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Preface to ”Precision Medicine in

Neurodevelopmental Disorders: Personalized

Characterization of Autism from Molecules to

Behavior”

The precision medicine (PM) platform has emerged as a powerful model for the development of

personalized targeted treatments in cancer research. It may be advantageous to adapt this model to

psychiatric and psychological disorders that are now defined within the realm of mental illness and

without reference to their underlying neurology.

Among such disorders are autism, currently defined through observation and description of

behaviors, with an emphasis on social inappropriateness. One of the barriers to translating the

PM model to autism has been the subjective nature of its current definition of behaviors. The

current criteria (problems with social communication and repetitive ritualistic behaviors), defined by

observation, have led to a highly heterogeneous phenomenology. There is now a consensus that there

may be different autism subtypes. However, in view of such heterogeneity, it has proven difficult to

advance basic scientific research to develop personalized targeted treatments tailored to each person

within a subphenotypic group.

The present book brings together diverse perspectives from different subfields of autism

research, treatments, and services across the world. The authors’ contributions help redefine

the layers of behaviors of the PM model by leveraging the wearable sensors, neuroscience, and

genomic revolutions while considering the neurological underpinnings of currently defined autistic

behaviors. The work examines such issues as they evolve from the womb through infancy and

beyond, throughout a person’s lifespan, and across different layers of the PM knowledge network. By

redefining autism as a problem at the crosstalk of nervous and immune systems’ development and

by pairing new telemedicine approaches with objective criteria derived from biosensors’ physical

data, we see how autism can be stratified into different subtypes according to the genomics, which

determine the structure and function of the nervous and immune systems. This approach leverages

ontogenetic and phylogenetic orders of maturation that neurobiology already defines, spanning from

molecules to complex social interactions, to bring a paradigm shift to autism diagnostics, research,

and treatment.

We are most grateful to the autistic individuals and their families who participated in the

presented work. We thank the governmental funding bodies and private foundations who generously

funded the presented work.

Elizabeth B. Torres

Editor
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The Precision Medicine (PM) platform [1] has emerged as an important transformative
model to help advance personalized medicine and transform translational research and
clinical practices. In PM, multiple layers of the knowledge network are interconnected
(Figure 1) to integrate the patient’s clinical information derived from a multitude of tests,
with different levels of objectivity and subjectivity, into targeted treatments that rely on
specific signatures of the patient’s health, in relation to population signatures.

Figure 1. The Precision Medicine platform applied to the fields of Psychiatry and Psychology,
can integrate information from several layers of the knowledge network, to help develop targeted
behavioral and genomic personalized treatments to improve mental health. The layer of observed
behaviors can now be digitized thanks to the wearable sensors revolution and integrated with clinical
criteria and self-reports, to provide interpretable digital biomarkers for Precision Psychiatry (Figure
courtesy of Dr. C.P. Whyatt and the Rutgers University Sensory Motor Integration lab).

The present Special Issue, entitled “Precision Medicine in Neurodevelopmental Dis-
orders: Personalized Characterization of Autism from Molecules to Behavior”, brings
together researchers from multiple disciplines to address research at various layers of the

J. Pers. Med. 2022, 12, 918. https://doi.org/10.3390/jpm12060918 https://www.mdpi.com/journal/jpm1
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knowledge network and offer contemporary solutions to the implementation of some of
the current research in autism and other neurodevelopmental disorders.

Cristina Panisi, et al. [2] discussed “Autism Spectrum Disorder from the Womb to
Adulthood: Suggestions for a Paradigm Shift”, offering new avenues of inquiry and
integration of research across different stages of neurodevelopment. In their manuscript,
the authors highlight the need to move towards a more fluid, dynamic conception of
autism, one that integrates genetics, environment, and epigenetics in a holistic manner,
taking into consideration individual systemic variations, rather than doing so linearly and
in a piecemeal fashion. They discuss the embryo–fetal period and the first two years of
life (so-called ‘First 1000 Days’), as a critical window to detect differences at its earliest
point and intervene accordingly. The work invites possible interventions while considering
immune activation, gut dysbiosis, and mitochondrial impairment/oxidative stress affecting
neurodevelopment during pregnancy and undermining the health of autistic individuals
throughout life. The review argues for intervention at the molecular levels during early
embryonic stages of neural development, as a path forward that is now realizable thanks to
recent advances in omics. A comprehensive and exhaustive pathogenic research approach
to autism is advanced in this paper, as an actionable medical resource that can go beyond
theoretical ideas, into practical implementation. This work offers a bird’s view of this
lifelong condition while integrating these multiple layers of knowledge, while the papers
below address relevant issues at each one of the individual layers of the knowledge network.

At the important level of patient’s self-reports and observational behavioral invento-
ries, encompassing the perception of autistic individuals by others, we find the manuscript
by Demiy, et al. [3], entitled “A Child’s Perception of Their Developmental Difficulties in
Relation to Their Adult Assessment: Analysis of the INPP Questionnaire”. In this paper,
the authors compare the perception of teachers, parents, and clinicians to those of the
child, using clinical questionnaires from the Institute for Neuro-Psychological Psychology
(INPP). The questions focus primarily on psychomotor problems related to balance, motor
coordination and concentration, as well as school skills. The work reports that children
self-perceived these issues significantly stronger than their parents did, and educators and
therapists differed from the parents’ opinion, particularly in matters related to attention and
concentration. The results highlight the important amount of information that escapes the
naked eye of the observer. They underscore the need to consider the internal states of the
autistic person, as expressed by the autistic individuals. The study concludes that “Children
perceive their difficulties much more seriously than adults.” and suggests that “Talking and
the support of adults can make it easier for a child to overcome developmental difficulties.”

Insights into automated behavioral assessments at the intersection of clinical reports
and the layer of behaviors are offered by Cavus, et al. [4], in their paper, entitled “A Sys-
tematic Literature Review on the Application of Machine-Learning Models in Behavioral
Assessment of Autism Spectrum Disorder”. The authors address the critical need for
computationally driven assessments in an exponentially growing ASD phenomenon that
requires, but lacks, trained diagnosticians with high scoring reliability. Despite good evalu-
ation metrics achieved by the ML models, there remains scarce evidence on their readiness
for clinical implementation. The review highlights numerous challenges associated with
data-centric techniques and their misalignment with the conceptual basis upon which
professionals diagnose ASD. Their systematic review proposes vital considerations for
real-life implementation of ML-based ASD screening and diagnostic systems that other
authors in the Special Issue take on.

The work by Washington, et al. [5], entitled “Precision Telemedicine through Crowd-
sourced Machine Learning: Testing Variability of Crowd Workers for Video-Based Autism
Feature Recognition”, provides a clear example of implementation of ML methods and
innovative approaches to diagnosing ASD. The results from their work demonstrate that
while the crowd can produce accurate diagnoses, there are intrinsic differences in crowd-
worker ability to rate behavioral features. The authors propose a novel strategy for the
recruitment of crowdsourced workers, to ensure high-quality diagnostic evaluations of
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autism, and potentially many other pediatric behavioral health conditions. This work
represents a viable step in the direction of crowd-based approaches for more scalable and
affordable precision medicine.

Moving along to the layer of behavioral analyses, Ryu, et al. [6] offer new methods to
assess pain in their paper, entitled “Personalized Biometrics of Physical Pain Agree with
Psychophysics by Participants with Sensory over Responsivity”. This work underscores
the importance of combining digital data from biosensors with clinical inventories, to
produce clinically interpretable digital biomarkers of pain. Using EEG activity and new
analytical methods, the researchers from a multitude of fields collaboratively joined efforts
with clinicians to study sensory issues commonly found in autism. The group characterizes
pain by standardizing the moment-by-moment fluctuations in biophysical signals derived
from EEG brain activity. These signals from the central nervous systems (CNS) reflect the
person’s experience of temperature-based stimulation at the periphery. A type of gross
data that is often disregarded as noise by traditional analytic methods, here, precisely
characterizes the lingering sensation of discomfort raising to the level of pain, individually,
for each participant. The work shows fundamental differences between the SOR group
in relation to controls and provides an objective account of pain that is congruent with
the subjective self-reported data. This integrative approach offers the potential to build
a standardized scale useful to profile pain levels in a personalized manner across the
general population.

Within the layer of behavioral assessments, another paper by Ryu and Torres [7], enti-
tled “The Autonomic Nervous System Differentiates between Levels of Motor Intent and
End Effector”, examines differences in volitional control that are capturable in personalized
form, through the person’s fluctuations in heart-rate variability. The work alludes to the
potential to bridging motor control and cognitive science by tracking peripheral activity as
reafferent input that is convolved with micro-motor (kinesthetic) reafference, harnessed
from continuous streams of interleaved intentional and spontaneous movements. Using
new analytics that do not discard the so-called “gross data” as noise, the authors find
that when the action is intended, the heart signal from the Autonomic Nervous Systems
(ANS) leads the body kinematics signals. In stark contrast, when the action segment spon-
taneously occurs without instructions, the heart signal lags the bodily kinematics signals.
They conclude that the ANS can differentiate levels of intent, a result that has transla-
tional value, and actionable scalability, given the ubiquitous presence of commercially
available, off-the-shelf wearable biosensors embedded in smart watches and phones. These
biosensors reliably register heart-rate variability in natural situations, as the person, e.g.,
wears a smart watch and checks the outputs in an app. In this sense, using such signals
combined with the analytics reported in the methods, it becomes feasible to study and infer
moment-by-moment cognitive states from motor and autonomic data streams.

Finally, a path forward integrating these disparate layers of knowledge is offered by
Torres in their paper, entitled “Reframing Psychiatry for Precision Medicine” [8], with a
direct application to autism in a paper, entitled “Precision Autism: Genomic Stratification
of Disorders Making Up the Broad Spectrum May Demystify Its Epidemic Rates” [9].
These two papers lay out a possible way to help cope with the heterogeneous nature
of developmental disorders on a spectrum by leveraging the genomics revolution and
automatically stratifying the disorder into subgroups with common genetic pools, according
to genes’ expressions on fundamental tissues underlying all social behaviors that define the
disorders in the first place. Combining digitized behaviors (naturally and unobtrusively
attainable during clinical tests), with observational data informed by clinical criteria, and
integrating genomic information, will help treat such disorders in autism by leveraging
advances from different fields. This approach could significantly help improve a person’s
quality of life and redirect resources differently towards fields that offer real solutions for
everyday independent living. Further advancing research questions in autism informed by
the person’s self-reports on internal states is also possible under a new statistical platform
that harnesses individual variations present in the continuous stream of data that we collect
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at each of these layers of the knowledge network in Figure 1. From variations in genes’
expression to variations in genes’ network interactions, to variations in fluctuations of
biophysical rhythms registered from the CNS, the PNS and the ANS, we can help integrate
these disparate layers of information under a common computational framework that does
not throw away data and relies on a systemic approach, integrating information from the
human body and brain, as they dynamically change over time.

This Special Issue provides an example of interdisciplinary collaboration occurring
today at multiple levels of inquiry across complex, nonlinear dynamics, and the stochastic
variations that continuous streams of data offer to contemporary medicine. A new unifying
model that helps us integrate such information and track it over time has already made
its presence visible in our labs, clinics, and homes. Indeed, we are at an inflection point in
medicine [1], poised for a clinical revolution that has leveraged neuroscience, genomics,
and the wearable biosensor revolution of the last decade. Personalized Medicine has
already arrived.

Funding: This research was funded by the New Jersey Governor’s Council for Autism grant number
CAUT18ACE. The APC was funded by CAUT18ACE.

Conflicts of Interest: The authors declare no conflict of interest.
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Abstract: In the last decade, Autism has broadened and often shifted its diagnostics criteria, allowing
several neuropsychiatric and neurological disorders of known etiology. This has resulted in a highly
heterogeneous spectrum with apparent exponential rates in prevalence. I ask if it is possible to
leverage existing genetic information about those disorders making up Autism today and use it to
stratify this spectrum. To that end, I combine genes linked to Autism in the SFARI database and
genomic information from the DisGeNET portal on 25 diseases, inclusive of non-neurological ones. I
use the GTEx data on genes’ expression on 54 human tissues and ask if there are overlapping genes
across those associated to these diseases and those from SFARI-Autism. I find a compact set of genes
across all brain-disorders which express highly in tissues fundamental for somatic-sensory-motor
function, self-regulation, memory, and cognition. Then, I offer a new stratification that provides a
distance-based orderly clustering into possible Autism subtypes, amenable to design personalized tar-
geted therapies within the framework of Precision Medicine. I conclude that viewing Autism through
this physiological (Precision) lens, rather than viewing it exclusively from a psychological behavioral
construct, may make it a more manageable condition and dispel the Autism epidemic myth.

Keywords: Autism; genes; tissues; stratification; neurodevelopment; neurological disorders; neu-
ropsychiatric disorders

1. Introduction

According to the CDC, in the span of 16 years, the US moved from 6.7/1000 to
18.5/1000 autistics in the population of school age children [1]. Reportedly, this increase
continues to move along an exponential rate, while maintaining a near 5:1 males-to-females
ratio [2,3]. This ratio prevents researchers from spontaneously reaching statistical power in
any random draw of the population, when attempting to characterize the autistic female
phenotype. Yet, motor features derived from endogenous neural signals in motor patterns,
do identify the female phenotype [4–7]. This is the case even when digitizing the current
clinical criteria that would otherwise miss females because of exclusive reliance on external
observation [8,9]. Likewise, subtle cultural biases built into the social-appropriateness
criteria of the current instruments skew identification of underserved populations [1].
Consequentially, current interventions are far from being inclusive, or advocating for
neurodiversity in the clinical data driving best-practices and evidence-based criteria for
treatment recommendation [10,11].

Despite sparse sampling in certain sectors of society, the shifts in diagnostic criteria
have significantly broadened the detection rates to include now children with sensory
issues and to allow comorbidity with ADHD under the Diagnostic Statistical Manual
(DSM-5) [11]. This inclusion of ADHD in ASD contrasts with the former DSM-IV criteria,
which would not allow comorbidities of ASD and ADHD, nor would it recognize sensory
issues in Autism.

J. Pers. Med. 2021, 11, 1119. https://doi.org/10.3390/jpm11111119 https://www.mdpi.com/journal/jpm5
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The challenges that broadening the diagnostics criteria bring to the science and prac-
tices of Autism are manifold [12], albeit some clinicians are discouraged from trying to
stratify the spectrum into subtypes [13,14]. Under current standards, motor, kinesthetic
sensing, and vestibular issues are not part of the core symptoms of the original diagnosis in
the DSM. These criteria also remain absent from psychological instruments like the ADOS
test, currently used to diagnose different age groups [10,15,16]. However, kinesthetic
sensing and motor/vestibular issues define several of the many disorders that today re-
ceived the Autism diagnosis [17]. Among them are Cerebral Palsy [18,19], Dystonia [20,21],
Tourette’s Syndrome [22] and obsessive-compulsive disorders (OCD) thought to be re-
lated to ADHD [23]. Besides these neurological disorders in ASD [24], others of known
genetic origins enter in the broad criteria for Autism. Among them, various types of Atax-
ias [25] and Fragile X [26,27] make up for a large percentage of individuals with Autism
today. Despite profound physiological, systemic alterations and somatic-sensory-motor
differences, these individuals will very likely go on to receive blanket-style behavioral
modification-treatments-for-all, during early interventions. Furthermore, these behav-
ioral modification interventions in the US, will continue later at the school, through the
individualized education plan. Such treatments neither recognize, nor address individ-
ual phenotypic physiological features of these disorders of known genetic origins that,
nevertheless, do enter in the Autism spectrum today.

Phenotypically, these disorders that currently also go on to receive the Autism diagno-
sis, are precisely defined by somatic, sensory-motor issues [28,29] that manifest throughout
the lifespan [30]. Their definition in their fields of origin, is nevertheless at odds with
the current clinical “gold standard” criteria. In the DSM-5 [11] we read “Hyper- or hy-
poreactivity to sensory input or unusual interests in sensory aspects of the environment (e.g.,
apparent indifference to pain/temperature, adverse response to specific sounds or textures, exces-
sive smelling or touching of objects, visual fascination with lights or movement).” And in the
DSM-5 criteria, motor issues are excluded owing to the confounds of symptoms induced
by psychotropic medication, “Medication-induced movement disorders are included in Section II
because of their frequent importance in (1) the management by medication of mental disorders or
other medical conditions and (2) the differential diagnosis of mental disorders (e.g., anxiety disorder
versus neuroleptic-induced akathisia; malignant catatonia versus neuroleptic malignant syndrome).
Although these movement disorders are labeled ‘medication induced’, it is often difficult to establish
the causal relationship between medication exposure and the development of the movement disorder,
especially because some of these movement disorders also occur in the absence of medication exposure.
The conditions and problems listed in this chapter are not mental disorders.” This neglecting of
motor issues is enforced despite scientific evidence that even without medication, there are
profound motor issues in Autism [5] that intensify with aging [30].

Further sidelining sensory-motor issues in Autism, within the ADOS booklet [10],
under the guidelines for selecting a module, we read “Note that the ADOS-2 was developed
for and standardized using populations of children and adults without significant sensory and motor
impairments. Standardized use of any ADOS-2 module presumes that the individual can walk
independently and is free of visual or hearing impairments that could potentially interfere with use
of the materials or participation in specific tasks”.

Despite these caveats explicitly stated on their manuals, children with profound and
highly visible motor, kinesthetic sensing and vestibular issues [17] go on to receive the
Autism diagnosis that places them on a behavioral modification therapeutic pipeline that
does not consider the brain-body physiology [31]. Clearly, there is a contradiction between
the somatic-sensory-motor medical-physiological criteria and the social-appropriateness
behavioral-psychological criteria explicitly denying the former. Which one is it? And
why are these important medical-physiological factors deemed secondary or co-morbid,
when they are at the core of the basic building blocks necessary to develop and maintain
social behaviors?

To better understand this tension between psychological criteria (dominating Autism
research, diagnostics, therapies, and services) and medical-physiological issues reported
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by peer-reviewed science [32], I here examine the genes linked to these neurological and
neuropsychiatric disorders making up a large portion of the autistic population today and
manifesting profound somatic and sensory-motor differences.

I investigate the pool of genes linked to a purely behavioral diagnosis of Autism
attained through instruments that precisely sideline the somatic sensory-motor physiology
(i.e., the ADOS/DSM-5). Specifically, the ADOS-2 research criteria inform the studies that
support the confidence scores of the Autism-linked genes hosted by the Simons Foundation
Research Initiative (SFARI). I leverage this research-based data repository of Autism-linked
genes and use it as reference to compare its gene pool to the genes from other sources
identifying neurological and neuropsychiatric disorders making up the Autism spectrum
today. Given that those other disorders of known genetic origin are visibly affected by
somatic-sensory-motor differences, but also receive the Autism diagnosis, I here ask if
the gene pool of those disorders could help us stratify the broad spectrum of Autism
into subtypes.

Stratifying the broad spectrum of autism based on available genetic information,
would help us advance at least two areas of intervention. At the non-drug intervention
level, if we were to learn that a subtype of autism shares phenotypic characteristics with
another disorder of the nervous system, we could repurpose treatments and accommoda-
tions working well in that other disorder and import them, adapting them to the autism
subtype. In autism, we have a blanket treatment for all that is not working for many. This
heterogeneous disorder with such homogeneous behavioral intervention has proven a poor
model to aid neurodevelopment and is in fact stunting it. At the drug intervention level,
we face a similar problem as we do with non-drug interventions. The broad heterogeneity
that the current diagnostic criteria produce impedes tailoring interventions appropriately
to the responsive features of the person’s nervous system. Subtyping autism into different
categories, each one with similar genomic make up, could help us repurpose drug research
in a more targeted manner (as explained in Figure 1). For example, if we were to target
genes responsive to certain compounds and those compounds were to alleviate symptoms
of a physiological ailment, then knowing that those responsive genes are present in both a
subtype of autism and another disorder (e.g., ataxia) for which such compounds may have
started research, we could leverage that research, bring it to autism, and advance drug
discovery for a particular cluster sharing genes responsive to the compound. It is the same
humankind, the human brain and body share fundamental similarities across the human
population, whether one has an autism label or not. Why not repurpose the scientific
advances led by physiology and medicine in other fields, instead of being informed and
guided exclusively by rather subjective psychological criteria [32]?

I find that we can indeed automatically and categorically stratify Autism through the
gene pool of neurological and neuropsychiatric disorders that make up its broad spectrum
today. I discuss our results in the context of the Precision Medicine (PM) model (Figure 1A)
aimed at the development of personalized targeted treatments that integrate several layers
of the knowledge network [33]. Under this PM platform I can better situate the person on
the landscape of existing disorders for which there are more effective treatments than those
currently offered in Autism. Based on this genomic stratification of Autism, I here propose
a paradigm shift whereby the pipeline of diagnosis-to-treatment is based on the known
physiology of these disorders (Figure 1B), addressing specific capabilities, predispositions
and needs of each neurological phenotype. This new line of scientific inquiry not only
leverages existing genomic information but more importantly, it responds to the quest of
the autistic community to improve the prognosis and the future lives of those who receive
this diagnosis.
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Figure 1. Leveraging existing genomic data to stratify the broad Autism Spectrum. (A) Reprinted
with permission from AAAS Science Translational Medicine 12 August 2015 Vol. 7, Issue 300,
pp300ps17 [33], Copyright AAAS 2015. The Precision Medicine model aims at the design of per-
sonalized targeted treatments that integrate all layers of the knowledge network to support the
person’s needs under the genetic and epigenetic individual makeup. (B) Proposed model to stratify
the broad spectrum of Autism based on existing genomic information causally defining the origins
of neurological and neuropsychiatric disorders making up Autism today. This Precision Autism
model can identify, relative to other disorders of known origin, the person’s best predispositions
and capabilities, the environmental, cultural, and socio-economic needs, and design a personalized
treatment that targets the medical-physiological issues rather than modifying behavior to conform to
a grand average norm -a norm arbitrarily defined by current clinical criteria.

2. Materials and Methods

I examine the genetic data base from the Simons Foundation Research Initiative
(SFARI), which has been scored according to the evidence provided in the scientific liter-
ature linking the behavioral Autism diagnosis with a pool of genes. I then extract from
that set those genes that overlap with the pool of genes linked to other disorders that are
fundamentally defined by somatic-sensory-motor issues. Among them I use the genes
associated with cerebral palsy (CP), Dystonia, Attention Deficit Hyperactivity Disorder
(ADHD), obsessive compulsive disorder (OCD), Tourette’s, the Ataxias (autosomal dom-
inant, recessive and X-linked) and Fragile X (FX). I also use the genes associated with
Parkinson’s disease (PD) [34,35], as symptoms of Parkinsonism abound in autistic adults
after 40 years of age [30,36].

While the SFARI genes circularly depend on the ADOS and the DSM behavioral
Autism criteria (i.e., they were obtained precisely based on those clinical inventories
describing presumed socially inappropriate behaviors), the latter genes come from the
disease-association network (the DisGeNET portal) which did not rely on an Autism
diagnosis. These individuals are likely to receive an Autism diagnosis at present, because
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of the shifts and broadening of the criteria [23,24,37–41]. However, they have their own
clinical definition and known genetic origins [19,42].

In Autism research, when the person has both diagnoses (ASD and a neurological or
neuropsychiatric one) the former is coined idiopathic Autism, whereas the latter are called
Autism of known etiology. Yet in a random draw of the population, we have identified
clusters differentiating subtypes by relying on gait [6,17], voluntary reaches [4,28,43,44]
and involuntary head motions [5,7,30,45,46].

I blindly took these genes associated to other disorders of the nervous system (clinically
and physiologically defined) and interrogated them in terms of their expression on brain
and bodily tissues. I asked how much overlapping one would find (if any) with the
SFARI Autism-linked genes (coined hereafter SFARI-Autism) defined by observation and
descriptions of behaviors.

Upon this compilation of genes from several sources in the DisGeNET portal and
the literature, I used the Genotype-Tissue Expression (GTEx) project involving human
RNA-seq, expressed in Transcripts Count Per Million (TCM) to examine the genes’ ex-
pression across the 54 tissues sampled in their database [47] (Figure 2A). Using this atlas
of genetic regulatory effects across human tissues, I compare across diseases, for those
genes overlapping with the SFARI Autism-linked genes, the common tissues where the
expression of these genes is maximal. To zoom into these overlapping genes expressed on
tissues from the GTEx project (Figure 2A), I included the 11 distinct brain regions along
with other 7 tissues representative of three fundamental muscle types: cardiac, smooth, and
skeletal (Figure 2B), supporting the generation and maintenance of all physiological pro-
cesses underlying all human functions and behaviors. Specifically, brain tissues included:
the amygdala, the anterior cingulate cortex, the basal ganglia (caudate, putamen, nucleus
accumbens), the brain cortex and the brain frontal cortex, the cerebellum and the cerebellar
hemisphere, the hippocampus, the hypothalamus, and the substantia nigra.

Figure 2. Genomic and Physiological criteria used in this study. (A) GTEx v8 study atlas of 54 tissues
including 11 distinct brain regions and two cell lines. Genotyped sample donors’ numbers in
parenthesis and color coding to indicate the tissue in the adjacent circles (Reprinted with permission
from AAAS Science 2020, 369, pp 1318–1330, Copyright AAAS 2020 [47]). (B) Three fundamental
types of muscles supporting autonomic, involuntary and voluntary actions in humans can help us
categorize behavioral functional levels according to related tissues affected [25].
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Representative tissues of the different muscle types are: (cardiac) the heart left ventricle
and the heart atrial appendage, (smooth) the esophagus muscularis and the bladder,
(skeletal) skeletal muscle. Given their foundational role in all behavioral functions, I also
examined these genes’ expression on the tibial nerve and the spinal cord (Figure 2A).

The SFARI Autism categories that I used to determine the level of confidence that the
gene is linked to Autism, were those reported as of 03-04-2020. Quoting from their site:

• CATEGORY 1

Genes in this category are all found on the SPARK gene list. Each of these genes has
been clearly implicated in Autism Spectrum Disorders, ASD—typically by the presence of
at least three de novo likely-gene-disrupting mutations being reported in the literature—
and such mutations identified in the sequencing of the SPARK cohort are typically returned
to the participants. Some of these genes meet the most rigorous threshold of genome-wide
significance; all at least meet a threshold false discovery rate of <0.1.

• CATEGORY 2

Genes with two reported de novo likely-gene-disrupting mutations.
A gene uniquely implicated by a genome-wide association study, either reaching

genome-wide significance or, if not, consistently replicated and accompanied by evidence
that the risk variant has a functional effect.

• CATEGORY 3

Genes with a single reported de novo likely-gene-disrupting mutation.
Evidence from a significant but unreplicated association study, or a series of rare

inherited mutations for which there is not a rigorous statistical comparison with controls.

• SYNDROMIC (former category 4)

The syndromic category includes mutations that are associated with a substantial
degree of increased risk and consistently linked to additional characteristics not required
for an ASD diagnosis. If there is independent evidence implicating a gene in idiopathic
ASD, it will be listed as “#S” (e.g., 2S, 3S). If there is no such independent evidence, the
gene will be listed simply as “S”.

The GTEx dataset is as the 06-05-2017 v8 release [47]. For every gene in the disorders
and diseases of interest, I first confirmed the presence of the gene in the GTEx dataset and
then incorporated it into the analyses. This was necessary to provide the tissue expression
from GTEx.

The genes from the DisGeNET portal were found by interrogation of their dataset un-
der disease type and saving the outcome to excel files containing all pertinent information.

I follow our previously proposed roadmap to adapt the Precision Medicine plat-
form [33] to Autism research and treatments [48] linking other disorders to the broad
Autism phenotype (Figure 1). I first isolate the genes common to Autism and each disorder
under consideration, sort them according to their median gene expression over the above
mentioned 18 tissues of interest and then, for each tissue of interest, I highlight the top
genes with expression above (log(e60) TMP (using the natural logarithm, Euler’s base
2.7183), to further help visualize common top genes across these diseases. I note that this
is an arbitrary threshold used only to help visualize the top genes, since other thresholds
could be used to visualize more genes in common expressing on tissues of interest. I
report in the Supplementary Materials the full set of genes common to these disorders and
the SFARI-Autism set. Then, for each of the 54 tissues, I obtain the gene in the unique
intersection set with the maximal expression and plot this information for the brain tissues
of interest along with the SFARI-Autism score assigned to that gene.

In addition to genes linked to neurological disorders, I examined genes linked to
neuropsychiatric conditions such as depression, schizophrenia, ADHD, and post-traumatic
stress syndrome (PTSD), the latter owing to the tendencies in ASD to develop trauma and
depression reportedly induced by current behavioral therapies [49], and to the known
overlap between Autism and schizophrenia [50]. Furthermore, since the DSM 5 now
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accepts ASD and ADHD as coexisting diagnoses, I included ADHD-linked genes and
asked about their overlap with Autism. I also tallied the shared genes pairwise across all
the neurological and neuropsychiatric disorders under consideration, to learn about shared
genes across these diseases.

Finally, other non-neurological and non-neuropsychiatric diseases were considered,
to ascertain their overlap with the Autism-linked genes and with the genes linked to
the neurological and neuropsychiatric disorders. I tallied their genes in common and
interrogated the genes’ expression reported in the GTEx tissues. These included several
forms of cancer (colon 49 genes, breast 488 genes, pancreas 114 genes), diabetes 5545 genes,
autoimmune disorders (lupus systemic 1743 genes, psoriasis 1221 genes, irritable bowel
syndrome 1483 genes), and congenital heart disease 252 genes, totaling 10,895 genes in
addition to 10,028 genes associated to neural disorders (a random draw across 25 diseases
of 20,923 genes and their expression on 54 tissues). Here I hypothesized that the overlap
between the genes linked to Autism and those linked to neurological and neuropsychiatric
conditions would be much higher than the overlap between the Autism-linked genes and
the genes linked to other non-neurological diseases.

Methods to Obtain Pairwise Comparisons of Genes’ Expression in Autism and Various Disorders

I obtained for each set of reported DisGeNET genes liked to each disorder, their ex-
pression across the 54 tissues from the GTEx project. This yielded a matrix of N genes × 54
tissues, where each entry in the matrix is the gene’s expression in that tissue. Taking the
median across all rows for each column (i.e., the number of genes in the disorder) gives a
1 × 54 vector array of median genes’ expression per tissue, which I normalize by the total
number of genes in that disorder (scaling it to range between 0 and 1 unitless quantity).
This is depicted in stem form in Figure 3A for each of 3 different representative disorders
(ASD, ADHD and Lupus Systemic.) I then take the histogram of the values (represented
by red dots in Figure 3A) and obtain the Earth Mover’s Distance (EMD) [51–53] between
histograms, to code the distance in some probability space where I can represent these
histograms according to an empirically fit continuous family of probability distributions. I
obtain the EMD quantity pairwise between disorders, normalize it by the maximum value
across the entire set, and represent it in matrix form for neuropsychiatric, neurological dis-
orders and non-neurological diseases. I ask if clusters self-emerge from this representation
of the median genes’ expression across the 54 tissues.

Figure 3. Cont.
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Figure 3. Pipeline of analysis to obtain pairwise similarity measurements between disorders. (A) The matrix of N genes
× 54 tissues whereby is ij entry is the gene expression from the row i in the tissue j, is transformed into a 1 × 54 vector
of median gene expression values (across the matrix rows) represented here in stem form, from the normalized values
accounting for the number of genes in each disorder. Each red dot represents the median gene expression at the jth tissue.
Three representative disorders are shown. (B) Histogram of the genes’ normalized expression correspond to the stem
plots of panel (A). I take the earth mover’s distance (EMD) pairwise between two disorders (represented in the arrow) and
build a matrix of EMD values representing the distance (similarity) between two disorders in the precise sense of genetic
information contributing to genes’ expression on tissues.

3. Results

3.1. Neuropsychiatric Disorders and Autism Share Common Genes Expressed in Brain Tissues for
Motor, Emotional and Self-Regulatory Control

Quantification of genes common to Autism and neuropsychiatric disorders is depicted
in Table 1. Figure 4A shows the pairwise shared genes color-coded (in log N color scale,
where N is the number of genes in common with the SFARI-Autism set.) The inset in
Figure 4A shows the distribution of genes common to the Autism linked SFARI database
and each of the neuropsychiatric disorders under consideration, schizophrenia, ADHD,
depression, and bipolar depression and including the neurological disorders. Notice that
ADHD and Schizophrenia share the highest number of genes followed by depression
and bipolar depression. Interestingly, I included PTSD owing to the tendency of trauma
reported in Autism [49,54,55] and found 55 genes of those linked to PTSD in the SFARI-
Autism set. I also included lupus systemic, owing to the known relations between autism
and autoimmune disorders [56,57].

Table 1. Overlap between Autism-linked genes in SFARI and known neuropsychiatric disorders,
ranked by the % of genes obtained relative to the number of genes in the SFARI set under considera-
tion here.

Neuropsychiatric
Condition

Number of Genes
in DISGENET

Number of Genes
Shared with SFARI
ASD-Linked Genes

% (Relative to
DisGeNET, Relative
to 906 SFARI Genes)

Schizophrenia 2697 336 (24.58, 37.08)

ADHD 795 188 (23.64, 20.75)

Depression 1407 158 (11.22, 17.43)

PTSD 395 55 (13.92, 6.07)

Bipolar Depression 116 33 (28.34, 3.6)
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Figure 4. Number of genes common to Autism and selected neuropsychiatric, neurological, and
autoimmune disorders. (A) Inset shows bar plot tallying the number of genes in each disorder that
are also present in the SFARI dataset linking genes to Autism according to a confidence score (see
the Section 2) Colormap depicting the number of genes in Autism and each disorder on the top row.
Pairwise shared genes between disorder in row i and column j is the number on each entry of the
matrix. Color is in log N, where N is the number of genes common to Autism and the disorder, or
common to a disorder and another disorder (pairwise intersect.) (B) Color bar reflecting the 18 tissues
with maximal gene expression and the corresponding gene at the intersection of SFARI-Autism and
all shared genes in (A).

3.2. Neurological Disorders and Autism Share Common Genes Expressed in Brain Tissues for
Motor, Emotional and Regulatory Control

Likewise, quantification of genes linked to well-known neurological disorders and
present in the SFARI-Autism dataset yielded up to 164 overlapping genes. These are
depicted in Tables 1 and 2 for neuropsychiatric and neurological disorders respectively.
I ranked them in each category by % relative to the 906 genes in the SFARI set under
consideration, and by the number of genes associated to each disorder in DisGeNET. The
shared genes are also shown in Figure 4A, color coded according to the number of genes
in the intersection of SFARI-Autism and each disorder, and between disorders, taking
the pairwise intersection. Table 1 shows that among the neuropsychiatric conditions,
schizophrenia is the one with the highest percentage of genes shared with the SFARI-
Autism set. Table 2 shows that among the neurological conditions, Parkinson’s disease
has the highest percent shared with the SFARI-Autism set. This result came as a surprise,
but it helps explain why as autistics age, the onset of Parkinson-like symptoms is reported
by 40 years of age in 20% of the autistic adult population. This contrasts with 0.09%
after 65 years of age in the general population [36]. Furthermore, this shared genetic
pool between SFARI-Autism and the DisGeNET genes associated to Parkinson’s disease
helps explain the marked stochastic shift away from typical ranges of noise levels found
in autistics at 40 years of age, when examining their involuntary head micro-motions at
rest [30].

Surprisingly also was the finding concerning schizophrenia in Figure 4A, whereby
837 genes are shared between Parkinson’s disease and the schizophrenia set, while 439 are
shared between ADHD and schizophrenia. Furthermore, 625 genes are shared between
lupus systemic and schizophrenia. This figure depicts the shared gene pool across these
selected disorders that also show their genes overlapping with Autism-linked genes (on
the top row.) The numbers next to the disorder are the number of genes reported in
DisGeNET. The numbers in the color map entries are those shared pairwise between
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the disorders in row i and column j of the matrix. Figure 4B shows the tissues with the
maximal gene expression using a color bar (in log median TCM) sorted in descending
order. These are the genes common to all the disorders under consideration that overlap
with SFARI-Autism genes.

Table 2. Overlap between Autism-linked genes in SFARI and known neurological disorders of
genetic origins ranked based on % relative to the set of 906 SFARI genes under consideration here.

Neurological
Disorder

Number of Genes
Reported in
DISGENET

Number of Genes
Shared with SFARI
ASD-Linked Genes

% (Relative to
DisGeNET, Relative
to 906 SFARI Genes)

Parkinson’s 1975 164 (8.3, 18.10)

Ataxia Autosomal
Dominant 812 98 (12.06, 10.81)

FX 72 72 (100.0, 7.94)

Dystonia 419 65 (15.51, 7.17)

Ataxia Autosomal
Recessive 420 61 (14.52, 6.73)

OCD 167 39 (23.35, 4.30)

Tourette’s 171 35 (20.46, 3.86)

CP 227 34 (14.97, 3.75)

X-Ataxia 158 22 (13.92, 2.42)

FXTAS 63 22 (34.9, 2.42)

Progressive
Cerebellar Ataxia 134 13 (9.70, 1.43)

3.3. Examination of the Maximal Gene Expression on the Tissues for Genes Common to Autism
and These Disorders Revealed a Compact Gene Pool

I found that 12 genes are common to autism, and these disorders are maximally
ex-pressed on the 54 tissues. They are depicted in Table 3 along with the tissues where
they maximally express, while Figure 4B shows the genes maximally expressed on the
18 tissues of interest (brain, spinal cord, tibial nerve, and those key to cardiac, smooth, and
skeletal muscles.) I discuss later some of the literature on these known genes. I also provide
Supplementary Text Files containing for each disorder, the pairwise genes in common
between Autism and each disorder or disease under consideration.

Table 3. Compact set of genes common to Autism and the neurological and neuropsychiatric
disorders maximally and selectively expressed across the 54 tissues.

Genes Common to ASD
and Neuro-Disorders

Tissue with Max Expression

ACTB Liver

AFF2

Adipose Subcutaneous, Adipose Visceral Omentum,
AdrenalGland, Artery Aorta, Artery Coronary, Artery Tibial,
Bladder, Breast Mammary Tissue, Cervix Ectocervix, Cervix
Endocervix, Colon Sigmoid, Colon Transverse, Esophagus Gastro
esophageal Junction, Esophagus Muscularis, Fallopian Tube,
Heart AtrialAppendage, Kidney Cortex, Kidney Medulla, Lung,
Minor Salivary Gland, Nerve Tibial, Pituitary, Prostate, Small Int
ileum, Spleen, Stomach, Thyroid, Uterus, Vagina

AKAP9 Whole Blood

ALDH5A1 Esophagus Mucosa
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Table 3. Cont.

Genes Common to ASD
and Neuro-Disorders

Tissue with Max Expression

ATP2B2 Heart Left, Ventricle, Ovary, Cerebellar Hemi, Cerebellum

AVPR1A Skeletal Muscle

CACNA1E Ant Cingulate Cortex

CHD7 Pancreas, Skin not Sun Exposed Suprapubic, Skin Sun Exposed
Lower Leg

CREBBP Cortex, Frontal Cortex, Fibroblasts, Cell-Lymphocytes

FOXP1 Nucleus Accumbens of the Basal Ganglia (BG)

MECP2 Amygdala, Caudate-BG, Hippocampus, Hypothalamus,
Putamen-BG, Spinal Cord-Cervical, Substantia Nigra

SMAD4 Testis

3.4. Genomic Stratification of Neurological and Neuropsychiatric Diseases Making Up
Autism Today

The EMD taken pairwise between Autism and each disorder, and pairwise across all
neuropsychiatric, neurological disorders and non-neurological diseases revealed an orderly
stratification of disorders, whereby a common gene pool and expression on the tissues can
clearly separate neuropsychiatric and neurological from non-neurological diseases. This is
shown in Figure 5A, where we can also appreciate that in the non-neurological diseases,
the autoimmune ones share a common gene pool and tissue expression. Notably, colon
cancer is also close in a probability distance sense, to neurological disorders of known
genetic origin, namely, Fragile X, FXTAS, the ataxias, dystonia, and Parkinson’s disease.

Zooming into the entries with lowest EMD value, corresponding to the neuropsy-
chiatric and neurological disorders, we see in Figure 5B, that other patterns self-emerge
further refining the clusters. There, we can appreciate that ASD is close to ADHD and
Schizophrenia, as well as close to Depression, PTSD and Cerebral Palsy. Furthermore,
OCD and Tourette’s cluster close together, also showing a common gene pool and genes’
expression across the tissues. In the group of the neurological disorders of known etiology,
we can visualize self-grouping of FX and the ataxias (dominant and recessive), while
X-ataxia, dystonia, Progressive cerebellar ataxia, and Parkinson self-cluster and separate
from FXTAS.

To further test this visualization, I ran a common clustering procedure using MATLAB
linkage function applying Euclidean distance and plotting the output as a dendogram.
This shows the orderly binary tree structure of these genes-tissues grouping in Figure 5C.
We can see that there are three main subtrees of the binary tree, i.e., two subtrees comprised
of neurological disorders, and one with neuropsychiatric disorders of the types diagnosed
by the DSM. Further refinement reveals FXTAS as a leaf of its own, close to progressive
cerebellar ataxia, dystonia, and X-ataxia, all under the same subtree. The other subtree
contains Parkinson’s disease, ataxia dominant and recessive and Fragile X.

At the neuropsychiatric end, we see that Tourette’s and OCD group in a branch
and bipolar depression is a leaf of its own, while schizophrenia and SFARI-Autism fall
the closest together in one branch of the same subtree. That subtree also groups PTSD,
Depression and ADHD under one branch and shows CP as a leaf of its own. These
gene pools and their expression on the 54 GTEx tissues define an orderly stratification
aided by genes common to autism spectrum disorders, according to DisGeNET and SFARI
genomic reports.
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Figure 5. Genomic stratification of Autism and diseases obtained by leveraging the gene pool that overlaps with other
known neurological and neuropsychiatric diseases and their expression on the 54 tissues defined by GTEx. (A) EMD-based
separation between neuropsychiatric, neurological disorders and non-neurological diseases, also identifying common gene
pool in autoimmune diseases. Color scale is the normalized EMD value taken pairwise between the vector of median
gene expression across 54 tissues of GTEx. (B) Zooming into the neuropsychiatric and neurological diseases whose gene
pool overlaps with Autism, I see different self-emerging subclusters further refining the stratification. (C) Dendogram
showing the binary tree orderly organization that groups and categorizes diseases according to genes’ overlap and tissue
expression with respect to ASD. (D) Output of K-Means algorithm with 5 tissue-cluster criteria taken on shared genes
between SFARI-Autism and each disorder/disease in (B,C). Cluster 1 (red) includes the amygdala, hippocampus, putamen,
and substantia nigra. Cluster 2 (blue) in a category of its own, includes the cerebellar hemisphere and the cerebellum.
Cluster 3 (green) does not contain brain tissues but contains tissues important for cardiac (heart atrial appendage, heart left
ventricle), smooth (esophagus mucosa, bladder) and skeletal muscles (muscle skeletal.) Cluster 4 (magenta) contains the
anterior cingulate cortex, the basal ganglia’s caudate and nucleus accumbens, the brain cortex, the hypothalamus. Cluster 5
(cyan) contains the frontal cortex and the pituitary gland. (E) Similarity matrix built by taking the normalized Earth Mover’s
distance metric pairwise between the genes in the intersection of Autism and each of the 14 disorders under consideration.
Higher distances (yellow) indicate more effort to transform the distribution of median values of genes’ expression (taken
across the 54 tissues) from one set of SFARI-Autism shared genes and a given disorder, with another set of SFARI-Autism
shared genes and another disorder. (F) Hierarchical clustering of these shared genes identifies two main groups of shared
genes with SFARI-Autism, one formed by those SFARI-Autism genes found in the genes linked to PD, early onset PD and
late onset PD, and the other formed by the genes shared (pairwise) with each of the other neuropsychiatric and neurological
disorders under consideration.

Clustering by tissues maximally expressing the shared genes across disorders (Figure 5D),
we can see 5 groups of tissues whereby, the cerebellum and cerebellar hemisphere are by
far the tissues with the highest gene expression, followed by the prefrontal cortex and
pituitary gland. The following group is comprised of the anterior cingulate cortex, the basal
ganglia’s caudate and nucleus accumbens, the brain cortex, the hypothalamus, followed by
the cluster containing the amygdala, hippocampus, putamen, and substantia nigra. The
lowest expression is in the cluster containing no brain tissues, but tissues important for
survival and overall functioning of cardiac (heart atrial appendage, heart left ventricle),
smooth (esophagus mucosa, bladder) and skeletal muscles (muscle skeletal).
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Furthermore, I examined the pairwise intersection sets of genes shared between SFARI-
Autism and each of these disorders in the neurological and neuropsychiatric sets. These are
found in Figure 5E, as they grouped according to the EMD metric (expressed here in log
scale.) The hierarchical clustering revealed two main subtrees in this case, one comprising
PD and early and late onset PD in the intersection with SFARI-Autism. The other branch
revealed an orderly grouping of neurological disorders surrounding the neuropsychiatric
disorders (depression, schizophrenia, ADHD, and PTSD.)

Figures 6 and 7 reveal the genes expression for values above (log(e60) TCM) with the
SFARI confidence score on the horizontal axis and the expression value log TCM on the
vertical axis. Figure 6 shows the brain tissues and genes above this level of expression along
with the confidence score in the SFARI data repository. Tissues that are fundamental for the
development and maintenance of motor learning, motor coordination and motor adaptation
include the substantia nigra (maximal expressed gene AFF2-AUT1 signifying this gene is
scored in SFARI as score 1 confidence), basal ganglia with caudate, putamen and nucleus
accumbens also with AFF2-AUT1 as top expressing gene. Other tissues involved in motor
control are the cerebellar hemisphere (ATP2B2-AUT2) and the cerebellum (CREBBP-AUT1).
Tissues known to be involved in executive function are the brain frontal cortex (MECP2-
AUT1) and the brain cortex (CACNA1E-AUT2). Tissues known for their involvement
in emotions (amygdala (AFF2-AUT1)) and memory (hippocampus (BRSK2-AUT1)) and
the anterior cingulate cortex (BRSK2-AUT1) are also depicted in Figure 6, along with the
schematics of the brain from Figure 1 with the locations of these areas.

Figure 6. Common genes to Autism and all other neurological and neuropsychiatric disorders maximally express on brain
tissues involved in the initiation, generation, control, coordination, and adaptation of movements, as well as in tissues
necessary for the creation, retrieval and maintenance of memories and executive function. Genes’ expression is threshold
above log(e60) to show the top expressing genes from DisGenNet overlapping with those in the SFARI set (Full list of shared
genes are in the Supplementary Materials Files.) The AUT# reflects the confidence score assigned to the gene at the SFARI
repository. Horizontal axis shows the genes above threshold and vertical axis gives the expression level (log transcripts
count per million, TCM.) Each colored dot is shown at the brain tissue in Figure 2A schematic form.
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Figure 7. Genes present in Autism and all other neurological and neuropsychiatric disorders maximally expressed (above
log(e60) on tissues involved in all vital functions associated with cardiac, smooth, and skeletal muscles and the spinal cord
(A), and with self-systemic regulation (B). Top genes and corresponding SFARI confidence score are also plotted on the
horizontal axis. Vertical axis reflects the expression in log TCM units. Schematics reflect the locations of the hypothalamus
and pituitary gland in the brain (from www.whythyroide.com) (accessed on 28 October 2021).

In Figure 7, I also reveal those genes’ expression and SFARI scores for the cardiac
(heart left ventricle and the heart atrial appendage), skeletal (muscle skeletal), and smooth
muscle (esophagus muscularis and bladder) tissues and for the nerve tibial. The latter is
critical to develop kinesthetic reafference and proper gait, known to be disrupted in several
of these disorders (autism, PD, FX [17]). Common to all these disorders are well known
genes in the Autism literature with SFARI score confidence 1 (e.g., MECP2, AFF2, FOXP1,
CREBBP, CACNA1E, CHD7, TRIO and SHANK3, among others.) I will later discuss the
known roles of some of these genes in the development of synapses and circuits necessary
to form and dynamically maintain neural networks.

I further plot in Supplementary Figures S1–S3 genes common to Autism and some
of the disorders, for the top 20 genes with maximal expression (in log TCM units) across
the brain and spinal cord tissues, as well as tissues involving skeletal muscle, cardiac, and
smooth muscle types. These figures in the Supplementary Materials show the matrix with
genes across the rows (top 20 expressed genes) and 18/54 tissues across the columns. Each
entry is color coding the expression of these genes in log TCM units. From these plots, I
note that e.g., MECP2 is present at the highest expression on the spinal cord in Autism and
Schizophrenia, Autism and Depression, Autism and ADHD, Autism and OCD, Autism and
Cerebral Palsy, Autism and Dystonia, Autism and Autosomal Dominant Ataxia, Autism
and Autosomal Recessive Ataxia, Autism and Fragile X, Autism and X-ataxia, Autism
and PTSD but not in Tourette’s & Autism, where MECP2 is not among the top 20 genes
expressed on these tissues. Instead, CHD2 is expressed on the spinal cord, and highly
expressed on the cerebellum and cerebellar hemisphere. Indeed, Tourette’s is closer to
OCD (Figure 5C) than to the cluster formed by ASD, ADHD and Schizophrenia (though
located on the same subtree as these neuropsychiatric disorders, but in a separate branch
containing bipolar depression too.)
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4. Discussion

This work provides support to the idea of reframing Autism under the model of
Precision Medicine [25,48], while also addressing the notion of an “Autism epidemic”
recently portrayed as an exponential rise in prevalence [58] and its costly consequences [58].
Re-examining Autism as the conglomerate of disorders and diseases, many of known
origins, comprising this heterogeneous spectrum, I conclude that such “epidemic” or
“tsunami” is bound to be an artifact of the current behavioral diagnosis-to-treatment
pipeline. This pipeline allows such comorbidities and often shifts criteria, discouraging
stratification. I invite the thought that stratifying the spectrum according to underlying
genetic, causal information would provide far more viable strategies to cope with the
overall increase in neurodevelopmental disorders in general, than continuing the use of
Autism as a blanket label grouping all these disorders. Furthermore, I argue that several
of the disorders in question already have therapies designed to address issues in their
corresponding phenotype. As such, the general Autism label, when funneled through
genetic subtypes, could leverage the accommodations, and offer support pertinent to
each of the neurological and neuropsychiatric groups conforming its broad spectrum
today. Here we report that they have a considerable genetic overlap with the genes linked
to SFARI-Autism.

Autism serves as an umbrella term encompassing many disorders and diseases, some
of which have precise etiology (e.g., Down Syndrome [59], Fragile X Syndrome [60], etc.)
I therefore combined multiple open access data sets with the label of Autism and with
the label of a disorder or disease that often receives the Autism diagnosis. I included
neuropsychiatric disorders, and neurological and non-neurological diseases associated
with some sets of genes. Then, I applied common computational techniques to attempt to
automatically and orderly stratify a cohort of 25 diseases and 20,923 genes expressed on
54 brain and bodily tissues, vital for the survival and functioning of the individual

I show that given a random draw of genes linked to disorders with high penetrance
in Autism, and even some which are not officially associated with autism, one could
find self-emerging clusters at their intersection. Using (probabilistic) distance metric
assessing the similarity between genes associated to autism and those associated to the
other disorders, and examining their expression in brain-body tissues, several important
patterns self-revealed. Among them, DisGeNET Parkinson’s disease emerged as the
neurological condition with maximal number of shared genes associated to the SFARI-
Autism set under consideration. Schizophrenia appeared as the neuropsychiatric disorder
with maximal number of genes shared with Parkinson’s disease. Both SFARI-Autism
and Schizophrenia shared the maximum number of genes with the SFARI set, strongly
suggesting that movement disorders are at the core of both autism and schizophrenia.

I found self-emerging clusters that clearly (and automatically) differentiated neuropsy-
chiatric and neurological disorders from non-neurological diseases and within the brain-
related disorders, I established an orderly distance to Autism in the sense of overlapping
genes and their expression on tissues critical for motor control (initiation-termination, learn-
ing, coordination, sequencing, and adaptation), cognition, memory, and self-regulation.
I also found that the autoimmune disorder lupus systemic shares 114 genes with those
linked to Autism in SFARI (12.6% relative to the 906 genes in SFARI), a result congruent
with recent links between Autism and autoimmune disorders [56,57,61].

The overall conclusions from these results are several folds: (1) Autism is a movement
disorder and should be accordingly redefined and treated as such, rather than treated
as a misbehavior; (2) The broad spectrum of Autism, as we know it today, i.e., inclusive
of disorders and diseases of known etiology, share a common set of genes with genetic
disorders and consequentially can be stratified into Autism subtypes. (3) Given this au-
tomatic clustering, it is safe to conclude that Autism prevalence rates are an artifact of
current surveillance methods relying exclusively on the clinical (behavioral) diagnosis that
welcomes other disorders. Incidentally, it has been shown that such methods of diagnoses
use fundamentally flawed statistics in the criteria, thus inflating false positives [9]. Fur-
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thermore, digitizing them with wearable biosensors, captures the fundamental differences
in females, saves time, thus being less taxing on the children and offering a new level of
finer granularity of physiological function, well beyond the limits of the naked eye. As
such, digitized dyadic interactions during the ADOS opens a new avenue for precision
(physiological) phenotyping that, when combined with genomics results here, stands to
reformulate autism research under the tenets of Precision Medicine [8,25].

The genetically-based subtypes reported here might be more manageable and less
costly to treat and service, than forecasted by current epidemiological accounts relying
only on the psychological construct of “appropriate” social behaviors [58]. Since there are
therapies for other disorders that share genes associated with Autism, it may be possible to
repurpose such therapies and adapt them to corresponding Autism subtypes.

4.1. The Genetically Informed Autism Subtypes

Given a mixture of genes and their median expression on the 54 tissues defined by
GTEx, across multiple neuropsychiatric and neurological disorders, I found that Autism-
linked genes in SFARI overlap with genes defining those disorders in DisGeNET, which
would also likely receive the Autism label. Such overlapping showed an orderly stratifi-
cation using a binary tree structure that rendered schizophrenia as the closest to SFARI-
Autism (sharing 363/906 genes reported in SFARI) and FXTAS as the farthest (nonetheless
sharing 22/906 genes reported in SFARI.) I note that DisGeNET ASD (autism spectrum
disorders; CUI: C1510586) is a superset of SFARI, 1071 vs. 906 genes and SFARI genes are
ranked according to the literature. I also note that since our last download, the number of
genes in SFARI may have increased.

In good concordance with clinical criteria, two main subtypes automatically self-
emerged according to the distance metric that I used (Figure 5C) comprising neuropsy-
chiatric and neurological disorders, all sharing a compact set of genes described below.
The neuropsychiatric branch includes the Autism linked genes in DisGeNET (overlapping
with a subset of those in SFARI) and disorders in the Diagnostic Statistical Manual, 5th
edition, DSM-5 and the International Classification of Diseases, 10th edition, ICD-10. In
order of distance to SFARI-Autism, on one end we have schizophrenia (the closest sharing
the same sub-branch), CP, PTSD, ADHD (allowed to be co-diagnosed with Autism in the
DSM5) and depression. Then, the other branch has bipolar depression, Tourette’s, and
OCD. Among the neurological disorders conforming the second cluster, I have in order of
distance from the SFARI-Autism set, FXTAS, progressive cerebellar ataxia, dystonia, and
X-ataxia. The last cluster has Parkinson’s disease, ataxia dominant, ataxia recessive and
Fragile X, with Parkinson’s disease sharing the largest percent of SFARI-Autism genes.
This natural breakdown of the (Autism) spectrum according to the shared genetic pool
and genes’ expression on tissues fundamental to form the building blocks of any human
behavior, is far more manageable (using physiological and medical knowledge today)
than considering the full spectrum in a monolithic form, as suggested by psychological
surveillance methods [1,58] and the behaviorists’ recommendations [13].

4.2. The Genes Common to Autism and Each Subtype

Each neuropsychiatric or neurological subtype identified by the genes-tissue analysis
shared genes with the SFARI-Autism set. The full list in Supplementary Materials for each
disorder/disease, offers clues with regards to the tissues whereby these intersecting genes
maximally express. Furthermore, Figure 5D revealed several clusters of tissues common
to all these pairwise-shared genes between the disorders and SFARI-Autism. Among
these clusters, the cerebellar hemisphere and the cerebellum emerged as a separate group,
common to all these disorders, with the maximum average median gene expression. This
cluster of tissues was followed by a cluster that included the frontal cortex and the pituitary
gland, also far apart from the other three clusters in Figure 5D.

Autism and schizophrenia, Autism and ADHD, Autism and Depression, Autism and
OCD, Autism and FX, Autism and ataxia-X, Autism and PTSD, Autism and CP, Autism
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and dystonia, Autism and Ataxia autosomal dominant and Autism and Ataxia autosomal
recessive, all share METHYL-CpG-binding protein 2, MECP2, with cytogenetic location at
Xq28 (according to the Online Mendelian Inheritance in Man, OMIM site). It is reported
as implicated in severe neonatal encephalopathy, mental disability and Rett syndrome,
as well as to have high Autism susceptibility. MECP2, binds methylated CpGs. It is a
chromatin-associated protein that can both activate and repress transcription; it is required
for maturation of neurons and is developmentally regulated [62].

Furthermore, Autism and schizophrenia and Autism and ADHD (the two top neu-
ropsychiatric disorders sharing the highest percentages of genes with the genes linked
to SFARI-Autism) shared the CREP-Binding Protein (CREBBP), among the top 10 genes
expressed maximally across the 54 tissues and common to the Autism and Schizophrenia
gene pool. It is located in 16p12.3, a chromosomal region linked to Autism.

Autism and Tourette’s syndrome did not share MECP2, but shared CHD2 as the
top gene maximally expressed across all 18 tissues of the brain, spinal cord and tissues
associated with cardiac, smooth, and skeletal muscles. Maximal expression at the cerebellar
hemisphere and the cerebellum suggests involvement in motor control, coordination, and
adaptation, while high expression in other tissues for memory, cognition, and self-systemic
regulation suggest that this gene is rather important. Indeed, prior work in Autism [63]
and other neurodevelopmental disorders [64] had conferred importance to this gene for
neural development.

Among highly expressed genes in Autism and other disorders, I also found AFF2 [65]
and BRSK2 [66], both with score 1 in SFARI and reportedly critical for neurodevelopment.
Indeed, the X-linked gene AFF2 has been found in patients with fragile X E (FRAXE)
intellectual disability, while the gene encoding the serine/threonine-protein kinase BRSK2
was recently detected in individuals with developmental and intellectual disability.

To further understand the possible links that have been suggested between Autism and
PD (particularly during adulthood), I also examined the genes from DisGeNET linked to
early (50 genes) and late (238 genes) onset of PD, along with those linked to PD in general
(1975 genes.) This revealed that DisGeNET PD shares 164 genes with SFARI-Autism,
whereas early onset PD shares 8 and late onset PD shares 32 genes with those in SFARI-
Autism. Among the genes maximally expressed in the tissues of the brain and the cardiac,
smooth, and skeletal muscles in PD, AFF2 and TSC2 were found. In early onset PD, RAB39B
and SLC6A3 were found. Mutations in RAB39B cause X-linked intellectual disability and
early-onset Parkinson disease with alpha-synuclein pathology, also linked to X-linked
mental disability associated with Autism, epilepsy, and macrocephaly [67–70]. SLC6A3
provides instructions for making the dopamine transporter protein (DAT) embedded in
dopaminergic neurons. Variations (polymorphisms) of the SLC6A3 gene have been linked
to PD, ADHD [71] and ASD [72]. Dopamine is a known neurotransmitter important for
multiple cognitive and motor functions, as well as for the functioning of the reward systems
of the brain. In late onset PD, TET2, ADA and PTGS2 (COX2) were found. Located in 4q24,
TET methylcytosine dioxygenase 2 is listed in OMIM as a TET protein playing a key role in
the regulation of DNA-methylation status serving both as a stable epigenetic mark and
participating in active demethylation [73]. TET2 has been described as early and essential
stage in somatic cell reprogramming preceding the induction of transcription at endogenous
pluripotency loci. It is said to contribute to an epigenetic program that directs subsequent
transcriptional induction at pluripotency loci during somatic cell reprogramming [74].
Adenosine deaminase (or adenosine aminohydrolase) ADA is located at 20q13.12 and is
associated with severe immunodeficiency [75].

These genes and their expression in relevant tissues are shown in the Supplementary
Materials Figure S4. It will be interesting to track the evolution of these shared genes on
induced pluripotent stem cell models, as cells develop into neuronal classes. Research
along those lines is warranted [60]. Prostaglandin-endoperoxide synthase 2 PTGS2 or
cyclooxygenase 2 COX2, is in 1q31.1. High-level induction of COX2 in mesenchymal-
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derived inflammatory cells suggests a role for COX2 in inflammatory conditions [76] and
CNS-inflammatory pain hypersensitivity [77].

4.3. The Genes Common to Autism and All Subtypes

MECP2 and CREBBP were found to be shared pairwise with Autism and the above-
mentioned disorders, but also present at the intersection set, taken across disorders. MECP2
expressed maximally in tissues related to emotion (amygdala) and memory (hippocampus)
and tissues important for motor control (basal ganglia’s caudate and putamen regions,
the substantia nigra, the cerebellum and cerebellar hemisphere, and the spinal cord) and
for self-regulation (hypothalamus.) CREBBP was found to be maximally expressed at
the cortex and frontal cortex, both of which are important for high-level cognitive and
executive functions. Another important forkhead transcription factor FOXP1 was found to
be maximally expressed in the basal ganglia’s nucleus accumbens, a structure important for
developing striatal function and differentiation in medium spiny neurons from precursors
to maturity [78–80]. CACNA1E was found maximally expressed across disorders in the
anterior cingulate cortex, a region associated with impulse control, emotion and decision
making, and previously known in connection to epilepsy, Autism, schizophrenia, and
major depressive disorder [81–83].

Cluster analyses revealed that across all disorders under consideration, the cerebellum
and cerebellar hemisphere had the maximal gene expression. Yet, different genes shared
with the SFARI-Autism set contributed across disorders. MECP2 was maximally expressed
in both the cerebellum and the cerebellar hemisphere in CP, Dystonia, OCD, Depression,
PTSD and Lupus. In ADHD, MECP2 was maximally expressed in the cerebellum but the
cerebellar hemisphere maximally expressed CREBBP. As mentioned, in PD, TSC2 was
maximally expressed in both cerebellar tissues, while early onset had RAB39B and late
onset had TET2 maximally expressed in both cerebellar tissues. Tourette’s had CHD2.
Bipolar depression had SHANK2. Infantile Schizophrenia had ATP1A, and Schizophrenia
had ATP2B2. These are shown in Supplementary Figures S4–S6 along with other brain
tissues and tissues important for cardiac, smooth, and skeletal muscles. The mixture of neu-
ropsychiatric, neurological, and autoimmune disorders all had the cerebellar tissues with
maximal gene expression of the genes shared with the SFARI-Autism set. These genes are
thus bound to play an important role in motor control, coordination, initiation-termination,
sequencing and adaptation, all critical components of basic building blocks to develop
proper motor dynamics in social interactions. It is not surprising then that Autism has so
many motor issues, as it sits squarely at the intersection of these neurological, neuropsy-
chiatric, and autoimmune disorders. Why are motor issues not seriously considered in
Autism research and clinical practices? Continuing to sideline the motor and motor sensing
axes misses a superb opportunity to finally turn the science of Autism into a rigorous
quantitative practice, beyond opinions or political agendas currently dominating the field
and obfuscating important neurodevelopmental issues.

4.4. Implications of This Genomic Categorization for Treatment Selection in Autism

Approaching Autism as genotypically defined orderly subtypes may also be more
humanely relevant to the affected individuals. Today, they receive recommendations for
a “one-size-fits-all” behavioral-modification or conversion-therapy to reshape “socially
inappropriate behaviors” without informing such treatments by brain-body physiological
and medical issues. This approach disregards possible adverse effects linked to their
genomic characteristics [84]. Indeed, despite advances in genetics, it has been reported
that the current paradigm neglects the physiological phenotypes in favor of psychological
constructs [32]. The literature reports that this model for Autism treatment selection
promotes stigma, causes harm in the form of trauma, increases the person’s stress and
ultimately results in PTSD [85]. Along those lines, there is a pool of genes linked to PTSD
and depression overlapping with a subset of the SFARI-Autism data set, and very close to
the Autism branch of the binary tree in Figure 5C. These genes may interact in ways that
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could increase the predisposition of the Autistic system to develop PTSD and depression,
explaining the rise as well in suicidal ideation [49,86–88].

The outcome of this work highlights the relevance of considering, when choosing
treatments, the medical and physiological issues linked to the phenotypic characteristics
that these genes forecast. This proposed approach contrasts with choosing treatments
that exclusively focus on the social appropriateness criteria. The latter model has been
said to lead to high societal cost [58,89], to offer no future to the affected individuals and
their families and has recently been shown to be polluted with conflict of interests and
nonscientific practices [90,91].

In the present study, I reasoned that stratifying Autism based on the genetic makeup
of the diseases that today go on to receive the Autism clinical diagnosis, could help us in
various ways. One was to find the diseases genetically closer to Autism itself (as defined
by the SFARI genes.) Another was to leverage existing clinical information in other fields,
amenable to create support and accommodations for the individuals affected by those disor-
ders undergoing physiologically relevant treatments in other fields. Such accommodations
could then be tailored to the autistic person, according to the phenotype that these genetic
pools express for each of these other diseases of known etiology. Furthermore, since Autism
today includes all these other disorders in its broad spectrum, utilizing the information
that has already been verified (e.g., in the SFARI repository) would bring us a step closer to
the Personalized Medicine approach, coined here Precision Autism (Figure 1B).

It has been recently proposed that the behavioral definition of Autism, which rec-
ommends against stratifying the spectrum [13], feeds the Autism Industrial Complex
(AIC) [89] and opens a behavioral diagnosis-to-treatment pipeline contributing to their
claimed societal burden [58]. It is almost perverse to create a problem and sustain the
problem by sidelining existing solutions, or alternative scientific routes, when the same
model practiced over 40 years has not worked. It is as though to remain relevant and well-
funded, that group steering autism research through the behavioral diagnostic-to-treatment
pipeline, persists in neglecting the physiological issues.

The stratification of Autism revealed by the gene pool under consideration underscores
the need to seriously consider the somatic-sensory-motor issues in the spectrum. This
spectrum of disorders today includes diseases of known origins (e.g., Timothy Syndrome,
SYNGAP1, SHANK3 deletion syndrome, Fragile X, Cerebral Palsy and Dystonia, among
others) with life-threatening conditions that could seriously harm the affected child under
the type of stress that a behavioral modification technique has been said to bring to their
nervous systems [54,84,92].

This work revealed a compact set of top genes shared by SFARI-Autism and all
diseases demonstrating that they too share tissues critical for (i) somatic-sensory-motor
functioning, (ii) memory and cognition and (iii) systemic self-regulation. This compact set
of genes for each of these functions in (i)–(iii) underly all critical physiological ingredients
for social communication and smooth, well-coordinated actions. These basic functions
are essential to all human autonomic, involuntary, and voluntary behaviors. As such,
they should not be sidelined when recommending and selecting treatments for Autism. I
provided a distance from each disorder to SFARI-Autism based on the genes’ expression
on these 54 tissues defined by GETx, in the hopes of offering new ways to converge to truly
personalized interventions that agree with the individual’s physiological phenotype and
with the endophenotype of a genetically informed group.

I concluded from these analyses that the highly publicized exponential rate in preva-
lence reported by the US CDC surveillance network is a myth. This myth has been built by
broadening and shifting the criteria over time and by allowing diseases of known etiology
be part of the Autism spectrum. The increase in neurodevelopmental disabilities is real,
as evidenced by the compact set of genes identified to be common to SFARI-Autism and
all other diseases under consideration. All these genes play a fundamental role on the
development of synapses via proteins that are necessary for channels functioning and
neurotransmitters balance, neuronal differentiation, the formation of circuits and networks,
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etc., during neurodevelopment [93]. Yet, these disorders exist independent of Autism.
Calling them Autism, under the current definition of inappropriate social behaviors may be
doing more harm than benefit. The current model stigmatizes the affected individuals [58],
their families and negatively impacts the entire ecosystem inclusive of research, services
and education, by promoting an erroneous perception of Autism as a behavioral issue [85].
By neglecting the physiology of the disorders that make up Autism today, the current
approach skews the therapy recommendations for Autism in ways that may in fact harm
their nascent nervous systems, induce trauma, and lower quality of life.

Given these results, I invite rethinking the epidemiology of autism spectrum disorders,
to go beyond the behavioral diagnosis when surveying the spectrum to estimate prevalence.
I also offer a new avenue to adapt the platform of Precision Medicine to Autism and disclose
the implications of these results for the design of truly personalized therapies aimed at
helping the affected individuals become an integral part of society.

4.5. The Importance of Reframing Autism under the Precision Medicine Paradigm

This notion of personalized medicine for Autism that I have proposed [25,48], con-
trasts with the current behavioral diagnosis-to-treatment pipeline that discourages strat-
ification of Autism and advocates for a general (one-size-fits-all) model of behavioral
modification. Indeed, the last study from the U.S. National Academy of Science (NAS)
considering how to educate autistic children, recommended that Autism shall not be
stratified [13]. Since then, practice and services do not distinguish e.g., between a child
with Cerebral Palsy and a child with ADHD. Both receive the Autism diagnosis, and
both will receive a form of behavioral modification to reshape social behaviors in com-
pliance with a set of social norms that bear no scientific empirical evidence for their
recommendations. As mentioned, such imposed norms were never informed, in any
way, by the nervous systems physiology [9]. The accreditation programs enabling such
behavioral diagnoses and interventions in fact lack training on basic neuroscience (https:
//accreditation.abainternational.org/apply/accreditation-standards.aspx (accessed on 28
October 2021). https://www.wpspublish.com/ados-2-autism-diagnostic-observation-
schedule-second-edition (accessed on 28 October 2021)). In the US, these treatments will
be administered at the school and the home, under a type of insurance coverage that other
therapies do not have.

Our results show that contrary to the recommendations of the 2001 NAS study, such
stratification is not only possible today, but more importantly, it is much needed to help
guide and inform the design of new targeted therapies for Autism. Such new therapies
could be truly personalized to address phenotypic features of the CNS, including tissues
linked to self-regulating systemic structures, memory, cognition, and motor control. They
would consider the physiology of numerous networks in the human brain-body complex,
serving as the building blocks of all behaviors.

The methods used in this work are rather simple and parsimonious. They also rely on
open access data sets. These sets are reliable and provide the grounds for reproducibility
of this and related works [25,48]. I encourage the community to stratify Autism into the
appropriate phenotypes with capabilities, predispositions and needs causally linked to
the genetic origins of each subtype. Continuing the blanket approach also misses three
important revolutions of the 21st Century: the genomic, the neuroscience and the wearables
sensors revolution. The latter brings a level of precision to analyze continuous streams of
behaviors beyond the limits of the naked eye, capable of automatically separating genetic-
based disorders from natural, simple behaviors like walking and yet uncovering individual
stochastic signatures of the person’s biorhythms with causal dynamics [17].

If we follow the medical and physiological scientific path, we will be able to ad-
vance Autism research, treatments, and services. But if we continue to follow the circular
behaviorist approach, we will not make headways in identifying personalized targeted
treatments. Worse yet, this antiquated approach, dating back to Skinner’s ideas of the
1950s, developed for research involving pigeons and rats, will continue to cause trauma
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to the individual in the spectrum. How come such methods for use with animals were
translated to human children, without providing any validated scientific evidence that they
would work in humas? Such methods violate the natural autonomy of nascent nervous
systems and go against the development of social agency [31,94]. The current generation
of adults that underwent such horror has informed us of this outcome. They have created
the neurodiverse movement to alert researchers of the dangers of applying behaviorism to
human babies in early intervention programs and throughout school age.

An alternative route to the current research paradigm in Autism is possible, by lever-
aging the work from other fields of science and engineering, and by stratifying the broad
spectrum that otherwise purportedly keeps exponentially growing [1,58]. Contrary to
archaic recommendations from behaviorists [13], here I show that Autism can and should
be stratified to take the first steps toward a paradigm shift toward Precision Autism.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/jpm11111119/s1, Figure S1: Colormaps of top 20 genes expressed in 54 tissues at the
intersection of SFARI-Autism and other disorders-I, Figure S2: Colormaps of top 20 genes expressed
in 54 tissues at the intersection of SFARI-Autism and other disorders-II, Figure S3: Colormaps of
top 20 genes expressed in 54 tissues at the intersection of SFARI-Autism and another disorders-III,
Figures S4–S6 colormaps of genes shared between SFARI-Autism and other disorders, maximally
expressed in brain tissues and tissues linked to cardiac, smooth and skeletal muscles across disorders.
Text files list the genes at the intersection of SFARI-Autism and other disorders.
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Abstract: The study of pain requires a balance between subjective methods that rely on self-reports
and complementary objective biometrics that ascertain physical signals associated with subjective
accounts. There are at present no objective scales that enable the personalized assessment of pain, as
most work involving electrophysiology rely on summary statistics from a priori theoretical population
assumptions. Along these lines, recent work has provided evidence of differences in pain sensations
between participants with Sensory Over Responsivity (SOR) and controls. While these analyses are
useful to understand pain across groups, there remains a need to quantify individual differences
more precisely in a personalized manner. Here we offer new methods to characterize pain using
the moment-by-moment standardized fluctuations in EEG brain activity centrally reflecting the
person’s experiencing temperature-based stimulation at the periphery. This type of gross data is
often disregarded as noise, yet here we show its utility to characterize the lingering sensation of
discomfort raising to the level of pain, individually, for each participant. We show fundamental
differences between the SOR group in relation to controls and provide an objective account of pain
congruent with the subjective self-reported data. This offers the potential to build a standardized
scale useful to profile pain levels in a personalized manner across the general population.

Keywords: EEG; pain biometrics; stochastic analyses; micro-movements spikes; sensory over respon-
sivity; standardized scale; personalized pain

1. Introduction

The peripheral nervous systems include an interconnected network of afferent nerve
fibers carrying information from the skin to the spinal cord and onto the brain [1]. This
flow of activity can be modeled as it updates the brain moment by moment, reflecting the
trajectories of our bodies in motion [2,3] or of the fluctuations in bodily signals at rest [4–7],
within a given environment where sensory input is processed and integrated with ongoing
movements making up intended [8,9] or spontaneous [10] behavioral states. The afferent
fibers from the periphery carry information about touch, pressure and movements sensed
by the mechanoreceptors [11], while thermoreceptors and nociceptors process information
about temperature and pain, respectively [1,12]. Collectively, they give rise to the sense
of touch, which is important to manipulate objects [13], to control our movements [14], to
gain a sense of body ownership [15] and affection [16], and to develop and maintain our
overall psychological and social wellbeing [17].
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The experience of pain (i.e., its subjective perception) is comprised of sensory, affective-
emotive, and cognitive processes of a noxious input. Pain experience can be measured in
the lab applying quantitative sensory testing, namely inducing measurable pain stimuli
of different modalities (e.g., heat, pressure), while subjects are required to rate their pain
intensity/unpleasantness using various pain scales (e.g., visual analog scale, numerical
rating scale). Thus, the individual’s experience of pain though seemingly centrally pro-
cessed, it is evoked at the periphery using different experimental assays. These may include
(among others) the physical experience of sustained pressure [18,19] or sustained tempera-
ture [20–23], carried along peripheral afferent nerves to the central nervous systems, which
is comprised of the spinal cord and the brain.

In recent years, we have learned about the central processing of movement-related
reafference from a special participant (Ian Waterman, IW) who experienced a viral infection
that killed the afferent fibers for light-touch, pressure, and movements. The infection
spared the afferent fibers for pain and temperature [24–26]. IW has remastered motor
control in the absence of proprioception and kinesthetic reafferent information, by sensory
substituting with vision the senses of touch, pressure, and movement [27,28]. Perhaps using
information about his central processing of peripheral activity during resting state [24],
could help us develop new models of statistical inference and interpretations for use in
other data sets. His case could help us interpret resting-state data from centrally processed
sensory information in other patient populations with sensory processing dysfunctions
mediated by disruptions in peripheral reafferent flow [29,30].

Ian Waterman’s case is interesting as fluctuations in his electroencephalographic (EEG)
activity at rest revealed the presence of the exponential distribution of peak amplitudes
(Figure 1). This distribution represents a memoryless random process whereby past activity
does not contribute to the probabilistic prediction of future events. In this case, events refer
to moment-by-moment fluctuations in signals’ amplitudes and timings. We posit that these
fluctuations inform the nervous systems of dynamically adaptive states, as they transition
from highly variable to steady-state. Based on our prior theoretical work on kinesthetic
reafference [8], we have conjectured that this type of memoryless process may impede
creating a proper memory buffer to sustain activity long enough to bring it to the brain’s
awareness, to consciously recognize it, or to use it effectively as reference to inform and
predict impending states of the system [5,8,29].

Having found in IW these patterns at rest, reflecting the variability of the signals
as a renewal process in “the here and now” in the absence of movement reafference
sensations, may help us characterize other states related to pain sensation in neurotypical
controls. More precisely, it may also help us characterize, stochastically, the departure
from this memoryless state, in cases with atypical pain sensations. We know the stochastic
signatures of not sensing touch, pressure, and movement, in a person that nevertheless
senses temperature and pain. As such, we may use this prior information as reference
to learn how the fluctuations in EEG activity may distribute during resting state for a
person who does not have severed communication between the peripheral afferent fibers
and the brain, but that nevertheless reports atypical sensation of pain. We would like to
assess distributions of stochastic activities related to fluctuations in EEG peak-amplitudes
on participants with sensory over-responsivity (SOR), a subtype of sensory modulation
dysfunction (SMD) which in turn falls under the broader umbrella of sensory processing
disorder [31].

The SOR subtype of SMD manifests clinically as a condition in which stimuli that are
not typically painful are perceived as abnormally irritating, unpleasant, or even reportedly
painful [32], sometimes interfering with activities of daily life [33]—as measured by several
clinical scales. These clinical manifestations are also consistent in laboratory experiments,
measured under controlled conditions [34]. Under these controlled settings, people with
SOR express discomfort and hypersensitivity to experimental manipulations in pressure or
temperature, whereby the lingering sensation of evoked peripheral activity leads to the
conscious expression of pain and sustained pain aftersensation centrally experienced [34].
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Figure 1. Proposed central characterization of lingering (pain) sensation. Special participant Ian
Waterman (IW) lost his kinesthetic reafference but retained the sensations of pain and temperature.
His electro-encephalographic (EEG) waveforms at rest, provide information about the shifts in
probability density functions characterizing the distributions of fluctuations in peak activities in the
lead electrodes with maximal clustering coefficient derived from the network of leads. Such shifts
distribute exponentially, signaling a memoryless, random distribution of these activities, such that
past events do not contribute to the prediction of future events. This type of distribution of his central
EEG activities is congruent with the distribution of his movement-kinesthetic reafferent peripheral
activities. What type of distributions could we find in individuals with intact kinesthetic reafference
but sensory over-responsivity resulting in lingering sensations of temperature-induced pain?

Prior work has relied on population statistics and provided an account of full cohorts.
A new detailed individualized characterization of minute fluctuations in EEG activities
while experiencing pain could help us re-examine these issues to formulate a personalized
account, useful to inform automatic groupings and stratifications of random draws of
the population, with the overarching aim of defining a standardized scale of centrally
processed pain. This would be beneficial to other disorders on a spectrum (e.g., autism,
schizophrenia, and Parkinson’s disease) whereby such sensory processing issues of pain
abound too [35–38]. Across these various disorders of the nervous system, we need proper
objective characterizations of pain sensation to complement and augment reports on the
subjective sensations of pain captured by clinical inventories.

The type of analysis that we offer here, away from assumptions of theoretical pop-
ulation statistics, has been previously used on a characterization of stochastic variations
in movement reafferent signals. This is a data-driven approach whereby we let the data
reveal patterns and then, upon interpretation and inference, we propose possible lines of
inquiry to pursue in future work. In our prior work, the results led to automatic clustering
of the above-mentioned clinical disorders on a spectrum [39]. These in turn, have shown
strong ties with other disorders of the nervous systems and various types of disruption
in reafferent flow of movement information [40,41], thus allowing us to further pursue
new lines of questions. Since pain and temperature share separable afferent channels from
movement afference, and crosstalk can be quantified through central processing using
controlled experimental assays, here we apply these new data-driven analytical methods
to SOR participants who suffer from abnormally high pain sensation. We re-examine
previously published EEG data [34] as well as explore pain-evoked EEG responses induced
by sustained temperature in controls vs. SOR participants. We do so by analyzing the gross
data commonly discarded as noise, by avoiding a priori assumptions of theoretical normal
distributions of the fluctuations in EEG-waveforms’ peak amplitudes. We discuss our
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results within the context of stochastic processes amenable to offer a probabilistic account
of pain sensation in general.

2. Materials and Methods

These details of the experiment have been explained in previous publications, but we
report them here for completeness [34,42]. The Rutgers University Institutional Review
Board approved this de-identified data sharing. The IRB committee of Rambam Health
Care Campus approved this study in 2013. The IRB number is 3075, The Israeli ministry of
health # HT4858.

2.1. Participants

The study included 21 healthy participants (5 males and 16 females) between the
ages 18 and 40 years old recruited from a convenience sample in a laboratory database.
Participants were naïve to the testing. Based on a medical survey, participants with
no chronic pain history and no regular use of analgesic or psychiatric medication were
included in the study. Participants with any psychological, psychosocial, metabolic, and
neurological disorders were excluded from the study. This means that if the participant
had a diagnosis of any of the above-mentioned disorders, they did not sign up, nor did
they participate in the study.

Participants were able to communicate and understand the instructions of the study.
They self-reported to be free of any pain relief medications 24 h prior and any caffeine
products at least 2 h prior to the experiment, and to have had sufficient sleep the night
before. Sufficient sleep means that participants did not express any complaints about sleep
disturbances. We did not measure their sleep. All participants provided written consent,
which was approved by the Institutional Review Board of Rambam Health Care Campus
(Haifa, Israel).

Participants were categorized into two groups—sensory over responsiveness (SOR)
group (n = 9, 1 male) and control group (n = 11, 3 males). The SOR group was comprised
of those whose Sensory Responsive Questionnaire Intensity Scale (SRQ-IS; [43])-Aversive
score exceeded 2 standard deviations from its mean. The control group was comprised of
those with scores within the 2 SD from the mean. Note, the SRQ-IS is designed to clinically
identify those with sensory modulation disorder and is comprised of Hedonic scores and
Aversive scores [44]. The Aversive scores that were used as a criterion to categorize groups
involve answering intensity levels (on a scale 1–5) on scenarios such as “Being in dark/unlit
surroundings bothers me,” and “Watching T.V./computer in a well-lit room bothers me.”
Further details of participant recruitment can be found in [34]. By using these scores, we
operationalized each participant’s perception of sensory experience.

2.2. Experiment

This was a block design experiment, whereby each participant performed all three
conditions in blocks of trials. They sat comfortably in a quiet air-conditioned room under
all 3 conditions. In the first condition, the participant was instructed to close his/her eyes
and rest for 5 min. In the second and third condition, pain was administered for 5 min.
Note, both conditions are identical and merely sequential in order. In each of these pain
conditions, heat stimulus was applied to the participant’s forearm with 8–12 s interval to
simulate a pain experience. Specifically, the participant was applied with a heat stimulus by
the Contact Heat-Evoked Potential Stimulator, which is a computerized thermal stimulator
(Medoc Ltd. Advanced Medical Systems, Ramat Yishai, Israel). The temperature was
tailored to everyone to evoke a peak pain magnitude of 50/100 (pain-50) on the numeric
rating scale. Specifically, we gave 30 stimuli, ISI 8-10, baseline temperature 39 ◦C with
destination pain 50 described in [42] +0.5 ◦C. After each stimulus, during ISI, subjects
provided pain intensity and pain unpleasantness ratings, using the numerical rating scale.
During the study, EEG signals were recorded with a 32-electrode cap (Easy Cap Q40; FMS
Falk Minow Services, Herrsching, Germany) with the Quick Amp EEG System (Brain
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Products GmbH, Munich, Germany). These signals were processed at 500 Hz sampling
rate, with 0.15–100 Hz bandpass filter, and a notch filter at 50 Hz. The EEG signals were
further preprocessed using the PrepPipeline toolbox [45], with which we referenced via
a robust average reference procedure, where channels were iteratively referenced to the
average signal, while bad channels, such as those showing extreme amplitudes (deviation
z-score exceeds 5) or lacked correlation with any other channel (correlation less than 0.4),
were excluded and interpolated in this process.

2.3. Data Analysis
2.3.1. Analyses in the Frequency Domain

For each condition, pairwise cross-coherence was computed using each of the 32 EEG
channel waveforms (Figure 2A). Across the frequency range within the cross-coherence
values, we extracted the maximal value within the beta and gamma bands (13–100 Hz),
as this bandwidth showed to have a noticeable difference between the SOR and control
groups (Figure 2B). Note, we had examined other bandwidths, as well as beta and gamma
band separately, but did not find such a pattern. For that reason, we focused on the beta
and gamma bands combined.

Figure 2. Data analytics pipeline. (A) For each pair of EEG channel combination, cross-coherence was
computed, and its maximal value within the beta and gamma band (13–100 Hz) was extracted. (B)
The maximal cross-coherence values obtained from (A) were used to construct an adjacency matrix
of all EEG channel combinations. (C) EEG channel combinations were categorized by a combination
of different scalp areas (F: frontal, T: temporal, P: parietal, O: occipital), and these categories’ median
of maximal cross-coherence values, as shown in (B), were computed and compared. (D) Based on the
channel’s adjacency matrix shown in (B), a network was constructed, where the nodes corresponded
to each EEG channel, and the links corresponded to the maximal coherence values. As a measure of
segregation of this network, cluster coefficients were computed and compared. (E) The channel with
the highest cluster coefficient, computed at (D), was selected and its EEG waveform was band-pass
filtered at 13–100 Hz. (F) The band-passed waveform was shifted up so that all values were positive.
Then the spikes (maxima; denoted in red) and valleys (minima; denoted in black) were extracted
to compute MMS (micro-movement spikes; standardized spike amplitudes), where the MMS is
computed as dividing the spike value by the sum of the spike value and the average of the signal
values between the two local minima as shown in Equation (2). (G) For each 4 s time window,
MMS were gathered and plotted a histogram. For two consecutive time windows, the earth mover’s
distance (EMD) was computed and compiled across time for each condition (5 min duration). (H)
Histogram of EMDs were plotted and fitted to a Gamma PDF. (I) The fitted Gamma parameters
obtained at (H) were plotted on the Gamma parameter plane, and its parameters were compared
across conditions and groups.
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From the maximal cross-coherence values obtained, we built an adjacency matrix for
each participant from each condition (Figure 2C). Based on this matrix, first, we categorized
the channels by scalp areas—frontal (F), temporal (T), parietal (P), and occipital—and
compared the median of maximal cross-coherence values between different combinations
of scalp areas (Figure 2D).

Further, using the adjacency matrix, we built a network where the nodes correspond
to a single EEG channel’s activity, and edge corresponds to the maximal cross-coherence
value between the two nodes. Here, network edges between a set of nodes form triangles,
and the fraction of triangle numbers formed around each node is defined as the cluster
coefficient. This is a measure of segregation within a network and is computed using
the average intensity (geometric mean) of all triangles associated with each node using
an algorithm by [46]. Equation (1) describes the computation, where N is the set of all
nodes, Ci is the Cluster Coefficient of node i (out of n = 32 nodes); ti is the geometric mean
of triangle links formed around node i and ki is the number of degrees (links) formed
around node i. The median of these cluster coefficients from all EEG channel was then
computed for each participant and compared across different groups and conditions using
the Kruskal–Wallis nonparametric test.

Ci = ∑
i∈N

ti
ki(ki − 1)

(1)

2.3.2. Analyses in the Temporal Domain

Among the 32 EEG channels, we selected a channel with the highest cluster coefficient,
as it would be deemed a hub channel, and analyzed its temporal data. The location of the
selected channel can be found in Figure A1. Specifically, we bandpass filtered the data at
13–100 Hz using IIR filter at 20th order (Figure 2E). Then we extracted the micro-movement
spikes (MMS).

MMS =
local peak

local peak + avg(activitymintomin)
(2)

This standardization equation is commonly used to address allometric effects (Mosi-
mann, 1970) that occur due to individual anatomical differences (Figure 2F).

Micro-movements spikes (MMS): To standardize the amplitudes of the data, we shifted
the data up so that the minimum value of the waveform equals 0. Then, to compute a set
of standardized spike amplitudes, we took each spike amplitudes from the filtered and
shifted waveforms and divided this local peak by the sum of this raw spike amplitude
value and the average of the signals sampled within the two adjacent minima surrounding
that local spike, as shown in Equation (2).

To examine the change in stochastic variations of the signals over time, we extracted
the MMS due to fluctuations in the signals’ amplitude from each condition (of 5 min dura-
tion) and examined how the frequency distribution of these standardized spike amplitudes
changed over time. Specifically, we segmented the data by 4 s time window, while sliding
it with 50% overlap between consecutive windows. This allowed us to gather on average
100 spikes per window (the criteria to have proper statistical power for our 95% confidence
in the empirical estimation.) For each time window, histograms of MMS peaks’ amplitudes
were plotted, binned from 0.5 to 0.7 with 0.02 intervals. Then, we used similarity metric
that enables us to compare probability distributions pairwise and estimate differences
in probability space. We obtained the earth mover’s distance (EMD) [47–49] between
2 sequential windows’ histograms to quantify the change in stochasticity (Figure 2G). The
EMD (also known as the Kantarovich–Wasserstein distance [47,48,50,51]) is a distance
metric that can quantify stochastic shifts in probability space. Previous work elaborates
on the algorithm to compute this distance adapted to our biometrics [7]. The stochastic
shifts in the EMD across the data set were thus examined, by obtaining the distribution of
EMD values (Figure 2H) using Freedman–Diaconis binning rule [52] and fitting a Gamma
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probability distribution function (PDF) using maximum likelihood estimation with 95%
confidence intervals (Figure 2I).

The Gamma PDF is defined by two parameters—the shape and the scale—and these
parameters are informative to provide interpretations of stochastic features of a single
participant by localizing the participant’s signatures (empirically estimated) on the Gamma
parameter plane (Figure 2I.) Then we can interpret this personalized signature in relation
to other participants localized under similar conditions, and in relation to the baseline
signature of the participant as we vary the conditions (e.g., from resting state to pain, to
de-adaptation from pain).

The continuous family of Gamma probability distribution functions (PDF) ranges
from exponential (shape equals 1, representing the case of the memory-less exponential
distribution) to skewed, asymmetrical distributions with heavy tails, to Gaussian-like
symmetric distributions (with higher shape values). By sampling over large numbers
of nervous systems biorhythms sampled from the human population, across disorders
of the nervous system, ages, and between sex, we have empirically found a power law
relating the shape and the scale parameters. In this empirically found relation, as the shape
values increase, the scale values decrease consistently with a tight linear fit on the log-log
Gamma parameters’ plane spanned by the values of the shape and scale. The scale values
represent the noise to signal ratio, NSR (i.e., empirically estimated Gamma variance over
the Gamma mean). Knowing one parameter (the shape) helps us infer the other (the scale),
owing to this power-law relation. We have empirically found that processes with high
noise (high scale value) and close to the random exponential distribution (small shape
value) correspond to stochastic regimes of high uncertainty, leading to poor prediction
of future events from present events. Likewise, processes with symmetric distributions
(high shape values) and low NSR correspond to stochastic processes with high certainty,
describing predictive performance with high accuracy. This has been the case for data
related to central signals registered from EEG and resting-state fMRI processing, and for
peripheral signals registering kinematics of different movement classes. This has also been
the case for autonomic signals related to heart and breathing activities [53–56].

3. Results

3.1. SOR Participants Show Reduced Cortical Interactions within the Beta and Gamma Bands
during Resting Condition

As a first step, between all pairs of channels, we obtained the cross-coherence measure
and extracted the maximum for each comparison. We extracted this information within
the beta and gamma bands (13–100 Hz). By categorizing the channel pairs by their cor-
responding scalp areas, we find an overall lower coherence among the SOR group than
the control group. This is most noticeable from the interactions between temporal and
frontal (χ(1,19) = 4.69, p = 0.03), parietal and temporal (χ(1,19) = 4.05, p = 0.04), and occipital
and temporal areas (χ(1,19) = 4.37, p = 0.04) (Figure 3A). Such reduced coherence among
SOR were observed only during the resting condition, and not during the pain induced
conditions, during which the coherence levels were similar between the two groups. From
this, we find that reduced cortical interactions within the beta and gamma bands during
resting condition is characteristic of SOR.

As a subsequent analysis in the frequency domain, we used the adjacency matrix of
pairwise cross-coherence values to create a network graph and quantify the connectivity
across all channels. We computed the clustering coefficient value for each channel and
obtained the median to compare values between the two groups, controls and SOR.

During the resting condition, SOR showed lower clustering coefficients than the
control group (χ(1,18) = 4.37, p = 0.04), implying a more sparse connection across the scalp
within the beta and gamma band. On the other hand, under the two pain conditions, the
connectivity remained similar between the two groups (Figure 3B).
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Figure 3. Cross-coherence between EEG channels. (A) 32 channels are categorized to one of these
areas—Frontal, Temporal, Parietal, and Occipital—and maximal cross-coherence value examined
within the beta and gamma band (13–100 Hz) for all channel pairs. Median values among the
different channel pairs categorized by the scalp areas are then compared between SOR (S) and control
(C) groups, where SOR exhibits lower values than the controls, particularly between frontal and
temporal channels, parietal and temporal channels, and occipital and temporal channels. This pattern
is found only during the resting condition. (B) Based on the adjacency matrix of maximal cross-
coherence values, cluster coefficients are computed for all channels. The median of cluster coefficients
is compared between the SOR and control groups for all three conditions. Cluster coefficient values
are lower for SOR than the control group during the resting condition, but not significantly different
when pain is induced.

3.2. Relative to Baseline, SOR Participants Show Higher Rates of Change in Stochastic Signatures
than Controls

The temporal stochasticity of the most connected channel (i.e., channel with highest
cluster coefficient) was examined by band-passing the time series through the beta and
gamma band (13–100 Hz), extracting the MMS amplitudes, and building a stochastic tra-
jectory on the Gamma plane. We then examine the first-order rate of change in Gamma
parameter position, using the frequency histogram of the MMS peaks and computing the
EMD between two consecutive histograms (PDFs.) This amounts to a “speed temporal pro-
file” of the PDFs as they shift stochastic signatures per unit time on the Gamma parameter
plane. Our unit time is 4 s time window, enough time to make an empirical estimation with
statistical power and high confidence (based on frequency histograms derived from over
100 peaks.) The EMD values thus obtained per two consecutive time windows were then
accumulated into a frequency histogram, and the distribution of EMDs compared between
the two groups for each condition.

As shown in Figure 4A, in the resting condition, the SOR group showed a more
symmetrical distribution of EMD values, reflected by its higher shape (χ(1,19) = 8.91,
p < 0.01), and lower scale fitted parameter values (χ(1,19) = 6.91, p < 0.01) than the control
group. As shown by the symmetry of EMD distribution from the SOR group, the MMS
amplitudes of the cortical signal tends to be more predictive with reduced noise. Conversely,
the typical individual from the control group tends to have an exponential-like distribution
of EMD values, implying that their signals tend towards a memoryless regime, where the
past is not informative to predict the future.

In the first pain condition, when the pain was induced for the first time, the SOR
group and the control group started to show less distinction in their stochasticity. The
typical individual from the control group did not change too much from the resting
condition, where the EMD values were distributed closer to an exponential (memoryless)
distribution. However, in this condition, the SOR group started to exhibit a pattern similar
to the control group, shown by a reduced shape value and higher scale parameter values.
Nevertheless the distinction is still statistically significant between the two groups for
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the shape (χ(1,19) = 4.85, p = 0.03) and borderline significant for the scale (χ(1,19) = 3.41,
p = 0.06) parameter.

Figure 4. Differential localization in probability space and faster rate of change across pain conditions
in SOR than controls. Stochastic shifts across time characterized by the distribution of EMDs
between sequential time windows of MMS distributions reveal the departure of SOR from controls.
(A) Distribution of EMDs obtained from sequential sliding windows of 4 s were examined and fitted
a Gamma distribution. Under the resting state, SOR group tended to show a more symmetric (higher
shape; more predictable) and less variable (lower scale; lower NSR) shifts in its EMD distributions.
Under the first pain condition (Pain 1), the SOR group shifted distribution to a different regime
tending to show less difference with the control group. Their PDF shifted to a less symmetric and
less variable distribution; while the control group shifted to a lesser degree and mostly maintained
its exponential distribution. Under the second pain condition (Pain 2), the SOR group showed even
less difference with the control group, by exhibiting a more asymmetric (lower shape; more random)
and more variable (higher scale; higher noise) pattern. (B) The distinction between the two groups
can also be observed from the moments of EMD distributions, where the SOR tends to have a higher
mean and a tighter range of variance and skewness than the control group. ** p < 0.01, * p < 0.05,

 p < 0.10.

In the second pain condition, the SOR group and control group no longer exhibited
their distinction with statistical significance, as quantified by the shape (χ(1,19) = 0.61,
p = 0.43) and scale (χ(1,19) = 0.61, p = 0.43) values. At this point, both groups show their
EMD values to be distributed closer to an exponential distribution, implying that their
MMS amplitudes of the cortical signals have higher uncertainty, with higher noise and
randomness relative to baseline.

At a different angle, when we also examine the empirical moments of the EMD
distribution between the two groups, we found some distinction in the resting condition.
In general, the SOR group tended to have a higher mean (χ(1,19) = 2.91, p = 0.09) EMD
values implying higher rates of stochastic change from their baseline state, compared to
controls. Although other moments were not statistically different in their values (variance
χ(1,19) = 0.01, p = 0.94; skewness χ(1,19) = 0.85, p = 0.35; kurtosis χ(1,19) = 0.50, p = 0.48),
within each condition, the variance and skewness tend to have a tighter range across
individuals for the SOR than the control group (Figure 4B).

Given the significant differences in the rates of stochastic shift between controls and
SOR relative to baseline and their non-significant statistical difference during pain and pain
recovery conditions, and given the result that controls do not shift from the exponential
regime during pain conditions, we can safely conclude that the EEG beta and gamma
bands of the EEG signals from the SOR experienced significantly higher shifts at a faster
rate than controls did when transitioning from condition to condition. Their stochastic
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signatures localize these two groups on different probability distributions and the shifts in
probability space are larger in magnitude and rate for SOR.

3.3. Inventory Scores Agree with Stochastic Characterization of Brain EEG Signals’ Fluctuations

With an aim to find correspondence between metrics obtained from different domains—
temporal, frequency, and clinical inventory scores—we visualized these together as shown
in Figure 5A for EMD fitted shape parameter, cluster coefficient (CC), and SRQ-IS score,
and in Figure 5B for EMD fitted scale parameter, cluster coefficient, and SRQ-IS score.
Overall, the EMD shape parameter has a strong relation with CC and the SRQ-IS scores,
and thereby separate the SOR group from the control group well. On the other hand, EMD
scale parameter has some relation to those metrics, but to a lesser degree.

Figure 5. Congruence of clinical scores and stochastic signatures expressed in a parameter space
spanned by score range, and stochastic signatures in the temporal, and frequency domains. (A) For
each participant, the SRQ-IS was plotted on the z-axis (clinical score) along with the EMD’s fitted
shape parameter on the y-axis (temporal) and the median cluster coefficient (CC) value of cross-
coherence networks on the x-axis (frequency). Combining these metrics across 3 domains shows
a good separation between the two groups. (B) A similar plot was made as (A), but with the
EMD’s fitted scale parameter on the y-axis. Although the two groups show some separation, this
visualization distinguishes the two groups slightly less than in (A), where the fitted Gamma shape
parameter was utilized. (C) For statistical comparison, all participants were median ranked by cluster
coefficients (CC; ranked in descending order) and expressed relative to the shape ((C) top-left) and
scale ((C) top-right), with statistically significant differences between the extreme ranked quartiles
in the shape parameter. The EMD’s fitted shape and scale parameters and cluster coefficients ((C)
bottom subpanels) were also categorized into 4 ordered-ranked groups, and the SQR-IS (score) were
compared between the upper and lower 50 percentiles; and between the lowest quartile and 2nd
lowest quartile; and between the highest quartile and the 2nd highest quartile. Noticeably, all metrics
show statistically significant correspondence between each other at a coarse level (as the upper
and lower 50 percentiles show differences) but do not correspond at a finer level (as shown by the

similarity between the 1st and 2nd quartiles, and 3rd and 4th quartiles). * p < 0.05,  p < 0.10.

40



J. Pers. Med. 2021, 11, 93

To examine the correspondence to a finer level (Figure 5C), we median ranked the
participants by quartiles along the shape and scale parameters and along the CC values,
and compared the quartile groups’ inventory scores, CC, and Gamma parameter values
using a non-parametric Kruskal–Wallis test. Specifically, we compared between the 1st
and 2nd quartiles, between 3rd and 4th quartiles, and between the lower 50 percentile and
the higher 50 percentile (i.e., the 1st and 2nd quartiles combined against the 3rd and 4th
quartiles combined). In general, when comparing the lower and upper 50 percentiles, the
Gamma shape parameter had a strong correspondence with CC (χ(1,19) = 6.43, p < 0.01)
and the inventory score (χ(1,18) = 4.55, p = 0.03); and the Gamma scale parameter exhibited
such relation, but to a lesser degree with CC (χ(1,19) = 3.61, p = 0.06) and inventory score
(χ(1,18) = 3.45, p = 0.06). However, for both Gamma parameters, their statistical significance
was only observed when comparing the lower and upper 50 percentile, which is roughly
the separation of the SOR group against the control group. When we examine at a finer
level, to compare within the SOR group and within the control group, such correspondence
is hard to see for all 3 metrics.

4. Discussion

This work aimed at offering a new characterization of central signals from EEG
activities registered during baseline state, and pain conditions in participants with SOR,
relative to controls. We successfully reproduced previously published results including
population-based statistical analyses in [34] whereby the baseline EEG activities of SOR
during resting state significantly differed from controls. Further, we add new findings to
the objective characterization of pain.

In the present analyses, we employed a personalized approach whereby we made use
of the gross data (i.e., all fluctuations away from the empirically estimated mean of the
person’s data) that is usually discarded as noise. We characterized each participant’s gross
data by the MMS of EEG signals’ amplitude, and empirically estimated the continuous
family of probability distributions that best fitted these fluctuations for each participant
in an MLE sense. We then uniquely localized each participant on a probability parameter
space. Using this information, and a proper distance metric to measure change in probabil-
ity space, we then tracked for each participant and for the entire cohort, the rates of change
in stochastic shifts, when transitioning from resting state to pain 1 and to pain 2 conditions.

This individualized characterization of the brain EEG activity revealed two funda-
mental differences between SOR and control participants: (1) the distributions of the EMD
signaling stochastic shifts was exponential in controls and tending to symmetric in SOR;
(2) the shifts in the shape of this type of probability distribution in controls was not visible
(i.e., they remained exponential) during the pain conditions, but significantly shifted from
more to less symmetric shapes, to exponential, in SOR participants. Lastly, we found good
correspondence between the clinical classification scores and the stochastic signatures that
we empirically estimated for each participant, signaling that our personalized approach
is not at odds with the clinical approach. This is important to augment the subjective
inventories reflecting the person’s self-perception of pain, with the objective biometrics
quantifying the physical sensations of pain evoked by this experimental assay. The type
of temperature-based manipulation used by the assay occurs at the periphery. Through
afferent flow, the processing, transduction, and transmission of these signals from the
peripheral to the central nervous systems give rise to physiological EEG signals reflecting
the brain activities during these conditions. When the fluctuations in these probability
distribution signatures are exponentially distributed, random memoryless, and with high
NSR, the peripheral stimuli are not perceived as painful (controls cases). When the shifts in
signals are distributed with quasi-symmetric shapes tending to the Gaussian distribution,
the stimuli are perceived as a lingering sensation of discomfort and reported as pain (SOR
cases.) As such, our work here offers a set of biometrics whereby the perception of pain
levels coincides with the physiological (physical) sensation of bodily signals. Peripheral
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changes are centrally registered both at the level of the stochastic shifts in EEG signals and
at the level that the person can consciously self-report.

The discovery that the baseline signatures in controls are exponential when the SOR
signatures are Gaussian-like lends itself to the following interpretation (in light of what
we know from reafferent signals in the resting state EEG activities of deafferented partic-
ipant IW, who cannot sense movement): The controls’ baseline activity with a random,
memoryless regime that does not change much during pain conditions, implies that there
is not enough buffering of the activity to sustain the sensory information and use it as
an anchor to predict impending events (signal’s fluctuations) in the pain condition. The
control participant experiences the baseline and the pain in “the here and now” with a
renewal process that is too random and variable (with high NSR) to systematically sustain
a memory of the events and anticipate impending spiking activity in the context of pain.
As such, the control participant does not reportedly sense pain, because this information
does not shift stochastic signatures from baseline and at baseline, the information is just
random background noise. In stark contrast, the SOR participant starts out at resting state
with systematic signals that have higher shape values (more symmetric distributions) and
lower scale values (lower NSR) implying higher statistical certainty. This higher certainty
is amenable to build a more reliable predictive code whereby impending variations in the
signals can be systematically anticipated, thus scaffolding the ability to build a memory
buffer to consciously register the change from resting to pain state. In this sense, the physi-
cal pain at the periphery surfaces to consciousness as the brain activity seems to offer more
awareness of change in SOR than in the controls’ signals, which remain as random noise.

When transitioning from Pain1 Pain2 condition, the data from SOR participants
shows a trend that approaches the controls. We interpret this as an adaptive phenomenon.
As the system adapts to the lingering sensation of pain, the Pain1 Pain 2 case, the SOR
activity returns to the exponential (random and memoryless) case whereby the person
does not feel the lingering sensation of pain with the same intensity as it did in the Resting

Pain 1 condition. The activity seemingly went back to a random memoryless state
with no memory (no buffering of the activity long enough to bring it up to conscious
perception) thus not sustaining the lingering sensation with the same intensity as in the
initial block of the experiment. In this sense, the proposed stochastic-process interpretation
of the pain sensation is to have these two opposing limiting states along a continuum
(random memoryless vs. predictive) instantiated by the distribution of the signals and how
they change from moment to moment. The EMD in this case provides information about
the shifts of the frequency histograms representing probabilities derived from the signals’
fluctuations. Of course, this is merely a proposition and will need validation with larger N,
but we express this caveat in the section below, referring to these issues.

Our results of treating everyone (individually) as a random process and empirically
characterizing the individual stochastic signatures and their rates of change during pain
states, invites a new characterization of pain states in relation to resting states. This
personalized characterization is also amenable to examine the cohort behavior and identify
statistical self-groupings congruent with clinical scores. We see that the physical sensation
of pain is perceived and reported by the person with SOR but not by the control participant,
whose activities do not sustain, nor anticipate the pain state.

In summary, the changes in EEG MMS that we quantified in the beta and gamma
band (13–100 Hz) may reflect the renewal processes in central neural processing that is
continuously refreshed by the peripheral feedback from afferent signals. The activity
of the gamma band alone (putatively related to attentional states) or of the beta band
alone (putatively related to movement afference) will not produce these patterns. It is their
combined activities that brings the signal that reflects their integration as the person reaches
awareness of the lingering sensation of pain (Resting P1), or as the system deadapts
from it in the second block (P1 P2).

A predictive shift in the MMS of this combined signal, as quantified by the EMD
distribution, may imply that participants with SOR perceive a lingering effect of the painful
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experience. We propose it as a systematic predictive memory of it that is sustained long
enough to bring it to awareness. This may be through increased certainty experienced
by increasingly systematic prediction-confirmation loops, away from randomness. This
interpretation, which is further supported by the congruence of our statistical inference
with the clinical scores, warrants further investigation, given the critical need for objective
characterizations of pain and the potential applications of these methods to scale up the
results of this work.

Caveats and Limitations

Despite the clean new results and the congruence with the prior work based on the
same data set, we caution that the modest size of the cohort limits our conclusions. The
treatment of each participant as a random process guarantees the statistical power of
each empirically estimated signature with 95% confidence interval. We ensured that the
4s-window with 50% overlap provided a continuous estimation with renewal of activity
every 2 s comprising enough fluctuations to make a sound stochastic estimate and shift to
the next point along the stochastic trajectory. However, the n of 21 participants, 9 with SOR
is modest. We need a larger cohort. Further, the group was not balanced in sex and age.
Ideally, we would like to sample larger numbers of males and females, but also examine
transgender groups and groups with same-sex orientation. Lastly, it would be great to
sample from other disorders of the nervous systems that also complain about issues with
pain and temperature dysregulation.

5. Conclusions

Using this new approach, it will be possible to scale up our results from this modest
cohort and ascertain subtypes of pain sensation. A positive note is that by integrating the
complementary subjective and objective methods that we used here, we will attain much
more than using only one method on its own right. In this sense, despite the caveats, we feel
confident that the present methods have the potential to help us advance our understanding
of the perception of physically induced pain—as registered by micro fluctuations in EEG
brain signals.
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Appendix A

Figure A1. Location of channels with highest cluster coefficient. The hub channel (i.e., channel with
highest cluster coefficient) is shown for SOR (red) and controls (blue). Each colored line represents
a single participant’s data. For example, if there are 2 circles surrounding a single channel, that
means 2 participants had their hub channel positioned there. Overall, SOR hub channels tend to
be positioned in the frontal and lateral area; and Control’s hub channel tends to be distributed in
the medial area. Notice that controls do not have any central lead (in contrast to SOR) and that
controls have occipital lead (in contrast to SOR.) Notice that across the cohort, the maximal clustering
coefficient leads in SOR are more distributed thank those in the controls.
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Abstract: This study involved a comparison of the perception of developmental difficulties in a
child by the parents, the teacher, and through the child’s self-assessment. Based on the Institute for
Neuro-Psychological Psychology (INPP) questionnaire according to S. Goddard Blythe, three groups
were examined: schoolchildren, parents, and teachers. Each of them answered a set of 21 questions
and assessed the degree of occurrence of a given difficulty for the child on a scale from 0 to
4. The questions concerned psychomotor problems related to balance, motor coordination and
concentration, as well as school skills. In total, 49 questionnaires from children and parents and
46 from teachers were used for the study. The mean answer to each question was calculated within the
following groups: child–parent, child–teacher, and parent–teacher. The sum of the children’s answer
points was significantly higher than the sum of the parents’ answer points (p = 0.037). Children
assessed their developmental difficulties more strongly than teachers, but this difference was not
statistically significant. The individual difficulties of the children were assessed significantly more
seriously or more gently than by the National Scientific Conference “Human health problems—causes,
present state, ways for the future” speeches by 44 teacher participants on 5 June 2020. Parents and
teachers also assessed the children’s difficulties significantly differently (p = 0.044). The biggest
difference in answers concerned the question of maintaining attention. The obtained results indicate
a significant difference in the perception of difficulties occurring in the same child by the teacher
and the parent. The child’s behavior in school and home environments may be different and,
depending on the requirements, assessed differently. Children perceive their difficulties much more
seriously than adults. Talking and the support of adults can make it easier for a child to overcome
developmental difficulties.

Keywords: children; adult; difficulties; disorders; coordination; focus

1. Introduction

The appearance of symptoms such as problems with maintaining balance; coordination problems;
difficulty with jointing together elements of running, jumping, throwing, and catching a ball; time–space
orientation disorder; deep sensibility or kinesthesia (awareness of the arrangement of the body in space
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and ability to repeat a set motor pattern) in a schoolchild is a clear sign of developmental difficulties
that should be considered by parents or legal guardians. Other indications include issues with reading,
writing, and mathematical abilities, such as counting and understanding of instructions [1]. All of the
aforementioned symptoms increase the risk of dyslexia and can be the reason for psychomotor and
social problems in adult life [2,3]. There are preliminary screening tests that enable early detection of
problems connected to learning and behavioral or emotional disorders in schoolchildren. These include,
among others, the Institute for Neuro-Psychological Psychology (INPP) questionnaire by Goddard
Blythe, which allows a profound examination of children in terms of the presence of psychomotor
disorders, which, in turn, can be a sign of neuromotor immaturity [4,5]. The use of a questionnaire
allows the selection of children who have trouble at school and children who have motoric problems,
which indicate disintegrated primitive reflexes [6]. Research with the use of the aforementioned
questionnaire was conducted by Grzywniak. According to the author, a child aged 6 or 7 years old
gains the neuropsychological maturity for school learning through a correct development and the
integration of the primary reflex within the central nervous system [2,4]. The methods of evaluation of
retained reflexes became the research objects of not only Goddard Blythe but also of Masgutova who
developed a rehabilitative and therapeutic system, Masgutova neurosensorimotor reflex integration
(MNRI), with a view to helping patients with neurological and cognitional disorders [5]. Both authors
in their methods acknowledge the importance of the incorrect work of structures responsible for the
equilibrium and coordinative abilities of the child (cerebellum and central nervous system) in contrast
with neonatal reflex [1].

The use of the INPP questionnaire can determine which children have school and motor problems,
indicating disintegrated primary reflexes.

Research concerning the perception of difficulties in children is extremely important for both the
parent and teacher perspective, and most importantly the children themselves. An adult becomes a
witness of the everchanging influence of the environment, that is the school or home, on the behavior
of a schoolchild. The foregoing problem arises because of many factors, e.g., the parental attitude,
overprotectiveness of the parents or a liberal upbringing style, peer contact, emotional experiences,
teacher competences, and the methods of knowledge transfer. Different attitudes will be observed by
a parent in a house where the child feels much more at ease and has a greater sense of security and
acceptance and a possibility to release emotions in contrast with teacher observations in the school
environment where there are top-down rules and time frames regarding the length of the lessons or
breaks. With the use of the screening test and observation, the teacher is able to recognize the children
with psychomotor disorders [1]. The early pedagogical diagnosis gives the opportunity to take further
educational and, if there is such a need, therapeutic steps [4].

The aim of this study was to compare the perception of a child’s developmental difficulties
by the parents, a teacher, and through the child’s self-assessment based on an analysis of the
INPP questionnaire.

2. Materials and Methods

2.1. Examined Group

A total of 68 children took part in the research. For comparison, a number of questionnaires
were completed; 49 were filled out by children, 49 by parents (72%), and 44 by teachers (74%).
A greater number of questionnaires was taken into consideration for the possibility of comparison
depending on the analyzed group. Each pupil was rated thrice—by a parent, a teacher, and through
the pupil’s self-assessment.

The first treatment group counted 49 children (21 girls and 28 boys). The average age was 8 years.
The youngest pupil was 6 years old, and the oldest was 12 years old (SD = 1.63; MED = 8.0; MOD = 6).
All of the participants were elementary students. The second group was formed of parents, and the
third of teachers.
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2.2. Questionnaire

The research was conducted with the use of the INPP screening test by S. Goddard Blythe.
It comprises 21 questions for which the answers are given on a 5-grade scale (0–4) where 4 means that
the disorder is present to a great extent and 0 means a lack of the disorder [7–9].

In the questionnaire, each of the groups had to determine on a scale from 0 to 4 the degree
of difficulty with which the child copes in day-to-day life. Among them, concentration problems;
problems with sitting still, writing, or reading; easy distraction; and motor problems such as swimming,
bike riding, or coordination can be distinguished.

Moreover, every child’s result was summed up and categorized into levels, where the larger the
sum of the point, the greater the disorder. The aforementioned scale can be seen in Table 1.

Table 1. The scale of disorder assessment.

Sum Level Degree of Disorder

0 0 no disorder
1–21 1 present to a minimum degree

22–42 2 present to a moderate degree
43–63 3 present to a great degree
64–84 4 present at a very high intensity

2.3. Statistical Methods

Statistical analysis was performed using IBM SPSS Statistics version 25 (IBM Corp., Armonk, NY,
USA). Means, standard deviation, and medians were calculated. The Mann–Whitney U test was used
to compare the two groups in terms of quantitative/ordinal variables. The level α = 0.05 or α = 0.01 was
used for comparisons. The effect size was calculated using eta-squared for the Mann–Whitney U test.

3. Results

The results were analyzed in three subgroups: child–parent (Table 2), child–teacher (Table 3),
and parent–teacher (Table 4). Tables 2–4 show the distribution of the average of particular answers
to questions between the groups. Statistically significant differences are highlighted in red. In the
child–teacher comparison, 10 of the answers show this feature. Similarly, in the parent–teacher group,
the answers vary significantly in 10 cases. In the last child–parent column, there are six differences in
grading particular difficulties that are statistically significant

Table 5 shows a comparison between the average sums of results and the sum of levels, and the
calculated average score in the subgroups. The number of given answers differs significantly. It is the
most noticeable in the parent–teacher subgroup where the averages and the division into levels are
substantially apart. The parents often assessed the children’s troubles at the first level. Eight pupils
more were classified as that level by the parents than those classified as that level by the teachers.
The teachers scored the children’s troubles higher, and the children were classified as the second level
more by the teachers than by the parents. The difference in the sum of the points is 6.16 (0.57 for
the child–teacher subgroup; 5.32 for child–parent). In this group, there is also the greatest difference
between the levels, that being 0.38 (child–teacher 0.08; child–parent 0.26). In the remaining groups,
the answers are the same or differ insignificantly in at least two aspects.
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Table 2. The distribution of responses in the child–parent group.

Children (n = 40) Parents (n = 40)

Questionnaire M Me SD M Me SD U p η2

1.Inability to sit still 1.2 1 1.2 1.1 1 1.2 786 0.45 0.00
2.Attention problems 1.3 1 1.3 1.1 1 1.1 753 0.33 0.00

3.Easy to distract 1.6 1 1.4 1.4 1 1.1 740 0.28 0.00
4.Coordination problems 1.0 0 1.4 0.8 0 1.1 780 0.35 0.00

5.Incorrect grip 0.9 0 1.3 0.7 0 1.1 744 0.30 0.00
6.Incorrect sitting posture 1.0 1 1.2 1.1 1 1.1 739 0.28 0.00

7.Difficulty catching the ball 1.2 1 1.2 0.8 0 1.2 660 0.09 0.02
8. Difficulty learning to swim 1.4 1 1.5 0.8 0 1.1 642 0.06 0.03

9.Diffiiculty riding a bike 0.5 0 1.2 0.2 0 0.8 701 0.17 0.01
10.Travel sickness 1.1 0 1.5 0.5 0 1.0 638 0.06 0.03

11.Reading problems 1.4 1 1.4 0.8 0 1.1 589 0.02 0.05
12.Writing problems 1.2 1 1.2 0.9 0.5 1.1 697 0.16 0.01

13.Rewriting problems 0.9 0.5 1.2 0.7 0 1.1 718 0.22 0.01
14.Math problems 1.1 1 1.2 0.5 0 1.0 546 0.00 0.08

15.Spelling problems 1.4 1 1.4 1.1 1 1.2 713 0.16 0.01
16.Rearranging numbers or letters 0.7 0 1.0 1.0 1 1.2 692 0.15 0.01

17.Difficulty reading the time 1.5 1 1.6 1.1 0 1.4 669 0.08 0.02
18.Difficulty multi-tasking 0.9 0.55 1.0 0.9 0 1.2 818 0.49 0.00

19.Recurring headaches 1.0 1 1.1 0.2 0 0.7 437 0.00 0.15
20.Frequent fatigue 1.1 1 1.1 0.6 0 1.0 570 0.01 0.06
21.Clear agitation 1.2 1 1.3 1.0 1 1.1 767 0.37 0.00

Sum 23.3 23 13.2 17.3 16 12.1 681 0.05 0.02
Level 1.6 2 0.6 1.4 1 0.7 616 0.04 0.04

* Statistically significant values are marked in red.

Table 3. The distribution of responses in the child–teacher group.

Children (n = 44) Teachers (n = 44)

Questionnaire M Me SD M Me SD U p η2

1.Inability to sit still 1.18 1 1.17 1.52 1 1.62 909 0.31 0.00
2.Attention problems 1.34 1 1.22 2.57 3 1.44 506 0.00 0.15

3.Easy to distract 1.66 1 1.41 2.57 3 1.44 637 0.00 0.09
4.Coordination problems 0.78 0 1.19 0.25 0 0.94 725 0.02 0.05

5.Incorrect grip 0.75 0 1.14 1.34 1 1.24 680 0.01 0.07
6.Incorrect sitting posture 1.07 1 1.25 1.43 1 1.42 836 0.14 0.01

7.Difficulty catching the ball 1.18 1 1.23 0.80 0 1.19 854 0.05 0.01
8.Difficulty learning to swim 1.43 1 1.55 0.09 0 0.60 471 0.00 0.20

9.Diffiiculty riding a bike 0.57 0 1.23 0.09 0 0.60 795 0.07 0.02
10.Travel sickness 1.23 0 1.57 0.32 0 1.03 610 0.00 0.10

11.Reading problems 1.25 1 1.28 1.43 2 1.39 905 0.30 0.00
12.Writing problems 1.05 1 1.16 1.45 1 1.25 782 0.06 0.03

13.Rewriting problems 0.89 1 1.19 1.30 1 1.19 745 0.03 0.04
14.Math problems 1.12 1 1.19 1.20 1 1.11 945 0.36 0.00

15.Spelling problems 1.46 1 1.28 1.32 1 1.20 945 0.36 0.00
16.Rearranging numbers or letters 0.68 0 0.93 0.64 1 0.81 958 0.47 0.00

17.Difficulty reading the time 1.46 1 1.53 0.25 0 0.89 514 0.00 0.16
18.Difficulty multi-tasking 0.82 1 0.99 1.50 1 1.34 868 0.04 0.01

19.Recurring headaches 0.87 1 1.05 0.09 0 0.60 474 0.00 0.19
20.Frequent fatigue 1.14 1 1.12 0.98 0 1.21 861 0.15 0.01
21.Clear agitation 1.18 1 1.30 1.52 1 1.70 926 0.36 0.00

Sum 23.1 23 12.6 22.70 22 13.30 1003 0.27 0.00
Level 1.61 2 0.65 1.90 2 0.73 794 0.07 0.02

* Statistically significant values are marked in red.
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Table 4. The distribution of responses in the parent–teacher group.

Parents (n = 38) Teachers (n = 38)

Questionnaire M Me SD M Me SD U p η2

1.Inability to sit still 1.13 1 1.23 1.66 1 1.60 591 0.09 0.03
2.Attention problems 1.11 1 1.03 2.68 3 1.42 284 0.00 0.27

3.Easy to distract 1.32 1 1.09 2.68 3 1.42 329 0.00 0.22
4.Coordination problems 0.76 0 1.08 0.29 0 1.01 496 0.01 0.07

5.Incorrect grip 0.61 0 1.00 1.40 1 1.31 462 0.00 0.10
6.Incorrect sitting posture 1.08 1 1.12 1.40 1 1.37 640 0.20 0.01

7.Difficulty catching the ball 0.84 0 1.15 0.87 0 1.26 715 0.47 0.00
8. Difficulty learning to swim 0.79 0 1.14 0.11 0 0.65 463 0.00 0.10

9.Diffiiculty riding a bike 0.21 0 0.81 0.11 0 0.65 685 0.35 0.00
10.Travel sickness 0.51 0 1.02 0.37 0 1.10 602 0.14 0.02

11.Reading problems 0.79 0 1.04 1.55 2 1.45 517 0.02 0.06
12.Writing problems 1.00 1 1.16 1.53 2 1.31 557 0.04 0.04

13.Rewriting problems 0.76 0 1.15 1.37 1 1.26 504 0.01 0.07
14.Math problems 0.58 0 1.08 1.32 1 1.14 431 0.00 0.12

15.Spelling problems 1.21 1 1.28 1.29 1.5 1.29 697 0.40 0.00
16.Rearranging numbers or letters 1.05 1 1.18 0.66 1 0.85 604 0.11 0.02

17.Difficulty reading the time 1.11 0 1.45 0.26 0 0.95 485 0.01 0.08
18.Difficulty multi-tasking 0.90 0 1.25 1.66 1 1.36 462 0.00 0.10

19.Recurring headaches 0.24 0 0.68 0.11 0 0.65 649 0.22 0.01
20.Frequent fatigue 0.55 0 0.95 0.92 0 1.22 613 0.13 0.02
21.Clear agitation 1.00 1 1.09 1.45 1 1.64 648 0.22 0.01

Sum 17.53 16.5 12.17 23.66 22 13.91 503 0.01 0.07
Level 1.29 1 0.65 1.71 2 0.73 489 0.01 0.08

* Statistically significant values are marked in red.

Table 5. The average sum of results and levels.

Child Teacher Parent Teacher Child Parent

Average sum
of results 23.3 22.73 17.5 23.66 20.16 14.84

Level 0 * 0 0 2 0 6 10
Level 1 22 19 25 17 22 26
Level 2 19 23 9 19 18 11
Level 3 3 0 2 0 3 2
Level 4 0 2 0 2 0 0
Average

levels 1.57 1.65 1.32 1.70 1.36 1.1

* Degrees of disorders are described as ”levels”.

3.1. Child–Teacher Subgroup

In order to compare the answers in the child–teacher group in detail, 44 questionnaires were
analyzed. The results are presented in Figures 1 and 2.

The charts show the layout of the children’s and teachers’ answers. There are clear differences
between the perception of the problems that the child struggles with (Figure 1), especially in questions
1, 2, and 3. They touch upon the abilities concerning difficulties with sitting still and keeping attention
and the child’s ability to stay focused.
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Figure 1. Answers given by the examined children.

The teachers marked levels 3 and 4, which are “present to a great degree” and “present at a
very high intensity”, more frequently, while the children were more likely to give 0, 1, or 2 points
(Figure 2). The opposite was observed for questions 4, 5, 8, 9 10, 17, 18, and 19, where teachers marked 0.
The questions concerned motor abilities, coordination, motion sickness, the ability to read the analogue
clock, and headaches. All of the aforementioned differences are statistically significant (p ≤ 0.02).
Differences in answers to question 1 are not statistically significant. Moreover, the comparison of the
sum of the points and levels is also not significant (p ≥ 0.05).

 
Figure 2. Answers given by the teachers.

3.2. Parent–Teacher Subgroup

In this group, there were 37 analyzed questionnaires.
In the comparison of the parent–teacher group’s answers, there are differences between the

answers to questions 2, 3, 4, and 8, where the teachers marked many more 4s than the parents (Figure 3).
Those questions were related to motor coordination.
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Figure 3. Answers given by the teachers.

For the question concerning reading the time, the teachers marked 0 most of the time, in contrast
to parents who marked the 0–3 answers (Figure 4). In questions 11, 13, 14, and 18, the parents marked
lower answers (0 and 1) much more frequently than the teachers. These questions concerned the issues
of writing, rewriting, and mathematical abilities. Question number 18 touched upon headaches. All of
the parameters and the comparison of the sum of points and levels show great statistical importance.

 

Figure 4. Answers given by parents of examined children.

3.3. Child–Parent Subgroup

In this group, there were 49 analyzed questionnaires.
In the child–parent group, the answers differ the most for questions 17, 18, 19, and 20 (19 and 20,

p < 0.05), where the parents more commonly gave answers of 0 (Figure 5). The questions concerned
reading the time, maintaining attention, headaches, and fatigue. Parents seldomly marked 4 (present
at a very high intensity). Furthermore, there are statistically important differences when it comes
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to questions 8, 10, 11, and 14. These questions touched upon swimming, motion sickness, reading,
and mathematical abilities, respectively.

 
Figure 5. Answers given by parents of examined children.

The children’s answers indicated that they have more difficulties with the aforementioned areas
than their parents acknowledge (Figure 6). The comparison between the average sums of the points
and levels shows great statistical significance (p = 0.04 and p = 0.03).

Figure 6. Answers given by examined children.

4. Discussion

The results of our research show that the answers in the parent–teacher group differed substantially
in many aspects. The biggest difference was found for the answers given to the question concerning
keeping attention, where the provided scales differ by 2 degrees. The results present a significant
difference in the way that parents and teachers perceive a child’s abilities. The difference of the
teacher’s and the parent’s assessment where the child’s answer is similar to the teacher’s answer might
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be a result of a parent’s limited awareness concerning the child, who is in a situation that demands
focused attention during the class. However, the similarity between the child’s and the parent’s
answers and substantially different teacher’s answers might suggest that the teacher perceives the
child to be in a difficult situation in the school environment. Different scores in the answers may
also reflect the different expectations of the teacher, the child, and the parent. The difference might
moreover suggest that the child behaves differently at school than he/she behaves at home. Significant
differences appeared in the answers to the questions concerning the child’s ability to catch a ball and
the frequency of headaches. There was an incompatibility between the child’s answer and the parent’s
answer concerning this issue. The children more often graded themselves higher in the answer to
the question about catching the ball and lower when it comes to the answer concerning headaches.
This might indicate the children’s understated self-esteem and concealment of experiencing pain
such as headaches, or it might suggest a lack of knowledge about how to qualify the frequency of
their condition.

Similar research was previously conducted involving parent–teacher groups. There were also
studies conducted with the use of other tests in a form of the questionnaires SRD-6, SPE_R, and the
SPE IBE scale. The results of our study, however, showed that the teachers’ observations are far more
adequate than the data obtained by the use of the questionnaires mentioned above [1]. However,
the INPP questionnaire focuses in particular on the children’s difficulties, and it is proven to be an
accurate and precise research tool [6]. Furthermore, there are studies that compare groups of children
with groups of adults in general, for instance, children who are hospitalized, the nurses who are taking
care of them, and the children’s parents. These studies show that the children, though being under
their parents’ custody by law, should have the possibility to be consulted about and take an active part
in adjusting the treatment they are undergoing, and they should be allowed to receive the information
concerning their medical condition [10,11].

The differences in the perception of children’s problems can lead to misunderstanding and create
a stressful situation between parents and teachers. However, it could be reduced by analyzing the
results of the research conducted with the use of the INPP questionnaire [4]. This allows us to initially
discover the children’s difficulties. With the use of the questionnaire, both the parents and the teachers
are able to check which aspects of their children’s life they should focus on more and whether the
child is in a need of deeper analyses and further diagnosis. This tool can easily limit the problems
that the child deals with and suggest therapeutic steps that will inhibit the progress of the problem
in the future. The therapeutic activity and further diagnosis can show the child’s autism disorders,
which also are the cause of a child’s problems at school and at home [12]. The observation and the
reduction of a risk of further progress of dyslexia, problems reading and writing, and other symptoms
of language disorders, at an early stage, can eliminate negative consequences that would appear later
on [1]. The difficulties might be caused by the survival of the primitive reflexes [6]. They might
indicate that the child suffers from mental problems [13]. They could also be an effect of the collision
between home and school environment [14]. The atmosphere of home and the atmosphere of school
differ substantially. They consist of different components, such as peers, teachers, parents, siblings
who simultaneously influence the child’s behavior [15]. To engage in a dialogue about the differences
in perceiving children’s difficulties enables us to make better decisions concerning the form of help
that the child should receive.

Moreover, other factors that influence the rate of a child’s difficulties should be taken into
consideration too. Some other decisive factors that influence the child’s difficulties include
financial situation; parents’ educational background; living conditions; access to knowledge, science,
and information; and state of health [16]. All of them should be analyzed in a dialogue between the
teacher, the parent, and possibly the child [10,11].

The main limitation of this study is that small groups were used for the INPP test. Future work
could involve a larger group of children with neurological disorders, thus providing information about
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the children’s and adults’ perception of the children’s developmental difficulties [1]. Future study
could also include a sociological interview to determine the parents’ wealth and education.

The conversation about developmental problems between children and the people who support
their development should lead to developing the best tactic on how to act in school and home
environments. The cooperation between parents and teachers is necessary in order to achieve
maximum results while taking into account the child’s individual needs too. This also enables objective
comparison of information provided by both of these sources.

5. Conclusions

The presented research concerning parents’ and teachers’ perceptions of children and the children’s
self-assessment enabled us to draw the following conclusions:

1. Teachers notice children’s problems with concentration and distraction during the classes
substantially more often than the children themselves.

2. Teachers notice writing and copying problems and issues with math skills more often
than parents.

3. Children notice their own physical coordination problems and trouble with concentration more
often than parents do.

4. Children are perceived differently by their parents, their teachers, and by themselves. Something
that is perceived as troublesome by children is not always perceived as problematic by parents
or teachers.

The presented conclusions might provide an important reference both for parents and teachers.
The integration and support for both of these communities is the key to success in the proper perception
of a child in daily life [17].
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Abstract: The art of observing and describing behaviors has driven diagnosis and informed basic
science in psychiatry. In recent times, studies of mental illness are focused on understanding the brain’s
neurobiology but there is a paucity of information on the potential contributions from peripheral
activity to mental health. In precision medicine, this common practice leaves a gap between bodily
behaviors and genomics that we here propose to address with a new layer of inquiry that includes
gene expression on tissues inclusive of brain, heart, muscle-skeletal and organs for vital bodily
functions. We interrogate gene expression on human tissue as a function of disease-associated genes.
By removing genes linked to disease from the typical human set, and recomputing gene expression on
the tissues, we can compare the outcomes across mental illnesses, well-known neurological conditions,
and non-neurological conditions. We find that major neuropsychiatric conditions that are behaviorally
defined today (e.g., autism, schizophrenia, and depression) through DSM-observation criteria have
strong convergence with well-known neurological conditions (e.g., ataxias and Parkinson’s disease),
but less overlap with non-neurological conditions. Surprisingly, tissues majorly involved in the central
control, coordination, adaptation and learning of movements, emotion and memory are maximally
affected in psychiatric diagnoses along with peripheral heart and muscle-skeletal tissues. Our results
underscore the importance of considering both the brain–body connection and the contributions of
the peripheral nervous systems to mental health.

Keywords: autism; schizophrenia; mental depression; ataxia; fragile X; Parkinson’s disease; mitochondria;
gene expression; tissues; neurological disorders; nervous systems disorders

1. Introduction

Modern medicine is at an inflexion point [1], whereby advances in computational methods,
wearable sensing technology and open access to Big Data are reshaping the ways in which we inform
basic science and rapidly translate our knowledge to actionable treatments. Psychiatry is one of those
medical fields that is rapidly evolving, while adapting traditional models to help advance the main
goal of helping patients improve their quality of life. Along those lines, computational psychiatry [2],
a nascent subfield within psychiatry, is merging methods from Computational Neuroscience with
clinical approaches through successful collaborations. These new developments are bound to open
new frontiers in therapeutic treatments. Further, as part of a more general effort in the medical field,
precision medicine (PM) [1] has emerged as a new platform to combine expertise from multiple layers
of the knowledge network in order to ultimately design personalized targeted treatments (Figure 1A).
Integrating the personalized concept of PM with the new advances in computational psychiatry could
give us a new way to approach mental illness and help patients cope with lifelong changing needs.

J. Pers. Med. 2020, 10, 144; doi:10.3390/jpm10040144 www.mdpi.com/journal/jpm
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Figure 1. Roadmap to implement the precision medicine model for diagnoses and treatments of
mental illnesses. (A) PM’s interconnected knowledge network can contribute information about the
individual’s medical history, behaviors, environment, microbiome, and genetic makeup. Importantly,
the new proposed layer of digitized behaviors leveraging the wearable biosensors revolution can
transform medicine by creating truly personalized assessments. Additionally, the layer of behaviors
can be connected to nervous system functioning via fundamental levels of neuromotor control that
span along a phylogenetically orderly taxonomy. (B) This proposed taxonomy is based on levels of
maturation in autonomous neuromotor control, linked to three fundamental muscle types: autonomic
(by cardiac muscles), involuntary (by smooth muscles) and voluntary (by skeletal muscles). By linking
the fundamental muscle types to the levels of control in the nervous systems, digital behaviors can then
be mapped to bodily autonomy, bodily autonomy mapped to muscle types and muscle types mapped
to genes/proteins. Any measure of treatment effectiveness for mental illnesses can then map back to
improvements in observable behaviors embedded in activities of daily social life.

The task ahead is challenging because there is no proper roadmap to connect the layers of the
knowledge network in PM and produce personalized diagnoses and measures of treatment outcomes
that truly separate disease progression from treatment effectiveness according to age and development.
Part of the problem is that most brain science has focused on experimental assays and methods that
curtail natural movements. As such, our knowledge about the dynamics of natural behaviors is very
limited, particularly in reference to those aspects of behavior that remain hidden to the naked eye of the
clinician trained to observe specific expected behavioral landmarks of a psychiatric disorder conceived
exclusively as a mental illness. In so doing, the clinically trained eye may miss important information
that is perhaps common across different disorders of the nervous systems and rather relevant to help
improve the patient’s quality of life. For example, motor coordination and volitional control are critical
ingredients of autonomy in any natural behavior underlying activities of daily living. Yet, these are
not considered part of the diagnostics criteria for mental illnesses such as autism, schizophrenia and
depression, as per the Diagnostics Statistical Manual (DSM-5) [3] (and see Supplementary Materials).

Research on the underlying neurobiology of mental illnesses has revealed their associated
genetics [4] and/or helped characterize patterns of brain activity in response to external stimuli [5]
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(while curtailing naturalistic bodily motions to avoid instrumentation artifacts in imaging data or
in EEG, MEG, etc.). This central approach to brain science has left us with a paucity of information
about the possible contributions to mental illness from the peripheral nervous systems, and from
vital organs important for autonomous living. The peripheral activity, however, continuously feeds
back to the brain via afferent (body-to-brain) channels and is, in turn, dynamically updated through
efferent (brain-to-body) activity, self-generated by the system itself. This recursive loop, whereby
re-entrant information that is partly self-produced by the organism and partly influenced by external
environmental conditions, would provide important clues about truly evolving dynamics and stochastic
(variability) across all-natural behaviors. Approaching the problem through this lens could bring a new
quantifiable layer of granularity to basic research. This would include the design of age-appropriate
metrics reflecting the development of the organism as it ages and as it copes with a disorder [6,7].
The micro- and macro-motion data from the nervous systems biorhythms is the low hanging fruit that
we can easily attain by leveraging the wearable sensors revolution. Further, because these quantifiable
digitized activities and signals therein are partly self-generated, self-monitored and self-corrected by
and within the nervous systems, this quantitative approach has the potential to take us from a purely
correlational science to a science that is based on causal relations between nervous system activities
and external/contextual stimuli. In this sense, the new proposed approach to mental illness is amenable
to intervene and modify the system with well-informed, near-optimal means capable of improving
its performance.

Micro- and macro-motions that underly all aspects of human behavior depend on the intactness
of fundamental tissues, many of which have already been characterized in genomics according to cell
types [8]. Here, we propose to combine micro-level underlying aspects of behavior with the current
genomics knowledge to inform psychiatry of possible ways to improve quantification of nervous
system activities. Ultimately, we seek to compile this information to help build accommodations and
support for the patient population, while reconceptualizing mental illness as a physically quantifiable
disorder of the nervous systems.

The nervous systems already offer a taxonomy of function and control that is phylogenetically
ordered and well organized along several axes. Some of these axes are accessible today with
non-invasive means and, as such, we can obtain signals and build computational models to understand
mechanisms and translate them to actionable societal solutions. One possible orderly structure is
suggested in Figure 1B, where we propose to map levels of neuromotor control (voluntary, involuntary,
and autonomic) to fundamental types of muscles (skeletal, smooth, and cardiac) linked to commonly
sampled tissues in genomic datasets. Combining information about gene expression on tissues that
involve key components of the central nervous systems (the brain and the spinal cord), key organs
for vital bodily functions (including smooth muscle lining internal organs), muscle-skeletal tissues
and nerves, and cardiac tissues (for autonomic heart functioning), we explore the effects of removing
disease-associated genes, on the overall remaining genome expression on these tissues. As a first step
in this exercise, we reasoned that the genes associated with a given disorder ought to be important in
the functioning of certain systems, which in turn depend on certain tissues. We also reasoned that such
stochastic variations and combinations could be measured relative to the presence of all genes and to
the absence of genes across neurological or non-neurological conditions.

What is the tissue distribution of gene expression in neuropsychiatric disorders such as autism,
schizophrenia, and depression in relation to well-characterized neurological conditions? Is there
convergence in the remaining gene expression on the tissues upon removal of the genes associated with
that disease? Furthermore, how would the gene expression change across the tissues in non-neurological
conditions such as various forms of cancer, immunodeficiencies, endocrine system deficiencies and so
forth? How would it change in acquired disorders such as Post Traumatic Stress Syndrome (PTSD),
currently diagnosed through observation?

Take autism for example. Autism is an umbrella term for a very heterogeneous set of
neurodevelopmental disorders, but no gold-standard criteria include core neurological symptoms
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that could help us create early accommodations and support for the nascent nervous systems of the
infant (during pre-cognitive stages of neurodevelopment). The rule of thumb is to assume that the
child has odd, socially inappropriate behaviors and that they should be modified through operant and
cognitive conditioning techniques—often translated from lab animals to human babies, without any
type of collaboration with other fields studying infant development. Current methods of diagnoses
and treatments in autism are not based on normative neurodevelopmental data charts to understand
age-dependent departures from typical neurodevelopment. Without any systematic way to build
age-appropriate metrics in order to capture highly non-linear, stochastic patterns and rates of change in
the (rather accelerated) infant neurodevelopment, entire generations of infants, children and adolescents
have been exposed to such means of behavioral treatments and no information can tie these back to
the underlying genomic pool of this population.

In schizophrenia, delusions, avolition and catatonia are at the core of the disorder, but as in
autism above, no criteria in the DSM highlight the profound somatic sensory-motor issues that have
been found in patients [9]—even without the use of psychotropic medications known to alter motility.
Interestingly, historical accounts of psychiatry (in pre-Freudian times) show the reliance on motor
aspects of the behaviors that defined several mental illness from a neurological perspective [10].

Depression is also currently treated purely as a mental illness, but it may be important to
understand potential contributions to various forms of depression, from the peripheral nervous
systems and from the body in general. Genetic information may give us a way to link tissues affected in
these neuropsychiatric conditions with those affected in neurological conditions, for which treatments
and interventions of various forms may be effective. These may be in the form of drugs, or in the form
of physical, mindfulness and occupational therapies aimed at helping support the person’s bodily
autonomy and overall increase the chances for independent living.

We here offer a new lens to help balance psychiatric with neurological criteria derived from genomic
information specific to each disorder. In a first (crude) step of many to come, we start by comparing
well-known neuropsychiatric and neurological conditions, the results from eliminating the genes
associated with each disorder and quantifying the degree of convergence in the maximally affected
tissues, in relation to those resulting from eliminating the genes associated with non-neurological
conditions. We focus our discussion on possible ways to continue this path of inquiry and highlight
current caveats for future improved iterations of the proposed methods.

2. Materials and Methods

We combine the datasets from genes associated with mental illnesses with well-known neurological
disorders and with illnesses that are not directly associated with the nervous systems. We also include
genes associated with manifestations of acquired Post-Traumatic Stress Syndrome Disorder (PTSD).
Among mental illnesses defined by the DSM-5, we include autism, schizophrenia and mental depression
of different types, (e.g., general, bipolar and unipolar). Among neurological conditions, we include
ataxias (e.g., cerebellar, spinocerebellar, progressive, and gait) and Parkinson’s disease. Among
non-neurological disorders, we include colon cancer, breast cancer, diabetes, congenital heart disease,
hematologic neoplasm, and various autoimmune disorders (lupus systemic erythematosus, psoriasis,
and irritable bowel syndrome).

We use the genes, gene expression, and tissues from the Genotype-Tissue Expression project, GTEx
pPortal human RNA-seq (Transcripts Per Million (TPM), see Appendix A for note in TPM) as reference
specifically using the files denoted in Appendix B. In autism, we use the gene scoring module of the
Simons Foundation Autism Research Initiative (SFARI) scored according to evidence from the literature.
We also use ataxia genes, the X genes and the FX genes taken from various literature reviews [11,12].
Furthermore, we use genes associated with mitochondrial disorders [13] and genes identified in
Parkinson’s disease, taken from [14–19]. Besides the autism SFARI genes and the genes reported in
literature reviews, we take the genes associated with autism, schizophrenia and depression reported in
https://www.disgenet.org/home/ along with other genes from the above-mentioned non-neurological
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disorders. The latter will inform us of fundamental differences in gene expression between these
diseases and those which affect neuromotor control and basic functioning, as mediated by interactions
between the brain and the peripheral nervous systems (including the autonomic nervous system).

The SFARI autism categories that we used were those reported as of 03-04-2020. Quoting from
their site:

• CATEGORY 1 Genes in this category are all found on the SPARK gene list. Each of these genes
has been clearly implicated in Autism Spectrum Disorders, ASD—typically by the presence of
at least three de novo likely-gene-disrupting mutations being reported in the literature—and
such mutations identified in the sequencing of the SPARK cohort are typically returned to the
participants. Some of these genes meet the most rigorous threshold of genome-wide significance;
all at least meet a threshold false discovery rate of <0.1.

• CATEGORY 2 Genes with two reported de novo likely-gene-disrupting mutations. A gene uniquely
implicated by a genome-wide association study, either reaching genome-wide significance or, if not,
consistently replicated and accompanied by evidence that the risk variant has a functional effect.

• CATEGORY 3 Genes with a single reported de novo likely-gene-disrupting mutation. Evidence
from a significant but unreplicated association study, or a series of rare inherited mutations for
which there is not a rigorous statistical comparison with controls.

• SYNDROMIC The syndromic category includes mutations that are associated with a substantial
degree of increased risk and consistently linked to additional characteristics not required for an
ASD diagnosis. If there is independent evidence implicating a gene in idiopathic ASD, it will be
listed as “#S” (e.g., 2S, 3S). If there is no such independent evidence, the gene will be listed simply
as “S”.

The GTEx dataset is as the 06-05-2017 v8 release. For every gene in autism, ataxia, X, FX,
mitochondrial diseases, Parkinson’s disease, and the non-neurological diseases, we first confirmed the
presence of the gene in the GTEx dataset and then incorporated it into the analyses.

The genes from the DisGeNet portal were found by interrogation of their dataset under disease
type and saving the outcome to excel files containing all pertinent information. All sample files used in
our analyses are provided in Supplementary Materials.

2.1. Count Normalization

The GTEx matrix of RNA-seq genes along the rows (56,146) × the tissues (54) along the columns
was transposed (54 × 56,246), such that we expressed each tissue as a function of the gene expression
denoted by the count (TPM). Each individual count value was then normalized using Equation (1).

Normalized Count =
counti

counti +
AvrgGlobalCount
MaxGlobalCount

(1)

Here, counti is the count value of the genei, AvrgGlobalCount is the overall average of the matrix of
values taken along the columns and the rows. MaxGlobalCount is the maximum count value, also taken
globally across the matrix values. Figure 2 shows the original count numbers (Figure 2A) and the
normalized version (coined micro-movement spikes (MMS)) in Figure 2B. Figure 2C shows the MMS
derived from the fluctuations in counts normalized by Equation (1), while Figure 2D shows the
histograms of the peaks (marked in red dots) for different tissues and genes scored by the SFARI.
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Figure 2. Analytical methods. (A) Sample raw data consisting of the log count (TPM) for different
scored genes expressed in the brain frontal cortex (Brodmann Area 9). (B) Histograms of the log count
TPM for each case in (A). (C) Upon removal of the Simons Foundation Autism Research Initiative
(SFARI) autism genes, we obtain micro-fluctuation spikes in the normalized count, with deviations
taken relative to empirically estimated mean, global averaged count, and global maximal count in
Equation (1). (D) Histograms of the normalized micro-fluctuation spikes.

2.2. Gene Removal

For each of the disorders of interest in Appendix B Table A1 (mental illness and neurological) and
Table A2 (non-neurological), we remove the genes associated with each condition from the human
GTEx dataset. These disease-gene associations are as reported in the various databases (the SFARI,
DisGeNet https://www.disgenet.org/home/ and the literature meta reviews). We then treat the resulting
count series as a random process. We use the exponential distribution to characterize it and to assess
the differential expression across the tissues relative to non-removal in the original human genome.

The question that we ask is: given the known neurological phenotypes, is there convergence
between the most-affected tissues upon associated gene removal and the changes in the tissues that
will be obtained by the removal of genes associated with mental illnesses? Furthermore, is there
convergence with the outcome from removing the genes associated with non-neurological illnesses?
Appendix B Tables A1 and A2 show the number of genes removed in each respective case as well as
the source of the reported genes associated with each condition/disease.

2.3. Stochastic Analyses

Since the count values for each tissue can be conceived as a random series of numbers, we use
maximum likelihood estimation (MLE) to model the numbers representing the counts, as generated by
the exponential distribution using Equation (2)

y = λe−λx (2)

Here, x represents the normalized count value (as per Equation (1)) and y represents the value
from the exponential distribution. We seek the value of the rate parameter λ to model this random
counting process, which we use to represent the gene expression in the tissue. To that end, we estimate
the likelihood L(λ|x1, x2, . . . , xn) where the series of counts xi, with i ranging from 1 to n, represent the
normalized counts (according to Equation (1)) across all genes for one tissue. Appendix B shows the
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steps to find λ. Further, this is computed for each of the 54 tissues. We then rank the departure of λ
(resulting from gene removal) from the λ obtained for the full human genome (see below). This is
explained in Figure 3.

 

Figure 3. Sample metrics used for the stochastic analyses of a data sample (using 2697
schizophrenia-associated genes reported in DisGenNet portal and in the literature). (A) Effect of removing
the schizophrenia genes from the GTEx human genome set expressed across 54 tissues. Tissues are
sorted in ascending order, by the absolute difference Δλ between gene expression on the 54 tissues
before and after removal. The red square highlights the top 13 median-ranked tissues shown in the
panel below and the dark and light blue circles mark the top two tissues affected (the brain amygdala
and brain putamen in the basal ganglia. (B) The exponential distribution curve is fit to the sorted
normalized count representing the gene’s expression in TMP on the top median-ranked affected tissues
(as in Figure 2C, taking the peaks highlighted in red and fitting the exponential distribution to the
frequency histogram, as in Figure 2D) before (black line) and after (red line) the removal of the genes
associated with the disease. The absolute value difference between the curves is the Δλ used to rank
the tissues by the effect size. (C) The fitting of the gamma distribution yields the shape and scale
parameters used to compute the gamma moments. The axes represent the mean, the variance, and the
skewness of the distribution of the normalized values and the color map represents the Earth Mover’s
Distance values measuring the difference between the resulting exponential frequency histograms in
(B). The size of the circle is proportional to the kurtosis and the color-filled circles represent the tissue
(54 in the left panel) with the original gene expression from GTEx (our reference template) vs. the open
circles representing the stochastic shift, i.e., upon the removal of the genes associated with the disease
in DisGenNet. The right panel contains the top-ranked tissues (13) according to the median values of
the Δλ.

2.4. Stochastic Analyses—Visualization of Change Relative to the Normative Data of the Full Human Genome

Using MLE, we also obtain for each of the 54 tissues, the frequency histograms of the normalized
counts across all genes and fit the continuous gamma family of probability distributions with shape
(a) and scale (b) values in order to obtain the gamma moments and plot them on a parameter space.
We do this to visualize the spread of the tissues and their shift upon gene removal. To that end, we plot
the mean, the variance, and the skewness across the x, y and z axes, respectively. We plot the size of the
marker representing the tissue proportional to the kurtosis value, and we color the marker based on
the change relative to the original genome count (i.e., containing all the genes, without removal).
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To measure the stochastic shift between the tissues from the full genome and those upon removal
of the genes identified with each known neurological condition, we take the absolute difference between
the MLE λ for the full GTEx genome and that for the genome upon removal of the genes associated
with each condition, disorder or disease, as shown in Figure 3.

We median rank the Δλ for each tissue, sorting Δλ in ascending order across the 54 tissues.
Then we create four median-ranked blocks and plot the maximally affected block of tissues
(Figure 3A). The highest-ranked group is then compared across all conditions—mental illness vs. those
neurologically defined vs. those non-neurologically defined. We annotate the neurological functions
that such tissues are known to maximally disrupt. Further, we determine whether there is convergence
between the tissue outcome in mental illnesses, upon removing the associated genes from the human
genome-tissue model, and the outcome upon removing those genes tied to the other known disorders
of the nervous systems. We repeat this interrogation process using the genes associated with disorders
in the DisGeNet portal, including autism, schizophrenia, depression, the neurological disorders in
Appendix B Table A1, and the non-neurological disorders in Appendix B Table A2.

To assess tissue outcome upon removal of genes associated with various non-neurological diseases,
we follow these procedures and compare these to the above results. These diseases include colon
cancer, breast cancer, psoriasis, diabetes, congenital heart disease, hematologic neoplast and systemic
lupus. Appendix B Table A2 describes the number of genes associated with each of these diseases and
the sources.

We also examine other mental illnesses described by the DSM. These include schizophrenia,
depression, unipolar depression, and bipolar depression. We determine whether there are tissues that
overlap with those affected in the neurological disorders. Lastly, we examine mitochondria-related
disorders and PTSD using these methods. We reasoned that these may be disorders that have
potentially affected tissues across a broader range of functions, including those from the brain and
other bodily organs.

3. Results

3.1. Autism, Ataxia and FX Have Convergence in Maximally Affected Tissues by the Removal of
Associated Genes

The maximally affected tissues upon gene removal, according genes stochastic expression (count
in Transcripts Per Million (TPM)), are depicted in Appendix B Table A3. Tissue gene expression was
modelled by the exponential distribution y = λe−λx, with x as the gene combination expressed in the
tissues, and λ as the exponential rate parameter. The Δλ between the neurotypical template case from
the GTEx portal (containing all genes) and the modeled disorder case (upon removal of the SFARI
genes) provides a sense of the departure from the normative case. This difference, taken for the removal
of the SFARI genes, is depicted in Figure 4A, with samples of maximally affected tissues in Figure 4B
that are known to be critical for motor control, regulation, adaptation/learning, and coordination.

The Δλ median ranking quantified the difference between neurotypical tissue gene expression vs.
tissue gene expression upon removal of the genes corresponding to the disorders in question, with four
groups ordered by the size of Δλ. This λ quantity was first obtained relative to the neurotypical
population tissues, i.e., including all the counts (gene expression) from all genes, in order to model an
exponential process. The computation of λ using maximum likelihood estimation (MLE) is explained
in Appendix A. It does not assume any order of the counts, but rather seeks to identify the resulting
λ for each tissue, treating the gene count (expression) as a random, memoryless stochastic process.
Typically, the exponential distribution is used to model times between events, but here we used it
to model the fluctuations in the values of the counts across the genes, as they randomly fluctuate
their expression across each of the 54 tissues reported in the GTEx portal. We note this to underscore
that the results spontaneously self-emerge from the random combination of the genes involved (with
and without removal), rather than from the clinical criteria used to denote gene relevance to autism,
or the evidence from the literature used to determine their association. There is in fact no scoring of
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such relevance for the genes associated with the other neurological disorders under consideration
(e.g., ataxias and Parkinson’s disease) or for the autistic disorders reported in the DisGenNet portal.
Using those genes instead of the SFARI genes reveals tissues in Appendix B Table A4, where we report
the convergence.

 

Figure 4. Convergence between autism and known neurological disorders shown by comparison of
maximally affected tissues after removing genes associated with the disorder in autism (from the SFARI),
autistic disorders (A,B) (from the DisGeNet portal) vs. ataxia (C) and fragile X (D) (See Appendix B
Tables A3 and A4).

Removal of the SFARI genes, ranked by change in gene expression, reveals brain tissues linked
to the CNS, in brain subcortical tissues linked to motor control (basal ganglia, striatum), memory
(hypocampus), emotions (amygdala) and regulation (hypothalamus); and the spinal cord. This is also
generally the case for the removal of the DisGeNet genes associated with autistic disorders and with FX
and ataxia. Congruent with the outcome from the removal of the SFARI genes from the GTEx genome,
the DisGeNet gene removal also affected the tissues associated with CNS function. Important tissues
for systemic organ functioning such as those containing smooth muscles, cardiac and skeletal muscles
in the taxonomy proposed in Figure 1B were also affected (commonly) across these disorders. Figure 4
shows a summary of the results, visualizing the stochastic shifts. Appendix B Tables A3 and A4 show
the tissues ranked in descending order and color coded according to CNS (brain and spinal cord in
blue), heart related (pink), muscle-skeletal (green), and peripheral vital organs (gray). Most tissues in
autism and the neurological disorders are from the CNS, followed by PNS-related tissues in the heart
and muscle-skeletal and with vital organs towards the end of the Δλ ranking.

Supplementary Figures S1–S3 show these results separately for each neurological condition.
We note in Supplementary Materials that removal of the SFARI autism syndromic genes from the GTEx
genome reveals maximal differences in tissues of organs with smooth and cardiac muscles linked to
involuntary and autonomic function in the proposed taxonomy of Figure 1B.

Removal of the overlapping SFARI genes and neurological disorders also reveal brain tissues
linked to motor control, memory, emotions, and regulation. This is depicted in Figure 4. Given the
congruence between the tissues maximally affected by removing the SFARI autism genes from the
GTEx database and those from the neurological conditions, we next ascertain the extent to which these
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genes overlap with those used from ataxias in the literature. To that end, we divide them into the
autosomal dominant, the autosomal recessive and the X-chromosome genes. Figure 5A shows the
result upon removal of overlapping genes between the SFARI autism set and ataxias (dominant and
recessive and X-chromosome sets) from the literature. Appendix B Table A3, Column 3 lists the tissues,
while Appendix B Table A5 also has the scoring from the SFARI autism genes. Supplementary Materials
Table S2 lists the phenotypic information of the disorders associated with these genes, as described
by the clinical literature. Figure 5B lists the PD gene that overlaps with the SFARI autism genes,
also depicted in Appendix B Table A5 along with the score ranking from the SFARI portal.

Figure 5. Gene expression on maximally affected tissues (color bar coded in log TPM) upon removal
of overlapping genes between the SFARI autism set and ataxias (dominant and recessive and
X-chromosome sets) from the literature (A) and (B) from Parkinson’s disease. The horizontal axis lists
the tissue names and the vertical axis lists the gene names.

We note that removing this subset of 14 overlapping genes from the SFARI autism set (Appendix B
Table A5) does not change the primary result, whereby the most-affected tissues upon removal of the
SFARI autism set from the GTEx dataset are those associated with subcortical brain structures critical
for motor control, adaptation/learning, regulation, coordination and autonomic function as well as
memory and emotion. This is shown in Figure 5A,B and in the third column of Appendix B Table A3.
In Figure 4D, we also plot the top-ranked tissues affected by the removal of the FX genes reported in
the DisGeNet portal from the GTEx dataset. Supplementary Figures S19–S22 further provide details
on X-chromosome genes in Figure 5A implicated in autism according to the SFARI genes portal.

The result that convergence in the ranked descending order of the CNS (brain and spinal cord
tissues), followed by heart-related tissues, muscle-skeletal tissue and lastly peripheral vital organs for
systemic functioning in the SFARI autism and well-known neurological disorders from the literature
is also congruent with the results using the genes associated with these conditions in the DisGeNet
portal. There, we interrogated autistic disorders, ataxias and fragile X, confirming the overlap in genes,
their expression on the 54 tissues of the GTEx database and the orderly levels of tissues maximally
affected by the removal of the associated genes. We grouped the tissues by CNS, heart, muscle-skeletal
and peripheral vital organs to follow the proposed taxonomy of Figure 1B.

In the remaining sections of this paper, we consistently use this tissue grouping to simplify
visualization of the Appendix B tables and data presentation. Figure 6 shows the results for different
types of ataxias and FX, while Appendix B Table A6 summarizes the top-ranked affected tissues in
different types of ataxias. These are color coded according to the tissue grouping, approximating the
taxonomy proposed in Figure 1B.
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Figure 6. Different types of ataxia showing the top Δλ-ranked tissues, also shown in Appendix B Table A7.
(A) Gait ataxia; (B) spinocerebellar ataxia; (C) cerebellar ataxia; (D) progressive cerebellar ataxia.

3.2. Removal of Genes Associated with Schizophrenia and Multiple Forms of Mental Depression Reveals
Convergence with Neurological Disorders

The removal of the DisGeNet genes associated with mental illnesses such as schizophrenia,
depression, bipolar depression and unipolar depression from the normative GTEx genome resulted in
convergence of maximally affected tissues involved in the CNS, especially those brain regions necessary
for neuromotor control, memory, and emotion. This is depicted in Appendix B Table A7 and Figure 7.
Several of these tissues were also found to be affected upon removal of the SFARI genes and the genes
associated in DisGeNet with autistic disorders. Furthermore, these are maximally affected tissues in
the well-known neurological conditions depicted in Figures 4 and 5 and Appendix B Tables A3–A5.

 

Figure 7. Maximally affected tissues in schizophrenia (A) and depression (B), and in different types of
depression (unipolar (C) and bipolar (D)) shown in Appendix B Table A7.
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3.3. Removal of Genes Associated with Non-Neurological Disorders Reveals Other Non-CNS Tissues

In addition to the examination of mental illnesses and neurological disorders, we also interrogated
the GTEx genome upon removal of genes associated with various non-neurological disorders.
These included various forms of cancers, inflammatory and autoimmune disorders and other tissues
related to the heart, the circulatory and the endocrine systems. Appendix B Tables A8 and A9
summarize the results of this interrogation and Figures 8 and 9 show the Δλ-ranking graphs.

 

Figure 8. Maximally affected tissues in a sample non-neurological diseases of Appendix B Table A8
reveal primarily non-CNS tissues involving peripheral vital organs for systemic functioning, followed
by heart-related and muscle-skeletal tissues. As before, the interrogation of the GTEx genome is based
on the genes associated with diseases in the DisGeNet portal. (A) Colon cancer; (B) irritable bowel
syndrome; (C) congenital heart disease and (D) hematologic neoplast. Color code as in previous tables.

 

Figure 9. Maximally affected tissues in non-neurological diseases. (A) Systemic Lupus Erythematosus;
(B) Psoriasis; (C) Breast Cancer; (D) Diabetes. These are depicted in Appendix B Table A10
median-ranked according to the Δλ values obtained from the absolute difference between the tissues
according to the full genome in the GTEx database and the GTEx genome without the genes associated
with each disease, according to the queries to the DisGeNet portal.
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The results of the maximally affected tissues upon the removal of the genes associated with these
non-neurological disorders revealed a very different picture than those upon removal of the genes
associated with the mental illnesses (autism, schizophrenia and the depressions) and those associated
with the known neurological conditions (the various forms of ataxia, FX and Parkinson’s disease).
Namely, the CNS-related tissues were less affected in these non-neurological diseases than those related
to the PNS (muscle-skeletal and ANS heart), and those linked to peripheral bodily organs were the
most visibly affected. The exception was diabetes, maximally affected tissues in peripheral organs,
but also CNS and PNS tissues in the tail of the top Δλ-ranked tissues. We next interrogate the genome
in relation to mitochondrial disorders of several kinds and acquired PTSD.

3.4. Removal of Genes Associated with Mitochondrial Diseases Reveals that Heart-Related Tissues Are
Maximally Affected but PTSD Is Mixed

Removal of genes associated with mitochondrial disorders of various types from the GTEx genome,
according to the genes in the DisGeNet portal, reveal a mixture of tissues associated with peripheral
vital organs for systemic functions, heart-related and muscle-skeletal- and CNS-related tissues. The top
half of the highest-ranked tissues in mitochondrial disease shows affected tissues related to the
heart, muscle-skeletal and peripheral organs, while the bottom half shows more involvement of
brain-related tissues in subcortical regions of motor control. In contrast, mitochondrial myopathies
show a predominance of CNS-related tissues, including the brain and spinal cord, with top Δλ-ranked
tissues related to the heart and muscle-skeletal tissues. Mitochondrial encephalopathy, lactic acidosis,
and stroke-like episodes (MELAS) show a predominance of tissues associated with peripheral vital
organs for systemic function and heart-related tissues. Only two brain regions for motor control and
emotion are present in the bottom-ranked tissues of the most-affected tissues.

The case of acquired PTSD also reveals a mixture of tissues from brain, heart, and peripheral
organs. There, we see maximally affected tissues linked to subcortical regions of the brain involved in
motor control, adaptation, learning, and coordination intermixed with tissues linked to peripheral
bodily organs (like the kidneys) and the autonomic systems’ heart. Furthermore, we also see tissues
linked to the hypothalamus, a regulatory brain structure. Figure 10 shows the graphs of the Δλ

difference, which was median ranked, as in the previous cases, for these disorders.

 

Figure 10. Maximally affected tissues in mitochondrial diseases (A–C) and in PTSD (D) of Appendix B
Table A10, shown in graphical form according to the Δλ values.
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We summarize the results across all 54 tissues (in alphabetical order from left to right) in Figure 11.
Here, a color map depicts the values of Δλ normalized for each disease (along the rows) across
the tissues (columns) by dividing by the maximum Δλ value of each row. The patterns reveal that
the maximally affected tissues (upon genes removal) are common to both neurological disorders
and mental illnesses. They correspond to the brain tissues involved in motor control, adaptation,
and learning (basal ganglia, striatum, substantia nigra), tissues in involved in emotion (amygdala),
memory (hippocampus) and systemic regulation (hypothalamus). They also reveal that whole blood
tissue is not as affected in the mental illnesses as in the neurological disorders (marking a point of
divergence that warrants further investigation). Heart-related tissues and muscle-skeletal tissues
are also shared between these mental illnesses and neurological disorders when the genes specific
to each disorder are removed from the GTEx genome. Interestingly, the pancreas is an example of
a peripheral bodily organ with tissues that are commonly affected across most of the disorders and
diseases interrogated here. Yet they have lower weight the neurological disorders compared to the
non-neurological diseases under examination.

 
Figure 11. Summary of disorders/diseases (27 rows) x tissues (54 columns) in alphabetical order.
Entries are Δλ (difference with respect to the gene expression values from the full GTEx genome)
values normalized by the maximum across the tissues for each row (disorder/disease). The first row
is the 0–Δλ difference reference from the full genome. Red arrows mark the maximally affected
tissues across all diseases, showing mental illnesses on the top, followed by neurological disorders,
then non-neurological, including several types of cancer, autoimmune disorders, and diabetes. Black
lines delineate blocks of diseases (along rows) and blocks of gene expression on tissues (along columns).

The non-neurological diseases reveal less involvement of the CNS-related tissues but highly
overlap with the heart and muscle-skeletal tissues. Tissues linked to the kidneys, liver and pancreas are
also maximally affected by genes’ removal in these diseases. Colon cancer shows an interesting pattern
whereby the pancreas reveals maximal normalized Δλ values. Figure 12 summarizes the patterns in
binary form by turning ON (yellow) values above 0.8 considered high and OFF those below (blue).
This cut off is chosen to further highlight overlap and differences across diseases based on high Δλ.

The patterns revealed by the high values of the normalized Δλ quantity, show convergence
of maximally affected brain tissues in mental illnesses with the neurological disorders but not
with the non-neurological disorders (except for diabetes which does affect some brain regions.)
The mitochondrial diseases do not show the same intensity of the CNS-related Δλ values as the mental
illnesses and the neurological disorders, but they do share the heart and muscle-skeletal patterns with
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all the examined diseases and disorders. This is interesting, given that some of the children with various
forms of mitochondrial disorders may receive diagnoses of autism. In summary, there is clear overlap
between mental illness and neurological disorders, suggesting involvement of the central nervous
systems in both. We also see major contributions from the peripheral nervous systems, particularly
the heart, the muscle-skeletal tissues and, to a lesser degree, tissues of peripheral organs. The latter
are most affected in the non-neurological diseases. Figure 13 shows the most-affected tissue in each
disease/disorder (also depicted in Appendix B Table A11).

 

Figure 12. Binary version of the matrix in Figure 11 upon thresholding by a high normalized Δλ value
of 0.8 shows that the overlap across mental illnesses, neurological disorders and non-neurological
diseases is primarily in the heart tissues, the muscle-skeletal tissues and organs such as the pancreas,
liver, and kidney. Whole blood tissue is shared between neurological and non-neurological disorders
but not present in the mental illnesses. Brain tissues are shared between mental illnesses and
neurological disorders.

Figure 13. Stochastic shift of gene expression on tissue after gene removal for each disease/disorder
under consideration (colored circle) relative to the gene expression on that tissue using the full genome
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in GTEx (open circles). The most-affected tissue in each disorder/disease under consideration was
selected according to the maximum Δλ value, the absolute difference between the empirically estimated
λ using MLE of the exponential distribution rate parameter for the full GTEx genome and for the
genome minus the genes associated with each disease/disorder. Since the exponential distribution is a
particular case of the continuous gamma family of probability distributions (when the gamma shape
parameter is 1), we also used MLE to estimate the shape and scale gamma parameters and the four
gamma moments, plotted here in a five-dimensional parameter space. Along the x axis, we plot the
empirically estimated gamma mean; along the y axis, we plot the gamma variance; along the z axis, we
plot the gamma skewness and the kurtosis is used to represent the size of the marker (more kurtotic
distributions have higher value, i.e., larger circle). The fifth dimension is the color representing the
Δλ (see also Figure 3C, visualizing one single disease and all 54 tissues or summarizing the top 13
median-ranked tissues as those most affected).

4. Discussion

This work interrogated the human genome by removing genes associated with various diseases
and comparing the outcome from the remaining gene expression on 54 tissues commonly examined in
the GTEx portal. These tissues involve parts of the central nervous systems (the brain and the spinal
cord) and parts of the peripheral nervous systems (the muscle-skeletal tissue and the heart tissues
as part of the autonomic nervous system), which we grouped in Figure 1B. Other tissues are from
peripheral vital organs for systemic bodily functions (whole blood, pancreas, liver, kidneys, lungs, etc.).

We compared mental illnesses such as autism, schizophrenia, and various types of mental
depression (including unipolar and bipolar), with well-known neurological disorders such as different
types of ataxias, fragile X and Parkinson’s disease. We found convergence between the tissues
maximally affected by the removal of disease-associated genes across these mental illnesses and
neurological disorders. CNS-related tissues in subcortical regions of the brain related to motor
control, motor learning, motor coordination, and motor adaptation, as well as memory and emotion,
were predominantly maximally affected by the corresponding gene removal across both the mental
illnesses and the neurological disorders. This convergence demonstrates overlap between psychiatric
and neurological conditions with specific involvement of motor, memory, emotional and regulatory
axes. In autism and FX, we obtained congruent results on maximally affected tissues. The results
were consistent using removal of the genes from the SFARI autism database and using the genes upon
querying the DisGeNet portal. In addition to the genes reported by querying DisGeNet, we also used
the genes reported in the literature for schizophrenia and depression, and for Parkinson’s disease.
We found congruence in all cases.

To further test our hypothesis that these mental illnesses are disorders of the nervous systems and
that removing the gene pool associated with them gives rise to overlapping tissues related to CNS
functioning, we also queried DisGeNet about other non-neurological diseases. We found that in such
cases, the predominance of maximally affected tissues was on tissues associated with peripheral vital
bodily organs related to the disease, such as pancreas, kidney, liver, and colon transverse in colon
cancer. Furthermore, several of these diseases had maximally affected heart-related tissues and whole
blood. Other cases also revealed a predominance of peripheral organs. We lastly, interrogated the
genome in relation to mitochondrial diseases and acquired PTSD. In these cases, we hypothesized and
confirmed a mixture of tissues related to peripheral organs (for mitochondrial diseases) and the CNS
(for PTSD).

In the case of mitochondrial diseases, the heart-related tissues were revealed as the most affected
along with muscle-skeletal tissue. Furthermore CNS-related tissues were more affected by gene removal
in mitochondrial myopathies (i.e., the amygdala and the anterior cingulate cortex), as compared to
MELAS or mitochondrial disease. The common thread across all three types of mitochondrial-related
disorders was the heart-related tissues. The case of acquired PTSD showed a mixture of CNS-related
tissues, tissues related to bodily peripheral organs, and heart-related tissues. The kidney and pancreas
were also affected in PTSD. When we examined the maximum Δλ for each disorder/disease under
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examination, we found that the basal ganglia was maximally affected in autism, unipolar depression,
spinocerebellar ataxia, and PTSD), while the heart left ventricle tissue was maximally affected in
depression, ataxia, cerebellar ataxia, gait ataxia and fragile X tremor ataxia syndrome (FXTAS).
This result indicates overlap between the psychiatric mental illnesses and the neurological disorders.
It also shows the importance of examining mental illnesses in a more systemic way that includes the
autonomic nervous system of the PNS.

This test on non-neurological illnesses served as a control to show that removal of the genes
associated with each disorder did have specificity with the disorder and yet a very different outcome
when comparing the mental illnesses to the non-neurological disorders. Among the top tissues
affected across non-neurological diseases, the pancreas was maximally affected by the removal of
disease-associated genes in breast and colon cancer, while the liver was maximally affected in diabetes.
The heart left ventricle was maximally affected across autoimmune disorders such as psoriasis, lupus
systemic erythematosus, and irritable bowel disease (IBD). The heart was also maximally affected in
hematologic neoplast, congenital heart disease, mitochondrial disease and MELAS, in contrast to the
mitochondrial myopathies which showed the liver as the maximally affected tissue.

This exercise demonstrated that despite the stochastic nature of gene expression, upon removal
and random recombination, there is convergence across psychiatric and neurological disorders,
thus potentially rendering both as disorders of the nervous systems. In both cases, we found a strong
prevalence of the CNS, but also found important differences in tissues from the PNS, including the
heart and the muscle-skeletal tissues involved in both mental illnesses and neurological disorders.
Because of these convergences, and the fact that there are treatments and accommodations to help
persons with neurological disorders, it may be possible to leverage some of those types of bodily-based
supports to help persons with mental illnesses. Behaviors that are described by observation to define
mental illnesses can now be connected with underlying tissues involved in voluntary, involuntary,
and autonomic function across the CNS and the PNS and mapped to the genome, thus closing
the present gap between behaviors and genomics in the precision medicine knowledge network.
In this sense, the present methods offer a new way to interrogate the genome and link tissues with
behavioral phenotyping.

A surprising finding here is the potential contributions of peripheral structures and organs to
mental illness. Tissues of the autonomic nervous systems were maximally impacted by the removal of
the genes associated with these mental illnesses, as was the muscle-skeletal tissue among the top-ranked
illnesses. Tissues associated with subcortical brain regions necessary for motor control, learning,
adaptation, and coordination (basal ganglia and striatum) were highly impacted by the removal of
the genes in both mental illnesses and neurological disorders, along with those tissues important for
memory (hippocampus), emotion (amygdala) and regulation (hypothalamus). Surprisingly, we did
not see cerebellum-related tissues among the most affected by the removal of the genes (even in ataxias)
where we do know that the cerebellum plays a large role [20–23]. This was also the case in autism,
where we know the cerebellum has been implicated [24,25].

Lastly, the autoimmune disorders that we examined had very different brain tissue patterns
from the mental illnesses and neurological conditions but shared the heart-related tissues and the
muscle-skeletal tissue. In this sense, the contributions from the peripheral systems to mental illnesses
and to autoimmune disorders seem important. However, blood tissue marked a departure of
neurological disorders from mental illnesses, as it was maximally affected in neurological disorders
but not in the mental illnesses. Overall, these gene removals revealed surprising results that invite
rethinking how we may want to describe, diagnose, and treat mental illnesses in general.

Caveats and Future Directions

Although we found evidence that the mental illnesses and neurological disorders have remarkable
overlap in the types of brain tissues that are maximally affected by the removal of their corresponding
associated genes, we recognize that gene removal is a crude way to interrogate the human genome
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and its expression of the 54 tissues of the GTEx database. Future work will aim at developing more
sophisticated methods to explore gene overexpression and to build simulations of the use of these
methods in, e.g., combination with dynamic transcriptome evolution during neuronal differentiation
in the development of cell lines from induced pluripotent stem cells. This will be important to move
beyond a static approach and be able to assess asynchronous gene expression behaviors over time when
cell lines differentiate into neuronal types. Full transcriptome dynamic interrogation longitudinally,
over time, is now possible using these stochastic analyses in combination with the various data
repositories featuring disease-associated genes.

The present work merely scratches the surface on possible new ways to interrogate the human
genome in relation to diseases of all types (not just mental or neurological) in order to possibly build
comparative models of outcomes in tissues that can be related to behavioral phenotypic manifestations
of the clinical disorder. In this sense, the work presented here can help bridge the gap between
behavioral description of a mental illness, or a neurological disorder, and its genetic underpinnings via
the affected tissues. Combining this approach with the new wave of digital biomarkers that describe
human behavior digitally at a microscopic level [9,26–29], using objective means and a finer level
of granularity beyond naked eye detection, could help us redefine many psychiatric disorders and
medical conditions under the precision medicine paradigm.

5. Conclusions

We here offer a new roadmap to reframe psychiatry using the precision medicine paradigm.
The new stochastic approach can initiate the steps to connect behavioral phenotypic description from
clinical observation and digital characterizations therein, with the underlying neurobiology of mental
illnesses. Borrowing knowledge from neurology and brain science, it will be possible to shift psychiatry
from an art to a quantitative objective science under the tenets of precision medicine by integrating all
layers of the knowledge network. This would help design personalized targeted treatments utilizing
the person’s genome, localizing the most-affected tissues defining central nervous system functions
and distinguishing those from tissues related to vital organs for systemic functions. This new approach
could potentially mark the beginning of a transformative era in mental health.

6. Patents

E.B.T. holds the US Patent “Methods and Systems for the Diagnoses and Treatments of Nervous
Systems Disorders” combined in this paper as micro-movement spikes (MMS) data type and continuous
gamma probability distribution family empirical estimation.
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Appendix A

TPM explanation from the site: “Transcripts Per Million (TPM) is a normalization method for
RNA-seq, should be read as for every 1,000,000 RNA molecules in the RNA-seq sample, x came from
this gene/transcript. For each transcript in the gene model, the number (raw count) of reads mapped is
divided by the transcript’s length, giving a normalized transcript-level expression. The distribution
of ambiguous reads (between transcripts of the same gene, or between different genes) is handled
by OmicSoft’s RSEM implementation. The sum of ALL normalized transcript expression values is
divided by 1,000,000, to create a scaling factor. Each transcript’s normalized expression is divided
by the scaling factor, which results in the TPM value. Gene-level TPM’s are calculated by summing
up the transcript-level TPM for each gene. In this scaling, the sum of all TPMs (transcript-level
or gene-level) should always equal 1,000,000. For cells that have approximately the same number
of transcripts-per-cell, the TPM expression values can be compared between these cells to estimate
relative abundance. For a given sample, TPM values will linearly scale with FPKM values for genes or
transcripts, but FPKM will not add up to 1,000,000, so TPM can also be thought as FPKM, scaled to
sum to 1,000,000”.

Derivation of Maximum Likelihood Estimation of the rate parameter in the Exponential Distribution:
We estimate the likelihood L(λ|x1, x2, . . . , xn), where xi is the series of counts representing the gene

expression on each given tissue and i ranges from 1 to n, the number of genes.

L(λ|x1, x2, . . . , xn) = λe−λx1λe−λx2 . . . λe−λxn

= λn
(
e−λx1e−λx2 . . . e−λxn

)
= λn

(
e−λ(x1+x2+...+xn)

) (A1)

To obtain the maximum likelihood, we take the derivative of the likelihood in Equation (A1) and
set it to 0 (since the derivative is 0 at the maximum likelihood value).

d
dλ

L(λ|x1, x2, . . . , xn) =
d

dλ
λn
(
e−λ(x1+x2+...+xn)

)
(A2)

We take the log here because the derivative of the function and the derivative of the log of the
function equals 0 at the same point. So, for the purposes of finding where the derivative is 0, the original
function in Equation (A2) and the log of it are interchangeable.

d
dλ log

(
λn
(
e−λ(x1+x2+...+xn)

))
= d

dλ logλn + log
(
e−λ(x1+x2+...+xn)

)
d

dλn logλ− λ(x1 + x2 + . . .+ xn) = 0
n 1
λ − (x1 + x2 + . . .+ xn) = 0
λ = n

(x1+x2+...+xn)

(A3)
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Further, with this result in Equation (A3), we can obtain the maximum likelihood estimate of each
λj, given all the 56,146 genes expressed with some random value for each of the j = 1 : 54 tissues.

Appendix B

Table A1. Gene distributions used in the removal process and literature sources.

Neurological Number of Genes Source

Parkinson’s disease 17 Lit Review [14,16–19]
Ataxia Autosomal Recessive 70 Lit Review [11,12]
Ataxia Autosomal Dominant 46 Lit Review [11,12]

X-chromosome 6 Lit Review [11,12]
Fragile X (SFARI scores) 73 1 (17,11,30,15) SFARI Genes Module

Fragile X Syndrome 194 DisGeNet
FXTAS 62 DisGeNet
Ataxia 813 DisGeNet

cerebellar Ataxia 421 DisGeNet
gait Ataxia 159 DisGeNet

Progressive cerebellar Ataxia 134 DisGeNet
Spinocerebellar Ataxia 145 DisGeNet

Neuropsychiatric (DSM) Number of Genes Source

autism (SFARI scores) 906 1 (144,216,468,78) SFARI Genes Module
Autistic Disorder 1043 DisGeNet

schizophrenia 2697 Lit Review [30–35] and DisGeNet
Mental depression 1468 DisGeNet

depression Unipolar 641 DisGeNet
depression Bipolar 116 DisGeNet

1 SFARI scores for autism and FX genes were also used to assess each scored module separately. FXTAS stands for
fragile X tremor ataxia syndrome.

Table A2. Genes associated with non-neurological diseases.

Non-Neurological Number of Genes Source

Colon Cancer 3669 DisGeNet
Diabetes Mellitus (non-insulin

dependent) 3134 DisGeNet

Estrogen Receptor-Positive Breast
Cancer 510 DisGeNet

Congenital Heart Disease 267 DisGeNet
Hematologic Neoplasm 827 DisGeNet

Systemic Lupus Erythematosus 1883 DisGeNet
Psoriasis 1308 DisGeNet

Irritable Bowel Syndrome 1483 DisGeNet
Mixed Number of Genes Source

Mitochondria 41 Lit Review [13]
Mitochondrial Myopathies 121 DisGeNet

Mitochondrial Diseases 284 DisGeNet
MELAS Syndrome 81 DisGeNet

PTSD 418 DisGeNet
MELAS (a form of dementia) stands for mitochondrial encephalopathy, lactic acidosis, and stroke-like episodes.

The data file name from the GTEx portal https://www.GTExportal.org/home/datasets used in this
paper is GTEx_Analysis_2017-06-05_v8_RNASeQCv1.1.9_gene_median_tpm.gct.csv (accessed on 18
September 2020).

The data file name from the SFARI genes is located at https://gene.sfari.org/database/human-
gene/ and named SFARI-Gene_genes_03-04-2020release_03-05-2020export.csv (accessed on 18
September 2020).
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Table A3. The 13 top median-ranked tissues in descending order of Δλ value, the most-affected tissues
upon removal of the SFARI genes (906) linked to autism from the human GTEx database in column
1. Ataxias, X-chromosome, fragile X, Parkinson’s disease and mitochondrial disease extracted from
the literature and column 3 is the same as in column 1 while removing from the SFARI autism set
14 genes that overlap with ataxias and PD (see those genes listed in Supplementary Table S2). Tissues
are grouped by CNS (brain and spinal cord in blue); muscle-skeletal (green), heart (pink) and peripheral
organs (gray). SFARI autism (11/13 (84.6%) CNS, 1/13 (7.6%) heart and 1/13 (7.6%) peripheral organ);
neurological disorders (10/13 (76.9%) CNS, 2/13 heart (15.3%) and 1/13 (7.6%) muscle-skeletal); SFARI
autism without the overlapping genes from the neurological disorders (11/13 (76.9%) CNS, 1/13 (7.6%)
heart and 1/13 (7.6%) peripheral organs).

SFARI Autism Ataxias, X, FX, PD, Mitochondria
SFARI Autism without

Overlapping Ataxia, PD Genes

Putamen Basal Ganglia Hippocampus Putamen Basal Ganglia
Substantia Nigra Amygdala Substantia Nigra

Amygdala Substantia Nigra Amygdala
Hippocampus Heart Left Ventricle Hippocampus

Caudate Basal Ganglia Whole Blood Caudate Basal Ganglia
Anterior Cingulate Cortex Muscle Skeletal Nucleus Accumbent Basal Ganglia

Nucleus Accumbent Basal Ganglia Nucleus Accumbent Basal Ganglia Anterior Cingulate Cortex
Hypothalamus Putamen Basal Ganglia Hypothalamus

Brain Cortex Anterior Cingulate Cortex Brain Cortex
Frontal Cortex Brain Cortex Frontal Cortex

Heart Left Ventricle Hypothalamus Spinal Cord
Spinal Cord Heart Atrial Appendage Heart Left Ventricle

Pancreas Caudate Basal Ganglia Kidney Cortex

Table A4. Most-affected tissues upon removal of the DisGeNet genes associated with autistic disorders
(1043) from the human GTEx database (column 1); ataxia (813 genes) in DisGeNet (column 2) and FX
(194 genes) in DisGeNet (column 3). Convergence between autism and neurological disorders is noted
in the shaded tissues color coded as in Table A4, based on CNS, heart, and peripheral organs.

DisGeNet Autistic Disorders DisGeNet Ataxia FX DisGeNet

Substantia Nigra Heart Left Ventricle Hippocampus
Nucleus Accumbent Basal Ganglia Amygdala Whole Blood

Caudate Basal Ganglia Hippocampus Caudate Basal Ganglia
Putamen Basal Ganglia Whole Blood Substantia Nigra

Hippocampus Putamen Basal Ganglia Putamen Basal Ganglia
Amygdala Substantia Nigra Muscle Skeletal

Heart Left Ventricle Anterior Cingulate Cortex Nucleus Accumbent Basal Ganglia
Spinal Cord Muscle Skeletal Anterior Cingulate Cortex

Hypothalamus Heart Atrial Appendage Amygdala
Pancreas Caudate Basal Ganglia Brain Cortex

Heart Atrial Appendage Nucleus Accumbent Basal Ganglia Heart Left Ventricle
Anterior Cingulate Cortex Brain Cortex Kidney Medulla

Kidney Medulla Hypothalamus Frontal Cortex
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Table A5. Overlapping genes between ataxias (dominant and recessive genes) and Parkinson’s disease
with the genes from the SFARI portal. Scores in parenthesis refer to the scoring of the gene according
to the SFARI site (see Methods for explanation on each category). Syndromic is (4). Supplementary
Figures S5–S18 provide the GTEx violin plots of these gene expressions in the top-ranked tissues
unveiled by our analyses. Supplementary Table S2 compiles additional information on the genes from
various sources in the clinical literature.

SFARI Autism and
Ataxia Dominant

SFARI Autism and
Ataxia Recessive

SFARI Autism and
(Early Onset) PD

CACNA1C (1) KCNJ10 (2) RAB39B (3)
SCN2A (1) WWOX (2)

ATP1A3 (3S) GRID2 (3)
CCDC88C (3) LAMA1 (3)

ITPR1 (3) PEX7 (3)
SYNE1 (3S)

CYP27A1 (4)
SNX14 (4)

Table A6. Most-affected tissues upon removal of the DisGeNet genes associated with different types
of ataxias, color coded by CNS (brain and spinal cord), heart-related, muscle-skeletal, and peripheral
vital organ for systemic functioning. Predominance of CNS is evident, followed by heart-related and
muscle-skeletal and peripheral organs.

Gait Ataxia Spinocerebellar Ataxia Cerebellar Ataxia Progressive-C Ataxia

Heart Left Ventricle Caudate Basal Ganglia Heart Left Ventricle Liver
Substantia Nigra Brain Amygdala Substantia Nigra Heart Left Ventricle

Hippocampus Substantia Nigra Hippocampus Whole Blood
Muscle Skeletal Putamen Basal Ganglia Amygdala Heart Atrial Appendage

Caudate Basal Ganglia N Accumbens BG Whole Blood Putamen Basal Ganglia
N Accumbens BG Ant Cingulate Cortex Putamen Basal Ganglia Substantia Nigra

Whole Blood Hippocampus Hypothalamus Hippocampus
Brain Amygdala Heart Atrial Appendage Ant Cingulate Cortex Brain Amygdala
Kidney Cortex Hypothalamus Caudate Basal Ganglia Muscle Skeletal

Putamen Basal Ganglia Brain Cortex N Accumbens BG Kidney Cortex
Ant Cingulate Cortex Frontal Cortex Brain Cortex Caudate Basal Ganglia

Hypothalamus Heart Left Ventricle Kidney Cortex N Accumbens BG
Heart Atrial Appendage Kidney Cortex Muscle Skeletal Ant Cingulate Cortex

Table A7. Most-affected tissues upon removal of the DisGeNet genes associated with schizophrenia
(2697) from the human GTEx database; depression genes (1468); unipolar depression genes (641); and
bipolar depression genes (116). Convergence between schizophrenia and depression is high, with
maximally affected CNS tissues (10/13), followed by heart-related and muscle-skeletal tissues. Unipolar
and bipolar depression also show systemic effect of vital peripheral organs (N stands for Nucleus, Ant
for Anterior, and BG for Basal Ganglia).

Schizophrenia Depression Unipolar Depression Bipolar Depression

Amygdala Heart Left Ventricle Putamen Basal Ganglia Hippocampus
Putamen Basal Ganglia Heart Atrial Appendage Caudate Basal Ganglia Putamen Basal Ganglia

Heart Left Ventricle Hippocampus Hippocampus Amygdala
Hippocampus Muscle Skeletal Substantia Nigra Caudate Basal Ganglia

Substantia Nigra Putamen Basal Ganglia Kidney Cortex Muscle Skeletal
Caudate Basal Ganglia Caudate Basal Ganglia Amygdala Substantia Nigra
Ant Cingulate Cortex Amygdala Heart Left Ventricle Spinal Cord

N Accumbens BG Pancreas Kidney Medulla Esophagus Muscularis
Hypothalamus Kidney Medulla Brain Cortex Adrenal Gland
Muscle Skeletal Substantia Nigra N Accumbens BG Frontal Cortex

Pancreas Kidney Cortex Colon Transverse Minor Salivary Gland
Brain Cortex Ant Cingulate Cortex Ant Cingulate Cortex Colon Sigmoid

Frontal Cortex N Accumbens BG Heart Atrial Appendage Ant Cingulate Cortex
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Table A8. Most-affected tissues upon removal of the DisGeNet genes associated with colon cancer
(3669) from the human GTEx database; irritable bowel syndrome genes (1483); congenital heart disease
genes (267); and hematologic neoplast genes (827). Color code as in previous tables.

Colon Cancer
Irritable Bowel

Syndrome
Congenital Heart

Disease
Hematologic Neoplast

Pancreas Heart Left Ventricle Heart Left Ventricle Heart Left Ventricle
Whole Blood Pancreas Heart Atrial Appendage Whole Blood

Stomach Kidney Cortex Kidney Cortex Liver
Adrenal Gland Liver Whole Blood Heart Atrial Appendage

Colon Transverse Muscle Skeletal Kidney Medulla Pancreas
Prostate Heart Atrial Appendage Substantia Nigra Muscle Skeletal

Small Intestine T Kidney Medulla Hypothalamus Kidney Cortex
Spleen Whole Blood Prostate Hippocampus

Minor Salivary Gland Adrenal Gland Hippocampus Kidney Medulla
Fallopian Tube Adipose Viseral Oment Muscle Skeletal Esophagus Mucosa

EBT Lymphocytes Esophagus Mucosa Adipose Visceral O EBT Lymphocytes
SkinNoSunExposed S Colon Transverse Minor Salivary Gland Substantia Nigra

Liver Stomach Pancreas Putamen Basal Ganglia

Table A9. Most-affected tissues upon removal of the DisGeNet genes associated with lupus systemic
erythematosus (1883) from the human GTEx database; psoriasis genes (1308); breast cancer (510);
and diabetes genes (3134). The top half of the highest-ranked tissues show no convergence with
CNS-related tissues found in the mental illnesses and neurological disorders interrogated in this work.
Instead, heart-related tissue, muscle-skeletal tissue and tissues related to peripheral vital organs for
systemic functioning are found. The bottom half of the top Δλ-ranked tissues are a mixture of tissues in
peripheral bodily organs and brain-related tissues. The latter are from motor control, coordination,
and adaptation subcortical areas and from emotion, memory, and regulatory areas. Color code as in
previous tables.

Systemic Lupus
Erythematosus

Psoriasis Breast Cancer Diabetes

Heart Left Ventricle Heart Left Ventricle Pancreas Liver
Whole Blood Liver Heart Left Ventricle Pancreas

Liver Whole Blood Heart Atrial Appendage Heart Atrial Appendage
Heart Atrial Appendage Muscle Skeletal Kidney Medulla Heart Left Ventricle

Pancreas Heart Atrial Appendage Muscle Skeletal Kidney Medulla
Muscle Skeletal Pancreas Whole Blood Kidney Cortex
Kidney Cortex Kidney Cortex Ant Cingulate Cortex Putamen Basal Ganglia
Hippocampus Putamen Basal Ganglia Esophagus Mucosa Substantia Nigra

Kidney Medulla Caudate Basal Ganglia Kidney Cortex Hippocampus
Esophagus Mucosa Adipose Visceral O Adrenal Gland Caudate Basal Ganglia
EBT Lymphocytes Substantia Nigra Esophagus Muscularis Amygdala
Substantia Nigra Esophagus Mucosa Hypothalamus N Accumbens BG

Putamen Basal Ganglia Hypothalamus Putamen Basal Ganglia Hypothalamus
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Table A10. Most-affected tissues upon removal of the DisGeNet genes associated with mitochondrial
disease (284) from the human GTEx database; mitochondrial myopathies genes (121); mitochondrial
encephalopathy, lactic acidosis, and stroke-like episodes (MELAS) (81); Post-Traumatic Stress Disorder
genes (418).

Mitochondrial Disease
Mitochondrial

Myopathies
MELAS PTSD

Heart Left Ventricle Liver Heart Left Ventricle Caudate Basal Ganglia
Muscle Skeletal Heart Left Ventricle Liver Kidney Medulla

Pancreas. Muscle Skeletal Kidney Cortex Kidney Cortex
Heart Atrial Appendage Hippocampus Pancreas Pancreas

Kidney Cortex Whole Blood Heart Atrial Appendage Putamen Basal Ganglia
Whole Blood Ant Cingulate Cortex Kidney Medulla Heart Left Ventricle

Kidney Medulla Brain Amygdala Putamen Basal Ganglia Hypothalamus
Ant Cingulate Cortex Substantia Nigra Esophagus Mucosa Substantia Nigra

Putamen Basal Ganglia Heart Atrial Appendage Brain Amygdala Heart Atrial Appendage
N Accumbens BG Putamen Basal Ganglia Adipose Visceral Omen N Accumbens BG

Adrenal Gland Spinal Cord Artery Coronary Hippocampus
Hippocampus Pancreas Stomach Colon Sigmoid

Caudate Basal Ganglia Hypothalamus Colon Traverse Amygdala

Table A11. Most-affected tissue in each disease/disorder according to the maximum Δλ value (See
Figure 13 in the main text).

Disease/Disorder Maximally Affected Tissue

Autism DisGeNet BrainSubstantiaNigra
ASD NoAtaxias BrainPutamenBasalGanglia
Autism SFARI BrainPutamenBasalGanglia
Schizophrenia BrainAmygdala

Depression DisGeNet HeartLeftVentricle
Bipolar Depression BrainHippocampus

Unipolar Depression BrainPutamenBasalGanglia
ATAXIA DisGeNet HeartLeftVentricle

SpinoCerebellar ATAXIA BrainCaudateBasalGanglia
Cerebellar ATAXIA HeartLeftVentricle

ProgressiveCerebellar ATAXIA Liver
Gait ATAXIA HeartLeftVentricle

FAXTAS HeartLeftVentricle
FX BrainHippocampus

PTSD BrainCaudateBasalGanglia
Diabetes Liver

BreastCancer Pancreas
ColonCancer Pancreas

HematologicNeoplast HeartLeftVentricle
CongenitalHeartDisease HeartLeftVentricle

IBD HeartLeftVentricle
LupusSystemicErythomatosus HeartLeftVentricle

Psoriasis HeartLeftVentricle
MItochondriaDisease HeartLeftVentricle

MELAS HeartLeftVentricle
MitochondriaMyopathies Liver
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Abstract: Mobilized telemedicine is becoming a key, and even necessary, facet of both precision
health and precision medicine. In this study, we evaluate the capability and potential of a crowd of
virtual workers—defined as vetted members of popular crowdsourcing platforms—to aid in the task
of diagnosing autism. We evaluate workers when crowdsourcing the task of providing categorical
ordinal behavioral ratings to unstructured public YouTube videos of children with autism and
neurotypical controls. To evaluate emerging patterns that are consistent across independent crowds,
we target workers from distinct geographic loci on two crowdsourcing platforms: an international
group of workers on Amazon Mechanical Turk (MTurk) (N = 15) and Microworkers from Bangladesh
(N = 56), Kenya (N = 23), and the Philippines (N = 25). We feed worker responses as input to a
validated diagnostic machine learning classifier trained on clinician-filled electronic health records.
We find that regardless of crowd platform or targeted country, workers vary in the average confidence
of the correct diagnosis predicted by the classifier. The best worker responses produce a mean
probability of the correct class above 80% and over one standard deviation above 50%, accuracy and
variability on par with experts according to prior studies. There is a weak correlation between mean
time spent on task and mean performance (r = 0.358, p = 0.005). These results demonstrate that while
the crowd can produce accurate diagnoses, there are intrinsic differences in crowdworker ability to
rate behavioral features. We propose a novel strategy for recruitment of crowdsourced workers to
ensure high quality diagnostic evaluations of autism, and potentially many other pediatric behavioral
health conditions. Our approach represents a viable step in the direction of crowd-based approaches
for more scalable and affordable precision medicine.

Keywords: crowdsourcing; machine learning; diagnostics; telemedicine; autism; pediatrics
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1. Introduction

Autism spectrum disorder (ASD or autism) is a developmental delay with a continuously rising
prevalence in the United States [1,2]. Access to care can be limited, particularly in rural and in lower
socioeconomic areas, as families must wait for over a year to receive a formal diagnosis [3] and therefore
treatment. Epidemiological estimates indicate that over 80% of U.S. counties do not have autism
diagnostic resources [4]. Scalable and accessible tools would begin to address these inefficiencies in the
healthcare system. Since autism consists of a largely behavioral phenotype, video data are a particularly
powerful and rich means of capturing the range of social symptoms a child may exhibit in a fast and
virtually cost-free manner. Accurate diagnoses and behavioral classifications have been inferred from
categorical ordinal labels extracted by untrained humans from the short video clips [5–10], which are
recorded by digital mobile and wearable interventions during use by the child or administering
parent [11–22]. Such a process can be scaled through crowdsourcing platforms, which allow distributed
workers from around the globe to perform short on-demand tasks.

Crowdsourcing offers a powerful mobilized telemedicine solution to providing a rapid and
personalized diagnosis for and behavioral characterization of children at risk for developmental delays.
Crowdsourcing is increasingly being used for sensitive work such as mental health tracking [23,24],
body weight inference [25], prescription drug use and reactions [26,27], and investigating crime [28–30].
While at least partially automated diagnostics is an important goal for precision healthcare [31–34],
the quantification and categorization of several social activities are beyond the scope of current machine
learning methods [19], resulting in a major barrier in the field of precision medicine for behavioral
conditions. While answers from a crowd worker on a variety of behavioral dimensions can provide a
precision diagnosis for one individual, each label can be used as training data for a general-purpose
machine learning model that can make precision medicine more automated and scalable. Achieving this
goal, however, relies on high quality data from the crowd [35,36], necessitating careful characterization
of worker performance and subsequent filtering of crowd workers.

Here, we evaluate the performance of individual workers within four independent pools of
crowdsourced workers from Amazon Mechanical Turk (MTurk) [37,38], a popular paid crowdsourcing
platform, and Microworkers [39,40], another paid crowdsourcing platform with a significantly larger
international pool of workers compared to MTurk [41]. The workers watch unstructured videos of
children with autism and neurotypical controls and fill out a series of multiple-choice questions about
the child’s behavior. The series of multiple-choice answers serve as a vector of categorical ordinal
features used as input to a previously validated [42,43] logistic regression classifier distinguishing
neurotypical children from autistic children. We assess the differences in classifier probabilities and
final predictions across workers, finding that there are significant differences in worker performance
despite identical video difficulty levels. These results suggest that crowd workers must be filtered
before incorporation into clinical diagnostic practices.

2. Materials and Methods

Our methods consist of (1) first identifying a clinically representative video set, (2) choosing an
appropriate classifier for evaluating worker responses, and (3) crowdsourcing a video rating task to a
wide pool of global workers.

2.1. Clinically Representative Video Set

Clinically representative videos were downloaded from YouTube. We selected publicly available
videos of both children with and without autism. Diagnosis was based on video title and description
reported by the uploader. We only selected videos that matched all of the following criteria: (1) the
child’s hands and face are clearly visible, (2) there are opportunities for social engagement, and (3) there
is at least one opportunity for using an object such as a toy or utensil. No further selection criteria
were used.
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All three rating groups on Microworkers received the same set of 24 videos with a mean duration
of 47.75 s (SD = 30.71 s). Six videos contain a female child with autism, six videos contain a neurotypical
female child, six videos contain a male child with autism, and six videos contain a neurotypical male
child. The mean age of children in the video was 3.65 years (SD = 1.82 years).

We asked 4 licensed clinical experts (2 Child and Adolescent Psychiatrists, 1 Clinical Psychologist,
and 1 Speech Language Pathologist) to watch each video of the 12 children with an autism diagnosis
and to rate the severity of the child’s autism symptoms according to the first question of the Clinical
Global Impression (CGI) [44] scale measuring the “severity of illness” between 1 (“normal, not at all
ill”) to 7 (“among the most extremely ill patients”). We then recorded the mean rating rounded to
the nearest whole number. There was one video with a mean rating of 2 (“borderline mentally ill”),
four with a mean of 4 (“moderately ill”), five with a mean of 5 (“markedly ill”), and two with a mean of
6 (“severely ill”), validating that we posted a clinically representative set of videos on Microworkers.

We additionally conducted a post-hoc analysis of previously crowdsourced yet unpublished pilot
test results from MTurk with the exact same rating tasks except using a separate set of 43 videos to rate
with a mean duration of 43.85 s (SD = 26.06 s). Ten videos from this set contain a female child with
autism, eleven videos contain a neurotypical female child, twelve videos contain a male child with
autism, and ten videos contain a neurotypical male child. The mean age of children in the video set
was 3.61 years (SD = 1.61 years). The 4 clinical experts rated the 22 children with autism in this set
using the CGI. There were three videos with a mean rating of 2 (“borderline mentally ill”), five with a
mean of 3 (“mildly ill”), three with a mean of 4 (“moderately ill”), six with a mean of 5 (“markedly ill”),
and five with a mean of 6 (“severely ill”), validating that we posted a clinically representative set of
videos on MTurk.

2.2. Video Observation Classifier

To evaluate the performance of crowd workers against a clinician gold standard, a previously
validated binary logistic regression classifier [42,43] was trained on electronic health record data
consisting of clinician filled Autism Diagnostic Observation Schedule (ADOS) [45] scoresheets for
1319 children with autism and 70 non-autism controls. We chose logistic regression over alternative
classical machine learning techniques like support vector machines and alternating decision trees
because of the previously published head-to-head comparison of these techniques by Tariq et al. [43],
which found that logistic regression resulted in both the highest accuracy and highest unweighted
average recall. We used the default scikit-learn parameters for logistic regression, except we evaluated
both L1 and L2 regularization with an inverse regularization strength of 0.05, forcing strong
regularization. We reported the metrics with the greatest accuracy of L1 or L2 regularization.
Because our goal was to evaluate worker performance and not to maximize the performance of a
classifier, we did not perform any further hyperparameter tuning.

Because logistic regression classifiers emit a probability for a binary outcome, we treat the
probability as a confidence score of the crowdsourced workers’ responses. Here, we exclusively analyze
the probability of the correct class (referred to as PCC from here on out), which is p when the true class
is autism and 1-p when the true class is neurotypical. When assessing classifier predictions, we use a
threshold of 0.5. Throughout this paper, we refer to a worker’s average PCC for videos the worker
rated as a measure of the worker’s video tagging capability. Similarly, we refer to a video’s PCC as the
difficulty level of the video.

2.3. Video Rating Tasks

We aimed to crowdsource workers from three culturally distinct countries where autism is
prevalent yet access to resources is lacking. These are samples of areas where accessible, affordable,
and scalable precision medicine solutions, such as instantiations of the technique described here,
can enable access to care to underserved populations globally. In particular, we selected Bangladesh,
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Kenya, and the Philippines, countries that collectively represent diverse areas containing problematic
issues with autism prevalence and limited access to services [46–49].

In order to generalize our findings across these distinct groups of workers, we posted four sets of
video rating tasks under the following hypotheses:

H1a. There are workers on MTurk whose mean classifier PCC will exceed 75%.

H1b. There are “super recognizer” workers on MTurk whose mean classifier PCC will exceed 75% and whose
mean will be over one standard deviation above 50%.

H2a. There are workers from Bangladesh on Microworkers whose mean classifier PCC will exceed 75%.

H2b. There are “super recognizer” workers from Bangladesh on Microworkers whose mean classifier PCC will
exceed 75% and whose mean will be over one standard deviation above 50%.

H3a. There are workers from Kenya on Microworkers whose mean classifier PCC will exceed 75%.

H3b. There are “super recognizer” workers from Kenya on Microworkers whose mean classifier PCC will exceed
75% and whose mean will be over one standard deviation above 50%.

H4a. There are workers from the Philippines on Microworkers whose mean classifier PCC will exceed 75%.

H4b. There are “super recognizer” workers from the Philippines on Microworkers whose mean classifier PCC
will exceed 75% and whose mean will be over one standard deviation above 50%.

We evaluate the above hypotheses only for workers who rated at least ten videos and for videos
that received at least ten sets of ratings from workers. Hypotheses H1a, H2a, H3a, and H4a verify that
there exist workers whose mean classifier PCC is consistently higher than the classification decision
boundary by a sizable margin (25%) that is consistent with the documented 75% agreement rate
between qualified multidisciplinary team diagnosis [50] using the Autism Diagnostic Observation
Schedule (ADOS) [45] and Gilliam Autism Rating Scale (GARS) [51] scales. Hypotheses H1b, H2b,
H3b, and H4b are more stringent, requiring the worker to exhibit low enough variance in their answers
such that one standard deviation below their mean PCC is still above the classifier decision boundary
and therefore still yields the correct diagnostic prediction. This level of robustness to variability is
reasonable given the measures of inter-rater reliability of ADOS scoresheets, with Cohen’s kappa
coefficients for individual ADOS items ranging between 0.24 and 0.94 [52].

The first set of tasks was posted on MTurk. The second, third, and fourth sets were posted to
distinct groups of workers on Microworkers. The Microworkers crowdsourcing tasks were targeted to
workers in Bangladesh, Kenya, and the Philippines in order to sample a sufficiently diverse global
population of crowdworkers while comparing independent subsets of the crowd.

All four independent studies consisted of a series of 13 multiple choice questions which were
fed as inputs into the video observation classifier (Figure 1). Although the videos did not necessarily
contain evidence of all 13 behavioral features used as inputs, workers were asked to infer how the
child would behave if placed in the situation in question.
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Figure 1. The process for calculating a probability score of autism from the categorical answers provided
by crowdsourced workers. (A) Workers answer a series of multiple-choice questions per video that
correspond to (B) categorical ordinal variables used in the input feature matrix to the (C) logistic
regression classifier trained on electronic medical record data. This classifier emits a probability score
for autism, which is the probability of the correct class when the true class is autism and 1 minus
this probability when the true class is neurotypical (the latter case is depicted). (D) A vector of these
probabilities is used to calculate mean worker and mean video probabilities of the correct class.

On MTurk, workers were only allowed to proceed with rating further videos if they passed a
series of quality control metrics recording performance against the ADOS gold standard classifier
(see section Materials and Methods: Video Observation Classifier) and the time spent working on
the task. On Microworkers, worker filtering did not occur besides requiring a bare minimum of time
rating each video (a minimum of 2 min per video was required to accept a worker’s response).

3. Results

We analyze (1) the distribution of worker performance in different countries and crowd platforms,
(2) the number of higher performing workers and “super recognizers” in each study group, and (3) the
correlation between mean time spent on the task and mean worker performance for each study group.

3.1. Distribution of Worker Performance

For all four worker groups, there was major variation in the average probability score of the
classifier per video (Figure 2) and per worker (Figure 3). The mean probability of the true class for
the 43 videos with at least ten worker ratings on MTurk was 63.80% (SD = 13.78%), with a minimum
of 16.90% and a maximum of 84.05%. On Microworkers, the mean PCC for videos with at least ten
ratings were 63.15% (N = 24; SD = 10.42%; range = 33.73–79.03%) for Bangladesh, 67.75% (N = 24;
SD = 14.68%; range = 32.71–88.91%) for Kenya, and 72.05% (N =2 4; SD = 13.05%; range = 47.84–90.80%)
for the Philippines.
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Figure 2. Distribution of average classifier probability of the correct class per video with at least
ten ratings from (A) MTurk workers, (B) Bangladesh Microworkers, (C) Kenya Microworkers,
and (D) Philippines Microworkers. There is wide variability in the difficulty level of rated videos.

Figure 3. Distribution of average probability of the correct class per (A) MTurk worker, (B) Bangladesh
Microworker, (C) Kenya Microworker, and (D) Philippines Microworker who provided at least ten
ratings. There is wide variability in the ability of workers to provide accurate categorical labels.

The mean classifier PCC for the 15 workers with 10 or more videos rated on MTurk was 66.67%
(SD = 5.98%), with a minimum of 48.16% and a maximum of 70.82%. On Microworkers, the mean
worker classifier PCC for those who provided ten or more ratings were 62.53% (N = 56; SD = 10.43%;
range = 42.21–79.53%) for Bangladesh, 66.67% (N = 23; SD = 9.75%; range = 46.62–81.03%) for Kenya,
and 72.71% (N = 25; SD = 10.25%; range = 51.38–89.08%) for the Philippines.

Crucially, while there were individual differences in the subset of videos rated across workers,
there was no significant difference in the difficulties of these videos across workers (Figure 4) for
workers who rated at least ten videos and videos with at least ten ratings from workers. This confirms
that the variability in worker performance in not attributable to the video difficulties. In all four groups,
a Pearson correlation test between the mean video PCC and mean worker PCC yielded insignificant
results (r = 0.088, p = 0.07 for MTurk; r = 0.017, p = 0.62 for Bangladesh Microworkers; r = −0.018,
p = 0.70 for Kenya Microworkers; and r = −0.030, p = 0.52 for Philippines Microworkers).
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Figure 4. Mean classifier confidence per video vs. per worker for (A) MTurk workers, (B) Bangladesh
Microworkers, (C) Kenya Microworkers, and (D) Philippines Microworkers for videos with at least
10 ratings and workers who provided at least ten ratings. Each vertical line of points contains
the difficulty levels of videos rated for one worker, visually demonstrating that workers received
similar distributions of video difficulties to rate despite displaying large variation in average
diagnostic confidence.

3.2. Super Recognizers

Figures 3 and 4 reveal that hypotheses H1a, H2a, H3a, and H4a are confirmed: there were
workers in all four study groups whose mean classifier PCC exceeded 75%. On MTurk, there was
one worker whose mean was greater than one standard deviation above 50%, confirming hypothesis
H1b. There were three Microworkers in the Bangladesh cohort, two Microworkers in the Kenya cohort
and ten Microworkers in the Philippines cohort whose mean was greater than one standard deviation
above 50%, confirming hypotheses H2b, H3b and H4b.

3.3. Effect of Time Spent Rating

Because of pervasive practices among MTurk workers of artificially inflating the time spent on the
task out of fear of spending insufficient time on the task [53,54], we only analyzed timing information of
Microworkers data. Several recorded times for MTurk tasks exceeded several hours, suggesting MTurk
worker behavior of bloating task times.

There was no statistically significant Pearson correlation between mean time spent on the task and
mean worker performance for the Kenya and Philippines Microworkers groups individually (r = 0.191,
p = 0.38 for Kenya Microworkers; and r = 0.193, p = 0.35 for Philippines Microworkers). For Bangladesh
Microworkers, there was a statistically significant correlation (r = 0.326, p = 0.01). When aggregating
all Microworkers results, the correlation is slightly strengthened (r = 0.358, p = 0.005).

4. Discussion

We discuss (1) the overall implications of the worker variability in all study groups and the
presence of “super recognizers,” (2) the formalization of a crowd filtration process which can be
leveraged for the identification of high performing crowd workers for a variety of precision medicine
tasks, and (3) limitations of the present study and areas of potential future work.

91



J. Pers. Med. 2020, 10, 86

4.1. General Implications

All four independent worker groups produced at least one worker who rated at least ten videos
and whose mean classifier PCC exceeded 75%. There was one MTurk worker, three Microworkers in
Bangladesh, two Microworkers in the Kenya cohort, and ten Microworkers in the Philippines cohort
whose mean was greater than one standard deviation above 50%. It is unclear whether language
barriers, differences in Microworker demographics across countries, or other factors are responsible for
this inconsistency across countries.

We observe a high variation in worker performance in all four study groups. This variation in
performance is distinct from other common crowdsourcing tasks such as image labeling, where worker
responses are generally accepted to be high quality and therefore only simple quality control metrics
(rather than filtering processes) are usually in place. These results suggest that there are innate
differences between crowd workers’ abilities to successfully and accurately label behavioral features
from short unstructured videos of children. This variation in intrinsic ability to rate diagnostically rich
features suggests that a filtering process must occur to curate a subset of the crowd who are skilled at
inferring behavior patterns from videos. We term this skilled distributed workforce “super recognizers”
as they appear consistently adept at recognizing and tagging core autism symptoms from unstructured
video without prior training.

Further, we find that the time spent rating is weakly correlated with average performance,
indicating that workers can be filtered for spending too little time on the tasks in aggregate. Although this
trend was not observed in the Kenya and Philippines cohorts individually, this may likely be attributed
to the smaller sample sizes of these groups. Including these data in the aggregate time correlation
analysis bolstered the statistical significance of the correlation.

Gold standard classifiers trained on clinician-filled electronic health records are pertinent to scaling
digital behavioral diagnostics. The source of training data is crucial, as behavioral instruments are not
always consistent with categorizing diagnostic outcomes for the same individual [55]. The classifier
used here was trained on ADOS records, but the children in the videos were not necessarily diagnosed
via the ADOS, as there are several diagnostic instruments for autism [56–61] capturing overlapping yet
distinct behaviors.

It is clear that different workers possess varying capabilities in behavioral video tagging, a
nontrivial task. To realize economic crowdsourcing, several subsets of the crowd should be evaluated,
with adept subgroups further pursued. Curating such a skilled crowd workforce in a developing
country may lead to part time employment of “super recognizers” in telemedical practices in that
country. This would eventually enable automated precision medicine through training machine
learning classifiers using the labeled video data libraries accumulated through distributed behavioral
video tagging.

4.2. Formalization of a Crowd Filtration Process

These results suggest that clinical workflows incorporating crowdsourced workers for pediatric
diagnostics of complex behavioral conditions like autism should first filter down the crowd to a
subset of workers who repeatedly and consistently perform well. Here, we propose a novel workflow
for recruitment of crowdsourced workers to ensure high quality diagnostic evaluations of pediatric
behavioral health conditions:

1. Train one or more machine learning classifiers using data accumulated by domain expert clinicians.
These data may be actively acquired or mined from existing data sources. It is crucial that the
gold standard data are representative of the target pediatric population.

2. Define a target performance metric for worker evaluation and a target number of workers
to recruit.

3. Collect labels from a massive and distributed set of crowd workers (Figure 5).
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4. Filter the crowd workers progressively and repeatedly until the target number of workers have
reached or surpassed the target performance metric.

5. The final set of globally recruited “super recognizers” can be leveraged in precision health and
precision medicine clinical workflows toward rating a worldwide pediatric population (Figure 5).

 

Figure 5. Crowd filtration pipeline. Crowdsourced workers are first evaluated globally. The highest
performers from each location are further evaluated for one or more rounds until a final skilled workforce
is curated. These “super recognizers” may then be repeatedly employed in global clinical workflows.

4.3. Limitations and Future Work

There are several limitations of the present study and fruitful avenues for future work.
More structured videos, such as those collected in home smartphone autism interventions [15–19],
may yield more consistent video difficulty levels due to the standardization of collected videos. Mobile
therapeutics in conjunction with crowdsourcing may be leveraged toward longitudinal outcome
tracking of symptoms [7]. Testing more subsets of the crowd, partitioned not only by location but by a
wide array of demographic factors, will reveal economical subsets of the crowd for remote behavioral
video tagging. To understand the reasons for differences in performance across subsets, videos of
children that reflect the demographics of the population being targeted should be deployed and
compared against a control set of videos. We welcome and call for replication crowdsourcing studies
with separate video sets and crowd recruitment strategies. We also hope similar approaches to those
tried here will be replicated for other behavioral conditions such as ADHD, speech delay, and OCD.

5. Conclusions

Crowdsourcing is a powerful yet understudied emerging tool for telemedical precision medicine
and health. We have demonstrated that crowdsourced workers vary in their performance on behavioral
tagging of clinically representative videos of autism and matched neurotypical controls, and we
provide formalization of a crowd filtration process for curation of the most capable members of the
crowd for repeated use in crowdsourcing-based clinical workflows. This process consists of training a
classifier from records filled by domain experts, identifying quantitative metrics for evaluating workers,
crowdsourcing a clinical task, filtering workers using the clinician-trained classifier, and repeating
until the ideal workforce size has been reached.

As data from human crowd-powered telemedical precision medicine pipelines are recorded
and stored in growing databases, computer vision classifiers of core autism symptoms such as hand
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stimming, eye contact, and emotion evocation can be trained using these labeled datasets. Curation of a
workforce of “super recognizers” will allow clinicians to trust the diagnostic labels and allow engineers
to use high quality features when training novel classifiers for precision medicine. This will enable an
eventual increase in the automation, and therefore throughput, of precision medicine techniques for
pediatric developmental delays such as autism.
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Abstract: While attempting to bridge motor control and cognitive science, the nascent field
of embodied cognition has primarily addressed intended, goal-oriented actions. Less explored,
however, have been unintended motions. Such movements tend to occur largely beneath awareness,
while contributing to the spontaneous control of redundant degrees of freedom across the body in
motion. We posit that the consequences of such unintended actions implicitly contribute to our
autonomous sense of action ownership and agency. We question whether biorhythmic activities from
these motions are separable from those which intentionally occur. Here we find that fluctuations in
the biorhythmic activities of the nervous systems can unambiguously differentiate across levels of
intent. More important yet, this differentiation is remarkable when we examine the fluctuations in
biorhythmic activity from the autonomic nervous systems. We find that when the action is intended,
the heart signal leads the body kinematics signals; but when the action segment spontaneously
occurs without instructions, the heart signal lags the bodily kinematics signals. We conclude that
the autonomic nervous system can differentiate levels of intent. Our results are discussed while
considering their potential translational value.

Keywords: embodied cognition; agency; action ownership; network analysis; graph theory; motor
control; voluntary motion; precision medicine

1. Introduction

The field of embodied cognition (EC) has provided a powerful theoretical framework amenable to
bridge the gap between research probing our mental states and research investigating our physical
actions [1–3]. Indeed, within the framework of EC, the construct of agency conceived as a cognitive
movement phenomenon [4–6] may provide a way to finally connect the disparate fields of cognitive
science and motor control. An important component of agency is action ownership [6–8], i.e., the sense
that sensory consequences of the actor’s action are intrinsically part of the actor’s inner sensations.
When the actor owns the action, s/he has full control over those sensations that are internally
self-generated and self-monitored by the actor’s brain and yet extrinsically modulated by external
sensory goals. A critical aspect of this internal–external loop is the identification of the level of actor’s
intent and its differential contribution to the action’s intended and unintended sensory consequences.

In recent years, a body of knowledge has increased our understanding on the sensory consequences
derived from intentional actions, as such action components deliver an overall sense of agency [9,10]
through elements of body-ownership closely interrelated with motor control [11,12]. Less explored,
however, have been parts of the action that are unintended or that transpire spontaneously and largely
beneath awareness. Such actions’ components exist at the involuntary (uncontrolled, random motions)
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and at the autonomic (pacemaker, periodic motions) levels of neuromotor control (Figure 1). They do
not require explicit instructions or precisely defined external goals, yet they too contribute to the
differentiation of levels of intent in our actions [13,14]. More importantly, at the cognitive level of
decision making, these unintended movements contribute to the acquisition of decision accuracy
within the context of the type of motor learning that is induced by different cognitive loads [15,16].

Figure 1. Defining quantitative aspects of agency for the study of embodied cognition. (A) A highly
simplified schematics reflecting the phylogenetically orderly taxonomy of nervous system functions
involving different levels of voluntary control (intent) ranging from deliberate to spontaneous movement
segments, to involuntary motions and autonomic control. Levels correspond to three fundamental
muscle types (skeletal for voluntary, smooth for involuntary, and cardiac for autonomic.) Multi-layered
signals contributing from each of these layers are proposed to differentially contribute to the sense of
action ownership and to the overall sense of agency via sensory consequences preceded by different
levels of intent. (B) Contributions of the central and peripheral nervous systems (CNS and PNS,
respectively), including the autonomic nervous system (ANS), can be tracked in a closed loop that
helps the autonomous realization of intended thoughts into physical actions under volitional control.
(C) Network connectivity analyses of kinematics and heart biorhythmic signals encompassing these
levels of control enable the study of agency through objective quantitative methods.

At the motor control level, autonomous and spontaneous movements are important to develop
a sense of action ownership in the face of motor redundancy [17]. Spontaneous motions can be
covert, as those subtle motions occurring in a coma patient [18] or those occurring in a neonate [19];
or overt, as when they coexist with deliberate/staged ones, embedded in complex sports routines [13,14]
and/or ballet choreographies [20]. Such complex overt movements require the coordination and
control of many degrees of freedom (DoFs) across the body. Thus, as we produce fluid and timely
goal-oriented actions, kinematic synergies self-emerge and dynamically recruit and release the bodily
DoFs, according to task demands [21–23]. Conscious decisions generating movements that attain
external goals take place as the brain interweaves deliberate and spontaneous movement segments.
Such segments in our complex actions gracefully build an ebb and flow of actions intended to a goal,
and sensory consequences from those actions [13]. Some of these sensations that voluntary movements
give rise to [24] return to the brain as feedback from the intentional part of the movements, thought to
contribute to our internal models of action dynamics [25,26]. This form of volitionally controlled
kinesthetic reafference cumulatively helps us build accurate predictions of those intended sensory
consequences [24], while other unintended movements return to the brain as spontaneous reafference
in the precise sense that they do not follow from instructed acts. These spontaneous activities provide
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contextual cues that support motor learning, motor adaptation and action generalization across different
situations [13], including pathologies of the nervous systems [27,28].

One informative aspect of this ebb and flow of intent and spontaneity in our actions is the
fundamental differences that emerge in the geometric features of the positional trajectories that the
moving body describes [29–31]. When the motions are intended, geometric measures related to path
curvature and path length show invariance to changes in movement dynamics, i.e., these metrics remain
robust to changes in speed, mass, etc. [21,31–34]. In contrast, trajectories from unintended motions
produce different signatures of motor variability bound to return to the brain as spontaneous feedback.
These internal sensations could help the brain differentiate contextual variations emerging from
external environmental cues from sensory information that is internally self-generated by the nervous
systems [13,14]. External information may include, for example, changes in visual and auditory inputs,
such as shifts in lighting conditions, or modulations in sound and music [20,35].

The geometry of the uninstructed spontaneous movements’ trajectories dramatically changes with
fluctuations in the movements’ dynamics. Changes in speed [21,30–32] or mass [14] affect their motor
variability in fundamentally different ways (if we compare the signatures of variability derived from the
spontaneous samples to those derived from deliberately staging the same movement trajectories [14,32].)
More importantly, the fluctuations in the motor variability of these spontaneous motions can forecast
symptoms of Parkinson’s disease before the onset of high severity [27,36]. They have also aided
in evoking the sense of action ownership and agency in young pre-verbal children [28]. For these
reasons, here we posit that deliberate and spontaneous segments of complex covert actions ought
to differentially contribute to our physical sense of action ownership and to our overall sense of
agency. To examine this proposition, we follow a phylogenetically orderly taxonomy of the nervous
systems’ maturation (Figure 1B) and examine all levels of neuromotor control—from autonomic to
deliberate—necessary to coordinate voluntary motions (Figure 1A).

More specifically, since autonomic systems are vital to our survival and wellbeing, they may
remain impervious to subtle distinctions between deliberate and spontaneous motions that take place
across the body, as the end effector completes goal-directed actions. Here we explore the interplay
between autonomic signals and voluntary motor control in actions that integrate deliberate and
spontaneous motions across the body. We use a new unifying statistical framework for individualized
behavioral analyses and network connectivity analyses and offer a quantitative account of how these
movement classes contribute to the overall embodied sense of agency.

2. Materials and Methods

2.1. Experimental Design

2.1.1. Participants

Nine undergraduate students (2 males and 7 females) between the ages of 18 and 22 years
were recruited from the Rutgers human subject pool system. Two were left-handed and seven
were right-handed, and all had normal or corrected-to-normal vision. All participants received
credit for their participation, and provided informed consent, which was approved by the Rutgers
University Institutional Review Board. The study took place at the Sensory Motor Integration Lab at
Rutgers University.

During the experiment, movement kinematics and heart signals were recorded from each
participant. However, one participant’s recording had too much noise (i.e., inaccurate sensor position
with error larger than 10 cm), so we excluded this participant’s data in the analysis. For that reason,
eight participants’ motor and heart signals were analyzed.
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2.1.2. Sensor Devices

Motion capture system (kinematics data): Fifteen electromagnetic sensors sampling at a frequency
of 240 Hz (Polhemus Liberty, Colchester, VT, USA) were attached to the participant’s upper body
in the following locations: center of the forehead, thoracic vertebrate T7, right and left scapula,
right and left upper arm, right and left forearm, performing hand, and the performing hand’s index
finger. These sensors were secured with sports bands to allow unrestricted movement during the
recordings. Motor signals were recorded in real-time by Motion Monitor (Innovative Sports Training
Inc., Chicago, IL, USA) software, where the participant’s body was constructed by a biomechanical
model, and movement data were preprocessed by an embedded filtering algorithm of the software,
providing the position and kinematics of each sensor.

Electrocardiogram (heart data): Three sensors of electrocardiogram (ECG) from a wireless
Nexus-10 device (Mind Media BV, Herten, The Netherlands) and Nexus 10 software Biotrace
(Version 2015B) were used to record heart activity. At a sampling rate of 256 Hz, the sensors
were placed across the chest according to a standardized lead II method.

2.1.3. Experimental Procedure

Participants sat at a desk facing an iPad tablet (Apple, Cupertino, CA, USA), which was used
to display stimuli during the experiment, and participants responded by touching the tablet screen.
The tablet display was controlled with an in-house developed MATLAB (Release 2015b, The MathWorks,
Inc., Natick, MA, USA) program and TeamViewer application (Germany).

As shown in Figure 2, for each trial, the participant was presented with a circle on the tablet
screen. This circle served as a prompt for the participant to touch the tablet screen within five seconds.
After the touch, either 100 ms, 400 ms, or 700 ms elapsed, and the participant heard a tone at 1000 Hz
for 100 ms. Then, on the tablet screen, the participant was presented with a sliding scale, ranging from
0 to 1 (second), to indicate how long he/she perceived the time elapsed between the touch and the tone.
The response was to be made within five seconds upon the display of the sliding scale. The five second
time-window was considered enough for the participant to provide a response, as it took approximately
1 s to touch the screen and retract the hand back to its original position. There was a total of three
conditions, namely control, low cognitive load, and high cognitive load, and each condition consisted
of 60 trials. In the control condition, the participant simply performed each trial with no additional
task; under the low cognitive load condition, the participant performed each trial while repeatedly
counting forward 1 through 5; under the high cognitive load condition, they counted backwards from
400 subtracting by 3 while they performed each trial. Participants counted forward and backward at
their own comfortable pace, and they took breaks in between each condition. The experiment set up
took about 30 min, and the recording took about 40 min.

2.2. Statistical Analysis Overview

2.2.1. Preprocessing

In this study, we extracted the kinematics (i.e., linear speed, angular acceleration) and heart data
during time segments when the participant made a pointing motion towards the circle presented on
the tablet screen, and we combined them across the three conditions. As a result, we analyzed the
kinematics and heart data recorded while the participant made 180 pointing motions (less any trials
that were deemed noisy; the most trials we excluded per participant due to instrumentation noise were
12 trials).

To analyze the ECG and kinematics data in tandem, we up-sampled the kinematics data from
240 Hz to 256 Hz using piecewise cubic spline interpolation. Note, the ECG signals were not
synchronized with the kinematics data but were manually time stamped at the start and end of each
experimental condition. For that matter, we expected the presence of a lag between the two modes of
signals—kinematics and ECG—but the lag did not exceed 1 s.
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To exclude effects of muscle motion from the ECG heart data, we bandpass filtered the data
with Butterworth IIR for 5–30Hz at 2nd order. This filter was effective in identifying QRS complexes
and extracting R-peaks in previous studies [16,37]. Here, the filter excluded the dominant frequency
range where typical kinematics signals are present (see Appendix A Figure A1). We performed
our analyses using both filtered and non-filtered EKG data and found similar trends and patterns.
However, the paper only presents the results from using the filtered data, as it is a better reflection of
the heart activity.

Figure 2. Experimental assay and instrumentation setup. (A) Experimental procedure. In a single trial,
the participant was presented with a display screen, as shown on the top panel. During the first 5 s,
the participant was presented with a circle as a prompt to touch the circle on the screen. After the
touch, the participant heard a tone. The duration between the touch and the tone was randomly set
to be 100 ms, 400 ms, or 700 ms. In the next 5 s, the participant was presented with a sliding scale,
where s/he indicated how long the time was perceived to have elapsed between the touch and the tone,
by touching the corresponding number on the scale. For each trial, the participant made two pointing
gestures—one to touch the circle and another to indicate their time estimation on the sliding scale.
Such pointing gesture was composed of a forward reaching segment (red) and a backward retracting
segment (blue), as shown in the bottom panel. (B) Motion capture sensor positions. The sensors were
attached on the following body parts: center of the forehead, thoracic vertebrate T7, right and left
scapula, right and left upper arm, right and left forearm, non-performing hand, and the performing
hand’s index finger. (C) Snapshot of the experiment. During the experiment, the participant was seated
in front of the tablet screen to perform the tasks, and wired sensors were secured with athletic tape.

2.2.2. Data Analysis Structure

We used the rationale in Figure 1 to structure our analyses, with a focus of two main axes denoting
the level of motor intent and awareness that the brain may have during complex tasks (Figure 3A).
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More precisely, one axis explored possible differentiations between time segments of the pointing
movements that were deliberately aimed at an external target (forward/high motor intent) vs. segments
that were consequential to the deliberate ones (backward/low motor intent). The latter may occur when
the hand retracts back to rest, or when after touching the target the person transitions the hand in route
to another goal-directed motion. These segments have been studied in our lab across very complex
motions in sports (boxing, tennis) and in the performing arts (ballet, salsa dancing). We have coined
them spontaneous movements and discovered that they have precise signatures that distinguish them
from the deliberate ones. For this reason, we hypothesized here that these spontaneous motions would
have different stochastic signatures or be differentially expressed in relation to the deliberate ones.

Figure 3. Overview of analytics pipeline. (A) Behavioral assay to quantify ranges of motor intent along
two axes to highlight externally and internally defined goals. Along the former, motions are classified
across time based on the end-effector’s movement, ranging from backward–spontaneous (lower motor
intent) to forward–deliberate (higher motor intent) motions. Along the other axis, motions are classified
across locations of the body, based on the proximity to the end-effector, from non-performing side of the
body parts (lower motor intent) to the performing side including the end-effector (higher motor intent).
Note, the two axes are not necessarily orthogonal as the schematics imply. (B) Two types of network
analyses were made. Within the kinematics network, kinematics data served to compare patterns of
variability from movement segments of higher level of intent (deliberately aimed at the goal) and
movement segments with lower level of intent (spontaneous retractions of the hand to rest, without
instructions), including as well comparison of patterns from the performing and non-performing
parts of the body. Within the kinematics-heart network, a similar comparison was made, with a layer
of autonomic function added, using signals from the EKG sensors. (C) For the spatial domain of
connectivity analysis, raw biophysical data (biorhythms) co-registered from multiple layers of the
peripheral and autonomic nervous systems were converted to MMS and used to compute pairwise
similarity/synchronicity metrics to build adjacency matrices to represent weighted/undirected graphs.
For the temporal domain, the raw biophysical data were directly used to build adjacency matrices.
For both domains, with the obtained adjacency matrices, network connectivity analyses combined with
non-linear dynamical systems approaches were used to identify self-emerging kinematic synergies and
various indexes to enable objective quantification of the embodied cognition phenomena.

The other axis explored possible contributions of body parts that were not directly related to the
end effector (the performing hand) executing the pointing task. We reasoned that there may be higher
motor intent devoted to the performing hand of the participant than to the non-performing side of the
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body. Furthermore, we explored how other body parts (also co-registered within the sensors’ network)
contributed to the overall performance of this task.

These two axes were explored at the voluntary level of motor control interleaving deliberate
goal-directed (forward) actions and spontaneous (backward) segments of the full pointing loop. We also
included in our analyses the autonomic level of control in the taxonomy of Figure 1A, and to that end,
we co-registered the heart activity and incorporated it into the bodily kinematics activity (Figure 3B).
We next explain how to overcome challenges in sensor data fusion from disparate systems along with
new approaches to analyze these multi-modal data.

2.2.3. Challenges of Multilayered Data with Non-Linear Dynamics and Non-Normally
Distributed Parameters

Disparate physical units: Different instruments to assess biorhythms from different layers of the
nervous system (i.e., kinematics vs. EKG) output biosignals with different physical units (e.g., m/s
from the kinematics speed, mV from the EKG). This poses a challenge to integrate these signals and
examine their interrelations across these layers.

Allometric effects: Another issue is that when examining such data from different participants with
different anatomical sizes, allometric effects may confound our results. This is so because, e.g., the speed
ranges that a person attains depend on the length of the arm. Longer arms tend to broaden the
ranges of speed and contribute to the distribution of speed values that the person attains in any given
experiment. As such, we needed to account for these possible allometric effects.

Assumption of normality: Another related matter to the ranges of speed and their distributions is
that they vary from person to person according to multiple factors (e.g., age, body mass, sex, fitness,
etc.) [38]. These variations result in probability distributions with heavy tails, which are incompatible
with common assumptions of normality in the literature. When the effects of the task, or the inherent
motor noise in the system, are such that most values related to the speed distribute more densely
toward the left of the frequency histogram (e.g., in autism exponentially distributed maximum speed
amplitude is common [39]), assuming normality may incur spurious results. This is so because
speed ranges from 0 to some limiting value for each person (the maximum speed that the person can
reach before damaging the joints). As such, when one obtains the mean ± two standard deviation
values to approximate standard error bars (which is very common in the motor control literature)
while summarizing the statistical features of the data, the data may fall in the negative speed ranges
(which is physically absurd).

Assessing similarity in probability space: Going beyond significant hypothesis testing models,
one may need to assess the differences between probability distributions. To that end, one may
need a proper similarity metric. Yet, when our data represent points in probability space, and the
distributions are not symmetric, it is challenging to assess their similarity in a consistently proper
way. Measures like the Fisher information metric are designed to compare symmetric distributions
and the Kullback–Leibler divergence is computed asymmetrically between distributions (one-sided).
We would like to have a proper (two-sided) distance metric to assess change and its rate when points are
related to non-symmetric continuous probability density functions, or to their discrete approximations.

Degrees of freedom across intent levels of motor control: Multiple locations of the grid of sensors,
co-registering biorhythms from different nervous systems, contribute differently to the overall behavior
of the system. Some may be more directly related to action success, while others may provide support.
Separating the bodily region within a kinematics-heart network can be challenging because of the
non-linear dynamics of the interactive systems. Yet, most methods assume or impose local linearities
to model such phenomena. Here we propose to approach this problem by treating the grid of sensors
as a dynamically evolving weighted interconnected network, whereby we track self-emerging modules
informing us of spontaneous synergies and connectivity patterns.
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2.2.4. Some Solutions to the Challenges

New data type for disparate physical units: We created a data type called the micro-movement
spikes (MMS), which is a unitless, standardized waveform derived from the moment to moment
fluctuations in the raw data peaks’ amplitude and/or timing. This data type extracts the fluctuations in
amplitude and/or timing of any waveform with peaks and valleys (e.g., time series of speed values
or kinematic related values derived from them). To that end, we obtained the empirically estimated
moments from the peaks in the raw waveform. We then built a new waveform that can be normalized
according to various criteria. This new waveform is then unitless and refers to a relative quantity
(rather than to an absolute quantity).

Data standardization to account for allometric effects: The anthropology and paleontology
literature has several solutions to address comparative data that may come from different bone
sizes across, e.g., different humanoids [40,41]. Equation (1) provides an example of standardization to
scale values derived from any waveform with peaks and valleys, which can be derived, e.g., from data
series with different physical units, from effectors of different sizes.

StandardizedPeak =
LocalPeak

LocalPeak + Avrgmin−to−min
(1)

The standardized quantities are in the real-valued [0,1] interval. They are coined MMS amplitudes
and treated as a continuous random process. We characterized several complex behaviors from various
layers of the nervous systems using the MMS and expressed them in two forms: (1) without preserving
the original frames of the data, i.e., just focusing on the MMS amplitude fluctuations, and (2) conserving
the original frames, in which case, we would 0-pad those that are not spikes or preserve their values as
additional gross data contributing to the phenomena in question. Either way, these fluctuations ought
not to be averaged out by assumptions of normality. Whereas in the extant literature these fluctuations
are considered noise or superfluous, here we treated them as important signals.

Distribution-free approach to counter current assumption of normality: We did not assume
normality in the data. Instead, we gathered enough data to empirically estimate the best family of
probability distributions that fits the data. To that end, we here used maximum likelihood estimation
(MLE) with 95% confidence intervals and sought the best continuous family that fit our data.

Distance metric to assess similarity in probability space: We here introduced the use of the earth
mover’s distance metric (EMD) [42–44] to approximate (using the frequency histograms of the MMS
amplitudes) the stochastic shifts in probability space that occur for different movement types. This is
an appropriate similarity metric that allowed us to examine the extent to which different levels of
motor control change the stochastic patterns. We briefly describe it below:

The EMD, also known as the Kantarovich–Wasserstein distance [45], measures the distance
between two discrete probability distributions. Given two discrete distributions P = {(p1,wp1), . . .
(pm,wpm)}, where pi is the cluster representative and wpi is the weight of the cluster; and Q = {(p1,wp1),
. . . (pn,wpn)}, EMD computes how much mass is needed to transform one distribution into another.
Defining D [dij] as the ground distance matrix, where dij is the ground distance between clusters pi

and qj, and F = [fij] with fij as the flow between pi and qj; EMD is computed by minimizing the overall
cost of such:

Work (P, Z, F) =
∑m

i=1

∑n

j=1
dij fi j

As there are infinite ways to do this, the following constraints are imposed to yield EMD values:

fi j ≥ 0 1 ≤ i ≤ m, 1 ≤ j ≤ n

n∑
j=1

fi j ≤ wpi 1 ≤ i ≤ m
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m∑
j=1

fi j ≤ wqi 1 ≤ j ≤ n

∑m

i=1

∑n

j=1
fi j = min(

∑m

i=1
wpi ,
∑n

j=1
wqj

)

EMD(P, Q) =

∑m
i=1
∑n

j=1 dij fi j∑m
i=1
∑n

j=1 fi j

Network connectivity analyses to assess degrees of freedom recruitment across modalities of motor
control: We used graph theory to examine the inter-relations across the nodes of the multilayered
kinematics-heart network. To that end, we derived an adjacency metric of pairwise quantities reflecting
the cross-correlation between any pair of nodes in the grid. We then constructed weighted directed
networks and borrowed connectivity metrics from brain-related research. We extended these methods
to represent the peripheral network using the bodily biorhythms from multiple layers of the nervous
systems’ functioning, spanning from voluntary to autonomic (Figure 1A).

2.2.5. Choice of Kinematics Parameter

The recording of positions over time across 10 upper body parts allowed us to estimate two aspects
of the biorhythmic data: spatial and temporal aspects, both of which are critical to characterize proper
coordination and control. A parameter encompassing both aspects is the velocity. The derivative of
position over time creates vector fields with direction and extent. Each point in the field (along the
velocity trajectory) occurs in time and moves in space.

To assess spatial components, we used the scalar speed (distance traveled per unit time, where
the unit time is taken constantly at the rate of 240 frames per second). We used the Euclidean norm
to compute the length of the velocity vector at each unit time, thus quantifying the rate of change
in position per unit time—the linear speed (m/s). Likewise, we used the orientation data from each
sensor and obtained the angular velocity from the rotations of each body part. Using appropriately
the quaternion representation of rotations and the Euclidean metric to quantify the magnitude of the
angular velocity vector, we obtained the angular speed (deg/s). These waveforms derived from the
first order change are useful, but at the time scale (~1/2 h) of our experimental assay, they provided
fewer peaks per trial than waveforms derived from the second order change (i.e., linear acceleration
(m/s2) or angular acceleration (deg/s2)).

As we needed many spikes for our distribution-fitting and stochastic analyses, we used the
angular acceleration kinematics data. Note, it was possible to have had participants perform more
trials to obtain a larger number of spikes using the linear speed; however, this would have fatigued
the participants as the length of the experiment was around 70 min (inclusive of 40 min for set up).
For that reason, within this amount of time, it was ideal to use the angular acceleration as our kinematic
parameter of interest. This choice of parameter to analyze the stochastic patterns of the moment
by moment fluctuations in signal amplitude (i.e., the spatial component of our analysis) provided
a tighter confidence interval in the empirical estimation of the best probability distribution family
fitting the data.

We also examined temporal components of the data. To that end, we used the linear speed patterns
and the cross-correlation function. We extended our analyses to different kinematics parameters,
and while they all showed similar patterns and trends, we found the linear speed to best characterize
the differing patterns of motor intent. For that reason, we presented the results of the temporal
analyses involving cross-correlation based network connectivity patterns using the linear speed as our
waveform of choice (Figure 3C).
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2.3. Data Analysis on Kinematics Network Connectivity

As a first step, we separated the kinematics data obtained from all 10 body parts, using the
start and end time of the performing hand making a forward–deliberate motion, and the hand
making a backward–spontaneous motion (Figure 4A). This was possible to do (automatically) because
(1) the speed was near 0 at the onset of the motion towards the target; (2) the distance to the target
monotonically decreased and once again the hand paused at the target at near 0 speed. As the deliberate
(forward) segment was completed, the speed rose again away from 0, and the distance to the target
increased as the hand followed the backward segment of the full pointing loop. The two segments
could be automatically differentiated also because the deliberate (forward) one was less variable than
the spontaneous (backward) one [14].

Figure 4. Analytical pipeline and visualization methods for the kinematics network. (A) Representative
movement trajectory of the performing hand during a pointing motion to a target (denoted by a small
open circle). Each trial was comprised of a forward–deliberate (red) and backward–spontaneous (blue)
segment. These could be automatically separated by the speed and distance criteria (see Figure A2).
(B) Time series of angular acceleration of the performing hand’s index finger during a typical pointing
task. To examine kinematics-based connectivity, we used the angular acceleration time series, focusing
on the moment by moment fluctuations in waveform amplitude. Here, peaks (maxima) and valleys
(minima) are shown in red and black dots, respectively. The inset shows a zoomed-in picture of
a single angular acceleration segment (i.e., two local minima and a single peak in between, used
for standardization described in Equation (1). (C) Pairwise absolute difference in waveform was
obtained and standardized using Equation (1). The resulting waveform provided the input to obtain
MMS. (D) MMS train scaling the waveform amplitude for a typical pointing task. All standardized
spike amplitude values from (B) and (C) were maintained, while all non-spike values were set to 0.
(E) Frequency histogram of MMS amplitudes fitted to a Gamma probability distribution function (PDF)
using maximum likelihood estimation (MLE). (F) The empirically estimated Gamma parameters (shape
and scale) were obtained and plotted on a Gamma parameter plane, with marker lines representing the
95% confidence interval. Noise-to-signal ratio (NSR) (i.e., fitted Gamma scale parameter) were later
used for comparison between motor segments and different performing side. (G) Representative time
series of linear speed of the performing hand’s index finger in one trial. (H) Pairwise cross-correlation
between two body parts. (I) Adjacency matrix obtained from all pairwise maximal cross-correlation
across all body parts under consideration, to represent a weighted undirected graph. (J) Connectivity
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metrics (e.g., clustering coefficient) were used to quantify patterns of temporal dynamics. (K) Network
connectivity analyses to unveil self-emerging clusters, where nodes correspond to each body part.
For the spatial domain, NSR derived from MMS amplitudes of angular accelerations were visualized
as node size, and NSR derived from MMS amplitudes of pairwise absolute difference in angular
acceleration as edge thickness. For the temporal domain, cluster coefficients were visualized as node
size, and median cross-correlations as edge thickness.

For the connectivity analysis centered on spatial aspects of the signal amplitude, we pooled the
angular acceleration data from each body part and extracted the MMS amplitudes (referred to as MMS
from here on). We then built frequency histograms of the MMS and explored several families of PDFs
using MLE. The continuous family of Gamma PDFs yielded the best fit (Figure A2) and served to
provide the noise-to-signal ratio (NSR; computed to equal the Gamma scale parameter) for each body
part (Figure 4B,D–F). These were then visualized as node size in the schematics of the network in
Figure 4K across different motor intent levels.

To characterize the connectivity of 2 body parts, we took the pairwise absolute difference
between angular acceleration and based on the obtained absolute difference time series, computed
the corresponding MMS. We then fitted the Gamma scale parameters (i.e., NSR) (Figure 4C–F),
which were visualized as edges in the schematics of the network in Figure 4K. The intuition behind
taking the absolute difference in angular acceleration time series from two body parts is that this
reflects the change in positional distance between those two body parts and thus represents the
connectivity (physical distance) between those two. The NSR values were then compared between
different movement segments (i.e., forward vs. backward) and different sides (i.e., performing vs.
non-performing arm/hand), to understand the noise level during different levels of motor intent.
Note, for each type of motor segment (i.e., forward vs. backward), and for each side (i.e., performing
vs. non-performing), more than 2500 spike amplitude data were extracted. These spike amplitude data
were then plotted on a frequency histogram using Freedman–Diaconis binning rule [46]. They were
used for empirical estimation of the best PDF in an MLE sense. The results yielded the Gamma
probability distribution function (PDF) (see Figure A2B).

Connectivity analyses on temporal aspects of coordination involved the linear speed from
each pair of body parts. We computed pairwise cross-correlations to derive an adjacency matrix
that would represent a weighted undirected graph. Here, the ij-link’s weight is the maximum
cross-correlation value between nodes i and j (that is, the corresponding two body parts). From these
matrices, we computed clustering coefficients, which are measures that characterize the local
connectivity (i.e., functional segregation). They would represent self-emerging kinematic synergies.
Specifically, the degree of a node in the network (number of links at a node) between a set of nodes form
triangles, and the fraction of triangle numbers formed around each node is known as the clustering
coefficient (Figure 4G–J). This measure essentially reflects the proportion of the node’s neighbors
(i.e., nodes that are one degree away from the node of interest) that are also neighbors of each other [47].
Here, we computed the average intensity (geometric mean) of all triangles associated with each node,
where the triangles reflect the degree strength, and is computed as shown below (using an algorithm
by [48]; Equation (2)).

Ci =
∑
i∈N

ti

ki(ki − 1)
(2)

N: set of all nodes (composed of 10 body parts)
Ci: cluster coefficient for node i (i ∈ N)

ti: geometric mean of triangles links formed around node i (i ∈ N)

ki: number of degrees (links) formed around node i (i ∈ N)

To visualize the network, we represented the median pair-wise cross-correlation values as the
edge thickness and median cluster coefficient values as the node size (Figure 4K). The median
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cross-correlation and cluster coefficient values were then compared between different movement
segments (i.e., forward vs. backward) and different sides (i.e., performing vs. non-performing
arm/hand) to understand how linear correlations differed across varying levels of motor control.

2.4. Data Analysis on Kinematics-Heart Network Connectivity

As with the kinematics connectivity analysis, we segmented the data of the filtered EKG data along
with the kinematics data by the time intervals when the performing hand was making a deliberate
forward motion and a spontaneous backward motion (Figure 5A).

Figure 5. Analytical pipeline and visualization methods for the kinematics-heart network. (A) Typical
movement trajectory of the performing hand position, while performing a single pointing action towards
a target. Each trajectory was separated into forward–deliberate (red) and backward–spontaneous
segments (blue) according to hand–target updated distance and near-zero-speed value (see Figure A2 for
details). (B) Angular acceleration time series of the hand during a typical pointing task. MMS amplitudes
from the angular acceleration time series were extracted for each body part. (C) Filtered EKG time
series during a pointing task. MMS amplitudes from the filtered EKG time series were extracted.
(D) Histograms of compiled MMS amplitudes. For spatial analysis, pairwise EMD was computed
between histograms from each body part and heart activity. (E) Linear speed time series of the performing
hand. For temporal analysis, linear speed kinematics time series was used. (F) Cross-correlation
between a single body part’s linear speed and filtered EKG signal. For each trial, cross-correlation
was computed between a pair of filtered EKG and a single body part’s linear speed time series, and
the maximal value (red dot) and its corresponding lag values were extracted. (G) Visualization of
connectivity. Network connectivity was visualized, where node size represented the EMD between the
corresponding pair of body part and heart signals (i.e., spatial metric), and edge thickness represented
the median cross-correlation values between the signal pairs (i.e., temporal metric). The edge colors
were visualized, such that red would indicate EKG signals temporally leading linear speed signals,
and blue would indicate linear speed leading EKG signals.

For the spatial domain of connectivity, we took the segmented data of angular acceleration and
EKG data, extracted MMS from both signals, and plotted a histogram of the MMS. Because the MMS
of EKG signals did not follow a Gamma distribution, in order to assess the connectivity between the
two, we computed the earth mover’s distance (EMD) between the histogram from a single body part
and from the EKG data (Figure 5A–D).
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For the temporal domain, we computed pairwise cross-correlations, along with lag, between the
EKG filtered time series and each body part’s linear velocity time series. In fact, in our analysis,
we found an interesting pattern in directionality (i.e., lag) of correlation and deemed it informative to
present them in the network graph. For that reason, edge thickness was represented by the median
cross-correlation values, and color of the edges were visualized, where red indicated EKG signals
leading linear velocity signals, and blue indicated linear velocity leading EKG signals (Figure 5G).

For all these metrics, we compared the medians between different movement segments (i.e., forward
vs. backward) and different sides (i.e., performing vs. non-performing arm/hand), to understand how
stochasticity and temporal dynamics changed across varying levels of motor intent between the heart
(from ANS) and kinematics (from PNS/CNS).

3. Results

3.1. Higher Motor Intent Results in Higher NSR in Spatial Parameters

Motor intent in the context of our experimental assay specifically refers to the level of deliberateness
(or spontaneity) of the movement segment in route to an external target (away from it). An instructed
pointing action to touch the target is a goal-directed reach with high level of intent. In contrast,
the uninstructed spontaneous retraction away from the target carries lower motor intent than the
goal-directed one.

As a first set of analysis, the MMS extracted from the angular acceleration data from each body
part were aggregated across all trials and conditions and arranged by different movement segments
(forward–deliberate vs. backward–spontaneous) and different sides (performing vs. non-performing).
The same was also done on the MMS extracted from the absolute difference in angular acceleration
from all pairs of body parts. The NSR was found to be significantly higher when the motions were
deliberate and on the performing side (Figure 6).

Figure 6. NSR signatures during pointing can differentiate the levels of intent. Comparison includes
forward–deliberate vs. backward–spontaneous segments and performing vs. non-performing effector.
(A) Network visualization of a right-handed representative participant. Node size is represented by
the NSR derived from the corresponding body part’s kinematics time series, and edge thickness is
represented by the NSR of the absolute difference in kinematics between the corresponding pairs of
body parts. Node size and edge thickness are graphed in the same scale across different movement
segments (i.e., forward and backward segments). (B) NSR for different movement segment and sides.
Each dot is the median NSR values for each participant’s different movement segments (left) and
different sides (right) from the unitless MMS derived from the angular acceleration (AA) fluctuations in
amplitude. The x-axis denotes the NSR from individual body part’s kinematics (NSR AA), and y-axis
denotes the NSR from the MMS derived from the absolute pairwise body parts’ difference (NSR AA
Diff). Generally, for the former (NSR AA) measure, NSR is higher during a forward segment (F; red)
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than during a backward segment (B; blue), and on the performing side (P; pink) than on the
non-performing side (NP; cyan). (C) NSR difference between performing vs. non-performing
side. Left panel shows the NSR median difference between the performing and non-performing side for
each participant, denoted as a single marker. Right panel shows the NSR median difference between
the performing and non-performing side for the forward motion (F; red) and backward motion (B; blue).
When the difference between the performing and non-performing side is examined separately for each
motion segment, the NSR AA difference is wider during forward motion segments (F; red) than during
backward motion segments (B; blue). (D) NSR difference between forward vs. backward movement
segment. Left panel shows the NSR median difference between the forward and backward motion
segments for each participant, denoted as a single marker. Color scheme as in (B).

Specifically, NSRs of the kinematics time series from each body part shown was highest when
an individual exerted higher motor control under higher level of motor intent, such as on the performing
side of the body and during a forward–deliberate motion. Conversely, when an individual did not
deliberately intend to move the arm, as exhibited on the non-performing side of the body and during
a backward–spontaneous motion, the NSR was at its lowest. The NSRs for all pairs of body parts’
absolute difference in angular acceleration (i.e., change in distance between the pairs of body parts),
on the other hand, was higher on the performing side (vs. non-performing side) but did not show
such a consistent pattern when comparing between the two motion segments (forward vs. backward).
Details of the 95% confidence interval of the fitted Gamma scale parameter (i.e., the NSR) for all
participants, all body parts (Figure A3), and all pairs of body parts (Figure A4) can be found in the
Appendix A.

3.2. Higher Motor Intent Results in Higher Cross-Correlations and Clustering of Temporal Parameters

We used the MATLAB Network Connectivity toolbox [49] and examined the adjacency matrix
derived from the pairwise maximal cross-correlation coefficient based on the time series of linear
speed values. The clustering coefficient (CC) was obtained for each body part as a metric of functional
segregation. For analysis, we examined the median cross-correlation values as a function of the
CC values. Here we found that higher level of motor intent (i.e., during forward–deliberate motion
performed with the performing hand) resulted in a tendency of increased CC and increased median
cross-correlation values (Figure 7).

When we compared between different motion segments, median cross-correlations were higher
for forward motions than for backward ones for all but two participants. When we compared
between different sides, all participants showed higher correlation on the performing side than the
non-performing one. The median CC was higher for forward motions than for backward segments
for all participants and higher for the performing side than the non-performing side for all but two
participants. For all participants, both measures showed statistical significance in their difference
(see Table A1 of Appendix A for detailed statistical results).

The distinctions that we observed from these findings, on how different levels of motor intent had
separable network connectivity patterns based on temporal aspects of the kinematics data, are consistent
with the patterns uncovered using spatial aspects of the kinematics data. Specifically, when we exerted
higher intent on our body, regardless of the physical trajectory of the motion, there was a stronger
connectivity across our body parts. However, we noted that this pattern was not as uniform across all
participants as we had found in the spatial aspect of the network analysis.
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Figure 7. Network connectivity metric (cluster coefficient) and median cross-correlation differentiates
between levels of intent. (A) Network visualization of a representative right-handed participant.
Cross-correlation is represented by the line weight and cluster coefficient (CC) by the node size, during
the forward (left) and backward movement segments (right). (B) Median cross-correlation (y-axis;
Xcorr) and CC (x-axis) of linear speed for each participant’s movement segment (left) and different sides
(right). Forward motions (red) and performing side (pink) exhibits higher cross-correlation and CC
values than backward segments (blue) and non-performing side (cyan). (C) Median cross-correlation
and CC difference for different movement segments (left) and different sides (right). Each participant’s
data is denoted as a single marker. Higher motor intent tends to show higher cross-correlation and
CC values.

3.3. Kinematics and EKG (Heart) Signals Show Larger Stochastic Differences for Higher Motor Intent
and Control

To assess patterns of connectivity between biophysical signals derived from voluntary and
autonomic levels of motor control we examined the kinematics (generated by the CNS–PNS) and the
heart activity (generated by the ANS). The patterns of MMS stochasticity and temporal correlation
across these systems distinguished levels of motor intent and control.

The analyses involving EKG and kinematics revealed larger stochastic differences in MMS data
when higher motor intent and control were exerted. More precisely, the pairwise EMD showed higher
differentiation between these two signals in all but one participant when forward motion was made,
but only on the performing side of the body. Furthermore, all but two participants showed higher EMD
on the performing side of the body, but only during forward motions. On the other hand, however,
when backward motion was made, we found an opposite pattern, where all participants showed
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higher EMD on the non-performing side. We inferred that there may have been a modulating factor
that underlied the stochastic relation between kinematics and heart signals.

When we examined the temporal relations between the two signals, by computing pair-wise
cross-correlations, we saw higher cross-correlations when there was lower motor intent across all
participants, that is, during backward motions and on the non-performing side. Here, we noted the
low range of the correlation coefficient values of around 0.1. However, we saw a similar trend when
this was based on the non-filtered raw EKG data, with a higher range around 0.6.

3.4. EKG Leads Kinematics under Higher Motor Intent, but Opposite Pattern Emerges in Spontaneous Motions
Requiring Less Motor Intent

We also examined the lag values to assess which signal leads the other. We found that with motions
under higher motor intent (i.e., during forward–deliberate motions performed with the performing
side of the arm), EKG signals tended to lead the kinematics signal. On the other hand, in movements
performed under lower intent (i.e., during backward–spontaneous motion, and on the non-performing
side of the arm), kinematics signals tended to lead the EKG signals. This is depicted in Figure 8.

Figure 8. Differentiation of spatial and temporal connectivity within the kinematics-heart network
according to levels of motor intent. (A) Network visualization of a right-handed representative
participant. 1/EMD is represented by the node size, and median correlation is represented by the
line weight. The color of edges indicates the temporal directionality between signals, where red
indicates that heart leads the body linear speed and blue indicates that body linear speed leads the
heart signals. (B) Median EMD (z-axis) and correlation (x-axis) and lag (y-axis) for each participant’s
movement segment (left) and different sides (right). There is an overall pattern where higher motor
intent (denoted by red for forward motions, and pink for performing side) is exhibited by lower
correlations and EKG leading the kinematics signal (i.e., lag is positive value). (C) Median EMD,
correlation, and lag difference for different sides (left), and this difference separated by movement
segment (right). We find a pattern where pairwise EMD show higher differentiation under higher
motor intent on the performing side, but only when forward motion was made. (D) Median EMD,
correlation, and lag difference for different movement segments (left), and this difference separated by
sides (right). We find a pattern where pairwise EMD show higher differentiation under lower motor
intent on the non-performing side, but only when the backward motion was made.

We caveat that because the EKG device and motion capture system were not exactly synchronized,
the absolute lag value may not be as meaningful. Nevertheless, as we analyzed these data in terms
of the difference (i.e., the delta lag values between forward and backward motions, and between

114



J. Pers. Med. 2020, 10, 76

performing and non-performing sides), it was indeed meaningful to find such patterns uniformly
across all participants.

Table 1 summarizes the results that we showed in the sections above. We emphasize that
although we examined a small number (eight) of participants, each individual’s data were composed
of a significant amount of data points with unique non-Gaussian stochastic characteristics. For that
reason, instead of presenting the results with NHST (null hypothesis significant tests), we presented
the results by comparing the median difference between data points, from different levels of intent,
for each individual.

Table 1. Summary of the connectivity results, where symbols 1 are shown to indicate which category
shows higher values.

Kinematics (AA) Network

Forward Backward Performing Non-Performing

Spatial NSR AA o o

NSR AA Diff o

Temporal Cross-Correlation Δ o

Cluster Coefficient o Δ

Kinematics (LS)-Heart Network

Forward Backward Performing Non-Performing

Spatial EMD Δ (P) 2 - Δ (F) 3 o (B) 4

Temporal Cross-Correlation Δ o

Lead *,5 EKG LS EKG LS
1 o indicates that it is higher for every participant; Δ indicates that it is higher for most participants.
2 Forward–deliberate motions have higher EMD only on the performing (P) side. 3 Performing side has
higher EMD only during forward–deliberate (F) motions. 4 Non-performing side has higher EMD only during
backward–spontaneous (B) motions. 5 Lead* shows which signal leads between the 2 signals.

4. Discussion

This paper examined elements of the construct of agency from the embodied cognition
framework and dissected several layers of neuromotor control contributing to the sense of action
ownership. These layers, defined along a phylogenetically orderly taxonomy of maturation, follow
a higher-to-lower gradient of intent, from voluntary, to involuntary, to autonomic signals. At the
voluntary level, we followed the instructed–deliberate and the uninstructed–spontaneous segments of
the target-directed pointing act, positing that they could differentiate between levels of intent and as
such, delineate (from the fluctuations in their biorhythmic activity) when a given movement segment
was deliberately performed with intent vs. when the segment happened spontaneously without
instruction. This differentiation is important to distinguish the sensory consequences of voluntary acts
from those of acts that are not intended or that occur autonomically. The sensory consequences of
the latter have not been currently studied, yet they seem important to complement von Holst’s and
Mittelstaedt’s principle of reafference as we know it today [24].

Our initial thought was that autonomic systems contributing to our brain’s autonomy over the
body and to our overall embodied sense of agency would remain impervious to stochastic shifts at
the voluntary levels. We reasoned that given the vital role of these systems for survival, their robust
signal would not reflect subtle changes in levels of intent, motor awareness, and voluntary control.
As such, our guess was that if during voluntary movements, there were stochastic differences between
instructed–deliberate and uninstructed–spontaneous segments of the reach, or between performing
and non-performing sides of the body, such shifts in patterns of variability would not be appreciable
in the heart signals’ fluctuations. Our guess was altogether wrong. Not only were the heart signal
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differences quantifiable at the level of micro fluctuations in signal amplitude, these differences were
appreciable as well in the inter-dynamics of the kinematics and cardiac signals.

4.1. The Autonomic Nervous System Differentiates across Levels of Motor Intent: Implications for
Computational Models and Basic Cognitive Neuroscience

We found that when movements are intended and deliberately performed to attain the goal defined
by an external (visual) target, the heart signal leads the movement kinematics signal. Yet, when these
overt movements are spontaneous in nature, i.e., uninstructed and not pursuing the completion
of a specific externally defined task goal, the heart signal lags the movement kinematics signal.
Across spatial and temporal parameters, we found consistent trends and confirmed the trends through
different parameters. Indeed, deliberate motions, executed with the performing effector, carry higher
levels of NSR, denoting higher fluctuations away from the empirically estimated mean.

We interpret these findings considering the principle of reafference, treating micro-movements
as a form of re-entrant sensory feedback [24]. Furthermore, we discuss the possible contributions of
these self-generated signals to the self-emergence of cognitive agency from motor agency, namely the
sense that one can physically realize what one mentally intends to do, confirm the consequences
(both intended and unintended), and, as such, mentally own the physical action.

Von Holst and Mittelstaedt studied the complexities of reafference across the nervous systems in
the 1950s. They tried to capture the inherent recursiveness that relates movements and their sensations
as they flow within closed feedback loops between the external and the internal environments of the
organism. They wrote, “Voluntary movements show themselves to be dependent on the returning
stream of afference which they themselves cause.” Undeniably, feedback from voluntary movements
currently play an important role in theoretical motor control, particularly within the framework of
internal models for action [25,26] and more recent models of stochastic feedback control [50]. Central to
all these conceptualizations of the motor control problem has been the notion of anticipating the
sensory consequences of impending intended actions. Nevertheless, nothing has been said about the
consequences of action segments that bear a lower level of intent, which occur spontaneously, or that
are altogether occurring autonomously.

The implications of our results are manifold: Modelers and experimenters in motor control
do not seem to be aware of self-emergent, uninstructed, spontaneous motions. These motions are
rather assumed to be far removed from cognitive processes, perhaps because they transpire largely
beneath awareness (although see [13,51] more recently). Yet, unintended consequences from the
uninstructed–spontaneous segments of the voluntary action seem as important as those sensory
consequences that result from the instructed–deliberate segments. They may serve to inform learning
new tasks, adapting to new environmental conditions or situations, and more generally, they may play
a role as a surprise factor to aid propel curiosity and/or to stimulate creative, exploratory thinking.
They may help make our “invisible” automatic movements visible to the conscious brain planning and
controlling them, and/or to the external observer tracking our behaviors.

Neither these models, nor Von Holst’s work considered the contributions of unintended
consequences from spontaneous acts quantifiable at different anatomical and physiological layers
of the nervous systems, while trying to model the basic problem that the organism faces,
i.e., the paradox of understanding the “self”, which entails parsing out external from internal reafference.
Without a unifying framework to quantify these multilayered interactions and their contributions to
the emergence of the notion of self, it becomes rather challenging to bridge the cognitive sense of
agency, and more basically of action ownership, “I can do this!; It’s me who’s doing this!”, with the type
of autonomous motor control that enables successful self-initiation and completion of the intended
act. We argue that inclusion of the unintended consequences from overt spontaneous motions and
autonomic signals in our models of motor control will help define embodied agency and provide a new
framework to objectively quantify it.
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The present work provides empirical evidence that (1) different levels of cognitive intent, awareness,
and control are indeed embodied and quantifiable in natural, unconstrained movements, and (2) there
are important contributions to central cognitive control quantifiable at the periphery in spontaneous
segments of our motions and their consequences, but also in motions from supporting (non-performing)
body parts. Importantly, such differentiating contributions are also present in patterns from signals
generated by the autonomic nervous systems. Recent work from our lab has examined cognitive
load in relation to autonomic signals and found systematic changes bound to impact the type of
feedback that these signals mediated by cardiac muscles generate within the nervous systems [16,52].
These aspects of the motor control problem are not considered at present in any of the mathematical
and computational frameworks used to model the human brain, despite a body of empirical data
differentiating classes of movements that are less sensitive to changes in dynamics [14,21,30–34] from
those which are dynamic dependent [14].

Our work augments Von Holst’s and Mittelstaedt’s principle of reafference nontrivially by
including reafferent contributions from other layers of the nervous systems (Figure 1A) and highlighting
the need to update our conceptualization of internal models for action. In the past, the literature has
focused on voluntary control and goal-directed behavior to define and to characterize agency [5,6,8,11].
However, if new generations of AI models aim to attain artificial autonomous agents with real agency,
it may be necessary to reformulate our models and reconceptualize our experiments in embodied
cognition to encompass these multiple layers of intent, awareness, and motor function. These results
provide a way to distinguish levels of intent in the stochastic feedback from a robust (autonomic signal),
as an important addition to prior work distinguishing levels in more variable speed and acceleration
signals [14].

4.2. Distinguishing Performing vs. Non-Performing End Effector

Another aspect of this work explored the differentiation between the performing end effector
and the non-performing one, within the context of connectivity network analyses and levels of NSR.
There we found that the micro fluctuations in kinematics activity taken as a weighted directed graph
representing an interconnected network of nodes (body parts), can automatically reveal which side of
the body is performing the goal-directed task with intent vs. which side of the body is performing the
uninstructed spontaneous segment. The importance of this result is several-fold: First, it demonstrates
that we can gain information by considering arm movements within a broader context of bodily
motions, treated as a fully interconnected network, rather than examining the end effector in isolation.
The network connectivity analyses presented here adapt and extend similar methods used in brain
analyses to full bodily motions. This is important to connect data from the CNS and the PNS within
a full network (see here [52]) and infer the contributions of different bodily sides on the planning,
execution, and coordination of the many DoFs of the body in motion. We need these empirical data to
improve our multi-layered generative analytical models of neuromotor control involving different
spaces of joints and end effectors [21,29,32,33]. Secondly, these results underscore the importance
of not eliminating gross data through grand averaging methods that assume a priori a probability
distribution and take theoretical means across all data. Here we personalize the analyses and for
each participant, we examine the micro fluctuations (away from empirically estimated distribution
moments) contributed by both the performing and the non-performing limbs. We do so within
the context of full body macro- and micro-motions, thus considering the value of the NSR derived
from the gross data that is often thrown away as superfluous noise. The importance of these new
methods is that we can examine possible asymmetries in neurological disorders like Parkinson’s
disease, where, e.g., tremor may emerge at the performing hand and yet be forecasted in the NSR
of activity recorded in the non-performing limbs. Differentiating performing from non-performing
NSR in the context of voluntary motions is now possible using these new statistical methods and
network connectivity analyses adapted to full body motions. This type of data is rarely examined in
clinical work. Lastly, we offer new ways to examine kinematics synergies and possible patterns of
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co-articulation across the body, while examining the outcomes from the traditional pointing task now
extended to also include the spontaneously retracting segments of the full pointing loop.

4.3. Implications of the Results for Translational Cognitive Science

An area where these results could be relevant is smart health and AI, connecting digital biomarkers
with clinical observational criteria (e.g., [53]). In the clinical world, there are many problems that will
require us to be mindful of this intended vs. unintended dichotomy, as there are phenomena that occur
spontaneously and largely beneath awareness. It is difficult to model these phenomena within the
voluntary reafference framework. The type of reafference that we need to model those problems belongs
in the realm of self-emerging aspects of naturalistic behaviors. Among those which are disrupted
due to pathologies of the nervous systems are sudden freezing of gait in Parkinson’s disease, leading
to the loss of balance and occasional falls; seizures across a broad range of disorders; heart attacks;
a subset of repetitive behaviors and self-injurious or aggressive episodes in autism; among others.
All these episodes have in common the element of surprise connected to their spontaneity. Several new
emerging areas in basic research with a focus on the relationships between property and agency in
neurological disorders can also be incorporated in new AI concepts for smart health [15,19,28,53–55].

No algorithm relying exclusively on intentional control signals can appropriately capture the
essence of these phenomena. To properly characterize it, forecast it, and quickly detect it, we need
veridical generative models that understand the differences between the consequences of something that
was intended and under voluntary control, something that spontaneously happened, and something
that happens autonomically, with high accuracy. We do not have autonomous robots with embodied
agency yet, because their staged motions are mostly pre-programmed. These programs may only
mimic the predictive consequences of voluntary actions. Self-correcting robotic systems, where such
behaviors spontaneously self-emerge, are less common. It is perhaps self-emerging awareness derived
from the consequences of spontaneous and autonomic phenomena that makes our embodied agency
a special human trait contributing to intelligent control. This type of control, combining deliberate and
spontaneous acts, may produce solutions that are capable of generalizing from a small set of specific
situations; transfer the learning from one context to another (using contextual variations); and retain
robustness to potential interference from new situations in unknown contexts. In future research,
it will be important to understand how the type of differentiation that we discovered here, paired with
externally vs. internally generated rewards, may contribute to the fast or slow acquisition of memories
from transient acts vs. memories from systematic, periodic repetitions of those acts.

Here we offer a unifying framework with a taxonomy of function and differentiable levels of intent,
awareness, and control paired with a new statistical platform for personalized analyses of natural
behaviors. This new model aims to capture and characterize the micro-fluctuations in the gross data of
our biorhythms that traditional approaches throw away as noise through grand averaging and “one size
fits all” methods. Our approach allows integration of multilayered hierarchical signals and provides
the means to differentiate re-entrant contributions from multilayered exo- and endo-afference. This can
help our self-realization of embodied agency as the spontaneous transformation of mental intent into
physical volition. We invite the reader to consider this new model for embodied cognition and offer
novel avenues to bridge the currently disconnected fields of motor control and cognitive phenomena.
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Appendix A

Figure A1. Fourier power spectrum of linear speed and EKG and filtered EKG signals extracted from
60 trials of pointing motion (i.e., 300 s).

Figure A2. (A) Speed profile of a typical pointing motion. During a single pointing motion, a typical
speed profile of linear speed, angular speed, linear acceleration, and angular acceleration are exhibited
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as such. Because angular acceleration is shown to have the largest number of peaks during a single
pointing motion, we decided to examine this kinematic waveform, as this would provide the highest
statistical power for the MLE process. Note, linear speed data was used to extract the timing that
would separate the start and end time of a forward–deliberate motion (shown in red) and of a
backward–spontaneous motion (shown in blue arrow). This was done by finding the timepoint when
instantaneous zero linear speed occurs, since this indicates the moment the index finger reaches
the target. (B) Maximum likelihood estimated values for the corresponding histogram on top of
each graph. The horizontal axis contains the value of the gradient at the end of the optimization
process, and the vertical axis contains the maximum likelihood estimation (MLE) value for the Gamma,
normal, exponential, and lognormal distributions. Overall, we found that the Gamma and lognormal
distributions have a good fit to these kinematics data. However, because Gamma distributions have
been shown to be a better fit to the kinematics data from individuals with neurological disorders
than lognormal distributions, for consistency, we chose to use the Gamma probability distribution for
fitting purpose.

Figure A3. Fitted Gamma scale parameter (i.e., NSR) 95% confidence interval for a single body part’s
kinematics data. The 95% confidence interval is plotted for all eight participants (P1 to P8). Each row
represents a single body part: under the “All body” category shows all 10 body parts during forward
(red) and backward (blue) motions; under the “P (performing)” category shows the 4 body parts from
the performing side of the arm; under the “NP (non-performing)” category shows the 4 body parts
from the non-performing side of the arm; under the “All seg (all segment)” category shows the 4 body
parts on the performing (pink) and non-performing (cyan) side during the entire pointing motion;
under the “F (forward)” category shows the 4 body parts on both P and NP side during forward
motion; and under the “B (backward)” category shows the 4 body parts on both P and NP side during
backward motion.
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Figure A4. Fitted Gamma scale parameter (i.e., NSR) 95% confidence interval from the absolute
difference in kinematics between pairs of body parts. The 95% confidence interval is plotted for all
eight participants (P1 to P8). Each row represents a pair of body part: under the “All body” category
shows all 45 body part (10C2) pairs during forward (red) and backward (blue) motions; under the
“P (performing)” category shows the 6 body part pairs (4C2) from the performing side of the arm; under
the “NP (non-performing)” category shows the 6 body parts pairs (4C2) from the non-performing
side of the arm; under the “All seg (all segment)” category shows the 6 body parts pairs (4C2) on
the performing (pink) and non-performing (cyan) side during the entire pointing motion; under the
“F (forward)” category shows the 6 body parts pairs (4C2) on both P and NP side during forward
motion; and under the “B (backward)” category shows the 4 body parts on both P and NP side during
backward motion.

Figure A5. Different viewpoints of the 3D graphs in Figure 8. (A) Different viewpoint of graphs in
Figure 8B. (B) Different viewpoints of graphs in Figure 8C (left) and Figure 8D (right).
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Table A1. Kolmogorov–Smirnov test statistics (KS-stat) and their p-values (p) on cluster coefficients
comparison (left) and cross-correlation (right) between different movement segments (forward (F) vs.
backward (B)) and different sides (performing (P) vs. non-performing (NP)) 1.

Cluster Coefficient Cross-Correlation

Subject ID
F vs. B P vs. NP

Subject ID
F vs. B P vs. NP

KS-stat p KS-stat p KS-stat p KS-stat p

P01 0.29 <0.01 ** 0.16 <0.01 ** P01 0.14 <0.01 ** 0.40 <0.01 **
P02 0.55 <0.01 ** 0.57 <0.01 ** P02 0.55 <0.01 ** 0.57 <0.01 **
P03 0.38 <0.01 ** 0.16 <0.01 ** P03 0.38 <0.01 ** 0.16 <0.01 **
P04 0.09 <0.01 ** 0.09 <0.01 ** P04 0.09 <0.01 ** 0.09 <0.01 **
P05 0.14 <0.01 ** 0.26 <0.01 ** P05 0.14 <0.01 ** 0.26 <0.01 **
P06 0.17 <0.01 ** 0.28 <0.01 ** P06 0.17 <0.01 ** 0.28 <0.01 **
P07 0.35 <0.01 ** 0.41 <0.01 ** P07 0.35 <0.01 ** 0.41 <0.01 **
P08 0.13 <0.01 ** 0.35 <0.01 ** P08 0.13 <0.01 ** 0.35 <0.01 **

** p-value is less than 0.05. 1 Note, the Kolmogorov–Smirnov test was used, as this test is appropriate for data that
do not follow a Gaussian distribution and has a large sample size (n > 1000) that may yield low statistical power.
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Abstract: Autism spectrum disorder (ASD) is associated with significant social, communication, and
behavioral challenges. The insufficient number of trained clinicians coupled with limited accessibility
to quick and accurate diagnostic tools resulted in overlooking early symptoms of ASD in children
around the world. Several studies have utilized behavioral data in developing and evaluating
the performance of machine learning (ML) models toward quick and intelligent ASD assessment
systems. However, despite the good evaluation metrics achieved by the ML models, there is not
enough evidence on the readiness of the models for clinical use. Specifically, none of the existing
studies reported the real-life application of the ML-based models. This might be related to numerous
challenges associated with the data-centric techniques utilized and their misalignment with the
conceptual basis upon which professionals diagnose ASD. The present work systematically reviewed
recent articles on the application of ML in the behavioral assessment of ASD, and highlighted
common challenges in the studies, and proposed vital considerations for real-life implementation of
ML-based ASD screening and diagnostic systems. This review will serve as a guide for researchers,
neuropsychiatrists, psychologists, and relevant stakeholders on the advances in ASD screening and
diagnosis using ML.

Keywords: autism spectrum disorder; screening; diagnosis; artificial intelligence; machine learning

1. Introduction

Autism spectrum disorder (ASD) is a lifelong neurodevelopmental disorder associated
with communication impairment, restrictive and compulsive behavior. According to
the fifth edition of the diagnostic and statistical manual of mental disorders (DSM-5),
the primary indicators for diagnosing ASD are deficits in social communication and the
manifestation of repetitive and restricted patterns of activities, behavior, or interests [1].
The rising prevalence of ASD necessitates the need for early and cost-effective diagnosis
to set the path for efficient, and appropriate treatment [2,3]. Moreover, early diagnosis
of ASD leads to improved outcomes in communication and social interaction and guides
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parents to the right interventions in school, home, and clinic [4–6]. However, apart from
the cost-ineffectiveness of the current diagnostic instruments, studies have indicated the
delay of the clinical processes of diagnosing ASD [7–10]. Addressing these challenges
lead to several suggestions, including the so-called quick and accurate Machine Learning
(ML)-enabled ASD assessment systems [11–14]. The promising results realized with ML
algorithms across various research fields motivated these suggestions and made it a vital
step toward quick and cost-effective assessment of ASD symptoms.

The gap in the existing literature is the absence of a definitive explanation on the
sufficiency and readiness of the ML models toward real-life implementation. Recently,
there is an increasing number of studies on the development of ML models for diagnosing
ASD based on either genetic [15,16], brain imaging [17–19], physical biomarkers [20–24], or
behavioral data. However, despite the high evaluation metrics reported in the ML-based
behavioral studies, there is little evidence on the clinical use of the resulting ML models [11].
Generally, apart from improving the accuracy metrics of the ML models, previous studies
focused on improving diagnostic speed by reducing the model parameters using various
dimensionality reduction techniques. Worthy of note, both the ML algorithms and the
dimensionality reduction techniques are data-centric; they are independent of the concep-
tual basis upon which professionals build and utilize ASD assessment instruments [25].
Thus, the clinical validity of the resulting ML models could be explained based on the
alignment of the data-centric techniques with the conceptual basis of diagnosing ASD.
Nonetheless, other factors that might limit the clinical validity and real-life implementation
of the models include the reported discrepancies within the data repositories [26,27].

The present review explores the advances in the application of machine learning in the
behavioral assessment of ASD. Accordingly, recent articles were systematically reviewed
on the application of machine learning models toward quick and accurate assessment
of ASD. Based on the reviewed literature, we sought the answer on whether the recent
findings could sufficiently translate to real-life implementation of ML-based ASD screening
and diagnostic models. Nonetheless, previous literature reviews assessed the performance
of ML models in ASD screening and diagnosis based on the common evaluation metrics of
sensitivity, specificity, and accuracy, among others [25,28]. However, none of the existing
literature reviews systematically analyzed the subject area and provided enough evidence
on the readiness and sufficiency of the models toward real-life implementation of the
ML-based systems. For instance, Song et al. [28] reviewed 13 relevant studies that utilized
varying data types and discussed the possibility of achieving effective classification of
ASD based on the study findings. Similarly, Thabtah [25] identified some limitations
within the commonly employed research methodologies and proposed intuitive stages
toward appending the ML models into ASD screening apps. In this work, key challenges
were highlighted alongside the commonly utilized assessment tools, datasets, and data
intelligence techniques, and solutions were suggested toward valid implementations of
real-life ML-based ASD screening and diagnostic systems.

2. Methodology

2.1. Search Strategy

The present review involved a systematic search, which is conducted in October
2020. To identify the most relevant studies, the authors ensured careful planning and
allocation of tasks at every stage of the systematic literature review. The search strategy
was tailored to the four most popular scientific databases of the study field, namely, Web of
Science, PubMed, IEEEXplore, and Scopus. Furthermore, the search query utilized includes
the following terms “Autism Spectrum Disorder” OR “Autistic Disorder” OR “Autism”
AND “Screening” OR “Assessment” OR “Identification” OR “Test” OR “Detection” AND
“Machine Learning” OR “Artificial Intelligence”. The search filters covered a period of
ten years from 2011 to 2020 and were limited to journal articles published in the English
language. Beyond the above-mentioned databases, relevant publications were accessed
from other databases on the advances in ASD assessment.
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2.2. Selection Criteria

The article selection process was based on the PRISMA statement [29]. Relevant stud-
ies have utilized PRISMA in providing critical appraisal on the advances in the assessment
of autism and other neuropsychiatric disorders [19,24,28,30–33]. The determining factor
in the inclusion criteria involves any published full-text journal article on the use of ML
in ASD screening or diagnosis. At the initial screening stage, after duplicates removal,
the authors assessed the records against the inclusion criteria to decide on worthy articles
for the systematic literature review. The decisions for inclusion/exclusion on the records
were recorded in a separate column within the combined excel sheet imported from the
databases. Thus, for records whose titles and corresponding abstracts aligned with the
preset inclusion criteria, full-text articles of the studies were retrieved for the subsequent
screening stage. In the next PRISMA screening stage, all the authors reviewed the down-
loaded papers, independently, to ascertain their relevance with the search query used, as
well as the set research question. The authors utilized the WhatsApp discussion group in
resolving disagreements in the selection process.

Specifically, three hundred and sixty-seven records were carefully assessed for eligi-
bility. One hundred and eighty studies out of the 367 records were discarded, due to the
following reasons: Book chapters (n = 17), conference papers (n = 138), editorial materials
(n = 11), literature reviews (n = 15), not written in English (n = 9). The remaining one
hundred and seventy-seven studies were further assessed; one hundred and forty-four
records were eliminated because they are either based on brain imaging data (n = 57),
genetic data (n = 35), or physical/metabolic biomarkers (n = 32), while others are interven-
tion studies (n = 20). Consequently, thirty-three full-text articles were retrieved, read, and
qualitatively assessed. Nonetheless, additional articles were excluded because ML is not
the main method employed (n = 7), and ASD is not the main neuropsychiatric disorder
assessed (n = 4). Finally, 22 studies met the inclusion criteria. The PRISMA flow diagram
(Figure 1) summarized the above-mentioned systematic literature review process, and
Table 1 itemized the key items of the inclusion and exclusion criteria of the study.

Table 1. Inclusion and exclusion criteria of the study.

Inclusion Criteria

Journal articles published in the English language
Documents published within the last ten years from 2011 to date

Full-text papers that are accessible and downloadable
Studies that utilized behavioral data

Studies that employed machine learning as the main technique
Studies that considered autism as the main disorder assessed

Exclusion criteria

Papers that are written in other languages
Duplicated papers

Full-text of the document is not accessible on the internet
The study aim is not clearly defined

Studies that are not relevant to the stated research question
Relevant studies, but machine learning is not the main method
Relevant studies, but autism is not the main disorder assessed
Conferences papers, editorial materials, and literature reviews

Studies that utilized data from either brain imaging, genetic, or physical/metabolic biomarkers.
Intervention studies
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Figure 1. PRISMA flow diagram of the search results.

2.3. Quality Assessment

The authors carefully adhered to the planned, systematic literature review process to
maintain the study’s quality. Particularly, at every phase of the systematic literature review,
the authors ensured careful planning and allocation of tasks. The first author created an
online Mendeley repository and monitored the progress of the review based on preset
milestones to ensure that all tasks complied with the scheduled deadlines. The Mendeley
repository was also used in keeping track of the data extraction stages, noting essential
observations and sharing vital contents related to the study. The authors further upheld
peer-reviewing at each phase of the study to enhance the systematic literature review.
Nevertheless, unbiased and constructive assessments on the systematic approach used in
this study were sought from external professionals on ASD diagnostic procedures with
expertise in systematic literature reviews.
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2.4. Data Extraction

As the final stage of the study’s PRISMA, the data extraction stage, 22 articles were
appraised critically, and the following information was extracted from the studies:

• Author(s) (year),
• Number of citations,
• Source(s) of the research data,
• Data collection/assessment instrument,
• ML model(s)developed,
• Best performing model(s),
• The key finding(s).

3. Results

3.1. Descriptive Analysis on Trends and Status of the Study on ML in ASD Assessment

Based on the exported data, the trend of studies on the use of ML in the behavioral
assessment of ASD showed the most cited references, the most cited journals, as well as
citation and publication frequencies across the years.

With the increasing application of ML in healthcare studies, as shown in Figure 2,
there are more publications on ML and ASD assessment. From 2012 to 2018, not so many
studies cared about the application of ML in ASD assessment. However, with the recently
increased patronage of ML techniques across various fields, there is an increasing demand
for intelligent tools for accurate assessment of ASD. From Figure 3, most of the articles
contributing to the area were published in Translational Psychiatry (n = 5), followed by the
Health Informatics Journal (n = 3). The remaining fifteen journals depicted published one
article, each.

Figure 2. Article distribution over the years.

Figure 3. The number of articles published by journals.
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Based on the citation data exported, as shown in Table 2, we can see that the most cited
references are Wall et al. [34] (n = 160), Wall et al. [35] (n = 106), Duda et al. [36] (n = 89),
Kosmicki et al. [37] (n = 84), and Bone et al. [38] (n = 77). Most of the significant references;
with the highest number of citations, were published in Translational Psychiatry [34,36,37]
(Figure 4, n = 408) in the years 2012 (Figure 5, n = 266), 2015 (Figure 5, n = 84), and 2016
(Figure 5, n = 166). Figure 4 highlighted the citation data of the eight most cited journals
involved in the study; Translational Psychiatry (n = 408), PLoS One (n = 106), Journal of
Children Psychological Psychiatry (n = 77), and so on.

Figure 4. Sum of citations per journal.

Figure 5. Number of citations across years.

3.2. Dimensionality Reduction Techniques

Most of the studies primarily aimed at streamlining the data collection instruments,
followed by evaluating the performance of various ML algorithms on the streamlined
datasets [35,37,39–41]. While various feature selection methods were applied in streamlin-
ing the most influential features of the data collection instruments from the datasets, other
studies utilized various feature transformation techniques in reducing the input parameters.
For instance, in the work of Puerto et al. [42], the inputs were fuzzified into membership
values before applying the classification algorithms. Similarly, before implementing the
classification models, Baadel et al. [43] and Akter et al. [44] transformed the inputs using
clustering and feature transformation functions, respectively. Nonetheless, other studies
employed a trial-error approach in selecting the most influential features. The trial-error
approach involves repetitive evaluation of the ML models using a varying combination of
the features; the most influential combination achieves superior results with fewer input
parameters. Specifically, the studies utilized various feature selection techniques, including
trial-error [13,34,35,39,45], Variable Analysis (Va) [46,47], information gain (IG) and chi-
square testing (CHI) [48], sequential feature selection (SFS) [49], correlation-based feature
selection (CFS) and minimum redundancy maximum relevance (mRMR) [12]. Additionally,
ML-based feature selection techniques employed include recursive feature selection [40],
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sparsity/parsimony enforcing regularization techniques [50], stepwise backward feature
selection [37], and forward feature selection [36].

3.3. Models Implementation

As shown in Table 2, the commonly implemented ML algorithms are Random Forest
(RF) [12,43,47,51], Support Vector Machines (SVM) [37,38,40,49,50], Alternative Decision
Tree (ADTree) [34,35,39,45], and Logistic Regression (LR) [13,37,48]. To achieve comparative
results, most of the studies employed several algorithms, such as Adaboost, Artificial
Neural Network (ANN), Linear Discriminant Analysis (LDA), Naïve Bayes, and K-Nearest
Neighbor (KNN).

3.4. Data Collection/Assessment Instruments

The most utilized data collection instruments are AQ-10 [11,13,43,44,46–49,51,52], Q-
CHAT-10 [11,44,46,52], ADOS [34,37,39,40,42,50], ADI-R [35,38,42], and Social Responsive-
ness Scale (SRS) [36,38,53]. Others include Autism Behavior Checklist, Aberrant Behavior
Checklist, Clinical Global Impression [45], and MCHAT-based Pictorial Autism Assessment
Schedule (PASS) [12]. Thus, the need for improving the reliability of these assessment
instruments and ascertaining their relevance in ML modelling remains.

3.5. Sources of Data

The most prominent sources of data utilized in the studies include Boston Autism
Consortium (AC), Autism Genetic Resource Exchange (AGRE), Simons Simplex Collection
(SSC) [34–37,39,50,53], National Database for Autism Research (NDAR) [37,39], and Simons
Variation In Individuals Project (SVIP) [37,39,50]. Other studies utilized data sets from
ASDTest: Kaggle and UCI ML repository [11,13,43,44,46–49,51,52], Association of Parents
and Friends for the Support and Defense of the rights of people with Autism (APADA) [42],
PASS app [12], Ondokuz Mayis University Samsun [45], and ASD outpatient clinics in Ger-
many [40]. To achieve standardized comparative results, there is a need for standardized
ASD data repositories for machine learning studies [25].

3.6. Research Procedures

Apart from the common aim of streamlining the various data collection instruments
followed by model evaluation, other studies focused on either optimizing the machine-
learning algorithms [49,51], proposing input optimization techniques [43,44,46,47], or
implementing ML-based screening apps [11,12]. For instance, Goel et al. [51] proposed
Modified Grasshopper Optimization Algorithm (MGOA) for improved performance over
common ML algorithms. The proposed MGOA (GOA with Random Forest classifier)
outperformed other basic models and predicted ASD with approximate accuracy, specificity,
and sensitivity of 100%. Similarly, Suresh et al. [49] proposed Differential Evaluation (DE)
Algorithm to find the optimal solution of SVM parameters. The proposed DE tuned SVM
achieved better performance over SVM, ANN and DE optimized ANN in classifying
ASD. As stated earlier, apart from trial-error, studies employed either feature selection or
transformation techniques for dimensionality reduction. For instance, Thabtah et al. [46]
demonstrated the superiority of Va over IG, Correlation, CFS, and CHI in reducing AQ-
10 items. Va derived fewer features, while maintaining competitive predictive accuracy,
sensitivity, and specificity rates. A replicated study by Pratama et al. [47] produced a higher
sensitivity of 87.89% in Adults AQ with RF and an increased specificity level of 86.33%
in Adolescents AQ with SVM. Despite the good performance of the above-mentioned
techniques in automating feature selection processes across various applications [54,55],
none of the previous studies justified the conformity of the feature selection methods
with the conceptual basis upon which professionals built and utilize ASD diagnostic
instruments. Furthermore, unlike other medical diagnoses, the absence of definitive
measures and medical tests for diagnosing ASD makes it difficult to numerical quantify
the disorder based on few parameters. Notably, accurate assessment of ASD relied on the
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precise application of the commonly used behavioral scales built based on the knowledge
and expertise of the professionals. Thus, applying human knowledge is imperative to
reliable ASD diagnosis. Based on that, there is a need for quantifying the trade-offs
of dimensionality reduction (ensuring fewer items for quick assessment) and validity
(preservation of the human knowledge for correct diagnosis). Specifically, a machine-
learning model built based on fewer behavioral features that do not sufficiently capture the
human knowledge of the assessment instrument, will not be valid for clinical use. Thus,
there is a need for applying dimensionality reduction techniques that professionals could
track their ability to preserve the validity of the assessment instruments.

Nonetheless, various feature transformation techniques were equally utilized in the
dimensionality reduction processes. For instance, Akter et al. [44] utilized three feature
transformation techniques; Log, Z-score, and Sine functions, and evaluated the perfor-
mance of nine different ML models on the transformed datasets. Log, Z-score, and Sine
functions normalize data by converting excessively skewed entities into a normal distribu-
tion, converting features into −1 to 1 value range, and transforming instances to the Sine
0–2π value intervals, respectively. Akter et al. [44] recorded varying superior performances
of the ML models, and the feature transformation approaches across the datasets. The fea-
ture transformations resulting in the best classifications were Z-score and Sine function on
children, adolescents, and toddlers’ datasets, respectively. However, despite the reported
improved performances of the ML models on the transformed datasets and the theoretical
understanding of the capabilities of the transformation functions, studies have demon-
strated how these transformations compromise the relevance of the original data to the
transformed data [56–59]. Researchers ought to be mindful of the limitations in using these
transformations in terms of the relevance of the original to the transformed data during
results interpretation. For instance, Feng [59] demonstrated such irrelevancies between
the statistical findings of standard tests performed on original and log-transformed data.
Similarly, several studies have highlighted some of the pitfalls and inconsistencies in the
application of Z-scores and its concepts that overlooked the meaning of the original data,
its standard deviations, and confusing applications [56–58].

Recent studies further demonstrated how ML-enable ASD screening and diagnostic
models could be developed, evaluated, and implemented. Recently, Baadel et al. [43] pro-
posed Clustering-based Autistic Trait Classification (CATC), which identifies ASD-based
traits’ similarity, unlike the commonly used scoring functions. CATC showed significant im-
provement in the ASD classification based on clustered inputs. Comparative evaluation of
various classification algorithms showed better improvement with the Random Forest clas-
sifier. On the implementation of mobile apps for ASD screening, Wingfield et al. [12], and
Shahamiri and Thabtah [11] embedded RF and CNN-based scoring models, respectively,
while Thabtah [13] employed ML to validate ASDTest; a mobile screening app embedded
with non-ML functions. In all the foregoing studies, the commonly used evaluation metrics
are classification accuracy, sensitivity, and specificity. Specificity is the ratio of non-ASD
cases that are correctly classified (i.e., true negatives rate) and sensitivity is the ratio of
true ASD cases that are correctly classified (i.e., true positives rate), while classification
accuracy is derived from sensitivity and specificity—as the measure of precisely classified
cases from the total number of the cases.

132



J. Pers. Med. 2021, 11, 299

T
a

b
le

2
.

In
fo

rm
at

io
n

ex
tr

ac
te

d
fr

om
th

e
ar

ti
cl

es
.

A
rt

ic
le

/
C

it
a

ti
o

n
s

A
im

T
o

o
l

D
a

ta
S

o
u

rc
e

F
S

/F
T

F
S

/F
T

M
e

th
o

d
M

o
d

e
li

n
g

A
lg

o
ri

th
m

s
K

e
y

F
in

d
in

g
s

G
oe

le
ta

l.
[5

1]
C

=
10

Pr
op

os
ed

O
pt

im
iz

at
io

n
A

lg
or

it
hm

fo
r

im
pr

ov
ed

pe
rf

or
m

an
ce

ov
er

co
m

m
on

M
L

A
Q

-1
0

(c
hi

ld
,

ad
ol

es
ce

nt
,

ad
ul

t)
A

SD
Te

st
-

-
G

O
A

,B
A

C
O

,L
R

,N
B,

K
N

N
,

R
F-

C
A

R
T

+
ID

3,
*

M
G

O
A

T
he

pr
op

os
ed

M
G

O
A

(G
O

A
w

it
h

R
an

do
m

Fo
re

st
cl

as
si

fie
r)

pr
ed

ic
te

d
A

SD
ca

se
s

w
it

h
ap

pr
ox

im
at

e
ac

cu
ra

cy
,s

pe
ci

fic
it

y,
an

d
se

ns
it

iv
it

y
of

10
0%

.

Sh
ah

am
ir

ia
nd

Th
ab

ta
h

[1
1]

C
=

0

Im
pl

em
en

ta
ti

on
an

d
ev

al
ua

ti
on

of
C

N
N

-b
as

ed
A

SD
sc

or
in

g
sy

st
em

Q
-C

H
A

T-
10

,
A

Q
-1

0
A

SD
Te

st
-

-
C

4.
5,

Ba
ye

s
N

et
,R

ID
O

R
,*

C
N

N

T
he

pe
rf

or
m

an
ce

ev
al

ua
ti

on
sh

ow
ed

th
e

su
pe

ri
or

pe
rf

or
m

an
ce

of
C

N
N

ov
er

ot
he

r
al

go
ri

th
m

s;
in

di
ca

ti
ng

th
e

ro
bu

st
ne

ss
of

th
e

im
pl

em
en

te
d

sy
st

em
.

Th
ab

ta
h

an
d

Pe
eb

le
s

[5
2]

C
=

28

D
em

on
st

ra
te

th
e

su
pe

ri
or

it
y

of
R

ul
es

-b
as

ed
M

L
ov

er
ot

he
r

m
od

el
s

Q
-C

H
A

T-
10

,
A

Q
-1

0
(c

hi
ld

,
A

do
le

sc
en

t,
ad

ul
t)

A
SD

Te
st

-
-

R
IP

PE
R

,R
ID

O
R

,N
ng

e,
Ba

gg
in

g,
C

A
R

T,
C

4.
5,

an
d

PR
IS

M
,*

R
M

L

Em
pi

ri
ca

lly
ev

al
ua

te
d

ru
le

in
du

ct
io

n,
Ba

gg
in

g,
Bo

os
ti

ng
,a

nd
de

ci
si

on
tr

ee
s

al
go

ri
th

m
s

on
di

ff
er

en
tA

SD
da

ta
se

ts
.T

he
su

pe
ri

or
it

y
of

th
e

R
M

L
m

od
el

w
as

re
po

rt
ed

in
no

to
nl

y
cl

as
si

fy
in

g
A

SD
bu

ta
ls

o
of

fe
r

ru
le

s
th

at
ca

n
be

ut
ili

ze
d

in
un

de
rs

ta
nd

in
g

th
e

re
as

on
s

be
hi

nd
th

e
cl

as
si

fic
at

io
n.

W
al

le
ta

l.
[3

5]
C

=
10

6

St
re

am
lin

in
g

A
D

R
-I

an
d

ev
al

ua
te

M
L

pe
rf

or
m

an
ce

A
D

I-
R

A
G

R
E,

SS
C

,
A

C
FS

Tr
ia

l-
er

ro
r

*
A

D
Tr

ee
,B

FT
re

e,
C

on
ju

nc
ti

ve
R

ul
e,

D
ec

is
io

nS
tu

m
p,

Fi
lt

er
ed

C
la

ss
ifi

er
,J

48
,J

48
gr

af
t,

JR
ip

,L
A

D
Tr

ee
,N

ng
e,

O
ne

R
,

O
rd

in
al

C
la

ss
C

la
ss

ifi
er

,P
A

R
T,

R
id

or
,a

nd
Si

m
pl

eC
ar

t

T
he

be
st

m
od

el
ut

ili
ze

d
7

of
th

e
93

ite
m

s
co

nt
ai

ne
d

in
th

e
A

D
I-

R
in

cl
as

si
fy

in
g

A
SD

w
it

h
99

.9
%

ac
cu

ra
cy

.

D
ud

a
et

al
.[

39
]

C
=

50

St
re

am
lin

in
g

A
D

O
S

an
d

de
m

on
st

ra
te

th
e

su
pe

ri
or

pe
rf

or
m

an
ce

of
A

D
Tr

ee
ov

er
co

m
m

on
ha

nd
-c

ra
ft

ed
m

et
ho

ds

A
D

O
S

A
C

,A
G

R
E,

SS
C

,N
D

A
R

,
SV

IP
FS

Tr
ia

l-
er

ro
r

A
D

Tr
ee

72
%

re
du

ct
io

n
in

th
e

it
em

s
fr

om
A

D
O

S-
G

w
it

h
>9

7%
ac

cu
ra

cy
.

K
üp

pe
r

et
al

.[
40

]
C

=
2

St
re

am
lin

in
g

A
D

O
S

an
d

de
m

on
st

ra
te

th
e

pe
rf

or
m

an
ce

of
SV

M
A

D
O

S

A
SD

ou
tp

at
ie

nt
cl

in
ic

s
in

G
er

m
an

y

FS
R

ec
ur

si
ve

Fe
at

ur
e

Se
le

ct
io

n
SV

M

SV
M

ac
hi

ev
ed

go
od

se
ns

it
iv

it
y

an
d

sp
ec

ifi
ci

ty
w

it
h

fe
w

er
A

D
O

S
it

em
s

po
in

ti
ng

to
5

be
ha

vi
or

al
fe

at
ur

es
.

W
al

le
ta

l.
[3

4]
C

=
16

0

St
re

am
lin

in
g

A
D

O
S

an
d

ev
al

ua
te

M
L

pe
rf

or
m

an
ce

A
D

O
S

A
C

,A
G

R
E,

SS
C

FS
Tr

ia
l-

er
ro

r

*
A

D
Tr

ee
,B

FT
re

e,
D

ec
is

io
n

St
um

p,
Fu

nc
ti

on
al

Tr
ee

,J
48

,J
48

gr
af

t,
Jr

ip
,

LA
D

Tr
ee

,L
M

T,
N

ng
e,

O
ne

R
,

PA
R

T,
R

an
do

m
Tr

ee
,R

EP
Tr

ee
,

R
id

or
,S

im
pl

e
C

ar
t

Th
e

A
D

Tr
ee

m
od

el
ut

ili
ze

d
8

of
th

e
29

it
em

s
in

M
od

ul
e

1
of

th
e

A
D

O
S

an
d

cl
as

si
fie

d
A

SD
w

it
h

10
0%

ac
cu

ra
cy

.

Le
vy

et
al

.[
50

]
C

=
21

St
re

am
lin

in
g

A
D

O
S

an
d

ev
al

ua
te

M
L

pe
rf

or
m

an
ce

A
D

O
S

A
C

,A
G

R
E,

SS
C

,S
V

IP
FS

Sp
ar

si
ty

/p
ar

si
m

on
y

en
fo

rc
in

g
re

gu
la

ri
za

ti
on

te
ch

ni
qu

es

LR
,L

as
so

,R
id

ge
,E

la
st

ic
ne

t,
R

el
ax

ed
La

ss
o,

N
ea

re
st

sh
ru

nk
en

ce
nt

ro
id

s,
LD

A
,*

LR
,*

SV
M

,
A

D
Tr

ee
,R

F,
G

ra
di

en
tb

oo
st

in
g,

A
da

Bo
os

t

W
it

h
at

m
os

t1
0

fe
at

ur
es

fr
om

A
D

O
S′

s
M

od
ul

e
3

an
d

M
od

ul
e

2,
A

U
C

of
0.

95
an

d
0.

93
w

as
ac

hi
ev

ed
,r

es
pe

ct
iv

el
y.

133



J. Pers. Med. 2021, 11, 299

T
a

b
le

2
.

C
on

t.

A
rt

ic
le

/
C

it
a

ti
o

n
s

A
im

T
o

o
l

D
a

ta
S

o
u

rc
e

F
S

/F
T

F
S

/F
T

M
e

th
o

d
M

o
d

e
li

n
g

A
lg

o
ri

th
m

s
K

e
y

F
in

d
in

g
s

K
os

m
ic

ki
et

al
.[

37
]

C
=

84

St
re

am
lin

in
g

A
D

O
S

an
d

ev
al

ua
te

M
L

pe
rf

or
m

an
ce

A
D

O
S

A
C

,A
G

R
E,

SS
C

,N
D

A
R

,
SV

IP
FS

St
ep

w
is

e
Ba

ck
w

ar
d

Fe
at

ur
e

Se
le

ct
io

n

A
D

Tr
ee

,*
SV

M
,L

og
is

ti
c

M
od

el
Tr

ee
,*

LR
,N

B,
N

BT
re

e,
R

F

T
he

be
st

pe
rf

or
m

in
g

m
od

el
s

ha
ve

ut
ili

ze
d

9
of

th
e

28
it

em
s

fr
om

m
od

ul
e

2,
an

d
12

of
th

e
28

it
em

s
fr

om
m

od
ul

e
3

in
cl

as
si

fy
in

g
A

SD
w

it
h

98
.2

7%
an

d
97

.6
6%

ac
cu

ra
cy

,
re

sp
ec

ti
ve

ly
.

Th
ab

ta
h

[1
3]

C
=

31

Pr
op

os
e

A
SD

Te
st

;
A

Q
-b

as
ed

m
ob

ile
sc

re
en

in
g

ap
p,

st
re

am
lin

e
A

Q
-1

0
it

em
s,

an
d

ev
al

ua
te

th
e

pe
rf

or
m

an
ce

of
2

M
L

m
od

el
s

A
Q

-1
0

(c
hi

ld
,

ad
ol

es
ce

nt
,

ad
ul

t)
A

SD
Te

st
FS

Tr
ia

l-
er

ro
r

N
B,

*
LR

Fe
at

ur
e

an
d

pr
ed

ic
ti

ve
an

al
ys

es
de

m
on

st
ra

te
sm

al
lg

ro
up

s
of

au
ti

st
ic

tr
ai

ts
im

pr
ov

in
g

th
e

ef
fic

ie
nc

y
an

d
ac

cu
ra

cy
of

sc
re

en
in

g
pr

oc
es

se
s.

Th
ab

ta
h

et
al

.[
46

]
C

=
47

D
em

on
st

ra
te

th
e

su
pe

ri
or

it
y

of
V

a
ov

er
ot

he
r

FS
m

et
ho

ds
ba

se
d

on
th

e
pe

rf
or

m
an

ce
of

M
L

m
od

el
s

on
th

e
st

re
am

lin
ed

da
ta

se
ts

Q
-C

H
A

T-
10

,a
nd

A
Q

-1
0

(c
hi

ld
,

ad
ol

es
ce

nt
,

ad
ul

t)

A
SD

Te
st

FS
V

a,
IG

,
C

or
re

la
ti

on
,C

FS
,

an
d

C
H

I

R
ep

ea
te

d
In

cr
em

en
ta

lP
ru

ni
ng

to
Pr

od
uc

e
Er

ro
r

R
ed

uc
ti

on
(R

IP
PE

R
),

C
4.

5
(D

ec
is

io
n

Tr
ee

)

V
a

de
ri

ve
d

fe
w

er
fe

at
ur

es
fr

om
ad

ul
ts

,a
do

le
sc

en
ts

,a
nd

ch
ild

da
ta

se
ts

w
it

h
op

ti
m

al
m

od
el

pe
rf

or
m

an
ce

.D
em

on
st

ra
te

th
e

ef
fic

ac
y

of
V

a
ov

er
IG

,C
or

re
la

ti
on

,
C

FS
,a

nd
C

H
Ii

n
re

du
ci

ng
A

Q
-1

0
it

em
s

Th
ab

ta
h

et
al

.[
48

]
C

=
13

St
re

am
lin

in
g

A
Q

-1
0

an
d

de
m

on
st

ra
te

th
e

su
pe

ri
or

pe
rf

or
m

an
ce

of
LR

ov
er

co
m

m
on

ha
nd

-c
ra

ft
ed

m
et

ho
ds

A
Q

-1
0

(a
do

le
s-

ce
nt

,a
du

lt
)

A
SD

Te
st

FS
IG

,C
H

I
LR

LR
sh

ow
ed

ac
ce

pt
ab

le
pe

rf
or

m
an

ce
in

te
rm

s
of

se
ns

iti
vi

ty
,

sp
ec

ifi
ci

ty
,a

nd
ac

cu
ra

cy
am

on
g

ot
he

rs
.

Su
re

sh
K

um
ar

an
d

R
en

ug
ad

ev
i[

49
]

C
=

0

A
lg

or
it

hm
O

pt
im

iz
at

io
n

(i
m

pr
ov

em
en

ti
n

ac
cu

ra
cy

co
m

pa
re

d
to

co
m

m
on

M
L)

A
Q

-1
0

(c
hi

ld
,

ad
ol

es
ce

nt
,

ad
ul

t)
A

SD
Te

st
FS

SF
S

SV
M

,A
N

N
,*

D
E

SV
M

,D
E

A
N

N
D

E
op

ti
m

iz
ed

SV
M

ou
tp

er
fo

rm
ed

A
N

N
an

d
D

E
op

ti
m

iz
ed

A
N

N
in

cl
as

si
fy

in
g

A
SD

.D
E

is
ef

fe
ct

iv
e.

Pr
at

am
a

et
al

.[
47

]
C

=
0

In
pu

tO
pt

im
iz

at
io

n
us

in
g

V
a

A
Q

-1
0

(c
hi

ld
,

ad
ol

es
ce

nt
,

ad
ul

t)
A

SD
Te

st
FS

V
a

SV
M

,*
R

F,
A

N
N

R
F

su
cc

ee
de

d
in

pr
od

uc
in

g
hi

gh
er

ad
ul

tA
Q

se
ns

it
iv

it
y

(8
7.

89
%

),
an

d
a

ri
se

in
th

e
sp

ec
ifi

ci
ty

le
ve

lo
f

A
Q

-A
do

le
sc

en
ts

w
as

be
tt

er
pr

od
uc

ed
us

in
g

SV
M

(8
6.

33
%

).

U
st

a
et

al
.[

45
]

C
=

9
M

L
Pe

rf
or

m
an

ce
Ev

al
ua

ti
on

A
ut

is
m

Be
ha

vi
or

C
he

ck
lis

t,
A

be
rr

an
t

Be
ha

vi
or

C
he

ck
lis

t,
C

lin
ic

al
G

lo
ba

l
Im

pr
es

si
on

O
nd

ok
uz

M
ay

is
U

ni
ve

rs
it

y
Sa

m
su

n

FS
Tr

ia
l-

er
ro

r
N

B,
LR

,*
A

D
Tr

ee

T
he

M
L

m
od

el
in

g
re

ve
al

ed
th

e
si

gn
ifi

ca
nt

in
flu

en
ce

of
ot

he
r

de
m

og
ra

ph
ic

pa
ra

m
et

er
s

in
A

SD
cl

as
si

fic
at

io
n.

134



J. Pers. Med. 2021, 11, 299

T
a

b
le

2
.

C
on

t.

A
rt

ic
le

/
C

it
a

ti
o

n
s

A
im

T
o

o
l

D
a

ta
S

o
u

rc
e

F
S

/F
T

F
S

/F
T

M
e

th
o

d
M

o
d

e
li

n
g

A
lg

o
ri

th
m

s
K

e
y

F
in

d
in

g
s

W
in

gfi
el

d
et

al
.[

12
]

C
=

3

Pr
op

os
e

PA
SS

;a
cu

lt
ur

al
ly

se
ns

it
iv

e
ap

p
em

be
dd

ed
w

it
h

M
L

m
od

el

PA
SS

V
PA

SS
ap

p
FS

C
FS

,m
R

M
R

*
R

F,
N

B,
A

da
bo

os
t,

M
ul

ti
la

ye
r

Pe
rc

ep
tr

on
,J

48
,P

A
R

T,
SM

O

PA
SS

ap
p

ov
er

co
m

es
th

e
cu

lt
ur

al
va

ri
at

io
n

in
in

te
rp

re
ti

ng
A

SD
sy

m
pt

om
s,

an
d

th
e

st
ud

y
de

m
on

st
ra

te
d

th
e

po
ss

ib
ili

ty
of

re
m

ov
in

g
fe

at
ur

e
re

du
nd

an
cy

.

D
ud

a
et

al
.[

36
]

C
=

89

M
L

Pe
rf

or
m

an
ce

Ev
al

ua
ti

on
in

cl
as

si
fy

in
g

A
SD

fr
om

A
D

H
D

SR
S

A
C

,A
G

R
E,

SS
C

FS
Fo

rw
ar

d
Fe

at
ur

e
Se

le
ct

io
n

A
D

Tr
ee

,R
F,

SV
M

,L
R

,C
at

eg
or

ic
al

la
ss

o,
LD

A

A
ll

th
e

m
od

el
s

co
ul

d
cl

as
si

fy
A

SD
fr

om
A

D
H

D
by

ut
ili

zi
ng

5
of

th
e

65
it

em
s

of
SR

S
w

it
h

hi
gh

av
er

ag
e

ac
cu

ra
cy

(A
U

C
=

0.
96

5)
.

D
ud

a
et

al
.[

53
]

C
=

25

Im
pr

ov
e

m
od

el
s’

re
lia

bi
lit

y
us

in
g

ex
pa

nd
ed

da
ta

se
ts

fo
r

cl
as

si
fy

in
g

A
SD

fr
om

A
D

H
D

SR
S

A
C

,A
G

R
E,

SS
C

,a
nd

cr
ow

ds
ou

rc
ed

da
ta

FS
-

SV
M

,L
R

,*
LD

A
LD

A
m

od
el

ac
hi

ev
ed

an
A

U
C

of
0.

89
w

it
h

15
it

em
s.

Bo
ne

et
al

.[
38

]
C

=
77

D
em

on
st

ra
te

th
e

im
pr

ov
ed

ac
cu

ra
cy

of
SV

M
ov

er
co

m
m

on
ha

nd
-c

ra
ft

ed
ru

le
s

A
D

I-
R

,S
R

S
Ba

la
nc

ed
In

de
pe

nd
en

t
D

at
as

et
FT

Tu
ne

d
pa

ra
m

et
er

s
ac

ro
ss

m
ul

ti
pl

e
le

ve
ls

of
cr

os
s-

va
lid

at
io

n

SV
M

Th
e

SV
M

m
od

el
ut

ili
ze

d
fiv

e
of

th
e

fu
se

d
A

D
I-

R
an

d
SR

S
it

em
s

an
d

cl
as

si
fie

d
A

SD
su

ffi
ci

en
tl

y
w

it
h

be
lo

w
(a

bo
ve

)8
9.

2%
(8

6.
7%

)
se

ns
it

iv
it

y
an

d
59

.0
%

(5
3.

4%
)

sp
ec

ifi
ci

ty
.

Pu
er

to
et

al
.[

42
]

C
=

17

Pr
op

os
e

M
FC

M
-A

SD
an

d
ev

al
ua

te
it

s
pe

rf
or

m
an

ce
ag

ai
ns

t
ot

he
r

M
L

m
od

el
s

A
D

O
S,

A
D

I-
R

A
PA

D
A

FT
In

pu
ts

fu
zz

ifi
ca

ti
on

*
M

FC
M

-A
SD

,S
V

M
,R

an
do

m
fo

re
st

,N
B

T
he

su
pe

ri
or

pe
rf

or
m

an
ce

of
M

FC
M

ch
ar

ac
te

ri
ze

d
by

it
s

ro
bu

st
ne

ss
m

ak
es

it
an

ef
fe

ct
iv

e
A

SD
di

ag
no

st
ic

te
ch

ni
qu

e.

A
kt

er
et

al
.[

44
]

C
=

6

C
om

pa
re

FT
m

et
ho

ds
an

d
ev

al
ua

te
th

e
pe

rf
or

m
an

ce
of

M
L

m
od

el
s

on
th

e
tr

an
sf

or
m

ed
da

ta
se

ts

Q
-C

H
A

T-
10

,a
nd

A
Q

-1
0

(c
hi

ld
,

ad
ol

es
ce

nt
,

ad
ul

t)

A
SD

Te
st

FT
Lo

g,
Z

-s
co

re
,

an
d

Si
ne

FT
A

da
bo

os
t,

FD
A

,C
5.

0,
LD

A
,M

D
A

,
PD

A
,S

V
M

,a
nd

C
A

R
T

V
ar

yi
ng

su
pe

ri
or

pe
rf

or
m

an
ce

s
of

th
e

M
L

m
od

el
s

an
d

FT
ap

pr
oa

ch
es

w
er

e
ac

hi
ev

ed
ac

ro
ss

th
e

da
ta

se
ts

.

Ba
ad

el
et

al
.[

43
]

C
=

2

In
pu

tO
pt

im
iz

at
io

n
us

in
g

a
cl

us
te

ri
ng

ap
pr

oa
ch

A
Q

-1
0

(c
hi

ld
,

ad
ol

es
ce

nt
,

ad
ul

t)
A

SD
Te

st
FT

C
A

TC
O

M
C

O
K

E,
R

IP
PE

R
,P

A
R

T,
*

R
F,

R
T,

A
N

N

C
A

T
C

sh
ow

ed
si

gn
ifi

ca
nt

im
pr

ov
em

en
ti

n
sc

re
en

in
g

A
SD

ba
se

d
on

tr
ai

ts
′ s

im
ila

ri
ty

as
op

po
se

d
to

sc
or

in
g

fu
nc

ti
on

s.
T

he
im

pr
ov

em
en

tw
as

m
or

e
pr

on
ou

nc
ed

w
it

h
R

F
cl

as
si

fie
r.

A
SD

,a
ut

is
m

sp
ec

tr
um

di
so

rd
er

;F
S,

fe
at

ur
e

se
le

ct
io

n;
FT

,f
ea

tu
re

tr
an

sf
or

m
at

io
n;

M
L,

m
ac

hi
ne

le
ar

ni
ng

;A
N

N
,a

rt
ifi

ci
al

ne
ur

al
ne

tw
or

k;
SV

M
,s

up
po

rt
ve

ct
or

m
ac

hi
ne

;C
N

N
,c

on
vo

lu
tio

na
l

ne
ur

al
ne

tw
or

k;
R

F,
ra

nd
om

fo
re

st
;L

R
,l

og
is

ti
c

re
gr

es
si

on
;A

D
Tr

ee
,a

lt
er

na
ti

ve
d

ec
is

io
n

tr
ee

;L
D

A
,l

in
ea

r
d

is
cr

im
in

an
ta

na
ly

si
s;

M
G

O
A

,m
od

ifi
ed

gr
as

sh
op

pe
r

op
ti

m
iz

at
io

n
al

go
ri

th
m

;
B

A
C

O
,b

in
ar

y
an

t
co

lo
ny

op
ti

m
iz

at
io

n;
N

B
,n

aï
ve

B
ay

es
;K

N
N

,K
-n

ea
re

st
ne

ig
hb

or
;R

IP
P

E
R

,r
ep

ea
te

d
in

cr
em

en
ta

lp
ru

ni
ng

to
p

ro
d

u
ce

er
ro

r
re

d
u

ct
io

n;
A

D
O

S,
au

ti
sm

d
ia

gn
os

ti
c

ob
se

rv
at

io
n

sc
he

d
u

le
;A

D
I-

R
,a

u
ti

sm
d

ia
gn

os
ti

c
in

te
rv

ie
w

-r
ev

is
ed

;Q
-C

H
A

T,
qu

an
ti

ta
ti

ve
ch

ec
kl

is
tf

or
au

ti
sm

to
d

d
le

rs
;A

Q
,a

u
ti

sm
qu

ot
ie

nt
;S

R
S,

so
ci

al
re

sp
on

si
ve

ne
ss

sc
al

e;
PA

SS
,

pi
ct

or
ia

la
ut

is
m

as
se

ss
m

en
ts

ch
ed

ul
e;

A
C

,b
os

to
n

au
ti

sm
co

ns
or

ti
um

;A
G

R
E,

au
ti

sm
ge

ne
ti

c
re

so
ur

ce
ex

ch
an

ge
;S

SC
,S

im
on

s
Si

m
pl

ex
C

ol
le

ct
io

n;
N

D
A

R
,N

at
io

na
lD

at
ab

as
e

fo
r

A
ut

is
m

R
es

ea
rc

h;
SV

IP
,S

im
on

s
V

ar
ia

tio
n

In
In

di
vi

du
al

s
Pr

oj
ec

t;
A

PA
D

A
,A

ss
oc

ia
tio

n
of

Pa
re

nt
s

an
d

Fr
ie

nd
s

fo
r

th
e

Su
pp

or
ta

nd
D

ef
en

se
of

th
e

R
ig

ht
s

of
Pe

op
le

w
ith

A
ut

is
m

;M
FC

M
,m

ul
til

ay
er

fu
zz

y
co

gn
it

iv
e

m
ap

s;
C

A
TC

,c
lu

st
er

in
g-

ba
se

d
au

ti
st

ic
tr

ai
tc

la
ss

ifi
ca

ti
on

.*
Be

st
pe

rf
or

m
in

g
m

od
el

s.

135



J. Pers. Med. 2021, 11, 299

4. Discussion

The search for cost-effective ASD assessment coupled with the global rise in ASD
cases attracted the implementation of quick and accurate assessment measures based on
data intelligence techniques, including machine-learning algorithms. Despite the various
attempts in ML-based ASD assessment using functional magnetic resonance imaging (MRI),
eye tracking, and genetic data, among others, the promising results based on behavioral
data call for further research. For instance, Plitt et al. [60] found that ASD classification
via behavioral measures consistently surpassed rs-fMRI classifiers. Accordingly, in line
with the common research aim of the behavioral studies, various dimensionality reduction
techniques were employed to improve the diagnostic speed of the resulting ML models.
However, unlike the reduced dimensions, there is enough evidence on the good reliability,
high internal consistency, and convergent validity between the common assessment instru-
ments within large samples [61–65]. Furthermore, studies have ascertained the robustness
of the common assessment instruments in the quantitative measurement of the various
dimensions of communication, interpersonal behavior, and stereotypic/repetitive behavior
associated with ASD. Therefore, it will be difficult to sufficiently measure the key dimen-
sions of the instruments using the fewer items generated by the common dimensionality
reduction techniques. For instance, while professionals interpret SRS scores based on the
sum of its 65 items, Bone et al. [38], Duda et al. [36], and Duda et al. [53] implemented
SRS-enabled machine-learning models with at most 5, 5, and 15 items, respectively. Specifi-
cally, Duda et al. [36] and Duda et al. [53] focused on classifying ASD from ADHD using
the SRS data from AC, AGRE, SSC. Duda et al. [36] implemented ADTree, RF, SVM, LR,
Categorical lasso, and LDA models and achieved the highest area under the curve (AUC)
of 0.965 in classifying ASD from ADHD by utilizing five of the 65 items of SRS identified
using forward feature selection. Duda et al. [53] validated the findings of Duda et al. [36]
with crowdsourced data to improve the model’s capability on ‘real-world’ data, and the
findings revealed that LDA outperformed LR and SVM by achieving an AUC of 0.89 with
15 items. Despite the high metrics reported by the studies, based on the standard clinical
procedures for ASD diagnosis, the ML models are neither clinically sufficient nor readily
implementable for real-life use.

Similarly, Wall et al. [35] compared the performance of 15 different ML algorithms on
AGRE, SSC, and AC datasets and found ADTree to outperformed other models by utilizing
7 of the 93 items contained in the ADI-R in classifying ASD with 99.9% accuracy. In a similar
study by Wall et al. [34], ADTree outperformed 17 comparative models by achieving 100%
accuracy with 8 of the 29 items in Module 1 of ADOS. Moreover, Duda et al. [39] demon-
strated the superior performance of ADTree in achieving 97% classification accuracy with a
72% reduction in ADOS-G items. Nonetheless, Levy et al. [50] and Kosmicki et al. [37] re-
duced the items of ADOS using sparsity/parsimony enforcing regularization and stepwise
backward feature selection techniques, respectively, and reported the superior performance
of LR and SVM over other ML algorithms. Specifically, in the study by Levy et al. [50],
with at most 10 features from ADOS’s Module 3 and Module 2, AUC of 0.95 and 0.93
was achieved, respectively. While Kosmicki et al. [37] recorded an accuracy of 98.27%
and 97.66% with 9 of the 28 items from module 2, and 12 of the 28 items from module
3, respectively. Recently, Küpper et al. [40] utilized ADOS data from a clinical sample
of adolescents and adults with ASD and reported good performance of SVM on fewer
items reduced using the recursive feature selection technique. The foregoing studies have
demonstrated how ML-enable ASD screening and diagnostic models could be developed
and evaluated. However, numerous challenges associated with the behavioral assess-
ment instruments, data repositories, and applied data intelligence algorithms need to be
understood and addressed.

Although ML-based approaches are data-centric and are expected to improve objec-
tivity and automation [66], with the global rise in ASD cases, the capacity to quickly and
accurately assess ASD requires a careful understanding of the conceptual basis of the assess-
ment instruments, as well as their relevance to the logical concepts of the ML algorithms.
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Nonetheless, discrepancies within the data repositories, such as data imbalance, limit the
clinical relevance of the high evaluation metrics reported in the studies [26,27]. For instance,
Torres et al. [67] studied the statistical properties of ADOS scores from 1324 records and
identified various factors that could undermine the scientific viability of the scores. Partic-
ularly, the empirical distributions in the generated scores break the theoretical conditions
of normality and homogeneous variance, which are critical for independence between bias
and sensitivity. Thus, Torres et al. [67] suggested readjusting the scientific use of ADOS, due
to the variation in the distribution of the scores, lack of appropriate metrics for characteriz-
ing changes, and the impact of both on sensitivity-bias codependencies and longitudinal
tracking of ASD. In essence, the applied data intelligence algorithms, and the resulting
models, missed the human knowledge upon which the assessment instruments were built
and applied by the professionals [25]. Additionally, most of the studies overlooked the
inherent limitations associated with the dimensionality reduction techniques, and the
assessment instruments [7–9]. Thus, the need for ascertaining the clinical relevance of the
data-centric approaches and readjusting the scientific use of the assessment instruments
remains. Obviously, in the future, it can be said that the trend in the application of ML in
the behavioral assessment of ASD will go on. On the other hand, the pressing demands for
cost-effective assessment of ASD remain. Thus, future studies need to revisit the relevance
of the data collection instruments to ML algorithms.

5. Conclusions and Recommendations

Machine learning has been broadly applied in the behavioral assessment of ASD
based on a variety of data types as input to data-intelligence algorithms. Commonly
utilized inputs include the items of screening tools, such as ADI-R and ADOS-G. Popular
ML algorithms used are SVMs, variants of the decision trees, random forests, and neural
networks. However, the multitudes of challenges in accurate ASD assessments are yet
to be addressed by the suggested machine learning approaches. Specifically, the high
metrics achieved with the data-intelligence techniques have not guaranteed the clinical
relevance of the ML models. Additionally, the commonly used evaluation measures of
classification accuracy, specificity, and sensitivity, among others cannot sufficiently reflect
the human knowledge applied by professionals in assessing behavioral symptoms of ASD.
Consequently, understanding the clinical basis of the assessment tools and the logical
concepts of the data-intelligence techniques will lead to promising studies on the real-life
implementation of cost-effective ASD assessment systems. The novelty in the present
review is that while previous literature reviews focused on the performance of various
data intelligent techniques on different data sets, this work systematically reviewed the
literature and provide a definitive explanation on the relevance of the reported findings
toward the real-life implementation of the ML-based assessment systems. The authors
hope that the findings of this systematic literature review will guide researchers, caregivers,
and relevant stakeholders on the advances in ASD assessment with ML.

Nonetheless, a few of the limitations associated with the present work include over-
looking other non-English documents. Thus, possible excellent studies reported in other
languages might have been missed. Secondly, the search filters spanned ten years and were
limited to the four scientific databases mentioned. Furthermore, the records retrieved relied
on the few search terms utilized in the search query. Therefore, relaxing the search filters
across additional databases could yield additional relevant studies. Lastly, the present
review considered only full-text online journal articles. Consequently, the findings are
limited to the studies included. The future research agenda will be based on relaxing the
search criteria to incorporate other scholastic databases for further comparative results. In
addition, future studies could relax the search filters to include books, conference papers,
and so on. Noteworthy, to build on or replicate the reviewed studies, future research
should explore data-intelligence techniques that will achieve not only excellent evaluation
metrics, but also adhere to the conceptual basis upon which professionals diagnose ASD.
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Abstract: The wide spectrum of unique needs and strengths of Autism Spectrum Disorders (ASD) is
a challenge for the worldwide healthcare system. With the plethora of information from research, a
common thread is required to conceptualize an exhaustive pathogenetic paradigm. The epidemiologi-
cal and clinical findings in ASD cannot be explained by the traditional linear genetic model, hence the
need to move towards a more fluid conception, integrating genetics, environment, and epigenetics as
a whole. The embryo-fetal period and the first two years of life (the so-called ‘First 1000 Days’) are the
crucial time window for neurodevelopment. In particular, the interplay and the vicious loop between
immune activation, gut dysbiosis, and mitochondrial impairment/oxidative stress significantly
affects neurodevelopment during pregnancy and undermines the health of ASD people throughout
life. Consequently, the most effective intervention in ASD is expected by primary prevention aimed
at pregnancy and at early control of the main effector molecular pathways. We will reason here on a
comprehensive and exhaustive pathogenetic paradigm in ASD, viewed not just as a theoretical issue,
but as a tool to provide suggestions for effective preventive strategies and personalized, dynamic
(from womb to adulthood), systemic, and interdisciplinary healthcare approach.

Keywords: Autism Spectrum Disorder (ASD); pathogenesis; prevention; epigenetics; immune activation;
gut dysbiosis; mitochondrial impairment; oxidative stress; metabolomics; machine learning

1. Introduction

Autism spectrum disorder (ASD) is currently diagnosed on the basis of the clinical
assessment of behavioral features [1], and is characterized by a wide spectrum of presen-
tation and frequent association with medical comorbidities [2]. People with ASD show
an increasing endophenotypic complexity suggesting a systemic disorder with multilevel
health needs. The manifold phenotype and the dramatic increase in prevalence in the last
decades—currently 1:54 in the USA [3]—require the conceptualization of a pathogenic
paradigm able to explain both the clinical and the epidemiological findings.

In research, there is a need to take stock of the situation in two main issues. First, effec-
tive strategies aimed at reversing the course of prevalence are urgently required. Secondly,
evidence concerning the biological complexity of ASD requests a coherent translation into
the healthcare model and the clinical practice.

Fetal neural programming, occurring during the ontogenesis, and early live neuroplas-
ticity are crucial events in neurodevelopment and identify the time window of maximum
brain opportunity in the embryo-fetal period and in the first two years of life (the so-called
‘First 1000 Days’) [4].

In this period, exogenous insults and changes in the maternal milieu are expected to
have the maximum disturbing effect and lifelong consequences on health. The dynamic
molecular machinery involved in the ontogenesis transforms early life inputs into long-term
programmatic outcomes, influencing the enzymatic and immuno-neuroendocrine path-
ways, which define the basis of the homeostasis during intrauterine and postnatal life [5].

Several biological abnormalities are involved in the etiopathogenesis of ASD. Our
study reviews the main topics addressed in biological research—genetics, epigenetics,
environmental issues, immunogenetics, immunology, microbiology, and metabolic and
electrophysiological impairments—with particular reference to their synergistic interac-
tions and their links with the clinical phenotype. Therefore, a dynamic (from the womb
to adulthood) perspective and the concept of multisystem disorder seems to be the most
plausible framework for the study of neurodevelopmental disorders.

Machine learning will also be proposed as the most suitable method consistent with
the biological complexity of ASD.
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The healthcare model currently aimed at supporting autistic people is quite frag-
mented, and often fails to integrate psychoeducational and biological interventions. Draw-
ing a ‘fil rouge’—from the genome to the effector biochemical pathways, and from them
to the multifaceted clinical phenotype in ASD—seems to be the premise for the long
looked-for breakthrough in clinical practice.

The conceptualization of the pathogenetic paradigm is proposed as the premise
for necessary changes in clinical practice, highlighting a common thread, from primary
prevention in pregnancy, to the healthcare model addressed, to the complex lifelong needs
of people with ASD.

According to a dynamic and systemic perspective, neurodevelopmental disorders
seem to be better depicted by a trajectory of possible and, at least partially, modifiable
frailty rather than by a static picture resulting from a fixed and inevitable brain damage.

Consequently, this paradigm encourages the best efforts for effective primary preven-
tion strategies addressed to the ‘First 1000 Days’, in order to turn this time window into the
best chance for human health. At the same time, evidence concerning numerous biologic
abnormalities in ASD provide suggestions for some already feasible adaptations of the
healthcare model addressed to autistic people.

1.1. Clinical Features of People with ASD: Not Only a Behavioral Disorder

Autism is an early onset—and in most cases, lifelong—neurodevelopmental disorder,
currently diagnosed through standardized behavioral testing between the ages of 2 and
4 years. The broad range of presentation accounts for the standard definition of Autism
Spectrum Disorder (ASD) as an alteration in social communication and interaction across
multiple contexts, in conjunction with repetitive behaviors, a restricted pattern of interests,
and sensory abnormalities [1]. In the most common early onset pattern, atypical features
in vocal–verbal language and socio-communicative development are detected in the first
12 months, and failure in acquiring skills is reported. However, some children initially
show a period of apparently typical development, followed by a loss of previously es-
tablished skills. The phenomenon is termed ‘regression’ and typically occurs between
15 and 30 months of age, with a mean of 21 months [6]. There is no consensus regarding
the prevalence of regression within autism and other ASD diagnoses [6]. The phenomenon
certainly needs to be better understood as well as defined by symptoms, including re-
gressive events that may occur later in life. A wide range of different combinations of
behavioral characteristics, beside numerous emotional and cognitive features, contribute
to the wide variability of the clinical picture and to the varied impact on major life areas [7]
and quality of life [8]. The presence and severity of intellectual impairment is the most
relevant characteristic influencing the outcome [9]. The wide range of combinations within
the spectrum poses the difficult challenge in responding to this variegated group of people,
endowed with unique needs and unique strengths, in a personalized manner.

The striking increase in prevalence in the last decades [3] demands deep reflection
and evaluation. Increased awareness of the disorder and evolving diagnostic criteria have
undoubtedly contributed to this result. On the other hand, a broad scientific consensus
converges on the concept that change in diagnostic criteria is not enough to explain such a
significant rise in the occurrence of ASD [10], and environmental factors are supposed to
fill the gap.

Currently, many areas are engaged in research on ASD, including genetics, epigenetics,
immunogenetics, immunology, microbiology, and biochemistry—the last, in particular,
with regard to mitochondrial impairment and oxidative stress. As the submerged part of
an iceberg, the biological complexity underlying behavioral abnormalities accounts for
a systemic disorder, not limited to the brain, but involving other organs and systems as
well. This is consistent with the frequent occurrence of comorbidities [2]—in particular,
immunologic [11] and GI abnormalities [12]. They are not just ancillary characteristics, but
rather the result of a systemic disorder, impacting on the health of people with ASD and
requiring to be properly faced.
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1.2. Genetics, Epigenetics, and Environment: Who’s to Blame?

Quantitative genetic studies, including twin studies, have suggested a role of genetics
in ASD [13–15].

The genetic architecture in ASD is complex: Hundreds of gene variants, identi-
fied using genome-wide association studies (GWAS) [16] and copy number variants
(CNVs) [17,18], as well as de novo mutations in non-coding regions, affecting transcrip-
tional and posttranscriptional regulation [19], have been found associated with ASD.
None of the individual genes identified to date account for more than 1% of ASD cases.
Though many candidate gene-disease associations were suggested, molecular investiga-
tions have yet to identify a consistent association of ASD with biological markers [20].
This also reflects the complexity of the ASD phenotype, which overlaps with several neu-
rodevelopmental/psychiatric disorders [21,22] and involves numerous non-neurological
comorbidities [23]. ASD susceptibility evaluation using family-based genetic studies is
now accompanied by population-based epidemiologic studies, which pointed to the role of
environmental factors [24] in explaining the rate of non-genetic variance [25,26].

Altogether, the genetic data suggest the need to depart from a linear genetic model.
The striking increase in prevalence in ASD makes implausible the hypothesis of an in-
creasing number of monogenic diseases, and for this reason an epigenetic model has been
suggested. Epigenetics refers to changes in gene regulatory mechanisms that are indepen-
dent from alteration of the underlying DNA coding sequences [27]. Epigenetics tunes gene
expression based on changes in the cellular environment, in an adaptive and predictive
sense, predisposing cellular molecular equipment aimed at homeostasis [28].

DNA methylation, histone tails modifications, and non-coding RNAs (i.e., microRNAs)
are the most commonly studied epigenetic effectors [29]. They influence the establishment
of gene transcription patterns through multiple mechanisms, regulating the accessibility of
genomic loci to a large number of regulatory factors (i.e., transcription factors, enhancers,
silencers) as well as the expression/stability of mRNAs. Changes in epigenetic signatures
during the developmental stage finely tune the differentiation of precursor cells into their
specific mature state [30]. Therefore, epigenetic markers display a relatively high level of
plasticity during periods of cellular differentiation, including neurodevelopment [31]. Since
the embryo-fetal period and the first two years of life represent the temporal window of
maximum neuroplasticity, environmental exposure occurring during pregnancy is expected
to lead to long-term modifications in epigenetic patterns and to have maximum impact
on neurodevelopment [32].

Synaptic plasticity and chromatin binding are the most important biological func-
tions emerged from the analysis of hundreds of genes associated with ASD [33,34]. The
enrichment of chromatin binding genes associated with ASD suggests their potential role
in the etiology of this disorder. Rett syndrome is a well-known example of a genetic neu-
rodevelopmental condition that includes autistic behavior, and whose etiology is directly
related to epigenetic regulation. Rett syndrome is caused by mutations in MECP2 gene,
which encodes for the methylated DNA binding protein MeCP2 [35], causing either the
activation or the inhibition of gene transcription, depending on the genomic context [36].
Interestingly, beside Rett syndrome, also Fragile X syndrome, Angelman syndrome, and
Beckwith-Wiedemann syndrome, are all caused by epigenetic dysregulation, and each one
shares a phenotypic overlap with ASD [37,38].

Many epigenetic markers are differentially expressed in ASD. A recent systematic
review by Dall’Aglio et al. [39] analyzed studies on epigenetic modifications found in ASD
and other neurodevelopmental disorders, focusing on global and gene-specific methylation,
as well as on epigenome-wide DNA methylation (EWAS) in brain and blood tissues, and
on histone modifications in the brain tissue. A number of shared biological pathways of
relevance to neurodevelopment, were reported by independent EWAS, including synaptic
and neuronal processes, immune response processes, brain development, and cellular
differentiation [39]. In candidate genes studies, the identification of differential DNA
methylation in the proximity of three genes—PRRT1, C11orf21/TSPAN32, and OR2L13—
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was confirmed in multiple independent analyses. The function of these genes is still little
known, anyway, they are probably involved in neurological disorders. Analogously, histone
modifications (methylation and acetylation) in association with ASD were consistently
found in the gene coding for H3K27 in the cerebellum and cortex of autistic patients [39].

Moreover, several studies evidenced that short non-coding RNAs, such as microR-
NAs, are differentially expressed in brain tissue [40] as well as in the periphery (i.e.,
serum/plasma, saliva) [41,42] of ASD patients compared to typically developing controls.

Therefore, moving from a traditional paradigm focusing exclusively on a linear genetic
model, epidemiological and clinical findings in ASD suggest the conceptualization of
a model integrating genetics (hardware), environment (information), and epigenetics
(software). Thus, the focus is shifted from the highly phylogenetically conserved human
DNA sequence to the misleading way by which the stored instructions are read. The
following paragraph explains in detail the epigenetic paradigm.

1.3. Widening the Gaze: From ASD to the Epidemiological Transition of NCDs

The plausibility of the epigenetic paradigm regarding ASD is supported by a wider
phenomenon involving numerous non-communicable diseases and disorders (NCDs),
which showed a striking increase in prevalence in the last decades, in parallel with neu-
rodevelopmental disorders [43,44].

We are witnessing a profound epidemiological transformation, which concerns immuno-
allergic, inflammatory, metabolic, chronic-degenerative, neurodevelopmental, neuropsy-
chiatric, neurodegenerative, and neoplastic diseases [45]. The phenomenon as a whole
suggests a common pathogenetic model. As the time frame is too short for genetic changes
to have had an appreciable impact on the prevalence of the abovementioned diseases, it
is more plausible that the increase reflects changes in gene programming (epigenetics)
induced by a growing number of environmental stressors during critical time windows in
development [46,47]. This interpretation is the basis of the theory of the epigenetic/embryo-
fetal origin of diseases (DOHaD—Developmental Origin of Health and Diseases) [48]. The
DOHaD theory suggests a systemic perspective, in order to explain the reasons of the
profound transformation of human health and disease. The theory takes into account the
impact of environmental stressors on reactive–adaptive and predictive epigenetic modifica-
tions (fetal programming) in cell and tissue differentiation, with long-term consequences on
individual development and transgenerational impact. Imperfect correspondence between
embryo-fetal programming and postnatal environment (that is, mismatch between the
prenatal prediction and the actual postnatal environment) might also contribute to the
onset of NCDs [45].

Beyond the definition, in the essence, epigenetics means a new systemic genome
model which places the DNA sequence in the center of a dynamic, fluid, unitary, and
interactive molecular network, involving the inner and the outside environment [28]. The
genome is proposed as a fluid system, made up of the DNA sequence, the responsive
histone structure, and information from the surrounding environment, in the broader
sense of the term. The epigenome—as a software switching genes on and off [28]—tunes
the matching between information coming from outside (environment) and information
codified by millions of years in the DNA (that is the hardware). Through mechanisms
modulating the programming, transcription, and translation of the message, the epigenome
orchestrates the “natural genetic engineering” for the structural and functional changes
of cells and tissues, contributing to the evolving phenotype, both in physiological and
pathological situations [49].

During pregnancy, the placenta “translates” the external environment to the fetus
through epigenetic molecular adaptations, in particular by modifying the methylation of
imprinted genes, which act as key controllers for fetal development. A wide range of mater-
nal inputs (i.e., over and under-nutrition, smoking, drug and alcohol intake, environmental
toxicants, infections, and stress) can induce changes in placental physiology, ranging from
alterations in placental morphology and weight, to the more subtle changes in placental
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gene expression, involving important signals directed towards the fetus [50]. Imprinted
genes display a variety of cellular roles, such as cell cycle control, ion channels, protein
synthesis/degradation, and nutrient transport. They are maximally expressed during the
prenatal and/or postnatal period, and predominate in tissues governing resource allocation
(brain, placenta, adipose tissue, and pancreatic beta cells). Consistently with these findings,
a substantial number of imprinted genes are critical for placental function and normal fetal
growth and development [51].

Epigenetic programming is highly sensitive to changes in the cellular environment.
Indeed, epigenetic regulation is a widely utilized adaptive mechanism, allowing cells to
maintain a favorable metabolic status under different conditions, including exposure to
physiological substances (e.g., hormones, neurotransmitters, or growth-regulation factors),
xenobiotics (e.g., pollutants, toxic chemicals), or even infectious agents (e.g., bacteria
or viruses, fungi or parasites) [52]. Epigenetic regulation may facilitate adaptation to
changes in the cellular environment through stable alterations of cellular phenotype,
potentially resulting in progressive differentiation and maturation during fetal and possibly
postnatal development [53].

During the ontogenesis, epigenetic software is programmed in an adaptive and predic-
tive sense, driving cellular differentiation and setting up the metabolic, immunologic, and
endocrine pathways for lifelong homeostasis. As far as neurodevelopment is concerned,
the ‘First 1000 Days’ are the period in which neuroplasticity is most lively, for neuronal
proliferation, differentiation, migration, synaptogenesis, and pruning. In other words,
this is the most vulnerable time window for the wiring of individual connectome [54,55].
For the same reasons, the ‘First 1000 Days’ offer a unique opportunity to provide the best
setting for the best lifelong trajectory in neurodevelopment [4].

1.4. Maternal Immune Response in Neurodevelopmental Disorders

Mounting evidence suggests the existence of a link between immune function and
neurodevelopmental disorders [56,57]. The immune system plays a fundamental role in
brain development, both in the physiological and in the pathological trajectories. Immune
response impacts on neuronal migration, synaptogenesis, white matter organization, and
remodeling (pruning), that is, on some of the crucial steps of neural network develop-
ment [58–61]. Therefore, it is not surprising that an abnormal immune response might
influence neurodevelopment [57].

Maternal infections and autoimmune diseases provided the first demonstration of the
possible impact of immune response on brain development during pregnancy.

In the period following the Rubella outbreak of the 1960s, ASD was diagnosed in
5–10% of children born to mothers that were infected by the Rubella virus [62,63]. The
prevalence of ASD and schizophrenia was found to be significantly higher in children
exposed to infection than in those not exposed [64]. Afterwards, similar correlations
were found with influenza, measles, mumps, varicella, and polio epidemics [65]. Several
prospective studies confirmed the association between maternal viral infections and the
onset of neuropsychiatric disorders in children, and over the years the list lengthened
with the inclusion of bacterial infections (tonsillitis, sinusitis, pneumonia) and parasites
(Toxoplasma gondii) [64,66]. A Swedish research found a 30% increase in ASD when
the mothers were hospitalized for viral infections during pregnancy, and a significant
association was found between viral infections and ASD in offspring [67].

The recent outbreak of the Zika virus raises concerns about the increased risk of ASD,
given the high number of babies born with microcephaly, structural brain abnormalities,
and neurological alterations in regions affected by the virus [68]. Similar concerns re-
late to the current SARS-CoV-2 pandemic, since maternal cytokine storm (mainly, IL-6
and IL-17) and intra-uterine inflammation might interfere with the fetal epigenetic ma-
chinery [69]. In fact, beside the vertical transmission, maternal infections may impact
fetal neurodevelopment through the maternal immune activation (MIA). Several studies
reported an increased risk of ASD in the offspring of mothers with active autoimmune
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diseases during pregnancy. Particularly, exposure to psoriasis, systemic lupus erythe-
matosus, rheumatic arthritis, and autoimmune thyroid disease could significantly increase
the risk of ASD [70–72]. In mothers with autoimmune diseases a pathogenetic effect is
suggested for maternal autoantibodies and cytokines crossing placental barrier and the
brain–blood barrier [73,74]. A meta-analysis showed that maternal autoimmune diseases
were associated with a 34% increased risk of ASD in offspring, compared with the control
groups [75]. Correlations between postnatally ASD-specific maternal autoantibodies and
maternal metabolic conditions during gestation have been reported [76].

Neuroinflammation could damage fetal brain tissue and exert adverse influence on
brain development [56]. Cytokines, activated T cells, autoantibodies, and microglia—the
macrophages of the central nervous system—exert a pivotal role on antigen presence and
cytokines production [56,77].

Maternal autoantibodies targeted against the Folate Receptor α (FRα) deserve to
be mentioned in this section. Folate plays a key role in neural development during the
embryo-fetal period and the early years of life [78]. Folate plays an essential role in cell-to-
cell communication and in purine, methylation, and redox metabolic pathways. Since its
concentration in the brain is several folds higher than in plasma, it relies on active import
mechanisms, based on FRα, to cross both placental and brain barriers, but the transport
is inhibited by anti-FRα autoantibodies (FRAAs) [79]. Animal models demonstrated a
correlation between the exposition of pregnant dams to FRAAs and ASD-like features in
the offspring [79]. This is consistent with the finding of more severe ASD symptoms in
autistic children from mothers positive for FRAAs [78]. The relevance of this mechanism
is confirmed further in life by the higher prevalence of FRAAs in children with ASD
compared to controls, since FRAAs are detected in 58–76% of children with ASD [80]
and blood titers of these autoantibodies correlate with folate levels in the cerebrospinal
fluid [80,81]. This discovery of the impairment of folate metabolism has recently led to
encouraging treatment opportunities [80].

1.5. Interplay between Epigenetics and Immune Response in Neurodevelopment

Currently, several studies are addressed to maternal immune activation (MIA) and
compounding evidence supports a role for MIA at specific time frames in the pathogenesis
of ASD. Several risk factors and pathogenetic pathways may converge and influence
fetal brain development through the intra-uterine immune environment. It has been
hypothesized that MIA is an effector arm of the epigenetic dysregulation, and a pivotal
role of maternal immune response has been suggested for the downstream behavioral
phenotypes observed in ASD and other neuropsychiatric disorders in offspring [82–84].

Animal studies show a link between MIA and ASD-like outcomes in offspring; correla-
tion is shown with numerous environmental factors, including infections, toxin exposures,
maternal stress, and maternal obesity, all of which impact maternal immune response [85].
Therefore, immune activation is a common pathogenetic pathway triggered by numer-
ous infectious agents and environmental factors [86]. Changes in gestational immune
environment are correlated with increased risk for neurodevelopmental disorders [87].
This is consistent with the increased risk for ASD and schizophrenia in the offspring of
mothers with autoimmunity [88], allergy, asthma [89], maternal acute stress [90], depres-
sion [91], and exposure to environmental pollutants [92]—all conditions correlated with
the activation of the maternal immune response [66,93].

Animal models made it possible to study the effects of MIA on fetal brain develop-
ment [83,94–96]. DNA hypomethylation and hypermethylation have both been observed
in these animal models and in their offspring. Animal models for MIA are obtained by
in utero injection of a synthetic double-stranded mimetic of the RNA molecule (polyi-
nosinic:polycytidylic acid-polyI:C), which triggers an immune response of both innate
and adaptive immune regulatory mechanisms in the pregnant rodent female, through
the activation of TLR3 and subsequent expression of interferon-1 [97]. The offspring of
pregnant mice treated with Poly I:C display all the core deficits associated with ASD [98].
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Tang et al. used the MIA mouse model and demonstrated significant epigenetic changes
in response to polyI:C exposure in utero. Specifically, the study found that differential
abnormalities in histone acetylation occurred in the cortex and hippocampus in response
to polyI:C exposure; a majority of the observed abnormalities occurred in juvenile mice,
prior to the onset of behavioral phenotypes; genes in the glutamate receptor signaling path-
way were particularly associated with epigenetic changes in response to prenatal immune
activation [94]. MIA was found to dysregulate key aspects of fetal brain gene expression
that are highly relevant to the pathophysiology affecting ASD. For instance, transcriptional
and translational programs, that are downstream targets of highly ASD-penetrant FMR1
and CHD8 genes, are heavily affected by MIA [83], as well as genes relevant for gamma-
aminobutyric acidergic differentiation and signaling and Wnt signaling (that is, a group
of signal transduction pathways that regulate crucial aspects of cell fate determination,
cell migration, cell polarity, neural patterning, and organogenesis during embryonic devel-
opment) [96]. Moreover, the changes were markedly influenced by the precise timing of
prenatal immune activation, since the early and late gestational windows clearly differed in
terms of the altered methylation pattern they induced. Particularly, late prenatal immune
activation induced methylation changes in genes critical for GABAergic cell development
and functions [96].

Non-coding RNAs, such as microRNAs, represent a further epigenetic mechanism.
They resulted in being differentially expressed in brain tissue [40] and in the periphery (i.e.,
serum/plasma, saliva) [41] in ASD subjects compared to controls. Notably, most differences
in ASD patients involved immune response and protein synthesis regulation [99].

Abnormalities in immune response in ASD brain are also reported [96]. Genome-
wide transcriptomic studies demonstrate that ASD brains are enriched for “activated”
M2 microglial genes and innate immune response-related genes [100]. Nardone et al.
determined the presence of many dysregulated CpGs in two cortical regions in brain tissue
from people with ASD: Brodmann area 10 (BA10) and Brodmann area 24 (BA24) [101].
Findings in BA10 showed very significant enrichment for genomic areas responsible for
immune functions among the hypomethylated CpGs, whereas genes related to synaptic
membrane were enriched among hypermethylated CpGs. An inverse correlation links
gene expression and DNA methylation. It was reported that genes such as C1Q, C3,
ITGB2 (C3R), and TNF-α, important molecules in immune response and implicated also in
synaptic pruning and microglial cell specification, are among the hypomethylated (and
overexpressed) genes in ASD [101].

Several studies have focused on the association between human leukocyte antigen
(HLA) genes and the risk of ASD [102,103]. HLA is a complex genetic region with a
pivotal role in some autoimmune diseases and in response towards infection, but also
in fetal tolerization. Therefore, HLA impact in ASD may not be ascribed to a single
specific HLA gene, but rather to a series of different genes which may intervene at different
stages. HLA class I molecules were demonstrated to play a complex and significant role in
brain development [104].

HLA class I and HLA-G interact with killer immunoglobulin like receptors (KIR)
expressed by natural killer (NK) cells, the effectors of innate immunity. During pregnancy,
NK are highly concentrated within the uterine mucosa, at the fetal/maternal interface.
NK may be activated or inhibited through the interaction of specific activating and/or
inhibitory KIR with HLA-C and non-classical HLA-G molecules on fetal trophoblast. KIR–
HLA interaction has been largely demonstrated to play an important role in pregnancy
complications. Notably, complications of pregnancy are, together with autoimmunity, very
common in ASD mothers [88,105–109].

A skewing of the KIR-HLA complexes, in which activating molecules prevail, was
shown in ASD children [110] and their mothers [103]. Moreover, an important role has
been suggested for non-classical HLA-G polymorphisms in ASD mothers [111] as well
as in women with recurrent spontaneous abortions [112,113]. The generation of a poorly
tolerogenic fetal environment results in MIA and may be associated with pregnancy
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complications as well as with ASD development [111,114]. KIR genes may be regulated by
switch on/switch off epigenetic signaling; DNA methylation plays a crucial role in shaping
the KIR repertoire, supporting the importance of epigenetic mechanisms as regulatory
switches in the immune system early in life [115].

The driving mediators of MIA-associated ASD pathology are most likely elevations
in maternal cytokines and chemokines. Therefore, MIA can be considered as a ‘priming
condition’ for neurodevelopmental disorders, a susceptibility background on which further
risk factors can then be established [116], behaving as ‘multiple hits’ with synergistic
effects. These can be infectious agents, any kind of immune stimulation and exposure
to toxic substances (particularly, alcohol and drugs) [93]. In MIA murine model, a pro-
inflammatory phenotype of T lymphocytes and myeloid cells are common findings [66,87].
Confirming the close relationship and interdependence between the nervous system and
the immune system [117], reconstitution of MIA offspring with normal bone marrow
improves repetitive behaviors and anxiety, suggesting that some MIA phenotypes are
causally related to immune and nervous system imbalances [65].

Elevations of cytokines and chemokines in both maternal serum and amniotic fluid are
associated with an increased risk of ASD [118]. Maternal cytokines that cross the placenta,
such as IL-6 and IL-4, may alter fetal epigenetic machinery [82]. Particularly, IL-6 and IL-17
may favor inflammation either at the placenta or directly in the developing fetal brain [119].
IL-6 has been identified as a key intermediary of the pathways whereby MIA alters fetal
brain development. Maternal IL-6 crossing the placenta can directly affect the development
of the fetal brain [120], and animal models show that IL-6 is critical for mediating the
behavioral and transcriptional changes in the offspring [121]. Recently, the importance
of T helper 17 (Th17) lymphocytes and IL-17a effector cytokine in inducing autism-like
phenotypes, acting on the developing fetal brain, has been demonstrated. It is likely that
some environmental factors related to the onset of ASD follow this pathway. Structural
similarities found between IL-17 family-cytokines and the neurotrophins (proteins regulat-
ing survival, development, and functions of neurons) suggest that the IL17Ra pathway has
a physiological function in the fetal and adult brain [119].

Maternal cytokines and chemokines, in addition to their activity as immune mediators,
are involved in migration of neuronal precursors, neuronal maintenance, synaptic pruning,
and neuroplasticity [122]. Sotgiu et al. recently reviewed the numerous abnormalities in
immune pathways involved in embryo-fetal neurodevelopment and linked to ASD. The au-
thors confirmed MIA as a predisposing condition for a multiple-step frailty in brain growth,
suggesting the importance of care addressed to women before and during pregnancy [123].

Discussion of immune response in pregnancy cannot leave out the microbiota. During
pregnancy, one should consider both the placental microbiota and the maternal micro-
biota. As for the former, for a long time fetus and placenta have been considered to be
sterile. Currently, mounting evidence suggests the occurrence of a fetal microbial colo-
nization; moreover, placenta has been reported to harbor a specific microbiota [124]. Even
though the ‘sterile womb’ paradigm is debated and results are conflicting, there is con-
vincing evidence that the composition of the maternal microbiota may impact on fetal
immune development prior to delivery. The maternal microbiota may exert an indirect
effect on the fetus via maternal factors such as maternal immune responses, microbial
metabolites that cross the placenta [125,126], or more indirectly via factors that may me-
diate epigenetic programming in the fetus, such as diet [127] or stress [128], which also
affect the maternal microbiota. The gut and vaginal maternal microbiota changes with
gestation [129,130]. It is plausible that these changes have an adaptive value. It has been
suggested that they allow the fetus to derive energy from the mother’s blood more ef-
ficiently [129] and promote immune tolerance in the mother [131]. Studies on animal
models suggest that transient changes in maternal microbiota during pregnancy drive fetal
immune programming [125].
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At present, available knowledge about the fine and delicate tuning of placental im-
mune response and the numerous immune mechanisms impacting fetal neurodevelopment,
put the maternal immune response in the spotlight, as one of the most relevant issues to be
addressed in the care of pregnant mothers.

1.6. Take Home Message from the Interplay between MIA and Epigenetics in Pregnancy

The striking amount of studies showing the impact of maternal immune response on
neurodevelopment and the interplay between MIA and the epigenetic machinery requires
best efforts to support maternal well-being during pregnancy, as a crucial determinant
of lifelong physical and mental health of humans [132]. In fact, the complex molecular
machinery described above represents an adaptive response to events occurring during
pregnancy, constituting predictable and potentially preventable events.

Numerous risk and protective factors have been demonstrated and linked to the onset
of ASD in the offspring, providing suggestions for clinical practice. Emberti Gialloreti et al.
recently reviewed risk and protective factors related to the occurrence of ASD in offspring,
highlighting the need of care for maternal diet, nutraceutical supplementation, preven-
tion and treatment of metabolic abnormalities, prevention from toxicant exposure, and
numerous other factors linked with an increased risk for ASD [133]. Therefore, nutritional
state and proper nutraceutical supplementation during pregnancy should be warranted
and carefully monitored (enough/not too much). In fact a ‘U shaped’ relationship is re-
ported between maternal multivitamin supplementation frequency and ASD occurrence in
offspring [134]. As far the evaluation of risk factors, it is underscored that most exposure
models from epidemiological literature may suffer from oversimplification in case the
effects of single factors are evaluated separately. In fact, findings in animal models suggest
that the study of synergistic–rather than single-effects seems to be correct [135], a con-
cept raising a relevant methodological issue, consistent with the complexity of biological
systems. Many studies assessed the frequency of potential environmental risk factors in
pregnancy related to ASD in offspring. Grossi et al. highlight explicit associational schemes
between risk factors and ASD outcome through a multivariable modeling of data using
Auto Contractive Map artificial neural network (ANN). The authors suggest that ANN
might highlight hidden trends and associations among the variables, thus revealing the
risk profiles related to ASD [136]. Notably, the graph of the study shows that cesarean
section, absence of breastfeeding, and early antibiotic use are close to the autism node.
All these risk factors are linked to changes in the neonatal bacterial substrate, confirming
the importance of the appropriate composition of the early microbial communities for
the neurodevelopment [136]. A recent meta-analysis confirms the cesarean delivery as a
risk factor for ASD [137]. As a whole, these findings encourage best efforts in favoring
vaginal delivery; in case of C-section, the early restoring of a microbial balance should
be a priority in primary prevention. In addition to the review of pregnancy risk factors,
the methodological question is the most notable feature of the study by Grossi et al. [136].
The study provides relevant suggestions for both research and clinical practice, in order to
build an ever-increasing database, which might be continuously fed by clinical, laboratory,
and instrumental records. A future personalized application of machine learning systems
in neurodevelopmental disorders might be the development of predictive models to track
different risk profiles in the lifelong neuropsychiatric trajectory.

1.7. Neuroinflammation and Gut-Brain Axis in People with ASD

Findings pointing to cerebral inflammation in autoptic brains of autistic people
aroused considerable interest pertaining to the involvement of the immune response
in ASD [138]. The study showed neuroinflammatory activity in the cerebral cortex, white
substance and cerebellum of autistic subjects. Furthermore, marked activation of microglia
and astroglia was demonstrated [138].
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More recently, growing evidence supported a role for dysregulated neuroinflam-
mation. In a recent review by Matta et al., numerous studies are reported concerning
reactive microglia and astrocytes, altered glial structure and function, cytokine profiles,
and gut immune dysfunction in ASD people and animal models. The authors con-
clude that a strong evidence for nervous system interaction with immune pathways in
ASD is demonstrated [139].

The association between ASD and immunological imbalance concerns both innate
immunity and the specific response of T lymphocytes, with a shift towards a Th1-type
pattern and prevalence of pro-inflammatory cytokines; increase of B lymphocytes, NK
cells, and dendritic cells; and different patterns in the expression of surface markers [102].
Findings in brain tissue from individuals with ASD do not allow to establish the period in
which neuroinflammation started and the ways whereby it interfered with the formation
of the neural networks. Another open question concerns the sequence of events. It is not
clear to what extent neuroinflammation is a contributory effector mechanism of neurode-
velopmental disorder or rather whether immunological abnormalities are secondary to a
systemic and complex biochemical/metabolic imbalance. In other words, to what extent
neuroinflammation in ASD is primary (causal) or secondary (reactive)? As the immune
system is primarily involved in tissue repair and homeostatic processes, immune findings
in ASD could represent compensatory responses to dysfunctional network activities and
cellular stress. Therefore, studies addressing the temporal dynamics of brain dysfunction
with age and whether they are linked to the ongoing and dynamic immune changes are
important areas for future research.

Taken together, findings about immune abnormalities support evidence of an early
and ongoing dysfunction in the peripheral immune system and the brain of individuals
with ASD [140].

Severe immune alterations are demonstrated also in the non-ASD siblings of ASD
patients [141]. In particular, in both autistic children and their siblings, increase in the
production of IL-10 and a skewing toward earlier, less differentiated lymphocyte subpopu-
lations were showed. Notably, IL-10 has strong anti-inflammatory properties: This finding
could thus be interpreted as a way whereby the immune system tries to counterbalance the
inflammation present both in autistic patients and in their unaffected siblings [141].

Neuroinflammation in ASD shows crucial links with the gut–brain axis, a bidirectional
neurohumoral communication system [142] orchestrated by the microbiota [143].

Research on gut–brain interactions in the last decades has provided evidence about
the close interactions between the gut-associated immune system, enteric nervous system,
and gut endocrine system [144]. Animal models and studies in humans seem to support a
relationship between the gut microbiota and brain development; moreover, functions and
studies on microbiomes have triggered great interest from professionals and the National
Institute of Mental Health. The simultaneous presence of oxidative stress, mitochondrial
dysfunction, and inflammation has been often observed in the brain of ASD people, which
were correlated also with ASD symptoms, thus suggesting an inter-relationship between
these anomalies [145].

1.8. Microbiome in the Crosstalk between Immune System, Gut, and Brain

A rapidly increasing amount of evidence point to host–microbe interactions at virtually
all levels of complexity, ranging from direct cell-to-cell communication to extensive systemic
signaling, involving various organs and systems, and starting even before conception. The
traditional idea of an auxiliary function of the friendly ‘intestinal flora? has shifted in
the recent years to the assignment of the role of orchestra conductor in the psycho-neuro-
endocrine system. Consistently, a growing number of research projects have been launched
worldwide concerning this topic. The human microbiota consists of the 10–100 trillion
symbiotic microbial cells harbored by each person. The set of genes of the microbiota is
collectively known as the microbiome [146], encoding for at least 100 times more genes
than our genome [147] and suggesting the’question ‘who is harboring whom?’. As a whole,
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each individual should be considered an “holobiont harboring an hologenome’. The GI
tract is the most heavily inhabited organ with micro-organisms, harboring a huge diversity
with more than 500 bacterial species. [147].

Dysbiosis—the state of unbalanced microbial communities—and its impact on the early
shaping of the immune system has been demonstrated in the pathogenesis of a wide range
of diseases [148–150], including neurodevelopmental and psychiatric conditions [151,152].

Colonization of the infant’s gut represents the de novo assembly of a microbial com-
munity [153]. The infant’s gut microbiota is established after birth, within the first three
years. After childbirth, the neonate and microbiota develop in an orchestrated way. There
is a strong influence on infant microbiota of maternal gut microbiota during pregnancy. Ma-
ternal gut strains have been shown to be more persistent in the infant gut and ecologically
better adapted compared to those from other sources [154].

The early establishment of gut microbiota is affected by several factors such as delivery
mode (cesarean delivery vs. vaginal delivery), breast milk vs. formula feeding, antibiotic
usage, timing of the introduction of solid foods, and cessation of milk feeding [155].

Early life perturbations of the developing gut microbiota can impact neurodevelop-
ment and potentially lead to adverse mental health outcomes later in life. Borre et al.
compare the parallel early development of the intestinal microbiota and the nervous sys-
tem. The concept of parallel and interacting microbial-neural critical windows opens new
avenues for developing novel microbiota-based preventive and therapeutic interventions
in early life [156].

Animal studies suggest that the microbiota may regulate microglia maturation and
function by activating immune signaling pathways, the release of cytokines, and other
inflammatory molecules [102,140,157], including inflammasomes activation [158].

Other mechanisms are involved in the communication between gut microbiota and
the brain and have been proposed to explain the possible role of microbiota in neurode-
velopmental disorders: direct activation of the vagus nerve [151]; production or alteration
of neurotransmitters, including serotonin [151]; production of toxins [159]; aberrations in
fermentation processes or products [160,161]; and dysbiosis-induced breakdown in gut
integrity [162,163]. Interacting molecules may be produced by the gut microbiota, such
as short-chain fatty acids (SCFA), which may cause the increase of gut permeability and
then act on a range of other systems. SCFA may also affect epigenetic modifications. In
particular, butyrate is a histone deacetylase inhibitor, contributing to the attainment of a less
relaxed chromatin conformation. This small molecule can cross the blood–brain barrier and
impacts epigenetic machineries in the brain [164]. Butyrate exerts anti-inflammatory and
neuroprotective effects [165] and attenuates social behavior deficits in autism models [166].
It supports mitochondrial function, stimulating oxidative phosphorylation and fatty acid
oxidation [167]. Its concentration has been shown to be reduced in fecal samples from
ASD children [168], and its supplementation had a positive effect in lymphoblastoid cell
lines derived from children with ASD under physiological stress, and, in particular, in
cell lines with underlying mitochondrial dysfunction [169], providing interesting insight
into links between ASD, mitochondria, and gut microbial communities and the possible
clinical application. Microbiota may also mediate the availability of S-methyl-Methionine
(SAM), the donor of methyl groups for DNA methylation (reviewed by Kaur et al., [170])
by producing folate for generation of SAM. Folate is generally obtained by appropriate
diet. Notably, a key enzyme for regulating the availability of folate for either DNA synthe-
sis or DNA methylation is methylenetetrahydrofolate reductase (MTHFR). Remarkably,
some MTHFR genetic polymorphisms have been associated with ASD risk [134,171]. This
is another example of how inadequate diet or gut dysbiosis may mimic genetic defects
promoting the onset of ASD.

In addition, stress, as signaled via the hypothalamic-pituitary-adrenal (HPA) axis, is
one top-down mechanism that may affect gut microbiota [172]. As far as the composition
of microbiota in ASD subjects, conflicting results are reported by numerous studies. A shift
in the microbiota in autistic individuals compared with controls was reported and included
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elevated Clostridia spp., Bacteriodetes, and Desulfovibrio spp. in ASD [160,163,173,174].
The complexity of community relationships within the microbiota and the current chal-
lenges on microbiota data analysis—risk of false positive discovery—might explain the
wide variability of findings [175].

In addition to dysbiosis, compared to controls, ASD patients show an increase in gut
permeability (the so-called ‘leaky gut’), a finding supported by numerous studies showing
alterations in gut barrier in ASD [176]. Among factors concurring to the diagnosis of
gut permeability, loss of zonulin is one of the most important. As a ‘biological door to
inflammation’ [177], higher levels of plasmatic zonulin are reported in people with ASD
than controls [178].

Fecal calprotectin might be a useful biomarker in the assessment of gut–brain axis
involvement. It identifies people with gut inflammation [179] and correlation between
calprotectin levels and main domains of the autism diagnostic interview-revised (ADI-R)
has been shown [180].

In addition to theoretical issues and laboratory data, clinical findings also support the
hypothesis of a pivotal role of the gut–brain axis, immune activation, and microbiota in
ASD. A high rate of allergy and gastrointestinal (GI) symptoms are reported in people with
ASD [2]. Diarrhea, constipation, vomiting, reflux, abdominal pain/discomfort, flatus, and
unusually foul-smelling stools are more frequent than in healthy controls [181,182]. In a
large sample of adult ASD patients, GI complaints are reported in 21% of patients [183].
A meta-analysis from ‘Pediatrics’ confirmed a higher prevalence of GI symptoms among
children with ASD compared with control children [12].

Abnormalities in GI motility and intestinal permeability have been reported [175].
Studies report a wide range of variability of GI symptoms, from 9 to 70% [184]. Differ-
ences in studied populations and different assessment tools for symptoms might explain
these differences. What is not in dispute is that GI disturbances represent a topical issue
among health needs for people with ASD, with severe impacts on wellbeing and variably
contributing to behavioral abnormalities [182,184]. Difficulties in the recognition of pain
in people with intellectual disability make it easy to underdiagnose pain and discomfort.
The risk of underestimation is even higher in ASD, due to difficulties in communication
and abnormalities in the neural integration of somatosensory afferent inputs. For this
reason, proper tools for GI symptoms and pain evaluation should be systematically in-
cluded in clinical assessment and parallel monitoring of behavioral symptoms and of any
other ailment should be provided [185]. In fact, inputs from the internal environment, as
well the influence of external environmental factors, represent antecedent events preced-
ing behaviors, and requiring evaluation according to the behavioral functional analysis
methodology [186]. Therefore, a preliminary medical assessment for the identification
and treatment of pathophysiological comorbidities of ASD is expected to achieve optimal
outcomes according to a multidisciplinary approach [187,188].

Neuroinflammation in ASD might have links with epilepsy [189]. In a population-
register study, a quarter of children with ASD had epilepsy, in contrast to 1.5% of population-
based controls [190]. Berg et al. report a prevalence of 7% among children with no motor
deficits or severe intellectual disability, compared to 42% in people with motor deficits
and severe intellectual disability [191]. The above-mentioned evidence of immunologic
abnormalities in ASD suggests a possible role of neuroinflammation in the pathogenesis of
epilepsy [192]. Inflammatory mediators, such as IL-1β (imterleukin-1 β), TNF (tumor necro-
sis factor), HMGB1 (high mobility group box 1), TGF- β (transforming growth factor-β),
and prostaglandins, can alter neuronal, glial, and blood–brain barrier functions by activat-
ing transcriptional and post-translational mechanisms in brain cells. Furthermore, a role
by brain mast cells in neuroinflammation is reported, and the involvement of these cells is
hypothesized in the pathogenesis of epilepsy in a group of ASD people [192]. The impact
of immune abnormalities on the occurrence of epilepsy in ASD is of utmost interest and
deserves further study.
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In summary, clinical findings confirm the pivotal role of immune abnormalities and
the gut–brain axis in ASD. Therefore, expertise in medical assessment for comorbidities
should be warranted.

1.9. Mitochondria/Oxidative Stress . . . and the ‘Bad Trio’

Increasing and converging evidence suggests a pivotal role for mitochondria in neu-
rodevelopmental disorders [193]. Beside the generation of energy in the form of ATP,
mitochondria encompass a wide array of functions, ranging from metabolite and redox
signaling to the regulation of nuclear gene expression and epigenetics [194–196].

Notably, energy provided by mitochondria oils the epigenetic machinery, allowing
selective access to specific DNA sequences by regulating the various levels of chromatin
structure, from nucleosomes to chromatin fibers [197]. In neurodevelopment, mitochondria
emerged as key regulators of neural stem cell fate decisions, impacting neurogenesis both
in neurodevelopment and in adult mature brains [198].

Many studies have shown that mitochondrial dysfunction contributes to placental
pathology underpinning gestational disorders [199]. Mitochondria are sensitive stress tar-
gets in the placental microenvironment. Placenta development and a successful pregnancy
are under a precise oxygen-dependent control of trophoblast migration/invasion [200] and
maternal immunity [201], since a regulatory loop might exist between trophoblasts and
maternal immune cell subsets, promoting the harmonious maternal–fetal crosstalk [202].
Persistent low oxygen pressure, leading to failed trophoblast invasion, promotes inade-
quate spiral artery remodeling, a characteristic of preeclampsia [200].

Mitochondrial dysfunction and oxidative stress are two major and interconnected
metabolic abnormalities associated with ASD, since oxidative stress causes mitochondrial
dysfunction and dysfunctional mitochondria produce Reactive Oxygen Species (ROS) [203].
Thus, mitochondrial dysfunction can be at the same time the cause and/or the result
of oxidative stress. In fact, excessive free radical production can lead to mitochondrial
damage, and, in turn, the damaged mitochondria are prone to release increased amounts of
ROS; this process is maximized in what has been termed ‘Ros-induced ROS release’ [204],
but is also a common evidence in pathologies characterized by chronic oxidative stress.
Under this perspective, the primary source of mitochondrial dysfunction may be oxida-
tive stress itself, which in turn may originate from manifold ROS-generating processes,
including chronic inflammation [205], metabolic dysfunctions [206,207], exposure to heavy
metals [208], and other environmental issues. Indeed, several environmental factors, in-
cluding toxicants, microbiome metabolites, and an oxidized microenvironment are shown
to modulate mitochondrial function in ASD tissues [203,209]. Both intrinsic and extrin-
sic stressors can impact the interplay by increasing ROS and/or reducing mitochondrial
function, thus prompting the establishment of a vicious circle [203,210]. Numerous ge-
netic abnormalities are associated with mitochondrial dysfunction in ASD [210–212]. Fur-
thermore, several environmental factors, including toxicants, microbiome metabolites,
and an oxidized microenvironment are shown to modulate mitochondrial function in
ASD tissues [203,209].

Traditional biomarkers commonly used to identify mitochondrial dysfunction include
lactate, pyruvate, alanine, and creatine kinase. A meta-analysis by Rossignol and Frye
demonstrated that ASD was associated with higher levels in lactate, pyruvate, lactate-to-
pyruvate ratio, alanine, creatine kinase, ammonia, and aspartate aminotransferase (AST),
and in decreased carnitine concentration [210,211]. Among mitochondrial dysfunctions,
abnormal activity of the electron transport chain (ETC) enzyme complexes—the machinery
fueling energy production—is reported in ASD children. Notably, these abnormalities
are found in mucosal samples taken both from rectum and caecum and might explain
gut dysmotility, higher sensitivity to oxidative stress, and abnormal functioning of en-
terocytes [213]. Oxidative stress results in damaged proteins and lipids in the cell, and
consequently impacts enterocyte function. Therefore, dysbiosis (that is imbalance in mi-
crobial metabolites) and oxidative stress might explain abnormal mitochondrial function
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in the caecum [213]. Additionally, gut dysmotility caused by mitochondrial dysfunction
would explain constipation observed in ASD and other GI symptoms [210,211]. Interest-
ingly, GI problems similar to those of autistic children have also been noted in children
affected by genetic syndromes in which mitochondrial dysfunctions play a central role in
the etiopathogenesis and having ASD among clinical features, such as Down syndrome and
Rett syndrome [210,211,214], again suggesting a link between mitochondrial dysfunction,
GI problems, and microbiota in ASD people.

Numerous studies have reported biomarkers representing abnormalities in fatty acid
metabolism in ASD [215]. ASD patients from Saudi Arabia were found to have elevations
in saturated fatty acids and depressions in polyunsaturated fatty acids as compared to
age-matched controls [216], consistently with previous results suggesting polyunsaturated
fatty acids, carnitine, and lactate as biomarkers of brain energy in children with ASD [217].

Children with ASD show low levels of the reduced form of glutathione (GSH), the
major intracellular antioxidant responsible for maintaining redox homeostasis and for
reducing ROS in the cytosol and mitochondria [215]. In addition, more than 30% of
ASD patients have elevations in acyl-carnitine, a cofactor carrying long-chain and very-
long-chain fatty-acids into the mitochondria. Interestingly, this same pattern of GSH and
acyl-carnitine abnormalities found in children with ASD [218] was also found in the rodent
propionic acid (PPA) model of ASD [219]—PPA being one of the most important microbial
metabolites believed to cause systematic mitochondrial dysfunction [218]—thus providing
further evidence for the association among PPA, mitochondrial dysfunction, and ASD [220].

This is consistent with finding of higher levels of PPA in fecal microbiota and metabolome
of children with ASD [161]. Balance in microbial metabolites (enough/not too much) signifi-
cantly impacts mitochondrial functions and influences GI activity. For example, butyrate is
converted into acetyl-CoA, which then is utilized in the citric cycle for NADH production.
NADH, on the other hand, is utilized by the mitochondrial ETC complex I, the main site of
entrance of reducing equivalents into the ETC, crucial for respiration and energy production,
and the main site of ROS production when it is dysfunctional [213].

Therefore, at least part of the effects of dysbiosis on neurodevelopment and GI in-
volvement in ASD seems to be mediated by mitochondrial impairment [210,211,221].

There are at least three possible connections between the GI tract and mitochondrial
abnormalities in ASD [222]. First, mitochondrial dysfunction itself could result in GI
dysfunction [223]. Secondly, there are common exposures to environmental stressors that
are associated with ASD that can affect both the mitochondria and the GI tract: pesticides
and heavy metals [224], exposure to drugs such as acetaminophen [225] or antibiotics,
either during pregnancy [226] or early in life [227–229], and more likely the exposure to all
these and other factors taken together [230]. Another plausible connection between gut and
mitochondrial impairment is represented by cell wall agents (i.e., lipopolysaccharide, [231])
or metabolites from enteric bacteria [160,221] and their effect on mitochondrial functions.

Among bacterial metabolites, the aforesaid propionate (PPA) is seemingly the Short
Chain Fatty Acid mostly produced by micro-organisms prevalent in the gut of ASD patients,
including Clostridia spp., Bacteriodetes, and Desulfovibrio spp. in ASD [163,173,174,232].
Furthermore, propionate is universally used as a preservative in processed food due to its
anti-fungal characteristics [233].

Maternal PPA exposure is one of the possible mechanisms interfering with neural
wiring during early stages of embryonic neural development and leading to a shift of
glial cells towards an inflammatory pattern [233]. Notably, the exposition of human fetal-
derived neural stem cells to PPA resulted in downregulation of PTEN expression and a
consequent differentiation shift to gliosis and neuroinflammation [233].

Another important point involving fatty acids is the organizational and functional
integrity of the cellular membrane. The membrane phospholipids—the building blocks of
membranes—are characterized by a balance in the diverse fatty acid residues (saturated,
monounsaturated, and polyunsaturated), which varies from tissue to tissue in the same
body [234], and is a condition-sine-qua-non for the normal health of the cells. An inade-
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quate dietary intake, poor availability of specific enzymes, and oxidative stress alter the
membrane lipids and the functionality of embedded proteins. Indeed, impairment in func-
tion of erythrocyte membrane proteins and lipids have been demonstrated as consequences
of increased oxidative stress in ASD. A very significant reduction of Na+/K+-ATPase
activity (−66%, p < 0.0001), a reduction of erythrocyte membrane fluidity, and alteration in
erythrocyte fatty acid membrane profile (increase in monounsaturated fatty acids, decrease
in EPA and DHA-ω3 with a consequent increase in ω6/ω3 ratio) were found in ASD chil-
dren compared to controls [235]. Interestingly, some clinical features of children with ASD
(in particular, hyperactivity and cognitive development) showed correlation with some
parameters of the lipidomic profile (saturated fatty acids, arachidonic acid) and membrane
fluidity, highlighting a pathogenetic key-point in ASD and a potential use of membrane
lipidome profile as useful biomarker for personalized therapeutic supplementation [236].
The importance of a correct membrane concentration of DHA-ω3 was confirmed in a study
of membrane lipidome, showing that the decrease of this fatty acid is not attributable to
dietary differences between healthy and diseased children, as evaluated by food question-
naire indicating, for example, fish consumption. Moreover, statistical significance test of
the ROC curve for DHA (p value = 0.0424) with a cut-off value at 4.08% gave a significant
odds ratio corresponding to 6.23 (p value = 0.017; IC 95%: [1.3956–27.8412]), indicating
that individuals with values of DHA < 4.08% (cut-off) have a probability of being autistic
6.23 times higher than those with DHA > 4.08%. [237]. A correlation between the reduced
membrane fluidity and striking morphological abnormalities in the shape of red blood
cells was also demonstrated [238], where most of the biological alterations resulted to be
ascribed to oxidative stress [238]. As noticed by the authors, findings suggest a plausible
dysfunction of erythrocytes in tissue oxygenation [238]. If so, a chronic state of hypoxia
in tissues is expected to worsen the oxidative stress, contributing to a vicious loop and
ongoing deterioration of health in ASD people.

A relevant increase in oxidative damage markers was further confirmed by protein
glycation, oxidation, and nitration adducts and amino acid metabolome in plasma and
urine of children with ASD [239]. Findings in people with ASD could be well described
by the striking definition of ‘pervasive oxidative stress’. Rossignol and Frye reviewed
interplay between oxidative stress and immune activation [210,211]. The increase in the
gene expression of IL6 and the stress protein HSP70i was demonstrated in ASD chil-
dren [240]. Furthermore, the study of the protein expression of the antioxidant enzyme
family of peroxiredoxins showed a significant increase in plasma of ASD children, support-
ing the link between oxidative stress and neuroinflammation in ASD [240]. The interplay
between mitochondria and immune response represent a complex bidirectional system
involving numerous mechanisms. Metabolic pathways such as tricarboxylic acid cycle,
oxidative phosphorylation, and fatty acid oxidation impact macrophage polarization and
T cell differentiation; mitochondrial ROS control immune cell transcription, metabolism,
and NLRP3-mediated inflammation; mitochondrial DNA can be released from mitochon-
dria into the cytosol and activate the NLRP3 inflammasome and production of IL-1β
and IL-18 [241]. Findings are consistent with the aforesaid immune abnormalities in
ASD [140], including higher inflammasome activation (in particular, NLRP3 activation)
than in controls [158].

In summary, the literature findings reported above suggest in ASD the existence
of a vicious circle between dysbiosis, immune response, and mitochondrial dysfunc-
tion/oxidative stress, a ‘bad trio’ which might start from the embryo-fetal period, impact
neurodevelopment, and even might cause a progressive worsening of the neurological
disorder. In fact, the same ‘bad trio’, if not stopped, might go on and contribute to the
worsening of the systemic disorder through all life.

The interplay between the main effector pathways causing the ASD phenotype and
acting during the embryo-fetal stage all through life is illustrated in Figure 1.
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Figure 1. Interplay between the main determinants of Autism Spectrum Disorder. MD, Mitochondrial dysfunction; MIA,
Maternal Immune Activation; ROS, Reactive Oxygen Species. In the new individual, matrilinear transfer of mitochondria
and microbiota adds to the genetic information stored in the maternal and paternal germinal cells. Environmental factors as
a whole may directly affect the epigenetic machinery, as it happens with heavy metals, or may influence the interconnected
molecular pathways involved in the ‘bad trio’ (mitochondrial dysfunction (MT)/oxidative stress (ROS) plus maternal
immune activation (MIA) plus dysbiosis). The ‘omniscient placenta’ [51] drives the metabolic and epigenetic regulation of
fetal programming, hence influencing the ontogenesis and the crucial early stages of neurodevelopment. The epigenome—
similarly to a software switching genes on and off [29]—is programmed in an adaptive and predictive sense by the
intrauterine and cellular microenvironment, setting the limits of physiological adaptations to the postnatal environment
and influencing the lifelong risk for diseases [43]. After birth, the same mechanisms involving environmental factors and
the ‘bad trio’ are at play, and may continue to undermine human health lifelong. As for neurodevelopment, the maximum
impact occurs in the first two years of life, which is the crucial time window for brain wiring.

1.10. Metabolomics: A Promising ‘Meaningful Web’ Describing a Biochemical Fingerprint

The evolving spectrum of clinical presentation and of laboratory findings in ASD
offers the challenge to understand and respond to similarly evolving health needs of a
growing number of people. Therefore, ASD is a paradigmatic situation urgently requiring
a dynamic and personalized approach. The availability of suitable diagnostic tools capable
of grasping the biological complexity seems to be the starting point.

Currently, sensitive, specific and early biomarkers are not available to detect ASD
before the clinical onset of behavioral abnormalities; therefore, professionals have at their
disposal only standardized clinical tools—interviews and behavioral scales—to make
diagnosis. In the complex biological scenario beyond behavior in ASD, so distant from a
linear model of ‘a symptom, a biomarker’, metabolomics opens new interesting avenues. In
fact, it describes the individual molecular phenotype and allows monitoring of its changes
over time.

The molecular phenotype closely reflects the result of interplay between genomics,
transcriptomics, proteomics, environmental factors, and gut microbiota [242], and might
thus be associated with the type and degree of the behavioral/cognitive impairment and
with functional neuroimaging [243].

Metabolomic approach represents the phenotype by the detection and the representa-
tion of metabolites, low-molecular-weight end-products of cellular metabolic pathways,
which in turn are influenced by genetic and nongenetic factors. Metabolomics allows
the systematic identification and quantification of the global collection of all metabo-
lites, namely the metabolome, recognizable either in biological fluids (e.g., urine) or in
tissues [244]. Metabolites can be identified and characterized in their elemental compo-
sition, molecular charge and mass, stereochemical orientation, and order of atoms [245].
Metabolomics accurately identifies metabolites involved in the same pathway as well as
the metabolic network shaped by nodes (metabolites) and their interactions (scale-free
network models) [246]. In other words, metabolomics provides a personalized description
through a ‘meaningful web’, representing the individual biochemical fingerprint.

Today, high throughput technologies like proton nuclear magnetic resonance (1H
NMR) spectroscopy, liquid chromatography, and gas chromatography coupled with mass
spectrometry (LCMS and GCMS, respectively) and further sophisticated analytical methods
are outstanding tools that allow researchers to accurately explore the metabolome and its
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variations over time in various perinatal conditions involved in ASD etiology, for example
perturbations of the gut–brain axis, due to gut dysbiosis, increased intestinal permeability,
inflammation, oxidative stress/mitochondrial dysfunction, well representing the ‘juniper
bush’ of ASD [242].

This means a great opportunity to search for new highly sensitive and specific biomark-
ers for early diagnosis of ASD, risk of regressive ASD [247], and further disorders in
neurodevelopment and psychopathology, up to adulthood [248,249]. In a similar way
to that of other neuropsychiatric disorders, ASD may be closely associated with several
maternal, fetal, and perinatal epigenetic factors that influence brain development and mat-
uration [250,251]. Metabolomics allows the discovery of biomarkers for an early diagnosis
and the monitoring of fetal and perinatal programming [252]. The detection of biochem-
ical patterns suggestive for the vicious circle within the ‘bad trio’—involving maternal
dysbiosis, immune activation, and oxidative stress—could allow early and personalized
interventions during pregnancy, with the possibility to closely monitor the effects of treat-
ment through changes in metabolomic profile. The urinary metabolome of ASD children
has been extensively studied, and some studies have been devoted also to the analysis
of the plasma metabolome. Mussap et al. reviewed most relevant metabolic pathways
and key metabolites implicated in ASD. The most discriminant metabolites in ASD were
involved in amino acid metabolism, antioxidant status, nicotinic acid metabolism, and
mitochondrial function [253]. Most of the studies in ASD reported abnormalities in gut
bacterial-derived compounds and in intermediary compounds of the Krebs cycle [254–256],
confirming the aforesaid pivotal role of oxidative stress, microbiota, and abnormalities in
mitochondrial function in ASD [203,210,211,221].

In summary, metabolomics approach opens very promising perspectives in diagnosis
and follow-up in ASD, allowing an early understanding of the individual ASD patient,
with evolving and unique needs.

2. New Methods for Renewed Diagnostic Tools: Machine Learning System in EEG

ASD is associated with abnormal neural connectivity [257–262], and some abnormali-
ties in brain development might be already detectable at birth.

Currently, neural connectivity is a theoretical construct that is hard to be measured,
but research in network science and time series analysis suggests that the neural network
structure—a marker of neural activity—is measurable by EEG [263].

Hustler et al. described three types of cortical construction abnormalities in ASD
(a) alterations to columnar structure that have significant implications for the organization
of cortical circuits and connectivity; (b) alterations to synaptic spines on individual cortical
units that may underlie specific types of connectional changes; and (c) alterations within
the cortical sub-plate—a region that plays a role in proper cortical development and in
regulating interregional communication in the mature brain [264]. The relevant involve-
ment of the cerebral cortex in the substantial alteration of the cortical circuitry explains the
unique pattern of deficits and strengths that characterize cognitive function. These findings
make electroencephalography (EEG) a plausible useful tool to detect these abnormalities.

The EEG can measure neural activity and may provide a useful tool to early detect ASD
in children, thus allowing the opportunity for early intervention. The potential usefulness
of EEG in ASD has been reviewed almost ten years ago [259], in order to examine evidence
for the utility of three methods of EEG signal analysis in the ASD diagnosis and subtype
delineation. All studies identified significant differences between ASD and non-ASD
subjects, confirming the presence of specific EEG abnormalities. However, due to the high
heterogeneity in the results, findings could not be generalized and none of the methods, if
taken alone, has been proposed as a new diagnostic tool [259].

Recent studies on this topic open new avenues and might represent a turning point
for the early diagnosis of ASD based on the analysis of electroencephalographic tracing
(EEG) supported by new adaptive artificial systems (ANNs). It was hypothesized that the
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atypical organization of the cerebral cortex in ASD might translate into an EEG signature
detectable through powerful analytical systems such as ANNs [265–267].

Using particularly advanced machine learning systems, it has been possible to build a
software able to distinguish almost perfectly the EEG from subjects with ASD from those
of neurotypical controls or with different neuropsychiatric disorders.

The new system, called MS-ROM/I-FAST, belongs to the family of systems developed
by the Semeion Research Centre. MS-ROM/I-FAST is a new and complex algorithm for
the blind classification of the original EEG trace of each subject, through the recording and
analysis of a few minutes of their EEG without any preliminary pre-processing [266]. A
first pilot study assessed the discriminatory power of the methodology in distinguishing
subjects with ASD from neurotypical controls. After the MS-ROM/I-FAST pre-processing,
the overall predictive capacity of the different automatic learning systems in distinguishing
autistic cases from the controls was constantly 100% [266]. Notably, these results were
obtained at different times and in separate experiments performed on the same training
and testing subsets. Furthermore, the similarities between the weight matrices of the
neural networks measured with appropriate algorithms were not influenced by the age
of the subjects, suggesting that the networks read invariant characteristics related to the
disconnection signature in the brain [266]. The results of the pilot study have been recently
confirmed. EEG data from ASD children were compared with EEG from controls affected by
other neuropsychiatric disorders. With the training-testing protocol, the overall predictive
capacity of the machine learning system used to distinguish between ASD and controls
was constantly over 90% [267]. Along this research area, it would be of utmost interest
to extend EEG tracks recording within the first year of life, with the purpose to use this
technique as a specific, sensitive, non-invasive, non-expensive tool for early detection of
the signature predictive for ASD. The potential usefulness of this methodology might be
extended to find out possible different EEG signature in ASD subgroups with different
onset (early/regressive autism) and different phenotypes. Furthermore, this tool could
monitor the evolution of EEG abnormalities, find hidden links with clinical and laboratory
biomarkers and monitor the effect of therapeutic interventions.

3. Discussion

Big data from basic research performed over the last ten years need to be translated
into clinical practice. Knowledge about the increasing complexity in the etiopathogenetic
pathways of diseases is the premise for the suitable adaptation of strategies for prevention,
diagnosis, and treatment according to the evolving health needs of the population. In
neurodevelopmental disorders—in particular in ASD—most current statistical methods do
not seem suitable to study not linear, complex, and fuzzy interactions involving genome,
epigenome, environmental factors, and nervous–immune-endocrine interplay, and to do
so along a pathway that starts even before conception.

Most of available studies have been designed on the basis of methods developed in the
first half of the past century, when the scenario was dominated by acute infectious diseases
and linear models apparently succeeded in describing the phenomenon. In the last century,
the epidemiological scenario has profoundly and dramatically changed, and traditional
methods seem to be able to assess only a very small part of the phenomena, if compared
to their intrinsic complexity. Consequently, the development of methods consistent with
the complexity of the phenomena seems to be the premise for personalized medicine,
able to avoid the narrow view of what is well known, leaving out the broader horizon of
the unknown.

ASD is a paradigmatic condition within the epidemiological transition occurring
in the last decades toward the prevalence of non-communicable disorders and diseases,
which requires a plausible pathogenetic mechanism able to explain both epidemiological
and clinical findings, that is the combination of the striking increase in prevalence with
the multifaceted phenotype. The need for a scientific consensus on a comprehensive
paradigm is much more than a theoretical issue. In fact, the coherent translation of the
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pathogenetic model into clinical practice is the premise for effective preventive strategies
and comprehensive answers to the complex health needs of ASD people.

In order to do so, a dynamic and systemic perspective—starting with the care for
women’s health before pregnancy occurs—seems to be the most promising approach to
face this major public health issue, both for current needs and in the future perspective.

Embryo-fetal brain development is profoundly influenced by numerous interacting
environmental factors, named ‘exposome’ as a whole. Both in intrauterine and in post-
natal life, environmental information converges on three major interacting/overlapping
pathways: dysbiosis, mitochondrial impairment/oxidative stress, and immune activa-
tion (named MIA during pregnancy). As a whole, the three above-mentioned effector
pathways—as a pathogenetic trio-impact epigenetic machinery. The matrilinear trans-
mission of both microbiota and mitochondria [268,269] further enforces the need for ef-
fective women’s health programs, which are even more important in the presence of
known risk factors for ASD, such as of the occurrence of neurodevelopmental disorders in
previous offspring.

Prenatal factors are expected to influence development more than all others, and are
not limited to brain alone. The multifaceted phenotype and endophenotype found in ASD
people are consistent with a multisystemic and evolving disorder. In fact, metabolomic
data concerning the ‘bad trio’ are representative of a systemic and evolving inflammatory
syndrome. Findings seem consistent with the high prevalence of obesity in ASD and
obesity-related disorders (type 2 diabetes mellitus, hypertension, hyperlipidemia, and non-
alcoholic fatty liver disease/nonalcoholic steatohepatitis) [270] and of metabolic syndrome
in psychiatric disorders [271]. The issue is of the utmost importance and presents funda-
mental healthcare issues. Among the environmental factors, diet is in the spotlight as a
fundamental tool for prevention and care in ASD. In particular, considering the frequent eat-
ing disorders [272] and use of edible reinforcers in educational intervention [273], the risk
of nutritional imbalance seems to be high in people with ASD and could—at least in part-
explain findings consistent with metabolic syndrome and oxidative stress [206,207,270].
Therefore, converging evidence suggests to include nutritional experts in the panel of
professionals in the healthcare model addressed to people with ASD. In fact, besides the
energy intake, diet impacts microbiota [274,275], immune function [276], and lipidic cell
membrane profile [277]. In other words, diet impacts most of the fundamental pathogenetic
mechanisms demonstrated in ASD. Consistently, an individualized and monitored dietetic
plan may play a central role in preventive strategies and care in ASD.

The proposal of a personalized nutrition plan is only an example aimed at glimpsing
the value of interdisciplinary models for clinical cooperation. Suitable diagnostic and
monitoring tools are required to grasp the whole complexity of ASD and translate it
into concise information, easy to be used by clinicians. Currently, metabolomics and
machine learning systems seem to be respectively the ‘materials and methods’ of a foreseen
tremendous impact both in research and clinical practice in the field of ASD.

The dynamic trajectory of individual brain connectome and the ‘multiple-hits’ frailty
encourage best efforts to attain the early detection of any biological abnormality potentially
impacting neurodevelopment, in order to restore the best balance as soon as possible, hope-
fully in the period of maximum neuroplasticity. Waiting for the availability of metabolomics
in clinical practice in the next years, the question arises as to how to start transferring
current biological knowledge into medical advice as soon as possible. The involvement
and relevance of the gut–brain axis, dysbiosis, increase in intestinal permeability, and
abnormal lipidic composition in cell membranes in ASD provide some useful suggestions
for the adaptation of clinical assessment. Biomarkers such as fecal calprotectin, zonulin,
erythrocyte fat profile, analysis of the microbiota, and of fecal microbial metabolites (mainly,
lactate, propionic acid, and butyrate) characterize subgroups of people requiring specific
diagnostic and therapeutic interventions addressed to expected and easily testable organic
needs. The inclusion of such biomarkers in clinical trials is expected to contribute to the
proper evaluation of the effectiveness of interventions on behavioral outcomes.
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4. Conclusions

Current hardships experienced by autistic people and by their families, and the
expected worsening of their troubles in the coming years are telling all of us that it is not
time to rest on laurels.

Perhaps it is time to stop a while and take stock of the situation, in order to prevent
the plethora of data by the literature that might take the scientific community away from
people’s needs instead of match them.

Therefore, ‘joining the dots’ seems to be the premise for a comprehensive and ef-
fective healthcare model addressed to ASD people. A multidisciplinary approach and
interdisciplinary sharing of knowledge seem to be the only way to answer their complex,
evolving, and unique needs. Figure 2 suggests an interdisciplinary healthcare model that
is coherent with the contents of this review and comprehensive of their translation into
clinical practice.

Figure 2. Mother’s health is the premise for a successful intrauterine life. During pregnancy, the gynecologist ensures
the best control of risk factors and the enhancement of protective factors, largely related to proper maternal nutrition and
supplementation. After birth, the baby–mother dyad is supported by the neonatologist–gynecologist duo. The qualified
support for the well-being of the mother is integrated by neonatal care, which includes the best conditions of neurosensory-
motor integration aimed at the physiological postnatal neuronal wiring. With variable times and modalities—mostly
depending on the outcome of the pregnancy and the characteristics of the newborn—the child’s care is subsequently
entrusted to the pediatrician, who provides suggestions for a positive physical and neuro-psychomotor development. In
case of clinical abnormalities, the pediatrician prompts diagnostic pathways and early interdisciplinary interventions based
on clinical and laboratory findings. In the event of motor and/or socio-communicative abnormalities, the pediatrician
consults the neuropsychiatrist, who shall consider whether to include standardized diagnostic tools for ASD in the
clinical assessment. The diagnosis of ASD is followed by further diagnostic evaluations (neurophysiologist, geneticist),
functional assessment, and timely psychoeducational evidence-based interventions. The neuropsychiatrist orchestrates
the cooperation of numerous professionals (psychologist, educator, occupational therapist), monitors the results, and
tailors the supports according to the evolving skills and needs. In parallel with the neuropsychiatrist, the pediatrician
prompts a clinical assessment according to the expected comorbidities in ASD, involving in particular gastroenterologist,
allergist-immunologist, and nutritionist. A close collaboration with the neuropsychiatrist allows the best integration
of physical and neuropsychiatric aspects, involving at the same time professionals linked both to the pediatric and the
neuropsychiatric sides. The transition towards adulthood requires a handover on both levels of intervention, from the
pediatrician to the general practitioner for the biological features, and from the neuropsychiatrist to the psychiatrist for the
psychiatric sphere. The connection between the two levels (body and mind) is maintained even in adulthood. It should
be noted that the above described structured model acquires worth and meaning if it places in the center the person with
ASD and his/her family, as the main stakeholders of a flexible model, able to adapt to the evolving needs and favoring the
highest level of feasible well-being.
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The author panel proposing the review well represents the ‘spectrum’ of expertise
required for advice in the evaluation of ASD patients. In other words, the heterogeneity
of their expertise represents the implementation of the need for developing ‘skills in
communication and social interaction‘ that is the intriguing challenge that ASD is posing
to all of us.
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