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Editorial

Dedication: Commemorative Issue in Honor of Professor
Karlheinz Schwarz on the Occasion of His 80th Birthday

Peter Blaha 1,* and Henry Chermette 2,*

1 Institute of Materials Chemistry, Vienna University of Technology, Getreidemarkt 9/165-TC,
1060 Vienna, Austria

2 Institut des Sciences Analytiques, UMR 5280, CNRS, Université Claude Bernard Lyon1, Université de Lyon,
5 rue de la Doua, F-69100 Villeurbanne, France

* Correspondence: peter.blaha@tuwien.ac.at (P.B.); henry.chermette@univ-lyon1.fr (H.C.)

Karlheinz Schwarz was born in January 1941 in Vienna (Austria), and he married
Christine Schwarz in 1969. They have one child (Caroline), and he is a happy grandfather
of four grandchildren. Besides his passion for science, he likes classical music. In fact, when
he was young, he was not sure whether he should study chemistry or music, and maybe
he would have become a virtuoso pianist instead of a famous scientist. Another passion
was skiing; he even became a skiing instructor and impressed (and taught) numerous
colleagues at various winter conferences in the mountains with his elegant style.

He studied Chemistry at the University Vienna and obtained his PhD under the
supervision of A. Neckel in 1968, where he performed the first theoretical solid-state
calculations in Austria using the APW method. I still remember his stories about all the
problems he had to solve due to the limited computer resources at that time, including
sleeping at the computing center because he had to remount tapes several times during the
night, when such a calculation was running.

After his PhD, he worked as a postdoc in John C. Slater’s group in Gainesville, FL, and
later with Frank Herman at the IBM Research Lab in San Jose, CA. With his programming
skills, developed during his PhD in Austria, he could impress the leading solid-state theory
groups and speed up their codes by an order of magnitude. He came into contact with the
X-alpha method—a predecessor of modern DFT—and optimized the alpha parameter for
all atoms in a clever and unique way. The corresponding paper [1] was one of the most
cited theory papers at that time.

Coming back from the US, he completed his Habilitation in “Quantum Chemistry”
at the Technical University of Vienna, where he became a professor in 1976. His scientific
reputation and active scientific life led to many invitations, and he was a guest professor
at the Universities of Bochum, Uppsala, Montreal, Duisburg, Gainesville and Paris. He
was a research fellow in Tsukuba, Japan, and six times a summer faculty member at the
IBM T.J. Watson Research Center, where he worked intensively with Art Williams and
Vic Moruzzi. During these times, his interest turned towards magnetism [2] and concepts
such as “covalent magnetism” [3] and the “fixed-spin method” (FSM) [4], which laid the
foundations to explain the Invar alloy problem [5].

Together with S.B. Trickey, P. Sorantin and myself, he formed the basis for the WIEN
code, a full-potential all-electron augmented plane-wave-based computer program. This
code, first published in 1990 [6], developed over the years into the WIEN2k code [7,8], a
powerful and widely used package able to calculate many different properties of solids. In
particular, it is famous for its unprecedented accuracy in solving the Kohn–Sham equations,
often referred to as the “DFT limit”. This user-friendly program is licensed by more than
3500 groups worldwide in academia and industry and still serves as a benchmark for all
newly developed solid-state codes.

Although science was his passion, as a professor, he also served in many management
positions. He was department head for 4 years and vice-head/head of the “FG Chemie”
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for more than 8 years. He served as president of the “Chemisch-Physikalische gesellschaft”
and of the Austrian Fulbright Alumni Association, paying back the support he received
from the Fulbright Association as a young postdoc. Realizing how important a good
computer infrastructure for a modern university will be, he became head of the computing
center of the Technical University of Vienna (TU Wien) in 1990 and later on head of their
advisory board.

Karlheinz Schwarz realized early how important dissemination and discussions with
colleagues are, and besides giving excellent invited talks at many conferences, he organized
several conferences or served in the corresponding advisory boards. He was chairman of
two Gordon conferences (“Phase transitions in non-metallic solids”, Volterra, Italy, 1994,
and “Electron densities and chemical bonding”, Oxford, UK, 1998), and he founded and
chaired the famous conference series “Workshop on Novel Materials and Superconductors”
at Planneralm and Obertraun for an amazing 32 years (1989–2017). Similarly, to promote
our WIEN2k code, he organized 26 WIEN workshops all over the world (Italy, France,
Poland, the USA, Canada, Iran, Singapore, Japan and Austria). He was a very good friend
of Walter Kohn [9], and his invitation to two conferences organized by Schwarz in Vienna
(International Conference on DFT 1997 and Applied DFT2001) helped to settle the relation
of Walter Kohn with his country of birth.

Personally, I met Karlheinz Schwarz in 1979 when I was a young chemistry student at
the Technical University of Vienna and attending a course on “Solid state theory” given by
him. Although most students had problems at the beginning to digest “strange concepts”
such as the “reciprocal lattice” or “periodic boundary conditions”, our passionate teacher
explained this so well and with unique enthusiasm that this topic really started to catch
my interest. When I finally realized that K. Schwarz was a scientist with the highest
international experience and reputation, I was very happy to accept his offer to start a
PhD under his supervision. He introduced me to the LAPW method, and this was the
beginning of a deep friendship and, for me, due to his never-ending support, the start of
my career. (P.B.)

I met Karlheinz Schwarz for the first time in Montreal, in 1981, where we crossed
as postdocs in the Dennis Salahub group. For me, he was the famous author of the
optimization of the α statistical exchange parameter [1] I cited and used in all my MS-Xα
calculations, e.g., [10,11]. Later, at the beginning of the 1990s, he participated for the first
time in the series of DFT congresses we initiated with the passed Alessandro Bencini and
Annick Goursot. He organized the meeting in 1997 in Vienna and became more or less
the leading member of the scientific committee of the series of these meetings. I am glad
that a respectable number of friends (18) accepted to write a paper in this dedicated issue.
We can notice the large panel of scientific topics covered by Karlheinz’s knowledge. We
deeply acknowledge the following contributions related to spectroscopy by Manuel Yañez
et al. [12], Juan-Carlos Sancho-García and Emilio San-Fabián [13]; excited states by Ágnes
Nagy [14], Kalidas Sen et al. [15] and Fabrizia Negri et al. [16]; DFT developments by Fabio
Della Sala et al. [17], Mathias Rapacioli and Nathalie Tarrat [18], Emmanuel Fromager
et al. [19], José Manuel García de la Vega et al. [20] and Harry Ramanantoanina [21]; results
analysis by Andreas Savin et al. [22] and Manuel Richter et al. [23]; and, of course, the solid
state and surfaces by Leila Kalantari and Fabien Tran et al. [24], Denis Salahub et al. [25],
Peter Blaha et al. [26], Samuel B. Trickey [27], William Lafargue-Dit-Hauret and Xavier
Rocquefelte [28], Tzonka Mineva and Hazar Guesmi et al. [29]. (H.C.)

Conflicts of Interest: The authors declare no conflict of interest.
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Article

A Theoretical Survey of the UV–Visible Spectra of Axially and
Peripherally Substituted Boron Subphthalocyanines †

Al Mokhtar Lamsabhi, M. Merced Montero-Campillo, Otilia Mó and Manuel Yáñez *

Departamento de Química, Módulo 13, Facultad de Ciencias and Institute for Advanced Research in Chemical
Sciences (IAdChem), Universidad Autónoma de Madrid, 28049 Madrid, Spain;
mokhtar.lamsabhi@uam.es (A.M.L.); mm.montero@uam.es (M.M.M.-C.); otilia.mo@uam.es (O.M.)
* Correspondence: manuel.yanez@uam.es
† This paper is dedicated to Prof. Karlheinz Schwarz on the occasion of his 80th birthday.

Abstract: The UV–visible spectra of a series of subphthalocyanines (SubPcs) characterized by three different
axial substituents (An) in combination with H, F, NO2, SO2H and SO2CH3 peripheral substituents (Ri) were
predicted and analyzed by means of time-dependent DFT calculations, including chloroform as a solvent. In
this analysis, we paid particular attention to the Q band, which remained almost unchanged regardless of the
nature of the axial substituent. For the same axial substituent, changes in the Q band were also rather small
when hydrogens at the periphery were replaced by R1 = SO2H and R1 = R2 = SO2H. However, the shifting
of the Q band was almost 10 times larger when R1 = NO2 and R1 = R2 = NO2 due to the participation of this
substituent in the π SubPc cloud. In most cases, the characteristics of the spectra can be explained considering
only the transitions involving the HOMO-1, HOMO, LUMO and LUMO + 1 orbitals, where the Q band can
be decomposed into two main contributions, leading to charge separation. Only for SubPc(A3,F,F,H) would
one of the two contributions from the deepest orbital involved not lead to charge transfer. For this latter case,
the HOMO-2 orbital must also be taken into account. In summary, the results obtained with the analysis of
the MO indicate that the studied SubPcs are appropriate for photochemical devices.

Keywords: subphthalocyanines; UV–visible spectra; axial substituents; peripheral substituents;
time-dependent DFT

1. Introduction

Theoretical and computational chemistry has played a very important role in the
development of chemistry since the late 20th century to the present, providing tools to
understand experiments and ways to predict the behavior of many different systems. In
this sense, the work developed by K. Schwarz is a good example. Suffice it to mention his
contributions to the development of functionals to achieve a good description of solid-state
materials [1], the WIEN code being a paradigmatic example of this potentiality [2]. In
particular, computational chemistry has been equally useful for shedding light on the
mechanisms behind the photoactivity of various organic compounds, such as subphthalo-
cyanines (SubPcs) [3].

SubPcs are a typical porphyrin species (see Scheme 1) discovered in the last half
of the 20th century [4]. They present a non-planar, 14 π-electron macrocyclic ring that
accommodates a B(III) ion at its binding core.

The most frequently used method to incorporate macrocycles for the axial function-
alization of SubPcs is substitution at its central boron atom, with the added advantage
that the π-conjugated macrocycle maintains its electronic characteristics [5]. This synthetic
versatility is behind a very rich and interesting SubPc metallosupramolecular chemistry.
It also allows for the preparation of energy donors or energy acceptors based on SubPcs,
which lends them ideal properties as photoactive entities through their excited states.
SubPcs typically display intense Q-band transitions in the 550−650 nm region [5]. More

Computation 2022, 10, 14. https://doi.org/10.3390/computation10020014 https://www.mdpi.com/journal/computation5
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importantly, their excellent light-harvesting ability, with high extinction coefficients, can be
modulated through the nature of the peripheral substituents, which are important factors
regarding SubPc photostability [5]. Interestingly, due to the fact that SubPcs have a cone-
shaped aromatic structure, the effect of peripheral substituents can be intricate. It has been
found [6] that the profile of the absorption spectra depends on whether both substituents
are on the same or different sides of the molecular cone.

Scheme 1. Subphthalocyanines (SubPcs).

An adequate combination with axial substituents allows for even more fine tuning
of SubPcs with excellent properties for photochemical devices, such as a lower tendency
to aggregate [5]. A paradigmatic example of photochemical tuning is dodecafluorosub-
phthalocyanine, an excellent electron-acceptor unit. When this unit is covalently bound
to a triphenylamine moiety, which is an excellent electron donor, the resulting derivative
becomes an efficient electron donor-acceptor system [3]. Further relevant examples of
what can be achieved through axial functionalization have been reported. For instance,
SubPcs with axial alkoxo substituents form optically active inclusion complexes with β-
cyclodextrin [7], SubPcs dyads with an axial ferrocenyl substituent can exhibit efficient
fluorescence quenching [8], and axial aryl-substituted SubPcs exhibit very similar photolu-
minescence behavior regardless of the nature of the substituent at the para position of the
aryl group [9]. SubPcs with a ferrocenylethynyl unit in the axial position exhibit interesting
optical and redox properties [10], and rylene-annulated SubPcs also present an excellent
photovoltaic performance [11]. SubPcs with ferrocenecarboxylic acid as an axial ligand
also combine very interesting redox and photophysical properties, as the first reversible
oxidations take place at the axial ligand, while the second oxidation is located in the SubPc
ring [12]. Very recently, SubPc hydride derivatives with a high reactivity have been pre-
pared for the first time as hydroboration reagents of aldehydes [13]. Another interesting
case is that of the axial-phenoxylated SubPcs, which show spectroscopical properties for
the singly reduced and singly oxidized species that can be tuned with changes in axial and
peripheral substituents [14], whereas the reversibility of the redox reactions seems to be
correlated with some characteristics of the boron-to-axial ligand bond [14]. In regard to
larger axial substituents, it has been shown that a novel series of SubPcs with macrocycle
axial substitution show interesting behavior as fluorescent probes and photodynamic ther-
apy agents, their biological activity being determined by the nature of the macrocycle [15].
Finally, it was found that SubPc polymers have similar photoluminescence characteristics
to those of SubPc units, although the emission of the polymer depends on the excitation
wavelength [16].

In our group, we have previously explored, on theoretical grounds, the UV–visible
spectra of SubPcs, in which the central boron atom was replaced by aluminum or gallium
by using time-dependent DFT calculations, including chloroform as a solvent [17]. This
replacement led to a redshift of the Q band, which is not very dependent on either the
nature of the peripheral substituents or the nature of the central atom. More recently,
the behavior of boron chloride SubPcs with a core-expanded six-membered ring was
theoretically investigated, and the compound with three six-membered rings was found to
be a promising organic solar cell donor material due to its small exciton binding energy [18].
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As indicated above, there are many studies on SubPcs that include a variety of periph-
eral substituents, but the amount of information is very scarce when dealing with axial
substituents. The aim of the present study is to determine the effects on the photochemical
behavior of SubPcs of three different axial substituents (An) combined with some of the
most common peripheral R1, R2 and R3 substituents, as shown in Scheme 2.

Scheme 2. SubPcs(An,R1,R2,R3) envisaged in this study, where An = {A1, A2, A3} are the axial
substituents and R1, R2 and R3 are the peripheral substituents.

2. Computational Details

The geometries of all SubPcs were fully optimized in the ground state at the B3LYP/6-
31G(d) computational level. The stationary points found were assessed as local minima
of the corresponding potential energy surface through the calculation of their harmonic
frequencies at the same level of accuracy. To obtain the corresponding UV–Vis absorp-
tion spectra, we employed a linear response time-dependent density functional theory
(TD-DFT) formalism, using the optimized geometries mentioned above for the ground
state. Accordingly, the excitation energies (both in vacuum and using chloroform as a
solvent), the oscillator strengths f and the dominant electronic transitions correspond to
vertical excitations. These values for all these magnitudes were obtained by single-point
calculations at the B3LYP/6-31 + G(d,p) level.

Since all the experimental data are usually obtained in chloroform and not in the
gas phase, solvent effects were evaluated by means of the polarizable continuum model
(PCM) as implemented in Gaussian 09 programs. More precisely, solvent shifts of the
excitation bands were obtained by the nonequilibrium implementation of the PCM through
single-point calculations on equilibrium geometries obtained in vacuum. This methodology
has been shown to be suitable to reproduce the experimental values in systems similar to
those considered in the present publication [3,6,17].

The absorption spectra were plotted using the SWizard program package, represented
as a sum of Gaussian functions that follows Equation (1):

ε(ω) = 2.174 ∗ 108∑
i

fi
Δ1/2

exp(−2.773
(ω − ωi)

2

Δ2
1/2

) (1)

where ε is the molar absorbance (mol−1 cm−1 L−1), which depends on the computed
excitation energies, ωi (in cm−1), and their corresponding oscillator strengths, fi. The half-
weight bandwidth is represented by Δ2

1/2, and it is assumed to be constant (1200 cm−1).
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3. Results and Discussion

For the remainder of this paper, we use the notation SubPc(An,R1,R2,R3) to identify
the different SubPcs included in our study (see Scheme 2). For the largest A2 and A3
axial substituents, calculations with SO2H, SO2CH3 and NO2 as peripheral substituents
may become prohibitively expensive. Hence, for A3 only, the parent compound and the
all-fluor-substituted derivative are considered, whereas for A2, we add to these two cases
the derivative in which R1 = NO2. The optimized geometries are reported in Table S1
of Supplementary Materials. Although we do not discuss them in detail, it is important
to emphasize that all of them are nonplanar, a basic structural characteristic of these
compounds. A good measure of the pyramidalization of the structure is the sum of the
bond angles around the boron atom, with a value close to 312 degrees. This value is
practically independent of the nature of the peripheral and the axial substituents.

3.1. Calculated UV–Visible Spectra

Since comparisons between the simulated and experimental spectra for the particular
case of SubPcs are almost inexistent, we thought it was important, as the first step of
our survey, to check the performance of our theoretical scheme. For this purpose, we
compare in Figure S1 of Supplementary Materials the available experimental spectrum for
SubPc(A2,F,F,F) [3] with our calculated one. The agreement is rather satisfactory, with the
maximum displacement being 40 nm for the B band and, most importantly, 10 nm smaller
for the Q band.

Although the calculated spectra for the SubPcs to be discussed always correspond to
those in CHCl3 solution, we considered it of interest to know whether the solvent effect is
important. To check this aspect, we calculated the UV–visible spectra for SubPc(A2,H,H,H)
in both the gas phase and in CHCl3 solution. As shown in Figure S2 of Supplementary
Materials, the solvent leads to a rather small shifting (~10 nm) of the Q band to lower
frequencies, whereas the effects on the B band are almost negligible.

As the agreement with the experimental data and the effect of the solvent are revised, we
now focus our attention on the analysis of the impact of the axial and peripheral substituents
on the optical properties. Figure 1 shows the effect of replacing the axial substituents in two
different structures, namely, SubPc(An,H,H,H) and SubPc(An,F,F,F). The first important and
conspicuous fact is that, in all cases, the Q band is not sensitive to the nature of the axial
substituent. Instead, the peripheral substituents have a clear effect: in the spectra shown in
the (SubPc(An,H,H,H)) case, the maximum for the Q band is at 516 nm, which is shifted
to 528 nm for (SubPc(An,F,F,F)). The situation is different as far as the B band is concerned.
When there are no peripheral substituents, the maxima appear at 310 nm independently of
the nature of the axial substituent, though for A2 and A3, a second secondary maximum
is predicted at longer wavelengths (350 and 364 nm, respectively). The situation changes
slightly when all the peripheral substituents are F atoms. Now, the maximum of the B band
appears at a shorter wavelength for the A1 axial substituent (320 nm) than for A2 and A3
(359 and 369 nm, respectively).

Figure 2 shows a comparison between SubPc(A1,H,H,H), SubPc(A1,SO2H,H,H) and
SubPc(A1,SO2H,SO2H,H), where the axial substituent remains unchanged. As evidenced
by the picture, the position of the B and Q bands is affected very little by the presence of
the sulfonate groups. The maximum of the B band shifts from 316 to 323 nm in the first
case and to 328 nm in the second, whereas the shiftings for the Q band from 520 to 524 and
528 nm, respectively, though some changes in their intensity are also observed.

8



Computation 2022, 10, 14

Figure 1. Calculated UV–visible spectra for SubPc(An,R1,R2,R3), with n = 1, 2, 3; R1 = R2 = R3 = H, F,
dissolved in CHCl3.

Figure 2. Calculated UV–visible spectra for SubPc(A1,R1,R2,R3) with R1 = R2 = R3 = H; R1 = SO2H,
R2 = R3 = H; R1 = R2 = SO2H, R3 = H, dissolved in CHCl3.

Figure 3 shows the situation when the peripheral substituents are nitro groups rather
than SO2H. In this case, it can be observed that the shifting of the Q band is now significantly
larger (from 519 to 576 nm), but, again, it is rather similar for R1 = NO2 and R1 = R2 = NO2.
The effects on the B band are also more significant than those observed for SO2H sub-
stituents, in both the intensity of the band and its position. When only R1 substitutions
take place, the B band splits into two peaks of much lower intensity and shifts from 314 to
345 and 427 nm. When R2 substitutions also take place, only a shoulder at about 433 nm
remains. This is very likely due to the ability of the NO2 groups to participate through their
electron lone pair into the aromatic cloud of the SubPc six-membered rings, which does not
occur for substituents such as F and SO2H. We come back to this point in the next section.

We saw above that, when the axial substituent is A1, the replacement of the substitution
of R1 by NO2 splits the B band into two sub-bands. Figure 4 shows that a similar splitting is
observed for axial substituent A2, though the intensity of the first sub-band is much higher
than for A1.
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Figure 3. Calculated UV–visible spectra for SubPc(A1,R1,R2,R3), with R1 = R2 = R3 = H; R1 = NO2,
R2 = R3 = H; R1 = R2 = NO2, R3 = H, dissolved in CHCl3.

Figure 4. Comparison between the calculated UV-visible spectra of SubPc(A1,NO2,H,H) and
SubPc(A1,NO2,H,H).

3.2. MO Analysis

The calculated spectra obtained for the SubPcs under analysis can be rationalized
through the use of the well-known four-orbital model of Martin Gouterman, who, back in
the 1960s, described the spectra of porphyrins [19] and proposed that the characteristics of
the Q band observed at about 550 nm for these compounds could be related to the properties
of the two top filled and two lowest empty π orbitals involved in the weak excitation to
the first excited state (S0 → S1). Two years later, this assumption was consistent with
rather simple molecular orbital calculations [20], showing, indeed, that the Q band could be
associated with transitions involving the HOMO-1, HOMO, LUMO and LUMO + 1 orbitals.
The rest of the absorptions of the spectra that form the Soret or B band at lower wavelengths
(around 400 nm) are associated with S0 —> S2 electronic excitations. The same model was
also successfully used to rationalize the Q bands of subporphyrins [21], subporphyrazines
and SubPcs [6,17,22–25], as well as Be-SubPcs [26] complexes. As explained below, the
results show that this model is also valid for the transitions observed in our set, but it needs
to be expanded in some specific cases to include the HOMO-2 orbital.

10
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In Table 1, we summarize the most relevant information for the Q band for the
species investigated in solution. Similar information in vacuum is provided in Table S2 of
Supplementary Materials.

Table 1. Q-band (λmax) excitation energies in chloroform, oscillator strengths f and dominant elec-
tronic transitions for the SubPcs included in this study a.

An R1 R2 R3 lmax (eV) nm f Main Configuration

A1 H H H 2.40 516.5 0.4107 H-1→L + 1(+87%)
2.41 515.5 0.4403 H-1→L + 2(+87%)

A1 F F F 2.35 527.9 0.4230 H-1→L + 1(+99%)
2.36 526.3 0.4534 H-1→L + 2(+99%)

A1 SO2H H H 2.38 520.8 0.4749 H-1→L + 0(+97%)
2.39 519.2 0.5087 H-1→L + 1(+97%)

A1 SO2CH3 SO2CH3 H 2.35 527.2 0.5735 H-1→L + 0(+97%)
2.36 525.6 0.6106 H-1→L + 1(+97%)

A1 SO2CH3 H H 2.39 519.8 0.4762 H-1→L + 0(+97%)
2.39 518.1 0.5091 H-1→L + 1(+97%)

A1 NO2 H H 2.16 573.7 0.4387 H-1→L + 0(+98%)
2.17 572.2 0.4614 H-1→L + 1(+97%)

A1 NO2 NO2 H 2.16 572.7 0.5569 H-1→L + 0(+98%)
2.18 569.9 0.588 H-1→L + 1(+97%)

A2 H H H 2.4 515.9 0.4108 H-1→L + 0(+97%)
2.41 514.8 0.4432 H-1→L + 1(+97%)

A2 NO2 H H 2.16 573.6 0.3952 H-1→L + 0(+86%)
2.17 572.6 0.4249 H-1→L + 1(+85%)

A2 F F F 2.35 527.5 0.4215 H-1→L + 0(+97%)
2.36 526.5 0.449 H-1→L + 1(+96%)

A3 H H H 2.4 515.8 0.4102 H-1→L + 0(+97%)
2.41 514.8 0.4452 H-1→L + 1(+97%)

A3 F F F 2.34 529.7 0.1861 H-2→L + 0(+55%);
H-1→L + 1(39%)

2.35 527.9 0.3587 H-1→L + 0(+82%);
H-2→L + 1(+13%)

2.37 523.2 0.2743 H-1→L + 1(+56%)
H-2→L + 0(+41%)

a H-2, H-1, L + 0, L + 1 stands for HOMO-2, HOMO-1, LUMO and LUMO + 1, respectively.

The results in Table 1 show that, for all the systems investigated, there are two main
transitions responsible for the Q band at very similar wavelengths. The first one, Q1, is
associated with the HOMO-1 → LUMO transition, and the second one, Q2, is associated
with the HOMO-1 → LUMO + 1 transition, which indicates that, in practically all the
systems investigated, the LUMO and LUMO + 1 orbitals are almost degenerate. It can
also be observed that SubPc(A3,F,F,F) is the only exception to this general behavior, as we
discuss later.

The transitions mentioned above as being responsible for the Q band are illustrated
in Figure 5 for the particular case of SubPc(A2,H,H,H), which is taken as a suitable ex-
ample, but this same scheme is also observed for SubPc(A1,H,H,H), SubPc(A1,NO2,H,H),
SubPc(A1,NO2,NO2,H), SubPc(A1,SO2H,H,H), SubPc(A1,SO2CH3,H,H), SubPc(A1,SO2CH3,
SO2CH3,H), SubPc(A2,NO2,H,H) and SubPc(A2,F,F,F). Very importantly, this figure clearly
illustrates that, for all these systems, the HOMO-1 orbital is located at the axial substituent,
whereas both the LUMO and LUMO + 1 orbitals are localized at the SubPc moiety, with the
obvious consequence that the Q band is associated with a charge transfer phenomenon from
the axial substituent toward the SubPc moiety.
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Figure 5. MO diagram showing, for SubPc(A2,H,H,H), the main transitions Q1 and Q2 contributing
to the Q band, which are accompanied by a charge transfer phenomenon. Molecular orbital energies
are in hartrees.

The fact that the LUMO and the LUMO + 1 orbitals are localized at the SubPc moiety
also permits the explanation as to why, as already mentioned in the previous section, the
shifting of the Q band is much larger for R1 = NO2 and R1 = R2 = NO2 with respect to the
parent compound (R1 = R2 = H) than it is for R1 = SO2H and R1 = R2 = SO2H. Indeed, as
illustrated in Figure 5, the two main components of the Q band correspond to transitions
that reach these two empty orbitals, whose energies change significantly when the H atoms
are replaced by NO2 groups. These substituents, as shown in Figure S3 of Supplementary
Materials, conjugate with the aromatic π-system through their N lone pair. This interaction
cannot occur when R1 = H or R1 = SO2H, as evidenced in Figure S3, as these groups
participate neither in the LUMO nor in the LUMO + 1 orbitals.

Rather interestingly, when A2 is replaced by A3 as an axial substituent, the dominant
transitions are still HOMO-1 → LUMO for the Q1 component and HOMO-1 → LUMO
+ 1 for the Q2 one. However, the presence of the methoxy group at the axial substituent
stabilizes the orbital located at the SubPc subunit, which becomes the HOMO-1 orbital,
whereas the orbital localized at the axial substituent becomes the HOMO orbital (see
Figure 6). As a consequence, the Q absorption band of SubPc(A3,H,H,H) is not accompanied
by a charge transfer phenomenon, because the two Q1 and Q2 components involve electron
densities that are always localized at the SubPc subunit.

The situation becomes somewhat more complicated when moving from the parent
compound to the derivative, in which all peripheral substituents are F atoms. In this case,
some transitions have their origin not only in the HOMO-1 orbital but also in the HOMO-2
orbital, so the Q band has three rather than two components (see Figure 7).
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Figure 6. MO diagram of SubPc(A3,H,H,H), showing the main transitions Q1 and Q2 contributing to
the Q band, which is not accompanied by a charge transfer phenomenon. Molecular orbital energies
are in hartrees.

Figure 7. MO diagram showing, for SubPc(A3,F,F,H), the main transitions Q1, Q2 and Q3 contributing
to the Q band. The Q2 and Q3 components are accompanied by a charge transfer phenomenon.
Molecular orbital energies are in hartrees.

More specifically, the following transitions are detected:

Q1 component: HOMO-2 → LUMO(55%); HOMO-1 → LUMO + 1(39%)
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Q2 component: HOMO-1 → LUMO(82%); HOMO-2 → LUMO + 1(13%)

Q3 component: HOMO-1 → LUMO + 1(56%); HOMO-2 → LUMO(41%)

Hence, globally, the Q band is accompanied by a charge transfer phenomenon but
only through the Q2 and Q3 components.

4. Conclusions

The electronic spectra of SubPc are typically characterized by two main absorption
bands: one typically in the visible region, called the Q band, and another at lower wave-
lengths, named the B band or the Soret band. In our theoretical survey, we found that the
Q band is not sensitive to axial replacement for SubPcs with H or F peripheral substituents.
The situation is not very different when it is the axial substituent that remains unchanged
(A1) and peripheral hydrogens that are replaced by R1 = SO2H and R1 = R2 = SO2H. Indeed,
in this case, the Q band is only slightly shifted by 4 and 8 nm. The shiftings when R1 = NO2
and R1 = R2 = NO2 are rather similar but almost 10 times larger than those observed for
SO2H.

In general, the effects on the characteristics of the B band are more apparent. For
instance, the Q band is not altered when all peripheral substituents are fluorine atoms and
when the axial substituent A1 is replaced by A2 or A3, but the B band is shifted 40 nm to
longer wavelengths. Similarly, the B band splits into two peaks of much lower intensity
and shifts from 31 and 113 nm to longer wavelengths when R1 = H is replaced by R1 = NO2,
keeping the A1 axial substituent unchanged. These effects are slightly stronger when both
R1 and R2 are replaced.

In most cases, the characteristics of the spectra can be explained by considering only
the transitions involving the HOMO-1, HOMO, LUMO and LUMO + 1 orbitals, as in the
well-known Gouterman model [19]. Nevertheless, when the axial substituent is A3, we
found that the spectra can only be accounted for if transitions from the HOMO-2 orbital
are also taken into account.

From a global perspective, the results collected in this work and those previously
reported for other substitution patterns indicate that the optical properties of boron SubPcs
regarding the Q band are very robust toward axial and peripheral substitutions.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/computation10020014/s1, Figure S1: Comparison between the
calculated and the experimental UV-Vis spectra for SubPc (A2,F,F,F) dissolved in CHCl3; Figure S2:
Comparison between the UV-Vis spectrum of SubPc (A2,H,H,H) in the gas-phase and in CHCl3
solution; Figure S3: LUMO of SubPc (A1,H,H,H), SubPc (A1,SO2CH3, SO2CH3,H) and SubPc
(A1,NO2,H,H); Table S1: Cartesian coordinates; Table S2: Q-Band excitation energies in vacuum,
oscillator strengths and dominant electronic transitions.
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Abstract: The lowest-energy singlet (S1) and triplet (T1) excited states of organic conjugated chro-
mophores are known to be accurately calculated by modern wavefunction and Time-Dependent
Density Functional Theory (TD-DFT) methods, with the accuracy of the latter heavily relying on
the exchange-correlation functional employed. However, there are challenging cases for which this
cannot be the case, due to the fact that those excited states are not exclusively formed by single
excitations and/or are affected by marked correlation effects, and thus TD-DFT might fall short.
We will tackle here a set of molecules belonging to the azaphenalene family, for which research
recently documented an inversion of the relative energy of S1 and T1 excited states giving rise to a
negative energy difference (ΔEST) between them and, thereby, contrary to most of the systems thus
far treated by TD-DFT. Since methods going beyond standard TD-DFT are not extensively applied to
excited-state calculations and considering how challenging this case is for the molecules investigated,
we will prospectively employ here a set of non-standard methods (Multi-Configurational Pair Density
Functional Theory or MC-PDFT) and correlation functionals (i.e., Lie–Clementi and Colle–Salvetti)
relying not only on the electronic density but also on some modifications considering the intricate
electronic structure of these systems.

Keywords: TD-DFT; MC-PDFT; Lie–Clementi; Colle–Salvetti; OLEDs

1. Introduction

The violation of Hund’s rule in molecules [1], analogously to atoms, is commonly
ascribed to an inversion of the excitation energies of the lowest states of spin-singlet (S1)
or spin-triplet (T1) multiplicity. In common situations, the energy difference between S1
and T1 excited states, that is ΔEST = E(S1)− E(T1) is positive, contrary to what happens
if Hund’s rule is altered (in that case, ΔEST would be negative). Note that the negative
sign contradicts the fact that the exchange energy (K) is normally thought to be positive,
historically ΔEST ≈ 2K, thus, implying that the lowest singlet excited state lies energetically
above the lowest triplet excited state and not the opposite.

That exchange energy is known to be of the order of hundreds of meV for common
organic chromophores, and this becomes a key parameter for photophysics and related
applications [2–4]. However, it has been demonstrated that strong correlation effects can
decrease the ΔEST value [5,6] and even invert the energies of S1 and T1 excited states due
to a more marked stabilization of the former vs. the latter state [7], although very few
molecules are discovered up to now displaying such an excited-state energy inversion.
Additionally, fast environmental effects (whenever they are reliably introduced) could also
lead to negative ΔEST values.

Among those environmental effects, we mention thermal fluctuations of molecular
conformations or microscopic electronic polarization effects in amorphous films of carbazole
derivatives [8], thus, opening a whole world of future studies and applications around this
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unexpected issue. However, for solvation effects, current implementations of continuum
solvation models should be employed with caution since it could lead to spurious excited-
state energy inversion [9].

The physical origin of this inversion and its possible practical implications should
not merely be considered as an academic questions. As an example of practical use, due
to the spin statistics, triplet excitons (dark) are known to be formed upon a 3:1 ratio
with respect to singlet excitons (bright) thus limiting the efficiency of electroluminiscent
processes. Therefore, the mentioned energy inversion could be further exploited in the,
e.g., recovery of triplet excitons created upon electroluminiscence to increase the internal
quantum efficiency or quantum yields of Organic Light-Emitting Diodes (OLEDs).

Many other applications in related fields (photocatalysts, covalent organic frameworks,
liquid crystals, etc.) have also been envisioned and recently reviewed [10]. However,
from an experimental point of view, the range of disclosed molecules showing that excited-
state energy inversion is very limited, and this goes back to the discovery in the 1980s
of some azaphenalene molecules candidates [11,12] for such a violation of Hund’s rule.
Those initial molecules were also extended to other (not-yet-synthesized) candidates after a
massive screening of compounds recently performed [13], showing that the topic is still
open and under active investigation.

Therefore, theoretical methods based on one-electron excitations (i.e., Time-Dependent
Density Functional Theory or TD-DFT) are questioned in its current implementation to
recognize that excited-state energy inversion, due to the lack of inclusion of higher-than-
single excitations into their formulation. In contrast, wavefunction methods have been
shown in recent studies [14–21] to provide reasonably accurate values for that ΔEST energy
difference, although at a cost certainly higher than TD-DFT.

That limitation of TD-DFT is known to occur independently of the underlying exchange-
correlation functional and basis sets chosen. However, since excited-state wavefunction
methods can capture double and higher-order excitations by definition, depending of the
truncation done for the excitation operator, those methods are able to predict the excited-
state energy inversion while concomitantly providing accurate individual (i.e., S1 and T1)
energies for the excited-states involved.

Based on these findings, our goal here is to investigate if methods going beyond
standard (TD-)DFT could predict that excited-state energy inversion and thus compete
in accuracy with wavefunction results. To assess that, we will employ methods merging
wavefunction and correlation functionals, in the hope of including both kind of corre-
lation effects (dynamical and non-dynamical) for any of the electronic states involved.
These results will also serve to confirm the key role played by marked correlation ef-
fects, as well as to invigorate more research of DFT methods out of the most commonly
found implementations.

2. Systems, Methods, and Computational Details

2.1. Choice of the Target Systems

The set of systems selected is exclusively motivated by the previous experimental and
theoretical findings mentioned above. The set of azaphenalene molecules shown in Figure 1
is known to display negative ΔEST values at various wavefunction levels, from pioneering
studies [14–16] later extended to related and/or larger systems [17–21], which clearly
constitutes a challenge for any theoretical method.

Interestingly, chemical substitution of the heptazine core –C6H7H3– with chlorine
–C6H7Cl3–, cyano –C6H7(CN)3–, or p-methoxyphenylene –C6N7(p-C6H4OCH3)3– groups
preserved the negative ΔEST value, showing that the chemical structure of the core is
indeed responsible as well as that more potential and synthetically viable molecules could
soon be theoretically disclosed and/or experimentally achieved.
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Figure 1. Chemical structures (from left to right) of the molecules MAP (monoazaphenalene or
cyclazine), TAP (tetraazaphenalene), 5AP (pentaazaphenalene), and 7AP (heptaazaphenalene or
heptazine). Hydrogen atoms are omitted for clarity.

From the experimental point of view, some studies that were performed in the 1980s
also concluded with a real possibility of having an excited-state inversion for some of these
azaphenalenes [11,12]. More recently, some heptazine derivatives have been successfully
employed as emitters in real devices [22,23], with an exceptionally high quantum yield
reported and explained by the (partial) conversion of triplet into singlet excitons possibly
assisted by a negative ΔEST value.

Note also that other related cores could be also potential candidates, after the conclu-
sions reached by a massive screening of thousands of potential azaphenalene candidates
by Pollice et al. [13]. However, we are more interested in assessing the reliability of theories
going beyond (TD-)DFT and we will, thus, restrict this work to the compounds shown in
Figure 1 for which reference results are available as well.

2.2. Physical Meaning of Reduced Density Matrices

While the electronic density, or first-order reduced density matrix, is given by:

ρ(r) = N
∫

Ψ�(r, r2, . . . , rN)Ψ(r, r2, . . . , rN)dr2 . . . drN , (1)

and thus integrates over the number of electrons N,
∫

ρ(r)dr = N, the corresponding
spinless second-order reduced density matrix integrates to the total number of interacting
electron pairs: ∫ ∫

ρ2(r1, r2)dr1dr2 =
N(N − 1)

2
, (2)

and represents the probability density of finding a particle at point r1 and simultaneously
another particle at point r2. The explicit form is given by:

γ2(x
′
1, x′2; x1, x2) =

N(N − 1)
2

∫
· · ·

∫
γN(x

′
1, x′2, x3 . . . , xN ; x1, x2, x3, . . . , xN)dx3 . . . dxN , (3)

or better its reduced form ξ2(r
′
1, r′2; r1, r2) = ∑s1,s2

= γ2(x
′
1, x′2; x1, x2)|s′i=si

. Finally, the diag-
onal element or ρ2(r1, r2) would account from any correlation effect arising from interparti-
cle interaction, as it can be easily seen from the electron–electron mean value as a function
of this new magnitude:

〈V̂ee〉 =
∫ ∫

ρ2(r1, r2)

|r1 − r2|
dr1dr2. (4)

Note also that ρ(r) and ρ2(r1, r2) are related through:

ρ(r) =
2

N − 1

∫
ρ2(r1, r2)dr2. (5)

In the following, we will denote ρ2(r) = ρ2(r1, r2)|r1=r2 as the function at the two-
electron coalescence point, whose modelling has been extensively pursued in the past [24–26],
as well as its integration into excited-state formalisms [27,28], as the next step for the de-
scription of electronic structure beyond the use of merely the electronic density ρ(r).
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2.3. Theories Going beyond (TD-)DFT

The methods included in this study can be categorized in popular language as methods
going beyond (standard) DFT, in the sense that they are based on the on-top second-order
reduced density matrix ρ2(r), and not only on the first-order density ρ(r), or post-MCSCF,
in the sense that a Multi-Configurational Self-Consistent Field (MCSCF) calculations needs
to be done first from which the magnitude ρ2(r) is obtained.

Note that the on-top second-order reduced density matrix represents the probability
that two opposite-spin electrons are found at point r and integrates to the total number of
interacting pairs. Multiconfiguration Pair-Density Functional Theory (MC-PDFT [29–32])
can be thus viewed as a post-MCSCF method that evaluates the energy of any state with
on-top pair-density function theory. Basically, for a MCSCF wavefunction, |ΨMCSCF〉 =

∑μ Cμ|Ψμ〉, one can obtain the total electronic energy as:

E = 〈ΨMCSCF|T̂|ΨMCSCF〉+
∫

v(r)ρ(r)dr +
∫ ∫

ρ(r1)ρ(r2)

|r1 − r2|
dr1dr2 + Exc[ρ(r), ρ2(r)], (6)

with the different terms being the kinetic, potential, Coulomb, and exchange-correlation
energies, respectively, the latter relying on a modification of a common DFT functional
to be employed together with Equation (1). The most extensively tested on-top density
functional is called tPBE and will, thus, be used here consequently.

On the other hand, one can also directly employ a functional explicitly depending upon
the design of the on-top second-order reduced density matrix, such as the Colle–Salvetti
(CS [33–35]) correlation functional. We will denote, in the following, the CS expression as
a two-body correlation functional, cast as Ec[ρ(r), ρ2(r)], in contrast with conventional or
one-body functionals commonly used for standard DFT calculations, or simply Ec[ρ(r)].
Note that the famous Lee–Yang–Parr (LYP [36]) correlation functional is a reformulation
of the Colle–Salvetti expression to avoid the explicit dependence on ρ2(r) at the price of
neglecting its use with, e.g., MCSCF wavefunctions. For this case, the total electronic energy
is calculated by a two-step procedure,

E = 〈ΨMCSCF|T̂ + V̂Ne + V̂ee|ΨMCSCF〉+ Ec[ρ(r), ρ2(r)], (7)

after adding the correlation (mainly dynamic) energy to the energy calculated by the un-
derlying MCSCF procedure, which already includes the non-dynamic (or static) correlation
energy, with T̂, V̂Ne, V̂ee the kinetic, nuclear-electron, and electron–electron operators.

Another not-so-common approximation is given by the Lie–Clementi (LC [37,38])
correlation functional, with an explicit dependence on the natural (fractional) occupation
numbers, if a MCSCF calculation is done first. A modified density is built, such as

ρm(r) = ∑
i

nie−(2−ni)
2/2ρ̃(r), (8)

depending on the density built from the natural orbitals, ρ̃(r), and the corresponding
natural orbital occupation numbers (ni). That density is, thus, inserted into the reparame-
terized correlation functional of Gombas et al., generally denoting this class of functionals
as Ec[ρm(r)]. Interestingly, those orbitals with ni < 2 do not contribute to the correlation
energy as much as those doubly occupied (ni = 2), thus, describing both ground- and
excited-states independently.

Therefore, MC-PDFT, Exc[ρ(r), ρ2(r)], and Ec[ρm(r)] exchange-correlation function-
als will be all based here on a Complete Active Space Self-Consistent Field (CASSCF)
wavefunction with an active space of N electrons housed in M orbitals, or simply (N, M),
to incorporate non-dynamic (or static) correlation effects in a consistent way. The active
space chosen, (6,6) or (12,12), is indeed based on the occupancy (and degeneracy) or
molecular orbitals found at the uncorrelated level.
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Note that: (i) MC-PDFT could be instead used with many MCSCF wavefunction types,
such as GVB, CASSCF, RASSCF, CAS-CI, and RAS-CI, as is the case for the other two-body
functionals too. We will, however, limit this work to the same wavefunction type for both
schemes for the sake of coherence. (ii) Since these theories can be applied to any state of
interest, independently of its spin, there is no need to invoke a linear-response regime as
it happens for TD-DFT. (iii) Any of these methods will incorporate all correlation effects,
be they static or dynamic, thus, possibly disentangling the importance of any of these
contributions into the final results.

2.4. Computational Details

The ground-state (S0) geometry of all the compounds was optimized by the B97-3c
method [39], without any imaginary frequency obtained. The energy difference between
the lowest-energy spin-singlet (S1) and spin-triplet (T1) excited-states is denoted as ΔEST ,
which is normally positive unless for an energy inversion of the S1 and T1 energies, thus,
giving rise to ΔEST < 0. The def2-SVP and def2-TZVP basis sets [40] are used for all the
calculations, with the auxiliary def2/JK and def2-TZVP/C basis sets [41] to reduce the
computational cost.

For some control TD-DFT calculations, we will employ the ωB97, ωB97X [42], and
ωB97X-2 [43], which form a set of range-separated exchange-correlation functionals belonging,
respectively, to non-hybrid (ωB97), hybrid (ωB97X), and double-hybrid (ωB97X-2) rungs
to infer if the addition of exact-exchange (for a hybrid) or pertubation-like (for a double-
hybrid) brings any difference to the results.

We used the following quantum-chemical packages for the calculations performed
here: ORCA 5.0 [44] for the (standard) TD-DFT with hybrid and double-hybrid functionals,
GAMESS [45] for the MC-PDFT method with the tPBE functional, and an in-house pro-
gram [46,47] (interfaced with GAMESS) for the Ec[ρm(r)] and Ec[ρ(r), ρ2(r)] calculations
employing the Lie–Clementi and the Colle–Salvetti correlation functionals.

3. Results and Discussion

3.1. Reference Results Available

We compare, in the following, the results obtained here not only with previously
applied wavefunction methods but also with respect to the experimental information
available: Leupin et al. obtained [11] for MAP a S1 ← S0 and T1 ← S0 excitation energies
of 0.972 and between 0.972 and 0.984, respectively, and thus with a ΔEST energy difference
possibly negative. For 4AP, Leupin et al. obtained [12] excitation energies below 2.39 for
S1 ← S0 (although the final value could not be completely determined experimentally) and
2.29 eV for T1 ← S0, respectively, again not excluding a ΔEST < 0 value depending on how
low S1 ← S0 was in reality.

Finally, for 7AP, Leonard et al. obtained [48] a S1 ← S0 excitation energy of 2.60 eV.
From the theoretical point of view, a large number of previous studies are available. How-
ever, some of them (DLPNO-STEOM-CCSD, NEVPT2, SCS-CC2, and SCS-ADC(2)) used
the def2-TZVP basis set, as done here, but others (EOM-CCSD, DLPNO-NEVPT2, ADC(2),
and ADC(3)) employed the smaller cc-pVDZ or def2-SVP basis sets instead.

In all cases, all these correlated wavefunction methods were able to predict a ΔEST < 0
value for all the MAP, 4AP, 5AP, and 7AP systems. Choosing one of these methods as refer-
ence, necessarily motivated by the completeness of the values found in the literature [17]
together with the high accuracy demanded, and the SCS-CC2/def2-TZVP results are listed
next for cross-comparison along the study.

MAP: S1 ← S0 (T1 ← S0) value of 1.110 (1.334) eV, with ΔEST = −0.22 eV
4AP: S1 ← S0 (T1 ← S0) value of 2.258 (2.342) eV, with ΔEST = −0.08 eV
5AP: S1 ← S0 (T1 ← S0) value of 2.308 (2.541) eV, with ΔEST = −0.23 eV
7AP: S1 ← S0 (T1 ← S0) value of 2.847 (3.226) eV, with ΔEST = −0.38 eV
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3.2. TD-DFT Calculations

First, we also illustrate here if a standard TD-DFT calculation is able or not to provide
a ΔEST < 0 value and (if so) with what accuracy. For this purpose, we will choose not a
selection of different functionals but a set of models of increasing complexity (i.e., semi-
local, hybrid, and double-hybrid functionals). Additionally, since range-separation was
before invoked as an accurate tool for the modelling of organic emitters of this type [49],
Table 1 gathers the results obtained by the ωB97, ωB97X, and ωB97X-2 range-separated
exchange-correlation functionals.

Strikingly, ωB97 and ωB97X are unable to predict the excited-state energy inversion,
providing values for individual excitation energies not differing greatly between both
methods, which is not often the case since those values are known to depend on the amount
of (short-range) exact-exchange introduced (0 % in ωB97 vs. ≈16 % in ωB97X) and/or the
range-separation parameter (ω = 0.4 in ωB97 vs. ω = 0.3 in ωB97X).

Furthermore, we note how the S1 ← S0 excitation energies are overestimated (severely
in the case of 7AP) by both methods with respect to experimental or SCS-CC2 reference
results. Note that many previous publications [14–21] already demonstrated how this
was the case for all exchange-correlation functionals assessed up to now, which is also
confirmed here.

We additionally assessed if the use of the ωB97X-D3 or ωB97X-D4 models, which
are reparameterized to include the dispersion correction, would lead to any difference:
the ΔEST value only changed only 0.01 eV with respect to the value calculated by the
original ωB97X.

We next analysed the performance of the ωB97X-2 double-hybrid functional, which,
in its extension to excited states [50,51], includes a contribution from double excitations,
thus, going beyond the single excitations introduced by TD-DFT routinely. We can observe
how this method actually predicts ΔEST < 0 values between −0.4 and −0.7 eV, roughly
speaking that are, thus, too large with respect to the reference results. An additional concern
arises from the inspection of individual S1 ← S0 and T1 ← S0 excitation energies, since the
method seems to severely underestimate (by up to 1 eV) the former values progressively as
a function of the N atoms introduced into the chemical structure.

The overestimation of the T1 ← S0 excitation energies is slightly attenuated with
respect to the S1 ← S0 ones but again with values deviating too much with respect to the
reference results. Shortly speaking, although this method is able to provide negative values
for ΔEST , the results appear to be affected by a systematic error. The use of double-hybrid
functionals has been recently and more systematically examined [52], with some of the
models assessed being promising enough to display accurate individual excitation energies:
we thus refer the reader to that study for further information and confirmation about the
key role played by double excitations into the final values.

3.3. MC-PDFT Calculations

We will inspect the CASSCF results shown in Table 2 to first observe the effect of using
both basis sets, def2-SVP and def2-TZVP, for this set of calculations. For the CASSCF(6,6)
results, going from def2-SVP to def2-TZVP implies a slight increase of the S1 ← S0 and
T1 ← S0 excitation energies, with the exception of the latter for the 7AP molecule, but asym-
metrically, with the corresponding ΔEST values altered significantly. For the CASSCF(12,12)
case, the variations for 7AP are also significant and deviate from the SCS-CC2/def2-TZVP
reference values.

For MAP, the CASSCF(6,6)/def2-TZVP calculation already provided close results to
reference SCS-CC2/def2-TZVP results, with S1 ← S0 and T1 ← S0 excitation energies
differing by 0.15 and 0.10 eV, respectively, and thus leading to a negative ΔEST value of
−0.18 compared to −0.22 eV as reference. However, a larger active space is not definitively
giving any advantage here, as it was also found before [17], stabilizing too much the S1
(T1) state and leading consequently to an overly negative (positive) ΔEST value with the
def2-SVP (def2-TZVP) basis set.
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Table 1. Vertical excitation energies and associated ΔEST energy difference (all in eV) calculated with
different methods.

Molecule Method S1← S0 T1← S0 ΔEST

MAP
ωB97 1.420 1.195 0.26
ωB97X 1.385 1.167 0.22
ωB97X-2 0.791 1.166 −0.38

4AP
ωB97 2.695 2.199 0.41
ωB97X 2.531 2.150 0.38
ωB97X-2 1.642 2.092 −0.45

5AP
ωB97 2.752 2.381 0.37
ωB97X 2.687 2.335 0.35
ωB97X-2 1.650 2.298 −0.65

7AP
ωB97 3.391 3.132 0.26
ωB97X 3.310 3.059 0.26
ωB97X-2 1.933 2.592 −0.66

For 4AP, the agreement is not so close to CASSCF(6,6), with both excitation energies
largely overestimated (by 0.3–0.7 eV) independently of the basis set chosen. A larger active
space, CASSCF(12,12), seems beneficial only with the def2-SVP basis set, which appears to
indicate a not so balanced treatment of correlation effects in the absence of a dynamical
correlation correction.

This overestimation was also found for 5AP and 7AP, particularly striking for the
latter and again independently of the active space fixed. Overall, it seems that the CASSCF
results do not suffice to lead to accurate and robust results by themselves, although negative
ΔEST values are mostly obtained. Previous publications show how the need of dynamic
correlation effects (i.e., NEVPT2) as a further step to obtain more accurate and robust
results [17,18].

Table 2. Excited-state energies and associated ΔEST energy difference (all in eV) calculated with the
CASSCF method.

Basis Set Molecule Method S1← S0 T1← S0 ΔEST

def2-SVP

MAP CASSCF(6,6) 1.218 1.436 −0.22
4AP CASSCF(6,6) 2.554 2.803 −0.25
5AP CASSCF(6,6) 2.686 2.916 −0.23
7AP CASSCF(6,6) 3.896 4.217 −0.32

MAP CASSCF(12,12) 0.145 0.696 −0.55
4AP CASSCF(12,12) 2.214 2.358 −0.14
5AP CASSCF(12,12) 2.581 2.519 0.06
7AP CASSCF(12,12) 2.752 3.210 −0.46

def2-TZVP

MAP CASSCF(6,6) 1.256 1.427 −0.17
4AP CASSCF(6,6) 2.964 2.864 0.10
5AP CASSCF(6,6) 2.995 3.068 −0.07
7AP CASSCF(6,6) 5.237 4.437 0.80

MAP CASSCF(12,12) 0.179 0.722 −0.54
4AP CASSCF(12,12) 1.977 2.171 −0.19
5AP CASSCF(12,12) 2.762 2.688 0.07
7AP CASSCF(12,12) 4.334 4.637 −0.30

The use of the tPBE correlation functional together with Equation (7) is presented next
in Table 3, again for both basis sets (def2-SVP and def2-TZVP) and both active spaces of the
underlying CASSCF calculation. For MAP, the CASSCF(6,6) + tPBE results are considerably
accurate with both basis sets, not only for the target ΔEST energy difference but also for the
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individual excitation energies. The use of the larger CASSCF(12,12) active space instead
increases both excitation energies, especially the former, and reverse the sign of ΔEST .

For 4AP and 5AP, the CASSCF(12,12) + tPBE results are very accurate with the def2-
TZVP basis set and with respect to the SCS-CC2 reference values. For 7AP, the CASSCF(12,12)
+ tPBE results are also relatively accurate, leading to a negative ΔEST value with both basis
sets and correcting the overestimation of values found at the CASSCF(12,12) level with the
def2-TZVP basis set. It thus appears that the addition of a (modified) correlation functional
is qualitatively beneficial; however, more research is still needed to confirm the application
of MC-PDFT to other chromophores and related systems.

Table 3. Excited-state energies and associated ΔEST energy difference (all in eV) calculated
with MC-PDFT.

Basis Set Molecule Method S1← S0 T1← S0 ΔEST

def2-SVP

MAP CASSCF(6,6) + tPBE 1.168 1.284 −0.12
4AP CASSCF(6,6) + tPBE 2.135 1.871 0.26
5AP CASSCF(6,6) + tPBE 2.153 2.437 −0.28
7AP CASSCF(6,6) + tPBE 2.715 3.155 −0.44

MAP CASSCF(12,12) + tPBE 1.523 1.463 0.06
4AP CASSCF(12,12) + tPBE 2.181 2.713 −0.53
5AP CASSCF(12,12) + tPBE 2.720 2.889 −0.17
7AP CASSCF(12,12) + tPBE 2.849 3.373 −0.52

def2-TZVP

MAP CASSCF(6,6) + tPBE 1.191 1.209 −0.02
4AP CASSCF(6,6) + tPBE 2.038 1.865 0.17
5AP CASSCF(6,6) + tPBE 1.140 2.769 −1.63
7AP CASSCF(6,6) + tPBE 4.641 3.325 1.32

MAP CASSCF(12,12) + tPBE 1.515 1.438 0.08
4AP CASSCF(12,12) + tPBE 2.420 2.572 −0.15
5AP CASSCF(12,12) + tPBE 2.304 2.579 −0.17
7AP CASSCF(12,12) + tPBE 1.906 2.148 −0.24

3.4. Lie–Clementi (LC) and Colle–Salvetti (CS) Calculations

These two functionals are here applied with the CASSCF(6,6) active space and the
def2-SVP basis set to avoid a known (and long-standing) problem with these methods,
i.e., the double counting of the dynamical correlation energy, which might be minimized
using the smallest admissible active space in the underlying CASSCF calculations [53,54].

Table 4 presents these pioneering results, from which interesting features can be
observed: (i) a negative ΔEST is provided in all cases, contrarily to some of the former
methods and the isolated CASSCF(6,6) calculations of Table 2, which clearly underlines
the major role played by dynamical correlation effects for describing at least quantitatively
these states; (ii) the cost-effective Lie–Clementi functional overestimates the individual
excitation energies, systematically increasing them with respect to the CASSCF(6,6) values;
and (iii) the Colle–Salvetti functional, relying on the introduction of the ρ2(r) variable,
provides closer values to reference results, again with the exception of 7AP for which these
are still overestimated.

Given the variety of methods tested, Figure 2 reports the calculated ΔEST energy
difference for a better comparison. Contrary to previous TD-DFT applications, and with
very few exceptions, the figure clearly shows how it is possible to obtain negative values
(i.e., inverted S1 and T1 excitation energies) with these methods thanks to the combination
of non-dynamical and dynamical correlation effects.
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Table 4. Excited-state energies and associated ΔEST energy difference (all in eV) calculated with
non-standard correlation functionals.

Basis Set Molecule Method S1← S0 T1← S0 ΔEST

def2-SVP

MAP CASSCF(6,6) + LC 1.737 1.941 −0.20
CASSCF(6,6) + CS 0.968 1.364 −0.40

4AP CASSCF(6,6) + LC 3.116 3.386 −0.27
CASSCF(6,6) + CS 2.501 2.931 −0.43

5AP CASSCF(6,6) + LC 3.273 3.453 −0.18
CASSCF(6,6) + CS 2.543 3.043 −0.50

7AP CASSCF(6,6) + LC 4.568 4.892 −0.32
CASSCF(6,6) + CS 3.554 4.017 −0.46

Taking into account the use here of the def2-SVP basis set, we can next compare these
results with the high-quality values available in literature: (i) For MAP, NEVPT2(6,6)/def2-
SVP results [18] gave S1 ← S0 and T1 ← S0 excitation energies of 1.102 and 1.319 eV
with the CASSCF(6,6) + CS results differing by only 0.13 and 0.05 eV, respectively. (ii) For
5AP, EOM-CCSD/cc-pVDZ results [13] are 2.251 and 2.329 eV for S1 ← S0 and T1 ← S0
excitation energies, respectively, with the CASSCF(6,6) + tPBE results of 2.153 and 2.437 eV
differing by only 0.10 and 0.11 eV, respectively. (iii) For 7AP, DLPNO-NEVPT2(6,6)/def2-
SVP results [13] led to S1 ← S0 and T1 ← S0 excitation energies of 2.552 and 2.906 eV
with the CASSCF(12,12) + tPBE results being the closest ones but still differing by 0.30 and
0.47 eV, respectively.
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Figure 2. ΔEST values for the molecules selected (with the def2-SVP basis set).

4. Conclusions

The field of (TD-)DFT has so impressively advanced over the recent decades thanks to
the two-fold and concurring efforts of continuously merging developments and applica-
tions. As a corollary, the latter would have not been possible without major advances from
developments, often considered part of basic but completely needed Science. In this re-
gard, new methods have historically been fostered by providing cost-effective yet accurate
expressions and implementations for wide applications or, on the other hand, by tackling
cutting-edge applications at the frontier of knowledge to move the field forward. In other
words, inaccurate results are often needed to question why (TD-)DFT behaves as it does
and how it can be rigorously and systematically improved.

Therefore, we attempted to continue building that interface between both worlds
(developments and applications) by selecting a long-standing chemical problem of revisited
interest: the energy inversion of the lowest spin-singlet and spin-triplet excited states of
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azaphenalene compounds intended to be used as organic emitters or photocatalysts. For
that purpose, knowing from previous works than TD-DFT was not a reliable path to
adequately address this issue, we applied methods employing not only the electronic
density as the sole ingredient of an exchange-correlation functional but also other more
involved magnitudes, e.g., the on-top pair density.

Overall, the use of the latter into the MC-PDFT scheme or as part of the explicit
formulation of the Colle–Salvetti correlation functional offers an attractive way to overcome
the limitations found for (TD-)DFT, although at a higher computational cost. However,
we are also aware that further research is needed to benchmark these non-conventional
methods as well as to reduce their computational cost and scaling with the system size,
for which more challenging applications will be also welcome in the near future.

5. Concluding Remarks: A Personal Note

We would like to contribute with this article, as part of the Special Issue in honour
of Professor Karlheinz Schwarz on the occasion of his 80th birthday, to celebrate the
outstanding role played by Professor Schwarz in the field of Density Functional Theory
(DFT) through his scientific career [55]. The authors met him as part of the International
Scientific Committee of the “International Conference on Density-Functional Theory and
its Applications”, which is likely one of the longest-lived events to exist in the fields of
theoretical and computational Chemistry and Physics after Paris (1995), Vienna (1997),
Rome (1999), Madrid (2001), Brussels (2003), Geneva (2005), Amsterdam (2007), Lyon
(2009), Athens (2011), Durham (2013), Debrecen (2015), Tällberg (2017), and Alicante
(2019) editions.

Thanks to the strong activity of Heinz promoting DFT worldwide, we had the op-
portunity to enjoy, as local organizers of the last edition (see Figure 3), his compromise
and illusion with this series of conferences. This work is, thus, our small recognition to
his talented, vibrant, active, and kind figure, promoting DFT worldwide alongside an
outstanding scientific career.

Figure 3. Group picture taken along the “18th International Conference on Density-Functional
Theory and its Applications”, celebrated (2019) in the campus of the University of Alicante. Professor
Karlheinz Schwarz is standing on the first row (11th starting from the right to the left side).
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Abstract: The density functional theory developed earlier for Coulombic excited states is reconsidered
using the nodal variational principle. It is much easier to solve the Kohn–Sham equations, because
only the correct number of nodes of the orbitals should be insured instead of the orthogonality.
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1. Introduction

The density functional theory (DFT) [1,2] has been originally worked out for the
ground state. It has rigorously been extended to excited states by Theophilou [3] and
later by Gross, Oliveira, and Kohn [4–6]. For further extensions and applications of these
subspace and ensemble theories, see reference [7]. Subsequently, theories for individual
excited states were presented [8–15]. Several works on excited states have been done within
the local potential framework [16–29]. Recently, a comprehensive theory for Coulombic
excited states has been put forward in a series of papers [30–32]. It takes advantage of
the fact that the Coulomb density determines not only its Hamiltonian but the degree of
excitation as well and consequently, there is a universal functional valid for any excited
state. In addition, excited state Kohn–Sham (KS) equations similar to the ground-state KS
equations can be derived.

Recently, Zahariev, Gordon, and Levy [33] have presented a nodal variational principle
for excited states. They have proved that the minimum of the energy expectation value of
trial wave functions that are analytically well behaved and have nodes of the exact wave
function is the exact eigenvalue. This minimum is achieved at the exact eigenfunction.

In this paper, the Coulombic excited state theory is reconsidered utilizing the nodal
variational principle. Certainly, the functionals are the same as in the original theory, but
it is much easier to solve the Kohn–Sham equations, because only the correct number
of nodes of the orbitals should be insured instead of the orthogonality. It is especially
important in case of highly excited orbitals.

The paper is organized as follows. In Section 2, the DFT for Coulombic excited
states [30–32] is reworked. Section 3 is dedicated to the discussion.

2. Coulombic Excited State Theory Using Nodal Variation Principle

The theory is valid for Coulomb external potential vCoul . The Hamiltonian has the form

Ĥ = T̂ + V̂ee +
N

∑
i=1

vCoul(ri) , (1)

where T̂ and V̂ee are the kinetic energy and the electron–electron energy operators. N is the
number of electrons and

vCoul(r) = −
M

∑
β=1

Zβ

rβ
. (2)
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M is the number of nuclei and rβ = |r − Rβ|. Rβ and Zβ denote the position and the charge
of the nucleus β. Kato’s theorem [34–40]

∂n̄β(rβ)

∂rβ

∣∣∣∣∣
rβ=0

= −2Zβn(r = Rβ) (3)

is valid both for the ground and any excited state. It has the consequence that the cusps
of the density n exhibit the atomic numbers and the positions of the nuclei. In addition,
N is given by the the integral of n. Hence, n specifies all parameters of the Coulomb
potential (2), thus determines the external potential, the Hamiltonian (1), and all properties
of the Coulomb system. Furthermore, n cannot be the density for any other Coulomb
external potential, that is, two different excited states cannot have the same electron
density [30]. Therefore, we might think that the expression

FCoul [n] = E[n]−
∫

n(r)vCoul [n; r]dr (4)

would be the appropriate functional for Coulombic densities. However, it is not known
how to decide if a density is Coulombic or not. Therefore, instead of (4) F is defined in
another way: it is defined for all electron densities not only for Coulombic densities.

As a first step consider a bifunctional

F[n, nCoul ] = min
Ψ→n

{〈Ψ|ΨCoul
l [nCoul ]〉=0}k−1

l=1

〈Ψ|T̂ + V̂ee|Ψ〉 , (5)

where the minimum is searched over the wave functions that provide the excited state
density n and is orthogonal to the first k − 1 eigenfunctions of the Coulomb system of nCoul .

Using the nodal variation principle instead of Equation (5) we can write

F[n, nCoul ] = min
Ψ→n

{Ψ has the nodes of the exact wave function}

〈Ψ|T̂ + V̂ee|Ψ〉 . (6)

It is assumed that a Coulomb density close to n exists.

FCoul
ε [n] = min

nCoul
F[n, nCoul ]; ||nCoul − n|| ≤ ε. (7)

The smallest F is taken, if there are more than one Coulomb density at the same
distance from n:

FCoul [n] = FCoul
εmin

[n]. (8)

To measure the distance a Sobolev-type norm is applied:

d(nCoul , n) ≡
∫ ∣∣∣∣

√
nCoul(r)− n(r)

∣∣∣∣
2
dr +

∫ ∣∣∣∣∇
√

nCoul(r)− n(r)
∣∣∣∣
2
dr. (9)

The Euler equation is obtained by functional derivation

vCoul([n], r) = − δFCoul [n]
δn(r)

(10)

up to a constant.
It is worth emphasizing that the theory above is based on the following statements:
(a) The cusps and the asymptotic decay of the Coulombic density determine the

external potential and the ionization potential;
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(b) It is supposed that bifunctional F[n, nCoul ] (Equation (5) or (6)) exists, where nCoul

is close to n. Further, the existence of FCoul [n] (defined by the Equations (7) and (8))
is assumed;

(c) Equation (6) is based on the assumption that the nodes of the exact excited state
wave functions are known;

(d) It is assumed that the functional derivative of FCoul [n] exists. It is needed to derive
the Euler Equation (10).

Consider now the Kohn–Sham (KS) system. In our original definition the non-
interacting kinetic energy bifunctional was written

TCoul
s [n, nCoul ] = min

Φ→n
{〈Φ|Φl [nCoul ]〉=0}k−1

l=1

||nCoul
1 −n0

1||≤δ

〈Φ|T̂|Φ〉, (11)

where the search is over the wave functions Φ having the excited state density n and
orthogonal to the first l − 1 eigen functions of the non-interacting system. The excited state
density is the same in the real and the KS systems. If there are more than one KS system
with the same density nCoul , the one closest to the true ground-state density nCoul

1 is taken.
Instead of Equation (11) we can write

TCoul
s [n, nCoul ] = min

Φ→n
{Φ has the nodes of the exact wave function}

||nCoul
1 −n0

1||≤δ

〈Φ|T̂|Φ〉 (12)

using the nodal variation principle. The existence of a unique Coulomb density close to the
non-Coulomb density n is assumed:

TCoul
s,ε [n] = min

nCoul
Ts[n, nCoul ]; ||nCoul − n|| ≤ ε. (13)

It is supposed that there is at least one Coulomb density closer to n than ε, provided
that ε is large enough. The minimum specifies the final form:

TCoul
s [n] = TCoul

s,εmin
[n]. (14)

The functional derivation yields an Euler equation, within an additive constant,

wCoul([n], r) = − δTCoul
s [n]
δn(r)

. (15)

The KS theory presented above is based on the following statements:
(a) The existence of the non-interacting kinetic energy bifunctional TCoul

s [n, nCoul ]
(Equation (11) or (12)) with nCoul close to n is assumed. Further, it is presumed that TCoul

s [n]
constructed by Equations (13) and (14) exists;

(b) Equation (12) is based on the assumption that the nodes of the non-interacting
excited state wave functions are known;

(c) It is supposed that the functional derivative TCoul
s [n] exists and the Euler Equation (15)

can be derived.
It is convenient to partition FCoul [n] as

FCoul [n] = TCoul
s [n] + JCoul [n] + ECoul

xc [n], (16)

where JCoul [n] and ECoul
xc [n] are the classical Coulomb and exchange-correlation energies.

Equations (10), (15) and (16) lead to the KS potential

wCoul([n], r) = vCoul([n], r) + vCoul
J ([n], r) + vCoul

xc ([n], r) (17)
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as the sum of the external, the classical Coulomb and the exchange-correlation potentials.
The density has the form

n =
K

∑
i=1

λi|φi|2, (18)

where the KS orbitals φi are solutions of the KS equations[
−1

2
∇2 + wCoul([n], r)

]
φi = εiφi. (19)

The occupation numbers λi are 0, 1, or 2 for a non-degenerate system. K denotes the
orbital having the highest orbital energy with non-zero occupation number.

3. Discussion

In the present version of the Coulombic excited state theory, the variation is done
over the trial wave functions having the nodes of the exact wave functions both in the
interacting and the non-interacting systems. That is, the sole difference between the
original and the present forms of the theory is using Equations (6) and (12), instead of
Equations (5) and (11). Despite this difference, the functionals are the same as in both
versions. Generally, the nodes are not known. The wave functions are not known either.
In DFT we define functional F[n] via the wave function, but we do not actually use this
definition in calculations. Only, F as a functional of n is applied.

On the other hand, in DFT the exact functionals are not known and approximate func-
tionals are applied in calculations. Additionally, in actual calculations the KS Equations (19)
are solved. The nodal variational principle leads to a huge simplification, inducing much
easier calculations. It is the consequence of the fact that the variational problem reduces
to the solution of the KS equations. The orbitals, that is, one-particle functions have to
be obtained. If the electron configuration of the state is known, we have to solve the KS
equations insuring either the orthogonality of orbitals or the correct number of nodes of
the orbitals. The latter is simpler as it is explained in the example below. Certainly, we
have to know the correct number of nodes of the orbitals.

The nodal behavior of eigenfunctions were discussed in several papers (see, e.g., [41–44]).
Still the number of nodal surfaces is rarely counted in calculations. Hatano and cowork-
ers [43,44] developed a computer program to count the number of nodal regions and
applied it in molecular orbital calculations.

Recently, the original Coulombic excited state theory [30–32] has been discussed [7].
The localized Hartree–Fock (LHF) [45] and the Krieger, Li, and Iafrate (KLI) [46] methods
combined with correlation have been generalized for excited states. In addition, several
highly excited states of Li and Na atoms have been studied.

The radial KS equations can be solved using Numerov’s algorithm [47] searching
eigenvalues with the correct number of nodes. This method was used by Herman and
Skillman in their Hartree–Fock–Slater computer code [48]. We do not have to check the
orthogonality of the orbitals during the calculations, only the number of nodes has to be
counted. The correct number of nodes is enough to insure the orthogonality. It is especially
beneficial in studying higher excited states. In [7], several highly excited states of Li and
Na atoms have been studied. Calculations have been performed with KLI and KLI plus
(local Wigner) correlation (see details in [7]). Take, for example, the configuration 1s25s.
The orbital φ5s should be orthogonal to all the orbitals below, that is, φ1s, φ2s, φ3s, and
φ4s. The orbitals φ2s, φ3s, and φ4s have zero occupation numbers, do not contribute to the
density, so we do not have to calculate them. It is enough to calculate the orbital φ5s and the
correct number of nodes insures the orthogonality to all the orbitals below. We emphasize
that as the configuration (1s25s) is known, we know the exact number of nodes of the radial
orbitals. The radial orbital φks has k − 1 nodes. (Because of the spherical symmetry of the
system, the radial KS equations should be solved.) We can easily check numerically that the
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orbitals with the correct number of nodes are really orthogonal. We calculated the orbitals
φ2s, φ3s, and φ4s, and the integrals

∫
φk1 φk2 dr, where k1 and k2 can be 1s, . . . , 5s. We found

that the absolute value of the integral was always less than 10−6 for k1 �= k2.
In summary, the Coulombic excited state theory has been re-examined based on the

nodal variational principle. The functionals are the same as in the original theory, but the
solution of the Kohn–Sham equation is much easier as only the correct number of nodes of
the orbitals should be insured instead of the orthogonality.
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Abstract: The energy eigenvalues of the ground state helium atom and lowest two excited states
corresponding to the configurations 1s2s embedded in the plasma environment using Hulthén,
Debye–Hückel and exponential cosine screened Coulomb model potentials are investigated within
the variational Monte Carlo method, starting with the ultracompact trial wave functions in the form
of generalized Hylleraas–Kinoshita functions and Guevara–Harris–Turbiner functions. The Lagrange
mesh method calculations of energy are reported for the He atom in the ground and excited 1S and 3S
states, which are in excellent agreement with the variational Monte Carlo results. Interesting relative
ordering of eigenvalues are reported corresponding to the different screened Coulomb potentials
in the He ground and excited electronic states, which are rationalized in terms of the comparison
theorem of quantum mechanics.

Keywords: helium atom; screened Coulomb potential; variational Monte Carlo method; Lagrange
mesh method; comparison theorem

1. Introduction

The theoretical studies of atomic systems in dense plasmas at different temperatures
play a very important role in some physical situations and have gained considerable
interest in recent years [1–8]. The dilute plasma environment is represented by the screened
Coulomb potentials given by the Debye–Hückel model (DHM) or screened Coulomb
potential (SCP) [9], which provides a suitable treatment of nonideality in plasma via the
screening effect under the low-density and high-temperature conditions. A closely related
Hulthén potential is also used as a model potential for the dilute plasma environment
in which the atoms are embedded. On the other hand, the dense quantum plasmas
environment is represented by using the modified Debye–Hückel model (MDHM) [10] or
exponential cosine screened Coulomb potential (ECSCP). Due to its oscillatory nature, the
MDHM potential represents a stronger screening effect than the DHM potential.

Considerable attention has been given to the screened Coulomb potentials and exponen-
tial cosine screened Coulomb potential in field theory, nuclear, and plasma physics [11–17].
Accurate B-spline configuration interaction (BSCI) method was recently employed to study
the spectral/structural data of the helium atom with exponential cosine screened Coulomb
potentials [18]. Roy [19] discussed the critical parameter for the spherically confined H
atom embedded within a diverse set of screened Coulomb potentials. Ghoshal and Ho [20]
investigated the two-electron system in the field of generalized screened potential within the
framework of highly correlated and extensive wave functions in Ritz’s variational principle,
where they were able to determine accurate ground state energies and wave functions of
the two-electron system for different values of the screening parameter. Nasser, Zeama, and

Computation 2021, 9, 138. https://doi.org/computation9120138 https://www.mdpi.com/journal/computation35
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Abdel-Hady [21] made a comparative study of the atomic Rényi and Shannon entropies
with different wave function within the ECSCP for the 1s2-state of the helium isoelectronic
series in the Hylleraas-space with few variational parameters. Several other interesting
studies on the few electron atoms embedded inside the different plasma potentials have
been presented in the literature [22–24]. Very recently a comprehensive compilation of
accurate energy values and other structural parameters for the He-like atoms has been
published [25,26] using the Hylleraas wave functions.

The purpose of this paper is twofold. Firstly, we report the energy values correspond-
ing to the ground state and two low-lying excited electronic states of the He-like atoms
embedded in three different plasma environments using the variational Monte Carlo (VMC)
method [27–31] and the Lagrange mesh method (LMM) [32]. The second purpose of this
work concerns with the application of the comparison theorem of quantum mechanics.
According to the comparison theorem, if a set of spherical potentials V1(r), V2(r), V3(r)
satisfy the condition V1(r) < V2(r) < V3(r) at all radial distances, then their eigenvalues obey
E1 < E2 < E3 for all n�-states. For nonrelativistic Hamiltonians bounded from below, this
theorem follows directly from the variational characterization of the eigenspectrum [33].
Generalized comparison theorems have been proposed [34–38] that allow the two potential
curves to cross over in a controlled fashion while maintaining a definite ordering of the
respective eigenvalues. Refined comparison theorems applicable to the relativistic Dirac
Hamiltonian, which is not bounded from below, have also been established [39–41]. We
refer to the works on the generalized comparison theorem [42] and the refined comparison
theorem [43], which covers the current research trends in this area. In this work, we used
the comparison theorem in order to rationalize the relative ordering of eigenspectra of the
He atom under a set of different plasma screened Coulomb potentials for the ground and a
few low-lying excited states. To the best of our knowledge, a comprehensive numerical
test of the comparison theorem using the VMC and the LMM computations including the
excited states, as reported in this work, has not been attempted earlier.

The outline of this paper follows. In Section 2, we define the three different screened
Coulomb model potentials that are introduced above. In Section 3, an outline of the
variational Monte Carlo (VMC) method employed in this work is presented. This is
followed by the computational details and the choice of the trial wave functions for the low-
lying excited states of He, described in Sections 4 and 5, respectively. A brief description of
the Lagrange mesh method employed in this work is presented in Section 6. Our results
are presented and discussed in Section 7. Finally, the main conclusions of this work are
listed in Section 8.

2. Plasma Model Potentials

The collective effects of correlated many-particle interactions lead to screened Coulomb
interactions in hot dense plasma conditions, which are commonly represented by the DHM
or SCP and given by

VDH(r) = −Ze2

r
exp(−μr), (1)

where μ = 1
λD

represents the Debye screening parameter that determines the electronic
interaction in the Debye plasma. It depends on the temperature and density of the plasma
in the following form [44]:

μ =
1

λD
=
√

4πe2Ne/KTe, (2)

where λD is called Debye screening length, K is the Boltzmann constant, Te is the electron
temperature, e is the electronic charge, Z is the atomic number, and Ne is the plasma–
electron density. The Hulthén [45] potential is given by

VHu_μ(r) = −Ze2 μe−μr

1 − e−μr . (3)
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A useful form of Hulthén potential in which the screening parameter μ in Equation (3)
is simply multiplied by a factor of 2 can be defined as

VHu_2μ(r) = −Ze2 2μe−2μr

1 − e−2μr . (4)

It was shown that the study of effective screened potential in dense quantum plasmas
can be represented by using MDHM [10] or ECSCP, which is given by

VMDH(r) = −Ze2

r
exp(−μr) cos(μr). (5)

Usually, in quantum plasmas, μ is related to the quantum wave number of the electron,
which is related to the electron plasma frequency. Furthermore, the definitions of μ in
the two model potentials are different. In the present paper, we are considering μ as a
parameter so that the physical difference of μ between these model potentials [14,19,46] is
not discussed.

3. Variational Monte Carlo Method

Quantum Monte Carlo methods have already been used for quantum mechanical
systems. There are several quantum Monte Carlo techniques such as VMC, diffusion Monte
Carlo and Green’s function Monte Carlo methods. In this paper, we concentrate on the
VMC method, which is used to approximate the eigenstate of the Hamiltonian Ĥ of a
quantum mechanical system by some trial wave function ψT(R) whose form is chosen from
the analysis of the quantum mechanical system under study. Therefore, the expectation
value of the Hamiltonian Ĥ is written as [46]

Ĥ = EVMC =

∫
ψ∗

T(R)ĤψT(R)dR∫
ψ∗

T(R)ψT(R)dR
=

∫
dRψ2

T(R)EL(R)∫
dRψ2

T(R)
=

∫
dR ρ(R)EL(R) (6)

where EL(R) = (HψT(R))/ψT(R) is the local energy depending on the 3N coordinates

R of the N electrons, and ρ(R) =
ψ2

T(R)∫
dRψ2

T(R)
is the normalized probability density. The

variational energy can be calculated as the average value of EL(R) on a sample of M points
Rk, sampled from the probability density ρ(R) as follows:

EVMC ≈ EL =
1
M

M

∑
k=1

EL(Rk). (7)

In practice, the points Rk are sampled using the Metropolis–Hastings algorithm [27,28].
When evaluating the energy of the system it is important to calculate the standard

deviation of this energy, given by [47]

σ =

√〈
E2

L
〉
− 〈EL〉2

N(M − 1)
.

Since EL will be exact when an exact trial wave function is used, then the standard
deviation of the local energy will be zero for this case. Thus, in the Monte Carlo method,
the minimum of EL should coincide with a minimum in the standard deviation.

4. Theoretical Details

The nonrelativistic Hamiltonian in Hylleraas coordinates [47] for the two electron
systems, under effective SCP in dense plasmas is given, in atomic units, by

H1 = −1
2

2

∑
i
∇2

i − 2
[

exp(−μr1)

r1
+

exp(−μr2)

r2

]
+

exp(−μr12)

r12
(8)
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where r1 and r2 are the radius vectors of the twoelectrons relative to the nucleus, and
r12 = |r1 − r2| is their relative distance.

Moreover, the nonrelativistic Hamiltonian in the effective ECSCP is given by

H2 = −1
2

2

∑
i
∇2

i − 2
[

exp(−μr1)

r1
cos(μr1) +

exp(−μr2)

r2
cos(μr2)

]
+

exp(−μr12)

r12
cos(μr12) (9)

The ground state of the helium atom is a spin singlet two-electron atom. Our calcula-
tions for this two-electron system depend on using an ultracompact accurate symmetric
function, a nontrivial seven-parameter function, which is constructed by Turbiner et al. [48]
as follows:

Ψ = (1 + P12)[φ(r1, r2)χA] (10)

with space wave function:

φ(r1, r2) = (1 − ar1 + br12)e
−α1zr1−β1zr2+γr12

1+cr12
1+dr12 (11)

where a, b, c, d, α1, β1, γ are z-dependent parameters and P12 is a permutation operator.
This function leads for helium atom (Z = 2) to a certain improvement of the variational
energy and the electron–nuclear cusp and at the same time, the electron–electron cusp. The
function χA represents the antisymmetric spin wave function with (α) spin up and (β)
spin down as follows:

χA = α(1)β(2)− α(2)β(1) (12)

This function allows us to obtain the same relative accuracy in both cusp parameters
and electronic correlation energy. The function appears as a uniform, locally accurate
approximation of the exact ground state eigenfunction. It provides the same relative
accuracies in energies and several expectation values together with both cusp parameters.

5. Trial Wave Functions for the Low-Lying Excited States of the Helium Atom

The study of the low-lying excited states of the helium atom has received consider-
able attention in theoretical investigations. Therefore, for the lowest two excited states,
corresponding to the configurations 1s2s, we used the following trial wave functions:

1. For the lowest ortho (space-antisymmetric) state 23S, corresponding to the configura-
tion 1s2s, we considered the following simple trial wave function

Ψ23S(r1, r2) = N[(ψ1s(r1)ψ2s(r2)− ψ1s(r2)ψ2s(r1))χs] f (r12). (13)

2. The state 21S is a para (space-symmetric) state corresponding to the configuration
1s2s and its trial wave function is, then, taken of the form

Ψ21S(r1, r2) = N[(ψ1s(r1)ψ2s(r2) + ψ1s(r2)ψ2s(r1))χA] f (r12). (14)

In these equations, z0 and zi are variational parameters and N is the normalization
constant. For spin functions, χA represents the singlet antisymmetric spin wave function
with (α) spin up and (β) spin down as described in Equation (12).

The function f (r12) is the Jastrow correlation function given by [49]

f (r12) = e
r12

α2(1+β2r12) , (15)

where α2 and β2 are variational parameters.
For the relationship of the electron–electron interaction, one obtains the cusp conditions

1
Ψ

∂Ψ
∂rij

∣∣∣
rij=0

= 1
2 for unlike spins

1
Ψ

∂Ψ
∂rij

∣∣∣
rij=0

= 1
4 for like spins

⎫⎪⎬
⎪⎭.
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6. Lagrange Mesh Method

The Lagrange mesh method (LMM) [50–52] is a numerical procedure wherein the
Schrödinger equation is placed into a nonuniform heterogeneous lattice defined by zeroes
of classical orthogonal polynomials, using a basis of Laguerre functions and the associated
Gauss quadratures. An exhaustive compilation of accurate energies using the LMM for
the He-like atoms can be found in [53]. The wave function is expressed in terms of the
perimetric coordinates [54,55]. We employed the lattice parameters [56] Nx = Ny = 50,
Nz = 40, and the scaling parameters hx = hy = 0.3, hz = 0.4. We used the suitably
modified PERILAG code [50] in order to implement the screened Coulomb potentials
given by Equations (1), (3) and (5). This code was recently employed [57,58] to carry out
accurate calculations of energy for the ground and excited electronic states of He-like atoms
embedded inside different plasma model potentials.

7. Results and Discussion

The numerical method used in our calculations, the VMC method, is based on a
combination of the well-known variational method and the Monte Carlo technique of
calculating the multidimensional integrals. By a suitable choice of the trial wave function,
it is then possible to obtain minimum energy eigenvalues in agreement with the exact
values for the ground as well as the excited states of the given atom. Accordingly, we
investigated the effect of the plasma environment by using the SCP and the ECSCP models
on the energy eigenvalues of the helium atom. The calculations are performed using a
set of 108 Monte Carlo integration points to assess the accuracy with standard deviation
of the order 10−5. All our results are obtained in atomic units, i.e., (� = e = me = 1). For
the value of the ground state energy of the He atom that corresponds to Debye screening
length λD = ∞ with screening parameter μ = 0.0 and expresses the case of pure Coulomb
potential, we obtained the value −2.902662 a.u., which nearly coincides with the value
−2.9027 reported in [48].

Table 1 shows the ground state energies of the helium atom under effective SCP
in dense quantum plasma with the He+ threshold energies and ionization potential
[EHe+ − EHe] of He. The results show good agreement with the most accurate previ-
ous results, where the z parameter equals 2, and it is equivalent to the atomic nuclear
charge for screening parameter μ < 0.5 (λD > 2, Debye screening length). For μ > 0.5, the
parameter z starts to decrease slightly around the value 2; at μ = 0.5, z ≈ 1.9 and at μ = 1,
z ≈ 1.78.

In Table 2, we present the ground state energies of the helium atom under effective
ECSCP in dense quantum plasma. The He+ threshold energies and ionization potential
[EHe+ − EHe] of He are also given.

In Table 3, we present the results of our calculations of the ground state energies of the
helium atom under Hulthén potential in dense quantum plasma with the He+ threshold
energies and ionization potential [EHe+ − EHe] of He. For the one electron atoms, the
energy ordering of Eμ

Hulthen < Eμ
SCP < Eμ

ECSCP, has been a well-known consequence of
the comparison theorem [34]. More recently, based on a detailed mathematical analysis, a
similar ordering has been conjectured for the He-like atoms [57]. For the ground state He,
the proposed conjecture has been validated numerically [25,56]. The energy data presented
in Tables 1–3 is employed in Figure 1, where we display the variation of Eμ

SCP, Eμ
ECSCP, and

Eμ
Hulthen as a function of μ. The adherence to the energy ordering Eμ

Hulthen < Eμ
SCP < Eμ

ECSCP
is numerically validated for the He atom in its ground state.

Another interesting ordering of energy levels for the one electron atoms is given by
Eμ

Hulthen < Eμ
SCP < E2μ

Hulthen < Eμ
ECSCP, where E2μ

Hulthen denotes the energy of the Hulthén
potential at the screening parameter of 2μ, as defined in Equation (4). As a natural extension
of the conjecture [56], this energy ordering is now tested numerically for the He atom in
the ground and a few excited states.
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Table 1. Ground state energies of the helium atom under effective SCP in dense quantum plasma.
The He+ threshold energies and ionization potential [EHe+ − EHe] of He are also given.

μ −EHe −EHe+ −[EHe+ − EHe]

0
2.902662 2.000000 0.902662
2.9037244 2.0000004 0.9037244

2.9033716 - -

0.01
2.872771 1.980070 0.892701
2.8738394 1.9800754 0.8937644

0.02
2.843117 1.960268 0.882849
2.8441814 1.9602984 0.8838834

0.04 2.784473 1.920408 0.864065

0.05
2.755475 1.901848 0.853627
2.7565494 1.9018454 0.8547044

0.1
2.613758 1.807262 0.806496
2.6148534 1.8072664 0.8075874

2.6145116 - -

0.2
2.345674 1.628183 0.717491
2.3470064 1.6282324 0.7187744

2.3466616 - -

0.4
1.864564 1.306890 0.557674
1.8684514 1.3072344 0.5612174

0.5
1.652445 1.162981 0.489464
1.6554014 1.1636784 0.4917234

1.6550416 - -

1
0.803519 0.585547 0.217972
0.8182144 0.5924684 0.2257464

0.8170416 - -

Table 2. Ground state energies of the helium atom under effective ECSCP in dense quantum plasma.
The He+ threshold energies and ionization potential [EHe+ − EHe] of He are also given.

μ −EHe −EHe+ −[EHe+ −EHe]

0
2.902662 2.000000 0.902662
2.9037245 2.0000005 0.9037245

2.9033716 - -

0.01
2.872533 1.979987 0.892546
2.8737255 1.9799885 0.8937375

0.02
2.842163 1.959989 0.882174
2.8437305 1.9599915 0.8837395

0.04 2.780706 1.919235 0.861471

0.05
2.749620 1.900052 0.849568
2.7538165 1.9000485 0.8537685

0.1
2.590905 1.800491 0.790414
2.6044365 1.8004575] 0.8039785

2.6040916 - -

0.2
2.259199 1.603504 0.655695
2.3091115 1.6035275 0.7055875

0.4 1.770741 1.225043 0.545698

0.5
1.444394 1.046606 0.397788
1.4769585 1.0470605 0.4298985

1.4765316 - -

1
0.402097 0.296429 0.105668
0.4052615 0.3107145 0.0945475

In Table 4, we list the VMC estimates of Eμ
Hulthen, Eμ

SCP, E2μ
Hulthen, and Eμ

ECSCP for
μ = 0 − 1.0 corresponding to the ground state He. The LMM estimates are given below the
VMC estimates in each case. The two sets of values are found to be in good agreement with
each other. The LMC estimates are uniformly below the VMC results. The latter values
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can in principle be improved further following a more accurate choice of the trial wave
function. In Table 4, we present the results of our calculations of ground state energy for
He corresponding to the Hulthen (μ), SCP, Hulthen (2μ), and ECSCP potentials, given
by Equations (1), (2), (4) and (5), respectively, over a representative set of μ values. In
each case, we include the estimates obtained from the LMM and the VMC calculations.
A numerical validation of the energy ordering Eμ

Hulthen < Eμ
SCP < E2μ

Hulthen < Eμ
ECSCP for

the ground state He atom is evident from the data in Table 4. It is clear from the present
calculations that the inclusion of E2μ

Hulthen makes the bounds to Eμ
SCP tighter than given by

the ordering without E2μ
Hulthen.

Table 3. Ground state energies of the helium atom under Hulthén potential in dense quantum plasma.
The He+ threshold energies and ionization potential [EHe+ − EHe] of He are also given.

μ −EHe −EHe+ −[EHe+ − EHe]

0 2.902662 2.000000 0.902662
0.01 2.887679 1.989821 0.897858
0.02 2.872731 1.979252 0.893479
0.04 2.842973 1.960275 0.882698
0.05 2.828137 1.949522 0.878615
0.1 2.754565 1.900474 0.854091
0.2 2.610298 1.804300 0.805998
0.4 2.333143 1.619535 0.713608
0.5 2.200208 1.530918 0.669290
1 1.592340 1.124164 0.468176

Figure 1. Groundstate energy of the helium atom in SCP, ECSCP, and Hulthén potentials for different
values of the screening parameter μ.

In Tables 5 and 6, we present the results of our calculations of Eμ
Hulthen, Eμ

SCP, Eμ
ECSCP,

and E2μ
Hulthen corresponding to the (1s2s) excited states of 1S and 3S. As observed in the case of

the ground state He in Table 4, the VMC and the LMM estimates are in good agreement with
each other and the comparison theorembased ordering Eμ

Hulthen < Eμ
SCP < E2μ

Hulthen < Eμ
ECSCP

is also obeyed in the excited states. To the best of our knowledge, Tables 4–6 present for the
first time numerical validation of the conjecture Eμ

Hulthen < Eμ
SCP < E2μ

Hulthen < Eμ
ECSCP for

the ground and excited states of the He atom.
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Table 4. Comparison between (a) LMM and (b) VMC for the ground state energies of the helium
atom under Eμ

Hulthen, Eμ
SCP, E2μ

Hulthen, and Eμ
ECSCP.

μ Hulthen (μ) SCP Hulthén (2μ) ECSCP

0
−2.903724377 (a) −2.903724377 (a) −2.903724377 (a)

−2.902662 (b) −2.902662 (b) −2.902662 (b)

0.01
−2.888743509 (a) −2.873838795 (a) −2.873800905 (a) −2.873725125 (a)

−2.887679 (b) −2.872771 (b) −2.872731 (b) −2.872533 (b)

0.02
−2.873800905 (a) −2.844180576 (a) −2.84403049 (a) −2.843730329 (a)

−2.872731 (b) −2.843117 (b) −2.842973 (b) −2.842163 (b)

0.04
−2.84403049 (a) −2.785537653 (a) −2.783771455 (a)

−2.842973 (b) −2.784473 (b) −2.780706 (b)

0.05
−2.829202681 (a) −2.756548811 (a) −2.755637701 (a) −2.753815807 (a)

−2.828137 (b) −2.755475 (b) −2.754565 (b) −2.749620 (b)

0.1
−2.755637701 (a) −2.614852947 (a) −2.611379351 (a) −2.604435567 (a)

−2.754565 (b) −2.613758 (b) −2.610298 (b) −2.590905 (b)

0.2
−2.611379351 (a) −2.347006184 (a) −2.334370372 (a) −2.309114171 (a)

−2.610298 (b) −2.345674 (b) −2.333143 (b) −2.259199 (b)

0.4
−2.334370372 (a) −1.868450546 (a) −1.742851883 (a)

−2.333143 (b) −1.864564 (b) −1.770741 (b)

0.5
−2.201638137 (a) −1.655401315 (a) −1.596227498 (a) −1.47695782 (a)

−2.200208 (b) −1.652445 (b) −1.592340 (b) −1.444394 (b)

1
−1.596227498 (a) −0.818214183 (a) −0.405261234 (a)

−1.592340 (b) −0.803519 (b) −0.402097 (b)

Table 5. Comparison between (a) LMM and (b) VMC for (1s2s) excited states of 1S energies of the
helium atom under Eμ

Hulthen, Eμ
SCP, E2μ

Hulthen, and Eμ
ECSCP.

μ Hulthen (μ) SCP Hulthén (2μ) ECSCP

0
−2.14596983 (a) −2.14596983 (a) −2.14596983 (a)

−2.145788 (b) −2.145788 (b) −2.145788 (b)

0.01
−2.131029234 (a) −2.116300015 (a) −2.116194799 (a) −2.11598439 (a)

−2.129545 (b) −2.115372 (b) −2.114716 (b) −2.113992 (b)

0.02
−2.116194799 (a) −2.08725862 (a) −2.086857072 (a) −2.08605418 (a)

−2.114716 (b) −2.086387 (b) −2.085402 (b) −2.085065 (b)

0.03
−2.101470743 (a) −2.058823511 (a) −2.05796091 (a) −2.05623611 (a)

−2.100005 (b) −2.058013 (b) −2.057528 (b) −2.055263 (b)

0.04
−2.086857072 (a) −2.030971244 (a) −2.029506384 (a) −2.026576457 (a)

−2.085402 (b) −2.028217 (b) −2.028095 (b) −2.025621 (b)

0.05
−2.072353792 (a) −2.003680728 (a) −2.001493594 (a) −1.99711615 (a)

−2.070909 (b) −2.000982 (b) −2.000105 (b) −1.994182 (b)

0.06
−2.05796091 (a) −1.976932817 (a) −1.967891767 (a)

−2.056528 (b) −1.974287 (b) −1.964984 (b)

0.08
−2.029506384 (a) −1.924996108 (a) −1.910280654 (a)

−2.028095 (b) −1.922452 (b) −1.907431 (b)

0.1
−2.001493594 (a) −1.875036337 (a) −1.868060722 (a) −1.853980921 (a)

−2.000105 (b) −1.872588 (b) −1.866782 (b) −1.851209 (b)

0.2
−1.868060722 (a) −1.651488956 (a) −1.634414579 (a) −1.601389925 (a)

−1.866782 (b) −1.649457 (b) −1.633359 (b) −1.599132 (b)

0.4
−1.634414579 (a) −1.304102639 (a) −1.275179743 (a) −1.219166537 (a)

−1.633359 (b) −1.302586 (b) −1.274386 (b) −1.217393 (b)

0.5
−1.534021688 (a) −1.158970629 (a) −1.119597793 (a) −1.041082207 (a)

−1.533064 (b) −1.157579 (b) −1.118824 (b) −1.039325 (b)

0.8
−1.275179743 (a) −0.787833216 (a) −0.563849944 (a)

−1.274386 (b) −0.786741 (b) −0.562433 (b)

1
−1.119597793 (a) −0.586621163 (a) −0.304567693 (a)

−1.118824 (b) −0.585698 (b) −0.303396 (b)
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Table 6. Comparison between (a) LMM and (b) VMC for (1s2s) excited states of 3S energies of the
helium atom under Eμ

Hulthen, Eμ
SCP, E2μ

Hulthen, and Eμ
ECSCP.

μ Hulthen (μ) SCP Hulthén (2μ) ECSCP

0
−2.175228899 (a) −2.175228899 (a) −2.175228899 (a)

−2.168892 (b) −2.168892 (b) −2.168892 (b)

0.01
−2.160277331 (a) −2.145513403 (a) −2.14542119 (a) −2.145236778 (a)

−2.158999 (b) −2.144725 (b) −2.143899 (b) −2.142392 (b)

0.02
−2.14542119 (a) −2.11635153 (a) −2.115996636 (a) −2.115287001 (a)

−2.143899 (b) −2.115424 (b) −2.114533 (b) −2.112255 (b)

0.03
−2.130660957 (a) −2.08772446 (a) −2.086955753 (a) −2.085418757 (a)

−2.129201 (b) −2.086901 (b) −2.085513 −2.082449 (b)

0.04
−2.115996636 (a) −2.059614751 (a) −2.058298598 (a) −2.05566674 (a)

−2.114533 (b) −2.058829 (b) −2.056876 (b) −2.052696 (b)

0.05
−2.101428233 (a) −2.032006504 (a) −2.030025255 (a) −2.026062181 (a)

−2.099977 (b) −2.029274 (b) −2.028622 (b) −2.023112 (b)

0.06
−2.086955753 (a) −2.004885122 (a) −1.996633374 (a)

−2.085513 (b) −2.002199 (b) −1.993701 (b)

0.08
−2.058298598 (a) −1.952049995 (a) −1.938404392 (a)

−2.056876 (b) −1.949456 (b) −1.935519 (b)

0.1
−2.030025255 (a) −1.901012328 (a) −1.894420022 (a) −1.88116494 (a)

−2.028622 (b) −1.898506 (b) −1.893113 (b) −1.878328 (b)

0.2
−1.894420022 (a) −1.670095721 (a) −1.652094063 (a) −1.615667068 (a)

−1.893113 (b) −1.667977 (b) −1.650979 (b) −1.613269 (b)

0.4
−1.652094063 (a) −1.307190384 (a) −1.276412172 (a) −1.219400057 (a)

−1.650979 (b) −1.305633 (b) −1.275605 (b) −1.217612 (b)

0.5
−1.54542779 (a) −1.160139744 (a) −1.120174566 (a) −1.041273569 (a)

−1.544411 (b) −1.158742 (b) −1.119406 (b) −1.039521 (b)

0.8
−1.276412172 (a) −0.7882615 (a) −0.564149249 (a)

−1.275605 (b) −0.7871699 (b) −0.5627306 (b)

1
−1.120174566 (a) −0.587027809 (a) −0.305119077 (a)

−1.119406 (b) −0.5861029 (b) −0.3039526 (b)

From the Hamiltonian form of the two-body interactions, the overall potential strength
decreases when going from pure Coulomb potentials to SCP and to ECSCP. Physically, we
expect for screened potentials that the energy levels increase as μ increases. Furthermore,
due to stronger screening effects, for a given μ, the ECSCP values should lie above the
corresponding SCP data. Figure 1 represents this situation.

8. Conclusions

In our opinion, the present study is a useful contribution to understanding the ground
and a few low-lying excited states of two electron atoms under the influence of three
commonly used model potentials describing the plasma environment. The computations
are carried out using accurate numerical algorithms based on the VMC and the Lagrange
mesh methods. A comprehensive set of numerical results including the ground state of
Helium (1s2) is presented, which describe the screening of charges in a plasma where both
positive and negative charges are present, and where their motion is thermal. Furthermore,
we carried out an investigation to determine the effect of Debye plasma and dense quan-
tum plasmas on the low-lying excited states of helium atom using trial wave functions
for the lowest two excited states, corresponding to the configuration 1s2s. The energy
ordering of Eμ

Hulthen, Eμ
SCP, Eμ

ECSCP, and E2μ
Hulthen derived from the comparison theorem

of quantum mechanics for the hydrogen-like atoms is successfully tested numerically
for the He atom in the ground and a few low-lying excited states, which vindicates the
proposed conjecture [57] for the first time for the ground as well as the excited states,
thus implying the general validity of the comparison theorem in the presence of electron
repulsion interaction.
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Abstract: The modulation of intermolecular interactions upon aggregation induces changes in excited
state properties of organic molecules that can be detrimental for some optoelectronic applications
but can be exploited for others. The time-dependent density functional theory (TDDFT) is a cost-
effective approach to determining the exciton states of molecular aggregates, and it has been shown
to provide reliable results when coupled with the appropriate choice of the functional. Here we apply
a general procedure to analyze the aggregates’ exciton states derived from TDDFT calculations in
terms of diabatic states chosen to coincide with local (LE) and charge-transfer (CT) excitations within
a restricted orbital space. We apply the approach to study energy profiles, interstate couplings, and
the charge-transfer character of singlet and triplet exciton states of perylene di-imide aggregates
(PDI). We focus on the intermolecular displacement along the longitudinal translation coordinate,
which mimics different amounts of slip-stacking observed in PDI crystals. The analysis, in terms of
symmetry-adapted Frenkel excitations (FE) and charge-resonance (CR) states and their interactions,
discloses how the interchange of the H/J character for small longitudinal shifts, previously reported
for singlet exciton states, also occurs for triplet excitons.

Keywords: molecular aggregates; singlet excitons; triplet excitons; TDDFT; charge-transfer states;
charge-resonance states; Frenkel states; localized excitations; diabatic states; adiabatic states

1. Introduction

The photophysical behavior of organic electronic molecular materials is governed by
the nature of their low-lying exciton states [1–17]. Exciton states are superpositions of local
excitations (LEs) and charge-transfer (CT) states, namely diabatic states describing electron
promotions between occupied molecular orbitals to unoccupied molecular orbitals of the
same (neutral) or neighboring (ionic) molecules (or sites), respectively [18–32].

The role of CT states on photo-induced processes is documented by a large number
of investigations. For instance, CT states might facilitate intersystem crossing through
spin-orbit coupling [33] and are often involved in the first step of singlet fission [34–40]
through the process of symmetry-breaking charge separation (SBCS). CT states also have
a crucial role in exciton dissociation and charge separation in heterojunctions between
electron-donating and electron-accepting materials or in homojunctions between crystalline
domains with different orientations [41–43].

While the modelling and analysis of singlet spin exciton states has received consid-
erable attention [20,22,27,44–50], triplet excitons have received comparably less attention
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and only few investigations have been reported [22,51,52]. A relevant role of triplet states
in photoinduced processes is, however, proven and supported by experiments. Enhanced
triplet-state generation, following photo-induced charge transfer, was reported by various
groups in electron donor–acceptor polymer-blend films in organic photovoltaic devices
where nonemissive triplet excitons are responsible for nonradiative-charge recombina-
tion [53]. Thus, triplet formation by charge recombination can be a detrimental, unwanted
side effect but can also be exploited as a useful triplet-generation method, for instance in
photocatalysis and photodynamic therapy [54,55]. Examples are, among others, triplet-state
generation in molecular dyads [56] and molecular dimers in which dimerization-induced
triplet population has been invoked [57].

A deep insight into the relationship between structural arrangement and triplet exciton-
state character is, therefore, essential to identify molecular systems and condensed phase
organizations that are most suitable to generate and exploit triplet exciton states.

Perylene-bis(dicarboximide) (PDI) and its derivatives have attracted great interest
as chromophores for energy and charge-transport studies, thanks to their propensity to
self-organize into ordered assemblies, both in solution and in the solid state via π−π-
stacking interactions [11,12,58]. Numerous computational investigations on PDI aggregates
have been focused on the prediction of exciton states with different quantum-chemical
(QC) approaches, including configuration interaction truncated to single excitations (CIS),
time-dependent density functional theory (TDDFT) [22,27,46,47,59,60], and highly accurate
levels of theory [61–63].

TDDFT is a cost-effective approach to evaluating exciton states of molecular aggregates
and has been shown to provide reliable results when coupled to a suitable choice of the
exchange–correlation functional. To analyze the character of excitonic states predicted by
QC calculations, a diabatization procedure can be used to determine the superposition of
LE and CT diabatic states in each adiabatic exciton state [21,22,31,32,59].

For aggregates characterized by a symmetric arrangement of chromophores, as those
investigated here (Figure 1), when the molecules approach each other, intermolecular
interactions mix the LE states to form a symmetry-adapted (SA) superposition of (neutral)
LE states, that is, Frenkel excitons (FE). Similarly, the ionic states form delocalized charge-
resonance (CR) states [18,64,65] of appropriate symmetry. The symmetry point group of
a PDI aggregate, where intermolecular displacements along the longitudinal translation
coordinate, z, are considered, (Figure 1) is C2h. As a result, the most relevant ππ∗ exciton
states, along with the FE and CR diabatic states, all belong to Ag and Bu symmetry repre-
sentations. Symmetry can be exploited to easily identify H- and J- aggregation types, since
only Bu exciton states are accessible as dipole-allowed transitions.

Figure 1. The PDI dimer considered in this work. Singlet and triplet exciton states have been
determined at the eclipsed configuration shown here and along the interchromophore longitudinal
(z-axis) translation coordinate.
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Here we adopt a similar strategy to characterize singlet and triplet exciton states of PDI
aggregates. To this end, we analyze exciton states in terms of LE and CT contributions, along
the lines described in ref. [60], with three major objectives. First, we validate the protocol of
ref. [60] by comparing the computed exciton states character (for both singlet and triplet
exciton states) with the results obtained from the character-analysis tool, TheoDORE [66].
Second, we show that for triplet exciton states the modulation of CR/FE interactions along
the longitudinal translation coordinate determines a switch in the symmetry (Ag/Bu) of
the lowest triplet exciton state, which corresponds to the unconventional H-/J-character
alternation previously documented for singlet excitons [8,9,60]. Finally, we demonstrate
that the selection of the functional is less critical for triplet excitons compared to singlet
excitons and show that the CAM-B3LYP and ωB97X-D results are very close to each other.

2. Computational Methods

The protocol employed to analyze the character of exciton states transforms TDDFT
amplitudes from the basis of single excitations between the aggregate’s orbitals (the de-
localized excitation (DE) basis) to the basis of single excitations between molecular site
orbitals, the latter defining the diabatic states. It has been previously described [60] and is
briefly summarized here. To analyze the exciton character, we express each relevant exciton
state in terms of LEs and CTs. To this end, we select the orbital subspace corresponding
to relevant ππ∗ exciton states. For PDI aggregates this includes the HOMO and LUMO
of each monomer [21,31,59,60,67] and represents the minimal orbital space (MIOS). The
next step involves the determination of the linear combination coefficients, CAGGR_MOB

i,j ,
forming the CAGGR_MOB matrix and describing each aggregate’s orbital in the monomer
orbital basis (MOB) as [60,68,69]:

CAGGR_MOB = Ct
MON_AOB·SMON_AOB·CAGGR_AOB (1)

where the CMON_AOB matrix is a block diagonal matrix containing the molecular orbitals’
(MOs) coefficients in the atomic orbital basis (AOB) of each monomer, with off-diagonal
blocks set to zero, and SMON_AOB is the overlap matrix of the monomers in the AOB.

In general, monomer orbitals belonging to two different molecules are nonorthog-
onal to each other. Hence, the aggregate’s orbitals, CL

AGGR_MOB, expressed in terms of
orthogonalized monomer orbitals are obtained as:

CL
AGGR_MOB = S− 1

2
AGGR__MOB·CAGGR_MOB (2)

where superscript L indicates Löwdin’s orthogonalization [70], and the overlap matrix
SAGGR_MOB = Ct

MON_AOB·SAGGR_AOB·CMON_AOB is obtained from the coefficients of the
monomer’s orbitals, CMON_AOB, and the overlap of the atomic orbitals in the aggregate
configuration, SAGGR_AOB.

From the results of the TDDFT calculations on the aggregate, the subset of the n2

exciton states originated from the MIOS are then selected out of the full set of computed
eigenstates. TDDFT amplitudes are expressed based on the DEs, namely excitations between
the aggregate’s orbitals, and form the columns of the Badia

DE matrix. Thus, the following step
is required to expand each DE in terms of diabatic LE and CT states (excitations between
monomer orbitals). With the aggregate’s orbitals expressed in terms of monomer orbitals via
the CL

AGGR_MOB matrix, each excitation from an occupied i to an empty j aggregate’s orbital
DE( i → j ) can be expressed as a linear combination of diabatic (LE and CT) excitations
(k → l) from an occupied k to an empty l monomer orbital, with the expansion coefficients
forming the columns of the unitary matrix UDE →dia given by

UDE→dia
k→l,i→j = CAGGR_MOB, L

k,i ·CAGGR_MOB,L
l,j (3)

Exciton states are then readily expressed in the diabatic basis as Badia
dia = UDE→dia·Badia

DE ,
and their character is obtained by summing up the contributions from the CT and LE states.
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The corresponding n2 eigenvalues (excitation energies of the selected excitons) form
the diagonal Hadia matrix, from which the Hamiltonian in the diabatic LE/CT basis, Hdia,
can be obtained as [21,30,32,71]

Hdia = Badia
dia ·Hadia·Badia

dia
t (4)

Finally, the Hdia is rotated in the SA diabatic basis formed by FE and CR excitations
to obtain two matrices, Hsym

dia (one for Bu states and one for Ag states), whose off-diagonal
elements are the interactions between the CR and FE states that ultimately govern the
modulation of adiabatic exciton-state energies along the longitudinal translation coordinate.
These interaction energies have been shown to correspond to ± combinations of electron-
(De) and hole- (Dh) transfer integrals [22,31,59,60].

The PDI-monomer structure was the same one used in previous investigations on PDI
aggregates, optimized at the BLYP-D/TZV(P) level of theory [72]. The distance between the
planes of different monomers was set to 3.4 Å, which is a distance used in previous investi-
gations on dimers of PDI [59,60]. Exciton states were computed for the eclipsed aggregates
and for displacements of 0.5 Å up to 8.0 Å along the longitudinal translation coordinate (z)
(Figure 1). For singlet exciton states, trimers and tetramers were also considered beside
dimers (Figure S1).

Excitation energies were determined with TDDFT calculations in the Tamm-Dancoff
approximation (TDA) [73], using the CAM-B3LYP [74] and ωB97X-D [75] functionals and
the 6-31G* basis set. The ωB97X-D functional was previously shown to provide a reliable
description of CT character in singlet excitons of PDI dimers [27]. All QC calculations were
carried out with the Gaussian16 suite of programs [76]. The CT character of exciton states
was determined as described above and using TheoDORE 2.4 [66].

3. Results and Discussion

3.1. Modulation of Singlet Exciton-State Energies and Characters for PDI Aggregates

Previous investigations of excitation energy profiles and CT character in PDI dimers
for interchromophore longitudinal shifts have shown that computed exciton states are
generally strong mixtures of the two types of diabatic states. The weight of LE and CT
characters, however, strongly depends on the energy difference between FE and CR diabatic
states, and on their couplings [27,59,60]. This is the reason why the CT character of the
lowest singlet exciton state is critically dependent on the chosen functional. In this regard,
it has been shown that the adiabatic energy profiles and CT characters computed at the
TD-ωB97X-D/6-31G* level match those obtained at higher level of theory [27,59,60]. Here
we performed the character analysis based on TDA-computed exciton states rather than the
full TDDFT linear response. While the excitation energy profiles of the four exciton states
are quite similar (Figure S2), the FE and CT energy profiles of Bu symmetry obtained from
TDA-ωB97X-D/6-31G* calculations display a crossing (Figure 2) not seen for TD-ωB97X-
D/6-31G* calculations [60], leading ultimately to a CT character of the lowest Bu exciton
state (at the eclipsed geometry and for small displacements, see Figure 3) greater than 50%,
since the weight of the CT character can be traced back to the energy location of FE and
CR states [60] (Figure S3). Such large CT character contrasts with experimental results
and was previously reported for other long-range corrected functionals and from CIS
calculations [27,59]. Obviously, slightly larger intermonomer separations will reduce the
contrasting results between TD and TDA-ωB97X-D/6-31G* calculations, which, however,
illustrate the crucial role determined by the energy difference between the CR and FE states.
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Figure 2. Excitation energy profiles (TDA-ωB97X-D/6-31G*) of Bu adiabatic (adia, solid) singlet
exciton states and Bu FE and CR states (dashed) for the PDI dimer along the longitudinal translation
coordinate. The computed energy profiles of exciton states are the result of the interactions between
CR and FE states of the same symmetry. When the interactions are large, the adiabatic exciton energies
differ considerably from the diabatic energies.

Figure 3. CT character of adiabatic singlet exciton states of PDI dimer along the longitudinal transla-
tion coordinate determined with two different approaches (solid) using the procedure described in
Section 2 and (dashed) using TheoDORE analysis tool [66].

Finally, we note that the CT character determined following the procedure outlined
in Section 2 and the results of TheoDORE [66] are in excellent agreement for all the four
low-lying states investigated (Figure 3). A similar correspondence is found for the lowest
energy exciton states of larger aggregates (Figure S4).

3.2. Modulation of Triplet Exciton-State Energies and Characters for PDI Dimers

Triplet exciton-state analysis was carried out only on TDA calculations since TD triplet
wavefunctions contain relevant contributions from de-excitations. The oscillating trend in
adiabatic energy profiles (Figure 4a) are easily rationalized by the oscillating trend of the
interactions between the CR and FE states (Figure 4b). As shown previously [22,31,59,60],
these interactions are given by the ± combinations of the De and Dh transfer integrals.
While couplings between triplet LE states are almost negligible [22], spin triplet CR/FE in-
teractions are of the same magnitude as those computed for singlet exciton states (Figure S5).
In analogy with singlet excitons, these interactions determine not only the CT character of
the adiabatic triplet exciton states (Figure 4c), but also the symmetry of the lowest energy
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state (Figure 4a), with an interchange of Ag and Bu along the longitudinal translation
coordinate. Such an alternation is well established for singlet exciton states and leads
to the appearance of CT-mediated J-type spectroscopic features for small longitudinal
displacements of one of the two PDI molecules [8,9,58,60] in a range of displacements
where Kasha’s theory only predicts H-type aggregation. Therefore, CR states create an
effective short-range exciton coupling that can induce unconventional J-type spectroscopic
features [8,9,46,58–60,69,77,78].

Figure 4. Analysis of triplet exciton states of the PDI dimer (TDA-ωB97X-D/6-31G*). (a) Com-
puted adiabatic excitation energy profiles. (b) Magnitude and modulation along the longitudinal
translation coordinate of the De ± Dh terms for the interaction between CR/FE states of the dimer.
(c) Comparison between the CT character determined with the procedure described in Section 2 and
with TheoDORE [66] for the selected triplet exciton states of PDI dimer.

Notably, here we show that the same mechanism is active in the triplet exciton mani-
fold, albeit with less effective CR/FE mixing. Indeed, as previously reported [22], one of
the most relevant differences between singlet and triplet exciton states is the larger energy
difference between FE and CR states, which triggers a modest CR/FE mixing. This can be
appreciated in Figure 4c, showing that the largest CT contribution for the lowest triplet
exciton state does not exceed 20%. At the same time, Figure 5a,b compare the results of
CR/FE interactions for singlet and triplet Ag exciton states of the PDI dimer and enlighten
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the role of the increased energy difference between FE and CR states in the latter. Never-
theless, the CR/FE mixing is sufficient to modulate the triplet exciton energies, ultimately
leading to an alternation between Bu and Ag states that parallels what is well documented
for singlet exciton states.

Figure 5. Energy profiles (TDA-ωB97X-D/6-31G∗) of (solid) Ag adiabatic exciton states and (dashed)
Ag FE and CR states for the PDI dimer along the longitudinal translation coordinate: (a) singlet exciton
states; (b) triplet exciton states. The computed exciton energy profiles result from the interactions
between CR and FE states of the same symmetry. When the interactions (Figure 4b) are strong, the
exciton-state energies deviate from FE and CR energies. The interaction is less effective for triplet
states due to the larger energy difference between FE and CR states.

More specifically, the oscillation of the CR/FE interaction (see the De ± Dh profiles
shown in Figure 4b), determines an interchange of the lowest exciton states of Ag and
Bu symmetry in the dimer for longitudinal shifts in the range of ca. 2–3 Å, where the
interaction between Ag symmetry FE and CR states is almost negligible. At the same time,
the interaction between the FE and CR Bu states is the maximum and pushes the adiabatic
1Bu state energetically below 1Ag (see Figure 4a), thereby switching the aggregate character
from H- to J-type.

These results suggest that radiative and nonradiative decays from the lowest triplet
exciton states of molecular aggregates, intimately related to the nature and symmetry of the
lowest energy state, may be modulated by the intermolecular organization, a concept that
could be exploited for systems displaying dimerization-induced triplet state populations [57].

We finally compare the CT character analysis obtained from our protocol (solid lines
in Figure 4c) with the results of TheoDORE (dashed lines in Figure 4c). The agreement
is very good for the two lowest triplet exciton states, while marked differences appear
for the remaining two states. The reason is that for several intermolecular configurations
the selected ππ∗ triplet exciton states (whose wavefunction is dominated by excitations
within the selected ππ∗ orbital space) are spread over more than one TDDFT-computed
exciton state. As a consequence, TheoDORE analysis picks up only the CT contribution
corresponding to the fraction of the selected ππ∗ exciton state. In contrast, with the
procedure described in Section 2, the selected ππ∗ exciton states are projected out of the
entire space of computed exciton states and renormalized. Interestingly, triplet exciton
states (belonging to the selected orbital space) appear to mix more strongly than singlet
states with other exciton states of the dimer, as suggested by wavefunction analysis and
by the fragmentation of the CT contributions in TheoDORE analysis. Such fragmentation
contrasts with the almost perfect match discussed for singlet excitons of the PDI dimer
(Figure 2) and suggests that diabatization procedures are likely to be more problematic
when analyzing triplet exciton states.

To visualize the nature of exciton states for two representative dimer configurations of
the PDI dimer, we have carried out a fragment-based analysis via electron-hole correlation
plots using TheoDORE (Figure 6). The two selected fragments correspond to the two
molecules forming the dimer. Exciton states are identified by the nonvanishing elements of
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the 2 × 2 matrix (the Ω-matrix [66]) represented by different levels of grey. Locally excited
contributions appear on the main diagonal (going from lower left to upper right), while
CT contributions appear off diagonally. In agreement with the character analysis shown in
Figure 4c, Figure 6 shows that for the eclipsed configuration, the character of the 1Bu state
is purely LE while the character of the lowest energy exciton state of 1Ag is partially CT,
as indicated by the light grey squares in the electron-hole correlation plot. The situation
is reversed at the slip-stacked configuration (2.5 Å longitudinal translation), with the 1Bu
state displaying some CT contribution.

Figure 6. Triplet exciton-state analysis via electron-hole correlation plots [66] for two PDI dimer
configurations: eclipsed 0.0 Å and 2.5 Å slip-stacked. The grey scale used is shown on the right panel.
From TDA-ωB97X-D/6-31G* calculations.

Influence of Functional on Triplet Exciton Character of the PDI Dimer

While the interplay of CR and FE states is crucial for TDDFT functionals to reproduce
higher level results for the calculation of singlet excitons [27,60], the larger energy difference
between FE and CR triplet states makes the choice of the functional less critical. This is
illustrated by the small differences obtained between TDA-ωB97X-D/6-31G* and TDA-
CAM-B3LYP/6-31G* calculations.

The major difference between the two functionals is the lower excitation energies com-
puted at the TDA-CAM-B3LYP level. The difference between the TDA-CAM-B3LYP and
TDA-ωB97X-D energies is larger for the two higher energy exciton states, whose CT character
is dominant (Figure 7). The lower energy of CT states at the TD-CAM-B3LYP level is not
unexpected and was identified as the major source of discrepancy for singlet exciton states
computed with the CAM-B3LYP functional compared to ωB97X-D [27]. As a result of the
lower energy of CT states with the CAM-B3LYP functional, the CT character of the lowest
energy triplet exciton states is slightly larger at the TDA-CAM-B3LYP level, compared to
TDA-ωB97X-D, as can be seen in Figure 8. Interestingly, the CR/FE interaction is virtually
independent of the chosen functional, with almost identical TD-CAM-B3LYP and TDA-CAM-
B3LYP values (Figure 9). While it can be expected that other long-range corrected hybrid
variants would provide results similar to those reported here, the use of nonhybrid or hybrid
functionals with small contributions of exact (HF) exchange is not recommended because of
their tendency to underestimate the energetic position of CT states [46].
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Figure 7. Comparison between excitation energies of triplet exciton states of PDI dimer computed with
TDA-CAM-B3LYP/6-31G* (dashed) and TDA-ωB97X-D/6-31G* (solid) along the longitudinal shift.

Figure 8. Comparison between triplet exciton CT character computed with TDA-CAM-B3LYP/6-31G*
(dashed) and TDA-ωB97X-D/6-31G* (solid) calculations.

Figure 9. Interaction energies between CR and FE states computed at TDA-CAM-B3LYP/6-31G*
(dashed) and TDA-ωB97X-D/6-31G* (solid) levels; (gold) interaction between Ag CR and FE states;
(green) interaction between Bu CR and FE states.

4. Conclusions

We have analyzed the modulation of singlet and triplet exciton states of PDI aggre-
gates computed at the TDDFT level, focusing on the intermolecular displacement along
the longitudinal translation coordinate, which mimics different amounts of slip stacking
observed in PDI crystals.

55



Computation 2022, 10, 18

The CT character of singlet and triplet exciton states has been determined with a
diabatization procedure, and it has been shown that the results agree with other character-
analysis tools, such as the TheoDORE software.

The study has shown that triplet exciton-state energies can be rationalized in terms
of the interactions between CR and FE diabatic states, which are found to be of the same
strength as those computed for singlet exciton states. Such CR/FE interactions ultimately
lead, not only to a mixed LE/CT character of the low-lying triplet exciton states, but also to
a CT-mediated J-aggregation mechanism for small longitudinal displacements, similar to
what has been previously documented for singlet exciton states.

Finally, we have compared the results of two long-range corrected hybrid functionals
and shown that the magnitude of the CR/FE interactions are almost independent on the
selected functional. In contrast with singlet exciton states, the larger energy difference
between FE and CR triplet states makes the choice of the functional (among long-range
corrected hybrid variants) less critical to define the CT contributions in low-lying triplet
exciton states.

Overall, these results demonstrate that the same interactions responsible for the CT-
mediated J-aggregation in singlet exciton states of PDI aggregates are operative in triplet
exciton states and show that the role of CR states must be carefully considered as a factor
influencing the processes following triplet exciton generation. These findings might be
exploited to design chromophores and interchromophore organizations to optimize dimer-
induced triplet state population.
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Abstract: We consider kinetic energy functionals that depend, beside the usual semilocal quan-
tities (density, gradient, Laplacian of the density), on a generalized Yukawa potential, that is the
screened Coulomb potential of the density raised to some power. These functionals, named Yukawa
generalized gradient approximations (yGGA), are potentially efficient real-space semilocal methods
that include significant non-local effects and can describe different important exact properties of
the kinetic energy. In this work, we focus in particular on the linear response behavior for the
homogeneous electron gas (HEG). We show that such functionals are able to reproduce the exact
Lindhard function behavior with a very good accuracy, outperforming all other semilocal kinetic
functionals. These theoretical advances allow us to perform a detailed analysis of a special class
of yGGAs, namely the linear yGGA functionals. Thus, we show how the present approach can
generalize the yGGA functionals improving the HEG linear behavior and leading to an extended
formula for the kinetic functional. Moreover, testing on several jellium cluster model systems allows
highlighting advantages and limitations of the linear yGGA functionals and future perspectives for
the development of yGGA kinetic functionals.

Keywords: density functional theory; kinetic functional; Yukawa potential

1. Introduction

The non-interacting kinetic energy (KE) functional is one of the main quantities of
interest in density functional theory [1,2]. Its exact formal definition is readily obtained,
following the Levy constrained search formalism [3], as

Ts[n] = min
Ψ→n

〈Φ| − 1
2
∇2|Φ〉 , (1)

where n is the electron density and Φ is a Kohn-Sham (KS) [4] Slater determinant yielding
the density n. This formula allows us to study different important properties of the KE
functional and provides an explicit expression for Ts in terms of KS orbitals. However, it
does not allow us to obtain an explicit expression in terms of the electron density. Therefore,
the quest for the KE density functional is still open, also considering the importance of this
quantity in many contexts including orbital-free density functional theory (OF-DFT) [5–8],
subsystem DFT [9–15], and quantum hydrodynamic theory [16–19]. In addition, semilocal
KE functionals have been used in meta-GGA exchange-correlation functionals to remove
their orbital dependence [20–24].
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Numerous investigations have been dedicated in the last decades to the study of KE
functionals [25–72]. Nevertheless, accurate approximations of Ts[n] are hard to obtain
because this quantity usually gives a dominant contribution to the ground-state energy [3]
and because of the highly non-local nature of the KE functional [5,51,73–78]. For this
reason, more recently, machine-learning methods have also been used to develop KE
functionals [79–87].

A KE functional approximation can be written

Ts[n] =
∫

τ[n](r)dr , (2)

where τ(r) is the KE density and, actually, there are two main strategies to approximate
τ(r). The simplest one considers the KE density to be a semilocal functional of the density,
that is

τ[n](r) = τsemilocal(n(r),∇n(r),∇2n(r), . . .) . (3)

This approach, which traces back to the nearsightedness principle [88], is computa-
tionally efficient because of the local nature of τ(r). However, since it is not explicitly
including non-local effects, that are quite relevant for KE functionals, semilocal functionals
face several limitations [46,89].

To overcome this problem, the other popular approach used to describe the KE density
makes explicit use of a non-local ansatz [47–63]

τnon−local(r) =
∫

nα(r)K(r, r′)nβ(r′)dr′ , (4)

where K(r, r′) is a proper non-local kernel. The presence of the non-local kernel strongly
increases the computational cost of the method and raises several practical difficulties. On
the other hand, non-local KE functionals are much more accurate [47–63].

In particular, the kernel can be designed in order to reproduce the correct linear
response behavior of the homogeneous electron gas (HEG), which has been shown to be a
very important property for the KE functional [47,60]. In fact, the KE functional and the
linear response function χ have a close relation, given by the equation [5]

F
(

δ2Ts[n]
δn(r)δn(r′)

)
= − 1

χ(k)
, (5)

where F denotes the Fourier transform and k is the momentum vector. For the HEG, the
linear response function can be computed analytically [5] and is related to the Lindhard
function [90]. Hence,

χHEG(k) = − (3π2n)1/3

π2 F−1
Lind(η) , (6)

F−1
Lind(η) =

1
2
+

1 − η2

4η
ln
∣∣∣∣1 + η

1 − η

∣∣∣∣ , (7)

with η = |k|/[2(3π2n)1/3] being a dimensionless momentum. The Lindhard function
cannot be accurately mimicked by any semilocal functional, because these all have a
polynomial Fourier transform [71]. On the other hand, it is the main property for most of
the non-local KE functionals.

Recently, a new class of KE functionals [71] has been proposed to join the advantages of
the semilocal methods and the good features of the non-local functionals. These functionals,
named Yukawa generalized gradient approximation (yGGA), use as input ingredients,
beside the density and its gradients, a Yukawa potential

uα(r) =
∫ n(r′)e−αkF(r)|r−r′ |

|r − r′| dr′ , (8)
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i.e., a screened Coulomb potential with αkF(r) = α(3π2)1/3n(r)1/3 as the screening length.
In this way, it is possible to include efficiently non-local effects and improve the description
of the HEG response function without resorting to the reciprocal space [71] (as it is instead
accustomed in non-local functionals).

In this work, we will take a step further in this direction and we will consider a
modification of the basic input ingredient of the functional, allowing the Yukawa potential
to be computed for a power of the density, i.e.,

uαβ(r) =
∫ nβ(r′)e−αkF(r)|r−r′ |

|r − r′| dr′ . (9)

The computational cost of Equation (9) is, at least for the spherical systems considered
in this work, the same as the one of the conventional Yukawa potential in Equation (8);
thus, it is interesting to investigate if and how the β parameter will impact the accuracy of
the linear response and of the resulting KE functional.

Therefore, we will consider yGGA functionals of the general form

τ[n](r) = τ(n(r),∇n(r),∇2n(r), uαβ(r)) . (10)

For these functionals, we will provide a full analytical derivation of the linear response
function and we will consider the exact constraints required to reproduce the Lindhard
behavior. Finally, we will analyze the role of the β parameter for the description of jellium
spheres and we will give insights for the further development of yGGA functionals.

2. Theory

We consider a KE density of the form

τ = CFn5/3Fs(p, q, yαβ) , (11)

where Fs is the KE enhancement factor and

CF =
3

10
k2

0 with k0 = (3π2)1/3 , (12)

p(r) =
|∇n(r)|2

4k2
0n(r)8/3

, (13)

q(r) =
∇2n(r)

4k2
0n(r)5/3

, (14)

yαβ(r) =
3πα2

4k0n(r)β−2/3

∫ nβ(r′)e−αk0n(r)1/3|r−r′ |

|r − r′| dr′ . (15)

The quantity yαβ is the main ingredient of the yGGA functional, whereas p (the reduced
gradient) and q (the reduced Laplacian) are the conventional ingredients of meta-GGA
functionals. The ingredient yαβ is proportional to the potential uαβ, where the normalization
constant has been choosen so that yαβ is adimensional and invariant under uniform scaling,
as shown in Ref. [71]. Moreover, in the case of a large number of electrons, where the
Thomas–Fermi (TF) limit is exact, we have also yαβ → 1: thus, the enhancement factor Fs
must be 1 when p = 0, q = 0, and yαβ = 1.

While the case of β = 1 has been deeply investigated in Ref. [71], when β �= 1, the
properties of yαβ change. In particular, in the tail of finite systems we have:

yαβ → 3πα2

4k0

Qβ

nβ−2/3r
, (16)

Qβ =
∫

nβ(r′)dr′ , (17)
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(for β = 1, Qβ is just the number of electrons). Thus, yαβ diverges for β > 2/3 (as the
density vanishes exponentially), whereas for β ≤ 2/3, it vanishes.

2.1. Kinetic Energy Potential

Following the same derivation as in Ref. [71], the KE potential of a general modified
yGGA functional is

δTyGGA
s

δn(r)
= vMGGA

k (r) + vyGGA,1
k (r) + vyGGA,2

k (r) , (18)

with

vMGGA
k (r) =

∂τ

∂n
(r)−∇ · ∂τ

∂∇n
+∇2 ∂τ

∂∇2n
, (19)

vyGGA,1
k (r) = βn(r)β−1

∫
∂τ

∂uαβ(r′)
e−αkF(r

′)|r−r′ |

|r − r′| d3r′ , (20)

vyGGA,2
k (r) = −αkF(r)

3n(r)
∂τ

∂uαβ(r)

∫
nβ(r′)e−αkF(r)|r−r′ |d3r′. (21)

The potential can also be expressed as a function of the enhancement factor using:

dτ

duαβ
=

9πα2

40
kF(r)n(r)2−β dFs

dyαβ
. (22)

Note that the potential in Equation (20) is a non-local function of the expression in
Equation (22). This means, for example, that a divergence of dτ

duαβ
in the tail of a finite

system will have an impact everywhere in the space. Thus, the enhancement factor Fs must
be properly defined in all points.

In the limit of a large number of electrons (kF → ∞), we have

vyGGA,1
k (r) = βn(r)β−1 9πα2

40
kF(r)n(r)2−β dFs

dyαβ

4π

α2kF(r)2

= β
3

10
kF(r)

2 dFs

dyαβ(r)
, (23)

vyGGA,2
k (r) = −αkF(r)

3n(r)
9πα2

40
kF(r)n(r)2−β dFs

dyαβ
nβ(r)

8π

α3kF(r)3

= − 2
10

kF(r)
2 dFs

dyαβ(r)
, (24)

which are stable expressions for all values of β. In this case, we also have that the MGGA
term of Equation (19) reduces to the first LDA term only. Hence, for the total KE potential,
we find

∂TyGGA
s
∂n

(r) =
5
10

kF(r)
2Fs(yαβ(r))− (

3
10

β − 2
10

)kF(r)
2yαβ(r)

dFs

dyαβ(r)
. (25)

With the condition Fs → 1, we have that the total KE potential of Equation (25) reduces
to ∂τ/∂n = (5/10)kF(r) = vTF(r), where vTF is the Thomas–Fermi potential. Thus, the
condition that in the TF limit Fs → yαβ → 1 yields also a correct potential.

2.2. Linear Response of a yGGA Functional

Following Refs. [71,91], we compute the linear response considering the perturbed
density n = n0 + nke−ik·r. Note that the derivation in Ref. [71] was limited to a specific
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class of yGGA functionals (the linear yGGA functional, see Section 3 in the following) and
with β = 1. Hereafter, a completely general derivation is presented.

Expanding the resulting perturbed KE density in power series, we obtain the linear
response χ = 1/F as twice the coefficient of the inverse of the second-order term. For
simplicity, we can evaluate the whole expression in r = 0, since the HEG is homogeneous
and isotropic. Then, we have n = n0 + nk, |∇n|2 = n2

kk2 and ∇2n = −nkk2. Therefore, we
need to consider

τ = CF(n0 + nk)
5/3Fs(p, q, yαβ) , (26)

with

p =
n2

kk2

4k2
0(n0 + nk)8/3

, (27)

q = − nkk2

4k2
0(n0 + nk)5/3

, (28)

yαβ ≈ 1 − βk2

A2 + k2
nk
n0

+

+

[
β(β − 1)

2
A2

A2 + 4k2 +
2βA2k2 − 3β2 A2(A2 + k2)

3(A2 + k2)2 +
β(β + 1)

2

](
nk
n0

)2
, (29)

where we have set A = αk0n1/3
0 . For the derivation of the expression for yαβ, see Appendix A.

To proceed, we can expand in powers of nk both factors in Equation (26). Thus, using
the notation ∂nk = ∂/∂nk|nk=0, we can write

τ ≈ CF

(
n5/3

0 +
5
3

n2/3
0 nk +

5
9

n−1/3
0 n2

k + · · ·
)
×

×
(

Fs(0, 0, 1) + ∂nk Fsnk +
1
2

∂2
nk

Fsn2
k + · · ·

)
=

= CFn5/3
0 Fs(0, 0, 1) +

[
5CFn2/3

0
3

Fs(0, 0, 1) + CFn5/3
0 ∂nk Fs

]
nk + (30)

+

[
5CFn−1/3

0
9

Fs(0, 0, 1) +
5CFn2/3

0
3

∂nk Fs +
CFn5/3

0
2

∂2
nk

Fs

]
n2

k +O(n3
k) .

The linear response χ = 1/F is given by twice the coefficient of the inverse of the
second-order term. Therefore,

F = 2

[
5CFn−1/3

0
9

Fs(0, 0, 1) +
5CFn2/3

0
3

∂nk Fs +
CFn5/3

0
2

∂2
nk

Fs

]
=

= k2
0n2/3

0

[
Fs(0, 0, 1)

3n0
+ ∂nk Fs +

3n0

10
∂2

nk
Fs

]
. (31)

The corresponding Thomas–Fermi-renormalized linear response is F̄ = kFF/π2 =
k0n1/3F/π2. Then,

F̄ = 3n0

[
Fs(0, 0, 1)

3n0
+ ∂nk Fs +

3n0

10
∂2

nk
Fs

]
. (32)

For simplicity of notation in the following, we neglect the subscript αβ in the yαβ

ingredient.
To obtain a more explicit expression for Equation (32), we use the chain rule
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∂nk Fs = Dp∂nk p + Dq∂nk q + Dy∂nk y , (33)

where we have employed the notation (i = p, q, y)

Di ≡
∂Fs

∂i

∣∣∣∣
(p,q,y)=(0,0,1)

. (34)

Hence, substituting the values for ∂nk p, ∂nk q, and ∂nk y, we find

∂nk Fs = −Dq
k2

4k2
on5/3

0

− Dy
1
n0

βk2

A2 + k2 . (35)

For the second derivative, we have

∂2
nk

Fs = ∂nk

(
∂p
∂nk

∂Fs

∂p
+

∂q
∂nk

∂Fs

∂q
+

∂y
∂nk

∂Fs

∂y

)
=

= ∂2
nk

pDp + ∂2
nk

qDq + ∂2
nk

yDy +
(
∂nk p

)2Dpp +
(
∂nk q

)2Dqq +
(
∂nk y

)2Dyy +

+2∂nk p∂nk qDpq + 2∂nk p∂nk yDpy + 2∂nk q∂nk yDqy . (36)

Since ∂nk p = 0, this immediately simplifies to

∂2
nk

Fs = ∂2
nk

pDp + ∂2
nk

qDq + ∂2
nk

yDy +
(
∂nk q

)2Dqq +
(
∂nk y

)2Dyy + 2∂nk q∂nk yDqy . (37)

Substituting the values for the various derivatives, we find

∂2
nk

Fs =
k2

2k2
0n8/3

0

Dp +
5k2

6k2
0n8/3

0

Dq +

+
2
n2

0

[
β(β − 1)

2
A2

A2 + 4k2 +
2βA2k2 − 3β2 A2(A2 + k2)

3(A2 + k2)2 +
β(β + 1)

2

]
Dy +

+
k4

16k4
0n10/3

0

Dqq +
1
n2

0

β2k4

(A2 + k2)2 Dyy +
βk4

2k2
0n8/3

0 (A2 + k2)
Dqy . (38)

Finally, using Equations (35) and (38) into Equation (32), we obtain the formula

F̄ = Fs(0, 0, 1) +
9
20

k2

k2
0n2/3

0

Dp +
9

160
k4

n4/3
0 k4

0

Dqq +

+
3
5

[
3β(β − 1)

2
A2

A2 + 4k2 − 3βA2(βA2 + k2) + bk2(3βA2 + 5k2)

(A2 + k2)2 +
3β(β + 1)

2

]
Dy +

+
9

10
β2k4

(A2 + k2)2 Dyy +
9
20

βk4

k2
0n2/3

0 (A2 + k2)
Dqy , (39)

which, with the substitution η = αk/(2A) and after some algebra, assumes the final form

F̄ = Fs(0, 0, 1) +
9
5

η2Dp +
9
10

η4Dqq +
36
5

βη4

α2 + 4η2 Dqy

+
9

10
β(β − 1)

(
1 +

α2

α2 + 16η2 − 2α2

α2 + 4η2

)
Dy +

+
24
5

β
η4

(α2 + 4η2)
2

(
3βDyy − 4Dy

)
. (40)
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We note that this expression is well defined and continuous for any value of α and β.
However, the case β = 1 is a special one. In fact, in this case, F̄ loses its dependence on
Dy, being dependent only on the linear combination 3βDyy − 4Dy as well as on Fs(0, 0, 1),
Dp, Dqq, Dqy (here, we only consider the dependence on the degrees of freedom related
to the modeling of the enhancement factor; α and β, which are related to the definition
of y, are considered as additional parameters). Therefore, when β = 1, there is a reduced
parametric flexibility to optimize the linear response function through the modeling of the
enhancement factor. As we will see, this has consequences for the possibility to impose the
correct asymptotic behavior to F̄.

Asymptotic Behavior

The asymptotic expansions of the exact response function are [5]

F̄Lind = 1 +
η2

3
+

8
45

η4 +O(η6) η → 0 , (41)

F̄Lind = 3η2 − 3
5
+O(η−2) η → ∞ . (42)

From Equation (40), we get for the small-η limit

F̄ = Fs(0, 0, 1) +
9
5

(
Dp − 4

β(β − 1)
α2 Dy

)
η2 +

+
3
5

(
3
2

Dqq +
12β

α2 Dqy +
16
α4 β(21β − 23)Dy +

24
α4 β2Dyy

)
η4 , (43)

and in the large-η limit

F̄ =
9
10

Dqqη4 +
9
5
(

Dp + βDqy
)
η2 +

+
3
5

(
5
3

Fs(0, 0, 1) +
β(3β − 7)

2
Dy +

3β2

2
Dyy −

3
4

α2βDqy

)
.

Therefore, we have the following asymptotic conditions

Fs(0, 0, 1) = 1 η → 0 O(η0) , (44)

Dp − 4
β(β − 1)

α2 Dy =
5

27
η → 0 O(η2) , (45)

3
2

Dqq +
12β

α2 Dqy +

+
16
α4 β(21β − 23)Dy +

24
α4 β2Dyy =

8
27

η → 0 O(η4) , (46)

9
10

Dqq = 0 η → ∞ O(η4) , (47)

9
5
(

Dp + βDqy
)
= 3 η → ∞ O(η2) , (48)

5
3

Fs(0, 0, 1) +
β(3β − 7)

2
Dy +

+
3β2

2
Dyy −

3
4

α2βDqy = −1 η → ∞ O(η0) . (49)

As we saw, in the most general case (i.e., for any value of β), the linear response
function has only five degrees of freedom (Fs(0, 0, 1), Dqq, Dp, Dqy, 3βDyy − 4Dy) to satisfy
these conditions. Thus, initially, we chose to consider Equations (44)–(48), neglecting for
the moment the η0 order in the large-η limit. With this choice, we obtain
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Fs(0, 0, 1) = 1 , (50)

Dqq = 0 , (51)

Dp =
5
27

+
4
α2 β(β − 1)Dy , (52)

Dqy =
40

27β
− 4

α2 (β − 1)Dy , (53)

3βDyy − 4Dy =
α2(α2 − 60)

27β
− 36(β − 1)Dy . (54)

These conditions fix the asymptotic behavior of the response function up to the η4

order in the short-range limit and to the η2 order in the long-range one. Using these values
into Equation (40), we find

F̄ =
34560η8 + Q6η6 + Q4η4 + 15α4η2(α2 + 72

)
+ 45α6

45(α2 + 4η2)
2
(α2 + 16η2)

, (55)

Q6 = 16
(

8α4 + 255α2 − 5832β(β − 1)Dy + 720
)

, (56)

Q4 = 8α2
(

α4 + 45α2 + 810
)

. (57)

For large η values, Equation (55) behaves as

F̄ = 3η2 + Δ , (58)

Δ = (1/90)α4 − (81/10)Dyβ(β − 1)− (4/3)α2 + 1 . (59)

For β = 1, the exact condition Δ = −3/5 can only be obtained for specific values of α,
as the dependence from Dy vanishes. For β �= 1, instead, we can solve for Dy obtaining

Dy =
α4 − 120α2 + 144

729β(β − 1)
. (60)

In this general case, we have also

Dyy =
13α4 − 3180α2 + 5760 + (−9α4 + 2700α2 − 5184)β

2187β2(β − 1)
. (61)

Equations (60) and (61), together with Equations (50)–(53), fix the asymptotic behavior
of the response function up to the η4 order in the small-η limit and down to the η0 order in
the large-η one.

We note that the expressions for Dy and Dyy diverge at β = 1: This reflects the fact
that, as discussed above, for β = 1, it is not always possible to fulfill all the asymptotic
conditions. Nevertheless, all equations are well defined for any other value of β as well in
the limit β → 1. In fact, the divergence in the denominator in this limit, the contribution Dy,
becomes negligibly small in Equation (40) as well as in Equations (52) and (53); moreover,
the linear combination 3βDyy − 4Dy is always well defined, since it does not diverge for
any β > 0.

Substitution of the asymptotic conditions into Equation (40) finally yields the general
yGGA response

F̄gen =
34560η8 + 432η6(45α2 − 16) + 8α2η4(α4 + 45α2 + 810) + 15α4η2(α2 + 72) + 45α6

45(α2 + 4η2)2(α2 + 16η2)
. (62)

Note that, remarkably, this formula displays no dependence on β. Thus, β can be used
to optimize the functional beyond the linear response regime. The value of α can instead
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be optimized by fitting to match as close as possible the exact Lindhard function. To this
purpose, we can minimize the quantity

σ =
∫

w(η)

∣∣∣∣ 1
F̄lind(η)

− 1
F̄(η)

∣∣∣∣dη , (63)

where F̄lind is the normalized Lindhard linear response function and

w(η) = e−μ(η−1)2
, (64)

with μ = 2, is a weighting function. The use of this weighting function allows to focus the
fit in the region close to η = 1 instead of the asymptotic ones that are already included by
construction. We remark that the results are only weakly dependent on the choice of μ.

Figure 1 reports the values of the errors with respect to the exact Lindhard function for
different values of α. We see that the best reproduction of the Lindhard function is achieved
for α = 3.31, with σ = 0.0513. However, a quite broad range of values allows us to attain
a low error; in particular, for α ∈ [2.26, 4.66], the response is always better than the one
obtained by the yuk2 functional [71].

1 2 3 4 5
α

0.06

0.08

0.1

0.12

0.14

σ

yuk2

Figure 1. Values of the error function σ (Equation (63)) for the function F̄gen for different values
of the α parameter. For comparison, the σ value corresponding to the yuk2 functional, ref. [71] is
also reported.

The linear response functions for various cases are reported in Figure 2. Inspection of
the plot shows that they are all quite similar, as already suggested by the considerations
above. For α = 3.31, we obtain at η = 1, where the Lindhard function shows a derivative
singularity, that 1/F̄ = 0.47, which is very close to the exact value 1/F̄ = 1/2 [5]. Actually,
it is also possible also to satisfy 1/F̄ = 1/2 exactly using α = 3.64, even if the global
accuracy is somehow smaller in this case (σ = 0.0527).
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Figure 2. Linear response functions as computed by Equations (55) and (62) [F̄gen] for α = 3.31. For
Equation (55), two different choices of β have been considered; for each one, the value of Dy has been
chosen such to minimize the error σ in Equation (63). The exact Lindhard and the yuk2 responses are
also reported for comparison. The inset shows instead the difference between the Lindhard function
and the various response functions reported in the plot.

3. Linear yGGA Functionals

We consider the simplest case of yGGA functional by taking functionals that have an
enhancement factor with the general form

FlinyGGA
s (p, q, y) = 1 − G0 +

5
3

p + y (G0 + G(p, q)) . (65)

i.e., a linear dependence on y. Note that these are closely related with the yGGAs defined
in Ref. [71], which are recovered if G0 = 1 and β = 1. However, in this work, we lift
this restriction.

From Equation (65), we have that Fs(0, 0, 1) = 1 is satisfied by construction if G(0, 0) = 0
and Dqq = Gqq, Dp = 5/3 + Gp, Dqy = Gq, Dyy = 0, Dy = G0, where we have
used the short-hand notation Gi = ∂G(0, 0, 1)/∂i, and Gij = ∂G(0, 0, 1)/∂i∂j. Using
Equations (50)–(53), we then obtain

Gqq = 0 (66)

Gp = −40
27

+
4
α2 β(β − 1)G0 = −βGq . (67)

The simplest functional satisfying these conditions is the one with

G(p, q) =

(
40

27β
− 4

α2 (β − 1)G0

)
(q − βp) ≡ x (68)

G0 =
α2(α2 − 60)

108β(9β − 10)
. (69)

Equation (68) has been derived from Equation (54) using the fact that, for functionals
defined by Equation (65), Dyy = 0. The Equations (65), (68), and (69) define the yuk2β
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functional, which reproduces the Lindhard functional at small η up to fourth order and for
large η behaves as

F̄yuk2β → 3η2 + Δyuk2β (70)

Δyuk2β = 1 +
(−2700β + 3180)α2

360(9β − 10)
+

(9β − 13)α4

360(9β − 10)
. (71)

Although the exact value Δyuk2β = −3/5 can be obtained for specific values of α and
β, this condition does not have a big impact on the overall accuracy of the linear response.
We consider the general error indicator of the linear response of yuk2β with respect to the
Lindhard function (Equation (63)). Results for different values of the α and β are reported
as a colormap in Figure 3.

Figure 3. Error with respect to the Lindhard function (Equation (63)) for the yuk2β functional
at various values of the parameters α and β. The black dots denote the positions of the pairs of
parameters listed in Table 1.

Table 1. Considered values of α and β, with the corresponding values of G0, see Equation (69), Gp,
see Equation (67), the error defined in Equation (63), and the value of 1/F at η = 1.

α β G0 Gp σ 1/F̄(η = 1)

1.36 1 1 1.48 0.0791 0.385
3.31 1 4.97 1.48 0.1049 0.617
3.31 2 −0.31 0.85 0.0676 0.545
3.31 2/3 1.86 2.45 0.0758 0.567
2.34 5/9 1 2.98 0.0588 0.469

We find that, as seen in the previous section, there is a quite broad range of α values
that yield small errors (blue areas in the plot). Moreover, the errors are almost independent
on β, except for values β ≈ 1.1, where a discontinuity in the linear response behavior occurs.

Moreover, from the results of the previous section, we can fix α = 3.31, such that
G0 ≈ 4.484/[β(10 − 9β)], which is shown in Figure 4.
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Figure 4. Value of G0 as a function of β for different values of α.

Note that G0 is positive up to β = 10/9, where it has a pole, and it has a minimum
at β = 5/9. We remark that instead setting G0 = 1 and β = 1, then Equation (68) readily
yields α = 1.36. Thus, the yuk2β functional immediately reduces to the yuk2 functional of
Ref. [71].

The yuk2β functional is just a simple ansatz recovering an accurate linear response
behavior. However, because it uses a linear dependence on p and q, it may display severe
drawbacks in real applications. In particular, the positivity of the Pauli KE density must be
ensured [38,92], which is not the case for Equation (65). In fact, the quantity

1 + w = 1 − G0 + y(G0 + x) (72)

is not always positive. Thus, we define the yuk3β functional as

Fyuk3β
s =

5
3

p + T(w) , (73)

with T(w) being a positive function such that for w ≈ 0, we have T(w) = 1 + w + O(x3),
such as the one considered in Ref. [71]. Thus, lacking any quadratic term, the yuk3β has
the same linear response of yuk2β. In this way, although the functional Fyuk3β

s is not truly a
linear function of y, it practically behaves as a linear function of y because Dyy = 0. True
non-linear yGGA functionals, with Dyy �= 0, are much more complicated, and they will be
considered elsewhere.

4. Computational Details

Densities and enhancement factors were computed in post-SCF fashion using the
orbitals of self-consistent Kohn–Sham calculations. All Kohn–Sham calculations have been
performed using an in-house developed code solving numerically the spherical symmetry
Kohn–Sham problem with the local density approximation being used for the exchange-
correlation functional.
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Neutral jellium spheres with N = 40, 92, 254 electrons and Wigner–Seitz radius rs = 2,
3, 4, 5, and 6 were considered. They are characterized by the positive background density

n+(�r) =

{
3/(4πr3

s ), r < R
0, r ≥ R .

(74)

The post-processing of the Kohn–Sham orbitals to obtain the quantities G(p, q), y, and
w has been carried out by an additional in-house software which evaluates the required
derivatives and integrals in real space using the same grid as the one used in the Kohn–
Sham calculations.

5. Results

We considered different pairs of α and β values for the y ingredient, as reported in
Table 1 (see also Figure 3). The first pair (α = 1.36, β = 1) is the one of the original yuk2
functional of Ref. [71]. The second, third, and fourth pairs consider the α value suggested by
Figure 1 and several values of β. The last pair considers the minimizing β value of Figure 4
and a corresponding α such that G0 = 1. All these pairs give a quite accurate description
of the HEG linear response: the highest accuracy is obtained for (α, β) = (3.31, 2) and
(2.34, 5/9), as reported in the last column of Table 1.

In Figure 5, we report, in panels (a), (b), (c) and (d) respectively, the electronic density,
the function x defined in Equation (68), as well as the values of y and w for a jellium sphere
with N = 254 electrons and rs = 4.

Looking at Figure 5, we see in panel (b) that for β ≥ 1, the values of x are negative in
the tail, as also discussed in Appendix C. Moreover, panel (c) shows that the ingredient
y is close to 1 inside the jellium spheres for all (α,β) pairs but in the tail, it diverges for
β ≥ 1. On the other hand, for β = 2/3, it reaches a constant (but it will slowly vanish in
very far regions), while for β ≥ 2/3, it soon decreases to zero, as discussed in Section 2.
Finally, panel (d) shows the ingredient w. Inside the sphere, the values of w are in the range
|w| < 0.3 for all the (α, β) combinations. The behavior in the tail follows the one of x but
for β = 1 and α = 3.31, there is a peak before the negative divergence.

These results indicate that for the total kinetic energy, which is mainly influenced by the
functional behavior inside the jellium sphere, all the cases considered here can be expected
to yield similar results, which are in line with the performance of the yuk3 functional [71].
On the other hand, for the potential, we have a contribution ∂Fs/∂y ∝ ∂Fs/∂w · ∂w/∂y.
However, this latter term for functionals with β < 1 is largely divergent (w(r) is diverging
but y(r) is not); similarly, it diverges in the (α = 3.31, β = 1) case, where w strongly
oscillates around r = 30 bohr. Thus, we can expect, for these values of the parameters,
major problems on the KE potential.

To understand better the role of β on the KE functional, we can perform a further
analysis of the “exact” Pauli KE enhancement factor

Fexact
p ≡ τKS

p (r)/τTF(r) , (75)

where τKS
p is the Pauli KE density corresponding to the Kohn–Sham positive-defined KE

density and τTF is the Thomas–Fermi density. Hence, we have computed Fexact
p for several

jellium clusters with different numbers of electrons (N = 40, 92, 254) and rs = 2, 3, 4, 5, and
6 on all grid points, and we have plotted it versus the corresponding values of w. In fact,
Equation (73) implies that that the Pauli enhancement factor can be written as a universal
single-valued function of w. However, this is an ansatz, which must be verified; if it is
correct, then we must obtain a unique value of Fp for each w, also for different systems.
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Figure 5. Electronic density (a) and KE ingredients (b–d) for a jellium sphere with N = 254 electrons
and rs = 4. The ingredients x, y, and w are reported for different choices of the β and α parameters.

Figure 6 shows the plot of Fexact
p vs. w for the various pairs of parameters considered in

this work. It is evident that the cases with β < 1 and the case with (α = 3.31, β = 1) do not
yield single-valued functions but rather display multiple branches of Fexact

p for all values
of w. This confirms that using these parameters, it is not possible to obtain an accurate
description of the kinetic functional. On the contrary, the yuk2 parameterization (α = 1.35,
β = 1) and the one with (α = 3.31, β = 2) show a nice single line for w ≥ 0. For negative w
values, they display a multi-valued behavior; however, for these cases, the w < 0 region
corresponds to the density tail region. Therefore, the effect, at least on the computation
of the energy, is minor. Thus, we can infer that both functionals will be accurate for the
kinetic energies (this is indeed the case for yuk2 [71]) but may yield some oscillations in the
asymptotic part of the potential because of the multi-valued behavior at w < 0. This latter
feature is possibly significantly reduced for (α = 3.31, β = 2) that displays the lowest grade
of multi-valuedness at negative w values.

In a future work, we will develop an approach that will allow us to obtain an analytical
F(w) function in order to build up an accurate KE functional and KE potential. However,
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the results reported in Figure 6 also indicate that the ansatz in Equation (73) may be not
accurate enough and further studies are required, in particular, to investigate the effect of
the non-linear term (y2), which is already important for the HEG linear-response and can
be even more important for the description of finite systems.
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Figure 6. Exact Pauli Kohn–Sham enhancement factor (Equation (75)) vs. the w ingredient as
computed on all grid points for several jellium spheres (see text for details). Each panel corresponds
to a different choice of the β and α parameters.

6. Conclusions

In this paper, we have investigated non-interacting kinetic energy functionals depend-
ing on a generalized Yukawa potential, i.e., a screened Coulomb potential of the electronic
density raised to the power of β. The use of this input ingredient allows us to introduce in
an efficient way non-local features into the functional.

In particular, we have derived the exact homogeneous electron gas linear response
behavior of generalized yGGA functionals and, by comparing to the Lindhard function, we
have derived exact asymptotic constraints for the functional.

In particular, it turned out that β = 1 is a very special case, and the Lindhard asymp-
totic constraints can only be satisfied for a specific value of the screening parameter (α).
Moreover, the final linear response of yGGA functionals satisfying the low and high-
wavevector Lindhard properties does not depend on β, which can be then used as an
additional degree of freedom to model systems beyond the linear-response regime.

We have used the developed theory to extend the work reported in Ref. [71] and
investigate in detail the simplest class of yGGA functionals, namely the linear yGGAs,
i.e., those yGGA functionals depending only linearly on y. We have found that although
this class of functionals can satisfy rather accurately the linear response constraints, it is
not flexible enough to perform very accurately for both the kinetic energy and potential
computation. This is mainly due to the fact that imposing the linear response behavior
implies, in these simple functionals, that the Pauli enhancement factor is a function of a
well-defined combination of the density ingredients (the w ingredient of Equation (72)), but
this is not sufficient to describe the non-local nature of the Pauli kinetic energy. Although
for some wise choices of the parameters, this effect can be minimized; this is an intrinsic
limitation of the linear yGGA functional class.
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Therefore, future work will focus on the development of more sophisticated functionals
forms using an explicit non-linear dependence on the Yukawa potential. The theoretical
framework established in this paper will possibly allow us to develop more efficient and
broadly applicable kinetic energy functionals.
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Appendix A. Weak Perturbation of y

To compute the perturbation of y defined in Equation (15), we first consider the
generalized Yukawa potential

uα(r) =
∫ nβ(r′)e−A(r)|r−r′ |

|r − r′| dr′ , (A1)

where we have set A = αk0n1/3
0 . Upon the density perturbation, this becomes

uα = nβ
0

∫ (
1 + e−ik·r′

(
nk
n0

))β
e−A

(
1+

nk
n0

)1/3
r′

r′
dr′ . (A2)

Expanding in series and keeping only terms up to second order, we find

uα ≈ nβ
0

[
I1 +

(
βI2 −

1
3

AI3

)
nk
n0

+

(
β(β − 1)

2
I4 +

A
18

(AI5 + 2I3)−
Aβ

3
I6

)(
nk
n0

)2
]

,

with

I1 ≡
∫ e−Ar′

r′
dr′ (A3)

I2 ≡
∫ e−ik·r′−Ar′

r′
dr′ (A4)

I3 ≡
∫

e−Ar′dr′ (A5)

I4 ≡
∫ e−2ik·r′−Ar′

r′
dr′ (A6)

I5 ≡
∫

r′e−Ar′dr′ (A7)

I6 ≡
∫

e−ik·r′−Ar′dr′. (A8)

Substituting the values of the integrals (see Appendix B), we find

uα ≈ 4πnβ
0

A2 + 4πnβ
0

(
β

A2 + k2 − 2
3A2

)
nk
n0

+

+4πnβ
0

(
β(β − 1)

2
1

A2 + 4k2 +
5

9A2 − 2A2β

3(A2 + k2)2

)(
nk
n0

)2
. (A9)
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Now, we can consider the perturbation of y, that is

y =
3πα2

4k0(n0 + nk)
β−2/3 uα[n0 + nk](r) =

=
3πα2n2/3−β

0
4k0

(
1 +

nk
n0

)2/3−β

uα[n0 + nk](r) . (A10)

Using the result of Equation (A9) and expanding to second-order, we find

y ≈ 1 − βk2

A2 + k2
nk
n0

+

+

[
β(β − 1)

2
A2

A2 + 4k2 +
2βA2k2 − 3β2 A2(A2 + k2)

3(A2 + k2)2 +
β(β + 1)

2

](
nk
n0

)2
. (A11)

Appendix B. Integrals for the Generalized Yukawa Expansion

For integral I1, I3 and I5, we use that

E[A, n] =
∫ ∞

0
(r′)2rne−Ar′dr′ =

Γ(3 + n)
A3+n . (A12)

Thus, I1 = 4πE[A,−1] = 4π
A2 , I3 = 4πE[A, 0] = 8π

A3 , I5 = 4πE[A, 1] = 24π
A4 .

To compute the I2, I4, and I6 integrals, we can choose the axis such that k is aligned
with the z axis; then, we have that k · r′ = kr′ cos θ. Hence, we can write

F[k, n] =
∫ 2π

0
dφ

∫ π

0
sin θdθ

∫ ∞

0
dr′r′2(r′)ne−Ar′ e−ikr′ cos θ =

= 2π
∫ ∞

0
dr′r′2(r′)2e−Ar′

∫ π

0
dθ sin θe−ikr′ cos θ =

=
2π

ik

∫ ∞

0
(r′)nr′e−Ar′

(
eikr′ − e−ikr′

)
dr′ =

2π

ik
(E[A − ik, n]− E[A + ik, n])

=
4π

k
�[E[A − ik, n − 1]]. (A13)

Thus, I2 = F[k,−1] = 4π
A2+k2 and I6 = F[k, 0] = 8πA

(A2 + k2)2 .
The I4 integral is similar to the integral I2 with the substitution k → 2k. Then,

I4 =
4π

A2 + 4k2 .

Appendix C. Asymptotics

For an exponential spherical density ρ(r) = A exp(−2Zr), where Z =
√−2εH ,

we have

p → Z2 1
k2

0

1
ρ2/3 (A14)

q → Z(Zr − 1)
r

1
k2

0

1
ρ2/3 (A15)

so that
q − p → −Z

r
1
k2

0

1
ρ2/3 = − p

rZ
. (A16)
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Thus, q − p is negative in the tail; i.e., q is very large in the tail but smaller than p. If
we consider q − βp with β > 1, then q − βp will be more negative. If we consider q − βp
with β < 1, then q − βp will be positive.
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35. Constantin, L.A.; Fabiano, E.; Śmiga, S.; Della Sala, F. Jellium-with-gap model applied to semilocal kinetic functionals. Phys. Rev.
B 2017, 95, 115153. [CrossRef]

36. Luo, K.; Karasiev, V.V.; Trickey, S. A simple generalized gradient approximation for the noninteracting kinetic energy density
functional. Phys. Rev. B 2018, 98, 041111(R). [CrossRef]

37. Lehtomäki, J.; Lopez-Acevedo, O. Semilocal kinetic energy functionals with parameters from neutral atoms. Phys. Rev. B 2019,
100, 165111. [CrossRef]

38. Perdew, J.P.; Constantin, L.A. Laplacian-level density functionals for the kinetic energy density and exchange-correlation energy.
Phys. Rev. B 2007, 75, 155109. [CrossRef]

39. Karasiev, V.V.; Jones, R.S.; Trickey, S.B.; Harris, F.E. Properties of constraint-based single-point approximate kinetic energy
functionals. Phys. Rev. B 2009, 80, 245120. [CrossRef]

40. Laricchia, S.; Constantin, L.A.; Fabiano, E.; Della Sala, F. Laplacian-Level kinetic energy approximations based on the fourth-order
gradient expansion: Global assessment and application to the subsystem formulation of density functional theory. J. Chem. Theory
Comput. 2013, 10, 164–179. [CrossRef]

41. Cancio, A.C.; Stewart, D.; Kuna, A. Visualization and analysis of the Kohn-Sham kinetic energy density and its orbital-free
description in molecules. J. Chem. Phys. 2016, 144, 084107. [CrossRef]

42. Cancio, A.C.; Redd, J.J. Visualisation and orbital-free parametrisation of the large-Z scaling of the kinetic energy density of atoms.
Mol. Phys. 2017, 115, 618–635. [CrossRef]

43. Constantin, L.A.; Fabiano, E.; Della Sala, F. Semilocal Pauli–Gaussian Kinetic Functionals for Orbital-Free Density Functional
Theory Calculations of Solids. J. Phys. Chem. Lett. 2018, 9, 4385–4390. [CrossRef]

44. Constantin, L.A.; Fabiano, E.; Della Sala, F. Performance of Semilocal Kinetic Energy Functionals for Orbital-Free Density
Functional Theory. J. Chem. Theory Comput. 2019, 15, 3044–3055. [CrossRef] [PubMed]
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Abstract: The interest for properties of clusters deposited on surfaces has grown in recent years. In
this framework, the Density Functional based Tight Binding (DFTB) method appears as a promising
tool due to its ability to treat extended systems at the quantum level with a low computational cost.
We report the implementation of periodic boundary conditions for DFTB within the deMonNano code
with k-points formalism and corrections for intermolecular interactions. The quality of DFTB results
is evaluated by comparison with dispersion-corrected DFT calculations. Optimized lattice properties
for a graphene sheet and graphite bulk are in agreement with reference data. The deposition of both
benzene monomer and dimers on graphene are investigated and the observed trends are similar
at the DFT and DFTB levels. Moreover, interaction energies are of similar orders of magnitude for
these two levels of calculation. This study has evidenced the high stability of a structure made of two
benzene molecules deposited close to each other on the graphene sheet. This work demonstrates the
ability of the new implementation to investigate surface-deposited molecular clusters properties.

Keywords: periodic DFTB; deMonNano; graphene; graphite; benzene dimers; deposited benzene;
supported clusters; weighted mulliken charges

1. Introduction

The modeling of functional extended surfaces has grown in past decades to investigate,
for fundamental and engineering purposes, a large number of phenomena or applications
such as, e.g., deposition [1], growth and migration [2], 2D assembly [3], catalysis [4], elec-
trocatalysis [5], photocatalysis [6], molecular electronics [7], depollution [8], sensing [9], etc.
Many of these studies have focused on deposited clusters, i.e., finite aggregations of basis
elements (atoms or molecules) adsorbed on surfaces. Indeed, the physico-chemical proper-
ties of a cluster are distinct from the ones of both the single entities and the infinite cluster
(bulk) and strongly depend on the size and structure of the cluster [10]. Understanding
and controlling the structure of deposited clusters could thus allow the precise tuning of
their properties.

The theoretical study of clusters deposited on extended surfaces is very challenging
due to the size of the space of structural and electronic configurations to be explored and
the high level of computational methods that has to be implemented. Indeed, the a priori
unknown nature of the interactions between the cluster building blocks and between the
cluster and the surface (with potential charge transfers at the cluster–surface interface) pre-
vents the use of empirical force fields in favor of methods in which the electronic structure is
explicitly considered. The very high computational cost of ab initio and Density Functional
Theory (DFT) methods prohibit their use for the study of such systems, particularly when
dealing with global optimisation or finite-temperature molecular dynamics, and one strat-
egy consists in implementing, in a periodic formulation, approximate quantum mechanical
methods. Among them, DFTB is an approximated DFT scheme with a much lower com-
putational cost enabled by the use of parameterized integrals in a minimal valence basis
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set [11–14]. There have been several implementations of DFTB within periodic conditions
in various codes [15–21], allowing the computation of structural, mechanical and electronic
properties. In the present work, we report a new implementation of the DFTB scheme for
periodic systems within the deMonNano code [22] combined with corrections to describe
long range intermolecular interactions.

After assessing the performance of this implementation on graphene and graphite,
we apply this method to characterize model systems consisting in benzene and benzene
dimers deposited on a graphene surface. Such a system is relevant in an astrophysical
context as it can be seen as a simple model of Polycyclic Aromatic Hydrocarbons (PAH)
clusters adsorbed on large carbonaceous grains or on very large PAHs. Indeed, despite
the fact that PAHs are expected to be ubiquituous in the interstellar medium [23] and
their clusters have been proposed to play a significant role in interstellar physics and
chemistry [24], the structural and energetic property changes induced by their deposition
on a surface remain, to a large extent, unknown. The second motivation for selecting this
benchmark system is that a reasonable description of the benzene dimers potential energy
surface is challenging even with ab initio schemes [25], making it a system of choice to
address the quality of our approach. This is due to the fine equilibrium between Pauli
repulsion, dispersion and coulomb interaction, which drives the competition between
parallel and T-shaped structures. In the past, we have shown that the combination of DFTB
with empirical dispersion and atomic charges corrections allowed for a proper description
of such systems [26].

In this paper, the periodic formulation of DFTB that has been implemented in deMon-
Nano is presented in Section 2, with a special focus on the originality of the present scheme
with respect to other periodic implementations, i.e., its combination with the WMull charge-
correction approach. Computational details are provided in Section 3, and the benchmarks
on graphene and graphite are presented in Section 4. The applications to benzene monomer
and dimers deposited on graphene are discussed in Section 5. Finally, a conclusion is
provided in Section 6.

2. Methods

2.1. DFTB

The Density Functional-based Tight-Binding method (DFTB) can be derived from DFT
from several approximations [11,13,14,16,27].

The first one relies on the expression of molecular orbitals (MOs) φi(r) as linear
combinations of atomic orbital (LCAO)-type basis sets using minimal valence bases χμ:

φi(r) = ∑
μ

ciμχμ(r) (1)

where ciμ is the coefficient of the molecular orbital i on the atomic orbital χμ.
A Taylor expansion of the DFT energy is performed as a function of the electronic

density, and the real density ρ of the system minimizing the Kohn–Sham energy is searched
as a perturbation with respect to reference density ρ0 (ρ = ρ0 + δρ).

E[ρ(r)] = E[ρ0(r)]+
∫

δE[ρ(r)]
δρ(r)

∣∣∣∣
ρ0

δρ(r) +
1
2

∫ ∫
δ2E[ρ(r)]

δρ(r)δρ(r′)

∣∣∣∣
ρ0

δρ(r)δρ(r′)+

· · ·+ 1
p!

∫ ∫
· · ·

∫
δpE[ρ(r)]

δρ(r)δρ(r′) . . . δρ(r(p))

∣∣∣∣
ρ0

δρ(r)δρ(r′) . . . .δρ(r(p))

(2)

In the original version, also known as the non self-consistent DFTB (sometimes referred
to as zeroth-order DFTB or simply DFTB [11,12]), only the zeroth and first-order terms of
the Taylor expansion are retained. In the DFTB2 scheme [27], also known as self-consistent
charge (SCC) DFTB and in the DFTB3 scheme [28], the second-order and third-order terms
are also taken into account, respectively.
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At the DFTB0 level, the electronic energy reads as follows:

EDFTB0 = ∑
α<β

Erep(rαβ) + ∑
iμν

niciμciν H0
μν (3)

with rαβ = rβ − rα, where rα and rβ are the positions of atoms α and β, respectively,
Erep(rαβ) is a repulsive contribution between atoms α and β, ni is the occupation of the
orbital i and H0

μν is the matrix element associated with the Kohn–Sham operator at the
reference density expressed in the atomic basis. These matrix elements, as well as those
of the atomic basis overlap matrix S, can be parameterized as only one-body or two-body
terms. This is allowed by the definition of the reference density as a superposition of
atomic densities ρ0 = ρα

0 + ρ
β
0 + ρ

γ
0 + . . . , and the reduction of integrals to one-center or

two-center terms:

• H0
μ,ν∈α(ρ0) ≈ H0

μν(ρ
α
0) ≈ δμνεμα; the atomic orbital energies of the isolated atom α;

• H0
μ∈α,ν∈β(ρ0) ≈ H0

μν(ρ
α
0 + ρ

β
0 ), which only depends on the distance between the two

corresponding atomic centers: H0
μ∈α,ν∈β(rα − rβ).

Focusing from now on the SCC-DFTB level [27], the energy expression is :

ESCC−DFTB = EDFTB0 +
1
2 ∑

αβ

γαβqαqβ (4)

The last term corresponds to the second-order contribution and depends on the
electronic density fluctuation δρ represented by atomic charges qα. γαβ is a matrix for which
diagonal terms are equal to the atomic Hubbard parameters and off-diagonal terms contain
the 1/R coulomb interaction between atomic charges and an exchange-correlation energy
Exc contribution:

γαβ =
∫ ∫ (

1
|r − r′| +

δ2Exc

δρ(r)δρ(r′)

∣∣∣∣
ρ0

)
Fα

0 (r − rα)Fβ
0 (r

′ − rβ)drdr′ (5)

where Fα
0 is the normalized spatial extension for the excess/default of electrons around atom

α with respect to the neutral atom, and it is assumed here to have no angular dependence.
Since the second-order term contains atomic charges, this introduces a term depending

on the charges of H1(q) into the TB operator:

(H0 + H1(q))Ci = εiSCi (6)

with the following:

H1
μν =

1
2

Sμν ∑
ξ

qξ(γαξ + γβξ)

where μ and ν belong to atoms α and β, respectively, and Ci is the column vector containing
the coefficients for the ith MO. As the charges depend on MO coefficients ciμ, the new
secular equation must be solved self-consistently with respect to atomic charges, at the
origin of the method’s name self-consistent charge (SCC-)DFTB.

In the standard SCC-DFTB version [27], the atomic charges are computed from the
density matrix P and the atomic basis overlap S matrix within the Mulliken approximation:

qα = ∑
μ∈α

∑
β

∑
ν∈β

PμνSμν (7)

making use of the density matrix:

Pμν = ∑
μν

niciμciν
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In previous works, we have shown that atomic charges can be improved by taking into
account the bond polarisation, adapting the Charge Model class IV scheme for DFTB [26,29].
This approach, which requires the calculation of Mayer’s bond order, is computationally
expensive and hardly transferable to a periodic implementation. To circumvent this bottle-
neck, we have recently introduced a simpler scheme, named in the following WMull for
Weighted Mulliken charges [30], to correct atomic charges with the following expression.

qα = ∑
μ∈α

∑
β

∑
ν∈β

PμνSμν(1 + tαβ) (8)

tαβ = −tβα is an empirical parameter accounting for a non-symmetric repartition of the
electrons between different atomic types, where the Mulliken symmetric repartition is
recovered for tαβ = 0. The second order contribution to the Kohn–Sham operator matrix is
modified as follows.

H1
μν =

1
2

Sμν ∑
ξ

qξ(γαξ(1 + tαβ) + γβξ(1 − tαβ)) (9)

We have shown that this simple scheme provides similar results to those obtained
with the Charge Model approach to model clusters of PAHs [31] and water [32].

2.2. DFTB for Periodic Systems

The former implementation of periodic DFTB within deMonNano was restricted to
Γ-point approximation only [22]. In the present implementation, after defining a set of
k-points in the reciprocal space, the electronic problem is searched self consistently. A step
of the self-consistent scheme consists in solving separately the secular equations for each
k-point to obtain molecular orbitals φk

i . Molecular orbitals obtained for all k-point are
then used to build the total electronic density, the latter being used as an input for the next
self-consistent step.

For a given k-point, the molecular orbitals φk
i must fulfill Bloch’s theorem:

T̂Rφk
i = eikRφk

i (r) (10)

where T̂R is the operator associated to a translation of R and where R is a vector connecting
two unit cells. This is achieved by expanding MOs on a basis of Bloch functions built from
real space atomic orbitals:

φk
i (r) = ∑

k

ck
iμχk

μ(r)

χk
μ(r) =

1√
N

∑
N

eikRN χμ(r − RN) (11)

where the infinite sum relies on all N possible translations from the main unit cell to any
of the other ones through translation vectors RN . The overlap and Kohn–Sham operator
matrices expressed in this basis can be written from their real-space equivalent by making
use of the following transformation:

Hk
μν = ∑

N
eikRN Hμν(rα − rβ − RN) = ∑

N
eikRN (H0

μν(rα − rβ − RN) + H1
μν(rα − rβ − RN))

and
Sk

μν = ∑
N

eikRN Sμν(rα − rβ − RN) (12)

where μ and ν belong to atoms α and β, respectively.
In the previous expressions, the matrix elements of H0 and S are easily obtained from

the DFTB Slater–Koster tables [33] and rapidly vanish for large values of RN . The first
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order contribution to Hμν is also short range with respect to (rα − rβ − RN) but contains an
infinite long range coulomb sum.

H1,k
μν (rα − rβ − RN) =

1
2

Sμν(rα − rβ − RN)∑
ξ

∑
N

qξ(γαξ(rα − rξ − RN) + γβξ(rβ − rξ − RN)) (13)

In practice, this infinite sum is replaced by an Ewald summation. The secular equation
is solved for each k-point.

HkCk
i = εk

i SkCk
i (14)

The eigenvalues εk
i resulting from all the k-point secular equations are then sorted in

ascending order to drive the determination of the orbital occupation numbers nk
i following

either a canonical occupation or a Fermi distribution.
The density matrix can, therefore, be computed for each k-point.

Pμν(k) = ∑
i

nk
i ck∗

iμ ck
iν (15)

We follow the approach of reference [15], which consists in building the real space
density matrix and computing atomic charges in the real space. The real space density
matrix is obtained by summing over k-points:

Pμν(RN) = ∑
k

Pμν(k)e−ikRN (16)

and the Mulliken charges are then computed as follows:

qα = ∑
RN

Pμν(RN)Sμν(rα − rβ − RN) (17)

and they are used as inputs for the next SCC cycle.
The simple WMull correction to Mulliken charges can be generalized to the periodic

equations replacing Equation (17) by the following:

qα = ∑
RN

Pμν(RN)Sμν(rα − rβ − RN)(1 + tαβ) (18)

and Equation (13) by the following.

H1,k
μν (rα − rβ − RN) =

1
2

Sμν(rα − rβ − RN)∑
ξ

∑
N

qξ (γαξ(rα − rξ − RN)(1 + tαβ)

+ γβξ(rβ − rξ − RN)(1 − tαβ)) (19)

3. Computational Details

3.1. DFTB Calculations

Different DFTB parameters are available in the literature (cf. website www.dftb.org)
depending on the choices made during the parameterization procedure such as the DFT
functional, the basis sets type (Gaussian and Lorentzian) used to generate the atomic
orbitals, the confinement imposed on these orbitals, the reference data used to compute
the repulsive contribution Erep and, for the second and third order DFTB, the values of the
atomic Hubbard parameters and their derivatives. In this work, we are working with the
BIO DFTB set of parameters [27] provided within the deMonNano code.

Dispersion interaction corrections can be introduced in the DFTB Hamiltonian using
an empirical atom-atom formula. Two types of corrections are available in the deMonNano
code and will be tested in the next section. The first one (hereafter labelled D1) is a Lennard–
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Jones type potential with short range corrections introduced by Zhechkov et al. [34]. The sec-
ond one (hereafter labelled D2 [26]) is given by the following expression:

Edisp = −∑
N

∑
α,β

fdamp(|rα − rβ − RN |)
C6

αβ

|rα − rβ − RN |6
(20)

where fdamp is a damping function screening the short range contribution and C6
αβ is an

empirical parameter (see [26] for details). In both cases, only the van der Waals contributions
larger than 10−5 Hartree are taken into account in order to limit the number N of boxes
involved in the sum.

When calculations are performed with the WMull scheme, a value of tCH = 0.245 has
been determined to provide the atomic charges for the benzene molecule in agreement
with reference calculations (see tables and discussion in reference [26]).

Regarding convergency criterions, we have used a tolerance of 10−8 for the atomic
charges during the SCC process and 5 × 10−6 Hartree/Bohr for the largest gradient for
local optimizations.

3.2. DFT Calculations

Dispersion-corrected DFT calculations were performed under periodic boundary con-
ditions using the Vienna ab initio simulation package (VASP [35–37]) together with PAW
pseudopotentials [38,39] and the PBE-D3 semiempirical dispersion-corrected functional in
its zero-damping formalism [40]. This functional has been chosen as it has been reported
as a relevant choice for studies involving graphene [41]. A conjugate-gradient algorithm
was used to relax the ions and the convergence criterion was set up so that the maximum
atomic force was less than 0.01 eV Å−1, and all atoms were allowed to relax unconstrained.
To avoid interactions between the benzene monomers/dimers and their periodic images,
a cubic box measuring 50 Å on a side was used for isolated systems. For supported ones,
the calculations were performed on a 29.92 Å × 34.55 Å graphene surface (these values
having been calculated on the basis of the graphene equilibrium lattice parameter reported
in Section 4) containing 392 carbon atoms placed in a 50 Å high simulation box to avoid
any interaction between the adsorbed molecule and the underside of the graphene sheet of
the upper periodic box. Since the size of the supercell was large enough, the Brillouin zone
sampling in reciprocal space restricted to the Γ-point was sufficient to ensure good conver-
gence of the total energy, except for the calculations aimed at determining the equilibrium
parameters of the graphite bulk, which required a 1 × 1 × 5 k-points grid. A plane-wave
kinetic energy cutoff of 450 eV was employed. For dealing with the partial occupancies
around the Fermi level, Methfessel–Paxton smearing was used with σ = 0.2 eV [42].

4. Benchmark Calculations: Graphene and Graphite

The goal of this section is twofold. First, k-points grid size tests are performed on
two systems of interest, namely the 392-atom graphene sheet that will be further used
in Section 5 and 2 × 392-atom graphite built from periodic repetition of two graphene
layers. Second, we aim at evaluating the quality of the DFTB potential to reproduce the
main features of graphene and graphite. In order to model graphene, we have first
optimized the DFTB lattice parameter, working with a periodic box containing 392 atoms
(∼30 Å × 35 Å × 50 Å). For such a large simulation box, the Γ-point approximation re-
mains valid as the energy varies by less than 3.4 × 10−4 eV/atom (0.0008%) when increasing
from one to three k-points in the x and y directions and by less than 1.3 × 10−4 eV/atom
(0.0003%) when changing from three to five k-points. The equilibrium C-C bond lengths
determined with one or three k-points in x and y directions are the same at the precision
of 10−3 Å . Values of 1.430 ± 0.001 Å and 1.426 ± 0.001 Å were obtained with DFTB-D1
and DFTB-D2 methods, respectively (see Table 1). These values are slightly larger than the
value of 1.421 Å previously reported by Zhechkov et al. using the Γ-point approximation
and a smaller unit cell [34]. The DFTB-D2 values produces the best agreement with the C-C
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bond length obtained at the dispersion-corrected DFT level (1.425 ± 0.001 Å with DFT-D3
and 1.4226 Å with PW91-OBS [43]) as well as with the experimental values (1.42 Å).

The graphite bulk has been modeled by including two layers of the previously defined
graphene sheet in the periodic box. In order to determine the appropriate number of
k-points in the z direction (perpendicular to the graphene planes), we have performed
DFTB single point energy calculations for an interlayer distance of 3.5 Å, chosen because
it corresponds to the DFT-D3 one (3.488 Å, see Table 1), with one k-point in the x and
y directions. The total energy varies by 2 × 10−4 eV/atom (0.0004%) when the number
of k-points increased from one to three in the z direction, and then it remains constant
for calculations performed with five, seven and nine k-points in the z-direction. We
have determined the equilibrium parameters of the graphite bulk with three k-points in
the z directions (Table 1). Using either one or three k-points in the x and y directions
led to the sames results at the target precision of 0.001 Å. DFTB-D1 and DFTB-D2 C-C
bond lengths are reduced by 0.001 Å with respect to their values in the graphene sheet,
which is a trend also observed at the DFT-D3 level. The DFTB-D1 interlayer equilibrium
distance (3.383 ± 0.001 Å) is in agreement with both the value of reference [34] with a four
layers model in the Γ-point approximation (3.38 Å) and the experimental data (3.356 Å).
The interlayer distance is reduced to 3.131 ± 0.001 Å at the DFTB-D2 level. With respect to
theoretical references (DFT-D3, RPA and QMC) and experimental values, we can conclude
that the DFTB-D1 method produces better quality results for graphite interlayer distances,
while the DFTB-D2 method prevails for the C-C bond length.

Table 1. Graphene and Graphite structural data (in Å). * In these computational studies, dC−C

distance was fixed to the one determined experimentally. ** Differences between the two DFTB-D1
calculations are detailed in the text.

Methods d
Graphene
C−C d

Graphite
C−C d

Graphite
interlayer

DFTB-D1 ** 1.430 ± 0.001 1.429 ± 0.001 3.383 ± 0.001
DFTB-D2 1.426 ± 0.001 1.425 ± 0.001 3.131 ± 0.001
DFTB-D1 ** 1.421 [34] 1.421 [34] 3.38 [34]
DFT-D3 1.425 ± 0.001 1.424 ± 0.001 3.488 ± 0.001
PW91-OBS 1.4226 [43]
RPA 1.42 * [44] 3.34 * [44]
QMC 1.42 * [45] 3.426 * [45]
Expt 1.42 [46] 1.422 [47,48] 3.356 [47,48]

5. Graphene Supported Benzene and Benzene Dimers

5.1. Benzene Supported on Graphene

We performed local structural optimization for systems consisting of an isolated
benzene molecule deposited on top of a graphene monolayer. On the basis of the results
obtained in Section 4, the calculations have been performed in the Γ-point approximation,
with the initial structures corresponding to a benzene molecule deposited in the proper
orientation on the optimized graphene layer. Four different configurations have been
probed and labeled a1, a2, a3 and a4, which can be visualized in Figure 1. The three first
ones correspond to the structures labeled a1, a2 and a3 in reference [49]: hollow, bridge and
top in reference [50] and AA, SP and AB in reference [51]. The last structure a4 was named
top-rot in reference [50] and was also studied in reference [52].
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a1 a2

a3 a4

Figure 1. Four configurations for an isolated benzene molecule deposited on graphene (a1–a4). The
atoms are depicted with sticks and the color labels are dark grey for C atoms of the graphene layer,
green for C atoms of the benzene molecule and white for H atoms.

The binding energies of benzene on graphene, reported on Table 2, were computed
with the following formula:

Egraphene@bz
bind = Egraphene@bz

tot − Egraphene
tot − Ebz

tot (21)

where all energies correspond to relaxed structures. DFTB-D1 and DFTB-D2 results agree
on the main trends which are also present at the DFT-D3 level: three almost degenerated
structures, namely a2, a3 and a4, and the a1 structure being less stable by about 0.012(DFTB-
D2)/0.015(DFTB-D1)/0.025(DFT-D3) eV (see Table 2). The absolute binding energies
provided by the DFTB-D2 scheme are in very good agreement with DFT results (apart from
LDA) and experimental measurements. The DFTB-D1 scheme provides poorer results,
with an overestimation of the binding energies of about 35% (∼0.2 eV).

Table 2. Binding energies of benzene on graphene in eV. The experimental binding energy of a
benzene molecule on a graphite surface is −0.50 ± 0.08 eV [53].

Method a1 a2 a3 a4

DFTB-D1 −0.639 −0.652 −0.654 −0.651
DFTB-D2 −0.439 −0.448 −0.447 −0.451
DFT-D3 −0.428 −0.450 −0.453 −0.450
LDA [49] −0.16 −0.23 −0.24
ωB97X-D [51] −0.47
optB86b-vdw [52] −0.5
vdW-DF1 [50] −0.49
vdW-DF2 [50] −0.43
Expt. Saturated Adsorption Enthalpy [52] −0.5

Regarding z-separation between the benzene monomer and the graphene sheet (see
Table 3), DFTB-D1 and DFTB-D2 benzene-graphene distances are shorter than DFT ones
by ∼0.35 Å. However, it should be noted that z-separations calculated with dispersion-
corrected DFT functionals also significantly differ from each other by up to 0.25 Å and
experimental data are missing in the literature to our knowledge. Concerning the a4
structure, z-separation can be compared with the MP2 one reported in reference [54], which
confirms the slight underestimation at the DFTB-D1 and DFTB-D2 levels.
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The binding energy and the z-separation of a graphene sheet with a deposited benzene
monomer can be compared with the ones of larger aromatic molecules. DFTB-D2 and DFT-
D3 computed benzene binding energies are in the range 0.43–0.45 eV, which is consistent
with the almost three-times larger binding energies of molecules containing three aromatic
rings such as anthraquinone (1.30 eV [55]) and phenanthraquinone (1.31 eV [56]). For these
systems, the reported z-separations are 3.19 Å [55] for anthraquinone and 3.14 Å [56])
for phenanthraquinone, and these values last between the DFTB-D2 and DFT-D3 values
obtained for the graphene-supported benzene molecule. One can also mention the slightly
larger distance reported for indole (tryptophan model, 3.50 Å [54]).

Table 3. Z-separation of benzene on graphene (in Å).

Method a1 a2 a3 a4

DFTB-D1 3.15 3.13 3.13 3.14
DFTB-D2 3.08 3.07 3.08 3.05
DFT-D3 3.47 3.38 3.36 3.42
ωB97X-D [51] 3.36 3.30 3.35

vdW-DF1 [50] 3.6
vdW-DF2 [50] 3.5
MP2 [54] 3.33

5.2. Benzene Dimers in Vacuum

Reproducing the benzene dimer potential energy surface is a challenging task for DFT
schemes, due to the fine competition between the various contributions to the total energy.
This is even more true for approximated schemes such as the DFTB method. Briefly, three
characteristic structural families can be identified, namely sandwich (S), parallel-displaced
(PD) and T-shaped (T), each one presenting several minima. In this work, the sandwich-
eclipsed (SE) structure has been selected to represent the sandwich family. The PD family
is represented by the isomer shown in Figure 2 as it was previously reported to be the
most stable of this family at the DFTB level. Two additional structures were considered
to account for the T-shaped family, namely T and Csoa isomers (corresponding to T4 and
Csoa in reference [26]), which only differ by a slight displacement of the top benzene from
a symetric position toward a position over a carbon atom. These two structures were
previously reported to be degenerated as their energies differed by less than 10−3 eV at the
DFTB level, and the present DFT-D3 calculations show a difference of 8 × 10−3 eV in favor
of the Csoa isomer.

The binding energy of benzene dimer were computed with the following formula:

Ebz2
bind = Ebz2

tot − 2 × Ebz
tot (22)

where all energies correspond to relaxed structures. These energies are gathered in Table 4
for the different structures optimized with both DFTB and DFT-D3 methods, together with
the ones reported in the literature for ab initio reference calculations (CCSD(T) and SAPT).
In the case of the T-shaped family, only one of the two studied isomers could be located on
DFTB potential energy surfaces, namely Csoa with the DFTB-D1 method and T with the
DFTB-D2 one. DFT-D3 and ab initio reference calculations agree on the fact that T-shaped
and PD structures are close in energy and by far more stable than the SE structure. This
ordering is not reproduced at the DFTB-D1 nor at the DFTB-D2 levels, i.e., for the two
dispersion corrections investigated in the absence of atomic charge corrections, because the
SE structure is found to be almost degenerated with the PD structure and the T-shaped
isomer is found to be the less stable one in both cases. Introducing the WMull charge
correction detailed in Section 2 with the D1 dispersion (DFTB-D1-WMull) renders the
PD structure the most stable, but the T-shaped structure remains the least stable. Finally,
the DFTB-D2-WMull method provides a correct picture, with T-shaped and PD isomers
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being close in energy and more stable than the SE isomer. In addition, the binding energies
are of the same order as those of the reference calculations.

Table 4. Binding energies for benzene dimer bz2 in eV.

Method T-Shaped PD SE

DFTB-D1 Csoa −0.126 −0.194 −0.192
DFTB-D1-WMull Csoa −0.140 −0.162 −0.148
DFTB-D2 T −0.099 −0.135 −0.132
DFTB-D2-WMull T −0.113 −0.104 −0.086
DFT-D3 Csoa −0.146 −0.152 −0.106

T −0.138
CCSD(T) [25] Csoa −0.12 −0.12 −0.07
SAPT [25] Csoa −0.12 −0.12 −0.08

T

PD → DFTB-D2-WMull (a4 − cd)

→ DFT-D3 (PD)

SE

Figure 2. Benzene dimers bz2 in vacuum and deposited on graphene.
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5.3. Benzene Dimers Supported on Graphene

It appeared from the previous sections that the DFTB-D2-WMull method is the best
DFTB choice for modeling both an isolated benzene molecule deposited on a graphene
layer and a benzene dimer in vacuum. This level of theory has been chosen to investigate
the deposition of a benzene dimer on a graphene sheet. Among the possible adsorption
modes of a benzene molecule on a graphene monolayer, we selected the a4 one as it was
found to be the most stable one at this level of theory (see Section 5.1) and added a second
benzene unit to form T, PD or SE configurations. The optimized structures, obtained in the
Γ-point approximation, are shown in Figure 2.

It can be observed that T and SE structures were preserved during optimization. On the
opposite side, the deposited PD dimer was stable at the DFT-D3 level only and resulted in
a dissociated configuration at the DFTB-D2-WMull level in which the two benzene units
are close to each other, both exhibiting a a4 adsorption configuration on the graphene sheet.
This configuration is hereafter named a4 − cd (close deposition on a4 adsorption sites).
In this latter configuration, the hydrogen atom of each benzene molecule is pointing in
between two hydrogen atoms of the other benzene unit. Such a configuration limits the
coulomb repulsion between the positively charged hydrogen atoms while preserving some
attractive dispersion interactions.

Z-separations between the graphene sheet and the benzene units parallel to it are
reported in Table 5. At both the DFT and DFTB levels, the distance between the graphene
sheet and the closest benzene unit is very slightly reduced (less than 0.05 Å with DFTB-
D2-WMull and 0.03 Å with DFT) with respect to the z-separation values obtained for the
deposited benzene monomer (see Table 3). In the SE structure, the presence of the graphene
surface results in a slight reduction in intermolecular distance from 3.55 Å to 3.52 Å at the
DFTB level, whereas it slightly increases from 3.88 Å to 3.94 Å at the DFT level.

Table 5. Binding energy of benzene dimers bz2 on graphene in eV and z-separation between the
graphene sheet and the benzene units parallel to it in Å. * No value is reported at the DFTB-D2-WMull
level for PD as the optimization resulted in the a4 − cd structure.

Ere f
tot =

DFTB-D2-WMull DFT-D3

T PD * a4− cd SE T PD a4− cd SE

Egraphene
tot + 2 × Ebz

tot −0.586

� −0.929 −0.573 −0.605 −0.624 −0.938 −0.583
Egraphene

tot + Ebz2
tot −0.473

�

- −0.487 −0.467 −0.473 - −0.478
Egraphene@bz

tot + Ebz
tot −0.135

� −0.478 −0.122 −0.156 −0.175 −0.489 −0.134
2 × Egraphene@bz

tot − Egraphene
tot 0.316

� −0.027 0.329 0.294 0.275 −0.039 0.316

Z-separation 3.03

�

3.00 3.02/6.53 3.38 3.39/6.91 3.40/3.40 3.39/7.33

The binding energies associated with the optimized structures are computed with the
following formula:

Egraphene@bz2
bind = Egraphene@bz2

tot − Ere f
tot (23)

and reported in Table 5, making use of various choices for Ere f
tot , which is the reference

potential energy. In the first line (graphene + 2bz), Ere f
tot is the energy of an optimized

graphene monolayer plus that of two isolated benzene molecules. It appears that, at DFT
and DFTB levels, the most stable configuration relies on the dissociation of the benzene
dimer to form the a4 − cd structure. The energetic difference between the T-shaped structure
and the less stable SE dimer is twice smaller (0.013 eV vs. 0.027 eV at the DFTB level and
0.022 eV vs. 0.052 eV at the DFT level) when the dimer is deposited with respect to the gas
phase condition. This is probably due to the interaction between the graphene surface and
the benzene molecule that is furthest from the surface, which is favored in the sandwich
configuration. In the second line, Ere f

tot is the total energy of an isolated graphene sheet plus
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that of the optimized dimer in its T, PD or SE form, respectively. The gained energies for the
non-dissociating dimers (T and SE) are similar (∼0.46–0.49 eV for DFT and DFTB values),
which is only very slightly above the binding energy of a single benzene with graphene
(0.45 eV for DFT and DFTB values). In the third line, Ere f

tot is the energy of a benzene
deposited on a graphene sheet plus that of an isolated benzene. It differs from the isolated
dimers by 0.022 eV for the T-shaped structure and 0.036 eV for the SE structure at the DFTB
level and 0.018 eV and 0.028 eV at the DFT level. The larger value obtained for the SE
dimer can be, again, related to the expected larger interaction energy between the graphene
sheet and the second further benzene unit in the SE configuration. The last line compares
the binding energies with the one of a system where two benzene molecules would be
deposited in a4 configurations without interaction between them. This configuration
appears to be more stable than those corresponding to the deposition of a T-shaped or SE
dimer. The negative sign obtained for the a4 − cd structure shows that the latter is the most
stable investigated configuration as it maximizes the interaction between each benzene
molecule and the graphene surface while maintaining some stabilizing intermolecular
interactions between the two benzene units. Again, this conclusion holds at both DFT and
DFTB levels. It should also be noted that the values of the interaction energies are of similar
order for these two levels of calculation.

6. Conclusions

In the present paper, we have reported a new implementation of periodic boundary
conditions in the DFTB code deMonNano, as only the Γ-point approximation was available
in the previous version of the code. An originality of our scheme is the inclusion of atomic
charge corrections, which improves the description of intermolecular coulomb interactions.
It allows the recovery of a reasonable description of molecular clusters, as shown in the
particular case of benzene dimers in this work. Dispersion corrections are also mandatory
for a proper description of such interactions, and we have benchmarked two empirical
correction schemes. One of them produces the best C-C bond distance in graphene and
graphite, whereas the second one provides the best interlayer distance in graphite according
to previous reference calculations, experiments and new DFT calculations performed with
the DFT-D3 dispersion-corrected functional.

Benzene monomer and dimers have been optimized at the DFTB and DFT levels,
providing the following similar trends. For the deposition of a single benzene monomer on
a graphene sheet, the adsorption of benzene centered on top of graphene carbon atom or
C-C bond leads to almost degenerated structures, which are by far more stable than the
superimposition of the benzene on top of a graphene aromatic cycle. The most stable one at
the DFTB level has been selected to build initial conditions for benzene dimers deposition
on graphene. The structural energy gap between the most stable T-shaped dimer and less
stable Sandwich-like dimer is divided by two when the cluster is supported on graphene.
The supported Parallel-Displaced structure appeared to be unstable at the DFTB level,
resulting in a structure where the two benzene are deposited close to each other on the
graphene surface. This structure is the most stable one of our calculations at DFT and
DFTB levels and also more stable than the deposition of two benzene monomer at infinite
distance, which is not the case of the deposited sandwich or T-shaped dimers.

As a conclusion, we have shown the ability of the new implementation to characterize
properties of molecular clusters deposited on surfaces, opening the path to dynamical
simulations that allow probing the role of deposition conditions (e.g., cluster/support
collision energy) and temperature on the structure and stability. This work validates the
implementation of the improved sampling of the reciprocal space (k-points) in deMonNano,
which will allow to perform very precise calculations, as needed to study properties for
which a very fine structure of the Brillouin zone is required, such as electronic transport,
magnetism or topological states of matter [57].
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Abstract: Quantum embedding is a divide and conquer strategy that aims at solving the electronic
Schrödinger equation of sizeable molecules or extended systems. We establish in the present work
a clearer and in-principle-exact connection between density matrix embedding theory (DMET)
and density-functional theory (DFT) within the simple but nontrivial one-dimensional Hubbard
model. For that purpose, we use our recent reformulation of single-impurity DMET as a Householder
transformed density-matrix functional embedding theory (Ht-DMFET). On the basis of well-identified
density-functional approximations, a self-consistent local potential functional embedding theory
(LPFET) is formulated and implemented. Combining both LPFET and DMET numerical results with
our formally exact density-functional embedding theory reveals that a single statically embedded
impurity can in principle describe the density-driven Mott–Hubbard transition, provided that a
complementary density-functional correlation potential (which is neglected in both DMET and
LPFET) exhibits a derivative discontinuity (DD) at half filling. The extension of LPFET to multiple
impurities (which would enable to circumvent the modeling of DDs) and its generalization to
quantum chemical Hamiltonians are left for future work.

Keywords: density matrix functional embedding; density-functional theory; householder
transformation

1. Introduction

Kohn–Sham density-functional theory (KS-DFT) [1] has become over the last two
decades the method of choice for computational chemistry and physics studies, essentially
because it often provides a relatively accurate description of the electronic structure of large
molecular or extended systems at a low computational cost. The major simplification of
the electronic structure problem in KS-DFT lies in the fact that the ground-state energy is
evaluated, in principle exactly, from a non-interacting single-configuration wave function,
which is simply referred to as the KS determinant. The latter is obviously not the exact
solution to the Schrödinger equation. However, its density matches the exact interacting
ground-state density, so that the Hartree-exchange-correlation (Hxc) energy of the physical
system, which is induced by the electronic repulsion, can be recovered from an appropriate
(in principle exact and universal) Hxc density functional. Despite the success of KS-DFT,
standard density-functional approximations still fail in describing strongly correlated
electrons. To overcome this issue, various strategies have been explored and improved over
the years, both in condensed matter physics [2–7] and quantum chemistry [8]. Note that,
in the latter case, in-principle-exact multi-determinantal extensions of DFT based on the
adiabatic connection formalism have been developed [9–12]. In these approaches, the KS
system is only referred to in the design of density-functional approximations. In practice,
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a single (partially-interacting) many-body wave function is calculated self-consistently
and the complement to the partial interaction energy is described with an appropriate
density functional (which differs from the conventional xc one). In other words, there is
no KS construction in the actual calculation. Some of these concepts have been reused
in the study of model lattice Hamiltonians [12,13]. A similar strategy will be adopted
in the present work, with an important difference though. The reduced-in-size correlated
density-functional many-body wave function that we will introduce will be extracted
from a quantum embedding theory where the KS determinant of the full system is a key
ingredient that must be evaluated explicitly.

Quantum embedding theory [14] is at first sight a completely different approach to
the strong electron correlation problem. Interestingly, some of its implementations, like the
density matrix embedding theory (DMET) [15–23], rely on a reference Slater determinant that
is computed for the full system. This is also the case in practical embedding calculations
based on the exact factorization formalism [24,25]. Unlike the well-established dynamical
mean-field theory (DMFT) [26–30], which relies on the one-electron Green’s function, DMET
is a static theory of ground electronic states. Most importantly, the bath, in which a frag-
ment of the original system (referred to as impurity when it is a single localized orbital)
is embedded, is drastically reduced in size in DMET. As a result, the “impurity+bath”
embedding cluster can be accurately (if not exactly) described with wave function-based
quantum chemical methods. The authors have shown recently that the Schmidt decompo-
sition of the reference Slater determinant, which is central in DMET, can be recast into a
(one-electron reduced) density-matrix functional Householder transformation [31], which
is much simpler to implement. This approach, in which the bath orbitals can in principle
be correlated directly through the density matrix [31], is referred to as Householder trans-
formed density matrix functional embedding theory (Ht-DMFET). Since the seminal work of
Knizia and Chan on DMET [15], various connections with DMFT and related approaches
have been established [32–37]. Connections with DFT have been less explored, and only
at the approximate level of theory. We can refer to the density embedding theory (DET) of
Bulik et al. [38], which is a simplified version of DMET where only the diagonal elements
of the embedded density matrix are mapped onto the reference Slater determinant of the
full system. More recently, Senjean [39] combined DFT for lattices [40,41] with DMET,
and Mordovina et al. [42] (see also Ref. [43]) proposed a self-consistent density-functional
embedding (SDE), where the KS determinant is explicitly used as the reference wave function
in the DMET algorithm.

In the present work, an in-principle-exact combination of KS-DFT with DMET is de-
rived for the one-dimensional (1D) Hubbard lattice, as a proof of concept. For that purpose,
we use the density-matrix functional Householder transformation introduced recently by
the authors [31]. On the basis of well-identified density-functional approximations, we
propose and implement a local potential functional embedding theory (LPFET) where the Hxc
potential is evaluated self-consistently in the lattice by “learning” from the embedding
cluster at each iteration of the optimization process. LPFET can be seen as a flavor of
KS-DFT where no density functional is actually used.

The paper is organized as follows. After a short introduction to the 1D Hubbard model
in Section 2.1, a detailed review of Ht-DMFET is presented in Section 2.2, for clarity and
completeness. An exact density-functional reformulation of the theory is then proposed in
Section 2.3. The resulting approximate LPFET and its comparison with SDE are detailed
in Sections 2.4 and 2.5, respectively. The LPFET algorithm is summarized in Section 3.
Results obtained for a 1000-site Hubbard ring are presented and discussed in Section 4. The
conclusion and perspectives are finally given in Section 5.
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2. Theory

2.1. One-Dimensional Hubbard Lattice

By analogy with Ref. [31], various quantum embedding strategies will be discussed
in the following within the simple but nontrivial uniform 1D Hubbard model. The corre-
sponding lattice Hamiltonian (for a L-site ring) reads as

Ĥ = T̂ + Û + vextN̂, (1)

where the hopping operator (written in second quantization),

T̂ = −t
L−1

∑
i=0

∑
σ=↑,↓

(
ĉ†

iσ ĉ(i+1)σ + ĉ†
(i+1)σ ĉiσ

)
, (2)

with parameter t, is the analog for lattices of the kinetic energy operator. For convenience,
we will systematically use periodic boundary conditions, i.e., ĉ†

Lσ ≡ ĉ†
0σ. On-site repulsions

are only taken into account in the two-electron repulsion operator Û, i.e.,

Û =
L−1

∑
i=0

Ûi, (3)

where Ûi = Un̂i↑n̂i↓, U is the parameter that controls the strength of the interaction, and
n̂iσ = ĉ†

iσ ĉiσ is a site occupation operator for spin σ. Since the lattice is uniform, the local
external potential (which would correspond to the nuclear potential in a conventional
quantum chemical calculation) operator is proportional to the electron counting operator
(see the last term on the right-hand side of Equation (1)),

N̂ =
L−1

∑
i=0

∑
σ=↑,↓

n̂iσ. (4)

The uniform value of the external potential can be rewritten as

vext = −μ, (5)

where the chemical potential μ controls the number of electrons N or, equivalently, the
uniform density n = N/L in the lattice. In this case, Ĥ is actually a (zero-temperature)
grand canonical Hamiltonian. For convenience, we rewrite the hopping operator as follows,

T̂ ≡
L−1

∑
i,j=0

∑
σ=↑,↓

tij ĉ†
iσ ĉjσ, (6)

where

tij = −t
(

δj(i+1) + δi(j+1)

)
, (7)

and t(L−1)0 = t0(L−1) = −t. From now on the bounds in the summations over the full
lattice will be dropped, for simplicity:

∑
i
≡

L−1

∑
i=0

. (8)

Note that the quantum embedding strategies discussed in the present work can be
extended to more general (quantum chemical, in particular) Hamiltonians [20]. For that

101



Computation 2022, 10, 45

purpose, the true ab initio Hamiltonian should be written in a localized molecular orbital
basis, thus leading to the more general Hamiltonian expression,

Ĥ = ∑
σ

∑
ij

hij ĉ†
iσ ĉjσ +

1
2 ∑

σ,σ′
∑
ijkl

〈ij|kl〉ĉ†
iσ ĉ†

jσ′ ĉlσ′ ĉkσ, (9)

where hij and 〈ij|kl〉 are the (kinetic and nuclear attraction) one-electron and two-electron
repulsion integrals, respectively. Using a localized orbital basis allows for the decompo-
sition of the molecule under study into fragments that can be embedded afterward [20].
In the following, we will work with the simpler Hamiltonian of Equation (1), as a proof
of concept.

2.2. Review of Ht-DMFET

For the sake of clarity and completeness, a review of Ht-DMFET [31] is presented
in the following subsections. Various ingredients (operators and reduced quantities) that
will be used later on in Section 2.3 in the derivation of a formally exact density-functional
embedding theory (which is the main outcome of this work) are introduced. Real al-
gebra will be used. For simplicity, we focus on the embedding of a single impurity. A
multiple-impurity extension of the theory can be obtained from a block Householder trans-
formation [31,44]. Unlike in the exact reformulation of the theory which is proposed in
the following Section 2.3 and where the chemical potential μ controls the density of the
uniform lattice, the total number of electrons will be fixed to the value N in the present
section. In other words, the uniform density is set to n = N/L and μ is an arbitrary constant
(that could be set to zero).

2.2.1. Exact Non-Interacting Embedding

Let us first consider the particular case of a non-interacting (U = 0) lattice for which
Ht-DMFET is exact [31]. As it will be applied later on (in Section 2.3) to the auxiliary
KS lattice, it is important to highlight the key features of the non-interacting embedding.
Following Ref. [31], we label as i = 0 one of the localized (lattice site in the present case)
spin-orbital

∣∣χσ
0
〉
≡ ĉ†

0σ|vac〉 [we denote |vac〉 the vacuum state of second quantization]
that, ultimately, will become the so-called embedded impurity. The ingredient that is central
in Ht-DMFET is the (one-electron reduced) density matrix of the full system in the lattice
representation, i.e.,

γ↑ = γ↓ = γ ≡ γij = 〈Φ|ĉ†
iσ ĉjσ|Φ〉, (10)

where we restrict ourselves to closed-shell singlet ground states |Φ〉, for simplicity. Note that

γ00 =
n
2
=

N
2L

(11)

is the uniform lattice filling per spin. Since the full lattice will always be described with a
single Slater determinant in the following, the density matrix γ will always be idempotent.
The latter is used to construct the Householder unitary transformation which, once it
has been applied to the one-electron lattice space, defines the so-called bath spin-orbital
with which the impurity will ultimately be exclusively entangled. More explicitly, the
Householder transformation matrix

P = I − 2vv† ≡ Pij = δij − 2vivj, (12)

where I is the identity matrix, is a functional of the density matrix, i.e.,

P ≡ P[γ], (13)
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where the density-matrix-functional Householder vector components read as [31]

v0 = 0, (14)

v1 =
γ10 − γ̃10√

2γ̃10(γ̃10 − γ10)
, (15)

vi =
i≥2

γi0√
2γ̃10(γ̃10 − γ10)

, (16)

with

γ̃10 = −sgn(γ10)

√
∑
j>0

γ2
j0, (17)

and

v†v = ∑
i≥1

v2
i = 1. (18)

Note that, in the extreme case of a two-site lattice, the denominator in
Equations (15) and (16) is still well defined and it does not vanish. Indeed, by construction
(see Equation (17)),

γ̃10 ={
γj0

j>1
= 0

} −sgn(γ10)|γ10| = −γ10 (19)

in this case, thus leading to γ̃10(γ̃10 − γ10) = 2γ2
10 > 0. Note also that P is hermitian and

unitary, i.e., P = P† and

P2 = PP† = P†P = I. (20)

The bath spin-orbital
∣∣ϕσ

bath

〉
is then constructed as follows in second quantization,

|ϕσ
bath〉 := d̂†

1σ|vac〉, (21)

where, according to Equations (12) and (14),

d̂†
1σ = ∑

k
P1kĉ†

kσ

= ĉ†
1σ − 2v1 ∑

k≥1
vkĉ†

kσ.
(22)

More generally, the entire lattice space can be Householder-transformed as follows,

d̂†
iσ =

0≤i≤L−1
∑
k

Pikĉ†
kσ, (23)

and the back transformation simply reads as

∑
i

Pli d̂†
iσ = ∑

ik
PliPikĉ†

kσ = ∑
k

[
P2
]

lk
ĉ†

kσ = ĉ†
lσ. (24)

We stress that the impurity is invariant under the Householder transformation, i.e.,

d̂†
0σ = ĉ†

0σ, (25)
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and, according to the Appendix A, the Householder-transformed density matrix elements
involving the impurity can be simplified as follows,

〈Φ|d̂†
jσ d̂0σ|Φ〉 = γj0 − vj

√
2γ̃10(γ̃10 − γ10). (26)

As readily seen from Equations (15) and (26), the matrix element γ̃10 introduced in
Equation (17) is in fact the bath-impurity element of the density matrix in the Householder
representation:

〈Φ|d̂†
1σ d̂0σ|Φ〉 = γ̃10. (27)

If we denote

γ̃ ≡ γ̃ij = 〈Φ|d̂†
iσ d̂jσ|Φ〉 = ∑

kl
Pikγkl Plj ≡ PγP (28)

the full Householder-transformed density matrix, we do readily see from Equations (16)
and (26) that the impurity is exclusively entangled with the bath, i.e.,

γ̃i0 =
i≥2

0, (29)

by construction [31]. As γ̃ inherits the idempotency of γ through the unitary Householder
transformation, we deduce from Equation (29) that

γ̃i0 =
[
γ̃2
]

i0
= ∑

j
γ̃ijγ̃j0 = γ̃i0γ̃00 + γ̃i1γ̃10, (30)

or, equivalently,

γ̃i1 =
γ̃i0(1 − γ̃00)

γ̃10
, (31)

thus leading to (see Equation (29))

γ̃i1 =
i≥2

0, (32)

and

γ̃00 + γ̃11 = 1. (33)

Equations (32) and (33) simply indicate that, by construction [31], the bath is itself
entangled exclusively with the impurity, and the Householder “impurity+bath” cluster,
which is disconnected from its environment, contains exactly two electrons (one per spin).
Therefore, the Householder cluster sector of the density matrix can be described exactly by
a two-electron Slater determinant ΦC :

γ̃ij =
0≤i,j≤1

〈
ΦC

∣∣∣d̂†
iσ d̂jσ

∣∣∣ΦC
〉

. (34)

Note that, in the Householder representation, the lattice ground-state determinant
reads as Φ ≡ ΦCΦcore, where the cluster’s determinant ΦC is disentangled from the core
one Φcore. Once the cluster’s block of the density matrix has been diagonalized, we obtain
the sole occupied orbital that overlaps with the impurity, exactly like in DMET [20]. In other
words, for non-interacting (or mean-field-like descriptions of) electrons, the Ht-DMFET
construction of the bath is equivalent (although simpler) to that of DMET. We refer the
reader to Ref. [31] for a more detailed comparison of the two approaches.
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2.2.2. Non-Interacting Embedding Hamiltonian

As the Householder cluster is strictly disconnected from its environment in the non-
interacting case, it is exactly described by the two-electron ground state

∣∣ΦC〉 of the
Householder-transformed hopping operator (that we refer to as kinetic energy operator
from now on, like in DFT for lattices [13,41]) on projected onto the cluster [31], i.e.,

T̂ C
∣∣∣ΦC

〉
= EC

s

∣∣∣ΦC
〉

, (35)

where, according to Equations (6) and (24),

T̂ C = ∑
ij

∑
σ=↑,↓

tij

1

∑
k,l=0

PikPjl d̂†
kσ d̂lσ. (36)

For convenience, we will separate in T̂ C the physical per-site kinetic energy operator
(see Equation (2)),

t̂01 = −t ∑
σ=↑,↓

(
ĉ†

0σ ĉ1σ + ĉ†
1σ ĉ0σ

)
, (37)

from the correction induced (within the cluster) by the Householder transformation:

τ̂C = T̂ C − t̂01. (38)

Note that, since t00 = 0, τ̂C can be expressed more explicitly as follows,

τ̂C = ∑
σ=↑,↓

(
∑
ij

Pi1Pj0tij

)[
d̂†

0σ d̂1σ + d̂†
1σ d̂0σ

]

+ ∑
σ=↑,↓

(
∑
ij

Pi1Pj1tij

)
d̂†

1σ d̂1σ − t̂01

= ∑
σ=↑,↓

(
∑

i
Pi1ti0

)[
ĉ†

0σ d̂1σ + d̂†
1σ ĉ0σ

]

+ ∑
σ=↑,↓

(
∑
ij

Pi1Pj1tij

)
d̂†

1σ d̂1σ − t̂01

= ∑
σ=↑,↓

t10

[
ĉ†

0σ d̂1σ + d̂†
1σ ĉ0σ

]

− 2v1 ∑
σ=↑,↓

(
∑

i
viti0

)[
ĉ†

0σ d̂1σ + d̂†
1σ ĉ0σ

]

+ ∑
σ=↑,↓

(
∑
ij

Pi1Pj1tij

)
d̂†

1σ d̂1σ − t̂01,

(39)

thus leading to

τ̂C = 2tv1 ∑
σ=↑,↓

∑
k≥1

vk

[
ĉ†

0σ ĉkσ + ĉ†
kσ ĉ0σ

]

− 2v1 ∑
σ=↑,↓

(
∑

i
viti0

)[
ĉ†

0σ d̂1σ + d̂†
1σ ĉ0σ

]

+ 4

(
∑
ij

vivj

(
v2

1 − δj1

)
tij

)
∑

σ=↑,↓
d̂†

1σ d̂1σ,

(40)
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where we used Equations (12) and (22), as well as the fact that t11 = 0 and t10 = −t.
Note that, when no Householder transformation is performed (i.e., when vi = 0 for
0 ≤ i ≤ L − 1), the bath site simply corresponds to the nearest neighbor (i = 1) of the
impurity in the lattice (see Equation (22)) and, as readily seen from Equations (38) and (40),
the non-interacting cluster’s Hamiltonian T̂ C reduces to t̂01.

Unlike in the interacting case, which is discussed in Section 2.2.3, it is unnecessary
to introduce an additional potential on the embedded impurity in order to ensure that it
reproduces the correct lattice filling. Indeed, according to Equations (11), (14), (26), (28)
and (34), 〈

ΦC
∣∣∣ĉ†

0σ ĉ0σ

∣∣∣ΦC
〉
=
〈

ΦC
∣∣∣d̂†

0σ d̂0σ

∣∣∣ΦC
〉
= n/2. (41)

This constraint is automatically fulfilled when Householder transforming the kinetic
energy operator T̂ of the full lattice, thanks to the local potential contribution on the bath
(see the last term on the right-hand side of Equation (40)). Interestingly, the true (non-
interacting in this case) per-site energy of the lattice can be determined solely from ΦC .
Indeed, according to Equation (10), the per-site kinetic energy can be evaluated from the
lattice ground-state wave function Φ as follows,

〈Φ|t̂01|Φ〉 = −4tγ10. (42)

When rewritten in the Householder representation, Equation (42) gives (see
Equations (24), (29) and (34))

〈Φ|t̂01|Φ〉 = −4t ∑
i

P1iγ̃i0

= −4t ∑
0≤i≤1

P1iγ̃i0

= −4t ∑
0≤i≤1

P1i

〈
ΦC

∣∣∣d̂†
iσ d̂0σ

∣∣∣ΦC
〉

= −4t ∑
i

P1i

〈
ΦC

∣∣∣d̂†
iσ ĉ0σ

∣∣∣ΦC
〉

,

(43)

where we used Equation (25) and the fact that d̂iσ
∣∣ΦC〉 i>1

= 0, since ΦC is constructed within
the cluster. We finally recover from Equation (43) the following equality [31],

〈Φ|t̂01|Φ〉 = −4t
〈

ΦC
∣∣∣ĉ†

1σ ĉ0σ

∣∣∣ΦC
〉

=
〈

ΦC
∣∣∣t̂01

∣∣∣ΦC
〉

,
(44)

which drastically (and exactly) simplifies the evaluation of non-interacting energies for lattices.

2.2.3. Approximate Interacting Embedding

The simplest (approximate) extension of Ht-DMFET to interacting electrons con-
sists in introducing the on-impurity-site two-electron repulsion operator Û0 into the
non-interacting Householder cluster’s Hamiltonian of Equation (35), by analogy with
DMET [15,31]. In such a (standard) scheme, the interaction is treated on top of the non-
interacting embedding. Unlike in the non-interacting case, it is necessary to introduce a
chemical potential μ̃imp on the embedded impurity in order to ensure that it reproduces
the correct lattice filling N/L [31], i.e.,

〈n̂0〉ΨC = N/L, (45)
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where the two-electron cluster’s ground-state wave function ΨC fulfills the following
interacting Schrödinger equation:(

T̂ C + Û0 − μ̃impn̂0

)∣∣∣ΨC
〉
= EC

∣∣∣ΨC
〉

. (46)

The physical per-site energy (from which we remove the chemical potential contribu-
tion) is then evaluated as follows:

(E + μN)/L ≈
Ht−DMFET

〈
ΨC

∣∣∣t̂01 + Û0

∣∣∣ΨC
〉

. (47)

Let us stress that, in Ht-DMFET, the cluster is designed from a single determinantal
(non-interacting in the present case) lattice wave function, like in regular DMET calcu-
lations [20]. In other words, the Householder transformation is constructed from an
idempotent density matrix. Moreover, the interacting cluster is described as a closed (two-
electron) subsystem. As shown for small Hubbard rings, the exact interacting cluster is in
principle an open subsystem [31]. It rigorously contains two electrons only at half filling, as
a consequence of the hole-particle symmetry of the Hubbard lattice Hamiltonian [31].

Note finally that, if we Householder transform the two-electron repulsion operator Û
of the full lattice, one can in principle take into account its complete projection onto the
cluster. It means that the interaction on the bath site could be added to the Hamiltonian
in Equation (46). For simplicity, we will focus in the following on the (so-called) non-
interacting bath formulation of the theory, which is described by Equation (46). Let us
finally mention that, in the present single-impurity embedding, DMET, DET, and Ht-
DMFET are equivalent [31].

2.3. Exact Density-Functional Embedding

We will show in the following that, once it has been merged with KS-DFT, Ht-DMFET
can be made formally exact. For clarity, we start with reviewing briefly KS-DFT for lattice
Hamiltonians in Section 2.3.1. A multi-determinantal extension of the theory based on the
interacting Householder cluster’s wave function is then proposed in Section 2.3.2.

2.3.1. KS-DFT for Uniform Lattices

According to the Hohenberg–Kohn (HK) variational principle [45], which is applied
in this work to lattice Hamiltonians [41], the ground-state energy of the full lattice can be
determined as follows,

E = min
n

{F(n) + vextnL}, (48)

where the HK density functional reads as

F(n) = 〈Ψ(n)|T̂ + Û|Ψ(n)〉, (49)

and |Ψ(n)〉 is the lattice ground state with uniform density profile n 0≤i<L
= 〈Ψ(n)|n̂i|Ψ(n)〉.

Strictly speaking, F(n) is a function of the site occupation n, hence the name site occupation
functional theory often given to DFT for lattices [13,41]. Note that the ground-state energy E
is in fact a (zero-temperature) grand canonical energy since a change in uniform density n
induces a change in the number N = nL of electrons. In the thermodynamic N → +∞ and
L → +∞ limit, with N/L fixed to n, one can in principle describe continuous variations in
n with a pure-state wave function Ψ(n). The derivations that follow will be based on this
assumption. If we introduce the per-site analog of the HK functional,

f (n) = F(n)/L = 〈Ψ(n)|t̂01 + Û0|Ψ(n)〉, (50)
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and use the notation of Equation (5), then Equation (48) becomes

E/L ≡ E(μ)/L = min
n

{ f (n)− μn}, (51)

and the minimizing density n(μ) fulfills the following stationarity condition:

μ =
∂ f (n)

∂n

∣∣∣∣
n=n(μ)

. (52)

In the conventional KS formulation of DFT, the per-site HK functional is decomposed
as follows,

f (n) = ts(n) + eHxc(n), (53)

where

ts(n) = 〈Φ(n)|t̂01|Φ(n)〉 = 1
L
〈Φ(n)|T̂|Φ(n)〉 (54)

is the (per-site) analog for lattices of the non-interacting kinetic energy functional, and the
Hxc density functional reads as [41]

eHxc(n) =
U
4

n2 + ec(n), (55)

where ec(n) is the exact (per-site) correlation energy functional of the interacting lattice. The
(normalized) density-functional lattice KS determinant Φ(n) fulfills the (non-interacting)
KS equation (

T̂ − μs(n)N̂
)
|Φ(n)〉 = Es(n)|Φ(n)〉, (56)

so that (see Equation (54))

∂ts(n)
∂n

=
2
L

〈
∂Φ(n)

∂n

∣∣∣∣T̂
∣∣∣∣Φ(n)

〉

=
2μs(n)

L

〈
∂Φ(n)

∂n

∣∣∣∣N̂
∣∣∣∣Φ(n)

〉

=
μs(n)

L
∂(nL)

∂n
= μs(n),

(57)

since 〈Φ(n)|N̂|Φ(n)〉 = N = nL. Thus, we recover from Equations (52) and (53) the
well-known relation between the physical and KS chemical potentials:

μs(n(μ)) ≡ μs = μ − vHxc, (58)

where the density-functional Hxc potential reads as vHxc = vHxc(n(μ)) with

vHxc(n) =
∂eHxc(n)

∂n
. (59)

Note that the exact non-interacting density-functional chemical potential can be ex-
pressed analytically as follows [40]:

μs(n) = −2t cos
(π

2
n
)

. (60)
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Capelle and coworkers [40,41] have designed a local density approximation (LDA)
to eHxc(n) on the basis of exact Bethe Ansatz (BA) solutions [46] (the functional is usually
referred to as BALDA).

Unlike in conventional ab initio DFT, the Hxc functional of lattice Hamiltonians is
not truly universal in the sense that it is universal for a given choice of (hopping) one-
electron and two-electron repulsion operators. In other words, the Hxc functional does
not depend on the (possibly non-uniform) one-electron local potential operator ∑i vext,i n̂i,
which is the analog for lattices of the nuclear potential in molecules, but it is t- and U-
dependent and, in the present case, it should be designed specifically for the 1D Hubbard
model. Even though BALDA can be extended to higher dimensions [47], there is no general
strategy for constructing (localized) orbital-occupation functional approximations, thus
preventing direct applications to quantum chemistry [12], for example. Turning ultimately
to a potential-functional theory, as proposed in Section 2.4, is appealing in this respect.
With this change of paradigm, which is the second key result of the paper, the Hxc energy
and potential become implicit functionals of the density, and they can be evaluated from a
(few-electron) correlated wave function through a quantum embedding procedure.

2.3.2. Density-Functional Interacting Cluster

We propose in this section an alternative formulation of DFT based on the interact-
ing Householder cluster introduced in Section 2.2.3. For that purpose, we consider the
following exact decomposition,

f (n) = f C(n) + ec(n), (61)

where the Householder cluster HK functional

f C(n) =
〈

ΨC(n)
∣∣∣t̂01 + Û0

∣∣∣ΨC(n)
〉

(62)

is evaluated from the two-electron cluster density-functional wave function ΨC(n), and
ec(n) is the complementary correlation density functional that describes the missing cor-
relation effects of the interacting bath and the Householder cluster’s environment on the
embedded impurity [31]. Note that, according to Section 2.2.3,

∣∣ΨC(n)
〉

fulfills the following
Schrödinger-like equation,

ĤC(n)
∣∣∣ΨC(n)

〉
= EC(n)

∣∣∣ΨC(n)
〉

, (63)

where (we use the same notations as in Section 2.2.3)

ĤC(n) ≡ T̂ C(n) + Û0 − μ̃imp(n) n̂0 (64)

and

T̂ C(n) ≡ t̂01 + τ̂C(n). (65)

The dependence in n of the (projected-onto-the-cluster) Householder-transformed
kinetic energy operator T̂ C(n) comes from the fact that the KS lattice density matrix
γ(n) ≡ 〈Φ(n)|ĉ†

iσ ĉjσ|Φ(n)〉 (on which the Householder transformation is based) is, like the
KS determinant Φ(n) ≡ ΦC(n)Φcore(n) of the lattice, a functional of the uniform density
n. On the other hand, for a given uniform lattice density n, the local potential −μ̃imp(n) is
adjusted on the embedded impurity such that the interacting cluster reproduces n, i.e.,〈

ΨC(n)
∣∣∣n̂0

∣∣∣ΨC(n)
〉
= n. (66)
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Interestingly, on the basis of the two decompositions in Equations (53), (61) and (62),
we can relate the exact Hxc functional to the density-functional Householder cluster as
follows,

eHxc(n) =
〈
ΨC(n)

∣∣t̂01 + Û0
∣∣ΨC(n)

〉
− ts(n) + ec(n), (67)

where, as shown in Equation (44), the per-site non-interacting kinetic energy can be de-
termined exactly from the two-electron cluster’s part ΦC(n) of the KS lattice determinant
Φ(n), i.e.,

ts(n) =
〈

ΦC(n)
∣∣∣t̂01

∣∣∣ΦC(n)
〉

, (68)

thus leading to the final expression

eHxc(n) =
〈

ΨC(n)
∣∣∣t̂01 + Û0

∣∣∣ΨC(n)
〉
−
〈

ΦC(n)
∣∣∣t̂01

∣∣∣ΦC(n)
〉
+ ec(n). (69)

Note that, according to Equations (35) and (38), ΦC(n) fulfills the KS-like equation(
t̂01 + τ̂C(n)

)∣∣∣ΦC(n)
〉
= EC

s (n)
∣∣∣ΦC(n)

〉
, (70)

where the Householder transformation ensures that
〈
ΦC(n)

∣∣n̂0
∣∣ΦC(n)

〉
= n (see

Equation (41)).

We will now establish a clearer connection between the KS lattice system and the
Householder cluster via the evaluation of the Hxc density-functional potential in the lattice.
According to Equations (59) and (69), the latter can be expressed as follows,

vHxc(n) = 2
〈

∂ΨC(n)
∂n

∣∣∣∣t̂01 + Û0

∣∣∣∣ΨC(n)
〉

− 2
〈

∂ΦC(n)
∂n

∣∣∣∣t̂01

∣∣∣∣ΦC(n)
〉
+

∂ec(n)
∂n

,
(71)

or, equivalently (see Equations (63), (66) and (70)),

vHxc(n) = μ̃imp(n)− 2
〈

∂ΨC(n)
∂n

∣∣∣∣τ̂C(n)
∣∣∣∣ΨC(n)

〉

+ 2
〈

∂ΦC(n)
∂n

∣∣∣∣τ̂C(n)
∣∣∣∣ΦC(n)

〉
+

∂ec(n)
∂n

.
(72)

If we introduce the following bi-functional of the density,

τC
c (n, ν) =

〈
ΨC(ν)

∣∣∣τ̂C(n)
∣∣∣ΨC(ν)

〉
−
〈

ΦC(ν)
∣∣∣τ̂C(n)

∣∣∣ΦC(ν)
〉

, (73)

which can be interpreted as a kinetic correlation energy induced within the density-
functional cluster by the Householder transformation and the interaction on the impurity,
we obtain the final exact expression

vHxc(n) = μ̃imp(n)− ∂τC
c (n, ν)

∂ν

∣∣∣∣
ν=n

+
∂ec(n)

∂n
, (74)

which is the first key result of this paper.
Before turning Equation (74) into a practical self-consistent embedding method (see

Section 2.4), let us briefly discuss its physical meaning and connection with Ht-DMFET. As
pointed out in Section 2.2.1, the (density-functional) operator τ̂C(n) is an auxiliary correc-
tion to the true per-site kinetic energy operator t̂01 which originates from the Householder-
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transformation-based embedding of the impurity. It is not physical and its impact on the
impurity chemical potential μ̃imp(n), which is determined in the presence of τ̂C(n) in the
cluster’s Hamiltonian (see Equations (63)–(65)), should be removed when evaluating the
Hxc potential of the true lattice, hence the minus sign in front of the second term on the right-
hand side of Equation (74). Finally, the complementary correlation potential ∂ec(n)/∂n
is in charge of recovering the electron correlation effects that were lost when considering
an (impurity-only) interacting cluster that is disconnected from its environment [31]. We
should stress at this point that, in Ht-DMFET (which is equivalent to DMET or DET when a
single impurity is embedded [31]), the following density-functional approximation is made:

ec(n) ≈
Ht−DMFET

0, (75)

so that the physical density-functional chemical potential is evaluated as follows [31],

μ(n) ≈
Ht−DMFET

∂ f C(n)
∂n

. (76)

Interestingly, even though it is never computed explicitly in this context, the corre-
sponding (approximate) Hxc potential simply reads as

vHxc(n) ≈
Ht−DMFET

∂( f C(n)− ts(n))
∂n

, (77)

or, equivalently (see Equations (74) and (75)),

vHxc(n) ≈
Ht−DMFET

μ̃imp(n)− ∂τC
c (n, ν)

∂ν

∣∣∣∣
ν=n

. (78)

Therefore, Ht-DMFET can be seen as an approximate formulation of KS-DFT where
the Hxc potential is determined solely from the density-functional Householder cluster.
As illustrated in Figure 9 of Ref. [31], the approximation of Equation (75) leads, for exam-
ple, to a substantial underestimation of the per-site energy, except in the vicinity of half
filling where the energy is overestimated. Describing the electron repulsion in the bath
(not considered in the present work, for simplicity) lowers the energy even further, thus
leading to accurate results only at half filling, because of error cancellations [31]. Most
importantly, Equation (75) implies that Ht-DMFET neglects the fluctuations in the electron
number within the Householder cluster (see Equations (61)–(63)). Consequently, as further
discussed in Ref. [31] and Section 4, Ht-DMFET is unable to describe the opening of the
gap at half filling.

2.4. Local Potential Functional Embedding Theory

Until now the Householder transformation has been described as a functional of the
uniform density n or, more precisely, as a functional of the KS density matrix, which is itself
a functional of the density. If we opt for a potential-functional reformulation of the theory,
as suggested in the following, the Householder transformation becomes a functional of
the KS chemical potential μs instead, and, consequently, the Householder correction to the
per-site kinetic energy operator within the cluster (see Equation (65)) is also a functional
of μs:

τ̂C(n) → τ̂C(μs). (79)

Similarly, the interacting cluster’s wave function becomes a bi-functional of the KS
and interacting embedded impurity chemical potentials:

ΨC(n) → ΨC
(

μs, μ̃imp
)

. (80)
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In the exact theory, for a given chemical potential value μ in the true interacting lattice,
both the KS lattice and the embedded impurity reproduce the interacting lattice density
n(μ), i.e.,

n(μ) = nKS
lattice(μ − vHxc) = nC

(
μ − vHxc, μ̃imp

)
, (81)

where

nKS
lattice(μs) ≡ 〈n̂0〉T̂−μs N̂ , (82)

and

nC
(

μs, μ̃imp
)
= 〈n̂0〉ΨC(μs,μ̃imp)

≡ 〈n̂0〉t̂01+τ̂C (μs)+Û0−μ̃impn̂0
,

(83)

with, according to Equation (74),

μ̃imp = μ̃imp(n(μ))

= vHxc −
[

∂ec(ν)

∂ν
− ∂τC

c (n(μ), ν)

∂ν

]
ν=n(μ)

.
(84)

The density constraint of Equation (81) combined with Equation (84) allows for an
in-principle-exact evaluation of the Hxc potential vHxc. Most importantly, these two equa-
tions can be used for designing an alternative (and self-consistent) embedding strategy
on the basis of well-identified density-functional approximations. Indeed, in Ht-DMFET,
the second term on the right-hand side of Equation (84) is simply dropped, for simplic-
ity (see Equation (75)). If, in addition, we neglect the Householder kinetic correlation
density-bi-functional potential correction ∂τC

c (n, ν)/∂ν [last term on the right-hand side of
Equation (84)], we obtain from Equation (81) the following self-consistent equation,

nKS
lattice(μ − ṽHxc) = nC(μ − ṽHxc, ṽHxc), (85)

from which an approximation ṽHxc ≡ ṽHxc(μ) to the Hxc potential can be determined.
Equation (85) is the second main result of this paper. Since ṽHxc is now the to-be-optimized
quantity on which the embedding fully relies, we refer to the approach as local potential
functional embedding theory (LPFET), in which the key density-functional approximation
that is made reads as

vHxc(n) ≈
LPFET

μ̃imp(n). (86)

The approach is graphically summarized in Figure 1.
In order to verify that the first HK theorem [45] still holds at the LPFET level of

approximation, let us assume that two chemical potentials μ and μ + Δμ lead to the same
density. If so, the converged Hxc potentials should differ by ṽHxc(μ + Δμ)− ṽHxc(μ) = Δμ,
so that both calculations give the same KS chemical potential value (see Equation (58)).
According to Equations (85) and (86), it would imply that two different values of the
interacting embedded impurity chemical potential can give the same density, which is
impossible [31,48]. Therefore, when convergence is reached in Equation (85), we can
generate an approximate map

μ → n(μ) ≈
LPFET

nKS
lattice(μ − ṽHxc) = 〈n̂0〉ΨC (μ−ṽHxc,ṽHxc)

, (87)
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and compute approximate per-site energies as follows,

E(μ)
L

+ μn(μ) ≈
LPFET

〈
t̂01 + Û0

〉
ΨC (μ−ṽHxc,ṽHxc)

, (88)

since the approximation in Equation (75) is also used in LPFET, as discussed above.

Figure 1. Graphical representation of the LPFET procedure. Note that the same Hxc potential ṽHxc is
used in the KS lattice and the embedding Householder cluster. It is optimized self-consistently in
order to fulfill the density constraint of Equation (85). See text for further details.

Note that Ht-DMFET (which is equivalent to DMET in the present context) and LPFET
use the same per-site energy expression (see Equation (47)), which is a functional of the
interacting cluster’s wave function. In both approaches, the latter and the non-interacting
lattice share the same density. Therefore, if the per-site energy or the double occupation〈

n̂0↑n̂0↓
〉

were plotted as functions of the (converged) lattice filling n, as it is usually done
in the literature [15], both methods would give exactly the same results. The reason
is that, at convergence of the LPFET algorithm, the density constraint of Equation (85)
should be fulfilled, exactly like in Ht-DMFET (see Equations (45) and (46)). However, if
properties were plotted as functions of the chemical potential value μ in the true interacting
lattice, LPFET and Ht-DMFET would give different results, simply because the densities
obtained (for a given μ value) with the two methods would be different. Indeed, as
shown in Section 2.3.2, Ht-DMFET can be viewed as an approximation to KS-DFT where
the Hxc density-functional potential of Equation (78) is employed. As readily seen from
Equation (86), the LPFET and Ht-DMFET Hxc potentials differ by the Householder kinetic
correlation potential (which is neglected in LPFET). If the corresponding KS densities
were the same then the Hxc potential, the Householder transformation, and, therefore,
the chemical potential on the interacting embedded impurity would be the same, which
is impossible according to Equations (78) and (86). In summary, differences in properties
between LPFET and Ht-DMFET are directly related to differences in density. This is
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the reason why, in order to compare the two methods, we will restrict ourselves to the
computation of chemical-potential-density maps (see Section 4).

2.5. Comparison with SDE

At this point we should stress that LPFET is very similar to the SDE approach of
Mordovina et al. [42]. The major difference between SDE and LPFET (in addition to the
fact that LPFET has a clear connection with a formally exact density-functional embedding
theory based on the Householder transformation) is that no KS construction is made within
the cluster. Instead, the Hxc potential is directly updated in the KS lattice, on the basis of
the correlated embedded impurity density. This becomes even more clear when rewriting
Equation (85) as follows,

ṽHxc = μ −
[
nKS

lattice

]−1(
nC(μ − ṽHxc, ṽHxc)

)
, (89)

where
[
nKS

lattice

]−1 : n → μs(n) is the inverse of the non-interacting chemical-potential-
density map. A practical advantage of such a procedure (which remains feasible since
the full system is treated at the non-interacting KS level only) lies in the fact that the KS
construction within the cluster is automatically (and exactly) generated by the Householder
transformation, once the density has been updated in the KS lattice (see Equation (41) and
the comment that follows). Most importantly, the density in the KS lattice and the density
of the non-interacting KS embedded impurity (which, unlike the embedded interacting
impurity, is not used in the actual calculation) will match at each iteration of the Hxc
potential optimization process, as it should when convergence is reached. If, at a given
iteration, the KS construction were made directly within the cluster, there would always
be a “delay” in density between the KS lattice and the KS cluster, which would only
disappear at convergence. Note that, when the latter is reached, the (approximate) Hxc
potential of the lattice should match the one extracted from the cluster, which is defined
in SDE as the difference between the KS cluster Hamiltonian and the one-electron part of
the interacting cluster’s Hamiltonian [42], both reproducing the density of the KS lattice.
Therefore, according to Equations (64), (65) and (70), the converged Hxc potential will
simply correspond to the chemical potential on the interacting embedded impurity, exactly
like in LPFET (see Equation (86)).

Note finally that the simplest implementation of LPFET, as suggested by Equation (89),
can be formally summarized as follows:

ṽ(i+1)
Hxc = μ −

[
nKS

lattice

]−1(
nC
(

μ − ṽ(i)Hxc, ṽ(i)Hxc

))
,

ṽ(i=0)
Hxc = 0.

(90)

A complete description of the algorithm is given in the next section.

3. LPFET Algorithm

The LPFET approach introduced in Section 2.4 aims at computing the interacting
chemical-potential-density μ → n(μ) map through the self-consistent optimization of the
uniform Hxc potential. A schematics of the algorithm is provided in Figure 2. It can be
summarized as follows.

1. We start by diagonalizing the one-electron Hamiltonian (i.e., the hopping in the
present case) matrix t ≡ tij (see Equation (7)). Thus, we obtain the “molecular”
spin-orbitals and their corresponding energies. We fix the chemical potential of the
interacting lattice to some value μ and (arbitrarily) initialize the Hxc potential to
ṽHxc = 0. Therefore, at the zeroth iteration, the KS chemical potential μs equals μ.

2. We occupy all the molecular spin-orbitals with energies below μs = μ − ṽHxc and
construct the corresponding density matrix (in the lattice representation). The latter
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provides the uniform KS density (denoted nKS
lattice in Figure 2) and the embedding

Householder cluster Hamiltonian (see Equation (46)) in which the impurity chemical
potential is set to μ̃imp = ṽHxc (see Equation (86)).

3. We solve the interacting Schrödinger equation for the two-electron Householder
cluster and deduce the occupation of the embedded impurity (which is denoted
nC in Figure 2). This can be done analytically since the Householder cluster is an
asymmetric Hubbard dimer [31].

4. We verify that the density in the KS lattice nKS
lattice and the occupation of the interacting

embedded impurity nC match (a convergence threshold has been set to 10−4). If this
is the case, the calculation has converged and nC is interpreted as (an approximation
to) the density n(μ) in the true interacting lattice. If the two densities do not match,
the Hxc potential ṽHxc is adjusted in the KS lattice such that the latter reproduces nC

(see Equation (90)) or, equivalently, such that the KS lattice contains LnC electrons.
We then return to step 2.

Householder transformation

Evaluation of the KS chemical potential
 

and construction of the 1RDM
μs = μ − ṽHxc

Evaluation of the interacting embedded
 impurity density  

(with the potential  on the impurity)
n𝒞

−ṽHxc

n𝒞 ?
= nKS

lattice

Yes

Converged

No

Checking the density mapping constraint

 ṽHxc = μ − [nKS
lattice]−1 (n𝒞)

Choice of the chemical potential value  
in the lattice

μ

Initialization ṽHxc = 0

nKS
lattice

(μs)

nKS
lattice

=

Figure 2. Schematics of the LPFET algorithm. The (one-electron reduced) density matrix of the KS
lattice is referred to as the 1RDM. See text for further details.

4. Results and Discussion

In the following, LPFET is applied to a uniform Hubbard ring with a large L = 1000
number of sites in order to approach the thermodynamic limit. Periodic boundary con-
ditions have been used. The hopping parameter is set to t = 1. As explained at the end
of Section 2.4, plotting Ht-DMFET (which is equivalent to DMET or DET in the present
single embedded impurity case) and LPFET properties such as the per-site energy or the
double occupation as functions of the (converged) lattice filling n would give exactly the
same results. We refer the reader to Ref. [31] for a detailed analysis of the Ht-DMFET
scheme and its performance. On the other hand, the two methods are expected to give
different chemical-potential-density μ → n(μ) maps since they rely on different density-
functional approximations (see Equations (78) and (86)). We focus in the following on the
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self-consistent computation of this map at the LPFET level of theory. Comparison will be
made with Ht-DMFET and the exact BA results.

As illustrated by the strongly correlated results of Figures 3 and 4, the LPFET self-
consistency loop converges smoothly in few iterations. The same observation is made in
weaker correlation regimes (not shown). The deviation in density between the KS lattice
and the embedded impurity is drastically reduced after the first iteration (see Figure 3).
This is also reflected in the large variation of the Hxc potential from the zeroth to the first
iteration (see Figure 4). It originates from the fact that, at the zeroth iteration, the Hxc
potential is set to zero in the lattice while, in the embedding Householder cluster, the
interaction on the impurity site is “turned on”. As shown in Figure 3, the occupation of
the interacting embedded impurity is already at the zeroth iteration a good estimate of
the self-consistently converged density. A few additional iterations are needed to refine
the result.
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n
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0.400
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0.408
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iteration

n

   

nimpurity
nlattice

Figure 3. Comparison of the KS lattice and embedded impurity densities at each iteration of the
LPFET calculation. The interaction strength and chemical potential values are set to U/t = 8 and
μ/t = −0.97, respectively. As shown in the inset, convergence is reached after five iterations.
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Figure 4. Convergence of the LPFET Hxc potential for U/t = 8 and μ/t = −0.97.
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The converged LPFET densities are plotted in Figure 5 as functions of the chemical
potential μ in various correlation regimes. The non-interacting U = 0 curve describes
the KS lattice at the zeroth iteration of the LPFET calculation. Thus, we can visualize, as
U deviates from zero, how much the KS lattice learns from the interacting two-electron
Householder cluster. LPFET is actually quite accurate (even more than Ht-DMFET, probably
because of error cancellations) in the low filling regime. Even though LPFET deviates
from Ht-DMFET when electron correlation is strong, as expected, their chemical-potential-
density maps are quite similar. This is an indication that neglecting the Householder
kinetic correlation potential contribution to the Hxc potential, as done in LPFET, is not a
crude approximation, even in the strongly correlated regime. As expected [15,31], LPFET
and Ht-DMFET poorly perform when approaching half filling. Like the well-established
single-site DMFT (see Figure 7 of Ref. [5]), they are unable to describe the density-driven
Mott–Hubbard transition (i.e., the opening of the gap). As discussed in Ref. [31], this might
be related to the fact that, in the exact theory, the Householder cluster is not disconnected
from its environment and it contains a fractional number of electrons, away from half
filling, unlike in the (approximate) Ht-DMFET and LPFET schemes. In the language of
KS-DFT, modeling the gap opening is equivalent to modeling the derivative discontinuity
in the density-functional correlation potential vc(n) = μ(n)− μs(n)− U

2 n at half filling.
As clearly shown in Figure 6, Ht-DMFET and LPFET do not reproduce this feature. In the
language of the exact density-functional embedding theory derived in Section 2.3, both
Ht-DMFET and LPFET approximations neglect the complementary density-functional
correlation energy ec(n) that is induced by the interacting bath and the environment of
the (closed) density-functional Householder cluster. As readily seen from Equation (74), it
should be possible to describe the density-driven Mott–Hubbard transition with a single
statically embedded impurity, provided that we can model the derivative discontinuity in
∂ec(n)/∂n at half filling. This is obviously a challenging task that is usually bypassed by
embedding more impurities [15,31]. The implementation of a multiple-impurity LPFET as
well as its generalization to higher-dimension lattice or quantum chemical Hamiltonians is
left for future work.

-6 -5 -4 -3 -2 -1 0
0.00

0.25

0.50

0.75

1.00

/t - U/(2t)

n

   

U=8

U=4

U=1

exact (BA)
Ht-DMFET
LPFET

U=0

Figure 5. Converged LPFET densities (red solid lines) plotted as functions of the chemical potential
μ in various correlation regimes. Comparison is made with the exact BA (black solid lines) and Ht-
DMFET (blue dotted lines) results. In the latter case, the chemical potential is evaluated via the numer-
ical differentiation of the density-functional Ht-DMFET per-site energy (see Equations (62) and (76)).
The non-interacting (U = 0) chemical-potential-density map (see Equation (60)) is shown for
analysis purposes.
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Figure 6. Correlation potential vc(n) = μ(n)− μs(n)− U
2 n plotted as a function of the lattice filling n

at the Ht-DMFET (blue dashed line) and LPFET (red solid line) levels of approximation for U/t = 8.
Comparison is made with the exact BA correlation potential (black solid line).

5. Conclusions and Perspectives

An in-principle-exact density-functional reformulation of the recently proposed House-
holder transformed density matrix functional embedding theory (Ht-DMFET) [31] has been
derived for the uniform 1D Hubbard Hamiltonian with a single embedded impurity. On
that basis, an approximate local potential functional embedding theory (LPFET) has been pro-
posed and implemented. Ht-DMFET, which is equivalent to DMET or DET in the particular
case of a single impurity, is reinterpreted in this context as an approximation to DFT where
the complementary density-functional correlation energy ec(n) induced by the interacting
bath and the environment of the (closed) embedding “impurity+bath” cluster is neglected.
LPFET neglects, in addition, the kinetic correlation effects induced by the Householder
transformation on the impurity chemical potential. We have shown that combining the two
approximations is equivalent to approximating the latter potential with the Hxc potential
of the full lattice. Thus, an approximate Hxc potential can be determined self-consistently
for a given choice of external (chemical in the present case) potential in the true interacting
lattice. The self-consistency loop, which does not exist in regular single-impurity DMET
or DET [36], emerges naturally in LPFET from the exact density constraint, i.e., by forcing
the KS lattice and interacting embedded impurity densities to match. In this context, the
energy becomes a functional of the Hxc potential. In this respect, LPFET can be seen as a
flavor of KS-DFT where no density functional is used. LPFET is very similar to SDE [42].
The two approaches essentially differ in the optimization of the potential. In LPFET, no
KS construction is made within the embedding cluster, unlike in SDE. Instead, the Hxc
potential is directly updated in the lattice. As a result, the KS cluster (which is not used in
the actual calculation) can be automatically generated with the correct density by applying
the Householder transformation to the KS lattice Hamiltonian.

LPFET and Ht-DMFET chemical-potential-density maps have been computed for a
1000-site Hubbard ring. Noticeable differences appear in the strongly correlated regime.
LPFET is more accurate than Ht-DMFET in the low filling regime, probably because of error
cancellations. As expected from previous works [15,31], their performance deteriorates as
we approach half filling. It appears that, in the language of density-functional embedding
theory, it should be possible to describe the density-driven Mott–Hubbard transition (i.e.,
the opening of the gap), provided that the complementary correlation potential ∂ec(n)/∂n
exhibits a derivative discontinuity at half filling. Since the latter is neglected in both
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methods, the gap opening is not reproduced. The missing correlation effects might be
recovered by applying a multi-reference Görling–Levy-type perturbation theory on top of
the correlated cluster calculation [31]. Extending LPFET to multiple impurities by means of
a block Householder transformation is another viable strategy [31]. Work is currently in
progress in these directions. Note that, like DMET or SDE, LPFET is in principle applicable
to quantum chemical Hamiltonians written in a localized molecular orbital basis. A general
computational implementation of the theory will be presented in a forthcoming paper and
the code will be made available on that occasion.
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Appendix A. Simplification of Density Matrix Elements in the

Householder Representation

Starting from the expression in Equation (23) of the creation operators in the House-
holder representation and Equations (12), (14)–(16) and (18), we can simplify step by step
the expression of the density matrix elements that involve the impurity as follows,

〈Φ|d̂†
jσ d̂0σ|Φ〉 = ∑

i
Pjiγi0

= γj0 − 2vj ∑
i≥1

viγi0

= γj0 − 2vjv1γ10 − 2vj

√
2γ̃10(γ̃10 − γ10) ∑

i≥2
v2

i

= γj0 − 2vjv1γ10 − 2vj

√
2γ̃10(γ̃10 − γ10)

(
1 − v2

1

)
= γj0 − 2vjv1γ10 − 2vj

√
2γ̃10(γ̃10 − γ10) + 2vjv2

1

√
2γ̃10(γ̃10 − γ10)

= γj0 − 2vjv1γ10 − 2vj

√
2γ̃10(γ̃10 − γ10) + 2vjv1(γ10 − γ̃10)

= γj0 − 2vj

(
v1γ̃10 +

√
2γ̃10(γ̃10 − γ10)

)

= γj0 − 2vj

√
2γ̃10(γ̃10 − γ10)

(
1 +

γ̃10(γ10 − γ̃10)

2γ̃10(γ̃10 − γ10)

)

= γj0 − vj

√
2γ̃10(γ̃10 − γ10).

(A1)
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Abstract: A new approach for basis set generation is reported and tested in helium atom and dimer.
The basis sets thus computed, named sigma, range from DZ to 5Z and consist of the same composition
as Dunning basis sets but with a different treatment of contractions. The performance of the sigma sets
is analyzed for energy and other properties of He atom and He dimer, and the results are compared
with those obtained with Dunning and ANO basis sets. The sigma basis sets and their extended
versions up to triple augmented provide better energy values than Dunning basis sets of the same
composition, and similar values to those attained with the currently available ANO. Extrapolation
to complete basis set of correlation energy is compared between the sigma basis sets and those of
Dunning, showing the better performance of the former in this respect.

Keywords: He atomic basis sets; helium dimer; He2 potential well; correlation energy; complete
basis set; sigma basis set

1. Introduction

The study of weak van der Waals (vdW) interactions has always been one of the most
challenging applications of theoretical calculations of electron structure. Thus, methods
based on Kohn–Sham (KS) density functional theory (DFT) have shown limitations for
including weak and long-range interactions in the exchange-correlation term of the KS
equation. In particular, standard functionals of DFT fail to explain these interactions
because the stabilization is determined by dispersion interactions, and is not explained
by these functionals. Exchange-correlation potentials, derived from local and semi-local
models, often exhibit artifacts when applied to systems with large non-local correlation
effects. Nevertheless, there is a continuous effort to include vdW interactions within the
framework of KS theory [1], and remarkable progress on corrections to this fact has been
made, such as the exchange-hole dipole moment (XDM) model [2,3].

In the long range, vdW interactions are dominated by dispersion and permanent
multipole moment interaction and include superposition and exchange contributions.
The behavior of an exchange functional in the region of small density and large density
gradients plays a very important role. From a topological point of view, the presence of
vdW interactions can be identified by reduced density gradient (RDG) analysis. In this
respect, a novel procedure for studying van der Waals interactions has been developed as
an extension of Bader’s QTAIM in combination with RDG analysis in which a volumetric
source function is used for describing the atomic composition of vdW interactions [4].

The above considerations reinforce that the well known fact is that to reliably study
vdW interactions, not only large basis sets (BS) are needed, but also fine electron correlation
treatments are required to reproduce experimental data. In particular, noble gases have been
the focus of much research as a starting point for the study of rare gas dimer interactions [5],
a criterion for the performance of basis sets and correlation methods in vdW studies.

Among the systems linked by vdW dispersion interactions, helium occupies an out-
standing position. The properties of gaseous helium are close to those of the ideal gas
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because the interactions between helium atoms are extremely weak, and its behavior at very
low temperatures makes helium a paramount system on its own, with unusual physico-
chemical properties under these conditions. Furthermore, vdW interaction in helium dimer,
He2, is a touchstone for testing the capabilities of the most precise theoretical procedures
available [6], as its existence is due to purely electronic correlation effects.

The accurate computation of the He2 potential energy curve is a big challenge, and a
great amount of work has been devoted to this task. Ab initio studies on He2 interactions
have been published by Van Mourik et al., who report dimer calculations using different
methods and computational levels (MPn, CCSD(T), FCI, . . . ) with large basis sets, including
polarization [7–9]. In the late 20th and 21st centuries, many other authors have published
works on He2, using various sets of a consistent basis for correlation and a high level of
theory: SAPT [10], CCSD(T) [11], r12-MR-ACPF [12–14], MRCI [15], CCSD(T) [16], Monte
Carlo [17], Compton profiles [18] and Gaussian geminal theory [19]. The most accurate
results were obtained with BS supplemented with an additional set of bond functions [20],
obtaining better results when compared with larger BS without bond functions.

Because of the high accuracy intended and the feeble interaction involved, the question
about the full elimination of basis set superposition error (BSSE) in the calculations of He2
energy has been a matter of discussion [21], which still remains today. This problem comes
from the difficulty of saturating the dispersion energy in calculations with conventional
basis sets, and it is especially relevant in weakly interacting species. A good representa-
tion of the dispersion energy requires polarization functions with small exponents, and
extrapolation methods from the raw energies without Counterpoise (CP) correction have
been proposed to reduce the BSSE [22–24]. In particular, extrapolation to complete basis
set (CBS) limit for the helium dimer was studied by A. Varandas [22,25], who carried out
calculations with size-consistent methods such as Hartree–Fock (HF) and full configuration
interaction (FCI) using Dunning BS.

As a consequence of this extraordinary effort, the accuracy achieved is certainly
impressive and, according to the best estimations, the potential energy curve of He2 has a
minimum at a distance Re = 2.9676 Å, with an energy of −34.82 μEh with respect to the
limit of separated atoms [20,26]. This minimum in the potential energy curve is remarkably
shallow and has been found to admit only one vibrational state, the mean distance between
nuclei in this state being ca. ten times the equilibrium distance [27].

In this work, we report a way of constructing new basis sets for molecular calculations
which overcome the variational performance of the existing ones of equivalent composition.
Furthermore, we apply the procedure to the development of basis sets, hereafter named
sigma (σBS), for helium atoms and use them for the study of helium atom and dimer.

The article is organized as follows. In Section 2, the procedure for developing sigma
BS is explained, and the contraction scheme and composition are described. Supplementary
Materials are included, which contain the link for the sigma basis sets for He. In Section 3,
a brief summary of computational procedures, methods, bases and programs is given.
The results on the He atom and the He2 dimer are reported in Section 4, in which the
the precision of the total and dissociation energies as well as the equilibrium distances
is discussed. Results on the CBS extrapolation of correlation energies are included in a
subsection of Section 4. Finally, conclusions are drawn from these results in Section 5.

2. Criteria for Basis Set Optimization and Contraction Scheme: Size and Composition

The σBS consists of linear combinations (contractions) of radial primitive Gaussians
aimed at providing highly accurate energy values at different computational levels. In the
construction of σBS, we have exploited our previous experience in the development of
exponential type BS [28–31]. Guided by this experience, we have decided to design σBS
with the characteristic that, if a given primitive contains a spherical harmonic of quantum
number l = L, all the primitives with the same exponent and l < L are also present in
the set. For instance, if there is a d function with exponent αi, then s and p functions
with this exponent will appear in the BS. This characteristic was thought to reduce the
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computation cost of integrals involving primitives, although most standard packages are
usually not prepared to profit from it. Another feature of σBS is that all primitives in a
given shell, i.e., with the same angular part, participate in all contractions of the same shell.
The combination of both features makes it possible for the number of primitives in the
contractions can be increased, and the quality of the BS functions is thus improved, without
penalizing the computational cost. In summary, contractions in σBS are built from the
same set of exponentials combined with different angular functions. Furthermore, whereas
polarization functions of Dunning BS consist of single Gaussian functions (one primitive
per function without contraction), in sigma basis sets they are true contractions, yielding
significant improvements in the results on energy.

As a rule of thumb, the number of primitives included in each shell of polarization
functions is equal to the number of contractions in the shell plus two. As mentioned before,
the radial parts of the primitives used in the polarization functions are also present in the
functions of the core shells. The choice of primitives for polarization functions, among
those of core shells functions, is not obvious and must be accomplished by optimizing
the exponents together for both types of functions. It is also noticeable that, albeit not
specifically intended, the exponents of the primitives thus obtained almost follow an even
tempered sequence, with slight variations and covering a wide range of values.

To simplify the notation, XZ will be used in the following as an abbreviation of cc-
pVXZ, and aXZ of aug-cc-pcVXZ families. The equivalent Atomic Natural Orbitals (ANO)
and σBS will be denoted as anoXZ, aanoXZ, σXZ and aσXZ, respectively. In each of the six
families, we have considered basis sets ranging from X = 2 (DZ) up to 5 (5Z).

The optimization of helium σBS follows the general lines of Dunning’s procedure
which relies on the minimization of CISD energy in He atoms. Starting with a given set
of exponents in the primitives, the contractions are constructed in a stepwise way. In the
case of He, the (1s) contraction of the σDZ is determined by minimizing the HF energy for
the ground state. Next, the CISD is used to add a new shell and one more contraction per
shell, but keeping unchanged the contraction previously optimized. These two steps yield
the σDZ basis set. This procedure is repeated, changing the primitive exponents until their
optimum values are obtained.

To build the σTZ, we proceed as in the case of the σDZ. After optimizing the 2(s) +
1(p) contractions, a new shell and a new contraction per shell, 1(s) + 1(p) + 1(d), are added
and optimized with CISD of the He atom. The scheme for all σBS follows the procedure
described but repeating the steps of contraction/optimization as many times as required
according to the BS level. Proceeding in this way, and taking into account that the number
of primitives is increased according to the rule mentioned, σBS tend to saturate one-electron
space per shell, yielding energies as close as possible to the best attainable values according
to their size.

In general, these σBS give energy values for He atoms lower than those of Dunning
BS and similar to those of ANO BS, as we will see the next section. Unlike in Dunning and
ANO BS, in the case of the augmented σBS (aσBS), the CISD energy of the dimer at the best
available equilibrium distance (BED) Re = 2.9676 Å [26] is considered for the optimization
of σBS exponents.

3. Computational Details

As it is well known, basis sets augmented with polarization and diffuse functions can
adequately reproduce weak dispersion interactions [9,25,32]. Bearing this in mind, to study
He2 interactions in a systematic way, we have carried out calculations using atom-centered
basis sets. In particular, in this work we use correlation consistent basis sets developed by
Dunning et al. [32–35] as a reference for testing the performance of σBS reported herein.
Dunning BS are widely used, and they are especially well suited for our purposes because
they incorporate polarization functions and, in the case of augmented versions, diffuse
functions. In addition, it has been shown that correlation-consistent basis sets doubly
augmented with diffuse functions can be used to nearly saturate the radial contribution
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to the dispersion energy in rare gas dimers [8,9,36]. Furthermore, these basis sets are
grouped in families whose members are ranked in size (and quality), and this facilitates the
extrapolation of results to the CBS limit.

For testing the accuracy of energy values attained with the σBS, we have also used
the ANO BS, which have proved to be able to exhaust the capabilities of the underlying
Gaussian expansion basis (to minimize the contraction error) and provide a highly accurate
reference [37,38].

Electronic structure calculations of He and He2 have been carried out at HF, CISD and
FCI levels, using MOLPRO suite [39].

4. Results and Discussion

4.1. Sigma Basis Sets vs. Dunning and ANO Basis Sets

The composition of the basis sets for the He atom is detailed in Table 1, in which
the numbers of exponentials, primitives and contractions are quoted. Notice that the
composition is the same for the three families, the only difference being the number of
primitives, smaller in Dunning BS and similar in ANO and σBS. On the other hand, the
number of exponentials is smaller in σBS than in the other two.

Table 1. Composition of Dunning, ANO and sigma basis sets.

Basis Sets # Exponentials # Primitives # Contracted

DZ 5 7 (4s, 1p) 5 [2s, 1p]
TZ 8 16 (5s, 2p, 1d) 14 [3s, 2p, 1d]
QZ 12 32 (6s, 3p, 2d, 1f) 30 [4s, 3p, 2d, 1f]
5Z 17 57 (7s, 4p, 3d, 2f, 1g) 55 [5s, 4p, 3d, 2f, 1g]

anoDZ 15 25 (10s, 5p) 5 [2s, 1p]
anoTZ 19 45 (10s, 5p, 4d) 14 [3s, 2p, 1d]
anoQZ 23 66 (10s, 5p, 4d, 3f) 30 [4s, 3p, 2d, 1f]
ano5Z 25 84 (10s, 5p, 4d, 3f, 2g) 55 [5s, 4p, 3d, 2f, 1g]

σDZ 10 19 (10s, 3p) 5 [2s, 1p]
σTZ 10 37 (10s, 4p, 3d) 14 [3s, 2p, 1d]
σQZ 10 66 (10s, 5p, 4d, 3f) 30 [4s, 3p, 2d, 1f]
σ5Z 10 108 (10s, 6p, 5d, 4f, 3g) 55 [5s, 4p, 3d, 2f, 1g]

aDZ 7 11 (5s, 2p) 9 [3s, 2p]
aTZ 11 25 (6s, 3p, 2d) 23 [4s, 3p, 2d]
aQZ 16 48 (7s, 4p, 3d, 2f) 46 [5s, 4p, 3d, 2f]
a5Z 22 82 (8s, 5p, 4d, 3f, 2g) 80 [6s, 5p, 4d, 3f, 2g]

aanoDZ 15 25 (10s, 5p) 9 [3s, 2p]
aanoTZ 19 45 (10s, 5p, 4d) 23 [4s, 3p, 2d]
aanoQZ 23 66 (10s, 5p, 4d, 3f) 46 [5s, 4p, 3d, 2f]
aano5Z 25 84 (10s, 5p, 4d, 3f, 2g) 80 [6s, 5p, 4d, 3f, 2g]

aσDZ 11 23 (11s, 4p) 9 [3s, 2p]
aσTZ 11 46 (11s, 5p, 4d) 23 [4s, 3p, 2d]
aσQZ 11 82 (11s, 6p, 5d, 4f) 46 [5s, 4p, 3d, 2f]
aσ5Z 11 133 (11s, 7p, 6d, 5f, 4g) 80 [6s, 5p, 4d, 3f, 2g]

In Table 2, some properties computed at HF and FCI levels are reported. As can
be appreciated, FCI energies computed with σBS are lower than those computed with
their equivalent partners of the other two families. In the case of He2, energies have been
calculated at the equilibrium distance optimized at each computational level, and no result
is displayed in the case of HF calculations with ANO or σBS because no minimum is found
in these cases.
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Table 2. He and He2 energies (Eh), dissociation energies and equilibrium distances at HF and FCI levels.

He Atom He2 Dimer De(μH) Re(Å)

HF FCI HF FCI HF FCI HF FCI

DZ −2.85516048 −2.88759483 −5.71032241 −5.77519594 1.47 6.28 3.209 3.090
TZ −2.86115334 −2.90023217 −5.72230756 −5.80047345 0.87 9.11 3.637 3.296
QZ −2.86151423 −2.90241088 −5.72302886 −5.80483479 0.40 13.03 3.806 3.236
5Z −2.86162483 −2.90315188 −5.72324982 −5.80632032 0.15 16.55 4.005 3.155

anoDZ −2.86165583 −2.89748229 — −5.79496717 — 2.60 — 3.623
anoTZ −2.86166988 −2.90170267 — −5.80341360 — 8.26 — 3.335
anoQZ −2.86167139 −2.90282021 — −5.80565442 — 13.99 — 3.194
ano5Z −2.86167205 −2.90324192 — −5.80650279 — 18.95 — 3.112

σDZ −2.86166454 −2.89755779 — −5.79511772 — 2.13 — 3.645
σTZ −2.86166897 −2.90175275 — −5.80351122 — 5.73 — 3.426
σQZ −2.86167087 −2.90283439 — −5.80567817 — 9.39 — 3.301
σ5Z −2.86167106 −2.90324791 — −5.80651300 — 17.17 — 3.141

aDZ −2.85570467 −2.88954849 −5.71141075 −5.77914013 1.41 43.16 3.417 2.998
aTZ −2.86118343 −2.90059792 −5.72236734 −5.80122808 0.49 32.22 3.806 3.007
aQZ −2.86152200 −2.90253360 −5.72304429 −5.80510033 0.30 33.13 4.057 2.979
a5Z −2.86162693 −2.90320053 −5.72325393 −5.80643456 0.07 34.96 4.131 2.981

aanoDZ −2.86166988 −2.89996594 — −5.79993919 — 7.31 — 3.378
aanoTZ −2.86167139 −2.90245288 — −5.80490575 — 13.88 — 3.197
aanoQZ −2.86167205 −2.90312610 — −5.80627113 — 18.93 — 3.113
aano5Z −2.86167282 −2.90339507 — −5.80681090 — 20.76 — 3.088

aσDZ −2.86167614 −2.89997789 — −5.79996081 — 5.02 — 3.464
aσTZ −2.86167722 −2.90245411 — −5.80491755 — 9.33 — 3.300
aσQZ −2.86167716 −2.90313545 — −5.80628469 — 13.84 — 3.197
aσ5Z −2.86167707 −2.90340070 — −5.80681741 — 16.02 — 3.143

Dissociation energies of He2, De have been computed as the difference between the
energies of the separated atoms and that in the minimum of the curve, Re. In the case of
Dunning BS, a shallow minimum is obtained at the HF level at a distance that increases
with the BS size. As mentioned above, this minimum does not appear in HF calculations
with the two other families, suggesting that the improvements in the core zone with respect
to those of Dunning should prevent the presence of a minimum at the HF level.

The convergence of De and Re towards the currently best available values (De = 34.82 μEh
and Re = 2.9676 Å) [26] has been analyzed in FCI calculations, and the results are depicted in
Figures 1 and 2. In Figure 1, De is plotted vs. the BS size for the three types of BS, including the
augmented versions. It is observed that non-augmented BS have a slow convergence towards
the exact result, and they are far away from it even at the 5Z level. Augmented ANO and σBS
improve the results slightly, but the convergence is still far from the reference. On the other
hand, Dunning augmented BS, although not optimized for CISD energy of He2 at Re, yield
astonishing precise depth values of the well.

In the case of equilibrium distance, displayed in Figure 2, the behavior is quite similar
to that of De, with Dunning augmented BS giving a very good agreement even with the
smallest set (aDZ).
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Figure 1. Dissociation energy, De (μEh).
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Figure 2. Equilibrium distance, Re (angstrom).

4.2. Multiple Augmented Basis Sets

Given the excellent performance of Dunning BS with regard to the dissociation energy
of He2, and in an attempt to understand why this is not so in the case of σBS, we decided
to explore the performance of multiple augmented basis sets in both families.

We developed double and triple augmented σBS but, unlike in Dunning BS, which
were designed to improve the polarizability of the He atom, we followed the methodology
based only on energy. Thus, we obtained double and triple augmented σBS (daσXZ and
taσXZ) to compare with the corresponding Dunning BS (daXZ and taXZ, for short). These
multiply augmented BS are described in Table 3. In analogy with Table 1, the number of
exponentials, primitives and contracted functions are given, and the same comments on
the composition, size and characteristics mentioned before also hold for the new multiple
augmented σBS.
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Table 3. Composition of double and triple augmented Dunning and σBS.

Basis Sets # Exponentials # Primitives # Contracted

daDZ 9 15 (6s, 3p) 13 [4s, 3p]
daTZ 14 34 (7s, 4p, 3d) 32 [5s, 4p, 3d]
daQZ 20 64 (8s, 5p, 4d, 3f) 62 [6s, 5p, 4d, 3f]
da5Z 27 107 (9s, 6p, 5d, 4f, 3g) 105 [7s, 6p, 5d, 4f, 3g]

daσDZ 12 27 (12s, 5p) 13 [4s, 3p]
daσTZ 12 55 (12s, 6p, 5d) 32 [5s, 4p, 3d]
daσQZ 12 98 (12s, 7p, 6d, 5f) 62 [6s, 5p, 4d, 3f]
daσ5Z 12 158 (12s, 8p, 7d, 6f, 5g) 105 [7s, 6p, 5d, 4f, 3g]

taDZ 11 19 (7s, 4p) 17 [5s, 4p]
taTZ 17 43 (8s, 5p, 4d) 41 [6s, 5p, 4d]
taQZ 24 80 (9s, 6p, 5d, 4f) 78 [7s, 6p, 5d, 4f]
ta5Z 32 132 (10s, 7p, 6d, 5f, 4g) 130 [8s, 7p, 6d, 5f, 4g]

taσDZ 13 31 (13s, 6p) 17 [5s, 4p]
taσTZ 13 64 (13s, 7p, 6d) 41 [6s, 5p, 4d]
taσQZ 13 114 (13s, 8p, 7d, 6f) 78 [7s, 6p, 5d, 4f]
taσ5Z 13 183 (13s, 9p, 8d, 7f, 6g) 130 [8s, 7p, 6d, 5f, 4g]

Results obtained with multiple augmented BS are summarized in Table 4, whose
structure is identical to that of Table 2. Regarding the atomic calculations at HF and FCI
levels, it is observed again that energies computed with σBS are always better than those
of the equivalent Dunning sets. In fact, taσXZ, albeit not directly intended, yields a good
agreement with the HF limit (−2.861679995 Eh) [40,41] even for the smallest set of the series,
with an error ca. 10−6 Eh in all cases.

Table 4. He and He2 energies (Eh), dissociation energies and equilibrium distances at HF and FCI
levels for double and triple augmented BS.

He Atom He2 Dimer De(μH) Re(Å)

HF FCI HF FCI HF FCI HF FCI

daDZ −2.85570939 −2.88959436 −5.71142686 −5.77924689 8.09 58.17 3.288 2.964
daTZ −2.86118387 −2.90060812 −5.72237146 −5.80126097 3.72 44.72 3.837 2.995

daQZ −2.86152234 −2.90253661 −5.72304596 −5.80511435 1.28 41.13 4.045 2.958
da5Z −2.86162717 −2.90320194 −5.72325487 −5.80644187 0.52 37.98 3.882 2.965

daσDZ −2.86167803 −2.90035561 — −5.80072031 — 9.08 — 3.320
daσTZ −2.86167821 −2.90265038 — −5.80531813 — 17.37 — 3.136
daσQZ −2.86167822 −2.90323388 — −5.80648926 — 21.52 — 3.080
daσ5Z −2.86167816 −2.90343963 — −5.80690928 — 30.02 — 3.002

taDZ −2.85571146 −2.88960188 −5.71143417 −5.77926374 11.22 59.92 3.351 2.984
taTZ −2.86118406 −2.90061002 −5.72237488 −5.80128012 6.76 60.33 3.654 2.996
taQZ −2.86152247 −2.90253721 −5.72304861 −5.80511936 3.67 44.93 3.973 2.957
ta5Z −2.86162726 −2.90320225 −5.72325624 −5.80644560 1.72 41.10 3.850 2.960

taσDZ −2.86167928 −2.90046500 — −5.80094227 — 12.26 — 3.247
taσTZ −2.86167885 −2.90272428 — −5.80546977 — 21.21 — 3.087
taσQZ −2.86167886 −2.90328593 — −5.80659710 — 25.24 — 3.037
taσ5Z −2.86167829 −2.90344482 — −5.80692585 — 32.21 — 2.982

With respect to the dimer, Dunning BS (daXZ and taXZ) again give minima at
the HF level, the well depth being greater than that obtained with the smaller XZ and
aXZ, and the equilibrium distances range from 3.2 to 4.0 Å. Again, the σBS (daσXZ and
taσXZ) give no minimum. In all cases, the FCI energies for the diatom tend to the ex-
act value −5.80748357 Eh, estimated from the best available values for the He energy
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(2.903724377 . . . Eh) [42] and for the well depth (34.82 μEh) [26]. Notice that energy val-
ues computed with daσXZ y taσXZ are significantly lower than those obtained with the
equivalent Dunning BS.

Regarding the dissociation energy, Figure 3 shows that in Dunning BS, the inclusion
of new polarization functions in the sequence aXZ, daXZ, taXZ tends to worsen the results,
whereas in σBS, a regular improvement in the value of De is observed. In the case of
equilibrium distance, Re, Dunning BS produce results closer to the exact than those of σBS,
but the results attained with the latter also exhibit a regular approach to the right value, as
shown in Figure 4.
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Figure 3. Dissociation energy, De (μEh), multiple augmented BS.
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Figure 4. Equilibrium distance, Re (angstrom), multiple augmented BS.

4.3. Extrapolation to CBS

The performance of the basis sets in extrapolations to CBS has been analyzed in the
case of correlation energy both for the atom and for the dimer at BED. Although there are
many extrapolation schemes, we have taken one due to Helgaker [43]:

EXZ = ECBS + α/Xβ.

The correlation energy of the atom has been calculated as the difference between the
exact value [42] and the HF limit energy [40] and that of the dimer with the HF value at
BED and adding the energy of the well (34.82 μEh).
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Correlation energy values thus computed plus the extrapolated CBS energies obtained
for the Dunning and σBS are collected in Table 5 and depicted in Figures 5 and 6. The best
available correlation energies appear at the top of Table 5, with values of 0.0420444 Eh and
0.0841528 Eh for the atom and the dimer, respectively. To facilitate comparisons, figures
coincident with reference values are displayed in bold type.

Table 5. Correlation energy (Eh) for He and He2 dimer at the equilibrium distance (2.97 Å).

He Atom He2 Dimer

Limit 0.0420444 0.0841528

BS Dunning Sigma Dunning Sigma

DZ −0.0324343 −0.0358932 −0.0648756 −0.0717958
TZ −0.0390788 −0.0400838 −0.0781781 −0.0801879
QZ −0.0408967 −0.0411635 −0.0818256 −0.0823559
5Z −0.0415271 −0.0415768 −0.0830947 −0.0831955

CBS a −0.0423430 −0.0420352 −0.0847403 −0.0841253

aDZ −0.0338438 −0.0383018 −0.0677448 −0.0766221
aTZ −0.0394145 −0.0407769 −0.0788879 −0.0815831
aQZ −0.0410116 −0.0414583 −0.0820829 −0.0829540
a5Z −0.0415736 −0.0417231 −0.0832083 −0.0834887

CBS a −0.0423532 −0.0420496 −0.0847687 −0.0841510

daDZ −0.0338850 −0.0386776 −0.0678307 −0.0773832
daTZ −0.0394242 −0.0409722 −0.0789168 −0.0819873
daQZ −0.0410143 −0.0415557 −0.0820937 −0.0831597
da5Z −0.0415748 −0.0417615 −0.0832142 −0.0835811
CBS a −0.0423531 −0.0419952 −0.0847654 −0.0840554

taDZ −0.0338904 −0.0385857 −0.0678420 −0.0776054
taTZ −0.0394260 −0.0410454 −0.0789302 −0.0821388
taQZ −0.0410147 −0.0416071 −0.0820963 −0.0832671
ta5Z −0.0415750 −0.0418099 −0.0832159 −0.0836765

CBS a −0.0423526 −0.0420285 −0.0847545 −0.0841117
a Extrapolation to complete basis set with EXZ = ECBS + α/Xβ.
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Figure 5. He: correlation energy.
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Figure 6. He2: correlation energy.

The better performance of σBS over Dunning BS is evident. CBS extrapolation yields a
gain of at least two figures in the former, while scarcely one figure is gained in the latter.
The case of σaXZ is specially noticeable, as three figures are gained in the CBS extrapolation
both in the atom and in the diatom. Furthermore, CBS extrapolation in Dunning BS lies
below the exact value, whereas it converges to the right value in the case of σBS. This
behavior is clearly visible in Figures 7 and 8.
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5. Conclusions

A new scheme for developing basis sets is reported and applied to helium atom and
dimer. The σBS thus developed are configured by combining the same set of exponentials
with different angular functions and saturating the corresponding one-electron spaces. The
new family ranges from DZ to 5Z, with the same composition as Dunning BS, and also
includes, simply, double and triple augmented versions. Energy values for helium atom
and diatom computed with the σBS are lower than those obtained with their partners in
Dunning BS, and similar to ANO BS, both at HF and FCI levels.

The analysis of the energy of He2 reveals the presence of a minimum in the curve
at the HF level in the case of Dunning BS that does not appear with σ or ANO BS. In the
case of FCI, all calculations yield a well whose depth tends to the reference value as the
BS quality improves. Augmented σ BS display a good convergence which, in the case of
multiple augmented BS, is even more regular than in the corresponding Dunning BS.

CBS extrapolation of the correlation energy of He2 at BED has also been examined,
proving that the results with σBS are clearly superior to those attained with Dunning
BS. Especially remarkable is the result with the aσXZ, which shows an agreement of five
decimal figures with the best available result. Furthermore, it can be noticed that the CBS
extrapolation with Dunning BS falls below the exact value, while the sigma converges to
the right value.

Supplementary Materials: The σBS used in this work can be found online in MOLPRO format at
https://www.mdpi.com/article/10.3390/computation10050065/s1.
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Abbreviations

The following abbreviations are used in this manuscript:

ANO Atomic Natural Orbitals
aANO Augmented ANO
aXZ aug-cc-pVXZ
aσBS Augmented Sigma Basis Set
BED Best Available Equilibrium Distance of He2
BS Basis set(s)
BSSE Basis Set Superposition Error
CBS Complete Basis Set
CC Coupled Clusters
CCSD(T) Coupled Clusters Singles Doubles (Triples)
CISD Configuration Interactions Singles and Doubles
CP Cunterpoise
daXZ aug-aug-cc-pVXZ
daσBS Double Augmented Sigma Basis Set
FCI Full Configuration Interaction
HF Hartree-Fock
MP Möller-Plesset
MR-ACPF Multi-Reference Averaged Coupled-Pair Functional
MRCI Multi-Reference Configuration Interaction
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SAPT Symmetry-Adapted Intermolecular Perturbation Theory
σBS Sigma Basis Set
taXZ aug-aug-aug-cc-pVXZ
taσBS Triple Augmented Sigma Basis Set
vdW van der Waals
XZ cc-pVXZ
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Abstract: The electronic structure of coordination compounds with lanthanide ions is studied by
means of density functional theory (DFT) calculations. This work deals with the electronic structure
and properties of open-shell systems based on the calculation of multiplet structure and ligand-field
interaction, within the framework of the Ligand–Field Density-Functional Theory (LFDFT) method.
Using effective Hamiltonian in conjunction with the DFT, we are able to reasonably calculate the
low-lying excited states of the molecular [Eu(NO3)3(phenanthroline)2] complex, subjected to the Eu3+

configuration 4f 6. The results are compared with available experimental data, revealing relative uncer-
tainties of less than 5% for many energy levels. We also demonstrate the ability of the LFDFT method
to simulate absorption spectrum, considering cerocene as an example. Ce M4,5 X-ray absorption
spectra are simulated for the complexes [Ce(η8−C8H8)2] and [Ce(η8−C8H8)2][Li(tetrahydrofurane)4],
which are approximated by the Ce oxidation states 4+ and 3+, respectively. The results showed
a very good agreement with the experimental data for the Ce3+ compound, unlike for the Ce4+

one, where charge transfer electronic structure is still missing in the theoretical model. Therefore
this presentation reports the benefits of having a theoretical method that is primarily dedicated to
coordination chemistry, but it also outlines limitations and places the ongoing developmental efforts
in the broader context of treating complex molecular systems.

Keywords: atomic multiplet theory; crystal/ligand-field theory; coordination compounds; electronic
structure; density functional theory

1. Introduction

Coordination compounds play an important role in modern chemistry, as they
are involved in many fields of research: for example in catalysis [1,2], optics [3,4],
magnetism [5–7], etc. The electronic structures of coordination compounds of metal ions
(including transition metals, lanthanide, and actinide elements) exhibit open-shell species
and near-degeneracy correlation [8–10]. Low-lying excited states are often very challenging
to identify from the experiments, and to calculate from theoretical modeling. In particular,
the latter is not possible unless a proper treatment of the multi-electronic system is taken
into consideration [11–13]. Post Hartree–Fock methods, including many-body treatment
of electron correlation effects, have been extensively developed to deal with coordination
compounds. For instance, complete active space self-consistent field (CASSCF) and re-
lated methodologies [14–16] are currently enjoying wide popularity in the community
of computational chemists. However, because the configuration interaction expansion
increases exponentially with the number of active orbitals, the calculations of large systems
becoming difficult.

Kohn–Sham Density Functional Theory (DFT), on the other hand, is generally applied
to ground state electronic structure [17–19]. Its scope includes calculation of large size
molecules as well as condensed matter [20]. In DFT, excited states are often approached via
linear response theory as it is implemented in the time-dependent DFT (TDDFT) formal-
ism [21–23]. The disadvantage of TDDFT, however, is that it lacks computational protocols
for addressing highly correlated electrons, and multiplet structures, which interactions
are very relevant in coordination chemistry [24,25]. Therefore, new developments in DFT
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encompass a methodology to incorporate many-body corrections and configuration in-
teraction models [11,13,26], in order to solve open-shell electronic structures and strongly
correlated materials.

We developed LFDFT, Ligand–Field Density Functional Theory [27–30], to bring a
methodological concept for calculating multiplet structures and properties of coordination
compounds with metal ions across the periodic table of elements. In this work, we demon-
strate how LFDFT can be applied to solve electronic structure problems and to provide
rapid estimation of spectroscopic properties at low computational cost. We use selective
applications that consist in: (1) calculating the ground and low-lying excited states of the
molecular [Eu(NO3)3(phenanthroline)2] complex in order to understand the luminescence
properties of the Eu3+ 4f 6 −→ 4f 6 transitions; and (2) calculating the core-electron excitation
in cerocene in order to simulate the X-ray absorption spectral profiles of the Ce M4,5-edge
that corresponds to the 4f n −→ 3d94f n+1 transitions, with n = 0, and 1.

2. Theory

2.1. General

The concept of ligand-field and its theoretical foundation have been extensively de-
scribed and can be found elsewhere [31–34]. Hereafter, we are giving a more practical view
of the LFDFT methodology with recent calculation possibilities and technical development.
LFDFT is now available in the Amsterdam Density Functional (ADF) code that is part of
the Amsterdam Modeling Suite (AMS2021 onwards) [35,36]. In LFDFT, near-degeneracy
correlation is explicitly treated using ad hoc full-configuration interaction algorithm within
an active subspace of the Kohn–Sham molecular orbitals [27–30]. Kohn–Sham molecular
orbitals are occupied with fractional electrons to build a statistically averaged electron
density that is isomorphic with the basis of a model Hamiltonian for a configuration system
with open-shell d or f electrons. The model Hamiltonian is defined so that the most relevant
quantum–chemical interactions are taken into consideration. These include inter-electron
repulsion, relativistic spin-orbit coupling and ligand-field potential. LFDFT uses a parame-
terization scheme, but it does not rely upon empiricism [30]. In practice, the parameters
(Slater–Condon integrals, spin-orbit coupling constants and ligand-field potential) are
derived from the DFT calculation[30], therefore LFDFT has a good predictive power.

2.2. Computational Details

The main results reported in this presentation have been carried out by means of
the AMS2021 code [35,36]. To perform geometries and vibrational analysis, we used
DFT functional based on the generalized gradient approximation (GGA) Perdew–Burke–
Ernzerhof (PBE) [37]. To calculate the electronic structure, we used DFT functional based
on the GGA PBE [37], as well as hybrid functional following the B3LYP, [38], PBE0 [39,40]
and KMLYP parameterization [41]. Molecular orbitals were expanded by means of the
Slater-type Orbital (STO) functions for all elements at the triple-zeta plus polarization extra
functions (TZ2P) level [42]. Relativistic corrections were added by using the Zeroth-Order
Regular Approximation (ZORA) of the Dirac-equation method [43–45]. All electronic
structures were done at the scalar ZORA relativistic level of theory, and spin-orbit coupling
interaction was included by using the spin-orbit ZORA method. The self-consistent field
(SCF) was set up to take into account all electrons.

2.3. Methodology

First of all, the definition of the structural inputs is described as follows. We have
defined three structures for this presentation: [Eu(NO3)3(phenanthroline)2] as well as ce-
rocene [Ce(η8−C8H8)2] and [Ce(η8−C8H8)2][Li(tetrahydrofurane)4]. For simplicity, we will
denominate the two cerocene molecules by the following: [Ce(COT)2] and [Ce(COT)2]−,
respectively. We have built the molecular complexes with the help of the graphical user-
interface “AMSINPUT” of the AMS2021 program [35,36], where prototypes for possible
coordination compounds were available. Then we relaxed the molecular structures with
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DFT by using the GGA PBE functional [37]: the total energies were minimized and the
symmetry was restricted to the point groups that represented the experimental struc-
tures (i.e., C2 [46], D8h [47] and C1 [47] for [Eu(NO3)3(phenanthroline)2], [Ce(COT)2] and
[Ce(COT)2]−, respectively). We note that the [Ce(COT)2]− unit had intrinsically high sym-
metry D8h, but the descent in symmetry to C1 resulted from the presence of the counterion
[Li(tetrahydrofurane)4]+. The optimized structures were confirmed by vibrational analysis,
and no imaginary frequencies have been computed. Schematic representations of the struc-
tures are given in Figure 1. For [Eu(NO3)3(phenanthroline)2], the average Eu-N and Eu-O
optimized bond lengths were 2.588 Å, and 2.559 Å, respectively, close to the experimental
data (2.566 Å, and 2.510 Å) [46,48]. For [Ce(COT)2], the average Ce-C bond lengths was
2.703 Å, in agreement with the experimental data (2.675 Å) [47]. For [Ce(COT)2]−, the
average Ce-C bond lengths was 2.733 Å, also in agreement with the experimental data
(2.741 Å) [47].

Figure 1. Ball-and-stick molecular model of the structures of [Eu(NO3)3(phenanthroline)2] (left-hand-
side) and cerocene (right-hand-side). Color code: grey (carbon), red (oygen), white (hydrogen), blue
(nitrogen), and Orange (Europium and Cerium).

The procedural steps for computing the electronic structure are described as follows.
Based on the geometrical data given by the previous step, we performed single-point
DFT calculations. We used the keyword “IRREPOCCUPATIONS” in ADF [35,36] to set
fractional electron occupations of the molecular orbitals. For [Eu(NO3)3 (phenanthroline)2],
seven molecular orbitals were occupied with fractional 6/7 electrons. These molecular
orbitals were identified with large atomic 4f characters, and therefore constituted the
active subspace of the ligand-field calculation. Figure 2 shows a section of the ADF output
file [35,36] depicting this active subspace of the Kohn–Sham orbitals that were used to
calculate the multiplet structures of Eu configuration 4f 6. For the cerocene molecules, the
calculations were done in two steps. First, we calculated the system with Ce3+ configuration
4f 1 (and subsequently Ce4+ 4f 0), which represented the ground state multiplet structure of
the systems. Seven molecular orbitals with large atomic 4f parentage are populated with
fractional electrons following similar procedure as above. Then, we calculated the systems
with a core-hole, i.e., Ce3+ configuration 3d94f 2 (and subsequently Ce4+ configuration
3d94f 1), which represented the XAS electronic state. For that, three core-orbitals were
occupied with fractional 9/5 electrons. These orbitals were identified with 100% atomic 3d
characters. Additionally, as previously, seven orbitals that have larger atomic 4f characters
were occupied with fractional electrons.

Finally, the ligand-field analyses are performed based on the single-point DFT calcula-
tion. We use the ADF keyword “LFDFT” [35,36] to set up the calculation of the multiplet
energies. In the output of the LFDFT calculation, we obtained the parameters including
the Slater–Condon integrals, the spin-orbit coupling constants and the matrix elements of
the ligand-field potential without empirical corrections [30]. We also obtained the calcu-
lated multiplet energies and projection analysis of all the energy levels on to the atomic
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configuration. For the X-ray Absorption calculations, we use the keyword “LFDFT_TDM”
to compute the matrix elements of the transition dipole moment that correspond to the 4f n

−→ 3d94f n+1, with n = 0, 1.

Figure 2. Selective section of the ADF output for the calculation of [Eu(NO3)3(phenanthroline)2] by
using DFT with the hybrid PBE0 functional, showing the energy of the seven MOs in eV (in blue)
that have larger atomic Eu 4f parentage together with the electron occupation number (in yellow)
that are assigned with the MOs. The right-hand-side of the figure shows the percentage characters of
the MOs based on Mulliken population analysis.

3. Results and Discussion

3.1. Low-Lying Excited States of [Eu(NO3)3(phenanthroline)2]

Eu3+ compounds are often used in trichromatic phosphors for lighting purposes [49,50],
where they are known for red-color emission. The red emission results from the 4f 6 −→ 4f 6

transitions involving ground states 7FJ (with J designating spin-orbit components, i.e., 0, 1,
2, . . . , 6), and low-lying excited states 5D0 [51]. In order to understand the mechanism of
the electron transition process, it is necessary to calculate these energy levels, and to assess
the effect of the ligand-field interaction on to the atomic multiplets. The luminescence
properties of [Eu(NO3)3(phenanthroline)2] have been experimentally reported [48,52],
together with analysis of the electron transition process, including the energy values at the
ligand-field level [52]. We therefore choose this system as testbed for the theoretical method.

Table 1 shows the tabulated energy levels of the Eu3+ configuration 4f 6 in [Eu(NO3)3
(phenanthroline)2], which are obtained from the LFDFT calculations at different levels of
DFT function. Results are shown for the calculated vertical excitation energies from the
ground state (zero of energy) for 28 low-lying excited states that arise from the 7F and 5D
atomic spectral terms We note that there is no influence of geometrical changes in the energy
levels since the four sets of theoretical calculations in Table 1 come from the same atomic
configuration of [Eu(NO3)3(phenanthroline)2] (see the Methodology section). The energy
levels are also compared with the experiments [52], which correspond to photophysical
measurement at low temperature. The calculated energies agree within a few hundreds of
cm−1 with the experimental data [52] (see Table 1), although larger discrepancies are more
likely observed for certain levels. To assess the accuracy of theoretical results, we also list
in Table 1 the calculated percent error for each level with respect to the reference energies.
The percent error is calculated as 100 ∗ (theoretical values − reference values)/reference
values: a positive value indicating overestimation of the energy levels, and a negative value
indicating underestimation. In terms of absolute value, the percent errors decrease from the
GGA results to the hybrid ones, which can be attributed to the self-interaction error in DFT.
Self-interaction error can, in part, be corrected by the inclusion of Hartree–Fock exchange as
it is in the formulation of the DFT hybrid functional [53–55]. More particularly, the higher
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the percentage of the Hartree–Fock exchange, the more accurate are the predicted energy
levels, as per the default values of the Hartree–Fock exchange in B3LYP [38] PBE0 [39,40],
and KMLYP [41] equal 20.0%, 25.0% and 55.7%, respectively. We could not modulate
the hybrid functional to include larger percentage of Hartree–Fock exchange, since we
observe that although this helps improve higher-energy excited states, this also makes the
prediction of the lower-energy ones poorer (see Table 1).

Table 1. Selective energy values of the multiplet states of Eu2+ configuration 4f 6 (in cm−1) in the
system [Eu(NO3)3(phenanthroline)2] obtained from LFDFT using the PBE (1) [37], B3LYP (2) [38],
PBE0 (3) [39,40] and KMLYP (4) [41] functional, together with the calculated Percent Error (in%) with
respect to the experimental data (Exp.)

Levels LFDFT Exp. a Percent Error

State I (1) (2) (3) (4) (1) (2) (3) (4)

7F0 A 0 0 0 0 0 - - - -
7F1 A 214 261 273 349 295 −27.46 −11.53 −7.46 18.31

B 393 396 392 368 367 7.08 7.90 6.81 0.27
B 700 523 498 389 444 57.66 17.79 12.16 −12.39

7F2 B 946 971 974 986 947 −0.11 2.53 2.85 4.12
B 1020 975 980 1022 981 3.98 −0.61 -0.10 4.18
A 1047 1117 1108 1023 1016 3.05 9.94 9.06 0.69
A 1288 1134 1109 1027 1080 19.26 5.00 2.69 −4.91
A 1323 1135 1112 1039 1111 19.08 2.16 0.09 −6.48

7F3 B 1882 1884 1874 1839 - - - -
A 1909 1894 1882 1852 - - - -
B 1952 1919 1905 1859 1808 7.96 6.14 5.37 2.82
A 2011 1926 1910 1865 1846 8.94 4.33 3.47 1.03
B 2027 1932 1913 1870 1857 9.15 4.04 3.02 0.70
B 2032 1932 1921 1873 1893 7.34 2.06 1.48 −1.06
A 2137 1985 1962 1874 - - - -

7F4 B 2244 2742 2764 2771 2587 −13.26 5.99 6.84 7.11
A 2473 2812 2818 2780 2603 −4.99 8.03 8.26 6.80
A 2698 2834 2834 2799 2633 2.47 7.63 7.63 6.30
B 2790 2890 2876 2801 2648 5.36 9.14 8.61 5.78
A 2866 2897 2885 2812 2735 4.79 5.92 5.48 2.82
A 2945 2913 2888 2838 2872 2.54 1.43 0.56 −1.18
A 3072 2915 2898 2843 2946 4.28 −1.05 −1.63 −3.50
B 3179 2983 2945 2850 2967 7.15 0.54 −0.74 −3.94
B 3245 2987 2950 2886 3086 5.15 −3.21 −4.41 −6.48

5D0 A 16,081 16,517 16,535 16,874 17,241 −6.73 −4.20 −4.09 −2.13
5D1 A 17,705 18,128 18,143 18,485 18,945 −6.55 −4.31 −4.23 −2.43

B 17,716 18,164 18,176 18,488 - - - -
B 17,806 18,199 18,206 18,493 - - - -

a taken from ref. [52].

At this point, it is worth stressing the following: (1) the energy levels are reasonably pre-
dicted by the LFDFT calculations, the uncertainties vis-à-vis the experiments are relatively small
independent of the choice of the DFT functional. (2) We primarily observe overestimation of the
energy levels (many numbers in the percent error columns of Table 1 have positive sign) that
can be attributed to the self-consistent error in DFT. (3) The inconsistency with experiments
may be removed by using hybrid functional that reduces largely the percent error for many
levels. (4) The inconsistency with experiments can also be removed by different starting
geometries of the molecular complex, by using, for instance, the experimental structure
from X-ray diffraction or other techniques as input.
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Table 2 lists the values for the energy parameters obtained for Eu3+ ion configuration
4f 6 in [Eu(NO3)3(phenanthroline)2]. These parameters refer to the three Slater–Condon
Fk(4f,4f ) integrals, with k = 2, 4 and 6, the spin-orbit coupling constant ζ(4f ) [30], and
the ligand-field potential in the form of the Wybourne-normalized crystal-field parame-
ters [56,57]. For comparison, the reference data in Table 2 are drawn from earlier reports
of the average free ion parameters [51] and theoretical CASSCF/NEVPT2 computation of
the free ion [58]. In Table 2, the parameters values that are reported in the experimental
work [52] are also listed for comparison. We note that changes in the parameters values
from free ions to molecular complexes are expected, in terms of a reduction of the values as
results of covalence and the nephelauxetic effect [59–61]. Therefore the comparison of the
values in Table 2 is qualitative. For the spin-orbit coupling constant, the agreement with
reference values is almost perfect. For the Slater–Condon integrals, on the other hand, our
F2(4f,4f ) parameters are overestimated, whereas F4(4f,4f ) and F6(4f,4f ) are underestimated
(see Table 2). In Table 2, the Wybourne parameters [56,57] are only part of the multipole
expansion of the ligand-field potential, but allow us to compare the theoretical values with
the only two values reported in the experiments. Overall the ligand-field potential varies
strongly upon the choice of the DFT functional. However, we also see that the LFDFT
calculation with hybrid functional yields relatively adequate values.

Table 2. Calculated parameters of the ligand-field Hamiltonian: Slater–Condon integrals, spin-orbit
coupling constant and the ligand-field potential in terms of the Wybourne-normalized crystal-field
parameters (in eV) obtained from LFDFT using the PBE (1) [37], B3LYP (2) [38], PBE0 (3) [39,40] and
KMLYP (4) [41] functional, compared with reference data taken from the literature: experimental
parameters (a), average free-ion parameter (a) and other theoretical model (c).

LFDFT Reference

(1) (2) (3) (4) (a) a (b) b (c) c

F2(4f,4f ) 11.4244 11.7216 11.7334 11.9464 8.7164 10.2648 10.7841
F4(4f,4f ) 7.1200 7.3052 7.3126 7.4444 7.3652 7.4879
F6(4f,4f ) 5.1085 5.2413 5.2466 5.3410 5.2875 5.6741
ζ(4f ) 0.1604 0.1610 0.1607 0.1600 0.1652 0.1731
B2

2(4f,4f ) −0.0519 −0.0245 −0.0188 0.0172 −0.0196
B2

0(4f,4f ) −0.2515 −0.1332 −0.1147 −0.0217 −0.0471
a taken from ref. [52]; b taken from ref. [51]; c these values are derived from the Racah parameters in ref. [58] using
conversion factor in ref. [62].

3.2. X-ray Absorption Spectra of Cerocene

Core-electron excitation has been exploited for decades to understand the properties
and chemistry of materials with various techniques: X-ray absorption, X-ray emission, X-ray
magnetic circular dichroism, electron energy loss spectroscopy, resonant inelastic scattering,
etc. [63,64]. X-ray Absorption Spectroscopy (XAS) has many advantages, most importantly,
its element specificity and local electronic and atomic structures probing [63,64]. Lanthanide
compounds are often studied at the M4,5-edge XAS [65], which correspond to the process
in which incident photons are absorbed by promoting one electron from the core 3d orbitals
to the valence 4f. In the absorption spectra, strong features appeared representing the
4f n −→ 3d94f n+1 transitions governed by the electric-dipole mechanism [30].

Cerocene has been extensively studied in terms of the molecular orbital diagram
and ground state electronic structure [47,66–68]. The Ce 4f orbitals split in energy into
four molecular orbitals within the approximate D8h symmetry. The molecular orbital
with a1u representation (with predominant 4fz3 ) has the lowest energy, followed by the
two-fold degenerate e3u (4fx(x2−3y2) and 4fy(3x2−y2)), e1u (4fz2x and 4fz2y) and e2u (4fz(x2−y2)
and 4fxyz). Mulliken population analysis of the [Ce(COT)2] shows that the a1u, e3u and e1u
are principally metallic orbitals with 4f parentage coefficients greater than 95%. e2u has
stronger interaction with the C 2p orbitals, with a reduced 4f parentage of 74% only. The
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Mulliken population analysis of [Ce(COT)2]− shows similar behavior, except that all the
molecular orbitals are now relatively localized with 4f parentage coefficients greater than
90%. The molecular orbital diagrams are very similar to other theoretical results [47,66–68],
so that we use these orbitals as the active subspace of the LFDFT calculation.

Table 3 lists the theoretical values for the energy parameters obtained for Ce ions
with configurations 3d94f 1 and 3d94f 2 in [Ce(COT)2] and [Ce(COT)2]−, respectively. These
parameters refer to the the Slater–Condon integrals: Fk(4f,4f ), with k = 2, 4 and 6; Fk(3d,4f ),
with k = 2, and 4; and Gk(3d,4f ), with k = 1, 3 and 5; the spin-orbit coupling constant ζ(3d),
and ζ(4f ); and the ligand-field potential in the form of Wybourne parameters [56,57]. For
comparison, the reference data in Table 3 correspond to the free ion parameter values for
La3+, which is iso-electronic to Ce4+, and Ce3+ [65]. In case of the Slater–Condon integrals
and spin-orbit coupling constants, the parameters are reduced vis-à-vis the reference free
ion values, which shows the decrease of the electron density on the central metal ions
via the nephelauxetic effect [59–61]. The ligand-field parameters also shows that GGA
functional slight overestimates the metal–ligand interaction, as it is also obtained for the
Eu3+ complex (see above).

Table 3. Calculated parameters of the ligand-field Hamiltonian for the [Ce(COT)2] and [Ce(COT)2]−

systems: Slater–Condon integrals, spin-orbit coupling constant and the ligand-field potential in
terms of the Wybourne-normalized crystal-field parameters (in eV) obtained from LFDFT using the
PBE (1) [37], and PBE0 (2) [39,40] functional, compared with reference data taken from the litterature:
average free-ion parameter for La3+ (iso-electronic to Ce4+) (a) and Ce3+ (b).

LFDFT Reference
[Ce(COT)2] [Ce(COT)2]−

(1) (2) (1) (2) (a) a (b) b

F2(4f,4f ) - - 9.0259 8.5968 - 10.01
F4(4f,4f ) - - 5.6126 5.3400 - 6.35
F6(4f,4f ) - - 4.0234 3.8265 - 4.57
G1(3d,4f ) 3.4783 3.2930 3.7890 3.6082 3.78 4.06
G3(3d,4f ) 2.0595 1.9495 2.2432 2.1359 2.21 2.37
G5(3d,4f ) 1.4287 1.3524 1.5560 1.4816 1.52 1.64
F2(3d,4f ) 5.4411 5.1962 5.9528 5.7140 5.65 5.99
F4(3d,4f ) 2.4219 2.3010 2.6421 2.5243 2.53 2.71
ζ(3d) 7.5344 7.5331 7.5357 7.5343 6.80 7.45
ζ(4f ) 0.0781 0.0742 0.0852 0.0814 0.086 0.106
B2

0(4f,4f ) −0.0523 −0.0460 −0.0350 −0.0058
B4

0(4f,4f ) −3.0090 0.9311 −1.5888 −0.3282
B6

0(4f,4f ) 0.3738 −0.9137 0.1651 −0.2111
a taken from ref. [65]; b taken from ref. [65].

Figure 3 shows the calculated spectral profiles of [Ce(COT)2] and [Ce(COT)2]− ob-
tained from the LFDFT calculations by using the PBE [37] and PBE0 DFT functional [39,40].
The calculated oscillator strengths of the electric-dipole 4f n −→ 3d94f n+1 transitions, with
n = 0, and 1 are represented in bar diagrams. The colorful curves represent the broadening
of all the oscillator strengths with a Lorentzian function with a constant half-width-at-half-
maximum parameter of 0.25 eV to mimic the core-hole lifetime [30]. The calculated spectra
of [Ce(COT)2] are relatively simple, with two sharp peaks and fine structures, resulting
from the large spin-orbit coupling of the 3d electrons (see Table 3. The spectra in (Figure 3a)
and in (Figure 3c) exhibit similar profiles, except for the excitation energies, where the
hybrid functional shifts the energy to higher values, which is already observed in earlier
studies [26,30]. To validate the results, we use the experimental spectrum of [Ce(COT)2] in
ref. [68] The two sharp peaks are also present in the experiment [68], but additional features
appeared also in the form of satellites indicating the mixing between pure metallic Ce4+ 4f 0
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and ligand-to-metal charge transfer (LMCT) C 2p −→ Ce 4f electronic states. Besides, it has
been demonstrated that the ground state of [Ce(COT)2] is, in fact, multiconfigurational [69],
limiting then the use of LFDFT in this context. Thus, the treatment of LMCT, which is not
yet possible with LFDFT, will constitute the next step methodological development.

The calculated spectra of [Ce(COT)2]− present more complex features. The two strong
absorption bands are due to the large spin-orbit coupling of the 3d electrons, and the fine
structures results from the multipet levels of the 3d94f 2 configuration (see Figure 3b,d). The
first absorption band is characterized by two peaks with small pre-edge shoulders, which is
also observed in the experiment [68]. The second absorption band is characterized by three
peaks with small post-edge shoulder, that can also be seen in the experimental data [68].

Figure 3. Calculated spectral profiles of the Ce M4,5-edge XAS of [Ce(COT)2] (left) and [Ce(COT)2]−

(right), obtained from the LFDFT calculations using the PBE [37] (a,b) and PBE0 [39,40] (c,d) DFT
functional. The light orange and green color bars represent the oscillator strengths of the electric-
dipole 4f n ←− 3d94f n+1, with n = 0, and 1. The Darker orange and green curves represent the
broadening of the oscillator strengths with Lorentzian function with half-width at half maximum
parameter of 0.25 eV.

4. Conclusions

The present work is aimed at describing the Ligand-Field Density-Functional The-
ory (LFDFT) method with practical examples that are chosen from current coordination
chemistry topics. Open-shell f electrons still constitute a great challenge for computational
chemists owing to strong electron-correlation effects within valence orbitals. Density Func-
tional Theory (DFT) is nowadays very powerful for dealing with molecular and solid-state
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systems, and the ligand-field concept brings a suitable approach to treat multi-electronic
interaction. It is shown here that LFDFT can be used to reasonably perform accurate
calculations of coordination compounds with lanthanide elements. The energy levels of
Eu3+ are calculated with reasonable uncertainties, showing also the influence of the choice
of the DFT functional on the multiplet energies. The Ce M4,5-edge XAS spectra of Ce3+ and
Ce4+ are simulated with good agreement with the experimental data.

With this paper, we also want to state future developments in the LFDFT code. These
developments will include: (1) the simulation of the 4f −→ 4f absorption and emission
spectra, which on top of the energy levels will bring more complete understanding of the
luminescence process; (2) the consideration of charge transfer model to take into account
ligand orbitals in the active space of the LFDFT calculation; and (3) the development of
a ligand-field concept for coordination compounds with two or multiple metallic centers.
That is, in the perspective of elaborating more complete and user-friendly theoretical
models for complex electronic structure problems.
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Abstract: Confirming the result of a calculation by a calculation with a different method is often seen
as a validity check. However, when the methods considered are all subject to the same (systematic)
errors, this practice fails. Using a statistical approach, we define measures for reliability and similarity,
and we explore the extent to which the similarity of results can help improve our judgment of
the validity of data. This method is illustrated on synthetic data and applied to two benchmark
datasets extracted from the literature: band gaps of solids estimated by various density functional
approximations, and effective atomization energies estimated by ab initio and machine-learning
methods. Depending on the levels of bias and correlation of the datasets, we found that similarity
may provide a null-to-marginal improvement in reliability and was mostly effective in eliminating
large errors.

Keywords: statistics; methods comparison; benchmarking; band gaps; atomization energy

1. Introduction

When all computational methods yield similar results, one often assumes that these
cannot be wrong. However, logically, one cannot prove this: an argument is not necessarily
right because the majority thinks so. One might, therefore, ask whether obtaining similar
results with different methods gives a higher chance of achieving reliable results (one has to
keep in mind that the better accuracy of a method when compared to another is a statistical
assessment but is not necessarily valid for all systems [1,2].

In this paper, we propose and test a statistical approach to address this question in
the context of computational approximations. The concepts of reliability and similarity are
defined and measured by probabilities estimated from benchmark error sets. The interplay
between reliability and similarity is estimated by conditional probabilities. Reliability, as
defined here, is closely related to measures we used in previous studies, based on the
empirical cumulative density function (ECDF) of error sets [3]. As for similarity, there is
a link with correlation between error sets as illustrated in refs. [1,2]. Unlike correlation,
similarity is affected by bias between methods, i.e., correlation does not imply similarity.

The following section (Section 2) presents the method. The Applications section
(Section 3) illustrates the method on a toy dataset of normal distributions and on two
real-world datasets. In order to be able to draw conclusions, we chose literature benchmark
datasets with sufficient points to enable reliable numerical results, and a variety of meth-
ods encompassing various scenarios of bias and correlation. The main observations are
summarized in the conclusion. The aim of this paper is to exemplify a statistical approach
to similarity and not to draw general conclusions nor to recommend any of the studied
methods.
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2. Methodology

2.1. Frame

For a given computational method, M, and a given system, S, let the value calculated
for a chosen property be denoted by X(M, S). A benchmark provides reference values,
R(S). The error for the method M and the system S is given by

E(M, S) = X(M, S)− R(S) (1)

2.2. Reliability and Similarity of Computational Results

A benchmark data set is expected to provide a large set of data. We can use statistical
measures on this set to make assessments on the reliability of the computational method.
Let us first define what we mean by the results of a calculation being reliable or being similar.

The computational method M is considered reliable for the system S if

|E(M, S)| = |X(M, S)− R(S)| < εr (2)

where the reliability threshold, εr, is chosen by the user of the method, depending on his
needs. We consider here that two methods, M1 and M2 provide similar results for system
S when

|X(M1, S)− X(M2, S)| = |E(M1, S)− E(M2, S)| < εs (3)

where the similarity threshold, εs, is also defined by the user. When we consider a set of
methods, we say that the results of these methods are similar when all pairs of methods of
the set yield similar results. If not specified otherwise, we will use, in this paper, εs = εr = ε.

Figure 1 schematically presents the problem. The set of systems for which method M1
is reliable is represented by a red disk; for method M2, this is a blue disk. The systems for
which the two methods are similar are contained in the gray disk. The overlapping region
of the red (or blue) disk with the gray disk indicates the set of systems that are reliable with
the method M1 (or M2), and, at the same time, close to the result provided by the other
method.

Figure 1. A schematic representation of the properties of the systems. The region within the square
represents the set of all benchmark systems. The red disk represents the set of systems for which
method M1 is reliable. The blue disk represents the set of systems for which method M2 is reliable.
The gray disk represents the set of systems for which methods M1 and M2 give similar results.

Let us define the following notations characterizing those sets, where the indices r and
s refer to the reliability and similarity, respectively:
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• N, the number of systems in the data set (corresponding to the white square in
Figure 1).

• Ns(M1, M2, . . . ; εs), or Ns(εs) for brevity, the number of systems that yield similar
results (within εs) using methods M1, M2, . . . . (corresponding to the gray disk in
Figure 1).

• Nr(M, εr), the number of systems for which method M is reliable (corresponding to
the red or blue disk in Figure 1).

• Nr(M, εr ∩ εs), the number of systems for which method M is reliable and similar to
the other methods (corresponding to the overlap region of the three disks in Figure 1).

2.3. Probabilities

If the data set is sufficiently large, we can estimate probabilities as frequencies from
these numbers:

• The probability to obtain a reliable result with method M,

Pr(M, εr) =
Nr(M, εr)

N
(4)

• The probability to obtain similar results for the set of considered methods,

Ps(M1, M2, . . . ; εs) = Ps(εs) =
Ns(εs)

N
(5)

For a finite sample, the smallest value of εs for which Ps(εs) = 1 is called the Hausdorff
distance [4].

• The (conditional) probability to obtain reliable results with method M, given that this
method is similar to the other methods in the set,

Pr|s(M, εr, εs) =
Nr(M, εr ∩ εs)

Ns(εs)
(6)

• The (conditional) probability that a result with method M is similar to that of the other
methods, given that it is reliable,

Ps|r(M, εs, εr) =
Nr(M, εr ∩ εs)

Nr(M, εr)
(7)

with the limit values

Pr|s(M, εr = ∞, εs) = Ps(εs) (8)

Pr|s(M, εr, εs = ∞) = Pr(M, εr) (9)

Ps|r(M, εs = ∞, εr) = 1 (10)

Ps|r(M, εs, εr = ∞) = Ps(εs) (11)

Furthermore, even for εs = εr = ε, in general, Ps(ε) �= Pr(M, ε) and
Ps|r(M, ε) �= Pr|s(M, ε), where the notations were shortened to imply the equality of
both thresholds.

The main objective of this paper is to investigate whether choosing methods with
similar results is a good criterion of reliability, i.e., to what extent Pr|s(εr, εs) > Pr(εr). Even
if this aim is achieved, this does not go without a drawback: the systems for which similarity
is not reached are eliminated from the study with a probability 1 − Ps(εs). Ps|r(M, εs, εr)
gives us an indication about the quality of our selection criteria by similarity.

An important limitation of this approach is the sample size. Even for large data sets, it
may happen that the number of similar results, Ns(εs) is small, e.g., because at least one
of the methods yields results systematically different from that of the other methods or
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because εs was chosen too small. In such a case, the uncertainty of the empirical estimates
becomes large.

2.4. Statistical Measures

Often, the distribution of errors is summarized by numbers, such as the mean error,
the mean absolute error, and the standard deviation. Although these numbers convey
some information, they sometimes hide the misconception that the distribution of errors
is normal. In the cases we analyze below, as in most cases we studied previously [5], the
distributions of errors are not normal. This justifies the use of probabilistic estimators, such
as those presented in our previous work [1–3], or the ones introduced here.

A direct link can be made between the statistics based on the empirical cumulative
distribution function (ECDF) of the absolute errors, presented in ref. [3], and some of those
introduced above:

• The reliability probability Pr(M, εr) is equivalent to the ECDF of the absolute errors,
noted C(ε) in our previous work.

• The qth percentile Qq(M) of the absolute errors is the value of εr, such as Pr(M, εr) = q/100.

The conditional probabilities Pr|s(M, ε) and Ps|r(M, ε) will, thus, be represented as
conditional ECDFs as a function of ε, generalizing our former probabilistic statistics.

3. Applications

3.1. Guidelines

In order to obtain a better understanding of the situations arising from data extracted
from the chemical literature, let us first consider pairs of points generated randomly
according to normal distributions: each point is assimilated to a “system”, where the values
on the abscissa are interpreted as “errors” for M1 while those on the ordinate as “errors”
for M2. The results are presented in Figure 2. The panels on the left show the randomly
produced “errors” (green dots).

The red stripe shows the reliability region for M1, where |E(M1, S| < εr (cf. Equa-
tion (2)), and the blue stripe shows the same for M2. The gray stripe shows the region
where the results produced by M1 and M2 are within ±εs (Equation (3)). Some points are
marked by numbers. The polygon with corners corresponding to the points (2, 4, 6, and 8)
delimits the region where M1 is both close to M2 and is reliable. The polygon with corners
corresponding to the points (1, 3, 5, and 7) delimits the region where M2 is both close to M1
and is reliable. The plots were drawn by choosing εr = εs = 1.

The ratio of the number of points in the red or blue stripe to the total number of
points gives Pr. The ratio of the number of points in the gray stripe to the total number
of points gives Ps. The ratio the number of points in the polygons (1, 3, 5, and 7) or (2,
4, 6, and 8) to the number of points in the gray stripe gives Pr|s. The ratio the number of
points in the polygons to those in the red or blue stripe give Ps|r. The panels on the right
show the dependence of the probabilities on εr = εs. The results for M1 are in blue, those
for M2 in red. Pr(Mi) are drawn as thin curves, Pr|s as thick curves, and those for Pr|s as
dashed curves.

The top row is produced for errors centered at the origin (the mean errors are equal to
zero for both methods; the variance is different for the two methods). In the second row,
the mean errors are different and non-zero. In the third row, a correlation is introduced
between the errors produced by the two methods. In the last row, the effect of correlation is
enhanced. In the first three rows, the parameters are inspired from those obtained for the
PBE/HSE06 pair (see Section 3.2), in the last row different parameters are used, namely
those of PBE0/HSE06.
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Figure 2. Examples of reliability and similarity configurations (left) and the corresponding probabil-
ity curves (right) for two error sets sampled from normal distributions. See the text for description.

Let us start by discussing the first row. We see that, from the choice made for εr and
εs, an important number of points is in the region where |E(Mi, S)| < εr, (i = 1, or 2) and
|E(M1, S)− E(M2, S)| < εs. However, there are points that are within the reliable range
for both methods (in the region where the red and blue stripes overlap) are not within the
region of similarity (gray stripe).

This could be corrected by increasing εs to
√

2εr, but there is a price to pay for it: for
each of the methods, the number of points selected increases by including systems for
which the method does not yield reliable results. Furthermore, we notice that there are
points that are reliable with one method but not similar to the other method. There are
also points that are similar but unreliable (inside the gray stripe but outside either the red
or the blue stripe). Finally, there are points that where the methods are both unreliable
and dissimilar (on white background). Let us now look at the evolution of probabilities
with εr = εs (top right panel). We see that M1 is globally of worse quality than M2, as
Pr(M1) < Pr(M2) (thin curves).
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When first selecting the results by similarity and then checking the reliability, we see
that the conditional probabilities Pr|s are close for M1 and M2 and better than the Pr curves.
Checking similarity has eliminated part of the good results (that were reliable with either
M1 or M2) but provides a higher probability to obtain a good result. Note that, while Pr|s is
slightly better for M2 than for M1, the inverse is true for Ps|r, a consequence of the division
by Pr.

Let us now shift the point cloud by analyzing it for the case when the mean errors are
non-zero. If the shift for at least one of the methods is important, none of the “systems”
produces similar results for the two methods (the point cloud is shifted outside the gray
stripe). The figure shows an intermediate case, where the shift is not so important and
plays a role mainly for M1.

The similarity (gray stripe) essentially retains the results that are good for M2 (within
the blue stripe) because the number of points that are both similar and reliable for M1 is
reduced. As a result (second row, right panel), the similarity hardly improves the probability
to obtain a good result for the better method (M2) but eliminates a number of systems for
which M2 would provide reliable results. However, there is still an improvement for the
method of lower quality (M1).

Another effect reducing the improvement is the existence of positive correlation
between the “errors”. This is exemplified in the last two rows, where the position of the
points are concentrated around a line. In the limit of perfect correlation, these points lie
all on a line. If the mean errors make the lines lie in the similarity region, Pr|s = Pr: no
gain is obtained through similarity. If the line lies outside the similarity region (outside the
gray stripe), even worse, no point is selected by similarity: if we rely on similarity only, we
cannot use any of the calculations.

Note that the correlation between data produces an increase in Ps|r: if a method is
producing a reliable result, by correlation, it is likely that the other method produces also a
reliable result, except when one of the methods is strongly biased compared to the other.

3.2. The BOR2019 Dataset

We consider a set of band gaps obtained for 471 systems with a selected set of density
functional approximations (DFAs): LDA [6,7], PBE [8], PBEsol [9], SCAN [10], PBE0 [11,12],
and HSE06 [13,14]. All the data were taken from Borlido et al. [15], and most summary
statistics referred to below were reported in a previous study [1,2] (case BOR2019).

3.2.1. Performance of Individual Methods

The errors in the band gaps are quite large for this set of methods. The mean absolute
errors lie between 0.5 eV (HSE06) and 1.2 eV (LDA), while Q95 varies between 1.7 eV
(HSE06) and 3.2 eV (LDA) (Figure 3). The probability to have more reliable than unreliable
results occurs at the median absolute error, which defines a minimal value εr = 0.33 eV for
HSE06—the best method in this set.

Figure 3 shows the dependence of Pr(M, ε) on ε. One can can safely qualify HSE06 as
the best (most reliable) among the methods as Pr(HSE06, ε) is never smaller than any of the
other Pr(M, ε) curves (within the sampling uncertainty). While PBE0 becomes competitive
with HSE06 for ε > 1.7 eV, it behaves rather like SCAN for the values of ε ≈ 1 eV and
like the group of the three methods that perform worst (LDA, PBE, and PBEsol) for small
ε values.

It is important to have in mind that, even if PBE0 and SCAN are identically reliable at
the ε = 1 threshold (Pr(PBE0, ε = 1) � Pr(SCAN, ε = 1)), this is not necessarily true for
the same subset of systems.
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Figure 3. Empirical cumulative distribution functions for the absolute errors of the six DFAs
considered in this paper. They correspond also to Pr(M, ε), the fraction of systems for which the DFA
produces errors smaller than ε. The uncertainty bands are obtained by bootstrapping the ECDF and
estimating 95% confidence intervals.

3.2.2. Similarity and Reliability

Figure 4 shows the absolute errors made by two methods (HSE06 and PBE or PBE0)
and the distance between the results obtained with the two methods. We choose, for
example, a threshold for the similarity of the two methods, εs = 1 eV. We take the same
value for the threshold defining a method reliable, εr = 1 eV.

If we assume that the similarity of the results is a good criterion to select the reliable
results, the points should lie either in the bottom left rectangle (|X(M1, S)− X(M2, S)| <
εs, |E(M, S)| < εr), meaning that the selected results are reliable, or in the top right rectangle
(|X(M1, S)− X(M2, S)| > εs, |E(M, S)| > εr), meaning that dissimilarity eliminates the bad
results. However, we see many points in the top left rectangle (|X(M1, S)− X(M2, S)| <
εs, |E(M, S)| > εr), showing that it is possible that similar results should be rejected.

This naturally shows up when the methods are highly correlated, as it is the case
for HSE06 and PBE0. Furthermore, we notice the presence of points in the bottom right
rectangle (|X(M1, S)− X(M2, S)| > εs, |E(M, S)| < εr), especially for the HSE06/PBE pair,
indicating that the similarity criterion has eliminated good results obtained with one of
the methods.

PBE

HSE06

0 1 2 3 4

0

1

2

3

4

5

0 1 2 3 4

0

1

2

3

4

5 PBE0

HSE06

0 1 2 3 4

0

1

2

3

4

5

0 1 2 3 4

0

1

2

3

4

5

Figure 4. Similarity between HSE06 and PBE (left panel) and PBE0 (right panel) compared to the
reliability of the three methods (PBE: red circles, PBE0: blue circles, and HSE06: purple triangles). The
points correspond to the absolute errors made by the two methods, |E(M, S)|, Equation (2) (on the
ordinate) and the distance between the results obtained by the two methods, |X(M1, S)− X(M2, S)|,
Equation (3) (on the abscissa). The dashed lines exemplify choices for the thresholds for similarity, εs,
and reliability, εr.
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3.2.3. Impact of Similarity on Reliability

Let us now look at the probabilities as functions of ε (we take εs = εr = ε), Figure 5.
As a reference, we plot Pr(M, ε) (thin curves, identical to the ECDF curves in Figure 3), the
estimation of reliability when no similarity check is made. The thick curves correspond
to Pr|s(M, ε), the probability to obtain with method M errors smaller than ε if the results
of method M are within ±ε of the other method(s). The dashed curves indicate Ps|r(M, ε),
the probability of a reliable result obtained with method M to be in the subset selected
by similarity.
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Figure 5. Probabilities for the pairs LDA/PBE (left panel) and PBE/HSE06 (right panel): Pr(M, ε)

(thin curves), Pr|s(M, ε) (thick curves), and Ps|r(M, ε) (dashed curves). The gray rectangle covers the
region where the selected sample size is less than 100.

The data set contains originally 471 systems. However, by making selections, e.g., of
systems where the DFAs yield similar results, the size of the sample is reduced, and the
use of statistical estimates is hampered. We estimate that, below 100 selected systems, the
statistics become unreliable. The region for which the size of the sample is smaller than 100
is marked by a gray rectangle in Figure 5.

We notice that, for LDA and PBE, which provide close reliability curves, practically
no distinction can be made between the thin and thick curves: similarity has no impact on
reliability. We also see that Ps|r(M, ε) ≈ 1 for almost the whole range of ε: if one method
gives a reliable result for a system, the other one is very likely to give a reliable result too.
Thus, the size of the sample of similar results is reaching a size comparable to that of the
complete sample already for a small value of ε (the gray rectangle is very thin).

The situation changes when we compare PBE to HSE06. The region where the size of
the sample of similar results is below 100 reaches a large value of ε ≈ 0.6 eV. For ε > 0.6 eV,
we notice an improvement for each of the methods: Pr|s(M, ε) > Pr(M, ε). However, we
notice that the improvement of the worse of the two methods is not compensating the
difference of quality between the two methods.

Even as ε increases beyond 0.6 eV, Ps|r(M, ε) is at first relatively small: if one method
gives a reliable result, the probability that the other provides a reliable result too, is relatively
small. Without surprise, the risk of the better of the two methods (HSE06) to eliminate
systems by selection is higher than that of the worse of the two methods (PBE), cf. dashed
curves in Figure 5. In this case, one should take the result provided by the better of the two
methods, not, e.g., the average of the results of the two methods.

The improvement has to be paid: for some of the systems, the methods provide results
that are not similar, and are not taken into consideration - we have no answer to give for
these systems. Figure 6 shows an example by choosing PBE, finding how many systems
from the data set are similar (within ε) to those obtained with another method. The graph
confirms that an important number of systems are lost, unless one declares similarity by
choosing a large value for ε.
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Figure 6. Number of systems that yield band gaps close to those obtained with PBE, for different
methods, as a function of ε.

Let us attempt to condensate the results by looking at the values of ε for which the
probabilities of having an absolute error smaller than ε is 0.95, Q95(M), cf. Table 1. This
provides only an exploration of the behavior at large ε. Nevertheless, it leads to the
conclusions above: LDA and PBE do not gain by using similarity: Q95(LDA) = 3.1 eV and
Q95(PBE) = 2.9 eV, even after similarity is imposed. However, Q95(HSE06) decreases from
1.7 to 1.3 eV when the similarity with PBE is taken into account.

Table 1. Q95(M1), in eV, for the method indicated by the row (M1), when similar to the method
described by the column (M2), for εs = εr.

M1\M2 LDA PBE PBEsol SCAN PBE0 HSE06

LDA 3.1 3.1 3.1 3.1 2.1 3.1
PBE 2.9 2.9 2.9 2.9 2.1 2.9
PBEsol 3.0 3.0 3.0 3.0 2.2 3.0
SCAN 2.4 2.4 2.4 2.4 2.1 2.4
PBE0 1.4 1.4 1.4 1.5 1.8 1.8
HSE06 1.1 1.3 1.1 1.7 1.7 1.7

We can expect the errors of different DFAs to be highly correlated [2]. (For example,
recall that making the approximation valid for the uniform electron gas is a basic ingredient
in almost all DFAs.) In other words, this could mean that if one method is right, all are
right, and if one method is wrong, all are wrong: little improvement can be expected from
agreement between methods.

Another measure of similarity is Spearman’s rank correlation coefficient (Table 2). This
varies between 0.76 (LDA and PBE0), and 0.99/1.00 (within the group of lower performance:
LDA, PBE, and PBEsol). For PBE and HSE06, it takes an intermediate value (0.83). The
correlation coefficients gives a hint for grouping the methods; however, it is more difficult
to extract from them the information given in Figure 5 than it is from Q95(M).

Table 2. Rank correlation matrix between error sets.

M1\M2 LDA PBE PBEsol SCAN PBE0 HSE06

LDA 1 0.99 1.00 0.95 0.76 0.81
PBE - 1 1.00 0.97 0.78 0.83
PBEsol - - 1 0.96 0.77 0.82
SCAN - - - 1 0.83 0.87
PBE0 - - - - 1 0.98
HSE06 - - - - - 1
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Another problem of using the correlation index is its invariance with respect to a
monotonous transformation of the calculated values (a linear transformation for the Pearson
correlation). If one of the methods is biased and another not, these methods are not likely
to give similar results, despite a high correlation index. Of course, this dissimilarity can be
reduced by correcting the bias, typically, by subtracting the estimated mean error from the
values obtained.

Figure 7 shows the probability that the results of two methods are similar (within ε).
The similarity of LDA and PBE can be recognized immediately, as well as the dissimilarity
between LDA and PBE0 or HSE06. One can also notice the improvement after centering
the errors (i.e., correcting the bias by subtracting the mean signed error for each of the
methods). At the same time, the difference between methods (PBE0 and HSE06) is reduced.

LDA,PBE

LDA,PBE0

LDA,HSE06

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.2

0.4

0.6

0.8

1.0

Figure 7. Probabilities Ps(M1, M2; ε) that a pair of methods (M1, M2) yields similar results (within
ε) for (LDA and PBE), (LDA and PBE0), and (LDA and HSE06). The dashed curves are obtained after
centering the errors.

One may want to summarize the information present in Ps(M1, M2; ε) by its mean,
μs(M1, M2), and standard deviation, σs(M1, M2):

μs(M1, M2) =
∫ ∞

0
ε[1 − Ps(M1, M2; ε)]dε (12)

σ2
s (M1, M2) =

∫ ∞

0
ε2[1 − Ps(M1, M2; ε)]dε − μ2

s (13)

The numerical results are given in Table 3. The similarity of LDA, PBE, and PBEsol is
well visible from these numbers.

Table 3. The mean and the standard deviation of the probability distribution of having two DFAs
giving similar results, μs(M1, M2)(σs(M1, M2)), Equations (12) and (13).

M1\M2 LDA PBE PBEsol SCAN PBE0

PBE 0.1(0.1) - - - -
PBEsol 0.1(0.1) 0.1(0.0) - - -
SCAN 0.4(0.3) 0.3(0.2) 0.4(0.2) - -
PBE0 1.6(0.6) 1.5(0.5) 1.6(0.5) 1.2(0.4) -
HSE06 1.1(0.5) 0.9(0.5) 1.0(0.5) 0.6(0.3) 0.6(0.2)

Let us now increase the number of methods that we are considering. Taking into
account the closeness of the results of LDA, PBE, and PBEsol, we do not expect anything
considering the similarity of these three methods. However, one might ask whether
comparing PBE, HSE06, and SCAN, or PBE, HSE06, and PBE0 provides any improvement.
In the first case, Q95(HSE06) stays at 1.3 eV; in the second, it slightly increases to 1.4 eV.
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Increasing the number of methods for similarity checks does not provide necessarily
an improvement on reliability (as one increases the number of “bad” methods to compare
with). All six methods provides, at best, Q95(M) ≈ 1.3 eV, while the best value in Table 1
is of 1.1 eV. This can be also seen in Figure 8, the analogue of Figure 5, showing the
probabilities obtained when similarity among all six methods is taken into account. This
also shows the increase of the region of poor sampling.

LDA
PBE
PBE_SOL

SCAN
PBE0
HSE06

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.2

0.4

0.6

0.8

1.0

Figure 8. Probabilities : Pr(M, ε) for M in the set of 6 methods (thin curves), Pr|s(M, ε) (thick curves),
and Ps|r(M, ε) (dashed curves). The gray rectangle covers the region where the selected sample size
is less than 100.

3.2.4. Eliminating Strange Results?

The distribution of errors in density functional approximations is often not normal [5].
This can be seen in Figure 9. It seems that similarity confirms (in part) the prejudice that
a strange behavior of one method is not repeated by another, different method. After
restricting the data set to similar values, the distribution of errors is more compact. This
explains the lowering of the Q95(M). Recall, however, that wrong results obtained with
both methods are not excluded.

PBE

HSE06

PBE

HSE06

Figure 9. Histograms showing the distribution of errors before and after introducing similarity (left,
and right panel for ε = ∞ and ε = 1 eV, respectively), for PBE (red) and HSE06 (blue). The normal
distributions using the mean and standard deviation of these error distributions are shown as curves.

3.3. The ZAS2019 Dataset

The effective atomization energies (EAE) for the QM7b dataset [16], for molecules up
to seven heavy atoms (C, N, O, S, and Cl) are issued from the study by Zaspel et al. [17]. We
consider here values for the cc-pVDZ basis set, and the prediction error for 6211 systems
for the SCF, MP2, and machine-learning (SLATM-L2) methods with respect to CCSD(T)
values as analyzed by Pernot et al. [18].

In contrast to the case of the DFAs presented in the previous section (Table 2), the
errors in this dataset present negligible rank correlation coefficients (smaller than 0.1 in
absolute value). Similarity will, thus, be dominated by the bias in the errors and their
dispersion. The Pr(M, ε) and Pr|s(M, ε) curves are shown in Figure 10. When comparing
HF to MP2, one sees that both methods benefit from similarity as soon as ε > 0.2 kcal/mol.
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Naturally, HF benefits much more from the similarity selection than MP2: its Q95
decreases from 6.1 to 4.2 kcal/mol, while Q95 for MP2 decreases slightly from 3.4 to
2.9 kcal/mol. A similar behavior is observed in the comparison of HF to SLATM-L2 with a
larger onset of improvement for SLATM-L2 (ε∼0.5 kcal/mol). For HF, Q95 decreases from
6.1 to 3.8 kcal/mol and for SLATM-L2 from 4.7 to 2.5 kcal/mol. The comparison of MP2
to SLATM-L2 provides an intermediate case, where both methods present more balanced
improvements: for MP2, Q95 decreases from 3.4 to 2.4 kcal/mol and for SLATM-L2 from
4.7 to 1.9 kcal/mol.
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Figure 10. Pr(M, ε) (thin curves) and Pr|s(M, ε) (thick curves) for the pairs and triple in the set (HF,
MP2, and SLATM-L2).

Adding HF to the MP2/SLATM-L2 pair produces a marginal gain for the latter meth-
ods, whereas HF presents a strong gain in reliability: the final Q95 values are 2.5 (HF),
1.8 (MP2) and 1.7 kcal/mol (SLATM-L2). However, this comes at the price of a large num-
ber of system rejections: for ε∼2.0 kcal/mol, only 1/4th of the 6211 systems are selected
by their similarity. For comparison, this number is about 2/3rd for the MP2/SLATM-L2
comparison.

In this context of uncorrelated error sets with different accuracy levels, one sees that
similarity selection has a notable positive impact on the reliability of predictions by any
of the methods, even the most accurate ones. It is striking that MP2 or SLATM-L2 might
benefit from comparison with HF, but, as already discussed for band gaps (Figure 9) , this
proceeds mainly by elimination of systems with large errors.

4. Conclusions

We asked whether picking only results that are similar to different methods would
improve the accuracy of their predictions (in spite of possibly eliminating a significant part
of the calculations done). The use of probabilities to treat reliability and similarity was
illustrated on two benchmark data sets, one of band gap calculations with different density
functional approximations, the other of effective atomization energies with two ab initio
methods and one machine-learning method.
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For the properties and methods studied, the thresholds for reliability and similarity
were chosen quite generously. For the band gap data set, we found that similarity of the
density functional results had only a marginal impact on improving the prediction accuracy.
This is consistent with previous findings that the differences between density functional
approximations are less important when considering the error distributions [1,2], or taking
into account experimental uncertainty [19].

For the effective atomization energies data set, in which the error sets are uncorrelated,
notable improvements of reliability after similarity selection were observed for all methods,
even the most accurate ones. Roughly, we observed two categories of results:

1. methods that always give close results, for which similarity is irrelevant; and
2. methods for which an improvement can be achieved, especially by eliminating certain

systems that behave strangely with one or the other methods—similarity is mainly
effective for eliminating large errors.

Note that the size of the data sets might have an impact on the uncertainty of all the
statistics. For the smaller datasets, this uncertainty might be comparable with the observed
differences between statistics. Bootstrapping approaches, such as the ones used in our
previous works [1,3], could be used to this effect. This was not the focus of the present
study, and uncertainty management will be considered in forthcoming research.
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Abstract: Electronic structure calculations in the framework of density functional theory are based
on complex numerical codes which are used in a multitude of applications. Frequently, existing
experimental information is used as a gauge for the reliability of such codes. However, their results
depend both on the chosen exchange-correlation energy functional and on the specific numerical
implementation of the Kohn-Sham equations. The only way to disentangle these two items is a
direct comparison of two or more electronic structure codes. Here, we address the achievable
numerical accuracy and numerical precision in the total energy computation of the two all-electron
density-functional codes Wien2k and FPLO. Both codes are based on almost independent numerical
implementations and largely differ in the representation of the Bloch wave function. Thus, it is a
highly encouraging result that the total energy data obtained with both codes agree within less than
10−6. We here relate the term numerical accuracy to the value of the total energy E, while the term
numerical precision is related to the numerical noise of E as observed in total energy derivatives. We
find that Wien2k achieves a slightly higher accuracy than FPLO at the price of a larger numerical
effort. Further, we demonstrate that the FPLO code shows somewhat higher precision, i.e., less
numerical noise in E than Wien2k, which is useful for the evaluation of physical properties based on
derivatives of E.

Keywords: density functional theory; DFT codes; electronic structure calculation; numerical accuracy
and precision

1. Introduction

Computations of electronic structure provide an important input to research in physics,
chemistry, and materials science, and density functional theory (DFT) is behind a major
part of such computations. While DFT is a formally exact theory, its practical use relies on
the implementation of approximative exchange-correlation functionals. A second but not
less important ingredient to DFT applications consists in the development and verification
of numerical electronic structure codes. Here, we consider the latter subject.

The task to solve the Kohn-Sham equations of DFT is well defined, but its solution is
far from being trivial. The mathematical complexity of this system of non-linear integro-
differential equations is mirrored by the complexity of its solvers, numerical codes with
typically several 105 source lines. Codes of such a size and complexity bear two unavoidable
problems: approximations and coding errors. Fortunately, a large number of codes has been
developed in past decades by independent teams. These codes partly rely on completely
different approximations for, e.g., the representation of the wave function. Thus, many of
them can be considered as virtually independent implementations with little risk to suffer
from the same source of inaccuracy. Hence, deviations from the numerically exact solution
can be considered as code-specific and uncorrelated, at least for codes with different

Computation 2022, 10, 28. https://doi.org/10.3390/computation10020028 https://www.mdpi.com/journal/computation163



Computation 2022, 10, 28

wave function representations. As noteworthy exceptions, we mention standard algebra
routines that are frequently taken from common software packages and methods for k-space
integrations. The latter are usually implemented independently in each code but may lead
to method-specific convergence behavior with the number of k-points.

In 2016, a comparison was published regarding the volume-dependent total energy,
E(V), calculated by means of 15 different DFT codes for 71 elements of the periodic table [1].
The goal of that work was to evaluate the achievable precision of Kohn-Sham solvers
under well-defined common choices of exchange-correlation functional and treatment of
relativistic effects. Thereby, precision was defined as the scatter among computed equation-
of-state data, in distinction to accuracy which would describe the deviation of the mean
DFT result from experiment [1].

In the present work which is again solely focused on the comparison of computations,
we will use the terms accuracy and precision in a slightly different sense. Motivated by
the idea that the total energy is a variational quantity, lower total energy will be identified
with higher numerical accuracy in the common meaning of a smaller systematic error [2].
This choice comes with the known caveat that numerical problems like basis set over-
completeness can reduce the resulting total energy in an unpredictable manner [3] and have
to be excluded by appropriate data analysis. Furthermore, our definition only makes sense
if all calculations make use of one and the same exchange-correlation approximation. With
this condition fulfilled, the numerical accuracy of a modern DFT code is mainly determined
by the completeness of the basis set for the representation of the Bloch states.

Regarding precision as a description of random errors [2], we will associate this term
with numerical noise along the E(V) curve. This choice is motivated by the following
consideration. DFT computations are usually quasi-deterministic. Thus, it is not possible
to perform a statistical analysis for a single point on E(V). However, different points on
E(V) are known to show quasi-random deviations from averaging approximants to E(V),
such as polynomial fits. The default numerical settings of advanced codes are nowadays
tight enough to keep these quasi-random contributions to E(V) well below its systematic
deviations from a hypothetical, exact solution of the Kohn-Sham problem. In other words,
the numerical precision of E(V) is much higher than its numerical accuracy. However, this
may not be the case for derivatives of the total energy which are of interest on their own.
For the sake of brevity, we will drop the qualifier “numerical” for the considered accuracy
and precision in most places below.

Seven of the codes taken into account in the abovementioned comparison are so-
called all-electron codes which do not rely on approximative pseudopotentials but include
the complete nuclear potential and the electronic core wave functions in the calculation.
Considering the scatter of results only among these seven codes used with their numerically
best settings, the data produced by Wien2k [4] turned out to be close to the barycenter [1].
This finding confirms the status of Wien2k as the “gold standard” of DFT codes: a well-
deserved result of several decades of dedicated work by the developer team of Wien2k,
formed and headed by Karlheinz Schwarz.

The predictive computation of physical properties by means of DFT codes has been
widely established in past decades. If applied to a large set of materials, such a property
screening is faced with resource considerations. Disregarding so-called O(N) methods –
they are not among the most commonly used DFT codes and are often geared towards
certain subsets of compounds like insulators –, the required CPU time and main storage
grow with the third and second power, respectively, of the Hamilton matrix rank. Hence, a
code with a small matrix, i.e., a small basis set, is usually superior to a code with a large
basis set in terms of computation time and main storage demand. However, small basis
sets frequently limit the achievable accuracy. Thus, it is important to gauge the quality
of codes with small basis sets against a confirmed quality standard such as Wien2k both
in terms of accuracy and precision. In the current study, we compare Wien2k and the
full-potential local-orbital (FPLO) code [5] with each other. They are based on completely
different concepts to represent the Bloch wave function and the FPLO code is equipped
with a much smaller basis set than Wien2k. However, both these codes belong to the
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all-electron category of electronic structure codes. This allows a direct comparison of their
total energies.

To establish a procedure for comparing the quality of two codes concerning their
predictive power beyond total energies, we advance from the previous equation-of-state
comparison [1] to the consideration of total energy derivatives which give access to more
detailed thermodynamic information. For example, the first derivative of the total energy
with respect to the magnetization equals the external field necessary to stabilize this
magnetization, and a zero second derivative indicates a metamagnetic transition. Yet more
subtle is the detection of an electronic topological transition (ETT), also called Lifshitz
transition, on the sole basis of total-energy data. For hexagonal Osmium, a previous
experimental study claimed visibility of an ETT as a kink in the ratio of lattice parameters
c/a vs. pressure p [6]. Theoretical equation-of-state data should in principle allow to
identify such a peculiarity. In later work, however, the existence of this particular ETT was
doubted, see Ref. [7] and references therein.

Here, we demonstrate for a particular case that a conventional ETT can be detected
in the third derivative of E(a) as obtained from current DFT codes, a denoting the lattice
parameter. The reader may object that ETTs can simply be found by careful inspection
of band structure and density of states. This was indeed our starting point in seeking to
distinguish the traces of ETTs from numerical noise. We achieved a substantial reduction
of the latter by modifying the default numerical settings for both considered codes. This
allowed us to obtain even d3E/da3 relations with high resolution. The obtained precision
enabled us to perform convincing Birch-Murnaghan fits using the minimum possible
number of data points.

Our exercise focuses on the comparatively simple case of face centered cubic (fcc)
Aluminium. This metal was already the target of very early Fermi surface investigations
by electronic structure theory [8]. Later, Fermi surface changes under different types of
pressure were predicted [9] and an ETT was observed by nuclear magnetic resonance
experiments on Al under hydrostatic pressure [10].

Details of the computational methods are provided in the following Section 2. Results
and the related discussion are presented in Section 3, and Section 4 summarizes this work.

2. Methods

The Wien2k calculations were performed in the version 19.1 of this code [4]. The
parameter Rkmax was varied in the range from 4 to 12, and the muffin-tin sphere radius
Rmt was chosen as 2.39 Bohr radii for Aluminium. As convergence conditions, 10−6 for
density and 10−8 Rydberg for the total energy were used in almost all calculations. The
only exception was one data point for a = 0.3646 nm, Rkmax = 8, for which only a density
convergence of 10−5 could be achieved.

FPLO was used in the version FPLO-18.00-52 [11]. Self-consistency of the iterations
was considered to be achieved upon stability of both density and total energy. The default
values, 10−6 for density and 10−8 Hartree for energy, were taken as related thresholds if
not indicated otherwise. A specific modification of the numerical mesh for orbital-potential
matrix elements is explained and discussed in Section 3.3.

All calculations, performed with either of the codes, were conducted in a scalar
relativistic mode according to Koelling and Harmon [12] and using the generalized gradient
approximation (GGA) in the parameterization by Perdew, Burke, and Ernzerhof (PBE) [13].
Integrations in reciprocal space were done with a linear tetrahedron method including
Blöchl corrections [14]. It should be noted that broadening techniques are less suited for
the detection of ETTs.

The k-point numbers of the specific calculations are defined in Section 3 using the
following notation: A mesh with n× n× n intervals in the full Brillouin zone, the irreducible
part of which was used in a self-consistent calculation, is denoted as scKn; a mesh with
m × m × m intervals in the full Brillouin zone, the irreducible part of which was used
in a single-step calculation with an input density from a calculation scKn, is denoted as
Km-scKn.
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Calculations were performed for fcc Aluminium (space group 225) with lattice param-
eters a between 0.36 nm and 0.41 nm in steps of 0.0005 nm. In certain cases, the step size
was chosen as 0.0001 nm.

In our evaluation of the E(a) data, numerical differentiation plays an important role.
This approach, however, requires a trade-off between the conflicting demands for the
best possible resolution and the lowest possible noise. Here, we applied two approaches.
The first one, called ”direct evaluation” henceforth, uses generalizations of the midpoint
formula of differentiation. For a given set of data points with equidistant arguments,

d2E/da2|ai = (E(ai+1)− 2E(ai) + E(ai−1))/(ai − ai−1)
2

and

d3E/da3|(ai+ai+1)/2 = (E(ai+2)− 3E(ai+1) + 3E(ai)− E(ai−1))/(ai − ai−1)
3

were evaluated for (ai − ai−1) = 0.0005 nm. This value is a carefully chosen compromise
between a high noise level for small step sizes and a suppression of physical singularities
for large step sizes. A considerable further noise reduction can be achieved by starting
from third-order polynomial fits within a moving window. This second approach, called
“moving window differentiation” below, was carried out on equidistant data sets with
(ai − ai−1) = 0.0001 nm and 33 data points in each fit.

3. Results and Discussion

3.1. Effect of the k-Mesh on the Density of States

The density of states (DOS), g, is a primary quantity obtained in any electronic structure
calculation on extended systems. It has widely been used for the interpretation of numerous
experimental results like photon- or electron-spectroscopy data, thermodynamic properties,
or electron-nucleus interaction data. Here, we focus on the DOS at the Fermi level g(eF).
It is related to the low-temperature specific heat and also to the Knight shift. Last but
not least, singularities in the dependence of g(eF) on the volume (or lattice parameter, or
pressure) signal Lifshitz transitions. The aim of this subsection is to sensitize the reader to
the importance of choosing a dense k-mesh in order to achieve a precise DOS. Henceforth,
we use g(eF) as abbreviation for g(eF(a), a).

Figure 1 shows g(eF) of fcc Aluminium vs. lattice parameter a for different k-meshes.
Consider the upper panel of the figure first. The default k-mesh scK12 (red line) provides
a smooth behavior of g(eF) in the whole range of the lattice parameter. It does, however,
not meet the expectation of a root-like dependence for a nearly-free electron situation. For
the next denser mesh scK24, a local maximum of g(eF) appears close to a = 0.394 nm. This
maximum could be related to an ETT, but the yet denser mesh scK50 produces a much more
structured curve with several local maxima or kinks. The majority of these singularities can
be assigned to numerical minigaps arising from wrong band connections. Such minigaps
are more numerous but smaller in the scK100 results, and they are almost invisible in the
scK200 curve.

The latter two data sets each exhibit two kinks that indeed originate from ETTs. They
are marked by the vertical lines and named ETT1 and ETT2. Furthermore, data obtained
with a very dense k-mesh K400-scK200 are presented in the lower panel of the figure and in
its inset. The related curve is piece-wise quasi-analytic. Here, another but less prominent
Lifshitz transition, ETT0, is recognizable close to a = 0.392 nm, see the inset of Figure 1.
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Figure 1. Total density of states at the Fermi level vs. lattice parameter, obtained with the FPLO
code using different k-meshes as specified in the legends. The positions of two prominent ETTs
are indicated by vertical lines in the upper panel and by arrows in the lower panel. Another, less
prominent ETT is indicated by an arrow in the inset, which has an a-axis identical to that of the main
graph. The upper panel shows data points which were obtained at a distance of 0.0005 nm. They are
connected by straight lines. The lower panel presents data obtained at the same distance completed
by data at a distance of 0.0001 nm in the vicinity of the ETTs. The data points are connected by lines in
the lower main panel and depicted as circles in the inset. The K400-scK200 data were computed with
tightened convergence criteria of 10−7 (density) and 10−9 Hartree (total energy) in the scK200-step.

All three ETTs detected above can be identified in the schematic Fermi surface plots
shown in Figure 2. Therein, the well-known third-zone monster of fcc Aluminium is shown
in the left-hand part within the complete Brillouin zone and as the lowest detail in the
right-hand part, both for the equilibrium situation.

Consider the right-hand part of Figure 2. Upon reduction of a, the β-orbit merges
with its neighbor and the monster become multiply connected (arrow in the second lowest
detail). This ETT0 is barely visible in the DOS, compare the inset of Figure 1. A slight further
reduction of a disconnects the Fermi surface and lets the α-orbits vanish, as shown in the
third detail. This transition was named ETT1 above. Finally, the ellipsoid around symmetry
point U vanishes in another Lifshitz transition, named ETT2. The latter two transitions are
well-resolved in the DOS, provided it is computed with appropriate precision, see Figure 1.

To avoid the occurrence of the abovementioned artificial singularities of the DOS,
resulting from wrong band connections, broadening techniques are frequently used for
k-integration and even for the calculation of the DOS. Such approaches, however, do not
allow for the identification of van Hove singularities as indicators of ETTs. Hence, the use
of a linear tetrahedron method with a very dense k-mesh is the only safe way to identify an
ETT in the DOS. An alternative way is to calculate Fermi surfaces using an equally dense
mesh. We stress that a band structure at symmetry lines is usually not sufficient for this
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aim since changes of the Fermi surface topology frequently happen at general k-points,
compare Figure 2.

γ β

UW

α

ETT2

ETT1

ETT0

Figure 2. Schematic Fermi surface of Aluminium as obtained with the FPLO code. Left part: Third-
zone equilibrium-volume Fermi surface in the fcc Brillouin zone with symmetry points. Blue (red)
color indicates the occupied (unoccupied) side of the Fermi surface. Right part: variation of a detail
of the Fermi surface close to one of the square edges as indicated by a brown rectangle in the left
part. The lattice parameter shrinks from bottom to top. The lowest detail shows the equilibrium-
volume situation with three extremal orbits (α, β, γ) indicated in the common notation [9] . Our
denominations ETT0, ETT1, and ETT2 refer to the Lifshitz transitions detected in Figure 1.

The limited precision of DOS data evaluated by using a coarse k-mesh also results in
large errors in the predicted values of Sommerfeld parameters, Pauli susceptibilities, and
Knight shifts. To illustrate this remark, Table 1 compiles the relative differences between
the well-converged value of g(eF) obtained from K400-scK200 and g(eF) data obtained
from less dense meshes for three specific lattice parameters. It shows that the default mesh,
which is in many cases sufficient for fairly accurate self-consistent calculations, provides
an error of up to 30% in g(eF) at the considered lattice parameters. Even the rather dense
mesh scK100 yields an error of up to 2%.

Table 1. Relative differences 1 − g(eF)other/g(eF)400 between g(eF)400, computed from K400-scK200,
and g(eF)other, computed from other k-meshes, for lattice parameters close to the equilibrium structure
and close to ETT1 and ETT2. All data were obtained with the FPLO code.

Mesh scK12 scK24 scK50 scK100 scK200

1 − g(eF)other/g(eF)400 at a = 0.4040 nm 0.234 0.051 −0.0008 0.0002 −0.0002
1 − g(eF)other/g(eF)400 at a = 0.3915 nm 0.278 0.087 0.049 0.019 −0.0004
1 − g(eF)other/g(eF)400 at a = 0.3760 nm 0.078 0.007 0.007 0.0008 0.0004

The data presented in Table 2 corroborate the above note that k-meshes of usual density
are sufficient for the computation of integral properties like the equilibrium lattice parame-
ter a0. For each of the considered k-meshes, a0 was obtained as the minimum of a parabola
through the three total energy values computed for a = 0.40415, 0.40420, 0.40425 nm.
These lattice parameter values are close to the GGA equilibrium which we identify with
a0,scK400 = 0.4042144 nm, denoting a0 computed with scK400. Already for scK36, the rela-
tive error 1 − a0,scKxx/a0,scK400 is below 2 × 10−5. Note, this precision is somewhat better
than the stability of the Aluminium sample lattice parameter in an experiment without
explicit and accurate temperature control. For this situation, temperature stability of 1 K
and thermal expansion of 2.3 × 10−5 K−1 are assumed. After increasing the density of
k-points by a factor of 8, that is for scK72, the deviation is already reduced to 2.5 × 10−6, far
better than the achievable precision of any single X-ray experiment.
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Table 2. Relative differences 1 − a0,scKxx/a0,scK400 between equilibrium lattice parameter a0,scK400,
computed from scK400, and a0,scKxx, computed from other k-meshes. All data were obtained with
the FPLO code.

Mesh scK12 scK24 scK36 scK48 scK72 scK100 scK200

105 · (1 − a0,scKxx/a0,scK400) 2.1 −8.7 1.9 0.7 −0.25 0.02 0.05

3.2. Preliminary Considerations—Wien2k

Before a serious numerical investigation by means of any DFT code for a periodic
system can be started, two important decisions regarding the numerical settings have to
be taken. The first one, choosing the method and mesh density for k-space integration,
was discussed in the previous subsection. The second one is the choice of the basis set for
the Bloch wave function representation. In the Wien2k code, the extend of the basis set is
encoded in the parameter Rkmax, the product of the smallest muffin-tin sphere radius and
the largest k-vector of the plane wave basis set used in the interstitial space. In addition,
the number of local orbitals depends on Rkmax.

In order to check the impact of Rkmax on the accuracy, we performed calculations for
a number of integer values around the default value Rkmax = 7, using a dense k-mesh
K100-scK50. Figure 3 shows the total energy vs. Rkmax of fcc Aluminium for a = 0.404 nm,
which is close to the GGA equilibrium. The default value of Rkmax is indicated by a red
circle. We note that the total energy diminishes monotonically with growing Rkmax between
4 ≤ Rkmax ≤ 12. Hence, the accuracy improves with growing Rkmax at least till Rkmax = 12.
The energy seems to be converged within about 0.1 meV for this largest tested basis set.
The default setting Rkmax = 7 provides a total energy about 7 meV above the lowest value.
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Figure 3. Total energy vs. Rkmax of fcc Aluminium for a = 0.404 nm obtained with the
Wien2k code. All data were computed with K100-scK50. The lowest obtained total energy value,
E0 = −6,607,524.417 meV/atom, was chosen as reference. The inset shows part of the data using a
zoomed energy axis. Its Rkmax-axis agrees with that of the main plot. Red circles indicate the result
for the default value of Rkmax and black circles all other calculated points.

Next, we turn to the influence of Rkmax on the precision by evaluating total energy
derivatives with respect to the lattice parameter. Figure 4 shows d2E/da2 (left panel) and
d3E/da3 (right panel) vs. a, as obtained using Wien2k for a lattice parameter step size
of 0.0005 nm. Note that, in order to avoid strong overlap, the individual data sets are
offset against each other as detailed in the figure caption. For both the second and third
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derivatives, the numerical noise is smallest for Rkmax = 8 or 9, slightly above the default
value Rkmax = 7. For both Rkmax < 8 and Rkmax > 9, the precision decreases. We stress
that, in the case of third derivatives, the noise level is larger than the absolute mean value
of the derivative for all values of Rkmax. This fact will necessitate data smoothing in the
search for ETTs, see Section 3.5.
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Figure 4. Derivatives of the total energy of fcc Aluminium with respect to the lattice parameter vs.
lattice parameter. The total energies were obtained with the Wien2k code for different values of
Rkmax as detailed in the legend. Left panel: second derivative, d2E/da2; the data are offset against
the original data by (11 − Rkmax) · 106 meV/nm2. Right panel: third derivative, d3E/da3; the data
are offset against the original data by (11 − Rkmax) · 109 meV/nm3. The derivatives are obtained by
direct evaluation, see Section 2, for a lattice parameter step size of 0.0005 nm. All data were computed
with K100-scK50.

One possible explanation for, above Rkmax = 9, the noise unexpectedly increasing
with increasing number of plane waves could be numerical problems arising from near
completeness. In such a situation, the newly added basis vectors contain more and more
redundant directions in Hilbert space. Shifting (a tiny) wave function weight from one
to another of these directions will not alter the charge density in any appreciable manner.
However, which directions are finally chosen to contribute to the wave function is increas-
ingly determined by unavoidable numerical noise from various places of the code in a
quasi-random fashion, the less important the added directions are. Such noise will reflect
in derivatives of the total energy. We have no hypothesis that could explain the observed
increase of noise if a smaller basis than the default one is chosen.

3.3. Preliminary Considerations—FPLO

The precision of the total energy computation, viz. the noise of E(V), can be evalu-
ated in two ways. In the previous subsection, we used numerical differentiation for this
aim. Now, we consider the comparison to a global fit of the E(V) data set: the subtrac-
tion of a Birch-Murnaghan fit, EBM−fit(V), from the original data removes a large and
smooth contribution.
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Figure 5 compares the results of this procedure when applied to two FPLO data sets
obtained with different treatment of orbital-potential matrix elements. In both cases, the
rather dense k-mesh K200-scK50 and default settings concerning all other parameters
were used. The black and red curves present the lattice parameter dependences of the
difference E(a)− EBM−fit(a) obtained with default and modified integration meshes for the
orbital-potential matrix elements, respectively. Along the whole range of considered lattice
parameters, these energy differences amount to less than 10−7 parts of the total energy.
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Figure 5. Difference between the total energy calculated with the FPLO code and the total energy
obtained with a related third-order Birch-Murnaghan fit vs. lattice parameter. All data were obtained
with K200-scK50. The black line shows data obtained with default numerical settings and the red line
shows data obtained with a modified mesh for the computation of orbital-potential matrix elements
as explained in the text. The arrows indicate the positions of two ETTs, identified in Section 3.1. The
vertical line marks the equilibrium lattice parameter derived from the Birch-Murnaghan fit to data
obtained with the modified integration mesh.

The general behavior of both E(a) − EBM−fit(a) curves is typical of a fourth-order
polynomial, as expected for the residual of a third-order fit. However, the black curve
exhibits two well-visible discontinuities at a = 0.381 . . . 0.3815 nm and a = 0.403 . . . 0.4035
nm, as well as another, barely visible one at a = 0.3705 . . . 0.371 nm. The energy residual
E(a)− EBM−fit(a) jumps at these lattice parameter values by less than 0.05 meV, which is
about two orders of magnitude smaller than the energy variations usually encountered.
Hence, these discontinuities are not visible in most presentations. They are, moreover, not
important in most applications. In the present study, however, they are essential.

A possible idea would be to relate the discontinuities in E(a)− EBM−fit(a) to Lifshitz
transitions. However, the two ETTs identified in Section 3.1 occur at other lattice param-
eters, were no singularity in E(a) − EBM−fit(a) is visible in Figure 5. The true origin of
these discontinuities lies in a time-saving approximation in the evaluation of the orbital-
potential matrix elements. This numerical integration is performed on a three-dimensional
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grid, which combines a radial mesh with angular meshes at each of the radial points. In
FPLO, computing time is saved by using angular meshes with lower density for smaller
radii. Since, the transition from smaller to larger meshes with varying radius happens at
reasonably chosen fixed distances from the nuclei, the number of grid points changes with
varying lattice parameter, resulting in the observed discontinuities.

The remedy is to choose the most dense angular mesh at all radii, which increases
the CPU time only by about 10%. This modification has been applied to compute the
data shown in the red curve of Figure 5. There, no visible deviation from a smooth
behavior is observed and the noise level is well below 0.01 meV. For this reason, we
used the modified mesh for the evaluation of the orbital-potential matrix elements for all
calculations presented in this work, except for the default data in Figure 5.

Finally, we remark that such small precision-related effects in the total energy as
visualized in Figure 5 can only be detected by considering the difference between total
energy and a Birch-Murnaghan or another appropriate polynomial fit. The parameter
values of the Birch-Murnaghan fits used here are given in Table 3. They are equivalent to
each other, i.e., the precision of these parameters is not reduced by applying the default
integration mesh instead of the modified one as long as the fit is performed with a large
enough number of data points.

Table 3. Parameter values obtained in the third-order Birch-Murnaghan fits used for Figure 5. V0

denotes the equilibrium atomic volume, B0 and B′
0 are the bulk modulus and its pressure derivative.

Quantity V0 [nm3] B0 [GPa] B′0
Default mesh values 0.0165056 79.05 4.29
Modified mesh values 0.0165050 79.06 4.29

3.4. Comparison of Total Energies

We now compare the accuracies reached by the Wien2k and FPLO codes. This will
be done by considering the equation of state for two different basis sets of each code.
Figure 6 shows results obtained with default basis sets (Wien2k: Rkmax = 7; FPLO: local
states 2s, 2p, 3s, 3p, 3d, 4s, 4p) and with basis sets for enhanced accuracy (Wien2k: Rkmax = 9;
FPLO: local states 2s, 2p, 3s, 3p, 3d, 4s, 4p, 4d, 4 f , 5s, 5p). For the Wien2k code, the enhanced
basis set was defined according to the precision considerations in Section 3.2; for the FPLO
code, the enhanced basis set as defined in the appendix to Ref. [1] was used. We remark
that the Rkmax settings for Wien2k in the mentioned reference were 6.5 for default and 10.0
for enhanced accuracy calculations [1].

We learn from Figure 6 that the characterization of Wien2k as a highly accurate code is
once more confirmed. For the default settings, the ground-state energy obtained by FPLO
is about 10 meV per atom above the corresponding value obtained by the Wien2k code;
considering the enhanced settings, this difference is reduced to about 4 meV per atom.
At lattice spacings much smaller than the equilibrium spacings, the order is, however,
reversed for the enhanced settings: the FPLO energy is found to be about 4 meV below
the Wien2k value (see upper inset). A larger value of Rkmax, which could be chosen at
the price of reduced precision, would not change this picture, since it would reduce the
total energy by merely 0.5 meV compared with the value for Rkmax = 9. We remark
that the different sequences of the total energy values obtained by Wien2k and FPLO for
equilibrium spacing, on the one hand, and for much smaller values of a, on the other hand,
are not very surprising: DFT codes are usually optimized to achieve high accuracy close
to the equilibrium state. For the case of high pressure, numerical settings may have to be
adapted specifically.
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Figure 6. Comparison of total energies of fcc Aluminium vs. lattice parameter calculated with two
different codes and two different basis sets for each code as detailed in the legend. All data were
obtained with K100-scK50. The lowest total energy, E0 = −6,607,523.903 meV/atom, was chosen as
reference. The insets show zoomed regions of the main plot. The a-axis of the lower inset agrees with
that of the main plot.

Table 4 presents a comparison of the parameter values obtained by means of Birch-
Murnaghan fits to all four data sets. These fits yield virtually the same results: a =
0.4040 . . . 0.4042 nm, bulk modulus B0 = 79 GPa, and its pressure derivative B′

0 = 4.3.

Table 4. Comparison of third-order Birch-Murnaghan fits applied to the data shown in Figure 6.
Rows denoted with Rkmax values refer to Wien2k, rows denoted with a basis type refer to FPLO. V0

denotes the equilibrium atomic volume, B0 and B′
0 are the bulk modulus and its pressure deriva-

tive, respectively.

Quantity V0 [nm3] B0 [GPa] B′0
Rkmax = 7 0.0165067 79.14 4.29
Rkmax = 9 0.0165049 78.95 4.31

default basis 0.0165050 79.06 4.29
enhanced basis 0.0164844 78.85 4.30

It is very remarkable that two completely independent codes yield total energies with
an absolute difference of less than 5 meV and a relative difference of less than 10−6 along
the whole range of lattice parameters. These findings confirms the reliability of both codes
because the probability of accidental error compensation is extremely low. Note finally that
Aluminium is usually considered to be a nearly-free-electron metal. Thus, it is expected to
be best described by plane-wave related methods. The above results prove that, even in this
case, a local orbital based code achieves almost the celebrated accuracy of an augmented
plane wave code.
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We would like to conclude this evaluation of accuracies with a comparison of the
related numerical efforts. One anticipates that a better accuracy requires a larger effort.
This expectation is indeed confirmed by the typical computation times presented in Table 5.
We observed that, as a rough estimate, the Wien2k calculations consume about one order
of magnitude more CPU resources than the FPLO calculations. This difference originates
mainly from the following: Wien2k uses about twice as many basis functions as contained
in the enhanced basis of FPLO.

Table 5. Typical computation times on Intel Xeon CPUs with 2.6 GHz clock frequency to calculate the
data shown in Figure 6. Rows denoted with Rkmax values refer to Wien2k, rows denoted with a basis
type refer to FPLO. The runtime of each of the cores for one iteration cycle is called tcore. It is given
for serial mode (1 core) and, in the case of Wien2k, for parallel mode with 16 cores.

tcore [s] (1 core) tcore [s] (16 cores)

Rkmax = 7, scK50 21 9
Rkmax = 7, K100 134 20
Rkmax = 9, scK50 31 10
Rkmax = 9, K100 190 23
default basis, scK50 2 -
default basis, K100 13 -
enhanced basis, scK50 8 -
enhanced basis, K100 48 -

3.5. Search for ETTs by Means of Total Energy Derivatives

In Section 3.1, carefully inspecting the lattice parameter dependence of the density of
states at the Fermi level, we detected three Lifshitz transitions. Two of them, termed ETT1
and ETT2, are clearly visible in g(eF), see Figure 1, provided the k-mesh is K100 or better;
another one, ETT0, is hardly visible. Close to a three-dimensional ETT related to the bottom
of a band at ec, the total energy contains a contribution proportional to (eF − ec)2.5 [15]. In
other situations, the sign can be changed. Assume linear dependence of eF − ec on a close
to the transition. Consequently, the ETT should be signaled by a divergence of the third
derivative d3E/da3.

We now ask whether the respective optimum total energy precision of Wien2k and
FPLO is sufficient for the identification of such divergences. The upper panel of Figure 7
shows d3E/da3 vs. a as obtained by means of both codes with K100-scK50 and subsequent
direct numerical differentiation (d). In both cases, the step size of a was set to 0.0005 nm.
Despite the use of rather dense k-meshes and although the settings of both codes were
optimized with respect to low numerical noise, there is no sign of a divergence visible
in the upper panel data close to any of the expected critical lattice parameters, which are
indicated by vertical lines.

The fluctuations of the Wien2k data (black curve) are considerably stronger than those
of the FPLO data (red), which points to a better precision of the latter. We remark that
FPLO data generated with enhanced basis set as described in Section 3.4 (not included in
Figure 7) exhibit up to four times stronger noise of d3E/da3 than data obtained using the
default basis (red curve).

The lower panel of Figure 7 shows data obtained for the setting K200-scK100 using
yet denser k-meshes than above (blue, Wien2k and orange, FPLO), and for K400-scK200
(green, FPLO). The two former data sets were computed by using a moving window
differentiation (m) with 33 equidistant data points (distance 0.0001 nm). In this way, a
clear singularity is seen at the expected position of ETT2, which is yet more pronounced in
the FPLO K400-scK200 data set which was obtained by direct evaluation of the derivative
(distance 0.0005 nm). On the one hand, the moving window differentiation reduces the
numerical noise considerably; on the other hand, it broadens the singularity which is more
pronounced in the latter data. Note that the individual data are offset against each other as
detailed in the figure caption.
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Figure 7. Third derivative of the total energy with respect to lattice parameter a in relation to electronic
topological transitions. Upper panel: Comparison of Wien2k data obtained with Rkmax = 8 (same
data as shown in the right panel of Figure 4, black curve) with FPLO data (red). Both calculations
were performed using the K100-scK50 setting with total energy convergence of 10−8 Rydberg. The
derivatives were obtained by direct evaluation, indicated in the legends by “d”. Lower panel:
Comparison of Wien2k data obtained with Rkmax = 8 (blue, with 107 meV/nm3 offset) with FPLO
data (orange, with 0.5 × 107 meV/nm3 offset). Both data sets were obtained using the K200-scK100
setting with total energy convergence of 10−8 Rydberg. The derivatives were calculated using a
moving window with 33 data points, indicated by “m”, see Section 2. Another FPLO data set,
K400-scK200 with total energy convergence of 10−9 Hartree and direct evaluation of the derivative, is
shown in green. The vertical lines indicate the positions of ETT1 and ETT2 as obtained in Section 3.1.

None of the presented data sets shows any peculiarity exceeding numerical fluctua-
tions at the position of ETT1 or of ETT0. We remind that the root-like singularities in g(eF)
caused by ETT0 and ETT1 are less strong than that one caused by ETT2, see Figure 1. This
difference may result from the differing natures of the respective topological changes: ETT0
and ETT1 are the opening and the closing of connections between Fermi surface parts,
whereas ETT2 is the vanishing of an isolated part of the Fermi surface, see Figure 2.

To conclude this section, we have shown that an electronic topological transition can
in principle be detected in a higher derivative of the total energy. To this end an extreme
precision is required, such that the total energy curve appears very smooth as compared
to usual code applications. Our calculations have shown that ETT2 is indeed visible as a
singularity in d3E/da3(a), whereas we could not detect the other ETT in this way. The other
kinks observed are not related to topological transitions. In consequence, the total energy
is not suited to detect such transitions. This implies that similar analyses of experimental
data, which have a naturally lower precision than a highly tuned computer code, will be
challenging. These strict statements, however, do no longer hold if the ETT is of lower
than three-dimensional nature, in which case the transition can become first order and
more easily detectable [16]. The differentiation procedures used here are very sensitive and
might be helpful both in detecting first or second order phase transitions or in disproving
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their existence, such as in the case of β-Zirconium. There, contrary to earlier claims, no
evidence for isostructural phase transitions was recently found [17].

3.6. Birch-Murnaghan Fits Using Minimum Number of Data Points

We have shown in Section 3.1 that the calculation of the equilibrium lattice constant
is well converged already for moderately large k-meshes. Now, we would like to find out
whether it is possible to utilize precise total energy data for evaluating the equilibrium
volume, the bulk modulus, and its pressure-derivative with the minimum number of data
points needed. For this aim, third-order Birch-Murnaghan fits were performed with only
four total energy values obtained using FPLO with K100-scK50 setting. The equidistant
fit points are distributed within a fit region of 0.0015 . . . 0.012 nm around the equilibrium
lattice parameter.

Figure 8 shows results for the three experimentally accessible fit parameters vs. the
width of the fit region. For comparison, the results of two Birch-Murnaghan fits to 25 and
13 data points, respectively, are shown as well. As expected from the results presented
in Table 2, the equilibrium volume is almost independent of the width of the fit region.
Furthermore, the variation of the bulk modulus, 0.1 GPa within the considered range, is
negligible. Only the value of B′

0 seems to be unstable if the fit region is chosen smaller
than 0.004 nm. This observation is consistent with the fact that the stability of numerical
derivatives worsens with their order increasing.
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Figure 8. Results of third-order Birch-Murnaghan fits to few data points. The equilibrium volume V0

(upper panel), the equilibrium bulk modulus B0 (middle panel), and its pressure-derivative B′
0 (lower

panel) were obtained from FPLO total energy data for K100-scK50 setting. The circles connected
with black lines show results obtained from four E(a) data points, centered at the equilibrium lattice
parameter and equally distributed over the fit region. The red (blue) lines show fit results obtained
from 25 (13) E(a) data points equally distributed within 0.012 (0.006) nm around the equilibrium
lattice parameter.

The possibility to use a minimum number of precise data points to numerically
evaluate quantities derived from the total energy can be useful e.g. for screening studies.
However, this chance comes at the price of a sufficiently dense k-mesh. As long as specific
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effects of band structure or DOS, such as ETTs, Weyl points or magnetic instabilities,
are not important, it can be useful to apply broadening techniques with a less dense
k-mesh. They offer the advantages to reduce the related effort and to smoothen the self-
consistent iteration.

4. Summary

Electronic structure calculation packages such as the famous Wien2k code, developed
and maintained by Karlheinz Schwarz and his group for decades, are meanwhile indis-
pensable tools for the interpretation of experimental data as well as for the prediction of
materials properties. In the latter case, there is no standard to gauge the result but by
other codes.

Doing so, we have confirmed the classification of Wien2k as the “gold standard”
concerning total energy accuracy. This high numerical accuracy is achieved, as in the
case of similar codes [1], by using a large and elaborated basis set for the representation
of the Bloch wave function. The FPLO code, taken in this study for comparison, uses a
smaller basis set. In consequence, it can only reach slightly lower total energy accuracy
than Wien2k, but it has the advantage of considerably smaller numerical effort.

Either of the two compared codes allows for the detection of one of the known
electronic topological transitions of Aluminium under pressure by appropriate evaluation
of d3E/da3(a). The other two discussed ETT, which are of different topological nature
than the former one, are only visible in the density of states and in the Fermi surface. A
surprising finding is the high total energy precision of FPLO, demonstrated by comparing
d3E/da3 with related Wien2k data.

The total energy precision can be improved in both codes by refining the k-mesh.
While this behavior is expected, further strong improvements of the numerical precision
are obtained in the case of Wien2k by optimizing the value of Rkmax and in the case of
FPLO by modifying a real-space integration mesh. Thus, it also became possible to perform
meaningful third-order Birch-Murnaghan fits to the minimum number of four data points
of the obtained very precise E(V).

Concerning both codes, a counterintuitive finding has to be mentioned: tuning the
respective basis sets toward optimum numerical accuracy results in a reduced numerical
precision. This feature presumably originates from incipient linear dependence of the
basis functions.

Finally, we note that our approach to quantify the numerical precision by means of
total energy derivatives is not only applicable to the two codes considered in the present
study, but can easily be extended to other methods.
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Abstract: Experimental studies have shown the possible production of hydrogen through photocat-
alytic water splitting using metal oxide (MOy) nanoparticles attached to an anatase TiO2 surface. In
this work, we performed density functional theory (DFT) calculations to provide a detailed descrip-
tion of the stability and geometry of MxOy clusters M = Cu, Ni, Co, Fe and Mn, x = 1–5, and y = 0–5
on the anatase TiO2(101) surface. It is found that unsaturated 2-fold-coordinated O-sites may serve
as nucleation centers for the growth of metal clusters. The formation energy of Ni-containing clusters
on the anatase surface is larger than for other M clusters. In addition, the Nin adsorption energy
increases with cluster size n, which makes the formation of bigger Ni clusters plausible as confirmed
by transition electron microscopy images. Another particularity for Ni-containing clusters is that
the adsorption energy per atom gets larger when the O-content is reduced, while for other M atoms
it remains almost constant or, as for Mn, even decreases. This trend is in line with experimental
results. Also provided is a discussion of the oxidation states of M5Oy clusters based on their magnetic
moments and Bader charges and their possible reduction with oxygen depletion.

Keywords: DFT; anatase TiO2(101) surface; adsorption energy; Bader charge

1. Introduction

The over-exploitation of the fossil energies leads to a significant increase of CO2 in
the atmosphere, resulting in severe climate problems. It is therefore absolutely necessary
to replace them by alternative energy sources. When using sun light as energy source,
however, materials with specialized properties are necessary, and TiO2 is such a versatile
material that has numerous applications in catalysis, photocatalysis, and solar energy [1].
TiO2 crystallizes in three major different structures: rutile (tetragonal), anatase (tetragonal)
and brookite (rhombohedral). Other structures exist as well, as for example cotunnite, that
has been synthesized at high pressures and is one of the hardest polycrystalline materials
known. However, only rutile and anatase play an important role in the applications of
TiO2. A well-suited model compound for photocatalytic water splitting is anatase. It has a
slightly larger band gap than rutile (∼3.0 eV for rutile and ∼3.2 eV for anatase) [2–6] and
shows better performance [7], since it also has a longer electron-hole pair life time, which
makes anatase more suitable for photocatalytic applications [8]. To improve the water
splitting photocatalyst activity, the use of co-catalysts is necessary and the most widely
used are Pt and Pd for photocatalytic reduction, and IrO2 and RuO2 for the oxidation of
water. However, these are expensive materials based on rare noble metals. To achieve
large-scale industrial applications of photocatalytic water splitting, the development of
new co-catalysts based on cheap and widely available elements remains an important issue.
With regard to novel abundant co-catalysts for photocatalytic water splitting, research
efforts focus on 3d transition metals (M) oxides, which are known for their excellent catalytic
properties and applications in industry, research and nature.
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Computation 2021, 9, 125

Recently, small clusters of M oxides were produced by deposition of M-acetylacetonate
precursors on TiO2 and subsequent calcination in air. In particular, the Ni (and Cu)
nanoparticles showed pronounced activities for water splitting, but little is known about
the atomic structure of these nanoparticles [9]. This inspired the present work, where
we used density functional theory (DFT) [10,11] to study possible adsorption sites of a
3d transition metal atom (Cu, Ni, Co, Fe, and Mn), which can be the nucleation sites for
bigger M clusters (2 to 5 atoms) or M oxides clusters on TiO2(101) anatase, the lowest-
energy surface of anatase [12]. There are a couple of previous theoretical works on the
M adsorption on anatase, studying single M atom adsorption and diffusion [13], or the
adsorption of small Ni [14] or Cu and Cu-oxide [15,16] clusters. A nice review related to
this topic is given by Zhou and Dong [17]. However, note that most of these calculations
used a generalized gradient approximation (GGA) in DFT for the correlated 3d electrons,
which may not be accurate enough.

2. Methods

Spin-polarized DFT calculations of the adsorption of MxOy clusters (M = Cu, Ni, Co, Fe
or Mn, x = 1, 2, 3, 5, and y = 0, 1, 2, 3, 4, 5) on the TiO2(101) surface were performed using
the full-potential augmented plane wave plus local orbitals method [18,19] as implemented
in the WIEN2k code [20,21]. We employed the PBEsol exchange-correlation functional [22],
which is a GGA and yields lattice parameters of bulk anatase TiO2, a = b = 3.77 Å and
c = 9.54 Å that are in good agreement with experimental data [23]. In order to treat
the correlated 3d electrons of the M atoms a Hubbard U correction was used [24]. We
used Ueff = U − J of 5 eV for Cu, Ni, and Co and 4 eV for Mn and Fe. These values are
deliberately chosen smaller than what is typically used in strongly correlated oxides, since
in our case also less ionic (metallic) clusters were investigated and the correlation may not
be always so strong. We note that small changes of Ue f f would not affect our basic results
and conclusions.

The (101) surface was modeled by a symmetric slab with a thickness of three layers
of TiO2 (see Figure 1, where only one layer is shown for better visibility) and a vacuum
region of 16 Å between the slabs. In order to reduce the interactions between the adsorbed
clusters in neighboring cells a 3 × 1 supercell was used for all surfaces with adsorbed M
atoms. Moreover, such a supercell is also helpful to release the interfacial strain energy
and find more stable configurations. A 2 × 2 × 1 Γ-centered mesh of k-points is used
during relaxation (a 5 × 4 × 1 mesh for the final results) and a basis-set size corresponding
to Rmin

MT Kmax = 7, where Rmin
MT is the smallest atomic sphere radius and Kmax the largest

reciprocal lattice vector, was used. All surface models were relaxed until all residual forces
were below 1 mRy/bohr.

Consistent RMT and Rmin
MT Kmax values have been used for calculating the adsorption

energy Eads of clusters on anatase surface, which is defined as

Eads =
1

x + y
[E(TiO2(101)) + xE(M) + y

1
2

E(O2)

−E(MxOy/TiO2(101))], (1)

where E(M) and E(O2) are the total energies of the free M atom and an O2 molecule,
and E(TiO2(101)) is for the bare TiO2(101) surface. Bader’s quantum theory of atoms in
molecules [25] was used to calculate the atomic magnetic moments and charges.

180



Computation 2021, 9, 125

Figure 1. Side and top views of the top-most layer of the TiO2(101) surface (in the 3 × 1 supercell)
with a single adsorbed Ni atom (middle) and two Ni atoms (right structure). Red, blue and gray
spheres correspond to O, Ti and Ni atoms, respectively. Selected Ni-O bond distances (in Å) are also
given. O3c and O3c′ are threefold coordinated oxygen with two Ti6c and one Ti5c, and two Ti5c and
one Ti6c nearest neighbors, respectively.

3. Results and Discussion

3.1. Perfect Anatase TiO2(101) Surface

As shown in Figure 1, the anatase TiO2(101) surface has a stepped structure. Threefold
coordinated O atoms (O3c and O3c′ ) and sixfold coordinated Ti atoms (Ti6c) are fully
saturated and have bulk-like coordination, whereas the twofold O2c and fivefold Ti5c
atoms are under-coordinated. The O2c atoms are located at the ridges of the saw-tooth-like
structure, and after optimization they relax inwards by ∼0.16 Å with respect to bulk TiO2.
The three-fold coordinated O3c and O3c′ atoms relax outwards by ∼0.07 Å, while the Ti5c
and Ti6c atoms relax inwards by ∼0.15 Å and ∼0.16 Å respectively, so that the surface
exhibits a slightly buckled structure.

3.2. Pure Metal Clusters on the Anatase TiO2(101) Surface

Upon calcination of the M-acetylacetonate precursors, single M atoms may adsorb,
diffuse and form larger clusters and finally oxidize on the surface. It is thus natural to
study as a first step the possible adsorption sites of a single M atom or a small cluster. We
have considered several possible initial configurations of the adsorbed metal atoms and
clusters Mx with x = 1, 2, 3, and 5. The most stable structures, which are the same for all M
(Cu, Ni, Co, Fe or Mn), are presented in Figures 1–3 in the case of Ni clusters with x = 1, 2
and 5. The nearest-neighbor distances are shown in Table 1, while the adsorption energy
Eads and magnetic moment are available in Table 2.

Figure 2. Side and top views of the top-most layer of the TiO2(101) surface with an adsorbed Ni5
cluster in a chain-like structure. The color coding is as in Figure 1.
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Figure 3. Side view of the starting (left) and relaxed structures of Ni5 (middle) and Fe5 clusters
(right) adsorbed on the TiO2(101) surface in a crystalline structure. The color coding is as in Figure 1.

Table 1. Shortest M-O bonds (in Å) between a M atom (of the pure metal clusters adsorbed on the TiO2(101) surface) and
O atoms (O2c and O3c) of TiO2. M5(1) and M5(2) refer to chain-like and crystalline structures, respectively, and Mn5(2a)
corresponds to a bcc like structure with antiferromagnetic configuration. The results for different M atoms are separated by
semi-colons. “(2)” means two bonds of same length.

MO Bulk MO2c at the Surface M-O3c at the Surface

TiO2-Cu (CuO)1.97/(Cu2O)1.86 1.87(2) 2.33, 2.47
TiO2-Cu2 (1.88, 1.89); (1.88, 1.89) (2.34, 2.52); (2.34, 2.52)
TiO2-Cu3 1.90(2); 1.90(2); 1.90(2) (2.28, 2.46); (2.28, 2.46); (2.29, 2.46)
TiO2-Cu5(1) 1.97; 2.11; (2.09, 2.10); (2.04, 2.15); 2.83 (2.81, 2.71); (2.31, 2.90); 2.30; 2.42; -
TiO2-Cu5(2) 1.86; -; -; 2.94; 1.86 -; -; -; 2.00; 2.75

TiO2-Ni 2.08 1.84(2) 2.37, 2.38
TiO2-Ni2 (1.91, 1.92); (1.91, 1.92) (2.04, 2.16); (2.04, 2.16)
TiO2-Ni3 1.89(2); 1.89(2); 1.89(2) (2.02, 2.31); (2.02, 2.31); (2.02, 2.31)
TiO2-Ni5(1) 2.02; 1.99; (2.04, 2.22); (2.13, 2.46); 2.86 2.04; 2.75; 2.10; 2.04; 2.05
TiO2-Ni5(2) (1.96, 1.94); 2.13; 1.98; -; 2.07 (2.04, 2.16); -; -; 2.01; 2.07

TiO2-Co 2.13 1.89(2) 2.03, 2.71
TiO2-Co2 1.97(2); (1.88, 1.89) (2.03, 2.04); (2.03, 2.76)
TiO2-Co3 (1.99, 2.00); (2.03, 1.91); (1.90, 2.02) (2.05, 2.09); (2.04, 2.12); (2.04, 2.29)
TiO2-Co5(1) 2.08; 2.30; (2.06, 2.09); (2.03, 2.06); 2.06 (2.15, 2.30); 2.04; 2.13; 2.15; 2.86
TiO2-Co5(2) 2.02; -; 1.91; 2.90; 2.07 2.09; -; -; 1.96; 2.19

TiO2-Fe 2.16 1.89(2) 2.08, 2.23
TiO2-Fe2 (1.88, 1.91); (1.88, 1.91) (2.10, 2.11); (2.10, 2.11)
TiO2-Fe3 1.88(2); 1.88(2); 1.88(2) (2.11, 2.14); (2.11, 2.14); (2.11, 2.14)
TiO2-Fe5(1) 2.03; 2.09; (2.00, 2.09); (2.05, 2.15); 2.98 (2.21, 2.25); 2.09; 2.14; 2.06; 2.02
TiO2-Fe5(2) (2.06, 2.05); 2.04; 2.04; 2.22; 2.25 (2.14, 2.04); -; -; 2.11; 2.08

TiO2-Mn 2.22 1.93(2) 2.14, 2.30
TiO2-Mn2 1.94(2); 1.94(2) (2.11, 2.28); (2.11, 2.28)
TiO2-Mn3 (1.91, 1.92); (1.92, 1.93); (1.92, 1.93) (2.16, 2.30); (2.16, 2.27); (2.16, 2.27)
TiO2-Mn5(1) 2.17; 2.19; (2.03, 2.08); (2.10, 2.03); 3.27 2.12; 2.13; 2.16; 2.16; 2.07
TiO2-Mn5(2) (2.02, 2.02); 2.08; 2.08; 2.17; 2.18 (2.03, 2.04); -; -; 2.09
TiO2-Mn5(2a) (2.14, 2.15); 2.09; 2.09; 2.07; 2.07 2.15; -; -; 2.15; 2.16

A single adsorbed M atom prefers to adsorb at the bridge site between two unsaturated
oxygens (O2c) atoms, similar as found in previous studies [13,14]. The corresponding M-O
bond length (it is the shortest for Ni, 1.84 Å) follows in general the trend found in the bulk
M oxides (except for the Cu-O and Ni-O distances, which are interchanged), but in all
cases is much shorter (and therefore indicates a stronger bonding) than in the bulk MO
(e.g., 2.08 Å in NiO). The particular short bond distance for Ni goes hand in hand with
the O2c-Ni-O2c bond angle, which reaches 177◦ and forms a nearly linear bond, while for
the other metals this varies from 167◦ (Fe) to 150◦ (Co). On the other hand the two larger
M-O3c bond distances are also almost equal (but very large) for Ni, but for all other M form
a short and long bond in an asymmetric position (see Table 1). All M atoms except Cu
possess a magnetic moment (see Table 2), where as expected Mn has the largest moment,
while it is the smallest for Ni. It should be noted that PBEsol without U would lead to a
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non-magnetic Ni atom and the moments for the other M would be smaller but still sizeable.
The adsorption energy on the TiO2(101) surface (Table 2) is the largest for Ni (3.46 eV)
and the smallest for Cu (2.24 eV). Comparing our results with literature the adsorption
energy of Ni is 0.4 eV larger than in references [13,14] and the Ni position is symmetric
with respect to the O3c atoms. On the other hand, our calculated adsorption energy for
Fe is 0.7 eV smaller than that in reference [13], while it agrees well for Cu and Co. These
differences could arise due to the neglect in references [13,14] of a Hubbard U correction
for the M atom or the use of pseudopotentials.

Table 2. Adsorption energy (in eV/atom) and atomic magnetic moment (in μB) for pure metal clusters
adsorbed on the TiO2(101) surface. M5(1) and M5(2) refer to the chain-like and crystalline structures,
respectively, and Mn5(2a) corresponds to the bcc structure with antiferromagnetic configuration.
The cohesive energies for bulk MO are 2.75, 4.20, 3.72, 3.41, and 3.34 eV for Cu, Ni, Co, Fe, and Mn,
respectively.

Solid Eads Magnetic Moment

TiO2-Cu 2.24 0
TiO2-Cu2 2.08 0
TiO2-Cu3 1.99 0
TiO2-Cu5(1) 1.90 0
TiO2-Cu5(2) 2.26 0

TiO2-Ni 3.46 0.25
TiO2-Ni2 4.11 0.97(2)
TiO2-Ni3 3.94 0.98(3)
TiO2-Ni5(1) 3.68 1.66; 1.08; 1.31; 1.11; 1.35
TiO2-Ni5(2) 4.49 −0.97; 1.22; 0.74; −1.10; 0.87

TiO2-Co 3.19 2.12
TiO2-Co2 3.04 2.12; 2.11
TiO2-Co3 3.00 2.15; 2.28; 2.28
TiO2-Co5(1) 2.73 2.03; 2.53; 2.52; 2.18; 2.44
TiO2-Co5(2) 2.87 2.34; 2.00; 2.66; 1.96; 2.04

TiO2-Fe 2.71 3.61
TiO2-Fe2 2.57 3.51; 3.50
TiO2-Fe3 2.48 3.52(3)
TiO2-Fe5(1) 2.18 3.62; 3.79; 3.64; 3.48; 3.71
TiO2-Fe5(2) 2.03 3.00; 3.75; 3.72; 3.58; 3.57

TiO2-Mn 2.40 4.66
TiO2-Mn2 2.19 4.66(2)
TiO2-Mn3 2.08 4.61; 4.61; 4.63
TiO2-Mn5(1) 1.78 4.90; 4.94; 4.66; 4.66; 4.83
TiO2-Mn5(2) 1.10 0.45; 5.00; 4.99; 4.57; 4.57
TiO2-Mn5(2a) 1.44 4.90; −5.04; 5.03; −4.73; −4.73

If 2 or 3 M atoms are adsorbed on the surface, the most stable structures are still
obtained when the M atoms sit at the O2c bridge sites (the structure on the right side
in Figure 1 shows 2 M atoms adsorbed on the surface), very similar to a single atom
adsorption. Interestingly, for all M atoms except Ni the adsorption energy per M atom
decreases slightly (Figure 4 and Table 2). For Ni it increases by 0.65 eV. The reason seems
to be that the Ni atom is smaller than the others and an almost linear chain fits perfectly
for Ni but not in the other cases, where this additional strain reduces Eads slightly. Most
magnetic moments remain unchanged, except for Ni, where it increases to 0.97/0.98 μB. In
our 3 × 1 supercell, 3 M atoms form an infinite linear chain of M-O2c pairs.

For 5 adsorbed M atoms, we tried several different starting structures in the 3 × 1
supercell. The most promising structures are based on the chain-like structure with
2 additional atoms (labelled M5(1), see Figure 2) or a structure with a more “crystalline
type” nucleated on a single M bridge atom (labelled M5(2), see Figure 3). The additional
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2 atoms “destroy” the symmetric chain-like 3-atom structure above the O2c atoms forming
a quite irregular array of M atoms with bonds to O2c, O3c and O3c′ atoms. Still this structure
seems to be the most stable for Fe and Mn although Eads is smaller than for less M atoms.
The crystalline M5(2) structures behave very differently for the bcc metals Mn and Fe and
the fcc metals Co, Ni and Cu. While for the former the cluster structure stays basically
close to the starting one and form a “bcc” like cluster (Figure 3), for the latter the cluster
rearranges and can be considered as a nucleus for an fcc like cluster. In fact, their Eads is
larger than for the corresponding chain-like M5(1) structures and for Ni and Cu even the
highest within the series.

Figure 4. Adsorption energy (in eV/atom) for different metal clusters Mx. M5(1) and M5(2) corre-
spond to chain-like and crystalline structures, respectively.

For Mn5 in a crystalline bcc structure, we also started from different antiferromagnetic
configurations (labelled Mn5(2a)), but the adsorption energies were not much larger than
in the ferromagnetic case.

The partial density of states (PDOS) for the TiO2(101) surface and for the energetically
most favorable configuration of one metal atom on the surface are shown in Figure 5. For
the TiO2(101) surface, both the valance band maximum (VBM) and the conduction band
minimum (CBM) are composed of a mixture of O-2p and Ti-3d states, with the CBM having
mostly 3d character while the VBM has more O-2p character, which indicates a mixed ionic
and covalent bonding. After adsorption of a M atom on the anatase TiO2(101) surface, the
Fermi level moves to the conduction band and the system becomes formally metallic. In
the case of adsorbed Cu and Ni atoms, almost all the d states of Cu/Ni are concentrated in
the band gap below the Fermi energy, and they slightly hybridize with the O-p and Ti-d
states of the Ti and O atoms which are the closest to the Cu/Ni atom. With an adsorbed
Co, Fe, or Mn atom the d states are not only in the band gap but also show a peak at the
VBM for spin-up and inside the conduction band for spin-down states.
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Figure 5. PDOS for (a) the bare TiO2(101) surface and (b–f) for one metal atom adsorbed on the TiO2(101) surface. The
Fermi level is indicated by a vertical dashed line. All Ti and O PDOS are from surface atoms. The d partial DOS of the
metals are scaled down by a factor of 3. The plots are aligned at the TiO2 CBM and the Fermi energy is set at 0 eV.

3.3. MxOy on the Anatase TiO2(101) Surface

Turning now to the adsorption of metal-oxides clusters MxOy on the anatase TiO2(101)
surface, several 2D and 3D (starting) configurations among the numerous possible ones
were considered. Some of the most stable structures are shown in Figures 6 and 7, and the
adsorption energies are shown in Table 3 for the NixOy clusters. It can be seen that Eads is
almost constant with the increase of cluster size indicating that bigger Ni clusters can easily
be formed on the anatase TiO2(101) surface, which is in agreement with the experimental
result [9]. The most favorable structure is Ni10O9 with a NaCl like structure (shown in
Figure 7).

It was found experimentally [9] that the oxidation state of the M atoms changed after
a hydrogen evolution reaction (HER) experiment. In order to study the M oxidation state
theoretically, we started from the chain-like M5 clusters (Figure 6) and added oxygen atoms
systematically until a fully oxidized M cluster has been obtained. Figure 8 compares the
adsorption energy of different M5Oy M oxide clusters on the surface and also includes for
comparison the cohesive energy of the bulk pure metals and bulk metal monoxides. It can
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be seen that, among all metal-oxide clusters, NixOy have the highest adsorption energy.
All adsorption energies are lower than the cohesive energies of the corresponding bulk
monoxide and the pure bulk metal. Thus they form non-crystalline clusters on the surface.
It can be seen that Ni clusters are a bit more stable with less oxygen, while for the other
metals the adsorption energy remains almost constant, or, in particular for Mn, is reduced
with less oxygen. This is in agreement with experimental transition electron microscopy
(TEM) results [9], where cluster formation was seen in particular for Ni. In addition, XPS on
calcinated NiOx-TiO2 samples shows mainly Ni2+, but after HER experiments a substantial
increase of Ni0 compared to Ni2+ appears. On the other hand, XPS on MnOx-TiO2 samples
shows only Mn2+, even after the HER experiments.

Figure 6. Top view of the Ni5 cluster (left) and, top and side view of Ni5O5 cluster (middle and right)
adsorbed on TiO2(101) surface in chain-like structure. Red, blue, gray and green spheres correspond
to O, Ti, Ni and added O, respectively. From Ni5 to Ni5O5, the O atoms are added in the order Oa,
Ob, Oc, Od and Oe.

Figure 7. Ni10O9 cluster with a NaCl-like structure adsorbed on the TiO2(101) surface. The color
coding is as in Figure 6.

Theoretically, the oxidation state is more difficult to estimate. One can use for instance
Bader’s method [26], which uses the electron density to calculate the gradient vector field
and searches for surfaces of zero flux. The charge enclosed within this zero flux surface
(basin) can be used to define the total electronic charge of an atom. It must be mentioned
that one never gets the full nominal charges, but these Bader charges are always smaller
than anticipated. In addition, in particular for open structures like surfaces, these charges
may sometimes correlate more with the specific geometry and the distances and number of
other atoms around the M atom. For transition-metal atoms, the magnetic moment can also
be a good indication of the charge state in some cases. For instance, only Cu2+ ions possess
a magnetic moment, while both Cu+ and neutral Cu are non-magnetic. Similarly, one
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can quite well distinguish, e.g., Fe2+ and Fe3+ based on their smaller or larger magnetic
moments (provided they remain in high-spin states). The magnetic moments and the Bader
charges of each atom in M5Oy clusters are shown in bar charts in Figures 9 and 10. The
largest magnetic moments for each M atom increase as expected from 0.6 μB for Cu2+

to 1.6, 2.6, 3.7 and 4.9 μB in the series Ni, Co, Fe and Mn. This is due to the number of
spin-down 3d electrons that gets reduced when dealing with high-spin states and fully
occupied spin-up states.

Figure 8. Adsorption energy (in eV/atom) of MxOy clusters on the TiO2(101) surface. Also shown is
the cohesive energy of bulk MO (left-most data) and bulk M (right-most data).

Table 3. Adsorption energy (in eV/atom) of NixOy clusters on TiO2(101) surface. The largest values
are in bold.

Cluster Eads

NiO(1) 3.55
NiO(2) 3.14
NiO(3) 3.19
NiO(4) 3.14

Ni2O2(1) 3.07
Ni2O2(2) 2.59
Ni2O2(3) 3.58

Ni3O3(1) 3.32
Ni3O3(2) 3.17
Ni3O3(3) 2.75
Ni3O3(4) 3.51

Ni4O4(1) 3.42
Ni4O4(2) 2.87

Ni5O5 3.35

Ni10O9 3.63
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For the charge state of Cu clusters, both methods mentioned above give quite reliable
results. Bader charges of about one and magnetic moments of 0.6 μB indicate Cu2+, while
Bader charges of 0.6 indicate Cu+ and even smaller Bader charges neutral Cu, both with
vanishing magnetic moments. Apparently, in the fully oxidized cluster all Cu are in the 2+
charge state, while removal of an Oe atom (see Figure 6) leads to a drastic reduction of the
charge state of the neighboring Cu4 and Cu5 atoms.

For Ni, however, the situation is more complicated. Even in the fully oxidized cluster
some Ni moments are completely quenched because the Ni-O bond length (1.77 Å) is
for these Ni atoms much smaller than for the magnetic ions (1.97 Å) and it is difficult to
estimate the charge states based on the magnetic moment. On the other hand the Bader
charges show a very systematic decrease with oxygen removal, and the experimentally
observed increase of neutral Ni correlates reasonably with these Bader charges. Going to
the extreme case of Mn, the magnetic moments stay almost constant around 5 μB indicative
of Mn2+ in a high-spin state in agreement with experiment. The Bader charges are less
convincing, but nevertheless they never indicate a neutral charge state of a Mn atom.

In order to get more information about the electronic structure, the PDOS of various
Ni-O clusters is shown in Figure 11. For a Ni5 cluster (Figure 11b) we see a wide range of
Ni-d states within the gap of TiO2, but also some spin-up states mixed into the O-2p valence
band and some spin-down states in the empty conduction band, indicating the different
bonding situation of the different Ni atoms. Upon oxidation a more pronounced formation
of upper and lower Hubbard bands can be seen and the remaining Ni-d states in the gap
sharpen until for the Ni10O9 cluster (Figure 11f) quite sharp Ni-d states of (distorted) eg
and t2g character appear similar as in bulk NiO.

Figure 9. Atomic magnetic moments (in μB) of M atoms in MxOy clusters adsorbed on TiO2(101) surface.
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Figure 10. Bader charges of M atoms in MxOy clusters adsorbed on TiO2(101) surface.

Figure 11. PDOS for (a) the bare anatase TiO2(101) surface, showing the surface atoms and the bulk-layer states, (b) Ni5,
(c) Ni5O, (d) Ni5O3, (e) Ni5O5 clusters in chain-like structures and (f) a Ni10O9 cluster with NaCl-like structure adsorbed on
the surface. All Ti and O PDOS are from surface atoms only. The Ni PDOS is shaded. The plots are aligned at the TiO2 CBM
and the Fermi energy is set at 0 eV.
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4. Summary and Conclusions

Spin-polarized DFT calculations were carried out to investigate possible stable struc-
tures of five different transition metal clusters, namely Cu, Ni, Co, Fe and Mn adsorbed on
the anatase TiO2(101) surface. The adsorption site for single atoms is in all cases the bridge
site between two unsaturated oxygen (O2c) atoms. We found that among all tested metals
Ni has the largest adsorption energy, and for all metals except Ni the adsorption energies
decrease with increased number of adsorbed atoms, so that probably only Ni prefers to
form bigger clusters on the TiO2 surface in agreement with experimental TEM results [9].
Clusters with five M atoms can form either a fcc-like structure (Cu, Ni, Co) or still remain
in a chain-like structure (Fe, Mn) as is common for smaller clusters.

We also studied several oxidized metals clusters MxOy, and in order to get more
information on the charge state of the M atom a systematic study of M5Oy (y = 0–5) clusters
on the TiO2(101) surface was made. We found that Ni forms more stable structures with
reduced oxidation, while for the other metals the adsorption energy is almost constant or
is reduced. An analysis of the Bader charges and magnetic moments allows to reveal the
corresponding charges of the M atoms, and we found, in agreement with the experimental
results [9], that Ni can be more easily reduced during a HER experiment, while Mn atoms
will keep their 2+ oxidation state.
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Abstract: Employing first-principles calculations based on density functional theory (DFT), we
designed a novel two-dimensional (2D) elemental monolayer allotrope of carbon called hexatetra-
carbon. In the hexatetra-carbon structure, each carbon atom bonds with its four neighboring atoms
in a 2D double layer crystal structure, which is formed by a network of carbon hexagonal prisms.
Based on our calculations, it is found that hexatetra-carbon exhibits a good structural stability as
confirmed by its rather high calculated cohesive energy −6.86 eV/atom, and the absence of imaginary
phonon modes in its phonon dispersion spectra. Moreover, compared with its hexagonal counterpart,
i.e., graphene, which is a gapless material, our designed hexatetra-carbon is a semiconductor with
an indirect band gap of 2.20 eV. Furthermore, with a deeper look at the hexatetra-carbon, one finds
that this novel monolayer may be obtained from bilayer graphene under external mechanical strain
conditions. As a semiconductor with a moderate band gap in the visible light range, once synthesized,
hexatetra-carbon would show promising applications in new opto-electronics technologies.

Keywords: density functional theory; hexatetra-carbon; electrical properties

1. Introduction

The discovery of the interesting behavior of graphene [1] has motivated further theoret-
ical and experimental investigations in order to find possible new stable two-dimensional
(2D) materials, especially mono-elemental 2D monolayer materials [2–7]. As carbon ex-
hibits a large number of different allotropes, such as graphite, diamond, C60 fullerene [8],
nanotube [9], carbon nano-cone [10], and nanochain [11], 2D carbon mono-elemental mono-
layer materials beyond graphene have attracted significant attention from both theoretical
and experimental fields of study. However, the electronic structure of graphene limits its
application in designing electronic nano-devices due to its semi-metallic gapless nature.
Therefore, finding new 2D mono-elemental monolayer materials with a semiconductor
behavior is technologically important.

In recent years, the possibility of free standing 2D carbon allotropes beyond graphene
has been explored. In addition, a number of new carbon allotrope monolayers has been pro-
posed [12–15]. Although these 2D materials, such as graphdiyne [12], penta-graphene [13],
and phagraphene [14] are metastable compared with graphene, only a few have been suc-
cessfully synthesized. Moreover, these new 2D carbon monolayers exhibit very interesting
properties, such as anisotropic Dirac cones, inherent ferromagnetism, high catalytic activity,
and potential superconductivity related to the high density of states at the Fermi level.
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This demonstrates that structural properties and the crystal configuration of 2D carbon
allotropes effectively influence the electronic, optical, and other chemo-physical properties
of these materials [12–19]. For instance, graphdiyne [12] is a predicted flat one-atom-thick
allotrope of carbon with a Dirac cone in its band structure, in which the Dirac points are
located at the K point. On the other hand, penta-graphene is a new 2D carbon allotrope
with semiconducting properties that stabilizes in a buckled structure composed entirely
of carbon pentagons, and resembles the Cairo pentagonal tiling with an intrinsic indirect
band gap of about 3.25 eV [13]. Moreover, phagraphene, which is a monolayer sheet of
carbon with a structure composed of 5-6-7 carbon rings has distorted Dirac cones [14].

On the other hand, carbon nanostructures have tetragons, pentagons, and hexagons
as their main basic building blocks. For instance, cubane (C8H8) is a synthetic hydrocarbon
molecule formed by eight carbon atoms positioned at the corner of a cube. It is attached
to its three neighboring carbon atoms and a hydrogen atom with tetragonal top and side
views [20], 2D graphene, and 3D graphite, which are formed by carbon hexagons. In
addition, penta-graphene consists entirely of pentagons of carbon atoms. Moreover, the
C60 molecule is formed by 12 pentagons, which are separated by 20 hexagons with a soccer
ball shape [8].

In this paper, using first-principles calculations based on DFT, we propose a novel
2D elemental monolayer allotrope of carbon, which is called hexatetra-carbon due to its
hexagonal and tetragonal top and side views. In a crystal network of the newly proposed
2D carbon allotrope, each carbon atom binds with its four neighboring atoms in a 2D
double layer crystal structure, which is formed by hexagonal prisms. The meta-stability of
our newly designed monolayer is shown by the cohesive energy and phonon calculations.
Furthermore, evaluating the electrical properties of hexatetra-carbon shows that it exhibits
a semiconductor behavior with a moderate band gap.

The current paper is organized as follows: The computational method used in our
study is presented in Section 2. In Section 3, the details of the structural properties are out-
lined and the stability of the proposed structure is discussed. The electrical characteristics
of the designed hexatetra-carbon monolayer and its potential applications are described in
Section 4. Finally, in Section 5, the paper is concluded.

2. Computational Methods

To obtain accurate structural and electrical properties of the proposed 2D mate-
rial, the full-potential linearized-augmented plane wave (FP-LAPW) scheme was uti-
lized [21]. This scheme is based on the DFT implemented in the WIEN2k computational
package [22], in which the generalized gradient approximation (GGA) parameterized by
Perdew–Burke–Ernzerhof (PBE) was used [23]. Moreover, since the GGA method under-
estimates band gaps, to obtain more reliable band gaps, the screened short range hybrid
functional exchange correlation implemented in the WIEN2k code [24] was employed for
band gap calculations. Moreover, the Monkhorst–Pack scheme [25] was used to sample
the Brillouin zone by a 24 × 24 × 1 k-mesh, where we chose RKmax = 7, Gmax = 14 Ry1/2,
and lmax = 10. To avoid interlayer interactions, a large vacuum distance of 20 Å along the
non-periodic direction was utilized. With regards to dynamic stability, an evaluation of all
the calculations was conducted with the Quantum Espresso (QE) package [26]. Further-
more, the Martin–Troullier norm-conserving pseudopotential [27] was used to treat the
core electrons, while the valence electronic wave functions were expanded using an energy
cut-off of 80 Ry. However, for the investigation of structural properties of bilayer graphene,
we considered the van der Waals correction in our calculations.

3. Structural Properties and the Stability of Hexatetra-Carbon Monolayer

The design of the 2D hexatetra-carbon monolayer was initiated by examining the
effect of vertical compressive strains on the structural, electronic, and optical properties of
bilayer graphene in its AA-stacking configuration. Recently, several research works have
reported the influence of strain on the different physical characteristics of bilayer graphene.
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Moreover, it is well-known that a crystal structure of a bilayer graphene stabilizes at the
interlayer distance of about h0 = 3.4 Å layer separation, in which the long-range van der
Waals (vdW) interaction plays an important role in the structural properties of the materials.
In this case, when evaluating the effect of vertical compressive strains on the different
properties of AA-stacked bilayer graphene, with the aim of preserving the stability of
the initial AA-stacked bilayer graphene, researchers mostly consider vertical strains that
influence a maximum variation of 20% in interlayer separation, i.e., h = h0 ± 20% h0 (in
which the long-ranged van der Waals (vdW) interaction should be taken into account). In
these conditions, not only the stability of the AA-stacked bilayer graphene is preserved, but
also its crystal structure configuration is retained. However, one may be curious to know the
effect of higher values of compressive vertical strains, in which the layer separation distance
of h < 2.0 Å for the long-range van der Waals (vdW) interaction has no important effect.
On this basis, we found a new unprecedented 2D allotrope of carbon called hexatetra-
carbon during our structure searches. Figure 1 shows the optimized structure of our
designed hexatetra-carbon monolayer from different views. A unit cell of hexatetra-carbon
monolayer consists of four carbon atoms with optimized lattice constants of a = b = 2.65 Å.
In a crystal network of the hexatetra-carbon, C atoms are distributed in two different exactly
planar atomic planes with a vertical distance of about 1.55 Å. Specifically, each C atom of
the hexatetra-carbon bonds to four neighboring C atoms to form a tetra-coordinated carbon
structure, in which the C–C bond lengths are about 1.55 Å, longer than those in graphene
(1.43 Å) and almost equal to the C1–C2 bond lengths in penta-graphene [13].

Figure 1. Crystal structure of 2D hexatetra-carbon from different views.
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Furthermore, before an evaluation could be performed for the electrical properties and
potential applications of the hexatetra-carbon monolayer, it is imperative to analyze the
stability of the monolayer structure. This was carried out by first evaluating its energetic sta-
bility through a calculation of its cohesive energy, which is given by Ecoh =

Ehexatetra−carbon−4Ec
4

(Ec, Ehexatetra−carbon are the total energies of a single C atom, and a unit cell of the hexatetra-
carbon monolayer, respectively). Based on our calculation, the 2D hexatetra-carbon mono-
layer has a cohesive energy of about −6.86 eV/atom. For comparison, we also calculated
the cohesive energy of graphene, penta-graphene, and T-carbon [28], which is a 3D carbon
allotrope obtained by replacing each atom in diamond with a carbon tetrahedron at the
same theoretical level. The values were about −8.01, −7.02, −6.34 eV/atom, respectively,
which confirm that the proposed 2D hexatetra-carbon monolayer shows good energetic
stability. Figure 2 shows a unit cell relative energy of the predicted hexatetra-carbon
monolayer compared with different carbon allotropes under strain conditions.

Figure 2. Cohesive energy of different carbon allotropes.

Next, we examined the dynamic stability of the 2D hexatetra-carbon monolayer by
calculating its phonon dispersion spectrum. As shown in Figure 3, there are no imaginary
phonon modes in the whole Brillouin zone, indicating that the hexatetra-carbon is a local
minimum on the potential energy surface and can be considered as a metastable allotrope
of carbon compared with the other carbon allotropes. Specifically, we obtained the highest
frequency of 1267 cm−1, which is higher than those obtained for silicon [29] (580 cm−1),
MoS2 monolayer [30] (473 cm−1), and TiC monolayer [31] (810 cm−1). However, it is lower
than the highest phonon frequency of graphene (about 1650 cm−1) and penta-graphene
(about 1600 cm−1), indicating robust C–C bonds in the predicted monolayer.
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Figure 3. Phonon dispersion spectrum of 2D hexatetra-carbon monolayer.

From the above indications that the 2D hexatetra-carbon may be meta-stable, we next
systematically study its mechanical properties. Using Young’s modulus (Y), Equation (1)
can be calculated [32], where ε is the strain in the vicinity of the optimum lattice vector
(ε = (a − a0)/a0) and E is the total energy. In addition, V0 is the equilibrium volume of
the 2D material evaluated by V0 = 3

√
3d2h
2 , where d is the adjacent carbon distance in the

hexagon ring in the a and b plane, and h is the thickness of the 2D material along the c
vector (Figure 1).

Y =
1

V0

(
∂2E
∂ε2

)
ε=0

(1)

In this work, the estimated Young’s modulus value for hexatetra-carbon is 1859.7 GPa.
It is smaller than those estimated by Raman spectroscopy [33] for the single- and bilayer
graphene, 2400 ± 400 GPa and 2000 ± 500 GPa, respectively. With regards to carbon fibers,
the Young’s modulus value is 235–427 GPa [34]. Here, the value of hexatetra-graphene is
greater than those obtained for other materials, such as imogolites (∼320–370 GPa) [35]
and GaS (∼270 GPa) [36], as well as the nanotubes and MoS2 monolayer (265 ± 13 GPa),
which are similar to the bilayer [37].

4. Electronic Properties

To analyze the electrical properties of the 2D hexatetra-carbon monolayer, we calcu-
lated the band structure of the designed 2D monolayer. As shown in Figure 4, an indirect
bandgap of about 2.20 eV, which is calculated using the hybrid functional level of theory
can be seen in the band structure. Moreover, the valence band maximum (VBM) of this
2D monolayer material is located between K and Γ points, while the conduction band
minimum (CBM) is located at the Γ point. Therefore, the 2D hexatetra-carbon monolayer,
which is a semiconductor with a moderate band gap, is not similar to the monolayer and
bilayer graphene due to the fact that they are both semi-metals.
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Figure 4. Band structures of (a) graphene, (b) bilayer graphene, (c) penta-graphene, and
(d) hexatetra-carbon.

To gain a deeper insight into the bonding nature of hexatetra-carbon and its structural
analogy with respect to AA-stacked graphene, we investigated the 2D valence charge
density distribution of these two nanostructures (see Figure 5d–g). The crystal struc-
ture of AA-stacked bilayer graphene, the cubane molecule, and hexatetra-carbon are
shown in Figure 5a–c. It is clear that the hexatetra-carbon structure has a hexagonal face
similar to graphene (xy plane). In addition, interlayer bonds along the z direction be-
tween the two graphene monolayers show a tetragonal side view, which is similar to the
cubane molecule.

As shown in Figure 5d, there are three sp2 sigma covalent bonds (1.43 Å) between the
C–C atoms in each monolayer of AA-stacked bilayer graphene, as well as a weak pz-pz
interaction between the monolayers. In comparison, the in-plane bond length of C–C for
hexatetra-carbon is 1.56 Å, which is longer than those obtained in AA-stacked bilayer
graphene, i.e., the C–C in-plane orbital overlap decreases for the hexatetra-carbon (see
Figure 5f). Therefore, to retain its structural stability, the hexatetra-carbon nanostructure
compensates this orbital variation by creating interlayer sigma bonds between the neigh-
boring carbons, which are located in the different planes. Moreover, these interlayer bonds
would restrict pz, resulting in the semiconducting nature of 2D hexatetra-carbon.

Furthermore, we calculated the variation of the cohesive energy of two graphene
sheets as they approach each other. As seen in Figure 6, when a graphene sheet moves
towards another fixed graphene sheet, they tend to stabilize at the vertical distance of
about 3.45 Å and form the AA-stacked bilayer graphene structure, which is the most stable
structure in this situation. However, by applying an additional external vertical mechanical
strain to the AA-stacked bilayer graphene through decreasing its interlayer distance, its
lattice parameter increases. In addition, another local energy minimum occurs for the
two graphene sheets with a vertical interlayer distance of about 1.55 Å. In this case, the
hexatetra-carbon includes four carbon atoms in its unit cell, and the lattice parameter of
about 2.65 Å structure is formed. In other words, by applying the external vertical strain, a
type of phase transition occurs.
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Figure 5. Crystal structure of (a) AA-stacked bilayer graphene, (b) cubane molecule, and (c) hexatetra-
carbon (d,e). Top and side views of valence charge density distribution for AA-stacked graphene and
(f,g) for hexatetra-carbon obtained by WIEN2K code [21].

Figure 6. Cohesive energy of AA-stacked bilayer graphene and hexatetra-carbon versus interlayer
distance calculated by Quantum Espresso (due to the interruption in accessing WIEN2k while
following up on a reviewer’s comment, we have used Quantum Espresso for Figure 6).
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5. Summary

In conclusion, utilizing first-principles calculations based on DFT, we proposed a
new 2D monolayer crystalline allotrope of carbon called hexatetra-carbon, which shows a
semiconducting nature with a moderate band gap. The stability of 2D hexatetra-carbon
monolayer is confirmed by its rather high cohesive energy, as well as the absence of
imaginary phonon modes in its phonon dispersion spectrum. Comparing the cohesive
energy of the hexatetra-carbon monolayer with those obtained for other 2D allotropes
confirms its high bonding properties. Moreover, our analysis on the charge densities of
both bilayer graphene and hexatetra-carbon monolayer indicates that by applying a vertical
strain on bilayer graphene, the hexatetra-carbon structure can be obtained. Therefore, one
may be optimistic that the 2D hexatetra-carbon monolayer can be experimentally achieved
in the foreseeable future.
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Abstract: Hybrid exchange-correlation functionals provide superior electronic structure and optical
properties of semiconductors or insulators as compared to semilocal exchange-correlation potentials
due to admixing a portion of the non-local exact exchange potential from a Hartree–Fock theory. Since
the non-local potential does not commute with the position operator, the momentum matrix elements
do not fully capture the oscillator strength, while the length-gauge velocity matrix elements do. So far,
length-gauge velocity matrix elements were not accessible in the all-electron full-potential WIEN2k
package. We demonstrate the feasibility of computing length-gauge matrix elements in WIEN2k
for a hybrid exchange-correlation functional based on a finite difference approach. To illustrate the
implementation we determined matrix elements for optical transitions between the conduction and
valence bands in GaAs, GaN, (CH3NH3)PbI3 and a monolayer MoS2. The non-locality of the Hartree–
Fock exact exchange potential leads to a strong enhancement of the oscillator strength as noticed
recently in calculations employing pseudopotentials (Laurien and Rubel: arXiv:2111.14772 (2021)).
We obtained an analytical expression for the enhancement factor for the difference in eigenvalues not
captured by the kinetic energy. It is expected that these results can also be extended to other non-local
potentials, e.g., a many-body GW approximation.

Keywords: semiconductors; oscillator strength; density functional theory; hybrid exchange-correlation
functional; non-local potential

This paper is dedicated to the 80th birthday of Professor Karlheinz Schwarz, the
founder of the WIEN2k DFT package.

1. Introduction

Calculations of linear optical properties of solids require matrix elements for electric
dipole transitions. Momentum matrix elements

pmn(k) = 〈m, k| − i∇r|n, k〉 (1)

are widely used in full-potential codes with periodic boundary conditions [1] when optical
properties are computed with local potentials (e.g., LDA (see end of the paper for the full
list of abbreviations) or GGA XC functionals) and referred to in the literature as a velocity
gauges. (Atomic units will be used throughout the paper.)

Starace [2] emphasised the limitations of Equation (1) when representing matrix
elements for electric dipole transitions. Instead, the more general velocity matrix elements
should be used

vmn(k) = 〈m, k|i[Ĥ, r]|n, k〉 (2)

with the velocity operator [2]

v̂ = i[Ĥ, r] = p̂ + i[V̂NL(r, r′), r], (3)

Computation 2022, 10, 22. https://doi.org/10.3390/computation10020022 https://www.mdpi.com/journal/computation203
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which contains an additional commutator term [V̂NL(r, r′), r] to account for non-local po-
tentials (e.g., the Hartree-Fock exchange in hybrid XC functionals). With |n, k〉 and En(k)
being eigenstates of the Hamiltonian Ĥ, the alternative (length gauge) matrix elements can
be expressed as [2]

〈m, k|i[Ĥ, r]|n, k〉 = i[Em(k)− En(k)]〈m, k|r|n, k〉. (4)

Since the position operator is not well defined for periodic systems, the following
substitution is used instead: [3,4]

r = lim
q→0

(eiqr − 1)/iq, (5)

which leads to a practical expression for the velocity matrix elements in the long wavelength
limit [5,6]

v(α)mn(k) = lim
q→0

1
q
〈m, k + qα|eiqα ·r|n, k〉[Em(k + qα)− En(k)]. (6)

Here, α = x, y, z is a Cartesian direction, m and n are band indices, and qx = q x̂, where
x̂ is a unit vector in the direction of the x axis.

WIEN2k [7,8] is one of the most used full-potential all-electron DFT codes for solids.
It offers many XC functionals to open the band gap, including hybrids with a non-local
Hartree-Fock potential [9]. So far, however, WIEN2k has implemented only momentum
matrix elements to compute optical properties as a part of the optic module [1]. Laurien
and Rubel [10] showed that neglecting the second term in Equation (3) when using hybrid
functionals can lead to an underestimation of the squared magnitude of matrix elements
for electric dipole transitions between conduction and valence band edges by ca. 30%.

Here, we present a scheme for the calculation of the length-gauge optical matrix
elements in WIEN2k based on a finite difference Equation (6) with the help of overlap
matrix elements

Mmn(k, q) = 〈uk,n|uk+q,m〉 ≡ 〈ψk,n|e−iq·r|ψk+q,m〉 (7)

that come from the wien2wannier module [11]. This development opens an avenue for the
calculation of optical properties (frequency-dependent dielectric tensor, absorption spec-
trum, optical conductivity, refractive index, reflectively, loss function) in the independent
particle approximation with hybrid functionals in WIEN2k.

2. Methods

DFT [12,13] calculations were performed with the WIEN2k package (version 21.1)
and the Yukawa screened hybrid (YSH) functional [9]. It was shown that by choosing
an appropriate screening length λ in the Yukawa potential the YSH functional gives very
similar results as the common HSE06 XC functional [14,15]. Important parameters are
summarized in Table 1. Experimental structural parameters were used for all solids
(Figure 1) with internal atomic positions optimized at the PBE level when permitted by
symmetry. Spin-orbit coupling (SOC) was included in all calculations. The structure of
(CH3NH3)PbI3 was represented by a pseudo-cubic cell taken from Ref. [16], scaled to
experimental lattice parameters at 350 K [17,18], followed by a subsequent relaxation of
atomic positions while retaining the experimental lattice parameters. The pseudo-cubic
structure means that the following constrains a = b = c, α = β = γ = 90◦ are applied to
lattice parameters, while the formal symmetry of the structure (spacegroup P1) is not cubic.
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Table 1. Structural and calculation parameters.

Parameters GaAs GaN (CH3NH3)PbI3 1L-MoS2

Space group F4̄3m (216) P63mc (186) P1 (1) P6̄m2 (187)
Lattice param. (Å) 5.653 [19] 3.18, 5.166 [20] 6.31 [17,18] 3.16 [21], 29.0

(pseudo-cubic)
RMT (bohr) 2.23 (Ga) 1.90 (Ga) 0.68 (H) 2.36 (Mo)

2.23 (As) 1.64 (N) 1.34 (C) 2.03 (S)
1.26 (N)
2.50 (Pb)
2.50 (I)

nval 13 (Ga) 19 (Ga) 4 (C) 14 (Mo)
15 (As) 5 (N) 5 (N) 6 (S)

18 (Pb)
17 (I)

RMTmin Kmax 8.0 8.0 3.0 8.0
Gmax 12 12 20 12
lmax 10 (all structures)
lvnsmax 6 (all structures)
k mesh 8 × 8 × 8 8 × 8 × 4 3 × 3 × 3 9 × 9 × 1

(Γ centered) (Γ centered) (shifted) (Γ centered)
Energy (Ry) and 10−4 (all structures)
charge converg. 10−3 (all structures)

(a)

a b

c

a b

c

(c)

(b)

(d)

As

N

Ga
Ga

a b

c
I

Pb

H
N
C

a b

c Mo

S

Figure 1. Crystal structures: (a) GaAs, (b) GaN, (c) quasi-cubic (CH3NH3)PbI3, and (d) mono-
layer MoS2.

Velocity-gauge optical matrix elements pmn(k)were calculated using the optic module [1]
in WIEN2k. Length-gauge optical matrix elements vmn(k) were obtained with the forward

v(α)mn(k) ≈
1
q
〈uk,n|uk+qα ,m〉[Em(k + qα)− En(k)] (8)

and central

v(α)mn(k) ≈
1
q
〈uk− 1

2 qα ,n|uk+ 1
2 qα ,m〉[Em(k +

1
2

qα)− En(k − 1
2

qα)] (9)
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finite difference method. The overlap matrix elements 〈uk,n|uk′ ,m〉 between the cell-periodic
parts of the Bloch functions were generated by the wien2wannier module [11] (case.mmn
output file). The length-gauge optical matrix elements for GaAs computed with YSH
were additionally verified using VASP [22], HSE06 and projector augmented-wave po-
tentials [22–24]. Sample scripts that illustrate a detailed workflow can be found in the
Supporting Information section.

The logarithmic percent change

Δ = ln

(
∑ |v(α)mn |2

∑ |p(α)mn |2

)
100% (10)

was used to evaluate differences between matrix elements. This approach has the following
advantages: (i) does not require a reference, (ii) is more suitable for large changes (greater
than a few percents), (iii) it has additive properties, and (iv) in the limit of small changes it
reduces to the classical ratio of the relative change to the reference.

3. Results

3.1. Finite Difference Calibration and Validation for Local XC

We selected GaAs and the local PBE XC potential [25] to prove the feasibility of
computing the length-gauge optical matrix elements using the finite difference methods
given by Equations (8) and (9). The local potential is selected here since both the length-
and velocity-gauge should lead to identical results under these circumstances. It is also
important to get a feeling for the step size q at which the finite difference approximation
converges to the accurate result given by the momentum matrix element. Here GaAs serves
as an important benchmark since the conduction band and light holes are very sharp and
non-parabolic (see Figure 2a).

Results presented in Table 2 suggest that both, the forward and the central finite
differences reproduce the values of the momentum matrix element within a 3% error. The
central finite difference converges faster (at the wave vector shift of q ≈ 0.003 rad bohr−1)
and will be used to derive matrix elements for the remaining part of this paper. The
numerical noise of the finite difference starts to show up at q < 10−6 rad bohr−1.

Table 2. Length-gauge velocity matrix elements |v(x)
mn |2 (at.u.) in GaAs calculated using the finite

difference approximations (forward vs. central) Equations (8) and (9) with various step sizes q. These

values are compared with the velocity-gauge momentum matrix elements |p(x)
mn |2 (at.u.) from the

optic module. The local (GGA-PBE) XC functional wa used, which made the velocity and the length
gauges identical. The band degeneracy is given as a superscript in parentheses and the meaning of
the subscripts is made clear in Figure 2a.

Transition
∑∑∑ |v(x)

mn |2
∑∑∑ |p(x)

mn |2(q = (16.0/3.5/1.2/0.0006)× 10−3 rad bohr−1)
Forward FD Central FD

Γ(×4)
lh, hh − Γ(×2)

c 0.264/0.402/0.420/0.402 0.412/0.422/0.422/0.402 0.417

Γ(×2)
so − Γ(×2)

c 0.217/0.202/0.200/0.221 0.209/0.201/0.200/0.221 0.206

3.2. Validation for Non-Local XC

After validating our approach with the local potential, we applied it to the non-local
YSH XC functional. Again we evaluated the velocity-gauge (momentum) matrix elements
and length-gauge (velocity) matrix elements in GaAs. Now we did not expect the two
matrix elements to agree given the arguments presented in Section 1. To cross-check
our results, we also computed the velocity matrix elements with VASP, which should be
comparable with our v(α)mn values.
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Our YSH calculations for GaAs gave a band gap of EYSH
g = 1.24 eV vs. Eexp

g =

1.52 eV [26] and previously reported EHSE06
g = 1.33 eV [27], which was a significant im-

provement over PBE. The band structure is shown schematically in Figure 2a where bands
are labeled according to the convention. The results presented in Table 3 confirmed the
agreement between WIEN2k and VASP for length-gauge matrix elements within less than
a 2% deviation. The total length-gauge oscillator strength between valence and conduction
band corresponded to m0 ∑ |v(x)

cv |2 ≈ 21 eV, which agreed well with the 20 eV quoted by (Yu
and Cardona [28], Section 2.6) for III-V semiconductors. The momentum (velocity-gauge)
matrix elements significantly underestimated the strength of optical transitions, which
had previously been reported and quantified in Ref. [10]. The values of |pcv|2 were almost
identical to those obtained with PBE (Table 2), even though the momentum matrix elements
were derived from YSH wave functions.

E

Eg

L-valley

K-valley

(a)

(c)

(b)

hh

c1

v1

c2

v2

lh
so

k

X-valley

Γc

<111><100>

E

Eg

k

Rc

<100><001>

E

Eg

hh
lh

so

k

<100><001>

(d)
E

Eg

k

<100>

Γc

Rv

Figure 2. Schematic band structures of materials studied with SOC: (a) GaAs, (b) GaN, (c) quasi-
cubic (CH3NH3)PbI3, and (d) monolayer MoS2. The band indices ‘c’, ‘hh’, ‘lh’, and ‘so’ stand for
conduction, valence heavy-hole, light-hole, and split-off bands, respectively. The scale of band
splittings is exaggerated.
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Table 3. Length-gauge |v(x)
mn |2 and velocity-gauge |p(x)

mn |2 matrix elements (at.u.) in GaAs calculated
using WIEN2k (with YSH) and VASP (with HSE06). Due to the non-local potential the velocity and
the length gauges are not identical. The band degeneracy is given as a superscript in parentheses and

the subscripts are explained in Figure 2a. The logarithmic deviation between ∑ |p(x)
vc |2 and ∑ |v(x)

vc |2
is given in parentheses (Δ as per Equation (10)).

Transition ∑∑∑ |v(x)
mn |2 ∑∑∑ |p(x)

mn |2WIEN2k VASP

Γ(×4)
lh, hh − Γ(×2)

c 0.534 0.541 0.420

Γ(×2)
so − Γ(×2)

c 0.255 0.256 0.208
Total 0.789 (+23%) 0.797 0.628

3.3. Illustrative Applications

In the previous subsection we showed that calculations of optical properties for GaAs
with the non-local hybrid XC functional (YSH or HSE06) require length-gauge optical
matrix elements. If the momentum matrix elements had been used instead, the strength
of optical transitions would have been underestimated by 23%. Next, we showed that a
similar enhancement of the strength of direct optical transitions was also observed in other
semiconductors, such as GaN, (CH3NH3)PbI3, and monolayer MoS2. The corresponding
band structures are shown schematically in Figure 2b–d.

The band gap of GaN is well reproduced with YSH: EYSH
g = 3.19 eV vs Eexp

g =
3.30 eV [29]. Compared to GaAs, the optical matrix elements in Table 4 showed an even
larger disparity between the length-gauge velocity and the momentum matrix elements.

Table 4. Length-gauge |v(α)mn |2 and velocity-gauge |p(α)mn |2 matrix elements (at.u.) in GaN calculated
using the YSH XC functional.

Transition ∑∑∑ |v(x)
mn |2 ∑∑∑ |v(z)

mn |2 ∑∑∑ |p(x)
mn |2 ∑∑∑ |p(z)

mn |2

Γ(×2)
hh − Γ(×2)

c 0.211 0 0.183 0

Γ(×2)
lh − Γ(×2)

c 0.256 0.055 0.163 0.042

Γ(×2)
so − Γ(×2)

c 0.026 0.507 0.018 0.377
Total 0.493 (+30%) 0.562 (+29%) 0.364 0.419

The monolayer MoS2 had a direct band gap at the K = (1/3, 1/3, 1/3) point. Due to
large excitonic effects [30], direct comparison of the YSH band gap EYSH

g = 2.22 eV with

experiment was not possible. Thus, we used a many-body result EG0W0
g = 2.53 eV [31,32] as

a reference. Similarly to other materials, the monolayer MoS2 showed strong enhancement
of the matrix elements (Table 5) with the YSH XC functional. Spin selection rules disabled
half of the in-plane v(x)

cv matrix elements, while the out-of-plane matrix elements v(z)cv were
zero for transitions at the band edges due to symmetry arguments.

Table 5. Length-gauge |v(x)
mn |2 and velocity-gauge |p(x)

mn |2 matrix elements (at.u.) in monolayer MoS2

calculated using YSH XC functional.

Transition ∑∑∑ |v(x)
mn |2 ∑∑∑ |p(x)

mn |2
Kv1 − Kc1 0 0
Kv2 − Kc1 0.107 0.075
Kv1 − Kc2 0.106 0.074
Kv2 − Kc2 0 0
Total 0.213 (+36%) 0.149
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The pseudo-cubic (CH3NH3)PbI3 had a direct gap at R = (1/2, 1/2, 1/2). The calcu-
lated band gap EYSH

g = 1.03 eV is an improvement relative to the PBE band gap (0.46 eV),
but it is still far from the experimental 1.5–1.6 eV for the tetragonal phase [33,34]. This
underestimation was due to the lack of stochastic thermal distortions of the PbI6 octahedra,
which further opened the gap by ca. 0.5 eV at room temperature [35,36]. Table 6 captures
the matrix elements and their anisotropy caused by the reduced (pseudo-cubic) symme-
try of the unit cell. Among all materials studied here, this material showed the lowest
enhancement of the velocity matrix elements compared to the momentum matrix elements.

Table 6. Length-gauge |v(α)mn |2 and velocity-gauge |p(α)mn |2 matrix elements (at.u.) in pseudo-cubic
(CH3NH3)PbI3 calculated using the YSH XC functional.

Transition ∑∑∑ |v(x,y,z)
mn |2 ∑∑∑ |p(x,y,z)

mn |2

R(×2)
v − R(×2)

c 0.195, 0.150, 0.128 (+11, +11, +8%) a 0.174, 0.135, 0.118

a The true enhancement should be about 22% due to inaccuracies in |p(x,y,z)
mn |2 values. See

text below for more details.

It should be mentioned that the momentum matrix elements calculated with the optic
module in the presence of SOC had an inaccuracy that progressively increased for heavier
elements. The discrepancy between |p(x,y,z)

mn |2 values calculated at the PBE level (including
SOC) with the optic module and using the finite difference overlap matrix reached ca. 12%
in the case of (CH3NH3)PbI3. The discrepancy fully vanished when SOC was excluded.
After crosschecking the matrix elements with VASP we concluded that the finite difference
results were correct. Since the optic module overestimated |p(x,y,z)

mn |2 values at PBE with
SOC, the same applied to YSH with the SOC results presented in Table 6. After including
this error, the true enhancement of YSH matrix elements for (CH3NH3)PbI3 were about 22%
(10% average enhancement in Table 6 and 12% optic error for this material). Additional
calculations with VASP and HSE06 XC functional with SOC produced a very similar result
(23% enhancement of the matrix elements).

4. Discussion

YSH length-gauge |vYSH
m,n |2 matrix elements were systematically greater than the mo-

mentum matrix elements |pYSH
m,n |2. The enhancement ranged from 22 to 36% in the following

order: (CH3NH3)PbI3, GaAs, GaN, and MoS2 (from the smaller to higher enhancement).
This trend prompted the hypothesis that the enhancement was related to the localization of
states involved in the optical transition. (CH3NH3)PbI3 has the most extended 5p-I and
6p-Pb states, while MoS2 had the most localized 4d-Mo and 3p-S states at the band edges.

To gain further insight into the difference between |pYSH
m,n |2 and |vYSH

m,n |2 we wote the
momentum matrix element in the length gauge. The corresponding operator was expressed
as the commutator

p̂ = i[T̂, r], (11)

where T̂ is the kinetic energy operator. Following the same logic that leads to Equation (4),
we derived an equivalent expression for the momentum matrix element in the length-gauge

pm,n(k) = i[Tm(k)− Tn(k)]〈m, k|r|n, k〉. (12)

After dividing Equation (4) by (12) we obtain

vm,n(k) = pm,n(k)
Em(k)− En(k)

Tm(k)− Tn(k)
. (13)

Thus, the 10 to 36% enhancement of the absolute squared magnitude of velocity
matrix elements vs momentum matrix elements in calculations with YSH was directly
related to the difference in eigenvalues not captured by the kinetic energy. In contrast,
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we expected the difference in eigenvalues to be fully captured by the kinetic energy, i.e.,
[Em(k)− En(k)]/[Tm(k)− Tn(k)] = 1, when a local potential was employed. Interestingly,
Equation (13) predicts an isotropic renormalization factor shared by all Cartesian directions
(α = x, y, z). Indeed, materials with anisotropic v(α)mn—GaN (Table 4) and (CH3NH3)PbI3
(Table 6)—showed a material-dependent yet isotropic enhancement factor, which was an
indirect proof of the validity of Equation (13).

The renormalization of momentum matrix elements should have had implications for
optical properties calculated with non-local potentials (hybrid or quasi-particle GW). The
velocity matrix elements entered the frequency-dependent dielectric tensor (an imaginary
part of the inter-band contribution) that took the following form in the independent-particle
approximation [5]

ε′′αβ(ω) ∝ ∑
v,c

∫
k∈BZ

v(α)v,c (k)v
(β)
c,v (k)

ω2 δ[Ec(k)− Ev(k)− ω] dk. (14)

However, length-gauge vc,v matrix elements are more difficult to compute than pc,v,
especially at the quasi-particle GW level of theory where the finite difference method
seems the only available technique [3]. Equation (13) opens a convenient possibility to use
renormalized momentum matrix elements instead

ε′′αβ(ω) ∝ ∑
v,c

∫
k∈BZ

p(α)v,c (k)p(β)
c,v (k)

[Tc(k)− Tv(k)]2
δ[Ec(k)− Ev(k)− ω] dk, (15)

provided that eigenstates are consistent with the potential, and their kinetic energy is
known. The last expression should be valid not only for hybrid XC functionals but also for
the quasi-particle GW level of theory.

Finally, we would like to comment on the renormalization of optical transition matrix
elements proposed by Levine and Allan [37]

vGW
v,c = vLDA/PBE

v,c
(Ec − Ev)GW

(Ec − Ev)LDA/PBE (16)

that is further used in the literature [5,38]. If we apply Equation (16) to the Γso − Γc transition
in GaAs, one would expect the absolute squared magnitude of the velocity matrix element
to increase by the ratio of [(EYSH

c − EYSH
so )/(EPBE

c − EPBE
so )]2 which amounts to +151%. This

result contradicts the +23% difference between |pPBE
so,c |2 and |vYSH

so,c |2 we observed (compare
Tables 2 and 3). At the same time, the dipole matrix element |〈Γso|r|Γc〉|2 becomes 127%
smaller in YSH relative to PBE and counterbalances (partly) the effect of the gap opening.
We further identified contributions of the muffin-tin spheres and of the interstitial volume
to the value of the dipole matrix element 〈Γso|r|Γc〉 at PBE and YSH levels of theory: 25%
Ga, 44% As, and 31% interstitial. All contributions are in phase with each other, and the
proportions remain unchanged from PBE to YSH. Equation (16), in contrast, implies the
equality of dipole matrix elements 〈m, k|r|n, k〉LDA/PBE = 〈m, k|r|n, k〉GW (see Equation (4).
Note that vLDA/PBE

m,n = pLDA/PBE
m,n ≈ pGW

m,n [10]) leads to a gross overestimation of vGW
m,n matrix

elements making them inconsistent with the band curvature [10].

5. Conclusions

Strong material-dependent enhancement of the oscillator strength (22–36% in the
absolute squared magnitude) was observed in the electronic structure calculations of semi-
conductors with a hybrid XC functional. The origin of the enhancement was traced to
the non-local Hartee–Fock exchange potential. The enhancement of the absolute squared
magnitude of velocity matrix elements |vYSH

m,n |2 vs momentum matrix elements |pYSH
m,n |2 in

calculations with non-local potentials was directly related to the difference in eigenvalues
not captured by the kinetic energy, i.e., [Em(k)− En(k)]2/[Tm(k)− Tn(k)]2. This enhance-
ment is isotropic and can be readily included in a calculation of the dielectric function. Our
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enhancement factor was much more accurate than that previously proposed by Levine and
Allan (EGW

g /ELDA
g )2, which leads to nonphysically large vGW

m,n matrix elements.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/computation10020022/s1, a SI-Computation.tar.gz file with
WIEN2k workflows (bash scripts), structure files, sample k-point files, and a python script for data
processing.
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The following abbreviations are used in this manuscript:

BZ Brillouin zone
DFT Density functional theory
FD Finite difference
GGA Generalized gradient approximations
HSE Heyd, Scuseria, and Ernzerhof
LDA Local-density approximation
PBE Perdew, Burke, and Ernzerhof
SOC Spin-orbit coupling
VASP Vienna ab initio simulation package
XC Exchange and correlation
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Abstract: Full-potential linearized augmented plane wave (LAPW) and APW plus local orbital
(APW+lo) codes differ widely in both their user interfaces and in capabilities for calculations and
analysis beyond their common central task of all-electron solution of the Kohn–Sham equations.
However, that common central task opens a possible route to performance enhancement, namely
to offload the basic LAPW/APW+lo algorithms to a library optimized purely for that purpose. To
explore that opportunity, we have interfaced the Exciting-Plus (“EP”) LAPW/APW+lo DFT code
with the highly optimized SIRIUS multi-functional DFT package. This simplest realization of the
separation of concerns approach yields substantial performance over the base EP code via additional
task parallelism without significant change in the EP source code or user interface. We provide
benchmarks of the interfaced code against the original EP using small bulk systems, and demonstrate
performance on a spin-crossover molecule and magnetic molecule that are of size and complexity at
the margins of the capability of the EP code itself.

Keywords: LAPW method; APW+lo method; all-electron DFT

1. Dedication

Much credit for the widespread use of full-potential linearized augmented plane
wave (LAPW) methodology to solve the Kohn–Sham (KS) [1] equation for solids goes to
Karlheinz Schwarz. The history of that contribution is related in Section 3 of Ref. [2]. It
suffices to say here that Heinz started using the original APW in his thesis work, then
came to Gainesville and Quantum Theory Project (QTP) in 1969 to work with Prof. J.C.
Slater, the inventor of the APW method. That is how the last author of this paper became a
collaborator with Heinz and a friend.

Years later, when linearized methods removed the explicit energy dependence diffi-
culty in the APW basis, Heinz undertook development of the code that became WIEN [3].
Again there was a collaboration involving QTP, University of Florida, and the last author.
Apparently that was the first publicly available FLAPW code. By now, it has evolved
to WIEN2k [2,4]. During that evolutionary period, methodological developments led to
revival of the APW scheme via the APW plus local orbitals (APW+lo) combination (sum-
marized below). That has been instantiated in several other codes as well as WIEN2k, e.g.,
ELK [5], FlEUR [6], exciting [7], and Exciting-plus [8]. Here, we are pleased to contribute to
the further advance of this important methodology and particularly pleased to be able to
do so in honor of Heinz’ birthday.
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2. Motivating Physical Systems

The materials physics problem class driving our effort is molecular magnetism, in
particular, the contriving of condensed aggregates of molecular magnets into materials
of relevance to quantum information systems, notably, quantum computing [9,10]. The
computational challenge is to predict promising molecular magnets [11,12], and promising
aggregates of them as well as parametrizing spin Hamiltonians and aiding interpretation
of experimental data. The molecules themselves are large and complicated.

A pertinent example is the molecular magnet NiCl2-[SC(NH2)2]4, dichloro-tetrakis-
thourea-nickel, commonly called “DTN” and its Co analogue, DTC [13]. DTN is important
in this context because of its multi-ferroicity, the coexistence of ferromagnetism and fer-
roelectricity [14], in contrast with the absence of multi-ferroicity in DTC. The DTN cubic
molecular crystal structure has two Ni atoms as magnetic centers in the unit cell. Each Ni
has four S atoms and two Cl atoms as nearest neighbors, forming an octahedral structure
(like the BO6 octahedra in ABO3 perovskites). The unit cell has 70 atoms and 444 electrons,

Spin-crossover systems are a closely related, highly relevant class, as they are candidate
linkers for quantum information systems [15–17]. The electronic structure challenge is
to calculate the low-spin, high-spin energy difference and provide the potential surface
to calculate the vibrational entropic contributions. A particular significant example is
the so-called [Mn(taa)] molecule ([Mn3+(pyrol)3(tren)]), a meridional pseudo-octahedral
chelate complex of a single Mn as the magnetic center and the hexadentate tris[(E)-1-(2-
azolyl)-2-azabut-1-en-4-yl]amine ligand. It has 53 atoms and 224 electrons. Calculating its
spin-crossover energy with low-computational-cost, commonly used density functional
methodology without user intervention and tuning has proven to be a formidable task [18].

While these two examples are convenient for the demonstration of capacity focus
of this paper, they actually are a bit on the small side for the investigation of molecular
magnetic materials in general. An illustration of that challenge is a molecule of current
interest, the [Mn12O12(O2CPh)16(H2O)4] complex [19,20]. It has spin S = 10 from 176 atoms
and 1210 electrons.

Essential computational issues are made evident by these examples. The individual
molecules are structurally and electronically intricate. Typically they have complicated
spin manifolds that are strongly structurally dependent. Their condensed aggregates are
correspondingly complicated and demanding. Moreover, the presence of heavy nuclei and
the importance of anisotropy both implicate the significance of relativistic effects, includ-
ing spin-orbit coupling. In sum, predictive, materials-specific simulations of condensed
magnetic molecule systems and spin-crossover systems are extremely challenging tasks.

In the remainder of this paper, we describe the context and need for all-electron com-
putational methods with emphasis on LAPW and APW+lo methodology, then discuss
impediments to use of existing codes on the physical systems of interest, introduce sep-
aration of concerns as identifying and off-loading algorithmic elements common to any
LAPW/APW+lo code, and the SIRIUS package used as a library for that off-loading, show
how interfacing between the Exciting-Plus code and SIRIUS can be achieved, and give
numerical examples and timings for the combination.

3. Predictive Computational Approaches

Balance of computational cost-effectiveness and accuracy in treatment of electronic
structure of challengingly complicated systems is the pragmatic reason for prevalent use
of density functional theory (DFT) [21] in its KS variational form [21–24]. In the context
motivating this work, accuracy is crucial for predicting both structural properties and
characterizing spin manifolds. The primary choices regarding accuracy are the selection
of an exchange-correlation (Exc) approximation and selection of a method for solving the
resulting KS equations. We address the second. The first is an arena of intense effort that
has provided many options.

Most “electronic structure methods” come down to the choice of a basis set (and its
truncation) by which to reduce the KS equation to a linear algebra problem. The obvious,
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naïve basis for periodic systems is plane waves. It provides systematic enrichment and
is unbiased with respect to ionic charge. The long-known limitation is that the basis
becomes unmanageably large if the oscillations of near-nucleus orbitals caused by the bare
Coulomb potential are included [25]. This burden is removed by use of a pseudo-potential
instead [26] or, more recently, use of projector augmented waves (PAWs) [27]. Widely
used examples of such “plane-wave pseudo-potential-PAW” (PW-PP-PAW) codes include
VASP [28], QuantumEspresso [29], and ABINIT [30–32].

Such calculations intrinsically are not truly all-electron. Pseudo-potentials eliminate
core states, while PAWs reconstruct them. There is a need therefore to test and cross-check
plane-wave pseudo-potential calculations against truly all-electron calculations. For only
three examples of many, see Refs. [33–35]. Another example is a comparatively early use of
all-electron calculations for materials-by-design [36]. That was a study of Li-ion battery
formulations with the WIEN2k code. Though nontrivial (especially at the time), at 14 atoms
per cell with 170–178 electrons, those systems were smaller than the motivating examples
discussed above. Cross-validation is particularly important in the context of molecular
magnetic quantum materials because of core contributions to spin manifolds and spin-orbit
interaction effects.

The all-electron methodology of choice is the LAPW method or its close kin,
APW+lo [37]. Basis set construction is by use of the “muffin-tin” potential, the spherical
average of the KS potential in non-overlapping, nuclear-centered spheres and a constant
average elsewhere (the “interstitial” region). “Full-potential” denotes use of the whole KS
crystalline potential, not just the so-called muffin-tin (MT) part. Historically that was an
important distinction but today the MT potential is used only for basis set construction.
Both LAPW and APW+lo are rooted in Slater’s original APW scheme [38–43]. Within the
MT spheres, all three sets have basis functions that are atomic-like solutions of spherical
potentials. Those are matched with plane waves in the interstitial region.

Original LAPW literature is extensive, see Refs. [44–58]. Subsequently there was a
particular kind of local orbital (“LO”, not “lo”) added [59], and then the closely related
APW+lo scheme [60]. These are covered in at least two other books [37,61] as well as
various review chapters (e.g., Refs. [2,62]). Therefore here we display only those equations
directly relevant to our discussion of codes and algorithmic libraries.

The original APW basis function for Bloch wave-vector k and plane-wave vector G is

ϕG
k (r) := ∑

�,m
∑
ν

Aα,k
�mν(G)uα

�ν(r)Y�m(r̂) r ∈ α

= (1/
√

Ω)ei(G+k)·r r /∈ α (1)

Here uα
�ν(r) is the solution of the (energy-dependent, ε) radial Schrodinger equation

in the MT sphere labeled α, that is regular at the origin with principle quantum number
ν, Y�m(r̂) are spherical harmonics, Aα,k

�mν(G) are the coefficients for matching with the
interstitial plane wave, � and m are the azimuthal and magnetic quantum numbers in a
particular sphere. (The APW basis does not have continuous radial first derivatives at the
sphere surfaces). Since the radial functions are ε-dependent, continuity at the sphere surface
requires that energy to correspond to a KS eigenvalue. The APW secular equation thus is
highly non-linear in the one-electron energies. That non-linearity induces both an important
computational computational cost and difficult-to-manage singularities whenever a radial
basis function has a node on a sphere surface.

The LAPW basis addresses those difficulties by using both the radial functions u(r; ε�)
at reference energies ε� and their energy derivatives

u̇�ν :=
∂u�ν(r; ε)

∂ε

∣∣∣
ε�

. (2)
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(The “dotted” notation for the energy derivative is conventional in LAPW literature).
Thus the basis functions become

ϕG
k (r) := ∑

�,m
∑
ν

[Aα,k
�mν(G)uα

�ν(r; ε�) + Bα,k
�mν(G)u̇α

�ν(r, ε�)]Y�m(r̂) r ∈ α

:=
1√
Ω

expi(G+k)·r r /∈ α . (3)

The coefficients follow from making each basis function continuous with continuous
first radial derivative at each sphere boundary. Unlike the APW case, the KS secular
equation in the LAPW basis is of the ordinary linear variational form. The only user-
dependent choices are the reference energies ε� and muffin-tin radii.

As the LAPW linearization is not unique, exploration of options eventually led [60]
to the recognition that a more efficient linearization combines the original APW basis
functions inside the sphere at fixed reference energies with a set of linearized (in energy) radial
functions inside the sphere, each of which vanishes at the sphere surface. This “APW+lo”
basis consists of Equation (1) enhanced with different local orbitals (“lo”),

ϕlo(r) := ∑
�,m

∑
ν

[Aα
�mνuα

�ν(r; ε�) + Bα
�mνu̇α

�ν(r, ε�)]Y�m(r̂) , r ∈ α . (4)

These localized basis functions do not have continuous derivatives at the sphere
boundary, so surface terms arise in the kinetic energy and in any gradient-dependent
exchange correlation functional.

The LAPW and APW+lo basis sets can be used together with suitable reference energy
choices and consideration of the atomic structure differences among spheres. Observe that
both basis sets are adaptive in that the radial functions evolve as the KS potential evolves
from SCF iteration to iteration.

The forms of the electron number density n(r) and the KS effective potential vKS(r)
matrix elements in these basis sets are given in Appendix A for completeness.

4. Codes and Libraries

4.1. Base Code

The present work focuses on the Exciting-Plus code, hereafter “EP” for brevity [8].
EP was developed from an early version of the ELK/exciting code, that was branched
at the time when independent evolution of exciting and ELK had just begun. EP was
developed with emphasis on post-ground-state calculations such as for the density response
function [63] and RPA [8] and GW [64] calculations. Ground state KS calculations are done
in EP with k-point task distribution and LAPACK [65] diagonalization support. EP also
implemented a convenient mpi-grid task parallelization in several independent variable
dimensions, e.g., k-points, i-j index pairs of KS states, and q points in the calculation of the
KS density response function.

EP was constructed conscientiously in terms of coding practices. However, its design
did not focus on high performance for multi-atom unit cells. Our context makes that
important. Our goal is to retain the features and capabilities of EP while making it fast
enough for routine all-electron DFT calculations to be feasible for large, complicated systems
such as the magnetic molecules, spin-crossover molecules, and aggregates discussed at
the outset.

4.2. Separation of Concerns and the SIRIUS Package

LAPW/APW+lo codes evidently share their central formalism. Because their basis
sets start from plane waves, those codes also share significant procedural elements with
PW-PP-PAW codes. Shared tasks include unit cell setup, atomic configurations, definition
and generation of reciprocal lattice vectors G, combinations with Bloch vectors G + k,
definition of basis functions on regular grids as Fourier expansion coefficients, construction
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of the plane wave contributions to the KS Hamiltonian matrix, generation of the charge den-
sity, effective potential, and magnetization on a regular grid, iteration-to-iteration mixing
schemes for density and potential, and diagonalization of the secular equation. Compared
to PW-PP-PAW codes, LAPW/APW+lo codes additionally have spatially decomposed
basis sets as outlined above.

These extensive commonalities constitute an opportunity for performance enhance-
ment via separation of concerns. Computer scientists can bring their skills to bear on the
shared algorithmic core of LAPW/APW+lo methodology while computational materials
physicists can focus on implementation of analysis, post-processing, better exchange-
correlation functionals, etc.

With achievement of the benefits of this separation in mind, an optimized package,
SIRIUS [66], was created by some of us. It has explicit, focused, highly refined implemen-
tation of LAPW/APW+lo commonalities (and PW-PP-PAW to the extent of the broader
commonality) as the goal. That is, abstracting and encapsulating objects common to LAPW
and APW+lo as the design objective for SIRIUS. By concept, it had both task parallelization
and data parallelization. It has been optimized for multiple MPI levels as well as OpenMP
parallelization and for GPU utilization.

SIRIUS can be used two ways, as a library or as a simple LAPW/APW+lo code.
Elsewhere, we will report on its use in the latter way [67]. In that case the compromise
involved is to accept the functionality limits of SIRIUS in return for being able to handle
very large systems by both task and data parallelism. Here we report on exploitation
of SIRIUS purely as a DFT library by construction of an EP-SIRIUS interface using the
SIRIUS API. The expected gain is speed-up while retaining the familiar user-interface and
post-processing functionalities of EP. Figure 1 illustrates the scheme. The intrinsic limitation
of separation of concerns is that the resulting package has limitations that, in essence, are
the union of the limitations of the host code and of the library. We discuss that briefly at
the end.

Figure 1. General scheme for utilization of SIRIUS as a library to enhance performance of a host code.

4.3. SIRIUS Characteristics and Features

SIRIUS is written in C++ in combination with the CUDA [68] back-end to provide
(1) low-level support (e.g., pointer arithmetic, type casting) as well as high-level abstractions
(e.g., classes and template meta-programming); (2) easy interoperability between C++ and
widely used Fortran90; (3) full support from the standard template library (STL) [69];
and (4) easy integration with the CUDA nvcc compiler [70]. The SIRIUS code provides
dedicated API functions to interface to exciting and to QuantumEspresso [29,71,72].
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Virtually all KS electronic structure calculations rely at minimum on two basic func-
tionalities: distributed complex matrix-matrix multiplication (e.g., pzgemm in LAPACK)
and a distributed generalized eigenvalue solver (e.g., pzhegvx also in LAPACK). SIRIUS
handles these two major tasks with data distribution and multiple task distribution levels.

The eigenvalue solver deserves particular attention. Development of exciting led to
significant code facilities to scale the calculation to larger numbers of distributed tasks
than originally envisioned by making the code switchable from LAPACK to ScaLAPACK.
This can be verified by comparing the task distribution and data distribution of the base
ground state subroutine in recent versions of exciting (version Nitrogen for example) and
ELK (version 5.2.14 or earlier for example). ELK development appears to have emphasized
physics features and functionalities rather than adding ScaLAPACK support. The EP
situation is similar. It has only LAPACK support and does not have data distribution of
large arrays. Table 1 summarizes the diagonalization methods available in these codes.

Table 1. Eigensolver options.

Full Diagonalization Iterative Diagonalization

LAPACK ScaLAPACK Davidson algorithm

Exciting-Plus Yes No No

ELK Yes No Yes

exciting Yes Yes Yes

SIRIUS Yes Yes Yes

Eigenvalue solver performance depends strongly upon the algorithm type. Widely
used linear algebra libraries (e.g., LAPACK, ScaLAPACK) implement robust full diagonal-
ization. They can handle system size up to about 106. Unfortunately for LAPW/APW+lo
calculations on systems as large as 100+ atoms, the eigensystem often is several times larger.
A Davidson-type iterative diagonalization algorithm is appropriate in that case because
it typically suffices to solve for the lowest 10–20 percent of all occupied eigenvalues and
associated eigenvectors up through and somewhat above the Fermi energy.

Davidson-type diagonalization algorithms are available in some APW+lo and PW-PP-
PAW codes, e.g., WIEN2k [73] and PWscf [74] respectively. They are not offered in standard
linear algebra libraries however. At least in part that is because such algorithms repeatedly
apply the Hamiltonian to a sub-space of the system. Therefore the algorithm depends
upon details of the Hamiltonian matrix, hence upon the specific basis-set formalism. By
virtue of focus on tasks central to LAPW/APW+lo and PW-PP calculations, the SIRIUS
package can provide an efficient implementation of Davidson-type diagonalization [75] for
LAPW/APW+lo and PW-PP-PAW codes.

4.4. Interfacing Exciting-Plus with SIRIUS

Despite its many attractive features, especially for important post-ground state calcu-
lations, EP has some significant limitations in regard to ground state calculations on large
systems such as magnetic and spin-crossover molecules. Those limits include: (1) provision
of only the LAPACK eigensolver; and (2) k-point-only MPI parallelization. This second
limit renders the code completely serial for single k-point calculations, e.g., on an isolated
molecule in a big cell.

We frame the task therefore as straight-forward interfacing to SIRIUS as an unaltered
library with comparatively minimal modification of EP. This black-box approach is pure
separation of concerns, since it is the simplest route an experienced EP user could take to try
to gain advantage from SIRIUS without investing effort in learning its inner workings. A
benefit is that the user interface to EP+SIRIUS is essentially unaltered EP, yet the combined
system provides (a) ScaLAPACK support, (b) Davidson iterative eigensolver, (c) band MPI
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parallelization for one k-point, and (d) thread-level OMP parallelization per k-point per
band. It also exposes some oddities introduced by the black-box strategy.

Interface implementation benefits from the FORTRAN API functionalities provided
by SIRIUS. Listing 1 displays the FORTRAN API function calls for parsing the atomic
configuration, the APW and lo basis from EP, and passing them to SIRIUS.

Listing 1: Setting up atomic configuration.

call sirius_set_atom_type_coniguration(sctx, string(trim(label)),&
& spn(ist,is), spl(ist,is),spk(ist,is), spocc(ist,is),&
& logical(spcore(ist,is),kind=c_bool))
enddo

The code segment in Listing 1 loops over the number of states of a single atom type
atom (spnst: species’ number of states). For each state, the API call provides to SIRIUS the
quantum numbers n, l and k for each state (spn, spl and spk), the occupation of that state
(spocc), and whether that state is treated as a core state (spcore).

The first of the two double loops in the code chunk shown in Listing 2 goes over the
APWs of one atom type and the �-channels of each APW. For each �-channel, the API call
passes the following information to SIRIUS: principle quantum numbers n (apwpqn), value
of � (l), value of the initial linearization energy (apwe0), the order of energy derivative
of that APW (apwdm), and whether the linearization energy is allowed to be adjusted
automatically (autoenu). The second loop is over the total number of local orbitals (nlorb)
of one atom type and the orders (lorbord) of each local orbital (i.e., number of u(r) or
u̇(r) terms in that local orbital). The API call passes the following information to SIRIUS:
quantum numbers n and l (lopqn and lorbl), initial linearization energy (lorbe0), order of
energy derivative (lorbdm), and whether the linearization energy is allowed to be adjusted
automatically (autoenu).

Listing 2: Fortran API for basis description.

! parsing APW descriptions from host code to SIRIUS
do l = 0, lmaxapw
do io = 1, apword(l, is)
autoenu = .false.
if (use_sirius_autoenu.and.apwve(io,l,is)) autoenu = .true.
call sirius_add_atom_type_aw_descriptor(sctx, string(trim(label)),&
&apwpqn(l,is), l, apwe0(io, l, is), apwdm(io, l, is),&
&logical(autoenu,kind=c_bool))
enddo
enddo
! parsing LO/lo description from host code to SIRIUS
do ilo = 1, nlorb(is)
do io = 1, lorbord(ilo, is)
autoenu = .false.
if (use_sirius_autoenu.and.lorbve(io, ilo, is)) autoenu = .true.
call sirius_add_atom_type_lo_descriptor(sctx, string(trim(label)),&
&ilo, lopqn(ilo,is), lorbl(ilo, is),lorbe0(io, ilo, is),&
&lorbdm(io, ilo, is), logical(autoenu,kind=c_bool))
enddo
enddo

General input parameters such as the plane-wave cutoff, � cutoff for the APWs and
for density and potential expansion, k-points, lattice vectors and atom positions, etc., all
are set as usual in the EP input file. Then they are passed to SIRIUS via its built-in import
and set parameter functionalities. Other important parameters such as the fast Fourier
transform grid, radial function grid inside each MT sphere, and number of first variational
states [37] often are not set in EP input files but defaulted. For EP+SIRIUS, however, those
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also must be passed to SIRIUS in the initialization step to ensure that the Hamiltonian
matrix and eigenvectors are precisely the same in EP and SIRIUS. Other information such as
specification of core states, linearization energy values and MT radii defined in the so-called
species files of EP is passed to SIRIUS at the beginning of the calculation to overwrite the
corresponding SIRIUS default values. Consider Listing 3 therefore.

Listing 3: Fortran API for setting inputs for SIRIUS.

call sirius_set_parameters( sctx,&
&use_symmetry=bool(.true.),&
&valence_rel=string(’zora’),&
&core_rel=string(’none’),&
&auto_rmt=0,&
&fft_grid_size=ngrid(1),&
&num_mag_dims=ndmag,&
&num_fv_states=nstfv,&
&pw_cutoff=gmaxvr,&
&gk_cutoff=gkmax,&
&lmax_apw=lmaxapw,&
&lmax_rho=lmaxvr,&
&lmax_pot=lmaxvr )

The code chunk shown in Listing 3 is an example of basic inputs that are added to EP
in the initialization step, in the piece of code named init0.f90. Most of the meanings are
explicit in the name. zora means zero-order relativistic approximation. ngrid is the FFT
grid set up in EP and passed to SIRIUS. Plane wave cutoff and |G + k| cutoff values are
gmaxvr and gkmax in EP. The lmaxapw and lmaxvr are the angular momentum cutoff for
APW and for charge density (and potential) inside the MT.

The inserted code shown in Listing 4 supplies SIRIUS with additional parameters for the
Davidson method if it is used. After ensuring that the setup of input quantities is identical
between the host code (EP) and SIRIUS, the ground state calculation is done solely by SIRIUS.
The results, eigenvalues and eigenvectors, are passed back to EP for further calculation.

Listing 4: Eigen-solver selection and Davidson solver parameter setup.

if (sirius_davidson_eigen_solver) then
call sirius_import_parameters(sctx, string(’{‘‘iterative_solver’’ : {‘‘type’’ :

‘‘davidson’’ }}’))
call sirius_import_parameters(sctx, string(’{‘‘iterative_solver’’ :

{‘‘energy_tolerance’’ : 1e-13}}’))
call sirius_import_parameters(sctx, string(’{‘‘iterative_solver’’ :

{‘‘residual_tolerance’’ : 1e-6}}’))
call sirius_import_parameters(sctx, string(’{‘‘iterative_solver’’ : {‘‘num_steps’’

: 32}}’))
call sirius_import_parameters(sctx, string(’{‘‘iterative_solver’’ :

{‘‘subspace_size’’ : 8 }}’))
call sirius_import_parameters(sctx, string(’{‘‘iterative_solver’’ :

{‘‘converge_by_energy’’ : 1 }}’))
call sirius_import_parameters(sctx, string(’{‘‘iterative_solver’’ :

{‘‘num_singular’’ : 20 }}’))
else
! otherwise use full eigen solver from LAPACK
call sirius_set_parameters(sctx, iter_solver_type=string(’exact’))
endif

Next we display, in Listing 5, a code segment with the typical API calls from EP
to retrieve the resulting eigenvalues and eigenvectors. It is inserted in the ground state
subroutine, the piece of code named gndstate.f90.
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Listing 5: Fortran API for retrieving eigenvalues and eigenvectors from SIRIUS.

! get local fraction of eigen-vectors
do ikloc=1,nkptloc
ik=mpi_grid_map(nkpt,dim_k,loc=ikloc)
call sirius_get_fv_eigen_vectors(ks_handler, ik, evecfvloc(1, 1, 1, ikloc),

nmatmax, nstfv)
call sirius_get_sv_eigen_vectors(ks_handler, ik, evecsvloc(1, 1, ikloc), nstsv)
enddo !ikloc
! get all eigen-values and band occupancies
do ik = 1, nkpt
if (ndmag.eq.0.or.ndmag.eq.3) then
call sirius_get_band_energies(ks_handler, ik, 0, evalsv(1, ik))
call sirius_get_band_occupancies(ks_handler, ik, 0, occsv(1, ik))
else
call sirius_get_band_energies(ks_handler, ik, 0, evalsv(1, ik))
call sirius_get_band_energies(ks_handler, ik, 1, evalsv(nstfv+1, ik))
call sirius_get_band_occupancies(ks_handler, ik, 0, occsv(1, ik))
call sirius_get_band_occupancies(ks_handler, ik, 1, occsv(nstfv+1, ik))
endif
enddo

Care is needed in dealing with the MPI task schedules when interfacing to SIRIUS as a
library because typically the host code will have an MPI implementation that differs from
that in SIRIUS. For EP as the host, the task is simplified because EP has only k-point paral-
lelization in the ground-state calculation. In the initialization step, we set the SIRIUS MPI
communicator to be derived from the global MPI communicator (MPI_COMM_WORLD)
of the host code so that all MPI ranks will be used by SIRIUS. Then the user needs to specify
how SIRIUS will carry out the k-point distribution, how to plan further band parallelization
within a k-point, and thread-level parallelization. The schedules of k-point parallelization
and band parallelization are required additional inputs. Thread-level parallelization also
has additional inputs which are specified in the run job script.

If band parallelization is used in SIRIUS, the eigenvalues and eigenvectors associated
with a single k-point are distributed in multiple MPI tasks. It therefore is necessary to
combine the band subset results before transmitting the eigenvalues and eigenvectors back
to EP. Thus, after SIRIUS finishes the ground state calculation but before calling the API to
return the eigenvalues and eigenvectors to EP, SIRIUS will do mpi_reduce in the MPI band
dimension and prepare full eigenvalues and eigenvectors labeled by k-points and by the
global band index at each k-point.

The last piece of the interface provides the additional inputs for the SIRIUS Davidson
diagonalization algorithm. These are adjustable numerical parameters passed directly to
SIRIUS by EP.

As anticipated, the MPI parallelization in the band degree of freedom is one major gain
from interfacing EP to SIRIUS. We noted above that EP runs entirely in non-parallel mode
for a single k-point calculation (often a “Gamma-point calculation” or “Balderschi-point
calculation”), such as is typical for isolated molecule calculations. Hence the SIRIUS-
enhanced-EP has the same scaling as SIRIUS alone in the case of single k-point calculations.
This is an example of the antithesis of the union of limitations that is inherent in separation
of concerns. Here, separation of concerns actually avoids a limitation of the host code.

To illustrate, Figure 2 displays the benchmark of band-parallelization on the DTN
molecule (brief details about the molecule are below). It is placed in a 10 × 10 × 10 Å cubic
unit cell, with plane-wave cutoff 20 a−1

0 (inverse Bohr radius) and angular momentum cutoff
= 7. All jobs were set to 16 multi-threads in one task in accord with the hardware configura-
tion. The recorded time is for the first 100 SCF iterations using the Davidson diagonalization
eigensolver. Note that the figure also shows that employment of EP as a front-end to SIRIUS

221



Computation 2022, 10, 43

does not introduce any significant overhead. The timings for EP+SIRIUS are almost identical
to those for SIRIUS alone. Timings compared to PW-PP-PAW codes are in the next section.

Figure 2. Benchmark of band parallelization in single k-point jobs. n × n ranks are used for one
k-point.

5. EP+SIRIUS: Verification Tests on Small Solid State Systems

The EP+SIRIUS combination was bench-marked first against SIRIUS standalone on
ground-state calculations of the total energy (and magnetization for magnetic systems) for
the simple bulk materials Al, Ni, Fe, NiO, C, Si, Ge, and GaAs. For each system, identical
input parameters were used for the SIRIUS and EP+SIRIUS runs. To be systematic, we
adopted the experimental lattice parameters for all systems. The APW+lo and LAPW bases
were used. Both local density approximation (LDA) and generalized gradient approxi-
mation (GGA; PBE [76]) exchange-correlation functionals were used. In the interstitial
potential and charge density expansions, the maximum length of the reciprocal lattice
vector |G| used as plane wave cut-off for the APW was set to 12 a−1

0 for all systems. The
angular momentum truncation was taken as �max = 8 for APW, with the same value used
for the charge density, potential, and orbital inside the MT sphere. The linearization energy
associated with each APW radial function was chosen at the center of the corresponding
band with �-like character for all systems. Sampling of the first Brillouin zone was by a
dense 16 16 × 16 k-mesh for all systems. All parameters were tested carefully to achieve
total energy convergence (tolerance = 10−6 Hartree). For the EP+SIRIUS calculations,
diagonalization always was done with the Davidson iterative eigensolver.

Table 2 summarizes the APW+lo basis configuration, settings other than those already
stated, and the converged total energy and magnetization of these small systems. Table 3
summarizes the same calculation setup with the LAPW basis. The good agreements in
total energy and magnetization in these tests validate the assumption that the identical
basis setup was invoked and that the constructed interface linked the SIRIUS calculation
properly with the EP host code.
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Table 2. EP+SIRIUS vs. SIRIUS, using APW+lo.

Al NiO Ni Fe
(Non-Mag.) (Non-Mag.) (FM) (FM)

crystal structure fcc rock-salt fcc bcc

latt. const. (Å) 4.05 4.17 3.52 2.87

Rmt (a0) 1.8 1.8, 1.6 2.0 2.0

valence relativity z.o.r.a. z.o.r.a. z.o.r.a. z.o.r.a.

lo config. Al: s, p Ni: s, p, d Ni: s, p, d Fe: s, p, d
O: s, p, d

LO for semi-core ε′2p = −2.55 ε′Ni,3d = −0.33 ε′Ni,3d = −0.33 ε′Fe,3d = −0.28
ε′Ni,3p = −2.59 ε′Fe,3p = −2.18

ε′O,2s = −0.87 ε′Fe,3s = −3.43

treated as core state 1s, 2s Ni: 1s, 2s, 2p, 3s 1s, 2s, 2p, 3s 1s, 2s, 2p
O: 1s

LDA:
(unit: Ha, μB)
Etot, SIRIUS −241.40085447 −1593.13659104 −1518.09194282 −1270.11766996
Etot, EP+SIRIUS −241.40085447 −1593.13659102 −1518.09194282 −1270.11766997
μtot, SIRIUS 0.564822 2.308247
μtot, EP+SIRIUS 0.564825 2.308245

GGA-PBE:
(unit: Ha, μB)
Etot, SIRIUS −241.54245824 −1593.27058366 −1518.15356943 −1270.18442575
Etot, EP+SIRIUS −241.54245824 −1593.27058365 −1518.15356942 −1270.18442575
μtot, SIRIUS 0.563466 2.327534
μtot, EP+SIRIUS 0.563467 2.327530

Table 3. EP+SIRIUS vs. SIRIUS, using LAPW.

Al NiO Ni Fe
(Non-Mag.) (Non-Mag.) (FM) (FM)

Rmt (a0) 1.8 1.8, 1.6 2.0 2.0

LAPW has same linearization energy as APW.
No more lo configurations. LO configuration is same as Table 2.

other parameters are also same as in Table 2

LDA:
(unit: Ha, μB)
Etot, SIRIUS −241.40085321 −1593.13659761 −1518.09194596 −1270.11766882
Etot, EP+SIRIUS −241.40085422 −1593.13659902 −1518.09194752 −1270.11766822
μtot, SIRIUS 0.564830 2.308243
μtot, EP+SIRIUS 0.564827 2.308240

GGA-PBE:
(unit: Ha, μB)
Etot, SIRIUS −241.54245124 −1593.27058546 −1518.15356717 −1270.18442211
Etot, EP+SIRIUS −241.54245372 −1593.27058701 −1518.15356932 −1270.18442394
μtot, SIRIUS 0.563460 2.327533
μtot, EP+SIRIUS 0.563466 2.327528

6. EP+SIRIUS: Two Molecular Examples

6.1. [Mn(taa)] Molecule

As the first known example of a manganese(III) d4 spin-crossover system [77], [Mn(taa)]
is a system of long-standing interest. Experiment shows that the Mn3+ cation goes from
a low-spin state (LS) to a high-spin state (HS) at a transition temperature of about 45 K.
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The [Mn(taa)] structure (see Figure 3) is sufficiently large that it has non-negligible intra-
molecular dispersion interactions with significant HS-LS dependence. The HS ground
state involves anti-bonding molecular orbital occupation, hence the octahedral HS complex
tends to have weaker and therefore longer metal-ligand bonds than in the LS ground state.

Figure 3. [Mn(taa)] molecule.

This combination of spin- and structural dependence makes [Mn(taa)] a significant
challenge to the computational determination of the two ground states. The purely molecu-
lar (non-thermal) ΔEHL := EHS − ELS is small compared to the total energies. Estimates
are about 50 ± 30 meV but as high as a few hundred meV. Extensive details of studies with
various codes are in Ref. [18]. Several factors can affect a DFT calculation of the molecular
ΔEHL. For consistency with condensed phase calculations, it is appropriate to study the
isolated molecule in a large, periodically bounded box. Appropriate accuracy necessitates
a rather large plane wave cutoff, a need that is worsened by the amount of vacuum in the
unit cell. (We remark that the self-interaction error of the usual GGA exchange-correlation
functions (e.g., PBE) tends to cause the the LS state to be favored, hence cause overestimated
ΔEHL values. That is not of concern here since what we are testing is algorithmic efficiency.
Similarly we did not use Hubbard U).

For the test of EP + SIRIUS, we used the experimentally determined HS and LS
[Mn(taa)] structures and did PBE calculations for a single molecule in a 10 × 10 × 10 Å3 box.
Comparison data are from VASP calculations on optimized structures, also with PBE and
without U. Notice, however, that the VASP calculations used a 20 × 20 × 20 Å3 box. Table 4
gives the parameters and results for the LS state. Its total energy is determined to be about
412 meV below that of the HS state. In contrast, the VASP results are 458-497 mev (at the
optimized geometry) with the variation arising from whether the Mn pseudo-potential has
7, 13, or 15 Mn valence electrons. This illustrates the kind of assessment that all-electron
calculations facilitate. Regarding timing, observe that the EP + SIRIUS timing is for 16
(4 × 4) MPI tasks with 8 cores per task.

Table 5 compares timing for the EP only and EP+SIRIUS all-electron calculations and
VASP PW-PP-PAW calculations. Evidently EP-only is not competitive but EP+SIRIUS is, at
least on a per iteration basis.

There is a difficulty hidden in these results however. The lesser aspect is that we
cannot run EP alone at all in a 20 × 20 × 20 3 box. The appropriate cutoffs for such a large
vacuum region cause out-of-memory problems with EP because of the way its arrays are
structured. The more severe consequence is that we also cannot do a full EP+SIRIUS run,
in the sense of returning solutions from SIRIUS to EP for post-processing, on that size box.
In effect, EP+SIRIUS is limited in this situation to being an EP user interface for input and
control of SIRIUS. The work goes to SIRIUS from EP but the results cannot be returned to EP.
Examination of EP suggests that it would take some significant restructuring to remedy the
problem, a task well outside the scope of this work or of the separation of concerns approach.
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Table 4. Parameters and results for the APW+lo calculation of the [Mn(taa)] LS state, with comparison
with VASP timings.

structure [Mn(taa)], LS state structure

unit cell 10 × 10 × 10 Å3 box

number of atoms in unit cell 55

Rmt (a0) Mn: 2.0; C/N: 1.2; H: 1.0;

Gmax (a−1
0 ) for APW 20

lmax for APW and ρ, (lAPW
max and lρ

max) 8

lmax for Veff, (lpot
max) 8

k-points grid 1 × 1 × 1

(L)APW configuration εl = −0.15 eV; ∂E = 0;
for l ≤ lAPW

max

lo configuration Mn: s, p, d; O/C: s, p; H: s;

LO for semi-core ε′Mn,3d = −0.32; ε′Mn,3p = −2.45

treated as core state Mn: 1s, 2s, 2p, 3s; O/C: 1s

μtot (μB) total: 2.00
Mn atom: 1.65

Minutes per SCF cycle EP+SIRIUS 4.5

Minutes per SCF cycle VASP 3.03–3.71

Table 5. For |G + k|max · RMT = 4, the average time (seconds) consumed per SCF iteration of EP-
SIRIUS for single [Mn(taa)] in 10 × 10× 10 Å3 box, single k-point calculation over 60 min of iterations.
Comparison is to VASP for three different pseudo-potentials (see text) in a 20 × 20 × 20 Å3 box.

|Gρ,v|max (a−1
0 ) = 12 14 16 18 20

EP-only (1 MPI task) 1140 (s) 1180 1227 1275 1323

EP+SIRIUS (1 MPI task) 156 190 178 181 318

EP+SIRIUS (4 MPI task) 45 60 42 46 72

VASP (1 MPI task) 181–223

6.2. EP+SIRIUS: DTN Molecule

The challenges and opportunities posed by the DTN molecule were summarized in
Section 2. In essence one has two transition metals in a complicated structure reminiscent
of the perovskites such that the system is both ferromagnetic and ferroelectric. See Figure 4.
Recall that the molecule has 70 atoms and 444 electrons.

Figure 4. DTN molecule crystal.
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We used EP+SIRIUS to calculate the AFM ground state of DTN. We make no attempt
at a thorough study, but simply use DTN to show the speed of an all-electron APW+lo
calculation done with EP+SIRIUS versus with the conventional implementation in EP.
Table 6 shows the parameters used and the basic results.

Table 6. Input parameters and outputs of DTN.

DTN

unit cell ≈10 × 10 × 10 Å3 box

number of atoms in unit cell 70

Rmt (a0) Ni: 2.0; Cl/S: 1.2; C/N: 1.0; H: 0.75;

Gmax (a−1
0 ) for APW 20

lmax for APW, (lAPW
max ) 8

lmax for ρ, (lρ
max) 8

lmax for Veff, (lpot
max) 8

k-points grid 2 × 2 × 2

(L)APW configuration εl = −0.15 eV; ∂E = 0;
for l ≤ lAPW

max

lo configuration Na: s, p, d
Cl/S/C/N: s, p; H: s

LO for semi-core ε′Ni,3d = −0.28
ε′Ni,3p = −2.18

treated as core state Ni: 1s, 2s, 2p, 3s
Cl/S/C/N: 1s

μtot (μB) total: 0.0
Ni atom: +/−0.72

Table 7 shows the average time per scf iteration as a function of the longest expansion
vector Gρ,v|max for the density and potential. Notice that the main gain from EP+SIRIUS
over EP alone at the level of one MPI task per k-vector is that the iteration time is almost
independent of that vector magnitude. The bigger gain comes from the multiple MPI tasks.

Table 7. For the DTN MOF structure, with |G + k|max · RMT = 4, the average time (seconds) consumed
per SCF iteration as a function of longest expansion vector for the potential and density. 2× 2× 2 k-points,
run of 60 min.

DTN Gρ,v
max (a−1

0 ) = 12 14 16 18 20

EP-only (1 MPI task per k-point) 420 (s) 420 450 515 515

EP+SIRIUS (1 MPI task per k-point) 420 440 430 440 440

EP+SIRIUS (4 MPI task per k-point) 171 184 171 195 180

7. Summary and Conclusions

To summarize, we have implemented a performance enhancement strategy for the
Exciting-Plus LAPW/APW+lo code by interfacing it with SIRIUS used as a library. We have
explored the simplest possible approach to exploiting the separation-of-concerns design
philosophy of SIRIUS, namely to interface to it as a black box. The interface outsources the
central tasks of the ground-state KS problem from EP to SIRIUS. The objective is to embed
a SIRIUS SCF loop inside EP. The implementation effort involved is moderate, benefiting
from the similarity of the data structures between EP and the LAPW/LAPW+lo elements
of SIRIUS.
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The EP+SIRIUS combination provides performance gains through diagonalization
and parallelization improvements while retaining the user interface and post-processing
functionalities of EP. The result is a major advance in capability for treating large, complex
molecular aggregates. From the user perspective, only small modifications to the original
EP input files are needed. A few lines to select use of SIRIUS and to specify the additional
parameters for the Davidson eigensolver are the only changes.

This simplest separation of concerns implementation resolves the eigenvalue solver
bottleneck in EP that comes from use of LAPACK full diagonalization. (It cannot handle
Hamiltonian matrices larger than ≈106). The hand-off to SIRIUS provides the option to use
diverse diagonalization algorithms (Davidson, ScaLAPACK, or LAPACK). Use of Davidson-
type diagonalization of the Hamiltonian in the self-consistent loop thus benefits from
multiple level parallelization within k-points and bands. The eigenvalues and eigenvectors
resulting from the SIRIUS calculation have the same structure as those of EP. The design
intent therefore is to transfer them back to EP. However, the array structure design of EP
inhibits this, as we found with [Mn(taa)]. We return to that below.

For testing and validation, we showed results from small bulk systems calculated in
both the APW+lo basis and the LAPW basis. The resulting total energy and magnetization
show no meaningful deviation from the SIRIUS standalone runs. Two very much larger
molecular systems were calculated using the APW+lo basis using both EP alone and
EP+SIRIUS. Good scaling in band parallelization for a single k-point is observed, The
parallelization of the interfaced code works well on high-performance computers, and the
computational time is drastically reduced in comparison with the original EP.

The main advantage of the interfaced code is the ease of its construction and the
support from advanced eigensolvers. We expect similar interface construction can be done
with the ELK or exciting codes without unreasonable effort.

Looking ahead, we have found that the non-distributed large arrays defined in EP
have become the new bottleneck. That is especially the case when dealing with molecular
systems containing more than ≈100 atoms in a large unit cell. The primary cause of
the bottleneck is the high plane wave G cutoff for large systems, and the fact that some
fundamental multi-dimensional arrays are defined with one dimension containing all
indices of the G vector or G + k vector. Examples of such fundamental quantities include
the augmentation wave part (u · Ylm part) of the APW basis and the so-called structure
factor, the form exp[i(G + k) · r]. These basic quantities are used in many places in the
host code. It is not an easy job to change them to be distributed data in all occurrences.
Although that system-size limitation remains, calculations based on the current EP+SIRIUS
can handle larger systems than the original Exciting-Plus and offer a significantly improved
foundation for examining the validity of the results from calculations based on various
pseudo-potentials.
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Appendix A. Expressions for Number Density and KS Potential

In the LAPW and APW+lo basis sets, the number density and KS potential obviously
are adapted, through their matrix elements, to the MT subdivision of the unit cell. In the
interstitial region they are expanded in plane waves and inside MT spheres in real spherical
harmonics R�m(r):

n(r) =

⎧⎪⎨
⎪⎩

∑
�m

nα
�m(r)R�m(r̂), r ∈ α

∑
G

ñ(G)eiG·r , r /∈ α
(A1)

and

vKS(r) =

⎧⎪⎨
⎪⎩

∑
�m

vα
�m(r)R�m(r̂), r ∈ α

∑
G

ṽ(G)eiG·r , r /∈ α .
(A2)

Here nα
�m(r), ñ(G), vα

�m(r), and ṽ(G) are expansion coefficients determined through
the self-consistent solution of the KS equation.
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Abstract: In this study, we theoretically investigate the structural, electronic and magnetic
properties of the Cu2OX2 (X = Cl, Br, I) compounds. Previous studies reported potential spin-
driven ferroelectricity in Cu2OCl2, originating from a non-collinear magnetic phase existing below
TN ∼70 K. However, the nature of this low-temperature magnetic phase is still under debate. Here,
we focus on the calculation of J exchange couplings and enhance knowledge in the field by (i) char-
acterizing the low-temperature magnetic order for Cu2OCl2 and (ii) evaluating the impact of the
chemical pressure on the magnetic interactions, which leads us to consider the two new phases
Cu2OBr2 and Cu2OI2. Our ab initio simulations notably demonstrate the coexistence of strong anti-
ferromagnetic and ferromagnetic interactions, leading to spin frustration. The TN Néel temperatures
were estimated on the basis of a quasi-1D AFM model using the ab initio J couplings. It nicely
reproduces the TN value for Cu2OCl2 and allows us to predict an increase of TN under chemical
pressure, with TN = 120 K for the dynamically stable phase Cu2OBr2. This investigation suggests
that chemical pressure is an effective key factor to open the door of room-temperature multiferroicity.

Keywords: Cu2OCl2; Cu2OBr2; Cu2OI2; oxyhalides; density functional theory; magnetic couplings;
Néel temperature; chemical pressure

1. Introduction

The design of multiferroics (MF) in which magnetic and ferroelectric orders are cou-
pled is one of the hottest current topics in materials science [1]. These compounds appear
as a fantastic playground to deeply investigate the origin and the interactions of the re-
lated ferroic properties and to design materials with improved or novel properties. Such
multi-functional materials are also extremely appealing for the development of spintronic
devices. For example, the control of a magnetic order by an electric field is targeted for
several applications ranging from magnetic sensors to memory technologies. At the present
time, very few MF compounds exhibit such properties at room temperature (RT), which
dramatically limits potential industrial interests. In that context, we embarked on the quest
for discovering high-temperature range MF materials, which ideally also show strong
electric polarization.

Among the prospective strategies to tune MF stability domain(s) is the application of
an hydrostatic (physical) pressure [2]. For instance, in 2013 [3], we predicted theoretically
that under high pressure values of about 20 GPa, CuO would become MF at RT. This
prediction has been confirmed through dielectric constants measurements up to 7 GPa in
2021 [4] and more recently by neutron diffraction up to 18.5 GPa [5]. An alternative route
is to apply a chemical pressure through chemical substitutions, leading to create internal
constraints. For instance, the two multiferroic compounds CuCl2 [6] and CuBr2 [7] are
characterized by Néel temperatures of 23.9 K and 73.5 K, respectively. Such an increase of
TN is the direct consequence of the chemical substitution of Cl by Br.
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Herein, we propose to study the mixed anion system Cu2OX2 (with X = Cl, Br, I).
It derives from the CuO compound in which half of the O2− ions have been replaced
by two X− ions. Magnetic measurements performed on Cu2OCl2 evidenced an antifer-
romagnetic order with a Néel temperature of ∼70 K [8,9], which was firstly attributed
to an all-in-all-out arrangement of magnetic moments carried by Cu2+ centers forming
a pyrochlore-like lattice [10]. Then, powder neutron diffraction analyses [11] revealed
an incommensurate magnetic order, with a propagation vector �q = [0.827(7), 0, 0] and
concomitant with a ferroelectric phase. It has also been evidenced that the incommensu-
rate magnetic structure induces a spin–phonon coupling similar to the ones observed in
perovskite compounds [12]. In 2019, two contradictory neutron-scattering investigations
were published. In the first investigation [13], the spin-driven nature of the multiferroicity
of Cu2OCl2 was demonstrated, leading to the proposition of a cycloidal non-collinear
magnetic order with competing magnetic exchange couplings and driven by an inverse
Dzyaloshinskii–Moriya mechanism. In the second article [14], the authors claimed the
simultaneous existence, at low temperature, of a collinear antiferromagnetic order and an
antiferroelectric phase resulting from a Cl→O charge transfer.

In terms of J magnetic exchange values, only one experimental estimation from
magnetic susceptibilty [8] has been proposed, one conference’s abstract gave contradicting
values deduced from Density Functional Theory (DFT) calculations [15] without providing
any details, and one last article [13] focused on the sign of J couplings by studying Wannier
functions with DFT. The present study aims to clarify the understanding of the magnetic
interactions in Cu2OCl2 by doing DFT calculations at ambient pressure but also under
chemical pressure, by predicting the magnetic properties of Cu2OBr2 and Cu2OI2, for the
very first time.

2. Materials and Methods

Geometry optimizations on the isostructural Cu2OX2 (X = Cl, Br, I) systems were
performed within the Density Functional Theory (DFT) framework using the PAW method,
as implemented in the VASP code [16–18]. Valence electrons were treated using the fol-
lowing electronic configurations for the different species: 3p24s23d9 for Cu, 3s23p5 for Cl,
4s24p5 for Br, 5s25p5 for I and 2s22p4 for O. The PBE approach was considered for the
exchange–correlation functional [19]. To improve the description of the electronic prop-
erties for Cu-3d orbitals, a Hubbard effective correction following Dudarev’s scheme [20]
was used. We previously showed that Ue f f = 6.5 eV enables us to recover the experimental
volume variation under hydrostatic pressure for the CuO compound [3]. Here, an identical
value was chosen. Long-distance van der Waals interactions were taken into account
by introducing the DFT-D3 correction proposed by Grimme et al. [21]. Spin-polarized
simulations were done with a 5 × 4 × 4 Γ-centered k-mesh and a cutoff energy of 550 eV.
The dynamical stability of all optimized structures was checked by computing the phonon
modes with the finite-differences method for symmetrically non-equivalent displacements
on a 2 × 1 × 1 supercell and a 2 × 4 × 4 Γ-centered k-mesh.

For each compound, the exchange couplings were estimated based on the optimized
structures with the Wien2K code, using DFT within the FP-LAPW approach [22]. The PBE0
on-site functional was chosen for the treatment of the exchange correlation part in the lines
of our previous works [3,4]. The RKmax parameter was set to 7. Muffin-Tin radii were
fixed to 1.94, 2.10, 2.20 and 1.71 a0 for Cu, Cl, Br, I and O species, respectively. The first
Brillouin zone was sampled with 52–58 irreducible k-points. The magnetic interactions
were extracted from a least-squares fitting procedure applied between the DFT energy
related to a given collinear magnetic state and the energy of an Ising Hamiltonian used to
describe the magnetic structure:

EIsing = ∑
i �=j

Si · Jij · Sj (1)
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where Si and Sj are the spins carried by the Cui and Cuj centers, respectively. The Jij
parameter represents the magnetic exchange interactions between Si and Sj. Hereafter,
J > 0 indicates an antiferromagnetic (AFM) coupling, and J < 0 indicates a ferromagnetic
(FM) coupling.

3. Results and Discussion

3.1. Crystal Structure of Cu2OCl2
The melanothallite Cu2OCl2 crystallizes in the orthorhombic space group Fddd with

a = 7.4477 Å, b = 9.5989 Å, c = 9.6888 Å, V = 692.65 Å3, and Z = 8 [11]. The structure shown
in Figure 1a is characterized by one symmetrically non-equivalent Cu2+ site located in a
strongly distorted octahedral environment due to a Jahn–Teller effect. It can be viewed as a
CuO2Cl2 square-planar environment (also called plaquette), in which the bond lengths are
dCu−O = 1.943 Å and dCu−Cl = 2.283 Å. Two longer bonds are formed with chlorine ions
in apical positions with dCu−Cl = 3.123 Å. These CuO2Cl2 plaquettes are sharing edges to
form ribbons which are inter-connected together by the oxygen ions in a three-dimensional
network, which has many common features with the CuO atomic structure. For instance,
both Cu2OCl2 and CuO [23–25] exhibit unusual thermal variations of lattice parameters
due to the so-called hinge mechanism [26]. The ribbons are parallel to the [110] and

[
110

]
directions. As shown in Figure 1b, another vision of the structure is a pyrochlore-like
lattice where the tridimensional network is based on O-centered OCu4 tetrahedra which
are sharing corners. Here, the chlorine species are pointing toward the center of cavities.

Figure 1. Crystallographic structure of Cu2OCl2 described by (a) Cu-centered CuO2Cl2 square
planar environments and (b) O-centered OCu4 tetrahedral environments. The blue, red and green
spheres represent copper, oxygen and chlorine ions, respectively. Square planar and tetrahedral
environments are evidenced in transparent blue and red, respectively. The CuO2Cl4 distorted
octahedral environment is highlighted with black lines.

3.2. Geometry Optimization

Geometry relaxations have been performed at ambient pressure in order to validate
our approach by comparing with the experimental data of Cu2OCl2 and to predict the
atomic structure of Cu2OBr2 and Cu2OI2. The experimental Cu2OCl2 structure reported in
Ref. [11] was used as an initial guess for all compounds. The main structural parameters
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of the optimized geometries are summarized in Table 1, including the experimental data
of Cu2OCl2.

Table 1. Optimized structural parameters of the Cu2OX2 compounds (X = Cl, Br, I) deduced
from DFT+U calculations (Ue f f [Cu(3d)] = 6.5 eV) and experimental data of Cu2OCl2 Ref. [11].
For Cu2OCl2, the deviation (in percentage) with respect to the experimental data is given
in parentheses.

Cu2OCl2 (Exp.) Cu2OCl2 Cu2OBr2 Cu2OI2

a (Å) 7.4477 7.4675 (+0.3) 7.7203 8.1680
b (Å) 9.5989 9.6448 (+0.5) 9.9962 10.5578
c (Å) 9.6888 9.7337 (+0.5) 9.7661 10.1226

V (Å3) 692.65 701.05 (+1.2) 753.69 872.93
zX 0.3241 0.3237 (−0.1) 0.3138 0.3104

Cu-O (Å) 1.943 1.951 (+0.4) 1.996 2.094
Cu-Xeq (Å) 2.283 2.295 (+0.5) 2.408 2.543
Cu-Xap (Å) 3.123 3.132 (+0.3) 3.214 3.391

Cu-O-Cu (◦) 102.86 102.82 (0.0) 104.58 105.65
Cu-Xeq-Cu (◦) 83.42 83.25 (−0.2) 81.93 82.01
hinge angle (◦) 63.20 63.13 (−0.1) 62.42 62.10

Regarding Cu2OCl2, an excellent agreement is found between the experimental and
the theoretical structures. The optimized lattice parameters deviate from the experimental
ones by less than 0.5%. Considering the first neighbor’s shell, the Cu-O, Cu-Cleq and
Cu-Clap bonds of the optimized geometry are 1.95, 2.30 and 3.13 Å, respectively (deviation
smaller than 0.5%). Inside a ribbon, the Cu-O-Cu and Cu-Cleq-Cu bond angles are computed
at 102.8◦ and 85.25◦ (less than 0.2% deviation), respectively. Finally, the hinge angle that
corresponds to the Cu-O-Cu angle between two ribbons is 63.1◦ (0.1% deviation).

Focusing now on the new Cu2OBr2 compound, one may notice that the lattice parame-
ters are larger than the optimized ones of Cu2OCl2, as expected from the larger atomic size
of bromine. It leads to a = 7.720 Å (3.4% larger compared to Cu2OCl2), b = 9.996 Å (3.6%
larger), c = 9.766 Å (0.3% larger), and V = 753.69 Å3 (7.5% larger). This steric effect mainly
affects a and b parameters, which are defining the directions of the ribbons. The optimized
Cu-O, Cu-Breq and Cu-Brap bond lengths are 2.00, 2.41 and 3.21 Å, respectively. The angles
within a ribbon, i.e., Cu-O-Cu and Cu-Breq-Cu, are about 2◦ larger and 1.3◦ smaller than in
Cu2OCl2, respectively. The hinge angle appears slightly smaller than in Cu2OCl2 at 62.42◦.

For the second new compound Cu2OI2, the lattice parameters are still increasing
compared to the two former cases, following the chemical sense directed by the atomic
radii (rCl < rBr < rI). In detail, we found a = 8.168 Å (9.4% larger compared to Cu2OCl2),
b = 10.558 Å (9.5% larger), c = 10.123 Å (4.0% larger) and V = 872.93 Å3 (24.5% larger). Once
more, the significant variation of volume results from more important changes reported for
a and b lattice parameters. Regarding the distorted CuO2I4 environment, the optimized
Cu-O, Cu-Ieq and Cu-Iap bond lengths are respectively measured at 2.09, 2.54 and 3.39 Å.
Focusing on the ribbons, the Cu-O-Cu angle equals 105.7◦ (2.3◦ larger than in Cu2OCl2),
while the Cu-Ieq-Cu angle is reduced to 82.0◦ (1.2% smaller).

No imaginary phonon frequencies were retrieved for both Cu2OCl2 and Cu2OBr2
systems. First, this result confirms that the present modeling reproduces properly both the
atomic parameters and the dynamical stability of Cu2OCl2. Experimentally, the crystals
are grown using the chemical vapor transport techniques with a stoichiometric mixture of
CuO and CuCl2 compounds [11]. Second, Cu2OBr2 is predicted to be dynamically stable.
For Cu2OI2, one imaginary phonon frequency was calculated at ∼20i cm−1, suggesting that
such a phase does not exist. However, Cu2OI2 was kept in our investigation as a virtual
compound allowing us to probe the chemical pressure effect.
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3.3. Electronic Properties

Based on the optimized structures, the electronic properties were investigated using
the Wien2K code. The projected density of states (pDOS) of the three Cu2OX2 systems are
represented in Figure 2. The present PBE0 calculations lead to band gap values of 2.18 eV,
1.85 eV and 0.95 eV for X = Cl, Br and I, respectively, and rather similar pDOS. The valence
band (VB) is based on the O-2p, Cl-3p (or Br-4p or I-5p) and Cu-3d states (from −7 to
0 eV with respect to EF). While the top of the VB is mainly composed of O-2p states in
Cu2OCl2, it is mainly based on Br-4p and I-5p states in Cu2OBr2 and Cu2OI2, respectively.
Such a point is emphasized in Figure 3 by the electronic densities calculated in the energy
range from −0.5 to 0 eV (with respect to EF). The magnetically active orbital, i.e., the one
carrying the magnetic moment, is the Cu-3dx2−y2 , as expected from the d9 electronic config-
uration and the square planar environment. The calculated magnetic moment of copper is
0.6–0.7 μB in Cu2OX2, which is in good agreement with the available experimental data for
Cu2OCl2. Indeed, the ordered magnetic moment was found to be 0.64(5) μB and 0.66(2) μB
from powder and single-crystal neutron refinements, respectively [13].

Figure 2. Total and projected densities of states for the Cu2OX2 compounds (X = Cl, Br, I) deduced
from PBE0 on-site calculations on the ground-state AFM collinear order. Energies for pDOS are given
with respect to EF.

Figure 3. Electronic density corresponding to the top of the valence band (from −0.5 to 0 eV with
respect to EF) for the Cu2OX2 compounds (X = Cl, Br, I) deduced from PBE0 on-site calculations on
the ground state AFM collinear order. Isovalue is set to 0.1 electron/Å3. Blue, red, green, brown and
violet spheres indicate Cu, O, Cl, Br and I atoms, respectively.
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3.4. Magnetic Exchange Interactions

Magnetic susceptibiltity measurements on Cu2OCl2 provided a Néel temperature
TN of ∼70 K followed by a broad maximum at ∼140 K [8,9]. Many investigations were
carried out to determine the nature of the magnetic order at lower temperatures, leading
to several propositions such as an all-in-all-out model [10], an incommensurate spin spiral
phase [11], an incommensurate spin cycloidal phase [13] and a collinear antiferromagnetic
(AFM) phase [14]. However, only one of these experimental investigations proposed
magnetic exchange coupling (J) values extracted from magnetic susceptibility fits [8],
which are in disagreement with the reported J values estimated from DFT calculations [15].
However, these latter values were found in a conference abstract and no related publication
is available, to our knowledge.

Based on the optimized geometries, we have thus calculated the J exchange values
using PBE0 on-site functional as we did for CuO [3,4]. Examining the atomic structure
leads to defining four magnetic interactions depicted in Figure 4 for both ribbons- and
pyrochlore-like lattices. The related dCu−Cu bond lengths and Cu-O-Cu angles are specified
in Table 2 for Cu2OCl2, Cu2OBr2 and Cu2OI2. More specifically, considering the ribbons-
like structure, we targeted two intra-ribbon (J1 and J4) and two inter-ribbon (J2 and J3)
couplings. It should be noticed that among these four interactions, only J4 is based on
a super-superexchange (SSE) path, i.e., the magnetic moments are mediated through an
orbital overlap implying two ligand atoms (namely Cu-L-L-Cu, with L = O, Cl, Br or
I), the others being based on a superexchange (SE) path implying only one ligand atom
(namely Cu-L-Cu, with L = O, Cl, Br or I).

The J couplings were estimated using the mapping analysis procedure. The strategy
consists of (1) determining the DFT energies of a set of magnetic states, (2) defining the
related energy expressions in terms of J parameters using an Ising Hamiltonian, and
(3) refining the J parameters on top of the DFT results using a least squares method. One
may underline that the accuracy of such an approach strongly depends on the size and the
quality of the set of magnetic states [27]. In our case, eight collinear magnetic structures
were selected to obtain four J values. The results are summarized in Table 3.

Figure 4. Representation of J exchange couplings between copper sites in both CuO2X2- and OCu4-
based frameworks. Cu, O and X atoms are depicted by blue, red and green spheres, respectively.
CuO2X2 plaquettes and OCu4 tetrahedra are shown in transparent blue and red, respectively.
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Table 2. Geometrical parameters related to the four magnetic couplings for the Cu2OX2 compounds
(X = Cl, Br, I) deduced from DFT+U relaxation (Ue f f [Cu(3d)] = 6.5 eV). The experimental data of
Cu2OCl2 taken from Ref. [11] are given in parentheses.

J1 J2 J3 J4

Cu2OCl2

Cu-Cu (Å) 3.049 3.067 3.426 6.099
(3.037) (3.055) (3.410) (6.075)

Cu-O-Cu (◦) 102.82 103.65 122.82 -
(102.86) (103.70) (122.72) -

Cu2OBr2
Cu-Cu (Å) 3.158 3.112 3.494 6.315

Cu-O-Cu (◦) 104.58 102.47 122.16 -

Cu2OI2
Cu-Cu (Å) 3.337 3.252 3.657 6.674

Cu-O-Cu (◦) 105.65 101.87 121.64 -

Table 3. Magnetic exchange interactions (in meV) calculated at the PBE0 on-site level for the Cu2OX2

compounds (X = Cl, Br, I). The available experimental and theoretical data are given for comparison.
J > 0 indicates an AFM coupling, and J < 0 indicates an FM coupling.

J1 J2 J3 J4

Cu2OCl2
This work −14.0 −2.2 19.1 8.7
Theo. [15] −15.5 19.0 1 8.6
Exp. [8] 9.7 2 9.3 2 -

Cu2OBr2 This work −13.1 1.9 25.2 9.2

Cu2OI2 This work −8.1 24.2 41.0 15.1
1 This value has been defined as an interchain coupling without giving more details. It could be alternatively J2,
J3 or a combined effective value. 2 These two parameters correspond to mean field estimation of Jintra−ribbon = J1

and Jinter−ribbon = J2 + J3.

Before discussing our results, let us on comment the experimental values extracted by
Okabe et al. [8] considering the ribbons-like picture. They considered two effective J param-
eters which were found to be both AFM and very close to each other, i.e.,
Jintra = 9.7 meV and Jinter = 9.3 meV, thus leading to strong magnetic frustrations. These
mean field values can be compared to our J parameters considering that Jintra = J1 + J4
and Jinter = J2 + J3. It leads to DFT effective intra- and inter-ribbon couplings, which are
respectively FM and AFM, i.e., Jintra = −5.3 meV and Jinter = 16.8 meV, in disagreement
with Okabe et al. [8]. In contrast, in Ref. [15], three DFT J values have been proposed, i.e.,
two intra-ribbon (J1 = −15.5 meV and J4 = 8.6 meV) and one inter-ribbon (Jinter = J2 + J3
= 19.0 meV), which are in good agreement with our values, i.e., J1 = −14.0 meV and
J4 = 8.7 meV for the intra-ribbon interactions and J2 = −2.2 meV and J3 = 19.1 meV for the
inter-ribbon ones.

In other words, the present calculations evidenced that the ribbons are mainly FM
ordered due to the first-neighbor (SE) interaction J1, and the spins are frustrated due
to the AFM second-neighbor (SSE) interaction J4, which is 1.6 times smaller than J1 in
amplitude. Between the ribbons, the interaction is AFM due to J3 (J2 appears negligible).
In the pyrochlore-like lattice, each OCu4 tetrahedron is globally AFM with two up and
two down magnetic centers, which further emphasizes the spin frustration character of
the magnetic structure. The resulting most stable collinear magnetic order is depicted in
Figure 5.
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Figure 5. Schematic representation of the ground-state AFM collinear magnetic structure within the
(left) ribbons- and (right) pyrochlore-like lattices. Black and white spheres indicate up and down
spins carried by Cu sites, respectively. Red and green spheres represent oxygen and halogen species,
respectively. The OCu4 tetrahedral coordinations are represented in transparent red. The CuO2X2

plaquettes are shown in transparent blue and gray for an up or down spin carried by the central
Cu, respectively. One AFM spin chain, formed by the J = J3 coupling and considered within the
quasi-1D AFM model, is evidenced by a yellow–blue dotted line.

A similar picture is obtained for Cu2OBr2 and Cu2OI2 compounds. Regarding the
intra-ribbon interactions, one may notice that the FM J1 coupling decreases to −13.1 meV
and −8.1 meV, respectively, while the AFM J4 coupling is enhanced to 9.2 meV and 15.1 meV,
respectively. For the inter-ribbon interactions, the FM J2 coupling becomes AFM at 1.9 meV
for Cu2OBr2 and strongly increases up to 24.2 meV for Cu2OI2. J3 stays the strongest (AFM)
coupling and is increased to 25.2 meV and 41.0 meV, respectively. The larger values for J3
cannot be explained only based on geometrical arguments. Indeed, the related Cu-O bond
length and Cu-O-Cu angle, respectively, increases and decreases, when Cl is substituted by
Br or I. It is the signature that the halogen element indirectly participates in this interaction
by setting the size and the shape of the magnetic orbital due to the nephelauxetic effect,
which increases in the series Cl– < Br– < I– , leading to an expansion of the copper 3d
orbitals and thus larger interactions. Figure 6 shows that the spin densities of the three
compounds are quite similar, with spin-up densities (in yellow) along the FM J1 coupling
for both copper and halogen elements involved in this interaction. For oxygen atoms,
which are also involved in the AFM couplings (J3 and J4), two lobes are found with one
up- and one down-spin densities in yellow and cyan, respectively. These observations
have a direct consequence on the magnetic moments carried by the ligands, which are 0.11,
0.10, 0.08 and 0.00 μB for Cl, Br, I and O, respectively. Indeed, the magnetic moment of the
oxygen is null due to its participation in AFM couplings.

To go further, we focused more deeply on the magnetically active orbital, i.e., Cu-
3dx2−y2 , and its interaction with the surrounding ligands. The spin-polarized pDOS of Cu-
3dx2−y2 , O-2p and Cl-3p states of one plaquette are given in Figure 7a for Cu2OCl2. It appears
that the occupied Cu-3dx2−y2 states are mainly positioned within the energy range from
−7 to −5 eV (highlighted by the gray dotted line rectangle). The electronic charge density
(ρ) and spin density related to this energy window are shown in Figure 7b,c, respectively.
First of all, from the analysis of both pDOS and ρ, it appears that the Cu-3dx2−y2 orbital
interaction is larger with O-2p than Cl-3p states. It confirms that the magnetic moment
of the magnetically active orbital is mainly mediated by oxygen atoms and thus justifies
that the largest coupling is along a Cu-O-Cu superexchange path. In addition, the up- and
down-pDOS of O-2p states are perfectly symmetric, leading to a net magnetic moment of
zero. Similarly, the spin-density around oxygen is constituted of two equivalent lobes with
opposite spins (as previously discussed). Looking in more detail, Figure 7c evidenced the
pivotal role of oxygen that connects two ribbons (with opposite spins), which are nearly
perpendicular. To summarize the results of the present analysis, the magnetically active

238



Computation 2022, 10, 73

orbital results from an overlap of Cu-3dx2−y2 with O-2p and to a less extent with Cl-3p
states in Cu2OCl2. One may notice that in this energy range, the pDOS of the magnetically
active orbital is constituted by two peaks: (1) the lower in energy originating from the
Cu-O interaction, while (2) the higher in energy is associated to the Cu-Cl interaction.
A similar picture can be retrieved for Cu2OBr2 and Cu2OI2, except that the first peak (Cu-O
interaction) increases and the second peak (Cu-X interaction) decreases (see Figure 2). This
observation explains the enhancement of J3 from Cu2OCl2 to Cu2OBr2 and to Cu2OI2.

Figure 6. Spin density for the AFM ground state of Cu2OCl2, Cu2OBr2 and Cu2OI2. The isovalue
is set to 0.017 electron/Å3, up and down regions of the spin density are evidenced in transparent
yellow and cyan, respectively. Blue, red, green, brown and violet spheres indicate Cu, O, Cl, Br and I
atoms, respectively. The FM J1 and AFM J3 couplings are indicated.

Interestingly, these three systems can be compared to their parent compound CuO,
for which the atomic and magnetic structures are described using different descriptors.
While the atomic structure can be viewed as based on ribbons of edge-sharing CuO4
plaquettes, the magnetic order is mainly governed by AFM spin chains of corner-sharing
CuO4 plaquettes. Here also, it appears that the strongest magnetic coupling, i.e., J3, is at the
origin of AFM spin chains of corner-sharing CuO2X2 plaquettes, highlighted by a yellow–
blue dotted line in Figure 5. The presence of such AFM spin chains can be more clearly
seen and understood in the OCu4-based vision, where these AFM spin chains propagate
along tetrahedra.

As we did previously for CuO [3,4], we can thus estimate TN based on the random
phase approximation model of a quasi-1D AFM Heisenberg cubic lattice [28]:

J′ =
TN

4c
√

ln(αJ/TN) + 0.5 ln(ln(αJ/TN))
(2)

where α = 2.6 and c = 0.233 are numerical parameters, J′ is an effective inter-chain coupling
and J is the intra-chain coupling. In the present case, half of the spin chains are 90◦ rotated,
leading to half as many inter-chain couplings. The resulting ground-state expression is
EGS(model) = J + J′, instead of EGS(model) = J + 2J′ in the CuO model where all chains
are oriented in the same direction. Such an expression has to be compared to the collinear
ground-state (Figure 5) energy defined as:

EGS = J3 − J1 + J2 − J4 (3)

Thus, one may define:
J = J3 (4)

J′ = −J1 + J2 − J4 (5)
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Using the aforementioned J values and the original c and α parameters, we obtain
TN = 65, 111 and 294 K for Cu2OCl2, Cu2OBr2 and Cu2OI2, respectively (see Figure 8).
Experimentally, TN ∼70 K for Cu2OCl2. Such a good agreement validates the present
magnetic model, which consists of considering AFM spin chains based on J = J3 interacting
through an effective coupling defined as J′ = −J1 + J2 − J4. It should be noticed that if we
use the refined value for CuO c = 0.284 [3], we obtain TN = 77, 131 and 344 K for Cu2OCl2,
Cu2OBr2 and Cu2OI2, respectively (see Figure 8). The agreement for Cu2OCl2 is still very
good with the experiment, and whatever the c value is, we predict a significant increase of
TN when Cl is replaced by either Br or I in the compound. A similar trend has been reported
experimentally for CuCl2 and CuBr2 [6,7], for which TN = 23.9 and 77 K, respectively.

Figure 7. (a) Spin-polarized projected density of states (pDOS) of one plaquette in Cu2OCl2. The energy
window of Cu-3dx2−y2 occupied states is evidenced by a gray dotted rectangle on the pDOS. The (b)
electronic charge density and (c) the spin density calculated in this energy range are also displayed.
The atoms considered for the pDOS are shown by black stars on the electronic charge density. Up and
down spin channels of the pDOS are evidenced by ↑ and ↓, respectively. Isovalues are set to 0.1 and
0.017 electron/Å3 for electronic charge density and the spin density, respectively. Up and down
regions of the spin density are highlighted in transparent yellow and cyan, respectively. Blue, red
and green spheres indicate Cu, O and Cl atoms, respectively.
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Figure 8. Estimation of the TN Néel temperature depending on the nature of halogen species and
considering two sets of parameters for the magnetic model presented in Equation (2): (1, in blue)
α = 2.6 and c = 0.233, and (2, in red) α = 2.6 and c = 0.284. The experimental value for Cu2OCl2 is
represented by a yellow star.

4. Conclusions

In summary, we have investigated the magnetic properties of Cu2OX2 (X = Cl, Br,
I) systems based on first-principles calculations. The atomic structure of Cu2OX2 can be
viewed either as based on ribbons of CuO2X2 edge-sharing plaquettes or as a pyrochlore-
like lattice constituted of OCu4 corner-sharing tetrahedra. The present study shows that
the magnetic order is governed by AFM spin chains of CuO2X2 corner-sharing plaquettes,
which defines an AFM intra-chain coupling J = J3. These spin chains interact with
each other through three inter-chain couplings, which leads to an effective interaction
J′ = −J1 + J2 − J4. Using these two parameters J and J′ in an analytical expression for a
quasi-1D AFM Heisenberg system, one may recover the Néel temperature of the known
multiferroic compound Cu2OCl2 at TN = 70 K. We also predict that Cu2OBr2 could be a
stable phase and is expected to have a larger TN value, which is evaluated to be about
120 K. Using chemical pressure to enhance TN is thus an effective and appealing technique
to design new mixed anion compounds in order to reach RT operating MF. Ongoing
investigations in our group consist of combining chemical and physical pressures to reach
this goal.
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Abstract: Machine learning approaches can drastically decrease the computational time for the
predictions of spectroscopic properties in materials, while preserving the quality of the computational
approaches. We studied the performance of kernel-ridge regression (KRR) and gradient boosting
regressor (GBR) models trained on the isotropic shielding values, computed with density-functional
theory (DFT), in a series of different known zeolites containing out-of-frame metal cations or fluorine
anion and organic structure-directing cations. The smooth overlap of atomic position descriptors
were computed from the DFT-optimised Cartesian coordinates of each atoms in the zeolite crystal
cells. The use of these descriptors as inputs in both machine learning regression methods led to
the prediction of the DFT isotropic shielding values with mean errors within 0.6 ppm. The results
showed that the GBR model scales better than the KRR model.

Keywords: NMR; machine learning; zeolites

1. Introduction

Machine learning (ML) coupled with density functional theory (DFT) calculations
has been rapidly emerging for predictions of nuclear magnetic resonance (NMR) isotropic
shielding values [1–9]. The role of the experimental NMR investigations to recognise the lo-
cal atomic environment in chemical and biological systems has been established for decades.
Theoretical DFT calculations, using either the gauge-invariant atomic orbital (GIAO) or
gauge invariant-projector augmented wave (GIPAW), have been widely employed to im-
prove the NMR signal assignments and/or identify the local structural environment and
molecular interactions of the targeted nucleus [10,11]. The interest in the last few years in
developing and applying ML models for the prediction of NMR parameters thus originates
in the importance of the rapid achievement of accurate theoretical NMR parameters.

Hitherto, several ML models [12] have been built and applied for predicting NMR
isotropic shielding (σiso) or, respectively, the chemical shift (δ = σre f − σiso) of 1H, 13C,
13O, and 13N nuclei in small organic, aromatic molecules or molecular crystals [2,6,13–20].
These ML models comprise deep neural networks (DNNs) [15], convolutional neural net-
works (CNNs) [16], the IMPRESSION model based on kernel-ridge regression (KRR) [6,19,20],
linear-ridge regression [2], gradient boosting regression (GBR) [21,22], graph neural networks
(GNNs) [23,24], and the Δ-ML method [7]. Chemical shifts of proteins have been predicted
using random forest regression (RFR) [13,14,17,18]. Despite the strong decrease of the compu-
tational time to train the model and predict the NMR parameters, in comparison to the GIAO
and GIPAW calculations, most of the ML models yielded somewhat less accurate results
in comparison to the experimental data than the DFT σiso with PBE exchange–correlation
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functionals [7]. Significantly lesser is the amount of works devoted to NMR property calcula-
tions in silicates [1–3]. The ML precision in predicting 29Si and 17O chemical shifts in these
amorphous solids is found more accurate than in the organic compounds. For example,
the ML-predicted deviation from DFT-GIPAW calculations is obtained to be only 0.7 ppm for
29Si and 1.5 ppm for 17O in SiO2 glasses [2]. The supervised feed-forward neural network
representation yielded mean absolute errors (MAEs) of δiso < 1 ppm for 29Si in ZSM-11 and
a-cristobalite [1]. The same NN model also performed very well for the 17O quadrupolar cou-
pling constant predictions, giving MAEs (Cq(17O)) of 0.07 MHz in cristobalite and 0.06 MHz
in ZSM-11 zeolite.

One of the most significant tasks to take into account in the ML applications is
the choice of the descriptors, representing the local chemical environment of each atom
in the system. This choice is not trivial because it greatly depends on the shape of the molec-
ular system (simple organic molecules or crystalline materials) and on the considered data
set [17]. The most widely used descriptor for predicting the NMR properties in organic
molecules and materials is the smooth overlap of the atomic positions (SOAP) descriptor.
This descriptor can also be used as a kernel when it is coupled with the kernel-ridge regres-
sion methods. Indeed the SOAP descriptor has been already found very efficient to describe
the local chemical environment of a large range of chemical compounds, and in partic-
ular, it allows obtaining the accurate prediction of NMR properties [1,2]. Furthermore,
the symmetry functions are widely used for describing the chemical environment in the neu-
ral network representation [1]. Molecular descriptors and fragment descriptors [25] led
to predicting with a great accuracy the J-coupling constants in small organic molecules.
The ML combination with DFT is therefore a promising tool, and further validations are of
high interest.

In this work, we apply two simple state-of-the-art regression ML methods, namely
KRR and GBR, to predict σiso in a set of crystalline zeolite structures, selected from the Inter-
national Zeolite Association’s (IZA) structure database [26]. The zeolites are the crystalline
alumino-silicate porous materials with waste industrial applications as catalysts or molecu-
lar sieves. The three-dimensional zeolite structure is composed by tetrahedron units with Si
atoms in the centre and four oxygen atoms at the vertices, which can organise in a variety
of porous frameworks, with pores of sizes varying between 2 and 10 nm [27,28]. ML
methods coupled to DFT computations have already emerged for predicting mechanical
properties [29], nitrogen adsorption [30], molar volumes, and cohesive energies [31] in zeo-
lites. The success rate of these ML applications to zeolites vary according to the predicted
properties and the proposed ML approach [32]. Among the spectroscopy techniques, used
to study zeolite structures and chemical compositions, most of the NMR techniques can
today be routinely applied to the as-synthesised zeolitic materials. We therefore found it of
interest to examine and report in this work the performance of simple ML methods trained
on the computed DFT σiso values in a series of known zeolite structures.

2. Methods and Computational Details

2.1. Kernel-Ridge Regression

The first ML approach used by us is KRR [6], which consists of a combination of
the ridge regression and the kernel method. The KRR model is suitable for complex
continuous data, which cannot be described by a linear regression. Unlike the linear
regression, the kernel-ridge regression method offers larger flexibility by transforming
the input with a regression function.

Below, we briefly illustrate the KRR scheme. In the case of the ML linear regression
algorithm, the goal is to minimise a function Ω called the quadratic cost [33], which is
defined as

Ω(w) =
1
2

N

∑
i=1

(
Yi − wTXi

)2
, (1)

where Xi represents the vector of the input data, Yi are the scalar output data, N corresponds
to the dimension of the input data, and the vector w is the vector of weights that will be
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optimised during the training process. In the case of the ridge regression algorithm,
an additional term is implemented to the previous quadratic cost in order to prevent over-
fitting problems during the training stage by regularising its value. Hence, the form of
the quadratic cost becomes

Ω(w) =
1
2

N

∑
i=1

(
Yi − wTXi

)2
+

1
2

λ||w||22, (2)

where λ is a positive parameter that controls the value of the vector norm w. This step
is called L2-regularisation because of the use of the L2-norm of the vector w. In order
to determine the parameter λ, a cross-validation algorithm is widely used [34]. Thus,
by minimising the function Ω(w), it leads to a simple linear problem to be solved for the set
of weights as follows:

N

∑
i=1

(
Yi − wTXi

)
Xi = λXi. (3)

These optimised weights are thus obtained as

w =

(
λI +

N

∑
i=1

XiX
T
i

)−1( N

∑
j=1

YjXj

)
, (4)

where I is the identity matrix.
This linear regression method is limited to problems that can be described as a linear

function; thus, to overcome this limit, a non-linear kernel function is introduced in order to
measure the similarity between two samples of a high-dimensional space. The most widely
used kernel function is the Gaussian kernel function. In the KRR method, the vector of the
input data, Xi, is substituted by the non-linear kernel function ϕ(Xi). Therefore, we can
rewrite the expression of the optimised weight parameters as a function of ϕ(Xi):

w =

(
λI +

N

∑
i=1

ϕ(Xi)ϕ(XT
i )

)−1( N

∑
j=1

Yj ϕ(Xj)

)

=
(

λI + ϕ(Xi)ϕ(XT
i )
)−1

ϕ(Xi)Yi

= ϕ(Xi)
(

ϕ(XT
i )ϕ(Xi) + λI

)−1
Yi.

(5)

By defining the coefficient αi =
(

ϕ(XT
i )ϕ(Xi) + λI

)−1
Yi, the optimised weights are

simply expressed as

w =
N

∑
i=1

αi ϕ(Xi). (6)

Therefore, during the training phase of the kernel-ridge regression, the aim is to
calculate αi, which are subsequently used to predict the output values. For the KRR
model, we used the code from the open repository [35]. The similarity of the input vectors
is determined based on the user-defined similarity function, e.g., kernel, in our case,
the difference between the SOAP vectors.

2.2. Gradient Boosting Regression

The gradient boosting regression is a powerful regression firstly introduced by Freund
and Schapire [36,37] through an adaptive boosting algorithm. At the beginning, this
regression method was used for classification problems [38] and later on adapted for

245



Computation 2022, 10, 74

regression problems [21,22]. The aim of the gradient boosting regression method is to find
a function f ∗ that minimises the loss function Θ [39] defined as

f ∗(X, Y) = arg min EX,Y[Θ(Y, f (X))], (7)

where X is the vector of input variables, Y is the output variable, and EX,Y represents
the floor function applied for the vector X and the variable Y. In the boosted model,
the function f (X) is defined as a weighted linear combination of base learners by the fol-
lowing formula:

f (X) =
N

∑
i=1

αihi(X, βi), (8)

where αi are the real coefficients of the linear combination and βi are the parameters of
the base learners hi(X, βi). The minimisation of the loss function Θ is carried out via
an optimisation of the function f using the recursive relation

fm+1(X) = fm(X) + arg min
N

∑
i=1

Θ(Yi, fm(Xi + hm+1(Xi))). (9)

The here-used gradient boosting regression method enables us to create strongly learn-
ing trees from poorly learning trees [40]. This approach utilises boosting so that the trees
are created sequentially, as opposed to random forests, where the trees are generated
in parallel. Each new tree is created with an effort to reduce the prediction error learning
from the errors of the previous tree. The goal is to achieve the lowest possible error while
keeping the predicted values as accurate as possible. We used the Anaconda distribution
for Python 3.8.5, utilising the scikit-learn program package [40,41] with the GBR model,
where the random_state hyperparameter was set to 0 and the rest of the hyperparameters
were set to the default values.

2.3. SOAP Descriptors

Two data sets in comma-separated values (CSV) format were prepared using the DFT-
optimised Cartesian coordinates of the zeolites and the isotropic shielding value in ppm for
each atom in the zeolites. The first data set contains the Cartesian coordinates (x, y, and z)
of each zeolite, the calculated σiso, the name of the chemical element, and the name of
the zeolite (taken from the IZA). The second CSV file contains 3 × 3 tensors and the name
of the corresponding zeolite. We used the DScribe package [42] to convert our data to
smooth overlap of atomic positions (SOAP) descriptor vectors. Individual structures were
represented as Atoms class objects from the ASE package [43,44] with the use of 3 × 3
tensors. We began by creating a DScribe.SOAP object, for which the parameters such as
the number of basis functions, range, level l, and a list of all elements in our data were set.
Subsequently, the DScribe.SOAP.create function was used to create a SOAP vector for each
atom. The complete data set was split into a training and test set in a ratio of 8:2.

2.4. DFT Computational Details

A periodic DFT-based approach was used to carry out a full geometrical optimisation
(atomic positions and unit-cell parameters) of all the structures in the data set. The geomet-
rical optimisations were carried out with the Crystal17 program, based on atom-centred
Gaussian orbitals [45]. All-electron basis functions of double-ζ quality were used as follows:
6-31d1 for O, N, C, and H [46]; 85-11G* for Al [47] and Pople’s basis set (6–21G) with
polarisation for Si. The generalised gradient-corrected PBE approximation was used as
the exchange correlation (XC) functional, augmented by the empirical London dispersion
(D3) term with the Becke–Johnson damping function [48]. The optimised structural parame-
ters of zeolites with OSDA, obtained with the Crystal code and all-electron databases, were
found by us to agree well with the experimental bond distances and bond angles [49–51].
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For this reason, we applied the same computational protocol for the optimisation of the ze-
olite structures in this work.

Single-point energy calculations were carried out for these optimised geometries
in order to compute the isotropic shielding values of all the atoms in the zeolites. For this,
we used the open-source code QUANTUM ESPRESSO [52–54] with the GIPAW method
in combination with the ultrasoft pseudopotentials with GIPAW reconstruction [55,56],
from the USSP pseudopotential database [57]. The wave-function and charge density
energy cut-offs were set to 60 Ry and 720 Ry, respectively. A Monkhorst–Pack grid of
k-points [58] corresponding to a maximum spacing of 0.06 Å−1 in the reciprocal space was
used. The self-consistent field (SCF) energy convergence tolerance was set to 10−10.

3. Results and Discussion

3.1. Data Set and DFT Isotropic Shielding

To ensure a heterogeneity of the atomic environments giving rise to different DFT σiso
values, we considered zeolites containing Al, Na, and Li cations, as well as MFI-type zeolites,
containing the organic structure-directing agents (OSDAs), which are the tetrapropylammo-
nium (TPA) and tripropylethylammonium (TPEA) cations. Among the MFI-OSDA types of
structures, we considered five pure silica structures (silicalite-1), labelled as MFI-TPA and
MFI-TPEA in Table S1 in the Supporting Information (SI) Section. The four MFI-ETPA struc-
tures present the location of the TPEA ethyl chain either in the direct or zig-zag channels.
In silicalite-1 zeolites, the fluorine anion is the charge-compensating ion. The remaining
MFI-OSDA zeolites are those with the TPA cation and one Al3+, which substitutes at
each of the 24 non-equivalent Si-sites of the asymmetric unit. The initial structures of
the pure inorganic zeolites were the crystallographic information files (CIFs) that were
collected from the IZA database. We built the MFI-OSDA structures from the available
crystallographic data for TPA (ETPA) [59] and ZSM-5-TPA [60] zeolites. These structures
were optimised in our previous studies [61,62] using the same level of DFT theory. We thus
constructed a more heterogeneous data set that contains Si, Al, N, C, H, Li, and F atomic
environments. The geometries and DFT σiso values of all atoms were used in the ML
training and prediction calculations.

To access roughly the quality of the DFT σiso results, we correlated them with the
experimental chemical shifts of 29Si, which are available in the IZA database. The zeolites
for which δ29Si were collected are labelled by an asterisk in Table S1.

The linear fitting between the DFT and experimental data, illustrated in Figure 1,
demonstrates that the PBE-D3 results followed reasonably well the overall experimental
trend for the selected zeolites. It is worth noting that the experimental NMR data were
recorded under different experimental conditions [26] and often for non-ideal zeolite
structures that might contain defects, such as silanols, water, hydroxides, and in- or out-
framework cations. Taking into account these factors and the linear fitting R2 coefficient of
0.9995, as well as the root-mean-squared error (RMSE) of 2.44 ppm of the DFT values with
respect to the fitted values against the experimental isotropic shieldings, we concluded
a rather good correlation between the computed and experimental results.

The distributions of the calculated DFT isotropic shieldings of 29Si, 17O, 27Al, 13C, and
1H are reported in Figure 2. The majority of the Si atoms have DFT σiso(29Si) in the range
422–426 ppm, as follows from the maximum number of the chemical environments in this
interval. Nevertheless, the predominant number of σiso(29Si) is obtained in a 400–440 ppm
interval, and there are few Si-sites, for which σiso(29Si) < 350 ppm. The other nuclei, largely
presented in the zeolites, are 17O and 1H. The peakin the oxygen atoms’ distribution
indicates that the largest number of oxygen sites has σiso(17O) values at around 196 ppm.
The σiso(17O) values span a large interval between 150 and 250 ppm with several outliers
outside this region. The isotropic shieldings of hydrogen sites are between 22 and 29 ppm,
and the distribution of 13C is characterised by two distinguished peaksat around 100 and
150 ppm. The hydrogen and carbon sites belong to OSDAs in MFI and ZSM-5 zeolite types.
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In the studied structures, the number of Al3+ cations is significantly smaller, and their
σiso(27Al) are spread in the 450–550 ppm interval.

Figure 1. Comparison between DFT isotropic shielding and experimental chemical shift (both in ppm)
alongside the linear fitting of the data (blue line).

Figure 2. Distribution of the number of oxygen (O), silicon (Si), aluminium (Al), carbon (C), and
hydrogen (H) atomic environments in zeolites, according to their isotropic shielding. The histograms
are obtained with an interval of 2.0 ppm for C, O, Al, Si, and 1.0 ppm for H in the count of the number
of atomic environment.

3.2. KRR and GBR Models to Predict NMR Isotropic Shielding

In this section, we discuss the performance of the KRR and GBR models. The zeolite
data set, discussed above, was split into training (first 80%) and validating sets (last 20%) of
zeolites. As discussed in the Methods section, we used the training set to build the SOAP
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descriptors. First, we considered all atoms in the zeolite structures that represent a total
of 14,513 atomic environments in the KRR and GBR models. In the second part, only
the silicon atoms, with their Cartesian coordinates and σiso(29Si) values, were collected
in a smaller data set. The choice of Si atoms is because σiso(29Si) experimental data are most
often considered as fingerprints of the local structure around Si-sites and can account for
the presence of silanols, oxygen, or silicon vacancies or other defect types. The number
of Si-atomic environments in this smaller data set was reduced to 3756, and among them,
3004 were used as training data and 752 as validation data.

The distribution of the differences between σiso, computed with DFT and those pre-
dicted from the KRR and GBR models, is presented in Figures 3 and 4, respectively, whereas
the correlations between the predicted vs. the DFT values are reported in Figures S1 and S2.
In the KRR model, the regularisation hyperparameter α was set to 0.1. Here, only one
outlier value is identified in the results from the KRR application. The predicted out-
lier σiso = 487.7 ppm is down-shifted by about 26 ppm with respect to the “true” DFT
σiso = 513.82 ppm. This outlier is in the silimanite structure with the Cartesian coordinates
equal to 2.67, 1.46, and 1.10 Å. The application of both the KRR and GBR models on the
smaller set containing only the Si atomic environments and their σiso(29Si) values in the in-
terval 380–450 ppm yielded again an excellent correlation between the predicted vs. DFT
computed data, as follows from the plot in Figures 5 and S3 (KRR) and Figures 6 and S4
(GBR). We obtained only one remarkable outlier σiso(29Si) value when using the KRR model.
This outlier is now in the ITW zeolite. Its predicted σiso(29Si) value of 431.51 ppm is up-
shifted with respect to the computed with DFT σiso(29Si) = 419.99 ppm. The coordinates
of the outlier Si atom are: x = −1.31, −1.24, −2.72 Å. No outliers were identified when
applying the GBR model.

Figure 3. Distribution of the differences between the isotropic shielding values computed with DFT
and those predicted with the ML-KRR method. All atomic environments are considered. The his-
tograms are obtained with an interval of 0.1 ppm in the count of the number of atomic environments.
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Figure 4. Distribution of the differences between the isotropic shielding values computed with DFT
and those predicted with the ML-GBR method. All atomic environments are considered. The his-
tograms are obtained with an interval of 0.1 ppm in the count of the number of atomic environments.

Figure 5. Distribution of the differences between the isotropic shielding values computed with
DFT and those predicted with the ML-KRR method. Only silicon atomic environments are con-
sidered. The histograms are obtained with an interval of 0.1 ppm in the count of the number of
atomic environments.
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Figure 6. Distribution of the differences between the isotropic shielding values computed with
DFT and those predicted with the ML-GBR method. Only silicon atomic environments are con-
sidered. The histograms are obtained with an interval of 0.05 ppm in the count of the number of
atomic environments.

The mean-squared error (MSE), root-mean-squared error (RMSE), standard deviation
error (STD), and the mean absolute error (MAE), as well as the R2 coefficients are compared
in Table 1. These results confirm the very good performance of both ML models leading
to the R2 coefficients of 0.997 (KRR, all atoms in the data set) and 0.999 for the other
three sets of predictions. The MAE, RMSE, and MSE results are <0.6 ppm. The most
notable differences between the performance of KRR and GBR models are the training and
prediction time, also reported in Table 1. The GBR model appears to be faster by two orders
of magnitude than the KRR model. Therefore, we concluded that the GBR model scales
better than the KRR model.

Table 1. Training and prediction time, mean absolute error (MAE), root-mean-squared error (RMSE),
mean-squared error (MSE), absolute and square standard deviation errors (STD AE and STD SE), and
the R2 coefficient of the KRR and GBR model predictions together with the average of both predicted
values (AVG). The data shown are only for the Si atoms (Si) and all atoms (All) in the zeolite.

Machine Learning Models

Parameters KRR (All) GBR (All) AVG (All) KRR (Si) GBR (Si) AVG (Si)

Training time (s) 3796.4 49.0 - 136.7 12.2 -
Prediction time (s) 1900.8 0.6 - 74.2 0.02 -

MAE (ppm) 0.023 0.226 0.116 0.037 0.057 0.046
STD AE (ppm) 0.524 0.538 0.236 0.490 0.054 0.246

MSE (ppm) 0.275 0.341 0.069 0.241 0.006 0.062
STD SE (ppm) 12.669 8.158 1.285 5.304 0.011 1.341
RMSE (ppm) 0.524 0.584 0.262 0.491 0.008 0.250

R2 0.999 0.999 - 0.999 0.997 -

A combination of the KRR and GBR models might remove outliers and reduce the er-
rors. A simple estimation of the combination between both regression approaches was car-
ried out by assuming equal weight coefficients (0.5), that is taking the mean of the predicted
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isotropic shielding values by the KRR and GBR ML models. The resulting distributions of
the differences between the mean of the predicted and DFT values, as well as the correlation
plots between the predicted vs. DFT isotropic shielding data are plotted in Figures S5–S8.
The average of both ML models approached the quality of the GBR predictions. The outlier,
identified in the reduced set of silicon atoms, equals 425.78 ppm; thus, it is predicted to
be closer to DFT σiso(29Si = 419.99 ppm). The combination of both regression methods led
to a significant decrease of the STD errors, MSE, and RMSE (Table 1) in comparison to
the respective errors found from the application of each ML model. It therefore follows that
the combination of regression methods might be a useful approach toward the removal of
errors of a single regression model.

Discussing the quality of the predicted σiso results with respect to those computed
with DFT is not trivial in the case of the zeolite structures. As noted above, the rigorous
comparison of the computed σiso(29Si) and the experimental chemical shift data, collected
from the IZA database (see Figure 1), is not straightforward. Despite this fact, consid-
ering that the RMS error of the linear fit of DFT σiso(29Si) vs. the experimental δiso(29Si)
results (Figure 1) amounts to 2.44 ppm, we concluded that the predicted values with RMSE
in the range 0.008–0.5 ppm do not worsen the quality of the DFT method used by us.
This suggests a very promising application of both the KRR and GBR models, not only to
predict the σiso of 29Si, but also for the other nuclei in the the zeolite data set, because out-
liers were not identified among these nuclei. However, we note the limited number or
heterogeneity of C, H, F, and Li atomic environments. It is therefore not surprising that
outliers were not established among those atoms. On the other hand, the number of oxygen
environments is four-times the number of Si environments in the all-atom data set. The ex-
cellent correlation between the predicted vs. DFT-computed values can be therefore also
concluded for σiso(17O). The combination of SOAP descriptors with simple ML regression
models appears to lead to a promising predictive capability of NMR isotropic shielding of
29Si and 17O in the zeolites, which is in line with previous work using SOAP descriptors
and regression methods for predictions of NMR parameters in the organic solids [4] and
silicates [1,2].

4. Conclusions

In this paper, we studied the capability of two simple machine learning regression
models, KRR and GBR, to predict the σiso values in a series of known zeolites. The DFT
calculations with periodic boundary conditions were carried out to fully optimise the crys-
tallographic zeolite structures, collected from the IZA database and the MFI-OSDA types
of zeolites, and to compute the σiso values for each atom in the data set. In addition to
the inorganic zeolite framework, composed by Si, O, and Al atoms, the data set contains
various out-frame cations, such as Li+, F−, and TPA and TPEA molecular cations.

The quality of the DFT σiso(29Si) was found to be reasonably good compared to the
available experimental δiso(29Si) in the IZA database. The SOAP descriptors, obtained from
the optimised Cartesian coordinates of each atom in the DFT-based data set, were used as
inputs in both machine learning regression models. Both the KRR and GBR approaches
predicted isotropic shieldings with mean errors smaller than 1 ppm. The comparison
between the training and predictions time gave a preference to the GBR, found to scale
better than the KRR model. These results are promising for more extensive ML applications
based on simple regression in combination with DFT calculations in order to accelerate
the calculations of NMR parameters in various zeolitic materials.
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//www.mdpi.com/article/10.3390/computation10050074/s1, Table S1, Figures S1–S8.
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