative case of a world in which air pollution affects the GDP scale. Abbreviation: GDP (gross domestic product).

Suppose that there are two regions (A and B) and fifteen periods. These two regions
are identical in the beginning, and Regions A and B improve their air quality in Periods
6 and 11, respectively. As shown in the figure, these two regions are totally the same
and unchanged in the first five periods. In Period 6, Region A reduces its air pollution
and maintains improved air quality afterwards. Thus, from Period 6, the GDP size of
Region A is constant and larger than that in Periods 1–5. The air quality in Region B is
not improved until Period 11. From Period 11, Region B has good air quality, analogous
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to that in Region A. Therefore, the GDP of Region B catches up with Region A in Period
11 and keeps a constant scale afterwards. Overall, in the world of Model I, a reduction
in air pollution contemporaneously expands the GDP scale, but sequential growth of the
economy is not guaranteed.

Next, we consider the scenario described by Model II. In this scenario, a change in
the degree of air pollution alters not only the scale of the GDP but also its development
trend. This circumstance has two important implications regarding economic growth.
(1) Holding other things constant, in order to continuously increase the GDP, the region
should maintain air quality at a satisfactory level, such that the economic growth rate
is positive. Different from the world of Model I, the region does not need to reduce air
pollution endlessly. Even though the local air quality cannot be further improved in the
future, the GDP will still grow. (2) As air pollution changes the economic growth rate,
which has an accumulative effect, the gap of GDP scale between regions with different air
qualities will expand increasingly over time. This indicates that regions which reduce air
pollution earlier can establish an advantage in GDP expansion, compared to other regions
which reduce their air pollution later. The earlier the regions improve their air quality, the
better. The GDP of regions with relatively severe air pollution cannot easily catch up with
the regions which reduce pollution earlier. We use Figure 2 as a visual example of these
two implications.

Figure 2. An illustrative case of a world in which air pollution affects the GDP growth rate. Abbreviation: GDP (gross
domestic product).

We assume that there are two regions (A and B) and fifteen periods. The two regions
are completely identical in the beginning. Region A and B ameliorate their air quality in
Periods 6 and 11, respectively. As demonstrated by the graph, during Periods 1–5, the
situations in the two regions are the same and invariant. In Period 6, Region A improves
its air quality and maintains better air quality afterwards. Hence, from Period 6, Region A
has a higher GDP growth rate and its GDP scale increasingly expands. The air quality in
Region B is not made better until Period 11. From Period 11, Region B also has good air
quality, similar to that in Region A. In consequence, during Periods 11–15, the GDP growth
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rate of Region B is as high as that of Region A. However, because the GDP scale of Region
A is significantly larger than Region B, the same GDP growth rate in two regions implies
that Region B cannot catch up with Region A, in terms of GDP scale. Overall, in the world
of Model II, a reduction in air pollution not only enlarges the GDP scale, but also has a
persistent impact on future economic growth.

The discussion above makes it clear that it is important to distinguish whether air
pollution affects GDP scale or GDP growth rate. As the previous literature has analyzed the
impact of air pollution on the Chinese GDP [75–78], we focus on the influence of pollution
on GDP growth rate in this study.

3. Model and Data

3.1. Model

Our research sample has a panel data structure with two dimensions: the time and the
cross-region dimension. Thus, our empirical analyses utilize a classical regression model
with two-way fixed-effects, which is standard in panel data econometrics. The model is
formulated by the equation

Growthit = αAirPollutionit + Xitβ + si + vt + εit, (1)

where the dependent variable Growthit refers to the annual economic growth rate in
province i in year t. The core explanatory variable of interest is AirPollutionit, the level of
air pollution. The vector Xit is a vector of control variables; si and vt refer to the province-
and time-fixed effects, respectively; and εit is the error term. The coefficients α and β will
be estimated using regression methods. Based on these coefficients, we can evaluate the
effects of different explanatory variables. In particular, we concentrate on the impact of air
pollution, captured by the coefficient α.

3.2. Variable
3.2.1. Dependent Variable

This study intends to assess the influence of atmospheric pollution on economic
growth. Thus, following the empirical literature on economic growth, such as the studies of
Alesina et al. [79], Chikalipah and Makina [80], Davis and Hopkins [81], Feeny et al. [82],
Hermes and Lensink [83], Njikam [84], and Rioja and Valev [85], we take the annual growth
rate of the real GDP per capita as the dependent variable. In the robustness analysis section,
we consider the growth rate of the GDP as an alternative dependent variable.

It is notable that the dependent variable is the growth rate of GDP per capita, not the level
of GDP per capita. This distinguishes our model setup from that of Dechezleprêtre et al. [73],
Gan et al. [77], Hao et al. [75], Jiang et al. [78], Sinha [74], and Zhao and Sing [76], who
took the logarithmic value of GDP or GDP per capita as the dependent variable. From a
long-run perspective, it is even more important to examine the influence of air pollution
on the growth potential of an economy, compared to its effect on the contemporary level
of economic development. Therefore, focusing on the rate of growth is prevalent in the
economic growth literature. We follow this tradition.

3.2.2. Core Explanatory Variable of Interest

The core explanatory variable in this study is AirPollution, the level of air pollution.
Previous studies have verified that PM2.5 is one of the most crucial atmospheric pollutants
in Chinese regions [86,87]. Therefore, we use the annual population-weighted average
concentration of PM2.5 (μg/m3) in each Chinese province to denote the degree of pollution.
To address the scaling problem, the logarithmic value of PM2.5 concentration is used as the
explanatory variable. Thus, the changes in air pollution are expressed in percentage points.

The sample average PM2.5 concentration is 45.993 μg/m3. This pollution level is
substantially higher than the desirable level of 10 μg/m3 as suggested by the World Health
Organization (WHO)’s Air Quality Guidelines. The standard deviation of pollution level is
18.029 μg/m3, indicating apparent differences among different provinces. The minimum
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value is 5.7 μg/m3, observed in Tibet in 2003. The maximum is 88.8 μg/m3, recorded in
Beijing in 2006.

We use Figure 3 to briefly demonstrate the distribution of PM2.5 pollution among
different provinces in Mainland China. We calculate the average PM2.5 concentration
during the sample period 2002–2017 for every province and use different colors in the
graph to indicate different severities of pollution. As shown in the figure, two areas have
the highest degree of pollution, with average PM2.5 concentration exceeding 60 μg/m3.
One area consists of several provinces around Beijing City, which is located in North China
and features high population density; the other area is Xinjiang, which is located in the most
northwest part of China and contains some vast deserts. The area with the best air quality,
with average PM2.5 concentration below 20 μg/m3, includes three provinces located in
Southwest and South China. These three provinces are Tibet, Yunnan, and Hainan, which
are all famous for their beautiful natural sceneries.

3.2.3. Control Variable

There are 11 important control variables included in the vector X: Education, Capital-
Formation, FinancialDevelopment, FinancialOpenness, TradeOpenness, Road, Government-
Size, Population, GDPPerCapita, IndustrialStructure, and SolidWasteEmission.

Education is an indicator of the average education level of laborers. Human capital,
majorly accumulated through education and training, is crucial for sustainable economic
growth [88–91]. Thus, it is expected that education level has a positive effect on economic
growth. We use the average value of schooling years of laborers as a proxy for the level
of education.

CapitalFormation refers to the value of the capital formation rate, namely the ratio of
fixed capital investment to GDP. As capital is a kind of indispensable production input, we
expect that capital formation boosts economic growth in China. Previous studies, such as
those of Adams [92], Bal et al. [93], and Uneze [94], have also reported a positive effect of
capital formation on economic growth in different countries.

FinancialDevelopment is an indicator for financial development, indexed by the ratio
of bank credits to GDP. Although some studies have reported a positive impact of financial
development on economic growth, many researchers have found that the impact may be
non-linear or dependent on the specific economic environment [85,95–97]. Thus, we do not
have a specific expectation for the sign of this variable’s coefficient.

FinancialOpenness is an indicator of financial openness. We use the foreign direct
investment (FDI) per capita (CNY, in constant 2010 price) as a proxy for this variable. The
literature has reported inconsistent findings about the impact of financial openness [84,98].
Almfraji and Almsafir [99] conducted a literature review and found that the estimated
impact of FDI was positive in some studies but was negative or null in other research.

TradeOpenness is an indicator of trade openness, which is measured by the ratio
of international trade volume to GDP. Given the fact that China has a great volume of
international trade with many countries, trade openness may affect China’s economic
growth and, thus, should be considered as a control variable. The previous literature has
reported mixed evidence about the impact of trade openness on GDP growth [100–103].

Road is an indicator of the abundance of the transportation infrastructure, proxied
by the road length (km) per area (km2). It has been widely confirmed that infrastructure
plays an beneficial role in regional economic development [104–107]. We expect that the
estimated coefficient of this variable will have a positive sign.
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Figure 3. Average PM2.5 concentration (2002–2017) in different provinces of Mainland China. Abbreviation: PM2.5

(fine particulate matter). Data source of PM2.5 concentration: Atmospheric Composition Analysis Group at Dalhousie
University, Canada.

GovernmentSize refers to government size, measured by the ratio of fiscal expenditures
to local GDP. This variable captures the role of the local government in regional economic
growth. According to the literature, the impact of government size on economic growth is not
clear-cut [108]. While some studies, such as those of Afonso and Furceri [109] and DiPeitro
and Anoruo [110], have reported a negative impact, Asimakopoulos and Karavias [111] and
Chiou-Wei et al. [112] reported a non-linear relationship. Given the importance of gov-
ernment in making macroeconomic and development policies in China, it is possible that
government size has a positive influence on China’s economic growth.

Population is the size of population within the province. Population change has
important impacts on economic growth [113,114]. On the one hand, the agglomeration
effects arising from a large population size may promote economic growth. On the other
hand, numerically, population growth reduces the value of GDP per capita, if the scale of
GDP cannot expand faster than the population. Thus, the effect of population on economic
growth is ambiguous.

In addition, we control the variables describing the general economic status of each
region. Two variables are included as control variables: GDPPerCapita, the logarithmic
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value of real GDP per capita (CNY, in constant 2010 price), and IndustrialStructure, the
industrial structure proxied by the share of non-agricultural value added in GDP.

Finally, we consider that other types of pollutants may also affect economic growth.
In the model, we control the pollution of solid wastes by using the variable SolidWaste-
Emission, which measures the solid waste emissions (tons) per capita.

3.3. Data

The air pollution data were derived from the Atmospheric Composition Analysis Group
at Dalhousie University, Canada. The data file is available at the web page: http://fizz.phys.dal.
ca/~atmos/martin/?page_id=140, accessed on 1 March 2021. van Donkelaar et al. [115,116]
and Hammer et al. [117] provided details about the methodology used to calculate the value
of annual average PM2.5 concentration within an area. The data of dependent variables
and control variables were obtained from the database of the EPS China Data, accessible at
its website: http://www.epschinadata.com, accessed on 1 March 2021. The EPS platform
has collected and stored numerous data from different statistical reports and yearbooks
offered by the official statistical departments.

The research sample covers all 31 provinces in Mainland China. Based on the data
availability, the sample spans a time interval of 16 years, between 2002 and 2017. There are
496 observations in total. Table 1 reports the definitions and summary statistics of variables
employed in this study.

Table 1. Summary statistics.

Variable Definition Obs Mean SD Min Max

Growth Annual growth rate (%) of real GDP per capita 496 10.253 2.951 −2.300 23.600

AirPollution
Air pollution, measured by logarithmic value of the
annual population-weighted average PM2.5
concentration (μg/m3)

496 3.719 0.533 1.740 4.486

Education Education level, measured by the average schooling
years of laborers 496 8.495 1.225 3.738 12.503

CapitalFormation Capital formation rate, measured by the ratio of fixed
capital investment to GDP 496 0.646 0.248 0.237 1.507

FinancialDevelopment Financial development, measured by the ratio of bank
credits to GDP 496 1.639 0.719 0.751 5.587

FinancialOpenness Financial openness, measured by foreign direct
investment per capita (CNY, in constant 2010 price) 496 1.661 2.660 0.063 20.469

TradeOpenness Trade openness, measured by the ratio of international
trade volume to GDP 496 0.298 0.349 0.012 1.668

Road Transport infrastructure, measured by road length (km)
per area (km2) 496 7.285 4.850 0.324 21.146

GovernmentSize Government size, measured by the ratio of fiscal
expenditures to GDP 496 0.232 0.180 0.079 1.379

Population Logarithmic value of population (10,000 persons) 496 8.076 0.863 5.576 9.306

GDPPerCapita Logarithmic value of GDP per capita (CNY, in constant
2010 price) 496 10.107 0.674 8.407 11.661

IndustrialStructure Industrial structure, measured by the share (%) of
non-agricultural value added in GDP 496 88.053 6.272 62.100 99.638

SolidWasteEmission Solid waste emissions (tons) per capita 496 2.079 3.022 0.017 25.267
Abbreviations: CNY (Chinese Yuan), GDP (gross domestic product), Max (maximum), Min (minimum), Obs (observations), PM2.5 (fine particulate
matter), SD (standard deviation).

4. Results

In this section, we report the estimated impact of air pollution on GDP growth. In
Section 4.1, the estimation results of the fixed-effects model are reported. In Section 4.2, we
deal with the endogeneity issue by utilizing the instrumental variables approach, which
provides more reliable estimates. In Section 4.3, we explore the heterogeneous effects of air
pollution in different periods and regions.
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4.1. Results of Fixed-Effects Estimation
4.1.1. Baseline

The estimation result of Equation (1) is shown in column (i) of Table 2. The coefficient
of AirPollution was −2.108 and statistically significant at the 5% level. In other words,
it was found that air pollution significantly harmed economic growth. According to the
estimated coefficient, holding other factors constant, if the concentration of PM2.5 rises by
1%, then the annual growth rate of GDP per capita will decline by 0.02108 percentage points.

Some of the control variables also help explain economic growth in China. As ex-
pected, the level of education (Education) had a positive coefficient, although it was not
statistically significant. Capital investment (CapitalFormation) significantly promoted
economic growth. This reflects the importance of investment in China’s rapid economic ex-
pansion. The expansion of bank credits (FinancialDevelopment) demonstrated a significant
negative effect. The degree of financial openness (FinancialOpenness) had a significant
positive effect. This supports the opinion that FDI benefits China’s economic development.
Trade openness (TradeOpenness) did not have a significant influence on economic growth.
Transportation infrastructure (Road) had a positive coefficient; however, this coefficient was
not statistically significant. Government size (GovernmentSize) demonstrated a significant
positive impact, reflecting the active role of government in the Chinese economy. Popula-
tion size (Population) has a significant negative effect, indicating that the economies with
larger population scales tend to grow more slowly. GDP per capita (GDPPerCapita) had
a negative coefficient, indicating the existence of economic convergence among different
regions; namely, economies with relatively low per capita incomes tend to grow at faster
rates than relatively rich economies. The proportion of non-agricultural value added in
GDP (IndustrialStructure) had a significant positive correlation with economic growth rate,
in line with the phenomenon that economic growth is accompanied by the process of indus-
trial structure updating. The coefficient of solid waste emissions (SolidWasteEmission) was
significantly negative, implying that solid waste pollution also harms economic growth.

4.1.2. Robustness Check

In this subsection, we check whether the estimated significant negative coefficient
of AirPollution in column (i) was robust to the selection of economic growth indicator,
existence of possible outliers, and measurement of air pollution.

Previously, we used the annual growth rate of real GDP per capita to measure the
economic growth. Here, we used the growth rate of real GDP as the dependent variable in
Equation (1) and re-estimated the coefficients. The results are presented in column (ii). The
estimated coefficient of AirPollution was −1.972 and was still statistically significant at the
10% level. The coefficients of control variables were also similar to that in column (i).

In order to abate the disturbances from possible outliers, we winsorized the observa-
tions with the top 2.5% or bottom 2.5% values of economic growth rate. The estimation
results for this winsorized sample are reported in column (iii). It is shown that this study’s
main finding about the adverse impact of air pollution held. The coefficient of AirPollution
was −1.505 and statistically significant at the 10% level.

In previous regressions, we used the concentration of PM2.5 as the indicator of atmo-
spheric pollution. Here, we examined whether our study result is sensitive to the selection
of pollution indicator. Given that SO2 is also a crucial pollutant in China, we used the SO2
concentration to represent the severity of air pollution. The SO2 data were downloaded
from the platform of EPS China Data (http://www.epschinadata.com, accessed on 1 March
2021). As the governmental department of environmental protection only reported SO2
concentration for a few cities, we failed to calculate the annual average value for the whole
province. Thus, we used the value of SO2 concentration in the capital city of a province
to proxy the degree of pollution in that province, considering that the capital city is typi-
cally also the economic center and the city with the most population in the corresponding
province. We reported the estimation result in column (iv). The estimated coefficient of
AirPollution was −1.375 and significant at the 1% level.
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Table 2. Estimated impact of air pollution on economic growth rate based on fixed-effects estimation.

Robustness Analysis

Variable Baseline y = GDP Growth Rate
Based on Winsorized

Sample
AirPollution = SO2

Concentration

(i) (ii) (iii) (iv)

AirPollution −2.108 ** −1.972 * −1.505 * −1.375 ***
[0.953] [0.994] [0.783] [0.428]

Education 0.706 0.577 0.618 1.553 *
[0.536] [0.478] [0.504] [0.824]

CapitalFormation 6.583 *** 7.148 *** 4.471 *** 6.291 ***
[1.624] [1.714] [1.145] [1.806]

FinancialDevelopment −1.959 ** −1.380 −1.391 −1.978
[0.936] [1.058] [0.862] [1.512]

FinancialOpenness 0.491 *** 0.293 *** 0.440 *** 0.0964
[0.146] [0.102] [0.144] [0.113]

TradeOpenness −2.609 −1.969 −2.116 −1.998
[1.779] [1.551] [1.688] [2.012]

Road 0.0184 0.0814 −0.038 −0.0302
[0.087] [0.099] [0.082] [0.140]

GovernmentSize 10.42 *** 9.498 ** 8.733 ** 23.43 **
[3.584] [3.487] [3.422] [9.236]

Population −14.92 *** −9.877 *** −14.14 *** −18.26 ***
[3.416] [3.005] [2.946] [5.227]

GDPPerCapita −10.410 *** −7.110 *** −7.722 *** −13.80 **
[2.241] [2.499] [1.779] [5.154]

IndustrialStructure 0.198 *** 0.146 * 0.174 *** 0.00689
[0.071] [0.072] [0.059] [0.127]

SolidWasteEmission −0.116 ** −0.126** −0.0768 ** −0.0622
[0.048] [0.054] [0.028] [0.073]

Province-fixed effect Yes Yes Yes Yes
Time-fixed effect Yes Yes Yes Yes

Observations 496 496 496 496
Provinces 31 31 31 31
R2 0.770 0.784 0.773 0.564

Note: (1) ***, **, and * represent the significance levels of 1%, 5%, and 10%, respectively. Heteroscedasticity-robust standard errors are reported in
parentheses. (2) Abbreviation: GDP (gross domestic product), SO2 (sulfur dioxide).

Overall, the robustness checks in columns (ii)–(iv) of Table 2 provide explicit and
consistent evidence that air pollution had a significant negative correlation with economic
growth in China.

4.2. Results of Instrumental Variables Estimation
4.2.1. Baseline

We intend to confirm the causal effect of air pollution on economic growth. Therefore,
we need to make sure that the estimated coefficient of AirPollution does not merely reflect
a correlation between AirPollution and Growth. One important thing is that we should
control the influences of potential confounding factors (e.g., capital formation, FDI, level of
GDP per capita, and industrial structure) which affect both AirPollution and Growth. We
have done this by including a set of important control variables in the regression model.

Although we excluded the influences of those control variables, the previous results of
the fixed-effects model may still have suffered from the potential endogeneity issue. As the
expansion of economic activities generates air pollutant emissions, there probably exists a

148



Sustainability 2021, 13, 9056

reverse causality from economic growth to air pollution. For example, the reciprocal interac-
tion between economic growth and air quality has been confirmed in the travel and tourism
sector. While air pollution influences tourism, the development of tourism industries
reversely affects air quality, because tourist activities consume resources and emit pollu-
tants [118–122]. This results in the endogeneity of the explanatory variable in our regression
model and causes a bias in the coefficient estimate. The instrumental variable (IV) estima-
tion is an effective approach to mitigate the endogeneity problem. Credible IVs should meet
two conditions: First, the IVs should strongly influence the endogenous explanatory vari-
able. Second, the IVs should not have a direct correlation with the dependent variable, ex-
cept through their links with the endogenous variable. In our research, three meteorological
indicators—the annual average wind speed, vapor pressure, and humidity—are selected as
useful IVs. First, the environmental literature has already confirmed that these meteorologi-
cal conditions largely influence the concentration of pollutants in ambient air. For example,
Alifa et al. [123], Calkins et al. [124], Koutrakis et al. [125], and Pearce et al. [126] analyzed
the considerable influence of wind speed. Aw and Kleeman [127], Pearce et al. [126], and
Seinfeld [128] discussed the significant correlation between vapor pressure and air pollution.
He et al. [129], Koutrakis et al. [125], Wang and Ogawa [130], and Wise and Comrie [131]
reported that humidity strongly affects air pollution. Second, there is no apparent evidence
that economic growth is directly impacted by these meteorological conditions. Thus, both
conditions for the selection of reliable IVs are met.

We instrumented AirPollution by the meteorological variables and used the stan-
dard IV-2SLS (two-stage least squares) method to estimate Equation (1). (The mete-
orological data were obtained from the China Meteorological Data Service Center at
http://data.cma.cn/en, accessed on 1 March 2021). The IV estimation result is demon-
strated in column (i) of Table 3.

In the first-stage regression, the variables of wind speed and vapor pressure both had
negative coefficients, and humidity had a positive coefficient. All three of these coefficients
were statistically significant at least at the 10% level, indicating that the three IVs indeed had
a significant influence on air pollution, as suggested by previous environmental research.
The associated Cragg–Donald Wald F statistic and Kleibergen–Paap rk Wald F statistic
were both significant at the 10% level, showing that the selected IVs were not “weak IVs”.
The Hansen J statistic was not statistically significant. The insignificant value of the Hansen
J statistic suggests that the regression model was not overidentified. Overall, these statistics
demonstrate that the IVs were valid instruments and properly used in the estimation.

In the second-stage regression, the estimated coefficient of AirPollution was −5.818,
which was statistically significant at the 5% level. This shows that air pollution, indeed,
had a substantially adverse impact on the economic growth rate after we effectively tackled
the endogeneity issue by employing the IV approach. The research hypothesis in this
study was, therefore, validated. The number suggests that, holding other factors constant,
if air pollution can be abated by 1%, the annual economic growth rate will increase by
0.05818 percentage points. It is notable that the magnitude of the coefficient (−5.818) from
the IV estimation was much larger than that (−2.108) from the fixed-effects estimation
without addressing the endogeneity issue. The endogeneity test χ2 statistic of 2.892 was
significant at the 10% level, clearly rejecting the null hypothesis that air pollution can be
regarded as exogenous. This implies that the endogeneity problem, indeed, existed and that
it was necessary to use the IV method to obtain a more reliable estimate for AirPollution.
The coefficients of control variables were generally similar to those in Table 2, and not
discussed here to save space.
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Table 3. Estimated impact of air pollution on economic growth rate based on instrumental variables estimation.

Robustness Analysis (IV Estimation)

Variable
Baseline (IV
Estimation)

y = GDP Growth
Rate

Based on
Winsorized Sample

AirPollution = SO2

Concentration

(i) (ii) (iii) (iv)

AirPollution −5.818 ** −6.373 ** −5.258 ** −3.718 **
[2.677] [2.579] [2.544] [1.467]

Education 0.445 0.267 0.353 1.482 ***
[0.358] [0.356] [0.337] [0.527]

CapitalFormation 6.335 *** 6.854 *** 4.220 *** 5.659 ***
[1.037] [1.076] [0.706] [1.350]

FinancialDevelopment −2.168 *** −1.627 ** −1.602 *** −2.259 **
[0.695] [0.722] [0.613] [0.942]

FinancialOpenness 0.518 *** 0.325 *** 0.468 *** 0.0483
[0.093] [0.085] [0.083] [0.116]

TradeOpenness −3.043 *** −2.484 *** −2.555 *** −3.009 **
[0.968] [0.793] [0.929] [1.314]

Road −0.00503 0.0536 −0.0617 −0.0903
[0.050] [0.050] [0.046] [0.081]

GovernmentSize 11.67 *** 10.97 *** 9.989 *** 34.27 ***
[2.379] [2.357] [2.151] [9.208]

Population −16.07 *** −11.24 *** −15.30 *** −21.80 ***
[2.241] [2.332] [1.920] [3.834]

GDPPerCapita −10.20 *** −6.861 *** −7.510 *** −14.09 ***
[1.308] [1.365] [1.006] [2.445]

IndustrialStructure 0.164 *** 0.104 ** 0.139 *** 0.0369
[0.053] [0.053] [0.046] [0.072]

SolidWasteEmission −0.136 *** −0.150 *** −0.0973 *** 0.0106
[0.034] [0.037] [0.031] [0.086]

Province-fixed effect Yes Yes Yes Yes
Time-fixed effect Yes Yes Yes Yes

First-stage regression coefficient
Wind Speed −0.0960 * −0.0960 * −0.0960 * −0.921 ***
Vapor Pressure −0.0777 *** −0.0777 *** −0.0777 *** -
Humidity 0.780 *** 0.780 *** 0.780 *** -

Cragg-Donald Wald F statistic 10.001 * 10.001 * 10.001 * 18.456 *
Kleibergen-Paap rk Wald F statistic 10.700 * 10.700 * 10.700 * 17.610 *
Hansen J statistic 3.120 1.450 4.263 -
Endogeneity test χ2 statistic 2.892 * 5.447 ** 3.346 * 2.997 *
Observations 496 496 496 496
Provinces 31 31 31 31
R2 0.800 0.792 0.799 0.602

Note: (1) ***, **, and * represent the significance levels of 1%, 5%, and 10%, respectively. Heteroscedasticity-robust standard errors are reported in
parentheses. (2) Abbreviations: GDP (gross domestic product), IV (instrumental variable), SO2 (sulfur dioxide). (3) The first-stage regression coefficients,
Cragg–Donald Wald F statistic, and Kleibergen–Paap rk Wald F statistic are the same in columns (i)–(iii).

4.2.2. Robustness Check

To further verify the IV estimation results, we also conducted several robustness
checks, analogous to those in columns (ii)–(iv) of Table 2. In column (ii) of Table 3, we used
the GDP growth rate as the dependent variable and repeated the IV estimation procedure.
We obtained a coefficient of −6.373 for AirPollution, which was not far from that in column
(i). In column (iii), we winsorized the sample at the cutoff point of GDP per capita growth
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rate of top or bottom 2.5%. The estimation using the winsorized sample provided a
coefficient of −5.258 for AirPollution, quite close to that in column (i). In column (iv),
we used the SO2 concentration as air pollution indicator. In the first-stage regression, we
only utilized the wind speed as instrument variable, because vapor pressure and humidity
did not demonstrate a significant correlation with SO2 concentration. Accordingly, we
did not report the Hansen J statistic because the equation was exactly identified (i.e., the
number of instrument variable equals the number of endogenous variable). Using SO2
as the pollution indicator, the estimated coefficient of AirPollution became −3.718, which
was also significantly negative.

All in all, the robustness checks for IV estimation in columns (ii)–(iv) of Table 3
all support our previous statement that air pollution impeded economic growth. The
magnitudes of the estimated coefficients—−6.373, −5.258, and −3.718—were still much
larger than those reported for the fixed-effects model.

4.3. Heterogeneity Analysis

The previous analyses have shown an overall adverse influence of air pollution on
China’s economic growth. However, the impact of air pollution may not be homogeneous
during all periods in all regions. In this subsection, we analyze the heterogeneous effects
of pollution in different periods and districts. We examine whether the situation differed
before and after 2008; before and after 2014; in the eastern, central, and western regions;
and in provinces with different shares of state-owned enterprises, different levels of gov-
ernment health expenditures, and different availability of medical resources. The results
suggest no evident changes along the time dimension but substantial differences among
different regions.

The heterogeneity analysis is based on the following regression model:

Growthit = α1 AirPollutionit + α2 AirPollutionit × Dit + Xitβ + si + vt + εit, (2)

where Dit is a binary dummy variable that equals 1 or 0, contingent on some specific
conditions which will be defined later. The equation is estimated using the instrumental
variables method.

4.3.1. Before- versus after-2008 Period

First, we examine whether there was a difference between the before- and after-2008
periods. The global financial crisis in 2008 largely altered the economic structures of
many countries. Thus, we conjecture that the effect of air pollution on economic growth
might change after the crisis. In order to empirically examine that, we define the dummy
variable in Equation (2) as follows: DA f ter2008

it = 1 if t ≥ 2008, and 0 otherwise. The effects of
pollution before and after 2008 are measured by the parameter α1 and (α1 + α2), respectively.

Column (i) of Table 4 shows the estimation result. The value of α1 was −4.759 and
statistically significant. The value of α2 was 0.507, which was small in magnitude compared
to the value of α1. Moreover, α2 was not statistically significant. Therefore, we can conclude
that the effects of pollution before and after 2008 were essentially similar.

4.3.2. Before- versus after-2014 Period

Next, we check the difference between the before- and after-2014 periods. The year
2013 was a turning point in terms of the public awareness and concern for air pollution
in China [132]. On 9 September 2013, the “Air Pollution Prevention and Control Action
Plan” was announced by the State Council of China. Then, the whole country implemented
stronger policies to deal with the air pollution problem. Therefore, we conjecture that the
effects of pollution in periods before and after 2014 may not be the same. We define the
dummy variable in Equation (2) as follows: DA f ter2014

it = 1 if t ≥ 2014, and 0 otherwise.
Column (ii) of Table 4 shows the estimation result. The value of α1 was −5.854,

which was statistically significant. The value of α2 was −0.0209, which was quite small
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in magnitude and not statistically significant. Thus, it can be concluded that there was no
difference between the before- and after-2014 periods.

Table 4. Heterogeneous effects of air pollution in different periods and regions.

Variable

Before or After
2008

Before or After
2014

East or Center
and West Region

Smaller or Larger
State-Owned

Enterprises Share

Fewer or More
Governmental

Health Expenditures

Fewer or More
Medical

Resources

(i) (ii) (iii) (iv) (v) (vi)

AirPollution −4.759 * −5.854 ** −7.015 * −7.201 ** −7.408 ** −7.268 **
[2.620] [2.709] [3.681] [2.987] [3.303] [2.874]

AirPollution ×
DA f ter2008 0.507

[0.361]

AirPollution ×
DA f ter2014 −0.0209

[0.280]

AirPollution ×
DCenter&West 5.019 *

[3.040]

AirPollution ×
DLargerSOEShare 4.349 *

[2.353]

AirPollution ×
DMoreGovHealthExpenditures 5.898 **

[2.368]

AirPollution ×
DMoreMedicalResources 4.591 *

[2.487]

Other control
variables Yes Yes Yes Yes Yes Yes

Province-fixed
effect Yes Yes Yes Yes Yes Yes

Time-fixed effect Yes Yes Yes Yes Yes Yes

Observations 496 496 496 496 496 496
Provinces 31 31 31 31 31 31
R2 0.807 0.800 0.809 0.800 0.802 0.801

Note: ** and * represent the significance levels of 5% and 10%, respectively. Heteroscedasticity-robust standard errors are reported in parentheses. In
order to save space, the coefficients of control variables are not reported in the table.

4.3.3. Eastern versus Central and Western Region

Thirdly, we classify our sample provinces into two groups according to their geo-
graphical locations. The first group contains 11 provinces located in the eastern region.
The second group contains 20 provinces located in the central and western regions. The
grouping of provinces is based on the official classification of the National Bureau of Statis-
tics of China. As the eastern region of China has significantly higher levels of economic
development, urbanization, and population density, compared to the central and western
regions, we expect to observe a stronger impact of atmospheric pollution in the eastern
region. We define the dummy variable in Equation (2) as follows: DCenter&West

it = 1 if the
province i is in the central and western regions, and 0 if it is in the eastern region.

Column (iii) of Table 4 reports the estimated coefficients. The value of α1 was −7.015,
which was statistically significant. The value of α2 was 5.019, which was also significant.
These coefficients imply that there was a substantial difference between the eastern and
other regions. If the PM2.5 concentration rises by 1%, the economic growth rate will reduce
by 0.07015 percentage points in the eastern region and 0.01996 (=0.07015 − 0.05019) per-
centage points in the central and western regions. Therefore, it is verified that the adverse
influence of air pollution on macroeconomic growth is stronger in the eastern region.

4.3.4. Smaller versus Larger State-Owned Enterprises Share

Here, we examine whether the share of state-owned enterprises (SOEs) in the economy
matters. In China, numerous economic activities are conducted or influenced by SOEs.
Compared to non-SOEs, SOEs are generally less efficient and more heavily intervened in
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by governments. Thus, a smaller proportion of SOEs in the economy indicates a larger
degree of marketization, resource mobility, and economic vitality. The linkage between air
pollution and economic growth may be influenced by the share of SOEs. As the official
data sources did not provide information about the aggregate output of SOEs and non-
SOEs, we measured the share of SOEs by the ratio of annual investments of SOEs to
total investments in the whole province. We define the dummy variable in Equation (2)
as follows: DLargerSOEShare

it = 1 if the average share of SOEs during the sample period in
province i is equal to or above the sample median, and 0 otherwise.

Column (iv) of Table 4 reports the estimated coefficients. The values of α1 and α2
equaled −7.201 and 4.349, respectively. Both of them were statistically significant. These
coefficients indicate an obvious difference between the regions with different shares of
SOEs. In a province with a relatively small SOEs share, a 1% increase in PM2.5 con-
centration makes the economic growth rate decline by 0.07201 percentage points. In a
province with a relatively large SOEs share, the economic growth rate will reduce by
0.02852 (=0.07201 − 0.04349) percentage points. The negative effect of air pollution on
economic growth is stronger in the regions with smaller SOEs shares.

4.3.5. Fewer versus More Governmental Health Expenditures

The impact of air pollution may not be homogeneous in all regions. As discussed
previously, the negative influence of air pollution on economic growth is largely grounded
in its harmfulness to human health. Therefore, it is natural to consider that an improvement
in public health services may help mitigate the damage of air pollution to economic growth.
For instance, suppose that pollution causes a higher incidence of respiratory diseases of
laborers. The patients living in provinces with a better public health service system can
get better medical treatments and be cured sooner. Thus, in these regions, the loss of labor
productivity caused by air-pollution-induced respiratory diseases will be relatively small.
Following this logic, we conjecture that the negative impact of air pollution on economic
growth is weaker in regions with better public health services.

In China, the government plays a determinant role in the provision of public health
services. Hence, we focus on the part of public health services financed by the government.
We calculate the scale of public health spending from the fiscal budget as a ratio to total
government expenditures. A high ratio indicates that the government spends a large
proportion of fiscal budget on public health services, implying a strong willingness to
provide good services to the public. Ceteris paribus, we can reasonably believe that the
higher the ratio, the better the public health services in the corresponding region. The
dummy variable in Equation (2) is defined as follows: DMoreGovHealthExpenditures

it = 1 if the
average ratio of public health spending to total government spending during the sample
period in province i is equal to or above the sample median, and 0 otherwise.

Column (v) of Table 4 reports the estimation result. The values of α1 and α2 were
−7.408 and 5.898, respectively. Both of them were statistically significant. These coefficients
show an evident difference between the regions with different levels of public health
services. In a province with the local government spending a small proportion of fiscal
spending on public health services, a 1% rise in PM2.5 concentration causes the economic
growth rate to reduce by 0.07408 percentage points. In a province with the government
spending a large share of fiscal budget on public health, the economic growth rate will
decrease by 0.0151 (=0.07408 − 0.05898) percentage points. The negative impact of air pol-
lution on economic growth is severer in the regions with fewer governmental expenditures
for public health services.

4.3.6. Fewer versus More Medical Resources

Given that the adverse health effect of atmospheric pollution is a major reason of
the negative air pollution–economic growth linkage, the availability of medical resources
within the region matters. Holding other factors constant, in districts with more medical
resources, residents can obtain better healthcare services and, thus, are less damaged by
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air pollution. Accordingly, we conjecture that the inhibitory impact of air pollution on
macroeconomic growth is weaker in provinces with more medical resources.

We measure the availability of medical resources using the ratio of the number of
beds in healthcare institutions to the local population. A higher ratio indicates more
availability of medical resources. The dummy variable in Equation (2) is defined as follows:
DMoreMedicalResources

it = 1 if the average availability of medical resources during the sample
period in province i is equal to or above the sample median, and 0 otherwise.

Column (vi) of Table 4 shows the estimated coefficients. The values of α1 and α2
equaled −7.268 and 4.591, respectively. Both coefficients were statistically significant. If
PM2.5 pollution increases by 1%, the economic growth rate in areas with fewer medical
resources will decrease by 0.07268 percentage points, and that in areas with more medical
resources will decrease by 0.02677 (=0.07268 − 0.04591) percentage points. An explicit
quantitative distinction exists between the regions with a different abundance of medical
resources. The inhibitory impact of air pollution is stronger in provinces with fewer
healthcare resources.

The heterogeneity analyses discussed above provide three findings. (1) The impact of
air pollution on economic growth was always negative. After we classified the samples
into different periods and different regions, we observed a negative effect in all subsamples.
(2) There is no significant heterogeneity along the time dimension. The estimated impacts
of air pollution in before- and after-2008 periods are similar. The estimated impacts in
before- and after-2014 periods are also similar. (3) There are some quantitative differences
along the geographical dimension. The harmful influence of air pollution is stronger in
China’s eastern region and in provinces with smaller state-owned enterprises shares, fewer
governmental expenditures for public health services, and fewer healthcare resources.

5. Discussion, Conclusions, and Directions for Future Research

5.1. Discussion

China’s economic growth has gradually slowed down in recent years. The blue-solid
curve in Figure 3 shows the annual growth rate of the real GDP per capita of China over the
past ten years (2010–2019). As can be seen from the graph, an evident decline in economic
growth rate has been observed. It is of widespread concern whether and to what extent
China can maintain its economic growth miracle in the future. Our study suggests that
the air pollution problem poses a substantial threat to the economic growth of China. This
finding has a clear policy implication: even from a purely economic perspective, China
should implement effective policies to mitigate the atmospheric pollution problem. The
aim of promoting economic growth and the desire to have clean air are not contradictory.
According to our IV estimation (column (i) of Table 3), if the concentration of PM2.5 can be
diminished by 10%—which is not an unrealistic target—the annual growth rate of GDP
per capita will be improved by 0.5818 percentage points. This is, indeed, a large benefit.
The actions of environmental protection have a substantial positive economic outcome.
The orange-dashed curve in Figure 4 displays the estimated growth rate of GDP per capita
after an imagined 10% reduction in air pollution, which is substantially higher than the
actual level.

The estimated impact of air pollution on economic growth rate in this study allows
us to appraise the accumulative benefits of air pollution abatement in terms of GDP and
GDP per capita. For example, let us consider what would happen if China had reduced the
concentration of PM2.5 by 10% since 2010. As already demonstrated in Figure 4, in such
a scenario, the annual growth rate of GDP per capita would be 0.5818 percentage points
higher than its actual value observed in the data. Therefore, the level of GDP per capita in
every year since 2010 would also be higher than the actual level. Figure 5 demonstrates
the estimated GDP per capita under the air-pollution-reduction scenario versus the actual
level during the period 2010–2019. It is notable from the graph that, as time goes on, the
gap between the actual and the estimated levels becomes larger. In 2019, the actual GDP
per capita of China was USD 8255 (in constant 2010 price), while the estimated value
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reached USD 8714, which is over 5.6% larger than the actual level. It is also convenient to
calculate the variations of GDP. In 2019, China’s actual GDP was around USD 11.5 trillion
(in constant 2010 price). If PM2.5 had been reduced by 10% since 2010, the GDP would
have reached the scale of USD 12.1 trillion. The difference of USD 0.6 (=12.1 − 11.5) trillion
is so large that it is close to the economic scale of Poland or Sweden. The more China
abates air pollution, the larger are the benefits, in terms of GDP or GDP per capita, that
can be acquired. Moreover, as demonstrated previously in Figure 2, the earlier the country
reduces air pollution, the larger is the scale of GDP expansion that can be obtained. In
other words, if China can effectively improve its air quality earlier, the benefits will be
more substantial.

Figure 4. Annual growth rate of GDP per capita of China during 2010—2019. Abbreviation: GDP (gross domestic product).
Data source of GDP per capita growth: World Bank’s World Development Indicators database.

Prior studies have revealed that several Chinese economic sectors were greatly harmed
by poor air quality in direct and indirect ways. A noticeable industry that garnered much
attention is that of tourism. Becken et al. [10], Xu and Reed [48,49], and Yang and Chen [50],
among others, emphasized the significant negative influences of atmospheric pollution
on tourist arrivals and receipts in China. The agricultural losses due to air pollution are
also substantial, as reported in the literature. For example, Wei et al. [133] estimated that,
during the year of 2008, the damage costs in agriculture caused by industrial SO2 pollution
were around $1.43 billion, not to mention other kinds of air pollutants. As air pollution
causes a great number of socioeconomic costs due to pollution-induced diseases, hospital
admissions, mortality, and medical expenditures [134], there are observable reductions in
the efficiency and productivity in a range of labor-intensive industries, such as call centers,
garment processing, and textiles [5,135,136]. Some high-technology industries may also be
affected because the accumulation of human capital and the advancement in innovation
and R&D are impeded by pollution [32,137].
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Figure 5. Level of GDP per capita of China during 2010–2019. Abbreviation: GDP (gross domestic product). Data source of
GDP per capita: World Bank’s World Development Indicators database.

China has undertaken much effort to reduce air pollution in recent years. Many actions,
including technological innovation, citizen engagement, and top-down policy initiatives,
have been implemented [138]. Chinese residents demonstrated a strong public willingness
to pay for air pollution mitigation [139]. Although air pollution has been reduced, the
current air quality remains unsatisfactory. According to the data from World Bank’s World
Development Indicators, in 2017, 99.998% of the Chinese population was exposed to PM2.5
pollution levels exceeding the World Health Organization (WHO) guideline value (i.e.,
10 μg/m3), and 81.239% of the population was exposed to levels over the WHO Interim
Target-1 value (i.e., 35 μg/m3). While air pollution is especially serious in China’s eastern
areas, which have dense population, a high urbanization rate, and intensive economic
production, significant pollution levels are also widespread across northern and central
China [140–142]. Given the seriousness of the atmospheric pollution problem in China,
the country has significant potential to improve its air quality. For instance, the deeper
de-carbonization of the energy system will be very helpful [143]. Based on the results of
our study, it is expected that, if China is able to reduce its air pollution effectively in the
future, a great volume of economic activities can be stimulated and the country’s economic
development can reach a higher level. This study offers some useful policy implications,
which are stated as follows.

First, it is economically beneficial for China to improve air quality as soon as possible.
Abating air pollution can increase GDP growth rate and hence bring about large long-term
accumulative welfare in terms of the expansion of economic scale. As long as the benefit of
pollution abatement is greater than its cost, the government should make long-run plans
for industrial structure adjustment and upgrade, implement regulations on high pollution
enterprises, and develop environmentally friendly sectors and a circular economy in order
to reduce pollution.

Second, different regions should strengthen the cross-regional coordination and take
cooperative measures to prevent and control pollution. It is observed that the impact of
air pollution on economic growth is always negative across different regions, although
some heterogeneities are detected. Therefore, the adverse impact of pollution should be a
concern of all Chinese regions. The efforts of a small number of districts are not enough
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to solve the problem in the whole country. The effective mechanism for cross-regional
cooperation, such as those already built in the Beijing-Tianjin-Hebei region and the Yangtze
River Delta, is indispensable.

Third, stronger policy supports should be provided to the provinces in which the
damage of air pollution is severer. For instance, more favorable tax policies, greater public
subsidies, and deeper green finance reforms aimed to develop renewable and clean energies
and environmental protection industries could be encouraged. The analyses on different
subsamples of this study suggest that the influence of atmospheric pollution on regional
macroeconomic growth is substantially stronger in the eastern provinces and in provinces
where the shares of state-owned enterprises are smaller, the local governments spend a
smaller portion of the fiscal budgets on providing public health services, and medical
resources are less abundant. The areas with a stronger impact of air pollution should pay
more attention and bear more responsibility. Our analyses also indicate that, in order to
mitigate the adverse effect of air pollution, the governments should increase the budget
of public health service expenditures and provide supports to expand the local medical
resources. These actions will not only benefit residents’ health but also promote local
economic growth. These are important, especially when there are difficulties in improving
air quality in the short run.

5.2. Conclusions and Directions for Future Research

In summary, this study empirically examined the influence of air pollution on the
regional economic growth in Chinese provinces, on the basis of a sample during 2002–2017.
The results showed the significant negative impact of air pollution on economic growth,
and thus, the research hypothesis in this study was confirmed. It was estimated that the
annual growth rate of real GDP per capita declines by 0.05818 percentage points as a result
of a 1% increase in PM2.5 concentration. Therefore, the purpose of promoting economic
growth actually requires the government to tackle the air pollution issue. In addition, it
is found that the adverse effect of atmospheric pollution is qualitatively consistent but
quantitatively heterogeneous across different regions.

This research has several limitations, which provide opportunities for future studies.
(1) This research selected China as the target country and conducted an analysis on the
basis of a Chinese sample. It is also very important to investigate similar scenarios in some
other highly polluted developing countries, such as Bangladesh, India, Mongolia, and
Pakistan. Lessons and experience from these countries will definitely be valuable. In future
studies, scholars can investigate the influences of air pollution on economic growth in other
countries and examine whether our findings based on Chinese data are also applicable to
other regions. (2) This research analyzed the influence of air pollution at the province level.
Given the fact that China has a vast territory, the different cities and counties may be highly
heterogeneous even within one specific province. Thus, the effect of air pollution may not
be uniform over a whole province. In the future, researchers can collect more detailed city-
or county-level data, in order to provide deeper insights into how regional characteristics
mediate the impact of pollution on economic growth. (3) In this study, we considered the
regional macroeconomy as a whole without inspecting individual industries and sectors
separately. It is possible that air pollution influences the growth of different industries
unequally. Future studies could distinguish different industrial sectors to evaluate the
impact of pollution. This can provide a more accurate understanding and help us identify
the most crucial industries. (4) This study focused on the pollution in air and did not
compare the relative importance of different pollution types. Some useful implications
might be obtained if diverse pollution categories, such as air pollution, water pollution,
solid wastes, and noise, can be included in a more complete model. By utilizing such
a model, future researchers can provide a list of priorities to abate different pollutants.
(5) The regression model in this study did not consider the possibility of cross-sectional
dependence. As air pollution and economic activities might have spatial spillover effects,
ignoring cross-sectional dependence possibly results in inaccurate estimates. In the future,
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researchers can construct a more sophisticated model, which incorporates cross-sectional
dependence and instrumental variables estimation, to re-examine the impact of pollution.
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Abstract: Air quality monitoring and control are key issues for environmental assessment and
management in order to protect public health and the environment. Local and central authorities
have developed strategies and tools to manage environmental protection, which, for air quality,
consist of monitoring networks with fixed and portable instrumentation and mathematical models.
This study develops a methodology for designing short-term air quality campaigns with mobile
laboratories (laboratories fully housed within or transported by a vehicle and maintained in a fixed
location for a period of time) as a decision support system for environmental management and
protection authorities. In particular, the study provides a methodology to identify: (i) the most
representative locations to place mobile laboratories and (ii) the best time period to carry out the
measurements in the case of short-term air quality campaigns. The approach integrates atmospheric
dispersion models and allocation algorithms specifically developed for optimizing the measuring
campaigns. The methodology is organized in two phases, each of them divided into several steps.
Fourteen allocation algorithms dedicated to three type of receptors (population, vegetation and
physical cultural heritage) have been proposed. The methodology has been applied to four short-
term air quality campaigns in the Emilia-Romagna region.

Keywords: design mobile laboratory campaign; air pollution concentration; population exposure to
air pollutant

1. Introduction

Air quality monitoring and control are key issues for environmental assessment and
management in order to protect public health, ecosystem services and physical cultural
heritage (intended as physical artefacts in outdoor spaces). Therefore, local and central
authorities have developed measuring systems to evaluate air pollution and to provide
strategic indications to improve air quality and optimize its monitoring.

The most critical situations occur in urban areas, where emission sources (e.g., urban
traffic, domestic heating) and sensitive receptors (e.g., population, physical cultural her-
itage) are concentrated. According to the data reported by the United Nations in its special
edition on progress towards the Sustainable Development Goals [1], about 7 million people
died as a result of high levels of air pollution, both ambient and household, in 2016. The
same document reports that about 90% of people living in urban areas were still breathing
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air that did not meet the World Health Organization’s air quality guideline values for
particulate matter.

In such a context, governments and environmental protection agencies monitor am-
bient concentrations of air pollution in many parts of the world as part of regulatory
programs designed to protect public health and the environment [2,3]. Historically, the
most extensive monitoring systems were mainly developed in the United States and West-
ern Europe, where regular monitoring of ambient air quality has been implemented since
the mid-1970s [4]. Today, in Asia (especially Japan and China with a strong increase
since the 2000s) there are extensive monitoring networks [5,6]. At the European level, the
reference regulation for the monitoring and evaluation of air quality is set by Directive
2008/50/EC and subsequent amendments and additions [3]. This legislation establishes
that fixed measurements shall be used to assess ambient air quality. These fixed measure-
ments may be supplemented by modelling techniques and/or indicative measurements to
provide adequate information on the spatial distribution of air pollutants.

Fixed monitoring stations represent the most conventional, consolidated and widespread
approach for air quality monitoring and evaluation but have some limitations: (1) moni-
toring is usually limited to a small set of strategically placed locations and the assessment
results are significant only for specific areas; (2) fixed monitoring stations have low flexibil-
ity. In the last ten years, the existing monitoring networks have been adjusted at European
level in order to meet regulatory requirements (Directive 2008/50/CE) and cost efficiency.
The following objectives are pursued: (1) to create a uniform and comparable network for
wide areas (for example, all European States); (2) to reduce the number of stations, currently
higher than required by the legislation [7]; (3) to optimize the spatial representativeness
of the networks. In order to achieve these objectives and foster a thorough knowledge
of an area even with a smaller number of fixed stations, mobile laboratories [8,9], mo-
bile monitoring campaigns [10,11], low-cost sensors [12–14] and predictive mathematical
models [15,16] have been applied. In order to maximize the effectiveness and efficiency
of these alternative monitoring tools, it is necessary to adopt an appropriate allocation
methodology, able to include spatial and temporal variables to design the short-term air
quality campaigns. Recently, mobile laboratories for short-term stationary measurements
(laboratories that are either fully housed within or transported by a vehicle and maintained
in fixed location for a period of time) are spreading with good results (e.g., [17,18]).

Because operations research (OR) offers a structured method to solve complicated
decision problems, several authors have proposed different OR approaches for air quality
network design (see Table 1).

Table 1. Operation research approaches proposed to design air quality network: main characteristics.

Authors Objectives Variable/s of Action Constraint/s
Sensitive

Receptor/s

[19]

Number and placement

Pollution dosage Exposure time to pollutant

Population

[20] Maximum concentration values Single source, pollutant and
meteorological conditions

[21] Exceeding the law limits Number of points defined before
single pollutant

[22–25] Information associated to
the signal Previously measured data

[26–29] Spheres of influence Data from air quality
dispersion model

[30] Pollution exposure gradient Previously measured data
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Table 1. Cont.

Authors Objectives Variable/s of Action Constraint/s
Sensitive

Receptor/s

[31]

Weighing function of maximum
concentration values, exceeding

the law limits, cost of the network
and data validation

Previously measured data
Economic aspect

[32,33] Site redundancy Previous network

[34]
Exceeding the law limits

Protection capability
Average daily concentration

Data from air quality
dispersion model

[35,36] Information gain Adding new stations

[37–39] Pollution exposure Single pollutant
Previously measured data

[40]

Overall function of maximum
concentration values, maximum

dosage, maximum network
coverage, maximum

population protection

Applied to pollution from
industrial districts

[41–43] Exceeding the law limits
Number of points defined before
Number of points defined on the

economic basis

[44] Cluster analysis procedure Previously measured data

[45] Multiple criteria Available budget

[46] Entropy-based Bayesian
optimizing approach Available budget

[47]

Detection of higher pollutant
concentrations

“Protection capability” for areas
with higher population density

Distribution of population, budget

[48] Population and emission sources

[49] Pollution exposure

As it is possible to observe from Table 1, the objectives (typically: “choice of the
optimal number of monitoring points and their spatial distribution”) and constraints
appear to be similar among the approaches. The studies differ in the choice and com-
bination of the variables and in the formulation of the objective function: for example,
Reference [49] applying population exposure as a decision variable, Reference [33] an-
alyzing the redundancy of information provided by measuring stations and [29] using
the spatial representativeness of the detected signal. The authors often propose a single
objective function (e.g., [43,49]), always oriented towards the evaluation of the effects of air
pollution on the resident population. Systematically, the authors deal with the placement
of fixed air monitoring networks, considering the spatial aspect, but not the temporal one,
as a decision parameter since fixed stations measure air quality continuously all year long
(e.g., [19,25,48]). Conversely, algorithms to locate mobile stations must consider both spatial
and temporal variables. In fact, mobile laboratories are used for short-term campaigns (a
few days or a few weeks) and the temporal context must be given appropriate attention
to maximize the representativeness of the campaign. To the best of our knowledge, there
are no OR studies specifically developed to design mobile measurement campaigns for
air quality, capable of simultaneously considering the spatial and temporal aspects in the
sampling configuration.
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This study aims to develop an OR methodological approach for optimizing the short-
term air quality monitoring campaigns with mobile laboratories, by considering spatial
and temporal variables in order to obtain measurements as representative as possible of
the investigated area. The methodological approach has been structured using the typical
scheme of the OR which, by using appropriate selection functions, is able to find the
optimal (or suboptimal) solution to a decision problem. The proposed approach has been
applied to four case studies. The study area is the province of Ravenna (northern Italy),
made up of 18 municipalities that periodically sign a memorandum of understanding with
Arpae (Regional Agency for Prevention, Environment and Energy of Emilia-Romagna) on
monthly air quality monitoring campaigns by using a mobile laboratory. The four examples
refer to areas with different features and extensions and with a significant difference: the
Ravenna municipality is already largely covered (from the spatial point of view) by fixed
monitoring stations, whereas the other areas are completely devoid of them.

2. Materials and Methods

2.1. Description of the Methodology Development through Operations Research

To be solved, a decision problem needs a question to answer, the data that contextual-
ize the choice, and a criterion for making the choice [50]. As widely used in the literature,
operations research (OR) is defined as “a discipline that deals with the application of advanced
analytical methods to help make better decisions” and “arrives at optimal or near-optimal solutions
to complex decision-making problems”.

Through OR, a decision-making problem is mathematically described with functions
that represent the logical relationships among the decision objectives, variables and con-
straints. A decision objective is the desired solution to which the decision-making process
tends (e.g., minimum cost, maximum gain, etc.) (S in Equation (1) reported below). A
variable of action is a quantity of the system, the value of which is unknown, and on which
it is possible to act to determine different alternative solutions to the problem (e.g., the
number of measuring points, items sold, etc.). The constraint(s) describe the conditions of
admissibility of the solutions (e.g., technical constraints to indicate the maximum availabil-
ity of resources, sign constraints). They are mathematical relationships that describe the
conditions of admissibility of the solutions and are used to discriminate the combinations
of values of the decision variables that represent acceptable solutions to the problem, from
those that are not [51,52].

These three elements are formalized mathematically through a function (called “ob-
jective function”) consisting of n variables and m constraints. It represents the objective
to be maximized or minimized, mathematically formulated as a function of the decision
variables and influenced in the resolution by the constrains.

Min (or max) f(x)
x∈S

(1)

where: f (x) is the objective function to be minimized (or maximized); S is a set of possible
values of the independent variables of the problem; x is n-dimensional vector variables.
Solving an optimization problem formulated through an objective function consists in
determining the values of the variables x that satisfy all the constraints and minimize
(or maximize) the value of the objective function in S. The value of x that minimizes (or
maximizes) f (x) represents the optimal (or suboptimal) solution of the problem.

The decision problem studied by this work (where to measure the air quality by
using mobile laboratories?) has been structured with the OR approach. The methodology
integrates to the optimal spatial distribution another two fundamental aspects: (i) the best
time period for carrying out the short-term monitoring campaign; (ii) the possibility of
pursuing several objectives (e.g., monitoring the exposure of a group of residents, evalu-
ating the impact of an emission source, evaluating the effectiveness of specific territorial
policies, etc.).
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The approach is structured in 2 distinct operational phases. Phase 1 is dedicated to the
characterization of the study area through the collection of data and their processing. The
result of phase 1 is a database that collects all the data. Phase 2 is the allocation procedure;
its result is the identification of the optimal sites. It is noteworthy that phase 1 needs to be
applied just once (obviously data may be updated), while phase 2 may be applied as many
times as the number of the necessary measurement campaigns. In this way, numerous
short-term air quality campaigns can be designed on the area of study, always applying
the same database.

In the proposed methodological approach, phase 1 consists of the following four steps:
(i) selection of the area of study; (ii) cell classification; (iii) quantification of air pollutant
concentration; (iv) identification and distribution of sensitive receptors.

The first step consists of the identification of the study area and its division into square
cells of equal size. Each cell is the basic assessment unit of each algorithm. All the informa-
tion necessary for the allocation choice must be quantified for each cell (e.g., concentration
of pollutants, sensitive receptors, type of cell, objective functions, and so on). A specific cell
will be the final result of each allocation procedure.

The second step aims to classify each cell according to the type of prevalent emissive
sources present inside it. What is interesting is the classification established by the Euro-
pean Directive 2008/50/EC [3]: (a) urban traffic (T): cells located in urban areas and near
roads with heavy vehicle traffic; (b) industrial (I): cells located within or close to industrial
areas; (c) urban background residential (BU-Res): cells located in urban areas with high
population density and not crossed by roads with high traffic; (d) urban background (BU):
cells located preferably within public green and/or pedestrian areas (parks, schools) and
not directly subject to specific sources of pollution such as vehicle traffic and industrial
emissions; (e) suburban background (B-SubU): cells located in suburban areas characterized
by the transport phenomena from outside the city and phenomena produced inside the
urban area; (f) rural background (BR): cells located outside the major cities, in predom-
inantly rural/agricultural areas, also subject to phenomena of photochemical pollution,
downwind of the direction of the wind field and most likely not in the immediate area of
maximum emissions of pollutants; (g) remote background (B-Rem): cells located at natural
areas (natural ecosystems, forests) at a great distance from urban and industrial areas.

The third step quantifies the air pollutant concentrations of interest. Many air quality
mathematical models are suitable for this purpose, as explained previously. Whatever
model is applied, a high-resolution estimation is necessary to answer the monitoring site
allocation problem [30,47]. In the case of brief monitoring campaigns, as in this study, an
adequate time resolution (preferably hourly or daily) is required, too. This aspect can be a
problem for the management of a very large amount of data.

The fourth step enables the identification and spatial distribution of the sensitive
receptors to air pollutants. It is necessary to define the spatial distribution of the resident
population, the presence of sensitive vegetation and the presence of relevant physical
cultural heritage.

Phase 2 consists of five steps. Each step allows for the selection of different elements
of the monitoring campaign and the development of many different combinations, each of
which determines a different configuration of the campaign. The graphical representation
of phase 2 is shown in Figure 1. The first step is the selection of the spatial domain.
The monitoring campaign could affect the entire study area selected during phase 1,
or one of its subspatial domains. Using a square grid, it is possible to select only the
cells of a subarea of interest. The second step is the selection of the temporal domain.
This step allows for the identification of a specific time period in which to conduct the
campaign (e.g., a day, a month, a season, a whole year). This is closely related to
the temporal resolution used to define the pollutant concentration field during phase
1. The selection of the area type is the third phase, it helps to identify areas with
homogeneous characteristics from the point of view of pollution and/or presence of
emission sources. It allows the selection of cell type. The fourth step is the selection of one
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or more pollutants of interest, based on which the monitoring campaign will be designed.
The last step is the selection of allocation criterion. This represents the mathematical
expression of the purpose of the measurement campaign (e.g., evaluate the exceeding of
legal limits, the exposure of the population, the damage to heritage). This study suggests
fourteen objective functions that represent a large number of possible design criteria
for short-term air monitoring campaigns, also considering the indications available in
the bibliography (see Table S1 of Supplemental Material). Table 2 shows the list and the
relative formulation of the proposed objective functions, while Table S1 of Supplementary
Material shows any supplementary information necessary for their quantification. There
are eleven allocation criteria dedicated to population protection, offering as a factor of
choice the exposure of citizens to atmospheric pollutants, the highest concentration values,
values above the legal limits, the correlation with the data measured by the AQMS, the
spatial gradient of the concentration values. Five allocation criteria are dedicated to
vegetation protection: exposure to pollution, values above the limits for the protection
of vegetation, the quantities of pollutants that are deposited to the ground through dry
and wet deposits. Finally, a specific damage index for physical cultural heritage has been
proposed as a specific allocation criterion for its protection.

 

Figure 1. General schematic approach of the proposed design methodology and a specific focus of phase 2—allocation
procedure.

2.2. Description of the Study Area

The study area is the Ravenna Province (northern Italy, Figure 2a); the area is
1860 km2, the population is around 389,000 people [53] and the population density is
about 200 inhabitants/km2. The Ravenna Province is divided into 18 municipalities, each
with a different size and features. The study area has a wide air quality monitoring network
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(AQMN), mainly concentrated in the municipalities of Ravenna and Faenza (Figure 2b).
In the urban centers, air quality is mostly affected by traffic-related air pollution [16] and
domestic heating, while some suburban areas are affected by industrial pollution [54]. The
study area has been divided into 250 × 250 m cells for a total of 30,618 cells, a compromise
between high spatial resolution and computational resources.

Figure 2. The area of study ((a) left) and its air quality monitoring network (capital letters) ((b) right).

As case study pollutants, PM10 and NO2 have been chosen. The concentrations of
PM10 (daily average values) and NO2 (hourly average values) were estimated for each
cell. Background concentrations and concentrations due to local sources were estimated
and then combined. The background concentrations were quantified by the geostatistical
PESCO (Post-processing and Evaluation with Statistical methods of a Chemistry-transport-
model Output) model [55,56]. The package provides the functions to perform data fusion
for air quality with hourly temporal resolution, correcting the output of a deterministic
chemistry transport model with observed data, through a trans-Gaussian Kriging ap-
proach [57]. PESCO model results were provided by the Hydro-Weather-Climate service of
Arpae with a spatial resolution of 1 × 1 km2. The contribution of the local sources was quan-
tified by the advanced Gaussian dispersion model ADMS-Urban [58]. The application of
ADMS-Urban (made by the authors) required the identification and characterization of local
air pollutant sources. This process was achieved through the spatial disaggregation of the
provincial emissions inventory of industrial, road traffic and domestic heating [59] sources.
The reference year of the inventory was 2015, the spatial resolution was 250 × 250 m. The
pollutant concentrations estimated by PESCO and ADMS-Urban models were combined
together using a multiple linear regression (Equation (2)).

Y = Xβ = β0xPESCO + β1xADMS−URBAN + ε (2)
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where Y is the matrix identifying the dependent variables; it is composed of the values
recorded by specific air quality monitoring stations; β are the regression coefficients; x are
the pollutant concentrations estimated by PESCO and ADMS models, respectively; ε is
the residue. The overall concentration field was then verified by comparing the simulated
data and the values measured by the air quality monitoring network, applying specific
comparison statistical indices [60,61]. Pearson’s product moment correlation coefficient
(COR), normalized mean square error (NMSE), fractional bias (FB), factor 2 (FA2) and index
of agreement (IA) were employed. They are defined according to the following formulas:

COR =
(
Co − Co

)(
Cp − Cp

)
/σoσp (3)

NMSE = (Co − Cp)2/CpCo (4)

FB = 2
(
Cp − Co

)
/(Cp + Co) (5)

FA2 = f raction o f data f or which 0.5 ≤ Cp/Co ≤ 2 (6)

IA = 1 − (Cp − Co)2/
(
Cp − Cp

)(
Co − Co

)2 (7)

where: CO and CP are the predicted and observed concentrations, respectively; σo and σp
are the standard deviations of observations and predictions, respectively. IA, COR and
NMSE measure the correlation between predicted and measured concentration values,
FB measures the agreement of the mean concentration values and FA2 is the fraction of
predicted concentrations within a factor of two of the equivalent measured values. Under
ideal conditions, FB and NMSE should be zero, while COR, IA and FA2 should be one.

In this study three types of receptors that are sensitive to airborne pollution were
selected: resident population, vegetation (natural areas, parks and forests) and physical
cultural heritage. Resident population and vegetation were selected as they are the refer-
ence receptors in the legislation (e.g., Directive 2008/50/CE). Physical cultural heritage
located outdoors was selected as these items are very sensitive to air pollution and have
been severely damaged for the last century [62,63]. The spatial distribution of each type
of receptor was disaggregated over the territory (250 × 250 m cells) starting from the fol-
lowing aggregated databases: census data of the National Institute of Statistics [53] for the
resident population in 2011 (last complete population census available), Emilia-Romagna
Region open-data for vegetation [64] and the database of the Italian Ministry of Cultural
Heritage for cultural heritage [65].

Table 2. Proposed allocation criteria.

Allocation Criteria Sensitive Receptors Note

Individual exposition to the i-th pollutant in the
k-th cell [μg·m−3·h]

Population
Vegetation

Quantifies the exposure of an individual to a
specific outdoor pollutant [20,66–68]

Overall exposition to the i-th pollutant in the k-th
cell [μg·m−3·h·n] Population Quantifies the overall exposure of all individuals

present in a given cell [30,40]

Overall risk to all thepollutants in the k-th
cell [μg·m−3·h]

Population
Vegetation

Quantifies the individual risk as the contribution
of all the considered pollutants

Correlation between simulated and measured data
of the i-th pollutant in the k-th cell Population

Identifies areas with a good match between the
measured data from fixed air quality monitoring
stations and concentration data estimated [35,69]

Exceedance of the legal limits of the i-th pollutant
in the k-th cell [n.]

Population
Vegetation

Identifies the probability of exceeding the legal
limits for a specific pollutant
[24,31,34–36,41,42,47,68,70]

Maximum concentration value of the i-th pollutant
in the k-th cell [μg·m−3]

Population
Vegetation

Identifies the probability of measuring an elevated
concentration value for a specific pollutant

[34,71,72]
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Table 2. Cont.

Allocation Criteria Sensitive Receptors Note

Minimum index of agreement (IOA) for the i-th
pollutant in the k-th cell Population

Assess how the values simulated by the model
deviate from the values measured by the fixed air

monitoring stations

Minimum index of agreement normalized with the
resident population (IOAPr) for the i-th pollutant

in the k-th cell
Population

Assess how the values simulated by the model
deviate from the values measured by the fixed air
monitoring stations, considering also the presence

of resident population.

Maximum concentration gradient for the i-th
pollutant in the k-th cell Population

Assesses how changing the concentration field at a
specific point compared to neighboring points

[30,39,73]

Maximum air quality index in the k-th cell Population Assesses the contribution of all the pollutants at
the same time [24,74,75]

Minimum concentration difference in the k-th cell Population
Assesses how changing the concentration field at a

specific point compared to whole study area
[31,73]

Maximum pollutant deposition in the k-th cell Vegetation Assess the total deposition of the selected
pollutants [76]

Maximum PM10 deposition in the k-th cell Vegetation Assess the total deposition of the selected
pollutants [76]

Maximum damage index in the k-th cell Physical cultural
heritage

Assess the total damage due to erosion blackening
pollutants [76–78]

3. Results and Discussion

The results describe the application of the methodological approach developed for
the reference study area, presenting some representative case studies of the design of air
quality monitoring campaigns aimed at protecting the three types of sensitive receptor
selected in the study: population, vegetation, physical cultural heritage.

3.1. Phase 1 Application

The developed methodology was applied in the study area to four specific short-term
air quality campaigns. Phase 1 is the same for all campaigns.

As explained in the previous section, all the steps of phase 1 were applied, charac-
terizing each 250 × 250 m cell with the necessary information and with average values of
pollutant concentrations. The campaigns described in this paper use NO2 and PM10 as
specific pollutants.

Three sets of regression coefficients (β and ε) were calculated: one specific set for cells
classified as traffic oriented (category T), one set for industrial cells (category I) and one set
for background cells (category BU) (see Section 3.1). Three air quality monitoring stations,
one for each cell category, were chosen to provide the values of dependent variable (Y in
Equation (2)): (a) one traffic oriented station (A-Zalamella); (b) one industrial oriented
station (E-Via dei Germani); (c) one background oriented station (K-Delta Cervia) (see
Figure 2).

The multiple linear regression analysis applied to NO2 overall concentration field
provided the beta coefficients and constants shown below. One dataset consisting of
8760 values each (average concentration data per hour for an entire year) was used to
calculate the regression coefficients: the data measured by the fixed air quality monitoring
station chosen, the data simulated by the PESCO model and those simulated by the ADMS-
Urban model.

Traffic area : Ctot = (0.60CPESCO + 0.27CADMS) + 13.52 (8)
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Industrial area : Ctot = (0.70CPESCO + 0.62CADMS) + 5.59 (9)

Background area : Ctot = (0.87CPESCO + 0.11CADMS) + 1.36 (10)

For PM10, the coefficients calculated using three datasets of 365 data each (daily
average values) are as follows:

Traffic area : Ctot = (0.55CPESCO + 1.99CADMS) + 6.89 (11)

Industrial area : Ctot = (0.45CPESCO + 1.65CADMS) + 4.62 (12)

Background area : Ctot = (0.89CPESCO + 0.58CADMS) + 1.58 (13)

where: Ctot is the total concentration; CPESCO and CADMS are the concentration values
simulated by PESCO and ADMS-Urban models, respectively.

The multiple linear regression analysis results for NO2 show a standard deviation
of 10.60, 11.08 and 4.57 and a coefficient of determination (R2) of 0.52, 0.39 and 0.85,
respectively for the stations classified as “traffic”, “industrial” and “background”. For
PM10 the values of the standard deviation are 15.07, 13.88 and 11.40, while for R2 the values
are 0.70, 0.61 and 0.83.

The p-values for all variables are less than 0.05, showing their statistical significance.
The statistical analysis comparing the measured and predicted total values is shown

in Table 3. The correlations between measured and simulated data are always higher than
0.57. In particular for NO2, there are values that often exceed 0.8. For PM10, the values
are between 0.58 and 0.68. The simulated and observed data have small differences in the
concentrations values and, consequently, the resulting FB index assume values close to the
next optimal results (which corresponds to the value 0). There are some situations with
more significant differences (e.g., station “D”), but they are limited to few cases and often
linked to areas characterized by highly variable pollution situations due to the proximity
of very complex emission sources (the station “D” is inside the industrial and harbor area
of Ravenna’s city). The FA2 and IOA indices assume values close to ideal performance in
many cases. Similarly, also the NMSE index assumes values that are almost ideal (which
corresponds to the value 0) in the majority of the considered comparison points.

Table 3. Statistical analysis comparing the measured and predicted NO2 and PM10 concentration values.

Fixed Air Quality
Monitoring Stations

Measured MEAN
(μg/m3)

Predicted MEAN
(μg/m3)

CORR NMSE FA2 FB IOA

NO2

B—Caorle 25.35 24.49 0.81 0.20 0.85 0.03 0.90

C—Rocca Brancaleone 32.23 32.15 0.77 0.13 0.92 0.00 0.86

D—SAPIR 47.12 26.64 0.63 0.43 0.58 0.56 0.62

F—Azienda Marani 32.81 26.26 0.60 0.46 0.67 0.22 0.67

H—Marina di Ravenna 21.77 18.90 0.65 0.36 0.73 0.14 0.78

I—Azienda Zorabini 15.72 21.16 0.57 0.75 0.51 0.29 0.71

J—Ballirana 22.63 20.10 0.80 0.18 0.90 0.12 0.88

L—Marconi 34.20 29.98 0.98 0.03 0.99 0.13 0.95

M—Parco Bertozzi 28.54 28.60 0.87 0.14 0.90 0.00 0.93

N—Giardini 21.45 21.27 0.94 0.06 0.95 0.01 0.97

PM10

B—Caorle 30.83 35.6 0.58 0.30 81.36 −0.14 0.72
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Table 3. Cont.

Fixed Air Quality
Monitoring Stations

Measured MEAN
(μg/m3)

Predicted MEAN
(μg/m3)

CORR NMSE FA2 FB IOA

C—Rocca Brancaleone 29.89 34.09 0.67 0.16 89.75 −0.13 0.79

D—SAPIR 44.77 25.71 0.59 0.72 63.46 0.54 0.52

F—Azienda Marani 26.66 21.00 0.60 0.29 83.71 0.24 0.79

L—Marconi 30.90 30.39 0.67 0.15 94.66 0.02 0.79

M—Parco Bertozzi 23.64 27.25 0.68 0.27 88.14 −0.14 0.78

N—Giardini 25.05 32.04 0.61 0.32 78.33 −0.24 0.69

The worst performances were recorded for the stations classified as “industrial”, due
to the difficulty in characterizing (temporally and spatially) the emissions sources in areas
of strong industrial vocation. On the other hand, the best performances were recorded for
control stations classified as “background” or “urban”.

Because of the good results of the comparative analysis between measured and pre-
dicted values, the equations obtained by regression analysis were applied to define the
entire concentration fields of NO2 and PM10 concentration in the study area, according
to the classification of each cell. Finally, the resident population, vegetation and physical
cultural heritage were spatially disaggregated for each cell.

3.2. Phase 2 Application

The four campaigns chosen in order to test the proposed methodology, called Exam-
ples n.1–n.4 are described below. Each example simulates the design of a measurement
campaign with a mobile laboratory according to the following characteristics (Table 4).

Table 4. Main characteristics of each example.

Decision Criteria Example n.1 Example n.2 Example n.3 Example n.4

Spatial domain
Territory of the
municipality of

Ravenna

Territory of the
municipality’s union of

the lower Romagna

Territory of the
municipality’s union of
the Romagna Faentina

Territory of the
municipality of

Ravenna

Temporal domain Month of October Month of July Month of June Month of December

Area type Urban traffic (T) Urban background
residential (BU-Res) Rural background (BR) All

Pollutant NO2 NO2 PM10 PM10

Allocation criteria and
objective function

Overall exposition to
NO2 of the residential

population

Maximum
concentration values

of NO2

Maximum PM10
deposition

Maximum damage
index

3.2.1. Campaign n.1

The objective of this example was to analyze the exposure of the urban population of
Ravenna municipality to NO2. Figure 3 shows the application of phase 2 to the spatial do-
main (a), temporal domain (b), area type (c) and pollutant (d) identification. These allowed
the potential cells for the monitoring activities to be reduced numerically and spatially.

The selected criterion in the first case study was the “overall exposure of the residential
population to NO2”. The maximization of the objective function that expressed this
allocation criterion (operationally the function is calculated for all the cells resulting from
the selection of the first 4 steps of phase 2 and then by selecting those with the maximum
values) allowed the identification of only a few cells (Figure 3e). Keeping all the decision
variables unchanged and changing only the month of monitoring, Figure 3 shows the
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different distribution of the points identified for monitoring. This is due to the different
weather conditions and pollutant concentration values.

3.2.2. Campaign n.2

The objective of this example was to analyze the exposure of the population of an
urban background area to NO2. The selection of the spatial domain (a), temporal domain
(b), area type (c) and pollutant (d) of the second campaign is shown in Figure 4. The
selected criterion in the second case study was the “maximum NO2 concentration values”.
Analogous to the previous case, the selection criteria values were calculated on the selection
reported in Figure 4d and the optimal points where to place the mobile laboratories were
identified among the cells with the highest values (Figure 4e).

 

Figure 3. Cont.
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Figure 3. Example n.1—spatial domain (a), temporal domain (b), area type (c), pollutant selection (d) and extremes of the
exposure value that identify the optimal monitoring points (e). The other figures show how the distribution of optimal
points changes as a function of time.

 
Figure 4. Example n.2—patial domain (a), temporal domain (b), area type (c), pollutant selection (d) and extremes of the
exposure value that identify the optimal monitoring point (e).
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3.2.3. Campaign n.3

The objective of this example was to analyze the PM10 deposition to assess the effect
on sensitive vegetation. The selection of the spatial domain (a), temporal domain (b),
area type (c) and pollutant (d) of the third campaign is shown in Figure 5. The selected
criterion in the third case study was the “Maximum PM10 deposition”. Analogous to the
other case-studies, the selection criteria values were calculated on the selection reported in
Figure 5d and the optimal points where to place the mobile laboratories were identified
among the cells with the highest values (Figure 5e).

 
Figure 5. Example n.3—spatial domain (a), temporal domain (b), area type (c), pollutant selection (d) and extremes of the
deposition value that identify the optimal monitoring points (e).

3.2.4. Campaign n.4

The last example that has been described used materials as a sensitive receptor and
PM10 depositions (which contribute to determining the total damage index, see Table 3) as
a choice criterion. The selection steps are shown in Figure 6.

As explained in Section 3, the proposed approach enables the allocation procedure
of air monitoring stations including spatial and temporal variables. The inclusion of
the temporal variable makes the approach particularly suitable for short-term air quality
campaigns. The approach is structured as an actual procedure in phases and steps. This
feature has several advantages. The procedural structure guarantees the respect of the
principle of replicability that leads to the application of a coherent methodology for the
various cases. The presence of two phases permits the simplification of the operations: the
two phases are connected to each other, but each phase is able to operate independently
from the other. The changes made in one phase determine the variation of the results of the
next, but they do not cause a revision of the whole application procedure (which remains
standardized). The subdivision in several steps permits transferability: the approach
can be adapted to local peculiarity and different objectives. The possibility to choose
among many objective functions and different sensitive receptors results in great versatility.
Transferability and versatility make the proposed methodology applicable also to low-cost
sensors used for air quality monitoring in areas with elevated variations from the spatial
and temporal point of views and with low availability of financial resources [79,80].
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Figure 6. Example n.4—spatial domain (a), temporal domain (b), area type (c), pollutant selection (d) and extremes of the
damage index values that identify the optimal monitoring point (e).

The experimental application of the methodological approach allowed the authors to
test each step and to provide the following comments and observations. (i) The proposed
methodology requires a preliminary pollutant concentration assessment. In the area of
interest, a mathematical dispersion model to assess the background concentration was
available (PESCO) and it was integrated by a model to evaluate the local source contri-
butions (ADMS-Urban). Air pollution concentration data, maps and models are easily
available in Europe and in other parts of the world [49,81] and the local source modeling
requires information which is a part of local authority duties (see the EU Directives in
European Union). (ii) Multiple linear regression appears to be a very interesting tool for
combining data coming from different predictive models as it is cheap, easy to apply,
effective and reliable. (iii) If data are available, the validation of simulated values vs. mea-
sured values is always recommended because it permits the adjustment of the assessment
process and its strengths and weaknesses to be known. (iv) The spatial disaggregation of
the residential population as a sensitive receptor has been done, starting from the national
census of the population conducted by the National Institute of Statistics and representing
the best available data. The population census is the most detailed information source on
the population at different levels and it is very easily available. If the sensitive receptor
is vegetation, easy and important sources of information could be lists and/or maps of
protected areas, such as national parks, nature reserves and areas of special interest. Lists
of national physical cultural heritage are also readily available in many countries. (v) Using
all the collected information, processed and arranged through phase 1, the application
of the allocation procedure, which constitutes phase 2 of the methodological developed
approach, was very simple and fast.

The application of the proposed methodology highlights, also, some weaknesses.
The more data used, the higher the resolution and the better the allocation choice, but to
process and manage a high quantity of data requires substantial computing capacity that is
not always available. Another weak point is that the database and information collection
created by phase 1 have to be continuously updated for the approach to be effective. Finally,
the allocation choice made by the proposed methodology might not be compatible with
practical aspects (e.g., power requirements, security, site permissions, site access, etc.).
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A refinement of the methodology could be provided by taking these weaknesses into
account. It would be very useful to develop a software tool for the automatization of data
loading and update activities. Moreover, it would be convenient to expand the list of
objective functions in order to include other sensitive receptors (e.g., fauna) or to further
detail the existing categories (population classified in increasing levels of sensitivity to
pollutants, such as children and the elderly; cultural heritage classified according to the
type of material, such as bronzes and carbonate materials).

4. Conclusions

In conclusion, a new methodology for designing short-term air quality monitoring
campaigns has been proposed and tested on a case study area—situated in northeast
Italy—through four short-term campaigns. The approach is designed especially for the
environmental management and protection authorities but it is also usable by private
entities. It is characterized by a high replicability (it is organized as a real procedure in
phases and steps) and wide versatility, in fact, it can be adapted and contextualized for
situations with very different characteristics (emission, sources, receptors, orography, etc.,)
and it can answer very different questions (temporal aspects, different allocation criteria,
different receptors, etc.).

Its experimental application has provided satisfactory results (both in terms of time
and space) in regard to the objectives of this study by indicating suitable monitoring points.
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Abstract: China has made some progress in controlling PM2.5 (particulate matter with an
aerodynamic diameter of ≤2.5 μm) pollution, but there are still some key areas that need further
strengthening. Considering that excessive prevention and control efforts affect economic development,
this paper combined an empirical orthogonal function, a continuous wavelet transform, and a
concentration-weighted trajectory method to study joint regional governance during key pollution
periods to provide suggestions for the efficient control of PM2.5. The results from our panel of data
of PM2.5 in China from 2016 to 2018 could be decomposed into two modes. In the first mode, the
pollution center was in central Shaanxi Province, and the main eruption period was from November
to January of the following year. As the center of this region, Xi’an should cooperate with the four
cities in eastern Sichuan (Nanchong, Guangan, Bazhong, and Dazhou) to control PM2.5, since the
eruption occurred in this area. Moreover, governance should last for at least two cycles, where
one cycle is at least 23 days. The pollution center of the second mode was in the western part of
Xinjiang. Therefore, after the prevention and control efforts during the first mode are completed,
the regional city of Kashgar should continue to build a joint governance zone for PM2.5 along the
Tianshan mountains in the east, focusing on prevention and control over two cycles (where one cycle
is 28 days).

Keywords: PM2.5; spatiotemporal variation; empirical orthogonal function; continuous wavelet
transform; backward trajectory analysis; joint governance region

1. Introduction

The occurrence of haze and severe PM2.5 (particulate matter with an aerodynamic diameter of
≤2.5 μm) pollution has attracted broad attention around the world. Increased PM2.5 concentrations
lead to a deterioration in human health [1], visibility [2], the regional climate [3], and economic
development [4], causing urgent environmental problems that need to be solved. Developing countries
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that are experiencing rapid urbanization suffer from severe PM2.5 pollution, and their inhabitants are
exposed to high PM2.5 concentrations. In January 2013, China suffered the most severe haze weather in
its history (since haze has been recorded). The concentration of PM2.5 in the Beijing–Tianjin–Hebei
region (the most polluted region in China) was as high as 500 μg·m-3, which is much higher than the
acceptable level of PM2.5 concentrations (0–35 μg·m-3) in China [5]: This caused widespread concern
across China. In 2013, the Chinese State Council released an Atmosphere Pollution Prevention and Control
Action Plan [6], which required that by 2017, the respirable particle concentration in prefecture-level
cities should be at least 10% lower than 2012 concentrations; moreover, the number of days with good
air quality should increase every year. To achieve this goal, local governments in China have taken
multiple measures. However, the high pollution levels in this severely polluted region do not breed
confidence. In the fourth quarter of 2018, there were still 27 cities with PM2.5 concentrations above
the “lightly polluted” level (75–115 μg·m-3). Pollution control and the prevention of PM2.5 still need
further strengthening.

As for studies on PM2.5 pollution, previous scholars have generally used descriptive statistical
analyses and combined spatial autocorrelation analyses to study a spatial cluster of annual PM2.5

concentrations [7–9]. However, concentrations change in space, which tends to change the means of
local areas. In heavily polluted regions, PM2.5 pollution is normally a superposition of pollutants from
different sources. A quantitative analysis can only determine the overall distribution of PM2.5 and the
influencing factors of PM2.5 pollution. When confronting a more specific situation, such as different
pollution statuses in one polluted area or the pollution situation at different times on a shorter time
scale, a metrology analysis is not suitable because short-term social and economic data are difficult to
obtain: This also means that prevention recommendations are not possible.

The local control and prevention of pollution mainly focuses on the relocation of heavily
polluted enterprises or on regulating cars. However, PM2.5 pollution does not only come from
local emissions, but is also influenced by meteorological conditions, such as wind direction and
speed [10]. Local governments cannot mitigate pollution by themselves. Some common policies
should be jointly developed by city governments in the most seriously polluted regions (instead of
in traditional administrative regions) [11]. Considering the differences in PM2.5 pollution levels and
the characteristics of agglomeration, governments should implement differentiated regional pollution
control strategies [7]: Prevention and control require cooperation [12]. Studies have already established
hierarchical policies based on differentiated socioeconomic development conditions and requirements
across Chinese cities [13,14]. Chen et al. [8] analyzed the socioeconomic factors of joint control using a
geographically weighted regression method, establishing a strategy of joint control. Zhang et al. [15]
built a PM2.5 network correlation model to identify and demarcate regions with strong temporal
intercorrelations using hourly PM2.5 concentrations. These studies, however, have only analyzed the
key aspects of joint control over PM2.5 from the perspective of society and economics: They have
not been focused on the sources of PM2.5. PM2.5 pollution is also closely related to atmospheric
transportation. If heavily polluted regions could adopt joint control strategies for the sources of
pollutants, the control of PM2.5 would be more efficient.

Backward trajectory analysis is an important method for analyzing the sources of air pollution.
Scholars have studied the regional transportation characteristics of atmospheric particles by analyzing
their air mass trajectories [16–19]. Existing research has focused on descriptions of long-term pollution
sources in a single region, which cannot distinguish between the air mass trajectory during a heavily
polluted period and the air mass trajectory during a slightly polluted period. Considering that policies
leading to PM2.5 decreases in China have been implemented without taking economic costs into
account (which might be unsustainable in the near future) [20], prevention should be primarily focused
on heavily polluted periods in key regions to find a balance between the control of pollution and
economic growth.

As for studies of polluted periods, previous researchers have mainly analyzed changes in PM2.5

concentrations using statistical methods that include the year, quarter, or day to analyze variations in
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the concentration of PM2.5 [7,9,15,21]. These researchers have used overall temporal information to
analyze the evolutionary features of PM2.5 based on a simple method, where temporal characteristics
of PM2.5 are evaluated with the assumption that the statistical properties of the time series do not
vary over time. These types of studies can only uncover intense periods of high PM2.5, ignoring
the pollution cycle. Because of that, pertinent suggestions for control cannot be given. Meanwhile,
PM2.5 concentrations have a complex cyclical variation with several short and long periods, which
makes it difficult to analyze the temporal changes in PM2.5 concentrations. The wavelet transform
method is a feasible and effective method for studying the laws of variation of air pollution time-series
indexes [22]. Temporal variations are expressed well, and mutated signals of the PM2.5 level can
be identified through wavelet analysis [23]. Using the wavelet method, Chen et al. [24] discovered
multiscale features that are indicated in the temporal evolution of PM2.5. Huang et al. [25] used the
wavelet transform method to obtain the characteristics of yearly changes and sudden changes in the
PM2.5 level. Liang et al. [26] utilized the wavelet approach to explore the potential association between
PM2.5 and influenza. In addition, the wavelet transform method is mainly used in PM2.5 concentration
predictions [27–31]. However, these studies have barely focused on the characteristics of periodic
changes in the PM2.5 concentration on a major scale.

The factors of time and space should both be considered in analyses of the period and location
of heavy pollution. The empirical orthogonal function (EOF) method was originally introduced in
meteorology as a method for extracting the dominant modes of spatial variability [32]: It has since been
applied in climatological [33,34], hydrological [35,36], and geophysical studies [37]. This method can
extract the main components of meteorological factors and temporal and spatial variations. This paper
decomposes PM2.5 concentrations and judges the pollution center through the PM2.5 concentration
distribution in different modes. Furthermore, it analyzes the counterpart time variation and cycle
patterns, giving the foundation for an analysis of joint governance regions and control cycles.

Due to limitations with monitoring conditions, previous studies on the spatiotemporal distribution
of PM2.5 have mainly focused on the Yangtze River Delta [38], the Pearl River Delta [39,40], the
Beijing–Tianjin–Hebei region [41], and other developed regions. Even if the scopes of these studies
were national, pollutants in the western regions were characterized as missing or unpolluted due
to missing data, which is not consistent with reality [7]. As the Chinese government has paid more
attention to PM2.5 issues, observation conditions across the country have improved. In 2013, there
were only nearly 800 monitoring sites in the country [15], but as of December 2018, the number of sites
exceeded 1600, covering the vast majority of the country. With these improvements in monitoring
conditions, the pollution problem in the western region—which had not been studied before—has
gradually come to light. Therefore, it is necessary to carry out a national PM2.5 analysis of temporal
and spatial variations according to existing conditions and to further expand previous research to
create more accurate PM2.5 studies in China.

First, this paper combines a spatiotemporal distribution of PM2.5 with an analysis of the
source of pollutants, studying the spatiotemporal distribution of PM2.5 concentrations in China
to identify seriously polluted areas and time coefficients. Moreover, we utilized a wavelet transform
to analyze key pollution periods using time coefficients. Finally, a backward trajectory analysis and
a concentration-weighted trajectory were utilized to study the joint prevention regions of seriously
polluted areas at heavily polluted times, providing suggestions for the efficient control of PM2.5. The
main contributions of this work are summarized as follows:

• The study of the spatiotemporal distribution of PM2.5 concentrations. We applied EOF
decomposition to the spatiotemporal distribution of PM2.5 concentrations, studying the time
coefficients and vectors of PM2.5 concentrations in different modes and analyzing the overall
average state and local variation of PM2.5. Thus, regions and periods of heavy pollution could
be determined.

• An analysis of the duration of key prevention and control strategies. The time coefficient of
PM2.5 concentrations under different modalities was analyzed using a wavelet transform to judge
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the length of time of serious pollution periods so as to provide suggestions for the duration of
prevention and control policies.

• An investigation into the areas of joint protection and control. On the basis of the duration of
key protection and control policies, PM2.5 pollution in major cities in heavily polluted areas was
analyzed using a backward trajectory analysis and a potential source analysis, with seriously
polluted areas selected as the research object.

The rest of this paper is organized as follows (Figure 1): Chapter 2 describes our data sources
and research methods. Chapter 3.1 presents a descriptive statistical analysis of the annual variation in
PM2.5 from 2016 to 2018, using EOF to decompose panel data of PM2.5 concentrations to identify the
periods of and areas with heavy pollution in different modes. Chapter 3.2 uses a continuous wavelet
transform to analyze the duration of key protection and control policies. Using the above-mentioned
pollution areas and prevention periods, Chapter 3.3 analyzes the joint prevention and control areas of
the research object from the point of view of air mass trajectory. Chapter 4 is the conclusion.

PM2.5 concentration 
data

time coefficient 

Space vector

EOF
Major 

prevention 
period

Heavily polluted
period

Continuous Wavelet 
Transform

Heavily polluted 
area

Joint governance 
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Chapter 3.1 Chapter 3.2 Chapter 3.3
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Figure 1. Research framework of this article.

2. Materials and Methods

2.1. Data Sources

2.1.1. PM2.5 Data

The PM2.5 data were collected from the PM25.in website [42] (estimated by the National Urban Air
Quality Real-Time Release Platform of China’s National Environmental Monitoring Center) [43]. The
β-ray decay method and the tapered element oscillating microbalance (TEOM) method are commonly
used as monitoring methods in China. Although these two methods are different in terms of measuring
the concentration of PM2.5 and although the TEOM is known to have seasonally dependent biases [44],
there is no evidence that China’s ground monitoring data are not valid. Therefore, this paper used the
(valid) ground monitoring data of PM2.5 concentrations released by official data sources, which are
widely used in academic research [8,15,24], without considering errors in the measurements.

This paper collected 24 h monitoring data from 361 cities in China, and daily and annual data
were obtained through averaging. The positions of the selected cities are shown in Figure 2. An inverse
distance weight algorithm [45] was employed to interpolate the PM2.5 concentration and a simulation
of the spatial distribution of pollution. The results, combined with geographic data, are presented in
ArcGIS 10.2.
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Figure 2. The distribution of the 361 cities used as data sources.

2.1.2. Backward Trajectory Analysis Data

The meteorological data, which were provided by the NCEP (National Environmental Forecasting
Center), were exploited in backward trajectory mode (GDAS1 (Global Data Assimilation System)
data). The meteorological element field included temperature, air pressure, relative humidity, ground
precipitation, horizontal and vertical wind speed, etc., from 2016 to 2018. GADS1 has the capability of
calculating trajectory directly using vertical wind speed, which is an advantage over other methods,
whose vertical wind speed is calculated indirectly by calculating the vertical integration of horizontal
wind speed divergence [46].

2.2. Method

2.2.1. Empirical Orthogonal Function

The empirical orthogonal function is a field analysis method widely used in the sphere of
geosciences. Its principle is to decompose the spatiotemporal element field into several spatial basic
modes and a linear combination of the time coefficient series, and then to objectively and quantitatively
analyze the spatial structure and time changes of the element fields. The panel data of m observation
points and n observations were expanded using the EOF and decomposed into the sum of the product
of the orthogonal space matrix V and the orthogonal time matrix T:

Xmn = VT =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
v11 . . . v1n

...
. . .

...
vm1 · · · vmn

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
t11 . . . t1n
...

. . .
...

tm1 · · · tmn

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (1)

Equation (1) is multiplied on the right to get Equation (2):

XXT = VTTTVT = VΛVT, (2)
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where the superscript T represents the transpose of the matrix, Λ is a diagonal matrix composed of the
eigenvalues of the matrix, and V is a matrix composed of the matrix eigenvectors.

Therefore, the time coefficient can be obtained from Equation (3):

T = VTX. (3)

North’s Rule of Thumb assesses the uniqueness of EOF modes through assumptions of error

of the eigenvalues. When adjacent eigenvalues match the condition λ j+1 − λ j ≥ λ j(
2
n )

1
2 , these two

eigenvalues and their corresponding modes pass the sampling error test [47].
The variance contribution rate ρ of the eigenvalues and the cumulative variance contribution rate

of the first p eigenvalues are calculated as follows:

ρi = λi/
m∑

i=1

λi, (4)

pi =

p∑
i=1

λi/
m∑

i=1

λi. (5)

In the EOF, a set of eigenvalues, eigenvectors, and time coefficients represents a distribution mode.
The first few eigenvectors passing the significance test represent the maximum distribution structure.
The component of the eigenvector with the largest absolute value represents the intensity center. If the
positive and negative signs in the eigenvector are consistent, the eigenvector reflects the features with
the same change trend. If the component of a certain eigenvector is in a positive and negative phase
distribution, then this eigenvector represents two opposite distribution types. The time coefficient
represents the time variation characteristics of the spatial distribution form. When the time coefficient
is positive, the year is consistent with the distribution form represented by the eigenvector, and vice
versa. The larger the absolute value of the time coefficient is, the more significant the distribution form.
The variance contribution rate ρ reflects the degree to which a mode explains the whole. The higher its
cumulative value is, the more accurately the selected mode describes the overall situation.

2.2.2. Continuous Wavelet Transform

A continuous wavelet transform can clearly reveal the period of change hidden in nonstationary
time series and can reflect its change trend in different time scales. A continuous wavelet transform can
also extract multiple wave periods from the wave sequence at different scales to reflect its changing
trend, which is suitable for signal feature extraction [48]. The principle is to shift the mother wavelet
function ψ(t) after the translation b, and then to make an inner product with the signal f (t) for it to be
analyzed at different scales a, as follows:

ψab =
1√|a|ψ(

t− b
a

), (6)

w f (a, b) =
1√|a|
∫

R
f (t)ψ(

t− b
a

)dt, (7)

where b = 1, 2, . . . , N. N is the number of datapoints (1096 in this paper). According to the literature [49],
for nonorthogonal wavelet analyses, one can use an arbitrary set of scales a to build a more complete
picture. It is convenient to write the scales as fractional powers of two:

sj = s02 jδ j, j = 0, 1 . . . , J, (8)

J = δ j−1 log2(Nδt/s0), (9)
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where s0 is the smallest resolvable scale and J determines the largest scale. Here, δt represents the
sampling intervals of data in this paper, and s0 should be chosen so that the equivalent Fourier period
is approximately 2δt. For the Morlet wavelet, a δ j of about 0.5 is the largest value that can still give
an adequate sampling scale. Parameter values from the literature [49] were used here: δ j = 0.125.
Therefore, the smallest and largest resolvable scales could be calculated as 2 and 512, respectively. Note
that longer scales correspond to the most stretched-out wavelets. The more stretched-out the wavelet
is, the longer the portion of the signal to which it is being compared (and the coarser the signal features
measured by the wavelet coefficients) will be. In addition, a large scale also means a long period. The
time between the adjacent maximum and minimum of wavelet coefficients is almost 7 months when
the scale a is over 300 d (with similar data conditions) [24]. Because this article focuses on short-term
trends in PM2.5 concentration changes for efficient governance, the largest scale was set at 64, the same
as in the literature [49].

The complex Morlet wavelet, which is a single-frequency complex sinusoidal function, which has
symmetry, nonorthogonality, and an imaginary part [24], can simultaneously preserve the amplitude
and phase information of the sequence signal of PM2.5 concentrations. Therefore, a complex Morlet
wavelet was selected as the mother wavelet. The complex Morlet wavelet function is as follows:

ψ(t) = (π× fb)
−0.5e2i× fc×te−t2/ fb , (10)

where t represents time and fb represents the bandwidth controlling attenuation in the time domain
and the corresponding bandwidth in the frequency domain. Here, fb is the reciprocal of variance in
the frequency domain. An increase in fb will lead to the wavelet energy being concentrated around
the center frequency and will slow down the attenuation speed in the time domain. On the other
hand, a decrease in fb will accelerate the decay rate in the time domain and reduce the energy of the
frequency domain. Here, fc denotes the center frequency and affects the frequency value when the time
domain is converted into a frequency domain [24,50]. These two parameters can be adjusted to obtain
appropriate time–frequency resolutions. In this paper, we set the fb as 1 and the fc as 1.5, in accordance
with parameter settings from the literature [24] and parameter optimization from the literature [51].

Using the MatlabR2018a software platform, the wavemenu toolbox was selected to calculate the
wavelet coefficients. Meanwhile, the wavelet variance of the EOF time coefficient was analyzed to
find the main scale. Then, the coefficient modulus of the wavelet coefficients and the contour plots
of the real part were plotted to find the main oscillation periods and periods of time series at major
scales. The periodic variation of the real part of the wavelet coefficient on the main scale was the most
significant period of the time series.

A continuous wavelet transform can expand one-dimensional signals in both the time and
frequency directions to analyze the time–frequency structure of the data in detail and extract valuable
information. A continuous wavelet transform can not only provide the relative contribution of different
scales of the time series, but can also indicate changes in different scales, so it is very helpful for the
study of time series.

2.2.3. Backward Trajectory Analysis and Concentration-Weighted Trajectory

Here, we convey the calculation of the air trajectory first. The backward trajectory mode adopts the
Hybrid Single-Particle Lagrangian Integrated Trajectory Model (HYSPLIT) developed by the NOAA
(National Oceanic and Atmospheric Administration) [52,53]. The HYSPLIT model uses gridding
meteorological data to respond to emergencies in the atmosphere to diagnose issues and analyze the
climate. This mode is Lagrangian, as is Euler’s mixed diffusion mode: The processes of advection and
diffusion are calculated using the Lagrangian method, and the concentration is calculated using the
Euler Method [54]. HYSPLIT is considerably detailed in terms of the transportation, diffusion, and
settling of pollutants, and its highest simulation accuracy can last hours. Thus, HYSPLIT is widely
used in analyzing the source of pollutants and determining transmission and diffusion [55].
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MeteoinfoMap is a geographic information system application that analyzes and visualizes
multiple meteorological data formats [56]. Its plug-in, TrajStat, can use the backward trajectory analysis
software adopted by the HYSPLIT Lagrangian diffusion module [57]. On the basis of the results from
the EOF analysis, we selected cities with high pollution levels as the starting point and used the length
of time of severe pollution as the pushback time. The air mass movement path at 500 m of altitude (the
wind field at 500 m of altitude) can reflect the characteristics of the average flow field in the boundary
layer [16,17,19]. Therefore, the height of the simulation was selected as 500 m, and we calculated the
48 h backward trajectory every 2 h.

After that, a grid was established based on the area covered by the atmospheric trajectory, with
a resolution of 0.25◦ × 0.25◦. The concentration-weighted trajectory (CWT) was used to analyze the
source of pollution. The CWT is a mixed-trajectory receptor model that combines meteorological
trajectory nodes (residence time) and pollutant concentrations to trace their contributions to the
pollution of a recipient site [58]. After the study area was gridded, the CWT value of Grid (i, j) was
as follows:

CWTij =
1

M∑
l=1
τi jl

M∑
l=1

clτi jl, (11)

where τi jl is the number of pollution trajectory nodes in the grid (i, j) in the area, and Cl is the pollutant
concentration of the trajectory. The higher the grid CWT value is, the greater the probability that the
pollution trajectory comes from that grid point.

When there are fewer trajectories within the grid, the residence time is shorter, so the x value is
higher and there is greater uncertainty. When nij is less than three times its average value, we use the
following weight function to reduce the uncertainty [58–60]:

WCWTij = Wij ×CWTij, (12)

Wij =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1.00 3nave < nij
0.70 nave < nij ≤ 3nave

0.42 0.4nave < nij ≤ nave

0.05 nij ≤ 0.4nave

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
. (13)

3. Results

3.1. Spatiotemporal Features of PM2.5 Concentrations

3.1.1. Descriptive Statistical Analyses

According to the PM2.5 concentration data from 2016 to 2018, the annual mean of the PM2.5

concentration across the country had a downward trend. The national average PM2.5 concentration
value was reduced by a total of 6.753 μg·m-3, representing 14.6% of the former value. The mean
value decreased from 46.15 μg·m-3 in 2016 to 43.76 μg·m-3 in 2017, and then declined to 39.39 μg·m-3.
As is shown in Figure 3, except for the North China Plain, southern Sichuan, and part of western
Xinjiang, the three-year average PM2.5 concentration value in most areas was less than 55 μ·m_3, which
indicates good-quality air. In 2016, heavily polluted areas (in terms of PM2.5 pollution) were mainly
concentrated in western Xinjiang, the Beijing–Tianjin–Hebei region, Shanxi, Henan, central Hubei,
central Shanxi, and west Shandong. In 2017, the concentration of PM2.5 in the Shanxi, Anhui, Guangxi,
Guangdong, Hainan, and Northern Xinjiang areas increased. At the same time, the PM2.5 concentration
in western Xinjiang dropped significantly. However, due to the high PM2.5 concentration in western
Xinjiang, although the decline was large, the air quality in Xinjiang was still worrying. Although
PM2.5 concentrations in most parts of the country were under control in 2018, PM2.5 concentrations in
western Xinjiang and Tibet continued to rebound slightly, and PM2.5 concentrations also increased in
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western Yunnan and northern Gansu, indicating that in these areas, regional PM2.5 prevention and
control policies were not effective. These results differ from previous studies of the PM2.5 distribution
in China (by Hu Line [41]).

 
(a) Mean values over three years. (b) Annual average concentration in 2016. 

 
(c) Annual average increments in 2017. 

 
 (d) Annual average increments in 2018. 

Figure 3. PM2.5 (particulate matter with an aerodynamic diameter of ≤2.5 μm) annual average
concentrations from 2016 to 2018.

These research results should alarm the Chinese government: Although PM2.5 has been under
control in most regions of the country under current policies, PM2.5 pollution remains a major problem
in some regions. PM2.5 concentrations did not always continue to decrease over the three years.
Therefore, PM2.5 prevention and control work should focus on these problem areas by strengthening
control policies further, improving governance policies, and making PM2.5 governance more effective.

3.1.2. Heavily Polluted Areas and Periods

In order to further understand the spatial and temporal distribution of PM2.5 pollution and to
accurately determine the key areas and periods of PM2.5 governance, this paper used EOF analysis.
We employed a standardized matrix of monthly panel data of PM2.5 concentrations in 361 cities from
2016 to 2018. The characteristic vector of EOF expansion demonstrated the spatial distribution of the
PM2.5 concentration in each province. The maximum value center of all eigenvector fields indicated
the region that was the most sensitive to PM2.5 concentration changes. The eigenvectors of PM2.5

concentrations in China’s provinces converged quickly, with eight eigenvalues passing North’s Rule
of Thumb. The variance contribution rates of each mode were 41.70%, 10.77%, 6.56%, 4.72%, 3.63%,
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2.93%, 2.12%, and 1.78%. The contribution rates of the eigenvalue variance illustrated that the EOF
analysis results were ideal. Compared to the first two modes, the third mode and the subsequent
modes took up a small proportion of the EOF decomposition. Therefore, the first two eigenvectors
could be used to represent the spatiotemporal structure of PM2.5 concentrations.

The variance contribution of the first mode of EOF indicated the average state of the PM2.5

concentration from 2016 to 2018, representing the distribution field of PM2.5 concentrations in China.
In Figure 4, it can be seen that the first eigenvector had a consistently positive value, indicating that the
spatial variation trend of PM2.5 concentrations in the first mode was synchronous. The distribution
pattern of the eigenvector in the first mode was close to the mean distribution (Figure 3a). It can be
concluded that the first mode was the average state of PM2.5 concentration. The highest value area
was located in the middle of Shaanxi Province. The eigenvalues of North China, central Sichuan, and
parts of Xinjiang were also large. This indicates that the PM2.5 concentration fluctuated greatly in these
areas. When the time coefficient was positive, PM2.5 pollution was more severe. In other areas, the
eigenvalue was close to zero regardless of changes in the time coefficient, so the PM2.5 concentration
remained at a low level.

Figure 4. Spatial distribution of eigenvectors in the first empirical orthogonal function (EOF) mode.

From the distribution of the time coefficients in the first mode (Figure 5), it can be concluded that
the PM2.5 concentration change in the first mode had obvious seasonal characteristics. In the first and
fourth quarters of each year, most PM2.5 time coefficients were positive, and the maximum value each
year appeared around December, which means that the high-value area of the eigenvector in the first
and fourth quarters represented the PM2.5 pollution problem getting worse and the pollution being the
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most serious from December to January. In the second and third quarters, the time coefficients were
negative, so the PM2.5 concentration gradually decreased. The dashed line in the figure is the linear
regression of the time coefficients of the first mode, which had a downward trend, reflecting that in the
long term, the pollution problems in the areas where the PM2.5 concentrations changed after the first
mode were alleviated.

Figure 5. Time coefficients of the first EOF mode. The dashed line is the linear regression trend line.
The maximum value is marked as a square.

According to the above analysis, in the first mode, the main pollution areas were Shaanxi, North
China, Sichuan, and Xinjiang, and central Shaanxi. The main pollution periods were the first and
fourth quarters of each year, and pollution was the most serious in December. Governments should
focus on the above areas and pollution periods.

The second EOF mode reflected the spatial variation of regional PM2.5 concentration differences;
the spatiotemporal distributions are shown in Figure 6. Most of the eigenvalues exhibited in Figure 6
were close to zero, which meant that these regions contributed little to local pollution characteristics.
However, the eigenvalues in Western Xinjiang had large negative values, suggesting dramatic changes
in the PM2.5 concentration.

It can be seen from Figure 7 that the time coefficients had large negative values from February to
April each year, reaching a maximum on April 3, 2018. When looking at the eigenvectors of western
Xinjiang in the second mode, in areas where the eigenvector is negative, negative time coefficients
reflect a positive increase in the PM2.5 concentration. The greater the absolute values of the time
coefficients and eigenvalues are, the more severe the pollution is. It can be seen that the PM2.5 pollution
in the second mode was concentrated from February to April each year, and the pollution problem
was extremely serious, especially in April (when there was an eruption of severe pollution). PM2.5

governance in western Xinjiang should be strengthened during this period; the pollution problem in
April is especially worthy of more attention.
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Figure 6. Spatial distribution of eigenvectors in the second EOF mode.

Figure 7. Time coefficients of the second EOF mode. The maximum value is marked as a square.

3.2. Major Prevention Period

The PM2.5 pollution periods in different modes were analyzed above. Local governments should
focus primarily on severely polluted periods, especially in the western region of China, to strictly control
PM2.5 and further strengthen prevention and control efforts. However, considering the economic
costs brought on by strengthening prevention and control efforts, the periods that are the most
polluted should be of higher priority to be the most efficient. Since changes in PM2.5 levels also have
high-intensity periods, we suggest carrying out at least one complete control cycle for polluted periods.
Prevention during heavily polluted times is key to helping improve control efficiency. Therefore, a
wavelet transform was performed on the time coefficients in the two modes to further study what the
best prevention time periods were.

The variance of wavelet transform coefficients can determine the main scale of the wavelet
transform, which is plotted in Figure 8. The line chart represents the relative intensity of each scale
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in a time series. The scale at the corresponding peak is called the main time scale of the wavelet
transform, and the periodic oscillation at this scale is the most significant. It is clear from Figure 8 that
the wavelet variance of the time coefficients in the first mode had two distinct peaks corresponding to
the time scales of 37 and 23 d. The periodic oscillation of the time scale around 37 d was the largest,
which could mean that this is the main scale. In the second mode, the time scale of about 44 d had the
largest variance.

 
(a) Mode 1 (b) Mode 2 

Figure 8. Wavelet variation variance. The maximum value is plotted as a triangle.

The modulus value of the wavelet coefficient is a reflection of the distribution of the energy density
at different time scales, which corresponds to the period of change in the time domain. The larger the
modulus value of the coefficient is, the stronger the periodicity of the corresponding period or scale is.
A contour map of the modulus of the wavelet variation coefficient is plotted in Figure 9. The red area in
the figure indicates a large wavelet coefficient modulus value. The corresponding abscissa indicates a
time of strong oscillation, and the ordinate is the wavelet transform scale. As can be seen in the figure,
in the first mode, the strong period corresponding to the main scale (37 d) was from December 2017 to
January 2018. The strongest period in the second mode was from February to March 2016 (at 44 d).

Figure 9. Contour map of the modulus of the wavelet variation coefficient.

On the basis of the wavelet coefficient modulus and variance, the main scale of the time coefficient
of changes in PM2.5 concentration in the two modes (and their corresponding time range) was found.
The main scale was used in the frequency domain analysis to determine the time domain change at
different frequencies, which has no practical meaning. Because we wanted to focus on the most polluted
periods from 2016 to 2018, we selected the scale with the largest variance of wavelet coefficients and
the time range of the corresponding maximum value of the wavelet coefficient modulus. In practical
applications, other typical scales or periods can also be selected for analysis according to actual needs,
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or all periods corresponding to the main scales can be selected for a comprehensive analysis. This
method is very flexible.

A contour plot of the real part of the wavelet transform coefficient can reflect the change in the
data at different transform scales. The ordinate of the densely arranged region at the center of the
positive and negative values is the characteristic time scale of the wave sequence, and the abscissa is
the periodic time frame of changes. In Figure 10, there are four red and blue local oscillation regions in
the first mode and two local oscillation regions in the second mode. The two types of oscillations at
different scales reflect different periodic changes. Each time the regions alternate between red and blue
is a pollution period. The above analysis was carried out by selecting areas located in the main time
scale and within the strong oscillating periods. The first mode (Figure 10a, the 37 d scale) experienced
two pronounced concentration bursts between December 2017 and January 2018. In the second mode
(Figure 10b), the cold- and warm-colored alternation regions were mainly concentrated in the period
between February and April in 2016, with two cycles of strength and weakness on a 44 d scale. It is
worth noting that there was a slight increase in the concentration of PM2.5 before the eruption of the
two modes, which indicates the beginning of a serious eruption of PM2.5 pollution, an important early
warning sign for PM2.5 prevention. After the second eruption, the PM2.5 concentration decreased to
normal levels, and we defined the end of the second eruption as the end time of major pollution.

Figure 10. Contour map of the real part of the wavelet variation coefficients in (a) the first mode and
(b) the second mode. The blue rectangles are areas with periodic oscillations.

The above analysis determined the main scales, strong oscillation periods, and cyclic changes
in the corresponding time coefficients. For the purpose of determining the PM2.5 pollution cycle in
different modes, the real part of the wavelet transform coefficients of different modes (with their main
scales) was drawn. A typical polluted period was calculated using the intervals between the PM2.5

concentration peaks. In Figure 11, the peak is the eruption time, the start is the short eruption time
before the intense eruption of pollution, and the end is the ending time of the major pollution period.
With these calculations, we could find out that the typical pollution time under the first mode was
between 27 November 2017 and 26 January 2018, the outbreak interval was 23 days, and there were
two intense pollution eruptions of PM2.5. Pollution in the second mode occurred between 27 January
2016 and 31 March 2016, the outbreak interval was 28 days, and there were two intense pollution
eruptions of PM2.5 here as well.

Autocorrelation was used to verify the wavelet transform results. The autocorrelation results from
the first and second modes’ time coefficients are shown in Figures A1 and A2, respectively. According
to the literature [61,62], the time differences between peaks can be calculated—we did that here to find
that there existed a long period of 22 days, a result very close to the wavelet transform results from the
first mode. Though the autocorrelation of the second mode was weaker than that of the first mode,
a long period of 25 days was found for the time coefficient of the second mode, which was only a
three-day difference compared to the wavelet analysis results. The autocorrelation results certified that
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the continuous wavelet transform method could find periods of time series from weak autocorrelation
and can be used reliably in PM2.5 concentration research.

Figure 11. Wavelet transform coefficients using the main time scale (real parts).

On the basis of the above results, Shaanxi, northern China, Sichuan, and some parts of Xinjiang
(whose PM2.5 performances were poor during the first mode) should commence their governance
between November and January of the following year (when PM2.5 pollution is severe). The governance
in these regions should last for two cycles after slight PM2.5 pollution occurs for the first time, and one
cycle should last for no less than 23 days. Governance in western Xinjiang should be strengthened in
terms of prevention and control (in the first mode) until March. There should be at least two cycles
during this period, and one cycle should last for 28 days.

3.3. Joint Governance Region

On the basis of the analysis above, we selected the cities of Xi’an and Kashgar for analysis. Both
cities were in the most polluted areas in both modes. Taking the most severely polluted period as
the calculation time, we used a backward trajectory of 48 h to analyze the major joint-governance
cities. The backward trajectory analysis and concentration-weighted trajectory conditions are shown
in Table 1.

Table 1. The backward trajectory analysis and concentration-weighted trajectory conditions.

Location Start Time End Time Calculated Time Grid Area

1 Xi’an
(34.27◦N, 108.93◦E) 2017.12.3 2018.1.26 55 days 28.00◦N~53.00◦N,

73.00◦E~120.00◦E
2 Kashgar

(39.47◦N, 75.98◦E) 2016.1.27 2016.3.31 65 days 30.00◦N~50.00◦N,
50.00◦E~89.00◦E

Here, the atmospheric trajectory image and CWT values reflect the effect of grid points on the
PM2.5 levels of the analyzed city. The larger the grid value is, the more serious the impact of PM2.5

pollution on the city. In order to better identify major pollution sources, only high-value CWT grids in
China are plotted, which are shown in Figures 12 and 13. The CWT diagram of all grids is shown in
Figures A3 and A4.
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Figure 12. PM2.5 high-value concentration-weighted trajectories (CWTs) in Xi’an.

Figure 13. PM2.5 high-value CWTs in Kashgar. The map is a Google satellite map showing the position
of the Tianshan Mountains.

In Figure 12, it can be seen that Nanchong, Guangan, Bazhong, and Dazhou in the eastern Sichuan
Province had the greatest impact on PM2.5 pollution in Xi’an. During the most polluted winter, PM2.5

in eastern Sichuan passed through Ankang, Hanzhong, and Shangluo in southern Shaanxi Province
and reached Xi’an, exacerbating PM2.5 pollution. In addition, Weinan, Yanan, and Yuncheng in the
northeast were also sources of PM2.5 pollution in Xi’an. Therefore, prevention and control strategies in
Xi’an should not be limited to local governance, and joint governance should be carried out between
the above cities to control pollution more effectively.

The sources of severe pollution in Kashgar are shown in Figure 13. The PM2.5 concentration in
Kashgar was most influenced by the eastern region, which had heavy pollution. The grids of these
trajectories were distributed along the Tianshan Mountains, starting from Bayingol and reaching
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Kashgar via Aksu, Aral, Tumshuk, and North Kashgar. Therefore, Kashgar should create prevention
and control strategies for the urban agglomerations along the Tianshan Mountains.

4. Conclusions

This paper analyzed joint governance regions and key governing cycles in China through the
EOF and backward trajectory analysis. The EOF decomposed PM2.5 concentration panel data into
space vectors and time coefficients. The time coefficients reflected the changing trends in pollution
distribution. After transforming the time coefficients using wavelets, we could obtain the pollution
periods of the main time scales and could determine key governance periods using the real parts of the
wavelet coefficients. A space vector indicated the distribution of PM2.5 pollution, which helped identify
areas with serious pollution problems. Then, we selected the main cities in these areas and analyzed
their sources of pollution during key governance periods to determine possible joint prevention areas.
The conclusions can be summarized as follows:

• From a nationwide point of view, the overall PM2.5 pollution in China improved from 2016 to
2018, but the improvement was limited. PM2.5 remains a serious problem in Xinjiang and North
China. This finding is different from previous studies that have claimed that China’s PM2.5

pollution is strong in the east and weak in the west. National PM2.5 concentration panel data were
decomposed using the EOF, resulting in two modes. The first mode reflected the average state of
PM2.5 pollution in China. Seriously polluted areas included northern China, western Sichuan,
and parts of Xinjiang. The most polluted areas were in central Shaanxi Province. Pollution in the
first mode had significant seasonal characteristics, indicating that pollution in the first and fourth
quarters was serious and that the pollution degree decreased in the second and third quarters.
The second mode reflected the local pollution characteristics of the Xinjiang region, indicating
that there was severe pollution from February to April.

• Major prevention periods during the two EOF modes were studied using a continuous wavelet
transform. This showed that the first mode had a typical oscillation, with a scale of 37 d, from
November to January of the following year, and the main oscillation scale of the second mode
was 44 d, from February 2016 to April 2016. In the areas where PM2.5 pollution was in the first
mode, prevention and control strategies should be carried out from November to January of the
following year. After a small eruption in pollution occurs, prevention and control should be
implemented for a period of no less than 23 days. After the end of the control cycle in the first
mode, management and control of PM2.5 pollution in the second mode should be strengthened
for at least two cycles until March, where one cycle is 28 days.

• This paper took Xi’an and Kashgar as examples to analyze joint governance regions based on
pollution trajectories. In addition to local control, PM2.5 control strategies during winter in Xi’an
should include joint control with Nanchong, Guangan, Bazhong, and Dazhou in eastern Sichuan.
PM2.5 control in winter in Xi’an should also be coordinated with Ankang, Hanzhong, and Shangluo
in southern Shaanxi to alleviate the problem of pollution sources in the south. Meanwhile, Xi’an
should work with Weinan, Yanan, and Yuncheng to solve the problem of pollution sources in
the northwest. For Kashgar, it is necessary to establish a PM2.5 joint governance area along the
Tianshan Mountains to the east, with a focus on joint governance with the northern cities of
Kashgararea, Tumshuk, Aksuarea, and Aral in the east.

The method proposed in this paper can be used to analyze the joint governance regions and
periods of PM2.5 pollution in key cities across the entire country, and it can also be used in smaller
areas, such as provinces or cities. The method is simple, feasible, and has universality. However, due to
the many factors affecting the concentration of PM2.5 and the limited space of this paper, the important
influencing factors of PM2.5 pollution prevention and control were not analyzed, which should be the
focus of further research.
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Appendix A

Figure A1. Autocorrelation of time coefficients in the first mode. The positive and negative lags are
restricted to N – 1, where N is the length of the time coefficient. Every autocorrelation peak is marked
as a triangle with an abscissa.

Figure A2. Autocorrelations of time coefficients in the first mode. The positive and negative lags are
restricted to N – 1, where N is the length of the time coefficient. Every autocorrelation peak is marked
as a triangle with an abscissa.
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