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Preface to ”Artificial Intelligence in Oral Health”

Artificial intelligence (AI), including deep learning and machine learning, is undergoing rapid

development and has garnered substantial public attention in recent years. In particular, AI is

positioned to become one of the most transformative technologies for medical applications and

demonstrates great potential and useful properties for improving the analysis of various medical

imaging datasets such as plain radiographs or three-dimensional imaging modalities. Several

AI-based deep learning architectures have already been approved by the FDA and are being applied

in clinical practice. In the dental field, the usefulness of AI has been assessed for the detection,

classification, and segmentation of anatomical variables for orthodontic landmarks, dental caries,

periodontal disease, and osteoporosis; however, these applications are still in very preliminary stages.

Jae-Hong Lee

Editor
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Editorial

Special Issue “Artificial Intelligence in Oral Health”

Jae-Hong Lee

Department of Periodontology, Daejeon Dental Hospital, Institute of Wonkwang Dental Research,
Wonkwang University College of Dentistry, Daejeon 35233, Korea; ljaehong@gmail.com

I thank all authors, reviewers and the editorial staff who contributed to this Spe-
cial Issue. In recent years, an increasing body of evidence has shown a direct or indi-
rect correlation between oral health and chronic systemic diseases, including diabetes
mellitus, atherosclerosis, rheumatoid arthritis, cancer, cardiovascular disease, and other
non-communicable chronic diseases, although these findings remain controversial [1,2].
Typical oral disease parameters are evaluated and assessed by dental professionals us-
ing common clinical and radiographic tools including periodontal probe, dental mirror,
dental explorer, and panoramic, periapical, and bitewing radiographic images, as well as
cone beam computed tomography scans in some cases [3,4]. However, these conventional
methods are inherently subjective, time-consuming, and expensive and may result in the
under- or overestimation of diagnostic accuracy and performance [5,6]. Despite several
attempts to overcome these limitations, they remain challenging and do not provide practi-
cal benefits over conventional diagnostic methods with regard to time, cost-effectiveness,
and standardization.

Artificial intelligence (AI) refers to the ability of a machine that possesses its own form
of intelligence to perform tasks that require human cognition. AI-based technology has
emerged as a promising approach in the healthcare domain since the 2000s [7,8]. AI and
machine learning based on the digitized big data archives and computing infrastructure are
revolutionizing medical practice [9]. AI assists in clinical decision making through rapid
and reliable data interpretation, the automation of administrative workflows to reduce non-
patient-care-related activities, and direct patient participation in monitoring their health
to improve health literacy [10]. AI has led to a paradigm shift in dental science, including
in restorative dentistry, oral and maxillofacial surgery, prosthodontics, orthodontics, en-
dodontics, and periodontics [11]. In particular, AI has significantly transformed dentistry
and is viewed as a promising tool to revolutionize clinical diagnosis and management of
oral disease. However, the exact role of AI in the prevention, diagnosis, and management
of oral disease remains controversial.

AI-based algorithms will facilitate rapid, accurate, and reliable diagnosis of oral dis-
eases and adoption of preventive strategies, as well as prompt intervention for improved
treatment outcomes. Therefore, AI scores over traditional analytics and clinical decision
making techniques through unbiased, consistent, and good-quality diagnosis and treat-
ment in clinical and epidemiological scenarios. AI is particularly useful for standardized
diagnosis and treatment of oral disease, which will benefit dental professionals in clinical
practice. Several AI-based deep learning architectures have already been approved by the
FDA and are being applied in clinical practice. In the dental field, the usefulness of AI has
been assessed for the detection, classification, and segmentation of anatomical variables
for orthodontic landmarks, dental caries, periodontal disease, and osteoporosis; however,
these applications are still in very preliminary stages. This Special Issue is intended to lay
the foundation of AI applications focusing on oral health, including general dentistry, peri-
odontology, implantology, oral surgery, oral radiology, orthodontics, and prosthodontics,
among others.
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Artificial Intelligence-Based Prediction of Oroantral
Communication after Tooth Extraction Utilizing Preoperative
Panoramic Radiography
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gubik_s@ukw.de (S.G.); hartmann_s2@ukw.de (S.H.)

2 Department of Orthopedics and Trauma Surgery, Medical Centre-Albert-Ludwigs-University of Freiburg,
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72076 Tuebingen, Germany; michael.vollmer@med.uni-tuebingen.de

* Correspondence: vollmer_a@ukw.de

Abstract: Oroantral communication (OAC) is a common complication after tooth extraction of upper
molars. Profound preoperative panoramic radiography analysis might potentially help predict
OAC following tooth extraction. In this exploratory study, we evaluated n = 300 consecutive cases
(100 OAC and 200 controls) and trained five machine learning algorithms (VGG16, InceptionV3,
MobileNetV2, EfficientNet, and ResNet50) to predict OAC versus non-OAC (binary classification
task) from the input images. Further, four oral and maxillofacial experts evaluated the respective
panoramic radiography and determined performance metrics (accuracy, area under the curve (AUC),
precision, recall, F1-score, and receiver operating characteristics curve) of all diagnostic approaches.
Cohen’s kappa was used to evaluate the agreement between expert evaluations. The deep learning
algorithms reached high specificity (highest specificity 100% for InceptionV3) but low sensitivity
(highest sensitivity 42.86% for MobileNetV2). The AUCs from VGG16, InceptionV3, MobileNetV2,
EfficientNet, and ResNet50 were 0.53, 0.60, 0.67, 0.51, and 0.56, respectively. Expert 1–4 reached
an AUC of 0.550, 0.629, 0.500, and 0.579, respectively. The specificity of the expert evaluations
ranged from 51.74% to 95.02%, whereas sensitivity ranged from 14.14% to 59.60%. Cohen’s kappa
revealed a poor agreement for the oral and maxillofacial expert evaluations (Cohen’s kappa: 0.1285).
Overall, present data indicate that OAC cannot be sufficiently predicted from preoperative panoramic
radiography. The false-negative rate, i.e., the rate of positive cases (OAC) missed by the deep learning
algorithms, ranged from 57.14% to 95.24%. Surgeons should not solely rely on panoramic radiography
when evaluating the probability of OAC occurrence. Clinical testing of OAC is warranted after each
upper-molar tooth extraction.

Keywords: artificial intelligence; deep learning; X-ray; tooth extraction; oroantral fistula; operative
planning

1. Introduction

When teeth are surgically removed in the maxilla, the opening of the maxillary sinus
is a relevant complication, especially in the posterior region. Recent studies indicate
that surgical removal of the upper third molar in the maxilla may cause maxillary sinus
opening in up to 13% of cases, whereas completely displaced teeth may further increase
the prevalence to up to 25% [1]. Usually, primary treatments cannot prevent oroantral
communication (OAC). More invasive surgical interventions than novel, less invasive
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ones, for example, are associated with a higher likelihood of complications [2,3]. An
illustration of the relationship between upper molars and the oroantral region is shown
in Figure 1. The maxillary sinus can have variable anatomy due to maxillary sinus septa,
temporary mucosal swelling, previous operations (Caldwell–Luc operation), or tumors [4].
Two-dimensional radiographic imaging is the standard imaging for routine extraction of
maxillary teeth [5]. Panoramic radiography is the most widely used imaging modality
for common oral surgical procedures. In addition to the general overview of the maxilla
and mandible in a 2D X-ray/panoramic radiography, it is also characterized by its high
availability, low radiation exposure, and low cost compared to 3D cone beam computer
tomography [6,7]. Surgical intervention is required when the mucosal perforation exceeds
3 mm [5]. To be able to treat this complication, preoperative planning is necessary, such as
planning the incision to be able to form a possible mucoperiosteal flap [8]. Simple closures
with a single suture are possible but carry a high risk of complications [9]. Preoperative
risk stratification algorithms could help lower the possible postoperative complications
associated with OAC by utilizing them in alert-like systems for patients at risk in clinics.

–

 

“ ”

“ ”

Figure 1. Illustration of the relationship between upper molars and the oroantral regions. Upper molar
tooth extraction can lead to a perforation of the maxillary sinus floor and subsequent communication
of the oral cavity with the maxillary sinus.

In 1978, mathematician Richard Bellman defined artificial intelligence (AI) as the
automation of activities associated with human thinking skills, such as learning, decision
making, and problem solving [10]. A clinical decision-support system is a computer
algorithm developed to support clinical decision making in healthcare systems. This
process involves processing a wide variety of medical data points necessary or valuable for
interpretation [11,12]. As a branch of artificial intelligence, machine learning uses statistical
learning algorithms to create systems that learn and enhance on their own without being
explicitly programmed. The concept of “deep learning” is an applied machine learning
method based on how the human brain filters information and learns from examples.
Filtering input data through layers enables a computer model to anticipate and classify
information. The term “convolutional neural networks” refers to artificial neural networks
commonly applied to medical image prediction and classification. Essentially, it is a deep
learning algorithm that takes an image as input and assigns weights/biases to specific
characteristics and objects in the image in order to distinguish between them. CNNs
are composed of many hidden layers, such as convolutional layers, pooling layers, fully
connected layers, and normalizing layers. A ConvNet is designed to mimic the organization
of the visual cortex and the pattern of connectivity of the neurons in the human brain [13].
In dentistry, interest in this area of research has increased significantly in recent years [14].
In a systematic review by Khanagar et al. (2021), many areas of application of AI in dentistry
have already been identified [14]. The studies included in this systematic review were
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mainly concerned with the application of AI for the detection and diagnosis of dental caries
and other oral pathologies. Here, the algorithms reached satisfying diagnostic accuracy.

A high predictive probability for sinusitis of the maxillary sinus has already been
described [15]. As compared with experienced clinicians, at least a comparable level of
sensitivity and specificity has been achieved [16]. Artificial intelligence is a beneficial
tool to provide adequate guidance to the practitioner in case no other three-dimensional
imaging is available. To the best of our knowledge, the AI-based predictive accuracy of
panoramic radiography for maxillary sinus perforation after tooth extraction has not yet
been described. Thus, we sought to evaluate several deep learning models for the prediction
of OAC after tooth extraction utilizing preoperative panoramic radiography and compare
the diagnostic accuracy with the accuracy obtained from human experts’ evaluations. The
overall aim of this exploratory study is to evaluate whether the anatomical situation found
in panoramic radiography can predict OAC reliably after tooth extractions. Generally,
we aimed to (1) assess the feasibility of OAC prediction from preoperative panoramic
radiography utilizing multiple deep learning algorithms; (2) evaluate the feasibility of
OAC prediction from expert evaluations; and (3) assess whether there are differences
in diagnostic metrics for expert evaluations and deep learning algorithms regarding the
OAC predictions.

2. Materials and Methods

2.1. Study Design

The examination is conducted in accordance with the Declaration of Helsinki and
the Professional Code of Conduct for Physicians of the Bavarian Medical Association in
the respective current versions. Although informed consent is regarded as a requirement
for research purposes according to the Declaration of Helsinki and the Professional Code
of Conduct for Physicians of the Bavarian Medical Association in the respective current
versions, the ethics committee waived the need for informed consent in the present study
due to the anonymization of X-ray data. All consecutive patients examined from 2010
through 2020 at the University Hospital Würzburg with indications of tooth extraction
in the posterior region of the upper jaw were included in this study. Exclusion criteria
were malignant diseases in the surgical area, fractures in the surgical site, syndromal
anatomical variants, inflammation process on the root tip, and chronic/pre-existing OAC.
In total, 300 patients with extracted teeth were included consecutively. The study was
reviewed by the Ethics Committee of the University of Würzburg and approved under the
authentication number 2022011702.

The data were acquired in the data management system of the University Hospital of
Würzburg. Patients who had a tooth extraction in the maxillary posterior region between
2010 and 2020 were screened. These patients were explicitly selected based on ICD codes.
The respective operation report was reviewed in detail for the group of patients who had
an OAC after tooth extraction. The preoperative panoramic radiography was extracted
only in the case that OAC could be determined clinically with various examinations. The
panoramic radiography was extracted as a completely anonymized image file. For the
control group, patients who had an extraction in the maxillary posterior region were
searched and allocated to the control group after reviewing the surgical report, in which
OAC was excluded and/or not diagnosed. The extraction of the radiograph was performed
in the same way as described above. Overall, 100 consecutive cases with similar image
and positioning quality in the OAC group (from 2010 to 2020) and 200 cases in the control
group were collected for data analysis.

2.2. Expert Evaluations

In order to evaluate and compare the results of the deep learning algorithms, a
comparative analysis was carried out by four oral and maxillofacial clinicians. A sequence
of a total of 300 randomly arranged panoramic radiography images was produced. This
sequence included a total of 100 images with a postoperative OAC and 200 images without
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this complication. The examiners were asked to decide from the preoperative panoramic
radiography whether or not postoperative OAC occurs after the extraction of teeth in the
maxillary posterior region (binary code: 1 for OAC and 0 for non-OAC). The diagnostic
performance was determined for the respective practitioners and compared with the results
of the deep learning algorithms.

2.3. Convolutional Neural Networks

The original images were taken utilizing multiple panoramic imaging devices. Images
were randomly split into a train, test, and validation sets (60%, 20%, 20%). The validation
data comprised the dataset used during training to check the outcome and adopt the
model structure/hyperparameters. The test data comprised the hold-out dataset that was
not used until the training process was finished to evaluate metrics. Then, we rescaled
(224 × 224) all dataset images and pre-processed the train dataset images by applying data
augmentation techniques (rotation range of ±30 degrees, horizontal flipping, brightness of
20–80%). Image augmentation was used to reduce overfitting and improve generalization.
The region of interest was set manually by one surgeon to define the maxilla and the sinus
area. We then utilized multiple supervised pre-trained deep learning models to classify the
two study classes OAC versus non-OAC. For this, we applied five deep learning models
(VGG16, ResNet50, Inceptionv3, EfficientNet, and MobileNetV2) to solve the classification
problem. The algorithms’ structure and the code are available in the data availability
section. The models were frozen in the way that we used the basic models and made
changes to the final layer only, as these models were designed to handle multiple classes,
whereas we needed to solve a binary classification problem. For this, we made the layer
non-trainable and built a last fully connected layer. Overall, we flattened the output of
our base model to one dimension, added a fully connected layer with hidden units and
ReLU activation, used a dropout rate, and added a final fully connected sigmoid layer. The
specific characteristics of the models, including each layer, are shown in the code available
in the data availability section. We used the RMSProp Optimizer (VGG16, InceptionV2,
EfficientNet), SGD optimizer (ResNet50), or Adam optimizer (MobileNetV2) with a learning
rate of 0.0001 and binary cross-entropy for loss evaluation. Steps per epoch were calculated
as the sample size for the training set divided (using the integer division operator) by the
batch size, where the batch size was 10. Models were trained for 10 epochs. We did not
use a grid search, random search, or Bayesian optimization for hyperparameter tuning
but used a manual search to adjust the parameters until the best metrics were obtained.
Grid search and manual search are the most widely used strategies for hyper-parameter
optimization [17]. Hyperparameter tuning using fine-tuning algorithms was intended to
be applied to improve models more precisely in the case where an AUC over 0.75 could be
reached for any model. In case no evidence was found that models were suitable to reach
higher accuracies, we decided not to perform further hyperparameter tunings in a resource-
oriented way, as these fine-tuning techniques are more intended to build precise models
to classification tasks than to explore the feasibility/exploratory approach of whether a
reliable classification is possible or not.

To evaluate each model’s performance, accuracy, precision, recall, F1 score, and AUC
were calculated. Accuracy is a metric used in classification problems to determine the
percentage of accurate predictions. Precision is the ratio of true positives to true posi-
tives and false positives. The recall consists of the proportion of true positives to true
positives and false negatives. An F1 score is derived by dividing precision and recall by
(2 × precision + recall)/(precision + recall), while the AUC represents the area under the
receiver operating characteristics (ROC) curve. To evaluate the clinical usability of AI,
the results of panoramic radiography reads by AI and four oral and maxillofacial surgery
specialists were compared. The diagnostic performance was assessed using the AUC,
sensitivity, and specificity metrics. Agreement for expert evaluations was assessed with
Cohen’s kappa statistics. Algorithms were built and evaluated in Python using the OpenCV,
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NumPy, Pillow, Seaborn, Matplotlib, TensorFlow, Keras, and scikit-learn libraries. The
hardware and software environment specifications were as follows:

• CPU: AMD Ryzen 9 5950X 16-Core Processor;
• RAM: 64 GB;
• GPU: NVIDIA Geforce RTX 3090 (24 GB GDDR6X RAM);
• Python version: 3.10.4 (64-bit);
• OS: Windows 10.

Statistical analyses were conducted in Python, Stata Statistical Software Release 15
(StataCorp. 2011, College Station, TX, USA), and SPSS v26 (IBM, Armonk, NY, USA).
Figure 1 was created with BioRender.com software (BioRender, Toronto, ON, Canada).

3. Results

3.1. Convolutional Neural Network Performance

According to the accuracy and area under the curve (AUC) measure, the best-performing
models were MobileNetV2 and IncepionV3. The accuracy, AUC, precision, recall, and F1
score for the MobileNetV2 model were 0.74, 0.67, 0.75, 0.43, and 0.55, respectively (Table 1).
The accuracy, AUC, precision, recall, and F1 score for the InceptionV3 model were 0.70,
0.60, 1.00, 0.19, and 0.32, respectively.

Table 1. Model performance of the convolutional neural networks. Values show the metrics for the
independent test dataset (hold-out dataset).

Algorithm Accuracy AUC Precision Recall F1-Score

VGG16 0.63 0.53 0.50 0.14 0.22
MobileNetV2 0.74 0.67 0.75 0.43 0.55
InceptionV3 0.70 0.60 1.00 0.19 0.32

ResNet50 0.56 0.45 0.17 0.05 0.07
EfficientNet 0.63 0.51 0.50 0.05 0.09

Precision, TP/(TP + FP); Recall, TP/(TP + FN); F1 score, 2 × (recall × precision)/(recall + precision); AUC, area
under the curve; Accuracy, (TP + TN)/(TP + TN + FP + FN).

The confusion matrices and metrics of each model performed on the hold-out dataset
(validation dataset) can be found in the data availability section. The specificity ranged
from 0.8611 to 1.0000, with the highest specificity reached by the InceptionV3 model.
The sensitivity ranged from 0.0476 to 0.4286, with the highest sensitivity reached by the
MobileNetV2 model. The sensitivities from the EfficientNet, InceptionV3, MobileNetV2,
ResNet50, and VGG16 were 0.0476, 0.1905, 0.4286, 0.0476, and 0.1429, respectively. The
specificities from the EfficientNet, InceptionV3, MobileNetV2, ResNet50, and VGG16 were
0.9722, 1.0000, 0.9167, 0.8611, and 0.9167, respectively. The false-negative rate, i.e., the
rate of true-positive cases (OAC) that were missed by the algorithms, ranged from 57.14%
(MobileNetV2) to 95.24% (EfficientNet and ResNet50).

3.2. Expert Evaluations

Table 2 shows the performance metrics for each of the four expert evaluations. The
area under the curve (AUC) ranged from 0.5458 to 0.7059. The specificity ranged from
51.74% to 95.02%, whereas the sensitivity ranged from 14.14% to 59.60%. Cohen’s kappa
exhibited a poor agreement for the oral and maxillofacial expert evaluations (Cohen’s
kappa: 0.1285).

The comparison of all ROC curves and AUC is shown in Figure 2 The deep learning
model MobileNetV2 reached the highest AUC (AUC: 0.673), followed by a human expert
(expert 2; AUC: 0.629).
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Table 2. Detailed report of examiners (n = 300). AUC: area under the receiver operating characteristic
(ROC) curve.

Observer Sensitivity Specificity Correctly Classified AUC

1 14.14 95.02 68.33 0.5458
2 59.60 81.59 74.33 0.7059
3 34.69 76.12 62.54 0.5541
4 68.69 51.74 57.33 0.6021

the oral and maxillofacial expert evaluations (Cohen’s kappa: 0.1285).

Figure 2. Receiver operating characteristic (ROC) curves and area under the ROC curves for all deep
learning models and examiners.

4. Discussion

The present study sought to evaluate the feasibility of OAC prediction after upper-
molar tooth extraction utilizing preoperative panoramic radiography. The results showed
that although the MobileNetV2 algorithm and one expert reached an AUC of 0.673 and
0.629, respectively, the overall predictability of OAC from panoramic radiography was low.
The false-negative rate, i.e., the rate of positive cases (OAC) missed by the deep learning
algorithms, ranged from 57.14% to 95.24%. Further, there was a poor agreement for the
oral and maxillofacial expert evaluations (Cohen’s kappa: 0.1285).

Due to the fact that there are no comparable predictive studies currently available, it
is not possible to compare our diagnostic metrics with others for the prediction of OAC
after upper-molar tooth extraction. Using two data sets, one study compared AI-based
and human examiner-based evaluations of inflammatory processes in the maxillary sinus
from panoramic radiography [16]. The AI-based models achieved an AUC of 0.93 and
0.88 compared to the radiologist with 0.83 and 0.89. For predicting the postoperative injury
of the inferior alveolar nerve from panoramic radiography, a systematic review of current
evidence showed that sensitivity ranges from 0.06 to 0.49, and specificity ranges from
0.42 to 0.89, which is in accordance with our deep learning results for OAC [6]. These
findings were also comparable to our expert evaluations for OAC although the agreement
between the experts was low. We could not find a general superiority of the AI-based algo-
rithms compared to the expert evaluations, as described before for panoramic radiography
predictions; however, one deep learning algorithm reached the highest AUC [6,16]. This
finding may be due to the fact that the information available in panoramic radiography
was not sufficient to detect patterns on the basis of which an AI would be able to predict

8



Diagnostics 2022, 12, 1406

OAC reliably. One systematic review evaluated several risk assessment studies assessing
the risk of OAC based on clinical data, panoramic radiography, or cone-beam computer
tomography (CBCT) utilizing statistical models. The authors concluded that panoramic
radiographies are not reliable for assessing risk factors for OAC compared to CBCT based
on current evidence [5]. We could confirm this finding by applying multiple deep-learning
algorithms and letting experts evaluate the preoperative panoramic radiography.

Two-dimensional images (panoramic radiography) are not able to reflect the three-
dimensional anatomical situation of molar roots. Bouquet et al. were able to show that
in panoramic radiography, the root of the tooth appeared to protrude into the maxillary
sinus, whereas in three-dimensional imaging (CBCT), there was no contact and thus no
anatomical relationship [18]. Teeth can appear more inclined than they are in panoramic
radiography [18]. This finding can be explained by the fact that deformations can occur
when projecting a volume onto a flat surface. Such deformations are not expected in a
3D image [18]. It must also be borne in mind that in the majority of cases, the spatial
development of the maxillary sinus is buccal to the roots of the maxillary molars [18,19].
For this reason, the analysis of the more palatal/distal tooth part seems to be less relevant
for the chosen question of perforation of the maxillary sinus. Furthermore, no information
is available regarding the number of roots. Iwata et al. showed that single-rooted teeth had
a higher incidence of oroantral connections than multi-rooted teeth [20].

Using a defined classification (Archer classification, inclination, and root sinus clas-
sification), it has been shown that the positional relationship of maxillary molars to the
maxillary sinus or their neighboring teeth can predict the probability of OAC [20]. In addi-
tion, other factors such as treatment components (incision, bone removal, maxillary tuber
fractures, and extensive bleeding) correlate significantly with the likelihood of OAC [20].
The multifactorial genesis makes a prediction using 2D imaging difficult even with reliable
classification systems. If the positional relationship or number of roots is unclear, 3D
imaging is a helpful tool [18]. For AI-based prediction models, it is therefore difficult to
reliably predict the occurrence of OAC based only on 2D imaging. It remains to be verified
whether prediction with 3D imaging, for example, 3D magnet resonance tomography for
soft tissue illustrations, can produce better results because of the additional information
processed with an AI approach in specific classification tasks [21]. In the expert evaluations,
we also showed that only low agreement could be identified between experts, indicating
that 2D imaging is also not sufficient to predict OAC from the clinical perspective.

At present, deep learning methods are still being developed. An important advantage
of convolutional neural networks is their ability to rapidly develop a feature extraction
model, which is not overly concerned with the effectiveness of some features. It is, however,
difficult to compare and explain performance. MobileNetV2 is one of the most popular
deep learning methods that are widely used today since it has one of the most lightweight
network architectures. This model showed the best performance in our study. MobileNetV1
introduced depth-wise separable convolution, which dramatically reduced the network’s
complexity costs and model size, making it suitable for low-processing devices, such as
smartphones. In MobileNetV2, a better module with the inverted residual structure, is
introduced. It eliminates non-linearities in narrow layers. In addition to achieving state-of-
the-art performances for feature extraction, MobileNetV2 also achieves advanced results for
object detection and semantic segmentation [22]. In general, MobileNetV2 is very similar
to the original MobileNet, with the exception that it uses a novel layer module called
the inverted residual with linear bottleneck, which reduces the memory requirement for
processing since it has fewer parameters than the original MobileNet. As a result, the
MobileNet V2 is less prone to overfitting. The proposed method uses MobileNetV2 as the
basis for the transfer learning process. Due to the lightweight network architecture, the
developed model can be implemented more quickly in clinical settings or mobile devices,
making it more practical for use in clinical settings. Additionally, we included MobileNetV2
because a recent study showed that it is possible to perform classification tasks from
panoramic radiographs with MobileNetV2 achieving higher accuracy than has been seen
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in the past, for instance, in classifying caries in the third molars [23]. Apostolopoulos et al.
used VGG19 and MobileNetV2 to perform feature extraction on X-ray images and found
that MobileNetV2 performed better than VGG19 in terms of specificity [24]. As a result,
they believe that MobileNetV2 is the most robust model for specific classification tasks
and data samples. In general, more research needs to be undertaken in order to evaluate
why MobileNetV2 outperforms other methods in various settings. Notably, there might
also be other image classification algorithms that could outperform the included models,
such as artificial neural networks based on the successive geometric transformations model
(SGTM) [25]. Several studies involving CNN in orthopedics, oncology, ophthalmology,
and neurosurgery have been cited in the PubMed database since 2013. In 2017, Miki et al.
published one of the first reports using CNNs with cone-beam computed tomography in
the dental field [26]. CNN has been used in recent publications in cariology, periodontology,
and endodontics as well as practical applications in clinics that are to be exploited in the
near future [27–29]. Recent research describes a method to identify teeth using orthopanto-
mography and registering them using simple CNNs that can help dentists in filling out
dental charts more quickly and efficiently [30]. Other researchers developed a method of
calculating age utilizing global fuzzy segmentation and local feature extraction based upon
a projection-based feature transformation with a deep CNN model designed for molar
classification [31]. In a scoping study on CNN applications in dental image diagnostics, it
was observed that CNNs could be utilized in diagnostic-assistance systems in the dental
arena [32]. At present, the implementation of CNN technology is challenging for dentists.
It is expected that the generalization of such technology will be made easier through the
development of improved algorithms. Previously, discriminant handcrafted features (e.g.,
histograms of oriented gradients features or local binary patterns features) dominated
digital image analysis, but recent advances in deep learning algorithms have displaced the
handcrafted approach, allowing automated image analysis. Convolutional neural networks
are a type of deep learning algorithm that has become a workhorse. In recent data chal-
lenges for medical image analysis, all of the top-ranked teams used CNN. Except for one
team, the top ten ranked solutions in the CAMELYON17 challenge used CNN for automatic
detection and classification [33]. Shi et al. showed that the characteristics recovered via
deep learning are superior to those extracted from handmade approaches [34]. In practice,
however, deep learning algorithms such as CNN require a considerable quantity of training
data under ideal conditions, resulting in a data-scarcity problem. A number of obstacles,
such as the scarcity of expert-annotated data sets and the small size of medical cohorts, are
well-known. Several studies have attempted to solve this problem by utilizing transfer
learning or domain adaptation [35]. These approaches try to produce a high performance
on target activities by applying knowledge learned from source tasks. Recent studies of
transfer learning approaches from a data and model perspective were reviewed in 2020
by Zhuang et al. [36]. Researchers are increasingly interested in unsupervised transfer
learning, an emerging academic subject. In their review of unsupervised deep domain adap-
tations, Wilson and Cook [37] examined a large number of articles. The use of generative
adversarial networks-based frameworks has gained momentum recently [38], with Domain
Adversarial Neural Network (DANN) being particularly promising [39]. A number of other
methods have also been utilized for unsupervised transfer learning, including multiple
kernel active learning [40] and collaborative unsupervised methods [41].

The study is associated with strengths and limitations. To the best of our knowledge,
it is the first study evaluating the prediction of OAC utilizing both AI-based and expert-
based evaluations of preoperative panoramic radiography. Thus, it contributes to the
existing evidence, which solely applied statistical modeling (i.e., regression models) to
evaluate risk factors for OAC. Further, the presented algorithms and dataset can be used
to expand the methodology, compare diagnostic metrics with 3D assessment metrics, and
perform external validations. However, there are also limitations associated with the
present study. Unknown confounding factors due to the nature of retrospective analysis
must be considered. In retrospective studies, it must be taken into account that small OAC

10



Diagnostics 2022, 12, 1406

may have occurred and were not documented in the patient information system, as this
did not result in any additional need for intervention. Hence, although we accurately
checked the available surgical reports to ensure whether OAC occurred or not, there might
be misallocations. Thus, it should be noted that the control group included cases that were
not assigned to the intervention group due to the lack of documentation in cases of low
clinical suspicion, small OAC not worthy of treatment, or OAC that had occurred but were
not documented. This might bias the allocation process. A more precise allocation would
be possible with a prospective study design with standardized clinical testing algorithms
for OAC. Overall, external validation utilizing prospective datasets is warranted. Another
limitation is the determination of the ROI in our study. We decided to include a rather
larger ROI to evaluate whether shapes of the sinus or adjacent structures are related to OAC.
This was based on a previous study showing that the Archer and Root Sinus classification
of teeth impaction is significantly associated with OAC [20]. As both classifications focus
not only on the extracted teeth but also on adjacent structures, we decided to include a
larger ROI. In our subsequent study, including larger sample size, we limited the ROI to
the sinus area to evaluate whether the automatized classification of Archer and RS classes
would be possible (unpublished data). In addition, here, we did not find evidence that
panoramic radiography is feasible for this classification task, which is also in accordance
with the expert evaluations. Although we included an extensive period to extract all images
in our institution, the number of OAC cases might still be small, limiting the capabilities
of deep learning algorithms to reliably learn the features from the dataset that can predict
OAC, potentially reflecting the low sensitivity obtained from our algorithms. Sample
size calculations for image classifications are known to require more than 1000 images
per class for accurate predictions. However, this is often not possible in monocentric
studies coming from surgical departments, as also shown in a recent systematic review
assessing whether studies to date have performed sample size calculations for deep learning
purposes in the literature [42]. These sample-size calculations might be more beneficial
if there is evidence in an initial dataset analysis showing that classification is accurate
and feasible from the dataset. A subsequent sample-size calculation can further improve
future research models to a specific degree although studies have shown that sample
size also affects the robustness of neural networks [43]. Another common mistake is to
use the same data sets for validation and training. To avoid this bias, we separated the
dataset into a training, testing, and validation sets, limiting the size of the training dataset
further [44,45]. Nevertheless, the present study was the first feasibility study to evaluate
whether multi-center studies would be beneficial in assessing the study question. As
we did not find convincing evidence that panoramic radiography can predict OAC, our
approach might have saved research resources associated with multi-center evaluations.
Notably, the predictions of the algorithms are exclusively based on panoramic radiography.
In this case, the practitioner’s clinical decision-making process, which is carried out by
considering all additional clinical data (i.e., clinical examinations, the extent of surgical
invasiveness), cannot be fully simulated by the AI algorithms [46]. In addition, binary
classification by human experts might not be as accurate as Likert-like scales or visual
analogue scales, where expert decisions might be better reflected. This approach would
also be more comparable with the algorithms that provide the probability metrics. Notably,
we used the whole dataset for expert evaluations, which might be a discussion point, as
this strategy limit the comparability with the metrics obtained from the hold-out dataset of
the deep learning models. For metrics evaluations in deep learning, we used the metrics of
the test dataset (hold-out dataset) because the same dataset to evaluate the model metrics
should not be used as the dataset used to train (train dataset) and fine-tune the model
(validation dataset). This approach was not necessary for the expert evaluations, thus
justifying the use of the whole dataset for the evaluation process to evaluate whether
experts are able to detect OAC from the dataset. Furthermore, the comparison of metrics
between institutions may be limited due to different radiography protocols [44]. In addition,
the surgical approach and the individual experience of the practitioner (i.e., learning curves)

11



Diagnostics 2022, 12, 1406

cannot be fully considered in prediction studies trying to predict OAC from panoramic
radiography. Although prospective studies could adjust their study designs to evaluate
data from solely one surgeon with a single technique extracting wisdom teeth, this seems
not feasible considering that large datasets are required for deep learning evaluations.
It is an inherent limitation of artificial intelligence-based algorithms based on only one
data modality to lack multi-perspectivity when predicting images. Multi-input-mixed
data hybrid models could help to improve the predictive capacities in the future [12]. In
summary, the decision making based on AI algorithms remains complex and is beyond
the practitioner’s control [47,48]. Thus, clinical applicability may be limited. However, our
primary aim was not to evaluate the algorithms as potential alert-like systems in clinics
that can help to screen patients at risk for OAC but to generally evaluate the feasibility of
OAC prediction based on preoperative panoramic radiography. Although such alert-like
systems may be interesting in clinics, the authors recommend testing clinically whether an
OAC has occurred after each extraction. Various options have been established for clinical
testing. Starting with the least invasive test, the Valsalva test puts pressure on the maxillary
sinus and, therefore, a possible OAC. The escaping air can be detected by air bubbles, a
whistling sound, or a fogging mirror. However, this test can be falsely negative if mucous
membranes are obstructed. Blunt probing and the insertion of objects impermeable to
X-rays are not recommended because of their invasiveness and the possibility of germs
spreading into the maxillary sinus [49]. Although the aforementioned clinical tests have
limitations, they might be the easiest, fastest, and most accurate option currently available
when considering the available evidence and our results.

Final clinical decisions should be made considering all aspects that potentially affect
patients and can only be made by the practitioner. Supporting this decision-making
process with the objective perspective of an AI-based approach may improve the quality of
treatment. However, in the context of the present results, both experts and deep learning
algorithms were not able to predict OAC reliably from patients’ panoramic radiography.

5. Conclusions

Whether preoperative panoramic radiography information can help predict OAC after
a tooth extraction is currently unknown. The results showed that although the MobileNetV2
algorithm and one expert reached an AUC of 0.673 and 0.629, respectively, the overall
feasibility of OAC prediction from panoramic radiography was low. The false-negative rate,
i.e., the rate of positive cases (OAC) missed by the deep learning algorithms, ranged from
57.14% to 95.24%. Further, there was a poor agreement for the oral and maxillofacial expert
evaluations (Cohen’s kappa: 0.1285). AI approaches utilized in the present work seem to
be not feasible in predicting OAC based on the results shown. However, larger sample
sizes, modification of the region of interest, and the inclusion of other algorithms could
help to improve the knowledge presented with the work. Surgeons should not solely rely
on panoramic radiography when evaluating the probability of OAC occurrence. Clinical
testing of OAC is warranted after each upper-molar tooth extraction.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/diagnostics12061406/s1, Figure S1: Confusion matrix, model per-
formance measures, and receiver operating characteristic (ROC) curve for the EfficientNet algorithm.
Precision: TP/(TP + FN); Recall: TP/(TP + FN); F1 score: 2*(recall*precision)/(recall + precision);
support: actual occurrence of the class in the dataset. Values are showing the metrics for the
independent test dataset (hold-out dataset); Figure S2: Confusion matrix, model performance mea-
sures and receiver operating characteristic (ROC) curve for the InceptionV3 algorithm. Precision:
TP/(TP + FN); Recall: TP/(TP + FN); F1 score: 2*(recall*precision)/(recall + precision); support:
actual occurrence of the class in the dataset. Values are showing the metrics for the independent test
dataset (hold-out dataset); Figure S3: Confusion matrix, model performance measures and receiver
operating characteristic (ROC) curve for the MobileNetV2 algorithm. Precision: TP/(TP + FN);
Recall: TP/(TP + FN); F1 score: 2*(recall*precision)/(recall + precision); support: actual occur-
rence of the class in the dataset. Values are showing the metrics for the independent test dataset
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(hold-out dataset); Figure S4: Confusion matrix, model performance measures and receiver oper-
ating characteristic (ROC) curve for the ResNet50 algorithm. Precision: TP/(TP + FN); Recall:
TP/(TP + FN); F1 score: 2*(recall*precision)/(recall + precision); support: actual occurrence of the
class in the dataset. Values are showing the metrics for the independent test dataset (hold-out dataset);
Figure S5: Confusion matrix, model performance measures, and receiver operating characteristic
(ROC) curve for the VGG16 algorithm. Precision: TP/(TP + FN); Recall: TP/(TP + FN); F1 score:
2*(recall*precision)/(recall + precision); support: actual occurrence of the class in the dataset. Values
are showing the metrics for the independent test dataset (hold-out dataset); Figure S6: Example
images from the whole data set.
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Abstract: The present study aimed to evaluate the performance of convolutional neural networks
(CNNs) that were trained with small datasets using different strategies in the detection of proximal
caries at different levels of severity on periapical radiographs. Small datasets containing 800 periapical
radiographs were randomly categorized into a training and validation dataset (n = 600) and a
test dataset (n = 200). A pretrained Cifar-10Net CNN was used in the present study. Different
training strategies were used to train the CNN model independently; these strategies were defined as
image recognition (IR), edge extraction (EE), and image segmentation (IS). Different metrics, such as
sensitivity and area under the receiver operating characteristic curve (AUC), for the trained CNN and
human observers were analysed to evaluate the performance in detecting proximal caries. IR, EE, and
IS recognition modes and human eyes achieved AUCs of 0.805, 0.860, 0.549, and 0.767, respectively,
with the EE recognition mode having the highest values (p all < 0.05). The EE recognition mode was
significantly more sensitive in detecting both enamel and dentin caries than human eyes (p all < 0.05).
The CNN trained with the EE strategy, the best performer in the present study, showed potential
utility in detecting proximal caries on periapical radiographs when using small datasets.

Keywords: neural networks; proximal caries; training strategy; small dataset; periapical radiograph

1. Introduction

Globally, dental caries is the most common oral disease, with 2.3 billion people suffer-
ing from caries of permanent teeth and more than 530 million children suffering from caries
of deciduous teeth [1]. In China, an increasing caries prevalence is observed in line with the
fourth national oral health epidemiological survey, with results demonstrating a prevalence
of 38.5% in permanent teeth and 71.9% in deciduous teeth, respectively [2–4]. Dental caries
occurs when plaque-associated bacteria produce acid that demineralizes the tooth. Control-
ling oral microbial biofilms is crucial for preventing dental caries. However, dental caries
develops despite the use of antibiotics since bacterial resistance occurs due to excessive
antibiotic use [5]. Generally, tooth loss is mainly attributed to dental caries [6], which is
related to detrimental dietary changes and may lead to gastrointestinal disorders, even
increasing the risk of Alzheimer’s disease [7,8]. To manage dental caries, especially early
caries lesions, precise detection is required before non-invasive or invasive treatment [9,10].
In particular, initial caries lesions occurring on the proximal surface in premolars and
molars usually require auxiliary examination [11] since initial proximal caries lesions are
difficult to detect by clinical examination unless the disease is advanced [12].
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Intraoral radiographs, including bitewing radiographs and periapical radiographs,
are commonly used to assist the diagnosis of proximal caries [13,14]. Akarslan et al. [15]
compared the diagnostic accuracy of bitewing radiographs, periapical radiographs, and
panoramic radiographs for proximal caries detection in posterior teeth. Both bitewing and
periapical radiographs demonstrated a mean area under the receiver operating character-
istic curve (AUC) that was higher than 0.9, indicating excellent performance. However,
the performance of bitewing radiographs in detecting early caries lesions was somewhat
contradictory, as they have been reported to have higher sensitivity than periapical ra-
diographs [16] and a low diagnostic yield [17]. According to previous studies, only ap-
proximately 60% of proximal caries lesions were detected on bitewing radiographs [18,19].
Notably, bitewing radiographs are limited in their ability to offer information that allows
cavitated and non-cavitated lesions to be distinguished from one another in the initial
stages of progression [20]. In terms of periapical radiographs, a systematic review in-
cluding 117 studies revealed that a low sensitivity of 42% was found for the detection of
proximal caries [21]. Regrettably, a noteworthy limitation of periapical radiographs is that
40% of the tooth tissue has been demineralized when caries is successfully diagnosed by
human eyes [12,22]. Thus, seeking a method to improve the diagnostic accuracy of dental
caries on intraoral radiographs is of great significance.

Recently, convolutional neural networks (CNNs), a class of deep learning algorithms,
have been widely applied in dentistry [23,24]. For example, CNNs have been applied to
evaluate dental caries in bitewing and periapical radiographs [9] and periodontal bone
loss in periapical or panoramic radiographs [25]. Lee et al. [9] explored the performance of
CNNs in detecting dental caries lesions in periapical radiographs, obtaining an accuracy
of 82.0% with a dataset of 3000 periapical images. According to a recent review, at least
1000 CT training datasets were required to obtain 98.0% validation accuracy with deep
learning; also, 4092 CT training datasets were required to reach the desired accuracy of
99.5% [24]. CNNs are far more data hungry due to the millions of learnable parameters that
they estimate [23]. Collecting data and making ground truth labels are essential to establish
a successful deep learning project since these labels are used to train and test a model [23].
However, acquiring high-quality labelled data can be costly and time-consuming [23].
Notably, it is difficult to secure a large medical dataset due to patient privacy and security
policies [26]. Therefore, strategies to improve the accuracy of CNNs trained with small
datasets should be explored [27].

In general, the procedure used to carry out the learning process is called the train-
ing strategy; this strategy is applied to the neural network to obtain the best possible
loss and increase accuracy [28]. In previous studies, different training strategies, such
as different preprocessing strategies (e.g., contrast enhancement and average subtrac-
tion) and data augmentation were conducted to improve the performance of CNNs [29].
GoogLeNet achieved the best performance (96.69% accuracy) with the original images,
while AlexNet performed better (94.33% accuracy) by using average subtraction [29]. Inter-
estingly, Khojasteh et al. [30] introduced a novel layer in CNNs in which a preprocessing
layer (e.g., contrast enhancement) was embedded followed by the first convolutional layer;
this approach increased the accuracy of CNNs from 81.4% to 87.6%. Different strategies
may work for different networks. Based on the current evidence, it should be considered
that if small datasets (fewer than 1000 units per group [24]) of periapical radiographs
were obtained, different training strategies, such as image preprocessing before training,
could be adopted to improve diagnostic accuracy [27,29,31]. However, limited studies have
focused on the recognition differences in neural networks with different training strategies
(e.g., different preprocessing strategies) in dentistry, especially using small datasets. In ad-
dition, information regarding the performance in detecting dental caries at different levels
of severity (different levels of caries progression) is scarce. Therefore, the present study
aimed to evaluate the performance of a deep learning-based CNN in detecting proximal
caries at different levels of progression on periapical radiographs, in which the CNN was
trained with small datasets using different strategies. The following null hypotheses were
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tested: (1) no differences would be found in the performance of the trained CNN; and
(2) the trained CNN would be more sufficient and accurate than human eyes in detecting
proximal caries.

2. Materials and Methods

The research was performed following the principles of the Declaration of Helsinki and
received approval from the Research Ethics Committee at the School and Hospital of Stom-
atology, Fujian Medical University (approval no.: 2018Y0029; approval date: 20 June 2018).
The current study followed the guidelines of the Standards for Reporting of Diagnostics
Accuracy Studies (STARD).

2.1. Study Design

In the present study, in which the CNN was trained with small datasets using dif-
ferent strategies, the performances of human observers and a deep learning-based CNN
in evaluating proximal caries at different levels of severity on periapical radiographs
were compared.

In this study, a pretrained Cifar-10Net CNN network was used as a classification model
to distinguish caries from non-caries. Cifar-10Net was applied for its better efficiency object
recognition [32]. Cifar-10Net is the basic network model used to classify the Cifar-10
dataset and is frequently used in image recognition [32]. As a subset of the larger dataset
of 80 million tiny images, Cifar-10 included 60,000 colour images that contained 10 object
classes [33].

According to previous study, different metrics were deployed to assess the classifi-
cation performance of human observers and the CNN, including the diagnostic accuracy,
sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV),
receiver operating characteristic (ROC) curve, AUC, a precision-recall (P-R) curve, and the
F1-score (F1-score = 2 × precision × recall/(precision + recall)).

2.2. Reference Dataset

Anonymous periapical radiographs were collected from patients who visited the
Hospital of Stomatology, Fujian Medical University, from 2019 to 2020, following the ran-
domization principle. All the periapical radiographs were taken by radiologists applying
the paralleling technique [34]. Periapical radiographs obtained from the patient archiving
and communication system (PACS) (Infinitt PACS, Infinitt Healthcare Co. Ltd., Seoul,
Korea) were downloaded and saved in a bitmap image (BMP) file format [9]. The metadata,
e.g., age, sex, and image creation date, were also obtained. Periapical radiographs with
proximal caries limited to the crown or integral proximal surface were selected, exclud-
ing those with restorations and with severe noise, haziness, distortion, and shadows [9].
Periapical radiographs were cropped into images containing two posterior teeth to meet
the training requirements; for inclusion, one tooth suffered from proximal caries (caries
occurred in 1 or 2 proximal surfaces) and the other tooth was intact. All images were
clearly revalidated, and proximal caries (including enamel and dentin caries of perma-
nent teeth) were distinguished from non-proximal caries by 3 endodontists independently.
No clinical records were acquired or evaluated in the procedure [35]. The 3 examiners
all had more than 5 years of clinical experience [35]. For a single image, a consensus of
the 3 examiners was required to identify the dental caries. Discussion was carried out
when inconsistent evaluations arose. Periapical radiographs were excluded when disputes
remained unsolved. To reduce the diagnostic bias which that might be caused by image
cropping, original periapical radiographs were also provided to 3 the examiners for further
needs. Consequently, small datasets of 800 periapical radiographs matching the training
requirements were generated from 3165 periapical radiographs. The included radiographs
were from 385 men and 415 women (mean age: 45.3 years). All 800 periapical radiographs
were given a random number by using the RAND function and were randomly assigned
to the training or test dataset by using the data sorting function in Microsoft Excel (Mi-
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crosoft office 2016, Microsoft, Redmond, WA, USA). Subsequently, a training and validation
dataset (n = 600) and a test dataset (n = 200) were randomly generated. Original datasets
were then converted to grayscale images using uniform parameters, which was called the
normalization of images.

2.3. Data Processing

2.3.1. Image Preprocessing

The training dataset of 600 periapical radiographs was preprocessed in MATLAB
(MATLAB 2016b, MathWorks, Natick, MA, USA). Three preprocessing strategies of image
recognition (without image preprocessing, IR), image segmentation (IS) [36] and edge
extraction (EE) [31] were employed; IR and EE images were then overlaid into the original
periapical radiographs. IS was performed based on a marked watershed segmentation
algorithm [36]. The Canny operator was used when the image was preprocessed by means
of EE [31]. An alpha transparency blending algorithm was utilized in the process of
image superposition.

2.3.2. Image Labelled in MATLAB

The training dataset of 600 periapical radiographs was uploaded to the app in MAT-
LAB used to label the images; caries lesions were marked using a training image labeler
(TIL) based on the agreement among the 3 examiners and shown as the region of interest
(ROI). According to the ROI, the level of caries severity was then evaluated. Caries progres-
sion was evaluated based on the following criteria [37]: level 0, non-proximal caries; level 1,
proximal caries limited to the outer half of the enamel; level 2, proximal caries limited to
the inner half of the enamel; level 3, proximal caries limited to the dento–enamel junction
(DEJ); level 4, proximal caries limited to the outer half of the dentin; and level 5, proximal
caries limited to the inner half of the dentin.

2.4. Training the CNN

A pretrained Cifar-10Net CNN network was used in the present study, which consists
of an input layer, convolutional layer, rectified linear unit (ReLU) layer, pooling layer, fully
connected layer, SoftMax layer, and output layer [33,38]. The convolutional, ReLU, and
pooling layer form the core building blocks of the CNN. Specifically, the convolutional
layer was responsible for updating filter weights during the data training; the ReLU layer
mapped image pixels to the semantic content of the image; the pooling layer down sampled
the data flowing through the network [33]. Before the output layer, the SoftMax layer, which
acted as a classifier [39], received a two-dimensional vector from the fully connected layer
and subsequently decided on the caries. Transfer learning was used to train the data to
prevent overfitting, in which some parameters of the pretrained Cifar-10Net CNN network
were transferred to the targeted Cifar-10Net CNN network [40]. Taking the loss value as
the evaluation metric, a base learning rate of 0.0001 was set, and 400 epochs were run.
Fine-tuning was conducted during transfer learning to improve diagnostic accuracy [9].
No standardized grayscale thresholding was used in the present CNN because the Cifar-
10Net CNN is a nonlinear network instead of a regressor that needs a threshold [33,41].
Different training strategies implementing IR, IS, and EE were used to train the CNN
independently [29], consequently generating three kinds of training models.

2.5. Test

The test process was carried out on the recognition model using a test dataset with no
labels. Different recognition modes were established based on the training models, which
were correspondingly distinguished as IR, IS, and EE. Finally, the detection of dental caries
was conducted through the CNN algorithm that was trained, in which original images
were pre-processed with IR, IS, EE and then analysed. Image superposition was performed
between the original and preprocessed images when IS and EE strategies were used to
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detect proximal caries lesions. The diagnostic process of different recognition modes is
shown in Figure 1. In addition, the workflow process of the CNN is exhibited in Figure 2.

Figure 1. Proximal caries detection on periapical radiographs using deep learning with different
recognition modes.

Figure 2. The workflow process of the CNN.
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The main functions of relevant codes and some parameters in Data processing and
Training were conducted as follows: IS, function imgf = fenge(rgb); EE, function img-
Canny = edge_canny(I,gaussDim,sigma,percentOfPixelsNotEdges,thresholdRatio); Image
superposition, function C = diejia(pic_1,pic_2); Training, function training = trainRCNNOb-
jectDetector (Unnamed, mylayers, options, . . . ‘NegativeOverlapRange’, [0 0.3]).

2.6. Human Observers

Proximal caries on original periapical radiographs from the test dataset with no
label was also assessed by the other 3 endodontists who had 3 to 10 years of clinical
experience [35]. These images served as a comparator group that was used to gauge the
performance of different recognition modes against that of human eyes [35]. Consensus
should be achieved among 3 human observers when diagnosing proximal caries.

The test dataset was evaluated according to the evaluation criteria mentioned above and
was used as the gold standard to compare the performance of IR, IS, EE and human observers.

2.7. Statistical Analysis

For different recognition modes and human eyes, the metrics to evaluate the perfor-
mances were compared using the chi-square test and Z test. The p value was set at 0.05,
and the 95% confidence interval (CI) was assessed.

3. Results

Consistency among examiners was checked before the revalidation, and Kendall’s
W coefficient of 0.830 (p < 0.001) showed strong consistency. The caries occurrences in
proximal surfaces in the reference dataset, that is, the evaluation from the three examiners,
are depicted in Table 1. The diagnostic accuracy, sensitivity, specificity, PPV, and NPV,
including the 95% CI, for the detection of proximal caries using different recognition modes
and human eyes are shown in Table 2.

Table 1. Caries occurrences in proximal surfaces in the reference dataset.

Dataset Level 0 Level 1 Level 2 Level 3 Level 4 Level 5

Training dataset 1289 53 139 78 336 505
Test dataset 465 15 55 35 83 147

Overall 1754 68 194 113 419 652

Table 2. Accuracy, sensitivity, specificity, PPV, and NPV for the detection of proximal caries using
different recognition modes and human eyes.

Recognition
Mode

Accuracy
(%, 95% CI)

Sensitivity
(%, 95% CI)

Specificity
(%, 95% CI)

PPV
(%, 95% CI)

NPV
(%, 95% CI)

IR
82.1

(79.5~84.8) a,b
70.1

(65.2~75.1) a
90.8

(88.1~93.4) a
84.5

(80.3~88.8) a
80.8

(77.5~84.2) a

EE
85.9

(83.5~88.3) a
86.9

(83.2~90.5) b
85.2

(81.9~88.4) a,b
80.8

(76.8~84.9) a
90.0

(87.2~92.8) b

IS
60.6

(57.2~64.0) c
19.4

(15.2~23.7) c
90.3

(87.6~93.0) a
59.1

(49.8~68.4) b
60.9

(57.2~64.5) c

Human eyes
78.0

(75.1~80.1) b
69.0

(64.0~73.9) a
84.5

(81.2~87.8) b
76.2

(71.4~81.1) a
79.1

(75.5~82.7) a

Different lowercase letters in a column indicate significant differences in different recognition modes and in
human eyes.

A comparison of the ROC curves and P-R curves are shown in Figures 3 and 4,
respectively, for both different recognition modes and human eyes. For the IR recognition
mode, the AUC was 0.805 (95% CI 0.771~0.838). In the case of the EE recognition mode,
the AUC was 0.860 (95% CI 0.832~0.888). Regarding the IS recognition mode, the AUC
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was 0.549 (95% CI 0.508~0.589). In the case of human eyes, the AUC was 0.767 (95% CI
0.732~0.802). The AUCs of IR and EE recognition modes were both significantly greater
than that of the IS recognition mode (p all < 0.001). The AUC of the EE recognition mode
was significantly higher than that of the IR recognition mode (p = 0.013). Compared to
human eyes, only the AUC of the EE recognition mode was significantly higher (p < 0.001).
The IR, EE, and IS recognition modes and human eyes achieved F1-scores of 0.766, 0.837,
0.292 and 0.724, respectively.

￥ ￥ ￥
￥ ￥

￥
￥ ￥ ￥ ￥

￥ ￥ ￥ ￥ ￥
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Figure 3. The ROC curves of different recognition modes and human eyes.
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Figure 4. The P-R curves of different recognition modes and human eyes.

ROC = receiver operating characteristic; IR = image recognition; EE = edge extraction;
IS = image segmentation.

P-R = precision-recall; IR = image recognition; EE = edge extraction; IS = image
segmentation.
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A comparison of the performance of IR, EE, and IS recognition modes and human
eyes in detecting proximal caries at different levels of severity is demonstrated in Table 3.
A comparison of the performance of IR, EE, and IS recognition modes and human eyes in
detecting proximal caries at the enamel and dentin levels is exhibited in Table 4.

Table 3. A comparison of the performance of IR, EE, and IS recognition modes and human eyes in
detecting proximal caries at different levels of severity.

Recognition
Mode

Level 0
(Sample, %)

Level 1
(Sample, %)

Level 2
(Sample, %)

Level 3
(Sample, %)

Level 4
(Sample, %)

Level 5
(Sample, %)

IR
422/465
(90.8%) a

8/15
(53.3%) a,b

33/55
(60.0%) a,b

18/35
(51.4%) a

49/83
(59.0%) a

127/147
(86.4%) a

EE
396/465

(85.2%) a,b
10/15

(66.7%) a
42/55

(76.4%) a
28/35

(80.0%) a
70/83

(84.3%) b
141/147
(95.9%) b

IS
420/465
(90.3%) a

3/15
(20.0%) a,b

8/55
(14.5%) c

5/35
(14.3%) b

14/83
(16.9%) c

35/147
(23.8%) c

Human eyes
393/465
(84.5%) b

2/15
(13.3%) b

28/55
(50.9%) b

19/35
(54.3%) a

53/83
(63.9%) a

129/147
(87.8%) a,b

Different lowercase letters in a column indicate significant differences in different recognition modes and in
human eyes.

Table 4. A comparison of the performance of IR, EE, and IS recognition modes and human eyes in
detecting proximal caries at the enamel and dentin levels.

Recognition Mode Enamel (Sample, %) Dentin (Sample, %)

IR 41/70 (58.6%) a,b 194/265 (73.2%) a

EE 52/70 (74.3%) a 239/265 (90.2%) b

IS 11/70 (15.7%) c 54/265 (20.4%) c

Human eyes 30/70 (42.9%) b 201/265 (75.8%) a

Different lowercase letters in a column indicate significant differences in different recognition modes and in
human eyes.

4. Discussion

Based on the present findings, the null hypotheses that no differences would be found
in the performance of the trained CNN and that the trained CNN would be more sufficient
and accurate than human eyes in the detection of proximal caries were partially accepted.
In particular, the CNN trained with EE and IR strategies performed better than that with
the IS strategy; and the CNN trained with the EE strategy achieved higher accuracy and
sensitivity than human eyes in the detection of proximal caries.

Early intervention can remineralize softened enamel, which can block or reverse the
process of dental caries [42]. Thus, finding an approach to detect initial caries, especially
proximal caries, efficiently is of great significance [35]. Various diagnostic technologies
have been developed to overcome the limitations of clinical and radiographic diagnosis
and to improve the accuracy of caries detection [9]. Deep-learning-based CNNs are a class
of artificial neural networks that are attracting interest across various fields, including
radiology [23]. Compared to natural images, medical images are thought to have unique
characteristics and are well fitted to deep learning [26]. Recently, using deep learning to
detect dental caries lesions on periapical radiographs [9] and bitewing radiographs [35] has
been studied. Compared to human eyes, deep-learning-based CNNs showed a satisfying
discerning ability in detecting dental caries on periapical radiographs or bitewings [35].
A recent study revealed that approximately half of proximal caries lesions that reached
the outer half of dentin were cavitated [43]. Moreover, it was suggested that restorations
should be restricted to cavitated lesions [20], advising infiltration and sealing to manage
non-cavitated proximal lesions as well as proximal lesions limited to one third of the outer
dentin [20,44]. Thus, distinguishing proximal caries into different levels of severity is im-
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portant for its guiding significance in dental treatment [43]. However, the performance of
CNNs in detecting proximal caries at different levels of severity has not yet been reported.
Notably, considering the difficulty in obtaining massive amounts of labelled medical data
and patient security and confidentiality, different training strategies, such as image prepro-
cessing, were conducted to search for the solution [23,26,27,29]. Pertinently, the present
study first trained the CNN with small datasets (fewer than 1000 units per group) using dif-
ferent training strategies; that is, the CNN was trained with IR, IS, and EE strategies, which
correspondingly resulted in different trained neural networks. Importantly, periapical ra-
diographs were selected because of their clinical usage [45]. The AUCs of different trained
neural networks (referred to as different recognition modes) were ultimately calculated
and compared because of their significance in diagnostic performance [46].

Mandrekar et al. [46] suggested that an AUC of 0.8 to 0.9 is considered excellent in
diagnostic performance. Accordingly, the recognition modes of IR and EE performed
exceptionally in detecting proximal caries in the present study, with AUCs of 0.805 and
0.860, respectively. However, the IS recognition mode, with an AUC of 0.549, showed no
discrimination in detecting proximal caries [46]. The EE recognition mode showed the
greatest accuracy and achieved significantly higher accuracy than the human eye; thus,
it was proposed that the EE recognition mode should be considered for small datasets.
Edges are produced by the transition between various areas in the image, which is one
of the most basic feature signals in the image signal [31]. For periapical radiographs, the
changes in greyscale partly produce image edges. Pertinently, image edge extraction plays
an important role in image recognition and processing [31]. In the present study, CNNs
performed better than those in a previous study, which may be due to the Canny operator
used in [31]. The use of the Canny operator strengthened the edge feature, which enabled
CNNs to detect edges more efficiently [31]. The poor performance of the IS recognition
mode may be attributed to excessive extrema and noise [36]. Furthermore, Lee et al. [9]
reported that an AUC of 0.845 was achieved on both premolar and molar models based on
a CNN. The EE recognition mode achieved an AUC of 0.860. Given the suggestions from
Lee et al. [9], fine-tuning and transfer learning technology were used in the present study,
which may account for the minor differences.

Based on the present findings, the highest sensitivity was obtained by the EE recogni-
tion mode, which might be due to the use of the Canny operator [31]. More specifically, the
EE recognition mode was more sensitive than the IS recognition mode for the detection
of enamel and dentin caries. However, the EE recognition mode did not demonstrate its
superiority until level 4 caries detection (proximal caries limited to the outer half of dentin)
and level 5 detection (proximal caries limited to the inner half of dentin) compared with the
IR recognition mode. This contradictory phenomenon may result from the limited sample
size. The EE, IR, and IS recognition modes all showed satisfying specificity, which could
not be ignored when high sensitivity was achieved [9].

Based on the present results, the EE recognition mode was significantly more sensitive
than human eyes for the detection of enamel and dentin caries. In terms of level 1 (proximal
caries limited to the outer half of enamel), the EE recognition mode achieved higher sensi-
tivity than the human eye, which was consistent with a previous report that enamel caries
on periapical radiographs could be detected by human observers only after caries lesions
advanced into the outer half of enamel [9]. It was probable that the EE recognition mode
combined the greyscale changes and the features of caries edges, making this approach
more capable of detecting initial caries even when learning on small datasets [31].

In addition, the P-R curve was observed, and the F1-score was calculated to assess the
performance of the recognition model in cases where the dataset was unbalanced (e.g., the
number of caries samples and non-caries samples differed extremely in quantity) [47].
The P-R curve was established by plotting data with precision (PPV) on the y-axis and
recall (sensitivity) on the x-axis [48]. The F1-score was the harmonic of the precision
and recall, which represents agreement with truth [48]. In the present study, the EE
recognition mode achieved a precision score of 0.808, a recall score of 0.869, and the highest
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F1-score of 0.837. These scores were higher than those reported in the study performed
by Srivastava et al. [48], which achieved a precision score of 0.615, a recall score of 0.805,
and an F1-score of 0.700 for the detection of tooth caries in bitewing radiographs using
deep learning. The high recall of our recognition model showed that the model missed
only a few proximal caries from the ground teeth [48]. More importantly, the high precision
indicated that few false positives occurred based on the high sensitivity [48].

According to previous studies, GoogLeNet and U-Net were used to detect dental caries
on periapical radiographs and bitewings, respectively [9,35]. Compared to the approaches
utilizing GoogLeNet and U-Net, different models equipped with different loss functions
and combinations of the parameters contributed to the main differences among existing
approaches and the present proposal [9,35]. GoogLeNet, using a dataset of 3000 periapical
radiographs, showed a sensitivity of 81.0%, a specificity of 83.0%, a PPV of 82.7% and
an NPV of 81.4% [9]. U-Net, utilizing a dataset of 3686 bitewings, obtained a sensitivity
of 75.0%, a specificity of 83.0%, a PPV of 70.0% and an NPV of 86.0% [35]. Notably, the
present EE results were a sensitivity of 86.9%, a specificity of 85.2%, a PPV of 80.8% and
an NPV of 90.0% based on the small dataset of 800 periapical radiographs; thus, a better
performance was found in the present CNN compared to that of GoogLeNet. Differences
between the present CNN and U-Net may be due to the different training strategies and
detection objects [49]. Therefore, a preprocessing strategy that is common but well suited
to medical images, such as EE strategy, was proposed to preprocess periapical radiographs
that are commonly used in clinical practice [45].

Fine-tuning, one way to utilize a pretrained network [23], was the method selected to
pretrain Cifar-10Net in the present study. Transfer learning was applied since this approach
allowed generic features learned on a sufficiently large dataset to be shared with seemly
disparate datasets [23]. Compared to other networks, such as AlexNet [50], Cifar-10Net
has fewer layers and faster recognition speed, which partly reduces the recognition rate.

Several limitations should be considered in the present study. First, radiological dosage
standardization was lacking since changes in the applied radiological dosage may occur for
individual oral conditions, for example, soft tissue conditions [51]. Establishing a record of
the applied dosage when taking periapical radiographs could be considered for obtaining
standard images, which should be accomplished in cooperation with radiologists. Second,
in the absence of a “hard” reference test, only radiographical evaluations were conducted,
lacking clinical evaluations [9,35]. Furthermore, inconsistent with the CNN trained with
EE and IR strategies that performed well, the CNN trained with IS strategy, namely, the
IS recognition mode, behaved indiscriminately in detecting proximal caries and showed
a poorer performance than that achieved by human eyes. Moreover, the sample size was
unbalanced at different levels of caries severity, which may have impacted the present
findings. A larger sample size and balanced dataset (different levels of caries severity)
could be considered to enhance the generalizability of the present approach and exploring
the impact of using the network on treatment decisions. Additionally, the recognition rate
was partly sacrificed to increase the training and recognition speed [38]. The number of
network layers should be increased to improve the recognition rate in future studies. Last,
a further clinical comparison group (such as combining the clinical records when caries
evaluations are conducted) to indicate the false-positive and false-negative rates of the
calibrated examiners and the Cifar-10Net CNN process could be considered to further
verify the current findings.

5. Conclusions

Within the limitations of a lack of standardization of the radiological dosage and a
small sample size, we prudently concluded that the deep-learning-based CNN trained
with the EE strategy performed excellently in detecting proximal caries on periapical
radiographs; different training strategies, such as image preprocessing, could be considered
to improve the accuracy of the CNN model, especially when a small dataset was used.
Pertinently, the present proposed method should be regarded as a computer-aided caries
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detection system in clinical practice, in which clinical evaluations should be combined and
not discarded. However, the challenges of how the proposed method could be generalized
and applied to treatment decisions should be considered. Additionally, regarding the
limitation of only conducting the radiographical evaluations, a further clinical comparison
group to indicate the false-positive and false-negative rates of the calibrated examiners and
the Cifar-10Net CNN process could be considered to further verify the current findings.
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Abstract: Third molar impacted teeth are a common issue with all ages, possibly causing tooth decay,
root resorption, and pain. This study was aimed at developing a computer-assisted detection system
based on deep convolutional neural networks for the detection of third molar impacted teeth using
different architectures and to evaluate the potential usefulness and accuracy of the proposed solutions
on panoramic radiographs. A total of 440 panoramic radiographs from 300 patients were randomly
divided. As a two-stage technique, Faster RCNN with ResNet50, AlexNet, and VGG16 as a backbone
and one-stage technique YOLOv3 were used. The Faster-RCNN, as a detector, yielded a mAP@0.5
rate of 0.91 with ResNet50 backbone while VGG16 and AlexNet showed slightly lower performances:
0.87 and 0.86, respectively. The other detector, YOLO v3, provided the highest detection efficacy
with a mAP@0.5 of 0.96. Recall and precision were 0.93 and 0.88, respectively, which supported
its high performance. Considering the findings from different architectures, it was seen that the
proposed one-stage detector YOLOv3 had excellent performance for impacted mandibular third
molar tooth detection on panoramic radiographs. Promising results showed that diagnostic tools
based on state-ofthe-art deep learning models were reliable and robust for clinical decision-making.

Keywords: impacted; tooth; detection; deep learning; panoramic radiograph; machine learning; dentistry

1. Introduction

Dental clinics frequently use different types of radiography with distinct properties.
They visualize different regions of interest for diagnosis and further treatment planning [1].
Panoramic radiographs were initially one of the most common visualization techniques
in dentistry that scans a wide area with a significantly lower radiation dose [2]. They
enable a variety of anomalies, conditions, and lesions to be diagnosed by experts [1–3].
However, complex anatomical structures, pathologies, and imaging distortions can make
detecting a case or interpreting a critical condition difficult. Computer-assisted diagnostic
systems can help clinicians in decision-making [4]. Recently, the introduction of artificial
intelligence-based approaches has efficiently overcome the limitations of traditional meth-
ods. Automatically identifying the optimal representations, learning features from raw
data are used instead of hand-crafted features [5].

Artificial intelligence (AI) refers to systems and devices designed to address real-life
problems as creative as human beings treat them by mimicking natural human intelligence
and behavior [6–8]. Machine learning (ML) is a subset of AI and consists of algorithms to
learn from a large set of data that enables computers to learn how to solve a problem by
performing a specific task [9,10]. They improve as they experience more data at the task [11].
Deep learning (DL) is a subset of ML and consists of algorithms inspired by structural
and functional properties of the human brain, called artificial neural networks [12,13].
They train themselves to learn to perform specific tasks. More extensive neural networks
and training them with more data scales the performance up for real-life tasks such as
classification, object detection, segmentation, and object recognition [14–16]. Convolutional
neural networks (CNNs) are a version of the neural networks that include convolution
operations in at least one of the layers.
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In recent years, DL models have been intensively applied to many fields, including
healthcare, which covers a wide range of applications related to medical diagnosis purposes.
There has been a growing interest in artificial intelligence-based systems in dentistry. The
use of deep learning in dentistry, including orthodontics, periodontology, endodontics,
dental radiology, and forensic medicine, has shown promising results in classification,
segmentation, and detection tasks [17,18]. Applications are based on teeth, oral structures,
pathologies, cephalometric landmarks, bone loss, periodontal inflammation, and root
morphology [19–27]. According to the number of published research, a smaller number
of several initiatives in dental care develop software and digital dental approaches to
diagnostic tools [28]. Some of them are CranioCatch, Digital Smile Design (DSD), 3Shape
software (3Shape Design Studio and 3Shape Implant Studio), Exocad, and Bellus 3D.

Object detection task refers to determining the coordinates of a specific object in
the input data, while classification refers to automatically assigning the objects into pre-
determined categories. When the artificial intelligence-based computer-aided systems are
engaged in the field, they can:

support clinicians and physicians who are busy all day to avoid misdiagnosis;
help populations with a shortage of radiologists or screening modalities;
help radiologists manage their workloads in large hospitals;
create reports about pathologic or anatomical conditions in panoramic radiographs,
which results in saving time;
provide a focus on the education of observers and new graduates in clinics.

Partially or entirely impacted third molars are the most common developmental con-
ditions affecting humans and require surgical intervention [29–31]. Tooth position, adjacent
tooth, alveolar bone, and surrounding mucosal soft tissue usually cause failed eruption [32].
They may cause pain, tooth decay, swelling, and root resorption for various reasons, while
they might asymptomatically indicate other pathologies, like caries, periodontal diseases,
cysts, or tumors, around the second or third molar [32–34]. Removal of the third molar for
severe cases alleviates symptoms and helps the patients’ oral health [32,35,36]. It is one of
the most common surgical procedures performed in secondary care in the UK [37].

This work aimed to develop a decision support system that will help dentists. It
presents a state-of-the-art artificial intelligence-based detection solution, including deep
learning algorithms with multiple convolutional neural networks to mandibular third
molar impacted teeth problems in panoramic radiographs. Two different detectors were
used, namely Faster RCNN and YOLOv3. While the YOLOv3 was a single-step technique,
the Faster RCNN was a two-stage method in which different backbones were needed to
finalize the detection process. Three different backbones, ResNet50, AlexNet, and VGG16,
were combined with Faster RCNN. The detection performance was evaluated by mean
average precision (mAP), recall, and precision. Classification accuracy was also calculated
for each model.

Related Works

It is intended to explore studies directly related to a detection task for third molars on
panoramic radiographs.

Faure et al. (2021) proposed an approach to automatically diagnosing impacted
teeth with 530 panoramic radiographs. They implemented only one model using Faster-
RCNN with ResNet101, identifying impacted teeth with performances between 51.7% and
88.9% [38]. Kuwada et al. (2020) used deep learning models on panoramic radiographs
to detect and classify the presence of impacted supernumerary teeth in the anterior max-
illary area [4]. It was reported that DetectNet showed the highest accuracy value of 0.96.
Zhang et al. (2018) predicted postoperative facial swelling following impacted mandibu-
lar third molars extraction using 15 factors related to patients [39]. Orhan et al. (2021)
performed a segmentation task to detect third molar teeth using Cone-Beam Computed To-
mography [40]. One hundred twelve teeth are used. A precision value of 0.77 was reported.
Basaran et al. (2021) developed a diagnostic charting for ten dental situations, including
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impacted teeth [41]. Faster R-CNN Inception v2 was implemented using 1084 panoramic
radiographs. The precision value for the impacted tooth was 0.779.

Other studies performed detection tasks that aimed to recognize automatically and
number teeth [19–21,42]. Panoramic, periapical, and dental bitewing radiographs were
used. Their results were presented for all teeth together instead of a separate analysis
for impacted third molars. Moreover, previous works did not include categorization for
angulation concerning adjacent teeth.

2. Materials and Methods

The Ethical Review Board approved this study at Ankara Yildirim Beyazit University
(approval number 2021-69). It was performed following the ethical standards of the
Helsinki Declaration.

Panoramic radiographs of 300 patients older than 18 with at least one impacted tooth in
the third-molar region were randomly selected from the image database from January 2018
and January 2020. Panoramic radiographs (PRs) with complete or incomplete impacted
tooths with complete root formations for patients older than 18 years old were included,
while PRs with artifacts, movement, and position-based distortions and incomplete root
formations were excluded.

The Winter classification approach was used to categorize mandibular third molar
teeth into mesioangular, horizontal positions for both sides [43,44]. The idea was based
on the angle between the long axes of the third molar and second molar tooth. While the
mesioangular position indicated an angle from 11◦ to 79◦, the horizontal position referred
angle from 80◦ to 100◦, as shown schematically in Figure 1.

 

Figure 1. Winter’s mandibular third molar teeth classification scheme [34].

The original files had DCM format with a resolution of 2943 × 1435. They first
converted to PNG using MATLAB, then resized to 640 × 640 before passing to the models.
The PyTorch library was used for developing the models. The dataset was analyzed and
labeled by an oral and maxillofacial radiologist with more than five years of experience in
the field using labelImg [45]. Rectangular bounding boxes enclosing the crown and root of
the interested tooth were used. Experiments were performed using k-fold cross-validation
(k = 5) instead of a single standard split. It ensures that models were tested on all kinds of
potentially tricky cases. The best performance of each fold is determined.

Previous studies on the prevalence of impacted third molars showed that they were
twice more likely to be seen in the mandible than in the maxilla [46–54]. Almost half of the
angulation of incidences was mesioangular. There was no statistically significant difference
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between the right and left sides. In the light of the preceding findings and the available
dataset, mandibular third molars with four classes were chosen to be analyzed. Four classes
were defining mandibular third molar teeth that t1, t4, t5, and t8 indicated mesioangular
left, horizontal left, mesioangular right and horizontal right impacted teeth respectively.
Class distributions were balanced. The total number of impacted third molars was 588 from
440 panoramic radiographs. To keep the dataset balanced for experiments, the number
of each class for t1, t4, t5, and t8 was determined as 155, 134, 169, and 130 respectively in
the design phase of the work. Figure 2 demonstrates four panoramic radiographs with
impacted teeth used as inputs for the proposed detection solution. Figure 2a has only a
mesioangular tooth on the left, class t1. Figure 2b has two mesioangular teeth on both sides,
classes of t1 and t5. Figure 2c,d has two horizontal teeth on both sides, classes t4 and t8.

  
(a) (b) 

  
(c) (d) 

Figure 2. Examples of panoramic radiographs with bounding boxes. (a) One impacted tooth—me-
sioangular left, (b) two impacted teeth—mesioangular left and right, (c,d) horizontal left and right.

To date, the state-of-the-art object detectors are categorized into two classes, namely
two-stage methods and one-stage methods [55,56]. Two-stage detectors have proposal-
driven mechanisms that first candidate object locations, bounding boxes, are firstly pro-
posed, and then each candidate location is assigned to classes using a convolutional neural
network [57]. In contrast, one-stage detectors, with the advantage of being simpler, makes
use of anchor boxes to localize and restrict the region and the shape of an object to be
detected in the image; in other words, they find bounding boxes in a single step without
using region proposals [58–60].

The AI-based model development phase includes two detectors, namely Faster RCNN
and YOLOv3 [57,58]. YOLOv3 performs the detection in a single-phase, although Faster
RCNN is a two-stage technique that needs a backbone as a feature extractor. So, ResNet50,
AlexNet, and VGG16 are also used as a backbone and Faster RCNN one at a time.

AlexNet consists of 5 convolutional and three fully connected layers. It features
Rectified Linear Units to model a neuron’s output, and provides training on multiple GPUs
and overlapping pooling, making the process faster [61]. VGG16 is a convolutional neural
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network model with 13 convolutional and five pooling layers. Large kernel filters used
in AlexNet are replaced with 3 × 3 kernel-sized filters in VGG16 architecture for better
performance with ease of implementation [62]. After AlexNet and VGG16, architectures
begin to become deeper; however, it makes the back-propagated gradient extremely small
sometimes, resulting in saturated or decreased performance. Residual Networks, ResNet50,
solves this issue by suggesting identity shortcut connections that skip one or more layers
and perform identity mappings [63]. It has a depth of up to 152 layers and reduces the
number of parameters needed for a deep network.

YOLO, You Only Look Once, is an object detector that uses features learned by a deep
convolutional neural network to detect objects [58]. The architecture of YOLO v3 includes
106 layer fully convolutional layers. It makes predictions of bounding boxes at three scales
by downsampling the dimensions of the input image at different layers and extracting
features from them. Darknet-53 performs feature extraction that is more powerful and
efficient. Up-sampled layers help hold fine features, making it better at detecting small
objects. Class predictions for each bounding box are made using cross-entropy loss and
logistic regression instead of softmax. The network architecture of the model is shown
in Figure 3.

 

Figure 3. YOLOv3 network architecture that predicts at three scales [64].

Faster R-CNN uses Region Proposal Networks, a fully convolutional network that
simultaneously predicts object bounds and objectness scores, to create potential bounding
boxes and afterward runs a classifier on these proposed boxes instead of using Selective
Search as a region proposal technique. Classification is followed by a post-processing phase
that refines bounding boxes, excluding duplications and score bounding boxes again [65].
Figure 4 summarizes how it proceeds from beginning to end.

Adam optimizer was used with a learning rate of 0.0001. The model was run on
Windows OS with NVIDIA GeForce RTX 3080 graphics processor unit. Object detection
models give outputs bounding box and class of the objects in input images. The detection
performance is evaluated by mean average precision (mAP), recall, and precision metrics.
The mAP is also used for Pattern Analysis, Statistical modeling and Computational Learn-
ing (PASCAL) Visual Object Classes (VOC) Challenge [66]. It can briefly be described step
by step as follows.

Intersection Over Union (IOU) defines how the bounding box is predicted correctly.
It is calculated as a ratio of overlap between the predicted bounding box area and the
ground truth area. It takes values between 0 and 1, indicating no overlap and exact overlap,
respectively, as shown in Equation (1) [6,9,13].

IoU =
area(ground truth ∩ predicted)
area(ground truth ∪ predicted)

(1)
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IoU =  area ground truth ∩ predictedarea ground truth ∪ predicted

precision = number of correct regions detected number of correct regions detected number of false regions detected
recall =  number of correct regions detectednumber of all regions

AP@threshold =  p r dr

Figure 4. Faster R-CNN system for object detection with RPN [57].

Precision refers to how exactly the model identifies relevant objects, while recall
measures the model’s ability to propose correct detections among all ground truths, which
are given in Equations (2) and (3) [6,9,13]. While comparing two models, a model with
high precision and recall value are considered better performance.

precision =
number of correct regions detected

number of correct regions detected + number of false regions detected
(2)

recall =
number of correct regions detected

number of all regions
(3)

Average Precision represents the area under the precision-recall curve that is evaluated
at an IoU threshold. It is defined in Equation (4) [6,9,13].

AP@threshold =

1
∫

0

p(r)dr (4)

The notation of AP@threshold indicates that AP is calculated at a given IoU threshold.
For most models, it is considered 0.5 and shown by AP@0.5. AP is calculated for each class
in the data, resulting in n-different AP values for n-classes. When these values are averaged,
mean Average Precision (mAP) is obtained for n classes with Equation (5) [6,9,13].

mAP@threshold =
1
n

n

∑
i=1

APi (5)

Accuracy is a metric used to evaluate classification performance. It refers to the
percentage of the correct predictions for the test dataset, as shown in Equation (6). It
describes how the model performs for all classes [6,9,13].

accuracy =
number of correct predictions

number of all predictions
(6)

Object detection algorithms make predictions with a bounding box and a class label.
For each object, the predicted bounding box and ground truth are measured by intersection
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over union (IoU) [67]. If the IoU value of the prediction is bigger than the IoU threshold,
the object is classified as true positive (TP). Precision and Recall are calculated based on the
measured IoU and IoU threshold. Average precision (AP) is the area under the Precision-
Recall curve. The mean average precision (mAP) is calculated by considering the mean AP
over all classes [68].

While mAP@0.5 refers to the mAP when the IoU threshold is 0.5, mAP@0.5–0.95 means
the average mAP over different IoU thresholds from 0.5 to 0.95 [69]. Many algorithms,
including Faster RCNN, YOLO, use mAP to evaluate the model performance [57,58].

3. Results

Findings were categorized into two groups of one-stage and two-stage detectors in
structural design. Detection performances of four different architectures were presented
based on mAP with thresholds values of 0.5 and 0.5–0.95, which are given in Table 1.

Table 1. Detection performances of two detectors, one with three different backbones.

Fold mAP@0.5 mAP@0.5:0.95

One-stage technique

YOLOv3

1 0.941 0.751
2 0.979 0.783
3 0.936 0.746
4 0.981 0.761
5 0.98 0.771

Avg 0.96 0.76

Two-stage technique

Faster RCNN–ResNet50

1 0.912 0.628
2 0.904 0.673
3 0.86 0.646
4 0.944 0.71
5 0.953 0.713

Avg 0.91 0.71

Faster RCNN–AlexNet

1 0.814 0.433
2 0.878 0.518
3 0.773 0.47
4 0.916 0.52
5 0.923 0.513

Avg 0.86 0.49

Faster RCNN–VGG16

1 0.838 0.464
2 0.89 0.486
3 0.802 0.423
4 0.898 0.484
5 0.937 0.583

Avg 0.87 0.49

As a two-stage technique, Faster RCNN was used as a detector together with three
different backbones, ResNet50, AlexNet, and VGG16. They produced mAP@0.5 value of
0.91, 0.86 and 0.87 while mAP@0.5:0.95 value of 0.71, 0.49 and 0.49 respectively. ResNet50
produced the highest mAP performance, while the other two gave a slightly lower rate. On
the other hand, YOLOv3 provided the highest rate among all, with a mAP@0.5 value of
0.96 and mAP@0.5:0.95 value of 0.76. The precision and recall were 0.88 and 0.93. Train and
validation loss for YOLOv3 were given in Figure 5. Training and validation losses were
from a single fold with the best performance.

YOLOv3 outperforms ResNet (p = 0.042), AlexNet (p = 0.011) and VGG16 (p = 0.015). It
was not seen that there was a significant difference between ResNet and AlexNet (p = 0.158)–
VGG16 (p = 0.193). Accuracy is calculated for each model and used for statistical analysis.
It was presented in Table 2.
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Table 2. Classification accuracies.

Fold YOLOv3
Faster

RCNN–ResNet50
Faster

RCNN–AlexNet
Faster

RCNN–VGG16

1 0.824 0.814 0.636 0.674
2 0.86 0.727 0.68 0.693
3 0.834 0.713 0.529 0.653
4 0.897 0.856 0.76 0.736
5 0.891 0.854 0.81 0.792

Avg 0.86 0.79 0.68 0.7

YOLOv3 performed better than AlexNet (p = 0.016) and VGG16 (p = 0.001) in clas-
sification accuracy, but there was not a statistically significant difference between the
classification accuracies of YOLOv3 and ResNet (p = 0.079). Among backbones used
in Faster RCNN, a statistically significant difference was not seen between ResNet and
AlexNet (p = 0.085)–VGG16 (p = 0.068).
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Figure 5. Change of performance metrics and losses for YOLOv3.

Findings were also shown on panoramic radiographs with annotations and predictions
together. Figure 6 demonstrates how accurately they were detected. Figure 6a–c showed
ground truth annotations for the impacted teeth, b-d showed corresponding predictions
from the proposed solution using YOLOv3. They were detected and assigned to the proper
classes. Figure 6e–g demonstrates random detection result samples from ResNet, AlexNet,
and VGG16.

The detection performance for each class was also investigated. It was seen that t1, t4,
t5 and t8 showed the mAP@0.5 rate of 0.96, 0.98, 0.984, 0.995 and AP@0.5:0.95 rate of 0.774,
0.775, 0.793, 0.791 respectively. Table 3 shows the performance metrics of each class for the
solution with YOLOv3.

Table 3. Inter-class detection performances for the solution with YOLOv3.

Class AP@0.5 AP@0.5:0.95 Precision Recall

t1—mesioangular left 0.96 0.774 0.849 0.95
t4—horizontal left 0.98 0.775 0.96 0.833

t5—mesioangular right 0.984 0.793 0.908 0.987
t8—horizontal right 0.995 0.791 0.88 1

mAP at IOU equals to 0.5 are widely accepted detection metric for many real-life
detection applications [13,57,58,66]. YOLOv3 presented promising performance with the
highest accuracy, indicating that YOLOv3 was a successful detector at detecting third-molar
impacted teeth. It was superior to the Faster-RCNN and its use with ResNet50, AlexNet,
and VGG16 in terms of mAP and classification accuracy.

38



Diagnostics 2022, 12, 942

  
(a) (b) 

  
(c) (d) 

   
(e) (f) (g) 

Figure 6. Detection result samples from YOLOv3 (a–d), ground truths (a–c), predictions (b–d) and
Faster RCNN with ResNet (e), AlexNet (f) and VGG16 (g).

4. Discussion

A significant increase in the number of studies on artificial intelligence-based decision
support systems has been seen in the field of dentistry as well as other fields of healthcare.
In dentistry, an automated analysis and interpretation system in which radiographs are
automatically analyzed to find defects is a fundamental goal. Previous studies used images
from different imaging modalities like panoramic, periapical, and bitewing radiographs
for detection, segmentation, and classification purposes. Common topics included studies
on tooth detection, tooth numbering, and many other conditions like carries, lesions,
anatomical structures, cysts, etc. [17–27,46–54,70]. Contrarily, it was observed that previous
studies on mandibular third molar detection alone were rare and explored only one model
architecture performance.

Lee et al. (2018) suggested a deep learning model to diagnose and predict periodontally
compromised teeth. It consisted of 1740 periapical radiographic images, resulting in
diagnostic accuracy of 76.7% for molar teeth. It was concluded that the CNN algorithm
was helpful for diagnosing periodontally compromised teeth with different expectations
of improved systems for better performance in time [71]. They compared the agreement
between the expert observer and AI application. The proposed work presented a higher
performance in accuracy for YOLOv3 and Faster RCNN ResNet50. Other metrics were
not reported.
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Faure et al. (2021) proposed a method to automatically diagnose impacted teeth using
Faster-RCNN with ResNet101, identifying impacted teeth with performances between
51.7% and 88.9% [38]. Angulation was not investigated; only one class for impacted third
molars was used. The proposed work provided a more elaborative analysis by using two
detectors with three backbones and a higher number of classes.

Basaran et al. (2021) suggested a model for the diagnostic charting of ten dental
conditions, including impacted teeth, in panoramic radiography. Their model was based
on Faster R-CNN Inception v2, including 1084 graphs with 796 impacted teeth. It was
reported that sensitivity and precision for impacted teeth were 0.96 and 0.77 [41]. When it
was compared, this work presented higher precision, but mAP was not reported.

Tobel et al. (2017) used CNNs to develop an automated technique to monitor the
development stages of the lower third molar on panoramic radiographs. They classified
their growth into ten classes. They concluded that the performance was similar to staging
by human observers but needed to be optimized for age estimation [72].

Vinayahalingam et al. (2019) implemented CNNs to detect and segment inferior
alveolar nerve and lower third molars on panoramic radiographs. The mean dice-coefficient
for the third molar was 0.947 ± 0.033 [26]. Contrary to traditional simple architectures,
deep CNNs succeed in edge detection thanks to multiple convolutional and hidden layers
featuring hierarchical feature presentation [73].

Kuwada et al. (2020) performed detection and classification for impacted supernumer-
ary teeth in the anterior maxillary area [4]. This region was completely different from the
region of third molars. Zhang et al. (2018) used 15 patient-related factors to predict postop-
erative facial swelling following impacted mandibular third molars extraction [39]. They
used angulation of the third molar with respect to the second molar as a parameter but did
not perform detection. Orhan et al. (2021) performed segmentation to detect third molar
teeth with a precision value of 0.77 [40]. They used Cone-Beam Computed Tomography
images and compared agreement between the human observer and AI application. The
proposed work used panoramic images with higher precision in addition to evaluation
metrics for detection.

Considering previous works, this work demonstrated an immediate and comprehen-
sive solution for automated detection of mandibular third molar teeth using two types of
detection techniques for the first time. This work also included two different third molar
impaction classes. Previous works had only one class for all third molars, which limited
the corresponding comparison. Moreover, many previous works performed classification
and segmentation tasks for different purposes. This work focused only mandibular third
molar detection problem. Although mAP was a standard evaluation metric for detection
tasks in the computer vision field, it was not reported in previous works. Briefly, it was
not always possible to directly compare each work because of incompatibilities between
(i) type of radiography used, (ii) evaluation metrics used, and (iii) purposes.

Multi-label classification used in YOLOv3 performed better for datasets with over-
lapping labels than using softmax, which assumed each bounding box had only one class,
which was not the case in real-life applications. Additional techniques such as advanced im-
age pre-processing, data augmentation, and more data can improve the proposed solution’s
results and make it more robust.

This work has two limitations. First, the amount of data is limited. More panoramic
radiographs will be collected and annotated to perform deep learning for more robust,
reliable results. Second, mandibular third molars were used in this work due to their wider
prevalence. Later, maxillary third molars will be analyzed as more data are collected.

5. Conclusions

The proposed solution aims to help dentists in their decision-making process. It is
shown that four different models are successful in detecting third molars. The use of
machine learning in dentistry has significant potential in diagnosis with high accuracy
and precision. Diagnostic tools based on state-of-the-art deep learning models are reliable
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and robust auxiliary techniques for clinical decision-making, resulting in more efficient
treatment planning for patients and clinician health management. In time, AI-based devices
can be used as a standard tool in clinical practice and play a crucial role in providing
diagnostic recommendations.

Funding: This research received no external funding.

Institutional Review Board Statement: The study was conducted in accordance with the Declaration
of Helsinki and approved by the Institutional Review Board (or Ethics Committee) of Ankara Yildirim
Beyazit University (protocol code 2021-69 and date of approval 16 February 2021).

Informed Consent Statement: Not applicable.

Data Availability Statement: The data supporting this study’s findings are not available and accessi-
ble due to ethical issues, patients’ and institutions’ data protection policies.

Conflicts of Interest: The author declares no conflict of interest.

References
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Abstract: The precise correlations among tongue function and characteristics remain unknown, and
no previous studies have attempted machine learning-based classification of tongue ultrasonography
findings. This cross-sectional observational study aimed to investigate relationships among tongue
characteristics and function by classifying ultrasound images of the tongue using a K-means clustering
algorithm. During 2017–2018, 236 healthy older participants (mean age 70.8 ± 5.4 years) were enrolled.
The optimal number of clusters determined by the elbow method was 3. After analysis of tongue
thickness and echo intensity plots, tongues were classified into three groups. One-way ANOVA
was used to compare tongue function, tongue pressure, and oral diadochokinesis for /ta/ and /ka/
in each group. There were significant differences in all tongue functions among the three groups.
The worst function was observed in patients with the lowest values for tongue thickness and echo
intensity (tongue pressure [P = 0.023], /ta/ [P = 0.007], and /ka/ [P = 0.038]). Our results indicate that
ultrasonographic classification of tongue characteristics using K-means clustering may aid clinicians
in selecting the appropriate treatment strategy. Indeed, ultrasonography is advantageous in that it
provides real-time imaging that is non-invasive, which can improve patient follow-up both in the
clinic and at home.

Keywords: artificial intelligence; ultrasonography; tongue; algorithm; dysphagia

1. Introduction

Several recent studies have investigated the use of ultrasonography for evaluating
the muscles of the head and neck, as it enables assessment of both muscle quality and
quantity [1]. The tongue is the major organ involved in normal oropharyngeal swallow-
ing [2], consisting of four intrinsic muscles (superior longitudinal, inferior longitudinal,
transversus, and verticalis) and four extrinsic muscles (palatoglossus, genioglossus, hyo-
glossus, and styloglossus) [3], which serve to move and alter the shape of the tongue,
respectively [4]. Given that the tongue consists of eight unique muscles, ultrasonography
represents an effective strategy for investigating its characteristics in detail.

In addition to qualitative characteristics such as tongue thickness (TT) and cross-
sectional area, ultrasonography can be used to assess qualitative characteristics of the
tongue, such as the presence of intramuscular adipose tissue and muscle density. These
qualitative parameters are represented in terms of echo intensity (EI) on grayscale ultra-
sonography images [5,6]. One recent study reported that lower EI values are associated
with decreased tongue function and increased TT [7], while another identified decreased

45



Diagnostics 2022, 12, 264

tongue EI as an independent risk factor for sarcopenic dysphagia in older adults [8]. How-
ever, despite a few relevant studies, the precise correlations among EI, TT, and tongue
function remain unknown. We hypothesized that ultrasonography images of the tongue
would provide insight into these relationships.

However, tongue classification based on ultrasonography is challenging due to the
complicated structure of the tongue [9]. As such, researchers have investigated various
strategies to aid in classification, including the use of linear classifiers (logistic regres-
sion), decision trees (random-forest analysis), support vector machines, and clustering
algorithms [10]. Among these, clustering is widely utilized given its simplicity and effi-
ciency [11]. Recent studies have reported that clustering algorithms are highly accurate in
distinguishing malignant and benign brain tumors with 95% confidence [12]. For exam-
ple, Ding et al. reported an accuracy of 91.07% and area under the curve of 0.96 when a
clustering algorithm was used to classify breast tumors on ultrasonography [13] (p < 0.05).
Übeyli and Doğdu also reported that a clustering algorithm could be used to classify
erythemato-squamous disease into five categories with an accuracy of 94.22% [14].

In the present study, we aimed to investigate the relationships between tongue charac-
teristics and tongue function, including tongue pressure (TP) and diadochokinesis (OD),
by classifying ultrasound images of the tongue. Among the various clustering methods
available (e.g., K-means clustering, hierarchical clustering, Gaussian mixture models, and
density-based clustering [10,15]), we selected K-means clustering because we used two
parameters (EI and TT) to describe the characteristics of the tongue, making this method
simple and efficient [11].

2. Materials and Methods

2.1. Sample Size

The sample size was calculated using G*Power 3.1 (Kiel University, Kiel, Germany).
The alpha value (α, probability of a type I error) and power (1-β, probability of not making
a type II error) were set to 0.05 and 0.90, respectively. For this study, we selected a medium
effect size of 0.25 [16,17]. The calculation indicated a required sample size of 207 participants
across the three groups.

2.2. Participation

The participants included 236 healthy older individuals (71 men, 165 women; mean
age: 70.8 ± 5.4 years) from Oyama City (Tochigi, Japan) recruited during 2017–2018.
All participants self-reported normal swallowing function and understanding following
an explanation of the study. Individuals with a history of neurologic disease, cognitive
dysfunction, head and neck cancer or surgery, or any problems related to swallowing
function were excluded. Demographic data such as age, sex, weight, height, and body
mass index were recorded for each patient.

All study participants provided written informed consent. The study protocols con-
formed to the guidelines outlined in the Declaration of Helsinki and were approved by
the ethics committee of the Faculty of Dentistry at Tokyo Medical and Dental University
(D2014-047).

2.3. Assessment of Tongue Characteristics

Tongue ultrasonography was performed in Brightness mode using a portable ul-
trasound machine (M-Turbo; Fujifilm SonoSite, Tokyo, Japan) equipped with a convex
transducer (5–10 MHz). All ultrasound examinations were performed by one well-trained
examiner, with the participant in a relaxed, seated position. For measurement, the probe
was placed underneath the chin, and the angle of the probe was positioned perpendicular
to the Frankfurt horizontal plane at the first premolar area (Figure 1A,B) [7–9] using passive
pressure. Echo gain was maintained at the same level for all measurements, which were
obtained with the tongue in the resting position after swallowing saliva. This process was
repeated thrice, and the mean of the three values was recorded for each measurement.

46



Diagnostics 2022, 12, 264

 

≥0.9 indicating excellent reliability.

Figure 1. Points of measurement. (A) Position of the ultrasonography probe (anterior view).
(B) Position of the ultrasonography probe (lateral view). (C) Ultrasonographic image and grayscale
histogram of the tongue.

TT and EI measurements were analyzed using ImageJ (version 1.37, National Institutes
of Health, Rockville, MD, USA). TT was measured from the dorsal surface of the tongue
to the upper border of the geniohyoid muscle. A region of interest that included as much
tongue muscle tissue as possible while avoiding the surrounding fascia was selected to
determine EI (Figure 1C) [7]. The mean EI was measured via a histogram-based grayscale
analysis, with values ranging from 0 (black) to 255 (white).

2.4. Assessment of Tongue Function

Tongue function was described in terms of tongue strength and tongue skill. Tongue
strength was measured as the maximum TP using a JMS TP manometer (JMS Co. Ltd.,
Tokyo, Japan). An air-filled balloon probe was placed on the dorsal aspect of the tongue.
The participant was then instructed to raise the tongue and compress the balloon toward
the palate as forcefully as possible [7,18]. Three measurements were obtained, and the
average value was recorded as the maximum TP.

Tongue skill was measured based on OD using an oral cavity function testing device.
The device, which had a built-in microphone, was placed in front of the mouth, following
which the participant was instructed to repeat each of two syllables (/ta/ or /ka/) as
quickly as possible for 5 s. This requires using the middle portion and the base of the tongue,
respectively [7,19]. The device automatically counted the total number of appropriately
pronounced syllables. Repetition speed was calculated as repetitions per second.

2.5. Statistical Analysis

Data were analyzed using RStudio version 1.1423 (Rstudio Inc., Boston, MA, USA)
and are presented as the mean ± standard deviation. The Kolmogorov–Smirnov test
was used to verify that the data followed a normal distribution. Mean values for tongue
function (including TP, /ta/, and /ka/) were compared between groups using one-way
analysis of variance. Multiple comparisons were performed using Tukey’s test. The level of
significance was defined as p < 0.05.

Intraclass correlation coefficients (ICC) were used to assess the reliability of the TT and
EI measurements. The ICCs were 0.755 and 0.765 for TT and EI, respectively. All intraclass
correlation coefficient values were >0.75, indicating good reliability, with values ≥ 0.9
indicating excellent reliability.

2.6. Classification Using K-Means Clustering Algorithms

K-means clustering is performed using machine learning algorithms, which learn
from input data and use statistical analyses to predict outcomes or perform specific tasks,
without requiring explicit instructions [10].

The K-means clustering algorithms are unsupervised clustering algorithms that clas-
sify input data-points into classes based on their inherent distance from each other (i.e.,
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centroid-based clustering). When the number of clusters is fixed to K clusters or groups
(Figure 2A), initial k centroids (center of the group) are randomly created and placed onto
the data plot (Figure 2B), following which the Euclidean distance from each data-point to
the centroids is calculated (Equation (1)) (Figure 2C,D) [10,20].

deuc (x, y) =

√

n

∑
i=1

(xi − yi)
2 (1)

where x and y are the two vectors of length n.

𝑑𝑑𝑒𝑒𝑒𝑒𝑒𝑒 �� 𝑥𝑥𝑖𝑖 − 𝑦𝑦𝑖𝑖 2𝑛𝑛
𝑖𝑖 = 1

Figure 2. Demonstration of the K-means clustering algorithm, k = 3. (A) Data plot. (B) Three centroids
are randomly created, and (C) the distance from each data-point to the centroids is calculated using
Euclidean distance. (D) The step is repeated for all data-points, (E) each of which is classified into a
group according to its closest centroid. (F) The centroid is updated to the new location based on the
mean value of all data-points in the group. (G) The distance between each data-point and the new
centroids is calculated again. (H) These steps are repeated until the mean value of all data-points
stops changing.

In this study, each data-point was classified into a group according to its closest cen-
troid, based on the Euclidean distance between the data-point and the centroid (Figure 2E).
After the first classification, the centroid was updated to the new location (i.e., the actual
center of the group) based on the mean value of all data-points in the group (Figure 2F),
following which the distance between each data-point and the new centroid was calculated
(Figure 2G). These steps were repeated until the mean value of all data-points stopped
changing (i.e., the new centroids remained in the same location) (Figure 2H) [10,15].

The most popular methods for determining the optimal number of clusters are the
silhouette method and the elbow method—the latter of which was used in this study [21].
This method aims to minimize the sum of the square of the Euclidean distances between
each point and its corresponding centroid (total intra-cluster variation, also known as total
within-cluster sum of squares (tot.withinss; Equation (2)). A smaller value for tot.withinss in-
dicates that the data-points are close to the centroid; therefore, it measures the compactness
of the clustering and should ideally be as small as possible [10,20].

tot.withinss =
k

∑
i=1

∑
xi∈Ck

(xi − µi)
2 (2)

where k is the number of clusters, C is the cluster (C = C2, C3, . . . , Ck), xi is a data-point
belonging to cluster Ck, and µ is the mean value of the data-points assigned to cluster Ck.

For the optimal cluster calculation, the data were first assessed using K-means cluster-
ing algorithms in which k varied from 1 to 10. Then, tot.withinss was calculated for each
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k and plotted according to the number of clusters, k (Figure 3). The location of a bend in
the plot is generally considered to indicate the appropriate number of clusters because it
indicates that adding another cluster does not markedly improve tot.withinss [15,22,23].
Figure 3 shows that the bend occurred at three clusters (k = 3).

𝑡𝑡𝑡𝑡𝑡𝑡 𝑤𝑤𝑤𝑤𝑡𝑡𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 � � 𝑥𝑥𝑖𝑖 − 𝜇𝜇𝑖𝑖 2𝑥𝑥𝑖𝑖∈𝐶𝐶𝑘𝑘
𝑘𝑘

𝑖𝑖 = 1

Figure 3. Linear plot between tot.withinss and the number of clusters (varying from 1 to 10). The
bending point is located at k = 3, which represents the optimal number of clusters.

In this study, we plotted EI on the x axis and TT on the y axis (Figure 4). The “kmeans”
(d, centers) function in R software was used to calculate the Euclidean distance, locate the
centroid, and repeat all steps of the calculation. In this context, “d” refers to the numeric
matrix of data (EI, TT), while “centers” refers to the number of clusters (i.e., 3).

Figure 4. Scatter plot of echo intensity and tongue thickness using the K-means for the three groups.
Box plot comparison of tongue function (tongue pressure, /ta/, and /ka/) among the groups based
on tongue characteristics. Tongue pressure: Group 1 vs. Group 2, P = 0.023 (* p value < 0.05). /ta/:
Group 1 vs. Group 3, P = 0.001 (* p value < 0.05); Group 1 vs. Group 2, P = 0.007 (* p value < 0.05).
/ka/: Group 1 vs. Group 2, P = 0.038 (* p value < 0.05).
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3. Results

3.1. Determining Optimal Clusters

The plot exhibited a sharp bend at three clusters (k = 3), indicating the optimal number
of clusters for the dataset (Figure 3). Therefore, tongue characteristics were classified into
three groups (Group 1, Group 2, and Group 3).

3.2. Tongue Characteristics

EI and TT data were plotted and divided into three groups using K-means clustering
algorithms (Figure 4). Average TT and EI were 37.6 ± 3.7 mm and 55.1 ± 4.7 in Group 1,
40.5 ± 3.5 mm and 42.8 ± 3.5 in Group 2, and 44.0 ± 4.2 mm and 32.2 ± 4.1 in Group 3,
respectively (Table 1). These findings indicate that Group 1 exhibited decreased TT and
increased brightness when compared with Groups 2 and 3. The tongues of participants in
Group 3 were the thickest and darkest (Figure 5).

Table 1. Participant characteristics (n = 236).

Variables
Group 1

(Mean ± Standard
Deviation)

Group 2
(Mean ± Standard

Deviation)

Group 3
(Mean ± Standard

Deviation)
Range

p-Value
(ANOVA †)

Physical data
Number 54 109 73 - -
Sex (female, %) 71.6 74.1 64.4 - -
Age (years) 72.6 ± 5.0 69.8 ± 5.6 71.0 ± 5.2 65.0–86.0 0.007
BMI ‡ (kg/m2) 23.4 ± 2.9 22.7 ± 2.9 22.4 ± 2.7 14.0–32.4 0.154

Ultrasonographic data
Tongue thickness (mm) 37.6 ± 3.7 40.5 ± 3.5 44.0 ± 4.2 29.2–54.3 <0.001
Echo intensity 55.1 ± 4.7 42.8 ± 3.5 32.2 ± 4.1 21.1–66.8 <0.001

Tongue function data
Tongue pressure (kPa) 28.7 ± 9.9 32.3 ± 7.1 31.4 ± 8.2 4.9–53.3 0.030
/ta/ 5.6 ± 1.1 6.1 ± 1.2 6.2 ± 0.8 3.2–9.2 0.005
/ka/ 5.4 ± 1.1 5.8 ± 1.1 5.7 ± 0.8 2.4–10.2 0.040

† ANOVA, analysis of variance; ‡ BMI, body mass index.

 

Figure 5. Comparison of illustrative ultrasound images in each group. The solid and dashed li
Figure 5. Comparison of illustrative ultrasound images in each group. The solid and dashed lines
represent the lowest and the highest parts of the tongue (dorsal surface of the tongue) in Group
3, respectively.
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3.3. Tongue Function

TP was highest in Group 2 (32.3 ± 7.1 kPa) and lowest in Group 1 (28.7 kPa), with a
significant difference between the two groups (p < 0.023). However, there was no significant
difference in TP between Groups 2 and 3 (Figure 4).

The average /ta/ and /ka/ values (6.1 and 5.8 time/sec, respectively) were highest
in Group 2, and the differences between Groups 2 and 1 were significant (p < 0.007 and
p < 0.038, respectively). The average /ta/ value was also greater in Group 3 than in Group
1 (p < 0.012), which had the lowest average /ta/ and /ka/ values (5.6 and 5.4 times/sec,
respectively). However, the average /ta/ and /ka/ values did not significantly differ
between Groups 2 and 3 (Figure 4).

Overall, the findings indicate that tongue function was poorest in Group 1, but that
there was no significant difference in tongue function between Groups 2 and 3.

4. Discussion

In this study, we utilized K-means clustering to classify patterns of tongue charac-
teristics based on ultrasound measurements. Our findings indicated that participants in
Group 1 exhibited the poorest tongue function in terms of both TP and OD. Moreover, our
analysis suggests that K-means clustering is useful for predicting tongue function based on
ultrasonography findings.

4.1. Relationship between Tongue Group and TP

Group 1 exhibited the lowest values for TT and TP and the highest value for EI.
TP is an important indicator of tongue muscle strength and swallowing during the oral
phase [24,25]. Previous studies have demonstrated a correlation between TT and TP, which
is plausible given that muscle mass is commonly associated with muscle strength [26,27]. EI
reflects intramuscular adipose tissue content: Higher EI indicates greater adiposity, which
may affect tongue function, as indicated by the findings in Group 1 [7,28–30]. Thus, when
the tongue appears thinner and brighter on ultrasonography, as noted in Group 1, tongue
strength is likely to be lower.

However, another study suggested that EI itself may not be related to TP [7]. This
discrepancy may be explained by differences in study design. The authors of the previous
study used regression analysis to identify factors that could predict EI, which identified
TT and OD as the only significant factors. However, the present study classified ultrasono-
graphic tongue characteristics into three groups, following which TP was compared among
the groups.

4.2. Relationship between Tongue Groups and OD

OD refers to the rate of articulation, reflecting the speed of tongue movement [31].
Group 1 exhibited the lowest TP and OD values. Both TP and OD are commonly used
to determine the efficacy of speech production. Previous research has highlighted the
relationship between strength and speed during speech production. Hence, TP and OD
should be related, as observed in the present study [2,31,32]. Although muscle mass
is clearly associated with muscle strength, no previous studies have reported a direct
relationship between TT and OD. However, one study noted a relationship between EI and
/ta/ or /ka/ [7].

Based on the above, patients in Group 1 should exhibit the poorest tongue function,
followed by those in Group 2, while patients in Group 3 should exhibit the best tongue
function. However, in our study, patients in Group 2 exhibited the strongest tongue
function, except for /ta/ (Table 1). Furthermore, there were no statistically significant
differences between Groups 2 and 3. This finding suggests that muscle quantity and
quality may be sufficient for maintaining tongue function in Groups 2 and 3, but not in
Group 1. Further studies are required to fully elucidate the relationships between tongue
characteristics and tongue function.
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4.3. Categorizing Tongue Characteristics Using K-Means Clustering Algorithms

Previous studies have investigated various methods for applying medical image
segmentation [12–14,33]. Generally, segmentation methods are used to detect diseases
such as brain cancer based on magnetic resonance images [12,33], breast cancer based on
ultrasonographic images [13], or skin diseases based on clinical features [14]. While these
studies have highlighted the accuracy of K-means clustering, the final diagnosis of all
medical images was known, and the clustering method was mainly used to detect disease
based on imaging, following which the findings were compared with the true diagnosis to
establish the accuracy of the method. However, as we did not know the diagnosis in each
case, we were unable to determine the accuracy of the current classification method.

Several studies have investigated whether EI can be used for tongue classification.
The EI of the tongue increases with age [34]. Research has also indicated that the EI of the
tongue is significantly higher in patients with amyotrophic lateral sclerosis (ALS) than in
healthy participants [35], suggesting that EI can be used to distinguish between healthy and
diseased tongue muscle. However, no previous studies have examined these associations
using detailed classifications based on ultrasonography or significant differences in tongue
function to define each group. Our findings indicate that K-means clustering may be an
effective approach for classification of the tongue. Future studies should aim to collect
data for various patient groups based on age, sex, and disease status, as this may help to
determine whether our method can be used to improve diagnosis.

4.4. Clinical Implications

Several studies have indicated that older individuals are more likely to experience
dysphagia due to age-related decreases in muscle mass [26,36–38]. Thus, assessments of
muscle mass and the strength/function of the perioral muscles are necessary for maintain-
ing oral function in older adults. Our analysis indicated that patients in Group 1 exhibited
the thinnest, brightest, and most easily detectable tongues on ultrasonography (Figure 5).
Establishing standard diagnostic criteria based on ultrasonography patterns may represent
a more useful and non-invasive strategy for assessing and preventing oral hypofunction.
Furthermore, identifying the risks associated with each ultrasonography pattern may aid in
determining the appropriate treatments and exercises for community-dwelling older adults.
Indeed, one recent study demonstrated that training the tongue by pushing it against a
hard palate, (i.e., tongue-pressure resistance training) can improve both tongue (TP and
OD) and suprahyoid muscle function [37]. Another study suggested that 3 months of oral
training can improve swallowing function and OD in older adults who are at high risk of
deterioration in oral health [39].

Furthermore, aging leads to atrophy of the tongue papillae, and several studies have
reported an association between tongue function and the characteristics of the tongue
surface [40,41]. Appropriate diagnostic assessment of tongue function can aid clinicians in
selecting the proper treatment strategy, which may in turn aid older adults in maintaining
oral hygiene, feeding ability, and swallowing function. Given that these strategies can help
to prevent sarcopenic dysphagia, our classification method has important implications
regarding quality of life in older individuals.

4.5. Limitations

Our study had some limitations. First, the dataset used for training the classifica-
tion model was based on only 236 participants, which may have been insufficient for
determining the outcome without error. Thus, a larger sample size required to verify our
model. Second, all study participants were healthy; none of them had compromised tongue
function or neurological status. As such, we were unable to investigate the effects of aging
and disease such as neuromuscular diseases on tongue characteristics. In addition, muscle
fibrosis and adiposity are major characteristics of sarcopenia, and in general, age-related
fibrosis of muscle tissue is also associated with increased EI [42]. In our method, we catego-
rized the participants’ tongue using EI and TT. Therefore, the influence of aging on EI could
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not be eliminated. Furthermore, it is difficult to distinguish diseases such as neuromuscular
disorders using our classification. Longitudinal studies that include participants with poor
tongue function, systemic sarcopenia, and various diseases may aid in determining the
usefulness of our classification method.

5. Conclusions

We used K-mean clustering algorithms on ultrasonographic images to categorize
tongue characteristics based on muscle luminance and TT of healthy older individuals. In
this study, the elbow method was used to calculate tot.withinss for each k and plotted it
according to the number of clusters. The optimal number of clusters determined by this
method was three. EI was plotted on the x-axis and TT on the y-axis for analysis, and the
subjects were classified into three groups.

The results showed that Group 1, which had the highest EI, had the lowest TT and TP
and significantly lower OD. The classification of tongue images using K-mean clustering
algorithms could be applied for predicting tongue function and for diagnosis. If used by
clinicians as a tool to prevent the decline of oral and swallowing functions, it may help to
provide functional training and follow-up for older adults. For accurate classification, more
sample analysis is needed in the future to establish an algorithm.

Ultrasonography is not only easy to use for real-time imaging but is also radiation-free,
painless, portable, and can be used not only in hospitals but also in home-visits. However,
it is difficult at present to distinguish the cause of changes in EI from the images. EI is
affected by aging and diseases, as well as sarcopenia. The limitation of this study is that
the effect of aging cannot be excluded. Therefore, it is necessary to analyze the imaging
characteristics of the tongue and related factors for various ages and diseases in the future.
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Abstract: The aim of this study was to assess the reliability of the artificial intelligence (AI) automatic
evaluation of panoramic radiographs (PRs). Thirty PRs, covering at least six teeth with the possibility
of assessing the marginal and apical periodontium, were uploaded to the Diagnocat (LLC Diagnocat,
Moscow, Russia) account, and the radiologic report of each was generated as the basis of automatic
evaluation. The same PRs were manually evaluated by three independent evaluators with 12, 15,
and 28 years of experience in dentistry, respectively. The data were collected in such a way as to
allow statistical analysis with SPSS Statistics software (IBM, Armonk, NY, USA). A total of 90 reports
were created for 30 PRs. The AI protocol showed very high specificity (above 0.9) in all assessments
compared to ground truth except from periodontal bone loss. Statistical analysis showed a high
interclass correlation coefficient (ICC > 0.75) for all interevaluator assessments, proving the good
credibility of the ground truth and the reproducibility of the reports. Unacceptable reliability was
obtained for caries assessment (ICC = 0.681) and periapical lesions assessment (ICC = 0.619). The
tested AI system can be helpful as an initial evaluation of screening PRs, giving appropriate credibility
reports and suggesting additional diagnostic methods for more accurate evaluation if needed.

Keywords: AI; panoramic radiograph; screening; diagnosis; dentistry

1. Introduction

Radiological examination is an essential part of patient management in modern den-
tistry. The panoramic radiograph (PR) is a common extraoral radiograph used to identify
the hard tissues of the oral cavity and surrounding skeletal structures. Although resolution
is not as detailed as intra-oral radiographs for examination of the teeth, many changes in
calcification of the dental structures and in ossification of the surrounding bone can aid in
the identification of dental diseases, such as caries (decay), periodontal bone loss, and bone
lesions [1]. As far as cone-beam computed tomography (CBCT) systems are developed and
becoming more and more popular for imaging comprehensive 3D volumetric information
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concerning oral soft tissues, bones, and teeth, PRs remain a very common initial X-ray
and screening tool in the diagnostic process in dentistry [1–12]. However, although CBCT
provides more data, the analysis is laborious and time-consuming [3,7,13]. PR analysis
is faster than CBCT, but the accurate evaluation of all PR aspects still requires time and
specialized knowledge. Thus, computer-aided systems have been developed to assist in
medical and dental imaging diagnosis [14–17] and processing of the treatment [1,13,18,19].
One of the artificial intelligence (AI)-based systems based on the convolutional neural
networks (CNN) is Diagnocat (LLC Diagnocat, Moscow, Russia). This is an online platform
where different X-rays can be uploaded and analyzed by the algorithm. PR evaluation takes
up to 2 min and the software generates a report (Figure 1). Such a report may focus the
attention of the clinician on a specific problem or may be used as a communication aid with
the patient to explain a required treatment. Moreover, the report contains suggestions for
additional diagnoses, e.g., with use of CBCT or suggested consultations regarding specific
sites with appropriate specialists. The aim of this study was to assess the reliability of
Diagnocat software in the automatic evaluation of panoramic radiological images.

 

(A) 

Figure 1. Cont.

58



Diagnostics 2022, 12, 224

 
(B) 

Figure 1. (A). First page of the DC report including simple diagram of teeth with a legend of findings
and referral recommendations pointing specific specialists for specific teeth. (B). One of the following
pages of the DC report including specific teeth captions and description with percent of accuracy.
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2. Materials and Methods

This retrospective research was performed following the principles of the Declaration
of Helsinki and was approved by the Ethical Comity by the Medical University of Warsaw,
Poland (Approval code: AKBE 221/2021). Thirty panoramic radiographs (PR) of 16 women
and 14 men collected from the Dental and Maxillofacial Radiology Department, Medical
University of Warsaw, Poland, taken from November 2019 to May 2021 were included
in the study. Diagnostically acceptable or excellent quality radiographs, covering at least
six teeth with the possibility of assessing the marginal and apical periodontium, were
included. The exclusion criteria were: radiographs with unacceptable quality, containing
severe artifacts, such as motion artifacts, shadow of the spine, or air projected on the region
under assessment, radiographs containing developmental disorders. All PRs were listed
and numbered. Then, all PRs were uploaded to the Diagnocat software (DC, Diagnocat
LCC, Moscow, Russia) account, and the radiologic report of each was generated as the basis
of automatic evaluation. The same PRs were manually evaluated by three independent
dentists (evaluators) with 12, 15, and 28 years of experience in dentistry, respectively. One of
the dentists (P.R) is experienced in dentomaxillofacial radiology. The missing teeth, presence
of carries, dental fillings, prosthetic restorations (crowns or posts), endodontically treated
teeth (with underfilled, overfilled or with inhomogeneous filling in the root canals), residual
roots, periapical lesion (osteolytic, osteosclerotic or mixed), and periodontal bone loss were
assessed. A special form was created to completed by each evaluator for each radiograph.
Each evaluator assessed each radiograph independently and separately (without knowing
the Diagnocat software evaluation). The reports were transferred to spreadsheets according
to each pathology (category), tooth number, and evaluator. For each tooth, two possible
values (presence of pathology or absence of pathology) were acceptable.

In order to assess the reliability of Diagnocat reports, they were compared with ground
truth, obtained on the basis of analysis of three evaluators. If two or three evaluators agreed
on the assessment, the diagnosis was considered as ground truth. Statistical analysis was
done with SPSS Statistics software (IBM, Armonk, NY, USA). The sensitivity and specificity
assessment was performed. Statistical analysis was performed for each pathology. Interclass
correlation coefficient (ICC) analysis with a two-way mixed model was performed. It was
assumed that ICC values greater than 0.75 would guarantee good reliability. In order to
assess the interevaluator consistency, the ICC was also calculated.

The average time of evaluation was estimated for the creation of reports by different
evaluators and AI software.

3. Results

In total, 90 reports were created for 30 PRs. Overall numbers of evaluated pathologies
are listed in the Table 1. The average time to prepare a single report was up to 2.0 min for
DC and 8.5 min for evaluators.

The AI protocol showed very high specificity (above 0.9) in all assessments compared
to ground truth except from periodontal bone loss. Sensitivity was very high (above 0.9)
for the assessment of missing teeth and prosthetic restorations, and high (above 0.8) for
dental fillings, endodontically treated teeth, residual roots, and periodontal bone loss. Low
sensitivity was obtained for caries, periapical lesion, as well as over and underfilled canals
assessment (see Table 1).

Statistical analysis showed high ICC (ICC > 0.75) for all interevaluator assessments,
proving the good credibility of the ground truth and the reproducibility of the reports. The
detailed results are shown in Table 2.
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Table 1. Sensitivity and specificity assessment of Diagnocat software.

Categories
Correctly

Diagnosed (True
Positive)

Mis-Diagnosed
(False Negative)

Over-
Diagnosed

(False Positive)

Total
Assessments

Sensitivity Specificity

missing tooth 149 6 15 960 0.961 0.981
caries 89 111 11 805 0.445 0.982
filling 223 45 7 805 0.832 0.987
prosthetic restoration
(crown or post)

44 2 4 805 0.957 0.995

endodontically treated
tooth

95 14 4 805 0.872 0.994

underfilled canal 28 18 0 109 0.609 1.000
overfilled canal 5 6 0 109 0.455 1.000
inhomogeneous filling

in canal
4 1 6 109 0.800 0.942

residual root 32 7 1 805 0.821 0.999
periapical lesion
(osteolytic, osteosclerotic
or mixed)

23 36 14 805 0.390 0.981

periodontal bone loss 189 47 87 805 0.801 0.847

Table 2. ICC for all interevaluator assessments (ICC >075).

Categories ICC Interevaluator

missing tooth 0.977
caries 0.829
filling 0.928
prosthetic restoration (crown, post) 0.984
endodontically treated tooth 0.989

underfilled canal 0.924
overfilled canal 0.886
inhomogeneous filling in canal 0.834

residual root 0.969
periapical lesion (osteolytic, osteosclerotic or mixed) 0.903
periodontal bone loss 0.842

The statistical assessment between ground truth and Diagnocat software results
showed acceptable reliability (ICC > 0.75) for missing teeth, fillings assessment, pros-
thetic restoration, endodontically treated teeth (including under and overfilled canals),
residual roots, and periodontal bone loss. Unacceptable reliability was obtained for caries
assessment (ICC = 0.681) and periapical lesions assessment (ICC = 0.619) (see Table 3).

Table 3. ICC over ground truth for different evaluated objects.

Groups ICC Diagnocat/Ground Truth

missing tooth 0.959
carries 0.681
filling 0.920
prosthetic restoration (crown, post) 0.968
endodontically treated tooth 0.948

underfilled canal 0.784
overfilled canal 0.752
inhomogeneous filling in canal 0.671

residual root 0.938
periapical lesion (osteolytic, osteosclerotic or mixed) 0.619
periodontal bone loss 0.764
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4. Discussion

The application of AI in medicine and dentistry has increased in recent years, which
may be seen in the number of published studies [1,18–27]. The CNN based automatic pro-
tocol for X-ray evaluation used within this study presented high or very high sensitivity for
dental fillings, endodontically treated teeth, residual roots, periodontal bone loss, missing
teeth, and prosthetic restorations. Low sensitivity was obtained for periapical lesions, caries,
as well as over and underfilled canals. Diagnocat did not detect any of the three periapical
cysts, nor either of the two intramaxillary cysts or two broken endodontic instruments.
However, the protocol did not name these specific pathologies. All teeth connected to these
pathologies were marked as unhealthy and suggested for additional diagnostics using
CBCT or referral for additional evaluation by a general practitioner (GP), endodontist (ED),
or periodontist (PD) depending on the problem (see Figure 1 tooth 26, Figure 2 tooth 44,
Figure 3 tooth 16). Our study shows the lowest reliability for apical periodontitis, which can
be detected radiographically as periapical translucencies (a widened periodontal ligament
or clearly detectable lesions). The detection and interpretation of a radiolucency in the
periapical region is considered an important sign of periapical pathology. Although PRs
represent the first, basic radiological overview X-rays, the detection of apical lesions on
panoramic radiographs comes with limited sensitivity [28]. Nardi et al. in a retrospective
study evaluated the diagnostic accuracy of panoramic radiographs in the detection of
clinically/surgically confirmed asymptomatic apical lesions using CBCT imaging as the
reference standard. Sensitivity, specificity, diagnostic accuracy, positive predictive value,
and negative predictive value for panoramic radiographs with respect to CBCT imaging
were analysed. Panoramic pictures showed good diagnostic accuracy, high specificity, and
low sensitivity for the detection of endodontically treated apical periodontitis. The accuracy
of detection also depends on the localisation and quality of the X-ray. The best identified
apical lesions were located in the lower canine/premolar and molar areas, whereas the
worst identified apical lesions were located in the upper/lower incisor area and upper
molar area (anatomical conditions). These authors also found that the radiographic de-
tection of apical lesions is subject to the large variation between examiners in terms of
their experience. In our study, three experienced evaluators separately evaluated all the
radiographic data from panoramic radiographs. In the inclusion criteria, we included
the OPG quality criterium to limit the issue of localisation mentioned above. Among 805
assessments to reveal the presence or absence of the periapical lesions, obtained values of
sensitivity and specificity were 0.390 and 0.981, respectively.

The application of CNNs to assist in the detection of apical lesions could improve
the ability to detect the apical lesions. The AI and deep learning protocol described by
Ekert at al. [29] revealed that a moderately deep CNN trained on a limited amount of
image data showed satisfying discriminatory ability to detect apical lesions on panoramic
radiographs. The reference test was the majority vote of six independent examiners who
detected apical lesions on an ordinal scale (0, no apical lesion; 1, uncertain apical lesion;
2, clearly detectable apical lesion, certain apical lesion) in comparison with the CNN pro-
tocol. The CNN based protocol revealed sensitivity and specificity values of 0.65 and
0.87, respectively. In molars, sensitivity was significantly higher than in other tooth types,
whereas specificity was lower. The authors cautioned that the sensitivity of their system
should be improved before clinical use. In our research, among 805 measurements, Di-
agnocat revealed unacceptable reliability with ICC = 0.619. The program failed to assess
major osteolytic inflammatory lesions (e.g., cysts) in the periapical area. In a systematic
review (search field 1862 titles, 50 studies included), the artificial intelligence models ex-
hibited wide clinical applications in dentomaxillofacial radiology to identify maxillofacial
pathologies including periodontitis/periapical disease. However, it is still necessary to
further verify the reliability and applicability of the artificial intelligence models prior to
transferring these models into clinical practice [14]. Regarding the diagnosis of periapical
disease, Mol et al., as the pioneers of computer aided systems, concluded that interpretation
could play an important role in the diagnosis of periapical bone lesions. Its objectivity
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and reproducibility can make it a valuable instrument for standardizing the diagnostic
process [30]. It seems promising to use a more accurate radiologic tool as CBCT in artificial
intelligence protocols. Orhan et al. used the same artificial intelligence system as we tested
in our study, to detect periapical pathologies but on CBCT images. The images of 153
periapical lesions obtained from 109 patients were included in the study. The reliability
of the artificial intelligence system in correctly detecting a periapical lesion was 92.8%.
On the other hand, when analysing CBCT pictures by CNN: volumetric measurements
of the lesions were similar to those with manual segmentation. There was no significant
difference between the two measurement methods (p > 0.05). The authors concluded that
artificial intelligence systems support the clinical diagnosis and can be useful for detecting
apical lesions on CBCT. Under the conditions of these studies volume measurements per-
formed by humans and by artificial intelligence systems were comparable to each other [31].
According to the literature, CBCT, as the modern radiologic tool, significantly increases
the detection of periapical pathology compared to conventional periapical and panoramic
radiographs [32,33]. Jae-Lee et al. evaluated the detection and diagnosis of three types
of odontogenic cystic lesions, namely odontogenic keratocysts, dentigerous cysts, and
periapical cysts, using dental panoramic radiography and CBCT based on a deep CNN. The
pretrained model using CBCT images showed good diagnostic performance (sensitivity
96.1%, specificity 77.1%), which was significantly greater than that achieved by other mod-
els using panoramic images (sensitivity 88.2%, specificity 77.0%) (p = 0.014). The authors
concluded that the CNN system trained with CBCT images obtained higher diagnostic
performance than that trained with panoramic images [34]. Radiographic imaging for the
diagnosis of caries lesions has been a part of clinical examinations for approximately a
century. The value of radiography compared with a merely visual examination is espe-
cially emphasized in the diagnosis of caries lesions in clinically inaccessible surfaces, e.g.,
approximal. Detecting caries lesions on the radiographs can be questionable in some cases,
depending on the experience of the person assessing the radiograph, localisation of the
caries lesion, and type of radiograph (periapical, panoramic, bitewing, CBCT). Automated
interpretation of the image with the aim to standardise diagnosis and optimise accuracy
has been a research object in dentistry. Lee et al. evaluated the efficacy of CNN algorithms
for detection of dental caries in periapical radiographs with rather high accuracy [35]. CNN
systems were explored in the detection of caries lesions in bitewings. The research by Cantu
et al. showed an accuracy of the system of 80%, while dentists’ mean accuracy was lower
(71%). The AI system was significantly more sensitive than dentists, while its specificity
was not significantly lower [36]. The neural networks used in detecting and diagnosing
dental caries were also assessed by Prados-Privado et al. in a systematic review. The way in
which each of the studies analysed caries (definition, type, tooth), as well as the parameters
of each neural network (type of network, characteristics of the database, and results), were
studied. Unfortunately, under the conditions of these studies and variable parameters
assessed, the authors could not reach conclusive findings. Not all studies have detailed
how detected caries are defined and not all of them specify the type of caries. Each study
included in this review used a different neural network. All these variabilities complicated
the conclusions about the subject, the reliability, or absence of a neural network in the
detection and diagnosis of caries. Then, a comparison between the neural networking and
clinical dental results are obligatory [37].

There are limitations in this study. The evaluated group of 30 PR is relatively small,
although it provides data for appropriate statistical analysis. The second limitation is setting
the ground truth as the basis of three evaluators’ reports. Furthers studies are needed in
this field and authors of this research suggest involving a wider group of evaluators and
performing analyses using larger samples.

63



Diagnostics 2022, 12, 224

 

 

Figure 2. Diagnocat report, with missing detection of cyst connected with tooth 44, and automating
caption of tooth recognized as a root fragment.
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Figure 3. Diagnocat report, with missing detection of cyst in the right maxillary sinus in the region of
tooth 16 and automating caption of tooth with detected other pathologies. Referral recommendations
suggest additional CBCT diagnosis for this tooth as well as consultation with an endodontist.

5. Conclusions

Within the limitations of this retrospective study, we can draw the conclusion that the
tested CNN based AI system can be helpful for an initial evaluation of screening PR for
dental applications. Moreover, the report generated by the system refers to some potential
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pathologies to be evaluated by specific specialists or analysed with more accurate methods
such as CBCT.
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Abstract: Background: The goal of the study was to create a histopathology image classification
automation system that could identify odontogenic keratocysts in hematoxylin and eosin-stained
jaw cyst sections. Methods: From 54 odontogenic keratocysts, 23 dentigerous cysts, and 20 radicular
cysts, about 2657 microscopic pictures with 400× magnification were obtained. The images were
annotated by a pathologist and categorized into epithelium, cystic lumen, and stroma of keratocysts
and non-keratocysts. Preprocessing was performed in two steps; the first is data augmentation, as
the Deep Learning techniques (DLT) improve their performance with increased data size. Secondly,
the epithelial region was selected as the region of interest. Results: Four experiments were conducted
using the DLT. In the first, a pre-trained VGG16 was employed to classify after-image augmentation.
In the second, DenseNet-169 was implemented for image classification on the augmented images. In
the third, DenseNet-169 was trained on the two-step preprocessed images. In the last experiment, two
and three results were averaged to obtain an accuracy of 93% on OKC and non-OKC images. Conclu-
sions: The proposed algorithm may fit into the automation system of OKC and non-OKC diagnosis.
Utmost care was taken in the manual process of image acquisition (minimum 28–30 images/slide at
40× magnification covering the entire stretch of epithelium and stromal component). Further, there
is scope to improve the accuracy rate and make it human bias free by using a whole slide imaging
scanner for image acquisition from slides.

Keywords: dentigerous cysts; histopathology images; image classification; odontogenic keratocysts;
radicular cysts; deep learning

1. Introduction

Artificial Intelligence and machine learning has evoked interest and opportunities
propagating research in health care. The newly developed automated tools that target
varied aspects of medical/dental practice have provided a new dimension to translate
the laboratory findings into clinical settings [1]. The automated tools act as an adjunct
to a pathologist and meet the shortage of experts, which, furthermore, integrates experts
of two disciplines, i.e., pathology and computer engineering. Although a pathologist
provides a conclusive microscopic diagnosis to clinically challenging lesions, at times a
pathologist may go for clinicopathological or radiographic correlation in case of inadequate
biopsies [2].
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However, if one focuses on the source and output, mere automation of images may
not yield the desired results. Thereby, it is necessary to maintain the patient clinical details
and follow-up data for a minimum of five years [1].

Pathology is the branch of medicine that deals with the microscopic examination of
biopsied tissues for diagnostic purposes. The clinical diagnosis done by medical profession-
als mandates pathologist’s consultations to tailor the treatment [3]. Thus, histopathology is
traditionally considered a gold standard to confirm the clinical diagnosis.

A routine non-digitalized diagnostic pathology workflow involves procurement,
preservation, processing, sectioning, and staining of the biopsied tissue to create glass slides
followed by an interpretation [3]. The challenging cases are often consulted for multiple
expert opinions. Other challenges encountered are ambiguity in diagnosis superimposed
with inflammation, inter/intraobserver bias, etc. Although the diagnostic workflow is an
exhaustive procedure, automation can ease out the pathologist’s burden by providing a
quick and reliable diagnosis [2].

The major Machine Learning challenges to analyze the histopathology images include
(1) The requirement of a large dataset to analyze the histopathology images through
machine learning algorithms. (2) Identification and assessment of biological structures
such as nuclei, with varied shapes and sizes. (3) To detect, analyze, and segment tissue
structures in the stroma, such as glands and tumor nests. (4) Lastly, to classify the entire
slide image with stroma and epithelial cells [1,4,5].

Literature evidence shows that DL has been applied in analyzing images of major
cancers such as breast, colon, and prostate affecting people globally, while rare diseases are
seldom addressed by ML tools due to the paucity of data [2,6–8]. Furthermore, there are
other wider applications of AI models in dentistry that are convolutional neural network
(CNN) and artificial neural network (ANN) centric. These AI models have been used to
detect and diagnose dental caries, vertical root fractures, apical lesions, salivary gland
diseases, maxillary sinusitis, maxillofacial cysts, cervical lymph node metastasis, osteo-
porosis, alveolar bone loss, and for predicting orthodontic diagnosis and treatment [9,10],
genomic studies of head and neck cancer [11], diagnosis and prediction of prognosis in
oral cancer [9], and oncology [12,13], etc. Moreover, Majumdar B et al. (2018) highlighted
the benefits of AI-based dental education as it can lower the cost of education and ease the
strain on educators [14].

Odontogenic keratocysts (OKCs) are relatively rare jaw cysts that account for 3–11%
of all jaw cysts4. It is found to be the third most common cyst in the Indian population.
They are locally aggressive cystic lesions causing bony destruction of the jaws and root
resorption of teeth [15–17].

A clinical feature that warrants its recognition as a distinct entity is an increased
recurrence rate ranging from 2.55–62% and its malignant potential ranging between 0.13%
and 2%. The high recurrence is a noted feature of OKCs in patients with nevoid basal
cell carcinoma syndrome (NBCCS) [16]. Odontogenic keratocyst (OKC) was studied as
a tumor to establish an impact of the reclassification and redefinition on the incidence of
odontogenic tumors (OT) [18]. OKC may raise at any age [19].

OKCs have a unique microscopic appearance with 5–8 layers of para or orthok-
eratinized epithelium and a basal layer with tall columnar/cuboidal cells depicting a
typical “tombstone” appearance with polarized nuclei, while other common jaw cysts
(non-keratocysts), such as radicular and dentigerous cysts, account for 50% and 20%. Differ-
entiating keratocysts from non-keratocysts is quite challenging with an absence of a unique
microscopic appearance. Inflammation further complicates the microscopic evaluation.
Rather location, dental procedures opted, or inflammation defines them [2].

The extent of the OKC lesion in the jaw, its aggressive clinical behavior, and high
recurrence rate puts the clinicians into a dilemma with respect to therapeutic doctrine. Jaw
cysts are frequently observed at dental institutes and are less frequently encountered by
pathologists at medical institutes. There are no quantitative criteria in place which can
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eliminate the subjectivity bias and bring in more objectivity in the microscopic diagnosis of
jaw cysts [2].

The treatment of odontogenic keratocysts remains controversial, with surgeons opting
for conservative or radical approaches. Orthokeratinised keratocysts are treated less
aggressively when compared to parakeratinized keratocysts and the associated syndrome.
Clinicians continue to rely on their personal experience to opt for the most appropriate
treatment.

Thereby, to resolve these issues, the study aimed to design a histopathology image
classification automation system to diagnose and differentiate jaw cysts based on routine
hematoxylin and eosin-stained slide images of incisional biopsies. This would deploy ML
algorithms. This approach minimizes trauma to the patients and aids the surgeons to plan
treatment management.

Here this study considered a relatively large image dataset of 2657 and each class
had more than a thousand images, which is the basic requirement of the deep learning
algorithm. The images were diverse. Thus, the proposed framework can be integrated into
the automatic jaw cysts diagnosis system.

2. Materials and Methods

2.1. Tissue Specimens

Formalin-fixed (10% buffered) paraffin-embedded biological specimens that corre-
spond to 54 cases of OKCs, 23 cases of DC, and 20 cases of RCs were retrieved from the
archives of the Faculty of Dental Sciences, Dept. of Oral pathology, Ramaiah University of
Applied Sciences. Next, 4 microns thick sections were cut and stained with hematoxylin
and eosin (H&E). The patient’s identity was concealed, while high-resolution images of
microscopically confirmed cases of OKCs, RC, and DC were utilized for the present study.
This work was approved by the Ethics Committee of Ramaiah University of Applied
Sciences (Registry Number EC-20211/F/058).

2.2. Image Dataset

The dataset was obtained using Olympus BX53 Research Microscope with a digital
Jenoptik camera and Gryphax imaging software. The images of the tissue specimens were
of the dimension 3840 × 2160 pixel (px) and are saved in the jpg format.

Manually the images of the H&E-stained section of OKC, DC, and RC were captured
at 40× magnification. The consistency of 30 images/slides could not be maintained,
because pathological specimens differ from case to case. Furthermore, other factors, such
as size, length, epithelial convolutions, and presentation of the pathognomonic features,
do matter. This mandate exploring the entire stretch of epithelium. Those specimens with
inflammation further bring about certain changes in the epithelium.

The manually obtained images were annotated by an experienced pathologist. Firstly,
the jaw cysts were segregated into keratocysts and non-keratocysts employing the standard
diagnostic criteria, as the keratocysts present with a distinct histologic appearance, such as
parakeratinised squamous lining epithelium comprising of 5–8 layers of cells, while the
basal cells are cuboidal or columnar, have elliptical nuclei, and are consistently aligned,
resulting in a palisading pattern [20], while the non-keratocysts lack definitive histologic
features. Inflamed keratocysts lacking typical epithelium, inadequate biopsies etc. were
further classified as challenging ones.

Approximately 1384 images were of OKC and 1273 were images of the non-OKC class
(where 636 were images of dentigerous cysts and 637 of radicular cysts). The images cov-
ered both the epithelial and the sub-epithelial-stromal components. Only a few cysts were
completely devoid of epithelial components, consisting only of the fibrous or inflammatory
stroma. 70% of the dataset was used as a training set, 15% as validation, and the remaining
15% as a test set (Figure 1).
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Figure 1. Representing histopathology images of the cyst (A) OKC with tombstone appearance of
basal cells, corrugated epithelium without inflammation (B) Loss of classic appearance of OKC with
underlying inflammation (C) Tombstone appearance, without corrugation with reversed polarity
(D) Radicular cyst showing arcading pattern with inflammation (E) Dentigerous cyst, showing cystic
lining without inflammation (F) Dentigerous cyst, showing inflammatory connective tissue.

2.3. Computational Framework

The computation mentioned in the algorithm was performed by using cloud comput-
ing environment Google Colab, GPU—Tesla K80, RAM 12 GB, personal computer (Intel(R)

Core (TM) i3-4030U CPU @ 1.90 GHz) CNN was built with Keras.

Preprocessing

In the proposed framework preprocessing was one of the critical steps.
Step 1: Data-augmentation
In preprocessing, the dataset was augmented as the accuracy of DL algorithms in-

creased with the increase in the number of images in the dataset. Data augmentation is a
technique that assists machine learning programmers in significantly increasing the size of
data available for training models.

Image Data Generator class was used for the dataset augmentation. The images size
is set to (224, 224).

The data augmentation method is mainly used to get more images in the training
dataset, so that we can improve the efficiency of the model and make it more generalized.
This data augmentation will also help to overcome the overfitting problem posed by
transfer learning. And this augmentation method only applied to the training set, and not
on the validation, or test set (Table 1).

Table 1. Details of data augmentation Techniques.

Data Augmentation Technique Value

Shear range 0.2
Rotation range 20
Horizontal flip True

Vertical flip False
Zoom range 0.5

The data augmentation methods used were as follows: Image shear is a bounding box transformation. Rotation
of the image will be done by the rotation range. Image flipping is done by the horizontal flip and vertical flip.
Zooming of the images is done by the zoom range.

The width-shift range and height-shift range arguments are provided to the data
generator constructor to adjust the horizontal and vertical shift. For zooming of the images,
the argument in the data generator class will take the float value. And the zoom-in
operation will be performed when the given value to the argument is smaller than 1 and
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zoom-out will have performed when the value given is larger than 1. Table 1 shows the
details of data augmentation.

Step 2: Region Selection
In the images two regions were majorly observed, the epithelial region and connective

tissue region. The epithelial region of OKC had distinct features such as a palisading pattern
of basal cells and parakeratinized surface which distinguishes from DC and RC, so here an
attempt was made to retain only the epithelial region and remove the connective tissue
region. The images were titled into nine patches, each patch of resolution 1280 × 720. The
variance was calculated on each patch, the average was calculated over the variance values
obtained, and the region with the variance less than the average was marked as connective
tissue region. To confirm the connective tissue region, on the same patch, average intensity
is calculated after converting into grayscale, then histogram was plotted for each patch.
If the histogram had more values for the intensity above the average intensity, then this
confirms the patch belongs to connective tissue. The confirmed patches pixel values were
made zero. These tiles were concatenated again to get the original resolution (Figure 2).

Figure 2. Representing preprocessing (A) Input image (B) Gray image (C) Titled gray image (D) Out-
put of Preprocessing.

Region selection would have been achieved through an AI technique, such as semantic
segmentation using Region CNN or UNet, where every pixel would be labeled to any of
the classes, here, epithelial region and connective tissue region. These techniques needed
massive, labeled data. Creating such labeled data, one should use a tool, such as the
drawing pen tool of Photoshop or Adobe, to select the region of interest and label the
pixels. This process would have been very time-consuming and tedious. Moreover, AI-
based region selections, such as region-based convolutional neural networks or U-Net,
were computationally expensive and need high-end machines. To make the developed
technique usable for the public, these techniques had to be integrated with a desktop
application, mobile application, or web application. In this case, the executable code may
become too bulky to fit in the application and may take a longer time to execute and show
the results. Therefore, in the present research, a very simple, computationally inexpensive,
and very light image processing-based region selection technique was used.

2.4. Training of Convolutional Neural Networks

The experiment was conducted by training the comparatively simple CNN model
VGG16 on the images with step 1 data augmentation and preprocessing.
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The VGG model was developed by Simonyan with a very small convolutional in the
network, as we know that it is a simple model, and it is a more widely applied model
as compared to other models, because of its structure and the association between the
convolutional layers. The VGG16 architecture has thirteen convolutional layers in the order
Conv 1, Conv 2, Max pool 1, Conv 3, Cpnv 4, Max pool 2, Conv 5, Conv 6, Conv 7, Max
pool 3, Conv 8, Conv 9, Conv 10, Max pool 4, Conv 11, Conv 12, Conv 13. This is followed
by three fully connected layers with SoftMax as an activation function for the output layer.
The Conv 1 and Conv 2 have sixty-four feature maps, which are resulted from sixty-four
filters of size 3 × 3. Conv 3 and Conv 4 have a hundred and twenty-eight feature maps,
resulting from a hundred and twenty-eight filters of size 3 × 3. Conv 5, Conv 6, and Conv
7 have two hundred and fifty-six feature maps, which are resulted from two hundred and
fifty-six filters of size 3 × 3. Conv 8, Conv 9, and Conv 10 have five hundred and twelve
feature maps, which are resulted from five hundred and twelve filters of size 3 × 3. Conv
11, Conv 12, and Conv 13 have, again, five hundred and twelve feature maps, which are
resulted from five hundred and twelve filters of size 3 × 3. All the convolution layers were
built with a one-pixel stride and one pixel of zero paddings. All the four max pooling’s
were done on a 2 × 2-pixel window and with stride 2.

Every convolutional layer will follow a ReLU layer and for sampling it has maximum
pooling layers. For the classification, it has 3 layers that are fully linked for the classification,
in which 2 serve as hidden layers and the last one will be the classification layer. The first
layer had 25,088 perceptron’s, the second had 4096, and the third had 2, as we were here
performing binary classification of OKC and non-OKC.

Transfer learning is transferring the learned knowledge from a dataset by a network
for solving similar kinds of problems on the dataset which has fewer instances in the
dataset.

The belief in transfer learning is that the model trained on a huge and generic dataset
may suit for classification of the dataset with a smaller number of images. One can use
these learned feature maps, instead of training the model from scratch and in transfer
learning, we have the privilege that we can consider only part of the model, or full model,
as per our problem and we can take those considered part of the model weights to extract
specific features from the dataset. Lower layers will be updated as per our classification
problem.

In this work for the automation of OKC image classification, an already pre-trained
VGG16 model was considered. VGG16 has 16 layers in total; the first thirteen layers
are pre-trained on the data set ImageNet, which has nearly 1.2 million training images
of 22,000 categories. The required image size for the transfer learning model is VGG16
(224 × 224 × 3). Only the last three layers were trained for the dataset in hand.

2.5. Experiment II

Experiment II was conducted by training the effective CNN model DenseNet169 on
the preprocessed images with step 1 data augmentation.

Dense Net169 was trained on the given dataset. Dense Net is inspired by the study
which showed that convolutional neural networks, which have short connections between
the layers closer to the input layer than those which are closer to the output layer, are
efficient to train and, at the same time, can grow deeper and have good accuracy. In Dense
Net, each layer is connected to the other layer having the same feature-map size in a
feed-forward manner. In the case of traditional networks, where the number of connections
is equal to the number of layers, in Dense Net, the number of connections is calculated as
N(N+1)

2 where N represents the number of layers.
This network architecture allows reusing the feature maps; it improves the information

flow in the network through direct connections and reduces the number of parameters.
The number of filters for each layer in Dense Net can be as small as 12. These densely
connected links provide the effect of regularization which prevents overfitting in such cases
where the training data are small.
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Let y0 represent an image, N is the number of layers in the network, Cn (.) is the
composite function. The index of each layer is represented by n. Then, the input to the last
layer is represented by Equation (1).

Yn = Cn([y0, y1, y2 . . . , yn−1]) (1)

[y0,y1,y2, . . . .,yn − 1] is obtained by concatenating the feature maps from layers 0 to
n − 1. Cn is a composite function of three operations in the order: Batch normalization,
ReLU, and 3 × 3 convolution.

The architecture of the Dense Net is divided into several blocks referred to as ‘dense
blocks. These blocks are separated by transition layers, which consist of convolution
and pooling layers. This CNN captures the overall image features including the unique
feature of OKC, separation between epithelium, and connective tissue region. This also
helps in capturing the inflamed OKC, where the tombstone arrangement of basal cells was
disturbed.

2.6. Experiment III

DenseNet169 was trained on the preprocessed dataset. This dataset was created
by retaining the patches with epithelium layer in OKC and non-OKC (DC and RC) as
explained in the preprocessing section. This CNN is trained to capture the regularity in
basal cell arrangement (tombstone arrangement) and 5 to 8 layers of basal cell.

2.7. Experiment IV

The models trained in experiments II and III were integrated by averaging the resultant
confidence scores to get the predicted output.

The overall architecture of experiment IV is as shown in Figure 3.

Figure 3. Overall architecture of experiment IV OKC classifier.

The optimizer used is the Adam optimizer, and binary cross entropy is the loss
function.

3. Results

There were 1384 images of OKC and 1273 images of non-OKC; 15% of the images
were used for testing the trained model. In total 207 images of OKC and 191 images of
non-OKC were used for testing.

The loss function used in each classifier model discussed here is binary cross entropy.
This is most used for binary classification problems. The formula for calculating the binary
cross entropy loss or log loss is given by Equation (2).

Loss = −
1

N ∑
N

i=1 yi. log(p(yi)) + (1 − yi). log(1 − p(yi)) (2)
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Accuracy is the fraction of several predictions done correctly by the model out of the
total number of samples. The formula for calculating accuracy is given by Equation (3).

Accuracy =
True positive + True negative

True positive + True negative + False positive + False negative
(3)

Precision is the fraction of several true positive cases out of the number of samples
that are predicted positively by the model. The formula for calculating precision is given
by Equation (4).

Precision =
True positive

true positive + False positive
(4)

Recall is the fraction of many true positive cases out of the number of actual positive
cases. The formula for calculating recall is given by Equation (5).

Recall =
True positive

true positive + False Negative
(5)

The F1-score is the harmonic mean of precision and recall. The formula for calculating
the F1-score is given by Equation (6).

F1 − score = 2 ∗
Precision ∗ Recall

Precision + Recall
(6)

ROC or Receiver Operator Characteristic curve is a graph that plots the true positive
rate against the false-positive rates at different threshold values. This is particularly useful
in binary classification problems.

A confusion matrix is a table that gives us a summary of the model’s performance.
The format of the confusion matrix for a binary classification problem is shown in (Table 2).

Table 2. Description of the confusion matrix.

Actual Values

Predicted Values
True positive False-positive
True negative False-negative

The macro-average gives the overall performance of the classifier. The macro average
is the arithmetic mean of individual classes’ precision, recall, and F1-score.

Weighted avg gives the function to compute precision, recall, and F1-score for each
label and returns the average considering each label’s proportion in the dataset.

3.1. The Training Phase

In the training phase the parameters given to the developed model were:

(a) ‘Adam’ optimizer

An optimization algorithm plays an important role in deep learning algorithms, as it
is a strategy that is performed iteratively until an optimum solution is obtained. Adam
optimizer is a hybrid of Adagrad and RMSProp algorithms to produce an optimum solution
for a given problem.

(b) minimum batch size

Updating the internal model parameters would be tedious if done after every sample,
so samples are grouped as batches and the model parameter is updated for these batches.

Batch size is a hyperparameter. Here, 11 histopathological images were grouped as
batches.

(c) the number of training epochs
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One epoch means the entire training dataset was used to update the internal model
parameters once. The number of epochs is a hyperparameter.

(d) initial learning rate

The learning rate is also a hyperparameter. In the case of stochastic gradient descent
optimization algorithm learning rate is the amount of the internal model parameter to
change concerning the calculated error.

3.2. Results Experiment I

Hyperparameters such as the number of epochs and batch size are decided based on
experimentation and comparing the results.

In experiment I the VGG16 model performed its best when trained for nine epochs
with 12 as the batch size. At the end of nine epochs, the validation accuracy is 89.01% and
test accuracy is 62% as shown in Figure 4.

Figure 4. Results of Experiment I (A) Confusion matrix and performance metric (B) Training parame-
ters (C) ROC curve.
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3.3. Experiment II

In experiment II, only step 1 data augmentation was performed in preprocessing. That
is, the CNN was trained only on the entire image.

In experiment II, the DenseNet169 model performed its best when trained for 15 epochs
with 12 as the batch size. At the end of 15 epochs, the validation accuracy is 89.82% and
test accuracy is 91%. The AUC for this model is 95.966%.

The plot of accuracy on training and validation data is as shown in Figure 5B. From
this plot, we can find that the accuracy of the model for training and validation data
converged and is stable at the end of 15 epochs, which indicates that the model is not
overtrained and, also, did not overfit. The plot of loss on training and validation data is
as shown in Figure 5B. From this plot, we can find that the loss of the model for training
and validation data reduced as the training progressed. It converged after a few epochs
and became stable later on. The confusion matrix and classification report are shown in
Figure 5A. From the confusion matrix, we can understand that the number of true positives
for this model is 181 out of 207 positive samples. The ROC curve is shown in Figure 5C.

Figure 5. Results of Experiment II (A) Confusion matrix and performance metric (B) Training
parameters (C) ROC curve.
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3.4. Experiment III

In experiment III, both the steps were performed in preprocessing. That is, the CNN
was trained only on the features of the epithelium.

On experimentation and comparison, Model-3 gave its best predictions when trained
for 100 epochs with 16 as the batch size. At the end of 100 epochs, the test accuracy is noted
as 91%. The AUC for this model is 96.375%.

The plot of accuracy on training and validation data is as shown in (Figure 6B). From
this graph, we can observe that the validation accuracy is varying throughout the training,
but, in the end, it stabilizes. The gap between the two lines shows some over-fitting on the
validation data.

The plot of loss on training and validation data is as shown in (Figure 6B). From
this graph, we can find that the training loss reduces in the first few epochs and then
becomes completely stable. Similarly, the validation loss is almost stable with very little
variation throughout the training (Figure 6B). The confusion matrix and classification
report are shown in Figure 6A. On observing the confusion matrix, we can find that there
are 191 correctly identified positive samples out of 207 positive samples. The ROC curve is
as shown in Figure 6C.

Figure 6. Results of Experiment III (A) Confusion matrix and performance metric (B) Training
parameters (C) ROC curve.
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3.5. Experiment IV

In experiment IV, the models trained in experiments II and III were integrated by
averaging the resultant confidence scores to get the predicted output. The confusion matrix
and classification report are shown in Figure 7A. The confusion matrix shows that this
combined architecture has correctly identified 189 samples out of 207 samples belonging to
the true class. The ROC curve is as shown in Figure 7B.

Figure 7. Results of Experiment IV (A) Confusion matrix and performance metric (B) ROC curve.

4. Discussion

The main features to look at in the OKC histopathology image pattern are thick
epithelium, 5–6 layers of a regular arrangement of basal cells, also called tombstone
arrangement, and the separation of epithelium and the connective tissue. On the other
hand, DC has a thin epithelium layer with 2–3 layers of irregularly arranged basal cells and
the epithelium layer is not properly distinguishable and has penetration into connective
tissue in RC. The classification is more challenging when they undergo inflammation, the
epithelium layer of DC becomes thick, which may be confused for OKC.

These images show large diversity within the class, posing a challenge for automation.
Deep learning has shown promising results in the automation of digital histopathological
image classification. Automation of digital histopathological image classification brings
the standardization in the procedure, by eliminating the manual observation of the tissues
under a microscope by the pathologists, which is completely subjective and suffers inter-
laboratory variations.
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In the proposed design, during preprocessing an attempt was made to select the
epithelial region in the images. A Dense Net CNN was trained on these datasets to identify
the features in the epithelium which distinguishes OKC from RC and DC. Another Dense
Net was trained on the whole image to capture the separation of epithelium and the
connective tissue feature. As the dataset had a limited number of images, transfer learning
was adopted. The transfer learning approach results in better accuracy and reduced training
time. Transfer learning is reusing a pre-built and pre-trained model on a new dataset. With
transfer learning, we can reduce training time and get the best results even when many of
data are unavailable. Both Dense Net CNNs obtained 91% accuracy over the dataset. An
ensemble model of the Dense Net CNNs obtained an accuracy of 93%. Densenet169 was
pre-trained on the ImageNet dataset only the last layer was trained for the given dataset.
The problem of the OKC and non-OKC classification was addressed by using two CNN
models. First, CNN was trained on the hand-crafted small patches of epithelium and the
second on the whole image. They obtained a higher accuracy of 98% as they had a large
dataset of 1704 OKC and 1635 non-OKC images [21].

The classification of periapical cysts (PCs), dentigerous cysts (DCs), ameloblastomas
(ABs), odontogenic keratocysts (OKCs), and normal jaws with no diseases, considering
the dataset for panoramic radiographs, were also attempted [22]. The classification perfor-
mance of CNN for PCs, DCs, ABs, OKCs, and normal jaws for sensitivities, specificities,
accuracies, and AUCs are: 82.8%, 99.2%, 96.2%, and 0.92 (PCs), 91.4%, 99.2%, 97.8%, and
0.96 (DCs), 71.7%, 100%, 94.3%, and 0.86 (ABs), 98.4%, 92.3%, 94.0%, and 0.97 (OKCs), and
100.0%, 95.1%, 96.0%, and 0.94 (normal jaws), respectively. The work process for assisting
the dentist was analyzed, with emphasis on the automatic study of the cyst using texture
analysis [23,24]. Keratocystic odontogenic tumor diagnosis automation is in the infancy
stage [22]. A survey stated that feature retrieval for CNN accomplished fine-tuning in
image classification [15]. The occurrence of several OKCs is one of the chief conditions for
the analysis of nevoid basal cell carcinoma syndrome [25]. OKC lesions were commonly
found more in females than males [26]. The recurrence of OKCs was in between five to
seven years, but recurrence in the range of 12 to 102 months was also reported [27,28].
The management of OKCs did not accept any protocol [29]. An approach was proposed,
known as the Bouligand–Minkowski descriptors (B–M), to evaluate the success rates based
on the epithelial lining classification of these cysts using a histological image database [30].

The current investigation used H&E-stained sections on incisional biopsies, which
are globally acknowledged, cost-effective, and time-tested. However, there are other ways
to reduce the dataset by opting for immunohistochemical (IHC) staining specific to the
nucleus. In the absence of a typical epithelium, in case of inadequate biopsy, the presence of
non-keratinizing epithelium with basal palisading and an immunophenotype characteristic
of OKC (basal bcl2, patchy or diffuse CK17, and upper layer CK10 positivity) may be
consistent with the OKC diagnosis [31]. A basic nuclear staining approach like DAPI
staining can be used to detect palisading patterns [2].

5. Conclusions

The hematoxylin and eosin-stained tissue specimens of OKC and NK were collected
as a dataset. Two convolutional neural network models were trained on the region-selected
dataset and the whole image dataset separately. These were ensemble by averaging their
confidence scores, to give better accuracy. This architecture could be computationally
expensive and may require a faster CPU to overcome. If IHC is opted for as a choice to
reduce the dataset, utmost care must be taken on the economic viability while using IHC.
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Abstract: The Fourier transform infrared (FTIR) imaging technique was used in a transmission
model for the evaluation of twelve oral hyperkeratosis (HK), eleven oral epithelial dysplasia (OED),
and eleven oral squamous cell carcinoma (OSCC) biopsy samples in the fingerprint region of
1800–950 cm−1. A series of 100 µm × 100 µm FTIR imaging areas were defined in each sample
section in reference to the hematoxylin and eosin staining image of an adjacent section of the same
sample. After outlier removal, signal preprocessing, and cluster analysis, a representative spectrum
was generated for only the epithelial tissue in each area. Two representative spectra were selected
from each sample to reflect intra-sample heterogeneity, which resulted in a total of 68 representative
spectra from 34 samples for further analysis. Exploratory analyses using Principal component anal-
ysis and hierarchical cluster analysis showed good separation between the HK and OSCC spectra
and overlaps of OED spectra with either HK or OSCC spectra. Three machine learning discriminant
models based on partial least squares discriminant analysis (PLSDA), support vector machines
discriminant analysis (SVMDA), and extreme gradient boosting discriminant analysis (XGBDA)
were trained using 46 representative spectra from 12 HK and 11 OSCC samples. The PLSDA model
achieved 100% sensitivity and 100% specificity, while both SVM and XGBDA models generated 95%
sensitivity and 96% specificity, respectively. The PLSDA discriminant model was further used to
classify the 11 OED samples into HK-grade (6), OSCC-grade (4), or borderline case (1) based on their
FTIR spectral similarity to either HK or OSCC cases, providing a potential risk stratification strategy
for the precancerous OED samples. The results of the current study support the application of the
FTIR-machine learning technique in early oral cancer detection.

Keywords: Fourier transform infrared spectroscopy; FTIR imaging; spectral biomarker; multivariate
analysis; machine learning; discriminant model; oral squamous cell carcinoma; oral epithelial
dysplasia; oral potentially malignant disorder; risk stratification; early oral cancer detection

1. Introduction

Oral cancer refers to a subgroup of head and neck malignancies that affect the lips,
tongue, salivary glands, gingiva, floor of the mouth, buccal surfaces, and other intra-
oral locations. It is one of the most prevalent cancers worldwide, with especially high
incidence in low- and middle-income countries. Despite easy access to the oral cavity and
new management strategies, oral cancer is still characterized by high morbidity and low
survival rates, which are partially due to late diagnosis [1]. More than 90% of oral cancers
are oral squamous cell carcinoma (OSCC), which are a heterogeneous group of cancers
arising from the mucosal lining of the oral cavity. Most oral cancer cases are associated with
lifestyle habits including smoking, smokeless tobacco use, excessive alcohol consumption,
and betel quid chewing. OSCC is 2–3 times more prevalent in men than it is in women,
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and its incidence is the highest in people who are older than 50 years of age. Genetic
predisposition also plays an important role in the development of OSCC [2,3].

Oral carcinogenesis is a highly complex, multifactorial, and multistep process that can
begin as hyperplasia/hyperkeratosis and can evolve to epithelial dysplasia, carcinoma in
situ, and OSCC [4]. Most OSCC are preceded by asymptomatic clinical lesions that are
referred to as oral potentially malignant disorders (OPMDs), which include leukoplakia,
erythroplakia, reverse smoker’s palate, erosive lichen planus, oral submucous fibrosis,
lupus erythematosus, and actinic keratosis [5,6]. The clinical presentations of OPMDs
can be further diagnosed as hyperplasia/ hyperkeratosis (HK), oral epithelial dysplasia
(OED), or OSCC via histopathological evaluation. Epithelial HK are a benign overgrowth
of cells in the oral epithelium. They may represent the initial stage of cancer development.
OED is defined as a precancerous lesion in the oral epithelial region where cells exhibit
atypia up to a certain level of the epithelium. The diagnosis and grading of OED are
mainly based on the combination of architectural changes and the appearance of specific
histological features [7]. An OED can be graded as mild, moderate, or severe based on the
WHO’s three-tier classification system. It has been estimated that 7–50% of severe, 3–30%
of moderate, and <5% of mild OED lesions can transform into OSCC [8–10].

The gold standard WHO 2017 three-tier grading system for OED has some limitations,
including subjectivity, inter- and intra-observer variations, and limited capability in pre-
dicting the malignant transformation risk of OED in individual cases [11]. Suggestions to
overcome these limitations include the use of clinical determinants and molecular markers
to supplement the grading system [12]. However, no single clinical-pathological predicting
factor or molecular biomarker has achieved the clinical criteria for that purpose [13]. Accu-
rate risk assessment and the effective management of OPMD and OED play critical roles
for improving oral cancer survival rates and prognosis. Therefore, there is a need for new
biomarkers or modern techniques that can provide objective and accurate OPMD/OED
risk stratification for early oral cancer detection and prevention.

One promising technique is Fourier transform infrared (FTIR) spectroscopy. FTIR
spectroscopy is based on the vibrational energy state changes of molecules after absorbing
infrared radiation at certain frequencies. The unique absorption pattern of a sample pro-
duces characteristic bands in its FTIR spectrum. The FTIR spectrum for a biological sample
provides a biochemical profile of proteins, nucleic acids, lipids, and carbohydrates in the
sample, called “biomolecular fingerprinting” [14]. Not only can FTIR spectroscopy measure
the relative quantity of a certain biomolecule, but it is also sensitive enough to probe subtle
changes in molecular structure and microenvironment, such as the secondary structure of
proteins, the mutation of nucleic acids, and the peroxidation of phospholipids [15–19]. It
has been shown that FTIR spectroscopy can detect bimolecular changes that are associated
with carcinogenesis much earlier than the appearance of morphological abnormalities,
supporting its promising role in early cancer detection [20–22]. In FTIR imaging, each indi-
vidual pixel comprises a full FTIR spectrum, and both the spectral and spatial information
of the sample is integrated into a three-dimensional hyperspectral data cube [23]. Since the
middle of the 20th century, FTIR spectroscopy and imaging techniques have been studied
as label-free, non-invasive, highly sensitive, and specific analytical tools for the detection
and characterization of malignancies in a wide variety of tissues, including skin, brain,
breast, colon, cervix, lung, stomach, ovary, prostate, leukemia, lymphoma, and squamous
epithelium [22,24,25].

In the field of oral disease research, FTIR spectroscopy and imaging techniques have
been used to investigate oral cancer and precancer using a variety of biological samples,
including oral tissues, exfoliated oral cells, biofluids (e.g., serum, plasma, saliva, sputum),
and extracellular vesicles. Those studies provide early evidence for the usefulness of
FTIR in oral cancer characterization and the differentiation of cancerous samples from
noncancerous ones [26]. However, the number of published studies so far is still relatively
small in this area, and more research is needed to better understand the promise of FTIR in
oral cancer detection and the potential for clinical translation.
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In the current study, we report an accurate discrimination of OSCC biopsy samples
from HK samples using transmission FTIR imaging technique together with machine
learning algorithms. Particularly, we introduce a novel classification strategy for OED
samples based on their FTIR spectral similarities to either HK or OSCC samples for the
first time. This novel classification strategy is easy to implement computationally and may
provide a potential risk stratification solution to the malignant progression assessment
of OED. The specific objectives of the current study were: 1. to develop an effective
and practical method of generating representative epithelial FTIR spectra from formalin-
fixed paraffin-embedded (FFPE) biopsy samples; 2. to characterize HK, OED, and OSCC
samples based on their representative spectra; 3. to build machine learning models for
discriminating OSCC from HK samples; and 4. to develop a novel strategy for classifying
OED samples for potential risk stratification applications.

2. Materials and Methods

The overall flowchart of the experiment is illustrated in Figure 1.

 

µm sections us

× 3 times at room tem-

Figure 1. Flowchart of the experiment.

2.1. Sample Preparation

The current study received approval from the Institutional Review Board of University
of Missouri at Kansas City (UMKC) for the use of archived human oral tissues. Specifically,
34 FFPE archived oral biopsy samples were obtained from the Pathology Department of
the UMKC School of Dentistry, including 12 HK samples, 11 moderate-to-severe OED
samples, and 11 OSCC samples. The samples were cut into 5-µm sections using a manual
microtome (Leica RM2125, RTS, Leica Biosystems Inc., Buffalo Grove, IL, USA). One
section was placed on positively charged glass slides for hematoxylin and eosin (H&E)
staining and histological evaluation. The H&E-stained sections were imaged with a light
microscope (Keyence BZ-X810, Keyence Corporation, Osaka, Japan), and the digital images
were sent to a pathologist, who subsequently annotated areas of interest (AOI) based on
histopathological evaluation. The annotated H&E images were then used as references for
FTIR imaging. An adjacent tissue section was placed on a BaF2 disc (REFLEX Analytical
Corporation, Ridgewood, NJ, USA) for FTIR imaging. The tissue samples on the BaF2
discs were deparaffinized through immersion in histological grade xylene (CAS number
1330-20-7, Sigma-Aldrich, St. Louis, MO, USA) for 5 min × 3 times at room temperature.
The deparaffinized samples were air-dried and stored in a vacuum desiccator.

2.2. FTIR Imaging

FTIR images of tissue sections were acquired in transmission mode using a Perkin
Elmer FTIR Spectrum Spotlight imaging system (Spectrum one, Spotlight 300, Perkin Elmer,
Waltham, MA, USA). The Spotlight 300 imaging system features a dual-mode detector

87



Diagnostics 2021, 11, 2133

with a 1 ×16 narrow band mercury cadmium telluride (MCT) array and 100 µm medium
band MCT single point detector operating at liquid nitrogen temperature. The following
parameters were used for FTIR imaging: spectral resolution of 4 cm−1, spectral range of
4000–950 cm−1, pixel resolution of 6.25 µm, and co-adding spectra of 16 per pixel. Specif-
ically, an overall survey image was first generated using the built-in light microscope
in the FTIR Spotlight system for the sample section. Then, a series of 100 µm × 100 µm
(16 × 16 pixels) imaging areas were defined in the survey image in reference to the diag-
nostic AOI in the corresponding digital H&E image. The diagnostic AOI was the sample
region(s) that were used for pathological diagnosis. For example, if an OSCC sample
consisted of hyperkeratotic region(s), dysplastic region(s), and OSCC region(s), only the
OSCC region(s) were used as the diagnostic AOI. The imaging areas that were chosen were
primarily in the epithelial regions for the HK and OED samples and in the invasive regions
for the OSCC samples. Areas with poor tissue structural integrity were avoided to ensure
high quality of spectra. The number of the imaging areas was mainly determined by the
size and quality of each AOI. Right before the scan, a background spectrum was collected
outside the sample area from the clean BaF2 substrate to be subtracted from the single
beam spectra for background correction. The imaging area size of 100 µm × 100 µm was
chosen to ensure that there was enough tissue/cell content to obtain a local representative
spectrum while limiting the acquisition time to ensure a valid background correction. FTIR
image acquisition was performed using the Spectrum IMAGE software by Perkin Elmer.
Figure 2 illustrates the FTIR imaging areas as described above.

−

−

Figure 2. Illustration of FTIR imaging areas for a sample section.

2.3. Data Analysis

FTIR hyperspectral images are high-dimensional data containing thousands of vari-
ables (spatial coordinates and wavenumbers) for many objects (samples). An FTIR hy-
perspectral dataset holds an enormous amount of biochemical information and requires
appropriate multivariate analyses to identify patterns and trends as well as to build classi-
fication models.

2.3.1. Spectral Preprocessing

All of the FTIR spectra were first preprocessed to remove or reduce biochemically
irrelevant signal contributions from physical, macro-structural, and environmental fac-
tors. Spectral preprocessing can improve the accuracy of subsequent multivariate data
analyses toward building better classification models. The data analysis was performed
using the Eigenvector PLS_Toolbox software (Eigenvector research incorporated Inc.,
Manson, WA, USA) in MATLAB (R2020b, MathWorks, Inc., Natick, MA, USA). Specifically,
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the original hyperspectral image datasets were subject to the following general preprocess-
ing: 1, transmission to absorbance conversion (A = log(1/T)); 2, selection of fingerprint
region (1800–950 cm−1); 3, Savitzky–Golay smoothing; 4, EMSC (extended multiplicative
signal correction) for light-scattering; 5, automated weighted least squares (AWLS) baseline
correction; and 6, vector normalization. The general preprocessing allowed the spectra to
stay in their non-derivative form for easy observation and interpretation. Secondary deriva-
tive spectral differentiation (7-point window size) was used as an additional preprocessing
step during model building.

2.3.2. Unsupervised Exploratory Analysis Using PCA and HCA

After signal preprocessing, unsupervised exploratory analyses were used to identify
cluster patterns and data trends and to help understand the nature of the samples, including
outliers and experimental errors. Principal component analysis (PCA) is the most widely
used unsupervised multivariate exploratory analysis method for reducing the complexity
of a spectral dataset by linearly transforming the original coordinate system into a new
coordinate system defined by the principal components (PCs) that best explains the variance
in the dataset. The PCs are orthogonal to each other and are generated in a decreasing
order of explained variance. PCA decomposition uses the following form:

X = tpT + E

where X represents the preprocessed spectra data, t represents the PCA scores, p represents
the loadings, and E represents the residuals. All of the components are in matrix format,
and pT represents the transpose of the loading matrix p [27]. The PCA scores represent the
variance in the samples and are used to detect clustering patterns related to biochemical
similarities or dissimilarities among the samples. The PCA loadings represent the variance
in the wavenumbers and are used to identify important spectral variables for the pattern
observed in the score distribution [28]. The PCA loadings are often used for identifying
spectral biomarkers that distinguish samples in different biological or pathological classes.

An observation of each individual image dataset revealed some outlier spectra, which
were removed using PCA. Specifically, a reduced Hotelling’s T2 versus Q residuals scatter-
ing plot chart was generated by PCA. The x-axis (reduced Hotelling’s T2) is the sum of the
normalized squares scores, which is the distance from the multivariate mean to the sample
projection onto the PCA PCs space. The y-axis (reduced Q residuals) is the sum of squares
of each sample in the PCA error matrix. The pixel spectra with high value in Hotelling’s T2

or Q residual or both were investigated and were subsequently removed from the dataset.
Some FTIR imaging areas contained both epithelial and nonepithelial (e.g., stroma)

tissues. Unsupervised hierarchical cluster analysis (HCA) was used to separate epithelial
spectra from other types of spectra. Due to the distinct spectral features of different tissue
types, HCA was able to separate them at the highest or the next highest hierarchical levels.
The pixel spectra corresponding to the epithelial tissue were selected and averaged to
generate a representative epithelial FTIR spectrum for each imaging area (referred to as
“representative spectra” later).

Multiple representative spectra were generated for each sample and were visually ex-
amined for quality check. Intra-sample variations of representative spectra were observed
for some samples. To address this issue, two high-quality representative spectra from the
diagnostic AOI of each sample were selected to reflect the intra-sample heterogeneity. As a
result, a total of 68 representative spectra were selected from 34 samples and were consoli-
dated into one combined dataset for further exploratory and discriminant analyses. Each
representative spectrum in the combined dataset was labelled with a class ID according
to its histopathological diagnosis (H for HK, D for dysplasia, and C for OSCC). The class
average spectra for the three classes were compared for the visual identification of spectral
differences. Additional exploratory analyses using unsupervised PCA and HCA were
performed on all 68 representative spectra in the combined dataset to identify patterns and
trends.
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2.3.3. Supervised Discrimination between HK and OSCC Samples

Following exploratory analyses, discriminant machine learning models were built
using three different supervised algorithms: partial least squares discriminant analysis
(PLSDA), support vector machines discriminant analysis (SVMDA), and extreme gradient
boosting discriminant analysis (XGBDA). PLSDA is a feature extraction and classification
algorithm that is widely used for spectral data analysis. It is adapted from the partial least
square regression (PLSR) technique, which aims to build a linear regression model using a
latent variable (LV) approach to find the multidimensional direction in the X space that
explains the maximum multidimensional variance direction in the Y space. The underlying
mathematical model of PLSR is:

X = tpT + E

Y = uqT + F

in which X and Y are the observable variable matrix and predicted variable matrix, re-
spectively; t and u represent projected scores of X and Y; p and q represent orthogonal
loading matrices for the projected X and Y scores; and E and F are the error terms. When
the predicted variables Y are categorical, such as in the current study (e.g., HK and OSCC
classes), it becomes a discriminant technique called PLSDA. The PLSDA model is applied
to X, reducing the original observable variables to a small number of LVs, which are linear
combinations of the original variables that attempt to explain the maximum covariance be-
tween X and Y. Then, a linear discriminant classifier is used for classifying the samples [29].
PLSDA is an effective and powerful method for spectral data classification. It works well
when high dimensionality and high collinearity are present in small-sample data, such as
in the case in the current study. However, its performance may be subject to degradation
under complex conditions such as nonlinearity, class imbalance, and multiclass [30]. An
SVM is a binary linear classifier with a non-linear step called the kernel transformation [31].
A kernel function can transform the input spectral space into a feature space by applying a
non-linear mathematical transformation. Then, a linear decision boundary is fit between
the closest samples to the border of each class (called support vectors) and is used for
determining the class memberships of new samples. In the current study, the radial basis
function (RBF) kernel was used in SVM modeling. SVMDA is an effective algorithm for
high dimensional spaces, especially when the number of dimensions is greater than the
number of samples. With its kernel function, it can handle some non-linearity in the data.
However, it is more time consuming and more susceptible to overfitting compared to
PLSDA. The third algorithm XGBDA is an implementation of gradient boosted decision
trees, that produces a prediction model in the form of an ensemble of weak prediction
models, typically decision trees [32]. It is used in Kaggle competition and has shown
superior efficiency and high prediction accuracy. The XGBDA algorithm is a class of lifting
algorithm composes of a series of base classifiers. The original dataset is divided into
multiple sub-datasets, and each sub-dataset is randomly assigned to the base classifier for
classification/prediction. The results from the weak base classifiers are combined based on
a certain weight, generating a final result for the XGBDA [33]. The advantages of XGBDA
include its ability to handle non-linear parameters better than PLSDA and SVM and its
robustness to outliers. On the other hand, XGBDA has a tendency for overfitting, and its
performance for spectral data analysis has not been widely tested. It would be interesting
to compare it with the commonly used PLSDA and SVMDA in the current study.

2.3.4. A novel Strategy for OED Classification

Based on the results from the exploratory analyses, a novel strategy was developed for
discriminant analysis. Specifically, in the first phase, 46 representative spectra from 12 HK
samples and 11 OSCC samples were used as training data to build the discriminant models.
Due to the relatively small sample size, venetian blind (10-fold with 2 spectra from the
same sample per blind) cross-validation was used for model performance optimization and
evaluation. The model performance was evaluated using receiver operating characteristic

90



Diagnostics 2021, 11, 2133

curves (ROC curves), area under the curve (AUC), and sensitivity and specificity. A
confusion matrix provides information for true positive (TP), false positive (FP), true
negative (TN), and false negative (FN). Sensitivity is defined as the probability of achieving
a positive test result in subjects with the disease and can be calculated by TP/(TP + FN).
Specificity is defined as the probability of obtaining a negative test result in subjects
without the disease and can be calculated by TN/(TN + FP) [34]. In the second phase, the
performances of the three discriminant models were compared, and the best performing
model was further used to classify the 22 representative spectra from the 11 OED samples.

3. Results

Figure 3 compares the class-average spectra for the HK, OED, and OSCC samples.
Specifically, the class average spectra were calculated from 24 representative spectra of HK
samples (green), 22 representative spectra of OED samples (blue), and 22 representative
spectra of OSCC samples (red), respectively. Based on visual observation, the spectral
differences are mainly located in four spectral regions: the region around 1650 cm−1, the
region of 1600–1500 cm−1, the region of 1350–1180 cm−1, and the region of 1160–950 cm−1.
The 1650 cm−1 band is the amide I band of protein, which is mainly associated with
the C=O stretching vibration in the peptide backbone structure [35]. The results show a
descending band intensity in the order of HK > OED > OSCC for the amide I band. The
1600–1500 cm−1 region is the amide II band of the protein, which is mainly associated with
the bending vibration of the N-H bond and the stretching vibration of the C-N bond in
the peptide backbone [35]. The results show a descending band intensity at 1548 cm−1 in
the order of HK > OED > OSCC and a red shift toward lower wavenumbers on the right
shoulder of the amide II band for the OSCC and OED spectra (more shift for OSCC than
OED). The spectral region of 1350–1180 cm−1 can be attributed to the amide III band of
protein (1350–1250 cm−1), which is mainly from N-H bending and C-N stretching vibration,
to the asymmetric vibration of –PO2

− (1240 cm−1), and to the deformational modes of the
CH3/CH2 groups in phospholipid and nuclei acids [36,37]. The results show a descending
band intensity at 1310 cm−1 in the order of HK > OED > OSCC and at 1240 cm−1 in the
order of OSCC > OED > HK. The spectral region of 1160–950 cm−1 can be attributed to the
stretching vibrations of the C–O/C–C groups in the carbohydrate (e.g., glycogen) (1154
and 1030 cm−1) and to the symmetric vibration of –PO2

− in the phospholipid and nucleic
acids (1080 cm−1) [14,38]. The results show a descending band intensity in this region in
the order of OSCC > OED > HK.

Figure 3. Three class-average spectra after general preprocessing for HK (green), OED (blue), and
OSCC (red) samples, with visible spectral differences highlighted in dashed boxes.

Figure 4 shows the exploratory analysis results for all 68 representative spectra. (a-1)
shows the reduced Hotelling T2 versus Q residuals graph of PCA; (a-2) shows the score
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plot for PC1 and PC2; and (b) shows the HCA dendrogram graph. Both the PCA and
HCA results showed good but not ideal separation between the HK and OSCC repre-
sentative spectra. The OED representative spectra overlap with both the HK and OSCC
representative spectra.

Figure 4. Unsupervised analysis results for all 68 representative spectra in the combined dataset: (a-1)
Reduced Hotelling T2 versus Q residuals graph of principle component analysis (PCA), and (a-2)
score plot for principal components (PC1 and PC2) of PCA; (b) dendrogram graph of hierarchical
cluster analysis (HCA).

Figure 5 summarizes the cross-validation performances of the three machine learning
models built in the current study (PLSDA, SVMDA, and XGBDA) for discriminating
the OSCC from HK samples. The PLSDA model showed a 100% sensitivity and 100%
specificity, while both the SVMDA and the XGBDA models showed 95% sensitivities and
96% specificities.
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Figure 5. Cross-validation performances of three machine learning models for discriminating OSCC
from HK samples. PLSDA—partial least square discriminant analysis, SVMDA—support vector
machine discriminant analysis, and XGBDA—extreme gradient boosting discriminant analysis.

Figure 6a shows the average modeling errors on the y-axis versus the number of
latent variables (LV) on the x-axis for the PLSDA model. Both the average classification
errors for the calibration (orange curve) and cross-validation (blue curve) were displayed.
The optimal number of latent variables was chosen to be four to minimize both errors.
Figure 6b shows the loadings of the four chosen LVs for the PLSDA model. The loadings of
LV1, LV2, LV3, and LV4 explain 94.50%, 4.48%, 0.38%, and 0.29% of the spectral variations
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between the HK and OSCC samples, respectively. Particularly, the loading of LV1 shows
several prominent bands at 1670 (−), 1654 (+), 1548 (+),1516 (+), 1482 (−), 1238 (+), 1082 (+),
1026 (+), and 966 (+) cm−1, and the loading of LV2 shows several prominent bands at
1704 (+), 1660 (−), 1640 (−), and 1482 (+), where “+” indicates positive bands and “−”
indicates negative bands. Table 1 summarizes the 12 feature bands that were extracted
from the top two loadings (LV1 and LV2) of the PLSDA model and their corresponding
vibrational modes and biochemical assignment. Those bands are considered spectral
biomarkers for discriminating OSCC from HK samples.

 

–
Figure 6. (a) Average calibration (Cal.) and cross-validation (CV) modeling errors versus the number of latent variables (LV)
and (b) four chosen latent variable loadings (LV1–LV4) for the partial least square discriminant analysis (PLSDA) model.

Table 1. Spectral biomarkers identified using feature selection of the PLSDA model for discriminating OSCC from HK
samples and their corresponding vibrational modes and biochemical assignments [14,39].

Wavenumber (cm−1) Vibrational Modes and Biochemical Assignments

1704 Ester carbonyl C=O stretching, fatty acid esters, lipids
1670 Amide I, secondary structure of proteins
1660 Amide I, secondary structure of proteins
1654 C=O stretching of amide I, secondary structure of proteins,
1640 Amide I, secondary structure of proteins
1548 C-N and CN-H stretching of amide II, secondary structure of proteins
1516 Amide II, secondary structure of proteins
1482 deformation vibrations of –CH3, lipid

1238
Asymmetric phosphodiester stretching νas (–PO2

−), lipid, nuclei acid, amide III (C-N stretching, N-H
bending) proteins

1082
Symmetric phosphodiester stretching νs (–PO2

−), protein phosphorylation, phospholipids, collagen,
DNA

1026
Vibrational frequency of -CH2OH groups of carbohydrates (e.g., glucose, glycogen, etc.) C-O
stretching, C-O stretching coupled with C-O bending of the C-OH groups of carbohydrates

966 C-O stretching of the phosphodiester, deoxyribose, C-C of DNA

Figure 7 shows (a) the ROC curves and AUC values, (b) the sensitivity and specificity
curves, and (c) the confusion matrix for the PLSDA model. The AUC for calibration
and cross-validation were both 1, and the sensitivity and specificity were both 100% at a
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threshold of 0.5 for the HK and OSCC samples. The results indicate a perfect discriminant
model for the experimental HK and OSCC spectral data.

–

Figure 7. (a) Receiver operating characteristic (ROC) curves with area under the curve (AUC) values (AUC = 1);
(b) sensitivity and specificity curves vs. threshold; and (c) confusion matrix for the partial least square discriminant
analysis (PLSDA) model. TPR is true positive ratio, FPR is false positive ratio, TNR is true negative ratio, and FNR is false
negative ratio.

Figure 8a shows the PLSDA model score plot for the top three latent variables
(LV1–LV3) for all 68 representative spectra. Figure 8b visually summarizes the discrimina-
tion results for all 34 samples. The dashed purple line in the middle is the discrimination
line of the PLSDA model. Two representative spectra connected with a solid line came
from the same sample—a longer line suggests higher intra-sample spectral heterogeneity,
while a shorter line suggests lower intra-sample spectral heterogeneity. The results show a
complete discrimination between all of the HK samples and OSCC samples. For the OED
samples, D-2, D-3, D-5, D-7, D-9, and D-11 were classified as “HK-grade”, indicating more
spectral similarities between the six OED samples and the HK samples; D-1, D-4, D-6, and
D-8 were classified as “OSCC-grade”, indicating more spectral similarities between the four
OED samples and the OSCC samples. The two representative spectra of the sample D-10
were located in the vicinity of both sides of the discrimination line, indicating a borderline
classification case.
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–

—

11 were classified as “HK grade”, i

8 were classified as “OSCC grade”, indicating more spectral similarities between the 

–Figure 8. (a) Score plot for the top three latent variables (LV1–LV3) of the partial least square discriminant analysis (PLSDA)
model; (b) visual illustration of the discrimination of all 34 samples by the PLSDA model (H for HK samples, C for OSCC
samples, and D for OED samples).

4. Discussion

Despite cancer treatment advancements, oral cancer survival rates have not improved
over the past several decades. The gold standard histopathological diagnosis of oral cancer
and the grading of oral epithelial dysplasia have many limitations, including subjectivity,
inconsistency, and inaccuracy. The lack of an effective screening program and the challenge
of managing potentially malignant disorders and precancerous dysplasia lead to late
diagnosis in >70% oral cancer patients, resulting in poor prognosis and survival rates. It has
been shown that most oral cancer patients have pre-existing OPMDs, the majority of which
are diagnosed as HK or OED [40]. OED is characterized by cytological and architectural
alterations reflecting the loss of the normal maturation and stratification pattern of surface
epithelium. Although these lesions have an increased statistical risk of progressing to
malignancy, it is very difficult to predict the outcomes for individual patients with current
histopathological diagnostic methods [12]. For example, even in the case of severe OED,
the malignant transformation rate varies considerably from 3% to 50% [11]. According to
Tilakaratne et al., a successful OED grading system should be (i) clinically relevant in terms
of stratifying the cases for appropriate management plans, (ii) reproducible, minimizing
intra- and inter-examiner variability, and (iii) biologically significant by identifying the
lesions that are likely to undergo malignant transformation [41]. FTIR spectroscopy and
imaging techniques show great promise to meet these criteria and to address the unmet
medical needs for objective and accurate OED risk stratification.

A number of studies have applied FTIR techniques to investigate biochemical differ-
ences between normal and malignant oral tissues in the past two decades. Schultz et al.
observed that poorly differentiated OSCC cells produced a relatively homogeneous and
clearly abnormal cell biochemistry, whereas well-differentiated epithelial cells presented
a very heterogeneous distribution of cellular components. The authors suggested that
the FTIR analysis of cell components can be used to distinguish cancerous tissues from
normal epithelial structures [42,43]. Fukuyama et al. observed FTIR spectral differences
between normal oral mucosa and OSCC, including bands related to keratin, collagen,
phosphate of nucleic acids, and membrane phospholipids [44]. A few studies on normal,
pre-cancerous, and cancerous tissues of oral cavity have been conducted by one group
from Università Politecnica delle Marche in Ancona, Italy, using reflectance FTIR mapping
of thin tissue sections on a steel support. Distinct FTIR chemical maps of vibrational bands
at 970 cm−1 (DNA), 1026 cm−1 (collagen), 1550 cm−1 (proteins), and 1735 cm−1 (lipids)
were observed between normal and pathological oral tissues. The authors reported that
the proliferating and regressive states of the tumors can be identified via the presence of a
high content of DNA or collagen, respectively [45]. Pallua et al. investigated microarrays of
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OSCC tissues using FTIR imaging with unsupervised methods including HCA and KMC
(k-means cluster) and showed that intra-operative and surgical samples of the oral cavity
can be characterized by FTIR microscopic imaging [46]. Bruni et al. reported increased
DNA, lipid, and collagen levels in OSCC samples [45]. However, their attribution of the
1026 cm−1 band to collagen is debatable, as many other studies assigned the same band to
glycogen instead [47–50]. Sabbatini et al. performed vibrational analyses of both epithelial
and connective tissues of OSCC at various malignancy grades (G1–G3) and identified
potential spectral markers for oral carcinogenesis, including the increase of free glycogen
levels, structural alterations in nucleic acids, and a higher amount of RNA, which sug-
gests an increase of the cellular transcriptional activity [51]. Banerjee et al. investigated
FTIR-based spectral biomarkers towards the optimal differentiation of oral leukoplakia
and cancer using a different sample preparation method. Specifically, deparaffinized FFPE
tissue sections were treated as powder to prepare KBr pellets from which transmission
spectra were acquired. The spectra represented a mixture of all of the components of
the sample, including epithelial and connective tissues. They identified more than 20
spectral biomarkers using difference between mean spectra, forward feature selection, and
Mann–Whitney U test techniques. The identified biomarkers were assigned to amide I,
amide II, lipid, keratin, glycogen, DNA/RNA, etc. [48]. Naurecka et al. used the FTIR-ATR
technique to study normal, leukoplakia, and cancerous oral tissues and reported spectral
differences at amide I at 1650 cm−1, amide II at 1535 cm−1, nuclei acids at 1238 cm−1, and
glycogen at 1024–1030 cm−1 [49].

In the current study, the FTIR imaging technique combined with multivariate analyses
were used to evaluate three classes of oral biopsy samples (HK, OED, and OSCC). Since
whole sample FTIR imaging is very time consuming, a practical imaging method was
developed to acquire representative spectra from the sample in a short time. Specifically, a
series of 100 µm × 100 µm imaging areas (16 by 16 pixels) were defined in the AOI of the
sample in reference to the corresponding H&E image. The area size of 100 µm × 100 µm
was chosen so that each area contained enough tissue/cells to generate a local representa-
tive spectrum, while the acquisition time for each area was reasonably short (5–6 min) to
ensure valid background correction. Representative spectra from multiple imaging areas
in a sample were reviewed to understand the tissue heterogeneity of the specific sample.
Different degrees of heterogeneity were observed for different samples. The consideration
of intra-sample heterogeneity is particularly important for accurate model training when
a relatively small number of training samples are used since a large number of training
samples may contain high enough inter-sample heterogeneity to compensate for intra-
sample heterogeneity. On the other hand, too many representative spectra from the same
sample may cause a data redundancy problem, especially for samples with a low degree
of intra-sample heterogeneity. As a result, a simple strategy was used to select the two
representative spectra that best reflected the intra-sample heterogeneity of each sample for
further analysis.

A series of spectral preprocessing was applied to the raw data to remove unwanted
signal contributions, such as those from sample thickness variations and light scattering,
and to prepare the data for optimal performance in later steps. The choice and qual-
ity of spectral preprocessing play an important role in the performance of multivariate
analysis and classification. Even the order of the preprocessing steps can affect the anal-
ysis results. In the current study, different preprocessing steps and parameters were
tried and the optimal procedure was decided as the following: the fingerprint region
of 1800–950 cm−1 was selected due to its association with major biochemicals in tissues;
second-order Savitzky–Golay smoothing was used to remove random noise (e.g., from
instrument) while preserving useful biochemical spectral information; the EMSC algorithm
was used to correct for resonant Mie scattering while maintaining the original spectral
shape and scale; AWLS baseline correction was applied to remove background absorption
interference, and vector normalization was then employed to correct for sample thickness
variations. The above steps comprised the general preprocessing, which preserved the
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original shape of the spectra for easy visual comparison and interpretation. A comparison
of the three class average spectra for the HK, OED, and OSCC samples (Figure 3) reveals
an overall reduction in proteins and an increase in the nucleic acids as the oral tissues
progress from HK to OED and further to OSCC. The amide II band exhibits a red shift for
OED and OSCC samples, indicating some secondary structural changes in the collagen
of the pathological tissues. Those findings are in good agreement with the literature that
normal tissue spectra are characterized by higher protein contents, whereas more DNA
and lipid signals are exhibited by malignant tissues [52]. In the current study, the typical
lipid band between 1750–1700 cm−1 disappeared in all of the spectra, which is most likely
due to the deparaffinization procedure which removed free lipids in the tissues as a side
effect of removing the paraffin of the FFPE samples.

Exploratory analyses using PCA and HCA verified the overall quality and showed the
trend of all 68 representative spectra. The reduced Hotelling T2 versus Q residuals graph
of PCA revealed no outliers among the data. The PCA and HCA results revealed a good
but not ideal separation between the HK and OSCC spectra. The OED spectra were shown
to overlap with both the HK and OSCC spectra. Exploratory analyses using unsupervised
methods such as PCA and HCA serve well for quality inspection, patten observation, and
trend discovery, but they usually cannot provide optimal classification for complicated
pathological samples. Supervised methods are required for that purpose.

Based on the patterns revealed in the exploratory analyses, the OED spectra do not
seem to separate well from either the HK spectra or the OSCC spectra. Instead, some OED
spectra exhibit similarities to the HK spectra, while others exhibit similarities to the OSCC
spectra. As a result, a novel strategy was developed to build an optimal discriminant model
using the representative spectra of the HK and OSCC samples (first phase), which was
subsequently used to classify the representative spectra of the OED samples (second phase).

Additional spectral preprocessing was applied to the representative spectra to opti-
mize the discrimination model. First and second derivatives are commonly used prepro-
cessing steps to highlight smaller spectral differences, which can be critical for finding the
discriminative spectral features for complex biological samples. In the current study, the
modeling results for non-derivative, first derivative, and second derivative representative
spectra were compared. It was found that the second derivative preprocessing produced
the best performance for the discrimination models. Therefore, it was used for final model
building and validation.

In the first phase, three supervised discrimination models (PLSDA, SVMDA, and
XGBDA) were trained and cross-validated using 24 HK spectra and 22 OSCC spectra. The
results show better discrimination performance for the PLSDA model (100% sensitivity
and 100% specificity) than the SVMDA and XGBDA models (95% sensitivity and 96%
specificity). A total of 12 prominent bands were extracted from the top two latent variable
loadings (LV1 and LV2) of the PLSDA model as discriminative spectral biomarkers in dif-
ferentiating the OSCC from the HK samples (feature extraction/selection), as summarized
in Table 1. The discriminative bands mainly came from proteins (amide I/II), nucleic acids
(–PO2

−), and carbohydrates (glucose and glycogen, etc.).
In the second phase, the optimal PLSDA model was used to classify the 22 represen-

tative spectra from 11OED samples. The classification results show that 6 OED samples
were classified as “HK-grade”, indicating their spectral similarities to the HK samples, and
4 OED samples were classified as “OSCC-grade”, indicating their spectral similarities to
the OSCC samples. One OED sample was classified as “borderline case” because its two
representative spectra were in proximity to and on both sides of the discrimination line.
The 11 OED samples looked very similar in their morphological appearance and were all
pathologically diagnosed as having a moderate-to-severe grade of dysplasia. However,
The PLSDA model was able to classify them based on their FTIR spectral information as
being biochemically similar either to the HK samples or to the OSCC samples. The results
suggest that those morphologically similar tissue samples exhibit different biochemical
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profiles that can be detected using the FTIR-machine learning approach. The novel strategy
developed in the current study provides a potential risk stratification method for OED.

A total of 68 representative FTIR spectra from 34 samples was used in the current
pilot study. Future studies with a larger sample size are needed to further improve and
validate the OSCC discrimination model. Moreover, archived OED cases with known
OSCC transformation outcomes are needed to validate this novel strategy in its efficacy of
predicting the malignant transformation risks of OED cases.

In the current study, a traditional Perkin Elmer FTIR spectrometer and imaging sys-
tem (Spectrum one, Spotlight 300, Perkin Elmer, Waltham, MA, USA) with the spectral
resolution of 4 cm−1 and spatial resolution of 6.25 µm was used. The current FTIR image
acquisition and spectral preprocessing protocols generated good quality spectra in a rea-
sonable time frame. Further improvements in spatial resolution and spectral quality can be
achieved with added lenses, high-resolution infrared microscope optics, computational
algorithms, and quantum cascade laser imaging systems, which offer advantages over
traditional FTIR systems with respect to the speed of acquisition and field of view [53].

5. Conclusions

In summary, within the limitations of the study, our results show that an FTIR-machine
learning approach can discriminant OSCC from HK oral biopsy samples with high accuracy.
The novel OED classification strategy developed in the current study could potentially
provide an objective risk stratification tool for OED or OPMDs and could therefore facilitate
the early detection of oral cancer. Tissue sections from FFPE samples are routinely used
for histopathological evaluation in cancer clinics. The use of the same tissue sections
(unstained) for FTIR imaging can be easily integrated into existing diagnostic procedures.
The integration of FTIR imaging techniques in existing histopathological diagnostic process
provides valuable biochemical evaluation in addition to morphological evaluation and can
assist pathologists in making a more accurate risk assessment for OPMDs/OED and for
the earlier detection for OSCC.
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Abstract: Objectives: Deep learning methods have achieved impressive diagnostic performance in
the field of radiology. The current study aimed to use deep learning methods to detect caries lesions,
classify different radiographic extensions on panoramic films, and compare the classification results
with those of expert dentists. Methods: A total of 1160 dental panoramic films were evaluated by
three expert dentists. All caries lesions in the films were marked with circles, whose combination
was defined as the reference dataset. A training and validation dataset (1071) and a test dataset (89)
were then established from the reference dataset. A convolutional neural network, called nnU-Net,
was applied to detect caries lesions, and DenseNet121 was applied to classify the lesions according to
their depths (dentin lesions in the outer, middle, or inner third D1/2/3 of dentin). The performance
of the test dataset in the trained nnU-Net and DenseNet121 models was compared with the results of
six expert dentists in terms of the intersection over union (IoU), Dice coefficient, accuracy, precision,
recall, negative predictive value (NPV), and F1-score metrics. Results: nnU-Net yielded caries lesion
segmentation IoU and Dice coefficient values of 0.785 and 0.663, respectively, and the accuracy and
recall rate of nnU-Net were 0.986 and 0.821, respectively. The results of the expert dentists and
the neural network were shown to be no different in terms of accuracy, precision, recall, NPV, and
F1-score. For caries depth classification, DenseNet121 showed an overall accuracy of 0.957 for D1
lesions, 0.832 for D2 lesions, and 0.863 for D3 lesions. The recall results of the D1/D2/D3 lesions were
0.765, 0.652, and 0.918, respectively. All metric values, including accuracy, precision, recall, NPV, and
F1-score values, were proven to be no different from those of the experienced dentists. Conclusion:
In detecting and classifying caries lesions on dental panoramic radiographs, the performance of deep
learning methods was similar to that of expert dentists. The impact of applying these well-trained
neural networks for disease diagnosis and treatment decision making should be explored.

Keywords: deep learning methods; caries diagnosis; dental panoramic images; radiography

1. Introduction

Dental caries are common causes of tooth pain and tooth loss, despite being pre-
ventable and treatable. Comprehensive and early detection of dental caries can be critical
for timely and appropriate treatment. Large, clearly visible tooth cavities induced by caries
can be easily detected by using visual inspection and probing with the use of a dental probe
and a handheld mirror. These conventional caries detection methods are also effective for
partially obscured but accessible caries [1]. X-ray radiography, as an aid for the diagnosis
of hidden or inaccessible lesions, is irreplaceable. Panoramic, periapical, and bitewing
X-rays are three common types of radiographs that are widely used in clinical practice.
Bitewing and periapical X-rays concentrate on the details of the mouth area, such as one or
more teeth, whereas panoramic X-rays capture all the teeth and other hard tissues of the
maxillofacial region [2]. Although bitewing radiography is the most widely used approach
to detect caries lesions and assess their depth, which comes with high sensitivity and
specificity [3], it could not perform comprehensive lesions detection of the full mouth in
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one attempt. Furthermore, panoramic films are taken outside the mouth and have better
patient acceptance, a lower infection rate, and a lower radiation exposure [4]. Due to its
relative cost effectiveness and diagnostic evidence, panoramic imaging is considered to
be the most common and important radiological tool for clinical dental disease screening,
diagnosis, and treatment evaluation.

During the diagnosis and treatment of oral diseases, dentists need to interpret panoramic
radiographs and record specific symptoms of diseased teeth in the medical records. New
dentists require extensive training and time to perform accurate X-ray film interpreta-
tions [5]. An X-ray analysis showed that more experienced dentists are almost four times
more likely to make a correct assessment of caries lesions than less experienced dentists [6].
Therefore, considerable attention has been given to interpreting panoramic X-rays with den-
tal caries automatically. In recent decades, scientists have tried to deploy machine learning
techniques to detect dental diseases. As in the conventional method, operators or experts
perform lesion detection and evaluation on radiographs manually and objectively. This task
is tedious when facing large amounts of image data and may lead to misinterpretations.
Previous efforts have successfully applied convolutional neural network (CNN)-based
deep learning models in computer vision. Deep learning methods do not depend on
well-designed manual features and have high generalization capabilities. These models
have achieved high accuracy and sensitivity and are the most advanced technology for a
wide range of applications. The increased interest in deep learning methods has also led to
their applications in medical imaging interpretation and in diagnostic assistance systems,
for instance, Helicobacter pylori infection detection in gastrointestinal endoscopy [7], skin
cancer screenings [8], and coronavirus disease 2019 (COVID-19) detection in computed
tomography images [9].

In dentistry, Ronneberger employed U-Net to achieve dental structure segmentation
on bitewing radiographs since 2015 [10]. Subsequently, CNNs have been employed with
high accuracy to detect alveolar bone loss in periapical X-rays and panoramic X-rays and
to identify apical cysts and caries lesions in periapical X-rays [11]. To date, multiple deep
learning methods have been used for caries detection in bitewings [12–14] and periapical
radiographs [14,15] and other auxiliary testing images such as near-infrared light transillu-
mination images [13,16]. Most previous studies have been limited to lesion segmentation
analysis of deep learning models [12–15]. Subsequently, recent research aimed to compare
the caries detection performance of deep learning methods and dentists [12,17]. However,
there are few studies on neural networks’ performance of caries lesions with different
radiographic depths. The latter is of great importance to health economic perspectives
and treatment decision making, since dental caries treatments, such as remineralization,
cavity filling, root canal therapy, and tooth extraction, vary with lesion depth. As for this
purpose, Cantus applied U-Net to classify caries depth on 3686 bitewing radiographs and
concluded that a deep neural network was more accurate than dentists when detecting
caries on bitewing radiographs [12]. However, no study has yet investigated caries lesions
segmentation along with classification on panoramic films, which are of great importance
in caries screening and diagnosis in primary hospitals. A previous study suggested that
dentinal involvement, indicating operative treatment, had a cutoff value of 3 according
to a modified International Caries Detection and Assessment System (ICDAS II). For all
ICDAS II, the relative dentinal depth of a lesion was expressed as the percentage of the
total length of the coronal dentin in histological and radiographic assessments. We focused
on dentinal carious decay and divided the entire caries depth into four levels.

In this study, to achieve accurate segmentation of dental caries and diagnosis of lesion
extensions, we used nnU-Net and DenseNet121. First, we applied nnU-Net to perform
caries lesion segmentation. This segmentation model was based on a deep learning method
and inspired by the structure of U-Net, which allowed us to optimally configure the model.
This feature allows the model to perform outstandingly in any new task [10]. Second,
we proposed DenseNet121 to identify caries stages. This 121-layer connected network
alleviated the vanishing gradient issue and strengthened feature propagation by joining all
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proceeding layers into subsequent layers [18]. Finally, to ensure that the structure attains
the best possible performance, we added a dropout mechanism and label softening to
the model to address the overfitting phenomenon during model training. Moreover, we
compared the caries detection results of dentists and the model to search for a better way
to clinically diagnose caries lesions.

Accordingly, the main contributions of our study are threefold: (1) we built a new
dataset that was strictly verified by dental experts, (2) we addressed automatic caries
lesion segmentation by nnU-Net and applied DenseNet121 to automatically clarify lesion
extensions into four levels, (3) we also compared the results of our model with those of
a group of experienced dentists to confirm the hypothesis that a combined panoramic
interpretation by the model and dentists is more sufficient and accurate than separate
interpretations by a dentist or by the model.

2. Materials and Methods

2.1. Study Design

In the current study, the performances of a group of individual dentists and two
deep learning methods in identifying caries lesions and their extensions in panoramic
images were compared in different dimensions. This study followed the guidelines of the
Standards for Reporting of Diagnostic Accuracy Studies (STARD) [19].

Before the study, our group successfully performed automated tooth segmentation,
which is the cornerstone of automated diagnostic methodologies for dental films. In the
present study, we first applied nnU-Net, which is well known for its state-of-the-art
performance on 23 public datasets; nnU-Net is a deep learning-based segmentation method
that has been broadly used for medical imaging segmentation tasks and has been proven
to surpass countless prevailing approaches without manual intervention [20].

Second, we used the DenseNet121 classification model to identify carious lesions with
different degrees of severity, which were previously labeled by three independent dentists.
DenseNet [18] was proposed by Huang to solve the vanishing gradient problem of CNN
structures, and its performance exceeded the best performance of ResNet in 2016. The key
concept of DenseNet is the “skip connection”, and it has a CNN structure with dense
connections. In this network, all preceding layers’ outputs are combined and input into the
next layer. Moreover, to prevent losing information during layer-to-layer transmission and
to overcome the vanishing gradient problem, the feature map learned by the exact layer
is directly transmitted to all the following layers as output. With this model, each pixel
that belongs to a radiograph can be distributed into a propriate class; in our study, there
were the following four classes: “D0” sound; “D1” caries radiolucency in enamel or in the
outer third of dentin; “D2” caries radiolucency in the middle third of dentin; and “D3”
caries radiolucency in the inner third of dentin with or without apparent pulp involvement
(Table 1).

Table 1. Criterion of caries extension and their stage.

Caries Stage Caries Extension

D0 Sound
D1 Caries radiolucency in enamel or in the outer third of dentin
D2 Caries radiolucency in the middle third of dentin

D3
Caries radiolucency in the inner third of dentin with or without

apparent pulp involvement

To evaluate the performance of trained models, it is necessary to define metrics in the
automated approach to measure the level of congruency between the predicted regions
and the truly affected regions. Intersection over union (IoU) was the first metric that we
leveraged in the present study. It is a widely used parameter that measures the difference
between the ground truth region and the predicted region, as it calculates the ratio of the
intersection and union of the two areas. To be more accurate, the Dice coefficient was
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applied to focus on the overlap of the predicted region with the ground truth region to
obtain pixel accuracy. To focus on medical significance, other metrics (mainly at the tooth
level) were adopted in the current study and are described below.

2.2. Reference Dataset

A set of 1160 panoramic images that originated from dental treatments and routine
care were provided by the Affiliated Stomatology Hospital, Zhejiang University School of
Medicine. A representative sample was drawn from 2015 and 2020. Panoramic images and
metadata, i.e., sex, age, and image creation date, were available. However, the metadata
were only allowed for descriptive analyses. The data collection process of the study was
ethically approved by the Chinese Stomatological Association ethics committee. Only
panoramic images of permanent teeth were included, and those of primary teeth or blurred
images were excluded. The mean age (SD, min–max) of the patients included in the dataset
was 42.8 (15.3, 18–68) years. Approximately 58% of the patients were male, and 42% of
the patients were female. The radiographic data were all generated with radiographic
machines from Dentsply Sirona (Bensheim, Germany), Orthophos XG 5OS Ceph.

Three dental experts independently labeled the images in triplicate by using the
annotation tool itksnap. Each annotation was further classified into four stages according to
the caries lesion depth in the radiographic films by three independent dentists. No clinical
records were obtained or assessed in the procedure. For a single image, a consensus
of the expert dentists was required to determine the final label, i.e., the experts were
asked to repeatedly evaluate caries extensions regarding different opinions, and then, a
fourth expert reviewed and revised all of the labels, including addition, deletion, and
confirmation operations. All expert dentists were employed at the Affiliated Stomatology
Hospital, Zhejiang University School of Medicine and had clinical experience of 3–15 years.
A handbook that indicated how to mark caries lesions and annotate their stages with an
annotation tool was used to guide the experts. All annotated areas on an image ultimately
constructed the reference dataset (the “ground truth”), which consists of 1166 D1 lesions,
1039 D2 lesions, and 1635 D3 lesions.

2.3. Segmentation and Classification Model

The deep learning model applied in dental caries segmentation is nnU-Net, which
is different from other improved U-Net-based models. It automatically configures itself,
including preprocessing, network architecture, training, and postprocessing, for any new
task, to achieve the best performance. The nnU-Net automated method configuration
begins with extracting the dataset fingerprint and then executing heuristic rules. A set
of fixed parameters, empirical decisions, and interdependent rules are modeled in this
process [20]. Similar to other U-Net-derived architectures, a U-shaped configuration of
convolutional network layers with skip connections is designed. The network architecture
consists of an encoder (the falling part of the “U”) and a corresponding decoder (the rising
part of the “U”). The encoder network increases the contextual information, condenses the
input sequence, and decreases the exact positional information. With the skip connection
between the falling and the rising part of the “U”, the decoder network expands the contex-
tual information and combines it with precise information about the object locations [21].
The details of the model architecture are provided in Figure 1.
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Figure 1. Details of nnU-Net architecture and implementation details in caries segmentation. In step 1,
three dental experts were trained to implement dental caries labels and annotations, and a fourth expert
revised any controversial results. Purple circle indicates D3 lesions, green circle indicates D2 lesions and
red circle indicates D1 lesions. Step 2 shows nnU-Net and how it works in caries lesion segmentation.

The DenseNet model is a CNN and is applied in caries classification. All features used
in the previous layers of the architecture are reused in the current layer, and this heavy
feature reuse characteristic in each block makes the network focus on efficiency. Due to this
structure, the number of parameters in the DenseNet model is reduced, and the feature
maps are significantly smaller, as the number of feature maps increases linearly with the
growth rate. Moreover, compression layers are applied between dense blocks to keep the
feature map sizes small. In addition, the network uses bottlenecks to reduce the number of
parameters and the computational effort [18]. The details of the model architecture and the
implementation details are presented in Figure 2.

Figure 2. Description of how caries lesions were classified into D1/D2/D3 lesions. First, caries lesions were identified by
the model as 3 types, which were represented by the code 0/1/2. Code 0 indicates D1 lesions (which are shown as red
circles), Code 1 indicates D2 lesions (which are shown as green circles) and Code 3 indicates D3 lesions (which are shown as
purple circl.
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The model was implemented by using Ubuntu (version 18.04), pytorch1.6, CUDA10.1,
and CUDNN8.0.5.

2.4. Model Training and Data Preparation

2.4.1. Data Preparation

According to caries labeling, a 300 × 400 region-of-interest (ROI) image for each caries
area was cut from the panoramic radiographs to form a caries classification dataset. Then,
the classification data were divided into the training set and the test set. Horizontal flip,
vertical flip, horizontal vertical flip, and random rotation data enhancement operations
were adopted for the training set data, and the rotation angle was within 0 and 15 degrees.

2.4.2. Model Training

DenseNet121 was proposed to identify caries lesion extensions. To overcome the small
size of the dataset, we used transfer learning during model training. The introduction of
transfer learning is reported to save computation time and resources and enable a rapid
convergence for the model. To use transfer learning, the pretrained DenseNet121 network
transfers parameters to the target DenseNet121 model, which prevents overfitting. We first
trained DenseNet121 on the ImageNet dataset and then used the caries dataset to fine-tune
the pretrained DenseNet121 to complete caries extension classification.

Overfitting is a common problem that occurs when a CNN with a large number of
learnable parameters is trained on a relatively small dataset. As the learned weights are
designed mostly for the training set and lack the ability to be generalized to unseen data,
the model is prone to obtaining poor performance on the test data not included in the
training set. The overfitting problem is believed to be caused by the complex coadaptation
of neurons, which is why deep neural networks depend on their joint response rather than
favoring each neuron to perform valuable feature learning [22]. Imposing a stochastic
behavior in the forward data propagation phase of the network is a commonly used
method to enhance the generalization ability of CNNs [23]. Examples of such methods
include label smoothing and dropout. We choose dropout [24] to randomly shut down
some features and enhance the model’s generalization ability; moreover, each time before
the activation function is applied, batch normalization is applied to further improve the
effect. Label smoothing is another simple but successful regularization approach applied
in the study. This method is widely used for multiclass classification tasks, where the
CE error is adopted as the standard loss function, and the so-called one-hot encoding is
presented in an annotation format. Label smoothing is designed to replace hard labels with
smoothed versions; furthermore, label smoothing can prevent overconfident models when
calculating the loss value and has been reported to increase the learning speed and benefit
the overall accuracy [25]. Label smoothing has been proven to improve model calibration
and out-of-distribution detection [26]. Label softening is equivalent to reducing the weight
of the category of the real sample label when calculating the loss function and finally has
the effect of suppressing overfitting.

2.5. Comparator Dentists

A group of six dentists who worked at Affiliated Stomatology Hospital, Zhejiang
University School of Medicine, for 3–15 years were defined as the comparable group. They
were enlisted to gauge the performance of the expert dentists against the performance of
the neural networks. Each of the participants performed caries segmentation and severity
classification tasks on a set of 89 panoramic films (test dataset), which included films of 40
D1 lesions, 53 D2 lesions, and 103 D3 lesions and images without lesions.

2.6. Evaluation Metrics

2.6.1. Performance of nnU-Net in Caries Segmentation

The nnU-Net segmentation model was evaluated, and its performance was compared
with that of the doctors. Two distinct metrics, the IoU and the Dice coefficient metrics, were
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used to evaluate the performance of different dimensions. Despite the similarity of the two
metrics, a single instance of bad segmentation was penalized much more in the IoU than
in the Dice coefficient. For certain algorithms, the vast majority of instances are correct,
but incorrect decisions are made in a few instances. The model Dice coefficient score will
be much higher than the corresponding IoU score, which means that the Dice coefficient
reflects the average performance better and is not overly sensitive to a few bad results.
Both the IoU and the Dice coefficient are calculated by the mean value in a performance
assessment. The Dice coefficients indicate the mean value of individual Dice coefficients on
the validation and test data. Dice coefficient and IoU values of 1 indicate an ideal algorithm
that matches the reference labels 100%. In contrast, the reference and predicted label masks
with no overlap will result in two metric values equal to 0.

2.6.2. Performance of DenseNet121 in the Classification of Caries Severity

DenseNet121 was applied for caries severity classification, its performance was evalu-
ated and compared with that of dentists combined with a neural network, and the precision
of both was evaluated at the caries level. An ensemble of six different metrics was deployed
to capture different aspects of the classification performance of the model and the dentists,
including accuracy, recall, specificity, precision, F1-score, and negative predicted value
(NPV). The F1-score parameter is the harmonic average of precision and recall. The chi-
square test was used to compare the performances of the model and the dentists. A p-value
with p < 0.05 was considered significant.

3. Results

Table 2 shows the distribution of caries lesions and their extensions in the reference
dataset. The image ratio of the training set versus the test set was 982:89. Table 3 shows
the segmentation performances of nnU-Net and of the dentists in the test set. Table 4
summarizes the performances of DenseNet121 and of the dentists in stratifying lesions to
different extensions in the test set.

Table 2. Reference dataset.

Dataset D1 D2 D3

Training set 1126 986 1532
Test set 40 53 103
Overall 1166 1039 1635

Table 3. Segmentation performances of nnU-Net and the dentists with the test set.

Accuracy Sensitivity Specificity Precision NPV F1 IoU Dice

Model 0.986 0.821 1.000 1.000 0.985 0.902 0.785 0.663
Dentists
(mean) 0.955 0.773 0.971 0.705 0.981 0.733 0.696 0.570

Dentists (min) 0.933 0.730 0.949 0.554 0.977 0.632 0.711 0.587
Dentists (max) 0.972 0.852 0.992 0.883 0.987 0.802 0.717 0.594

Table 4. Classification performances of DenseNet121 and the dentists with the test set.

Parameter DenseNet121 Dentists (Mean; Min–Max)

D1 D2 D3 D1 D2 D3

Accuracy 0.957 0.832 0.863 0.915; 0.886–0.940 0.792; 0.720–0.828 0.858; 0.783–0.903
Precision 0.812 0.732 0.865 0.798; 0.667–1.000 0.601; 0.458–0.677 0.847; 0.737–0.884

Sensitivity 0.765 0.652 0.918 0.464; 0.250–0.647 0.536; 0.290–0.630 0.947; 0.881–0.988
NPV 1 0.972 0.867 0.860 0.926; 0.891–0.956 0.847; 0.773–0.878 0.895; 0.745–0.966

F1-score 0.788 0.690 0.891 0.570; 0.400–0.645 0.564; 0.355–0.630 0.892; 0,844–0.929

1 NPV: negative predictive value. Please see the main text for the definitions of the metrics.
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First, the binary classification results of nnU-Net and the dentists are presented. The overall
accuracy of the model was 0.986, and the mean accuracy of the dentists was lower than that of
the model but not significantly at 0.955 (min–max: 0.933–0.972; CI: 95%; p > 0.05). The IoU scores
of the model and the dentists were 0.785 and 0.696 (min–max: 0.711–0.717; CI: 95%; p > 0.05),
respectively. The Dice coefficient scores of the model and the dentists were 0.663 and 0.570
(min–max: 0.587–0.594; CI: 95%; p > 0.05), respectively. The model yielded a better accuracy,
precision, recall, specificity, NPV, F1-score, IoU, and Dice scores than the dentists, while the
results of all metrics showed no significant difference between the model and the dentists (CI:
95%; p > 0.05)).

Second, we considered multiclass classification for DenseNet121 and analyzed the
performances of the dentists and of deep learning methods for dental caries stage diagnosis.
For D1 lesions, the recall rate of the model was 0.765, while it was 0.466 for the dentists
(CI: 95%; p > 0.05). For D2 lesions, the recall rate of the model was 0.652, while it was 0.539
for the dentists (CI: 95%; p > 0.05). For D3 lesions, the recall rate of the model was 0.918,
while it was 0.954 for the dentists (CI: 95%; p > 0.05). Although there were no significant
differences between the sensitivity scores of the dentists and those of the model for all caries
stages, the model seemed to be more sensitive in detecting D1 and D2 lesions. The same
results were found for accuracy, specificity, precision, NPV, and F1-score metrics. Even
though no significant differences were found in the previous metrics, the model yielded
higher scores in terms of all metrics for D1 and D2 lesions than the dentists. The recall,
NPV, and F1-score values of the dentists for D3 lesions were slightly higher than those of
the model.

4. Discussion

Due to the varying accuracy and sensitivity of individual dentists in the detection of
caries lesions and their depth, inconsistent treatment decisions and suboptimal care are
quite common. High-throughput diagnostic assistance provided by computer-assisted
analysis tools could support dentists with these procedures. To date, panoramic films,
as the main auxiliary diagnostic method for oral disease screening, have been gradually
interpreted by deep learning. However, deep learning has very rarely been used in caries
depth classification. Furthermore, the performance of these models is not regularly com-
pared with that of dentists in caries lesion segmentation or classification [27]. The latter
(lesion stage-specific classification performance) is of vital importance in clinical decision
making. Enamel caries can be treated by remineralization, and dentin caries in the outer
space are commonly treated by cavity filling. For deep dentin caries that approach the
dental pulp, pulp capping or root canal therapy is required. From this perspective, the
automatic and accurate panoramic interpretation of dental caries lesion staging can provide
comprehensive treatment recommendations for individuals. This study aimed to design
an intelligence-assisted diagnosis method based on a combined nnU-net and DenseNet121
model to replace the manual interpretation of caries lesions and their extensions. We
achieved these goals by constructing caries panoramic datasets for four-stage caries ex-
tensions. Furthermore, the segmentation performance of nnU-net and the classification
performance of DenseNet121 were evaluated individually and in combination with dentist
diagnoses to carry out a comparative analysis.

Our results suggest that nnU-Net can be used for the automated interpretation of
panoramas to facilitate caries diagnosis. The accuracy of the model was higher than that of
models in previous studies [12,28] and yielded a score of 0.986. The performances of the
model and of the experienced dentists showed no significant difference in caries lesion
segmentation. However, nnU-Net seems to be more efficient and achieved reliable and
objective results.

In our study, DenseNet121 proved to be effective in lesion extension classification.
Combining transfer learning with simplified image preprocessing improved the classifica-
tion accuracy and recall of the neural network. It is prudent to conclude that this method
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allows us to automatically learn the differences among the caries types in caries extension
image features and attain valid interpretations.

The results indicate that the model that we used in the study can automatically learn
the differences among caries depths in caries extension image features and achieve effective
interpretations. Although the chi-square tests of accuracy, recall, specificity, precision, NPV,
F1-score, IoU, and Dice metrics between the model and the dentists showed no significant
differences (CI: 95%; p > 0.5), the model yielded better scores than the dentists for D1 and D2
lesions. Moreover, the model seemed to be more efficacious and reliable than the dentists, since
the six experienced dentists did not show good consistency and stability, the 95% confidence
interval for the ICC population values of the dentists was 0.595 (0.537 < ICC < 0.653), and the
model was much faster and more accurate in lesion classification. Further research needs to be
conducted with a larger dataset and different experienced dentists.

In this study, DenseNet121 seemed to be more sensitive in classifying D1 and D2 lesions
and had similar recall rates when compared to dentists in classifying D3 lesions, which is
consistent with our hypothesis. Notably, in clinical radiograph interpretation, D3 lesions have a
larger range of transmission images in panoramic films and are easier to detect with the naked
eye. Caries in the D1 and D2 stages are more likely to be missed or have lesion boundaries
that are difficult to determine. However, the recall rates of the dentists and the model were not
significantly different according to the chi-squared test. The result was as expected. The dentists
involved for the comparison were all experienced experts, and their results were used to set
the “ground truth”. However, larger tests involving more dentists from different departments
and with different experience levels may obtain different results in further studies. For better
performance, a combination of dentists’ diagnoses and the model’s results to detect caries and
perform classification is recommended.

Nevertheless, it is challenging to achieve satisfying segmentation results due to the
slight difference in the gray levels between tooth structures and bone on panoramic
films [29]. Complicated changes in the pixel intensity of overlapping skeletal structures
in panoramic films are a particular obstacle to overcome. These structures include the
nasal area, maxillary sinus, teeth, and surrounding bone [30]. Moreover, our targets (caries
lesions) are quite small when compared to the whole image. For these reasons, we enlarged
the radiographs to 1:5 when labeling. However, some boundaries of the lesions were unde-
finable in overlapping two-dimensional images. Moreover, we have constantly increased
the dataset and have now built a dataset with 3840 caries verified by experts.

This study has some strengths and limitations. First, we built a large dataset relative
to other datasets in the dental field. Since there is no open dataset related to caries stages in
relevant research fields, 1160 panoramic X-rays were meticulously collected, and blurred
images were excluded. Three expert dentists were trained to label and annotate the
dental caries, and a fourth expert revised any controversial results. Second, the predicted
caries were output as highlighted areas by nnU-Net and presented in three different
colors according to their depths obtained by DenseNet121. Third, the aforementioned
performance comparison between dental experts and nnU-Net and DenseNet121 was
carried out on a test dataset. As a limitation, our panoramic films were made on the
equipment of one company and we excluded the blurred ones (90 out of 1250) before
training the models, which means that the reference dataset underlying our research is
not fully generalizable. It is essential to verify our neural networks on an external test set
in the next steps. Furthermore, we applied no gold standard in the study such as micro-
CT and histology of extracted teeth. However, dentists with different experiences and
professional backgrounds are required for comparison, which may provide more valuable
information. Second, labeling in the constructed reference test was not sufficiently precise,
as it was not triangulated with the gold standard (histology). Even without a hard gold
standard, “fuzzy” labeling should be verified with data from other diagnostic approaches,
such as visual, tactile, or transillumination inspection, if possible. Finally, nnU-Net and
DenseNet121 have not been executed or implemented in an auxiliary diagnosis system
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until now. It is difficult to infer whether the model will have a positive impact when it is
actually deployed in patient care [31].

Accordingly, we recommend that further studies use well-trained neural networks in
random and prospective designs. The accuracy of neural networks and the correct usage
of these tools in the clinic should be explored. This correct usage includes how dentists
adopt and interact with the tools, how the diagnostic procedure improves, and how the
tools change the treatment decision-making protocol. Before entering clinical care, all
deep learning methods are recommended to be reviewed according to the standards of
evidence-based practice, and then, a comprehensive set of results should be obtained in
various environments to ensure their robustness, universality, and clinical consequences.

5. Conclusions

Accordingly, the well-trained neural network performed similarly to experienced
dentists in detecting caries lesions and classifying them according to depth within our
limited study. Notably, although the dentists and the neural network seemed to have a
similar performance, the neural network might have better sensitivity and accuracy in
classifying caries extensions in the outer dentin. The impact of using the network on the
accurate diagnosis of diseases and treatment decision making should be further explored.
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Abstract: This study aimed to develop a novel detection model for automatically assessing the
real contact relationship between mandibular third molars (MM3s) and the inferior alveolar nerve
(IAN) based on panoramic radiographs processed with deep learning networks, minimizing pseudo-
contact interference and reducing the frequency of cone beam computed tomography (CBCT) use.
A deep-learning network approach based on YOLOv4, named as MM3-IANnet, was applied to oral
panoramic radiographs for the first time. The relationship between MM3s and the IAN in CBCT was
considered the real contact relationship. Accuracy metrics were calculated to evaluate and compare
the performance of the MM3–IANnet, dentists and a cooperative approach with dentists and the
MM3–IANnet. Our results showed that in comparison with detection by dentists (AP = 76.45%) or
the MM3–IANnet (AP = 83.02%), the cooperative dentist–MM3–IANnet approach yielded the highest
average precision (AP = 88.06%). In conclusion, the MM3-IANnet detection model is an encouraging
artificial intelligence approach that might assist dentists in detecting the real contact relationship
between MM3s and IANs based on panoramic radiographs.

Keywords: deep learning network; YOLOv4; mandibular third molar; inferior alveolar nerve;
contact relationship; panoramic radiograph

1. Introduction

The high impaction rate of mandibular third molars (MM3s) makes the extraction of
third molars a common surgical procedure [1] that can result in multiple complications.
Inferior alveolar nerve (IAN) injury is one of the most severe complications, resulting
in hypoesthesia and numbness of the lower lip or chin [2]. The incidence of IAN injury
ranges from 0.4~6% and IAN injury occurs most frequently when MM3s are closely related
to the IAN [3,4]. There are various reasons for IAN injury after the extraction of MM3s,
including direct trauma, indirect compression, or lack of bone cortex around the IAN [5].
The risk of IAN injury after tooth extraction increases when MM3s anatomically touch
the IAN [6]. When the dental roots are in contact with the IAN, the bone cortex around
the IAN may appear absent or discontinuous [7]. When the elevator is inserted into the
periodontal ligament space of MM3s, a compressive load is generated in the apical region
of the molar; the compressive load will act on the IAN during extraction and lead to
IAN injury. Therefore, it is necessary to predict the contact relationship between MM3s
and the IAN with radiographic examination before tooth extraction, which contributes
to preoperatively predicting surgical difficulty and the possibility of complications [8,9],
thereby developing a more minimally invasive extraction strategy and reducing the risk of
IAN injury.
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In radiographic examination, panoramic radiographs are most commonly used and
aid dentists in determining the relationship between MM3s and the IAN canal because
it can provide clinical dental image with short scan-time and low radiation dose [10].
However, panoramic radiographs have many shortcomings, such as anatomical noise,
superimposition, and geometric distortion effect [11]. It can be difficult to distinguish the
real contact relationship between MM3s and the IAN based on panoramic radiographs,
especially when dental roots are located in the buccolingual direction of the IAN [12].
Pseudo-contact occurs frequently, which indicates that MM3s contact the IAN in panoramic
radiographs, but this contact does not occur in cone beam computed tomography (CBCT).
The visual detection of the relationship between MM3s and the IAN by dentists based on
panoramic radiographs can thus be limited and unreliable [13]. Currently, the use of CBCT
can reflect the three-dimensional structure of a tooth and the IAN to accurately distinguish
the contact relationship between the dental roots and the IAN, which contributes to facili-
tating preoperative planning and reducing the risk of IAN injury [14]. However, CBCT is
not used as a routine inspection method because it will significantly increase the patient
costs and radiation dose [15,16], which doesn’t match the standard dose recommended
in some countries [17]. Therefore, it is important to determine whether the real contact
relationship can be precisely determined depending on panoramic radiographs, avoiding
pseudo-contact issues and reducing the frequency of CBCT use.

Researchers have focused on the issue of pseudo-contact on panoramic radiographs.
Studies have shown that when panoramic radiographs exhibit “darkening of the root”,
“interruption of the radiopaque border of the mandibular canal”, and “inferior alveolar
neural tube diversion” [18], the dental roots and IAN may display a close relationship,
and the probability of IAN injury after extraction increases. However, the technique
requires considerable training for dentists, and judgments with these methods are still
not sufficiently accurate [19,20], especially for dental roots in the buccolingual direction.
Overall, it is difficult but necessary to reliably detect the real relationship between MM3s
and the IAN based on panoramic radiographs. Therefore, in this study, we use an artificial
intelligence technique to aid in the diagnosis.

Deep learning networks have played an important role in medical image research,
which can identify many complex image structures in modern medicine and have been used
in various fields, such as multiple organ segmentation for the abdomen [21]. In stomatology,
deep learning has also been applied in the detection of caries, periodontal disease, root
development staging and other issues [22–24]. In terms of impacted teeth, few studies
have focused on the relationship between impacted teeth and the IAN using deep learning.
In previous studies, the researchers segmented and identified images of MM3s and IANs
based on panoramic radiographs with a deep learning network called U-Net [25], but the
accuracy of existing methods remains to be improved and the pseudo-contact of MM3s and
the IAN in panoramic radiographs has not been mentioned. Within the limited scope of
our knowledge, there has been no research on diagnostic models involving the real contact
relationship between MM3s and the IAN with a deep learning network.

Therefore, in this study, we established a novel detection model for automatically
assessing the real contact relationship between MM3s and the IAN based on panoramic
radiographs and deep learning networks, named as MM3–IANnet. With this model,
we sought to achieve two results: (1) minimizing interference from pseudo-contacts in
panoramic radiographs, thereby reducing the frequency of CBCT use and (2) assisting
dentists in more accurately identifying contact relationships, thereby estimating the risk of
IAN injury more accurately before tooth extraction.

2. Materials and Methods

This study (ChiCTR2100044897) was approved by the Medical Ethics Committee of
Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine,
and was conducted in compliance with the ICH-GCP principles and the Declaration of
Helsinki (2013).
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2.1. Image Data Set

The study was conducted at Stomatology Hospital, School of Stomatology, Zhejiang
University School of Medicine. The inclusion criteria for panoramic radiographs were as
follows: (1) at least one mandibular third molar with fully developed dental roots must
be present; (2) panoramic radiographs and CBCT scans less than 3 months apart from the
panoramic radiographs must be available; and (3) patients must be older than 18 years
old. Panoramic radiographs with buccolingual impacted of MM3s, incomplete panoramic
radiographs, or panoramic radiographs of poor quality were not included in the study. All
panoramic radiographs were acquired with a Dentsply Sirona (Bensheim, Germany) and
an Orthophos XG 5OS Ceph.

All panoramic radiograph datasets were evaluated by three independent dentists who
collected and categorized the results with kappa > 0.8. In total, 503 panoramic radiographs
(915 MM3s) obtained between January 2016 and January 2021 were selected (age range of
patients: 18 to 68 years old). The contact relationship between MM3s and the IAN canal in
CBCT was considered the real contact relationship. Based on the real contact relationship
between MM3s and the IAN in CBCT, these molars were divided into contact and non-
contact groups. For individuals in the contact group, the dental roots of their molars were
in contact with the IAN in CBCT, and vice versa for individuals in the non-contact group
(Figure 1). The details of the two groups are shown in Table 1. The criteria for contact were
as follows: (1) MM3s contacted with the mandibular canal with a defective white line and
(2) MM3s penetrated the mandibular canal.

 

Figure 1. Panoramic view of a patient with corresponding CBCT results. Tooth position was recorded using the Federation
Dentaire International system. Forty-eight showed that the dental roots were in contact with the IAN in the panoramic
radiograph but not in contact in CBCT, so 48 was classified into the non-contact group. Thirty-eight showed the dental roots
in contact with the IAN in both the panoramic radiograph and the CBCT result, so 38 was classified into the contact group.

Table 1. Results for Contact and Non-contact Group Categories.

Categories Non-Contact Group Contact Group

MM3 Number 530 328

2.2. Deep Learning Network Construction and Training

The core mechanism of contact detection revolved around a deep learning network
called YOLOv4, which had been verified to provide high accuracy and a fast analysis speed
in the detection of ROIs [26]. We named our detection model as MM3–IANnet.

We used 80 percent of the images for training, 10 percent for validation and 10 percent
for testing. The workflow of the model could be divided into four steps (Figure 2).

115



Diagnostics 2021, 11, 1664

 

Figure 2. Model of MM3–IANnet system architecture. In step 3, process 1–process 3 was the upper
sampling operation and process 4–process 6 was the lower sampling operation.

The first step was data annotation. In this step, all panoramic radiographs were
resized to 1440 × 2976 pixels. When MM3s contacted the IAN canal in CBCT images,
namely, MM3 were divided into contact group, the MM3s were labeled “touch” with the
open-source software Labellmg. In total, 915 MM3s were included, with 549 for training,
183 for validation and 183 for network testing.

The second step was data augmentation. After labeling, we used three methods,
namely, horizontal flipping, vertical flipping, and mosaicking, to enhance the data, which
effectively expanded the number of datasets and improved training convergence.

The third step was touch detection. Images were input into YOLOv4. In this step, the
workflow could be divided into three parts. The first part involved CSPDarkNet53, which
was used to extract abundant feature information from the input images. Then SPP + PAN
(space pyramid pooling module + path aggregation network) was used to generate feature
pyramids. A feature pyramid could enhance the identification and detection of objects with
different scales and sizes. YoloHead was used for the final test. The final output vector
with class probability, object score, and bounding box information was the output.

The fourth step included inputting test data.

2.3. Diagnostic Performance Analysis

To compare the accuracy between the automated detection models MM3–IANnet and
dentists, we randomly selected 188 MM3 as the testing dataset, and three dentists with
3 years of experience (Dentist 1, Dentist 2, and Dentist 3) and two dentists with 1 year of
experience (Dentist 4 and Dentist 5) were asked to assess the dataset. Dentists were given
background information about the study and the detection task. Furthermore, dentists were
required to work cooperatively with the MM3–IANnet. We designed a voting experiment in
which we set the weight of each dentist to 1 and the weight of the MM3–IANnet to 2. Firstly,
the dentists and MM3-IANnet made independent judgements regarding the relationship
between MM3s and the IAN based on the panoramic radiographs, and we then calculated
the final test result according to the weighted results.

Based on the results for detection, the metrics were calculated to compare the per-
formance of the deep learning network, the subjective assessments of dentists and the
cooperative dentist–MM3–IANnet approach.
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2.4. Statistical Analysis

Diagnostic accuracy was calculated using precision (TP/(TP + FP)), recall (TP/(TP + FN)),
F1 score (2Precision*Recall/(Precision + Recall)) and average precision (AP =

∫ 1
0 p(r)dr) (Table 2).

A Chi-square test was used to compare the assessment results. Statistical analyses were per-
formed with IBM SPSS Statistics 24.0, and the statistical level of significance was set to p < 0.05.

Table 2. Confusion matrix.

Actual Performance

1 0

Predicted Performance
1 True Positive (TP) False Positive (FP)
0 False Negative (FN) True Negative (TN)

3. Results

3.1. Deep Learning Network Accuracy

After training, validation, and testing of 915 MM3s, the deep learning network
YOLOv4, i.e., MM3-IANnet, yielded an average precision of 85.05%, a precision of 87.18%,
a recall of 82.93% and a F1-score of 84.99%. Table 3 showed the detailed accuracy metrics of
the new diagnosis model with YOLOv4 for detecting the real contact relationship between
MM3s and the IAN based on panoramic radiographs.

Table 3. Accuracy metrics of the MM3-IANnet for detecting real contact relationship.

Parameter MM3-IANnet

Average precision 85.05%
Precision 87.18%

Recall 82.93%
F1-score 84.99%

3.2. Diagnostic Performance Analysis

Five dentists yielded an average precision of 76.45% ± 8.60%, a precision of 89.85%
6.81%, a recall of 83.00% ± 9.76% and a F1-score of 85.82% ± 5.06%. The mean average
precision of dentists with 3 years of work experience (Dentist 1, Dentist 2, and Dentist 3)
was 75.30% ± 11.02% (mean ± SD), and that of dentists with 1 year of work experience
(Dentist 4 and Dentist 5) was 78.18% ± 6.57%. The intraclass correlation coefficient (ICC)
of the five dentists was 0.302. Table 4 showed the detailed accuracy metrics for detections
by dentists.

Table 4. Detailed accuracy metrics of detecting ability of dentists.

Parameter Dentist 1 Dentist 2 Dentist 3 Dentist 4 Dentist 5 Mean ± SD

Average precision 66.82% 71.33% 87.75% 73.53% 82.82% 76.45% ± 8.60%
Precision 95.45% 90.91% 97.22% 82.35% 83.33% 89.85% ± 6.81%

Recall 70.00% 76.92% 89.74% 84.00% 94.34% 83.00% ± 9.76%
F1-score 80.77% 83.33% 93.33% 83.17% 88.50% 85.82% ± 5.06%

After testing of 188 MM3s, based on a comparison of diagnostic performance, MM3–
IANnet yielded an average precision of 83.02%, a recall of 91.67% and a F1-score of 90.16%,
which were higher than the mean average precision (76.45%), recall (83.00%), and F1-score
(85.82%) of the five dentists. The cooperation between dentists and the MM3–IANnet, i.e.,
the voting experiment, yielded the highest average precision (88.06%), precision (93.88%),
recall (92.00%), and F1-score (92.93%). The Chi-square test showed that the dentist–MM3–
IANnet approach and MM3–IANnet were not statistically superior to the dentists-based
assessment method (Figure 3 and Table 5; p > 0.05).
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Figure 3. Output results of MM3–IANnet, dentists and cooperative dentist–MM3–IANnet approach. Three typical examples
are presented. (A) According to the contact relationship in CBCT images (gold standard), the MM3 and IAN were divided
into the contact group. The test result of MM3–IANnet was the contact. Two of the five dentists considered the case a
contact, and the other three did not. The test result of dentist–MM3–IANnet (voting experiment) was a contact. (B) The
MM3 and IAN were divided into the non-contact group. The test result of MM3–IANnet was the non-contact, and two of
the five dentists considered the case a contact, while the other three did not. The test result of dentists–MM3–IANnet was
the non-contact. (C) The MM3 and IAN were divided into the non-contact group. The test result of MM3-IANnet was a
contact, five dentists considered the case non-contact, and the test result of dentist–MM3–IANnet was non-contact.

Table 5. Performance comparison between the MM3–IANnet, dentists and cooperative dentist-MM3–
IANnet approach.

Parameter MM3-IANnet Dentists (Mean) Dentists-MM3-IANnet

Average precision 83.02% 76.45% 88.06%
Precision 88.71% 89.85% 93.88%

Recall 91.67% 83.00% 92.00%
F1-score 90.16% 85.82% 92.93%

4. Discussion

The performance of a MM3–IANnet in detecting the real contact relationship between
MM3s and the IAN based on panoramic radiographs was assessed in this paper, and the
results were compared to those obtained by five dentists. We assumed the MM3–IANnet
based on YOLOv4 yielded higher detection accuracy and reliability than the dentists, and
the dentist–MM3–IANnet combination for detection was superior to the MM3–IANnet
or dentists alone. Our findings partially support the original hypothesis that the MM3–
IANnet yielded higher average precision, recall, and F1 score values than dentists, and
the dentist–MM3–IANnet combination, i.e., the voting experiment, produced the highest
average precision, precision, recall, and F1 score. However, statistical analysis showed the
MM3-IANnet result and dentist–MM3–IANnet result were not statistically significant and
superior to that of dentists.

In clinical practice, dentists often rely on experience to evaluate the contact relation-
ship between MM3s and the IAN with the naked eye based on panoramic radiographs.
Therefore, many studies have evaluated the predictive value of panoramic radiographs in
assessing the relationship between MM3s and the IAN. Studies have shown that among
the existing panoramic radiograph-based prediction methods, deflection of the root, nar-
rowing of the root, dark and bifid apex of the root, and narrowing of the canal provide
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low predictive value, while the presence of a canal diversion, the interruption of the white
line of the canal, and darkening of the root in panoramic radiographs could be routinely
used to identify high-risk cases [19]. Still, the positive predictive value of these indicators
was low and not sufficiently accurate [20]. Moreover, our results indicated that the average
precision of the real contact relationship between MM3s and the IAN detected by dentists
was only 76.45% ± 8.60%, which suggested that the accuracy was not high. Since there are
limits to human assessment capabilities, artificial intelligence may be helpful in this field to
identify the three-dimensional CBCT data in two-dimensional panoramic radiographs.

In our experiment, we applied YOLOv4 for detection with oral panoramic radiographs
for the first time. YOLOv4, released in April 2020, is a new high-performance detection
network that was developed based on the optimization of the previous convolutional
neural network and has been applied in modern medicine [26,27]. YOLOv4 has a faster
target detection speed and higher accuracy than other convolutional neural networks
and has displayed excellent performance in many applications [28,29]. In YOLOv4, the
only required input for the neural network to produce detection results is an image, and
complex detection process can be avoided. Therefore, the detection speed for given targets
is greatly improved. Moreover, YOLOv4 can avoid background errors, prevent false
positives, and learn the general characteristics of target objects, thereby improving the
detection accuracy. In our experiment, the core of model-based detection was YOLOv4,
which performed rapid, real-time, lightweight, and accurate target identification under
the premise of ensuring accuracy. Thus, this model could assist dentists in assessing the
real contact relationship between MM3s and the IAN and improve the efficiency and
accuracy of diagnoses. Therefore, this approach has excellent application potential in
clinical practice.

Our study showed that with the application of MM3-IANnet, the predictive accuracy
was increased, which in turn might decrease the frequency of CBCT use and IAN risk.
The model of the real contact relationship detection between MM3s and the IAN based
on panoramic radiographs was generally successful, as the total average precision of the
MM3–IANnet was 85.05%. In the human–machine comparison experiment, the results
showed that the mean precision of the five dentists was 89.85% ± 6.81%, indicating that the
dentists had a certain ability to identify the contact relationship between the dental roots
and the IAN from the panoramic radiographs, and their accuracy was acceptable when the
dentists believed dental roots contacted the IAN; that is, the probability of dental roots and
the IAN being in contact was high based on CBCT. However, the mean recall of dentists was
83.00% ± 9.76%, indicating that when the dental roots were judged by dentists to not be in
contact with the IAN based on panoramic radiographs, there was still a high probability of
contact based on CBCT. Therefore, the overall average precision of dentists was not high
(76.45% ± 8.60%), suggesting that it was difficult for experienced dentists to accurately
and comprehensively assess the real contact relationship between dental roots and the
IAN in long-term clinical work. In the human–machine contrast experiment, although
statistical analysis showed the MM3–IANnet result and dentist–MM3–IANnet result were
not statistically significant and superior to that of dentists, the recall, F1 score, and average
precision of the MM3–IANnet were numerically higher than those for dentists and the
precision was close to that for dentists, indicating that MM3–IANnet at least possessed
close ability to the dentists in detecting vague contact states of MM3s and IAN and might
be superior to the dentists in accuracy.

In addition, the ICC of five dentists was 0.302 in our experiment, indicating that the
five dentists’ judgments regarding the real contact relationship between MM3s and the
IAN based on the same panoramic radiograph were in poor agreement. Some studies have
shown that neither senior nor junior doctors could accurately assess the difficulty of wisdom
tooth extraction based on panoramic radiographs, and even panoramic radiographs might
hamper decision-making [9], which agreed with our results.

Our findings also suggested that in comparison to detection by dentists or MM3–
IANnet independently, the approach in which YOLOv4 was combined with dentist assess-
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ment exhibited the highest average precision, precision, recall, and F1 score. The voting
experiment was used to set the MM3–IANnet weights, thus enhancing MM3–IANnet accu-
racy while attenuating the effect of low detection consistency by the dentists. This finding
indicated that the combination of the two methods yielded the most accurate results. There-
fore, this approach could be clinically practical and has important application prospects.

However, this study had some limitations. The training dataset used in the model
was not big enough, and not enough dentists were tested in the experiments. These factors
might lead to deviations in the conclusions drawn, and further experimental verification
is needed.

In addition to examining the real contact relationship between MM3s and the IAN
based on panoramic radiographs, deep learning network can be used to mine more infor-
mation from panoramic radiographs. The literature suggests that in anatomical studies
of MM3s and the IAN, the dental roots are likely to be in close contact with IAN when
the roots are buccal to the mandibular IAN, and the risk of nerve injury is high after tooth
extraction [4,30]. Moreover, when MM3s are in the tooth germ state, the dental roots are
far from the IAN, and the risk of IAN injury after tooth extraction is relatively low. If deep
learning network can predict the contact relationship and anatomical position relationship
between dental roots and the IAN when an MM3 is in the tooth germ stage, the result will
provide important guidance in clinical practice.

5. Conclusions

In conclusion, this study applied a novel artificial intelligence detection model based
on YOLOv4, named as MM3–IANnet, which might assist dentists in assessing the real
contact relationship between MM3s and the IAN based on panoramic radiographs.
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Abstract: The aim of the present study was to investigate the diagnostic performance of a trained
convolutional neural network (CNN) for detecting and categorizing fissure sealants from intraoral
photographs using the expert standard as reference. An image set consisting of 2352 digital pho-
tographs from permanent posterior teeth (461 unsealed tooth surfaces/1891 sealed surfaces) was
divided into a training set (n = 1881/364/1517) and a test set (n = 471/97/374). All the images
were scored according to the following categories: unsealed molar, intact, sufficient and insufficient
sealant. Expert diagnoses served as the reference standard for cyclic training and repeated evaluation
of the CNN (ResNeXt-101-32x8d), which was trained by using image augmentation and transfer
learning. A statistical analysis was performed, including the calculation of contingency tables and
areas under the receiver operating characteristic curve (AUC). The results showed that the CNN
accurately detected sealants in 98.7% of all the test images, corresponding to an AUC of 0.996. The
diagnostic accuracy and AUC were 89.6% and 0.951, respectively, for intact sealant; 83.2% and 0.888,
respectively, for sufficient sealant; 92.4 and 0.942, respectively, for insufficient sealant. On the basis of
the documented results, it was concluded that good agreement with the reference standard could be
achieved for automatized sealant detection by using artificial intelligence methods. Nevertheless,
further research is necessary to improve the model performance.

Keywords: pit and fissure sealants; caries assessment; visual examination; clinical evaluation;
artificial intelligence; convolutional neural networks; deep learning; transfer learning

1. Introduction

The availability of artificial intelligence (AI) methods has aroused increasing inter-
est in developing convolutional neural networks (CNNs) for automatized detection and
categorization of diagnostic images in medicine and dentistry to objectify the classifi-
cation of pathological findings [1]. In dentistry, radiographs are mostly used as image
sources for CNNs to identify pathologies. Specifically, caries detection has been trained
on bitewings [2–7], apical radiographs [8] or panoramic X-rays [9]. By contrast, there have
been few attempts to apply AI technology to assess clinical images, which can be inter-
preted as a machine-readable equivalent for visual inspection. This study is the first report
of automatic detection and categorization of dental caries [10–13] or dental plaque [14]
from clinical photographs. When considering the broad spectrum of pathological findings
on dental hard tissue, e.g., caries, erosion or developmental disorders, as well as dental
interventions, e.g., sealants, dental restorations or prosthodontic measures, it is evident that
CNNs need to be trained separately for each of the aforementioned categories. The aim of
this pioneering project on the automatized detection of dental materials was to identify and
categorize opaque sealants, which is primarily justified by the frequent use of these sealants
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in dental health services of industrialized nations [15]. Second, sealant materials constitute
a uniform group of materials that are typically white and easily visually detectable on
posterior teeth compared to other dental restorations. Consequently, it can be hypothesized
that the learning of a CNN for detecting sealants from dental photographs represents a
first step before considering other types of dental restorations. Therefore, in this diagnostic
study, the ability of a CNN to detect and categorize fissure sealants was investigated (as a
test method) using digital photographs of posterior teeth, and the diagnostic outcome was
compared with expert evaluation (the reference standard).

2. Materials and Methods

2.1. Study Design

The reporting of this study followed the recommendations of the Standard for Re-
porting of Diagnostic Accuracy Studies (STARD) steering committee [16] and topic-related
recommendations [17].

2.2. Photographic Images

All the images were taken for use in previous studies, as well as for clinical or teaching
purposes, by an experienced dentist (J.K.). All the images were photographed using a
professional single reflex lens camera (Nikon D300, D7100 or D7200 with a Nikon Micro
105-mm lens; Nikon, Tokyo, Japan) and Macro Flash EM-140 DG (Sigma, Rödermark,
Germany) after tooth cleaning and drying. Molar teeth were photographed indirectly using
intraoral mirrors (Reflect-Rhod, Hager and Werken, Duisburg, Germany) that were heated
before being positioned in the oral cavity to prevent condensation on the mirror surface.

To ensure the best possible image quality, deficient photographs, e.g., out-of-focus
images or images with saliva contamination, were excluded. Furthermore, duplicate
photos from identical teeth or surfaces were removed from the dataset. This selection step
ensured there were no repetitions in the included clinical photographs. All jpeg images
(RGB format, resolution 1200 × 1200 pixel, no compression) were cropped to an aspect
ratio of 1:1 and/or rotated in a standard manner using professional image editing software
(Affinity Photo, Serif, Nottingham, UK) until, finally, the tooth surface filled most of the
frame. Considering the study aim, images from healthy teeth or sealed surfaces were
also included. Photographs with (additional) cavitated caries lesions or other hard tissue
defects, e.g., enamel hypomineralization, hypoplasia, extensive tooth wear, and direct
and indirect restorations, were excluded. Finally, 2352 anonymized, high-quality clinical
photographs from permanent posterior teeth and the corresponding occlusal surfaces
were included.

2.3. Categorization of Sealants (Reference Standard)

Each image was examined on a computer to detect and categorize fissure sealants
using well-accepted international classification systems [18,19]. The following categories
were used: 0—occlusal surfaces with no sealant; 1—occlusal surfaces with a clinically intact
fissure sealant (up to one third loss of material in the periphery of the fissure pattern);
2—occlusal surface with a sufficient fissure sealant (retention of the material in the main
fissure or loss of material exceeding one third of the fissure pattern); 3—insufficient (nearly
complete loss of material and re-exposure of the main fissures) (Figure 1). Each of the
given diagnostic categories is typically linked with different treatment modalities in daily
dental practice and, in consequence, the quality staging appears of clinical relevance and
justifies its scientific consideration in the present study. All the images were prelabeled by
a group of three graduated dentists and subsequently independently counterchecked by an
experienced examiner (J.K., >20 years of clinical practice and scientific experience). In the
case of divergent opinions, each image was discussed until a consensus was reached. Each
diagnostic decision—one per image—served as a reference standard for cyclic training and
repeated evaluation of the deep-learning-based CNN.
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0.779/0.752 (J.S.) and 0.779/0.752 (P.E.). 

 

Figure 1. Example clinical images for each category: unsealed molar (A) and intact (B), sufficient
(C) and insufficient fissure sealant (D).

All the annotators (A.S., J.S., P.E.) were trained during a 2-day workshop by the
principal investigator (J.K.) and calibrated before beginning the study. The intra- and inter-
examiner reproducibility was determined using 60 photographs, and the corresponding
Kappa values showed at least a substantial capability for detecting and categorizing fissure
sealants. The intra-/inter-examiner reproducibilities were 0.784/0.753 (A.S.), 0.779/0.752
(J.S.) and 0.779/0.752 (P.E.).

2.4. Programming and Configuration of the Deep-Learning-Based CNN for Sealant Detection and
Categorization (Test Method)

The CNN was trained stepwise using a pipeline of established procedures, mainly image
augmentation and transfer learning. Before training, the entire image set (2352 images/461 un-
sealed tooth surfaces/1891 sealed surfaces) was divided into a training set (n = 1881/364/1517)
and a test set (n = 471/97/374). The latter was never made available to the CNN as training
material and served as an independent test set.

Image augmentation was used to provide a large number of variable images to the
CNN on a recurring basis. For this purpose, the randomly selected images (batch size = 16)
were multiplied by a factor of ~5, altered by image augmentation (random center and mar-
gin cropping by up to 30% each, random deletion up to 30%, random affine transformation
up to 180 degrees, random perspective transformation up to a distortion of 0.5, and random
changes in brightness, contrast and saturation up to 10%) and resized (to 300 × 300 pixels)
by using torchvision (version 0.9.1, https://pytorch.org) in conjunction with the PyTorch
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library (version 1.8.1, https://pytorch.org). All the images were normalized to compensate
for under- and overexposure.

ResNeXt-101–32x8d [20] was used as the basis for the continuous adaptation of CNN
for sealant detection and categorization. The CNN was trained using backpropagation to
determine the gradient for learning. Backpropagation was repeated iteratively for images
and labels using the abovementioned batch size and parameters. Overfitting was prevented
by first selecting a low learning rate (0.00005) and then performing dropout (at a rate of 0.5)
on the final linear layers as a regularization technique [21]. To train the CNN, this step was
repeated for 10 epochs. The cross entropy loss as an error function and the Adam optimizer
(Betas 0.9 and 0.999, Epsilon 10−8) were applied.

To accelerate the training process of the CNN, an open-source neural network with
pretrained weights was employed (ResNeXt-101-32x8d pretrained on ImageNet., Stanford
Vision and Learning Lab, Stanford University, Palo Alto, CA, USA). This step enabled
the transfer of existing learning results to increase the efficiency of recognition of basic
structures in the existing image set. The training of the CNN was executed on a university-
based server with the following specifications: RTX A6000 48 GB (Nvidia, Santa Clara, CA,
USA), i9 10850K 10x3.60 GHz (Intel Corp., Santa Clara, CA, USA) and 64 GB RAM.

2.5. Statistical Analysis

The data were analyzed using Python (http://www.python.org, version 3.8). The
overall diagnostic accuracy (ACC = (TN + TP)/(TN + TP + FN + FP)) was determined by
calculating the number of true positives (TP), false positives (FP), true negatives (TN) and
false negatives (FN) after using 25%, 50%, 75% and 100% of the images of the training data
set. The sensitivity (SE), specificity (SP), positive and negative predictive values (PPV and
NPV, respectively), and the area under the receiver operating characteristic (ROC) curve
(AUC) were computed for the selected types of teeth and surfaces [22]. Saliency maps
were plotted to identify image areas that are important for the CNN to make individual
decisions. We calculated the saliency maps [23] by backpropagating the CNN prediction
and visualized the gradient of the input of the resized images (300 × 300 pixels).

3. Results

The trained deep-learning-based CNN detected sealants correctly in 98.7% of all
the test cases, corresponding to an AUC of 0.996 (Table 1, Figure 2). Additionally, the
SE (96.9), SP (99.2), PPV (96.9) and NPV (99.2) were documented to be close to perfect
(Table 1). By comparison, the model diagnostic performance was lower for the sealant
subcategories (Table 1, Figure 2). Here, the AUC values were highest for the identification
of intact sealants (0.951), followed by insufficient sealants (0.942) and sufficient sealants
(0.888). These numbers, as well as the other performance data (Table 1), indicate that the
automated identification of the subcategories in the present stage was less accurate than
the simple detection of opaque sealant material from clinical photographs. The detailed
case distribution was obtained from the confusion matrix (Figure 3). Here, the majority of
incorrect decisions by the CNN occurred for categories other than the true classification,
which indicates there were no major misclassifications. Most incorrect decisions were made
for sufficient sealants. This observation is in line with the diagnostic parameters shown in
Table 1. In addition to the descriptive and explorative data presentation, saliency maps
(Figure 4) were plotted to illustrate the parts of each image that were used by the CNN for
decision making.
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Table 1. Overview of the diagnostic performance of the developed convolutional neural network (CNN), where the
independent test set (n = 471) was compared against independent expert evaluation of the caries detection level. The
calculations were performed for different types of teeth, surfaces and training steps. In this context, the overall diagnostic
accuracy (ACC), sensitivity (SE), specificity (SP), negative predictive value (NPV), positive predictive value (PPV) and area
under the receiver operating characteristic curve (AUC).

Diagnostic
Categories

True Positives
(TP)

True
Negatives

(TN)

False
Positives (FP)

False
Negatives

(FN)
Diagnostic Performance

n % n % n % n % ACC SE SP NPV PPV AUC

Overall sealant
detection

94 20.0 371 78.8 3 0.6 3 0.6 98.7 96.9 99.2 99.2 96.9 0.996

Identification of
intact sealants

141 29.9 281 59.7 33 7.0 16 3.4 89.6 89.8 89.5 94.6 81.0 0.951

Identification of
sufficient
sealants

99 21.0 293 62.2 33 7.0 46 9.8 83.2 68.3 89.9 86.4 75.0 0.888

Identification of
insufficient
sealants

52 11.0 383 81.3 16 3.4 20 4.3 92.4 72.2 96.0 95.0 76.5 0.942

 

Figure 2. The ROC curves illustrate the model performance of the developed CNN for overall and categorical
sealant detection.
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Figure 3. Confusion matrix showing the CNN classification performance for the test sample.

 

Figure 4. Examples of clinical images showing the reference decision and paired images with
saliency maps visualizing the image areas (in blue) used in decision making by the AI method. The
corresponding test results by the AI method are given for each example (unsealed tooth/intact fissure
sealant/sufficient sealant/insufficient sealant).
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4. Discussion

The results of the present diagnostic study demonstrated that AI algorithms can
detect and categorize sealants from machine-readable intraoral photographs. A high
diagnostic accuracy of 98.7% and AUC of 0.996 were found (Table 1). Unlike this promising
result, the CNN classified subcategories less accurately. Here, a diagnostic performance
of approximately 90% accuracy was achieved (Table 1). In particular, sufficiently sealed
occlusal surfaces were identified less reliably than the two other categories, which illustrates
that further improvement is needed.

In addition, it can be concluded that the developed CNN can be used in future
software applications and can identify sealants accurately with a high probability from
intraoral photographs. To our knowledge, no comparable studies have been carried out
thus far on the evaluation of fissure sealants using artificial intelligence, which should
be recognized as a unique feature of our study. The current diagnostic performance data
fit into the overall context of existing dental studies. For example, studies with a similar
methodology have documented an accuracy of up to 90% for the detection of caries lesions
from clinical images [10,11] or radiographs [2–9]. Considering earlier published data from
methodologically similar projects, it can be concluded that our most recent results (Table 1,
Figures 2 and 3) are in line with an expected outcome. Our data need to be critically
assessed from different methodological perspectives. First, it should be highlighted that the
pipeline used for image augmentation, transfer learning and the chosen CNN architecture
(ResNeXt-101-32x8d) represents an up-to-date approach that may have enhanced the
documented results. Second, as our study was performed on good quality professional
clinical photographs, the results may have been be positively influenced by this factor.
None of the images used were overexposed or underexposed, and the teeth investigated
were mostly free of plaque, calculus and saliva. All the images were normalized, cropped
and standardized before processing. Third, only unsealed posterior teeth and sealed
teeth of varying quality were included in the study materials. Cases with caries lesions,
developmental defects, and direct or indirect dental restorations were excluded from the
project to enable unbiased learning of the CNN. Another methodological advantage in
this context appears to be the use of single tooth images, because interfering information
from adjacent teeth or margins was mostly excluded. Consequently, it can be expected that
the use of other image formats, e.g., clinical images with multiple teeth or the whole jaw,
will result in a lower model performance. The number of available clinical photographs
is a limitation that must be critically examined. Here, several thousand images at best
should be includable, as the number of images is a crucial consideration for this type of
study. In the present analysis, we were able to include 2352 clinical images, which should
be interpreted as the minimum number. This fact should not be underestimated, because
increasing the number of images will extend the training of the CNN and could improve
the CNN precision. Further improvements in the model performance can be expected by
extending the number of image samples and using the image segmentation technique. The
latter approach results in precise image labeling and could be considered as the method of
choice to reach the long-term goal of almost perfect detection and assessment of fissure
sealants from clinical photographs by AI methods.

5. Conclusions

The clinical application of AI methods in software applications may be feasible but
fundamental dental research needs to be performed first. The results of the present study
show that a trained CNN detected sealant intraoral photographs with an agreement of
98.7% with reference decisions. The categorical classification into intact, sufficient and
insufficient sealants was performed with a diagnostic accuracy of approximately 90%.
Considering the complexity of intraoral findings, it can be concluded that further training
of AI-based detection, as well as categorization of prevalent and less-prevalent dental
diseases and all types of restorations, is required before clinical use can be recommended.
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Abstract: Oral cancer (OC) is a deadly disease with a high mortality and complex etiology. Artificial
intelligence (AI) is one of the outstanding innovations in technology used in dental science. This
paper intends to report on the application and performance of AI in diagnosis and predicting the
occurrence of OC. In this study, we carried out data search through an electronic search in several
renowned databases, which mainly included PubMed, Google Scholar, Scopus, Embase, Cochrane,
Web of Science, and the Saudi Digital Library for articles that were published between January 2000 to
March 2021. We included 16 articles that met the eligibility criteria and were critically analyzed using
QUADAS-2. AI can precisely analyze an enormous dataset of images (fluorescent, hyperspectral,
cytology, CT images, etc.) to diagnose OC. AI can accurately predict the occurrence of OC, as
compared to conventional methods, by analyzing predisposing factors like age, gender, tobacco
habits, and bio-markers. The precision and accuracy of AI in diagnosis as well as predicting the
occurrence are higher than the current, existing clinical strategies, as well as conventional statistics
like cox regression analysis and logistic regression.

Keywords: artificial intelligence; artificial neural networks; oral cancer diagnosis; machine learning;
oral cancer prediction

1. Introduction

Oral cancer (OC) is one of the most common lethal diseases and has been a major
public health concern around the world. OC is a subdivision of head and neck cancers
with 275,000 fresh cases per year worldwide. The survival rate of the early stage (Stage I)
disease is around 80%, whereas for the late stage disease (Stage II and III), it is less than
20% [1,2].
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Among OC, squamous cell carcinoma (OSCC) of the oral cavity is the most common
type and comprises 90% of the disease [3]. Early diagnosis of OC is significant, however,
most patients are diagnosed at a late stage of the disease, leading to a poor prognosis. The
clinical appearance of OC is not a sufficient parameter for identifying the status, analysis,
or dysplastic level, therefore, the treatment selection based on the clinical appearance of
the disease is not sufficient. OC is associated with multiple factors, and the survival rate
after treatment is also unpredictable [4,5].

Potentially malignant lesions like leukoplakia, erythroplakia, and oral submucous
fibrosis are also prevalent among the risk population. Differentiating these lesions from
the malignant lesions are also important. Risk factors like age, gender, and tobacco habits
may affect the prognosis of OC [6].

Understanding the refinements of innovations like Artificial Intelligence (AI) could
relieve potential clinical entanglements [7,8]. Application of AI in the oral malignant
growths can improve the current challenges in the disease diagnosis, as well as in predicting
the prognosis. AI, which mimics human cognitive functions, is a forward leap in innovation,
and has enamored the minds of scientists over the globe [9]. Its use in dentistry has begun
recently, which has led to extraordinary accomplishments. History goes back to as early as
400 BC; Plato visualized an essential model of brain function. AI system is a framework that
takes u information, discovers designs, uses data to train itself, and yields results [9–11].

AI works in two phases—the first phase, which involves “training” and the second
phase which is “testing”. The model set uses the training data to set the parameters. The
model uses the data from past examples, like data from patients or data with different
examples, retrospectively. These parameters are then applied on the test sets. Various stud-
ies that have described the prognostic factors of OC are detected through AI by different
biomarkers. Early diagnosis of the malignant lesion is good for patient survival rate and
proper treatment therapy [12–16]. Many studies have been conducted using image analysis
to smartphone-based OC detectors, based on AI algorithms. The AI technology facilitates
the diagnosis, treatment, and management of patients with OC. AI reduces workload, com-
plex data, and fatigue among physicians, for easy diagnosis [4,17]. The present systematic
review intends to report on the application and role of AI-based technology in diagnosis
and prediction of OC occurrence.

2. Materials and Methods

2.1. Search Strategy

In this systematic review, we followed the guidelines given by preferred reporting
items for systematic reviews and meta-analyses extension, for the diagnostic test accuracy
(PRISMA-DTA) [18]. Data search was mainly carried out through an electronic search in
several renowned databases, which mainly included PubMed, Google Scholar, Scopus,
Embase, Cochrane, Web of Science, and the Saudi Digital Library for articles that were
published between January 2000 to March 2021. Index words like “artificial intelligence;
oral cancer diagnosis; oral cancer prediction; oral cancer prognosis; deep learning; and
machine learning” were used for searching the articles. Boolean operators (AND, OR) with
language filters for English were used for searching articles in most electronic databases.

Simultaneously, a manual search for the research articles was also conducted along
with the electronic search. A search for articles was carried out for the relevant citations
from the reference list of previously retrieved articles in department and college libraries,
where hard copies of the journals were available.

PICO (problem/patient, intervention/indicator, comparison, and outcome) elements
were used for searching data on this topic (Table 1).
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Table 1. Description of the PICO (P = Population, I = Intervention, C = Comparison, O = Outcome) elements.

Research question
What are the applications and performance of the artificial intelligence models that have been widely
used in oral cancer diagnosis, and predicting the prognosis.

Population Patients, clinical images, radiographs, datasets, and histological images.

Intervention AI-based models for oral cancer diagnosis and predicting prognosis.

Comparison Expert opinions and reference standards.

Outcome
Measurable or predictive outcomes such as accuracy, sensitivity, specificity, ROC = Receiver
Operating Characteristic curve, AUC = Area Under the Curve, ICC = Intra-class Correlation
Coefficient, PPV = Positive Predictive Values, and NPV = Negative Predictive Values.

2.2. Study Selection

The electronic database search yielded 620 articles that were followed by hand search-
ing, which yielded another 8 articles, which made a total of 628 articles. Initially, the articles
chosen were based on relevance in the area of research, the title, and the abstract. Later, the
articles were also manually checked for duplication by 2 members who were not involved
in the preliminary search, which further eliminated 288 duplicated articles. Following this,
340 full-text articles were selected for data selection. The following eligibility criteria were
applied at the next stage.

2.3. Inclusion and Exclusion Criteria

The articles were included according to the following inclusion criteria—(a) the article
must be original research and must report on the AI technology; (b) quantifiable values
that can be evaluated/analyzed should be mentioned in the article; and (c) the data used
in evaluating these AI-based models should be mentioned. There was no limit set for the
study design for inclusion in this systematic review.

The articles excluded were—(a) the articles in which AI innovation were not men-
tioned; (b) unpublished articles or conference papers that were uploaded online; (c) articles
where full-text versions were not available; and (d) articles available in languages other
than English.

2.4. Data Extraction

After applying the inclusion criteria, we filtered 12 articles out of the total. These 12
articles were considered to be potentially eligible articles for this systematic review, and
were critically analyzed by the entire team. The details of the journal were covered before
circulating them for critical analysis among authors. The QUADAS-2 tool was used for
assessing the quality of the studies reporting on diagnostic accuracy. It has four domains
which are assessed in terms of risk of bias and applicability concerns. The domains are
patient selection, index test, reference standard, and flow and timing [18]. The authors
disagreed with including 3 articles in this systematic review, as there was no mention of
the reasonable data supporting the results and conclusions. Following this, the articles
were further reduced to 16. The selection of the articles for qualitative synthesis for this
systematic review is represented in the flow chart (Figure 1). The articles were further
quantified with regards to the year of publication, to report on the trends in research that has
been conducted on OC diagnosis and the prediction of prognosis, using the AI technology.
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Figure 1. Flow chart for screening and selection of articles.

3. Results

Finally, 9 articles were critically analyzed for the extraction of the quantitative data.
Most studies reported in the literature revealed that these studies were reported over
the last 15 years. The trend showed a gradual increase in the studies reporting on the
application of AI for OC diagnosis and the prediction of prognosis.

3.1. Qualitative Synthesis of the Included Studies

AI technology has been mainly applied for differentiating between normal, prema-
lignant, and malignant conditions [19–23], predicting the likelihood of oral cancer inci-
dence [24–26], prognosis, early detection of pre-cancerous and cancerous lesions [27–30],
predicting the risk of recurrence [31,32], predicting the possibility of disease development
from potential malignant lesion, and predicting the survival of patients [33,34].

In this systematic review, 4 studies were reported using convolutional neural networks
(CNNs), and another 4 studies were reported using artificial neural networks (ANNs).
These neural networks were mainly designed for assessing patient datasets, high-resolution
cytology images, hyperspectral images, autofluorescence images (AFI), and white light
imaging (WLI) (Table 2).
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3.2. Risk of Bias Assessment and Applicability Concerns

The QUADAS-2 assessment tool was used for assessing the quality and risk of bias
of the included studies (Table S1). Most studies involved using photographic data as an
input to the CNNs and ANNs, and hence, 76.47% of the included studies reported a low
risk of bias for the patient-selection domain. However, in four studies, the patient-selection
method was unclear. Since the data feeding in AI technology was highly standardized
and there was no effect of flow and time frame on the final output, both the factors were
categorized in a low-risk group. Nayak et al. used histopathology as the gold standard and
studies by Tseng et al., Alabi et al., and Kim et al., were based on the prognostic outcome
of the OSCC patients [19,27,33,34]. Hence, the reference standard in this situation was
graded as low risk. Reference standard and the flow and timing domain were unclear in
17.64% and 29.41%, respectively. Hence, in this paper, a low risk of bias was reported in the
index test (100%) and (70.58%) the inflow and timings. Under the risk of a bias arm of the
QUADAS-2 tool, the applicability concern arms also showed 88.23% and 47.05% low risk
of bias in the index test and the reference standard. However, patient selection and index
test domain were unclear for 35.29% and 11.76% (Table S2, and Figures 2 and 3).
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4. Discussion

Oral cancer is one of the most prevalent cancer with high mortality, and it is a sig-
nificant public health issue. Late diagnosis and high death rates are attributes of cancer
around the world. According to the 2015 statistics of World Health Organization (WHO),
cancer is the first or the second driving reason of death in almost 91 of 172 countries.
The diagnosis and prediction of the reoccurrence of OC are the challenging factors, as AI
involves complex data on etiology and risk factors [35–37].

AI is an exceptionally fresh development with a significant prognostic power, which
allows clinicians to select appropriate treatment modalities. AI holds an incredible guaran-
tee to empower clinicians to make noteworthy choices, depending on the immense amount
of digitized data. Previous studies have applied machine-learning methods to huge patient
datasets for early diagnosis and predicting the risk of occurrence of OC.

AI has a more preferred advantage over existing techniques for detecting OC. It is a
versatile innovation and can acquire additional information at any time. As AI calculations
get information from new patients, they can merge this information into their dynamic
datasets to improve their prescient exhibition and can reduce the burden of treatment and
cost for patients [38]. There are two types of AI technologies, artificial neural networks
(ANN) and convolution neural networks (CNN). The significant difference between the
two is that in CNN, only the last layer of a neuron is completely associated. While in
ANN, every neuron is associated with each different neuron [39]. This paper expects to
examine the performance of these AI-based models that have reported on the diagnosis
and prediction of the risk of occurrence of OC.

4.1. Artificial Intelligence in Detecting and Diagnosing Oral Cancer

As the late-stage disease has poor prognosis, early detection is important in OC
patients. The data obtained from cytology images, fluorescent images, CT images, and
depth of invasion can be used in AI learning tools, and OC can be diagnosed quickly
with more accuracy. From our collected list of articles, 6 articles reported the application
of AI-based computerized models for diagnosing OC. Several studies have carried out
early detection of the advanced stage of OC and studies have reported that OC arise from
different subsites of the oral cavity such as tongue, buccal mucosa, etc. This heterogeneity
of oral malignant growth makes it difficult to be analyzed.

Sunny et al. conducted a study by ANN for early detection of OC, using tele cytology
(TC), which is digitization of the cytology slides [29]. The efficacy of AI was compared
with conventional cytology and histology; 11,981 prepossessed images were loaded for
AI analysis, based on the risk stratification model. Results showed an accuracy of 80–84%
in diagnosis, with no difference in tele cytology and conventional cytology detection,
however, potentially malignant oral lesions were detected with low sensitivity, using tele
cytology. The ANN-based model showed improved malignant detection accuracy to 93%,
and a potentially malignant lesion to 73%. The study used the brush biopsy method for
sample collection, which is less invasive, and this factor should also be considered while
detecting cancer.

Jeyaraj et al. conducted a study in which OC was diagnosed based on a regression-
based deep-learning algorithm for the characterization of oral malignant growth [30]. A
deep-learning algorithm of CNN was developed in a computer-aided OC detecting system
and 100 hyperspectral images (HIS) were analyzed. They observed a 91.4% sensitivity in
detecting cancerous lesions using the regression-based algorithm, and the results were
compared to the traditional algorithm using the same images. The quality of diagnosis was
improved for the proposed model of the algorithm, as compared to the conventional.

Uthoff et al. conducted a study on detecting OC by using smartphone-based images
and AI technology [28]. Based on the concept of point of care, smartphone-based images
were developed. Autofluorescence and white light imaging were added to the pictures,
and these pictures were stacked to AI algorithms for recognizing oral malignancy. A
sum of 170 autofluoresced pictures was taken. This strategy was very convenient for
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application, and the accuracy was improved. However, the study needs to be conducted
on a large population for further validation. A similar study was done by Nayak et al.,
using autofluorescent spectral images, and analysis was done using principal component
analysis (PCA) and ANN [19]. PCA is computing based on principal components of data
and the results from ANN performance was slightly better than the PCA. The advantage
of this technique was that fluorescence spectroscopy image uses a minimally invasive
technique and there is no need for biopsy [27,40]. In a study conducted by Musulin et al.,
AI showed better results in detecting OC, by using Histology images [21]. Similarly, in a
study conducted by Kirubabai et al., CNN was better at differentiating malignant lesions
as mild or severe, by using clinical images of patients [22].

Kann et al. applied deep-learning machines on 106 OC patients for the identification
of nodal metastasis and tumor extra-nodal extension involvement [17]. The dataset com-
prised 2875 CT (computerized tomography) segmented lymph node samples. This study
explored the capability of the deep-learning model to assist head and neck cancer patient
management. For DNN, the area under the receiver operating characteristic curve (AUC)
showed 0.91, which implied a higher accuracy. AUC represents the two-dimensional areas
under the receiver operating characteristic curve (ROC). Similarly, Chang et al., reported an
AUC of 0.90 for predicting the occurrence of OC, using AI based on genome markers [41].
In this study, logistic regression analysis was used to compare with AI. However, the study
was conducted on 31 patients, which is a considerably less sample size, a study on a larger
number of patients has to be carried out for better analysis.

4.2. Artificial Intelligence in Predicting the Occurrence of Oral Cancer

Currently, OC is treated with advanced treatment aids, however, the reoccurrence rate
of OC is very high. Treatment of oral malignant growth relies on the stage of the disease.
Lack of an evidence-on staging system may prompt deficient or pointless treatment. Differ-
ent prognostic biomarkers and restorative targets have been proposed in ongoing periods,
but they are not reproduced in the present cancer staging system. To date traditional
statistical methods have been used for predicting OC, for example, cox proportional hazard
(CPH), and it is not suitable for predicting conditions like OC.

Considering the complex ‘dataset’ of oral carcinoma, an AI-based anticipation predic-
tion will give satisfied outcomes. Previous studies that used AI for predicting OC yielded
excellent results [34,42,43].

Alabi et al. conducted a study on 311 patients in Brazil which compared four machine-
learning algorithms in predicting the risk of reoccurrence of oral tongue squamous cell
carcinoma [33]. These different machine-learning AI-based algorithms were based on
support vector machine (SVM), naïve Bayes (NB), boosted decision tree (BDT), and decision
forest (DF). All these algorithms showed improved accuracy in diagnosis, but the BDT
algorithm showed the highest accuracy. However, the study included fewer samples, and
more external algorithm data is required.

Shams et al. employed AI with the gene expression profile, to predict the occurrence
of OC and also the transformation of oral potentially malignant lesions [31]. The study was
conducted on 86 subjects, among them, 51 subjects developed OC and 31 subjects remained
without malignancy. The study compared SVM, DNN, and multi-layer perception (MLP).
Excellent results were obtained by deep-learning machines with 96.5% accuracy and 94%
accuracy was obtained with MLP [43].

Chui et al., predicted the occurrence of cancer, based on clinical, pathological data,
and compared linear regression (LR), BDT, SVM, and k-nearest neighbors (KNN) models,
and concluded that BDT was the best model [26].

Tseng et al. determined the difference between symptoms exhibited by demised and
survived OC patients [27]. The performance was compared between conventional logistic
regression, decision tree, and ANN, and was conducted on 674 OC patients. Study used
prognostic factors such as survival rate, death, cancer occurrence, and metastasis. The
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study concluded that the decision tree was easy to interpret and accuracy of the decision
tree, and ANN was compared more to conventional logistic regression.

Rosma et al. tested the effectiveness of AI in predicting cancer based on the risk habits
and demographic profiles in a Malaysian cohort [24]. Prediction of OC was compared
between fuzzy regression model, fuzzy neural network prediction model, and clinician
opinion. Fuzzy regression provides means when there is a lack of data and also pro-
vides a relationship between explanatory and response variables. The AI-based neural
network and fuzzy regression model performed better in accuracy than human opinion, in
predicting the OC.

5. Conclusions

AI is more accurate in diagnosing oral cancer as compared to the conventional method
of diagnosis. Retrospective clinical data of patients may help in improving the AI-based
diagnosis. Additionally, AI-based algorithms showed more accurate results in predicting
the OC occurrence. More data and studies are needed to conduct AI-based algorithms
to predict OC. The treatment of OC will not be effective if they are diagnosed at a later
stage. Subsequently, early recognition techniques are required. The complex etiology and
high recurrence rate make the investigation difficult. The patients can be classified as high-
and low-risk groups, using accurate data from AI, which helps clinicians in planning and
treatment, as compared to conventional methods. Patients can be directed with sensible
advice and the clinicians can be guided with informed decisions.
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Abstract: In recent years, the etiology of caries has evolved from a simplistic infectious perspective
based on Streptococcus mutans and/or Lactobacillus activity, to a multifactorial disease involving a
complex oral microbiota, the human genetic background and the environment. The aim of this
work was to identify bacterial markers associated with early caries using massive 16S rDNA. To
minimize the other factors, the composition of the oral microbiota of twins in which only one of
them had caries was compared with their healthy sibling. Twenty-one monozygotic twin pairs
without a previous diagnosis of caries were recruited in the context of their orthodontic treatment
and divided into two categories: (1) caries group in which only one of the twins had caries; and (2)
control group in which neither of the twins had caries. Each participant contributed a single oral
lavage sample in which the bacterial composition was determined by 16S rDNA amplification and
further high-throughput sequencing. Data analysis included statistical comparison of alpha and beta
diversity, as well as differential taxa abundance between groups. Our results show that twins of
the control group have a closer bacterial composition than those from the caries group. However,
statistical differences were not detected and we were unable to find any particular bacterial marker
by 16S rDNA high-throughput sequencing that could be useful for prevention strategies. Although
these results should be validated in a larger population, including children from other places or
ethnicities, we conclude that the occurrence of caries is not related to the increase of any particular
bacterial population.

Keywords: machine learning; oral microbiota; LEfSe; PCoA; alloprevotella; prevotella; core microbiota

1. Introduction

The microbial colonization of the oral cavity starts immediately after birth, differenc-
ing among early colonizers (Streptococcus, Veillonella and Lactobacillus), constant (Gemella,
Granulicatella, Haemophilus and Rothia) and late colonizers (Actinomyces, Porphyromonas,
Abiotrophia and Neisseria) [1–3]. The establishment of this ecosystem and its further com-
position is influenced by numerous factors as the mode of delivery, diet and antibiotic
consumption [4]. Oral health is not only a local stomatological problem, but also an impor-
tant driver of systemic health, as it has been linked to numerous disorders of the digestive,
cardiovascular and genitourinary tracts [5–7].

Caries is the most prevalent human disease worldwide, although its incidence varies
according to geography and ethnicity [8], and it has conventionally been attributed to the
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direct action of acidogenic bacteria such as Streptococcus mutans, Lactobacillus and Bifidobac-
terium since these microorganisms have been isolated from the lesions. The application of
molecular tools based on high-throughput sequencing of the 16S rDNA gene has revealed
that microbiota associated to caries is a much more complex ecosystem than expected
(http://www.homd.org/, accessed on 5 May 2021) [9]. While traditional studies classi-
fied bacteria as pathogens or commensals according to their potential etiological role on
diseases, greater focus has been put on the new concepts of eubiosis/dysbiosis and the
disbalance of alkalinogenic/acidogenic bacteria in the caries [3,4]. In addition, metatran-
scriptomic analyses have permitted to extend the cause of oral diseases as periodontitis
from the action of a single microorganism to the metabolic activity of the entire ecosys-
tem [10]. Consequently, the number of microorganisms linked to caries has increased
considerably in the last decade [11–13], including Streptococcus, Lactobacillus, Veillonella,
Actinomyces, Granulicatella, Leptotrichia, Megasphaera, Olsenella, Shuttleworthia and, most
recently, Scardovia, Atopobium and Selemonas [14]. One of the major challenges is to identify
early markers of caries in order to monitor and prevent this disease during childhood.
The exploration of biomarkers in saliva has already demonstrated its usefulness in other
pathologies [7,15].

Due to all this complexity in the detection of caries markers, we think that a predictive
analysis using machine learning tools can be a good starting point in the study of caries
using the oral microbiota. Despite the fact that the implementation of Artificial Intelligence
(AI) is still far from being completely common in oral health, some studies highlight the
improvements that its use would imply in different areas [16].

The rationale of the present work was to identify bacterial biomarkers in saliva for
early caries detection. For this purpose, we explored by massive 16S rDNA sequencing
combined with robust bioinformatics tools, statistical analysis and machine learning the
oral microbiota of monozygotic twins with and without caries.

2. Materials and Methods

2.1. Patients and Samples

Twenty-one pairs of monozygotic twins were recruited by the first author EAG and
divided into two categories: (1) caries group where only one of the twins had caries
(22 infants, 73% females, median age of 9 years, range from 6 to 12 years); and (2) control
group where neither of them had caries (20 infants, 70% females, median age of 6.7 years,
range from 4 to 12 years) (Table 1). Infants were enrolled in 2018 from January to May
in four different dental clinics of Madrid (Spain) within the context of their orthodontic
treatment. Each child contributed with a single oral lavage sample after 5 min of vigorous
rising with 10 mL of sterile water. Samples were immediately frozen after collection and
stored at −80 ◦C until processing. The inclusion criteria were twins aged 4–12 years whose
parents and they accepted to participate in the study. In the caries group kids with clear
lesions as well as pre-cavity lesions, mainly white spots, were included, whereas other
types of lesions were excluded. All participants were adequately instructed to avoid teeth
brushing, food and sugar drinks intake during the 2 h before sampling.

2.2. Oral Microbiota Characterization

Oral lavages were slowly defrosted at −20 ◦C during 24 h, followed by another 24 h
at 4 ◦C, and centrifuged at 14,000 r.p.m. for 15 min discharging the supernatant. Total
DNA was obtained from the pellet with the Speedtools tissue DNA extraction kit (Biotools),
determining their concentration and quality by Qubit fluorometer (Thermo Fisher Scientific,
MA, USA). DNA samples were sent to FISABIO (Valencia, Spain) for massive sequencing
(2 × 300 bp, MiSeq, Illumina. Cod. 15044223 Rev. A) of the V3 and V4 regions of the
16S rRNA gene, which were amplified with the following primers: Forward Primer: 5′-
TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGC CTACGGGNGGCWGCAG; and
Reverse Primer: 5′-GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGACTACHVGG
GT ATCTAATCC. Sequence quality was measured according to the following parameters:
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minimum length, 250 bp; trimming quality measure type, mean; trimming quality number
from 3’ extreme, 30; and trimming quality window, 10 bp. Shannon–Weaver and Chao1
indexes were used for bacterial alpha diversity estimation excluding taxa with three or
fewer reads. Taxonomic affiliations were assigned using the Silva 119 database, and reads
with an RDP score below 0.8 were assigned to the upper taxonomic rank, leaving the
last rank as unidentified. Relative abundance and contingency tables of the operational
taxonomic units (OTUs) included singletons and very low-represented taxa.

Table 1. Main characteristics of the 42 participants. C, caries; H, healthy.

Caries Group 22 Infants Sex Age

1C/1H females 12
2C/1H females 7
3C/1H females 8
4C/1H females 6
5C/1H females 11
6C/1H males 9
7C/1H females 8
8C/1H males 10
9C/1H females 12

10C/1H females 9
11C/1H males 9

Control Group 20 Infants Sex Age

12 females 12
13 females 7
14 males 4
15 females 8
16 females 9
17 females 5
18 females 9
19 males 4
20 females 4
21 males 5

2.3. Statistical Analysis and Machine Learning Modeling

Statistical analysis was performed using R statistical software v3.5.3. Quantitative
data of the reads were homogenized using their relative percentage from the total reads of
each sample to allow the comparison between samples. Finally, the Galaxy Huttenhower
Platform (http://huttenhower.sph.harvard.edu/galaxy, accessed on 5 May 2021) was used
to calculate the Linear Discriminant Effect Size Analysis (LEfSe) algorithm to identify
which microbial taxa explain significant differences among groups of samples [17]. The
PCoA analyses were performed by Past 3.0 software. Raw sequences were deposited in the
GenBank database as Bioproject PRJNA643173.

Simultaneously, we carried out a statistical exploratory analysis to later search for a
machine learning model for a possible caries prediction. To carry out this analysis, we ruled
out bacterial species with fewer than 50 data with non-zero values. Exploratory analysis
was performed using own software in Python. Machine Learning models were developed
with Orange3 v3.27 [18]. We carried out different classification models in two ways. In the
first case, we used healthy, control and cavity sample labels. In the second case, we only
used healthy and caries labels to classify our samples. Using k-cross validation (k = 10), we
tested five different classification model: Random Forest, Neural Network, Support Vector
Machine, KNN model and a logistic regression.

To evaluate the results of the used algorithms, we used:

1. Classification accuracy is the proportion of correctly classified examples.
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2. F-1 is a weighted harmonic mean of precision and recall.
3. Precision is the proportion of true positives among instances classified as positive,

e.g., the proportion of cavity correctly identified as cavity.
4. Recall is the proportion of true positives among all positive instances in the data, e.g.,

the number of cavity among all diagnosed as cavity.

3. Results

Both groups of participants were comparable in demographic and anthropometric
terms, and all were recruited during their orthodontic treatment without previous suspicion
of caries. Oral lavages were processed in a single session and the 16S rDNA massive
sequencing was developed successfully, passing the quality filters with adequate negative
controls. The numbers of read counts were comparable for all samples. The alpha diversity
was analyzed by the Shannon–Weaver and Chao 1 alpha diversity indexes showed no
significant differences between groups, but more disperse values were detected in the
caries group (Figure 1).

Figure 1. Alpha diversity indexes in all samples. Statistical differences were not detected.

Phyla distributions showed a preserved pattern for each pair of twins, including those
from the caries group (Figure 2). Children with caries had a similar phyla distribution to
their healthy siblings, whereas controls presented higher proportions of Firmicutes and
lower proportions of Proteobacteria.

Up to 119 genera were identified, although 13 of them accounted for 90% of the total
abundance [Streptococcus (≈30%), Prevotella (≈10 %), Neisseria (≈9%), Veillonella (≈8%),
Gemella (≈7%), Haemophilus (≈6%), Alloprevotella (≈5%), Rothia (≈5%), Porphyromonas
(≈2%), Fusobacterium (≈2%), Leptotrichia (≈2%), Granucalicatella (≈2%) and Actinomyces
(≈2%)]. The remaining genera represented 10% of the abundance, comprising 106 genera
with a total population density less than 1 for each one (Figure 3).

To obtain a global overview of the oral microbiome complexity, we designed an
interaction network representing all taxa detected for each subject in circles proportional
to their frequency and joined the circles, called nodes, proportional to their frequency
joining the circles by lines, called links, to build a network per sample. Subsequently, we
superimposed all the individual networks to define the core of the microbiome of each
condition (caries, health and controls), and the thickness of the links between nodes is the
accumulated number of lectures in all samples, representing the stability in the coexistence
of the connecting taxa (Figure 4).
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Figure 2. Phyla distribution: (top) the median values for each phyla and group; and (bottom) all individual values.
* Represents Children with caries.

Figure 3. Distribution of the major bacterial genera among all participants.* Represents Children with caries.
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Figure 4. Complex networks core microbiota for the three differenced subjects using Gephi.

PCoA analysis separated the healthy, caries and control groups (Figure 5), showing
a higher level of Veillonella, Prevotella and Fusobacterium genera linked to a healthy status,
whereas Alloprevotella and Granullicatella were the most differentiated genera among chil-
dren with cavities. The control group was allocated in a separate quadrant marked by the
abundance of Capnocytophaga, Lautropia and Streptobacillus. Curiously, most of the control
group twins were located on the same quadrant (8 out of 10 pairs), three pairs being located
in Quadrant 3 (dominated by Gemella and Haemophilus), three in Quadrant 4 (Streptococcus
and Rothia) and two in Quadrant 1 (Prevotella and Veillonella). The remaining two pairs
of control twins were located on separated coordinates (Quadrants 1–3 and 2–3). Consid-
ering the twins of the caries group, only 6 out of the 11 pairs had both children located
in the same quadrant: one in Quadrant 1 (Prevotella and Veillonella), three in Quadrant 2
(Neisseria, Alloprevotela and Leptotrichia), one in Quadrant 3 (Gemella and Haemophilus) and
one in Quadrant 4 (Streptococcus and Rothia). The remaining five pairs were distributed
in separated quadrants: two pairs in Quadrants 1–2, one pair in Quadrants 2–3, one in
Quadrants 1–4 and one in Quadrants 1–3.

Furthermore, differential abundance analysis on microbiota composition by LEfSE in
relation to the group, age and the sex of children did not obtain any significant result.

Finally, to address the possibility to predict the cavity in patients, we developed five
classification models using machine learning tools (Table 2). The model that showed the
highest classification accuracy (CA) was the Random Forest model with a value of 0.881
followed by the Neural Network with 0.810. Studying the confusion matrix, from the
point of view of caries, the Random Forest model does not produce false positives but
does generate quite a few false negatives (54.5%). On the contrary, Neural Network model
produce 16.1% false positives but a lower percentage, with respect to the Random Forest,
of false negatives (27.3%).
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Figure 5. PCoA analysis: (top) the median value for the three categories of subjects respect to the abundance bacterial
genera; and (bottom) the same analysis but considering each of the children and in relation to their sibling. The pairs of
twins are linked by colored lines. Random colors are used to highlight the two pairs of twins.

Table 2. Results of the accuracy of the 5 model used in this study. We have used different measures:
Classification accuracy (CA), F1, precision, and recall.

Model CA F1 Precision Recall

kNN 0.666 0.655 0.646 0.665
SVM 0.738 0.627 0.545 0.738

Random Forest 0.881 0.874 0.880 0.881
Neural Network 0.810 0.814 0.823 0.810

Logistic Regression 0.595 0.601 0.607 0.595
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4. Discussion

In the last years, the etiology of caries has evolved from a simplistic infectious per-
spective (S. mutans and/or Lactobacillus colonization) to a multifactorial disease involving
oral microbiota, human genetic background and environment [3]. In accordance, research
tools have evolved from culturomics to metagenomics, transcriptomics and proteomics.
Diet continues to be one of the most decisive factors in caries incidence and accounts for
the individual susceptibility in relation to carbohydrates intake and bacterial fermenta-
tion [19,20], whereas human genetic background seems to be not so relevant, as previously
expected [4,21]. The main objective of our work was twofold, on the one hand, to de-
tect early metagenomic markers based on the abundance of particular genera in the oral
microbiota associated with caries in the context of monozygotic twins with the same ge-
netic, dietary and environmental context, and, on the other hand, address a classification
model to predict caries using this microbiota of patients. When the participation in the
project was offered to children, none of them had been previously diagnosed of caries. The
bioinformatic analyses showed a more uniform microbiota in the control twin group, but
without statistical significance. We were unable to identify any bacterial taxon exclusive
of participants with caries, discarding the contribution of oral bacteria microbiota at the
initial cariogenic process.

To obtain a representative sample of the entire oral microbiota, all children refrained
from tooth brush and avoided food intake for at least 2 h. Despite the high and continuous
contamination of the oral microbiota with foreign environmental microorganisms, intra-
individual particularities of saliva microbiota have been postulated as a forensic marker
to identify subjects, even for twins [22]. Some studies perform the sampling directly from
the lesion or at the supragingival plaque, but we decided to use rinsing of the total oral
microbiota as a representative sample easily collected by children with the absence of
macroscopically visible lesions, which seems to be the most suitable option for surveillance
purposes. Even though saliva and supragingival plaque are different in terms of bacterial
composition [23], saliva has been used in similar studies, providing differentiation between
subjects with and without caries [24]. The use of saliva in the identification of biomarkers
associated to both local and general health was previously validated [7,15].

Previous studies on monozygotic and dizygotic twins reported discordant results
regarding the incidence of caries and the oral microbiota composition [4,21,23,25,26], al-
though those studies have been conducted in different age groups and using different
microbiological methodologies, which could explain the lack of reproducibility. In the
last years, tools for massive sequencing data analysis have been evolving considerably,
allowing us to applied some of those novel tools to our data, including LEfSE and network
analysis of the ecosystem.

Our PCoA analysis consistently associates a higher abundance of Alloprevotella in sub-
jects with cavities, whereas in their healthy counterparts Prevotella was the most differential
marker. Surprisingly, both genera belong to the same family and might have synonymous
metabolic functions, although we cannot rule out synergistic effects of combination of
microorganisms [27] and, most notably, the interaction of particular bacterial genera with
fungi or virus, which has not been extensively explored. Most of the published studies
using the entire oral microbiota with a metagenomic approach failed to find significant
differences among healthy and caries status in non-related subjects [4,11,24,28,29]. How-
ever, a structural conservation between twins can be observed in our PCoA analysis, where
control subjects are also more homogeneous (8/10 in the same quadrant) than the caries
group (6/11), suggesting an incipient diversification on the oral microbiome.

As in other human ecosystems, the oral microbiome is usually constant and specific in
each individual, but may be influenced by ethnicity [30]. A higher prevalence of caries has
been described in a group of subjects from China, with special enrichment of Scardovia [24],
whereas this genus is not particularly abundant in our population. In the study by Yasunaga
et al., individuals without caries had more diverse communities, with a significantly higher
proportion of the genus Porphyromonas, in particular Porphyromonas pasteri [31]. Belstrøm
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et al. also observed a higher alpha diversity in subjects with caries and an enrichment of
Neisseria, Haemophilus and Fusobacterium compared to individuals without caries [29]. In
contrast, in our study, both bacterial density and alpha diversity parameters are similar
in children of both groups and conditions. An important point is that the composition
of the community does not necessarily reflect its metabolic activity [10], particularly in
microorganisms represented in low proportions, and it could have essential metabolic
activities for the community [5].

Extremely high levels of S. mutans have been associated with caries, and, whereas
Streptococcus was the majoritarian genera, we cannot investigate this point since our metage-
nomic approach is not able to assign to the level of species, due to the short length of the
sequences obtained by massive sequencing. The dominance of Streptococcus in the oral
cavity can be found in both patients with caries and in controls [29,32], as observed in our
case, but being more abundant in the healthy control group than among the cavity group. A
protective effect of some streptococcal species has been demonstrated [33], and, beyond the
microbiota composition, there is an increasing emphasis on the global ecosystem richness,
distribution and functionality [34]. However, in our case, LEfSE analysis failed in the
discrimination of children by their cavity status, age, or sex, being the oral microbiota of all
participants comparable.

In this study, the classification models showed relatively good precision in predicting
caries in our data set (Table 2).The best performing classification models were Random
Forest that showed the highest classification accuracy (CA) of a value of 0.881 and closely
followed by Neural Networks with an CA of 0.810. One of the most interesting points
of the Random Forest model was that it did not produce false positives. However, the
worst aspect of these models was the percentage of false negatives (54.5%). On the contrary,
the Neural Network model produced 16.1% false positives but a lower percentage, with
respect to the Random Forest model, of false negatives (27.3%). This problem could be
overcome with a large data-set of caries patients.

The major strength and, at the same time, the major limitation of our study is the
inclusive criteria of children, which were enrolled during their orthodontic treatment
independently of their caries’ status. In fact, all the detected lesions were small and
superficial, corresponding probably to the onset of the disease. Of course, we are unable to
ascertain if this was also the case of the control group, where caries were not observed in
any children but could be closed to appearing. The oral microbiota could be also implicated
in the tooth development [8], and likewise the age of the patient might be considered, since
different composition of the oral microbiota has been related to it. Finally, our results show
that machine learning models could help us in caries prevention using microbiota data,
although they are still far from having good accuracy. In summary, our results demonstrate
that composition of oral microbiota in twins is highly conserved independently of their
cariogenic process. We were unable to find any bacterial marker by 16S rDNA massive
sequencing associated to caries; on the contrary, Isola et al. demonstrated a significant
relationship between the salivary IL-6 concentration and existence of periodontitis [7,15].
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Abstract: The aim of this study was to segment the maxillary sinus into the maxillary bone, air, and
lesion, and to evaluate its accuracy by comparing and analyzing the results performed by the experts.
We randomly selected 83 cases of deep active learning. Our active learning framework consists of
three steps. This framework adds new volumes per step to improve the performance of the model
with limited training datasets, while inferring automatically using the model trained in the previous
step. We determined the effect of active learning on cone-beam computed tomography (CBCT)
volumes of dental with our customized 3D nnU-Net in all three steps. The dice similarity coefficients
(DSCs) at each stage of air were 0.920 ± 0.17, 0.925 ± 0.16, and 0.930 ± 0.16, respectively. The DSCs
at each stage of the lesion were 0.770 ± 0.18, 0.750 ± 0.19, and 0.760 ± 0.18, respectively. The time
consumed by the convolutional neural network (CNN) assisted and manually modified segmentation
decreased by approximately 493.2 s for 30 scans in the second step, and by approximately 362.7 s for
76 scans in the last step. In conclusion, this study demonstrates that a deep active learning framework
can alleviate annotation efforts and costs by efficiently training on limited CBCT datasets.

Keywords: active learning; maxillary sinusitis; convolutional neural network; deep learning; seg-
mentation

1. Introduction

Deep learning technology is advancing daily. Previously, it was only used in some
areas such as image processing; however, artificial intelligence (AI) technology using deep
learning has been used in various fields. In particular, deep learning technology using
convolutional neural networks (CNNs) has excellent performance in analyzing image
information [1,2]. This is going beyond object detection to find a specific object in an image,
object classifications to classify which object it is, and this continues to develop into object
segmentation, a technology that finds and separates the area of a specific object. Among
them, object segmentation is the most difficult technique [3].

AI technology that analyzes and evaluates images is creating a lot of synergy in the
medical field. In particular, this makes a significant contribution to the field of diagnosis [4].
Owing to the characteristics of medical fields, determining whether or not there is a specific
disease using X-ray radiographs, computed tomography (CT), and magnetic resonance
imaging (MRI) data is the most active field in which artificial intelligence technology is
used. Analysis of whether there is a lesion, such as cancer, or what kind of disease the
lesion is being performed [5,6]. Similar studies have been conducted in the dental field in
recent years [7,8]. Likewise, the dental field is a field where many X-rays and CTs are taken,
and the evaluation and diagnosis of the image is essential [9]. It would be nice to be able to
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obtain the help of highly skilled experts every time, but there is a lot of possibilities that a
general practitioner may miss when it comes to difficult diseases. For this, if AI can screen
for and inform a specific disease, the general practitioner can be alert to the diagnosis, and
if necessary, it can be referred to a higher-level hospital or specialist. Accordingly, many
previous studies have analyzed panoramic images to analyze tooth decay and periodontal
disease and to detect changes in alveolar bone [10,11]. In addition, lesions for malignant
diseases, such as ameloblastoma, are easily detected and not missed so that the patient’s
disease can be detected early [12].

In the dental field, not only diseases related to the teeth, but also the maxillary sinus is
the subject of much interest [13,14]. The maxillary sinus is also an important part of the
dental field, such as maxillary molar tooth disease, which causes maxillary sinusitis; if
the maxillary molar implant has insufficient bone, maxillary sinus elevation is performed
and bone grafts are performed. Accordingly, it is very helpful to accurately diagnose,
analyze, and evaluate maxillary sinus diseases. In a two-dimensional panoramic picture,
the maxillary sinus area is distorted and overlapped by the vertebrae, which is difficult
to evaluate [14]. CT data, which are 3D images, are necessary for the accurate evaluation
of the maxillary sinus. Deep learning analysis of 3D images is a much more difficult area
than the analysis of 2D images. It is a complex area that needs to be reconstructed and
evaluated again after analysis of the 2D slice image. The maxillary sinus is connected to
various sinuses, such as the nasal cavity, ethmoid sinus, and frontal sinus, and is adjacent
to the orbit and skull in the upper direction; therefore, it is very difficult to separate. Thus,
it is even more difficult to segment the disease in the maxillary sinus.

Therefore, we studied a technique for segmenting maxillary sinus diseases using
deep learning technology using 3D cone-beam computed tomography (CBCT) data. Seg-
mentation has developed significantly with the development of CNN technology, but it
is difficult to obtain sufficient labeled data for training in medical data. In this study, a
customized 3D U-Net capable of active learning was used to increase training efficiency
with limited data and reduce labeling efforts. This technology improves performance in an
organic and dynamic way in which a person evaluates and corrects the result determined
by artificial intelligence, and the artificial intelligence reflects and learns it again. The aim
of this study was to segment the maxillary sinus into the maxillary bone, air, and lesion,
and to evaluate its accuracy by comparing and analyzing the results performed by experts.
We also determined whether active learning could improve segmentation accuracy and
labeling efficiency.

2. Materials and Methods

2.1. Datasets and Pre-Processing

We used CBCT datasets (103 patients-internal and 20 patients-external) of consecu-
tively patients with various sinuses that were confirmed between January 2018 and May
2020. All CBCT were acquired on the KAVO 3D Exam, Model 17–19 (Imaging Sciences
International, Hatfield, PA, USA) for internal data and CS 9300 (Carestream Dental, GA,
USA) for external data. In each scan, both bilateral maxillary sinuses were entirely visible.
The exclusion criteria were when the radiograph quality was poor due to artifacts, there
was an abnormality in the maxillary sinus or a history of surgery in the maxillary sinus.

Maxillary sinus segmentation was performed using CBCT. We randomly selected
83 patients for deep active learning (Table 1). For training, tuning, and testing, all datasets
were split into 70:10:20 ratios. The ground truth of 40 cases for the first step with 20-
internal Korea University Anam Hospital (KUAH) and 20 external Korea University Ansan
Hospital (KUANH) scans for testing were verified by an expert reviewer using the AVIEW
software, version 1.0.3 (Coreline Software, Seoul, Korea). In the second and last steps,
64 cases were used for active learning with limited data.
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Table 1. Characteristics and acquisition parameters of the study population by group.

Characteristic
Training and Tuning

(KUAH)
(n = 83)

Internal-Validation
(KUAH)
(n = 20)

External-Validation
KUANH
(n = 20)

Age 59.9 ± 17.2 63.1 ± 16.9 40 ± 19.7
Male 44 10 10

Female 39 10 10
Tube voltage (kV) 120 120 90
Tube current (mA) 5 5 4

Scan time (s) 16.8 16.8 14.3
Voxel size (mm) 0.3 0.3 0.3

FOV (mm) 230 × 170 230 × 170 170 × 135
Focal spot (mm) 0.58 0.58 0.70

Note: Internal dataset: Korea University Anam Hospital (KUAH); external dataset—Korea University Ansan
Hospital (KUANH); Field-of-view (FOV).

All input volumes were resized to 320 × 320 pixels with intensity normalization using
the mean and standard deviation of the pixel on volumes. Third-order spline interpolation
was performed by resampling each label separately. Aggressive data augmentation was
used with the batch generator framework, involving gamma correction augmentation,
random scaling, random rotations, random elastic deformations, and mirroring [15].

2.2. Training Architecture

The 3D U-Net of nnU-Net was used for maxillary sinus segmentation, including
air and lesions in CBCT [16,17]. This architecture (customized 3D U-Net) is shown in
Figure 1. The architecture comprises an encoder and a decoder network with transposed
convolutional layers for backward operations. The left side reduces the dimensionality
of the input, and the right side recovers the original dimensionality. The architecture
involves 30 convolutional filters in the first layer and max pooling (2 × 2 × 2). The encoder
network is similar to a conventional convolution neural network (CNN), which results
in the reduction of spatial information and a loss of localization accuracy. In pixel-wise
segmentation, both spatial and semantic information are important for training and testing
medical images or volumes. The decoder of U-Net exploits deconvolution with a skip
connection to maintain spatial information using semantic information from the low vertex.
In this study, we replaced the leaky rectified linear unit (ReLU) activation functions with
random ReLU of the original 3D nnU-Net and used cross-entropy, dice coefficient, and
boundary loss functions. In the low vertex, adaptive layer-instance normalization (AdaLin)
was added to help the attention-guided model correspond to the shape transformation [18].
For learning maxillary sinus segmentation on CBCT, the Adam optimization algorithm
with an initial learning rate (3 × 10−4) and l2-weight decay (3 × 10−5) was used. If the
exponential moving average of the training loss did not improve over the previous 30
epochs, the learning rate was reduced by 0.2 times. Training was stopped after exceeding
1000 epochs, or if the learning rate fell below 10−6. The analysis of segmentation was
calculated using the dice similarity coefficient (DSC), as defined in Equation (1). The loss
functions include dice loss (DLS), boundary loss (BLS), and binary cross-entropy (BCE),
which are defined in Equations (2)–(4), respectively [19]. Vgs is the volume parameter of
the ground truth, and Vseg is the CNN segmentation.

DSC
(

Vseg , Vgs , ) =
2
∣

∣Vseg ∩ Vgs

∣

∣

∣

∣Vseg

∣

∣ +
∣

∣Vgs

∣

∣

, (1)

DLS = 1 −
2
∣

∣Vseg ∩ Vgs

∣

∣
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BLS(∂G, ∂S) = 2
∫

∆S
‖q − Z∂G(q)‖dq (3)
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Here, ∆S defines the region between the two contours and ‖q − Z∂G(q)‖. Ω → R+ is
a distance map with respect to boundary ∂G, that is, ‖q − Z∂G(q)‖ evaluates the distance
between point q ∈ Ω and the nearest point Z∂G(q) on contour ∂G: ‖q − Z∂G(q)‖.

L (y, f ) = −y log f − (1 − y) log (1 − f ) (4)

where y is the inferred probability and f is the corresponding desired output.

Figure 1. Deep learning architecture of the customized 3D U-Net in the nnU-Net.

2.3. Active Learning

Our active learning framework consists of three steps. This framework adds new
volumes per step to improve the performance of the model with limited training datasets,
while inferring automatically using the model trained in the previous step.

In the first step, 19 CBCT scans of KUAH were manually labeled by a dentist and an
hygienist with more than 7 years of experiences to establish the ground truth. After the
labeling process, an oral and maxillofacial surgeon with more than 15 years of experience
checked and confirmed all of them. The limited labeled dataset was then initially trained to
segment the maxillary sinus on the CBCT of KUAH. After the initial training (first step), the
ground truth of the new unlabeled dataset for the next step was acquired for CNN-assisted
and post-modified segmentation. In the second step, 19 CBCT scans of KUAH from the
first step were reused to train with 30 new datasets, as shown in Figure 2.

After the second step, the CNN-assisted segmentation for the new unlabeled dataset
was manually modified for training in the next stage, as performed in the first step. In
the final step, 83 scans (49 reused from the second step and 34 new ones) were used to
train and improve the model, while the 20 remaining scans (manually labeled in the first
step) were used to test each model. The results were evaluated after each step for accurate
maxillary sinus segmentation with 20-internal and 20-external scans. The CNN-assisted
and post-modified segmentation was conducted using AVIEW Modeler® software, version
1.0.3 (Coreline Software, Seoul, Korea).
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Figure 2. Overall process for the active learning for maxillary sinus segmentation on CBCT.

In 100 slices (KUAH) and 100 slices (KUANH) selected from internal [air-2633 and
lesion-3256 slices] and external [air-3266 and lesion-3988 slices], all manual and the infer-
ence of deep learning based on active learning for visual scoring were assessed as very
accurate (4 grade) to inaccurate (1 grade).

2.4. Experimental Setup

To infer the maxillary sinus on the 3D CBCT volumes of the dental, each axial phase
in the volume was inputted sequentially to the model, and multiple 2D segmentation maps
were constructed along the z-axis. Only soft tissue lesions such as mucosal thickening
or mucosal retention cysts were considered as lesions. The normal soft tissue wall of the
maxillary sinus was not considered to be a lesion. The experiment for training and test
was conducted on Ubuntu 18.04 with Python 3.6, and used with the TensorFlow 1.15.0
backend with PyTorch 1.4.0 as the deep learning framework. The model was trained on an
NVIDIA Titan RTX graphics card (24 GB). To maximize the training speed and optimize
the GPU memory, we attempted to use larger input tiles and set the batch size to 6. In the
first step, the training saturated approximately after 100 epochs, owing to the small size
of the dataset (n = 19). The second and last steps required 70 to 100 epochs, owing to the
larger datasets (n = 49 and n = 83). The difference in the overall DSCs between the tuning
and test datasets in the final model (step 3) was 2.1. Our model for deep active learning
did not overfit for learning with 3D CBCT volumes.

3. Results

We determined the effect of active learning on CBCT volumes of dental with our
customized 3D nnU-Net in all three steps. The DSCs between the ground truth and the
prediction were analyzed using 20-internal (KUAH) and 20-external (KUANH) datasets
out of the 76 scans that were segmented by active learning. Figure 3 shows the worst and
best results for the KUAH.

The last step is better than the other steps listed in Table 1. The figures show the
maxillary sinus segmentation of 3D volumes on CBCT. As the steps progressed, the seg-
mentation results improved on CBCT and reduced the erroneous areas outside the air. The
DSCs at each stage of air were 0.920 ± 0.17, 0.925 ± 0.16, and 0.930 ± 0.16, respectively, as
shown in Table 2. The DSCs at each stage of the lesion were 0.770 ± 0.18, 0.750 ± 0.19, and
0.760 ± 0.18, respectively (Table 2).
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Figure 3. Best (first rows) and worst (second rows) from the test dataset (internal dataset—KUAH) at different analysis
points: (a) first step, (b) second step, and (c) last step.

Table 2. DSCs for the first, second, and last steps for the test dataset (20 cases) on KUAH.

Mean ± SD (Range) First Step Second Step Last Step

Air
0.920 ± 0.17
(0.245–0.992)

0.925 ± 0.16
(0.241–0.991)

0.930 ± 0.16
(0.243–0.996)

Lesion
0.770 ± 0.18
(0.208–0.912)

0.750 ± 0.19
(0.205–0.975)

0.760 ± 0.18
(0.208–0.96)

Note: Dice similarity coefficient (DSC); Korea University Anam Hospital (KUAH); Standard deviation (SD).

The average DSCs for maxillary sinus segmentation increased after each step, and
the final segmentation in the last step showed the best results (Table 2). Furthermore, we
evaluated the obtained inferences in KUANH using the proposed method. The DSCs for
maxillary sinus segmentation in KUANH are presented in Table 3. The results of air on
KUANH and KUAH were 0.97 ± 0.02 and 0.93 ± 0.16, respectively. Figure 4 shows the
worst and best results for KUAH and KUANH.
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Table 3. DSCs for the test dataset (20 cases of internal-KUAH and 20 cases of external-KUANH) in
Figure 1; 3D-nnU-Net.

Mean ± SD (Range) Last step (KUAH) Last step (KUANH)

Air
0.93 ± 0.16

(0.243–0.996)
0.97 ± 0.02
(0.94–0.99)

Lesion
0.76 ± 0.18
(0.208–0.96)

0.54 ± 0.23
(0.12–0.88)

Note: Dice similarity coefficient (DSC); Korea University Anam Hospital (KUAH); Korea University Ansan
Hospital (KUANH); Standard deviation (SD).

KUAH KUANH 
Ground Truth  Step3 Ground Truth  Step3 

Best 

Worst 

Figure 4. Best (first rows) and worst (second rows) from the test dataset on internal-KUAH and external-KUANH.

Comparisons of the maxillary sinus segmentation times between CNN-assisted and
manual segmentation are given in Table 4. The time consumed by the CNN-assisted and
manually modified segmentation decreased by approximately 493.2 s for 30 scans in the
second step, and by approximately 362.7 s for 76 scans in the last step when compared to
that taken in the first step.

Table 4. Comparison of segmentation times between the manual and CNN-assisted and manually
modified segmentation approaches.

First Step Second Step Last Step

Manual
segmentation

CNN-assisted and
manually modified

segmentation

CNN-assisted and
manually modified

segmentation
Time 1824.0 s 493.2 s 362.7 s

Note: Convolutional neural network (CNN).
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Interestingly, the manual and DL segmentations were classified as very accurate to
mostly accurate, and there were few inaccurate cases in Table 5. The number of very
accurate cases in the DL segmentations was larger than that for manual segmentations (air:
75.7% vs. 91%, lesion 75% vs. 90%) in KUAH. Most of the slices that indicate DL’s superior
performance are seen in the mistakenly drawn manual segmentations of the maxillary
sinus area on CBCT.

Table 5. Qualitative results from visual scoring of automatic maxillary sinus segmentation on CBCT
from 100 Randomly Selected slices (internal-KUAH and external-KUANH) *.

Grade

Manual
3D U-Net

(Last Step for Active Learning)

KUAH KUANH KUAH KUANH

Air Lesion Air Lesion Air Lesion Air Lesion

4—Very accurate 75.7 75 83.7 79.7 91 90 95.3 88
3—Accurate 19.6 16.6 15.3 19.3 8 7.4 4.7 12
2—Mostly
accurate

1 3.7 1 1 0 2.3 0 0

1—Inaccurate 3.7 4.7 0 0 0 0.3 0 0
Note: Korea University Anam Hospital (KUAH); Korea University Ansan Hospital (KUANH); * Four-point scale:
Three dentists conducted grade (manual vs. deep learning). 4—Very accurate: when the labelled maxillary sinus
part completely matches the original sinus (over 95%); 3—Accurate: when the labelled sinus almost completely
matches the original maxillary sinus (85–95%); 2—Mostly accurate: when the labelled maxillary sinus part depicts
the site of the original maxillary sinus area (over 50%); 1—Inaccurate: when the labelled part depicts outside of
the sinus or only matches small area of original maxillary sinus (under 50%).

4. Discussion

In this study, we proposed an active learning framework for maxillary sinus segmen-
tation using a customized 3D nnU-Net on CBCT [16]. The most difficult part of maxillary
sinus segmentation was separation, with the opening part that connects with other areas.
In particular, the ethmoidal area was difficult because there were many open areas with
several small holes. In addition, the part that connects to the nasal cavity is also large, so it
is not easy to separate. Discriminating whether it is the maxillary sinus, nasal cavity, or
ethmoidal region is a task requiring considerable difficulty even for a specialist. The value
of this study lies in the development of a technology that can easily separate maxillary
sinus lesions with the help of artificial intelligence.

In addition, the performance of artificial intelligence models has been improved using
active learning [20]. As each step was completed, the DSCs increased and exhibited excel-
lent performance. As shown in Table 4, the labeling time for CNN-assisted segmentation
is reduced by more than half compared to manual segmentation. Segmentation accuracy
increased over the steps, and the overall performance was reasonable compared with other
state-of-the-art segmentation networks. 3D segmentation of the maxillary sinus is not an
easy task. External validation was performed by dental specialists at both hospitals. No
matter how accurately the segmentation was performed, a slight error in the boundary area
inevitably occurs when a person performs it manually. CNN segmentation by AI first and
modification is more efficient and time-saving compared to manual labeling from scratch.
Therefore, it can be concluded that active learning can reduce the labeling effort through
CNN-assisted segmentation and increase training efficiency through iterative learning with
limited data.

When comparing its performance with other similar studies, 3D U-Net has become
one of the most popular methods for pixel-by-pixel semantic segmentation because it
shows excellent performance in medical image processing. However, several researchers
have further advanced this network by combining detection architectures and cascading
methods. Tang et al. proposed a cascade framework consisting of a detection architecture
and a segmentation module using the VGG-16 model [21]. Roth et al. also proposed a
two-stage FCN model in a cascading manner, with a focus on the target boundary area [22].
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Yang et al. proposed a deep active learning framework by combining an FCN with active
learning [23]. Lubrano et al. also proposed a similar framework for the segmentation of
myelin sheaths in histological data [24]. The authors used Monte Carlo dropout to evaluate
the model uncertainty and select samples for labeling. The segmentation performance of
this study showed similar or better performance by showing DSC values of 0.92~0.93 in
the air layer and 0.75~0.77 in the lesion compared to other studies showing DSC values of
0.66~0.85 [5,25–27]. In addition, unlike other studies, in this study, because the test was
performed with multi-center data, it can be said that the generalization of performance
was further verified.

In this study, the results of lesion segmentation were inferior to those of air segmenta-
tion in this study. Air with a certain radiopacity can be easily separated through threshold
adjustment, while the separation of lesions with various radiopacities is difficult. To label
the lesion, the entire maxillary sinus area was separated first, and the air layer was excluded.
In the process of separating the maxillary sinus, a part of the bone was also included, and
errors could also occur in the process of separating it from the adjacent sinuses. In addition,
the thickness of the soft tissue wall surrounding the maxillary sinus varies from person
to person. In the case of a thin soft tissue wall, a break may occur during the separation
process, so the lesion may not be separated neatly.

The limitation of this study is that the segmentation performance of the maxillary sinus
appeared to be low when the entire maxillary sinus was filled with inflammatory material.
In the case of severe maxillary sinusitis, it can be seen that the inside of the maxillary sinus
is hazy, which can be seen as a case where water or inflammatory substances are filled in the
maxillary sinus. These artifacts are a factor that makes segmentation difficult. To overcome
this, further studies are needed to increase our training dataset and use a better network to
address ambiguities to improve segmentation performance. To improve the effectiveness
and accuracy of the proposed scheme, further validation with more multi-center datasets
and comparisons with other segmented networks, such as cascade networks, should be
performed.

As labeling is basic but very labor-intensive, active learning can be considered to be
a useful alternative [28,29]. In addition, manual labeling is not always constant in the
segmentation process because of differences between people. Active learning frameworks
can reduce this uncertainty by improving the accuracy by increasing collaboration with
deep-learning algorithms. In addition, it is necessary to study the classification of seg-
mented lesions in the future. This study suggests that, even for organs with complex
structures such as the skull, the use of segmentation, lesion analysis, and diagnosis using
active learning can be widely used.

5. Conclusions

In conclusion, this study demonstrates that a deep active learning framework (human-
in-the-loop) can alleviate annotation efforts and costs by efficiently training limited CBCT
datasets.
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Abstract: The aim of this study was to reveal cranio-spinal differences between skeletal classification
using convolutional neural networks (CNNs). Transverse and longitudinal cephalometric images of
832 patients were used for training and testing of CNNs (365 males and 467 females). Labeling was
performed such that the jawbone was sufficiently masked, while the parts other than the jawbone
were minimally masked. DenseNet was used as the feature extractor. Five random sampling
crossvalidations were performed for two datasets. The average and maximum accuracy of the five
crossvalidations were 90.43% and 92.54% for test 1 (evaluation of the entire posterior–anterior (PA)
and lateral cephalometric images) and 88.17% and 88.70% for test 2 (evaluation of the PA and lateral
cephalometric images obscuring the mandible). In this study, we found that even when jawbones
of class I (normal mandible), class II (retrognathism), and class III (prognathism) are masked, their
identification is possible through deep learning applied only in the cranio-spinal area. This suggests
that cranio-spinal differences between each class exist.

Keywords: machine learning; artificial intelligence; malocclusion; diagnostic imaging

1. Introduction

Dentofacial dysmorphosis exhibits various aspects such as prognathism, retrog-
nathism, maxillary hypoplasia, and asymmetry [1,2]. For their treatment, several tech-
niques of orthognathic surgery or orthodontics are applied [2–4]. Meanwhile, the stom-
atognathic system is composed of static and dynamic structures, and its harmonious
functioning is based on the balanced relationship between them [5]. In addition, hard and
soft cephalic structures arise, grow, and organize in a mutual balance [6]. Cranio-facial
skeletons constantly reflect these influences and their related functional conditions [1,6,7].
Therefore, the genesis of a malocclusion is usually linked to an impairment of some kind
to eugnathic growth that involves to various extents the mandible, the maxilla, and the
functional matrix (tongue and facial muscles) [5].

Until now, orthodontics and orthognathic surgery have mainly relied on linear and angu-
lar measurements for the diagnosis and the planning of the therapeutic procedures [1,3,7–13].
These measurements depend on the identification of several landmarks on cephalometric
images, which are then applied to define the aforementioned measurements [1,3,7–13].
It is well recognized that the relation between these metrics varies with the type of bite
and therefore is different in skeletal classes I, II, and III [1,7,13]. In addition, most of these
landmarks on cephalometric images are concentrated in the maxilla and mandible [7].
However, the authors wondered if the difference between skeletal classes I, II, and III
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appears only in maxilla and mandible or if not, if is it also revealed in the cranio-spinal
area excluding jaw. We also wanted to find a way to intuitively distinguish skeletal classes
I, II, and III without linear and angular measurements.

Advances in convolutional neural networks (CNNs) continue [14–17]. They are being
applied in a variety of dental and maxillofacial fields. For instance, they are used to
assess soft-tissue profiling and extraction difficulty for mandibular third molars [18,19]. In
addition, Xiao et al. proposed an end-to-end deep-learning framework to estimate patient-
specific reference bony shape models for patients with orthognathic deformities [20].
Moreover, Sin et al. evaluated an automatic segmentation algorithm for pharyngeal airway
in cone-beam-computed tomography images [21]. CNNs have proven their applicability
to dental and maxillofacial fields through many other studies. However, to the best
of our knowledge, CNNs have not been applied yet to clarify cranio-spinal differences
between skeletal classification. Therefore, the aim of this study was to reveal cranio-spinal
differences between skeletal classification using CNNs.

2. Materials and Methods

2.1. Datasets

In this study, transverse and longitudinal cephalometric images of 832 Korean patients
who visited Daejeon Dental Hospital, Wonkwang University between January 2007 and
December 2019 complaining about dentofacial dysmorphosis and/or a malocclusion were
used for the training and testing of a deep-learning model (365 males and 467 females with
a mean age of 18.37 ± 8.06 years). Patients with a congenital deformity, infection, trauma,
or tumor history were excluded. The lateral and posterior–anterior (PA) cephalometric
images were obtained using a Planmeca Promax (Planmeca OY, Helsinki, Finland), and
the images were extracted in JPG format. The original images had a pixel resolution of
2045 × 1816 with a size of 0.132 mm/pixel.

All radiographic images were annotated by two orthodontists, two oral and maxillofa-
cial surgeons, and one oral and maxillofacial radiologist. Point A–nasion–point B (ANB)
and a Wits appraisal were used to diagnose the sagittal skeletal relationship. Jarabak’s
ratio and Björk’s sum were used to determine the vertical skeletal relationship. With
consensus of five specialists, patients’ skeletal type was determined: class I (n = 272, 111
males and 161 females with a mean age of 17.17 ± 8.28 years); class II (n = 294, 105 males
and 189 females with a mean age of 19.47 ± 8.85 years); or class III (n = 266, 149 males and
117 females with a mean age of 18.36 ± 6.61 years).

The purpose of this study was to determine whether there is an additional structural
difference that makes it possible to distinguish the skeletal class in the structures of the
head and neck other than the jawbone. Thus, labeling was manually performed such
that the jawbone was sufficiently masked while the parts other than the jawbone were
minimally masked.

The PA cephalometric images were masked with three square markers: a lower large
square containing maxilla and mandible (nasal floor and hard palate region~inferior border
of mandible) plus right and left small squares containing the condylar process (Figure 1).
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Figure 1. The posterior–anterior (PA) cephalometric images were masked with three square markers: a lower large square
containing maxilla and mandible (nasal floor and hard palate region ~ inferior border of mandible) plus right and left small
squares containing the condylar process.

The lateral cephalometric images were labeled with two square markers: a left long
square containing the condylar process, coronoid process, mandibular ramus, and airway
space and a right square containing the dentoalveolar region, maxilla, mandibular body,
and lower facial soft tissue (Figure 2).
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Figure 2. The lateral cephalometric images were masked with two square markers: a left long square containing the
condylar process, coronoid process, mandibular ramus, and airway space and a right square containing the dentoalveolar
region, maxilla, mandibular body, and lower facial soft tissue.

2.2. Preprocessing and Image Augmentation

Each patient’s PA and lateral cephalometric images were preprocessed for training.
The acquired data were resized to have the same height and width for training because
they were different for each patient. For image resizing, we used OpenCV’s API based on
interpolation. Given that the skeleton is classified according to a geometric relationship, the
height and width were resized at the same ratio. The height of the original cephalometric
images was resized to 500, and the corresponding height ratio was applied to the width.
After that, the cephalometric images were placed at the middle and zero-padding was
performed to obtain 500 × 500 images. Note that the masking process mentioned in the
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dataset paragraph was applied after image resizing. In addition, data augmentation was
performed for the preprocessed images to improve accuracy and prevent overfitting by
using Pytorch’s color jitter and random horizontal flip. Finally, the data were normalized
by using the following equation.

p∗i,j =

pi,j
255 − mean

std.
. (1)

where pi,j
*, pi,j, mean, and std. are normalized pixel value, original pixel value, mean, and

standard deviation, respectively. The values of mean and std. are set to 0.5 and 0.5, respectively.

2.3. Architecture of the Deep CNN

The network structure that classifies into skeletal classes I, II, and III using PA and
lateral cephalometric images is shown in Figure 3. The PA and lateral cephalometric
images were fed to each feature extractor to obtain the feature map separately. Various
backbone networks, such as VGG [22], ResNet [23], and DenseNet [24], can be used as
feature extractors, and feature maps of different dimensions can be obtained according
to each network’s structure. In this study, DenseNet, proposed in 2016, was used as a
feature extractor. DenseNet is a network that extracts features by continuously connecting
the feature map of the previous layers with the input of the next layer. Figure 4 shows a
five-layer dense block with a growth rate k = 4. ResNet is a method consisting in adding
feature maps, while DenseNet is a structure that concatenates feature maps. Through
this structure, the vanishing gradient can be improved, and the feature propagation can
be reinforced. The depth of the feature map extracted through DenseNet is determined
according to the growth rate and the number of layers of each block, whereas the width
and height are determined according to the number of downsamplings. In this study,
because pretrained DenseNet121 was used, an input image of 500 × 500 × 3 is converted
into a feature map of 15 × 15 × 1024 after passing through the feature extractor. Each
feature map output from the PA and lateral cephalometric images is transformed into a
vector through global average pooling and merged into one vector through concatenation.
The final classification is performed through a dense layer. The proposed network was
implemented using Pytorch 1.2.

Figure 3. Multiside convolutional neural networks (CNNs) for classification using PA and lateral cephalometric images.
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Figure 4. A five-layer dense block with a growth rate k = 4.

2.4. Visualization Method

In this study, the feature map was displayed so that the part extracted as a feature
of the PA and lateral cephalometric images could be confirmed. The class activation map
proposed in 2015 was used as a display method [25]. The class activation map is calculated
as the summation of each feature map multiplied by the corresponding weight value of the
dense layer, as shown in Figure 5. Through this method, it is possible to check which part
of the cephalometric image was activated for classification. The greater the activation, the
redder it is; and the greater the inactivation, the bluer it is.

Figure 5. Class activation map (CAM) generation of PA and lateral cephalometric images.

3. Results

The proposed CNNs were trained using the Adam optimizer [26]. The initial learning
rate was set to 0.001. The learning rate decay was set to 0.95 and was applied every
five epochs. To take into account the randomness of the deep-learning-network training
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algorithm, five random sampling crossvalidations were performed for two datasets. The
average and maximum accuracy of the five crossvalidations were 90.43% and 92.54% for
test 1 (evaluation of the entire posterior–anterior (PA) and lateral cephalometric images)
and 88.17% and 88.70% for test 2 (evaluation of the PA and lateral cephalometric images
obscuring the mandible). A box plot of the accuracy for each test is shown in Figure 6.
Table 1 shows the confusion matrix for best accuracy result of each test.

Figure 6. Test accuracies in five random sampling crossvalidations. Test 1: evaluation of the entire
PA and lateral cephalometric images. Test 2: evaluation of the PA and lateral cephalometric images
obscuring the mandible.

Table 1. Confusion matrices of best accuracy results for (a) test 1 and (b) test 2.

(a)

Predictions

Class I Class II Class III

Class I 125 9 7
Class II 11 141 0

G
ro

u
n

d
T

ru
th

Class III 3 1 119

(b)

Predictions
Class I Class II Class III

Class I 118 12 8
Class II 17 136 0

G
ro

u
n

d
T

ru
th

Class III 8 2 115
Class I: normal mandible; Class II: retrognathism; and Class III: prognathism. Ground truth: actual group of
patients classified according to their mandibular class. Prediction: mandibular class predicted by deep learning.
Test 1: evaluation of the entire PA and lateral cephalometric images. Test 2: evaluation of the PA and lateral
cephalometric images obscuring the mandible.

4. Discussion

The average and maximum accuracies of the five crossvalidations were 90.43% and
92.54% for test 1, and 88.17% and 88.70% for test 2. As expected, the predicted results
were more accurate in test 1, in which all cephalometric images could be analyzed without
masking the jawbone. However, the difference in accuracy between test 1 and test 2 was
within 5%, which is not significant.

At the same time, with the class activation map, it is possible to know where the
CNNs focused on the cephalometric images to provide a prediction (Figure 7). As might be
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expected, test 1 focused on the jawbone, especially on the state of the dentition. However,
in test 2, the jawbone and dentition were obscured and could not be analyzed. Therefore,
CNNs were forced to identify the remaining uncovered regions, that is, the cranio-spinal
area. Figure 7 shows the wide area of the cranio-spinal area excluding the jawbone, which
is hidden, marked in red. This reveals that the cranio-spinal area is discernibly different in
skeletal classes I, II, and III.

Figure 7. Cont.
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Figure 7. Cont.
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Figure 7. CAM of PA and lateral cephalometric images for (a) Class I of test 1, (b) Class II of test 1, (c)
Class III of test 1, (d) Class I of test 2, (e) Class II of test 2, and (f) Class III of test 2. Class I: normal
mandible; Class II: retrognathism; and Class III: prognathism. The greater the activation, the redder
it is; the greater inactivation, the bluer it is.

5. Conclusions

In this study, we found that even when the jawbones of skeletal classes I, II, and
III are masked, their identification is possible through deep learning applied only in the
cranio-spinal area. This suggests that cranio-spinal differences exist between each class.
Further research is required about where and how cranio-spinal differences emerge.
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