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1. Introduction

The growing need for intelligent machines, the outreach for more efficient use of the
machines in industry, and the development of Industry 4.0 and 5.0 ideologies have pushed
forward the field of machine fault diagnosis. Research in the field is receiving significant
attention in academia and industry due to the importance of identifying underlying causes
of machine faults. The overall objective of different machine fault diagnosis methods
is to develop an effective diagnosis procedure. Recent methodological advances permit
compressive machine fault diagnosis, providing detailed information, essential for the
prevention of future machine failures.

Some of the most promising approaches for the continuous advancement of fault de-
tection and diagnosis technologies are advanced digital signal processing, vibration-based
condition monitoring, modal and operational mode analysis, neural network analysis, and
machine learning. Moreover, there is often a combination and cross-usage of the methods.
With the development of different IT solutions, the number and usability of methods is
rapidly growing. Even some of the older and known methods, proposed years ago but
discarded due to problems with automation or the need for additional computational
resources, have found new life and promising results due to advances in measurement
technologies and computational power. The opportunities opened by Internet of things
(IoT) and cloud computing services are breaking new ground and shifting paradigms in
the field.

Artificial intelligence (AI) has become one of the most transformative technological
revolutions since, e.g., the invention of the steam or electric engines. Robustness, precision
automated (online) learning, and the capacity to handle complex data are some of the AI
attributes that hold significant potential for machine fault diagnosis. In hand with IoT and
cloud computing, the emerging AI-based diagnostic methods are proving themselves to be
powerful tools for the future.

The main objective of this Special Issue (SI) was to gather state-of-the-art research
contributing recent advances in machine fault diagnosis and, hopefully, to outline future
research directions in the field.

2. Review of Issue Contents

This SI compiles 11 papers from authors and research groups active in the field of
machine fault diagnosis. As the topic itself is interdisciplinary, the papers presented in this
SI have different viewpoints. Some look at the electrical side of machines, while others
concentrate on the mechanical issues. However, most of the papers cover the integral
part of measurement technology and related signal processing, essential for successful
prognostic and diagnostic procedures. One of the papers is a comprehensive review paper,
while the other ten focus on research aspects of machine fault diagnosis.

The only review paper of the SI [1] provides an overview of the trends and challenges
in intelligent condition monitoring of electrical machines using machine learning. As the
world is moving toward Industry 4.0 standards, the problems of limited computational
power and available memory are decreasing day by day. A significant amount of data with
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a variety of faulty conditions of electrical machines working under different environments
can be handled remotely using cloud computation. Moreover, the mathematical models
of electrical machines can be utilized for the training of AI algorithms. Nevertheless, the
collection of big data is a challenging task for the industry and laboratory because of limited
resources. Some promising machine learning-based diagnostic techniques are presented in
terms of their attributes.

The authors of [2] analyzed the frequency interaction of the turbine block in a stand
with respect to the magnitude of the error in measuring the turbine’s power. They proposed
an algorithm for constructing a dynamic analysis during the formation of a wave field
of a stand for testing turbines. The research algorithm involved the use of theoretical
solutions of nonlinear wave processes using linear oscillations, refined by experiments.
The diagnostic model can determine the technical condition of the stand’s elements and
determine the causes of the discrepancies between the calculated and measured turbine
power values. To clarify the stiffness coefficients between the stand’s elements, a modal
analysis was used to obtain the range of their changes depending on the external dynamic
load, which made it possible to assess the impact of changes in the frequency interaction
conditions on the turbine power measurement for different test modes. The conditions for
amplifying the amplitude of oscillations at their eigenfrequencies were obtained, and the
value of the possible deviation of the expected power value at its measurement for specific
modes of the turbine was calculated.

Condition monitoring of induction motors using transient modeling and recovery of a
nonstationary fault signature was analyzed in [3]. The authors presented the modeling and
the broken rotor bar fault diagnostics using time–frequency analysis of the motor current
under an extended startup transient time. The transient current-based nonstationary signal
was retrieved and investigated for its time–frequency response to segregate the rotor faults
and spatial harmonics. For studying the effect of reduced voltage on various parameters
and the theoretical definition of the fault patterns, a winding function analysis-based model
is presented. Moreover, an algorithm to improve the spectrum legibility was proposed. It
was shown that, through efficient utilization of the attenuation filter and consideration of
the area containing the maximum power spectral density, the diagnostic algorithm gave
promising results.

Machine learning advances and its utilization in machine fault diagnosis were outlined
in [4], where the authors dealt with transfer learning-based fault diagnosis under data
deficiency. In fault diagnosis studies, data deficiency, meaning that the fault data for the
training are scarce, is often encountered, which may greatly deteriorate the performance of
the fault diagnosis. To solve this issue, the transfer learning approach was employed to
exploit the neural network trained in another (source) domain where enough fault data
were available in order to improve the neural network performance of the real (target)
domain. While there have been similar attempts of transfer learning in the literature to
solve the imbalance issue, they were related to the sample imbalance between the source
and target domain, whereas this study considered the imbalance between the normal and
fault data. To illustrate this, normal and fault datasets were acquired from the linear motion
guide, in which the data at high and low speeds represented the real operation (target) and
maintenance inspection (source), respectively. The effect of data deficiency was studied by
reducing the number of fault data in the target domain, and comparing the performance of
transfer learning, thereby exploiting the knowledge of the source domain and the ordinary
machine learning approach without it. By examining the accuracy of the fault diagnosis
as a function of the imbalance ratio, it was found that the lower bound and interquartile
range of the accuracy were improved greatly by employing the transfer learning approach.

Feature extraction for bearing fault detection using wavelet packet energy and fast
kurtogram analysis was presented in [5]. In this paper, an integrated method for fault
detection of bearings using wavelet packet energy and a fast kurtogram was proposed. The
method consisted of three stages. Firstly, several commonly used wavelet functions were
compared to select the appropriate wavelet function for the application of wavelet packet
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energy. Then, the analyzed signal was decomposed using wavelet packet energy, and the
energy of each decomposed signal was calculated and selected for signal reconstruction.
Secondly, the reconstructed signal was analyzed by fast kurtogram to select the best central
frequency and bandwidth for the band-pass filter. Lastly, the filtered signal was processed
using the squared envelope frequency spectrum and compared with the theoretical fault
characteristic frequency for fault feature extraction. The procedure and performance of the
proposed approach were illustrated and estimated using simulation analysis, proving that
the proposed method can effectively extract the weak transients. Moreover, the analysis
results of gearbox bearing and rolling bearing cases showed that the proposed method can
provide more accurate fault features compared with the individual fast kurtogram method.

Fault diagnosis of industrial robot applications using machine learning was the main
topic of [6], which dealt with exploiting generative adversarial networks as an oversam-
pling method for fault diagnosis of an industrial robotic manipulator. Data-driven machine
learning techniques play an important role in fault diagnosis, safety, and maintenance of
the industrial robotic manipulator. However, these methods require data that are hard to
obtain, especially data collected from fault condition states; furthermore, without enough
and appropriated (balanced) data, acceptable performance should not be expected. Genera-
tive adversarial networks (GANs) are receiving significant interest, especially in the image
analysis field due to their outstanding generative capabilities. This paper investigated
whether or not GAN can be used as an oversampling tool to compensate for an unbalanced
dataset in an industrial manipulator fault diagnosis task. A comprehensive empirical
analysis was performed by taking into account six different scenarios for mitigating the
unbalanced data, including classical under- and oversampling methods. In all cases, a
wavelet packet transform was used for feature generation while a random forest was used
for fault classification. Aspects such as loss functions, learning curves, random input
distributions, data shuffling, and initial conditions were also considered. A nonparametric
statistical test of hypotheses revealed that the GAN-based fault diagnosis outperformed
both under- and oversampling classical methods.

Novel models for induction machine diagnosis were described in [7], where the
authors presented a hybrid finite element method/analytical model of a three-phase
squirrel cage induction motor solved using parallel processing for reducing the simulation
time. The growing development of AI techniques can lead toward more reliable diagnostic
algorithms. The biggest challenge for AI techniques is that they need a big amount of data
under various conditions to train them. These data are difficult to obtain from the industries
because they contain low numbers of possible faulty cases, as well as from laboratories,
because a limited number of motors can be broken for testing purposes. The only feasible
solution is mathematical models, which in the end can become part of advanced diagnostic
techniques. The benefits of analytical and numerical models for their speed and accuracy,
respectively, can be exploited by making a hybrid model. Moreover, the concept of cloud
computing can be utilized to reduce the simulation time of the finite element model. In this
paper, a hybrid model solved on multiple processors in a parallel fashion was presented.
The results depicted that, by dividing the rotor steps among several processors working in
parallel, the simulation time was considerably reduced.

Under different degradation conditions, the complexity of natural oscillation of the
piston pump will change, as stated by the authors of [8]. Given the difference in the
characteristic values of the vibration signal under different degradation states, this paper
presented a degradation state recognition method based on improved complete ensemble
empirical mode decomposition with adaptive noise (ICEEMDAN) and extreme gradient
boosting (XGBoost) to improve the accuracy of state recognition. Firstly, ICEEMDAN
was proposed to alleviate the mode mixing phenomenon, which was used to decompose
the vibration signal and obtain the intrinsic mode functions (IMFs) with less noise and
more physical meaning; subsequently, the optimal IMF was found using the correlation
coefficient method. Then, the time domain, frequency domain, and entropy of the effective
IMF were calculated, and the new characteristic values which can represent the degradation
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state were selected by principal component analysis (PCA) to realize dimension reduction.
Lastly, the abovementioned characteristic indices were used as the input of the XGBoost
algorithm to achieve the recognition of the degradation state. In this paper, the vibration
signals of four different degradation states were generated and analyzed through the piston
pump slipper degradation experiment. By comparing the proposed method with different
state recognition algorithms, it was found that the method based on ICEEMDAN and
XGBoost was accurate and efficient, with an average accuracy rate of more than 99%.

Planetary gearboxes were the research object in [9]. The movement of the gear is a
typical complex motion and is often under variable conditions in real environments, which
may render vibration signals of planetary gearboxes nonlinear and nonstationary. It is more
difficult and complex to achieve fault diagnosis than to effectively fix the axis gearboxes.
A fault diagnosis method for planetary gearboxes based on an improved complementary
ensemble empirical mode decomposition (ICEEMD)/time–frequency information entropy
and variable predictive model-based class discriminate (VPMCD) was proposed in this
paper. First, the vibration signal of planetary gearboxes was decomposed into several
intrinsic mode functions (IMFs) using the ICEEMD algorithm, which was used to determine
the noise component as a function of the magnitude of the entropy, as well as to remove the
noise components. Then, the time–frequency information entropy of the intrinsic modal
function under the new decomposition was calculated and regarded as the characteristic
matrix. Lastly, the fault mode was classified using the VPMCD method. The experimental
results demonstrated that the proposed method can not only solve the fault diagnosis
of planetary gearboxes under different operation conditions, but also be used for fault
diagnosis under variable operation conditions.

The authors of [10] dealt with the condition monitoring of rotating machinery, in
an effort to avoid disastrous failure and guarantee safe operation. Vibration-based fault
diagnosis showed the most attractive properties for fault diagnosis of rotating machinery
(FDRM). Recently, Lempel–Ziv complexity (LZC) was investigated as an effective tool
for FDRM. However, LZC only performs single-scale analysis, which is not suitable for
extracting the fault features embedded in a vibrational signal over multiple scales. In this
paper, a novel complexity analysis algorithm, called hierarchical Lempel–Ziv complexity
(HLZC), was developed to extract the fault characteristics of rotating machinery. The
proposed HLZC method considers the fault information hidden in both low-frequency
and high-frequency components, resulting in a more accurate fault feature extraction.
The superiority of the proposed HLZC method in detecting the periodical impulses was
validated by using simulated signals. Meanwhile, two experimental signals were utilized
to prove the effectiveness of the proposed HLZC method in extracting fault information.
Results showed that the proposed HLZC method had the best diagnosing performance
compared with LZC and multiscale Lempel–Ziv complexity methods.

Last, but not least, the authors of [11] researched problems arising in the bearings
and shafts of machines. Bearing preload significantly affects the running performance of a
shaft-bearing system including the fatigue life, wear, and stiffness. Due to the mounting
error, the bearing rings are often angularly misaligned. The effects of the combined
bearing preload and angular misalignment on the fatigue life of ball bearings and a shaft-
bearing system were analyzed in this paper. The contact force distribution of the angular
contact ball bearings in the shaft-bearing system was investigated using the system model.
The system model included the bearing model, whereas the shaft model was verified
by comparing it with the manufacturer’s manual and the results from other theoretical
models, revealing a difference within 3% between the results from the present bearing
model and the manufacturer manual. The global optimization method was used to solve
the ball element displacements and friction coefficients, which improved the computation
efficiency of the model. The fatigue life results showed that the system life at the optimal
angular misalignment was more than 1.5 times that without angular misalignment at the
low preload value, and this ratio decreased as the preload value increased.
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3. Conclusions

This SI presents new and innovative research addressing some of the many scientific
and technological challenges associated with the quickly evolving field of machine fault
diagnosis. It must be emphasized that, with the growing efficiency needs and higher
degrees of automation, in hand with novel opportunities emerging as a result of IT so-
lutions and AI possibilities, the necessity of machine fault diagnosis is growing and the
advances in the field are accelerating. The advanced techniques used for diagnostic and
prognostic processes rely on a deeper understanding of automated and numeric methods
and models, in order to ensure a safer and more innovative future for all fields of industry.
The studies contained within this volume provide a valuable basis for the research and
engineering community dealing with machine diagnosis, highlighting open trends for
future development.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.
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Abstract: A review of the fault diagnostic techniques based on machine is presented in this paper. As
the world is moving towards industry 4.0 standards, the problems of limited computational power
and available memory are decreasing day by day. A significant amount of data with a variety of faulty
conditions of electrical machines working under different environments can be handled remotely
using cloud computation. Moreover, the mathematical models of electrical machines can be utilized
for the training of AI algorithms. This is true because the collection of big data is a challenging task
for the industry and laboratory because of related limited resources. In this paper, some promising
machine learning-based diagnostic techniques are presented in the perspective of their attributes.

Keywords: fault diagnostics; machine learning; artificial intelligence; pattern recognition; neural net-
works

1. Introduction

Nowadays, electrical machines and drive systems are being used in many applications
and play a significant role in industries. As electrical machines are used in different
applications, the maintenance question is of great importance. Today, there are plenty
of condition monitoring methods to detect failures in electrical equipment. In general,
diagnostic techniques can be divided into the following groups [1–5]:

• Noise and vibration monitoring,
• Motor-current signature analysis (MCSA),
• Temperature measurement,
• Electromagnetic field monitoring,
• Chemical analysis,
• Radio-frequency emissions monitoring,
• Acoustic noise measurement,
• Model and artificial intelligence-based techniques.

Generally, stresses that impact electrical machines’ operation can be classified into
four main categories, also known as TEAM (Thermal, Electric, Ambient, and Mechanical)
stresses. Because of these stresses, faults tend to appear in the machine.

Statistically, 36% of all motor failures are related to the stator winding faults [6].
Usually, winding failures develop from a turn-to-turn short circuit [7]. Without timely
maintenance, this fault can grow to phase-to-phase or phase-to-ground short circuits [8].
Due to the fact that this inter-turn fault is hardly detectable in the early stages of its devel-
opment, this topic is mainly challenging in the electrical machine industry [9]. From the
point of view of reliability, in this case, one of the most critical points is electrical machines’
insulation [10]. Insulation plays a significant role during the design processes [11]. The
insulation condition can be defined by chemical, mechanical, or electrical analysis of the
insulating materials [12].
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Mechanical faults make a significant proportion of overall faults in the form of eccen-
tricity, broken rotor bars, cracked end rings, damaged bearings, etc. [13]. A broken rotor
bar is a widespread and frequently occurring fault. In the machine, this fault can be caused
by high operating temperature, cracks in the bar, or natural degradation [14]. Some effects
can indicate a broken rotor bar: torque oscillations, high radial speed, sparking, rotor
asymmetry [15]. This fault is difficult to be exposed at the early stages, but it is equally
essential for avoiding negative and catastrophic consequences in production.

Another mechanical fault that occurs in an electrical machine is eccentricity. Eccen-
tricity faults refer to the inconsistent air gap between the rotor and the stator. The air gap
eccentricity exceeding 10% is considered a fault [16]. There is a variety of eccentricity types:
static eccentricity (SE), dynamic eccentricity (DE), and elliptic eccentricity [17]. Addition-
ally, there are cases when mixed eccentricity occurs in electrical machines. Eccentricity is
mainly caused by improper installation, bolts lack or missing, shaft misalignment, or rotor
imbalance [18]. Eccentricity faults can cause additional noise and vibration [19]. When the
eccentric fault becomes severe, it will cause friction between the stator and the rotor and,
as a result, affect the regular operation of the motor.

At the same time, another widely spread mechanical failure is bearing faults. The
production of bearings is carried out under stringent requirements for quality. However,
the bearing’s real lifespan can be significantly decreased due to different ambient and man-
ufacturing factors, such as material fatigue, improper placement, contamination, improper
lubrication, and bearing currents [20]. Constant monitoring of the bearing parameters, such
as temperature measurement, timely lubricant analysis, noise, and vibration measurement,
could significantly decrease the risk of bearing damage [21].

The distribution of all the faults mentioned above depends mainly on the motor’s
parameters, such as machine type, size, rated voltage, etc. To increase the reliability of the
machine, many parameters must be monitored [22]. The main faults and their signatures
are shown in Table 1.

Table 1. Signatures of the main faults in electrical machines.

Fault Signatures
Winding Short Circuit

[23,24]
Rotor Broken Bar(s)

[25]
Eccentricity

[26,27]
Bearing Faults

[28]

vibration � � � �
current � � � �

temperature � � � ×××
magnetic flux changes � � � �

chemical analysis � ××× ××× ×××
torque changes � � � ×××
�—the most preferable parameter for condition monitoring; �—parameter can be used for condition monitoring;×××—parameter cannot
be used for condition monitoring.

As shown in Figure 1, three main types of machine maintenance can be expressed to
be applied in practice: corrective, preventive, and predictive maintenance [29].

In the case of corrective maintenance, also known as reactive maintenance, all needed
repairs are assumed to be done after the failure has already occurred. However, this
solution is appropriate only for small and insignificant workstations, where unexpected
failure does not lead to economic or catastrophic consequences. Alternatively, many
manufacturers assume preventive maintenance to the machine to avoid fatal outcomes.
In this case, the electrical equipment needs to be regularly checked by the manufacturers
through scheduled and specified inspections.
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(a) 

 

(b) 

 
(c) 

 

Figure 1. Maintenance types: (a) corrective maintenance, (b) preventive maintenance, (c) predictive maintenance.

Although this solution can prolong machine lifespan, this schedule-based condition
monitoring approach provides very little information on the remaining useful lifetime
(RUL) of the devices and does not allow for their prognostic and full exploitation [30].
Moreover, because of the scheduled controls in production, it usually means a partial or
total shutdown of the manufacturing process, leading to inefficient resource usage and
extra operating costs.

To decrease shutdown costs and minimize downtime, manufacturers switch their
production over predictive maintenance [31,32]. Condition monitoring is an essential
component of predictive maintenance that allows forecasting a further failure based on
electrical equipment’s working conditions. A schematic illustration of the condition mon-
itoring is shown in Figure 2. As can be seen, condition monitoring consists of several
stages. The accuracy of measuring systems largely depends on the sensors used for data
acquisition. Signal processing is one of the essential stages in condition monitoring.

 

Figure 2. General diagram of decision models.

For feature extraction, to predict and teach the system to detect faults in the future, the
system needs a more powerful tool. Moreover, as the data amount is increasing worldwide
and computer science is rapidly developing, it is reasonable to remake production under
advanced approaches using artificial intelligence (AI). There are widely used thermal
imaging in industry to monitor the fault at the early stages of development [33]. In this
case, as an example, different variants of machine learning (ML) algorithms can be used
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for fault detection. These algorithms, as well as their comparison, are described in the
following chapters.

2. Diagnostic Possibilities with Machine Learning

Many types of research about intelligent health monitoring refer to machine learning
(ML) [34–36]. ML is a study of computer science and artificial intelligence that is not
oriented directly to problem solution but rather learning in the process by applying solu-
tions to many similar problems [37]. Typical tasks of ML are classification and regression,
learning associations, clustering, and other machine learning tasks, such as reinforcement
learning, learning to rank, and structure prediction [38]. ML is closely related to data
mining, which can discover new data patterns in large datasets. The main difference is that
ML is concentrated on adaptive behavior and operative usage, while data mining focuses
on processing extensive amounts of data and discovering unknown patterns. Based on
the dataset, so-called training data, ML algorithms can build a model that predicts and
makes decisions. There are many types as well as algorithms of ML. These algorithms can
be supervised, unsupervised, semi-supervised, and reinforcement [39]. Figure 3 shows the
most common methods used in machine learning.

Figure 3. Algorithms of machine learning.

The basic paradigms of ML are supervised and unsupervised algorithms. Supervised
ML, also known as “learning with a teacher,” is a type of learning from examples, where
the training set (situation) and test set (required solution) are set [40,41]. Those training sets
are challenging to obtain from industry and laboratories. Because of the limited number of
faulty machines working in the industry due to scheduled maintenance (preventive) and in
laboratories, a limited number of destructive tests can be performed for training purposes.
Moreover, data collection with more than one fault (composite faults) in the same machine
is not straightforward in both scenarios. Thanks to the increasing computational power of
computers and cloud computation, the mathematical models of electrical machines can

10
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train AI algorithms. A comparison of different types of mathematical models of induction
motors and their attributes can be found in [42,43].

At the same time, unsupervised ML, also known as “learning without a teacher”, is a
type of learning where patterns are to be discovered from unknown data [44,45]. In this
case, there is only training data, and the aim is to group objects into clusters and/or reduce
a large amount of the given data. Sometimes, industrial systems use semi-supervised
algorithms in order to get a more precise outcome. In this case, some cases have both
training set and test set, while some have only training data.

Differently from basic approaches, reinforcement ML focuses on understanding pat-
terns in repetitive situations and their generalization [46]. The purpose is to minimize
errors and increase accuracy; the machine learns to analyze the information before each
step. Moreover, the machine aims to get the maximum reward (benefit) from the learning,
which is set in advance, such as minimum resource spending, reaching the desired value,
minimum analyzing time, etc.

One group of widely used intelligent condition monitoring methods, which can be
successfully applied to condition monitoring of many machine parameters, is artificial
neural networks (ANNs). ANNs can be supervised, unsupervised, and reinforced. Many
studies mistakenly consider NNs as a separate field from machine learning groups. How-
ever, NNs and deep learning are related to computer science, artificial intelligence, and
machine learning. A diagram of NNs related fields is shown in Figure 4.

Figure 4. Neural network-related fields.

Machine learning is a powerful tool with a broad set of different algorithms that can
be applied for solving many problems. These algorithms, as well as other applications, are
described in more detail in the following chapters.

3. Supervised Machine Learning

Supervised ML includes a variety of function algorithms that can map inputs to
desired outputs. Usually, supervised learning is used in the classification and regression
problems: classifiers map inputs into pre-defined classes, while regression algorithms map
inputs into a real-value domain. In other words, classification allows predicting the input
category, while regression allows predicting a numerical value based on collected data.
The general algorithm of supervised learning is shown in Figure 5.
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Figure 5. Supervised learning algorithm.

Unsupervised learning aims to discover features from labeled examples so it is possible
to analyze unlabeled examples with possibly high accuracy. Basically, the program creates
a rule according to what the data are to be processed and classified.

Among supervised algorithms, the most widely used are the following algorithms:
linear and logistic regression [47,48], Naive Bayes [49,50], nearest neighbor [51,52], and
random forest [53–56]. In condition monitoring and diagnostics of electrical machines,
the most suitable supervised algorithms are decision trees [57–59] and support vector
machines [60–62].

3.1. Decision Trees

A decision tree (DT) is a decision support tool extensively used in data analysis and
statistics. Special attention has been paid to DTs in artificial data mining. DTs’ goal is to
create a model that predicts the target’s value based on multiple inputs. The structure
of DTs can be represented by branches and leaves. The branches contain attributes on
which the function depends, while leaves contain the values of the function. The other
nodes contain attributes by which the decision cases are different. An example of the DT
algorithm is shown in Figure 6.

Among other decision models, DTs are the simplest and need a little amount of data
to succeed. Moreover, this algorithm can be a hybrid model with another decision model in
achieving a more accurate outcome. However, these models are unstable. A little amount
of input data can lead to a significant change in the decision tree structure, leading to
inaccurate results. Additionally, regression algorithms can fail in the case of decision trees.
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Figure 6. Decision tree diagram.

3.2. Support Vector Machines

Another widely used condition monitoring set of ML algorithms are the support vector
machines (SVM). This is a set of supervised models used for regression, novelty detection
tasks, feature reduction, and SVM, which is preferable in classification objectives [63].
In linear classification, each datapoint is represented as a vector in n-dimensional space
(n—the number of features). Each of these points belongs to only one of two classes.
Figure 7 shows an example of data classification.

Figure 7. Possibilities in the finding of the optimal hyperplane.

In the picture, two data classes are represented: Class 1 (triangles) and Class 2 (squares).
The aim is to separate these points by a hyperplane of dimension (n − 1), ensuring a
maximum gap between them. There are many possible hyperplanes. Maximizing the gap
between classes contributes to a more confident classification and helps to find an optimal
hyperplane. As shown in Figure 8, to detect the optimal hyperplane, it is essential to find
support vectors that can be defined in as closer position to the hyperplane as possible.
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Figure 8. Support vectors and optimal hyperplane in linear classification.

In addition to linear classification, SVMs can deal with non-linear classification using
the kernel trick, also known as the kernel machine. As shown in Figure 9, the processing
algorithm is similar to the linear one, but the kernel function replaces the datapoints.

Figure 9. Support vectors and optimal hyperplane in non-linear classification.

SVM is a good solution when there is no initial information about the data. This
method is highly preferred because of the little computation power needed to produce
results with significant accuracy. Although kernel machine is a great advantage of SVM, its
managing is a complicated task. Moreover, it can take a long time to make large amounts
of data processed, so SVM is not preferable in large datasets.

Supervised ML approaches are widely applicable for condition monitoring of electrical
machines. Many relevant kinds of research can be found in the literature. The authors
in [64] proposed a new signal processing method for fault diagnosis of low-speed machin-
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ery based on DT approaches. In [65], the authors applied statistical process control and
supervised ML techniques to diagnose wind turbine faults and predict maintenance needs.
The researchers in [66] presented a semi-supervised ML method that uses the DT algo-
rithm’s co-training to handle unlabeled data and applied to fault classification in electric
power systems. In [67], the authors proposed a RUL prediction method of lithium-ion
batteries using particle filter and support vector regression.

4. Unsupervised Machine Learning

Unsupervised ML includes algorithms that can learn spontaneously to perform a
proposed task without intervention from a teacher. Unsupervised learning is often con-
trasted with supervised learning when an outcome is known, and it is required to find a
relationship between system responses. In unsupervised learning, as shown in Figure 10,
the program tries to find similarities between objects and divide them into groups if there
are similar patterns. These groups are called clusters. Among supervised algorithms, the
most widely used are the following algorithms: cluster analysis, fuzzy c-means [68,69],
and k-means [70]. In the diagnosis of electrical machines, principal component analysis is
the most frequently used algorithm [71–73].

Figure 10. Unsupervised learning algorithm.

More frequently, the dataset is so large that it is difficult to interpret and distinguish
the necessary information. Principal component analysis (PCA) is one of the most spread
algorithms to reduce the data’s dimensions while losing the least amount of information.
PCA can be interpreted geometrically, as shown in Figure 11.

The algorithm of SVM is as follows:

(a) Points with specific coordinates are designated on the plane.
(b) The direction of the maximum data change is selected, and a new axis PCA is drawn

through the experimental points.
(c) Experimental points are to be projected on the axis PCA.
(d) It is assumed that all the points were initially projected on the axis PCA, and all

deviations from this axis can be considered as noise.
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If noise is considerable, another axis can be added perpendicular to the first one to
describe the data’s remaining change. As a result, there is a new representation, which
has a smaller number of variables, where all variables are considered, and none of them
are deleted. An insignificant part of the data is separated and turns into noise. The main
components give the initially hidden variables that control the data device.

(a) 

 

(b) 

 
(c) (d) 

 

Figure 11. Support vectors and optimal hyperplane in non-linear classification: (a) initial dataset, (b) optimal vector
determination, (c) projection of initial dataset on the vector, (d) new data parameters definition.

PCA is the most common approach to dimensionality reduction. It is a useful tool for
the visualization of large datasets. One of PCA’s main advantages is that components are
independent of each other, and there is no correlation between them. It can significantly
reduce the training time. At the same time, these independent values can become less
interpretable. Besides applying PCA, there is still information loss, and the data analysis is
relatively less precise than the original values.

Many studies are available in the literature where unsupervised algorithms are used
for the analysis of high-dimensional datasets. In [74], the authors applied a new method to
the fault diagnosis of rolling bearings in the field of high-dimensional unbalanced fault
diagnosis data based on PCA for better classification performance. In [75], researchers used
a PCA-based method to monitor non-linear processes. The researchers in [76] proposed a
PCA-based hybrid method for monitoring linear and non-linear industrial processes.

5. Reinforcement Learning

Reinforcement learning (RL) is one of the ML methods, where the system (agent)
learns by interacting with some environment. Different from supervised algorithms, there
is no need for labeled data pairs. RL is mainly focused on finding a balance between an
unknown environment and existing knowledge. The general algorithm of reinforcement
learning is shown in Figure 12.
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Figure 12. Reinforcement learning algorithm.

One of the algorithms, which can be used in data mining and cluster analysis, is
swarm intelligence [77–79]. Swarm intelligence (SI) describes a decentralized and self-
organized system’s collective behavior, which is considered an optimization method.
SI system consists of agents (boids) that interact with each other and the environment.
SI should be a multi-agent system with self-organized behavior, which could exhibit a
reasonable behavior. This algorithm can adapt to changes and converge fast at some
optima. Simultaneously, solutions are dependent sequences of random decisions and can
be trapped in local minimum in complex tasks.

At the same time, the more frequently used reinforcement algorithm in condition
monitoring is the genetic algorithm [80–82]. A genetic algorithm (GA) is a tool for solving
optimization problems and modeling random selection using natural selection mechanisms
in the environment. A distinctive feature of the GA is the emphasis on using the “crossing”
operator, which uses the instrumental role of crossing in wildlife.

In the case of GA, the problem is formalized so that its solution can be encoded in
the form of a vector of genes (genotype), where each gene has some value. In classical
implementations of GA, it is assumed that the genotype has a fixed length. However, there
are GA variations that are free from this limitation. The general diagram of GA is shown in
Figure 13.

Basically, the optimization algorithm with the usage of GA is as follows:

(a) There is a task, and many genotypes of the initial population are to be created.
(b) This initial set of data is to be assessed using the “fitness function,” which determines

how well each initial population’s genotype solves the task.
(c) After this, the best coincidences are to be selected in the population for the next

generations.
(d) The best coincidences obtain new solutions. This process repeats until the task is

fulfilled and a resultant population is created.

The main benefit of GA is that specified knowledge about the domain is not needed.
GA generates a solution through genetic operators. Moreover, a result can contain more
than one appropriate solution. However, GA sometimes suffers from degeneracy. The de-
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generacy can occur if multiple chromosomes represent the same solution. The same shapes
of chromosomes occur repeatedly. In this case, the optimal solution is not guaranteed.

(a) 

 

(b) 

 

(c) 

 

(d) 

 
Figure 13. Genetic algorithm diagram: (a) creation of initial population, (b) application of fitness function, (c) selection of
the best coincidences, (d) creation of resultant population.

Nonetheless, GA is an efficient tool for industrial processes optimization. In [83],
researchers proposed a new method based on GAs that can be used for both fault-type
classification and RUL prediction. The authors in [84] proposed a method based on
genetic mutation particle swarm optimization for gear faults diagnosis. In [85], researchers
proposed a GA-based method to optimize and improve the photovoltaic array accuracy.

6. Neural Networks

ANNs have been proved as quite approving tools for condition monitoring and pre-
diction of RUL due to their adaptability, nonlinearity, and arbitrary function approximation
ability [86,87]. The main advantage of NNs is that they can outperform nearly every other
ML algorithm. This method is supposed to analyze and model processes of damage prop-
agating and predict further failures based on collected data. The main tasks that neuron
networks deal with are [88,89]:

1. Classification,
2. Prediction,
3. Recognition.
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Artificial neural networks originate from attempts to reproduce biological nervous
systems’ ability to learn and correct errors by modeling the brain’s low-level structure. To
create artificial intelligence, you need to build a system with a similar architecture. The
architecture of an ANN is shown in Figure 14.

Figure 14. Neural network architecture.

ANNs consist of machine learning algorithms that constitute the human brain with
connected signals called neurons. Neurons, both biological as well as artificial, consist of
the cell body, dendrite (input), synapse (connection), and axon (output). As seen from the
picture, the simplest model of an artificial neural network has three layers of neurons. The
first (input) layer is connected to a middle (hidden) layer. The hidden layer is connected
to the final (output) layer. In case of the neural networks, to solve a given problem, it is
necessary to collect training data. A training dataset is a collection of observations, of which
the values of the input and output variables are defined and specified. The neurons transfer
a signal from the input layer to the output. The input layer neurons receive data from the
outside environment (measuring system, sensors) and, after processing them, transmit
signals through the synapses to the neurons of the hidden layer. The neurons of the hidden
process receive signals and transmit them to the neurons of the output layer. Basically, the
neuron is a computing unit that receives information, performs simple calculations on it,
and transfers it further.

Neural networks are not being programmed; they are learning. Learning is one of
the main advantages of neural networks over traditional algorithms. Technically, training
consists of finding the coefficients of connections between neurons. In the process of
training, the neural network can identify complex dependencies between input and output
data and perform generalizations. This means that in case of successful training, the
network will be able to return the correct result based on data absent in the training sample
and incomplete or partially distorted data.

If a neural network consists of more than three layers, which is an increasing tendency
nowadays, the algorithm can be considered a deep learning or deep neural network
(DNN). Generally, deep learning is one of the ML techniques in ANNs which analyzes big
machinery data with more precise results.

NNs have been considered as a universal tool in solving many problems. However,
each method has its own limitations, and NNs are no exception. Usually, NNs are used as
a hybrid with some other condition monitoring techniques. All the limitations of ANNs
and other mentioned ML techniques are given in the following section.
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Different types of NN are used for different parameters monitoring. In the literature, a
variety of applications can be found. The authors in [90] proposed a novel intelligent fault
diagnosis method based on multiscale convolutional NN to identify different failures of
wind turbine gearbox. In [91], the authors proposed an intelligent bearing fault diagnosis
method combining compressed data acquisition and deep learning, which provides a new
strategy to handle the massive data more effectively. The authors in [92] proposed a deep
transfer learning (DTL)-based method to predict the remaining useful life in manufacturing.
In [93], the author suggested a novel deep convolutional NN cascading architecture for
performing localization and detecting defects in power line insulators. Many algorithms
have been developed over the years for the automated identification of partial discharges.
In [94], an application of a neural network to partial discharge images is presented, which
is based on the convolutional neural network architecture, to recognize the aging of high-
voltage electrical insulation.

7. Trends in Condition Monitoring and Discussion

The maintenance of the electrical equipment is a very challenging topic at present.
Proper, reliable, and efficient fault diagnostic techniques are becoming more and more
essential as the world moves towards Industry 4.0 standards [9]. A major issue related
to the prediction and condition monitoring is the reliability of the used methods [95,96].
ML algorithms have given a potent tool for classifications. ML methods are not a novelty;
thus, researchers meet different limitations. Nowadays, intelligent condition monitoring
methods mentioned in previous chapters are mainly used together as a hybrid to get more
precise and robust results of fault diagnostics in industrial systems [97].

The main problem of machine learning and neural networks is the training datasets
required for system training. To meet precise results and make accurate predictions, the
amount and the quality of data play a significant role. Mostly, the dataset shows irrelevant
features, requiring a function to build a model. This function will represent how flexible
the model is. The main problem with the data is either overfitting or underfitting.

Big data is a trending challenge nowadays. At the same time, high dimensionality and
the limited number of training samples lead to overfitting [98]. Frequently, this problem
occurs with neural networks [99]. Overfitting means that there is a very qualified training
dataset but a very poor test dataset. Simultaneously, the system cannot perform well if the
training set is too small or if the data is too noisy and corrupted with irrelevant features.
There can be an underfitting phenomenon where the test dataset is good enough, but
training data are inferior. All the examples are shown in Figure 15.

  

(a) (b) (c) 

Figure 15. Data generalization: (a) test data is underfitted, (b) test data is overfitted, (c) test data is balanced.
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As shown in Figure 15, both underfitted and overfitted models describe the same
dataset. Although the too generalized model does not give the priciest results, at the same
time, the overfitted model has a definite idea and is not flexible enough for upcoming new
datasets. The challenge is to find a balance between underfitting and overfitting by the
usage of different models.

ML is a widespread trend in load forecasting. Many operating decisions, such as
reliability analysis or maintenance planning, are based on load forecasts [100]. In this case,
artificial neural networks have paid significant attention to proper performance. The main
problem overfitted sub-optimization system of ANN that can lead to uncertain forecast
results [101]. Working in dynamically changing environments can be a complicated task
for NNs. Even if the network has been successfully trained, there is no guarantee that it
will work in the future. The market is continually transforming, so today’s model can be
obsolete tomorrow. In this case, various network architectures must be tested to choose
the best one that could follow changes in the environment. Moreover, in the case of NNs,
a phenomenon can occur known as catastrophic forgetting. This means that NNs cannot
be sequentially trained in several tasks. Each new training set will cause rewriting of all
neuron weights, and, as a result, the previously trained data will be forgotten.

Another spread limitation for NNs is the so-called “black box” phenomenon. As was
already mentioned, deep learning successfully learns hidden layers of NN architecture
mapping inputs and outputs. Approximating the function makes it impossible to study
insights into the structure and, as a result, study a cause of a mistake. For this reason, in
particular, it is reasonable to choose some other technique or to use NNs in combination
with another algorithm.

8. Conclusions

A review of the state of the art, machine learning-based fault diagnostic techniques
in the field of electrical machines is presented in this paper. The artificial intelligence-
based condition monitoring techniques are becoming more popular as computer power
is increasing day by day. Unlike conventional on-board processors responsible for data
collection and analysis, the utilization of powerful remote resources using cloud compu-
tation gives the freedom of unlimited memory and processing power to handle big data
vital for intelligent techniques. Moreover, by effective training of AI algorithms using
mathematical models with various faulty conditions, the diagnostic algorithms can be
made more reliable.

The collection of these big data is neither possible from industry nor the lab environ-
ment. It is not possible from the industry because of the limited number of faulty machines
under service. In the lab, a limited number of machines can be broken due to economic
constraints. Due to the trend of mounting sensors on the remotely located machines and
collecting their data over the cloud, the processing power-related constraints are resolved.
Machine learning makes a considerably significant portion of AI techniques. For future
work, the studied techniques will be implemented in practice on real industrial objects.
Those techniques can use statistical or convention signal processing techniques to detect
fault-related patterns and estimate electrical machines’ life estimation. Moreover, they give
the flexibility to train algorithms under a variety of working conditions. Those conditions
may include grid fed, scalar control, low load, and changing load in case of induction
machines in particular and for the rest of other machines in general.
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Abstract: This paper presents a hybrid finite element method (FEM)–analytical model of a three-phase
squirrel cage induction motor solved using parallel processing for reducing the simulation time.
The growing development in artificial intelligence (AI) techniques can lead towards more reliable
diagnostic algorithms. The biggest challenge for AI techniques is that they need a big amount of data
under various conditions to train them. These data are difficult to obtain from the industries because
they contain low numbers of possible faulty cases, as well as from laboratories because a limited
number of motors can be broken for testing purposes. The only feasible solution is mathematical
models, which in the long run can become part of advanced diagnostic techniques. The benefits of
analytical and FEM models for their speed and accuracy respectively can be exploited by making a
hybrid model. Moreover, the concept of cloud computing can be utilized to reduce the simulation
time of the FEM model. In this paper, a hybrid model being solved on multiple processors in a parallel
fashion is presented. The results depict that by dividing the rotor steps among several processors
working in parallel, the simulation time reduces considerably. The simulation results under healthy
and broken rotor bar cases are compared with those taken from a laboratory setup for validation.

Keywords: induction motors; fault diagnosis; modeling; finite element analysis; parallel processing

1. Introduction

Electrical machines, particularly induction motors, are indispensable in almost all sectors of
our modern-day society. In the form of conveyor belt movers, compressors, electric vehicles, fans,
and pumps, etc., they consume more than 50% of the total generated energy worldwide [1]. This fact
makes their predictive maintenance very important, to avoid any catastrophic situation. As the world
is moving towards industry 4.0, predictive maintenance is becoming more important—as contrasted
to preventive or reactive maintenance. Unlike preventive or reactive maintenance, in predictive
maintenance we monitor the behavior of an electrical machine and anticipate failures before they occur.

Predictive maintenance allows the servicing of the machine when it needs. By doing so, the system’s
downtime can exponentially decrease with a resultant decrease in the maintenance cost. A variety
of conventional condition-monitoring techniques have been discussed in literature over the past few
decades, such as motor current signature analysis (MCSA) [2–5], thermal analysis [6–8], vibration [9],
acoustics [10,11], stray flux monitoring [12,13], partial discharges [14], air-gap flux monitoring [15], etc.

Although these techniques are well-established, compatible with a variety of signal-processing
techniques, and require fewer computational resources, they possess several drawbacks. The most
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prominent drawbacks are relevant to expensive sensors—such as in the case of thermal analysis and the
poor legibility of fault-based frequency components at the incipient stage, as in motor current signature
analysis (MCSA)-based techniques. Moreover, these techniques depend upon various constraints such
as machine structure, the industrial environment, external noise, bad load-coupling, poor foundation,
and the impact of the drive controller, etc. The segregation of frequency components when there is
more than one fault is another challenging task in MCSA-based diagnostic techniques. It becomes
worse when the industrial inverters inject several frequency components as well.

The industrial inverters with complex control algorithms are becoming a crucial part of a drive
system. In this case, the definition of faults goes beyond the domain of simple machine equations.
The use of conventional diagnostic techniques, while neglecting all subsystems of the drive, can increase
the false or missed alarm rate.

To avoid all those problems and to make diagnostic algorithms more reliable, advanced
model-dependent and artificial intelligence (AI) based techniques can give promising results.
The majority of rotating machine faults are degenerative, which makes fault diagnosis a pattern
recognition problem. Due to a variety of global signals and different faults, pattern recognition is
not a straightforward problem. Therefore, a reliable diagnostic algorithm can be a combination of
data processing for feature extraction and recognition through AI techniques. Various AI techniques
such as probability-based, classification, statistical learning, mathematical optimization, and convex
optimization can be found in the literature [16]. The statistical and classification-based methods are
gaining increasing popularity in uses such as support vector machines (SVM) [17–19], artificial neural
networks (ANN) [20–22], Bayesian classifiers, Naïve Bayes classifiers [23–25], machine learning [26,27],
k-nearest neighbor algorithm [28–30], etc.

Almost all AI-based diagnostic techniques need a large number of data samples under various
conditions. Those conditions may include signals under healthy, faulty, loaded, and no-load conditions.
Moreover, various kinds of faults with different severity levels under a variety of loading conditions
can better train advanced AI-based techniques. The collection of large amounts of data with different
constraints is practically impossible both from industry and laboratory environments. Because, first,
in industries there are few faulty machines and, secondly, the type and level of faults in industry
machines are unknown at first—which is necessary information for training the diagnostic algorithms.
In the laboratory, conducting a large number of destructive tests is not economically feasible. The only
optimal way is to rely on the accurate mathematical models of the machine. Using mathematical
models, almost any kind of fault in any type of machine with different natures of load can be simulated
to train the diagnostic algorithm.

A variety of machine modeling techniques are available in the literature, which can be broadly
classified into two categories; analytical and numerical. The two-axis theory-based models [31–33] are
being effectively utilized for control and analysis. Although those models are simple to understand,
comprehensive, and fast, they are not suitable for fault simulations because of various approximations
such as sinusoidal stator and rotor windings distribution, uniform air gap, no inter-bar currents, and no
material saturation, etc. The multiple coupled circuit theory-based models such as winding function
analysis (WFA) [34,35], modified winding function analysis (MWFA) [36,37], and extended MWFA [37]
allow the inclusion of practical stator and rotor winding functions, the stator and rotor slots openings,
and non-linear functions for material saturation. Those models can be used to simulate the majority of
faults with very much less simulation time and computational complexity, but they do not remain
straightforward while dealing with different types of machines with complex geometrical features.
Similarly, other analytical models such as magnetic equivalent circuit [38], generalized harmonic
analysis [39], voltage behind reactance [40], and convolution theorem [41] can be used for the simulation
of various faults in induction machines but at the cost of material and geometry-related approximations.

Having the ability to deal with almost all kind of geometries and material properties, and the
compatibility to solve various kinds of problems, the finite element method (FEM)-based modeling
techniques are gaining heightened popularity. Using FEM, a vast variety of electromagnetic [42,43],
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thermal [44], fluid dynamics [45], structural [46], and related problems can be solved with incredible
accuracy. In FEM, the geometry of the system is divided into a considerable number of mesh elements
represented by nodes and the solution of each node leads toward the final solution. Indeed, it
requires significantly powerful computational resources and a large memory to save intermediate
results. Although modern computers with advanced processors are very strong, they need a long
time, from several minutes to days, for the solution of highly unsymmetrical machines. The saving of
simulation time for fault diagnostics is very important for the collection of vast amounts of data, which
can be used as a benchmark for advanced fault diagnostic techniques.

Many methods to diminish these problems have been presented in the literature such as;
the hybrid analytical–FEM model [47,48], the model order reduction [49–51], and sparse subspace
learning (SSL) [52], etc. These methods have their own limitations as they rely on statistical and
interpolation techniques, which are different for different kinds of machines. Problems such as the
reducibility of the model and the precision of the input grid can lead to the increased complexity of
the model.

As the world is moving towards industry 4.0 standards and cloud computation, the computational
resources are becoming unlimited. These resources can be in the form of software applications,
processing power, and data storage. All these resources are very important for big data-based
advanced diagnostic techniques such as machine learning [53], deep learning [54], parallel autonomous
mining [55], image processing [56], online wireless monitoring through smart sensors [57], and neural
networks [58–60], etc. The basic building blocks of the cloud computation are infrastructure as a service
(IaaS), platform as a service (PaaS), and software as a service (SaaS). Those building blocks can be utilized
for big data storage, custom software development, and computer application utilization respectively.

In order to curtail the complexity related problems of FEM models, the concept of parallel
processing by utilizing the cluster of computers is presented in this paper. Unlike most of the papers
where the simulation speed of FEM models is increased either by exploiting the symmetry (which is not
true in the case of faulty machines) or by data interpolation, in this paper the complete two-dimensional
(2D) geometry of a three-phase squirrel cage induction motor is solved on multiple processor cores
working in parallel with each other. All inductances are calculated by doing a magneto-static solution
of the machine at several rotor positions. The calculated inductances are saved in the three-dimensional
(3D) lookup table as a function of the rotor position. The dynamic behavior is then studied in
MATLAB/Simulink, and the results are validated by comparing them with the measurements taken
from the laboratory test rig.

2. The Motor’s Model

The voltage equations of a squirrel-cage induction motor with a stationary stator and short-circuited
rotor cage can be described using magnetic coupled circuits theory as follows:

Vs = IsRs +
d
dt
(LssIs + LsrIr) (1)

0 = IrRr +
d
dt
(LrsIs + LrrIr) (2)

where Vs, Is, Ir, Rs, Rr, Lss, Lsr, and Lrr are the vectors containing the machine’s voltage, currents,
resistances, and inductances respectively. The stator–stator, stator–rotor, rotor–stator, and rotor—rotor
self and mutual inductance matrices (Lss, Lsr, Lrs, and Lrr) can be defined as follows;

Lss =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
Laas Labs Lacs

Lbas Lbbs Lbcs
Lcas Lcbs Lccs

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦, (3)
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Lsr =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
Lar1 Lar2 . . . Lari . . . Larn Lare

Lbr1 Lbr2 . . . Lbri . . . Lbrn Lbre
Lcr1 Lcr2 . . . Lcri . . . Lcrn Lcre

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦, (4)

Lrr =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Lr1r1 Lr1r2 · · · Lr1ri · · · Lr1rn Lr1re
Lr2r1 Lr2r2 · · · Lr2ri · · · Lr2rn Lr2re

...
...

...
...

...
...

...
Lrir1 Lrir2 · · · Lriri · · · Lrirn Lrire

...
...

...
...

...
...

...
Lrnr1 Lrnr2 · · · Lrnri · · · Lrnrn Lrnre

Lrer1 Lrer2 · · · Lreri · · · Lrern Lrere

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5)

Rrr =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2(Rb + re) −Rb 0 0 · · · 0 −Rb −re

−Rb 2(Rb + re) −Rb 0 · · · 0 0 −re

0 −Rb 2(Rb + re) −Rb · · · 0 0 −re
...

...
...

...
...

...
...

...
0 0 0 0 · · · 2(Rb + re) −Rb −re

−Rb 0 0 0 · · · −Rb 2(Rb + re) −re

−re −re −re −re · · · −re −re nbre

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(6)

The last rows and columns in Lsr, Lrr, and Rrr correspond to the end ring values, which can
be neglected in case of a perfect symmetrical machine, as the net end ring current is always zero.
In unsymmetrical machines, these entries are important to simulate the end ring faults and to avoid
the singularity problems while taking the inverse of inductance matrices.

For the ease of implementation, all these matrices can be grouped.

Vs =
[

vas vbs vcs
]T

(7)

Is =
[

ias ibs ics
]T

(8)

Ir =
[

ir1 ir2 · · · irnire
]T

(9)

L =

[
Lss Lsr

Lrs Lrr

]
(10)

The currents, torque, and speed can be calculated as:

[
Is

Ir

]
=

[
Lss Lsr

Lrs Lrr

]−1 ∫ [[
Vs
0

]
−

[
Rs 0
0 Rr

][
Is

Ir

]]
dt (11)

Te = IT
s

(
d

dθ
Lrs

)
Ir (12)

In the matrices form:

Te =
1
2

(p
2

)[ Is

Ir

]T
d

dθ

[
Lss Lsr

Lrs Lrr

][
Is

Ir

]
(13)

J
d
dt
ωm = Te − TL − Bωm (14)

All inductances and resistances need to be calculated with stepping rotor and save them in 3D
lookup tables where the third dimension corresponds to the rotor position as shown in Figure 1.
All calculations can be done in offline environment using a magneto-static FEM solution and in the
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online environment the rotor position can be used as an index value to call a corresponding matrix
from the lookup table to calculate the performance parameters like speed and torque, etc.

Figure 1. The schematic diagram of inductances calculations and their implementations for dynamic simulation.

3. LAN Network for Cluster Formation

Parallel computing is a form of concurrent computing where several workouts can be performed
in the overlapping periods. Generally, any large problem can be divided into n-small problems,
which can be solved simultaneously. Unlike traditional serial programs, the divided problem segments
should be independent of each other so that they can run on different processors and the solutions
can be combined on the client machine at the end. The general schematic diagram of distributed
parallel computation is shown in Figure 2. The client machines, job scheduler, WIFI or LAN network,
and the worker processors, are the main parts of the distributed cloud computation. The function of
the job scheduler is to divide and distribute the segments of the bigger problem into cluster computers.
The cluster computers can further divide their portion among their cores in the same manner.

Figure 2. The cluster formation and utilization for parallel processing.
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4. Inductances Calculations

In the case of electrical machines, most of the faults such as eccentricity, broken bars, and stator
inter-turn short circuits make the machines unsymmetrical. Due to this fact, the complexity reduction
techniques such as exploitation of symmetry by considering symmetric and non-symmetric boundary
conditions and model order reduction becomes more tedious. The only best optimal and reliable way
for fault diagnostics is to simulate the entire machine at various rotor positions. Since the solution at a
distinct rotor position is independent of the solution at subsequent rotor positions, the total “n” rotor
steps can be divided into various segments. The magneto-static problems of different rotor position
sectors such as, (0→ θ1), (θ2 → θ3), . . . , (θn-1 → θn), (θn+1 → 2π) can be divided among the workers
for parallel processing.

Figure 3 shows the required steps to calculate the inductances at different rotor positions.
The computer cluster consists of four computers making a local area network (LAN). Each computer is
Intel(R) Core(TM) i7-7500 CPU @ 3.41 GHz with 8 GB RAM and four cores. The finite element method
(FEM) based model is constructed using open-access software FEMM 4.0. For making the model and
collecting the results, FEMM is interfaced with MATLAB. After making the machine geometry and
winding configuration on FEMM, MATLAB works as a job scheduler. It divides the total number of
rotor steps among worker computers and their cores and receives the end results.

Figure 3. The division of rotor steps among various computers and their cores for parallel computation
and the procedure of inductances calculation.

For better accuracy, a considerable number of mesh elements (250,160) with (125,177) nodes are
solved having a precision of 1 × 10−8 at each rotor step. The FEMM 4.0 achieves this precision through
a conjugate gradient solver with the help of multiple successive approximation iterations. Since the
inductance profiles change with the change in the air gap, the selection of an appropriate rotor step
size is very important. The changing air gap is the function of stator and rotor slot openings [37],
which becomes very prominent when the openings on both sides align with each other and lead to the
abruptly changing inductance derivatives. As the rotor and stator, slots are different in number, their
least count multiple (LCM) can be a minimum choice regarding the number of rotor steps. By doing so,
some phase inductances can be considered as shifted copies of the other phase inductances. In this
case, the number of total rotor steps or solution samples will be divisible by the total number of rotor
bars and the number of samples corresponding to 120 and 240 degrees for stator phases. For example,
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if the number of rotor steps is (40 × 48 = 1920), the Lbb will be equal to (120 × 1920/360) samples shifted
copy of Laa. The same is true in the case of rotor bar inductances, only self and mutual inductances of a
single loop need to be calculated, the rest of them are shifted copies. However, special attention is
needed if the fault changes all the inductances symmetrically or not.

5. The Simulation Results

At each rotor position, every individual stator phase is energized with a unity DC current,
and relevant inductances are calculated by integrating the magnetic vector potential over the coil area
as shown by the following equations.

Lsel f =

∫
si A.J da

i2
(15)

Lmutual =
n2

i1a2

(∫
+si

A1da1 −
∫
−si

A1da2

)
(16)

where A is the vector potential, J is the current density, n is the number of turns per phase, i is the
phase current, the subscript “si” is for surface integral. The first bracket term in Equation (16) is the
integration of the vector potential of coils with positive current or the coils pointing out of the page.
The second term corresponds to the coils with negative current or pointing into the page, a2 is the
cross-sectional area of the coil, which is approximately equal to the slot area multiplied with the filling
factor. The motor’s magnetic flux distribution after the energizing phase “a” with 1 A DC current is
shown in Figure 4. The highlighted slots contain phase “a” winding whose surface integral of magnetic
potential is equal to self-inductance Laa at the specific rotor position as in Equation (15).

Figure 4. The flux distribution with energized phase “a” with IDC = 1 A, and the selection of slots for
vector potential integral for calculation of self-inductance Laa.

Similarly, all stator–stator self and mutual and stator–rotor mutual inductances can be calculated.
The rotor–rotor self and mutual inductances are calculated by energizing a single rotor loop with
unity DC current as shown in Figure 5. Only one rotor loop needs to be energized and solved for
its inductances, and the rest of them possess the same solution with a phase shift equal to the angle
difference between them.
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Figure 5. Flux distribution due to energized rotor loop with IDC = 1 A for the calculation of
rotor inductances.

Since the solution is for the 2D model, the effect of end windings is compensated by using
additional end winding leakage inductance and resistance using the following analytical formulas.

Lew =
Qs

m
q
(

Zq

a

)2

μolwλw (17)

where Qs is the number of stator slots, Zq is the number of conductors per slot, a is the number of
winding parallel paths per phase, m is the total number of stator phases, and q is the number of slots
in a pole captured by an individual phase. lw is the average length of the end winding, λw is the
permeance factor which is 0.20 for the motor under investigation. The same formula can be used to
calculate the leakage inductance of the rotor end rings. For building the resistance matrix, various
stator- and rotor-related resistances are calculated using resistivity formula where the skinning and
proximity effects are neglected because of the DC supply current;

R =
ρl
A

(18)

where ρ is the resistivity, A is the cross-sectional area, and l is the length of the conductor. The effective
slot area (ESA) is equal to the total area of slot multiplied with the filling factor, which is 0.60 for
the machine under investigation. The conductor cross-sectional area can be calculated by dividing
the ESA with the total number of conductors in the slot, which are 17 in this case. The resistance
of the end windings is included by increasing the length of the per phase conductor corresponding
to the length of the end winding. Since the stator and rotor windings are energized with unity DC
current, the effects such as proximity, skinning, material saturation, and eddy currents are neglected
as the focus is towards the simulation time reduction. However, they can be included in the online
section analytically.

Figure 6 shows various inductances as a function of the rotor position. All self and mutual
inductances are the functions of the air gap, which changes with the stepping rotor. This phenomenon is
evident in the inductance profiles, which are calculated with a rotor step size of 0.1875 degrees. The self-
and mutual inductances of stator have five cycles until an angle of 45 degrees, which corresponds to
40 cycles until 360 degrees. This is because the rotor has 40 bars having 40 slot openings. The stator
inductances consider the stator air gap as static while rotor associated air gap moves with the moving
rotor. The same is true for rotor self- and mutual inductances, which have six cycles per 45 degrees
corresponding to 48 cycles till 360 degrees. Where 48 is the number of stator slots and for rotor
inductances, the rotor-associated air gap remains static while the stator gap has a relative motion.
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Figure 6. The calculated inductances as a function of the rotor position.

6. Test Setup

The test rig consists of two identical motors with specifications given in Table 1. Both machines
are attached back to back on the same mechanical foundation as shown in Figure 7. The first motor is
the test motor while the second acts as a loading machine. The grid supplies the test machine while the
loading motor is controlled using ABB ACS-880 industrial inverter for better controllability of slip.
The measurement time of the stator current of the test machine under healthy and broken bar cases is
100 sec with a sampling frequency of 10 kHz.

Table 1. Motor specifications.

Sr. No. Parameter Symbol Value

1 Rated speed Nr 1400 rpm@50 Hz
2 Rated power Pr 18 kW@50 Hz
3 Connection Y, Δ Star (Y)
4 Power factor cosϕ 0.860
5 Number of poles P 4
6 Number of rotor bars Nrb 40
7 Number of stator slots Ns 48

Figure 7. The test rig and its block diagram.
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7. Results and Discussion

7.1. Stator Current Spectrum under Healthy and Broken Rotor Bar Cases

The varying inductances give rise to the harmonics in the stator voltage and currents. The most
prominent of them are supply based and spatial harmonics. A comparison of the frequency spectrum of
stator current obtained from the proposed model and the measurements taken from the laboratory test
rig is shown in Figure 8. The only additional harmonics in the practical signal are the third harmonics
coming from the supply side. Another major source of harmonics in the signal spectrum is the fault,
which can act as a definition component for condition monitoring. Figure 9 shows the development of
the left side harmonics (LSH) due to the broken bars at the rated load.

Figure 8. The frequency spectrum of stator current obtained from the proposed model and
laboratory-based measurements.

Figure 9. The broken rotor bars-based side-band frequencies.

7.2. Time Comparison

The overall computational speed of each worker (computer) can be increased by using all cores
in a parallel fashion. This increase in speed is because of increased cache, which reduces memory
latency; the parallel handling of the independent instructions; and the improved performance of the
processor power wall. The per-step computational time for the calculation of inductances relevant
to a single phase (Laa, Lab, Lac, and Lar) at different rotor positions by using the different number of
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cores is shown in Figure 10a. Since, with the increase in the number of cores, more processing power
is being utilized, the per-step calculation time increases. Moreover, the variation in the calculation
time with the increase in the number of cores also increases, which depends upon the processor being
utilized by auxiliary programs like Windows, etc. Figure 10b shows the mean per-step simulation
time, which increases from 100 to 200 s per step with the increase in the utilization of processing
power from about 25% (one core) to 94% (four cores). The mean simulation time is calculated because
each step takes a slightly different time for calculation because of the change in the number of mesh
elements and the other programs running in parallel. The overall calculation time for all inductances
for 1920 rotor positions is shown in Figure 10c. It is obvious that even the per step simulation time with
an increase in the parallel processing increases, but the total calculation time decreases dramatically.
Meanwhile, Figure 10d shows the time taken by the cluster of four computers working as a LAN.
The simulation time decreases considerably and the non-linear decrease in time is due to the latency of
the network. It is worth mentioning that the job scheduler prefers cores of different computers to work
in parallel. This is the reason why the computational time in Figure 10d with four cores of different
computers working in parallel is considerably less than the time taken by one computer with all four
cores engaged in parallel as shown in Figure 10c.

Figure 10. The simulation time, (a) per step with different number of single computer workers (cores)
in parallel, (b) the mean per-step time with different number of cores of a single computer working in
parallel, (c) overall time on one computer with different cores engaged in parallel, (d) overall time with
different number of computers making a cluster with distributed cores in parallel.

8. Conclusions

This paper presents a hybrid FEM–analytical model solved in a parallel fashion on a cluster
of computers for the reduction of computational time. The artificial intelligence (AI) based
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condition-monitoring techniques for predictive maintenance of electrical machines is gaining heightened
popularity. This is not only because of their ability to detect faults at the incipient stage but also
because of their aptitude for faults segregation. The accurate model of the electrical machines is the
key element of these techniques, which is crucial for the collection of big data under various healthy
and faulty conditions. This data is essential for the training of the diagnostic systems and for making
the safety rules. Among several modeling techniques, the FEM-based models have proved their
accuracy in the field of electrical machine design for the past few decades. The FEM models have very
few approximations and can deal with almost any kind of geometrical complexities of the system as
compared to their analytical counterparts. The analytical models have their own attractions, such as the
reduced simulation time and the development of analytical equations, which are integral parts of drives
and inverse problem theory, etc. The biggest challenge for FEM-based models is their complexity in the
forms of computational time and required memory. While on the analytical side, the approximations
are fatal for any reliable diagnostic algorithm. The world is witnessing the exponentially increasing
trend in the power of processors and sophisticated IT networks, which leads toward cloud computation
and industry 4.0 standards.

By exploiting the benefits of analytical, FEM models, and cloud computation, this paper proposes
a hybrid analytical–FEM model for the simulation of the machine under healthy and faulty conditions
with reduced calculation time. Most of the techniques dealing with the reduction in the simulation time
of FEM models fail when the machine is in a faulty condition, which makes it purely unsymmetrical.
Moreover, any approximation for the sake of reduced complexity can decrease the reliability of the
model-dependent diagnostic algorithm. With the development of more sophisticated processors and
industry 4.0 standards, the complete models of the system can be solved in very much less time as
compared to the conventional techniques. In this paper, the model is first divided into offline and
online portions. All the inductances and other necessary parameters are calculated in the offline
section, and the results are saved in 3D matrices as a function of rotor position. Once the inductances
are calculated, they can be used in an online dynamic model where the performance parameters such
as speed, torque, flux, and currents can be investigated under different conditions. In the case of some
faults such as broken bars or broken end rings, the inductance matrices need not be calculated again
but the fault can be manipulated in the online portion. This can be achieved by changing the values
of the corresponding elements in the resistance matrix. For reducing the calculation time, the FEM
model is divided into several computers before dividing the specific portion into the cores of any
particular processor. For making a computer cluster resembling a cloud, four computers having the
same specifications were used as a local area network. The total rotor steps were then divided into
several cores working in parallel and the results were collected on the main computer. This technique
reduces the simulation time drastically without any need for model approximation. For the validation
of results, the frequency spectrum of simulated stator current is compared with the one measured in
the laboratory setup under healthy and broken rotor bar cases.
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Abstract: This paper presents the modeling and the broken rotor bar fault diagnostics by time–
frequency analysis of the motor current under an extended startup transient time. The transient
current-based nonstationary signal is retrieved and investigated for its time–frequency response
to segregate the rotor faults and spatial harmonics. For studying the effect of reduced voltage on
various parameters and the theoretical definition of the fault patterns, the winding function analysis
(WFA)-based model is presented first. Moreover, an algorithm to improve the spectrum legibility
is proposed. It is shown that by efficient utilization of the attenuation filter and consideration of
the area containing the maximum power spectral density, the diagnostic algorithm gives promising
results. The results are based on the machine’s analytical model and the measurements taken from
the laboratory setup.

Keywords: condition monitoring; fault diagnosis; Fourier transform; induction motors; modeling;
wavelet transform

1. Introduction

Electrical machines have been showing their influential role in industrial and domestic
applications since the second industrial revolution. This role is evident in electricity
generation, such as wind power plants or electrical to mechanical energy converters, which
are driving the industry. In various electrical machines, induction motors are ubiquitous
because of their simple structure, good efficiency and easy maintenance. A variety of
applications makes them consume more than fifty percent of the total energy generated
worldwide.

The mechanically moving parts and harsh industrial environment make them vulner-
able to faults. The electrical faults are mostly related to the stator, such as inter-turn short
circuits, phase drop, voltage imbalance, earthing and inverter-related defects. However, the
mechanical faults are mainly associated with the rotor, such as broken bars, bad bearings,
eccentricity, broken end rings or inadequate foundations. All those faults are degenerative,
making it crucial to detect them at the developing stage to avoid catastrophic situations.
Various fault diagnostic techniques are available in the literature, such as vibration analysis,
thermal analysis, acoustic analysis, electromagnetic field inference, leakage flux, infrared
light detection and chemical analysis.

However, motor current signature analysis (MCSA)-based fault diagnostic techniques
are gaining heightened popularity because of their noninvasive nature and lower com-
plexity. Moreover, a vast field of data processing techniques improves their flexibility and
makes them more reliable.
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It is a well-studied fact that almost all rotor faults modulate the stator currents with
specific frequency components. The detection of those frequency components can lead to
the cause of the fault. The Fourier transform can be considered a foundation stone for all
advanced signal processing techniques. The majority of MCSA-based methods depend
on a fast Fourier transform (FFT) of the signal; for example, in [1], the authors used the
FFT on the active and reactive currents of a motor to investigate the broken rotor bars and
load oscillations. The authors of [2] used the FFT in conjunction with Park’s vector to make
an artificial ants clustering technique for the fault diagnostics of an induction motor. The
Park’s vector makes an entire domain of condition monitoring of electrical equipment [3–7],
giving promising results if used in conjunction with FFT. In [8], the autoregressive method
relied on a discrete-time Fourier transform (DTFT) and a notch filter. The researchers in [9]
used the FFT to prove that slot harmonics could be used as potential indicators to detect
broken rotor bars. In [10], the authors used an adoptive notch filter and FFT for broken
rotor bar fault diagnostics of an induction motor. In [11], the FFT was used on simulations
and practical results to investigate broken rotor bars and mechanical vibrations. In [12],
Nandi used the FFT to study the stator current frequency spectrum for different fault
conditions, and in [13], the FFT was used along with a band-stop filter for the detection of
broken rotor bar frequencies.

However, there are certain limitations of the FFT, putting a question mark on its
reliability for fault diagnostics. These limitations include spectral leakage, which is the
power of the main components leaking into the subsequent frequency bins. If the acquired
signal’s length and sampling frequency are not good enough, the faults representing
frequency components are highly likely to be buried under the corresponding primary
frequency bins. This problem becomes worse when the motor is working under no-load or
lesser-load conditions, as the faulty frequencies are the function of slip. The other issue of
the FFT is that the signal should be in a steady state regime, be stationary and not have any
discontinuities. These problems are becoming worse as the inverters are coming forward
as an integral part of the drive system. The inverter-fed voltage is full of harmonics, which
makes the frequency spectrum hazy to understand. Moreover, the drive control algorithms
can also have an impact on the amplitude of the harmonics. For example, in the case of
direct torque control (DTC) motors, the drive directly influences the current signal carrying
all the information about the motor’s health [14].

Researchers have tried several different techniques to cope with these problems. The
use of Hilbert transforms to extract the signal’s envelope, which possesses considerable
information regarding the electrical machine’s health, can be found in [15]. The authors
in [16] used a fractional Fourier transform to recover the faulty frequencies from a non-
stationary signal. In [17], the authors used a sliding discrete Fourier transform for the
detection of broken rotor bars, while [18–21] used the wavelet technique to improve the ac-
curacy. These techniques’ capability to handle nonstationary signals opens a new paradigm
in the field of fault diagnostics [22–24]. However, the poor time–frequency resolution is
still a challenge.

This paper presents the following attractive features:

• For studying the impact of broken bars on different performance parameters, a WFA-
based analytical model is developed. This model takes less simulation time to study
the effect of low voltage and asymmetry on the machine’s performance. It also helps
to plot the faulty theoretical patterns used as a benchmark for differentiation among
fault and spatial harmonics;

• Unlike most of the papers where a high inertia load or variable transformer is used,
an industrial inverter-based low voltage test to extend the motor’s transient interval is
proposed. It is also described how an industrial inverter can reduce the voltage while
maintaining a constant rated frequency. Increasing the transient length of the motor
startup current improves the time–frequency resolution of the spectrum;
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• An algorithm to improve the spectrum’s legibility is proposed, which helps segregate
various frequency patterns in the transient regime;

• The wavelet transform is preferred over the short-time Fourier transform (STFT) to
avoid inherited FFT drawbacks. Moreover, a band-stop infinite impulse response (IIR)
filter is used to attenuate the fundamental component, which improves the spectrum’s
legibility;

• It is proposed that the selection of time–frequency regions with a 95% confidence
interval (CI) in the form of a contour plot gives a more unambiguous indication of
faulty patterns. By adjusting the level of the CI, the spatial and switching frequency-
based patterns can be avoided. To the best of the author’s knowledge, this technique
is not presented in the literature so far.

2. Theoretical Background

2.1. The Modeling of Induction Motor

Electrical machines’ modeling is the first milestone in machine design, control, anal-
ysis and diagnostics. The famous modeling techniques are divided into two major cat-
egories: analytic and numerical. The commonly used analytic methods are two-axis
theory [25], winding function method (WFM) [26–28], reluctance network [29] and con-
volution theorem-based models [30]. The finite element method (FEM)-based models are
typical examples of numerical modeling of electrical machines. Although the numerical
models have the least number of approximations, the complexity and computational time
is the biggest drawback [31]. It becomes worst in the field of fault diagnostics, where
the motor’s symmetry cannot be exploited to reduce the simulation time. For the fault
diagnostic in the transient regime, the V-shaped pattern made by the sideband frequencies
is significant. This pattern generates because of the varying slip until the steady state
region. This nonstationary signal moves in a bandwidth from 0 Hz to 50 Hz. Thus, the
higher-order slotting harmonics become less significant for the analysis of the fault-based,
nonstationary signal. The winding function-based model with much less complexity than
the corresponding FEM-based models is essential to differentiate among several harmonics.
Hence, the air gap is considered constant by neglecting the slot openings with the magnetic
material’s infinite permeability. The stator winding is approximated as a pure sinusoid,
while the rotor turn function represents its actual cage structure. Various self and mutual
inductances can be calculated using the winding function formula as in Equation (1). The
analytical formulas for the calculation of different inductances given in Equations (2)–(6)
are the solution of (1) for the winding functions, as described in [32]:
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where μo is the permeability of the free space; r is the machine’s radius, which is taken as
the center of the air gap; l is the machine’s effective length; g is the air gap width; αr is the
angular displacement between two consecutive rotor bars; p is the number of the poles; Ns
is the number of effective turns per phase in the stator; and θ and ϕ are the rotor and stator

45



Appl. Sci. 2021, 11, 2806

angular positions from a reference point. In Equation (6), the inductance is multiplied with
a cosine function of θr to emulate the rotating rotor, where integer i changes the angle of
the respective rotor bar from the stator reference point. Lm is the magnetization inductance,
LAB, LBC and LCA are stator mutual inductances, Lrkk and Lrki are rotor self and mutual
inductances and Lsri is the mutual inductance between the stator and rotor.

The performance parameters, such as torque, speed, currents and voltages, can be
calculated using Equations (7)–(9):

[
Vs
0

]
=

[
Rs 0
0 Rr

][
Is
Ir

]
+

d
dt

[
Lss Lsr
Lrs Lrr

]
(7)

Te = IT
s (

d
dθ

Lrs)Ir (8)

J
d
dt

ωm = Te − TL − Bf ωm (9)

where Vs is the stator input voltage vector and Rs and Rr are the stator and rotor resistance
matrices of orders (3 × 3) and (40 × 40), respectively. Similarly, Lss, Lsr, Lrs and Lss are the
matrices containing stator–stator, stator–rotor, rotor–stator, and rotor–rotor self and mutual
inductances at a specific rotor position. Moreover, Te is the generated torque, Is is the stator
current, Ir is the rotor current, TL is the loading torque, Bf is friction coefficient, ωm is rotor
angular velocity and J is the moment of inertia. The detailed model with slot openings and
the actual winding functions can be found in [33].

2.2. The Fault Signature Equations and Modulation

Almost all rotor-related faults produce frequency components in the induction motor’s
current and the voltage spectrum as a slip function. The most common rotor faults can be
diagnosed by detecting the frequencies represented by the equations shown in Table 1.

Table 1. Fault definition frequencies.

Fault Modulating Frequencies

Broken Rotor Bars fBR = fs ± 2ks fs, k = 1, 2, 3, . . .

PSH and Eccentricity

fecce =
[
(knb ± nd)

(
1−s

p

)
± v

]
f s

More precisely:

fecce =
[
1 ± k

(
1−s

p

) ]
f s

fecce = fs ± k fr, k = 1, 2, 3, . . .
where k is the harmonic order, ν is the supply fed harmonics, fs is the supply frequency, fbr are the broken bar
frequencies, nd is the dynamic eccentricity (0 for static and 1, 2, 3 . . . . for dynamic), fr is rotor frequency, s is the
slip and p is the number of poles.

The phase current of an ideal and symmetrical machine can be defined as

ia(t) = Im sin(ωt + α) (10)

where Im is the peak current, ω is the supply frequency in the angular domain and α is the
phase angle. The unsymmetrical rotor with broken rotor bars, broken end rings or bad
bearings starts modulating the current with a frequency dependent upon the rotor’s speed
and the modulation index, which depends upon the severity of the fault:

ia f (t) = [1 + m(t)]ia(t) (11)

where m(t) is the modulating signal having a modulation index M, which depends on the
number of broken bars (Nb) and the total number of rotor bars (Nt). If the rotor is rotating
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and the winding distributions are considered as sinusoidal, the modulating signal is also a
sinusoid, such that

m(t) = Mcos(ωot + ϕ) (12)

where ωo = 2πf is the fault characteristic frequency and depends on its nature and the
machine’s slip. In the case of the broken rotor bars, the characteristic fault frequency is
at 2sfs:

ia f (t) = [1 + Mcos(4πs fst + ϕ)]ia(t) (13)

fo = 2s fs and ωo = 2π(2s fs) (14)

m(t) = Mcos(4πs fst + ϕ) (15)

ia f (t) = [1 + Mcos(4πs fst + ϕ)]Im sin(ωt) (16)

ia f (t) = Im sin(2π fst) +
(

MIm

2

)
[sin(2π fs(1 + 2s)t + ϕ) + sin(2π fs(1 − 2s)t + ϕ)] (17)

The modulation index M can be approximated as a ratio between the number of
broken and total rotor bars [34]:

M ≈ Nb
Nt

(18)

The sine terms with frequencies fs(1 + 2s) and fs(1 − 2s) in Equation (17) correspond
to the right-hand side (RHS) and left-hand side (LHS) harmonics, which makes a pattern
during the transient regime as the slip changes from the maximum value to some specific
value, depending upon the load.

In the steady state current, each fault is represented with a particular frequency value,
as described previously. In the transient region, the frequency changes continuously. The
rapidly evolving slip in the transient regime gives rise to nonstationary signals making
specific patterns. The most common causes are the rotor asymmetries, such as the inherent
eccentricity, the principal slotting harmonics and the broken bars or end rings. Figure 1
presents the theoretical development of those patterns for a harmonic order of two.

Figure 1. The development of frequency patterns in a transient regime due to (a) broken bars, (b) dynamic eccentricity and
(c) principal slotting harmonics.

2.3. The Recovery of the Nonstationary Signal and Related Signal Processing

The frequency spectrum’s legibility in either a steady state or transient regime depends
on the signal’s length and sampling frequency. The fault-representing frequencies are the
function of motor slip, as described in Table 1. During the transient interval, the slip is not
constant, but decreases with an increase in speed as the motor goes toward a steady state
regime. This changing slip results in the creation of nonstationary signals in the transient
domain. With a rated supply, this transient interval is so small that those patterns do not
become visible. It becomes worse when the motor operates at a low load. The transient
interval can be extended by decreasing the supply voltage with a high inertia load, while
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the input voltage can be changed using a variable three-phase transformer or an industrial
inverter. The increasing use of the frequency converter as a substantial part of the drive
system increases the test’s feasibility. By reducing the supply voltage while maintaining a
constant frequency, the rotor’s inertia can control the transient time of the motor. Moreover,
with reduced voltage, the leakage inductance also takes more time to reach the steady
state point, which also supports an extended transient interval. For any reliable signal
processing-based diagnostic algorithm, the role of digital filters is undeniable.

Digital filters are the mathematical algorithms capable of reducing or enhancing
specific parameters of a signal. They are used for either the separation of combined signals
or the restoration of a distorted signal. Their diversified nature has many types, and they
are being used extensively in almost every signal processing-based application.

They are the potential tool to remove the strong supply-based frequency compo-
nents for improving the time–frequency spectrum’s legibility. This is necessary because
the fundamental component is powerful in amplitude compared with the fault-based
harmonics, which are very weak, particularly at the fault’s embryonic stage. Those low-
amplitude frequency components become barely visible in the presence of the fundamental
component.

To attenuate the fundamental component, the selection of an appropriate band-stop
filter becomes very crucial. The infinite impulse response (IIR) band-stop filters, such as
the Chebyshev II, can give promising results because of their steep transition band and
low passband ripples among various digital filters. The excellent transition band and low
passband ripples can reduce the filter’s impact on the recovered signal.

In light of the mentioned theoretical aspects, the frequency spectrum resolution for
transient and steady signals is improved in the following way, as presented in Figure 2:

• Measure the signal with the sampling frequency, meeting the Nyquist criterion. The
sampling frequency can be improved later using data interpolation. This is necessary
for the accurate detection of zero-crossing points. Moreover, any small constant offset
due to data acquisition devices should be removed to avoid a high-amplitude 0 Hz
component in the spectrum. This is achieved by subtracting the mean value of the
signal from itself;

• Most signal processing techniques, such as DTFT, are sensitive to signal discontinuities
and the fractional number of acquired cycles. This problem is solved by counting
the integral number of cycles using zero-crossing detection. Saving the signal from
the first until the last zero crossings will remove the starting and ending fractional
portions of the signal;

• Each sinusoidal signal has three zero crossings, which can be exploited to get the
integral number of cycles. If the number of zero crossings is odd, then the signal
consists of an integral number of cycles; otherwise, the samples from the second-last
zero-crossing until the end should be discarded;

• The band-stop IIR filter is then tuned to suppress the fundamental component;
• The recovered signal shows good spectral legibility both for frequency (steady state)

and time–frequency (transient) analysis.
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Figure 2. Flowchart for better frequency resolution and development of contour plot.

3. Simulation Results

The winding function model described in Section 2 was used for the transient and
steady-state analysis of the motor’s performance parameters under healthy and broken
bar conditions. The broken bars were simulated by increasing the value of corresponding
entries in the resistance matrix. Figure 3b shows the speed–torque dynamic response under
healthy and faulty conditions. The zoomed window shows the shift of the operating point
at the load application with a slight increase in the slip. The speed and torque ripples due
to broken bars are visible in Figure 3a,b.

Figure 3. (a) The speed dynamic response under healthy and faulty cases. (b) The speed–torque
dynamic response under the healthy and broken bar cases with shifting of the operating point upon
the application of a load in the zoomed window.
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These ripples were because of the fault-based induced voltage on the stator side. The
frequency of those harmonics depended upon the slip, as discussed previously. During the
transient interval, the slip changed dramatically from one to the nominal value, generating
a nonstationary signal in the current. This transient interval was so narrow that any specific
pattern was hardly visible with rated voltage conditions because of the low-frequency
resolution. This phenomenon is described in Figure 4. The motor’s simulated transient
current at 10%, 15%, 25%, and the rated voltage is presented. The envelope is highlighted
by plotting the absolute value of the analytical function given below in (19) and (20). In
all subfigures, the x-axis represents the time in seconds while the y-axis represents the
amplitude in amperes. Moreover, as the constant air-gap is considered in the simulation
model, the non-stationary signal contains only broken bar based pattern.

iA(t) = i(t) + j î(t) (19)

where i(t) is the current, j is the imaginary unit representing the complex number and iˆ(t)
is its Hilbert-transformed signal. This can be achieved by the convolution of the signal
with 1/πt, as shown by the following equation:

H(t) =
1
π

∫ ∞

−∞

(
f (x)
t − x

)
dx (20)

Figure 4. The motor’s simulated startup currents at different voltage levels (top row), the recov-
ered nonstationary signal (middle row) and the nonstationary signal at 10% of the rated voltage
representing the changing frequency pattern (bottom).

All these steps can be achieved in Matlab by using the simple command ab (hilbert(i[t])).
The envelope contains all harmonics other than the fundamental component. For a steady
state signal, the Hilbert filter is the right choice for attenuation of the fundamental compo-
nent. However, in the transient regime, the phase shift of all frequency components poses
a problem.

Hence, the nonstationary current signatures were recovered by attenuating the funda-
mental component using the IIR band-stop filter, as shown in Figure 4 (middle and last
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row). With a decrease in the applied voltage, the fault-based nonstationary signal increased
in length and became more legible. The time–frequency analysis of those non-stationary
signals at rated voltage and 10% of the rated voltage is shown in Figure 5. With reduced
voltage and the corresponding increase in the signal length, the V-shaped pattern became
visible, being hardly present in the current at the rated voltage. Moreover, the supply
frequency component (50 Hz) was attenuated using the proposed filter. The fault pattern
became more legible by using filter and contour plots together. The contour plot shows
the areas with a 95% confidence interval. With the rated voltage, the total power was
confined in the region until 0.5 s without any pattern (Figure 5b), while with extended
time, the pattern became visible as in Figure 5d. In the magnitude scalogram, the color bar
represents the amplitude of the specific frequency component in amperes.

Figure 5. The time–frequency pattern of the simulated current with two broken bars at (a) the rated
supply voltage, (b) the contour area of the maximum spectral density, (c) 10% of the nominal voltage
and (d) the contour pattern for better legibility.

4. Practical Setup

The test rig consisted of a motor under investigation attached with a loading machine,
industrial inverters and a data acquisition set-up. The motor, with specifications given
in Table 2, was tested with healthy and broken bar-based rotors. The bars were broken
by drilling radial holes having a depth equal to the total rotor slot height. The motor
phase currents were measured under transient intervals using the Dewetron transient
recorder. The measured signal’s sampling frequency was 10 kHz, which was good enough
for better frequency resolution. The test set-up is shown in Figure 6. In the industrial
inverter case, the variable voltage at a constant frequency could be achieved by changing
the rated parameters. Since the voltage/Hz ratio in the scalar control remained constant,
by changing the rated frequency with a constant rated voltage, the output voltage could be
varied, as shown in Table 3. Moreover, the acceleration and deceleration time should be
equal to zero to avoid the drive controller’s influence on the transient interval.
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Table 2. The machine specifications.

Parameter Symbol Value

Number of poles P 4
Number of phases ϕ 3

Connection - Delta
Stator slots Ns 36, non-skewed
Rotor bars Nb 28, skewed

Rated voltage V 400 V@50 Hz
Rated current I 8.8 A
Rated power Pr 7.5 kW @ 50 Hz

Figure 6. (a) The rotor with two broken bars. (b) The test bench with the loading motor on the right side and the test motor
on the left side.

Table 3. The setting of the industrial inverter to achieve the desired voltage.

Vrated (V) frated (Hz) V/Hz fset (Hz) Vout (V)

300 300 1 50 50
300 150 2 50 100
300 100 3 50 150
300 75 4 50 200
300 60 5 50 250
300 50 6 50 300

5. Results and Discussion

Figure 7 shows the motor’s transient current at 15%, 25% and 100% of the rated supply
voltage with two broken bars. The recovered nonstationary signal was very legible at
10% of the supply voltage. Unlike the simulation-based results, these signals contained
several higher-order harmonics. The most prominent causes of those harmonics were the
non-sinusoidal stator and rotor winding distribution, the stator, the rotor slot openings and
the magnetic material’s nonlinear behavior. However, those frequency components were
of less significance, as the most prominent fault-based pattern remained in the bandwidth
of 0–50 Hz.
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Figure 7. The motor’s startup currents measured at different voltage levels (top row), the correspond-
ing recovered nonstationary signals (middle row) and the nonstationary signal at 10% of the rated
voltage representing the changing frequency pattern (bottom).

The frequency spectrum of the stator current during the steady state interval for
healthy and broken rotor bars at no load and rated load conditions is shown in Figure 8.
The spectrum in Figure 8b shows the evolution of the left-side band (LSB) and right-side
band (RSB) harmonics. These harmonics are the function of slip, and the results are based
on the measurements taken under rated load conditions.

 
Figure 8. The frequency spectrum from 47 Hz to 53 Hz under healthy and broken rotor bar cases
under steady state and (a) no-load and (b) rated-load conditions.

The sideband frequencies increased in amplitude with the increase in the number
of broken bars. Besides that, the sideband fault frequencies tended to shift slightly away
from the fundamental component with the rise in broken bars. With the increase in the
number of broken bars, the average generated torque decreased with a slight rise in slip.
The segregation of these components is very difficult from the rest of the harmonics if the
entire spectrum is considered.

The severity of this problem increases with the decrease in load. As the load decreased,
these harmonics started hiding under the fundamental component, with total disappear-
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ance at the no load condition as in Figure 8a. Moreover, the skewness in the rotor and
stator slots affected their amplitudes, making them less detectable at the developing stage.
The skews tended to attenuate the rotor harmonics for smooth speed torque features. It
is also important to mention that these harmonics remain venerable when the inverter
feeds the motor. This effect can be in the form of a colossal number of harmonics fed by
the inverter, making faulty frequencies even more difficult for segregation. Moreover, the
impact of the drive controller cannot be ignored. This impact is worst in DTC-controlled
motors, where the controller of the drive tries to eliminate the current harmonics to reduce
torque ripples [14].

The leading causes of the speed and torque ripples were the current harmonics, due
to non-sinusoidal winding distribution on the stator and rotor side, the supply-based odd
multiples of the fundamental component even if the machine was grid-fed, the inherent
dynamic eccentricity and the magnetic material’s nonlinear behavior. Those harmonics are
inevitable, even if the machine is in a healthy condition. Figure 9 shows those harmonics in
the stator current spectrum of a grid-fed healthy motor working under 50% of the rated
load. All the harmonics except the supply-fed one were the function of slip and tended
to move away from the parent supply component with the increase in load. As discussed
earlier, the legibility of those harmonics in the current spectrum not only depended upon
slip but the fluctuating load, and the drive’s controller also made the detection of desired
components challenging.

Figure 9. The generation of spatial harmonics in the stator current of the healthy machine (a) under a steady state regime
with 50% of the rated load in the bandwidth of 100–400 Hz and (b) under a steady state regime with 50% of the rated load
in the bandwidth of 500–1000 Hz.

To avoid all those problems, the inspection of the motor current under the transient
regime showed promising results. For an increase in the transient time for better time–
frequency resolution, the supply voltage could be reduced using a three-phase transformer
or the industrial inverter, as discussed previously. With the increase in the applied voltage,
the motor took less time to reach a steady state interval. Under the transient regime, the
continuously decreasing slip moved the RHS and LHS frequency components toward the
fundamental component. It made a V-shaped pattern whose width depended upon the tran-
sient time. An exceptional intention was needed here, as there were several slip-dependent
frequency components, which could make similar patterns in the transient region. Those
frequencies are the spatial and inherent dynamic eccentricity-based harmonics, which
develop near all supply-fed higher-order harmonics.
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Figure 10 shows the harmonics’ development in the transient and steady state regime
under the healthy condition with the attenuated fundamental component. It is evident
that in the transient region, the rotor slotting and eccentricity-based harmonics made the
V-shaped patterns, as in Figure 10a. Those patterns started from 50 Hz and vanished
completely as they approached the parent supply component, as in Figure 10b. It is
essential to differentiate them from the actual faulty patterns to avoid false alarms.

Figure 10. The generation of spatial harmonics in the stator current of the healthy machine. (a) The development of
time–frequency patterns due to the space harmonics. (b) The time-frequency spectrum under a steady state regime under
50% of the rated load.

Figure 11 shows the time–frequency response, with the respective regions containing
85% of the total spectral energy in the contour plot for the healthy and broken bar cases.
In the presence of the fundamental component, the faulty pattern is barely visible even in
the extended current, as in Figure 11c. Moreover, the influence of the most potent supply
component on the visibility of the fault pattern is evident in the contour plot. Although
the faulty pattern is visible to some extent in the magnitude scalogram, it is absent in the
contour plot, as the maximum spectral energy remained in the region near the fundamental
component.

This pattern was not very legible because the sideband frequencies were lower in
amplitude than the fundamental component. This pattern can be made very clear by
attenuating the fundamental component, as shown in Figure 12. The IIR band-stop filter,
having a filter order of two and a stopband attenuation of 40 showed promising results,
while attenuating a narrow bandwidth of frequencies from 49.9 Hz to 50.1 Hz. Figure 12a
shows the transient current envelope, while the evolution of spatial frequencies in the
transient regime is presented in Figure 12b. The development of a faulty pattern with good
legibility is shown in Figure 12c,d for one and two broken bars, respectively.
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Figure 11. The results based on the measurements taken at 10% of the rated supply voltage. (a) The
time–frequency response of the healthy motor’s phase current in the transient regime. (b) The
respective contour plot. (c) The time–frequency response of the faulty motor’s phase current in the
transient regime. (d) The respective contour plot with a 95% confidence interval.

Figure 12. The results based on the measurements taken at 10% of the rated supply voltage. (a) The
envelope of the motor’s phase current in the transient regime. (b) Time–frequency spectrum in the
healthy case with an attenuated fundamental component. (c) Time–frequency spectrum in the case of
one broken bar with the attenuated fundamental component. (d) Time–frequency spectrum in the
case of two broken bar with an attenuated fundamental component.
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The contour plot with a bump mother wavelet for the healthy and one broken rotor
bar (BRB) cases is shown in Figure 13. Since the spatial harmonics were weaker than the
fault frequencies, the contour plot shows the evolution of the sideband frequencies, which
avoids confusion with the slotting-related patterns.

Figure 13. (a) The time–frequency plot of the healthy motor with 10% of the rated voltage. (b) The
time–frequency contour plot. (c) The time–frequency plot for 1 BRB motor with 10% of the rated
voltage. (d) The corresponding contour plot.

6. Conclusions

The broken rotor bars fault diagnostics by time–frequency analysis of the motor
current under the transient period was investigated in this paper. The detection of fault
frequencies in the steady state interval was prevalent in the literature but possessed
several difficulties. Since the sideband frequencies were the function of slip, they became
challenging to discover under low-load conditions. The spectral leakage of the prevailing
supply components was hazardous for the visibility of faulty components, as they were
fragile in amplitude. The spectral leakage was the function of the signal length, the sampling
frequency and the type of window used to compute the FFT or wavelet.

Moreover, the inclusion of a vast bandwidth of inverter-fed frequencies made the
detection of faulty frequencies hazier. The drive controller’s impact on reducing the current
ripples was another fact, making fault diagnosis under a steady state regime difficult.

These drawbacks can be resolved by investigating the health in the transient regime.
The transient interval’s biggest flaw is the little time, which reduces the resolution of the
spectrum. This transient time can be increased by lowering the applied voltage without
any external load. By doing so, the broken bars-based V-shaped pattern can be seen
with great accuracy. Moreover, the FFT-based drawbacks are considerably reduced by
using the wavelet approach. The transient spectrum’s legibility is further enhanced by
attenuating the fundamental component with an IIR filter’s help. The IIR band-stop filter
has a sharp transition interval and low passband ripples, having less influence on the
remaining frequency components.
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Several spatial and supply-related frequency patterns can cause a false alarm if they
are not differentiated accurately from the actual faulty components. Those components are
much weaker in amplitude compared with the fault-related frequencies. The use of the
filter to attenuate those components is nearly impossible, as they are not stationary. Hence,
the regions with the maximum spectral energy in the form of a contour plot are used, which
can be easily adjusted as a threshold to show the pattern. The results are presented using
the simulations and the measurements taken from a laboratory-based test rig.

The proposed approach can be used for the pattern-based training of advanced artifi-
cially intelligent (AI) diagnostic algorithms.
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Abstract: In the fault diagnosis study, data deficiency, meaning that the fault data for the training
are scarce, is often encountered, and it may deteriorate the performance of the fault diagnosis greatly.
To solve this issue, the transfer learning (TL) approach is employed to exploit the neural network
(NN) trained in another (source) domain where enough fault data are available in order to improve
the NN performance of the real (target) domain. While there have been similar attempts of TL in the
literature to solve the imbalance issue, they were about the sample imbalance between the source and
target domain, whereas the present study considers the imbalance between the normal and fault data.
To illustrate this, normal and fault datasets are acquired from the linear motion guide, in which the
data at high and low speeds represent the real operation (target) and maintenance inspection (source),
respectively. The effect of data deficiency is studied by reducing the number of fault data in the
target domain, and comparing the performance of TL, which exploits the knowledge of the source
domain and the ordinary machine learning (ML) approach without it. By examining the accuracy of
the fault diagnosis as a function of imbalance ratio, it is found that the lower bound and interquartile
range (IQR) of the accuracy are improved greatly by employing the TL approach. Therefore, it can
be concluded that TL is truly more effective than the ordinary ML when there is a large imbalance
between the fault and normal data, such as smaller than 0.1.

Keywords: transfer learning; fault diagnosis; data deficiency; imbalanced data; linear motion guide

1. Introduction

In recent years, fault diagnosis of mechanical components has been studied very actively and
many important advances have been made primarily based on the machine learning techniques such
as k-nearest neighbor (KNN) [1], support vector machine (SVM) [2], convolutional neural network
(CNN) [3], and others. However, these research techniques have dealt with situations where training
and test data lie in the same domain with enough amounts of fault data. While this unusual situation
enables the diagnosis performance more superior, it does not reflect the circumstances of the real field
where the fault diagnosis should be carried out under a lack of fault data due to cost and safety issues.

In the study of Prognostics and Health Management (PHM), the lack of fault or failure data,
which is referred to as the “data deficiency”, has been considered as the main obstacle that deteriorates
the performance of PHM. To tackle this issue, there have been several efforts with different perspectives
and strategies. For example, Kim et al. [4] proposed data augmentation prognostics (DAPROG)
by augmenting the run-to-fail (RTF) data obtained in the past for various operating conditions to
the current one using dynamic time warping (DTW). Sobie et al. [5] generated virtual training data
exploiting the high-resolution simulations based on the roller bearing dynamics and improved the
machine learning classification performance. A data fusion approach was also proposed as a means
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to compensate the absence of data in certain classes, which are addressed by Diez-Olivan et al. [6],
with reviews and challenges for the industrial prognosis; Azamfar et al. [7], for the gearbox fault
diagnosis using the convolutional neural network (CNN) and motor current signature analysis,
Huang et al. [8] for the mechanical fault diagnosis based on IoT; Luwei et al. [9], for the rotating
machine fault classification, to name a few.

Over the years, transfer learning (TL) has emerged as one of the solutions. TL is a method of
extracting knowledge obtained in one domain (source domain) to solve problems in another domain
(target domain), combining with machine learning techniques. The fundamental idea is that if the
source and target domain are similar, using the trained weights of the source domain is more efficient
than the training of the target domain from scratch. As a result, the TL algorithm compensates for data
deficiency in the target domain, such as the insufficient amount and unlabeled samples. Several studies
have been made in this direction. For example, Zhang et al. [10] proposed transfer learning based on
the neural networks (NN) for multiclass fault diagnosis of rolling bearings. Parameters of the NN in
the source domain are obtained through the training phase and transferred to the target task which
has more classes to classify. Classification accuracy and training time were improved compared to
those by the traditional NN. Wen et al. [11] proposed a new deep transfer learning method for fault
diagnosis of different working conditions. They extracted domain-invariant features by using sparse
auto-encoder and the maximum mean discrepancy between domains. Compared to the results of
traditional methods, such as the deep belief network (DBN), SVM, and artificial neural network
(ANN), the proposed method has made good improvement. They have also conducted a comparative
study for different ratios of samples between the source and target dataset. Qian et al. proposed a
transfer learning-based fault diagnosis network combined with high-order Kullback–Leibler (HKL)
divergence [12]. The proposed network has extracted features through the sparse filtering and HKL
divergence for discrimination and generalization ability. They have validated their method by both
the bearing and gearbox datasets. Lu et al. [13] proposed domain adaptation combined with a deep
convolutional generative adversarial network (DA-DCGAN) for the DC series arc fault diagnosis in a
photovoltaic (PV) system. They used normal and fault data of the source domain (PV emulator in
the laboratory) and only normal data of the target domain (PV system in the field) for an adversarial
training process. By generating fault data of the target domain artificially, high detection accuracy
was achieved. Guo et al. [14] proposed a deep convolutional transfer learning network (DCTLN) for
intelligent fault diagnosis of machines with unlabeled data. They optimized their network models in
the direction of minimizing the maximum mean discrepancy (MMD) between the source and target
domain datasets for learning domain-invariant features from raw signals.

The above-mentioned papers have shown several improvements in the fault diagnosis by using
TL, but the imbalance issue in the sample size between the normal and fault data was not studied,
which may affect the performance of TL greatly. Even though a few papers [11,12] have addressed a
similar issue, it was about the sample imbalance between the source and target domain, in which the
size of fault data is the same or greater than the normal. Recalling that the fault does not occur often
in the real operation conditions because of the periodic maintenance or the costly effort to make by
intention, the imbalance issue between the normal and fault data is of great importance for practical
use. For this reason, the effect of transfer learning in the fault diagnosis of imbalanced data is
investigated in this study.

2. Transfer Learning

Transfer learning is to extract knowledge from one domain task and utilize (or transfer) it to
solve another domain task. The domain in which knowledge is extracted is referred to as the source
domain, and the domain in which the knowledge is transferred is referred to as the target domain.
Depending on the type of knowledge and the way it is transferred, transfer learning is divided by
several approaches [15]. In this paper, parameter transfer is employed, in which a neural network is
trained by the source domain dataset and the pre-trained model is transferred to the target domain
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to fine-tune its parameters by the target domain dataset. In the parameter transfer-based approach,
the source datasets are usually relatively large in sample size while the target datasets are small.
The approach assumes that the parameters of the source and target domains share a common part
shown as follows [10]:

θs = θ + θ1 (1)

θt = θ + θ2 (2)

where θ denotes parameters, such as weight and bias, of a neural network, and the subscript s and t
denote the source and target domain, respectively. The idea is that by initializing the parameters with
those of the source domain, the accuracy and training efficiency can be improved substantially [10].

In this paper, the influence of the imbalance ratio in the target domain, defined as the proportion of
sample size between normal and fault, is investigated in the transfer learning framework, and compared
with the results by the traiditional neural network. As stated before, the motivation of this study is
due to the lack of fault data in the real field. The flowchart is presented in Figure 1. As shown in
Figure 1a, in the traditional machine learning-based fault diagnosis, datasets of different states (e.g.,
normal and fault) are divided into the training and test. Training data are used to train a model for the
diagnosis and test data to measure the performance of the model. Note in the figure that the degraded
dataset is smaller in sample size than that of the normal dataset, which is usually the case in the field,
and may be responsible for the poor classification performance. In the transfer learning (TL)-based
diagnosis, there are two groups of datasets from the different domains: the source and target as shown
in Figure 1b. The former is used to extract knowledge and the latter to utilize the knowledge for its
diagnosis. In this case, the degraded dataset in the source domain is relatively larger in sample size
than those in the target domain, which is going to be exploited for the diagnosis of the target domain.
In this paper, parameter transfer is used so that a neural network (NN) is trained in the source domain
and the pre-trained model is transferred to fine-tune the parameter in the target domain. The concept
is that the model parameters on the left in the source domain are knowledge-transferred to serve as the
initial values of the model on the right in the target domain, which can improve the accuracy and
efficiency of training greatly.

  
(a) (b) 

Figure 1. Flowchart of fault diagnosis: (a) traditional machine learning-based approach, and (b)
transfer learning-based approach [15].
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3. Application

3.1. Linear Motion Guide Dataset

A linear motion (LM) guide is a frequently used mechanical part in the manufacturing field
because it moves heavy workpieces while maintaining precision at high speeds. The LM guide in the
experiment is a ball guide type with a rectangular LM block whose height and width are 24 mm and
34 mm. Only one LM block is installed in a single rail. The seal type of the LM block is an end seal for
dust prevention. The workpiece is fixed to the surface of the LM block, which travels along a linear
rail with dozens of balls circulating inside of the block as shown in Figure 2. Since the balls move
along the track in the LM block, flaking may occur due to the rolling contact fatigue loads. Four LM
guides are prepared, and test rigs are made, which consist of the motor and belt drive (not shown
here), rail, workpiece, and LM guides as shown in Figure 3a. The LM block reciprocates along a
450 mm-long rail with a sequence of acceleration for 0.23 s, a constant speed of 1.667 m/s for 0.04 s,
and deceleration for 0.23 s, which is shown in Figure 4a. A three-axis accelerometer with a sampling
rate of 10.2 kHz is installed at the LM block as shown in Figure 3b. The vibration signal is measured
intermittently at the 0, 20 k, 50 k, and 100 k’th cycles for the early period, and at every 100 k cycle for
the subsequent period. At each recording cycle, the signal is recorded twice with different speeds:
first at the original 1.667 m/s (high) and next at 0.1 m/s (low). This is to simulate the on-line operation
during the production and the off-line inspection operation during the maintenance, respectively.
The speed profile for the latter case is shown in Figure 4b. In the recording cycle, the measurement is
repeated nine or ten times at random under each speed. The experiment is terminated when one of
the LM guides encounters the flaking appearance during the inspection, which has taken about two
months. As a result, the total number of datasets is given by 680 and 723 for the high and low speeds,
respectively, where a dataset refers to the measured data for a single trip. Figure 5a shows the plot of
the vibration signal under the low speed over the whole period acquired for one of the LM guides.
Figure 5b is its three-dimensional spectrogram, which is the stack of the frequency spectrum made by
fast Fourier transform at each cycle. The figure shows that the amplitudes at around 3 kHz increase
from a certain time period, which is about the last 25% of the whole cycle. The same phenomena
are found in the other LM guides. The authors believe that this represents the fault progression of
LM guides, eventually leading to the flaking failure.

Since the data can be easily acquired during the maintenance, the latter is defined as the source
domain, whereas the former being the target domain. Then the imbalance condition is considered
where the fault data in the target domain are much less available than those in the source domain
due to the infrequent occurrence in the real operation. Among the datasets in the source domain
(low speed), those in the first six.

Note that 25% and the last 25% of the whole period are chosen as the normal and fault at our
convenience to make the number of datasets in each class the same. The results are 152 datasets
in common for the normal and fault conditions. Then, the NN is trained using the all the datasets
(152 normal samples and 152 fault samples) in the source domain. In the target domain (high speed),
the datasets of the normal and fault conditions are chosen in the same way, and the results are
160 datasets in common. Then, the datasets are divided into the training and test, with the number
being 100 and 60, respectively. The training datasets are used to train the NN which is pre-trained and
transferred from the source domain. The test datasets are used to examine the accuracy of the trained
NN. The numbers in each case are summarized in Table 1.

To simulate the imbalance condition where the fault data in the target domain are much less
available than those in the source domain, only a part of the fault datasets are taken as shown in
Table 1, which is given by multiplying the imbalance ratio (IR). For example, when the IR is set at 0.1,
only 10 percent of the fault datasets are used in the target domain for the training.
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Figure 2. Linear motion (LM) guide structure and flaking inside the LM block.

 

(a) (b) 

Figure 3. Experimental setup: (a) linear motion guide test rigs; (b) installed accelerometer.

(a) (b) 

Figure 4. Speed profile of LM guide: (a) high speed during production (target domain); (b) low speed
during an inspection (source domain).
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(a) (b) 

Figure 5. Vibration signal of low speed for one of the LM guides: (a) raw signal in time domain;
(b) frequency spectrum by Fourier transform.

Table 1. Details of LM dataset.

Purpose Normal Dataset Fault Dataset

Source Domain Training 152 152

Target Domain Training 100 100*IR 1

Test 60 60
1 Imbalance ratio (IR) denotes the imbalance ratio.

3.2. Training Neural Networks of Source Domain

As shown in Figure 1, the transfer learning is preceded by the training of the NN in the source
domain using the 152 datasets of the normal and fault as given in Table 1. As is addressed in many
works of literature (e.g., see [16,17]), the training process consists of the training and validation,
in which the training is to determine the parameters (weights and bias) under a given architecture,
whereas the validation is to find out the optimum architecture or hyper-parameters that give the
best performance.

Thirteen time-domain statistical features as listed in Table 2 are extracted from the raw signals in
the three directions, which gives the thirty-nine features. These are used as the input nodes of the
NN. In terms of the architecture, a single hidden layer is considered with the transfer function being
the hyperbolic tangent sigmoid. The optimum number of nodes in the hidden layer is then sought
by the validation process, more specifically the five-fold cross-validation in practice. To this end,
the datasets are divided into the five folds, in which the four are used for the training (determining the
weights and bias of the network), while the remaining one is used for the validation. The diagnosis
accuracy is then calculated by the ratio of the number of correct classifications to the total number of
validation datasets. Since there are five folds, this is repeated five times, from which the average
accuracy is obtained. Furthermore, since the NN solutions can vary widely due to the random initial
conditions, this is repeated 300 times, and the grand average is obtained accordingly. The process is
repeated by increasing the number of nodes in the hidden layer from 2 to 100 by increments of 2 (e.g., 2,
4, 6 . . . , 100). The result of validation in the source domain is given in Figure 6a, where the optimum
number of hidden nodes is chosen at 22 by visual inspection. Once this is done, the NN is trained
again to obtain the parameters (weights and bias) under the optimum architecture (namely, 22 hidden
nodes) using the training datasets with initial values of the parameters given at random. Repeating
this by 300 times, 300 sets of parameters are obtained for the NN in the source domain, which we call
the pre-trained NN parameters to be used in the target domain. The reason for the repetition is due to
the arbitrary nature of the NN solution.
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Table 2. Equations for statistical features.

Feature Formula Feature Formula
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(a) (b) 

Figure 6. Diagnosis accuracy as a function of the number of hidden nodes: (a) the source domain;
(b) the target domain with IR of 0.5.

3.3. Training Neural Networks of Target Domain by Transfer Learning

Once the NN is trained in the source domain, it can be exploited by TL in the target domain.
There are two ways for this: One is named TL1, which uses the same architecture in the target
domain as that of the source domain. The other is TL2, which, in addition to the same architecture,
initial values for the training are given by the pre-trained NN parameters of the source domain.
Whichever it is, the training is carried out using the architecture of the source domain by 300 times for
the training datasets in the target domain as given in Table 1. In the training, the initial values of the
parameters are assumed at random in TL1 whereas they are given by the pre-trained NN parameters in
TL2. The trained NNs are applied to the test datasets of Table 1, from which the diagnosis accuracies
are obtained as defined previously in the source domain. Since the 300 number of accuracy is obtained
as a result, the accuracy is represented by the distribution, which occurs due to the randomness of
NN solutions. Furthermore, the number of fault datasets vary by IR. So this is repeated for each IR
from 0.1 to 1.0 by the increment of 0.1. Note that the smaller the IR, the more the data deficiency
becomes greater.

To make a comparison of the TL-based approach, the ordinary machine learning (ML) approach
is also performed. In this case, the training and validation are carried out solely by the training
datasets in the target domain to determine the optimum architecture. The procedure is the same
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as that addressed in the source domain. The process is repeated for each IR from 0.1 to 1.0 by the
increment of 0.1. Figure 6b gives the result of validation when IR is 0.5, where the optimum number
of hidden nodes is found at 16. The results for other IRs are found in Table 3. Once this is done,
the NN has trained again by 300 times to obtain the 300 sets of parameters under the architecture
using the training datasets with the initial values assumed at random. Finally, the trained NNs are
applied to the test datasets of Table 1, from which the diagnosis accuracies are obtained, representing
the distribution due to the randomness of NN solutions.

Table 3. The number of nodes in hidden layer determined in the target domain.

IR 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

The number of nodes in
hidden layer 10 18 14 10 16 10 12 16 12 12

The results of accuracy distribution in TL1, TL2, and ML are given as a function of IR as shown in
Figure 7a–c, respectively. In the figures, the bottom, top, and red lines of the box indicate the 25th,
75th percentile, and median of the distribution, respectively. The top and bottom of the extended
dotted lines are the 5th and 95th percentiles. In Figure 8a,b, the lower bound (fifth percentile) and
the IQR between 25th and 75th percentiles are shown, which indicate the lower confidence limit of
accuracy and the degree of statistical dispersion, respectively [18]. When the IR is 0.1, the lower
bound of TL2 is 69.2, which is greater than 57.5 (TL1) and 53.3 (ML), and the IQR is 5.83, which is
only about 60% of 9.58 (TL1) and 10.41 (ML). The higher the bound and the lower the IQR, the better
the performance. This can be identified more clearly in Figure 9, where the histograms of diagnosis
accuracy and its lower bound are displayed for TL1, TL2, and ML, respectively. While the histograms
of TL1 and ML are similar and show much larger variance, TL2 shows smaller variance with greater
lower confidence limit. However, as the IR increases greater than 0.1, the lower bound and IQR
of TL2 are not superior to the others. The authors believe that these results are due to the negative
transfer [10], which happens when the fault characteristics between the source and target domain are
quite different. In that case, adding the fault data in the target domain does not help to improve the
TL performance. Overall observations are summarized as follows: (1) TL1 and ML behave similarly,
whereas TL2 is different from the others. That is, the initialization of NN parameters is of more
importance than the adoption of source domain architecture in making the difference of TL from
ordinary ML in the target domain. (2) TL2 is superior to ML and TL1 only when the number of fault
data is very small such as when IR is 0.1 or less as is evident in Figure 8, in which the lower bound
of accuracy for TL2 is higher and the IQR for TL2 is shorter than the other two. This is why TL is
necessary for the case when the data are too few to train by their own. (3) It is of surprise that TL2 is
soon found less effective than the other two as the IR gets greater than 0.1. Nevertheless, it should
not be overlooked that the proposed approach is truly useful in the case of significant data deficiency,
which is the highlight of the study.
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(a) (b) 

(c) 

Figure 7. Diagnosis accuracy of the target domain: (a) transfer learning (TL)1; (b) TL2; (c) machine
learning (ML).

 
(a) (b) 

Figure 8. Two measures of diagnosis accuracy: (a) lower bound; (b) interquartile range (IQR).
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Figure 9. Histogram of diagnosis accuracy when IR is 0.1.

4. Conclusions

Collecting the fault data during the real operation is difficult because of safety and cost issues,
which results in the imbalance issue in the number of normal versus fault data, and even data
deficiency. The performance of fault diagnosis is then greatly deteriorated due to this. On the other
hand, a good number of normal and fault data can be acquired in a similar condition such as the lab
test or maintenance inspection. In this study, a transfer learning-based fault diagnosis is proposed
to solve this problem, which is to pre-train the NN using the large datasets as the source domain,
and transfer the knowledge to train the NN using the imbalanced datasets in the real target domain.
To illustrate this, normal and fault datasets are acquired from the run-to-fail test of the LM guides,
in which the data at high and low speeds are regarded as those for the real operation (target) and
maintenance inspection (source), respectively. To study the effect of imbalance, the number of fault
data in the target domain is reduced by multiplying the imbalance ratio (IR), and the accuracy of
diagnosis is explored as a function of IR. From the study, it is concluded that TL is truly more effective
than ordinary ML when there is a large imbalance between the fault and normal such as smaller than
0.1. When the imbalance ratio is 0.1, the variance is improved substantially such that the IQR is about
60% of the others. However, to our surprise, it soon becomes less so, reversing the performance
as the IR is increased, which is a too small benefit to employ TL as the solution. This seems to be
attributed to the negative transfer arising when the fault characteristics differ too much between the
source and target domain. How to figure out and overcome this will be another future research topic,
which involves numerous implementations of various experimental datasets.
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Abstract: An integrated method for fault detection of bearing using wavelet packet energy (WPE)
and fast kurtogram (FK) is proposed. The method consists of three stages. Firstly, several commonly
used wavelet functions were compared to select the appropriate wavelet function for the application
of WPE. Then the analyzed signal is decomposed using WPE and the energy of each decomposed
signal is calculated and selected for signal reconstruction. Secondly, the reconstructed signal is
analyzed by FK to select the best central frequency and bandwidth for the band-pass filter. Finally, the
filtered signal is processed using the squared envelope frequency spectrum and compared with the
theoretical fault characteristic frequency for fault feature extraction. The procedure and performance
of the proposed approach are illustrated and estimated by the simulation analysis, proving that the
proposed method can effectively extract the weak transients. Moreover, the analysis results of gearbox
bearing and rolling bearing cases show that the proposed method can provide more accurate fault
features compared with the individual FK method.

Keywords: wavelet packet energy (WPE); fast kurtogram (FK); wavelet packet parameters; rolling
element bearing

1. Introduction

The condition monitoring of rolling bearings is very important in ensuring the safety of the
mechanical system as it is one of the basic components and widely applied in various rotating machines.
The measured dynamic signal of bearing has the characteristics of non-linear and non-stationary
with various background noise. Moreover, the original signal is too low in energy to extract fault
characteristics. As a result, some progress has been made in the research of effective health monitoring
for mechanical system and key components in recent years [1–3]. The vibration signal produced by the
rotating machine contains significant information related to the state of the machine; therefore, the
vibration-based analysis has been widely used as an effective method to identify the machine faults [4].
However, the measured vibration signal is consisted of stationary, non-stationary, and background
noise. It is necessary to select appropriate signal processing technology to obtain effective fault features
for rolling bearings fault detection [5–7].

In the fault diagnosis of rolling bearings, the analysis method based on the time domain and
frequency domain are commonly used for stationary signal processing, and the time-frequency domain
analysis method has been widely used to analyze the non-stationary signals for fault features extraction
in both the time and frequency domains. The popular time-frequency analysis methods include
short time Fourier transform (STFT), empirical mode decomposition (EMD), Wigner-Ville distribution
(WVD), wavelet pack transform (WPT), etc. Although these methods have been widely used in fault
detection, they also have their own shortcomings. For instance, the STFT cannot satisfy the localization
of time and frequency at the same time. The WVD is affected by cross-interference items. The EMD can
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effectively decompose amplitude modulation signals into a series of intrinsic mode functions (IMFs),
but it is easily affected by modal aliasing, which makes IMFs lose their specific physical meaning.
Compared with the above-mentioned method, WPT can perform orthogonal decomposition on the
signal of the whole frequency band to obtain more detailed and comprehensive information. Therefore,
it has been widely used in fault diagnosis of gearboxes, rolling bearings, and rotors [8–10]. On the
basis of WPT, wavelet packet energy (WPE) is an improved time-frequency analysis method which can
get the energy change of the signal in each frequency band and then extract the characteristic frequency
band signal to reflect the impact vibration phenomenon of bearing. In recent years, WPE has become a
prevalent method in the field of machinery condition monitoring and fault diagnosis [11–14].

Spectra kurtosis (SK) is one of the effective approaches for transient signal enhancement. It was
originally developed by Dwyer [15] to highlight the transient components. The spectra kurtosis method
uses the properties of kurtosis, is very sensitive to the transient components in a signal, and can provide
an index for indicating the frequency band for transient components extraction. The definition of the
“kurtogram” was first introduced by Antoni [16]. The fast kurtogram (FK) overcomes the limitation of
pre-determining the parameters for the band-pass filter and can optimize the parameters adaptively
according to the characteristics of the analyzed signal. Therefore, FK has been favored in the field of
rotating machinery fault detection, and has been widely adopted and developed in recent years. Smith
et al. applied the FK to analyze the vibration signal obtained from a planetary gearbox test bench for
detecting planet bearings faults [17]. He et al. proposed a new multi-faults detection method using the
FK and Minimum entropy deconvolution (MED) to extract weak impulsive signal [18]. Zhang et al.
presented an effective method for band-filter parameter optimization in rolling element bearing fault
diagnosis based on the genetic algorithms and FK [19]. The above research shows that the FK can be
applied to bearing fault diagnosis and extract the fault features effectively.

To effectively extract fault features from background noise, this paper proposes a hybrid method
based on WPE and FK for bearing fault diagnosis. Firstly, in order to select the optimized wavelet
packet basis function and obtain a reconstructed signal with sufficient fault information, various
wavelet functions are compared and the energy distribution were analyzed. Secondly, FK analysis is
carried out on the reconstructed signal to select the optimal center frequency and bandwidth of the
band-pass filter. Finally, the filtered signal is processed with the square envelope spectrum, and the
fault features are extracted for bearing fault detection. Compared with the conventional FK analysis, the
diagnosis result shows that the proposed method not only can extract the fault characteristic frequency
but also optimize the wavelet packet parameters. Therefore, the effectiveness of the proposed method
in the fault diagnosis of rolling bearings is verified.

The remainder of this paper is outlined as follows. A brief review of the theoretical background
of wavelet packet transform and fast kurtogram are presented in Sections 2 and 3. In Section 4,
the performance evaluation of the proposed method based on simulation study is introduced. The
procedure of the proposed method is demonstrated in Section 5. Section 6 validates the practical
applications of the detector via application case studies. Finally, conclusions are drawn in Section 7.

2. Wavelet Packet Transform

2.1. WPT

Compared with wavelet decomposition, wavelet packet (WPT) makes up for the shortcomings of
high-frequency part decomposition of the measurement signal. It separates the frequency band of the
signal in multiple levels and refines the fault features of the measurement signal in each frequency
band [20,21]. Suppose the original signal is xn

j (t) ∈ un
j , then xn

j (t) can be decomposed by wavelet
packet as:

xn
j (t) =

∑
t

dj,n
l un

(
2 jt− l

)
(1)
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Among them, j represents the scale and l represents the translation factor. un
(
2 jt− l

)
represents

the basis function in un
j , and dj,n

l represents the WPT coefficient. {dj,n
l } can be decomposed into {dj, 2n

l }
and {dj, 2n+1

l }, namely: ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
dj,2n

l =
∑
k

ak−2ld
j+1,n
k

dj,2n+1
l =

∑
k

ak−2ld
j+1,n
k

(2)

where k represents the translation parameter; n represents the oscillation parameter.

2.2. Frequency Band Energy Feature Extraction

Suppose the highest frequency of the time signal x(t) is fmax, and perform J-layer WPT
decomposition on x(t) to get 2J groups of WPT coefficients, respectively wJi

(
i = 0, 1, · · · , 2J − 1

)
.

The frequency band corresponding to these 2J coefficients is
[

i
2J fmax, i+1

2J fmax
]
.

Take the three-layer WPT as an example. First, find the signal energy of each frequency band.
Suppose the corresponding energy of w3i(i = 0, 1, · · · , 7) is E3i(i = 0, 1, · · · , 7), then:

E3i = ||w3i||2 =

∫ +∞

−∞
|w3i|2dt (3)

Secondly, the feature vector is constructed with E3i as the element:

T = [E30, E31, · · · , E37] (4)

When the signal energy is large, E3i(i = 0, 1, · · · , 7) represents a large value, so it will bring
certain difficulties in signal processing. Therefore, the feature vector T will be normalized:

E =

∣∣∣∣∣∣∣
7∑

i=0

|E3i|2
∣∣∣∣∣∣∣

1
2

(5)

Finally, get the normalized vector R = [E30/E, E31/E, · · · , E37/E].

3. Kurtogram Calculation

Antoni clarified the theoretical basis of spectral kurtosis (SK) for diagnosing mechanical faults,
and successfully applied the SK method in actual mechanical fault diagnosis [22]. Subsequently, some
researchers combined SK with other methods for machinery fault detection and achieved certain
results [23,24]. Considering the Wold-Cramer decomposition of non-stationary measurement signals,
and define Y(t) as the system excited by the signal x(t), then Y(t) can be presented as:

Y(t) =
∫ +∞

−∞
ej2π f tH(t, f )dX( f ) (6)

where dX( f ) is a spectral process, H(t, f ) is the complex envelope of process Y(t) under frequency f .
The SK using the fourth-order spectrum cumulate is defined as:

C4Y( f ) = S4Y( f ) − S2
2Y( f ) ( f � 0) (7)

where S2nY( f ) indicates the instantaneous moment of order 2n, which can be expressed in Equation (8).
It has the ability of presenting the complex envelope energy.

S2nY(t, f ) = E{
∣∣∣H(t, f )dX( f )

∣∣∣2n}/d f (8)
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Hence the SK in the energy-normalized fourth-order spectral can be cumulated:

SKY( f ) =
C4Y( f )

S2
2Y( f )

=
S4Y( f )

S2
4Y( f )

− 2, f � 0 (9)

A simple model of the measured signal can be represented x(t) = z(t) + n(t), x(t) is the measured
vibration signal, n(t) is the random noise signal, and z(t) is the pure measurement signal. SKX( f ) and
SKZ( f ) are used to represent the measured vibration signal and the SK of the pure measurement signal
respectively, then SK is written as

SKx( f ) =
SKz( f )

[1 + ρ( f )]2
(10)

where ρ( f ) = S2N( f )/S2Z( f ) represents the power spectral density (PSD) ratio of the noise to the
actual vibration signal. It can be seen that SKx( f ) and SKz( f ) are approximately equal at frequencies
with a large signal-to-noise ratio, and SKx( f ) is approximately equal to zero at frequencies with strong
random noise.

4. Simulation Analysis

4.1. Data Acquisition

The vibration signal of a bearing with incipient faults can be represented as an amplitude
modulation model. Considering the random sliding process, the modeled vibration signal can be
expressed in Equation (11):

⎧⎪⎪⎪⎨⎪⎪⎪⎩ x1(t) =
M∑

m=1
Ah1

(
t− i

fi
− τi

)
h1(t) = exp(−C1t) cos(2× 3000πt)

(11)

where A = 1 is the amplitude of the modeled signal, Ci = 900 is attenuation coefficient, fi = 100 Hz is
the fault characteristic frequency, τi is the random fluctuation that occurs during the i-th impact. The
sampling frequency of the data is 20 kHz, and the sampling points is 8192.

4.2. Optimization of the WPE Parameters

Figure 1 shows the waveform and the corresponding spectrum of the simulated outer race fault
signals. It is not easy to recognize the fault features of the simulated signal from Figure 1.

In order to get better wavelet packet parameters, firstly, select several commonly used wavelet
packet parameters (i.e., db1, db3, db5, db7, db10, coif1, coif2, coif3, coif4, coif5, sym1, sym3, sym5,
sym7, sym10) from Table 1. Then, decomposed, energy calculated and reconstructed by using the
above 15 wavelet functions respectively. Secondly, the reconstructed signal is filtered using FK and the
filtered signal is square envelope spectrum analysis. Then, compare the amplitude of square envelope
spectrum to determine the optimal wavelet base in Figure 2. It can be seen that db1, coif2, and sym1
decomposition effect is better than others. To further select the wavelet function, the above three
wavelet functions are compared as shown in Figure 3. It can be seen that the decomposition of db1
and sym1 are similar, better than coif2. Finally, due to the db1 and sym1 decomposition effect being
similar, then select the wavelet function (i.e., db2, db3, db4, db5) and (i.e., sym2, sym3, sym4, sym5)
for comparison. Figure 4a,b depict that decomposition of db2, db3 and sym2, sym3 show a similar
effect; however, the magnitude of db4, db5 is greater than the magnitude of sym4, sym5 in Figure 4c,d.
Therefore, wavelet function dbN decomposition is best.
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(a) 

(b) 

Figure 1. Simulated signal of a faulty bearing: (a) waveform; (b) spectrum.

  

 

Figure 2. The results of the envelope analysis: (a) dbN; (b) coifN; (c) symN.
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Table 1. Wavelet packet parameters.

Wavelet Function Order Range

dbN 1–45
coifN 1–5
symN 1–45

 
Figure 3. The results of the envelope analysis.

 

 

Figure 4. The results of the envelope analysis: (a) db2,sym2; (b) db3,sym3; (c) db4,sym4; (d) db5,sym5.
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The above concludes that the decomposition of wavelet function dbN is the best. However, the
order of the wavelet packet is not determined. In this paper, we applied the FK to optimize the wavelet
packet order. The FK of the reconstructed signal is depicted in Figure 5. It can be found that the center
frequency of FK utilize db3 is located in the subspace the frequency band. Therefore, db3 is selected as
the wavelet function.

  

(a) (b) 

  

(c) (d) 

(e) 

Figure 5. The results of the fast kurtogram (FK) (a) db1; (b) db2; (c) db3; (d) db4; (e) db5.
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4.3. Results and Analysis

The WPE method is utilized to extract the fault characteristics of the faulty signal. The wavelet
function db3 is used, decomposition layers are selected to be 3, then 8 decomposition bands are
generated and the frequency range of 3-layer wavelet packet displayed in Table 2. The proportional
relationships of the energy bands are analyzed and calculated; the comparison result is illustrated in
Figure 6 by histograms. It can be seen that the changes in the WPE distribution is presented in the node
[3,2] and the node [3,3]. Figure 7 illustrated the results of the square envelope spectrum the proposed
method, and fo represents the fault frequency of the bearing outer ring.

Table 2. The frequency range of three layer wavelet packet decomposition.

Serial Number Node Situation Frequency/Hz

1st node[3,0] 0–1250 Hz
2nd node[3,1] 1250–2500 Hz
3rd node[3,2] 2500–3750 Hz
4th node[3,3] 3750–5000 Hz
5th node[3,4] 5000–6250 Hz
6th node[3,5] 6250–7500 Hz
7th node[3,6] 7500–8750 Hz
8th node[3,7] 8750–10,000 Hz

Figure 6. Energy distribution proportional histogram of simulated signal.

Figure 7. The results of the proposed method.

5. The Flowchart of the Fault Diagnosis Method

This paper proposes a new method using wavelet packet energy (WPE) and fast kurtogram (FK).
The specific diagnosis steps are as follows, and the basic process is shown in Figure 8.
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Figure 8. Rolling bearing fault diagnosis flowchart.

(1) By selecting the appropriate wavelet function and the number of decomposition layers, the
measurement signal is decomposed by WPT and passed to obtain the WPT coefficient of each node;

(2) Calculate the WPT energy value of each node;
(3) Select the decomposed signal with the concentrated energy for reconstruction;
(4) Calculate the SK map of the acquired reconstructed signal and select the center frequency and

bandwidth corresponding to the maximum kurtosis value;
(5) Filter the reconstructed signal using the optimized center frequency and bandwidth as the

band-pass filter parameters;
(6) Perform square envelope demodulation on the filtered signal to obtain the envelope spectrum of

the signal;
(7) Analyze the envelope spectrum to obtain the fault diagnosis result.

6. Experiments Validation

6.1. Data Acquisition

The first verification test case is fault detection for rolling bearing. The bearing test rig consists
of a motor, coupling, intermediate shaft, supporting bearings, and electrical brake, as shown in
Figure 9. A piezoelectric accelerometer was installed vertically on the drive end of the motor, and
another piezoelectric accelerometer was positioned on the bearing housing with a sensitivity of
1.04 mV/ms2. The standard load of the bearing test rig is 680 Nm, and the final output speed is 388 rpm.
Tables 3 and 4 show the parameters of the experimental bearing, among them, fo, fi, fb, and fc are the
fault characteristic frequencies of the outer ring, inner ring, rolling element, and cage of the rolling
element bearing, respectively.
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Figure 9. The motor bearing test rig.

Table 3. The parameters of the motor bearings.

Bearing Designation Pitch Diameter Dm (mm) Ball Diameter d (mm) Ball Numbers z

6206ZZ 46.4 9.53 9
fo fi fb fc

89.33 130.99 62.42 9.93

Table 4. Specifications of the supporting bearing.

Bearing Designation Pitch Diameter Dm (mm) Ball Diameter d (mm) Ball Numbers z

6008 54 7.9 12
fo fi fb fc

49.25 65.17 33.60 4.10

6.2. Motor Bearing Fault Detection

Figure 10 shows the waveform and its frequency spectrum. It is not easy to identify the fault of
rolling bearing from Figure 10. Thus, it is necessary to conduct further analysis.

The proposed method is used to handle the measured signal of the gearbox bearing. In Figure 11,
the changes in WPE distribution in the node [2,3] and the node [3,6] can be seen. Selecting the above
two subspaces are applied as the eigenvalue of the outer race fault signals. To further prove the
superiority of the proposed method, the individual FK method is applied for comparison. Figure 12
shows the analysis results of the proposed method and the individual FK method. Three obvious
spectrum lines pointed at the characteristic frequencies of the bearing with outer race (i.e., fo, 2 fo, and
3 fo) can be recognized in Figure 12a. In contrast, although three harmonics of fault frequency (i.e., fo,
2 fo, and 3 fo) can be identified in Figure 12b, the noise is significantly more than the proposed method.
The experimental results demonstrated that the proposed method can obtain more accurate recognized
result than the individual FK method for bearing outer race fault detection.
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Figure 10. The motor vibration signal: (a) waveform; (b) spectrum.

Figure 11. Energy distribution proportional histogram of the vibration signal.

Figure 12. The results of the motor bearing outer race fault vibration signal: (a) the proposed method;
(b) individual FK method.
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6.3. Supporting Bearing Fault Detection

Figure 13 depicts the waveform and spectrum. Evidently, the fault feature information is merged
with random noise. Thus, the diagnosis is barely possible.

Figure 13. The supporting bearing vibration signal: (a) waveform; (b) spectrum.

The proposed method is utilized to diagnosis the fault information. In Figure 14, the changes
in WPE distribution in the node [3,4] and the node [3,5] are shown. Figure 15 illustrates the analysis
results of the individual FK and the proposed method, respectively. It can be found from Figure 15a
that the result presented obvious peaks reflected the supporting bearing fault and its harmonics. In
Figure 15b, although the inner race fault frequency and its harmonics can be recognized, the signal-to
noise ratio is poor. The comparison results show that the proposed method is more accurate than the
individual FK method in supporting bearing fault diagnosis.

Figure 14. Energy distribution proportional histogram of the vibration signal.
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Figure 15. The results of the supporting bearing inner race fault vibration signal: (a) the proposed
method; (b) individual FK.

7. Conclusions

Aiming at the problem of energy concentration of faulty bearing vibration signals, this paper
proposed a new method combining wavelet packet energy (WPE) and fast kurtogram (FK) to extract
the transient signals. In the simulation analysis, the wavelet packet parameters were optimized by
comparison analysis. And it is verified that the wavelet function of db3 can obtain better decomposition
results than others. Through experiments, even both the proposed method and the individual FK
method can obtain the bearing faults characteristic frequency, but it can be seen that the results of
the proposed method significantly exceeds the results obtained by the individual FK method. In
addition, the signal-to-noise ratio of the envelope spectrum obtained by the proposed method is much
higher than that of the individual FK method. Therefore, the experiment results demonstrate that the
proposed method outperforms the individual FK method. Furthermore, it can effectively solve the
energy concentration problem in feature extraction for bearing fault.
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Abstract: Bearing preload significantly affects the running performance of a shaft-bearing system
including the fatigue life, wear, and stiffness. Due to the mounting error, the bearing rings are often
angularly misaligned. The effects of the combined bearing preload and angular misalignment on
the fatigue life of ball bearings and a shaft-bearing system are analyzed in this paper. The contact
force distribution of angular contact ball bearings in the shaft-bearing system is investigated based on
the system model. The system model includes the bearing model, and the shaft model is verified
by comparing with the manufacturer’s manual and the results from other theoretical models, with
the difference between the results from the present bearing model and manufacturer manual within
3%. The global optimization method is used to replace the Newton–Raphson algorithm to solve the
ball elements’ displacements and friction coefficients, which improves the computation efficiency of
the system model. The fatigue life of each bearing is evaluated with the consideration of the two
preload methods and two angular misalignment cases. The fatigue life results show that the system
life at the optimal angular misalignment is more than 1.5 times that without angular misalignment at
the low preload value, and this ratio decreases as the preload value increases. The optimal angular
misalignment of both the shaft-bearing system and the misaligned bearing is not always consistent,
which depends on the preload value and bearing life. Both the constant-displacement preload and
constant-force preload do not cause a significant difference in the highest system life. The different
misaligned bearings can lead to different highest system lives as the preload value is low.

Keywords: shaft-bearing system; angular contact ball bearing; bearing preload; angular misalignment;
fatigue life

1. Introduction

The shaft-bearing system is a key part in mechanical transmissions, in which the rolling element
bearing is commonly applied due to its low friction, low wear, and low energy consumption. With
the high speed and high precision requirements for rotating machinery, the shaft is usually designed
to be supported by multiple rolling element bearings. Many scholars have investigated the dynamic
characteristics of the shaft-bearing system [1–3], and a comprehensive review on dynamic model
development of a shaft-bearing system was also presented [4]. In addition to dynamic analysis, the
fatigue life of both the rolling element bearing and shaft system has also attracted much attention.
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Among various causes that affect the fatigue life of the rolling element bearing, both preload and
angular misalignment are two common and important factors.

Many researchers have conducted numerous studies on the fatigue life of the rolling element
bearings considering the preload and angular misalignment. Harris [5], as one of first researchers,
presented the dependence of the fatigue life of a cylindrical roller bearing having crowned rolling
elements on the angular misalignment. Hagiu [6] investigated the relation between the preload and
service life for an angular contact ball bearing by theoretical and experimental methods. Hwang and
Lee [7] reviewed the three categories of preload technologies and clarified that the determination of
proper preload should take the fatigue life, stiffness, and temperature of rolling element bearings into
account. Considering the significance of the pressure distribution of roller elements on the fatigue life
estimation, Tong et al. [8] extended the 3D elastic contact method to simulate the contact pressure and
analyzed the fatigue life of a tapered roller bearing with the consideration of the angular misalignment
effect. Yang et al. [9] analyzed the effects of the combined external loads and angular misalignment on
the double-row tapered roller bearing, and the results demonstrated that the external load, rotation
speed, and angular misalignment had a significant influence on the fatigue life of a double-row
tapered roller bearing. Warda et al. [10,11] investigated the effect of the correction parameters of roller
generators and angular misalignment on the fatigue life of the radial cylindrical roller bearing, in
which the bearing radial clearance and complex loads were both taken into account.

The above research works were mainly limited to a single bearing, and many works investigated
the relations among the preload, fatigue life, temperature, and stiffness in a shaft-bearing system.
Jiang et al. [12] investigated a variable preload technology for machine tool spindles working at
different ranges of rotation speed, and the experimental results showed that the variable preload
technology can reduce the temperature rise of the system in the high speed condition compared
with the application of constant preload and improved the bearing stiffness at the low speed range.
Xu et al. [13] developed an analytical method for determining the optimum preload based on the
critical state between the skidding and rolling of ball bearings for different speed ranges, and their
results were verified with the help of a spindle bearing experimental setup. Than and Huang [14]
investigated the thermal effect of the spindle bearing system during high speed rotations when the
preload was applied, and the time-varying thermal effects on the preload and stiffness of bearings was
obtained. Zhang et al. [15] investigated the effect of external load and preload on the number of rolling
elements in the contact zone based on the a quasi-dynamic model and determined an optimum preload
for a simplified bearing-rotor system by taking the bearing fatigue life as the optimization target.

For the shaft-bearing system with high speed and high precision requirements, bearing preload is
necessary to increase bearing stiffness and suppress vibration. In addition, the angular misalignment of
the rolling bearing due to mounting error is common and unavoidable and would cause considerable
variations in ball-raceways’ contact force distribution, which affects the bearing fatigue life. Currently,
very few studies have investigated the effects of the combined preload and angular misalignment on
the fatigue life of rolling element bearings and the shaft-bearing system at high speed. The fatigue
life variation of rolling element bearings and the shaft-bearing system with the combined preload
and angular misalignment has not been well understood. In this sense, understanding the fatigue
life variation considering the combined preload and angular misalignment is important for proper
selection and assembly of rolling bearings in the shaft-bearing system, which can be achieved by
analyzing the effects of the combined preload and angular misalignment on the fatigue life of rolling
element bearings and the shaft-bearing system.

In this paper, a generic shaft-bearing system model combing the shaft model and the bearing model
is introduced. A numerical method is presented to improve the computation efficiency of the system
model. The ball-raceway contact forces of angular contact ball bearings (ACBBs) in shaft-bearing
systems are evaluated under the complex operation conditions considering both the preload and
angular misalignment. Based on the fatigue life theory, the fatigue life of each ACBB is calculated.
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The effects of the combined preload and angular misalignment on the fatigue life of ACBBs and the
shaft-bearing system are discussed. Finally, some useful conclusions are given.

2. Shaft-Bearing System Model

2.1. Quasi-Static Model of Angular Contact Ball Bearing

The scheme diagram of a shaft supported by multiple ACBBs is shown in Figure 1. O-xyz denotes
the inertial coordinate system where the z-axis is coincident with the shaft axis, and Ok-xkykzk denotes
the local coordinate system for the kth bearing in which the forward direction of the zk-axis is defined
as from the small side of the bearing to its big side. Here, the quasi-static bearing model is presented in
the bearing local coordinate system. A ball bearing is taken as an example to analyze the interactions
between ball elements and raceways.

The kinematics of the ball element is shown in Figure 2. Here, the inner ring is assembled with a
shaft that rotates at angular speed ωi about the bearing axis while the outer ring is fixed. For a bearing
with pitch diameter dm and ball diameter D, one can get the angular speed ωc at which the ball element
orbits around the bearing axis and the spinning speed ωb at which the ball element rotates around its
own axis as given in Equations (1) and (2), respectively.

ωc = ωi
(1− γi) cos(αe − β)

(1 + γe) cos(αi − β) + (1− γi) cos(αe − β) (1)

ωb = ωi
dm

D
(1− γi)(1 + γe)

(1 + γe) cos(αi − β) + (1− γi) cos(αe − β) (2)

where αi and αe are the contact angles between the ball and inner/outer raceway. γi and γe are equal to
D cosαi/dm and D cosαe/dm, respectively.β is the ball pitch angle.

Based on d’Alembert’s inertia force principle, Ding [16] derived the following pitch angle formula
as shown in Equation (3).

tan β =

MS
bi

MS
be

(
1+γe
1−γi

+1
)

sinαi+2 sinαe

MS
bi

MS
be

(
1+γe
1−γi

+1
)

cosαi+2(cosαe+γ′)+γ′·
MS

bi
MS

be

(
cos(αi−αe)− 1+γe

1−γi

) (3)

in which γ′ is equal to D/dm, MS
bi and MS

be are the friction moments for the ball and inner/outer
raceways, respectively, and:

MS
bi

MS
be

=
QiaiL2(κi)

QeaeL2(κe)
(4)

where Qi and Qe are the contact forces between the ball and inner/outer raceway. ai and ae are the
semi-major axes of the contact ellipses for the ball and inner/outer raceways, respectively. L2(·) is
the second kind of elliptic integral function. κi and κe are the ratios of the semi-major axis to the
semi-minor axis of the contact ellipses at the ball inner and ball outer raceway contacts, respectively.
The detailed derivation of the pitch angle is omitted here and can be found in Ding’s work [16].

89



Appl. Sci. 2020, 10, 2750

 
Figure 1. Geometrical configuration of a shaft-bearing system.

Figure 2. Kinematic relation of a ball element.

The contact angle and contact elastic deformation between the ball element and raceways are
shown in Figure 3. When the external loads are applied on the static bearing, the ball center O and
raceway groove curvature center Oe, Oi are collinear. These three points are no longer collinear due to
the centrifugal force of the ball element when the rotating speed is imposed. The ball center will be
shifted from O to O′, and the inner raceway groove curvature center moves from Oi to O′i, while the
groove curvature center of the outer raceway remains unchanged since the outer ring is fixed.

Figure 3. Positions of ball centers and raceway groove curvature centers.
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In Figure 3, D1 j, D2 j denote the axial and radial distance between the inner and outer raceway
groove curvature centers at the jth ball element position and can be written as:

D1 j = ( fe + fi − 1)D sinα0 + δz + Ri(θx sinϕ j − θy cosϕ j) (5)

D2 j = ( fe + fi − 1)D cosα0 + δx cosϕ j + δy sinϕ j (6)

where δx, δy, and δz are the translational displacements of the inner ring along the x-, y-, and z-axis,
respectively, θx and θy are the angular displacements around the x- and y-axis, respectively. α0 is the
bearing initial contact angle. fi and fe are the inner and outer raceway groove curvature coefficients,
respectively. The radius of the locus of the inner raceway groove curvature centers Ri and the jth ball
element azimuth angle ϕ j are determined by:

Ri = 0.5dm + ( fi − 0.5)D cosα0 (7)

ϕ j = 2π( j− 1)/Z (8)

where Z is the ball element number in the bearing. The loaded contact angles αi and αe at ball-raceway
contacts can be obtained:

αi j = arctan
D2 j −X2 j

D1 j −X1 j
(9)

αej = arctan
X2 j

X1 j
(10)

The contact elastic deformations δi j and δe j can be given as:

δi j =

√
(D2 j −X2 j)

2 + (D1 j −X1 j)
2 − ( fi − 0.5)D (11)

δe j =
√

X2
1 j + X2

2 j − ( fe − 0.5)D (12)

where X1 j and X2 j are the axial and radial distances between ball center O′ and outer raceway groove
curvature center Oe, respectively.

As shown in Figure 4, considering the centrifugal force Fc j, gyroscopic moment Mg j, contact forces
Qi j and Qe j, and friction forces Fi j and Fe j, the force and moment equilibrium equations for the jth ball
element can be presented as:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Qi j sinαi j −Qe j sinαe j + Fi j cosαi j − Fe j cosαe j = 0
Qi j cosαi j −Qe j cosαe j − Fi j sinαi j + Fe j sinαe j + Fc j = 0
Fe j + Fi j − 2Mg j/D = 0

(13)

Here, an approximate relation between friction forces Fi j, Fe j and contact forces Qi j, Qe j, at
ball-raceway contacts is applied, as follows:

Fij = μ jQij (14)

Fe j = μ jQe j (15)

where μ j is the friction coefficients at ball-raceway contacts.
The centrifugal force and gyroscopic moment for the jth ball element can be written, respectively,

as follows:
Fc j = 0.5dmmω2

c j (16)

Mg j = Jωb jωc j sin β j (17)
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where m is the mass of the ball element and J is the mass moment of inertia:

m = ρπD3/6 (18)

J = ρπD5/60 (19)

Based on Hertz’s work, the ball-raceway contact forces can be related to the elastic contact
deformation presented in Equations (11) and (12).

Qi j/e j = Ki/eδ
1.5
i j/e j (20)

in which Ki, Ke are the contact stiffness coefficients and can be calculated based on Harris and Kotzalas’
work [17].

 

Figure 4. Forces on the ball element.

The bearing loads applied on the inner ring from the shaft include the translational forces Fx, Fy,
and Fz and moments Mx, My. The total bearing loads should be balanced by contact forces and friction
forces between ball elements and the inner raceway, and the equilibrium relations of the inner ring can
be presented as: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Fx =
Z∑

j=1

(
Qi j cosαi j − Fi j sinαi j

)
cosϕ j

Fy =
Z∑

j=1

(
Qi j cosαi j − Fi j sinαi j

)
sinϕ j

Fz =
Z∑

j=1

(
Qi j sinαi j + Fi j cosαi j

)
Mx =

Z∑
j=1

[(
Qi j sinαi j + Fi j cosαi j

)
Ri − Fi jri

]
sinϕ j

My =
Z∑

j=1

[(
Qi j sinαi j + Fi j cosαi j

)
Ri − Fi jri

]
cosϕ j

(21)

in which ri is the groove curvature radius of the inner raceway.

2.2. Shaft Model

In order to consider shaft flexibility, the finite element method is adopted here, and the shaft is
discretized into N segments containing N + 1 nodes using Timoshenko’s beam element, as shown
in Figure 5. O-xyz is the inertial coordinate system of the whole shaft-bearing system (mentioned in
Section 2.1). The torsional deformation of the shaft is ignored; only the bending and axial deformations
are considered. The ith node on beam element has three translational DOFs δi

x, δi
y, and δi

z along the
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x-, y-, and z-axis, respectively, and two rotational DOFs θi
x, θi

y around the x- and y-axis, respectively.
In the present shaft-bearing system, the bearing inner ring is close fit with the shaft; therefore, the inner
ring of the bearing has the same displacements as the shaft node at the bearing mounting position.
The displacement vector at the ith node location is:

{δi} =
{
δi

x,θi
y, δi

z, δi
y,θi

x

}T
i = 1, 2, · · · , N + 1 (22)

The corresponding load vector is:

{Fi} =
{
Fi

x, Mi
y, Fi

z, Fi
y, Mi

x

}T
i = 1, 2, · · · , N + 1 (23)

The stiffness matrix for each beam element can be obtained as follows:

[Ke] = EI
L(L2+12g)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

12 6L 0 0 0 −12 6L 0 0 0
(4L2 + 12g) 0 0 0 −6L 2L2 − 12g 0 0 0

A(L2+12g)
I 0 0 0 0 −A(L2+12g)

I 0 0
12 −6L 0 0 0 −12 −6L

(4L2 + 12g) 0 0 0 6L 2L2 − 12g
12 6L 0 0 0

symmetry (4L2 + 12g) 0 0 0
A(L2+12g)

I 0 0
12 6L

(4L2 + 12g)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(24)

where g is a parameter including the transverse shear effect of beam, and its detailed expression can be
found in [18].

The finite element equilibrium equation of the shaft can be written as:

Kδ = F (25)

where K is the global stiffness matrix obtained by assembling all the beam element stiffness matrix Ke,

δ is the node displacement vector of the shaft and can be expressed as {δ} =
{
δT

1 , δT
2 , · · · , δT

i , · · · δT
N+1

}T
,

and F is the load vector applied on the shaft nodes given as {F} =
{
FT

1 , FT
2 , · · · FT

i , · · · FT
N+1

}T
. The

load vector F consists of two parts: one part is attributed to the external loads, and the other part is
the supporting loads provided by the ball bearings and also the counter force of the bearing loads
calculated in Equation (21). Based on the transformation relation between the bearing local coordinate
system and the global inertial coordinate system, the displacements of the bearing inner ring in the
bearing local coordinate system can be easily represented by the node displacements of the shaft in the
inertial coordinate system at the location where the shaft is supported by the ball bearing. Therefore,
the supporting loads applied on the shaft nodes provided by the ball bearings can be expressed as a
nonlinear function of the node displacements of the shaft.

Figure 5. Finite element model for the shaft.
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2.3. Preload and Angular Misalignment Factors

In the current analysis, the ball bearing is preloaded axially on the outer ring including
constant-displacement preload and constant-force preload. The angular misalignment taken into
account here is caused by mounting error, and the misaligned inner and outer rings due to mounting
error can both lead to angular misalignment. In order to simplify the analysis, the inner ring is assumed
to be mounted accurately. The outer ring is misaligned, and its misalignment angle keeps constant
when the shaft-bearing is loaded.

Axial preload and angular misalignment can lead to additional deformation in each ball element
and cause ball element-raceway contact forces to be redistributed; therefore, they should be included
in the calculation of ball element deformation to reflect their effects on the fatigue life. Both the
axial preload and angular misalignment affect mainly the axial distance D1 j between inner and outer
raceway groove curvature centers at the jth ball element position. The translational displacement δz

should be replaced by δz + δa in Equation (5) to calculate the axial distance D1 j when the axial preload
is taken into account. The axial displacement δa is caused by axial preload on the outer ring, which
is known when constant-displacement preload is applied and unknown if constant-force preload is
applied. When angular misalignment components of the outer ring of the ball bearing, θx0 and θy0,
are considered, the angular displacements θx and θy should be replaced with θx − θx0 and θy − θy0 in
Equation (5), respectively. Then, the axial distance D1 j considering axial preload should be rewritten as:

D1 j = ( fe + fi − 1)D sinα0 + (δz + δa) + Ri(θx sinϕ j − θy cosϕ j) (26)

The axial distance considering the angular misalignment is:

D1 j = ( fe + fi − 1)D sinα0 + δz + Ri
[
(θx − θx0) sinϕ j −

(
θy − θy0

)
cosϕ j

]
(27)

3. Numerical Solution and Model Validity

3.1. Numerical Solution of the System Model

By combining the shaft model and quasi-static model of ACBB, the generic shaft-bearing system
model is obtained. The unknowns in the system model include the ball orbital speed ωc, spinning
speed ωb, pitch angle β, axial and radial distances (X1, X2) to imply the final position of the ball center,
friction coefficients μ at ball-raceway contacts, inner ring displacements

(
δx, δy, δz,θx,θy

)
for ACBB,

and the node displacements for the shaft. The unknowns are 6Z + 5 for each ball bearing and 5(N + 1)
for the shaft. Considering that the inner ring displacements of ball bearings are the same as the
displacements of shaft nodes where ball bearings are mounted, the total unknowns of the shaft-bearing
system model are kb(6Z) + 5(N + 1), and kb is the number of ACBBs supporting the shaft. Obviously,
the shaft-bearing system model is a huge system of equations provided that the shaft is supported by
several ACBBs and the number of ball elements for each bearing and of the beam elements for the
shaft is large.

It is computationally infeasible to solve all the equations of the shaft-bearing system model together.
Hence, a numerical scheme is proposed to solve the system model. The numerical solution process is
presented in Figure 6. The shaft-bearing system properties, including material properties, geometrical
parameters, operation conditions, load conditions, axial preload, and/or angular misalignment of ball
bearing, are taken as the input parameters. The initial guess for the node displacements of the shaft, the
spinning speed ωb, orbital speed ωc, and pitch angle β of each ball element are also necessary to start
the solution. Then, the distances parameters (X1, X2) and friction coefficients μ of all ball elements
in the kth ball bearing are solved together by the global optimization method. The new spinning
speed ω∗b, orbital speed ω∗c, and pitch angle β∗ for ball elements are calculated based on Equations
(1)–(3). The distances parameters (X1, X2), friction coefficients μ, speed parameters (ωb,ωc), and pitch
angle β are solved alternately until the corresponding converge criterion is reached. Once the above
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calculations for all the ball bearings are finished, the equilibrium equations of the shaft are checked.
Since the loads applied on the shaft nodes provided by the ball bearings are a nonlinear function of the
node displacements of the shaft, the equilibrium equation of the shaft, Equation (25), is nonlinear as
a function of the shaft nodes’ displacements. Based on the first order Taylor expansion of nonlinear
equilibrium equations of the shaft, the node displacements on the shaft are updated. The whole
calculation process will be continued until the equilibrium equations of the shaft are satisfied. Then,
the node displacements of the shaft, ball-raceway contact forces, spinning speed, orbital speed, and
pitch angle for each ball element can be obtained. It should be noted that, in the innermost loop of
the flowchart, the Newton–Raphson algorithm is not used to solve the equilibrium Equation (13) of
all ball elements simultaneously to obtain the distance parameters X1, X2 and friction coefficients
μ for the kth ball bearing, although this method was commonly used in the previously published
works. The accuracy of the Newton–Raphson algorithm typically relies on the trial-and-error of initial
estimates, and the numerical scheme will be very time-consuming and not be able to converge if
the initial chosen solution is far away from the exact solution. In order to overcome this deficiency,
the global optimization method is used to calculate the unknowns X1, X2 and μ of all ball elements
simultaneously for the kth ball bearing. In the global optimization method, the sum of the square of 3Z
mathematical formulas at the left of the equilibrium equations Equation (13) of all ball elements in the
kth ball bearing is the objective function, and the aim is to find the correct X1, X2 and μ that make the
objective function almost zero (global minimum). The scatter search [19] algorithm is used to generate
trial points (initial estimates of independent variables X1, X2 and μ). The two filter conditions, the
distance filter and merit filter [20], are used to examine trial points to ensure that the trial points that
do not actually contribute to finding the local minimum of the objective function are excluded. After
examination, the correct X1, X2 and μ of ball elements can be calculated, which make the objective
function nearly zero (global minimum). The calculation shows that the global optimization method is
very fast and reliable, and the computational efficiency of the system model is improved significantly.

3.2. Model Validity

In order to illustrate the validity of the ball bearing model, the contact angle results for the b218
bearing considering different load and speed conditions are compared in Figure 7 with that from
Antoine’s work [21]. It can be seen that the contact angle obtained by the present ball bearing model
agreed well with the previously published results, and the maximum relative error between them was
16% as the preload was near 8000 N and the bearing speed was 10,000 rpm; However, the error was
very small for other running conditions, which validated that the ball bearing model was effective.
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Figure 6. Flowchart of solving the shaft-bearing system.

Figure 7. The comparison of contact angles from Antoine’s model (markers) and from the present
bearing model (lines).
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Table 1 gives the stiffness comparison of ball bearing NSK 7014A5TYSULP4 between the NSK
manual and the calculation results based on the present ball bearing model. The bearing stiffness
formulas can be derived from the partial derivatives of the bearing load with respect to bearing
displacement based on Equation (21). The detailed calculation process is omitted here, and a similar
work can be found in [22–24]. It can be seen that the errors between the calculation results and
manufacturer data were very small and less than 3%, which indicated that the ball bearing model was
very valid.

Table 1. The bearing stiffness comparison between the numerical calculation results and the
NSK manual.

Item

Super Light Preload Light Preload Medium Preload Heavy Preload

Force
(N)

Axial
Stiffness
(N/μm)

Force
(N)

Axial
Stiffness
(N/μm)

Force
(N)

Axial
Stiffness
(N/μm)

Force
(N)

Axial
Stiffness
(N/μm)

Manual 245 170 490 218 1080 293 2160 390
Calculation 245 164.90 490 213.48 1080 291.27 2160 389.80

Error 3.00% 2.07% 0.59% 0.05%

To further validate the effectiveness of the system model, a gear shaft supported by a pair of
angular contact ball bearings from Tong’s work [25] was analyzed considering different shaft diameters
and bearing arrangements. The bearing displacements and loads are presented in Figures 8 and 9.
As shown in Figures 8 and 9, the results calculated by the present system model were very consistent
with those from Tong’s model [25], and the difference between the results from the two different models
was less than 8%, which verified the system model and the calculation procedure.

 
Figure 8. The comparison of the bearing angular displacements. ds = 35 mm,
ds = 40 mm from Tong’s model and ds = 35 mm, ds = 40 mm from the present system model.
(a) Face-to-Face arrangement; (b) Back-to-Back arrangement.

97



Appl. Sci. 2020, 10, 2750

Figure 9. The comparison of the bearing loads. ds = 35 mm, ds = 40 mm from
Tong’s model and ds = 35 mm, ds = 40 mm from the present system model. (a) Face-to-Face
arrangement; (b) Back-to-Back arrangement.

4. Fatigue Life Model

Based on the fatigue life theory proposed by Lunberg and Palmgren [26], the basic reference rating
life model of the rolling element bearing, in million revolutions, can be calculated as:

L10r =
(
L−10/9

i + L−10/9
e

)−9/10
(28)

In addition:

Li,e =

(
Qci/ce

Qei/ee

)3

(29)

in which the subscripts i and e refer to the inner and outer ring. The basic dynamic load rating of the
inner and outer rings, Qci/ce, can be calculated as:

Qci/ce = 98.1
(

2 fi,e
2 fi,e − 1

)0.41 (1∓ γ)1.39

(1± γ)1/3

(
γ

cosα0

)0.3

D1.8Z−1/3 (30)

where γ is D cosα0/dm and the upper sign and the lower sign denote the inner- and outer-raceway
contact, respectively. For the current analysis, the equivalent dynamic loads for the rotating inner ring
and the fixed outer ring are calculated, respectively, as:

Qei =

⎛⎜⎜⎜⎜⎜⎜⎝ 1
Z

Z∑
j=1

Q3
i j

⎞⎟⎟⎟⎟⎟⎟⎠
1/3

(31)

Qee =

⎛⎜⎜⎜⎜⎜⎜⎝ 1
Z

Z∑
j=1

Q10/3
e j

⎞⎟⎟⎟⎟⎟⎟⎠
3/10

(32)

Based on the geometry parameters of the ball bearing, the basic dynamic load rating of the inner
and outer rings can be calculated by Equation (30). The contact force distribution in each bearing is
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solved by the presented system model considering bearing preload and angular misalignment, then
the equivalent dynamic loads of the inner and outer rings can be obtained by Equations (31) and
(32). The basic reference rating life of ball bearings taking into account different preload and angular
misalignment conditions is calculated according to Equations (28) and (29).

5. Results and Discussion

A sample three-bearing shaft system was investigated as shown in Figure 10, and the shaft was
supported by three identical 7008C ACBBs. All ball bearings’ inner rings were perfectly fixed to the
shaft. The outer ring of front bearing was free to move axially in order to apply preload, and the
outer ring of each rear bearing was fixed either ideally or with a small misalignment angle caused
by mounting error. The three ball bearings were assembled 32.5 mm, 187.5 mm, and 237.5 mm away
from the left end of the shaft, respectively, and named as the front bearing, Rear Bearing 1 and Rear
Bearing 2. The geometrical and material parameters for the bearing and shaft are given in Tables 2
and 3, respectively. The external loads acting on the shaft (radial loads Fx, Fy were 1500 N and 1000 N,
respectively; axial load Fz was −1000 N; and moments Mx, My were 5000 N·mm and 6000 N·mm,
respectively) were applied to the shaft node 110mm away from the left end of the shaft. The shaft
rotation speed ni was 10,000 r/min with a centrifugal force of around 11 N for each ball element.
The two axial preload methods, including constant-displacement preload and constant-force preload,
were considered, and the preload was applied on the outer ring of the front bearing. The outer ring of
either Rear Bearing 1 or Rear Bearing 2 was subjected to angular misalignment caused by mounting
error, and only the angular misalignment around the y-axis of the bearing local coordinate system was
considered here. For brevity, Case I was used to indicate that Rear Bearing 1 was subjected to angular
misalignment, and Case II implied that Rear Bearing 2 was subjected to angular misalignment.

Figure 10. Shaft-bearing system with three angular contact ball bearings.

Table 2. The parameters of angular contact ball bearing 7008C.

Parameter Value

Inner diameter of bearing di (mm) 40
Outer diameter of bearing de (mm) 68

Ball diameter D (mm) 7.9
Groove curvature coefficients of inner raceway fi 0.52
Groove curvature coefficients of outer raceway fe 0.52

Initial contact angle α0 (deg) 15
Number of balls Z 16
Thickness B (mm) 15

Modulus of elasticity E (GPa) 206
Poisson’s ratio ν 0.3

Density ρ (kg·m−3) 7890
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Table 3. The parameters of the shaft.

Parameter Value

d1 (mm) 40
d2 (mm) 44

Total length Ls (mm) 270
Modulus of elasticity E (GPa) 206

Poisson’s ratio ν 0.3

5.1. The Constant-Displacement Preload Condition

Figure 11 shows the nonlinear dependence of the basic reference rating life of all three bearing on
the angular misalignment in the constant-displacement preload condition. As can be seen, the fatigue
life of each bearing varied significantly with the angular misalignment, and most of them were not
the highest when the angular misalignment was zero, except for that of Rear Bearing 2 in the Case
II condition. For each misaligned bearing, an optimal angular misalignment existed regardless of
the preload value at which the misaligned bearing had the highest fatigue life. The optimal angular
misalignment values were different for the two misaligned bearings, −0.8 mrad for Rear Bearing 1 and
0 mrad for Rear Bearing 2, which mainly depended on the contact force distribution of the misaligned
bearings [27]. According to SKF [28], the permissible misalignment angle was 1.2 mrad. It could be
seen that the fatigue life of all bearings was very low at either 1.2 mrad or −1.2 mrad compared with
that within the permissible misalignment angle, as shown in Figure 11; the angular misalignment
approaching the permissible misalignment angle could lead to a significant reduction of bearing life.

For a shaft-bearing system, the failure of any bearing will cause the system to fail. Due to the
dispersion of material properties, the bearing with a high rated life may fail earlier than that with a
low rated life, but the probability of this phenomenon decreases significantly as the gap between the
high rated life and low rated life increases. In general, the bearing with a low rated life is more likely
to fail first compared with the bearing with a high rated life. Without losing generality, it is supposed
that the system life is mainly related to the bearing with the lowest rated life. The shaft fatigue life
is not taken into account here. In the Case I condition, Rear Bearing 1 was misaligned. When the
front bearing was preloaded by an axial displacement of 0.025 mm, the fatigue life of Rear Bearing 1
was always the lowest among the three bearings as the angular misalignment varied from −1.2 mrad
to 1.2 mrad, therefore governing the system life. The shaft system had the same optimal angular
misalignment, −0.8 mrad, and the same highest fatigue life with Rear Bearing 1. The highest system
life was significantly greater than the system life at the angular misalignment of 0 mrad, reaching 1.55
times. As the preload displacement increased to 0.050 mm, the system life depended on the fatigue life
of both Rear Bearing 1 and the preloaded front bearing, and the optimal angular misalignment turned
to −0.21 mrad. The system optimal angular misalignment was no longer the same as the bearing
optimal angular misalignment and approached 0 mrad, which was caused by the significant reduction
of the fatigue life of the preloaded front bearing with increasing preload value. The system life at
the optimal angular misalignment was only 1.12 times that at the angular misalignment of 0 mrad.
The difference between the system life at the optimal angular misalignment and the system life at the
angular misalignment of 0 mrad decreased with the increasing constant-displacement preload. In the
Case II condition, the system life was mainly related to both the front bearing and Rear Bearing 1 due to
the high fatigue life of the misaligned Rear Bearing 2. The optimal angular misalignments of the shaft
system were 0.8 mrad, 0.8 mrad, and 0.21 mrad, respectively, as the preload displacement varied from
0.025 mm to 0.050 mm. The optimal angular misalignments of the shaft system for Case I and Case II
were nearly opposite each other at the same preload displacement. Such a phenomenon was attributed
to the negative optimal angular misalignment in the Case I condition and the positive optimal angular
misalignment in the Case II condition causing a similar shaft elastic deformation, therefore producing
a similar contact force distribution in Rear Bearing 1. The contact force distribution of Rear Bearing 1
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at the preload displacements of 0.025 mm and 0.035 mm is given in Figure 12 to verify this point, and
the contact force results at the preload displacement of 0.050 mm were omitted here.

In addition, the comparison of the highest system life showed that the Case I condition could lead to
a reduction of system life compared with the Case II condition, the reduction amount being from 15% to
1% with the constant-displacement preload varying from 0.025 mm to 0.050 mm. The reduction amount
was significant at the low preload displacement and could be ignored at the high preload displacement.

     

     

     
Figure 11. The variation of bearing life with the angular misalignment in the Case I condition ((a), (c)
and (e)) and the Case II condition ((b), (d) and (f)) for constant-displacement preload.
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Figure 12. The contact force distribution in Rear Bearing 1 at the optimal angular misalignment of the
shaft-bearing system. The preload displacements are 0.025 mm ((a) and (b)) and 0.035 mm ((c) and
(d)), respectively.

5.2. The Constant-Force Preload Condition

Figure 13 shows the variation of bearing life with the angular misalignment in the constant-force
preload condition. In order to analyze the effects of the preload method on the bearing life, the preload
force was taken as 500 N, 1000 N, and 1500 N. When the shaft was running without external loads,
the preload force of 500 N could cause 0.0355 mm axial displacement of the outer ring of the front
bearing, which was very close to 0.035 mm, and the preload force of 1000 N could cause 0.050 mm
axial displacement. Therefore, the preload force of 500 N and 1000 N at the constant-force preload
could be assumed to be equivalent to the preload displacement of 0.035 mm and 0.050 mm in the
constant-displacement preload, respectively. The life comparisons can be made between Figures 11c–f
and 13a–d. As can be seen, the two preload methods had a certain effect on the variation of the fatigue
life of the preloaded front bearing with the angular misalignment. For the constant-force preload
condition, the fatigue life of front bearings was basically linear with angular misalignment, and for
the constant-displacement condition, a nonlinear relation could be found. The above difference was
mainly due to the outer ring of the front bearing moving slightly with the angular misalignment for
the constant-force preload condition, while the outer ring of the front bearing was immovable for the
constant-displacement preload condition, which affected the contact force distribution in the front
bearing, therefore resulting in different trends of the front bearing life with angular misalignment.
With the increasing of the constant-displacement preload, the nonlinear relation between the fatigue
life of the front bearing and the angular misalignment became more obvious, as shown in Figure 11.
For the constant-force preload condition, the increasing preload force reduced the dependence of the
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front bearing life on the angular misalignment, and the relation between the front bearing life and
the angular misalignment approached a horizontal line at the preload force of 1500 N, as shown in
Figure 13. Among the three bearings in the shaft system, the effect of the preload method on the fatigue
life of Rear Bearing 1 was the weakest, and the two preload methods only caused a small change in the
fatigue life of Rear Bearing 1. From Figures 11c–f and 13a–d, it can be seen that the fatigue life of Rear
Bearing 1 was lowest over a wide angular misalignment range, therefore playing a significant role in
the system life. Due to the effect of the preload method on the fatigue life of Rear Bearing 1 being very
limited, the optimal angular misalignment and highest fatigue life for the shaft system were the same
for the two preload methods.

     

     

     
Figure 13. The variation of the bearing life with the angular misalignment in the Case I condition ((a),
(c) and (e)) and in the Case II condition ((b), (d) and (f)) for constant-force preload.
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As the preload force reached 1500 N, the system life depended on the fatigue life of both the
front bearing and Rear Bearing 1. The optimal angular misalignment for the shaft system was close
to 0.4 mrad in the Case I condition and −0.4 mrad in the Case II condition. As mentioned above,
the fatigue life of the front bearing varied slowly with angular misalignment, which resulted in very
small variation of the system life near the optimal angular misalignment. Therefore, a large range, for
example from −0.4 mrad to 0.4 mrad for the Case I condition and from −0.8 mrad to 0.4 mrad for the
Case II condition, could be regarded as the optimal angular misalignment range of the shaft system.
Such a phenomenon implied that the increasing constant-force preload could weaken the effects of
angular misalignment on the system life.

6. Conclusions

In this paper, to analyze the effects on the fatigue life of bearings and the shaft system resulting
from the combined preload and angular misalignment induced by inaccurate mounting, a shaft-bearing
system with bearing preload and angular misalignment was investigated. By improving the
computational efficiency of ball element force analysis, the system model was solved fast and
reliably. Comparisons were also made to verify the correctness of the system model and calculation
program. Based on the contact force distribution of ball bearings, the fatigue life of each ball bearing
was obtained. The results showed that both the preload and angular misalignment had significant
effects on the fatigue life of ball bearings and the shaft-bearing system.

An optimal angular misalignment existed for the shaft-bearing system and could prolong the
system life. At the low preload value, the system life at the optimal angular misalignment was
much higher than that at 0mrad, and such a difference decreased with the increasing preload value.
The optimal angular misalignment of the shaft system was not always the same as that of the
misaligned bearing, which depended on the preload value and the fatigue life of each bearing. The two
preload methods, constant-displacement preload and constant-force preload, had significant effects
on the variation of the preloaded bearing life with the angular misalignment, but weak effects on
the highest system life. At high constant-force preload, the system life varied very slowly with
angular misalignment, and an optimal angular misalignment range existed. The angular misalignment
occurring on different bearings could lead to a significant difference of the highest system life when the
preload value was low, but the difference could be ignored when the preload value was high.
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Nomenclature

a major semi-axis for ball-raceway contact ellipse, mm
b minor semi-axis for ball-raceway contact ellipse, mm
D ball diameter, mm
dm bearing pitch diameter, mm
di inner diameter of bearing, mm
de outer diameter of bearing, mm
B thickness of bearing, mm
fe groove curvature coefficients of outer raceway

104



Appl. Sci. 2020, 10, 2750

fi groove curvature coefficients of inner raceway
J mass moment of inertia, kg·mm2

ρ density, kg/m3

m ball mass, kg
N number of beam elements
Z number of balls
γe D cosαe/dm

γi D cosαi/dm

γ′ D/dm

γ D cosα0/dm

α0 initial contact angle, rad
αe contact angle at ball-outer raceway contact, rad
αi contact angle at ball-inner raceway contact, rad
β ball pitch angle, rad
ωi angular speed of inner ring/shaft around the bearing axis, rad/s
ωc ball orbital speed around the bearing axis, rad/s
ωb ball spinning speed around its own axis, rad/s
MS

be friction moment at ball-outer raceway contact due to spinning, N·mm
MS

bi friction moment at ball-inner raceway contact due to spinning, N·mm
L2(·) second kind of elliptic integral function
Qi contact force at ball-inner raceway contact, N
Qe contact force at ball-outer raceway contact, N
Fc ball centrifugal force, N
Mg gyroscopic moment, N·mm
Fi friction force at ball-inner raceway contact, N
Fe friction force at ball-outer raceway contact, N

Fx
bearing force applied on the inner ring of ball bearing along x-axis of bearing local coordinate
system, N

Fy
bearing force applied on the inner ring of ball bearing along y-axis of bearing local coordinate
system, N

Fz
bearing force applied on the inner ring of ball bearing along z-axis of bearing local coordinate
system, N

Mx
moment applied on the inner ring of ball bearing around x-axis of bearing local coordinate system,
N·mm

My
moment applied on the inner ring of ball bearing around y-axis of bearing local coordinate system,
N·mm

F external load vector applied on the shaft nodes, N
μ ball-raceway friction coefficient
O initial position of ball center
O′ final position of ball center

Oe outer raceway groove curvature center
Oi initial position of inner raceway groove curvature center
O′i final position of inner raceway groove curvature center
X1 axial distance between ball center O′ and outer raceway groove curvature center Oe, mm
X2 radial distance between ball center O′ and outer raceway groove curvature center Oe, mm
δx translational displacement of inner ring along x-axis of bearing local coordinate system, mm
δy translational displacement of inner ring along y-axis of bearing local coordinate system, mm
δz translational displacement of inner ring along z-axis of bearing local coordinate system, mm
θx angular displacement of inner ring around x-axis of bearing local coordinate system, rad
θy angular displacement of inner ring around y-axis of bearing local coordinate system, rad
δe ball-outer raceway contact deformation, mm
δi ball-inner raceway contact deformation, mm
ni rotational speed of inner ring/shaft, rpm
Ri radius of locus of inner raceway groove curvature centers, mm
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ϕ ball azimuth angle, rad
κ a/b
ν Poisson’s ratio
Ke deflection coefficient at ball and outer raceway contact, N/mm1.5

Ki deflection coefficient at ball and inner raceway contact, N/mm1.5

ri groove curvature radius of inner raceway, mm
K global stiffness matrix of the shaft
Ke stiffness matrix of the beam element
δ displacement vector of the shaft nodes, mm
E modulus of elasticity, GPa
I moment of inertia of the shaft section, mm4

L length of beam element, mm
Ls total length of the shaft, mm
kb number of angular contact ball bearings supporting the shaft
εb calculation error of ball spinning speed
εc calculation error of ball orbit speed
εβ calculation error of ball pitch angle
δa axial displacement caused by constant-displacement preload or constant-force preload, mm

θx0
angular misalignment of outer ring of ball bearing around x-axis of bearing local coordinate
system, mrad

θy0
angular misalignment of outer ring of ball bearing around y-axis of bearing local coordinate
system, mrad

L10r basic reference rating life of bearing, in million revolutions
Li basic reference rating life of inner ring, in million revolutions
Le basic reference rating life of outer ring, in million revolutions
Qci basic dynamic load rating of inner ring, N
Qce basic dynamic load rating of outer ring, N
Qei equivalent dynamic load for rotating inner ring, N
Qee equivalent dynamic load for fixed outer ring, N
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Abstract: Planetary gearboxes are more and more widely used in large and complex construction
machinery such as those used in aviation, aerospace fields, and so on. However, the movement of the
gear is a typical complex motion and is often under variable conditions in real environments, which may
make vibration signals of planetary gearboxes nonlinear and nonstationary. It is more difficult and
complex to achieve fault diagnosis than to fix the axis gearboxes effectively. A fault diagnosis
method for planetary gearboxes based on improved complementary ensemble empirical mode
decomposition (ICEEMD)-time-frequency information entropy and variable predictive model-based
class discriminate (VPMCD) is proposed in this paper. First, the vibration signal of planetary gearboxes
is decomposed into several intrinsic mode functions (IMFs) by using the ICEEMD algorithm, which is
used to determine the noise component by using the magnitude of the entropy and to remove the
noise components. Then, the time-frequency information entropy of intrinsic modal function under
the new decomposition is calculated and regarded as the characteristic matrix. Finally, the fault
mode is classified by the VPMCD method. The experimental results demonstrate that the method
proposed in this paper can not only solve the fault diagnosis of planetary gearboxes under different
operation conditions, but can also be used for fault diagnosis under variable operation conditions.
Simultaneously, the proposed method is superior to the wavelet entropy method and variational
mode decomposition (VMD)-time-frequency information entropy.

Keywords: planetary gearbox; ICEEMD; time-frequency information entropy; VPMCD; fault diagnosis

1. Introduction

As the key unit of a transmission device, planetary gearboxes have the advantages of a compact
structure, large transmission moment, and accurate transmission ratio, and so on [1,2]. Once the
planetary gearbox is damaged, it will cause machine breakdowns. In severe cases, it will lead to
huge economic losses [3,4]. What is more, planetary gearboxes are often operated under heavy loads,
which are very prone to failure [5]. Therefore, fault diagnosis of planetary gearboxes is significant to
production safety and cost efficiency [6]. Vibration signal analysis method is one of the key tools for
planetary gearbox fault diagnosis [7]. The vibration of planetary gearboxes are complex and very easy
to be drowned out by noise, which makes the weak features of incipient faults difficult to detect [8].
Traditional vibration signal analysis methods such as time domain feature analysis and frequency
domain analysis do not reflect the fault information of planetary gearboxes and the diagnostic accuracy
of fault diagnosis is unsatisfactory.
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For this reason, time-frequency analysis has emerged as an important signal processing method and
has a wide range of applications in the field of vibration signals. Many time-frequency methods, such as
wavelet transform and empirical mode decomposition (EMD), are applied to analyze nonlinear and
nonstationary signals of planetary gearboxes [9]. However, the basis function of wavelet transform has
no self-adaptability. It needs to be a preselected fixed-basis function according to the characteristics of the
different signals. The empirical mode decomposition algorithm can adaptively decompose the vibration
signal into a series of intrinsic mode functions (IMFs) from high frequency to low frequency [10],
but usually generates problem of mode mixing. Later, a series of derived methods came into being
such as ensemble empirical mode decomposition (EEMD), local characteristic-scale decomposition
(LCD), and complementary ensemble empirical mode decomposition (CEEMD), and so on. However,
low-speed and heavy-duty operation conditions with high noise environments frequently cause faults
in the planetary gearboxes. It is more difficult to diagnose a fault than to fix the axis gearboxes, in which
accurate diagnosis is very important. Due to the interference of noise, the problem of mode mixing
is more severe, which leads to difficulty in completing the subsequent feature extraction. The above
methods do not solve the problem caused by high noise. It is necessary to find a new method of
signal features analysis with noise reduction to suppress the influence of noise on the vibration signal.
The permutation entropy algorithm, a useful tool in amplifying slight changes of signals, has advantages
of generality and easy computing in nonlinear and nonstationary signals [11]. Based on the permutation
entropy, Aziz et al. proposed multi-scale permutation entropy (MPE) to depict tiny changes of signals
from different local scales rather than a single scale [12]. Therefore, the MPE algorithm was utilized to
effectively distinguish components between noise and original vibration signals of planetary gearboxes.
For the reasons given above, in this paper, a method of improved complementary ensemble empirical
mode decomposition (ICEEMD) is proposed for the first time.

In terms of feature extraction, time-frequency information entropy is utilized to reveal the complexity
hidden in signals and can effectively reflect fault information of time-frequency characteristics. Thus,
time-frequency information entropy is regarded as a feature characteristic parameter and is applied to
realize the robust feature extraction [13].

For mechanical fault diagnosis, different fault classification methods directly affect the efficiency
and accuracy of fault recognition. The algorithm of variable predictive model-based class discriminate
(VPMCD) makes use of the inherent correlation of sample eigenvalues to establish a feature learning
model [14], which can be effectively applied to multi-classification mechanical fault diagnosis with
small samples [15]. In addition, the VPMCD algorithm avoids the problem of over-fitting of neural
network classification and kernel function selection of SVM (Support Vector Machine) classification.
At the same time, the computing time is reduced and the robustness of the algorithm is improved [16].

In the study presented in this paper, a fault diagnosis method of planetary gearboxes based on
ICEEMD-time-frequency information entropy and VPMCD is first proposed. First, vibration signals of
planetary gearboxes are collected by the accelerometer. Second, several IMFs are obtained by using the
method of ICEEMD. The method proposed can eliminate noise on the basis of each IMF, which avoids
the disadvantages of loss of feature information caused by overall noise reduction. Afterwards,
each IMF is calculated by time-frequency information entropy as feature vectors. Then, by the method
of principal component analysis (PCA), the dimension of feature vectors is reduced. In order to verify
the effectiveness of the proposed method, the diagnostic performance of other two methods under
various working conditions is also investigated in fault feature extraction. Compared with the other
two methods, the ICEEMD-time-frequency information entropy method proposed in this paper has an
advantage for feature extraction and allows the fault features to be effectively distinguished in the
feature space. Finally, the VPMCD model is utilized to classify different fault modes.

This paper is organized as follows: Section 2 introduces the relevant feature extraction methodology,
which includes the ICEEMD, time-frequency information entropy, and principal component analysis
(PCA); Section 3 presents the principle of classification about VPMCD. In Section 4, the scheme of the
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planetary gearbox based on ICEEMD-time-frequency information entropy and VPMCD are described.
Section 5 describes the case study to validate the entire method; Conclusions are drawn in Section 6.

2. Feature Extraction Method Based on ICEEMD-Time-Frequency Information Entropy

Vibration signals of planetary gearboxes are complex, with multiple components and nonlinear
and nonstationary characteristics that are obviously interfered with by noise [17]. How to obtain fault
characteristic information effectively is an important part of fault diagnosis of planetary gearboxes.
In this study, the vibration signal feature is extracted by ICEEMD-time-frequency information entropy
to characterize the operating state of the planetary gearbox.

2.1. A Description of Improved Complementary Ensemble Empirical Mode Decomposition (ICEEMD)

The vibration signal of planetary gearboxes, with multiple components and nonlinear, nonstationary,
and strong time-varying characteristics, is complex and easily buried by noise. However, traditional
fault diagnosis methods fail to effectively diagnose the faults of planetary gearboxes. It is essential to
find out a suitable method to suppress interference components in order to obtain intrinsic features of
the vibration signal.

Comparing complementary ensemble empirical mode decomposition (CEEMD) with ensemble
empirical mode decomposition (EEMD) and empirical mode decomposition (EMD) [18], CEEMD is
an improved algorithm that reduces the mode mixing problem [19]. However, the reconstructed
components of CEEMD contain noise components that cannot be eliminated. In order to eliminate
the influence of noise on feature extraction, we used multi-scale permutation entropy with signal
noise reduction for the first time. Multi-scale permutation entropy combines multi-scale entropy with
permutation entropy to analyze sequence information more effectively [20–22], which can measure
noise characteristics from multiple scales rather than a single scale. Using this method, the noise
components can be accurately identified. In this paper, the improved complementary ensemble
empirical mode decomposition algorithm (ICEEMD) was used to analyze the vibration signal of
planetary gearboxes for the first time. The specific ICEEMD algorithm steps are shown in Figure 1.

 

Figure 1. Algorithm flowchart of improved complementary ensemble empirical mode decomposition
(ICEEMD).

Step 1: Use CEEMD to decompose the original signal.
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(1) The original signal is S(t). Add white noise signals ni(t) and −ni(t) with the mean value of zero
onto the original signal. Then, the signal after adding white noise is obtained:

S+
i (t) = S(t) + aini(t) (1)

S−i (t) = S(t) − aini(t) (2)

where ai is the amplitude of the white noise, i = 1, 2, . . . ., Ne, and Ne is the logarithm of the added
white noise.

(2) Signal S+
i (t) and signal S−i (t) are decomposed by EMD to obtain IMF+

i1 and IMF−i1. Then,
the integrated average value of IMF+

i1 and IMF−i1 are obtained by Equation (3).

IMF1 =
1

2Ne

Ne∑
i=1

[
IMF+

i1 + IMF−i1
]

(3)

(3) Repeat the above steps until the termination condition of EMD is met.

Step 2: Reduce noise by using the MPE algorithm.
The basic idea of multi-scale permutation entropy is the coarse graining of the original signal [23].

The specific steps for calculating the multi-scale arrangement entropy of IMF are as follows:

(1) Coarse graining of IMF.

IMFp = {xi, i = 1, 2, . . . , N},1 ≤ p ≤M, p is the number of IMFs.
Coarse graining sequence:

ys
j =

1
s

js∑
i=( j−1)s+1

xi, j = 1, 2, . . .
N
s

and j is an integer. (4)

where s is the scale factor.

(2) Time reconstruction of coarse graining sequence ys
j.

Ys
l =

{
ys

l , ys
l+τ, . . . , ys

l+(m−1)τ

}
where m is embedding dimension, τ is delay time, and l is a reconstructed component, where the
expression for l is l = 1, 2, . . . , N − (m− 1)τ.

Arrange the Ys
l in ascending order and calculate the probability Pr of each sequence,

where r = 1, 2, . . . , R, R ≤ m!
Calculate the multi-scale permutation entropy of each coarse graining sequence.

IMFP(m) = −
R
∑

r∑
r=1

Prln (5)

(3) Eliminate noise components.

The multi-scale permutation entropy of each IMF component is calculated and compared with the
set threshold value. Then, eliminate noise components larger than the threshold value.

Step 3: Second CEEMD decomposition.
Reconstruct signal. The reconstructed signal X(t) is decomposed by CEEMD to obtain new

intrinsic modal components (IMFs). Refer to step 1 for detailed steps.
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In order to test the advantages of the method proposed in this paper, the ICEEMD method and
CEEMD method were used to decompose the simulation signal, where Y is the simulation signal, xn is
the noise signal, and S is the simulation signal with noise.

Y = 2.5sin(2π8t + π/6) + 3tsin(2π4t + π/2) (6)

The simulation signal, noise signal, and simulation signal with noise are shown in Figure 2.

Figure 2. Simulation signal, noise signal, and simulation signal with noise.

The seven sub-signals decomposed by ICEEMD are shown in Figure 3 and the seven sub-signals
decomposed by CEEMD are shown in Figure 4.

Figure 3. Seven sub-signals decomposed by ICEEMD.
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Figure 4. Seven sub-signals decomposed by complementary ensemble empirical mode decomposition
(CEEMD).

As shown in Figures 3 and 4, seven IMFs are sequentially decomposed in order of their frequency
using the two methods. We can see that the decomposed components of CEEMD are more severely
affected by noise than those of ICEEMD. In order to further test the performance of the two methods in
eliminating noise, the simulation signal was compared with the reconstructed signals of ICEEMD and
CEEMD, respectively, and the results were shown in Table 1.

Table 1. The comparison of ICEEMD and CEEMD.

Method MSE (Mean Squared Error) IO (Index of Orthogonality) R (Coefficient of Determination)

ICEEMD 4.0286 0.9073 0.9925
CEEMD 6.2469 1.3127 0.9489

By comparison, the correlation between the simulation signal and the reconstructed signal of
ICEEMD is higher and the mean squared error is smaller than that of CEEMD. In addition, compared with
CEEMD, the components of the ICEEMD method have better orthogonality. Therefore, the method
proposed in this paper is better at removing noise and restoring the signal characteristics.

2.2. A Description of Time-Frequency Information Entropy

Time-frequency distribution of the signal reflects its energy variation at each frequency. It can
quantitatively describe the different degrees of planetary gearboxes under different operation conditions.
Time-frequency information entropy can describe the time-frequency distribution complexity of signals,
so it is especially suitable for fault feature extraction. In this paper, time-frequency information entropy
is the feature vector for fault diagnosis. It can represent the fault information hidden in the signal,
with high diagnostic accuracy and good robustness.

The steps of time-frequency information entropy can be described as follows [24,25]:

(1) Short-time Fourier transform for each IMF component.

F(t,ω) =

∫
IMF(i)w(i− t)e− jωtdι (7)
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where w(τ) is the window function.
(2) Calculate the time-frequency energy spectrum of each IMF.

The time-frequency energy spectrum is used to describe the time-frequency distribution of the
signal. The expression is as follows [26]:

S(t,ω) =
∣∣∣F(t,ω)

∣∣∣2 (8)

(3) Energy normalization.

The difference of energy distribution of time-frequency block on time-frequency plane reflects the
difference in signal time-frequency distribution. The time-frequency energy Wi of IMFi is obtained by
the Equations (6) and (7). The time-frequency energy of all IMFs is A.

Energy normalization of IMFi:

qi = Wi/A(i = 1, . . . ., M) (9)

(4) Calculate the entropy value of each time-frequency block:

s(q) = −
M∑

i=1

qi ln qi (10)

3. Fault Classification Based on VPMCD

In mechanical fault diagnosis, there is an intrinsic relationship between the characteristic values of
signals. Their intrinsic relationships will change differently under different operation conditions [27–29].

The variable predictive model based class discriminate (VPMCD) method is a pattern recognition
method based on the variable predictive model (VPM). According to the relationship between
characteristic values, a prediction model is established to classify the test samples [30–33]:

Linear model (L):

Xi = b0 +
r∑

j=1

bjXj (11)

Linear interaction model (LI):

Xi = b0 +
r∑

j=1

bjXj +
r∑

j=1

r∑
k= j+1

bjkXjXk (12)

Quadratic interaction model (QI):

Xi = b0 +
r∑

j=1

bjXj +
r∑

j=1

bjjX2
j +

r−1∑
j=1

r∑
k= j+1

bjkXjXk (13)

Quadratic model (Q):

Xi = b0 +
r∑

j=1

bjXj +
r∑

j=1

bjjX2
j (14)

where r is model order, r ≤ k− 1, k is number of feature values for each fault type, and j is number of
fault types. Xj( j � i) is the predictive variable, Xi is the predicted variable, and b0, bj, bjj and bjk are
model parameters.

Select one of the four models as a predictive model, and its expression is as follows [34,35]:

Xi = f
(
Xj, b0, bj, bjj, bjk

)
+ e (15)
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where e is the prediction error.
Suppose there are n fault types, and k prediction models are built for each fault type to obtain

n× k prediction models. Calculate the sum of squared prediction errors of k eigenvalues under the
same fault type. The fault category corresponding to the model with the smallest sum of squares of the
prediction error is the final output fault mode. Therefore, the VPMCD classification algorithm can be
applied not only into linear classification, but also into nonlinear classification.

4. Fault Diagnosis Scheme for a Planetary Gearbox

This paper proposes a fault diagnosis method based on ICEEMD-time-frequency information
entropy and VPMCD. The specific procedure of the diagnosis scheme is shown in Figure 5.

 
Figure 5. The fault diagnosis procedure for a planetary gearbox.

(1) Preprocess the data of the original vibration signal.
(2) Decompose the vibration signals of the planetary gearbox into a series of IMFs by utilizing ICEEMD.
(3) Calculate the time-frequency information entropy of the IMFs as feature vectors by using

short-time Fourier transform (STFT) and information entropy.
(4) Reduce the dimension of the feature vectors by utilizing principal components analysis (PCA) to

improve the accuracy and robustness of pattern recognition.
(5) Classify the fault modes by using VPMCD.

5. Experimental Verification

Since the gear motion in the planetary gearbox is a typical composite motion, the vibration signal
is more complex than that of a fixed shaft gearbox. Moreover, the gear is the most fault-prone part of the
planetary gearbox. Therefore, this paper takes the gear of the planetary gearbox as the diagnostic object
to verify the effectiveness of the proposed method. ICEEMD-time-frequency information entropy
method was utilized to extract the fault feature of the gear vibration data from a fault-prediction test
bed. We used the power transmission fault prediction test bed (DPS) manufactured by Spectra Quest,
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USA. The test bed is shown in Figure 6, which includes a centrally fixed sun gear, a planetary carrier and
ring gear, and four planetary gears that change with the center of rotation of the sun gear. In addition,
the planetary gearbox of this experimental bench was small in volume, and the vibration caused by the
fault was weak, which increases the difficulty of diagnosis. In this experiment, a total of 12 operation
conditions were collected. The specific operation condition information is shown in Table 2. The signal
sampling frequency was 12,800 Hz and the signal sampling point was 524,288. The experimental fault
data includes five states: gear tooth crack fault, gear wear fault, tooth breaking fault, gearing missing
fault, and normal. In this study, experimental data were divided into 40 segments, and each segment
had 12,800 points.

 

Figure 6. Test bed of planetary gearbox.

Table 2. The description of signal operation conditions.

Operation Condition Number Speed (Hz) Load (Nm)

Condition 1 20 0
Condition 2 40 0
Condition 3 60 0
Condition 4 20 0.6
Condition 5 40 0.6
Condition 6 60 0.6
Condition 7 10 1.2
Condition 8 20 1.2
Condition 9 30 1.2
Condition 10 40 1.2
Condition 11 50 1.2
Condition 12 60 1.2

5.1. Fault Feature Extraction Based on ICEEMD-Time-Frequency Information Entropy

First of all, the vibration signal collected by the sensor was preprocessed.
Secondly, the ICEEMD algorithm was applied to decompose each fault mode. The threshold

of multi-scale permutation entropy θ0 was 0.6, embedded dimension m was 6, time delay factor τ
was 1, and the scale factor s was 5. The high frequency part of the vibration signal of the planetary
gearbox contained the main fault signal. Therefore, the first six intrinsic modal components (IMFs) of
the second CEEMD decomposition were taken.

Thirdly, the time-frequency distribution of IMF was computed by means of STFT.
The time-frequency entropy of each failure mode was taken as the fault feature vector. The length
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of the time-frequency block was 64 and width was 64. The number of the lateral and longitudinal
slip steps was equal to 32. Then, principal component analysis (PCA) was used to reduce the fault
characteristics and obtain the 3-dimensional fault feature vector. The clustering results are shown in
Figures 7–10 for the first four operation conditions.

Figure 7. Clustering result of gear fault features under condition 1.

Figure 8. Clustering result of gear fault features under condition 2.

Figure 9. Clustering result of gear fault features under condition 3.
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Figure 10. Clustering result of gear fault features under condition 4.

From Figures 7–10, it can be seen that different fault types can be well separated under the
same operation condition. There is no feature vector mixing under different fault states. Moreover,
the clustering effect about the eigenvalues of the same fault type shows satisfactory performance and
no divergence.

5.2. Method Comparison

In order to reflect upon the effectiveness of the proposed algorithm, two feature extraction methods
were used to compare with the proposed method in this paper.

5.2.1. Comparison between the Proposed Method with the Wavelet Entropy Method

Wavelet entropy, as a traditional time-frequency analysis method, is widely used in weak signal
fault diagnosis. The specific algorithm steps are as follows:

First, the vibration signal is preprocessed.
Second, the planetary gearbox vibration signal is decomposed into three layers to obtain eight

sub-band signals by using the sym6 wavelet base.
The third step is to calculate the total energy of each frequency band signal and normalize the

energy. The wavelet entropy of each sub-band is calculated to obtain an 8-dimensional feature vector.
The feature vector is dimension-reduced by principal component analysis (PCA). The clustering results
are shown in Figures 11–14.

Figure 11. Clustering result of wavelet entropy under condition 1.
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Figure 12. Clustering result of wavelet entropy under condition 2.

Figure 13. Clustering result of wavelet entropy under condition 3.

Figure 14. Clustering result of wavelet entropy under condition 4.

As shown in Figures 11–14, when the feature vector extracted by the wavelet entropy method was
used to identify the degree of fault type, a certain degree of aliasing appeared under the operation
condition 1 and operation condition 4. Therefore, the method proposed in this paper is desirable and
has better clustering results than does the wavelet entropy method in fault feature extraction.
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5.2.2. Comparison between the Proposed Method with VMD-Time-Frequency Information Entropy

Variational mode decomposition (VMD) is a completely non-recursive, adaptive signal processing
method proposed by Dragomiretskiy, K. [36]. The method has higher decomposition accuracy and can
effectively filter out the white noise in the signal. The specific algorithm steps are as follows:

Step 1: Preprocess the vibration signal.
Step 2: Decompose the signal into six IMFs using the VMD method.
Step 3: Calculate the time-frequency information entropy of each IMF and obtain the 6-dimensional

feature vector. Similarly, the feature vector is reduced by PCA. The clustering results are shown in
Figures 15–18.

As can be seen from Figures 15–18, the VMD-time-frequency information entropy method also
has the phenomenon of fault mixing under the operation condition 1 and the operation condition 4.
By contrast, it can be proved that the method proposed in this paper has better performance than the
VMD-time-frequency information entropy method in fault feature extraction.

Figure 15. Clustering result of variational mode decomposition (VMD)-time-frequency information
entropy under condition 1.

Figure 16. Clustering result of VMD-time-frequency information entropy under condition 2.
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Figure 17. Clustering result of VMD-time-frequency information entropy under condition 3.

Figure 18. Clustering result of VMD-time-frequency information entropy under condition 4.

5.2.3. Comparison under Variable Operation Conditions

In order to further demonstrate the advantages of the proposed algorithm, the diagnostic
performance of the three methods were compared under variable operation conditions. In this paper,
the data under variable operation conditions were spliced together. The specific information is shown
in Table 3. We compared the three algorithms mentioned in this paper. The results are shown in
Figures 19–21. In total, 128,000 sampling points were extracted from each operation condition, and each
fault consisted of a total of 384,000 sampling points under three operation conditions.

Table 3. Multi-operation condition data.

Failure Mode
Variable Operation Conditions (Arranged

According to the Order of Operation Conditions)

Gear tooth crack fault condition 1–condition 5–condition 9
Tooth breaking fault condition 2–condition 4–condition 7
Gear breaking fault condition 3–condition 5–condition 9

Gear wear fault condition 12–condition 11–condition 10
Normal condition 1–condition 6–condition 10
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Figure 19. Clustering result of ICEEMD-time-frequency information entropy under variable conditions.

Figure 20. Clustering result of wavelet entropy under variable conditions.

Figure 21. Clustering result of VMD-time-frequency information entropy under variable conditions.

Under the variable operation conditions, the algorithm proposed in this paper had obvious
clustering of fault features and no fault mixing. However, the wavelet entropy algorithm and VMD-
time-frequency information entropy algorithm had a certain degree of mixing for the same fault under
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different operation conditions, and the degree of polymerization was not ideal. Therefore, neither of
these methods can be applied to the fault diagnosis of variable operation conditions.

5.3. Fault Classification of Planetary Gearbox Based on VPMCD

Under a single operation condition, 100 groups of data were selected as the VPMCD training set,
and the remaining 100 groups of data were used as the VPMCD test set. Similarly, under variable
operation conditions, there were 75 groups of data used as the training set and the remaining 75 groups
of data as the test set. The feature vector after PCA dimension reduction was used as the input
of VPMCD, and the fault type was used as the output of VPMCD. The corresponding relationship
between the number and the fault type is shown in Table 4.

Table 4. Corresponding information between number and fault type.

Number Fault Type

1 Gear tooth crack fault
2 Tooth breaking fault
3 Gear breaking fault
4 Gear wear fault
5 Normal

The classification results are shown in Figures 22–26. It can be seen from the classification results
that the diagnostic accuracy rate reached 100% under the single operation condition and variable
operation conditions.

Figure 22. Classification result under condition 1.

Figure 23. Classification result under condition 2.
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Figure 24. Classification result under condition 3.

Figure 25. Classification result under condition 4.

Figure 26. Classification result under variable conditions.

In order to reduce the randomness of the diagnosis, we selected 75 groups of data randomly
as training sets and the remaining 75 groups of data as test sets. After 100 random classifications,
the average classification accuracy of VPMCD was 100% and no testing sample wase misclassified.

6. Conclusions

The effective fault diagnosis of planetary gearboxes is indeed difficult and has always attracted
the attention of researchers. The weak fault features are difficult to extract from a planetary gearbox
because the signal components are nonlinear, nonstationary, and easily drowned out by noise. In this
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paper, we propose a fault diagnosis method based on ICEEMD-time-frequency information entropy.
The effectiveness of the method is verified by a case study where the proposed method outperforms the
wavelet entropy method and the VMD-time-frequency information entropy method in extracting critical
fault features. In regard to fault classification, the VPMCD algorithm is adopted to comprehensively
consider the correlation about eigenvalues, which can effectively identify the characteristic information
of various types of small samples. Moreover, experimental results show that the proposed method can
not only accurately diagnose faults under multiple operating conditions, but also produces satisfactory
diagnostic performance under variable operating conditions. Therefore, the ICEEMD-time-frequency
information entropy and VPMCD method, with favorable robustness and diagnostic performance,
has wide applicability in other similar fault diagnoses of rotating machinery. However, to some extent,
the performance of the proposed method is limited by computer resources. Future work will focus on
optimization of the algorithm to improve its performance.
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Abstract: An algorithm for constructing a dynamic analysis during the formation of a wave field of
stand for testing turbines and the effect of the frequency interaction of the stand’s elements on the
measurement of its magnitude is described. The research algorithm involves the use of theoretical
solutions of nonlinear wave processes using linear oscillations, refined by experiments. The diagnostic
model can determine the technical condition of the stand’s elements and also determine the causes of
the discrepancies between the calculated and measured turbine power values. To clarify the stiffness
coefficients between the stand’s elements, a modal analysis was used to obtain the range of their
changes depending on the external dynamic load, which made it possible to assess the impact of
changes in the frequency interaction conditions on the turbine power measurement at different test
modes. The conditions for amplifying the amplitude of oscillations at their eigenfrequencies are
obtained, and the value of the possible deviation of the expected power value at its measurement for
specific modes of the turbine is calculated. The algorithm allows to estimate the dynamic state of the
stand-in different research modes of turbines and give recommendations for reducing the level of
frequency interaction.

Keywords: non-destructive testing; technical diagnostics; eigenfrequency; amplitude-frequency
characteristic; wave field; frequency analysis

1. Introduction

The stringent requirements that are imposed on the quality of generated energy neces-
sitate making significant fundamental modifications to existing turbine plant prototypes.
The conditions of a test stand offer the possibility of combining the stages of computer-
aided tests, i.e., simulation of the automatic control system, and hardware-in-the loop-tests,
i.e., tests of mockups and experimental and pilot prototypes, also using a computer model
of the power system [1]. During the experimental testing of new and modernized products,
it is important to take into account the influence of external factors, in particular, frequency
interactions with the stand elements caused by vibrations and their influence on the receipt
of measurement information from measuring devices built into the stand equipment. In
addition, vibration processes can cause damage to the stand and measuring devices.

To control vibration parameters, various methods and devices are offered. For ex-
ample, in work [2], the prediction of bearing failure based on the results of vibration
monitoring of bearing assemblies based on the damage accumulation model is considered.
In work [3], a model of optimal frequency control of vibration by a formative active exci-
tation of indefinite flexible mechanical systems with constant excitation is presented. In
work [4], a model of studies of nonlinear analysis of the frequency response of hydrody-
namic plain bearings with external disturbances according to the results of monitoring of
bearing assemblies is presented.
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In work [5], the results of an experimental determination of the dynamic force co-
efficients of a flexible shaft in bearing assemblies are presented. In work [6], the results
of experimental vibration tests of a turbo compressor of a high-speed diesel engine are
presented. In work [7], questions of the influence of nonlinearity in the dynamic analysis of
the machines’ operations are considered; also, the examples of the behavior of their struc-
tures are shown. Work [8] described a micro turbocharger with airfoil bearings for a 100 W
micro-electric power station, and dynamic analysis to improve the dynamic characteristics
of the rotor is given. In work [9], the results of a study of the effect of rotor imbalance in
response (vibration) on its stability in hybrid airfoil bearings are presented.

In paper [10], the technical problems of using the Markov process for managing and
planning the operation of equipment using a servicing strategy relevant to the technical
state are considered. In paper [11], the authors considered the problem of torque pulsation
and its stabilization by means of control for switched reluctance drives. The authors
introduced the method of model predictive control with reduced integration step size in
order to implement precise torque stabilization using pulse width modulation.

The paper [12] presents the experimental results of the combustion diagnosis in the
cylinders of heavy diesel engines with direct injection. In work [13], devices are consid-
ered to improve the accuracy of parameter measurement: For the vibrational movement
of elements of electronic equipment, a three-component measurement method is used.
Additionally, modal impedance curves calculated using the linear perturbation method are
used to predict rotor-dynamic characteristics of the rotor.

The scheme of the information model of provision of multi-aspect diagnostics of
the condition of the electrotechnical complex elements in the standard IDEFlx is given in
paper [14].

In this regard, attention should be paid to transients and the restructuring of the
“product-stand” self-oscillating system; for example, when the power (number of rotations
and other parameters) of the product in the measuring devices of the stand’s modes.
Receiving and studying the correct measurement data is the actual task.

To understand the physical aspects of the dynamic behavior of products, experimental
complexes are developed based on which issues of the product and stand’s dynamic
interaction are investigated. In addition, it is necessary to simultaneously solve the problem
of not only obtaining actual results but also to assess the impact of transients during
the receiving of a new self-oscillating “product-stand” mode. This is a multi-parameter
problem wherein various methods are used to solve, including reducing the dynamic effect
of rotation elements (rotors) [15,16] or due to the think selection of turbine block blades [17]
or integrated approaches [18,19].

However, insufficient attention is being paid to the influence of frequency interactions
with measurement elements embedded in the stand’s equipment since frequency interac-
tion can lead to incorrect results of measuring the output parameters of the equipment
under test at the stand. In this case, it is necessary to study the eigenfrequencies and forced
frequencies of the elements of the stand’s equipment, both with the tested product and
without it. To control the vibration parameters, various means and devices and various
methods for processing vibration signals are offered.

Equally important is the identification of the causes leading to a change in the error of
the attorney measuring devices during stand tests of various mechanical systems [9,20].
This is especially important for units that provide a minimum dispersion of traction
characteristics of various power plants; therefore, strict requirements are imposed on them
to meet the specified power characteristics. Therefore, measuring the actual power of the
turbine of a turbopump unit depending on the speed (number of rotations) of the turbine
allows us to build processes for regulating the operation of the power plant; thereby,
minimizing losses (an increase in the error in measuring the power of the turbine is the
additional mass of fuel for the gas generator to work).

There are quite a lot of works on the actual change in the error when changing the
number of rotations [21], which allows us to take into account when developing the power
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unit operation algorithm both when entering the mode and in control problems during
stand tests of the turbine.

Stand tests of turbines usually have an electric drive part, which provides loading of
the turbine during its tests as part of the stand. Typically, this is a generator with a speed
reduction system (multiplier), which is mounted on the same frame with elements for
measuring the speed of the turbine and its torque. Consequently, the presence of certain
structural elements can be based on the works [5,7]. It can be assumed that these elements
of the stand will affect the dynamic behavior of the stand during turbine tests. Figure 1
shows a part of the installation of the stand with a generator and a multiplier, indicating
the points of measurement of the level of vibration during testing and the study of the
modal characteristics of these elements mounted on a common frame of the stand.

 
Figure 1. General view of the installation generator and frame with measuring points.

When testing the elements of mechanical systems, there is a significant impact on
their operation. It is important to understand the influence of the stand’s elements on the
measurement results.

In this paper, we do not evaluate the errors of the measuring system, but we pose the
problem of identifying the discrepancy between the expected value of the turbine power at
certain numbers of its rotations (calculated value) and its measured value during testing in
the stand.

Nowadays, there are practically no studies aimed at obtaining the influence of the
stand’s equipment on the stand’s measuring systems. For example, when a turbine block
at the stand is working, a significant spread in the magnitude of the realized torque with
its calculated value was revealed. This is especially observed during transients associated
with a change in the turbine operating modes. In addition, during the steady-state process,
at certain rotations of the turbine, oscillations of the measured torque in time relative to
its average value are recorded. It can be assumed that these oscillations of the measured
torque are associated with the occurrence of self-oscillating processes of the stand’s wave
field with the turbine. Therefore, the analysis of the reasons leading to the discrepancy
between the “expected” characteristics of the turbine power and the actually measured
values during the turbine working at the stand is an urgent research task. This task allows
us to understand and evaluate the impact of dynamic interactions of the structural elements
of the stand and the turbine on the reliability of the power plant.
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2. Research Methods

To study the modal frequencies of the test stand and measure the level of vibration,
we used the tuning measuring and vibration analyzer Kamerton [22] with a set of VK 310A
vibration sensors that comply with ISO 8042:1988 [23]. The characteristics of the measuring
device are shown in Table 1.

Table 1. Technical characteristics of the measuring device Kamerton.

No Description Measurement Limits

1 Number of channels 8

2

Operating frequency ranges (Hz)

- vibration acceleration
- vibration speed
- vibration displacement

5–5000
5–1000
5–200

3

Measuring ranges

- vibration acceleration (peak) (mm/s2)
- vibration velocity (SKZ) (mm/s)
- vibration displacement (mm)

0.5–80
0.8–100
5.0–500

4

Eigen noise:

- vibration acceleration (peak) (mm/s2)
- vibration velocity (SKZ) (mm/s)
- vibration displacement (mm)

0.1
0.1
5.0

5
The limit of permissible basic relative error when
measuring the general level of vibrations and for
spectral analysis, not more than, %

±5

6 Frequency response in the frequency range
10–4000 Hz, not more than, % ±10

7 Frequency response at frequencies of 3 and
5000 Hz, not more than, % ±25

The eigenfrequencies (modal frequencies) and vibrations of the stand were measured
at the same points (bearing units, mounting units of the stand elements, on the frame and
foundation), which made it possible to conduct a frequency analysis and build a model
of the frequency interaction of the stand elements of the measuring elements (springs)
with the excitation frequencies initiated by the operation of the turbine installed for stand
testing. As an example, to estimate the eigenfrequencies, Table 2 shows the values of the
excitation and response frequencies by which the computational algorithm below was
tested (the selected points No. 10–No. 14 are the key points at which the amplitude-
frequency values of the oscillations at the turbine power measurement unit were obtained
during the experiment).

In the framework of this task, a mathematical model and an automated computational
algorithm for studying the dynamic behavior of a turbine as a part of a stand during
turbine testing were developed, taking into account the frequency interactions of elements
and nodes modal vibrations with the turbine’s rotational frequencies when changing its
operating modes when working on the stand [24,25].

Based on the analysis of the stand’s elements, a range of initial and boundary condi-
tions was selected for the process of mathematical modeling of dynamic changes in the
turbine power during its operation, taking into account the interaction with the stand’s
elements [1,26]. Changes in the dynamics of the stand’s structural elements’ behaviors are
also taken into consideration. The conditions for the occurrence of increased dynamic loads
acting on the stand’s measurement elements are modeled and determined, taking into
account the frequency interactions when changing the turbine speed and measuring power
under the conditions of wave interactions of the stand’s elements and power measurement
unit. Thus, the general task of research is to determine the modal frequencies of the stand,

132



Appl. Sci. 2021, 11, 4149

their changes when exposed to a load (power load, temperature) within the range of the
measured power, and temperature changes of the gas medium used during the operation
of the turbine (compressed air is used on the stand).

Table 2. Studies of the modal frequencies of the measuring base of the stand “spacers” (points No. 10–No. 14 on the stand).

No. of
Measuring

Points

Vibration Velocity Vibration Acceleration

Vertical
Direction

Horizontal
Direction

Axial
Direction

Vertical
Direction

Horizontal
Direction

Axial
Direction

10 (hit)

98
342
537
732

1025

98
293
488
732
928

146
342
537
732

1221
1318
1660

146
342
537
732

1025
1318
1514
1660
1855

293
488
635
732
781
977

1172
1367
1611
1807
2490
2637
3711

146
342
537
732
1221
1318
1514
1660
1807
2002
2393
2637
2783
3027
3711

10 (response)
391
879

1270

293
977

1270
293

391
879

1270
1758
2441
2930

391
977

1270
2734

293
1074
1270
1758
2148
4004

11 (hit)
146
391
830

146
391
830

1270

98
391
830

1221

146
191
830

146
439
830

1270

98
391
830

1270

11 (response) 293
586

195
586

293
586

293
586

195
586

293
586

12 (hit) 195
488

195
586
781

293
781

1270
1563

586
781
977

1367
1660
1953

195
586
781

1270
1465
2441

488
781

1270
1563
1758
2539

12 (response)
98
488
879

146
293
488

147
342
488
781

1318

98
293
188
879

293
488
830

1123

146
342
488
781
879

1318

13 (hit)
195
391
879

195
781

1270

195
391
879

195
391
879

1270

195
488
781

1270

879
1367

13 (response)

293
586
879

1270

195
781

1270

293
684

1172
1563

293
586
879

1270
2246
2441

195
481

1270
1465
2930
4004

293
781

1270
1465
2930
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Table 2. Cont.

No. of
Measuring

Points

Vibration Velocity Vibration Acceleration

Vertical
Direction

Horizontal
Direction

Axial
Direction

Vertical
Direction

Horizontal
Direction

Axial
Direction

14 (hit)

195
488
781

1172
2148
3125

195
391
879

1660
2148

293
684

1270
1465

195
488
879

1172
2148
3223
3418

195
391
977

1660
2148
2441
2930
3223
3418

293
781

1270
1465
1458
2148
2930
3223

14 (response)

195
391
586
879

1172

391
684

1465
2441

195
488
879

1270

195
391
586
879

1172

391
684

1465
2441
2832

195
488
879

1270

In addition, the rotation of the turbine and the power measurement system creates a
certain dynamic effect in the stand’s elements and the stand’s measuring system with a
certain frequency and amplitude, i.e., a number of frequency harmonics, which lead to the
formation of the wave field of the stand when testing the turbine.

The algorithm for determining the eigenfrequencies of the stand’s elements is based
on a mathematical model as a system of discrete masses with elastic-dissipative bonds.

A generalization of the design scheme is the introduction of elastic-dissipative bonds
between the non-adjacent masses of the chain [27,28]. Figure 2 shows the stand system
in the form of discrete masses with elastic-dissipative bonds. The following values are
indicated in Figure 2: x1, . . . , x6—directions of the possible movement (3 directions are
considered); R1, . . . , R6—viscosity forces between bodies; G1, . . . , G6—inertia forces of
bodies; C1, . . . , C6—body stiffness forces; ζ (t)—exposure time.

Figure 2. Stand model in the form of six discrete masses with elastic-dissipative bonds: 1—Turbine; 2—Spacer;
3—Measurement system; 4—Multiplier; 5—Generator; 6—Frame with foundation.

To determine the eigenfrequencies of the oscillations of the stand’s elements with the
turbine, as well as the eigenfrequency of the system itself, it is necessary to obtain matrix

134



Appl. Sci. 2021, 11, 4149

forms for the following parameters: generalized coordinates of displacements q, inertial
forces F0(q) with inertial parameter A, and elastic forces with quasielastic coefficient C,
without taking into account dissipative forces (no losses), which will reduce the amount of
computation and obtain modal frequencies of structural elements.

The condition of free oscillations of the stand’s elements system is determined from
the equality of the kinetic and potential energies. For free oscillations, the kinetic and
potential energies of the system are written accordingly:

T = 1
2 A

.
q

2

U = 1
2 Cq2 (1)

where T and U are the kinetic and potential vibrational energies in the system; A is the
matrix of inertial coefficients; C is the matrix of quasielastic coefficients; q = (ξ, η, ζ, α, β,
and γ) is the vector characterizing the movement of the body during oscillations in the
directions: ξ and η, which are the indices of longitudinal and torsional vibrations along the
axis of rotation of the turbine; ζ, α are the indices of longitudinal and torsional vibrations
in the vertical plane to the axis of rotation of the turbine; β, γ, and α are the indices of
longitudinal and torsional vibrations in the horizontal plane to the axis of rotation of
the turbine.

The differential equation of free oscillations in matrix form will have the form:

A
..
q + Cq = 0, (2)

The modal (free) frequency f of longitudinal vibrations of any element of the stand, in
any direction, as an elastic system is written:

ω =
( c

a

)1/2
=

1

(a f )1/2 , (3)

where f = s−1 is the unit compliance corresponding to the quasi-elastic coefficient c; a is the
size of the element in the direction of propagation of the elastic wave.

For the stand considered as a system of discrete masses of its elements connected in
a series with a common frame with a foundation (shown in Figure 2), the equations of
eigenfrequencies will be determined by the following matrix:⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −ω2
n
∑

k=1
f1k Ak1 −ω2

n
∑

k=1
f1k Ak2 . . . −ω2

n
∑

k=1
f1k Ak6

−ω2
n
∑

k=1
f2k Ak1 1 −ω2

n
∑

k=1
f2k Ak2 . . . −ω2

n
∑

k=1
f2k Ak6

. . . . . . . . . . . .

−ω2
n
∑

k=1
f6k Ak1 −ω2

n
∑

k=1
f6k Ak2 . . . 1 −ω2

n
∑

k=1
f6k Ak6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(4)

where k is the number of the body in the stand scheme (according to Figure 2); n is the
number of stand elements.

The general solution of the equation of free (modal) oscillations with the eigenfre-
quency ωa and the natural form va can be written in the form:

q(t) =
n

∑
a=1

va(Ca cosωat + Da sinωat), (5)

where Ca and Da are the oscillation amplitudes upon expansion in a Fourier series.
The solution to the differential equation of free oscillations is the expression:

q(t) = vsin(ωt + χ), (6)
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where v is a vector (column matrix) that characterizes the relationship between the general-
ized coordinates, and these are also eigenmodes. χ is the phase angle of the shift between
them, while ω and v must satisfy the matrix expression:

(C − ω2A)v = 0. (7)

The solution of the differential equation of free vibrations has the form:⎛
⎜⎜⎜⎜⎜⎜⎝

C11 −ω2 A11 C12 −ω2 A12 C13 −ω2 A13 C14 −ω2 A14 C15 −ω2 A15 C16 −ω2 A16
C21 −ω2 A21 C22 −ω2 A22 C23 −ω2 A23 C24 −ω2 A24 C25 −ω2 A251 C26 −ω2 A26
C31 −ω2 A31 C32 −ω2 A32 C33 −ω2 A33 C34 −ω2 A34 C35 −ω2 A35 C36 −ω2 A36
C41 −ω2 A41 C42 −ω2 A42 C43 −ω2 A43 C44 −ω2 A44 C45 −ω2 A45 C46 −ω2 A46
C51 −ω2 A51 C52 −ω2 A52 C53 −ω2 A53 C54 −ω2 A54 C55 −ω2 A55 C56 −ω2 A56
C61 −ω2 A61 C62 −ω2 A62 C63 −ω2 A63 C64 −ω2 A64 C65 −ω2 A65 C66 −ω2 A66

⎞
⎟⎟⎟⎟⎟⎟⎠

(8)

where the serial number of matrix elements corresponds to the number of stand
elements, according to Figure 2.

To simplify the solution of this complex system of equations, it is necessary to divide
it into six subsystems (partial systems). For example, Formula (9) considers only one
coordinate of the stand’s wave processes formation and makes it possible to determine the
eigenfrequencies of the stand’s elements in a given direction. For this, it is necessary to
find the partial frequencies of each element of the system. These frequencies will coincide
with the eigenfrequencies of the stand’s elements system at: A12 = A21 = 0; C12 = C21 = 0:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ωI =
(

C11
A11

)1/2

ωII =
(

C22
A22

)1/2

ωIII =
(

C33
A33

)1/2

ωIV =
(

C44
A44

)1/2

ωV =
(

C55
A55

)1/2

ωVI =
(

C66
A66

)1/2

(9)

where ωI, ωII, ωIII, ωIV, ωV, and ωVI are the partial frequencies of the components of the
stand’s element base, respectively. Using this method, an algorithm was developed to
find the eigenfrequencies of the stand’s elements by analyzing the four subsystems and
approximating the change in stiffness from the action of the twist torque of the measuring
spring. That allows us to relate the obtained results of the vibration level and frequency
implementations with the conditions of the dynamic interaction of the element base of
the stand with the results of measuring the turbine power when changing the range of
its rotations.

The Equations (1)–(8) show an example of a specific implementation of the theory of
linear vibrations as applied to a real design of the stand for a one-dimensional model in
order to determine the eigenfrequencies of the elements of a coupled system. The whole
algorithm for calculating the eigenfrequencies assumes their determination in two more
directions, which form their own model of the stand for a specific direction with discrete
masses, as in the example, but with different elastic-dissipative bonds. The calculation
algorithm is formed based on generalized coordinates of the three-dimensional model of
the stand, which requires taking the nonlinear spatial-correlation relationships into account,
therefore, a new calculation method.

The conditions for the dynamic interaction of the turbine block with the elements of the
measuring system (the spacer where the spring is installed to measure the realized torque
of the turbine) were identified. The main emphasis in calculating the eigenfrequencies
according to this algorithm was associated with the analysis of their changes when the
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external load changes. Therefore, the stress changes in the connecting nodes of the stand’s
elements, which leads to a change in the stiffness of their joints and the eigenfrequency
(modal frequency) of the structure under consideration and partial frequencies.

With an increase in the external load from the turbine, the partial frequencies also
change previously linearly with increasing stresses in the connecting elements. In this case,
the algorithm for calculating step supply (s−1) will be determined from Hooke’s linear
law, connecting strains and stresses through the elastic modulus of the material of the
connecting elements, which can significantly simplify the algorithm for calculating the
modal frequencies of each of the stand elements, according to Figure 2, for any range of
changes in the number of rotations of the turbine, and, consequently, its power.

3. Results

The results of the frequency analysis of the modal characteristics of the stand were
verified according to the results of the modal analysis performed on the stand. For example,
Figure 3 shows a general view of the multiplier with measuring points; Figures 4 and 5
show the spacer of the stand (element No. 2, according to Figure 2) with measuring points
(structural elements for installing the turbine power measurement unit).

 

Figure 3. General view of the multiplier with measurement points.

 

Figure 4. General view of the spacer with measuring points.
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Figure 5. General view of the spacer with frame.

A comparison of the results of the modal analysis of the unloaded stand conducted on
its element base (Figure 2) and fitting the above algorithm to the experimental frequencies
made it possible to refine the matrix of quasielastic coefficients C at zero load (unit compli-
ance was determined from the tightening conditions of the mounting bolts of the spacer
with the turbine block and unit of the turbine torque measurement system). This made it
possible to predict a change in the matrix of quasielastic elements depending on the load
realized on the stand’s loading device from the generator through the multiplier, directly
on the measuring spring used as a turbine power sensor.

Knowing the range of the percentage change in the spring stiffness coefficient (the
eigenfrequencies of the spring grow almost linearly from the value of the applied torque
since the stress, and the value of the spring angle of the spring increase linearly because the
measuring element operates in the elastic zone of deformation—twisting, and, therefore,
its torsional eigenfrequencies, i.e., oscillations, occur in the elastic strain zone), it can be
assumed that the eigenfrequencies of the stand’s elements change with the same linear
dependence, according to the realized turbine power (Hooke’s linear law).

Then, this algorithm allows us to connect the changing eigenfrequencies of the spring
with the harmonic frequencies when the turbine rotates, and its speed and torque are
realized by the turbine through the loading device, taking into account measurements of
the vibration level on non-rotating stand elements (stator) through the transfer function
from the spring to the vibration measurement point on the housing of the stand’s elements.

Consequently, it becomes possible to clarify the actual power of the turbine due
to the frequency interaction of the changing modal frequencies of the spring with the
rotational frequencies of the turbine, which forms distinctive indications of the power
of the turbine during the turbine research with the calculated ones. The magnitude of
the discrepancy in the measurement of the torque when determining the power of the
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turbine will be determined through the coefficient of dynamism in the frequency interaction
of eigenfrequencies and forced frequencies (frequencies associated with the number of
rotations of the turbine):

η =
1√[

1 −
(
ωk
ωh

)2
]2

+ 4ξk
ω2

k
ω2

h

, (10)

where ωk is the spring eigenfrequency; ωh is the reverse (harmonic) frequency of the gas
of rotation of the turbine; ξk is the coefficient determining losses in the spring material. In
this case, it is necessary to find frequencies close to each other in the frequency domain:

0.85 ≥ ωkn
ωhm

≤ 1.15, (11)

where n and m are integers from 1 to 8 (eighth mode). Sorting frequencies above 8 harmonics
does not make sense since the energy of the frequency interaction at high frequencies is
insignificant; however, even if the frequency difference is more than 15%, the effect on the
error of the frequency interaction also gives a slight error.

4. Analysis of the Results

Figures 6 and 7 show the vibration acceleration spectrum at point 16 (the bearing
assembly of the spring of the turbine torque measuring system) at different turbine rotations.
An analysis of the results of vibration acceleration makes it possible to evaluate the effect
of the inertial force on the oscillatory system, which is realized at the stand’s measurement
point, and to track its change when the speed of the turbine changes, and, consequently, its
power. In addition to torsional vibrations, bending and longitudinal arises in the spring that
certain instantaneous precession values are formed on the bearing of the spacer (measuring
unit), which form a vibration field on the fixed part of the spacer in the bearing installation
area. Measurement of these vibrations is carried out in three directions. Bending and
torsional vibrations create a displacement of the axis of rotation (precession) relative to
the geometric axis of rotation of the spring. The spatial addition of eigen vibrations and
forced vibrations allows us to build the trajectory of the instantaneous center of the axis of
rotation of the spring. The analysis, in this case, can be carried out by comparing one of the
three types of occurrence of vibrations of an element (spring) in the bearing assembly.

Figure 6. Vibration accelerations spectrum in the vertical direction on the bearing assembly of the turbine torque measure-
ment system’s spring at a speed of 8500 rpm.
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Figure 7. Vibration accelerations spectrum in the vertical direction on the bearing assembly of the turbine torque measure-
ment system’s spring at a speed of 12,000 rpm.

For example, the eigenfrequency of spring-bending vibrations is 579 Hz, and the
harmonic frequency is 141.6 Hz (at turbine speed of 8500 rpm), which is close to the fourth
harmonic of the external influence on the spring (4th harmonic is 566.5 Hz). Therefore,
taking into account the possibility of frequency interaction between the torsion eigenfre-
quencies of the spring and the rotating frequencies, the amplitude of the partial frequency
at the measuring point (bearing) on the spacer increases to 4.378 μm/s2. The amplitude
square value (ASV) is 3.67 mm/s.

Increasing the turbine speed to 12,000 rpm (Figure 7), which corresponds to a fre-
quency of dynamic action of 200 Hz, the conditions for the frequency interaction of spring
vibrations change. It leads to a decrease in the amplitude of vibration acceleration on
the spacer bearing at a frequency that is a multiple of the eigenfrequency of the spring
bending vibrations up to 1.054 μm/s2. If the amplitude of oscillations in vibration velocity
at a frequency of 141.6 Hz at rotations of 8500 rpm was 0.163 mm/s. With an increase
in the number of rotations to 12,000 rpm, causing an increase in turbine power at a fre-
quency of 200 Hz, the amplitude in vibration velocity increased to 0.323 mm/s. The ASV is
4.65 mm/s.

Consequently, the energy of oscillatory processes in the stand has grown, but the
frequency palette of its wave field has changed. This confirms the wave restructuring of the
oscillatory processes of the stand’s elements, i.e., the amplitude-frequency characteristics
change in the process of changing the turbine operation parameters (visual proof when
comparing the vibration acceleration spectra shown in Figures 6 and 7). Such changes in
the frequency-amplitude field of the stand are characteristic for all directions of vibration
measurement (measurement was carried out in the horizontal and vertical planes and the
axial direction). Simultaneous processing of the vibration signal in three directions in time
allows us to get the trajectory of the precession of the axis of rotation of the spring when
measuring the torque and power of the turbine when changing its speed. Therefore, by
analyzing one of the components of the vibration field, it is possible to qualitatively assess
the change in other parameters of the manifestation of vibrations, including the change
in torsional vibrations of the spring, which form the torque measurement at this moment
in time.

A comparison of the frequency spectra when the turbine rotational speed changes on
the spacer’s bearing units shows that the stand’s structural elements change the energy of
the spacer vibrations quite significantly; therefore, the dynamic interaction between the
measuring system of the stand and the spring vibrations, which can significantly affect
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the accuracy of measuring the turbine power, not only during transients but also in the
steady-state during the formation of a new level of self-oscillation mode of the turbine’s
torsional vibrations and changing the spring’s modal vibrations.

If the discrepancy between the results of measuring the turbine power at 8500 rpm
was 18%, then taking into account the frequency interaction according to Formula (10) for
this mode, it is 4.3%, respectively. The discrepancy between the measured turbine power at
12,000 rpm and its calculated value is 15% for these speeds, respectively, and taking into
account the conversion of 5.6%. Thus, the influence of frequency interaction as applied to a
particular stand design allows one to take into account its influence on the results of the
actual value of the measured turbine power.

When using the algorithm for calculating the eigenvibrations of an element of this
stand with a change in the mass-rigid characteristics of its elements (in particular, changes
in the design of the measuring unit (spacers) cause an increase in the mass of the bearing
units by 10%), the calculated value of the measured torque, taking into account the influence
of frequency interaction, decreased to 3%.

The results of evaluating the frequency indicators of the installation elements based
on the measurement data at the corresponding points are shown in Figures 8–11.

Figure 8. Change in the forced frequency on the electric motor, depending on the frequency of
rotation of the turbine (measuring point No. 1).

Figure 9. Change in the forced frequency on the spacer depending on the speed of the turbine
(measuring points No. 11 and No. 13).
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Figure 10. Change in the forced frequency on the spacer depending on the speed of the turbine
(measuring point No. 17).

Figure 11. Change in the forced frequency on the spacer frame depending on the speed of the turbine
(measuring point No. 28).

An analysis of the data in Figure 8 shows that the axial component in frequency
increases with the increasing speed of the turbine. Significant damping by the stand system
is observed in the range of shell frequencies from 14,000 to 16,000 rpm.

At a frequency of 8000 to 11,000 rpm, the frame structure does not provide a rigid
fixation of the multiplier. A significant increase in frequency at rotations of 12,000 to
15,000 rpm is associated with the conditions for the dynamic interaction of the coupling
joints of the multiplier with the spacer measuring element (shaft eigenfrequencies lie in the
range of rotating frequencies).

On the spacer at measuring points No. 11, No. 13, and No. 17, the same dynamic
character of the shaft with the measuring system is noted (Figures 9 and 10).

The spacer frame in the vertical direction slightly reduces the level of vibration. At
13,700 rpm, the measurement cuts off due to the high level of vibration at the measurement
point (Figure 11).
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5. Discussion

The conducted frequency analysis, taking into account the change in the eigenfrequen-
cies of the structural elements of the stand, evaluates the actual value when measuring
the power of the tested turbine in a certain range of working frequencies. Additionally,
the analysis evaluates the structure of the dynamic interaction of the stand’s elements and,
having determined the possible frequency ranges of the interaction of eigenfrequencies
and working frequencies with the help of certain upgrades, significantly reduces the dis-
crepancy between the measured power and the actual (calculated) one; thereby, solving the
problem of controlling the operation of the turbine as part of a power plant. In addition,
the frequency analysis allows us to solve the problem of increasing the reliability and
increasing the resource of using stand equipment.

6. Conclusions

A mathematical apparatus based on point masses has been developed for a stand to
verify the operability of turbines of various powers in power plants. Using the procedure for
studying the modal characteristics of stand equipment, we obtained the correct quasielastic
coefficients for calculating the eigenfrequencies of the nodes and stand’s elements and
determined their variation in the load value acting on the structure when testing the
turbine in various modes without taking into account the influence of temperature changes
during testing.

The conditions for amplifying the amplitude of oscillations at eigenfrequencies are
obtained, and the value of the possible discrepancy between the measured power results
and the calculated (expected) results when measuring power for specific modes (cycles) of
turbine operation is calculated. It is shown that taking into account the frequency inter-
action between the eigenfrequencies and rotating frequencies of the power measurement
elements reduces the difference in the power measurement from 15% in the entire range of
the studied turbine rotations to an acceptable maximum value of 3%.

The developed mathematical algorithm makes it possible to assess the dynamic state
of the stand at different turbine research modes and give recommendations for reducing
the level of frequency interaction; therefore, reducing dynamic loads on the stand base,
increasing the reliability of the stand and, as a result, increasing the duration of its use
without attracting additional material costs.
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Abstract: Under different degradation conditions, the complexity of natural oscillation of the
piston pump will change. Given the difference of the characteristic values of the vibration
signal under different degradation states, this paper presents a degradation state recognition
method based on improved complete ensemble empirical mode decomposition with adaptive noise
(ICEEMDAN) and eXtreme gradient boosting (XGBoost) to improve the accuracy of state recognition.
Firstly, ICEEMDAN is proposed to alleviate the mode mixing phenomenon, which decomposes
the vibration signal and obtain the intrinsic mode functions (IMFs) with less noise and more
physical meaning, and subsequently the optimal IMF is found by using the correlation coefficient
method. Then, the time domain, frequency domain, and entropy of the effective IMF are calculated,
and the new characteristic values which can represent the degradation state are selected by principal
component analysis (PCA) that it realizes dimension reduction. Finally, the above-mentioned
characteristic indexes are used as the input of the XGBoost algorithm to achieve the recognition of
the degradation state. In this paper, the vibration signals of four different degradation states are
generated and analyzed through the piston pump slipper degradation experiment. By comparing the
proposed method with different state recognition algorithms, it can be seen that the method based on
ICEEMDAN and XGBoost is accurate and efficient, the average accuracy rate can reach more than
99%. Therefore, this method can more accurately describe the degradation state of the piston pump
and has a highly practical application value.

Keywords: piston pump; degraded state recognition; slipper; improved complete ensemble empirical
mode decomposition with adaptive noise; principal component analysis; eXtreme gradient boosting

1. Introduction

As the power source, the piston pump affects the function realization of the whole hydraulic
system. According to the performance degradation of the piston pump so far, the degradation state
recognition is carried out to determine the performance of the piston pump and the whole hydraulic
system [1], which can provide decision-making information for condition-based maintenance (CBM),
prognostics, and health management (PHM) [2]. Due to the influence of oil, temperature, load,
and other factors [3,4], the components of piston pump will deteriorate because of wear [5], and this
degradation will eventually lead to changes in the main performance indicators of the hydraulic pump.
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The sealing belt on the bottom surface of the slipper will deform under the working condition,
which will cause the inner edge to bulge. At the same time, the oil film thickness between the slipper
and the swash plate will become thinner [6]. If there are pollution particles in the hydraulic oil,
the inner edge of the sealing belt is easy to be worn [7]. Therefore, in actual production, the inner
edge of the slipper sealing belt is most seriously worn, which will directly lead to the performance
degradation of the pump, as shown in Figure 1. Therefore, the wear of the inner edge of slipper should
be considered as the main degradation form when evaluating the degradation state of piston pump.
According to the different wear states of slipper, the vibration signals of piston pump shell are different
in multi-directional and multi-dimensional features, so how to extract effective degradation index
from them is the key to state recognition.

Figure 1. Structure of slipper pair. 1 is the inner edge of the slipper.

The vibration signal is usually transient and periodic pulse behavior, which contains critical
information about the status of the mechanical equipment. Scholars have carried out a lot of
research and analysis of the vibration signal of mechanical equipment to extract effective information.
Tian et al. [8] used and improved the multi-fractal detrended fluctuation analysis (MF-DFA) to extract
the performance degradation characteristics of the hydraulic pump vibration signal, which improved
the accuracy of the degradation state recognition, but did not process the vibration signal noise of
the pump. Xiao et al. [9] used wavelet packet transform to analyze the bearing vibration signal,
and extracted the node energy and its total energy as features. The method has a certain effect on white
noise suppression, but the ability to suppress signal pulse interference is not strong. Singh et al. [10]
applies pseudo-fault signal (PFS) assisted empirical mode decomposition (EMD) on the envelope,
which solves the problem that different fault frequencies are not obvious due to mode aliasing, but the
decomposition efficiency of the algorithm is low. Lei et al. [11] proposed an improved Hilbert–Huang
transform based on ensemble empirical mode decomposition (EEMD) and sensitive mode IMFs,
and achieved good results to a certain extent. For EEMD [12,13], the method reduces the effect of mode
aliasing by adding auxiliary white noise; however, different implementation of signal plus noise may
produce a different number of modes, making the final averaging difficult [14]. To solve this problem,
Torres et al. [15] proposed complete ensemble empirical mode decomposition with adaptive noise
(CEEMDAN), which added adaptive white noise at each stage of decomposition, and then obtained
the modal components of each layer by calculating the unique residual signal.

For the degradation state recognition, Tian et al. [16] judged the degradation state of hydraulic
pump by calculating the Jensen–Renyi Divergence (JRD) distance between different characteristic
variables. For the fuzziness of the boundary of different degradation states, Wang et al. [17] used the
fuzzy c-means (FCM) method to cluster and identified the degradation state of bearing performance
according to the maximum membership degree law, the overall recognition rate reached 96%.
Zhang et al. [18] combined neighborhood preserving embedding (NPE) with Self-organizing Map
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(SOM) in bearing degradation state recognition, and achieved good results. As classical classifiers,
Support Vector Machine (SVM) [19,20] and Artificial Neural Network (ANN) [21,22] have been widely
used in the field of mechanical fault diagnosis and condition recognition. For instance, an incomplete
wavelet packet analysis (WPA) model composed of five-level discrete wavelet transform (DWT) and
four-level WPA was established in the literature [23], and it was applied to multi-layered ANN engine
failure classification. In Ref. [24], Laplace scoring algorithm is introduced to automatically select
sensitive features according to the the importance of each feature, and the multi-state recognition
of rolling bearing is realized based on particle swarm optimization-based support vector machine
(PSO-SVM). However, SVM also has some shortcomings, that is, after selecting the appropriate kernel
function, the quadratic programming of the function is required when dealing with the classification
problem [25]. In this process, a lot of storage space is needed. Tree-based ensemble learning is an
extensive and efficient method [26–28]. However, the traditional method is the model based on serial
structure, which will inevitably increase the computational complexity and time [29]. XGBoost [30],
as a new tree-based ensemble learning algorithm, can process data in parallel. It has minimal
specification requirements for characteristic values, which can intelligently handle missing data
and avoid overfitting [31]. Compared with SVM, the prediction accuracy is higher under relatively
less parameter adjustment time [32]. Compared with deep learning, XGBoost is easier to classify small
data sets [33].

In this paper, a new method for degradation state recognition of piston pump based on a further
optimized decomposition method–improved complete ensemble empirical mode decomposition
with adaptive noise (ICEEMDAN) [34–36] and XGBoost is proposed. Firstly, ICEEMDAN is used
to decompose the vibration signal to generate a series of IMFs. This method greatly suppresses the
illusive components and mode mixing caused by the initial decomposition process, and has better
decomposition results. According to the correlation coefficient method, the IMFs which have a great
correlation with the original signal is extracted, and the different characteristic values of IMFs are
analyzed and selected. Finally, the new characteristic values with low coincidence degree are selected
by PCA as the input, and the XGboost model is used for training to complete the degradation state
identification. The superiority of this method is verified by comparing with different algorithms.
An overview of the proposed methods and analysis steps in the paper are shown in Figure 2.

Figure 2. An overview of the proposed methods and analysis steps.
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2. Theoretical Background

2.1. Improved Complete Ensemble Empirical Mode Decomposition with the Adaptive Noise
(ICEEMDAN) Model

ICEEMDAN adds a special white noise Ek(w(i)) that is the k-th IMF component of Gaussian white
noise after EMD decomposition [34,37]. Then, by obtaining a unique residual, IMF is defined as the
difference between the existing residual signal and its local mean. The results show the residual noise
in IMF is greatly reduced, and the problem of illusive components and shortage of modal aliasing in
the early stage of decomposition is also solved [38].

Let Ek(·) denote the operator of the kth IMF component obtained by EMD, and M(·) denote the
operator for calculating the local mean of the signal. The relationship between the first IMF value c̃1

and the residual r1 are as

c̃1 =
1
N

N

∑
i=1

E1(x) = x−r1 (1)

where r1 = 1
N

N
∑

i=1
M(x(i)), x is the original signal, and N is the number of data points of the x.

The specific decomposition process of ICEEMDAN can be described as follows.

a. Adding white noise E1(w(i)) to the original signal x, x(i) is obtained as

x(i) = x + β0E1(w(i)) (2)

where w(i) represents the i-th white noise to be added.
b. EMD is used to calculate the local mean of x(i), and the first residual r1 was obtained by taking

the average of them; then, the first IMF value can be calculated by c̃1 = x − r1.
c. The second mode component value(IMF2) can be calculated by c̃2 = r1 − r2,

where r2 = 1
N

N
∑

i=1
M(r1 + β1E(w(i))).

d. Similarly, calculate the k-th IMF value according to c̃k = rk−1 − rk,

where rk =
1
N

N
∑

i=1
M(rk−1 + βk−1Ek(w(i))).

Until the obtained residual component can be further decomposed by EMD, ICEEMDAN can
be used to decompose IMF accurately, which lays a foundation for improving the accuracy of
state recognition.

2.2. eXtreme Gradient Boosting (XGBoost) Classifier Design

For the traditional radient Boosting Decision Tree (GBDT) algorithm, only the first order derivative
information is used. Moreover, due to the dependency between weak learners, it is difficult for GBDT
to train data in parallel [39]. XGBoost takes the Taylor expansion of the loss function up to the second
order and adds a regularization term to find the optimal solution, which is used to balance the decline
of the objective function and the complexity of the model to avoid overfitting [40]. The XGBoost
model is

ŷi =
K

∑
k=1

fk(xi), fk ∈ F (3)

where K is the number of decision-tree, fk(xi) is the function of input in the k-th decision-tree, ŷi is the
predicted value, and F is the set of all possible CART. The objective function of XGBoost includes two
parts: training error and regularization, which is
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Xobj =
n

∑
i=1

l(yi, ŷi) +
K

∑
k=1

Ω( fk) (4)

where
n
∑

i=1
l(y, ỹ) is used to measure the difference between the predicted value and the real value of

the loss function.
K
∑

k=1
Ω( fk) is the regularization term and Ω( fk) = γT + 1

2 λ‖w‖2.

T is the number of leaf node, w is the scores of leaf node, γ is the leaf penalty coefficient, and λ

ensures that the scores of leaf node is not too large.
The XGBoost algorithm uses the gradient boosting strategy, adds one new tree at a time instead of

getting all the trees at once, and continuously repairs the previous test results by fitting the residuals
of the last prediction:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ŷ(0)
i = 0

ŷ(1)i = f1(xi) = ŷ(0)
i + f1(xi)

ŷ(2)i = f1(xi) + f2(xi) = ŷ(1)i + f2(xi)

......

yi
(K) =

K
∑

k=1
fk(xi) = ŷ(K−1)

i + fK(xi)

(5)

Combined with Formulas (4) and (5), for the t-th decision tree, the objective function can be
updated to

L(K) =
n

∑
i=1

l(yi, ŷ(K−1)
i + fK(Xi)) + Ω( fk) (6)

In order to find the objective function which can be minimized, taking the Taylor expansion of the
loss function up to the second order. Then, the objective function is approximately as:

L(K) =
n

∑
i=1

[l(yi, ŷ(K−1)
i + fK(Xi)) +

1
2

hi f 2
K(Xi)] + Ω( fk) (7)

Add the loss function values of each data, and the process is as follows:

Xobj =
n
∑

i=1
[gi fK(xi) +

1
2 hi fK

2(xi)] + Ω( fk)

=
n
∑

i=1
[giwq(xi) +

1
2 hiw2

q(xi)] + Ω( fk) + λT + 1
2 λ

T
∑

j=1
w2

j

=
n
∑

j=1
[(∑i∈Ij

gi)wj +
1
2 (∑i∈Ij

hi + λ)w2
j ] + λT

(8)

where gi = ∂ŷK−1l(yi, ŷK−1) is the first derivative, hi = ∂2ŷK−1l(yi, ŷK−1) is the second derivative.
The optimal w and objective function values obtained by the solution are as

wj = − Gj

Hj + λ
(9)

Xobj = −1
2

T

∑
j=1

Gj

Hj + λ
+ λT (10)

where Gj = ∑i∈Ii
gi, Hj = ∑i∈Ij

hi.
During the training process, the model continuously calculates the node loss to select the leaf

node with the largest gain loss. XGBoost adds new trees by continuously splitting features. Adding
a tree each time is actually learning a new function fk(X, θk) to fit the residual of the last prediction.
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When K trees are obtained after training, the features of prediction samples will have a corresponding
leaf node in each tree, and each leaf node corresponds to a score. Finally, the corresponding scores of
each tree are added up to obtain the recognition prediction value of the sample [30]. The flow chart of
XGBoost is shown in Figure 3.

Figure 3. Flow chart of XGBoost.

3. Performance Degradation Test of Piston Pump

In this paper, the piston pump performance degradation test bench could collect the vibration
signals of the pump with different wear degrees. During the test, the slipper with different wear
degrees was replaced to simulate the phenomenon that the wear of the piston pump gradually increases
in actual work. Figure 4 is the physical picture of the test bench. The vibration sensor is installed by
magnetic base adsorption, and the vibration signal of pump shell is collected synchronously.

Figure 4. Test bench physical map.

In order to simulate the process of slipper wear degradation that affected the performance
of the piston pump, the wear amounts of slipper were 0 mm (no wear), 0.5 mm (slight wear),
1.5 mm (moderate wear) and 2.5 mm (severe wear) in turn. The test adopts 20 kHz sampling frequency
to collect the vibration signal. The test hydraulic system was under a pressure of 15 MPa, and the
vibration signals of the slipper with different degrees of wear were sequentially collected. In our
experiment, the data collected in the last 3 s are taken as effective degradation data, and the data
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obtained by each degradation degree are divided into 50 groups. Among the 50 sets of data, 30 sets are
used for training and 20 sets are used for testing.

4. Test Data Processing of the Vibration Signal

4.1. Pre-Processing of the Vibration Signal by ICEEMDAN

The vibration signals with different degradation degrees are shown in Figure 5, from which it can
be seen that there are great differences in the characterization of vibration waveforms under the same
working conditions. With the increase of slipper wear, the vibration of piston pump becomes more
and more intense, and the amplitude of vibration signal is larger and larger.

(a) (b)

(c) (d)

Figure 5. Vibration signals with four wear degrees. (a) vibration signal of slipper under normal
condition; (b) vibration signal of slipper with slight wear; (c) vibration signal of slipper under moderate
wear; (d) vibration signal of slipper under severe wear.

The vibration data of the tested pump under different states are selected and decomposed
by ICEEMDAN, and the results are shown in Figure 6. The ICEEMDAN algorithm is used to
decompose the vibration signals of four states into respective IMFs and a residual component for
model development. The IMFs generated by ICEEMDAN have different sensitivity to the degrees
of degradation. If the IMFs are analyzed directly, it is difficult to get the effective features related
to the original signal. The appearance of illusive components will cause the extraction of useless
features, increase the dimension of the feature set, and bring difficulties to the subsequent analysis [41].
By comparing correlation coefficients, the effective components in IMFs were screened out. The IMF
component with the largest correlation coefficient is selected as the research object in this paper.
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Figure 6. Decomposition results of ICEEMDAN. (a) the vibration signal under normal state
are decomposed by ICEEMDAN; (b) the vibration signal under slight wear are decomposed
by ICEEMDAN; (c) the vibration signal under moderate wear are decomposed by ICEEMDAN;
(d) the vibration signal under severe wear are decomposed by ICEEMDAN.

Then, the appropriate IMF component is selected by using the correlation coefficient method [42].
The calculation process of the correlation coefficient is shown in Formula (11):

R =

∞
∑

n=0
x (n) y (n)√

∞
∑

n=0
x2 (n)

∞
∑

n=0
y2 (n)

(11)

where x (n) is the sequence of effective IMF component, y (n) is the sequence of the original signal.
The correlation coefficient method can be used to express the correlation between the selected

IMF component and the original signal, the correlation coefficient values of the IMF components of the
four states are showed in Table 1. The larger the correlation coefficient is, the greater the correlation
between the IMF components and the original signal, the more effective information it contains. On the
contrary, the IMF component is more likely to be illusive.

152



Appl. Sci. 2020, 10, 6593

Table 1. The correlation coefficient values of the IMF components of the four states.

Status of
the Slippers

No Wear Mild Wear Moderate Wear Severe Wear

IMF1 0.944 0.891 0.593 0.505
IMF2 0.762 0.787 0.904 0.994
IMF3 0.423 0.186 0.415 0.523
IMF4 0.196 0.119 0.113 0.109
IMF5 0.135 0.500 0.034 0.011
IMF6 0.329 0.093 0.008 0.003
IMF7 0.156 0.028 0.006 0.002
IMF8 0.068 0.008 0.004 0.000
IMF9 0.007 0.004 0.007 0.000
IMF10 0.004 0.008 0.008 0.008
IMF11 0.003 – 0.008 0.000
IMF12 0.000 – 0.004 –

From the above table, we can see the correlation coefficient of each IMF component under the
four conditions. The IMF1 component under no wear condition, the IMF1 component under mild wear
condition, the IMF2 component with moderate wear degree, and the IMF2 component with severe
wear degree are selected respectively, and then the selected IMF is analyzed in time domain, frequency
domain, and entropy features.

4.2. Multi-Domain Feature Selection

The selected characteristic parameters of time domain and calculation methods are shown in the
Table 2. In the time domain characteristics, the root mean square reflects the irregular continuity of
vibration and the energy of signal. The peak–peak value can be used to represent the impact vibration
caused by the wear of the the inner edge. The spike degree of vibration signal waveform about piston
pump is expressed by peak value. The variance indicates the energy and intensity of vibration signal.
The degree to which vibration signals deviates from normal distribution is reflected by skewness and
kurtosis.The waveform index is a sensitive and stable parameter, which can well represent the slight
damage of slippers with different wear degrees. With the aggravation of wear, the impulsion index
and tolerance index increase obviously [43–45].

Table 2. Numerical explanation of time domain.

Time Domain Characteristic Expression

Root mean square F1 =

√
1
N

N
∑

i=1
x2(i)

Peak index F2 =
max(x)

F1

Peak-peak index F3 = max (x)− min (x)

Skewness index F4 =

N
∑

i=1
(|x(i)|−x̄)3

N×F3
1

Variance F5 = 1
N

N
∑

i=1
(x (i)− x)2

Tolerance index F6 = F1

1
N

N
∑

i=1
x(i)

Waveform index F7 = max(x)
x̄

Kurtosis index F8 =

N
∑

i=1
(|x(i)|−x̄)4

N×F1
4

Impulsion index F9 = max(x)∣∣∣∣ 1
N

N
∑

i=1
x(i)

∣∣∣∣
where x is the selected effective IMF, x̄ = 1

N

N
∑

i=1
x(i).
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In order to obtain degradation information from the frequency domain of vibration signals,
we select F10: average frequency, F11: frequency variance, F12: gravity frequency, F13: frequency
standard deviation, and statistical indexes about frequency domain in reference [46] are F14, F15, F16 in
the table. The average frequency reflects the vibration energy in the frequency domain. The frequency
variance, F14 and F15, indicate the dispersion or concentration of the spectrum. The position change of
the main frequency band is obtained according to gravity frequency, frequency standard deviation,
and F16. The numerical explanation is shown in Table 3.

Table 3. Numerical explanation of frequency domain.

Frequency Domain
Characteristic

Expression
Frequency Domain

Characteristic
Expression

F10
1
N

N
∑

i=1
s (i) F11

N
∑

i=1
(s(i)− F10)

2

F12

N
∑

i=1
fi s(i)

N
∑

i=1
s(i)

F13

√
N
∑

i=1
( fi−F12)

2s(i)

N

F14

N
∑

i=1
(s(i)−F10)

3

N(
√

F11)
3 F15

N
∑

i=1
(s(i)−F10)

4

N×F11
2

F16

√√√√√
N
∑

i=1
fi

2s(i)

N
∑

i=1
s(i)

s(i) is the spectrum value of effective IMF, i = 1, 2, 3, ..., N, N is the total number of spectral lines,
and fi is the frequency value of the i-th spectral line.

These characteristic values listed in Table 2 and Table 3 represent the degradation trend of the
piston pump from different perspectives, which in time domain and frequency domain vary with the
different degradation states. In order to further extract the piston pump characteristic information
of different degradation state, the permutation entropy [47], approximate entropy [48], information
entropy [49], and energy entropy [50] of effective IMFs are calculated, respectively, forming the feature
information set based on IMF frequency band. The four entropy features of each degradation state are
shown in Figure 7.

It can be seen from Figure 7 that different degradation states have a good hierarchy. With the
degree of wear increasing, the vibration signal over time series becomes relatively chaotic and complex,
but its entropy values are more stable.

4.3. Feature Filtering by PCA

Too high feature dimensions lead to over fitting and some of the features are highly correlated,
which will increase the unnecessary calculation burden [51]. Therefore, the PCA algorithm is used in
this paper to obtain new low-dimensional features, remove redundant features, and retain the main
information of original feature vectors while reducing the complexity of classification and recognition
model [52]. The results are shown in Figure 8.
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(a) (b)

(c) (d)

Figure 7. Entropy characteristics of four wear states. (a) permutation entropy in different wear states;
(b) approximate entropy under different wear states; (c) information entropy under different wear
states; (d) energy entropy under different wear conditions.

Figure 8. Cumulative contribution rate of different principal components under four wear states.

For the convenience of calculation, the coincidence degree of cumulative contribution rate under
different degradation states should be high, and we need the same number of principal components
in different degradation states [43]. It can be seen from Figure 8 that, when the number of principal
components is 6, the cumulative contribution rate of the four degradation states is about 96.4%,
and have a high degree of coincidence and contain most of the degradation information of the
feature set. When there are too many principal components, the interpretation degree of redundant
principal components is smaller than that of a single variable, which will only increase the calculation
time and complexity of the model. On the contrary, when there are too few principal components,
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the whole feature set can not be expressed, and if different degradation states have different numbers
of principal components, the calculation will become more complex and reduce the accuracy of model
prediction. Therefore, the first six principal components are used to replace the original 20-dimensional
degenerate feature vector, which reduces the data dimension and calculation cost. The first six
principal components are used as new feature vectors to construct the training set and test set of
XGBoost model respectively.

5. Degradation State Recognition with XGBoost

5.1. Parameter Optimization for the XGBoost Model

In order to improve the performance of the model, it is necessary to adjust the XGBoost
parameters. The XGBoost algorithm mainly includes three types of parameters: general parameters,
Booster parameters, and task parameters. Each type of parameter includes several specific
parameter values, among which the booster parameters have a greater impact on the algorithm
performance. In this paper, on the basis of fixing other parameters, changing the booster parameters:
max depth (the maximum depth of the tree), the min child weight (minimum sum of instance weight
needed in a child) and n estimators (number of base classifiers) to find the optimal parameters,
which can avoid the over-fitting of the model and improve the model accuracy.

The maximum depth of the trees and the min child weight are two parameters that affect each other.
If the parameters are optimized in turn, they will only become disadvantages of local optimization.
Moreover, the amount of data in this paper is small; therefore, we can use the grid search to select
the maximum depth of the trees and the min child weight at the same time. The results are shown
in Figure 9.

Figure 9. The relationship between recognition accuracy and max depth, min child weight.

When the maximum depth of the tree is 3 and the weight sum of leaf nodes is 1, the average
state recognition accuracy is the highest, which is 0.9917. Thus, the max depth = 3 and the min child
weight = 1. Fixing the above two parameters, the number of decision trees was selected by logarithmic
loss function to evaluate the probability output of XGBoost classifier [53]. The logarithmic loss function
is defined as:

σ = − 1
N

N

∑
i=1

M

∑
j=1

yij log(pij) (12)

where N is the input sample size, M is the number of categories, yij represents the real category of the
input data points, and pij is the probability that the i-th data point predicted by the XGBoost classifier
belongs to the j-th class. The results are shown in Figure 10.
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Figure 10. Determination of the number of trees.

The closer the value of logarithmic loss is to 0, the higher the accuracy of the classifier is. In this
paper, when the number of trees is 167, the logarithmic loss value is −0.0061, which is the largest,
so the number of the trees is equal to 167. The parameters for XGBoost are shown in the Table 4,
and the remaining parameters are the default values.

Table 4. Parameters for XGBoost.

Parameter Numerical Value

Max depth 3
Min child weight 1

N estimators 167
Objective multi: softmax

5.2. Experimental Results and Analysis

In order to better verify the efficiency and correctness of this method, K-fold cross validation [54]
is used to calculate the recognition accuracy of the XGBoost model. The data set is divided into 10 parts,
among which six parts were taken as training data, and the remaining four parts were taken as test
data in turn for experiments. The average value of recognition accuracy is taken as the final result.
Moreover, the method adopted in this paper is also compared with ANN, SVM, and GBDT shown in
Table 5. It is found that, when the number of hidden layer neurons of ANN is 12, the effect is better,
while the kernel function of SVM is RBF, the penalty coefficient is 4, and gamma is 0.1. By adjusting
and optimizing the parameters of GBDT, n estimators = 20, max depth = 3, and min samples
split (the minimum number of samples needed when the internal nodes are divided again) = 10.

Table 5. Comparison of degradation state recognition results.

Classification Method Average Recognition Accuracy Average Decision Time (s)

ANN 0.991 0.094
SVM 0.997 0.012

GBDT 0.994 0.006
XGBoost 0.997 0.003

The above table shows the average accuracy and average calculation time of multiple status
recognition verifications. As you can see from the table, the average recognition accuracy of the
four algorithms has little difference, possibly because the feature values extracted by the method

157



Appl. Sci. 2020, 10, 6593

proposed in this paper have good discrimination—among which SVM and XGBoost have the highest
recognition accuracy of 0.997. SVM takes a long calculation time because of the kernel function. Thus,
when the performance of the computer is the same, the average decision time of XGBoost is less
than that of SVM, which is 0.03 s. Compared with the traditional GBDT model, XGBoost adds the
control of model complexity and pruning processing, which makes the trained model difficult to
overfitting, and the calculation time is relatively less. The average recognition rate of GBDT is 0.994,
but the average decision time is lower than SVM and ANN. ANN needs to iterate repeatedly to get the
ideal classification effect, so it has higher average decision time than three other algorithms. In the
complex working environment, the vibration data of piston pump are complex and changeable, so it is
necessary to extract a variety of characteristics from it to carry out effective diagnosis. Compared with
ANN, the diagnostic accuracy of XGBoost can be improved by 0.001 to 0.013, and there is no need for
a tedious parameter optimization process. The XGBoost algorithm can not only ensure high diagnosis
accuracy but also reduce calculation time. In order to further prove the effectiveness of the present
work in this paper, a variety of methods are introduced for comparison. The comparative results are
shown in Table 6.

Table 6. Performance comparison for different methods.

Number
Feature

Extraction Method
Feature

Reduction Method
Classification Technique

Recognition
Rate (%)

1

EEMD, Multi-domain
features (time domain,

frequency domain,
entropy)

PCA GBDT 98.2

2
EEMD, Multi-domain

features PCA SVM 98.6

3
EEMD, Multi-domain

features – XGBoost 92.4

4
EEMD, Multi-domain

features PCA XGBoost 97.1–100

5
Multi-domain

features PCA XGBoost 69.5

6
ICEEMDAN, Multi-

domain features – XGBoost 94.5–99.2

Present work
ICEEMDAN, Multi-

domain features PCA XGBoost 98.3–100

The results are shown in Table : in the case of no data preprocessing, the recognition rate is low
due to the influence of noise. Compared with EEMD, after ICEEMDAN preprocessing, the recognition
rate will be relatively high. Therefore, the proposed method effectively identifies degraded states.
It can maintain mechanical equipment through timely judgment, which has high practical value in the
fault diagnosis of piston pump.

6. Conclusions

In this paper, ICEEMDAN is used to denoise the vibration signal of the piston pump, PCA is used
to reduce the feature dimension, and the state recognition based on XGBoost is carried out to identify
the wear state and category of the piston pump slipper. The experimental results show that:

a. The ICEEMDAN can decompose the vibration signal of piston pump adaptively, improve the
decomposition efficiency, and suppress phenomena of mode mixing. It is feasible to select an
effective IMF component by using correlation coefficient.

b. Through time domain, frequency domain, and entropy, the deterioration process of piston pump
can be tracked and identified comprehensively. The PCA is used to reduce data dimension and
calculation cost, which improves the accuracy and efficiency of state identification.
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c. The average recognition accuracy of slipper wear state of piston pump based on ICEEMDAN and
XGBoost is 99.7%. Compared with ANN, GBDT, and SVM algorithm, XGBoost identifies four
different wear states better and saves the computing time, which highlights the advantages of
XGBoost after parameter optimization in pattern recognition.
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Abstract: The health condition monitoring of rotating machinery can avoid the disastrous failure and
guarantee the safe operation. The vibration-based fault diagnosis shows the most attractive character
for fault diagnosis of rotating machinery (FDRM). Recently, Lempel-Ziv complexity (LZC) has been
investigated as an effective tool for FDRM. However, the LZC only performs single-scale analysis,
which is not suitable to extract the fault features embedded in vibrational signal over multiple scales.
In this paper, a novel complexity analysis algorithm, called hierarchical Lempel-Ziv complexity
(HLZC), was developed to extract the fault characteristics of rotating machinery. The proposed
HLZC method considers the fault information hidden in both low-frequency and high-frequency
components, resulting in a more accurate fault feature extraction. The superiority of the proposed
HLZC method in detecting the periodical impulses was validated by using simulated signals.
Meanwhile, two experimental signals were utilized to prove the effectiveness of the proposed HLZC
method in extracting fault information. Results show that the proposed HLZC method had the best
diagnosing performance compared with LZC and multi-scale Lempel-Ziv complexity methods.

Keywords: feature extraction; fault diagnosis; Lempel-Ziv complexity; rotating machinery

1. Introduction

Rotating machinery is commonly used in modern industries, such as the aero-engine, vehicle,
ship, and railway industries [1]. In industrial applications, the strict working environment may result
in localized damage on rotating machinery. If the damage cannot be timely diagnosed, it may cause
disastrous failure and serious economic loss. Therefore, it is crucial to conduct the fault diagnosis of
rotating machinery (FDRM) so as to ensure its safety operation [2].

Until now, many advanced techniques have been developed to accomplish the FDRM, such as the
vibration-based fault diagnosis method [3,4], acoustic emission-based fault diagnosis method [5,6],
and rotary encoder-based fault diagnosis method [7]. Among these techniques, the vibration signal
method is most widely applied in industrial applications due to the its advantage of easy measurement
and high scalability [8]. Generally, three main stages are included in the vibration-based method: data
collection, fault feature extraction, and pattern identification. During the three stages, the fault feature
extraction lays a good foundation for FDRM. Some advanced fault feature approaches have been
proposed for the FDRM, such as blind source separation [9], wavelet-based method [10], and adaptive
decomposition methods [11].

Unfortunately, the complex dynamical structure and complex operating conditions of rotating
machinery often generate nonlinear and non-stationary characteristics in the measured vibration
signals, resulting in the difficulty in extracting the weak fault characteristics from the vibration
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signals [12]. Thanks to the rapid development of complexity theory, some complexity indexes are used
to extract fault features of rotating machinery, such as Lempel-Ziv complexity (LZC) [13], approximate
entropy [14], fuzzy entropy [12,15], permutation entropy [16,17], symbolic dynamic entropy [18],
and multi-scale entropy [19]. Related research have indicated that LZC is powerful in analyzing
vibration signals of mechanical systems. Yan et al. [13] used LZC to distinguish different bearing failure
severity. Hong et al. [20] calculated LZC after wavelet transformation to recognize the fault severity of
bearing. Cui et al. [21] proposed a signal decomposition and reconstruction method based on LZC and
the double-dictionary matching pursuit. Meanwhile, Cui et al. [22] proposed a fault diagnosis method
that was based on Sparsogram and LZC. Moreover, Bai et al. [23] utilized the permutation of the LZC
to quantify the complexity of the signal, whereas Yin et al. [24] proposed a novel symbolic aggregate
approximation and LZC method for fault diagnosis of rolling bearings.

However, the existing LZC methods have one common problem when analyzing the vibration
signals. Since the fault information is usually embedded in vibration signals over different scale
domains [25], the LZC-based methods only perform single-scale analysis, and thus the fault
characteristics cannot be comprehensively described. In order to match the fault characteristics
comprehensively, we proposed multi-scale Lempel-Ziv complexity (MLZC) to extract the fault features
over multiple scales by multi-scale analysis [26]. However, the coarse-grained process is actually a
linear smoothing process, which only considers the low-frequency components through the averaging
process, and thus the fault information of the high-frequency component is discarded. In actual
application, the fault information is embedded in both the low–high and high-frequency components
of measured vibration signal. For example, a real vibration signal and its corresponding frequency
spectrum are shown in Figure 1a,b, respectively. As can be seen, both the low-frequency (0–500 Hz) and
high-frequency (2500–3500 Hz) components contain the main fault information of rotating machinery.
Therefore, the fault extraction performance of MLZC still needs to be improved.

 
Figure 1. (a) The waveform of measured rating machinery vibration signals, and (b) its corresponding
frequency spectrum.

To overcome such defects, this paper developed a novel approach called hierarchical Lempel-Ziv
complexity (HLZC) to quantify the complexity from the measured time series. Compared with
the MLZC method, HLZC utilizes both the low-frequency components generated by averaging the
components and the high-frequency components generated by taking the difference of components to
produce the sub time series in each layer. The merits of our proposed HLZC method in fault feature
extraction are verified using both synthetic signals and experimental signals. Results demonstrated
that our proposed HLZC method is superior to LZC and MLZC in extracting fault characteristics with
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high stability. After the HLZC-based feature extraction, we combined the HLZC with support vector
machine (SVM) classifier [27] to accomplish the intelligent fault diagnosis of rotating machinery.

The remainder of this paper is organized as follows. Section 2 introduces the fundamentals
of our proposed HLZC method. Moreover, the superiority of HLZC is validated using simulated
impulsive signal through comparing with LZC and MLZC methods. Section 3 describes the framework
of HLZC-based intelligent fault diagnosis method. Section 4 provides the experimental variation using
two case studies. Finally, Section 5 draws the final conclusion of this paper.

2. Proposed Hierarchical Lempel-Ziv Complexity

2.1. Lempel-Ziv Complexity

LZC, as a nonlinear method, has been proven to be an efficient tool to measure the complexity for
a given time series. LZC consists of two basic operations: copy and insert [20]. The LZC algorithm can
be detailed as

(1) Cover the finite sequence x(t) into 0–1 sequence by comparing with the median value Td using
Equation (1). Then, we can obtain the symbol series SN = {s1s2 . . . sN}.

si =

{
0, if x(i) < Td
1, otherwise

(1)

(2) Set the initial value Sv,0 = {}, Q0 = {}, CN(0) = 0, and i = 1. Note that Sv and Q represent the
substrings of the symbol series SN, and CN represents complexity counter.

(3) Let Qi = {Qi−1si} and judge whether Qi belongs to Sv,i−1 =
{
Sv,i−2si−1

}
. If so, set

CN(i) = CN(i− 1) and i = i + 1. Otherwise, set Qi = {}, CN(i) = CN(i− 1) + 1, and update i = i + 1.
(4) Repeat Step (3) until the end of symbol series SN = {s1s2 . . . sN}, and then the CN(N) can

be obtained. CN(N) is the last complexity counter, which reflects upon the number of all different
subsequences contained in the original data sequence.

(5) Normalize the CN(N) to obtain relatively independent indicator Cn,N using Equations (2) and (3).

Cn,N =
CN(N)

CUL
(2)

CUL = lim
N→∞CN(N) ≈ N

log2 N
(3)

2.2. Multi-Scale Lempel-Ziv Complexity

On the basis of LZC and coarse-grained procedure [26], MLZC can be summarized into two steps.
(1) Conduct the multiple series by the coarse-graining analysis; (2) calculate the LZC values of each
coarse-grained time series.

(1) Given an arbitrary time series X
{
x(k), k = 1, 2, · · · , N

}
, construct consecutive coarse-grained

time series
{
y(τ)

}
according to Equation (4).

yτj =
1
τ

jτ∑
i=( j−1)τ+1

xi 1 ≤ j ≤ N
τ

(4)

where τ is a positive integer. The obtained coarse-grained time series
{
y(1)

}
is equal to the original time

series when τ = 1.
(2) Calculate the LZC for each coarse-grained time series according to the definition of LZC as

written in Equation (5).
MLZC(x, τ) = LZC(yτ) (5)
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The flowchart of MLZC is drawn in Figure 2. Additionally, we set the parameter scale τ = 20 in
the paper. The parameter τ = 20 has been proven to be effective using experimental tests for multi-scale
analysis in [12,15,18,28].

mτ τ<

τ τ= +

y τ

y τ

 

Figure 2. The flowchart of multi-scale Lempel-Ziv complexity (MLZC).

However, the MLZC algorithm only uses the low-frequency components generated by the
multi-scale procedure for feature extraction, which unavoidably discards some useful fault information
hidden in the high-frequency components. To address these shortcomings of MLZC, this paper
developed a novel method called HLZC. First, the hierarchical decomposition is adopted to generate
sub time series called hierarchical series. Second, the LZC values of all hierarchical nodes are all
computed for comprehensive complexity estimation.

2.3. Hierarchical Lempel-Ziv Complexity

In this subsection, a novel method called HLZC is proposed by combining the hierarchical
decomposition and Lempel-Ziv complexity. The hierarchical decomposition can decompose an
arbitrary time series into high-frequency components and low-frequency components [29]. Figure 3
gives an example of the structure of hierarchical components decomposed by hierarchical decomposition.
The detailed calculation procedures of our proposed HLZC method can be summarized into four steps
as follows.

 

Figure 3. The structure of hierarchical components with three hierarchical layers.

(1) For an arbitrary time series X
{
x(i), i = 1, 2, · · · , N

}
, the averaging operator Q0 and differential

operator Q1 can be expressed as follows:
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Q0(x) =
x(i) + x(i + 1)

2
i = 1, 2, · · · , N − 1 (6)

Q1(x) =
x(i) − x(i + 1)

2
i = 1, 2, · · · , N − 1 (7)

where Q0(x) and Q1(x) denote the low-frequency component and high-frequency component for a
given time series, respectively.

(2) Conducting of the operators Qj matrix (j = 0 or 1) can be adaptively generated according to the
length of the time series N as follows:

Qj =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
2

(−1)
2

j
0 0 · · · 0 0

0 0 1
2

(−1)
2

j · · · 0 0
...

...
...

...
...

...
...

0 0 0 0 · · · 1
2

(−1)
2

j

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
N/2×N

(8)

(3) Repeat step (2) to obtain the hierarchical components Xk,e as Equation (9).

Xk,e = Qk
rk
·Qk−1

rk−1
· · · · ·Q1

r1
·x (9)

where e is the number of hierarchical nodes. For hierarchical layer k, e can be obtained as follows:

e =
k∑

m=1

2k−mrm (10)

where [r1, r2 · · · , rk] represents the unique vector corresponding to the integer e, and {rm, m = 1, . . . , k} ∈
{0, 1} indicates the averaging or differential operator at the kth layer.

(4) Compute all the hierarchical components by repeatedly using steps (1)–(3). Then, calculate
LZC values of all the nodes. The HLZC is the set of all LZC values expressed as

HLZC(X, k) = LZC
(
Xk,e

)
(11)

The calculation process of HLZC is shown in Figure 4.

e =

ke <

X

e e= +

k eX

k eX

 
Figure 4. Flowchart of the hierarchical Lempel-Ziv complexity (HLZC) method.
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2.4. Simulated Impulsive Signal

In this subsection, one impulsive signal was adopted to verify the advantage of proposed HLZC in
detecting various fault types. Three different bearing fault types were utilized in the simulated signal:
bearing with ball fault, bearing with inner race fault, and bearing with outer race fault. The number
of sample points of the synthetic signal was 24,600, which was cut out by a sliding window of 2048
points with a step length of 256 points. Three simulated faulty bearing signals in time domains are
shown in Figure 5a. For comparison purposes, LZC, MLZC, and HLZC were all utilized to process the
impulsive signals. In this paper, three commonly used distance measures—Euclidean distance (ED),
Chebychev distance (CD), and Minkowski distance (MD)—were all applied to verify the advantage of
our proposed method in tracking the impulses. Note that we averaged the first 10 samples as normal
samples. The distance value between each sample and normal samples was computed for comparisons.
Here, we set the scale τ = 1:20 for MLZC and the number of hierarchical layers k = 4 for HLZC methods.

The obtained results are shown in Figures 5–7. Two conclusions can be drawn from Figures 5–7 as
follows. First, it can be observed from (b) and (c) of three figures that the original LZC and MLZC
could not detect the impulses derived from three different bearing fault types, resulting in failure of
bearing feature extraction. In contrast, our proposed HLZC method not only identified three different
bearing types by tracking the impulse, but also generated less fluctuation and high accuracy, as shown
in (d) of the three figures. Second, the results using the three distance measures had a high consistency,
and thus the fault detection ability of three methods can be listed as HLZC >MLZC > LZC. This further
demonstrated that our proposed HLZC method has a significant advantage in fault feature extraction.

To explain the advantage of our proposed HLZC in detecting the impulses, we enlarged the bearing
with outer race fault signal and conducted the fast Fourier transform (FFT) analysis. The time domain
waveforms and its corresponding frequency spectra are shown in Figure 8a,b, respectively. As can
be seen, the fault information was mainly located in the high-frequency component (1000–1500 Hz).
The fault information embedded in the high-frequency component was ignored using the traditional
MLZC method, resulting in worse impulsive detection performance. Compared with the MLZC
method, HLZC utilized both averaging and differencing process to extract the fault information hidden
in both low-frequency and the high-frequency components. Therefore, the proposed HLZC method
generates the best performance in fault feature extraction.

 
Figure 5. Results of sliding window analysis of Lempel-Ziv complexity (LZC), MLZC, and HLZC
methods: (a) the simulated impulsive signal, (b) the Euclidean distance (ED) value of LZC, (c) the ED
value of MLZC, and (d) the ED value of HLZC.
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Figure 6. Results of sliding window analysis of LZC, MLZC, and HLZC methods with Chebychev
distance (CD): (a) the simulated impulsive signal, (b) the CD value of LZC, (c) the CD value of MLZC,
and (d) the CD value of HLZC.

 

Figure 7. Results of sliding window analysis of LZC, MLZC, and HLZC methods with Minkowski
distance (MD): (a) the simulated impulsive signal, (b) the MD value of MLZC, (c) the MD value of LZC,
and (d) the MD value of HLZC.

Note that the fault frequency (BPFO) obtained using the envelope spectrum analysis was equal
to the side band interval frequency of bearing intrinsic frequency in the conventional FFT method.
First, the frequency spectrum using FFT could not detect the bearing fault frequency (BPFO) directly.
It can be seen in Figure 8b that the bearing faults could be diagnosed by observing the intrinsic
frequency and its harmonics. Second, we also conducted the envelope spectrum analysis. The fault
frequency (BPFO) and its harmonics can be clearly observed in Figure 8c. Because the bearing
fault can generate repetitive impulses, the measured vibration signal is thus a typical amplitude-
and frequency-modulated (AM-FM) signal. The amplitude-modulated (AM) signal can be obtained
by using envelope demodulated analysis, and then the fault frequency (BPFO) can be obtained by
conducting the FFT on the AM signal.
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Figure 8. The simulated bearing signal with outer race fault: (a) the waveform, (b) its corresponding
fast Fourier transform (FFT) spectrum, (c) the envelope spectrum.

3. Proposed Fault Diagnosis Framework

3.1. Support Vector Machine

In this paper, support vector machine (SVM) [30] was taken as the classifier to accomplish the
pattern identification. SVM is a typical supervised learning method for recognition and regression
analysis. The kernel function plays a significant role in the SVM classifier, which is not only important
to reduce the computation cost but also useful in transforming the features into high dimension so as
to construct the hyper-plane [28,31].

Three different used kernel functions of SVM consist of linear kennel function, polynomial kernel
functions, and radial basis function (RBF) kernel function, which can be expressed as follows:

(1) Linear kernel
K(x, xi) =< x·xi > (12)

(2) Polynomial kernel
K(x, xi) = (< x·xi > +c)d (13)

(3) Radial basis function (RBF) kernel

K(x, xi) = exp
{
−γ‖x− xi‖2

}
(14)

where γ > 0, and γ is the kernel parameter.
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Among these functions, the RBF function is most widely used due to its good performance,
in which there are two parameters—penalty parameter C and kernel parameter γ—which require
optimization. Here, the grid search method was utilized to optimize the two parameters [28]. It is
worth mentioning that the dataset was randomly split into training and testing subsets through a k-fold
cross-validation (CV). Every k subset takes turns to perform as an independent test set for the rest of
the (k − 1) training subsets. The test sets being independent provides the necessary compensation for
CV so as to enhance the consistency in the output. In this paper, the fivefold CV was adopted to adjust
the model parameters. The coarse grid points were firstly selected through the exponential growing
sequence 2−I to 2+I, where I is an integer. The optimal parameters for C and γ are assumed as ( j, k),
and the values are further optimized by using finer grid, in which the respective search area is 2 j± f and
2k± f . In this paper, we set the range of f as −0.75 ≤ f ≤ 0.75, with an interval of 0.25.

It is worth noticing that the one-against-one approach is applied to solve the multi-class
classification problem in this paper [32]. To deal with the k number classes, the k(k − 1)/2 SVM
models are required for classification. For the present work, LIBSVM software package was used to
deal with the multiple-fault diagnosis of rotating machinery.

3.2. Proposed Method

With the help of the advantages of HLZC and SVM, a novel intelligent fault diagnosis scheme
called HLZC-SVM is proposed in this paper. There are two stages in the proposed intelligent fault
diagnosis framework. In the first stage, HLZC is employed to extract the fault features from the
vibration signals of rotating machinery. In the second stage, SVM is adopted to identify different fault
types. Five steps are included in the FDRM method as follows:

(1) Measure the vibration data for various conditions of rotating machinery;
(2) Partition the measured vibration data into training datasets and testing datasets;
(3) Utilize HLZC to extract fault features from the vibration signals. Note that the hierarchical

decomposition layers of HLZC is set as k = 4, and thus 31 features will be obtained;
(4) Train SVM classifier using the training features;
(5) Test the trained SVM classifier, wherein the output of SVM can be used to recognize the different

fault types of rotating machinery.

The flowchart of the proposed fault diagnosis method is shown in Figure 9.

 

Figure 9. Flowchart of the proposed fault diagnosis method.
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4. Experimental Validations

In order to validate the effectiveness of the proposed HLZC method in extracting the fault features,
we designed two experiments in this paper. The two experiments were conducted on a fault simulator
made by SpectraQuest called machinery fault simulator (MFS), which is drawn in Figure 10. The MFS
consists of rolling bearings, a driven motor, and a three-way gearbox. At the rear of the gearbox,
a magnetic clutch was used to generate the radial load. To collect the vibration data, we installed an
acceleration transducer on the top of the gearbox. The rotating speed of the motor was kept at constant
vale of 3000 rpm. Note that a 5 in-lbs of torque was added to simulate the machine load environment.
The sampling frequency was 12,800 Hz. To simulate different faults, we replaced the test bearing and
test gear by artificial damaged gear and artificial local damaged bearing, as shown in Figure 11.

 
Figure 10. The experimental platform and its schematic diagram.

 
Figure 11. Faulty gears and bearings: (a) pitting in the driving tooth, (b) broken tooth in the driving
tooth, (c) missing tooth in the driving tooth, (d) ball fault, (e) inner race fault, (f) outer race fault,
(g) grooving in the inner race, (h) grooving in the outer race.

Experiment 1 aimed to show the superiority of the proposed HLZC method for single FDRM,
which only covers single fault types of rotating machinery. Experiment 2 aimed to simulate the
compound fault of rotating machinery including the bearing and gear fault, which was used to validate
the superiority of the proposed HLZC method for compound FDRM. In this experiment, 50% of
samples were randomly chosen as training samples, and the remainder of samples were used as testing
samples. For comparison purposes, LZC and MLZC were all applied to process the data collected
from the two experiments.

4.1. Experiment 1

Experiment 1 consisted of one healthy condition and five single fault conditions, including inner
race fault (IRF), ball fault (BF), grooving in the inner race (GIR), grooving in the outer race (GOR),
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and outer race fault (ORF). There were 100 samples in each class and 600 samples in total. Meanwhile,
the data length was 2048 points. The waveforms under six healthy conditions are shown in Figure 12.
Table 1 gives the detailed information of six healthy conditions, including class label, damage diameter,
and the numbers of training and testing data.

 
Figure 12. The time domain waveforms of rotating machinery under six healthy conditions in
Experiment 1: (a) health condition (Normal), (b) ball fault (BF), (c) inner race fault (IRF), (d) outer race
fault (ORF), (e) grooving in the inner race (GIR), (f) grooving in the outer race (GOR).

Table 1. Detailed information of six conditions in Experiment 1.

Fault Class Class Label Damage Diameter (mm)
Number of

Training Samples
Number of

Testing Samples

Normal 1 0 50 50
Ball fault 2 0.01 50 50

Inner race fault 3 0.01 50 50
Outer race fault 4 0.01 50 50

Grooving in the inner race 5 0.2 50 50
Grooving in the outer race 6 0.2 50 50

Following the steps in Section 3, we firstly utilized the proposed HLZC method to extract the
fault features. Then, the obtained features were fed into SVM for classification. The obtained results
are shown in Figure 13. It can be seen from 0 that 16 samples were misclassified and the final accuracy
was 94.67%. For comparison, the MLZC and LZC were also tested. To avoid randomness, we carried
out 20 trials. Figure 14 and Table 2 illustrate the detailed recognition results using three methods. First,
the proposed HLZC method achieved the highest average classification accuracy of 94.3% (ranging
from 91.33% to 95.67%). This can be attributed to the high frequency components considered in the
HLZC method, which can contribute more information in the high frequency to generate a more
accurate estimation of complexity. Second, the MLZC method obtained the second-highest average
classification accuracy of 91.72% (ranging from 89.33% to 93.67%). Third, the LZC method had the
lowest classification accuracy of 63.47% (ranging from 61.67% to 66.33%) due to the ineffectiveness of
single analysis. It is indicated that HLZC had the best performance in extracting fault features among
the three methods.
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Figure 13. Confusion matrix using the proposed HLZC method for Experiment 1.

 
Figure 14. Diagnosis results of 20 trials using three methods in Experiment 1.

Table 2. Detailed classification accuracy of the experimental datasets in Experiment 1 and Experiment 2.

Experiments

HLZC MLZC LZC

Accuracy (%) Accuracy (%) Accuracy (%)

Max Min Mean Max Min Mean Max Min Mean

1 95.67 91.33 94.30 93.67 89.33 91.72 66.33 61.67 63.47
2 97.20 92 94.72 90 84.80 87.82 45.20 36 41.22

4.2. Experiment 2

Experiment 2 aimed to investigate the performance of HLZC in compound fault diagnosis of
rotating machinery. Experiment 2 was composed of five compound fault types: health condition
(Normal), broken tooth in the driving tooth with inner race fault (BI), missing tooth in the driving
tooth with inner race fault (MI), health tooth in the driving tooth with inner race fault (NI), and pitting
in the driving tooth with inner race fault (PI). There were 100 samples in each class and 500 samples
in total. In addition, the data length was 2048 points. The waveforms under five working types are
shown in Figure 15. The detailed information of five compound fault conditions is shown in Table 3.
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Figure 15. The time domain waveforms of rotating machinery in Experiment 2: (a) health condition
(Normal), (b) broken tooth in the driving tooth with inner race fault (BI), (c) missing tooth in the
driving tooth with inner race fault (MI), (d) health tooth in the driving tooth with inner race fault (NI),
(e) pitting in the driving tooth with inner race fault (PI).

Table 3. Detailed information of five conditions in Experiment 2.

Fault Class Class Label Damage Diameter (mm)
Number of

Training Samples
Number of

Testing Samples

Normal 1 0 50 50
BI 2 0.01 50 50
MI 3 0.01 50 50
NI 4 0.01 50 50
PI 5 0.01 50 50

Like Experiment 1, the proposed HLZC-SVM method was also utilized for fault type identification
of rotating machinery. Figure 16 shows the classification results. From Figure 16, we can see that there
were a total of 10 samples misclassified with an accuracy of 96%. For comparison, the LZC and MLZC
methods were also tested. The testing accuracies of the four methods are listed in Table 2 and Figure 17.
As can be seen, the LZC-SVM was not effective, with an average classification accuracy of 41.22%.
Second, combined with multi-scale analysis, the diagnosing performance of the MLZC-SVM method
was enhanced with the average classification accuracy of 87.82%. Lastly, the proposed HLZC-SVM
method had the highest average classification accuracy of 94.72%.

Figure 16. Confusion matrix using the proposed HLZC method for Experiment 2.
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Figure 17. Diagnosis results of 20 trials using three methods in Experiment 2.

To better evaluate the classifier performance, we calculated the receiver operating characteristic
(ROC) curves of HLZC-SVM, MLZC-SVM, and LZC-SVM methods using the experimental data. Here,
we ran each method 20 times. The average ROC curve chart and AUC mean value of five health
conditions of rotating machinery using three methods are shown in Figure 18. It can be observed from
Figure 18a that our proposed HLZC-SVM method had the best performance with the highest AUC
value for five health conditions (Normal with 1, BI with 1, MI with 0.99, NI with 0.99, and PI with
0.99). In contrast, the AUC values of MLZC-SVM and LZC-SVM for five health conditions showed a
decreasing trend, as shown in Figure 18b,c, respectively. Among the three methods, the LZC-SVM
method performed worst, in which the AUC values of five health conditions were only 0.5, 0.93, 0.53,
0.50, and 0.86. The comparison results further demonstrate that our proposed HLZC-SVM method
had the best classification ability compared with the other two methods.

Figure 18. Performance comparison between three methods: (a) HLZC-support vector machine (SVM),
(b) MLZC-SVM, and (c) LZC-SVM.

Moreover, random forest (RF) classifier was also applied for pattern identification for comparison.
The ROC curve chart and AUC value were used to evaluate classification performance. Figure 19
shows average ROC curve chart and AUC mean value after running 20 times. As can be seen, the
SVM classifier obtained a larger AUC value of 0.99 compared with RF classifier (AUC with 0.97),
which meant the SVM had a better classification performance in recognizing various fault types of
rotating machinery.

To gain a clear sense of the cluster ability of the extracted features using HLZC and MLZC
methods, we used two-dimensional projection for visualization with PCA, as drawn in Figure 20.
In 0a, it can be observed that the HLZC features of the five health conditions had a clear boundary and
each cluster was individually separate. However, for the MLZC method, a few features were mixed,
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resulting in difficulty for classification. This phenomenon indicated that the fault features extracted
using HLZC had more cluster ability than the MLZC method.

 
Figure 19. Performance comparison for different random forest (RF) and SVM.

 
Figure 20. Projections of two-dimensional visualization of the obtained features in Experiment 2:
(a) our proposed HLZC method, (b) traditional MLZC method.

We also tested the performance of our proposed HLZC method using different percentages of
samples for training (the remaining samples will be considered as testing samples). Eight percentages
were tested: 10% to 80%. To reduce randomness, 20 trials were conducted for each percentage.
The averaging of training and testing accuracies were calculated and their corresponding standard
deviations are illustrated in Figure 21. When the percentage increased to 50%, it achieved the highest
classification accuracy at 94.72%. Therefore, we selected 50% of samples for training to demonstrate
the advantage of our proposed HLZC method.

In order to discuss the influence of layer k, we applied the data of Experiment 2 for validation.
Figure 22 shows the obtained classification accuracies using different layer k. As can be seen, when the
layer k < 4, the classification accuracy will be significantly enhanced as the layer k rises. However,
a larger layer k will greatly enhance the central processing unit (CPU) time. We observed that when
the layer k = 4 increased to 5, the obtained classification accuracy was only improved by 0.08% from
94.72% (layer k = 4) to 94.80% (layer k = 5). However, the CPU time for layer k = 5 was 2116 s, which
was almost double that of layer k = 4 at 1095 s.

Moreover, there was one extremely useful byproduct of RF—variable importance
measures [33]—which was calculated to show the contribution of different components for the
final classification accuracy, as shown in Figure 23. Note that a lager importance value indicated that
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the component had a greater influence on final predictions. It can be seen that X50 generated by layer
k = 5 had a lower feature importance compared with that of component X40 generated by layer k = 4.
This phenomenon further indicated that the additional features generated by HLZC with k = 5 had a
small contribution on the final classification accuracy, which was well consistent with the classification
results in Figure 22. Considering both the classification accuracy and CPU time, we selected the layer
k = 4 for HLZC in this study.

Figure 21. The classification results of the proposed method using training by different percentages
of samples.

Figure 22. The mean classification accuracy and computation time using HLZC with different k.

 
Figure 23. The importance of each component for the HLZC method.
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For the MLZC method, we calculated the importance of each scale to show the contribution of
different scales using data collected from Experiment 2. The obtained results are shown in Figure 24.
It is worth mentioning that a lager importance value indicates that the component has a greater
influence on final predictions. It can be seen that when the scale factor τ > 20, the feature importance
values of components showed a decreasing trend. This phenomenon indicated that the larger scale
components (τ > 20) had a small contribution on the final classification accuracy.

 
Figure 24. The importance of each scale factor for the MLZC method.

Additionally, the data of Experiment 2 were applied for validation to discuss the influence of scale
factor τ. To reduce randomness, we conducted 20 trials conducted for each percentage. The testing
accuracies were calculated and their corresponding CPU time is illustrated in Figure 25 and Table 4.
As can be seen, when τ < 21, the classification accuracy will be significantly enhanced as τ rises. When
scale factor τ = 20, it achieves the highest classification accuracy with 87.82%. Moreover, the larger
scale means low calculation efficiency; thereby, we set scale factor τ = 1:20 in this paper.

 

Figure 25. The mean classification accuracy and computation time using MLZC with different scale
factor τ.

Table 4. Detailed classification accuracy of the experimental data using different scale factor τ.

Scale Factor τ 1 2 5 10 15 17 18 19 20 21

Max (%) 45.2 52 60 75 85 88 89 90 90 90

Min (%) 36 43 52 70 78 82 84 83 85 85

Mean (%) 41.22 45 57 73 82 85 86.4 87.2 87.82 87.2
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5. Conclusions

A novel complexity analysis algorithm called HLZC was proposed for fault diagnosis of rotating
machinery. The proposed HLZC can extract the fault information hidden in both low and high
frequency components through the hierarchical decomposition. After the fault extraction, we utilized
the SVM classifier to recognize different fault types of rotating machinery. To evaluate the performance
of the proposed HLZC-SVM method, we used one simulated signal and two experimental signals with
different fault types to verify the effectiveness of the HLZC-SVM method in FDRM. The comparison
results demonstrated that the proposed HLZC-SVM method yielded the highest average classification
accuracy of 94.3% and 94.72% for two cases, which was significantly higher than that of the LZ-SVM
method (63.47% and 41.22%) and the MLZC-SVM method (91.72% and 87.82%). This further reinforces
the fact that HLZC has certain advantages in fault feature extraction of rotating machinery. The main
contributions of this paper include:

(1) LZC was extended to hierarchical decomposition analysis, namely, HLZC;
(2) HLZC considered the fault information hidden in both low-frequency and high-frequency

components through conducting the averaging and differencing operations;
(3) A novel fault diagnosis scheme was proposed by combining HLZC and SVM;
(4) The proposed method was verified using both simulated and experimental signals.

There were some limitations for the proposed HLZC in fault diagnosis applications. First, although
the proposed HLZC was demonstrated to be effective for the fault diagnosis of rotating machinery,
it requires a large amount of labeled data for feature extraction and training the intelligent model for
classification, which is difficult to meet sufficient labeled requirement in real industrial application
scenarios. This limitation can be overcome by combing the feature knowledge transfer strategy with
HLZC in future work. Second, the proposed HLZC lacks the denoising process to remove strong
background noises so that it is difficult to extract the weak fault features from the strong noisy signal,
especially at the early fault stage. This issue can hopefully be solved by applying the symbolic
dynamic filtering to remove the noise-related fluctuations and reverse the fault-related information in
future work.
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Abstract: Data-driven machine learning techniques play an important role in fault diagnosis, safety,
and maintenance of the industrial robotic manipulator. However, these methods require data that,
more often that not, are hard to obtain, especially data collected from fault condition states and,
without enough and appropriated (balanced) data, no acceptable performance should be expected.
Generative adversarial networks (GAN) are receiving a significant interest, especially in the image
analysis field due to their outstanding generative capabilities. This paper investigates whether
or not GAN can be used as an oversampling tool to compensate for an unbalanced data set in
an industrial manipulator fault diagnosis task. A comprehensive empirical analysis is performed
taking into account six different scenarios for mitigating the unbalanced data, including classical
under and oversampling (SMOTE) methods. In all of these, a wavelet packet transform is used
for feature generation while a random forest is used for fault classification. Aspects such as loss
functions, learning curves, random input distributions, data shuffling, and initial conditions were also
considered. A non-parametric statistical test of hypotheses reveals that all GAN based fault-diagnosis
outperforms both under and oversampling classical methods while, within GAN based methods,
an average accuracy difference as high as 1.68% can be achieved.

Keywords: feature extraction; generative adversarial network; random forest; unbalance data;
fault diagnosis

1. Introduction

For data-driven machine learning techniques [1], it plays an important role in the machinery fault
diagnosis and prognostics [2,3]. Recently, deep learning [4] emerges as one that has been progressively
adopted to develop health monitoring systems for the machinery. One way of looking at deep learning
is as a feature engineering method [5] that automatically extracts features from the collected signals.
Propagating these signals from the input layer to layers with less and fewer neurons, the neural
network is forced to represent the input data space into a lower dimensional feature space, which,
in general, reduces overfitting and increases the accuracy.

Deep learning models such as convolutional neural networks [6], deep autoencoders [7], deep belief
networks [8], and deep Boltzmann machines [9] have achieved outstanding results in fault diagnosis,
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and other fields essentially due to the above-described dimensionality reduction effect. In the industrial
manipulator field, Nho Cho et al. [10] proposed an algorithm based on the multilayer perceptrons for the
manipulator actuator fault detection. Wang et al. [11] proposed a multi-data fusion with an optimized
convolutional neural network (CNN) for fault detection of rotating machinery. Ma et al. [12] proposed the
convolutional multi-time scale echo state network (ESN) to efficient classification. Three different ESNs
with different time scales were used to allow the recurrent neural network to successively refine the features
in a similar way of a kernel in a CNN. Due to the fast training of ESN, Long et al. [13] proposed a deep
echo state network optimized by particle swarm optimization to fault diagnosis of a wind turbine gearbox.
Hu et al. [14] present an approach with deep Boltzmann machine and multi-grained scanning forest to
effectively deal with industrial fault diagnosis. Wang et al. [15] proposed a new deep neural network model
based on a deep Boltzmann machine for condition prognosis. Lee et al. [16] proposed a real-time fault
diagnosis model using a deep neural network. Shao et al. [17] presented a continuous deep belief network
(CDBN) for bearings fault detection. Shen et al. [8] used a deep belief network with an optimized function
of Nesterov momentum (NM) for bearing fault diagnosis. Polic et al. [18] presented a new method of a
convolutional neural network encoder for feature extraction in tactile robotics. D’Elia et al. [19] based on
the study of how the power flows inside the time synchronous average of the ring gear and a modified
statistical parameter for planet gears fault diagnosis. Zaidan et al. [20] use a Bayesian hierarchical model
with utilizing fleet data from multiple assets to perform probabilistic estimation of remaining useful life for
civil aerospace gas turbine engines.

However, all the above models are critically dependent on a representative, balanced, large enough
data set that require data that, more often that not, are hard to obtain [21]. While data from a
healthy state are abundant, data from faulty states are rare, sparse, and hardly representative of
all possible faults. This could lead to low diagnosis precision in these intelligent fault diagnosis
techniques. Without appropriated data, these machine learning methods simply do not have acceptable
performance [22], and it is important to consider a method that mitigates such a data shortage.

As Robotic manipulators, they are wildly used in the industry as they can be used in a range of
tasks such as assembly, painting, or welding [23]. However, the transmission system of a manipulator
is prone to faults due to prolonged working periods [24]. Typically, these faults manifest in the
connection parts, bearings, gears, or gear shafts. A faulty manipulator will be less precise, less efficient,
less productive, and less secure—even though it could be a tricky task to obtain fault data for such
precision machinery. Therefore, the monitoring of the manipulator health condition with limited data
sources is of paramount interest.

For mitigating this, some fault diagnosis works resorted to the SMOTE. SMOTE stands for
Synthetic Minority Oversampling Technique and aims at compensating for the data unbalance of a
given class by increasing the number of samples in that class. Roughly, it creates a new synthetic sample
by interpolating two existing similar samples of the same class, the new sample having the same class
of the two originating samples [25]. SMOTE is a popular method but sometimes, by increasing the
number of samples, it will also increase the overlapping between classes. An alternative approach to
cope with the unbalanced data set problem is to resort to deep learning and in particular to generative
adversarial networks (GAN). The idea is to use the generative model of a GAN to generate enough
samples for effective training of the diagnoser. GAN was first proposed by Goodfellow [26] and
consists of two adversarial models (neural networks): a generator and a discriminator.

The learning process can be described as a min-max game. The generator produces synthetic
examples while the discriminator tries to decide whether the current input is either a real or a synthetic
example. Both models improve their performance simultaneously up to a Nash equilibrium using a
gradient-based optimization technique. The number of GAN applications has been steadily increasing.
A sample of recent applications is offered next. In the image processing field, Ledig et al. [27] presented
SRGAN, a generative adversarial network for image super-resolution. Isola et al. [28] demonstrated
that the conditional adversarial network is a promising approach for image-to-image translation tasks.
Based on the above comment, Zhu et al. [29] presented an approach for learning to translate an image
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from a source domain to a target domain in the absence of paired examples. Shao et al. [30] develop an
auxiliary classifier GAN (ACCGAN) to learn from mechanical sensor signals and generate realistic
one-dimensional raw data. Li et al. [31] proposed a novel fault detection method for 3D printers using
GAN which consider only normal condition signals with outstanding performance. Mao et al. [32]
used a GAN for an unbalanced data driven fault diagnosis of rolling bearings. In addition, for rolling
bearings, Jiang et al. [33] proposed a novel anomaly detection approach based on GAN with only
health data. Li et al. [34] applied a GAN for the feature space learning in fault diagnosis of 3D printers
using only one sample of each faulty state. Wang et al. [35] proposed a method based on a conditional
variational auto-encoder and a generative adversarial network for unbalanced fault diagnosis of a
planetary gearbox.

To the best of our knowledge, no work reported model based generation of synthetic samples
for fault diagnosis of robotic manipulators. Hence, the main contributions of our work are: (1) The
application of GAN to generate synthetic examples (signals) representing fault states for mitigating
the presence of an unbalanced data set in a fault diagnosis task of an industrial robotic manipulator.
More concretely, GAN generates a synthetic wavelet packet transform based feature of a vibrational
signal as acquired by an accelerometer; (2) A comprehensive study taking into account six different
scenarios for mitigating the unbalanced data, including classical under and oversampling (SMOTE)
methods as well as for assessing the effect of factors such as generator selection, the number of training
examples in each class, data shuffling in training data, the distribution used for sampling input random
data and initial conditions.

The rest of this paper is organized as follows. The proposed GAN based fault diagnosis scheme is
specified in Section 2. The manipulator experiment was presented in Section 3. The fault diagnosis of
the manipulator was analyzed in Section 4 to validate the experiment result. Finally, the conclusions
and the future work were detailed in Section 5.

2. Methodology

2.1. Feature Extraction

Wavelet packet transform (WPT) can be viewed as a time frequency conversion technique of a
non-stationary signal [36]. It complements the shortage of wavelet transforms that only decomposes
the low frequency components but cannot extract high-resolution on high frequency components.
The discrete wavelet transform of the discrete signal f (t) is given by [37]:

wm,n(t) =< f (t), Ψm,n(t) >=
1√
m

∫ +∞

−∞
Ψm,n(

t − n
m

) f (t)dt, (1)

where m is the scaling factor and n is the sifting factor, which are given, respectively, by:

m = am
0 , (2)

n = b0am
0 . (3)

When a0 = 2, b0 = 1, (1) can be re-written as

Ψm,n(t) = 2−
m
2 Ψ(2−mt − n) (4)

In the wavelet transform, the signal u(t) can be separated in the Hilbert space by a scaling and by
a wavelet function. The scaling function Φ(t) corresponds to the low frequency part of the original
signal while the wavelet function ϕ(k) corresponds to the high frequency part of the original signal
with initial conditions:

Ψ0
m,n(t) = Φ(t) (5)

Ψ1
m,n(t) = ϕ(t) (6)
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Figure 1 shows a 3-level decomposition of a WPT of a signal u(t). This is decomposed in a
high-frequency part hk(t) and in a low-frequency part gk(t). Each part is computed by a filter, i.e.,

hk(t) =
tk + tk+1

2
, (7)

gk(t) =
tk − tk+1

2
, (8)

The function using the above filters can be given by:

u2n(t) = ∑
k

hkun(2t − k), (9)

u2n+1(t) = ∑
k

gkun(2t − k) (10)

h(h(h(k))) g(h(h(k))) h(g(h(k))) g(g(h(k)))

h(h(k) g(h(k))

h(k)

u(k)

h(h(g(k))) g(h(g(k))) h(g(g(k))) g(g(g(k)))

h(g(k) g(g(k))

g(k)

Figure 1. The decomposition levels of a wavelet packet transform of the signal u(t).

As illustrated in the figure, this procedure can be recursively applied to both low and
high-frequency parts. However, the number of decomposition levels will be limited by the actual
application. Due to its smoothness and nonlinear characteristics, in this paper, we applied the
Daubechies WPT with seven levels (Db7).

We further compute an informative statistics from the WPT as follows [38]:

p(m) =

√√√√ N

∑
n=1

(wm,n(t))2 (11)

where N denotes the number of data in each node of the 7th decomposition level and wm,n(t) and is
given by (1). Hence, a feature vector p can be defined for the signal u(t) as follows:

u(t) ↔ p = [p(1), p(2), . . . , p(d)]T (12)

where d is the number of features, i.e., with seven levels d = 27 = 128.

2.2. Generative Adversarial Network

A Generative adversarial network consists of two models: the generative model G(z) and the
discriminative model D(x). The goal of the generative model is to produce synthetic samples such
that the discriminate model could not distinguish them from the real samples. At the same time,
the objective of the discriminative model is to accept real samples and reject synthetic ones with the
highest possible accuracy. In equilibrium, the discriminative model cannot identify the source of the
data, meaning that synthetic data are indistinguishable from real data. Figure 2 shows a block diagram
of a GAN as used in this work
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Figure 2. A block diagram of a GAN as used in this work.

For learning, a GAN implements an adversarial competition between the generator G(z) and
the discriminator D(x). Initially, a real sample u(t) is processed by the above described WPT feature
extraction technique, and (12) is set as the real input of D(x). A random signal z(n) with a given
distribution is input into the generator which in turn produces a synthetic feature vector G(z).
The discriminator is trained with a target value of 1 when a real sample is presented at its input,
and with 0 for a synthetic example. This process repeats until a Nash equilibrium is reached. In general
terms, the GAN optimization problem can be given by: In general terms, the GAN optimization
problem can be given by:

G∗ = arg min max V(G, D) (13)

where max stands for the maximization of the probability of the generator G while min refers to the
minimization of the probability in the discriminator D; V(G, D) is the GAN objective function that can
be given by:

V(G, D) = E
x∼Pdata

[log(D(x))] + E
x∼PG

[log(1 − D(G(z)))] (14)

where Ex∼Pdata represents the expectation of real probability distribution, whereas Ex∼PG represents
the expectation of the random distribution. Since x and z are real-value random variables on the
probability space, the expect values of x and z can defined as the integral of x and z, respectively.
Therefore, (14) can be re-written as

V(G, D) =
∫

x
[Pdata(x) log D(x) + PG(x) log(1 − D(x))]dx (15)

where
∫

x Pdata(x)dx stands for the expectation of Ex∼Pdata(.) and
∫

x PG(x)dx denote the expectation of
Ex∼PG (.). Let f (x) = Pdata(x) log D(x) + PG(x)log(1 − D(x)); then, the derivative of f (x) is given by

ḟ (x) =
Pdata(x)
log D(x)

+
PG(x)

log(1 − D(x))
(16)

where Pdata(x) is the distribution of the real data while PG(x) is the distribution of generated data.
When ḟ → 0, D tends to the maximum value, which is given by

D∗ = Pdata(x)
Pdata(x) + PG(x)

(17)

When PG(x) = 0, D∗ becomes 1 meaning that the discriminator can effectively recognize synthetic
data, when PG(x) is close to Pdata(x), D∗ tends to the optimal value of 0.5, which means that synthetic
data are indistinguishable from real data. Plugging in (17) into (15), one has:

V(G, D∗) =
∫

x
[Pdata(x) log

Pdata(x)
Pdata(x) + PG(x)

+ PG(x) log(1 − Pdata(x)
Pdata(x) + PG(x)

)]dx (18)
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As the objective of generative part is to shrink the distance between real and generated data,
the loss function of generative model can be defined as

V(G, D∗) =
∫

x
[PG(x)log(1 − Pdata(x)

Pdata(x) + PG(x)
)]dx (19)

Under the above loss and, in general, the training process of a GAN is not stable and gives
rise to model collapse. To mitigate this problem, the Wasserstein GAN was proposed where the KL
divergence of the classic GAN was replaced by the 1-Wasserstein distance [39]. The Wasserstein GAN
loss function is therefore given by:

V(G, D) = E
x∼Pdata

[D(x)] + E
x∼PG

[(D(G(z))] (20)

This change in the loss function can make the convergence of the generator faster, but it can
be further improved. In [40], an improved Wasserstein GAN was proposed in which an additional
gradient penalty was added to (20), i.e.,

V(G, D) = Ex∼Pdata [D(x)] + E
x∼PG

[(D(G(z))] (21)

+λE[(|δD(αx − (1 − αG(z)))| − 1)2]

where α is a user-defined scaling factor and λ stands for the gradient penalty coefficient.
In another approach, Cabrera et al. [41] proposed a metric aiming at keeping track of the best

current generator while training progresses. The metric is given by:

||Dr − Dg|| = (Rmean − Gmean)
2 + (Rstd − Gstd)

2 (22)

where Rmean and Gmean are the centroids of the real and generated data clusters, respectively, while Rstd
and Gstd are the real and generated data dispersion (standard deviation), respectively. The smaller (22)
the closer the generated data are from real data. In each training step, (22) is computed for the
current generator, and the generator exhibiting the lower current distance is viewed as the best current
generator. Hereafter, we refer to this process as (model) generator selection.

A Vapnik Loss Inspired GAN

The loss function is a key issue for model selection. Therefore, we are adopting a recently proposed
loss function within the GAN and more concretely within the Wasserstein GAN framework. This loss
function, first proposed by Vapnik et al. [42], considers the geometry distance between the predict and
original data. In brief, the classical loss function used in regression, given a set of N examples, can be
given by:

Lc =
1
N

N

∑
i=1

(h(xi)− yi)
2 +

1
N

N

∑
i=1

N

∑
j=1

(h(xi)− yi)I(h(xi)− yi) (23)

where xi and yi are the i-th independent and dependent observation, respectively, h(x) is the regressor
hypothesis, and I is the identity matrix. Based on the VC theory, in [42], the identity matrix is replaced
by the so-called V-matrix, i.e., (23) becomes:

Lv =
1
N

N

∑
i=1

N

∑
j=1

(h(xi)− y)V(h(xi)− y) (24)

188



Appl. Sci. 2020, 10, 7712

where V is the V-matrix. For data in R
d, the V-matrix can be computed for all i, j = 1, . . . , d as

V(i, j) =
d

∑
k=1

(ck − max(xk
i − xk

j )) (25)

where d denotes the number of data dimensions, 0 ≤ xi ≤ ci and c1, . . . , cd are non-negative constants.
This approach has shown good results in the regression problems. Motivated by both the theoretical
background and the experimental results obtained in regression problems, including in the framework
of SVR [43], we are proposing to apply this loss function in the framework of GAN as a regularization
term in (22), which becomes:

R fv(G, D) = Ex∼Pdata [D(x)] + Ex∼PG [(1D(x)] + λE[(|δD(αx − (1 − αG(z)))| − 1)2] + Lv (26)

where Lv is of the form (24).

2.3. Random Forests for Fault Classification

Ensemble learning uses a group of algorithms to get a better prediction than any of its base
algorithms. A random forest (RF) is a homogeneous ensemble classifier that uses a set of decision
trees (DT) [44,45]. Each DT is grown independently using the Bagging technique. In addition, and to
increase diversity (reducing the correlation between trees), an RF grows each tree from a random
selection of data features. Once trained, an RF uses a majority voting mechanism for making its
classification (or regression) prediction.

The CART algorithm is frequently used to grow a decision tree. In the CART algorithm, the Gini
index is the metric used for selecting the data set feature to be used in a given node of the tree. Given a
node m and the estimated probability p(c|m)(c = 1, 2, 3, . . . , C), the Gini impurity index is defined as:

G(m) = ∑
c1 �=c2

p(c1|m)p(c2|m) = 1 −
C

∑
c=1

p2(c|m) (27)

Let n be the splitting point of node m that separates the node into two portions in in which a proportion
Pa of the samples in m is assigned to ma and a proportion Pb is assigned to mb, i.e., Pa + Pb = 1. Thus,
the decrease in the Gini impurity index is defined as follows:

δG(m, n) = G(m)− PaG(ma)− PbG(mb) (28)

The optimal feature j∗ and the optimal splitting point n∗ that produce the largest decrease in the
Gini impurity corresponds to

n∗, j∗ = arg max δG(m, n) (29)

The flowchart for building an RF is shown in Figure 3.
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Random select 
samples with Bagging 

technique

Subset 1

Consctruct DTs

Tree 1

Tree 2

Tree s

Majority 
Voting

Final 
Class

Subset 2

Subset S

Figure 3. Steps for building a random forest.
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2.4. Data Generation for Fault Classification

Based on the feature extraction process that uses Wavelet Packet Transform, illustrated in
Section 2.1, the GAN network described in Section 2.2 and a random forest classifier detailed in
the previous section, one can setup the learning scheme for the manipulator fault diagnoser. As shown
in Figure 4, a real data observation of from each class is sent to the WPT to extract the vector of
features (12). Meanwhile, a random signal z is input into the generator that will produce a vector of
synthetic features G(z).

Real 
data

D(x)Random 
Gaussian

distribution

P

z G(z)

0

1
or

WPT 
feature 

extraction

Leaky ReluG(x)

Figure 4. The learning scheme of the fault diagnoser.

The goal of the discriminator D(x) is to distinguish between the real vector of features, outputting
a 1, and the synthetic vector of features, outputting a 0. The learning process described in Section 2.2
is applied. Once both the generator and discriminator are trained, the generator can be used to
generate as many synthetic data as required. Notice that the learning process and subsequent synthetic
generation are carried out for each faulty class, i.e., for each class, we need to increase the number of
observations. Finally, (health and faulty) real data together with faulty generated data are used in the
random forest classifier for fault classification. Based on the above description, the procedure can be
outlined in the following flow chart (Figure 5).
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Imbalanced 
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Figure 5. The flow chart of the procedure of the proposed approach.

In addition, this whole process is illustrated in Figure 6.
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Figure 6. The complete data pipeline for fault diagnosis of the manipulator.

3. Experiment

3.1. Experimental Test-Rig

Experiments were carried out in the gear shaft system of a Brtirus1510A 6 degrees of freedom
industrial manipulator. The gear system, which is the main driver component of the manipulator,
consists of two planetary gears and two sun gears. The objective is to monitor the health state of
gears by measuring the vibrational signals using an PCB 622B01 accelerometer. The accelerometer was
installed on the basis of the sixth axis of the manipulator. See Figure 7 for its exact location. Cracking,
pitting, and broken tooth are the main gear fault types in manipulators. Table 1 shows the fault type
we are interested in. Figure 8 shows an example of each one of the four types of faults.

The robot is moved by the motors, and the teaching box gives the instructions to the robot to
start its next movement. At the beginning of the process, the robot is in its original position of 0
degree. Firstly, it will start back and forth movement from −115 degrees to 140 degrees of the limit
range point in the first axis. Secondly, the same movement and the same limit range which is from
−50 degrees to 35 degrees. Thirdly, the robot will move from −60 degrees to 90 degrees. Fourthly,
the same configuration of movement is from −180 degrees to 180 degrees. Fifthly, the movement range
will be decreased such that the range is from −90 degrees to 90 degrees. Finally, the robot will move
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from −180 degrees to 180 degrees and stop in the original place. This series of dynamic movement is
only one experiment process. In the next step, we replace the faulty part in Table 1 to restart the above
movement for the next experiment. Finally, the signal in each channel is collected by the NI acquisition
system which is an analog-to-digital conversion system that the digital samples are collected with an
interface on the laptop.

Figure 7. Monitoring the health state of the gears using vibrational signals acquired by an accelerometer
located in the basis of the sixth axis of the manipulator.

Table 1. Different fault patterns in the industrial manipulator.

Fault Id Part Fault Type

A None Healthy
B Sun gear 1 Pitting
C Sun gear 1 Broken tooth
D Planetary gear 1 Cracking

(a) (b) (c) (d)

Figure 8. Examples of each one of the 4 monitoring conditions: (a) Healthy state; (b) Pitting in Sun
gear 1; (c) Broken tooth in Sun gear 1; and (d) Cracking in Planetary gear 2.

3.2. Collected Vibration Signals

As mentioned above, the experimental measurements include four fault types shown in Table 1.
The sampling rate is 100 kHz. The duration of each measurement is 20 s. The sampling interval was
set to 0.2 s. Thus, 20,000 observations were obtained in each fault type, and 20 k points are chosen for
each observations. Therefore, a dataset of 80,000×20 k can be acquired during the experiment. Figure 9
shows an example of a vibration signal acquired in each one of the fault types.
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(a) (b)

(c) (d)

Figure 9. Vibration signals acquired in the following fault conditions: (a) Healthy state; (b) Pitting in
Sun gear 1; (c) Broken tooth in Sun gear 1; and (d) Cracking in Planetary gear 2.

For hold-out validation, the data set was divided into two disjoint subsets, the training and the
test (sub)sets. The training set has 70% of data while the test set has the remaining 30%. Table 2 shows
the number of observations for each one of these sets.

Table 2. Number of observations in the training and test sets used for hold out validation. The training
set is clearly unbalanced.

Fault Id Training Set Test Set

A 14,000 6000
B 140 6000
C 140 6000
D 140 6000

4. Results and Discussion

4.1. On Different Scenarios for Dealing with the Unbalanced Data Set

Several scenarios were considered to assess the effectiveness of the proposed model. In all these
scenarios, we all used an RF with 1000 trees for classification. The different scenarios identified as
follows: RF-i denotes a random forest trained with the unbalanced dataset described by Table 2;
RF-b2 denotes a random forest trained with a subsampled balanced dataset with only 140 observations
per condition; RF-GAN and RF-GAN2 stands rand forests trained with data sets that have the real
14,000 healthy observations and 14,000 faulty observations, the only difference between these scenarios
is that RF-GAN uses the technique described in Section 2.2 to select the best current model for
generating samples while RF-GAN2 uses the model obtained in the last iteration (i.e., iteration 20,000)
of training process to generate the samples. RF-GAN1 is similar to RF-GAN with the difference that
only 13,860 synthetic faulty states were generated while the remaining 140 are the original faulty states
presented in the training data set. For comparison purposes, we also considered a random forest
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trained with a data set previously processed by SMOTE, a popular oversampling method for dealing
with unbalanced data sets.

In all GAN based models, the generators are multi-layer-perceptrons with a 64:1014:128 fully
connected topology while discriminators are also multi-layer-perceptrons with 128:1024:2048:1 fully
connected topology. These were selected empirically after some preliminary tests. The Adam optimizer
is used with its key parameter settings of β1 = 0.9, β2 = 0.999 and ε = 1 × 10−8. The learning rate for
the generators is set to 1 × 10−5, while, for the discriminators, is set to 1 × 10−4. The α and λ are set to
1 × 10−4 and 1.0, respectively. A maximum number of 10,000 iterations was set for training.

Figure 10 shows the distribution of the obtained accuracy for each scenario using boxplots.
A boxplot summarizes a data distribution stressing five of its characteristic values: minimum,
lower quartile, median, upper quartile, and maximum value. The red line denotes the median
value. The distribution pertains to 20 independent repetitions.
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Different Scenarios
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GAN2
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Figure 10. Boxplots exhibiting the relative distributions of accuracy obtained with the different
scenarios considered for fault classification. See text for details.

The results presented in Figure 10 were analyzed by the Friedman test, a non parametric statistic
test of hypotheses to evaluate whether or not there is a statistically significant difference between
the results (boxplots) of the different scenarios. The Friedman null hypothesis is that there is no
statistically significant difference between the results of the different scenarios. Given a significant
level, α, this hypothesis cannot be rejected whenever the pFriedman, the p-value generated by the test,
satisfies pFriedman > α. The null hypothesis is rejected otherwise, meaning that there is a statistically
significant difference between the analyzed scenarios. In such a case, we can detect which of the
scenario is responsible for such difference resorting to a pairwise posthoc test. A ranking can be
obtained by counting the number of times that a method was a winner in the pairwise comparison.
See [46,47] for further details. Here, we are using the usual α = 0.05 and the Wilcoxon test as posthoc.
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Applying Friedman to the results in Figure 10 yielded pFriedman= 1.865 × 10−19 < 0.05, meaning there
is a statistically significant difference between the six scenarios. Table 3 shows the subsequent posthoc
results. From these, one should conclude that there is no statistically significant difference between
scenarios RF-GAN and RF-GAN1 and that these outperform all the others. This is an interesting
observation as both RF-GAN and RF-GAN1 use the technique described in Section 2.2 to select the
best current generator and that the only difference between these scenarios is that in RF-GAN all the
faulty state data are synthetic while in RF-GAN1 only 13,860 faulty examples are synthetic while the
remaining 140 are the original faulty states presented in the training data set. This further endorses the
quality of the obtained generators.

Table 3. Wilcoxon posthoc pairwise tests for the different scenarios.

Pair p-Value Winner

RF-i vs. RF-b2 8.857 × 10−5 RF-b2
RF-i vs. RF-GAN 8.857 × 10−5 RF-GAN
RF-i vs. RF-GAN1 8.857 × 10−5 RF-GAN1
RF-i vs. RF-GAN2 8.857 × 10−5 RF-GAN2
RF-i vs. SMOTE 8.857 × 10−5 SMOTE
RF-b2 vs. RF-GAN 8.857 × 10−5 RF-GAN
RF-b2 vs. RF-GAN1 8.857 × 10−5 RF-GAN1
RF-b2 vs. RF-GAN2 8.857 × 10−5 RF-GAN2
RF-b2 vs. SMOTE 1.204 × 10−5 SMOTE
RF-GAN vs. RF-GAN1 0.079 –
RF-GAN vs. RF-GAN2 8.857 × 10−5 RF-GAN
RF-GAN vs. SMOTE 8.857 × 10−5 RF-GAN
RF-GAN1 vs. RF-GAN2 8.845 × 10−5 RF-GAN1
RF-GAN1 vs. SMOTE 8.844 × 10−5 RF-GAN1

RF-GAN/RF-GAN1

The average accuracy of RF-i was 87.88% while, with an undersampling balanced dataset, RF-b2
reached 94.5%. RF-GAN had an average accuracy of 97.06%, RF-GAN1 97.75%, and RF-GAN2 95.38%.
SMOTE had an averaged accuracy of 95.17% . We observe that the GAN based average accuracies are
all higher than the unbalanced (RF-i), undersampling (RF-b2), and oversampling (SMOTE) scenarios.
Within the GAN based scenarios, RF-GAN has shown a difference of 1.68% relatively to RF-GAN2 in
terms of average accuracy.

Curiously enough, we observed no advantage on the application of (24). For the moment, we keep
in mind that (26) is not the only possibility to used the Vapnik-loss in a GAN and that other forms are
currently being studied.

4.2. On of the Performance in Each Class

To further analyze the above results, the recall indicator of each fault class is studied. As it is
shown in Figure 11, the recall indicator in the RF-i model of the health state reaches 100% while, for the
other three faulty classes, comes down to 63.88% in gear pitting; 84.3% in gear broken tooth, and 63.35%
in gear cracking for an average of 77.88%. This clearly shows the effect of the unbalanced data set.
For RF-GAN, the recall indicator in each class is 99.53%, 99.73%, 99.63%, and 99.87%, respectively.
In RF-GAN1, the recall indicator in each class is 98.63%, 98.67%, 98.28%, and 95.40%, respectively.
For the RF-GAN2 model, the recall indicator in each class is 99.30%, 93.08%, 98.15%, and 90.08%,
respectively. The high recall indicators are due to the existence of sufficient examples in each class.
This is also visible in the recall of SMOTE.
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Figure 11. Recall indicators for the different scenarios: (a) RF-i; and (b) RF-b2; (c) RF-GAN;
(d) RF-GAN1; (e) RF-GAN2; and (f) SMOTE.

The fit score is another metric that can be used to compare the relative performance of the
different scenarios in each class. From Figure 12, one can see that the performance of RF-i as measured
by the F1-score is 70.38% in fault A, 77.54% in fault B, 90.03% in fault C, and 76.49% in fault D.
The performance of RF-b2 in each faulty condition is 91.05% in fault A, 92.25% in fault B, 96.50% in
fault C and 94.3% in fault D, respectively. The performance of RF-GAN is 98.52% in fault A, 98.83%
in fault B, 95.66% in fault C and 95.23 in fault D. The performance of RF-GAN1 is 98.55% in fault A,
98.95% in fault B, 96.87% in fault C and 96.62 in fault D. The performance of RF-GAN2 is 95.70% in
fault A, 96.54% in fault B, 90.01% in fault C, and 94.57% in fault D. For SMOTE, the performance is
89.72% in fault A, 93.08% in fault B, 97.56% in fault C, and 95.28% in fault D.

For completeness, the confusion matrices are presented in Figure 13. All these matrices consider
the 6000 test observations as per Table 2. For RF-i (Figure 13a), one can see a high number of
misclassifications in non-healthy states due to the unbalanced training set. These misclassifications are
strongly reduced (especially in the GAN-based scenarios) when enough data are generated and used
for training.

4.3. On the Training Set

4.3.1. Learning Curves

The performance of the proposed model under different data set sizes is now considered. Figure 14
shows the average performance over 20 independent runs in the testing set for the scenario RF-GAN
when only a given percentage of faulty observations are available for training. More concretely,
the following percentages were considered i =1, 2, 4, 6, 8, 10, 20, 60, 80, and 100 %. For instance,
when i = 4%, the number of training examples in each faulty state is 14, 000 × 0.04 = 560.

196



Appl. Sci. 2020, 10, 7712

100

0

80

60

40

20

A
ve

ra
ge

 a
cc

ur
ac

y 
(%

)

C0 C1 C2 C3 Average
Each class using RF-i scenario

(a)

100

0

80

60

40

20

A
ve

ra
ge

 a
cc

ur
ac

y 
(%

)

C0 C1 C2 C3 Average
Each class using RF-  scenario

(b)

100

0

80

60

40

20

A
ve

ra
ge

 a
cc

ur
ac

y 
(%

)

C0 C1 C2 C3 Average
Each class using RF-  scenario

(c)

100

0

80

60

40

20A
ve

ra
ge

 a
cc

ur
ac

y 
(%

)

C0 C1 C2 C3 Average
Each class using RF-  scenario

(d)

100

0

80

60

40

20

C0 C1 C2 C3 Average
Each class using RF-  scenario

A
ve

ra
ge

 a
cc

ur
ac

y 
(%

)

(e)

100

0

80

60

40

20

C0 C1 C2 C3 Average
Each class using Smote scenario

A
ve

ra
ge

 a
cc

ur
ac

y 
(%

)

(f)

Figure 12. F1-score for scenario: (a) RF-i; and (b) RF-b2; (c) RF-GAN; (d) RF-GAN1; (e) RF-GAN2; and
(f) SMOTE.
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Figure 13. The confusion matrix for: scenario: (a) RF-i; and (b) RF-b2; (c) RF-GAN; (d) RF-GAN1;
(e) RF-GAN2; and (f) SMOTE.
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Figure 14. Learning curve of scenario RF-GAN for i =1, 2, 4, 6, 8, 10, 20, 60, 80, and 100% of the
training set.

It can be seen that the average accuracy increased from 56.25% to 97.05% by increasing the
availability of faulty data from 1% (140 examples) to 100% (14,000 examples) in each fault type.
There was a strong increased in performance up to 20%; after that point, the improvement in accuracy
was slower and slower until about 80%. After this value, the improvement was neglectable. That is,
adding more data after a certain point hardly improves the performance.

4.3.2. Shuffling Data

When generating training examples from a GAN based model, shuffling the training data are a
key important factor for obtaining an acceptable performance. Figure 15 illustrates the importance
of data shuffling. The results presented in this figure were obtained with exactly the same RF-GAN
configuration, the only difference being the way data are presented to the GAN for training. For non
shuffled data, the model is simply not able to generate no matter the other initial conditions (weights).
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Figure 15. The effect of shuffling input data for training a GAN based model: (a) with shuffling and (b)
without shuffling.
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4.4. On the Distribution Used for Sampling Random Inputs

In a GAN based model, the z signal presented to the generator (recall Figure 4) can be drawn from
any distribution. However, for this particular application, some distributions are better than others
for the training process. Figure 16 shows the classification results for RF-GAN when (a) z is sampled
from the standard normal distribution (0 mean and variance 1) and (b) a uniform distribution in [−1,1].
Undoubtedly, the former outperforms the latter.
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Figure 16. The effect of the distribution used for sampling the input z of the GAN generator:
(a) standard normal distribution and (b) normalized uniform distribution.

4.5. On the Initial Conditions

GAN is trained using a gradient based method that is sensitive to initial conditions (weights).
Figure 17 illustrates the impact of the initial conditions on the fault classification results. As shown
in that figure, RF-GAN was able to produce an acceptable accuracy for any of the initial set of
weights used. However, and as expected for local optimization methods, in 30 independent runs
(initializations), it was possible to identify a particular set of initial random weights that outperformed
all the others.
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Figure 17. The effect of initial weights (generated from different random generator seeds) on the
classification accuracy of RF-GAN.
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5. Conclusions

Robotic manipulators are wildly used in the industry and their maintenance and monitoring
systems are resorting more and more to data intensive machine learning methods. Methods such
as multilayer perceptrons, convolutional neural network, echo state networks, or deep Boltzmann
machines have all been used for such endeavors. However, all of these methods rely on a representative,
balanced, and large enough training set, which, due to the very nature of (some) faults, is very hard to
collect from the equipment. Motivated by the recent success of generative adversarial network (GAN),
in this work, we have exploited, for the first time, this type of generative model as an oversampling
method for fault classification in an industrial robotic manipulator.

A comprehensive empirical analysis was performed taking into account six different scenarios
for mitigating the unbalanced data, including classical under and oversampling (SMOTE) methods.
In all of these, a wavelet packet transform combined with GAN is used for feature generation while a
random forest is used for fault classification. Studies were also conducted for assessing the sensibility
of aspects such as generator selection, the number of training examples in each class, training data
shuffling, the distribution used for sampling input random data, and initial conditions.

The main conclusion is that it was possible to increase the performance of the fault diagnoser for
an industrial robotic manipulator for any of GAN based models over classical undersampling and
oversampling (SMOTE) methods. This is accomplished at the expense of a much higher design and
computational effort. Training a GAN is not an easy task due to the model collapse and other factors,
and it is certainly a quite time-consuming process. After training a GAN for each fault, one will have a
set of generators able to produce as much synthetic data as required in an efficient way though.

Within the GAN based models, those that keep track of the best current generator during training
yielded the best results. No statistically significant difference was observed between the scenario that
uses exclusively synthetic data for the faulty states and the scenario that uses the available real data
for such states. This is yet another piece of evidence on the quality of the obtained GAN generators.

In many cases like prognostics and health management (PHM), enough data can effectively
improve the fault monitoring capability of the industrial system. However, it can not completely
be executed due to a lack of faulty data. GAN is an efficient tool to get rid of the limitation of data
imbalance state, which can enhance the monitoring capability in PHM. Therefore, this approach can
provide a data background for PHM. However, this approach still has limitations, one is that this
model can only learn the data distribution from a limited faulty data source while there are many
kinds of faulty data in the industrial system. For the new faulty data, they need to be sent to this
model to learn the new distribution again to generate enough data that will bring time cost for training.
Another one is that this approach is trained by sending one single faulty class as an input to GAN in
order to obtain a generator. This means we need to train several GAN models for several faulty classes,
which is computationally demanding and time consuming.
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