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Emilio López Cano (Associate Professor) works in the field of Computer Science and Statistics

at Rey Juan Carlos University. His research interests include applied statistics, statistical learning,

and methodologies for quality. He has given more than 1,000 hours of in-company training. He is

the author of the SixSigma R package, published in the CRAN repository with an average of 1500

downloads per month, and of two monographs on quality methodologies with R in Springer. He is

constantly transferring research results with companies via technology transfer contracts. He is also

the president of the technical subcommittee of standardization UNE (member of ISO) CTN 66/SC 3

(Statistical Methods), a collaborating teacher in the Spanish Association for Quality (AEC), and the

president of the R Hispano association (Spanish R users group).

vii





Citation: Ortega, F.; Cano, E.L.

Sensor Data Analytics: Challenges

and Methods for Data-Intensive

Applications. Entropy 2022, 24, 850.

https://doi.org/10.3390/e24070850

Received: 2 June 2022

Accepted: 17 June 2022

Published: 21 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Editorial

Sensor Data Analytics: Challenges and Methods for
Data-Intensive Applications

Felipe Ortega * and Emilio L. Cano *

Data Science Laboratory, Research Centre for Intelligent Information Technologies, Rey Juan Carlos University,
28933 Madrid, Spain
* Correspondence: felipe.ortega@urjc.es (F.O.); emilio.lopez@urjc.es (E.L.C.)

Sensors have become a key element for the development of the Information Society.
An ever-increasing number of improved sensor devices capture information for decision-
making tools, either to be interpreted by humans or to be plugged back into the system
for autonomous operation, self-diagnostics and resilience. It is possible to find sensor
applications spanning almost any area, including healthcare and medicine, retail and
logistics, smart agriculture and animal farming, industry digitalisation, smart cities, energy
grids, transport or security, among many others [1]. Analytics is a term connected to
the practice of data science that refers to the analysis of data using statistical tools and
techniques, machine learning, information theory, pattern recognition and other methods.
Outcomes stemming from this task constitute essential inputs for data-driven decision-
making [2,3].

The current overabundance of data, generated in many cases by sensors, together
with the refinement of standard methodologies for data science and engineering [4] has led
to the rise of a fourth scientific paradigm, the so-called data-intensive scientific discovery [5].
Indeed, one of the most challenging aspects for the development of data-intensive applica-
tions has been how to cope with massive and complex datasets effectively, especially in
situations in which real-time requirements arise [6,7]. In this regard, sensors provide an
unrivalled data source to match these needs, as they can provide timestamped information
with enough level of detail to characterise observed phenomena adequately.

Information theory [8] plays a central role for knowledge extraction in sensor data
analytics, such as the analysis of data in the frequency domain [9], the essential concept of
entropy [10] and efficient data representation and compression [11]. As a result, many new
methods based on information theory have been developed in modern data science [12].
This Special Issue presents nine original contributions encompassing a wide variety of
sensor data analytics applications, in which information theory is used to obtain knowledge
from data in different domains.

Gajowniczek et al. [13] develop a novel method for data streams clustering, applicable
to complete time series representing customer electricity consumption. This method lever-
ages new Fast Fourier Transform (FFT) [9] features to improve its performance, showing
the importance of information theory principles in this type of analysis. Wearable sen-
sors tracking human activity and behaviour are at the core of several works, including
applications in rehabilitation of visually impaired people [14], automated human activity
recognition [15] and walking behaviour detection for elderly people [16]. The last two
works attach importance to the application of information gain and neural networks to
detect activity profiles accurately. Alfaro et al. [17] propose a new method to distribute the
training process using the SVM algorithm, which can be applicable to Wireless Sensor Net-
works (WSN), aggregating the local contributions from individual sensors using Voronoi
regions. Once again, this demonstrates the critical role of information aggregation in this
kind of energy and location-aware sensor application. Sensor placement optimisation is
the topic of another work [18], using Gaussian priors and the Fisher Information Matrix
(FIM) to show important properties that can enhance recommendations on the best possible
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location for a given device set. Sun et al. present an interesting application of sensor data
analytics to estimate vehicles accident risk [19]. This is an emerging topic that raises signifi-
cant interest among insurance companies, taking advantage of the more precise tracking
capabilities enabled by built-in sensors installed in vehicles. In turn, Esteban-Escaño et al.
present an interesting application of sensor data analysis to predict acidemia in electronic
fetal monitoring [20], using machine learning algorithms, stressing the use of cross-entropy
optimisation function along this process, to adjust the best possible predictive model. Fi-
nally, the last work [21] presents a novel methodology for cattle behaviour profiling and
classification that, again, uses both time-domain and frequency-domain features to improve
the accuracy of this classification task.

In summary, these contributions offer a diverse and representative portfolio of sensor
data analytics applications in different scenarios, in which information theory and data
science methods perform a central role in order to successfully accomplish the proposed
challenges in each case.

Funding: This research received no external funding.
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Abstract: Data from smart grids are challenging to analyze due to their very large size, high dimensionality,
skewness, sparsity, and number of seasonal fluctuations, including daily and weekly effects. With the
data arriving in a sequential form the underlying distribution is subject to changes over the time
intervals. Time series data streams have their own specifics in terms of the data processing and data
analysis because, usually, it is not possible to process the whole data in memory as the large data
volumes are generated fast so the processing and the analysis should be done incrementally using
sliding windows. Despite the proposal of many clustering techniques applicable for grouping the
observations of a single data stream, only a few of them are focused on splitting the whole data
streams into the clusters. In this article we aim to explore individual characteristics of electricity
usage and recommend the most suitable tariff to the customer so they can benefit from lower prices.
This work investigates various algorithms (and their improvements) what allows us to formulate
the clusters, in real time, based on smart meter data.

Keywords: clustering; data stream; machine learning; smart metering; time series

1. Introduction

The advances in smart metering solutions have enabled that gathering information about customer
power consumption in real time is feasible and it can be successfully used for data exploration to bring
actionable recommendations. The data (in the form of a time series) from the smart grid still makes
challenges to analyze it due to the very large size, high dimensionality, skewness, sparsity, and number
of seasonal fluctuations, including daily and weekly effects. Although the analysis requires a lot of
effort to discover the segmentation of entities based on their electricity consumption data, the benefits,
as the result of the data insights, would be very appealing to the electricity providers [1]. By supplying
providers with demand response predictions on aggregated level, due to segmentation (other terms
such as clustering and grouping are used interchangeably), and revealing the real economic structure
of the entities (e.g., individual users, households, small business) the goal is to fit into the integrated
planning system, where the appropriate real-time actions could be proposed to meet the system
demands effectively [2]. Well recognized consumption patterns itself are also a source of valuable
insight to determine optimal tariff rates for the users and to deal with the spikes in electricity demand.

The analysis of the data streams (in this article we deal with time series and therefore we will use
term time series data streams as well) coming from the grid over consecutive time windows allows
for a better understanding of the usage characteristics. With the data arriving in a sequential form
the underlying distribution is subject to changes over the time intervals what is referred to as concept
drift [3,4]. For example, the changes in smart meter streaming data may be the result of many factors,
including those related to weather conditions, to week days or those related to price incentives [5].
It is often observed that smart meter readings received at an instant intervals may have a dynamic
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distribution or may contain a large number of sparse and missing values. Therefore, traditional
algorithms are not applicable directly nor suitable for these type of data as they extract patterns from
data by assuming the global properties (what requires the complete training data set), rather than
capturing the local ones.

Time series data streams have their own specifics in terms of data exploration and processing,
because, usually, it is not possible to process the whole history in memory. The reason for that is that
data are coming very fast so the processing and the analysis should be done incrementally using sliding
windows (overlapping or non-overlapping) or using other approaches like the stochastic learning weak
estimators [6]. Classical clustering algorithms aim to divide a set of objects (observations) into groups so
that objects in the same group are more similar to each other than objects in other groups. The literature
on time series data stream clustering makes a distinction in terms of what is the subject of grouping [3].
The first approach tries to cluster observations from a single univariate or multivariate time series data
stream through lots of promising tools and methods [7]. On the other hand, second approach tries to
analyze multiple time series data streams, generated by several sources (e.g., smart meters), in order
to find a division of sources. In literature the latter problem is also known as attribute clustering [8].
Despite the proposal of many clustering techniques dedicated for the first approach, only a few of
them are dedicated to the second approach. Due to that in this article we focus on multiple time series
data streams clustering, as this is one of the most important challenge in data stream mining.

In many countries, all over the world, the retail electricity demand side of the market consists
of several groups of end users. In Poland, for instance, the vast majority of consumers belong to the
so-called tariff group G (mostly households). Other end users belong to so-called tariff groups A
(top, strategic customers), B (large, key customers) which are supplied from the high and medium
voltage grid, while group C consists of customers connected to the low voltage grid, consuming
electricity for business purposes and they are called commercial customers [2]. For low-voltage
households, operators have set up several different tariff groups which differ in the time zone (single or
two time zone meters) and whether or not electricity is used for heating. The most general tariff group
for households is G11, i.e., customers with single time zone meters and flat price per kWh. The other
tariff groups, G12, G12r, and G12w, are time and weekdays. G12 is effective between 10 p.m. and 6 a.m.
and between 1 p.m. and 3 p.m., while G12w is additionally effective during the weekends (between
10 p.m. on Friday and 7 a.m. on Monday). G12r is effective seven days a week between 10 p.m. and
7 a.m. and between 1 p.m. and 4 p.m.

The main goal of this article is to investigate technical aspects of the existing clustering algorithms
for time series data streams. The secondary goal is to explore individual characteristics of electricity
usage and to recommend the most suitable tariff to the customers so they can benefit from lower prices,
thus optimize the expenses. The research shall be conducted on the basis of a dataset provided by
the Irish Commission for Energy Regulation (CER; detailed analysis) [5] and two other datasets,
which are described later. We investigate various algorithms (and their improvements) what allows us
to formulate the clusters in real time based on smart meter data. Basically, we develop a clustering
approach applicable for data streams with the primary motivation to create well defined user profiles
what may further allow to create more predictable groups of customers. The contribution of this article
can be summarized as follows:

• We have created the framework and measures to compare and to evaluate time series data streams
clustering algorithms;

• New Fast Fourier Transformation based features were created (calculated in liner time) to compress
and to represent time series using the business context;

• Comparative study between the state-of-the-art time series data streams clustering algorithms
was prepared;

• Comparative study between overlapping and non-overlapping windows and their impact on the
choice of an optimal tariffwas prepared; and
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• Finally, an approach for dynamic consumer segmentation and prediction of an optimal tariff
was proposed.

We believe that our contribution would address the gap related to those aspects of dynamic
profiling where there was no clear conclusion with regards to the benefit of using overlapping vs.
non-overlapping windows and the impact of those on the results of clustering algorithms.

The remainder of this paper is organized as follows: Section 2 provides an overview of the similar
research problems for data stream time series clustering and electricity consumption segmentation.
In Section 3, the theoretical framework of the proposed algorithm is presented. In Section 4, the research
framework is outlined, including the details of numerical implementation, evaluation measure
description, and algorithm parameter settings. Section 5 outlines the experiments and presents the
discussion of the results. The paper ends with concluding remarks in Section 6.

2. Literature Review

Whilst the vast majority of customers belong to a single tariff with high volatility within
the group, it creates a number of challenges, including short-term and long-term forecasting to meet
the demand side response (DSR) of electricity operators, not to mention the stability of the whole
network [9]. Obviously, daily energy consumption does not depend only on the composition of the
customer’s tariffs, but also it depends on many external factors related to specific days, atmospheric
phenomena, and weather conditions [10]. Due to that, there is a need for an objective approach to
increase the effectiveness and efficiency of network management and operations by dividing mass
markets into consumer groups with clearly similar patterns of behavior. This can be supported by
statistical clustering methods what helps to formulate valid and meaningful clusters based on the
available measurements data e.g., hourly.

Given the huge number of low-voltage customers, especially households, hourly measuring and
recording equipment are a serious shortage. Both, the future demand and the initial settlement of
customers are determined based on the load shape associated with specific tariff group. In that case,
a similar energy demand structure determines the number of groups. Statistical and engineering
techniques [11–14], time series [15–17], and neural networks [16,18,19] are used for load profiling.
Based on the literature review, there is a clear and increasingly recognizable research trend that
addresses the challenges of segmentation of electricity end-users. For example, the application of
the k-means algorithm for clustering of the daily load profiles of individual users was described
in [17,20–22]. A comparison of clustering algorithms for classifying household electricity consumers
Kohonen’s self-organization map (SOM), and including hierarchical clustering, was analyzed by [2,23].

The literature on data streams clustering is quite extensive and includes the methods (1) aiming at
grouping of the observations of a single data stream; and (2) proposals that monitor the proximity
between multiple data streams in order to find the division of streams into clusters. The state-of-the-art
survey of a multivariate or single univariate data stream clustering methods is available in [3]. Authors
have presented a comprehensive survey on this phenomenon which discusses various types of data
stream clustering techniques and the corresponding challenges. So far, most of the attention has been
devoted to observations-based data streams clustering, which focuses on clustering of the observations
from the single data stream. Reference is made to several categories of methods, including: Grid-based
stream methods, partitioning stream methods, density-based stream methods, hierarchical stream
methods, and growing neural gas-based methods. The flagship methods in those categories are:
Str-FSFDP [24], MuDi [25], D-Stream [26], ClusStream [27], DBSTREAM [28], BIRCH [29], E-Stream [30],
and StreamKM++ [31].

A more detailed analysis of the literature on grouping of multiple data streams (or time
series stream), which is the subject of this article, is desired. For example, the recent methods
are constructed in a way to ensure the division of streams over time [32–39]. All of them monitor the
proximity of data streams using a record flow and introduce some strategies to obtain partitioning of
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streams into a set of clusters. Other interesting methods, such as [40–43], are focused on monitoring
proximity between streams, but these do not include a grouping stage.

In the broader context of the techniques used for electricity consumption data driven by explosive
growth of time-series data and the capability of the methods there are interesting attempts which
propose a cohort of dominant data set selection algorithms for electricity consumption time series with
a focus on discriminating the dominant data set that is a small data set but capable of representing the
key information carried by time series with an arbitrarily small error rate [44].

Authors in [34] discussed the clustering on-demand framework (COD) involving a single data
scan to derive online statistics. The COD consists of two stages, namely the online maintenance
(providing an effective mechanism for maintaining hierarchical summaries of data streams) and offline
clustering (finding approximations of desired sub-streams from the summary hierarchy according to
cluster queries). Based on this algorithm Chen [39] introduced the CORREL-cluster algorithm offering
a time horizon segmentation scheme and statistical information storage for each time segment.

A tree-like hierarchy of clusters evolving with the data and using a top-down strategy has been
introduced in [38]. The Online Divisive-Agglomerative Clustering algorithm (ODAC), incorporates
correlation-based measure of similarity between time series, dividing each node by the furthest pair
of streams. Due to the splitting and merging, operators algorithm is able to detect and to adapt to
the data in the presence of the concept drift. The performance of the ODAC algorithm has been next
improved by TS-Stream algorithm which calculates several descriptive time series measures and builds
a decision tree [37]. Adequate measures are selected on the basis of the criterion of minimizing variance.
As previously, the algorithm can gradually expand or reduce the tree according to changes in the
stream that change the node variance. Finally, in [45] authors have presented an extended version of
the TS-Stream algorithm, that overcomes some base algorithm drawbacks. After those modifications
the final tree structure reaches its full size immediately and it can have leaves with the number of time
series above a certain threshold (otherwise the tree would be very complex and deep).

Algorithm called IDEStream has been introduced by [39]. In this approach an autoregressive
modelling (AR) is used to measure the correlation between data streams and it uses the estimated
frequency spectrum to extract the relevant data stream characteristics such as attenuation rate, phase,
and amplitude. Authors in [36] presented a two phase algorithm which uses a gamma mixture model
to identify dense units of incoming data in the first phase. Aim of the second phase is to cluster the time
series from one time window, while third phase performs incremental clustering between received
groups of two consecutive time windows.

In [32] authors have developed a powerful online version of the fuzzy C-means algorithm
(FCM-DS), allowing to quickly calculate the approximate distance between the streams, thanks to the
scalable online transformation of the original data. In [35] authors have presented an algorithm called
ClipStream where time-series are compressed and represented by interpretable features separated
from clipped representation. Next, based on such data transformation the K-medoids method with the
Partition Around Medoids (PAM) algorithm cluster the data streams.

Finally, paper [8] presents a strategy which is based on the independent processing of incoming
data batches, through a preliminary summarization using histograms, followed by local clustering
carried out on histograms, which ensures further summarization of the data. To track the proximity of
data between data streams over time they used local clustering outputs to update the proximity matrix.

3. Time Series Data Streams Clustering Algorithms

3.1. Notations and Data Representation

A time series is an ordered sequence of values of a variable at equally spaced time intervals

(e.g., 30 min electricity load readings). Let us assume that, s j =
{
sj,1, sj,t, . . . , sj,n

}T
is a partial realizations

from a j-th ( j = 1, . . . , m) real-valued processes Sj =
{
Sj,t, t ∈ Z

}
. Formally, the problem of grouping

the time series data streams can be defined as follows. Let S =
{
s1

T, sj
T, . . . , sm

T
}

be the data stream

6
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composed of m time series each of length n (S is a matrix with m rows and n columns). For a l-th
(l = 1, . . . , k) overlapping or non-overlapping time windows (blocks) with w time slots (intervals),

Bl (with partial realization b j =
{
bj,1, bj,t, . . . , bj,w

}T
) is a subset (of columns) of S, i.e., a matrix

of dimension m × w (each block consists of a subset of times series from the same time interval.
For a given block, Ll =

{
Ll1 , Llo , . . . , Llp

}
represents a partition (of rows) of Bl such that Llo is the o-th

cluster of Ll, Llo ∩ Llp = ∅, ∀o � p and ∪p
o=1Llo = Bl [37].

An exemplary data representations for overlapping (bottom part) and non-overlapping (upper part)
windows with final clustering are depicted in Figure 1. On both figures on the left-hand side, there are
m time series data streams, S, divided into k blocks each of length w (here w = 5). The right part of this
figure illustrates an exemplary partition of the m time series from the l-th window (Bl) into Llp cluster.
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Figure 1. An exemplary data representation model with clustering: (a) Non-overlapping windows,
(b) overlapping windows.

3.2. Histogram-Based Clustering Algorithm

The algorithm presented by [8] is composed of 4 main phases, where phases 1-3 are done online,
while phase 4 is done offline. The goal of the phase 1 is to represent each time series data stream as a
series of histograms by dividing the incoming data into (by default) non-overlapping time windows
(this assumption will be further extended) and calculating the histogram of each l-th window:

Hl
j =
{
(I1,π1), . . . ,

(
Ip,πp

)
, . . . , (IP,πP)

}
, (1)
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where Ip denotes P successive bins/intervals associated with the relative frequencies πp (weights),
which sum up to 1. In this way, one can obtain, for each time window, a set of histograms which
become the input for the local clustering procedure.

The purpose of the phase 2 is to get a local data partition (using BIRCH algorithm [29]) on a set of
histograms that summarize the data behavior in each window. In order to do that the L2 Wasserstein
metric (distance) should be introduced, which simply calculate the distance between any two histograms
Hl

k and Hl
j. As shown in [46] this metric requires an initial homogenization step to ensure consistency

of distance calculations, which is based on the histogram configurations. Since all histograms are
uniformly dense in each Ip interval, their quantile functions Ql

j are piecewise linear. Aforementioned

homogenization step consists in dividing Ql
j functions in such a way that piecewise linear functions

are defined on the same set of h cumulative probability values qv =
v∑

p=1
πp, (v = 1, . . . , h) [8]. To make

the computation faster, according to the authors [46], each bin Iv =
[
Iv; Iv
]

in the histogram can be

represented as a function of a radius and a center, i.e., Iv = [cv − rv; cv + rv], where cv =
(
Iv + Iv

)
/2 is

the centre of each interval and rv =
(
Iv − Iv

)
/2 is the radius. Finally, using this representation the L2

Wasserstein distance is as follows:

d2
W

(
Hl

k, Hl
j

)
=

h∑
v=1

πv

[(
ck

v − cj
v

)2
+

1
3

(
rk

v − rj
v

)2]
. (2)

The formula allows to take into account the features of two histograms being compared in terms
of shape, range and location.

To perform a local clustering on l-th batch, aforementioned BIRCH algorithm requires two

information about each o-th group (o = 1, . . . , p), i.e., histogram centroid (average) Hl
o and L2

Wasserstein-based variance σ2l
o. According to the [47] and based on the Formula (2), the mean

of a set of histograms of equal frequency is obtained by the average of the centers and the average of
the radii of the corresponding h intervals:

Hl =
{
([c1 − r1; c1 + r1],π1) . . . ([cv − rv; cv + rv],πv) . . . ([ch − rh; ch + rh],πh)

}
, (3)

where:

cv = m−1
m∑

j=1

cj
v; rv = m−1

m∑
j=1

rj
v. (4)

On the other hand, a volatility measure for a set of histograms is the average of the L2 Wasserstein
measure between each j-histogram and the average histogram defined in Formula (3):

σ2l =
1
m

m∑
j=1

d2
W

(
Hl

j, Hl
)
. (5)

The rationale in favor of this phase is to perform a single scan of the input data in order to obtain a
division into a large number of clusters with low variability. To do that authors in [8] adopted the basic
BIRCH algorithm to histogram-based data structures. Whenever a new time window is introduced,
the algorithm allocates each Hl

j histogram to existing micro-clusters or generates new micro-clusters
according to a fixed threshold u that controls the growth of heterogeneity in micro-clusters. In other
words, if the L2 Wasserstein distance to the nearest micro-cluster centroid is smaller than the predefined

threshold d2
W

(
Hl

j, Hl
o

)
< u then Hl

j histogram (representation of the time series data stream) is assigned

to this cluster, otherwise it creates entirely new cluster, with the initialized variance σ2l
o set to at the L2

Wasserstein distance to the nearest cluster.

8
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In phase 3 an update of the proximity matrix Al =
[
al(k, j)

]
is performed, which registers the

dissimilarities between the streams. The proximity matrix is updated incrementally (each cell al(k, j))
each time a new data window is processed in phase 2, therefore, it tracks the proximities over time,
using information only from the local partitions. If two histograms Hl

k and Hl
j fall into the same

micro-cluster the proximity matrix is updated by adding the value of the variance σ2l
o of this cluster:

al(k, j) = al(k, j) + σ2l
o. (6)

On the other hand, if these two histograms fall into different micro-clusters, the cell is updated by
adding the mean of two distances:

al(k, j) = al(k, j) +
d2

W

(
Hl

k, Hl
o

)
+ d2

W

(
Hl

j, Hl
p

)
2

, (7)

i.e., L2 Wasserstein distances to the nearest micro-cluster centroids for both histograms. This update
strategy allows to use only information from the micro-clusters, thus it requires only m2/2 operations.

Finally, phase 4 provides an ultimate global clustering of the time series data streams from Bl
block by grouping the updated proximity matrix into Ll. In order to obtain such partition DCLUST
algorithm [48] is employed which minimizes intra-cluster variability, expressed by the sum of the
dissimilarities between all pairs of elements within a cluster:

p∑
o=1

∑
k, j∈Llo

al(k, j) → min. (8)

According to the authors [8] histograms are fast to compute with the time complexity O(wP).
The generation and the update of histogram micro-clusters, through a single scan of the histograms in
a window, induces the time complexity of the algorithm is linear in m and p.

3.3. ClipStream Algorithm

The ClipStream algorithm is composed of two main phases [35], i.e., online data abstraction
(representation) and an offline clustering. The first data representation phase includes a fast and
incremental method of calculating feature vector from each Bl block named FeaClip and automatic
detection of outliers. The second offline phase aims at grouping of a new data abstraction, aggregation
of time series data streams in the cluster and the change detection process.

The feature extraction approach from the first phase is based on a so called clipped representation.
Let us first define a short window bshort as a subsequence of an original time series data stream s of
length z (z is shorter than window length w, and it could represent e.g., each day having 24 or 48
recordings; see also Section 3.1.) and a long window blong which consists of last d consecutive short
windows (therefore it is of length d ∗ z). Next, a new representation (with reduced dimensionality p < z)
of bshort is reprshort defined as below, first:

b̂short
t = f (x) =

{
1 if bshort

t > μ
0 otherwise

, (9)

b̂
short

is a clipped (bit-level) abstraction of the original block, where μ denotes a mean value of bshort.
Then, the compression method called Run Length Encoding (RLE) [49] is applied on this abstraction to
create the final representation reprshort (of length 8) defined as:

9
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reprshort =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max1 = max. from run lengths of ones,
sum1 = sum of run lengths of ones,
max0 = max. from run lengths of zeros,
crossings = length of RLE encoding − 1,
f0 = number of first zeros,
l0 = number of last zeros,
f1 = number of first ones,
l0 = number of last ones,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(10)

Finally, the ultimate reprlong abstraction is an union of d short representations reprshort
d which has

length d ∗ 8. Whenever a new window bshort
d+1 is arrived, first 8 features from reprlong are removed and

new reprshort
d+1 is attached to the end of reprlong.

Based on the calculated FeaClip abstractions of all available time series data streams, outlying values
can be easily and automatically detected by using domain knowledge. To automatize this, mean values
of crossings and sum1 are calculated for each stream and corresponding reprlong. Bead on these statistics,
lower and upper quartiles and IQR (interquartile range) are calculated to create box-and-whisker
diagrams, with threshold value λ set at 1.5. Time series with the characteristics that meet the
following conditions: Qsum1

1 − λ ∗ IQRsum1 ≤ x ≥ Qsum1
3 + λ ∗ IQRsum1 and x ≥ Qcrossings

3 + λ ∗ IQRcrossings,
are considered as non-outliers. Outlying values are not deleted from the whole clustering, they are
simply stored in memory, and after the clusters are determined, those objects are assigned to the
nearest ones.

Once the data representation phase is completed second offline stage follows to create the final
grouping. Only filtered (without outliers) reprlong representations are subject to clustering using
K-medoids method with Partition Around Medoids (PAM) algorithm [50] with Euclidean distance.
To capture the dynamic and evolving nature of time series data streams, the number of clusters should
also be determined dynamically. Therefore, the optimal number of clusters is determined on the
basis of the internal measure of Davies–Bouldin index [51]. During the first iteration of clustering
the number of possible clusters is determined in the range pmin − pmax, where p that minimizes the
Davies–Bouldin index is chosen. To speed up further iterations of clustering the optimal number of
clusters is selected from

〈
p− 2, p + 2

〉
, where p is the number of clusters from the previous iteration.

In order to carry out the process of grouping time series data streams only when it is necessary,
i.e., only when data streams evolve and change of distributions occur, a stage for detecting concept
drift is conducted. It detects changes of the Empirical Distribution Function (EDF) of the normalized
aggregated data stream within each cluster, using K-sample Anderson–Darling test, defined as:

A2
kw =

1
w

K∑
k=1

1
z

w−1∑
t=1

(wNkt − tz)2

t(w− t)
, (11)

where (according to the Section 3.1 and notation introduced at the beginning of this section) sj,t is the
t-th recording in the k-th sample, Nkt denotes the number of observations in the k-th sample that are
not greater than xt, where xt < · · · < xw is the pooled ordered sample (long window). Concept drift is
detected if p-value is less than the significance level α set at 0.05, however clustering is updated only if
one of these conditions are meet: (1) The number of detected changes is more than half of the grouped
p time series (number of clusters); (2) the number of detected changes is higher than in the previous
step of the sliding window.

According to the authors [35] the representation phase has the linear time complexity O(w)

with respect to the length of the time window. Outlier detection phase is linear O(m). The offline
phase consists of the PAM clustering algorithm that for each iteration has the quadratic complexity of
O(p((m−mo) − p)2), where mo denotes number of outliers.

10
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3.4. Extended TS-Stream Algorithm

The algorithm presented by [45] is an extended (improved) version of the algorithm presented in [37].
In general, it evokes a model with a structure similar to the decision tree, but built in an unsupervised
manner. The top-down strategy is employed to build the tree, starting from all times series data
streams in the same main cluster (root) and gradually creating partition or aggregations. Each indirect
node executes a binary test of a type f eaturevalue ≤ x for a specific time series descriptive measure.
Once a leaf is reached, the time series is stored together with other time series which belong to the
same leaf.

During the first step the algorithm calculates descriptive measures (here also called coefficients,
characteristics, indices) for each time series data stream. This gives a matrix of characteristics of the
dimension m× f , where f is the number of characteristics. To make all features comparable (which is
required when variance minimization criterion is used), for each column of the matrix the z-score
normalization of the form x = (x− μ)σ is performed. A simple and natural way to model each time
series data stream is to use generating functions to depict their behavior in time domain. Unfortunately,
many of the existing grouping techniques do not take into account specific characteristics of the
generating function, e.g., stochasticity, linearity, and stationarity. So, the algorithm employs many
descriptive measures in order to obtain the appropriate characteristics of the generating function to
better describe the resemblance between the series.

Authors in [37] claim that after their investigation of several descriptive measures such as Discrete
and Continuous Wavelet Transforms, Recurrence Quantification Analysis measures, Empirical Mode
Decomposition, Lyapuno, Discrete Cosine Transform, Detrended Fluctuation, Autocorrelation function
and Box and Jenkins model parameters, the best ones were Hurst exponent, Auto Mutual Information
(AMI) and Discrete Fourier Transform (DFT). Those indices have been chosen because they are efficient
to compute and provide high information gain (see Formulas (12)–(14), below).

The Hurst’s exponent, is a measure of long-term memory of the time series. It refers to the
auto-correlation of the time series and the rate at which it decreases as the delay between value pairs
increases. There are different estimating approaches of the exponent; the Scaled Range approach is
most often used. The Hurst, H exponent is defined in terms of the asymptotic behavior of the Scaled
Range as a function of the time series time interval, as follows [37]:

Rt

St
= ctH, (12)

where t stands for the time span of the observation, c is a constant, Rt is the range of the first t cumulative
deviations from the mean, and St is their standard deviation.

The second measure, which is Auto Mutual Information (AMI), provides insight of how much one
random variable explains the other variable. To calculate this characteristic, a histogram (with intervals)
has to be created. Let pi be the probability that the signal has a value inside the i-th intervals, and let
pij(τ) be the probability that st is in intervals i and st+τ is in intervals j. Then, the AMI for time delay,
τ, is defined as [37]:

AMI(τ) =
∑

pij(τ) log
(pij(τ)

pipj

)
. (13)

The last one is the Discrete Fourier Transform (DFT) [52] which describes time series in the
frequency domain. This transform, after receiving a time series st as input, provides a new series Xm of
n complex numbers, each one describing a sine function at a given frequency [37]:

DFT = Xm =
n−1∑
t=0

ste− j2πtm/n, (14)
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where j =
√−1. The Fourier transform helps to characterize the generating function of this time series

by indicating the most relevant frequencies, i.e., first 20 DFT coefficients of every time series in each
window with the highest energy have been retained.

To split the times series into different clusters/nodes, each time a dedicated function is called
which is accountable for finding the best coefficient for the binary test of the current node. This function
takes as its input normalized matrix of characteristics and aims to minimize the weighted variance
criterion of the form:

Gain = σ2(V) −
nle f t ∗ σ2

(
Vle f t
)
+ nright ∗ σ2

(
Vright

)
n

, (15)

where V is the current node consisting of n time series data streams, σ2(·) is the variance function,
Vright and Vle f t are the nodes established after the split, each with nright and nle f t series, respectively.

In each consecutive iteration after obtaining a new time window the algorithm maintains the
current tree model (structure from the previous iteration) and clusters time series based on the new
batch of data. After this, the update stage begins, in which the breakdowns and/or aggregations are
checked and executed, if necessary and/or possible [37], which is controlled by a set of parameters,
i.e., α ∈ [0, 1], λ ∈ [0, 1], and minSeries. Two sibling leaves (denotes as Le f tChild and RightChild) must
be aggregated if their weighted variance (denoted as WVC) is greater than or equal to λ of the parent
node variance (VP) computed from its test feature. This makes the structure of the tree simpler
and more resistant to noise/outliers. If aggregation did not occur the algorithm checks for possible
leaf splits, which is done if the weighted variance of its potential children decreases by at least α times
its variance. Finally, to prevent a split when two possible children have less than a certain percentage of
all observations, minSeries parameter controlling the complexity/depth of the tree is set by default at 5%.

The overall time complexity is O
(
m2w
)
. It is important to note that the quadratic term in the

algorithm refers to the number of time series, which is typically low (order of tenths) [45].

4. Research Framework and Settings

4.1. Numerical Implementation

As presented below, numerical experiments were prepared using R programming language
working on Ubuntu 18.04 operating system on a personal computer equipped with Intel Core i7-9750H
2.6 GHz processor (12 threads) and 32 GB of RAM.

The first algorithm, which is histogram-based clustering, was implemented using several libraries.
To represent each time series as a histogram and to compute the L2 Wasserstein distance the HistDAWass
package was used [47], which implements a framework of Symbolic Data Analysis, a relatively new
approach for the statistical analysis of multi-valued data. Next, to get a local data partition based on
a set of histograms a modification of BR_BIRCH package was used [53]. Finally, a symbolicDA [54]
package was utilized to obtain a global clustering using DCLUST algorithm. The second algorithm,
which is ClipStream, was entirely implemented using ClipStream library which is a software strictly
connected to the article [55]. Finally, the extended TS-Stream algorithm was implemented in line with
the following work [45].

4.2. Algorithms Parameters Setting

In order to have robust and consistent results all algorithms parameters settings are in line with
the source articles and libraries. Since for the extended TS-Stream algorithm the parameters α and λ

have a similar influence, it is not recommended to set one value as a function of the other. During the
research preparation stage, it was observed that setting these two parameters to values smaller than
0.6 resulted in almost no splits. On the other hand, values greater than 0.6 could result in a too wide
and too deep tree. Next, minSeries parameter which is responsible for controlling the size of a tree,
is set at 5% (50 time series). Due to the fact that there are 1000 time series in the investigated data set
(see Section 5) the final tree structure might have up to 20 leaves, i.e., clusters.
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For ClipStream algorithm, long (blong) and short windows (bshort) length were set to 1008 or
48 for overlapping windows and to 1440 or 48 for non-overlapping windows (see Section 4.4),
while threshold value λ determining outliers was set at 1.5. The optimal number of cluster derived by
the Davies–Bouldin measure was determined in the range 5 and 11. The latter number was determined
as an average number of clusters obtained for each batch (for both overlapping and non-overlapping
windows) for extended TS-Stream algorithm. Finally, concept drift is detected if p-value is less than
the significance level α set at 0.05.

Histogram-based clustering algorithm has the following changeable parameters: P, which determines
number of bins for each histograms, was set at 10 (average number of clusters obtained for both
aforementioned algorithms), u, which is a threshold on the micro-cluster size, was set at 0.01,
and because other two remaining algorithms usually provided maximal number of clusters, o parameter,
which defines number of clusters, was set at 11.

4.3. Tested Changeable Components

One of the main goals of the article is to find the best clustering algorithm and, if possible,
to propose some improvements with regards to different components adopted from other algorithms.
To do so, firstly, a comparative study between overlapping windows and non-overlapping windows
was be conducted, i.e., research was conducted in two different variants (see also Figure 1):

• Using non-overlapping window: This approach is in line with our previous study where the
window length w of each block Bl, has been set to 30 days. As the electricity consumption data
were recorded at 30-min intervals, each window has length of 1,440 (2 × 24 h × 30 days);

• Using overlapping window: This approach is in line with the article [35] implementing ClipStream
algorithm where window is of length 21 days (3 weeks). In this case, each time there are two
overlapping weeks led by the new arriving week (2 × 24 h × 21 days = 1008).

Secondly, a new Fast Fourier Transformation based features (calculated in liner time) is proposed,
allowing to compress and represent time series using the business context. In our previous paper a set
of 20 dominating Fourier coefficients have been taken as descriptive measures (see also Section 3.4).
To make the usage of Fourier coefficients more intuitive, in this paper, the frequency domain have been
divided into four intervals/ranges. Each of them represents electricity consumption behavior changes,
respectively, monthly, weekly, daily, and all more frequent (see Table 1). The frequency is calculated
with respect to the following equation:

fc(m) = ( fs ∗m)/w, (16)

where fc(m) is the frequency of m-th coefficient fs is the frequency of sampling, w number of samples
(i.e., window length) used in Fourier transform. A period is calculated as 1/ fc(m). As it can be noted,
end of an interval is not a beginning of the another one. One should remember about discrete nature of
values of DFT coefficients. Moreover fc(0) represents the mean value.

Table 1. Matching between Fourier coefficient and electricity consumption behaviors.

Fourier Coefficients No. Non Overlapping Windows Overlapping Windows

1–6 20 days–120 days 14 days–84 days
7–30 4 days–17 days 3 h 2 days 19 h–12 days
31–240 12 h–3 days 21 h 8.4 h–2 days 17 h
>240 <12 h <8.4 h

Those aforementioned features were used in the extended TS-Stream algorithm (in this case a
node partition is performed based on only one feature) and in the ClipStream algorithm. In the latter
case instead of FeaClip representation each time series is represented base on those 4 features.
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Thirdly, to conduct process of time series data streams clustering only when it is necessary, a
stage for detecting concept drift using K-sample Anderson–Darling test (idea taken from ClipStream
algorithm) was also implemented in the extended TS-Stream algorithm.

Finally, it is necessary to mention that all above improvements/components were not implemented
in the histogram-based clustering algorithm, because it would entirely change the logic and the
behavior of this algorithm.

4.4. Framework and Measures for Clustering Comparison

The main problem existing in the investigated area is the fact that there are no explicit frameworks,
measures, criteria allowing to assess the performance, effectiveness and to compare algorithms to
each other. To overcome this issue, we have proposed the following framework.

To compare the results of the grouping against external criteria, a measure of consensus is needed.
Since it is assumed that each time series is assigned to only one cluster a natural way is to utilize the
Adjusted Rand Index which is a measure of the similarity between two data clusterings. However,
the practical aim in this article is to propose an optimal tariff for each time series. In this context we
would like to know which clustering algorithm provides stable results, i.e., clusterings that are similar
to each other. To do so we reformulated standard ARI measure as follows:

ARI =

∑
uo

(
nou

2

)
−
[∑

o

(
no∗
2

)∑
u

(
n∗u
2

)]
/
(

n
2

)

1
2

[∑
o

(
no∗
2

)
+
∑

u

(
n∗u
2

)]
−
[∑

o

(
no∗
2

)∑
u

(
n∗u
2

)]
/
(

n
2

) , (17)

where nou denotes the number of objects that are in both, cluster lo form l-th time window and cluster lu
from the l + 1 time window (lu is simply the same cluster as lo but from consecutive window), with the
marginal distributions denoted as no∗ and n∗u. After comparing each batch to each other an upper
triangle matrix is created [45] (for an example please see Table 4).

The second measure is closely related to the selection of an optimal tariff for each customer. Let us
assume that a particular customer has a base tariff G11 (single time zone with flat price rate per kWh)
over an entire year. From the customer perspective it might be better to change a tariff to G12 for an
entire year. Furthermore, one may analyze more frequent changes of the tariff e.g., after each month or
even after each week. To answer that question we propose the following approach:

(1) For a particular time window l apply a given clustering algorithm;
(2) Assign a particular customer to his cluster;
(3) Determine an optimal tariff for the entire cluster, i.e., the lowest price for an aggregate consumption

of all customers in cluster by calculating the total electricity cost if they would belong to G11,
G12, G12r or G12w tariff plan;

(4) Select an optimal tariff from the previous step as an optimal tariff for a given customer;
(5) Deploy an optimal tariff for each customer as a tariff for the next time window l + 1;
(6) Return to the first step.

According to the above procedure it might happen that for a given customer an optimal tariff
for an entire year is G12. However, on the other hand it might happen that an optimal tariff will
change after each time a new batch of data arrives. Next, to assess whether application of a particular
clustering algorithm and aforementioned procedure make sense, we propose to derive, as previously,
a similar upper tringle matrix having the following values:

Tariff improvement =
dynamic optimal tariff

static optimal tariff
. (18)
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To clarify that, let us consider first data batch l in a given year (for non-overlapping windows there
would be 12 batches). This case is represented as the first top row in the upper triangle table (Table 4).
Based on that particular window it was decided that an optimal tariff for the entire year is G12w
(an optimal tariff for a cluster where a particular customer belongs), therefore, for this investigated row,
denominator in the above equation takes always the same value, i.e., price of this fixed tariff for a
particular customer calculated for each month separately. On the other hand, nominator is determined
dynamically. For the first column it takes the same value as the denominator. For the remaining eleven
columns (batches from l + 1, . . . , l + 11) it takes dynamically changeable price of the tariff determined
in the 5th step of the mentioned earlier procedure. Such table is prepared for each customer, therefore
to have only one global table, as in case of the ARI, each field in the final table was calculated as the
mean value of the 1000 customer-wise matrices.

The last measure is the weighted volatility of time series for a given block Bl. After the division,
the time series are spread over several groups. It is assumed that the variation (standard deviation)
of electricity consumption in each group is to be less than the variation of time series in only one
group (root) [45]. Furthermore, because of the difference in the size of each group, the measure takes
into account this fact by assigning smaller weights to a smaller leaf—as in the right-hand side of the
Equation (19):

Weighted volatilityBl
=
∑

Llo∈Ll

#Llo
m
∗ σ
(
Llo

)
, (19)

where #Llo denotes the number of time series for a given cluster, m denotes the number of time series in
a block Bl and σ(·) is the standard deviation of all times series assigned to a given cluster Llo .

5. Empirical Analysis

5.1. Data and Tariffs Characteristics

The dataset used in this research is originated from the Irish Commission for Energy Regulation
(CER) project where the measurements of the electricity load where recorded for 4182 households
between July 2009 and December 2010. In total, time span covers 75 weeks where each reading was
recorded with 30 min data granularity [5]. Due to the missing recordings in the time series and
computational complexity of the investigated algorithms, the research was conducted using data from
1000 households selected randomly.

Unfortunately, CER dataset does not provide any information regarding tariff plan of each
customer. After investigation of several tariffs plans provided by electricity suppliers in the European
countries, it can be stated that there are many similarities. Therefore, to conduct simulation of the
optimal tariff, all the information and the tariff prices were taken from one of the biggest energy holding
company in Poland.

Depending on the tariff plan, the customers can benefit from lower prices per kWh if the usage falls
between certain time zones. In Figure 2 the prices for G11, G12, G12w, and G12r tariff are presented.
G11 tariff (blue straight line) has the fixed price of 0.35 PLN/kWh. G12r tariff (purple dotted-dashed line)
plan has lower rate of 0.21 PLN/kWh between 10 p.m. and 7 a.m. and between 1 p.m. and 4 p.m.,
while the higher rate of 0.48 PLN/kWh is applicable outside these windows. G12w tariff (green double
dotted–dashed line) has lower rate of 0.28 PLN/kWh during the weekends and Monday–Friday
between 10 p.m. and 6 a.m. and between 1 p.m. and 3 p.m., while the higher price of 0.43 PLN/kWh is
applicable outside these windows.

Let us now simulate what is the relation between the best and the worst tariff for each customer.
Table 2 shows various statistics of the simulation (aggregated over 1000 customers) for non-overlapping
windows case. When dynamically changing an optimal tariff for each customer a minimal improvement
between the best and the worst individual tariff is 2.39%, while the biggest improvement reaches 19.27%.
Second row of the table shows what is the improvement between dynamically changing an optimal
tariff and one fixed optimal tariff derived based on the entire period. It was observed that dynamic
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change resulted in average improvement of 0.28%. Finally, it can be concluded that, on average,
an optimal tariff would change almost 5 times, out of 17 data batches, each 30 days long, in the
analyzed timeframe.
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Figure 2. Prices in G11, G12, G12r, and G12w tariff plans (1 Polish PLN~0.22 EUR).

Table 2. Simulation of households’ electricity consumption characteristics based on different tariff
group rates for non-overlapping windows.

Min 1st Quartile Median Mean 3rd Quartile Max

Best vs. worst individual tariff for each batch 2.39% 5.76% 7.67% 8.08% 9.88% 19.27%
Best individual tariff for each batch vs. best

individual tariff for the entire period 0.00% 0.06% 0.21% 0.28% 0.40% 2.39%

Number of dynamic individual tariff change 0.00 2.00 5.00 4.81 7.00 12.00

When speaking of overlapping windows case (Table 3), results are slightly higher. Average
improvement between the best and the worst individual tariff for each batch increases to 8.47%,
while the best individual tariff for each batch vs best individual tariff for the entire period increases
to 0.51%, on average. Due to the fact that there are 73 batches in this scenario, each batch of 21 days long,
the median of dynamic individual tariff changes is 25.

Table 3. Simulation of households’ electricity consumption characteristics based on different tariff
group rates for overlapping windows.

Min 1st Quartile Median Mean 3rd Quartile Max

Best vs. worst individual tariff for each batch 2.68% 6.27% 8.13% 8.47% 10.32% 19.28%
Best individual tariff for each batch vs. best

individual tariff for the entire period 0.00% 0.23% 0.43% 0.51% 0.69% 3.52%

Number of dynamic individual tariff change 0.00 18.00 25.00 24.40 32.00 50.00

Those results present the best and the worst case scenarios, when an optimal tariff is derived
for each customer separately without any clustering algorithm. Therefore, those results provide
benchmarking ranges between which the clustering results presented in the following subsections will
be included.

5.2. Clustering Results

Let us now investigate which algorithm provide relatively robust results, i.e., overall groupings
that are similar to each other (in other words, maintaining time series belonging to the same clusters).
For the non-overlapping case, the extended TS-Stream algorithm provides on average 11 clusters,
all having more than 5% of all time series. For the 17 investigated batches on average each time
series should change his optimal tariff 7.98 times (median is 8; this is determined as the optimal
tariff for the cluster to be monitored). The ClipStream algorithm changes the tariff 5.38 times on
average (median is 6), while not using the concept drift results in increasing these values to 6.52 and 7.
On average, histogram-based algorithm changes the tariff 7.04 times (median is 7). All aforementioned
numbers are higher than those reported in Table 2, where the best tariff is chosen separately for each
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customer without any clustering algorithm, which means that a time series changes its tariff more
frequent than it should. For better understanding of the idea, in this article we present only sample
matrix of the ARI index obtained for the ClipStream algorithm (in Table 4). Tables 5 and A1 (in the
Appendix A) provide various statistics of the ARI and tariffs improvement derived based on the
upper-triangular matrixes (described also in Section 4.4) for both non-overlapping and overlapping
windows (see Appendix A).

Table 4. Sample of the upper-triangular matrix of the ARI indexes obtained based on the ClipStream
algorithm for non-overlapping windows.

B2 B3 B4 B5 B6 B7 B8 B9 B10

B1 0.100 0.088 0.062 0.062 0.062 0.040 0.040 0.040 0.049
B2 0.098 0.080 0.067 0.067 0.038 0.038 0.038 0.060
B3 0.097 0.084 0.084 0.068 0.068 0.068 0.075
B4 0.166 0.166 0.115 0.115 0.115 0.059
B5 1 0.199 0.199 0.199 0.064
B6 0.199 0.199 0.199 0.064
B7 1 1 0.063
B8 1 0.063
B9 0.063

Table 5. Statistics of the ARI indexes for non-overlapping windows.

Clustering Algorithm Min 1st Quartile Median Mean 3rd Quartile Max

Extended TS-Stream (Fourier coeff.) 0.014 0.024 0.033 0.035 0.043 0.070
Extended TS-Stream (Fourier coeff., concept drift) 0.014 0.024 0.033 0.035 0.043 0.070

ClipStream (concept drift) 0.026 0.057 0.067 0.119 0.097 1.000
ClipStream (without concept drift) 0.021 0.054 0.070 0.079 0.091 0.232

ClipStream (Fourier coeff., concept drift) 0.029 0.053 0.066 0.120 0.082 1.000
ClipStream (Fourier coeff., without concept drift) 0.025 0.049 0.065 0.065 0.077 0.113

Histogram-based 0.149 0.230 0.309 0.335 0.419 0.740

In this example, similarity (measured using ARI) between the first batch B1 and second the batch
B2 is 0.100. Clustering from the first batch is the least similar to batches from seven to nine (0.040).
Because algorithm detected no concept drift between batches B7–B9, the change of clusters membership
did not occur which results in ARI equals 1.

According to the results presented in Table 5 (the best results for each statistic are bolded), it can
be seen that, on average, the highest ARI provides histogram-based algorithm. This is impacted by
two things, first—it always generates the same number of clusters. Secondly, it divides customers into
the clusters based on the iteratively updated (after each batch) global proximity matrix which uses
partition from the BIIRCH algorithm (second step of this algorithm). This step provides only a minor
modification of the global matrix and once in the last step the DCLUST is incorporated, it provides very
similar groupings (customers rarely change their cluster). It should be noted that whenever ClipStream
algorithm decides not to make any changes ARI is equal to 1. The worst results are connected with the
extended TS-Stream algorithm (median is 0.033).

For the overlapping widows case (Table A1 in the Appendix A) the dependencies are similar.
One more time the histogram-based algorithm produces the most stable partitions. In previous case,
for the extended TS-Stream algorithm concept drift module was not used. This time for couple of
batches the tree preserved the same structure which increased the highest value at 0.326. What is
interesting, for ClipStream algorithm the new data representation (Fourier coefficients) increases lower
(up to median) statistics.

In the similar manner as for the ARI index the upper triangle matrix has been derived for the
tariffs improvement (Equation (18)).

From practical point of view it is better for the electricity provider to have customer groups with
relatively similar size [2]. The extended TS-Stream algorithm guaranties that each cluster has no less
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than 5% of all customers, and after investigation of the group size it can be stated that this algorithm
produces clusters with the similar size. On the other hand, both ClipStream and Histogram-based
algorithms do not have such restriction. On average, ClipStream algorithm generates one (rarely two)
cluster having only couple of customers (1–5 time series). Histogram-based algorithm usually produces
three up to four clusters whose are very small. This observation has high influence on the values of the
investigated metrics (they are rewarded), since in small groups memberships change rarely and the
volatility is small (see Tables 6 and A3).

Table 6. Statistics of the weighted volatility for non-overlapping windows.

Clustering Algorithm Min 1st Quartile Median Mean 3rd Quartile Max

Extended TS-Stream (Fourier coeff.) 15.10 18.93 21.06 23.22 26.15 37.18
Extended TS-Stream (Fourier coeff., concept drift) 15.10 18.93 21.06 23.22 26.15 37.18

ClipStream (concept drift) 20.50 27.40 32.69 37.08 47.93 61.93
ClipStream (without concept drift) 16.87 24.48 32.28 36.15 49.66 69.65

ClipStream (Fourier coeff., concept drift) 39.95 42.87 52.24 58.49 72.21 95.98
ClipStream (Fourier coeff., without concept drift) 39.95 42.87 52.24 55.83 64.88 90.06

Histogram-based 17.01 20.45 24.46 25.71 31.47 36.05

According to the results presented in Table 6, the least volatile partitions provides the extended
TS-Stream algorithm, median is 21.06 while mean is 23.22 (since there were no batches when the
concept drift module was used both versions produce the same results). Seconds place in this ranking
takes the Histogram-based algorithm whose maximal volatility is even smaller than for the extended
TS-Stream. For the overlapping windows case, the least volatile groups produces the histogram-based
algorithm. Slightly worse results are connected with the Extended TS-Stream (with the concept drift
module) whose the minimal statistic is even smaller than for the histogram-based algorithm. Finally,
in both windows (overlapping and non-overlapping), new data representation and not use the concept
drift procedure in ClipStream worsen the results.

5.3. Tariff Evaluation

In this section tariff improvements are discussed. When it comes to the various statistics for
non-overlapping windows, it is observed that the all investigated algorithms provide, on average,
an improvement of 0.3%–0.4%, please refer to Table 7. The highest improvement is observed for the
Extended TS-Stream and the histogram-based algorithms, and for the ClipStream algorithm with the
newly proposed data representation (up to 1.8%). Moreover, the first two algorithms mentioned do
not produce worse results (please refer to the first column with Min values).

Table 7. Statistics of the tariffs improvement for non-overlapping windows.

Clustering Algorithm Min 1st Quartile Median Mean 3rd Quartile Max

Extended TS-Stream (Fourier coeff.) 0.00% 0.10% 0.20% 0.40% 0.50% 1.80%
Extended TS-Stream (Fourier coeff., concept drift) 0.00% 0.10% 0.20% 0.40% 0.50% 1.80%

ClipStream (concept drift) −0.20% 0.10% 0.20% 0.30% 0.40% 1.50%
ClipStream (without concept drift) −0.10% 0.10% 0.20% 0.30% 0.50% 1.50%

ClipStream (Fourier coeff., concept drift) −0.10% 0.00% 0.10% 0.40% 0.90% 1.80%
ClipStream (Fourier coeff., without concept drift) −0.10% 0.00% 0.10% 0.40% 0.80% 1.80%

Histogram-based 0.00% 0.10% 0.20% 0.40% 0.50% 1.80%

For the overlapping windows case, please refer to Table A2, one more time, all algorithms
usually provide the improvement, with the mean value between 0.1% and 0.2%. Unfortunately,
in the worst-case-scenario each algorithm chose worse tariff, the smallest worsening (−0.1%) is for the
extended TS-Stream algorithm without concept drift module.

The last results presented below are to answer the question, whether it is possible and justified to
use clustering (and associated optimal tariffs for each group) obtained for a particular batch Bl and
the deploy those optimal tariffs as the applicable tariffs in the following period Bl+1. Tables 8 and A4,
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provide statistics of the tariffs improvement compared to the basic (flat) tariff G11 in case when the
future optimal tariff for each customer (for the next data batch) is derived as the current optimal tariff
for the cluster to which a particular customer belongs. The advantage of this approach is that it does
not require training nor the use of any predictive models.

Table 8. Statistics of the predicted tariffs improvement comparing to the G11 for non-overlapping windows.

Clustering Algorithm Min 1st Quartile Median Mean 3rd Quartile Max

Extended TS-Stream (Fourier coeff.) −8.89% −0.56% −0.09% 0.00% 0.45% 5.73%
Extended TS-Stream (Fourier coeff., concept drift) −8.89% -0.56% −0.09% 0.00% 0.45% 5.73%

ClipStream (concept drift) −3.17% −0.34% −0.03% 0.31% 0.61% 8.46%
ClipStream (without concept drift) −2.90% −0.32% −0.04% 0.28% 0.53% 8.19%

ClipStream (Fourier coeff., concept drift) −5.76% −0.49% −0.10% −0.05% 0.40% 2.90%
ClipStream (Fourier coeff., without concept drift) −5.76% −0.49% −0.10% −0.05% 0.40% 3.25%

Histogram-based −6.44% −0.51% −0.11% −0.01% 0.41% 4.25%

As shown in Table 8, for the non-overlapping windows case, on average, it is possible to achieve
some improvement. The ClipStream algorithm provides better results of 0.31% comparing to the base
tariff (removing concept drift module gives improvements as well). The mean improvement for both
versions of the extended TS-Stream produces no improvement; however, median value equals −0.09%.
Unfortunately, the histogram-based algorithm usually provides worse tariff than costs related with
the G11. It should be noted that when comparing the optimal predicted tariff to the random tariff
(rather than to the G11), on average, the results are always better (see Table A5). For the extended
TS-Stream algorithm it is 1.66%, for the ClipStream algorithm (base version) it is 2.17%, and for the
histogram-based algorithm it is 1.50%.

For the overlapping windows case (batch size equals 3 weeks while each time new data cover
one week), please refer to Table A4, the improvements are more common and clear for all algorithms,
i.e., according to the median and to the mean value the improvement is positive. Only for the statistics
such as 3rd quartile and above the worsening can be noted. The biggest improvement is noted for the
base version of the ClipStream algorithm (7.9%). Second place in terms of the mean value belongs to
both versions of the extended TS-Stream algorithm (0.21%; 0.20%).

Finally, when it comes to the comparison to the random assignment of tariff (as an optimal for
the future), the extended TS-Stream algorithm (base version) achieves improvement of 2.69%, for the
ClipStream algorithm (base version) it is 2.91%, and for the histogram-based algorithm it equals 2.65%
(see Table A6).

Based on the results we could summarize the comparative study between overlapping windows
and non-overlapping windows and their impact on the choice of an optimal tariff as outlined in
Table 9. For the purpose of results discussion the average improvements were considered. It was
observed that the implementation of the current best tariff is feasible and could deliver the benefits
for both, overlapping and non-overlapping windows. Specifically, for non-overlapping windows the
general tariff improvement was up to 0.40%, on average, depending on the algorithm. In case of tariffs
improvement comparing to the G11 tariff plan the highest improvement was for overlapping windows,
where two ClipStream algorithms (with and without concept drift) were able to deliver up to 0.43% of
the improvement, on average.

Importantly, the results, in terms of the tariff improvement, are only the highlight for possible
knowledge utilization based on the algorithms that were used for profiling the customers. Nevertheless,
the results are promising although the improvements might appear negligible. Please note that the
improvement rates of 0.40–0.43%, as provided in Table 9, directly influence the elasticity of electricity
demand. In case of Poland, the whole installed capacity of the system is approx. 45,000 MW so the
improvement of 0.43% is representing 193.5 MW which is an equivalent of one power block in the
power plant. Therefore, if some of the usage can be shifted outside peak hours then the benefit is not
only for the customers but also for the electricity operators who can purchase the electricity cheaper.
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Table 9. Summary results in terms of the average improvements on non-overlapping and
overlapping windows.

Clustering Algorithm
Tariff Improvement

Tariffs Improvement Comparing
to the G11

Non-Overlapping Overlapping Non-Overlapping Overlapping

Extended TS-Stream (Fourier coeff.) 0.40% 0.20% 0.00% 0.21%
Extended TS-Stream (Fourier coeff., concept drift) 0.40% 0.10% 0.00% 0.20%

ClipStream (concept drift) 0.30% 0.10% 0.31% 0.43%
ClipStream (without concept drift) 0.30% 0.10% 0.28% 0.43%

ClipStream (Fourier coeff., concept drift) 0.40% 0.20% −0.05% 0.14%
ClipStream (Fourier coeff., without concept drift) 0.40% 0.20% −0.05% 0.15%

Histogram-based 0.40% 0.20% −0.01% 0.16%

5.4. Other Applications—Australian Case Study

To proof the applicability of the dynamic profiling approach further analysis was conducted based
on the data from the customer trial conducted as part of the Smart Grid Smart City (SGSC) project [56].
It provides sets of customer time of use (half hour increments) and demographic data for Australia
between 2010 and 2014. For the purpose of the case study 998 households were randomly extracted
covering 1 September 2012–28 February 2014 time frame. The reason to select that time frame was
availability of complete data, i.e., without missing values. In total, 25,399 data points were analyzed,
each representing half hour readings.

For the purpose of results discussion the average improvements were considered as presented in
Table 10. It was observed that the implementation of the current best tariff is feasible and could deliver
the benefits for both, overlapping and non-overlapping windows. Specifically, for non-overlapping
windows the general tariff improvement was up to 0.96%, on average, depending on the algorithm.
In case of tariffs improvement comparing to the G11 tariff plan the highest improvement was for
overlapping windows, where two ClipStream algorithms with and without concept drift, were able to
deliver up to 1.08% and 1.06% of the improvement, on average, respectively. The results are consistent
with the results on Irish data set. However, this time an improvement is considerably higher what can
influence directly the elasticity of electricity demand.

Table 10. Summary results in terms of the average improvements on non-overlapping and overlapping
windows for Australian data.

Clustering Algorithm
Tariff Improvement

Tariffs Improvement Comparing
to the G11

Non-Overlapping Overlapping Non-Overlapping Overlapping

Extended TS-Stream (Fourier coeff.) 0.96% 0.14% −0.18% 0.84%
Extended TS-Stream (Fourier coeff., concept drift) 0.96% 0.76% −0.18% 0.84%

ClipStream (concept drift) 0.92% 0.77% 0.19% 1.08%
ClipStream (without concept drift) 0.91% 0.74% 0.18% 1.06%

ClipStream (Fourier coeff., concept drift) 0.93% 0.76% −0.15% 0.82%
ClipStream (Fourier coeff., without concept drift) 0.93% 0.76% −0.15% 0.83%

Histogram-based 0.91% 0.77% −0.01% 0.16%

More detailed analysis are presented in Appendix B, please refer to Tables A7–A16.

5.5. Other Applications—London Case Study

Another verification of dynamic profiling approach was conducted based on the data from UK
Power Networks led Low Carbon London project [57]. The dataset contains energy consumption
in kWh (per half hour) for the sample of 5567 London households observed between November 2011
and February 2014. The customers in the trial were recruited as a balanced sample representative of
the Greater London population.

For the purpose of the case study 1000 households were randomly extracted covering
1 September 2012–28 February 2014 time frame. The reason to select that time frame was availability of
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complete data, i.e., without missing values. In total, 25,440 data points were analyzed, each representing
half hour readings.

To enable comparison of the results with previous applications (case studies) the average
improvements were considered, as presented in Table 11. It was observed that the implementation of the
current best tariff is feasible and could deliver the benefits for both, overlapping and non-overlapping
windows. Specifically, for non-overlapping windows the general tariff improvement was equal,
on average, to 0.93% for Extended TS-Stream without concept drift. The lower improvements, between
0.15% and 0.39%, were observed for other algorithms. In case of tariffs improvement comparing to
the G11 tariff plan the highest improvement was for overlapping windows, where histogram-based
approach resulted in the improvement of 0.68%, on average. Other methods were able to deliver
improvements between 0.49% and 0.65% which could be considered significant, too. The improvement
for non-overlapping windows was slightly lower, i.e., 0.55% and similarly, it was observed for
histogram-based clustering approach. The results are consistent with the results on Irish data and
Australian data.

Table 11. Summary results in terms of the average improvements on non-overlapping and overlapping
windows for London data.

Clustering Algorithm
Tariff Improvement

Tariffs Improvement Comparing
to the G11

Non-Overlapping Overlapping Non-Overlapping Overlapping

Extended TS-Stream (Fourier coeff.) 0.93% 0.10% 0.39% 0.59%
Extended TS-Stream (Fourier coeff., concept drift) 0.19% 0.10% 0.39% 0.57%

ClipStream (concept drift) 0.35% 0.22% 0.36% 0.62%
ClipStream (without concept drift) 0.39% 0.21% 0.39% 0.65%

ClipStream (Fourier coeff., concept drift) 0.26% 0.10% 0.23% 0.49%
ClipStream (Fourier coeff., without concept drift) 0.27% 0.10% 0.23% 0.50%

Histogram-based 0.15% 0.07% 0.55% 0.68%

More detailed results are presented in Appendix C, please refer to Tables A17–A26.

6. Conclusions

Data streams clustering is one of the most common ways of analyzing data that is potentially
infinite and evolves over time. Although the literature provides some methods of the data streams
clustering, unfortunately, majority of them are not appropriate for the whole time series data streams
clustering. Even though electricity consumer objectives are usually based on monetary benefits,
electricity providers benefit from the knowledge of consumer’ profiles, to create individualized means
aimed at consumers with compatible use profiles and socio-economic behavior. The analysis has shown
that there are prominent distinction between consumers’ behaviors, which allows us to distinguish
homogeneous groups.

Through the CER Irish data analysis and two other case studies, i.e., Australian and London
data sets, an attempt was made to evaluate different ways of time series data streams clustering by
comparative study of the state-of-the-art algorithms, as well as new combinations employing elements
from different algorithms. From the technical point of view the results introduce a general guidance on
when and where to apply a particular clustering algorithm (along with its improvements).

It was revealed that the extension to the way of ARI index calculation (and its statistics) based on
the upper triangle matrix, which compares blocks to each other, provides good evaluation framework,
and it also allows to visualize the dependencies. This part of the research has shown that the best results,
in terms of the similarity of the clusters, are provided by the histogram-based clustering algorithm.
That is due to the fact that the algorithm always performs a partitioning using the same number
of clusters and the underlying procedure is less fragile to any distribution changes than other two
algorithms. Therefore, if the electricity providers need stable partitions this algorithm would be their
first choice.
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Furthermore, to obtain a partition which provides clusters with the least weighted volatility the
extended TS-Stream algorithm should be applied. It is mainly caused by the fact that this algorithm is
able to expand or to shrink the tree structure very quickly according to the distribution changes of the
particular phenomenon. On the other side of the pole is the ClipStream algorithm.

As it was presented in our previous work [45], standard TS-Stream algorithm outperforms
benchmarking clustering methods and, in addition, this research indicates that these results can be
further improved. The new Fast Fourier Transformation based features allow to improve the operation
of the base for this algorithm. The new data representation slightly deteriorates the performance
of the ClipStream algorithm; however it should be noted that this time a business interpretation
is prevailing. Moreover, a much smaller dimension is needed to represent a given time series,
i.e., only 5 features instead of 8 multiplied number of weeks (3 weeks for overlapping and 4 weeks for
non-overlapping windows).

In terms of the implementation/software requirements all the algorithms are able to work in
linear time, however the histogram-based algorithm requires O

(
m2
)

memory space. It also produces
fixed number of clusters. For the ClipStream algorithm it is necessary to set up minimal and maximal
number of cluster in advance (which sometimes might be impracticable or unfounded). The extended
TS-Stream algorithm is the most flexible in its nature what allows to incorporate new descriptive
measures, data representation and concept drift detection module.

When it comes to the comparison between overlapping and non-overlapping windows,
as it might expect, statistics of the ARI and weighted volatility for the overlapping windows are usually
better (base version of each algorithm). This is due to the fact that each time we analyze almost the
same time series that differ only with one new added week.

Based on the comparative study between the state-of-the-art time series data streams clustering
algorithms and their modifications we could perform the dynamic consumer segmentation and
prediction of an optimal tariff. Finally, comparative study between overlapping and non-overlapping
windows and their impact on the choice of an optimal tariff was undertaken what revealed that
significant improvements could be reported due to tariff changes. Specifically, the percentage
improvements, on average, were as follows: Irish data—0.40–0.43%; Australian data—0.96–1.08%;
and London data—0.68–0.93%. Assuming that the overall capacity of the system is approx. 45,000 MW
in Poland, thus the improvements may deliver elasticity of electricity demand which is between
193.5 MW (0.43%) and 486 MW(1.08%). Those values are considered a significant from market
balancing perspective.

The direction for the future work will be to develop a fully scalable system (along with the results
which are interpretable) for a large number of time series in the data stream, in the presence of:

• Concept drift of different kinds, such as incremental, recurring, sudden, or gradual;
• unstable number of sources (some sensors are newly created while other removed);
• heterogeneous and missing recordings;
• irregularly spaced data; and
• assuming application of other approaches for classifying incoming continuous data in dynamic

systems e.g., stochastic learning weak estimators.

Due to that, we will investigate different incrementally computable time series similarity measures.
In the future, we will investigate the influence (sensitivity of the algorithm) of the input parameters on
the final results.
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Appendix A. Results Based on Irish Data Set

Table A1. Statistics of the ARI indexes for overlapping windows.

Clustering Algorithm Min 1st Quartile Median Mean 3rd Quartile Max

Extended TS-Stream (Fourier coeff.) 0.003 0.019 0.025 0.031 0.033 0.264
Extended TS-Stream (Fourier coeff., concept drift) 0.003 0.024 0.034 0.044 0.050 0.326

ClipStream (concept drift) 0.011 0.046 0.059 0.091 0.082 1.000
ClipStream (without concept drift) 0.010 0.051 0.067 0.083 0.095 0.547

ClipStream (Fourier coeff., concept drift) 0.019 0.047 0.059 0.079 0.072 1.000
ClipStream (Fourier coeff., without concept drift) 0.020 0.049 0.062 0.070 0.076 0.405

Histogram-based 0.222 0.348 0.467 0.486 0.597 0.991

Table A2. Statistics of the tariffs improvement for overlapping windows.

Clustering Algorithm Min 1st Quartile Median Mean 3rd Quartile Max

Extended TS-Stream (Fourier coeff.) −0.20% 0.00% 0.10% 0.20% 0.20% 0.80%
Extended TS-Stream (Fourier coeff., concept drift) −0.20% 0.00% 0.10% 0.10% 0.20% 0.80%

ClipStream (concept drift) −0.30% 0.00% 0.10% 0.10% 0.20% 0.80%
ClipStream (without concept drift) −0.20% 0.00% 0.10% 0.10% 0.20% 0.90%

ClipStream (Fourier coeff., concept drift) −0.20% 0.00% 0.10% 0.20% 0.30% 1.00%
ClipStream (Fourier coeff., without concept drift) −0.20% 0.00% 0.10% 0.20% 0.30% 1.00%

Histogram-based −0.20% 0.00% 0.10% 0.20% 0.30% 0.90%

Table A3. Statistics of the weighted volatility for overlapping windows.

Clustering Algorithm Min 1st Quartile Median Mean 3rd Quartile Max

Extended TS-Stream (Fourier coeff.) 15.94 22.27 25.83 26.28 29.97 38.21
Extended TS-Stream (Fourier coeff., concept drift) 14.09 20.76 25.22 25.09 28.67 39.20

ClipStream (concept drift) 19.15 24.61 28.41 29.57 32.50 59.14
ClipStream (without concept drift) 21.73 29.45 37.42 39.64 45.89 82.29

ClipStream (Fourier coeff., concept drift) 24.31 42.71 53.23 55.94 68.91 99.47
ClipStream (Fourier coeff., without concept drift) 32.69 45.22 53.85 58.30 69.60 106.51

Histogram-based 15.73 19.59 23.45 24.29 27.19 36.41

Table A4. Statistics of the predicted tariffs improvement comparing to the G11 for overlapping windows.

Clustering Algorithm Min 1st Quartile Median Mean 3rd Quartile Max

Extended TS-Stream (Fourier coeff.) −9.28% −0.40% 0.10% 0.21% 0.74% 5.45%
Extended TS-Stream (Fourier coeff., concept drift) −8.52% −0.40% 0.08% 0.20% 0.73% 6.22%

ClipStream (concept drift) −2.77% −0.17% 0.07% 0.43% 0.74% 7.90%
ClipStream (without concept drift) −3.04% −0.17% 0.08% 0.43% 0.75% 7.51%

ClipStream (Fourier coeff., concept drift) −7.71% −0.42% 0.11% 0.14% 0.68% 4.53%
ClipStream (Fourier coeff., without concept drift) −7.58% −0.42% 0.12% 0.15% 0.66% 4.69%

Histogram-based −7.40% −0.38% 0.08% 0.16% 0.65% 5.14%

Table A5. Statistics of the predicted tariffs improvement comparing to the random tariff for
non-overlapping windows.

Clustering Algorithm Min 1st Quartile Median Mean 3rd Quartile Max

Extended TS-Stream (Fourier coeff.) −6.28% −0.10% 1.66% 2.50% 4.63% 13.45%
Extended TS-Stream (Fourier coeff., concept drift) −6.28% −0.10% 1.66% 2.50% 4.63% 13.45%

ClipStream (concept drift) −2.61% 0.00% 2.17% 2.80% 4.81% 14.35%
ClipStream (without concept drift) −3.69% −0.01% 2.11% 2.77% 4.76% 14.35%

ClipStream (Fourier coeff., concept drift) −6.53% −0.12% 1.43% 2.45% 4.60% 13.27%
ClipStream (Fourier coeff., without concept drift) −6.53% −0.12% 1.43% 2.45% 4.60% 13.27%

Histogram-based −6.47% −0.10% 1.50% 2.49% 4.64% 13.45%

Table A6. Statistics of the predicted tariffs improvement comparing to the random tariff for
overlapping windows.

Clustering Algorithm Min 1st Quartile Median Mean 3rd Quartile Max

Extended TS-Stream (Fourier coeff.) −6.55% 0.13% 1.89% 2.69% 4.79% 13.48%
Extended TS-Stream (Fourier coeff., concept drift) −6.63% 0.09% 1.82% 2.68% 4.80% 13.38%

ClipStream (concept drift) −2.76% 0.12% 2.32% 2.91% 4.92% 14.45%
ClipStream (without concept drift) −2.51% 0.13% 2.34% 2.91% 4.96% 14.40%

ClipStream (Fourier coeff., concept drift) −6.53% 0.15% 1.66% 2.63% 4.76% 13.31%
ClipStream (Fourier coeff., without concept drift) −6.16% 0.15% 1.70% 2.63% 4.74% 13.46%

Histogram-based −6.64% 0.17% 1.81% 2.65% 4.75% 14.02%
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Appendix B. Results Based on Australian Data Set

Table A7. Simulation of households’ electricity consumption characteristics based on different tariff
group rates for non-overlapping windows.

Min 1st Quartile Median Mean 3rd Quartile Max

Best vs worst individual tariff for each batch 2.86% 5.53% 6.99% 7.60% 8.96% 48.80%
Best individual tariff for each batch vs best

individual tariff for the entire period 0.00% 0.66% 1.08% 1.04% 1.363% 4.26%

Number of dynamic individual tariff change 0.00 4.00 6.00 6.22 8.00 13.00

Table A8. Simulation of households’ electricity consumption characteristics based on different tariff
group rates for overlapping windows.

Min 1st Quartile Median Mean 3rd Quartile Max

Best vs worst individual tariff for each batch 3.16% 6.60% 8.21% 8.79% 10.27% 49.45%
Best individual tariff for each batch vs best

individual tariff for the entire period 0.00% 1.32% 1.70% 1.67% 1.95% 6.63%

Number of dynamic individual tariff change 0.00 16.00 24.00 22.97 30.00 50.00

Table A9. Statistics of the ARI indexes for non-overlapping windows.

Clustering Algorithm Min 1st Quartile Median Mean 3rd Quartile Max

Extended TS-Stream (Fourier coeff.) 0.024 0.047 0.063 0.066 0.082 0.165
Extended TS-Stream (Fourier coeff., concept drift) 0.024 0.047 0.063 0.066 0.082 0.165

ClipStream (concept drift) 0.001 0.040 0.058 0.078 0.101 1.000
ClipStream (without concept drift) 0.001 0.040 0.057 0.071 0.094 0.245

ClipStream (Fourier coeff., concept drift) 0.085 0.134 0.149 0.188 0.169 1.000
ClipStream (Fourier coeff., without concept drift) 0.085 0.127 0.149 0.154 0.171 0.300

Histogram-based 0.286 0.400 0.457 0.491 0.524 0.935

Table A10. Statistics of the tariffs improvement for non-overlapping windows.

Clustering Algorithm Min 1st Quartile Median Mean 3rd Quartile Max

Extended TS-Stream (Fourier coeff.) −0.06% 0.03% 0.21% 0.96% 0.75% 13.36%
Extended TS-Stream (Fourier coeff., concept drift) −0.06% 0.03% 0.21% 0.96% 0.75% 13.36%

ClipStream (concept drift) −0.22% 0.05% 0.27% 0.92% 0.65% 12.13%
ClipStream (without concept drift) −0.22% 0.04% 0.25% 0.91% 0.65% 12.13%

ClipStream (Fourier coeff., concept drift) −0.13% 0.05% 0.20% 0.93% 0.74% 13.36%
ClipStream (Fourier coeff., without concept drift) −0.13% 0.06% 0.23% 0.93% 0.74% 13.36%

Histogram-based −0.11% 0.03% 0.21% 0.91% 0.76% 11.74%

Table A11. Statistics of the ARI indexes for overlapping windows.

Clustering Algorithm Min 1st Quartile Median Mean 3rd Quartile Max

Extended TS-Stream (Fourier coeff.) 0.015 0.037 0.049 0.067 0.079 0.438
Extended TS-Stream (Fourier coeff., concept drift) −0.008 0.037 0.052 0.066 0.080 0.433

ClipStream (concept drift) 0.000 0.037 0.055 0.086 0.094 1.000
ClipStream (without concept drift) −0.004 0.038 0.059 0.080 0.099 0.654

ClipStream (Fourier coeff., concept drift) 0.040 0.120 0.142 0.165 0.164 1.000
ClipStream (Fourier coeff., without concept drift) 0.040 0.120 0.142 0.152 0.167 0.515

Histogram-based 0.218 0.405 0.537 0.540 0.648 0.996

Table A12. Statistics of the tariffs improvement for overlapping windows.

Clustering Algorithm Min 1st Quartile Median Mean 3rd Quartile Max

Extended TS-Stream (Fourier coeff.) −0.17% 0.02% 0.10% 0.14% 0.23% 10.23%
Extended TS-Stream (Fourier coeff., concept drift) −0.19% 0.00% 0.04% 0.76% 0.15% 10.15%

ClipStream (concept drift) −0.32% 0.00% 0.11% 0.77% 0.23% 10.23%
ClipStream (without concept drift) −0.34% −0.03% 0.07% 0.74% 0.21% 10.21%

ClipStream (Fourier coeff., concept drift) −0.18% 0.00% 0.04% 0.76% 0.15% 10.15%
ClipStream (Fourier coeff., without concept drift) −0.15% 0.00% 0.03% 0.76% 0.14% 10.14%

Histogram-based −0.13% 0.01% 0.05% 0.77% 0.15% 10.15%
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Table A13. Statistics of the weighted volatility for non-overlapping windows.

Clustering Algorithm Min 1st Quartile Median Mean 3rd Quartile Max

Extended TS-Stream (Fourier coeff.) 4.33 5.79 7.70 7.65 9.13 10.89
Extended TS-Stream (Fourier coeff., concept drift) 4.33 5.79 7.70 7.65 9.13 10.89

ClipStream (concept drift) 5.18 8.06 11.45 12.86 14.33 28.73
ClipStream (without concept drift) 5.18 8.06 12.03 12.9 14.33 28.73

ClipStream (Fourier coeff., concept drift) 12.29 19.83 24.04 23.94 27.91 42.01
ClipStream (Fourier coeff., without concept drift) 12.29 19.83 23.15 24.1 27.91 42.01

Histogram-based 5.19 6.73 8.72 8.64 10.29 11.87

Table A14. Statistics of the weighted volatility for overlapping windows.

Clustering Algorithm Min 1st Quartile Median Mean 3rd Quartile Max

Extended TS-Stream (Fourier coeff.) 4.46 5.10 6.92 6.705 8.05 9.09
Extended TS-Stream (Fourier coeff., concept drift) 4.66 5.27 6.94 13.21 7.61 70.76

ClipStream (concept drift) 7.88 12.95 16.15 19.38 23.38 37.46
ClipStream (without concept drift) 7.88 12.27 17.82 19.62 25.12 37.46

ClipStream (Fourier coeff., concept drift) 12.85 22.7 24.62 25.02 30.10 37.61
ClipStream (Fourier coeff., without concept drift) 11.94 19.18 24.62 23.63 28.04 33.60

Histogram-based 4.83 6.22 8.251 7.98 9.554 10.32

Table A15. Statistics of the predicted tariffs improvement comparing to the G11 for non-overlapping
windows.

Clustering Algorithm Min 1st Quartile Median Mean 3rd Quartile Max

Extended TS-Stream (Fourier coeff.) −6.29% −1.12% −0.27% −0.18% 0.62% 14.57%
Extended TS-Stream (Fourier coeff., concept drift) −6.29% −1.12% −0.27% −0.18% 0.62% 14.57%

ClipStream (concept drift) −4.69% −0.79% −0.09% 0.19% 0.75% 23.41%
ClipStream (without concept drift) −4.69% −0.76% −0.10% 0.18% 0.73% 24.80%

ClipStream (Fourier coeff., concept drift) −4.97% −1.12% −0.21% −0.15% 0.64% 12.68%
ClipStream (Fourier coeff., without concept drift) −5.39% −1.07% −0.23% −0.15% 0.62% 13.92%

Histogram-based −6.44% −0.51% −0.11% −0.01% 0.41% 4.25%

Table A16. Statistics of the predicted tariffs improvement comparing to the G11 for overlapping
windows.

Clustering Algorithm Min 1st Quartile Median Mean 3rd Quartile Max

Extended TS-Stream (Fourier coeff.) −5.09% −0.33% 0.74% 0.84% 1.77% 15.94%
Extended TS-Stream (Fourier coeff., concept drift) −5.21% −0.38% 0.73% 0.84% 1.81% 16.34%

ClipStream (concept drift) −5.03% 0.08% 0.72% 1.08% 1.73% 23.12%
ClipStream (without concept drift) −5.00% 0.03% 0.71% 1.06% 1.66% 23.65%

ClipStream (Fourier coeff., concept drift) −6.33% −0.44% 0.70% 0.82% 1.82% 16.83%
ClipStream (Fourier coeff., without concept drift) −6.28% −0.43% 0.71% 0.83% 1.82% 16.98%

Histogram-based −7.40% −0.38% 0.08% 0.16% 0.65% 5.14%

Appendix C. Results Based on London Data Set

Table A17. Simulation of households’ electricity consumption characteristics based on different tariff
group rates for non-overlapping windows.

Min 1st Quartile Median Mean 3rd Quartile Max

Best vs worst individual tariff for each batch 2.39% 4.79% 6.61% 7.21% 8.82% 33.37%
Best individual tariff for each batch vs best

individual tariff for the entire period 0.00% 0.08% 0.24% 0.35% 0.51% 2.87%

Number of dynamic individual tariff change 0.00 3.00 5.00 4.90 7.00 14.00

Table A18. Simulation of households’ electricity consumption characteristics based on different tariff
group rates for overlapping windows.

Min 1st Quartile Median Mean 3rd Quartile Max

Best vs worst individual tariff for each batch 2.72% 5.33% 7.22% 7.71% 9.43% 36.14%
Best individual tariff for each batch vs best

individual tariff for the entire period 0.00% 0.26% 0.52% 0.62% 0.87% 3.36%

Number of dynamic individual tariff change 0.00 18.00 25.00 23.95 31.00 47.00
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Table A19. Statistics of the ARI indexes for non-overlapping windows.

Clustering algorithm Min 1st Quartile Median Mean 3rd Quartile Max

Extended TS-Stream (Fourier coeff.) 0.000 0.066 0.081 0.080 0.100 0.199
Extended TS-Stream (Fourier coeff., concept drift) 0.000 0.066 0.081 0.080 0.100 0.199

ClipStream (concept drift) 0.080 0.140 0.173 0.213 0.215 1.000
ClipStream (without concept drift) 0.078 0.130 0.164 0.173 0.204 0.344

ClipStream (Fourier coeff., concept drift) 0.074 0.112 0.143 0.162 0.174 1.000
ClipStream (Fourier coeff., without concept drift) −0.001 0.110 0.136 0.136 0.168 0.368

Histogram-based 0.224 0.333 0.368 0.417 0.488 0.889

Table A20. Statistics of the tariffs improvement for non-overlapping windows.

Clustering Algorithm Min 1st Quartile Median Mean 3rd Quartile Max

Extended TS-Stream (Fourier coeff.) −0.13% 0.06% 0.23% 0.93% 0.74% 1.74%
Extended TS-Stream (Fourier coeff., concept drift) −0.25% 0.01% 0.07% 0.19% 0.20% 1.72%

ClipStream (concept drift) −0.05% 0.08% 0.20% 0.35% 0.41% 1.58%
ClipStream (without concept drift) −0.05% 0.11% 0.22% 0.39% 0.47% 1.71%

ClipStream (Fourier coeff., concept drift) −0.20% 0.01% 0.13% 0.26% 0.22% 1.92%
ClipStream (Fourier coeff., without concept drift) −0.16% 0.02% 0.13% 0.27% 0.22% 1.92%

Histogram-based −0.09% 0.03% 0.09% 0.15% 0.27% 0.72%

Table A21. Statistics of the ARI indexes for overlapping windows.

Clustering Algorithm Min 1st Quartile Median Mean 3rd Quartile Max

Extended TS-Stream (Fourier coeff.) 0.036 0.064 0.077 0.090 0.099 0.442
Extended TS-Stream (Fourier coeff., concept drift) 0.031 0.064 0.078 0.090 0.098 0.447

ClipStream (concept drift) 0.060 0.125 0.150 0.176 0.190 1.000
ClipStream (without concept drift) 0.060 0.121 0.149 0.168 0.191 0.744

ClipStream (Fourier coeff., concept drift) 0.053 0.111 0.143 0.164 0.183 1.000
ClipStream (Fourier coeff., without concept drift) 0.055 0.110 0.139 0.155 0.177 0.658

Histogram-based 0.209 0.321 0.395 0.426 0.504 0.984

Table A22. Statistics of the tariffs improvement for overlapping windows.

Clustering Algorithm Min 1st Quartile Median Mean 3rd Quartile Max

Extended TS-Stream (Fourier coeff.) −0.21% 0.02% 0.08% 0.10% 0.16% 1.39%
Extended TS-Stream (Fourier coeff., concept drift) −0.21% 0.00% 0.06% 0.10% 0.16% 1.39%

ClipStream (concept drift) −0.37% 0.02% 0.17% 0.22% 0.34% 2.13%
ClipStream (without concept drift) −0.41% 0.01% 0.17% 0.21% 0.35% 2.13%

ClipStream (Fourier coeff., concept drift) −0.55% −0.03% 0.04% 0.10% 0.15% 2.43%
ClipStream (Fourier coeff., without concept drift) −0.38% −0.03% 0.04% 0.10% 0.15% 2.43%

Histogram-based −0.17% 0.00% 0.04% 0.07% 0.11% 1.14%

Table A23. Statistics of the weighted volatility for non-overlapping windows.

Clustering Algorithm Min 1st Quartile Median Mean 3rd Quartile Max

Extended TS-Stream (Fourier coeff.) 6.75 8.47 9.84 10.11 12.16 164.98
Extended TS-Stream (Fourier coeff., concept drift) 6.75 8.47 9.84 10.11 12.16 164.98

ClipStream (concept drift) 19.36 23.72 26.63 29.58 33.91 48.24
ClipStream (without concept drift) 19.36 24.10 26.48 29.81 37.19 48.24

ClipStream (Fourier coeff., concept drift) 27.91 43.52 48.81 51.61 63.26 85.77
ClipStream (Fourier coeff., without concept drift) 27.91 43.52 48.81 57.82 70.38 164.32

Histogram-based 9.36 10.37 11.50 12.46 14.73 18.77

Table A24. Statistics of the weighted volatility for overlapping windows.

Clustering Algorithm Min 1st Quartile Median Mean 3rd Quartile Max

Extended TS-Stream (Fourier coeff.) 7.03 8.94 9.46 10.54 11.14 17.08
Extended TS-Stream (Fourier coeff., concept drift) 7.03 8.94 9.46 10.54 11.14 17.08

ClipStream (concept drift) 16.79 20.30 23.10 25.41 29.59 43.31
ClipStream (without concept drift) 16.79 20.30 23.10 25.15 29.59 39.00

ClipStream (Fourier coeff., concept drift) 24.99 28.92 41.69 42.91 53.07 62.66
ClipStream (Fourier coeff., without concept drift) 24.99 28.92 41.69 42.33 51.61 62.66

Histogram-based 8.86 10.91 11.77 12.76 13.55 21.39
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Table A25. Statistics of the predicted tariffs improvement comparing to the G11 for non-overlapping
windows.

Clustering Algorithm Min 1st Quartile Median Mean 3rd Quartile Max

Extended TS-Stream (Fourier coeff.) −5.37% −0.67% 0.27% 0.39% 1.27% 7.14%
Extended TS-Stream (Fourier coeff., concept drift) −5.37% −0.67% 0.27% 0.39% 1.27% 7.14%

ClipStream (concept drift) −3.96% −0.46% 0.11% 0.36% 0.78% 12.72%
ClipStream (without concept drift) −3.96% −0.48% 0.10% 0.39% 0.79% 13.81%

ClipStream (Fourier coeff., concept drift) −6.62% −0.76% 0.18% 0.23% 1.08% 7.89%
ClipStream (Fourier coeff., without concept drift) −6.62% −0.75% 0.18% 0.23% 1.10% 7.89%

Histogram-based −6.43% −0.68% 0.31% 0.55% 1.52% 10.97%

Table A26. Statistics of the predicted tariffs improvement comparing to the G11 for overlapping
windows.

Clustering Algorithm Min 1st Quartile Median Mean 3rd Quartile Max

Extended TS-Stream (Fourier coeff.) −7.41% −0.53% 0.41% 0.59% 1.53% 8.66%
Extended TS-Stream (Fourier coeff., concept drift) −5.83% −0.50% 0.42% 0.57% 1.51% 7.66%

ClipStream (concept drift) −3.95% −0.32% 0.28% 0.62% 1.10% 13.26%
ClipStream (without concept drift) −5.14% −0.32% 0.31% 0.65% 1.22% 13.27%

ClipStream (Fourier coeff., concept drift) −6.08% −0.51% 0.37% 0.49% 1.33% 7.86%
ClipStream (Fourier coeff., without concept drift) −6.71% −0.48% 0.37% 0.50% 1.37% 8.43%

Histogram-based −7.61% −0.48% 0.37% 0.68% 1.64% 10.90%
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Abstract: The increase in the proportion of elderly in Europe brings with it certain challenges that
society needs to address, such as custodial care. We propose a scalable, easily modulated and live
assistive technology system, based on a comfortable smart footwear capable of detecting walking
behaviour, in order to prevent possible health problems in the elderly, facilitating their urban life as
independently and safety as possible. This brings with it the challenge of handling the large amounts
of data generated, transmitting and pre-processing that information and analysing it with the aim of
obtaining useful information in real/near-real time. This is the basis of information theory. This work
presents a complete system aiming at elderly people that can detect different user behaviours/events
(sitting, standing without imbalance, standing with imbalance, walking, running, tripping) through
information acquired from 20 types of sensor measurements (16 piezoelectric pressure sensors, one
accelerometer returning reading for the 3 axis and one temperature sensor) and warn the relatives
about possible risks in near-real time. For the detection of these events, a hierarchical structure of
cascading binary models is designed and applied using artificial neural network (ANN) algorithms
and deep learning techniques. The best models are achieved with convolutional layered ANN and
multilayer perceptrons. The overall event detection performance achieves an average accuracy and
area under the ROC curve of 0.84 and 0.96, respectively.

Keywords: assistive technology; elderly people; wearable devices; smart footwear; deep learning;
artificial neural networks

1. Introduction

1.1. Context

The proportion of elderly people in Europe has been increasing in recent years and
is expected to follow a clear upward trend in the coming years, reaching 29.4% of the
total population in 2050 [1]. This ageing population is due to falling fertility rates and
increasing life expectancy, the latter due to numerous advances in science, technology,
medicine and public health, combined with increased awareness of nutrition and personal
hygiene [2,3]. Although the increase in demographic longevity can be seen as one of
history’s great success stories, it has social consequences and challenges that need to be
addressed, such as custodial care. One third of people over 75 have physical, mental or
sensory impairments [4] and therefore need long-term custodial care. This care can be
provided in institutional care or at home. Studies have shown that older people living in
institutional care experience a higher level of dependency, loneliness and decreased life
satisfaction and that they prefer to live in their own homes [5–7]. Living in their own home
provides them with greater independence, reduces social isolation with a positive effect on
the elderly [8]. However, ageing at home implies addressing certain aspects of home care.

The use of approaches and techniques for the care of the elderly has become an emerg-
ing challenge that needs to be addressed in a way that supports, facilitates and enables
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them to age with a better quality of life and as independently as possible. To this end,
smart home systems [2,9–12] and assistive technologies (AT) [13,14] have been developed.
They are based on the implementation of different sensors and devices (Internet of Things,
IoT). However, their adoption may raise certain barriers [15] and concerns on the part of
older adults related to how they perceive these technologies [16], such as privacy, ease
of use, lack of training or suitability for everyday use [17]. This leads to high rates of
dissatisfaction and abandonment of assistive technology and its use. Another aspect of
abandonment is related to the design, aesthetics or unobtrusiveness of the device [18].

The integration of sensors and devices generates large amounts of real data and in-
formation, which brings with it the challenge of handling this data, pre-processing and
analysing it in order to obtain useful information in real time. This is the basis of the
fundamentals of information theory, which was conceived by Claude Shannon in 1948 [19].
Information theory is a subfield of mathematics that deals with the quantification of in-
formation, the representation of information and the ability of communication systems to
transmit and process information. The need for this theoretical basis arose in the face of the
increase in complexity and the massification of communication channels in the mid-20th
century. Extrapolating it to the 21st century, with the development of concepts such as
IoT, Artificial Intelligence, Big Data, Machine Learning, Deep Learning, the fundamentals
of information theory remain basic foundations today. One of the important concepts of
information theory is the quantification of the amount of information through the use of
probabilities (“entropy”). This concept of information theory has had great contributions
in areas such as machine learning and neural networks. In particular, the computation
of information and entropy is a useful tool in machine learning and is used as a basis for
techniques such as feature selection, decision tree construction, imbalance calculations in
the target class distribution and, in general, when optimising classification models (e.g.,
artificial neural networks) considering cross-entropy as a loss function. The application of
models based on artificial neural networks and particularly Deep Learning has become
widespread in recent years due to its ability to automatically detect the most particular
features of data, which has led to promising performance in many areas such as, in particu-
lar, sensor-based activity recognition [20–23] and in the application of smart homes and
wearable devices [24–26].

Thanks to the fundamentals related to information theory, the miniaturisation of
sensors and the improvement of data storage and transmission systems have been possible
and is one of the reasons for the success of monitoring and pattern detection through
IoT devices and sensors, particularly in the integration of fabrics and textiles (“smart
fabrics/wearable”) [27–30]. Particularly, the data retrieved by sensors can be used to
monitor the elderly in real time and predict their behaviour, preventing potential health
problems, while providing them with independence and facilitating them urban living.
Furthermore, ensuring that the electronics are fully integrated into the fabric ensures truly
wearable products without discomfort.

The research problem of this article is based on the detection of walking behaviour of
elderly people using wearable AT prototype for everyday use by using deep learning algo-
rithms. This work is result of the European project MATUROLIFE (Metallisation of Textiles
to make Urban living for Older people more Independent Fashionable) [31], which has
been carried out within the framework of the Horizon 2020 (The EU-Horizon2020 (H2020-
EU.2.1.3. Leadership in enabling and Leadership in enabling and industrial technologies—
Advanced materials)). The project aim was to research, innovate and develop a more
integrated assistive technology in textiles and fabrics through the use of advanced materi-
als, allowing sensors and electronic devices to be fully integrated into intelligent fabrics in
a discreet, fashionable and comfortable way [32–36]. The project studied the incorporation
of sensors in three prototypes of AT for everyday use: clothing, furniture and footwear,
that will make urban living for older adults easier, more independent, fashionable and
comfortable. In the article we focus on the smart footwear prototype.
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1.2. Related Work

Research and study of the walking behaviour detection through the use of footwear
incorporating sensors (smart footwear) has been widely explored in last years [37]. Abnor-
mal walking behaviour can indicate danger and detecting it can prevent potential health
problems, such as injuries that can be caused by falls [38–42]. This is of great interest to the
elderly population, as it allows them to lead a comfortable, more independent and safer
urban life by monitoring their activity.

De Pinho et al. [43] presented the results of an experiment aimed at detecting 6 types
of activities (walking straight, walking slope up, walking slope down, ascending stairs,
descending stairs and sitting) from information retrieved from smart shoes. The exper-
iment involved 11 participants, 2 of whom were elders. The classifier used a Random
Forest algorithm with leave-one-out cross validation, achieving good average accuracy.
A set of 12 features were considered as model inputs: 2 axis of the gyroscope, 2 axis of the
magnetometer, 1 axis of the accelerometer, 4 force-sensitive resistors (FSRs), 2 Euler angles
and the cumulative difference between samples of the barometer. el Achkar et al. [44]
studied also the recognition of daily activities (level walking, sitting, standing, up/down
stairs, up/down hill, elevator use) of older people. For this purpose, ten elderly people
wearing the instrumented footwear system carried out the activities in a semi-structured
protocol. The smart footwear included inertial and barometric pressure sensors, a sen-
sorised insole to measure foot pressure and a box with electronics that strapped to the ankle.
A decision tree incorporating rules inspired by movement biomechanics was applied as
activity classification algorithm, achiving a high overall accuracy.

Zitouni et al. [45] designed a discreet, comfortable and highly effective device that
is housed in the insole and a fall detection algorithm based on acceleration and time
thresholds. Six subjects between 25 and 30 years of age were tested for possible falls
that an elderly person may have while performing daily activities of daily living. They
validated the proposed prototype and algorithm in real time (in a real public demonstration)
confirming satisfactory performance. Montanini et al. [46] presented a low complexity and
threshold-based methodology capable of detecting a fall and notifying a monitoring system.
The smart shoes were equipped with 3 FSRs and a tri-axial accelerometer and tied to a belt
an external processing unit box. These devices enabled the analysis of the subject’s motion
and foot orientation, recognizing abnormal configurations. Laboratory tests involved 17
healthy subjects (aged between 21 and 55 years) and provided satisfactory performances in
falls detection. The proposed method was also validated with two elderly users in a real-life
scenario. Light et al. [47] mentioned the need for the use of monitoring systems for older
people because of their high risk of falls and other mobility problems. They developed
an optimized layout of pressure sensors for a smart- shoe fall monitoring application by
analysing various machine learning algorithms with 10-fold cross validation that classify
fall types. Subjects between the ages of 20 and 45 years participated in the data collection.
The activities carried out in this experiment were falling-left, falling right, falling-forward,
falling-backward, standing, walking, and kneeling down. Sim et al. [48] attached an
accelerometer on the shoes (tongue) to detect fall in the elderly. 3 axis- acceleration signals
were measured in three young subjects (2 young males, 1 young female, aged between
24 and 28). The fall types used in this study were the most common fall types in elderly
people. The results of the fall detection algorithm showed that this shoe-based fall detection
system had relatively high sensitivity.

1.3. Limitations of Existing Practices

The related studies have some limitations related to different aspects such as the com-
fort and usability of the smart footwear, the set of events capable of detection, the provision
of a real-time detection and notification system, and the modularity and scalability of
the system.

For greater comfort and ease of use of the footwear, it is desirable that sensors and
electronic devices are fully integrated into the shoe without direct contact with the rest
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of the person’s body. This aspect is not fully addressed by some of the related works.
The prototype of el Achkar et al. [44] housed an electronic box strapped directly to the ankle.
Montanini et al. [46] did not fully integrate everything into the shoe either. Light et al. [47]
mentioned that the insole was tied to the user’s leg using paper tapes, which could cause
some discomfort, especially when removing these tapes from the subject’s leg. The design
of the prototype of Sim et al. [48] also had some limitations. The accelerometer module
of the prototype could easily detached because it was attached to the outside of shoes,
as well as encumbering some activities, and the battery was slightly heavy. The authors
suggested reducing the size of the module and embedding it under the insole, as well as
incorporating piezoelectric elements to solve the problem with energy harvesting. All these
factors represent a clear limitation, as they are less comfortable and intrusive devices that
prevent certain activities from being carried out with complete normality.

Regarding the considered events, some of the studies focus on detecting more common
events related to the user daily activity (sitting, walking, going up/down stairs, etc.) [43,44],
while other studies focus only on immediate risk events such as falls [45–48]. However,
there is a lack of studies proposing a system capable of detecting a broader spectrum of
events, both hazard events and daily activity events.

Concerning the detection algorithms used, most studies proposed simple rule-based
Machine Learning algorithms (decision tree [44], random forest [43]) or threshold-based
methodologies [45,46]. Although in all cases the authors reported achieving good perfor-
mance, they did not mention guarantees of modularity and scalability for the detection of
new events or new functionalities and models. In addition, rule-based algorithms may be
not very robust and have a higher risk of overfitting, with the risk of not generalising well
to a different population.

There are also limitations in the related studies in terms of the provision of a sys-
tem with practical real-time applicability. Most papers studied the scope of the system
(algorithm and smart footwear) in terms of event detection but either did not validate
it in real-time or did not provide a complete real-time detection and notification system.
Montanini et al. [46] foreseed as future work the integration of a notification service for
caregivers and Sim et al. [48] to develop a better smart-shoes system that shows the fall
information on a smartphone and is therefore able to detect falls only with shoes and
a smartphone.

1.4. Proposed Solution

We propose a system based on smart footwear capable of detecting different walk-
ing behaviours and warning the person responsible for the elderly person of possible
risks in near-real time via a Telegram message. Figure 1 shows a general outline of the
proposed system.

Figure 1. General outline of the proposed system.
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The system is able to detect 6 events (sitting, standing still without imbalance, standing
with imbalance, walking, running and stumbling) from the information retrieved from
the pressure, acceleration and temperature sensors incorporated in the smart footwear.
For this purpose, Deep Learning techniques and neural networks algorithms are applied,
following an architecture that allows the system to be easily modulated, scalable and robust.
In addition, advanced materials were used in the design of the smart footwear, so that
the sensors and electronic devices are fully integrated into the shoe in a discreet, elegant
and comfortable way. This is important to encourage their use because, as mentioned
above, suitability for everyday use, design, aesthetics, discretion and comfort are important
aspects to their adoption. Many of the related studies introduced in the previous section
do not fully address this aspect.

In conclusion, the system we propose includes a smart footwear, comfortable for
daily use, that retrieves real-time information of the elderly person walking and is able to
detect a wide set of events and warn the responsible person of possible dangers, allowing
to act quickly to avoid potential health problems. Therefore, unlike most related works,
in addition to studying the retrieved data and generating classification models based on
deep learning, we developed a system useful for real practice that allows act and send
notifications to the mobile phone in near real time. Furthermore, our system detects both
events of possible immediate risk (imbalance, stumbling) and more common events in
daily activity (walking, for example), making it a more complete behaviour detection
system with greater practical interest. Another of the differential aspects that our proposal
addresses is to ensure a scalable and easily modular system (it allows to be recreated
with new functionalities) and alive, external to possible errors or failures in the sensors,
for example.

To realise this whole system, the fundamentals of information theory were elementary
and data analytics played a key role. Our work considered the methodological frame-
work related to data analytics CRISP-DM (Cross-Industry Process for Data Mining) [49]
which is based on an agile and iterative methodology whose approach consists of sev-
eral interrelated phases: Business Understanding (understanding the context from the
business perspective), Data Understanding (acquisition and exploration of the data), Data
Preparation (pre-processing of the corresponding data for the subsequent use of models),
Modelling (generation of Machine Learning and Artificial Intelligence models), Evaluation
(evaluation of the results of the models related to the definition of the business objec-
tives) and Deployment (deployment of the application). Specifically, the article focuses
on the analysis and modelling of data from smart footwear sensors using Deep Learning
techniques and artificial neural networks algorithms with cross-entropy loss function.
The following sections present the proposed system in more detail, explaining the different
modules it integrates, such as the data analysis module carried out, as well as the results
and scopes obtained in the project.

2. Materials and Methods

2.1. System Architecture

The final objective of the designed prototype is to be able to use the information
retrieved by the sensors implemented in the shoe in order to control the walking and
movement behaviour of the user so that the relative responsible for the user or professional
health carers can be alerted if a possible risk is detected. The system architecture achieving
this is presented in Figure 2. The system architecture has been designed taking into account
the potential scalability of the system with a possible growth potential. Kubernetes [50] is
the platform used to manage the different components of the architecture.
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Figure 2. Scheme of system architecture.

The components involved in the architecture and therefore necessary to guarantee the
information flow are: smart shoe, an Android smartphone for the user (in particular, having
installed the MaturoApp application available on the PlayStore), mobile phone for the
responsible person (contact person) with the Telegram application [51], internet connection
(4G–5G) and an infrastructure (server) that supports the management, preprocessing and
modelling of the data. The system is mainly composed of two information transmission
processes: information retrieval flow from the user’s smart footwear to the database and
information exploitation flow from the database to the end user (user relative).

The information retrieval process involves the following components: the smart
footwear, the Android smartphone for the user (MaturoApp), a cloud data manager
(MQTT [52]) and a database for storage. The process is as follows. The smart shoe
generates information about the user gait through the measurements of the implemented
sensors retrieved with an average frequency of 4 Hz. The raw data is coded by the PCB
using scientific notation fixed-point coding. It is then transferred via Bluetooth to the user’s
mobile phone (MaturoApp application), where the values of the pressure sensors can be
displayed in real time. The mobile application transforms the received data chunks and
transmits them via an MQTT message as follows:

{“timestamp”:“2020-10-25T17:12:24:6847”,“data”:[X1, X2, X3, X4, X5, X6, X7, X8, X9, X10, X11, X12, X13, X14, X15, X16]} (1)

where the timestamp and the values of the 16 pressure sensors (Xi) are displayed. These
messages are grouped and inserted into an InfluxDB time series database [53].

Simultaneously, the information exploitation process is carried out. It involves the
following components: the database with the retrieved information stored, the Data
Analysis and Modelling module and the mobile phone of the contact person with the
Telegram application. The process is as follows. The latest data stored in the database are
retrieved with an appropriate frequency from the data Analysis module and preprocessed
and prepared in a suitable way for the subsequent application of the artificial neural
networks and Deep Learning models. The model output, as well as its timestamp, are
stored in a table in the InfluxDB database. If the outcome indicates a risky event for the
user, a Telegram message is sent to the emergency contact via the Telegram bot so an action
can be taken. The information retrieval and exploitation system ensures near real-time
event detection.

The following sections explain in detail the sensors implemented in the smart shoe,
the experimental setup and data collection process necessary for the generation of the
models and the data analysis module including sections on data pre-processing, model
architecture and trained artificial neural networks.
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2.2. Smart Footwear Design

Prototyped shoes were designed in 2 different models (male and female) and include
sensorization and electronics in one shoe of each pair (right foot). In particular, the sen-
sorized pairs of shoes that were made available for data collection and analysis were
an European size 38 of the women’s shoe model and an European size 41 of the men’s
shoe model.

The sensors implemented in the shoe retrieve information from three physical mag-
nitudes: pressure (16 sensors), temperature (1) and acceleration (one measurement for
each axis). The pressure sensors are piezoelectric sensors that are housed along the insole
(designed with metallised textile) as presented in Figure 3. In particular, the material used
for the produced insoles followed a coating process called electroless copper plating used
for the selective metallization of textiles for electro-magnetic interference shielding [33].
The printed materials were used on a multilayer solution in which pressure sensors based
on Printed Electronic technology are sandwiched between two layers with printed elec-
trodes. The temperature sensor and the accelerometer are embedded in a printed circuit
board (PCB). In addition to retrieving the temperature and acceleration measurements,
the PCB is designed to connect and pre-process the data retrieved from the smart insole
(pressure sensors), after a signal conditioning to convert pressure sensors signals into
required values for the Analog Digital converters.

Figure 3. Location of the piezoelectric sensors on the insole.

Besides the sensors, the shoes have a Bluetooth antenna, a battery and a micro-usb
connector for charging. All these components and the PCB are housed in a 3D printed box
incorporated in the heel area, for which it was necessary to drill a cavity. As it can be seen
in Figure 4, the box is divided into two parts: one to hold the battery and the other to hold
the PCB. The box has access to charging port and insole connector from outside.

Being the insole independent of the PCB allows the insoles to be easily removed and
substituted with newer ones by simply unplugging them from the connector. Thus, users
can easily replace the insoles if damaged or if newer versions arrive to market.
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Figure 4. Components of the sensorised shoe.

In order to check that no interactions with other signals occur that could affect the
proper functioning of other surrounding devices, laboratory tests of the implemented
sensorics were performed. The tests performed compared insoles produced with commer-
cial textile sets (made with a flexible substrate circuit) and the ones produced with the
metallized textiles with no variations detected regarding electro-magnetic interferences
and resistance variations for the different forces applied. In addition, the communication
system was designed and verified in such a way that it transmits information correctly and
without error. Specifically, data transmission error rate is near null at the average distance
a potential user could keep the mobile while walking (a pocket, on the hand, etc.), besides,
the PCB is able to store several data chunks at an internal buffer and retransmit them on
error till properly received by the mobile device.

2.3. Experimental Setup. Data Collection
2.3.1. Events

In order to detect possible risks based on the user behaviour, a set of representative
events of the gait to be modeled (supervised learning) was defined. The final classification
models will allow the user behaviour to be related to one of the defined events. The events
considered are the following:

• Sitting: sitting on a chair. May also include movements of the feet or the crossing of
the legs.

• Standing still without imbalance: standing without moving forwards, backwards or
sideways. May also include small foot taps.

• Standing with imbalance: includes lateral, frontal and random imbalances.
• Walking: includes different walking speeds, from slower to more normal.
• Running: running with a higher gait than walking.
• Stumbling: stumbling with the right foot. Includes both more violent and softer stumbles.

The selection criteria for the events was to consider a wide heterogeneous range of
possible user behaviours including both more immediate hazard events and more common
events of daily activity, in order to monitor and prevent possible health problems of the user.
The stumbling and imbalance detection is important as these events indicate a possible
risk of a fall and lack of body control by any user that may lead to a dangerous fall and
negatively affect the user health. On the other hand, although the other events may relate to
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more common and less dangerous events in principle, their detection can also help to inform
us of certain abnormal user behaviours in specific time periods. For example, the detection
of the event “sitting” in a certain time period where the user usually walks may be an
indication that the user has suffered a health problem (e.g., stroke), or the detection of the
event “standing” without movement for a long period of time could indicate disorientation.
As the data retrieval and exploitation system, discussed above, allows the detection of
these events in a small time period (near real time), it enables emergency contacts to act
rather quickly in order to avoid these potential health-related problems.

2.3.2. Data Collection

For the application of the final classification models to detect the events presented
above, it was necessary to generate and retrieve data (temporal information from the sen-
sors) for each event. At the beginning the project activities were scheduled and addressed
to a testing group of elderly participants at the village of Arnedo -La Rioja-. However,
due to the COVID19 pandemic in 2020 that brought an initial lockdown across all Europe
followed by mobility restrictions, they could only participate in the identification of needs
and contribution of ideas to the product design and interaction teams. Therefore, as a con-
sequence of these pandemic limitations, the generation or retrieval of (anonymised) data
from the different defined events had to be finally performed by a group of participants
from the project technical team. The group consisted of 3 people (2 women and 1 man),
aged 26, 27 and 26 years, respectively, and weighting approximately 70 kg each, which
remained stable throughout the study period. As they had different foot sizes, two of the
subjects wore the same pair of shoes (male model) and one of the women wore the other
pair (female model) throughout the study period.

The data collection process was as follows. The subject put the shoe on his right foot,
logged into the MaturoApp application on his mobile phone and performed one of the
events mentioned for a time. While this action lasted, the sensors implemented in the
shoes were capturing acceleration, pressure and temperature values with the frequency
mentioned above. This information was sent via Bluetooth to the Maturoapp application
on the user’s mobile phone where the values of the pressure sensors could be visualised in
real time. This data was stored in InfluxDB as described above with a manually defined
tag identifying the subject, the event to which the data corresponded and the timestamp,
in order to have complete traceability. This process was carried out multiple times by the 3
subjects and for the 6 events.

The database stored a total of 2.5 h of captured data. The first few minutes corre-
sponded to initial recording tests in order to test and become familiar with the data capture
system. Also, as explained later in the article, the models use as input the historical infor-
mation for each time instant. Therefore, the first data captured in each recording were also
not used in the generation of the model because they did not have sufficient historical in-
formation. Finally, the labelled dataset used for the generation of the models corresponded
to a total of approximately 2 h of recording. The number of samples corresponding to each
of the events is shown in Table 1.

Table 1. Number of observations for each event.

Events No of Observations

Sitting 3020
Standing still without imbalance 6920
Standing with imbalance 5230
Walking 9620
Running 3480
Stumbling 820

Figure 5 shows an example of data generation for the event “walking”. The figure
displays the person with the sensorized shoe and the image of the insole (shown in the
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MaturoApp) with the measurement information from the pressure sensors in real time.
On the left of the figure is the person with the foot resting on the floor (active sensors with
measurements in green) and on the right with the foot lifted (inactive sensors in red).

Figure 5. Recording data from sensorized shoe. Left: Shoe resting on the floor. Right: Shoe lifted.

2.4. Data Analysis Module
Data Preprocessing

Once the data are captured and stored, a pre-processing of the data is carried out in
order to unify the temporal information retrieved from the sensors before applying models.

Firstly, given that the acceleration sensors and the temperature sensor sent the data
with a certain delay with respect to the pressure sensors, the times recorded by the ac-
celerometer were assigned to the times of the pressure sensors. Thus all sensor readings
ended up having the same time stamp each time a measurement was taken. Secondly,
the maximum number of previous values that the model would use to predict the event
was defined. After testing for computational speed and after having discussed and verified
the time window to detect the event, a maximum of 32 previous values was chosen.

Therefore, the final data structure for each event was as follows (number of samples,
32, 20), the last component being the total number of sensor measurements. That is, each
sample corresponded to a matrix of dimensions 32 × 20 of the form:⎛⎜⎜⎝

P0
t−1 P1

t−1 ... P15
t−1 T0

t−1 A0
t−1 ... A2

t−1
P0

t−2 P1
t−2 ... P15

t−2 T0
t−2 A0

t−2 ... A2
t−2

... ... ... ... ... ... ... ...
P0

t−32 P1
t−32 ... P15

t−32 T0
t−32 A0

t−32 ... A2
t−32

⎞⎟⎟⎠ (2)

where “P” refers to the pressure sensor measurements, “A” to the acceleration and “T” to
the temperature, the superscript corresponds, for each type, the sensor number and the
subscript to the instant in time, being “t” the actual instant. Therefore, for each sample,
historical information in the form of the Equation (2) was obtained.

Finally, the data associated with each of the events were divided into three separate
data sets: training (60%), validation (20%) and test (20%), ensuring the same proportion
of samples of each class (event) in each set. The training data was used for model train-
ing/tuning, the validation data was used for selection of the best model configuration
(hyperparameter set) and the test data was used to provide unbiased evaluation metrics to
give a generalized value of the performance of the chosen fitted model.

2.5. Model Architecture

For the prediction of the user state (defined events), different binary models were
generated. The final outcome is the consequence of the application of these binary models
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in cascade following the hierarchical structure shown in Figure 6. The underlying idea was
to start from more general binary models of behaviour that include more particular groups
of events and, depending on their outcomes, to continue in the tree with more specific
models, following a hierarchy.

Figure 6. Hierarchical structure of models.

A total of 5 types of binary models were generated: (1) binary model generated from
recorded event information that determines whether the user remains seated or stand-
ing (standing still without imbalance, standing still with imbalance, stumbling, walking,
running); (2) binary model generated from recorded standing event information that de-
termines whether the user remains still (standing still without imbalance, standing still
with imbalance) or moving (stumbling, walking, running); (3) binary model generated
from the information of the recorded non-moving standing events that determines whether
the user is unbalanced or not (standing still stable); (4) binary model generated from the
information of the recorded moving events that determines whether the user stumbles or
does not stumble (walking, running); (5) binary model generated from the information of
the recorded non-stumbling moving events that determines whether the user is walking
or running.

The training and validation of the different binary models is explained in the follow-
ing section.

Artificial Neural Networks

Artificial neural networks architectures with different types of layers including dense
layers, time-distributed dense layers, convolutional layers and long and short term memory
(LSTM) layers were used to train the models.

The dense layer is the regular layer of the deep-connected neural network and the time-
distributed dense layer applies the same dense layer to every temporal slice of an input.
The structure of the convolutional layers has a connection between neurons that is not fully
complete but parameters are shared between different neurons. This particular structure
implies, on the one hand, the ability to learn general and invariant representations of the
data and, on the other hand, the training of complex architectures with less computational
time. The convolution structure used also allowed the use of pooling layers. The LSTM
layers allow for a recurrence and learning of dependencies not only in the short term but
also in the long term.
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For the fitting of the models, the concept of “entropy” from information theory was
used. In particular, cross-entropy was used as a loss function:

E = − 1
N

N

∑
i=1

yi · log(p(yi)) + (1 − yi) · log(1 − p(yi)) (3)

where yi is the class (1 or 0), and p(yi) the predicted probability of belonging class 1 for
observation i out of N observations.

In order to avoid overfitting, regularisation techniques such as dropout and EarlyStop-
ping were used so that the model would stop training if it did not improve within a certain
number of iterations.

In the training of each binary event detection model, a hyperparameter search was
performed, allowing to select the number of dense layers to be introduced, whether an
LSTM layer or a convolutional layer was included as well as the value of the hyperpa-
rameters defining each of these neural network layers. The search space is presented in
Table 2. The possibility to select or not the different sensors as inputs was also allowed.
This implies a selection of features that may differ depending on the event to be modelled.
Another parameter to choose was the number of previous timestamps for each event, this
value being a maximum of 32 and a minimum of 4.

Table 2. Search space for each of the parameters when training the model.

Parameters Search Space

No. of hidden Dense/Time Distr. Dense layers [1, 11]
No. of units of each layer [1, 64]
Activation function of each layer {tanh,selu}
Use of Conv. layer {True,False}
No. of filters in Conv. [1, 50]
Size window in Conv. [2, 32]
Activation function of Conv layer {selu,sigmoid}
Use of pooling layers [True,False]
Use of LSTM layer [True,False]
No. of units of LSTM [1, 50]
Learning rate {0.1, 0.01, 0.001}
Optimizer {sgd,adam,rmsprop}
Batch size [1, 50]

This hyperparameter search was carried out automatically using the framework called
Optuna [54]. Optuna is a define-by-run API that allows users to construct the parameter
search space dynamically and implements both searching and pruning strategies. Particu-
larly, the Tree-structured Parzen Estimator (TPE) algorithm [55] was used. Thus, Optuna
allowed training different models considering multiple combinations of hyperparameters.
The selection of the best model configuration was carried out by the validation set. The met-
ric considered was the area under the receiver operating characteristics curve (AUC).
The discrimination ability of the final chosen models was calculated with the test set.

All data analysis and implementation of the models were performed using the Python
programming language v. 3.8. [56].

3. Results

Table 3 shows the neural network architecture configuration of the best models for the
5 classification problems considered. Two of the models (stumble model and unbalanced
model) selected a neural network with a convolutional layer and depth of 11 hidden layers
as the best network configuration. For the stumbling problem 21 filters were chosen and
6 for the imbalance problem. For the rest of the problems, simpler architectures were
chosen, namely multilayer perceptrons with one layer and 3 hidden layers (running vs.
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walking model). The model that discerns between running and walking and the one that
discerns between standing with movement and standing still consider the 32 previous
timestamps of each sensor as input; the model that discerns between sitting and standing
and the unbalance model consider the previous 16 and the stumbling model the previous
4. Regarding the inputs of the best models, the Table shows the pressure sensors (P) and
acceleration measurements (A) selected. Temperature was not selected in any of the models
as an explanatory variable. In the case of the pressure sensors, the superscript indicates
the sensor number, whose corresponding distribution along the insole is displayed in
the Figure 3. The superscript in the acceleration indicates each of the three axes of the
coordinate system. It is observed that the model that discerns between moving and still
and the one that discerns between running and walking includes information from two
acceleration axes as input to the model, while the rest of the models are fed with information
from a single acceleration axis. Regarding the pressure sensors, in general the models
considered as inputs a subset of pressure sensors housed along the entire insole. It could
be noted that the model that discerns between standing and sitting considers more sensors
from the bottom of the foot insole (heel) as inputs than the rest of the models. This result
seems reasonable since the heel is the part of the foot that tends to bear a greater difference
in load when standing compared to sitting.

Table 3. Best models configuration.

Model Standing
vs. Seated

Model Moving
vs. Still

Model Stumbling
vs. Not Stumbling

Model Unbalanced
vs. Stable

Model Running
vs. Walking

No. of hidden Dense/
Time Distr. Dense layers 1 1 11 11 3

No. of units of each layer 32 42
[26,54,16,38,
46,54,18,38,
36,54,1]

[32,4,38,50
34,38,22,6
24,58,58]

[46,6,9]

Activation function of each layer selu tanh
[tanh,selu,selu,selu,
selu,tanh,selu,selu,
selu,tanh,selu]

[tanh,tanh,selu,tanh,
tanh,tanh,selu,tanh,
selu,tanh,selu]

[selu,tanh,tanh]

Use of Conv. layer False False True True False

No. of filters in Conv. - - 21 6 -

Size window in Conv. - - 10 4 -

Activation function of Conv layer - - selu sigmoid -

Use of pooling layers False False False True False

Use of LSTM layer False False False False False

No. of units of LSTM - - - - -

Learning rate 0.01 0.01 0.01 0.001 0.01

Optimizer adam sgd sgd adam adam

Batch size 33 48 21 19 47

Previous timestamps 16 32 4 16 32

Selected sensors {P0, P1, P2, P5, P6, {P3, P4, P6, P8, P10, {P0, P1, P4, P7, P10, {P0, P6, P9, P11, P12, {P1, P3, P4, P6, P8,

P7, P15, A0} P12, P13, A0, A2} P11, P12, P14, A1} P13, P15, A0} P11, P12, A0, A2}

This difference in the complexity of the neural networks between the problems ad-
dressed is sensible, as a stumble or an imbalance are more difficult to detect with the
information provided by the wearable sensorised device than the other behaviours (sitting,
standing without imbalance, walking, running), possibly due to their greater heterogeneity.
The difference in the prior information needed may lie in the type of activity, some of them
involving more continuous events over time (e.g., walking and running) and others shorter
ones, such as stumbles.
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The evaluation metrics of the best binary models are shown in Table 4. The metrics
represented are accuracy, AUC, precision or positive predictive value (PPV), recall or
sensitivity, f1-score, specificity and negative predictive value (NPV):

Accuracy =
tp + tn

tp + tn + f p + f n
(4)

Precision =
tp

tp + f p
(5)

Recall =
tp

tp + f n
(6)

Speci f icity =
tn

tn + f p
(7)

NPV =
tn

tn + f n
(8)

F1 − score = 2 · precision · recall
precision + recall

(9)

where tp, tn, f p and f n are the number of true positives, true negatives, false positives
and false negatives, respectively. The metric AUC is the area under ROC curve, being
ROC curve a graphic representation of sensibility against 1-specificity depending on the
discrimination threshold.

Table 4. Metrics obtained by the best models.

Model Standing vs. Seated Model Moving vs. Still Model Stumbling vs. Not Stumbling Model Unbalanced vs. Stable Model Running vs. Walking

Accuracy 0.99 0.98 0.78 0.91 0.96
AUC 0.98 0.98 0.77 0.91 0.95
Precision 1 0.98 0.64 0.91 0.95
Recall 1 0.99 0.75 0.89 0.91
F1-score 1 0.98 0.69 0.9 0.93
Specificity 0.97 0.98 0.79 0.93 0.98
NPV 0.97 0.99 0.86 0.91 0.97

The model that discerns between sitting (class 0) and standing (class 1) and the one
that discerns between standing without movement (class 0) and with movement (class
1) obtain a high performance close to 1. Although slightly lower, the model discerning
between walking (class 0) or running (class 1) also achieves a high discriminative ability.
However, the model discerning between no stumbling (class 0) and stumbling (class 1) and
the one discerning between no unbalance (class 0) and unbalance (class 1) perform worse,
with an AUC of 0.77 and 0.91 respectively. Consequently, the metrics show that problems
dealing with stumble and imbalance detection are more difficult to model. As noted above,
both problems were modeled with more complex network architectures.

In general, the metrics show that the binary models achieve a good discriminative
ability. However, to calculate an evaluation metric for the general problem (detection of
several events) it is necessary to apply the hierarchical structure (Figure 6) of the binary
models. The average result achieved is an accuracy of 0.84 and an AUC of 0.96, which also
indicates a remarkable overall performance.

4. Discussion and Conclusions

Although the increase in life expectancy could be considered one of history’s great
success stories, it brings with it certain societal challenges that need to be addressed, such
as the care of the elderly. Thanks to the advancement of technology (IoT, Big Data, Artificial
Intelligence, etc.), highly innovative and attractive assistive technology (AT) products can
be developed to enable a more independent, comfortable and safe life for the elderly.

The work presented is part of the result of the European project MATUROLIFE whose
ultimate goal is to enable the elderly to age with the highest possible quality of life and
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independence through the implementation and development of an assistive technology
integrated in wearable devices (clothing, furniture and footwear) in a discreet, fashionable
and comfortable way. This sensorisation allows the remote monitoring of elderly people
and the analysis of the large amount of data generated in order to prevent certain health
problems. This article presents the prototype of the footwear (smart insole) that incorpo-
rates a total of 20 sensors that measure physical magnitudes such as temperature, pressure
and acceleration. A scalable and easily modular system architecture was designed and
implemented. Such architecture manages and updates the data retrieved from the smart
shoes through an Android application (MaturoApp) via Bluetooth protocol, stores the
information in a database on which the generated models are fed and sends a warning
message via Telegram to the user’s contact person (responsible person) in the event of an
indication of risk or anomalous behaviour. The fundamentals of information theory were
essential to enable the system of consistent communication to transmit, process, analyse
data and obtain useful information in near real time. The paper focuses especially on
the part of detecting different walking behaviours by analysing and modelling the data
retrieved from the smart footwear using deep learning techniques.

There are several studies that have explored algorithms that achieved good perfor-
mance for human activity recognition based on smart footwear and focused on providing
greater independence to elderly people. De Pinho Andre et al. [43] showed an average
accuracy of 93.34%, el Achkar et al. [44] achieved a total algorithm precision of 97.41%,
Montanini et al. [46] achieved an accuracy of 97.1%, Zitouni et al. [45] reached 100%
sensibility and more than 93% sensitivity, Light et al. [47] achieved a 88% of accuracy
approximately and Sim et al. [48] a 81.5% sensitivity. However, many of the studies
focused on a single event such as falling [45–48] and others detected more common events
related to the user daily activity but they do not include events of inmediate risk such as
unbalancing,stumbling or falling [43,44].

Our proposal allows for the identification of 6 types of representative gait events
that include events of immediate interest such as stumbling and imbalance and other
more common events such as sitting, standing, walking or running. In the data collection
process, some flexibility was allowed for in the conduct of these events. The criterion to
consider these events was motivated in order to monitor and prevent possible user health
problems by considering a wide range of possible user behaviours, both more immediate
hazard events and more common everyday activity events that may also indicate abnormal
behaviour depending on the patient and even the time of day. For example, although the
event “walking” may be a completely normal event during the day, the detection of such an
event at night may indicate abnormal behaviour of the patient at that time of the day when
he should be sleeping. This may indicate disorientation and possible danger if prolonged
over time.

Artificial neural network techniques and algorithms capable of detecting these events,
which may be related to health problems such as disorientation, loss of control, among oth-
ers, were explored and applied. In particular, 5 binary models were generated for the
detection of such events through a hierarchical cascade structure. This cascade structure
was designed so that the system could be easily modulated, allowing, for example, to be
re-created with new binary models for the detection of more particular events, keeping the
rest of the models or substituting only some of them. Optimisation in the training of the
models allowed a choice of built-in sensors as inputs. The best models, which included
different sensors as inputs, were stored sorted by performance. The aim of this was to
ensure that the event detection system was always kept alive even in circumstances where
a certain sensor stopped working, which may be possible in practice. Thus, if a sensor fails,
the system uses the best model that does not use information from that sensor as input.

The results showed a high overall discrimination ability, reaching an average accuracy
and AUC of 0.84 and 0.96, respectively. The worst performing binary models were those
detecting stumble and imbalance with an AUC value of 0.77 and 0.91, respectively. This
may be due to the fact that they are more difficult events to model than the others, as they
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are less constant and possibly more heterogeneous walking behaviours. This complexity is
also reflected in the selected network architecture, where these models follow a network
architecture with convolutional layers and considerable depth (11 hidden layers), while
the rest of the models are multilayer perceptrons with 1 or 3 hidden layers.

Thanks to the fundamentals of information theory and the combination of different
technologies such as sensing techniques, data acquisition and analytics, machine learning
and deep learning, it is possible to improve the state of the art and develop new sensors and
smarter systems. This is achieved by integrating intelligence techniques and deployment in
wearables and related edge computing, where all related phases take place inside the sen-
sorised device. This is the case of the work we present, which focuses on a wearable smart
footwear comprising a scalable, easily modulated and live system that allows, through
artificial neural network modelling, to detect with high accuracy a wide heterogeneity of
walking behaviours and to warn the relatives or healthcare professionals about anomalous
user behaviours so that they can act quickly. This system was designed in such a way that
it can be implemented on any current embedded system with a lower CPU.

However, this work has some limitations and future work to consider. Due to the
COVID19 pandemic in which we are immersed and the timelines set in the project, data
collection by the end users (elderly population) was not possible. Consequently, data
collection had to be carried out by the technical team with only 3 subjects of approximately
the same age and weight. Other related studies included more heterogeneity in this regard
and some involved elderly population in their experiments. De Pinho Andre et al. [43] used
data from 11 subjects, two of whom were elders, el Alchkar et al. [44] involved ten elderly
subjects (8 men, 2 women, age 65–75 years, weight 62–114 kg, height 162–184 cm), and Mon-
tanini et al. [46] conducted laboratory tests with 17 healthy subjects and demonstrated the
effectiveness of their method with two older users in a real-life setting. Zitouni et al. [45]
involved six subjects between 25 and 30 years of age, Light et al. [47] collected data from
subjects aged between 20 and 45 years and Sim et al. [48] three young subjects (2 young
males, 1 young female, aged between 24 and 28 years).

As future work, we propose to validate our system by including greater heterogeneity
in the data, incorporating information from elderly population of different ages, weights
and physical shape and in different environments where humidity, external temperature or
the relief of the terrain may have an effect on the measurements. Thanks to the scalability
and modularity that the designed system allows, another of the future lines of work to be
explored could be to include clustering modules with the aim of grouping behaviours and
applying specific models to each group. The application of modules for detecting changes
in user behaviour (trend models) or the inclusion of more specific event models such as fall
detection could also be studied.
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Abstract: This study proposes a method for identifying and evaluating driving risk as a first step
towards calculating premiums in the newly emerging context of usage-based insurance. Telemat-
ics data gathered by the Internet of Vehicles (IoV) contain a large number of near-miss events which
can be regarded as an alternative for modeling claims or accidents for estimating a driving risk
score for a particular vehicle and its driver. Poisson regression and negative binomial regression
are applied to a summary data set of 182 vehicles with one record per vehicle and to a panel data
set of daily vehicle data containing four near-miss events, i.e., counts of excess speed, high speed
brake, harsh acceleration or deceleration and additional driving behavior parameters that do not
result in accidents. Negative binomial regression (AICoverspeed = 997.0, BICoverspeed = 1022.7) is seen
to perform better than Poisson regression (AICoverspeed = 7051.8, BICoverspeed = 7074.3). Vehicles are
separately classified to five driving risk levels with a driving risk score computed from individual
effects of the corresponding panel model. This study provides a research basis for actuarial insurance
premium calculations, even if no accident information is available, and enables a precise supervision
of dangerous driving behaviors based on driving risk scores.

Keywords: driving risk assessment; usage-based insurance; driving risk score; telematics; near-miss
event; driving behavior; panel data analysis; count data model; econometrics; generalized linear
model

1. Introduction

Near-miss events are incidents that denote the existence of danger, even if no accident
occurs. Reporting of near-miss events is an established error reduction technique that has
been used by many industries to manage risk and reduce accidents. In the auto insurance
industry, insurers traditionally calculate premiums by analyzing past claims reported by
the insured policy holders, and reward those drivers that do not report accidents with a
no-claims bonus. However, this may be a rather incorrect approach to the assessment of
accident risk, especially when the insured has suffered accidents but chooses not to make
a claim so as not to lose the no-claims bonus. Fortunately, the advent of the Internet of
Vehicles (IoV) offers a better solution to this problem, using near-miss events to identify
driving risk. Near-miss events ultimately provide information that can lead to actuarial
premium calculations in the auto insurance industry [1,2].

This study explores how to evaluate driving risks, in the short term, and to score
drivers without claims and accidents based on information on near-miss counts over a short
period of time. One of the main novelties of this approach, in the absence of claims, is to
use telematics sensors for observation of drivers over a given period. The model obtained
in this study offers an important alternative for driving risk identification. Not only can the

Entropy 2021, 23, 829. https://doi.org/10.3390/e23070829 https://www.mdpi.com/journal/entropy51



Entropy 2021, 23, 829

model reflect risk factors that influence each near-miss event but it can also help to evaluate
drivers’ risks, and fixed-effects panel count data models can be used to rank drivers
according to their individual effects. The modeling method and results are invaluable for
insurance companies for developing usage-based insurance (UBI) to personalize premiums.
They are also of interest to traffic regulatory authorities for promoting safe driving and the
prevention of accidents.

Near-miss events are incidents that need to be defined and extracted from the original
raw data files for further processing and analysis. By dealing only with near-miss events,
and excluding claims or accidents, this study aims to specifically identify driving patterns.
This study is carried out both on a per driver summary data set and on a panel data set
where a daily summary is shown for each driver. Our data contain counts of the four
types of near-miss events in our study. Speeding, high speed braking, harsh acceleration
and harsh deceleration have been defined based on actual driving conditions and local
laws and regulations. Other high-risk events, e.g., sharp turning, dangerous lane changing
and unexpected maneuvers, proved by previous studies to be related to driving risk, are
not included in this study due to the dimension and precision limitations of the original
data set.

Our interest is to model the frequency of near-miss events given the drivers’ charac-
teristics. The simplest statistical model that links a count data dependent variable with
explanatory factors is the Poisson model. Essentially, the Poisson model is similar to linear
regression, where a response depends on some others inputs. Here we think that dis-
tance driven or mean speed among others, influence the expected frequency of near-miss
events. A Poisson model, which is also known as a Poisson regression model, is easily
interpretable and provides a way to elucidate the significant effects on the conditional
expected frequency. Poisson models are constrained by the fact that conditional expectation
and conditional variance are equal. Negative binomial regression models are a natural
extension that overcomes this restriction. More details on the models are provided in the
Methods section below.

Since the extracted frequency of near-miss events is an unbounded non-negative
integer, Poisson regression and negative binomial regression are both suitable for modeliza-
tion. Poisson regression, negative binomial regression, zero-inflated Poisson regression
and zero-inflated negative binomial regression are respectively applied to the summary
data set. Average speed, brake times, accelerator pedal position, engine fuel rate etc., are
selected as independent variables. Either mileage or fuel consumption can be chosen as the
exposure variable to offset the model. In order to reach a clear understanding of risk factors
of different near-miss events, each near-miss event is individually used as a dependent
variable. However, regardless of which one is selected as the dependent variable, negative
binomial regression is shown to provide the best fit in the summary data in this study.

Negative binomial regression also performs better than Poisson regression on the
panel data sets. Individual effects and time effects are estimated using panel Poisson
regression and panel negative binomial regression on a short panel data set of six days
in length. The regression results confirm the existence of individual effects and time
effects, and also enable the driving risk of each vehicle to be ranked. The driving risk
level of vehicles can then be classified by converting the individual effects into scores, thus
providing an important reference for further accurate calculation of premiums.

The rest of this article is organized as follows. The development of UBI and previous
efforts on driving risk assessment are summarized in Section 2. Section 3 describes the
data and introduces the key parameters used in modeling. Section 4 presents the model
expression of Poisson regression and negative binomial regression used in the study.
The results of negative binomial regression using the summary data set and the panel data
set are reported and analyzed in Section 5. The results are discussed and the conclusions
are presented in Section 6.
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2. Literature Review

The auto insurance industry is continuously pursuing new ways to calculate more
accurate actuarial premiums. However, traditional auto insurance calculations are limited
by the difficulty of obtaining information on policy holders, so classical ratemaking uses
simple information on drivers (age gender,), vehicles (type of car, model and brand) and
driving sections [3]. With current advances in information technology, a new type of
insurance business, UBI, based on multi-source data and personalized premium calculation
is becoming the mainstream. The Pay-as-you-drive (PAYD) mode of charging premiums is
based on mileage or fuel consumption, on the premise that mileage or fuel consumption
correlates with the probability of suffering an accident [4]. PAYD has evolved into a newer
scheme, called the pay-how-you-drive (PHYD) ratemaking mode, which is based on mul-
tiple sources of data, including driving behavior data [5]. Following the development of
5G communication technology, it may now be possible to implement an even more sophis-
ticated monitoring and pricing strategy, known as the manage-how-you-drive (MHYD)
principle, i.e., real-time calculation of premiums based on multi-source data and providing
real-time information to drivers to restrain from bad driving behavior [3,6]. However, due
to technological, regulatory and other issues regarding privacy [7], there is still no mature
PHYD product on the market at present [8,9] and, in terms of MHYD, further research is
necessary on driving risk to produce products that better reflect the driver profile [10].

Traffic accidents all over the world result in a large number of casualties every year,
and high-risk driving is one of the main factors behind these incidents [3]. Consequently,
research on driving risk has been a topic of interest over recent decades. Simulation experiments
to evaluate driving risk have been designed in the laboratory setting to identify driving risk
factors [11–14] as well as experiments using actual vehicles on the road [15–19]. Questionnaire
surveys for driving risk assessment have also been studied [20,21]. In fact, the naturalistic type
of driving data collected by the IoV or smart phones, known as telematics data, can effectively
reduce the influence of subjective factors and unreasonable assumptions in producing effective
risk-mitigating actions [22–26].

In research related to driving risk assessment in the auto insurance industry, machine
learning and generalized linear models feature equally. Machine learning, with its strong
ability to process big data efficiently, is increasingly gaining ground in its application in the auto
insurance business. Logistic regression [27], cluster analysis [28], decision tree [5], support vector
machine [29], neural network [30] and other machine learning models [31–33] have been widely
studied in the field of driving risk assessment, and the results have shown machine learning
to be a powerful tool [34]. However, since most machine learning procedures, being black
box algorithms, do not offer a high degree of interpretability, they cannot completely replace
the conventional generalized linear models implemented for decades in the auto insurance
industry [8].

Conventional generalized linear models discern the correlation between influencing
factors and claims or accidents in frequency and severity models [9,24,25,35]. However,
the study of near-miss events even when there is a lack of information on claims and
accidents should not be ignored [2,15]; on the contrary, since near-misses are more frequent
than accidents and are positively associated with them, they can be considered a good
alternative for risk modeling for driving risk assessment [1]. Compared with previous
studies, this study not only conducts regression on the summary data set to model and
analyze the factors causing near-miss events, but also conducts panel data regression on
the panel data set to consider individual effects and time effects. The regression results can
not only make more accurate causal inference, but also carry out risk scoring.

3. Data Description

The telematics data used in this study are collected from an IoV information service
provider in China. While we cannot obtain more data due to the commercial privacy
of the data, the limited data also contains valuable driving risk information, which is
worth studying. The original data set contains 182 data files, representing sensor data
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for 182 vehicles observed from 3–8 July 2018 [10]. Each data file contains 62 different
measurements but, after data processing [36], less than one-third of them can be used due
to recording errors and inconsistencies. The original data are transformed for modeling
into a summary data set with information on each driver (see details in Table 1).

Table 1. Descriptive statistics of the summary data set for 182 drivers observed from 3–8 July 2018.

Variable Mean Standard Deviation Minimum Median Maximum Defination

overspeed 19.19 45.37 0 0 330 Frequency of driving speed greater than 100 km/h
highspeedbrake 44.23 108.3 0 4 942 Frequency of braking when the driving speed is greater than 90 km/h

harshacceleration 139.0 134.7 0 101 899 Frequency of cases when acceleration is greater than 6 m/s2

harshdeceleration 141.9 137.8 1 105 913 Frequency of cases when acceleration is less than 6 m/s2

kilo 2223 1674 3.73 1832.175 7164 Total driving distance (km)
fuel 621.7 470.9 10.25 487.295 2018 Total fuel consumption (L)

brakes 1588 1426 6 1138.5 9243 Total number of brakes
range 5.201 5.021 0.027 3.399 26.78 Range of driving (geographical units)
speed 36.88 16.37 0.297 36.657 67.84 Mean of speed (km/h)
rpm 1028 188.3 233.1 1009.301 1620 Mean of revolutions per minute (r/min)

acceleratorpedalposition 21.05 7.110 0.187 21.26 39.29 Mean of acceleration pedal position (%)
enginefuelrate 11.52 4.464 1.868 11.203 22.01 Mean of engine fuel rate (%)

The number of each parameter is 182.

The variables overspeed, highspeedbrake, harshacceleration and harshdeceleration
are individually filtered by combining the rules of traffic law and driving code. Previous
studies have confirmed that speeding is a dangerous driving behavior which is likely to
cause traffic accidents [3]. In China, traffic safety regulations stipulate a maximum speed
for each type of vehicle on all types of roads. The maximum speed limit for the vehicles
in this study is 90 km/h; exceeding this by 10% is not deemed to be a traffic offense.
Therefore, 100 km/h is taken as the threshold value of the overspeed near-miss event.
Another high risk near-miss event that deserves attention is that of emergency braking; at
high speed (>90 km/h), if the brake is not used correctly or is subjected to lateral force,
the car is prone to side-slip or even cartwheel. Lastly, both harsh acceleration and harsh
deceleration are near-miss events that compromise driving safety and fuel economy. Based
on previous research experience [1,2,37] and the filter analysis of the extreme values of
this data set by box graph method, 6 m/s2 is determined as the filtering threshold value
of harsh acceleration and harsh deceleration. Figure 1 shows that near-miss events are all
non-negative integers. Combined with the relationship between expectation and variance
shown in Table 1, the four near-miss events are shown to be suitable as dependent variables
of a Poisson regression or a negative binomial regression.
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Figure 1. Histogram of frequency distribution of four near-miss events: (a) Over speed; (b) High speed brake; (c) Harsh
acceleration; (d) Harsh deceleration.

The panel data set has one summary per day for each driver. The statistics of the panel
data set are shown in Table 2.
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Table 2. Descriptive statistics of a panel data set for 182 drivers observed over six days (total cases 1092).

Variable N Mean Standard Deviation Minimum Median Maximum

overspeed 1092 3.199 14.37 0 0 315
highspeedbrake 1092 7.435 21.74 0 0 215

harshacceleration 1092 23.37 29.78 0 14 223
harshdeceleration 1092 23.86 30.16 0 13.5 233

kilo 1092 372.6 373.2 0 263.24 1739
fuel 1092 104.1 105.7 0 72.15 565.8

brakes 1092 264.7 291.0 0 178 1940
range 1092 2.406 2.963 0 1.243 14.07
speed 1092 31.96 21.58 0 31.514 77.74
rpm 1092 894.3 346.9 0 973.714 1731

acceleratorpedalposition 1092 17.51 10.19 0 18.613 45.74
enginefuelrate 1092 9.794 5.835 0 10.018 26.18

4. Methods

Poisson regression is a generalized linear model. Negative binomial regression can be
considered as a generalization of Poisson regression with overdispersion of the dependent
variable Yi where subindex i refers to the i-th observation in the data set. The probability
density function of the Poisson distribution is:

P(Yi = yi | xi) =
e−λi λ

yi
i

yi!
(1)

where λi is the Poisson arrival rate and is determined by explanatory variable xi in Poisson
regression to represent the average number of events, which is equal to the expectation
and variance of the explained variable E(Yi | xi) = V(Yi | xi) = λi.

The negative binomial distribution is a mixture of a Poisson (λ) and a Gamma (a,b)
distribution. The probability density function of the negative binomial distribution is:

f (y | a, b) =
∫ ∞

0
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b
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where λ is the mean and variance of the Poisson distribution, a is the shape parameter
of the Gamma distribution, b is the inverse scale parameter of the Gamma distribution,
E(y) = a

b = λ̄ and V(y) = a
b

(
1 + 1

b

)
= λ̄

(
1 + λ̄

a

)
.

The zero-inflated model is applicable when the counting data contains a large number
of zero values. Theoretically, it is a two-stage decision. First, it decides whether to choose
zero or a positive integer, and then it determines which positive integer to choose. Therefore,
the probability distribution of Yi is a mixed distribution:

Pr(Yi = yi | xi) =

{
θ + (1 − θ)P(Ki = yi | xi) yi = 0
(1 − θ)P(Ki = yi | xi) yi > 0

(3)

where θ is the probability of an extra zero value, Ki can follow a Poisson distribution or a
negative binomial distribution depending on the characteristics of the dependent variable.

The conditional expectation function of a negative binomial regression model depends
on a vector of explanatory variables xi and, similar to Poisson, is usually defined by a
log-link as:

E(yi | xi) = λi = Ti × exp(α + β1x1i + · · ·+ βkxki) (4)

where i is the number of the observation, k depends on the number of independent
variables, Ti denotes the offset variables (so, in our application, kiloi or f ueli is the exposure
variable), x1i. . . xki represent the independent variables such as brakesi, rangei, speedi, rpmi,
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acceleratorpedalpositioni and engine f uelratei, α and β1. . . βk are unknown parameters that
need to be estimated.

The two-way fixed effect model of panel Poisson regression and panel negative
binomial regression is specified as:

E(yit | xit) = λit = Tit × exp(α + β1x1it + · · ·+ βkxkit + di + pt) (5)

where i is the number of the observation, t is of time reference, k depends on the number of
independent variables, Tit is the offset and equals kiloit or f uelit as the exposure variable
of the ith observation at time t, x1it. . . xkit represent the independent variables of the ith
observation at time t such as brakesit, rangeit, speedit, rpmit, acceleratorpedalpositionit and
engine f uelrateit, α and β1. . . βk are unknown parameters that need to be estimated, di
represents the individual effect and pt represents the time effect. To avoid identification
problems in the model specification, d1 = p1 = 0.

The methodology of this study involves data preparation, modeling, risk scoring of
driving risk, etc. The whole technical process is shown in Figure 2.

Scoring

Preparation

Modeling

Original 
telematics dataData processing

Summary 
data set

Panel 
data set

Poisson 
regression

Zero-inflated 
Poisson 

regression

Zero-inflated 
Negative 
binomial 

regression

Negative 
binomial 

regression

Panel 
Poisson 

regression

Panel 
Negative 
binomial 
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Regression result of four 
near-miss events

Regression result of four 
near-miss events

Driving risk factor 
analysis

Driving risk factor 
analysis

Driving risk 
classification

Data processing

ApplicationDriving behavior 
supervision

Personalized 
premium calculation

Figure 2. Technical flow chart.

In the data preparation stage, the original data need to be preprocessed, including
multi-source data fusion, data cleaning, missing processing, etc. Then the summary data
set and panel data set required in this study are obtained through statistical calculation.
In the modeling phase, multiple count data models are used on two data sets for regression
analysis, which follows certain premises. Our observed drivers can be considered inde-
pendent of each other. Even if they drive in a similar area, they do not have any apparent
relationship between each other. When we observe one driver over time, we have taken
care of temporal correlation using the panel model that considers that one individual is
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observed repeatedly, here each day. In the scoring stage, the regression results obtained
from the regression model most suitable for the data in this study can be used for causal
analysis of near-miss events and driving risk scoring and rating. In the research field
of telematics data application, the results of this study show this application has poten-
tial in, for example, driving behavior supervision and personalized premium calculation.
The work at this stage has yet to be completed. Data processing in the preparation and
Poisson regression and negative binomial regression on different data sets in the modeling
can be implemented with data tools such as Stata, Python, R, etc.

5. Results

Before regression, multicollinearity tests are carried out on all explanatory variables to
eliminate the influence of multicollinearity on the model. As shown in Table 3, the variance
inflation factors (VIF) of all selected independent variables are less than 5, while the
correlation coefficients are generally less than 0.7. This indicates that the multicollinearity
among variables is weak, so all of them can be included in the regression equation and
robust estimates can be made.

Table 3. Variance inflation factor and correlation of explanatory variables.

Variable VIF Brakes Range Speed rpm Accelerator Pedal Positon

brakes 3.07
range 2.65 0.1213
speed 2.30 0.0536 0.6262
rpm 2.13 −0.0254 −0.0203 0.1804

accelerator pedal positon 2.03 0.0154 0.1174 0.3458 0.7695
engine fuel rate 1.04 0.1687 0.6313 0.6490 0.1075 0.3529

Both Poisson regression and negative binomial regression are applicable to this study,
and the zero-inflated model is taken as a consideration for the large number of zero values
of dependent variables. In order to determine the regression model which is most suitable
for this study, the performance of the two models on different dependent variables is
compared. All the estimated results are obtained by regression after standardization of the
original values.

5.1. Results of the Summary Data Set

In the summary data set, four near-miss events are respectively treated as dependent
variables while the independent variables are brakes, speed, rpm, accelerator pedal position
and engine fuel rate, where kilo is chosen as the exposure variable or offset. Poisson
regression, zero-inflated Poisson regression, negative binomial regression and zero-inflated
negative binomial regression are estimated (see Table 4). Regardless of which near-miss
event is the dependent variable, negative binomial regression has maximum log-likelihood
value, and minimum AIC value and BIC value. That is, negative binomial regression has
the best performance in this data set.

According to the results of negative binomial regression in different dependent vari-
ables (see Table 5 and Figure 3a), different near-miss events are affected by different driving
risk factors with different influences. Overall, the average speed has the most obvious influ-
ence on near-miss events, with a significant negative effect on harsh acceleration (−0.776)
and harsh deceleration (−0.658). The impact of braking event number on near-miss events
is also positive significant. The higher the number of braking, the more high speed braking
(0.272), harsh acceleration (0.189) and harsh deceleration (0.180) occur. In addition, average
RPM is positively correlated with harsh acceleration (0.178), and average accelerator pedal
position is positively correlated with harsh acceleration (0.152) and harsh deceleration
(0.235). Interestingly, some influencing factors have opposite effects on different dependent
variables. Range of driving has a positive effect on high speed brake (0.272) but a nega-
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tive effect on harsh deceleration (−0.153) while average engine fuel rate has a significant
positive effect on high speed braking (0.705) but a negative effect on sharp deceleration
(−0.157). Furthermore, the significance of the constant term indicates that, in addition to
the factors considered in this study, there are other factors that also influence near-miss
events. The results of the other three regression models on the summary data set are shown
in Tables A1–A3, and discussed in the Discussion section.

Table 4. Model performances of Poisson, zero-inflated Poisson, negative binomial and zero-inflated negative binomial in
summary data set.

Variable Model N Log-Likelihood df AIC BIC

overspeed

POS 182 −3518.92 7 7051.846 7074.274
ZIP 182 −2369.82 8 4755.64 4781.272
NB 182 −490.517 8 997.0338 1022.666

ZINB 182 −490.516 9 999.0315 1027.868

highspeedbrake

POS 182 −2830.75 7 5675.498 5697.926
ZIP 182 −2667.02 8 5350.034 5375.666
NB 182 −627.422 8 1270.843 1296.476

ZINB 182 −627.422 9 1272.843 1301.68

harshacceleration

POS 182 −5857.26 7 11,728.51 11,750.94
ZIP 182 −5857.26 8 11,730.51 11,756.14
NB 182 −1032.81 8 2081.623 2107.255

ZINB 182 −1032.81 9 2083.623 2112.459

harshdeceleration

POS 182 −6269.47 7 12,552.93 12,575.36
ZIP 182 −6269.47 8 12,554.93 12,580.56
NB 182 −1037.14 8 2090.285 2115.917

ZINB 182 −1037.14 9 2092.285 2121.121

Table 5. The results of negative binomial regression for four near-miss events in the summary data set of drivers.

Variable
Overspeed Highspeedbrake Harshacceleration Harshdeceleration

Coefficient z Coefficient z Coefficient z Coefficient z

constant −5.175 *** −15.87 −5.114 *** −35.36 −2.548 *** −43.39 −2.525 *** −42.99
brakes 0.264 1.29 0.272 ** 2.60 0.189 *** 3.38 0.180 *** 3.45
range 0.185 0.79 0.272 * 2.05 −0.100 −1.29 −0.153 −1.94
speed −0.113 −0.20 0.249 1.28 −0.776 *** −8.81 −0.658 *** −7.20
rpm 0.125 0.43 −0.0241 −0.11 0.178 1.90 0.0969 1.07

acceleratorpedalposition 0.290 1.13 0.171 1.03 0.152 1.87 0.235 ** 2.82
enginefuelrate 0.227 0.99 0.705 *** 4.49 −0.0883 −1.12 −0.157 * −2.07
log-likelihood −490.5 −627.4 −1032.8 −1037.1

AIC 997.0 1270.8 2081.6 2090.3
BIC 1022.7 1296.5 2107.3 2115.9

Observation 182 182 182 182
*** p < 0.01, ** p < 0.05, * p < 0.1.
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Figure 3. Partial coefficient estimation results of (a) negative binomial regression; (b) Panel negative binomial regression.

5.2. Results of the Panel Data Set

As shown in Table 6, the evaluation index (log-likelihood, AIC and BIC) of negative
binomial regression is lower than that of Poisson regression for each dependent variable.
Therefore, negative binomial regression is better than Poisson regression on panel data.

The panel negative binomial regression is used to estimate the two-way fixed effect
model, considering both individual effect and time effect on four dependent variables.
The influencing factors reflected by this (see Table A4 and Figure 3b) differ from those
shown in the results of the summary data. For example, harsh acceleration and harsh
deceleration are positively affected by the number of brakes (0.246 and 0.253) and average
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accelerator pedal position (0.249 and 0.270) but negatively affected by the average speed
(−0.645 and −0.586) and average engine fuel rate (−0.188 and −0.229). However, RPM,
which is not significant in the summary data, is significantly positive for overspeed (1.683)
and high speed braking (1.287). The brakes (0.0505) and engine fuel rate (0.295), which had
a significant positive effect on the summary data, become insignificant.

Table 6. Model performances of Poisson and negative binomial in the panel data set of drivers with
six observations per driver.

Variable Model N Log-Likelihood df AIC BIC

overspeed XTPOS 1092 −1926.78 188 4229.559 5168.763
XTNB 1092 −957.497 189 2292.993 3237.193

highspeedbrake XTPOS 1092 −2594.37 188 5564.733 6503.937
XTNB 1092 −1527.05 189 3432.105 4376.305

harshacceleration XTPOS 1092 −6117.44 188 12,610.89 13,550.09
XTNB 1092 −3526.09 189 7430.186 8374.386

harshdeceleration XTPOS 1092 −6042.02 188 12,460.03 13,399.24
XTNB 1092 −3547.66 189 7473.311 8417.51

The advantage of panel data over summary data is that fixed effects can be estimated
and thus individual effects and time effects can be interpreted. The time effect is significant
in most cases for high speed braking, harsh acceleration and harsh deceleration, which
indicates that these three near-miss events are greatly influenced by time. The time effect
on the overspeed event is significant for only one day, suggesting that it is less influenced
by time. More importantly, the individual effects of the four near-miss events can be used
to score each observation. It should be noted that the first observation has been omitted in
the regression to avoid complete multicollinearity, and its value is expected to be zero in
the subsequent driving risk score.

6. Discussion

The regression results of Poisson regression (see Table A1), zero-inflated Poisson
regression (see Table A2), negative binomial regression (see Table 5) and zero-inflated
negative binomial regression (see Table A3) on the summary data set show the importance
of driving behavior variables in driving risk. The high significance of two variables,
braking times and average speed, in the four regression models indicates that these two
factors have a very important impact on the generation of near-miss events. Moreover,
the significant performance of specific independent variables in the regression model of
specific dependent variables indicates that near-miss events are affected by a variety of
driving behavior factors and the formation mechanism of each near-miss event is different.
For example, the positive effect of RPM on harsh acceleration events, the positive effect of
accelerator pedal position on harsh deceleration events and the positive effect of engine
fuel rate on high speed braking events are shown in Tables A1–A3, Table 5.

The results obtained by panel regression are more reliable than those obtained by
pooled regression. Tables 5 and A4 and Figure 3 show that some coefficients that are not
significant in the pooled negative binomial regression become significant in the panel
negative binomial regression, while some significant parameters in the pooled negative
binomial regression are not significant in the panel negative binomial regression. This
means that the dependent variables are affected by individual effects and time effects.
In the panel negative binomial regression, most of the individual and time coefficients are
significant, which indicates the suitability of this type of regression analysis.

Driving risks can be evaluated by the regression coefficients of negative binomial
models on panel data. The value of the individual coefficients within a regression indicates
the individual’s deviance from the level of the expected occurrence of a particular near-
miss event, given the information on all the other explanatory variables. In other words,
the individual effect coefficient can be understood as the effect utility of each vehicle on
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the occurrence of the corresponding near-miss event. Geometrically, the effect coefficient of
each individual is a change in the intercept.

Four near-miss events are used as dependent variables to obtain four sets of regression
coefficients. Given that the influencing factors and generating mechanisms of different near-
miss events are different, combining the four groups of regression coefficients into one group
is not recommended. However, harsh acceleration and harsh deceleration show very similar
characteristics in terms of data description before regression (Tables 1 and 5), after regression
(Figure 3 and Table A4) and in distribution of driving risk score (Table A5). Even so, it is not
recommended to combine them into a single near-miss event for study, because the occurrence
conditions and coping operations of them are different, and it is the most appropriate choice to
study each near-miss event separately.

In order to transform individual effect estimates of near-miss models into a driving
risk grading, several steps need to be followed. Firstly, winsorization avoids the influence
of possibly spurious outliers (the double tail was winsorized with the threshold 0.01 in
this study). Secondly, the regression coefficient can be compressed to the interval of [0,1]
through normalization. Each group of coefficients is then mapped into an interval of
[0,5] (see Table A5), and each observation then is given a driving risk level from 1 to 5,
i.e., excellent, good, medium, bad and terrible (see Figure 4). The values of exactly 0 and 5
are included because the corresponding observations are the minimum and the maximum
values in their group and are Min-Max scaled. In overspeed and highspeedbrake groups,
two types of observations with high risk or low risk can be clearly seen. This indicates that
these two near-miss events are more sensitive to driving behavior than harshacceleration
and harshdeceleration and can be considered as a higher priority and weight in subsequent
studies. Note that the same observation (id125) has different risk levels for different
near-miss events, which also explains why multiple near-miss events cannot be analyzed
together. Ultimately, the premium would be charged individually according to the driving
risk level of the insured person.

Figure 4. Driving risk ranking of four near-miss events.
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7. Conclusions

The number and type of dependent variables and independent variables selected in
this study are limited by the size and quality of the original data. With the promotion and
innovation of IoV and of new energy vehicles, the amount and dimension of data will
be greatly increased. Therefore, application of near-miss events as dependent variables
could be easily increased or decreased, according to needs. For example, sharp turn
should be included, if possible, as a near-miss event because sharp turn is a highly studied
and accident-proven pattern of high driving risk. For the same reason, more driving
behavior indicators, such as steering wheel angle speed, brake pedal position, and so on,
could be used as independent variables in the regression model. In addition, traditional
auto insurance factors, such as driver information, vehicle information, road information,
environment information and the health status of batteries (of new energy vehicles) should
be considered to provide more optional independent variables for the model.

In practical applications, near-miss events can be combined with claims and accidents
to accurately evaluate driving risks. This study proves that near-miss events can be used
as driving risk scores when there are no claims or accidents. However, when claims or
accidents exist, the driving risk score obtained from claims or accidents can be used as
the basis for premium calculation, while the driving risk rating obtained from near-miss
events can be used to remind and warn drivers to reduce the corresponding dangerous
driving habits.

In this study, the best performing negative binomial regression (see Table 4) was
selected as the main method for modeling on our data set. The model is suitable for similar
causal analysis of similar data sets. However, in case of risk event prediction or analysis
on other data sets, it is necessary to reevaluate the goodness of fit of various models,
and even machine learning methods with good prediction performance should be taken
into consideration. The optimal method is not fixed, but depends on the data, conditions
and purposes.

Econometrics and machine learning complement each other. The generalized linear
model established in this study reveals the relationship between driving behavior factors
and near-miss events, and gives a driving risk score for each observation. This model
has strong explanatory power, but its generalization degree and robustness need to be
further tested, especially on larger data volume and data dimension. The successful
application of machine learning methods in many fields shows that they are often effective
in dealing with big data problems but that their results cannot always be easily interpreted,
and this interpretation is exactly what the insurance field values. Therefore, telematics data
application offers a new way to help find a balance between econometrics and machine
learning so as to have good explainability, good generalization ability, quick response
ability, and so on [38,39].

In general, near-miss events can provide insurers with effective risk information in
the absence of claims and accident data. In our real case study, negative binomial regres-
sion is the most suitable modeling method for near-miss events as dependent variables.
This study provides a technical reference for the promotion and development of PHYD
ratemaking schemes.
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Abbreviations

Abbreviations
The following abbreviations are used in this manuscript:

UBI usage-based insurance
IoV Internet of vehicles
PAYD pay as you drive
PHYD pay how you drive
MHYD manage how you drive
VIF variance inflation factor
POS Poisson
ZIP Zero-inflated Poisson
NB Negative binomial
ZINB Zero-inflated negative binomial
XTPOS Panel Poisson
XTNB Panel negative binomial
AIC Akaike information criterion
BIC Bayesian information criterion

Appendix A

Table A1. The results of Poisson regression for four near-miss events in the summary data set of drivers.

Variable
Overspeed Highspeedbrake Harshacceleration Harshdeceleration

Coefficient z Coefficient z Coefficient z Coefficient z

constant −5.191 *** −21.45 −5.194 *** −29.98 −2.612 *** −40.34 −2.591 *** −40.05
brakes 0.279 1.82 0.349 *** 5.93 0.191 *** 3.66 0.186 *** 3.78
range 0.0437 0.21 0.0741 0.78 −0.157 −1.65 −0.208 * −2.04
speed −0.175 −0.92 0.489 ** 3.22 −0.717 *** −8.57 −0.601 *** −6.51
rpm 0.514 1.59 0.202 0.87 0.272 ** 2.94 0.183 * 1.98

acceleratorpedalposition 0.0467 0.18 −0.0337 −0.23 0.169 1.91 0.238 ** 2.67
enginefuelrate 0.540 * 2.24 0.755 *** 4.32 −0.0499 −0.59 −0.119 −1.48
log-likelihood −3518.9 −2830.7 −5857.3 −6269.5

AIC 7051.8 5675.5 11,728.5 12,552.9
BIC 7074.3 5697.9 11,750.9 12,575.4

Observation 182 182 182 182
*** p < 0.01, ** p < 0.05, * p < 0.1.
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Table A2. The results of zero-inflated Poisson regression for four near-miss events in the summary data set of drivers.

Variable
Overspeed Highspeedbrake Harshacceleration Harshdeceleration

Coefficient z Coefficient z Coefficient z Coefficient z

constant −4.388 *** −18.08 −5.006 *** −24.96 −2.612 *** −40.34 −2.591 *** −40.05
brakes 0.167 1.08 0.339 *** 5.34 0.191 *** 3.66 0.186 *** 3.78
range 0.0365 0.20 0.0755 0.81 −0.157 −1.65 −0.208 * −2.04
speed −0.391 * −2.12 0.408 * 2.48 −0.717 *** −8.57 −0.601 *** −6.51
rpm 0.607 * 2.18 0.274 1.11 0.272 ** 2.94 0.183 * 1.98

acceleratorpedalposition −0.117 −0.52 −0.0563 −0.38 0.169 1.91 0.238 ** 2.67
enginefuelrate 0.346 1.59 0.700 *** 4.01 −0.0499 −0.59 −0.119 −1.48
inflate-constant 0.101 0.66 −1.183 *** −4.72 −27.29 *** −295.09 −27.00 *** −363.25
log-likelihood −2369.8 −2667.0 −5857.3 −6269.5

AIC 4755.6 5350.0 11,730.5 12,554.9
BIC 4781.3 5375.7 11,756.1 12,580.6

Observation 182 182 182 182
*** p < 0.01, ** p < 0.05, * p < 0.1.

Table A3. The results of zero-inflated negative binomial regression for four near-miss events in the summary data set
of drivers.

Variable
Overspeed Highspeedbrake Harshacceleration Harshdeceleration

Coefficient z Coefficient z Coefficient z Coefficient z

constant −5.153 *** −7.37 −5.114 *** −35.36 −2.548 *** −43.39 −2.525 *** −42.99
brakes 0.263 1.25 0.272 ** 2.60 0.189 *** 3.38 0.180 *** 3.45
range 0.180 0.73 0.272 * 2.05 −0.100 −1.29 −0.153 −1.94
speed −0.114 −0.20 0.249 1.28 −0.776 *** −8.81 −0.658 *** −7.20
rpm 0.130 0.41 −0.0241 −0.11 0.178 1.90 0.0969 1.07

acceleratorpedalposition 0.284 0.98 0.171 1.03 0.152 1.87 0.235 ** 2.82
enginefuelrate 0.227 0.99 0.705 *** 4.49 −0.0883 −1.12 −0.157 * −2.07
inflate-constant −3.793 −0.17 −14.62 *** −6.14 −25.29 *** −294.22 −23.27 *** −313.10
log-likelihood −490.5 −627.4 −1032.8 −1037.1

AIC 999.0 1272.8 2083.6 2092.3
BIC 1027.9 1301.7 2112.5 2121.1

Observation 182 182 182 182
*** p < 0.01, ** p < 0.05, * p < 0.1.

Table A4. Panel negative binomial regression results for four near-miss events.

Variable
Overspeed Highspeedbrake Harshacceleration Harshdeceleration

Coefficient z Coefficient z Coefficient z Coefficient z

constant −3.768 *** (−8.68) −4.356 *** (−17.39) −2.284 *** (−25.13) −2.269 *** (−20.81)
brakes −0.0400 (−0.31) 0.0505 (0.73) 0.246 *** (6.93) 0.253 *** (7.23)
range −0.0637 (−0.36) −0.0108 (−0.12) −0.00410 (−0.07) −0.0595 (−1.09)
speed −0.0405 (−0.08) −0.0965 (−0.39) −0.645 *** (−6.09) −0.586 *** (−5.24)
rpm 1.683 * (2.34) 1.287 ** (3.00) 0.143 (0.91) 0.145 (0.93)

acceleratorpedalposition 0.391 (0.83) 0.175 (0.79) 0.249 * (2.12) 0.270 * (2.52)
enginefuelrate 0.113 (0.22) 0.295 (1.18) −0.188 (−1.58) −0.229 * (−2.04)

2018-07-04 0.273 (1.23) 0.216 (1.91) −0.111 * (−2.12) −0.216 *** (−4.33)
2018-07-05 −0.168 (−0.73) −0.0572 (−0.52) −0.206 *** (−4.34) −0.317 *** (−6.72)
2018-07-06 −0.00716 (−0.03) −0.228 * (−2.08) −0.257 *** (−4.84) −0.370 *** (−7.19)
2018-07-07 −0.477 * (−2.11) −0.200 (−1.68) −0.485 *** (−7.41) −0.600 *** (−9.27)
2018-07-08 0.206 (0.90) 0.117 (0.95) −0.694 *** (−8.63) −0.784 *** (−9.58)

id2 −28.81 *** (−29.17) −2.001 * (−2.25) 1.266 *** (5.24) 1.342 *** (4.80)
id3 −19.05 *** (−14.86) −18.13 *** (−16.37) 2.004 * (2.31) 1.740 *** (4.75)
id4 −18.29 *** (−15.94) −17.91 *** (−20.04) 1.891 *** (8.66) 1.960 *** (8.58)
id5 −29.62 *** (−41.07) −4.956 *** (−7.51) −1.193 *** (−3.77) −1.072 *** (−3.39)
id6 −1.478 * (−2.40) −0.554 (−1.79) 1.067 *** (3.31) 0.935 *** (4.27)
id7 −3.236 *** (−4.11) −0.645 (−1.58) 0.656 ** (3.15) 0.835 ** (3.05)
id8 −20.79 *** (−24.48) −2.368 *** (−4.01) −0.190 (−0.61) 0.124 (0.35)
id9 −1.156 (−1.10) −0.0678 (−0.11) −0.251 (−0.79) −0.109 (−0.28)

id10 −3.110 *** (−5.93) −1.527 *** (−4.20) −0.345 * (−2.17) −0.256 (−1.63)
id11 −2.026 * (−2.42) −1.163 *** (−3.45) −0.162 (−0.88) −0.272 (−1.22)
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id12 −1.342 * (−2.51) −0.772 * (−2.45) 0.0781 (0.34) 0.0981 (0.50)
id13 −2.344 *** (−5.13) −0.808 * (−2.21) −0.138 (−0.52) −0.129 (−0.66)
id14 −3.178 *** (−5.87) 0.442 (1.43) −0.629 *** (−3.66) −0.365 * (−2.07)
id15 −1.254 * (−2.31) 0.167 (0.46) −0.0894 (−0.34) 0.0270 (0.10)
id16 −22.40 *** (−37.49) −21.63 *** (−41.20) 0.271 (1.35) 0.439 * (2.13)
id17 −21.77 *** (−25.73) −2.102 *** (−4.06) −0.200 (−0.87) 0.0983 (0.38)
id18 −20.99 *** (−19.61) −0.805 (−1.48) −1.124 *** (−6.78) −1.267 *** (−5.69)
id19 −0.998 (−1.58) 0.380 (1.06) 0.587 ** (2.72) 0.586 *** (3.89)
id20 −23.99 *** (−38.51) −3.749 ** (−3.22) 0.292 (1.19) 0.0926 (0.40)
id21 −21.79 *** (−35.89) −2.577 ** (−2.75) 0.322 (1.34) 0.458 ** (2.61)
id22 −2.642 *** (−3.94) −0.229 (−0.63) 0.496 ** (3.00) 0.538 ** (2.89)
id23 −0.792 (−1.10) 0.00108 (0.00) −0.474 (−1.61) −0.409 (−1.71)
id24 −23.37 *** (−34.65) −22.27 *** (−40.12) −0.329 (−1.36) −0.103 (−0.32)
id25 −21.06 *** (−30.30) −20.67 *** (−32.16) −0.882 *** (−3.45) −0.731 * (−2.56)
id26 −2.739 *** (−3.82) −1.000 ** (−2.61) −0.440 (−1.77) −0.667 *** (−3.68)
id27 −23.10 *** (−41.71) −22.25 *** (−45.16) −0.0464 (−0.15) 0.0656 (0.22)
id28 −17.86 *** (−17.18) −17.85 *** (−18.78) 0.0432 (0.13) 0.309 (1.41)
id29 −1.136 (−1.59) −0.872 * (−2.33) 0.591 *** (3.74) 0.625 *** (4.09)
id30 −20.56 *** (−29.51) −19.84 *** (−31.89) −0.223 (−0.53) −0.102 (−0.25)
id31 −0.407 (−0.91) −0.633 * (−2.03) −1.148 *** (−3.69) −0.949 ** (−3.21)
id32 −3.255 ** (−3.24) −2.923 * (−2.38) −0.110 (−0.36) 0.143 (0.49)
id33 −19.05 *** (−19.59) −19.50 *** (−21.06) −0.177 (−0.37) −0.153 (−0.32)
id34 −2.431 ** (−3.26) −1.547 *** (−3.51) −0.00573 (−0.02) −0.0439 (−0.14)
id35 −3.832 *** (−3.98) −1.041 * (−2.18) −0.607 *** (−3.58) −0.552 ** (−3.14)
id36 −4.135 *** (−4.74) −2.412 *** (−4.36) −0.285 (−1.37) −0.343 (−1.82)
id37 −38.70 *** (−32.02) −1.232 (−1.72) −0.480 (−1.64) −0.218 (−0.75)
id38 −20.26 *** (−29.14) −1.364 * (−2.11) −1.484 *** (−5.08) −1.121 *** (−4.31)
id39 −38.61 *** (−41.67) 10.89 *** (14.67) 11.65 *** (21.85) 11.77 *** (21.58)
id40 −1.326 (−1.57) −0.416 (−0.81) −0.278 (−1.10) 0.0791 (0.30)
id41 −2.443 ** (−3.19) −1.020 * (−2.02) 0.180 (0.82) 0.155 (0.61)
id42 −0.467 (−0.57) 0.442 (0.93) 0.607 (1.63) 0.398 (1.45)
id43 −2.164 * (−2.45) 0.219 (0.39) −0.0359 (-0.13) 0.0900 (0.35)
id44 −2.465 *** (-−3.52) −0.156 (−0.35) 0.336 (1.33) 0.468 (1.85)
id45 −2.110 ** (−3.26) −1.315 ** (−3.20) 0.105 (0.64) 0.282 (1.18)
id46 0.132 (0.14) −0.480 (−1.01) −0.312 ** (−2.77) −0.235 (−1.65)
id47 −2.957 *** (−5.23) −0.975 (−1.32) −0.853 *** (−4.77) −0.656 *** (−4.01)
id48 0.486 (0.78) 1.381 *** (3.72) 0.829 *** (5.36) 0.787 *** (4.63)
id49 −25.28 *** (−34.70) −1.575 ** (−3.27) −0.568 ** (−2.60) −0.353 (−1.67)
id50 −2.556 *** (−3.94) −1.907 *** (−3.87) −0.413 * (−2.43) −0.331 (−1.80)
id51 −20.62 *** (−20.07) −20.01 *** (−27.73) 1.123 *** (3.56) 1.140 *** (3.69)
id52 −21.73 *** (−16.76) −20.90 *** (−19.35) −0.354 (−1.10) −0.952 *** (−3.75)
id53 −20.65 *** (−21.34) −20.00 *** (−31.74) −0.133 (−0.72) 0.200 (1.01)
id54 −4.881 *** (−5.39) −1.082 ** (−2.66) −0.686 *** (−3.36) −0.639 ** (−3.00)
id55 −4.290 *** (−4.44) −1.731 *** (−3.90) 0.472 (1.80) 0.476 (1.37)
id56 −2.462 *** (−3.72) −0.0866 (−0.20) 0.119 (0.40) 0.377 (0.77)
id57 −21.96 *** (−22.99) −0.700 (−1.51) 0.110 (0.36) 0.719 * (2.27)
id58 −1.877 (−1.66) −0.692 (V0.83) −0.344 (−0.77) 0.0660 (0.16)
id59 −38.77 *** (−43.77) −0.0709 (−0.10) −0.726 * (−2.11) −0.587 (−1.68)
id60 −3.117 ** (−2.65) −3.815 *** (−4.00) −0.711 * (−2.07) −0.565 (−1.69)
id61 0.821 (0.83) 1.078 (1.78) −1.288 ** (−2.87) −1.076 * (−2.42)
id62 −0.465 (−0.61) 0.546 (1.46) −0.670 (−1.58) −0.473 (−1.15)
id63 −21.36 *** (−28.39) −20.68 *** (−33.84) 1.393 *** (10.47) 1.513 *** (10.22)
id64 −2.529 (−1.39) −1.707 (−1.18) 1.334 *** (7.83) 1.339 *** (6.13)
id65 −21.50 *** (−34.71) −20.76 *** (−42.35) −1.923 *** (−5.19) −1.288 *** (−5.26)
id66 −1.389 (−1.49) −1.510 *** (−3.74) 0.504 ** (2.64) 0.971 *** (5.69)
id67 −25.65 *** (−34.83) −3.400 *** (−3.49) −0.371 * (−1.98) −0.304 (−1.70)
id68 −19.09 *** (−27.85) −18.66 *** (−35.37) −1.286 ** (−2.97) −1.660 *** (−7.16)
id69 −24.40 *** (−27.41) −21.86 *** (−33.37) −0.589 ** (−2.94) −0.625 * (−2.48)
id70 −21.29 *** (−22.38) −3.693 *** (−4.50) −1.489 *** (−3.60) −1.501 *** (−6.37)
id71 −31.22 *** (−36.99) −29.36 *** (−53.20) 0.587 *** (3.95) 1.212 *** (7.82)
id72 −5.534 *** (−5.68) −1.058 (−1.96) −0.516 (−1.41) −0.643 (−1.84)
id73 −4.323 *** (−4.06) −2.863 *** (−5.25) −1.527 *** (−6.22) −1.523 *** (−5.97)
id74 −30.92 *** (−35.40) −29.09 *** (−51.97) 0.299 (1.03) 0.765 ** (3.02)
id75 −2.868 *** (−3.45) −1.677 *** (−4.49) −0.267 (−0.90) −0.0911 (−0.31)
id76 −21.21 *** (−22.83) −21.18 *** (−31.54) −1.646 *** (−3.80) −1.903 *** (−4.47)
id77 −19.83 *** (−15.23) −19.23 *** (−21.15) 0.835 ** (2.84) 0.729 ** (2.71)
id78 −24.02 *** (−33.62) −3.260 *** (−3.47) −2.855 *** (−10.67) −2.759 *** (−8.49)
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id79 −3.449 ** (−2.81) −0.618 (−1.43) −0.232 (−1.23) −0.110 (−0.57)
id80 −21.71 *** (−15.28) −20.69 *** (−20.65) −0.0149 (−0.05) 0.0509 (0.16)
id81 −33.98 *** (−60.17) −1.132 * (−2.44) −0.341 * (−2.34) −0.336 * (−2.41)
id82 −1.391 (−1.64) −0.541 (−0.76) −0.312 (−1.38) −0.326 (−1.55)
id83 −1.516 ** (−2.58) 0.157 (0.53) −0.123 (−0.64) −0.242 (−1.37)
id84 −23.95 *** (−25.81) −1.866 * (−2.04) −0.750 ** (−3.19) −0.855 *** (−4.50)
id85 −22.55 *** (−23.68) −3.844 *** (−4.49) −1.430 *** (−5.83) −1.318 *** (−5.43)
id86 −29.06 *** (−33.35) −2.036 *** (−3.87) −1.272 *** (−3.40) −1.111 ** (−2.99)
id87 −1.851 * (−2.47) 1.034 ** (2.59) 0.196 (1.03) 0.425 * (2.03)
id88 −20.13 *** (−31.73) −19.83 *** (−38.92) −0.208 (−1.54) −0.165 (−1.04)
id89 −25.42 *** (−13.08) −23.44 *** (−19.03) 1.100 * (2.18) 1.135 * (2.49)
id90 −4.008 *** (−4.24) −0.841 (−1.18) −0.972 *** (−4.48) −0.982 ** (−3.17)
id91 −19.51 *** (−26.36) −19.33 *** (−31.18) 0.676 *** (5.52) 0.818 *** (4.54)
id92 −26.04 *** (−14.88) −24.17 *** (−22.56) 0.848 * (2.54) 0.663 * (2.00)
id93 −23.79 *** (−23.97) −22.53 *** (−27.69) −0.290 (−1.41) −0.300 (−1.26)
id94 −2.684 *** (−3.53) −1.034 ** (−3.05) −0.157 (−0.99) 0.0139 (0.06)
id95 −24.75 *** (−12.35) −22.86 *** (−19.16) −0.503 (−0.78) −0.670 (−1.26)
id96 −22.66 *** (−28.80) −21.77 *** (−35.98) 1.374 *** (7.81) 1.343 *** (6.60)
id97 −20.83 *** (−29.33) −20.42 *** (−32.43) −0.464 * (−2.30) −0.282 (−1.24)
id98 −18.59 *** (−24.60) −18.56 *** (−27.54) −1.405 *** (−4.98) −0.887 * (−2.38)
id99 −18.19 *** (−27.16) −18.21 *** (−34.28) −1.774 *** (−5.28) −1.369 *** (−4.34)
id100 −4.226 ** (−3.13) −21.52 *** (−26.23) 0.802 * (2.30) 0.824 * (2.37)
id101 −22.60 *** (−13.70) −21.29 *** (−22.32) 0.955 * (2.21) 0.814 (1.96)
id102 −24.81 *** (−34.96) −23.71 *** (−42.27) 0.0308 (0.14) −0.0294 (−0.12)
id103 −17.82 *** (−22.56) −17.67 *** (−27.25) 0.542 * (2.27) 0.606 *** (3.70)
id104 −20.05 *** (−32.16) −19.72 *** (−37.06) 0.131 (0.73) 0.262 * (1.98)
id105 −3.426 *** (−4.29) −0.430 (−0.94) −0.464 (−0.90) −0.925 * (−2.01)
id106 −24.96 *** (−26.36) −23.73 *** (−35.39) 0.317 (1.84) 0.252 (1.33)
id107 −21.01 *** (−29.69) −20.53 *** (−36.62) 0.0144 (0.09) 0.147 (0.63)
id108 −23.28 *** (−27.56) −2.647 *** (−5.35) −0.532 * (−2.40) −0.635 *** (−3.35)
id109 −20.89 *** (−19.32) −20.46 *** (−21.38) −0.347 ** (−2.97) −0.782 *** (−5.90)
id110 −20.70 *** (−17.96) −20.72 *** (−20.15) −1.801 *** (−5.72) −1.044 *** (−5.99)
id111 −3.405 *** (−4.19) −1.278 *** (−3.61) 0.173 (1.27) 0.198 (1.40)
id112 −19.65 *** (−24.23) −19.29 *** (−25.89) −1.453 *** (−8.75) −0.831 *** (−7.19)
id113 −29.63 *** (−42.75) −2.998 *** (−3.76) −1.703 *** (−6.85) −1.296 *** (−6.74)
id114 −23.43 *** (−20.14) −22.26 *** (−23.54) 0.637 ** (2.80) 0.537 ** (3.22)
id115 −22.18 *** (−29.89) −21.49 *** (−33.89) −0.0179 (−0.14) −0.109 (−0.69)
id116 −21.78 *** (−24.48) −3.753 *** (−7.41) −1.349 *** (−4.54) −1.135 ** (−2.79)
id117 −20.71 *** (−26.29) −20.08 *** (−32.28) −0.156 (−1.35) −0.273 * (−2.17)
id118 −18.97 *** (−27.81) −0.705 (−0.91) 0.116 (0.88) 0.00337 (0.02)
id119 −20.31 *** (−30.19) −19.89 *** (−36.33) −0.145 (−0.79) −0.143 (−0.92)
id120 −27.27 *** (−33.83) −25.62 *** (−41.44) −0.0170 (−0.06) 0.133 (0.42)
id121 −28.62 *** (−36.09) −0.687 (−1.76) 0.239 (1.20) 0.387 * (2.01)
id122 −21.69 *** (−15.37) −2.515 * (−2.40) 0.623 * (2.36) 0.653 * (2.48)
id123 −23.18 *** (−12.54) −3.892 *** (−4.57) 0.698 (1.51) 0.886 * (2.13)
id124 −4.268 * (−2.34) −2.612 * (−2.50) 0.698 ** (2.66) 0.361 (1.22)
id125 −3.828 * (−2.35) −22.52 *** (−19.24) 0.296 (0.67) 0.619 (1.69)
id126 −2.023 (−1.24) −2.183 * (−2.54) 0.576 (1.84) 0.539 (1.73)
id127 −22.03 *** (−12.96) −20.58 *** (−19.98) 1.158 *** (4.23) 1.010 *** (3.82)
id128 −20.90 *** (−14.97) −20.01 *** (−22.10) 0.762 ** (2.84) 0.618 * (2.18)
id129 −1.540 * (−2.37) 0.776 * (2.07) 0.0280 (0.17) 0.165 (0.76)
id130 −24.70 *** (−30.90) −23.31 *** (−35.06) −1.578 *** (−5.17) −1.635 *** (−4.61)
id131 −1.659 * (−2.10) −0.403 (−1.01) −0.980 *** (−3.71) −0.794 *** (−4.13)
id132 −19.37 *** (−26.07) −18.83 *** (−32.28) −0.863 *** (−3.40) −0.435 (−1.85)
id133 −26.03 *** (−21.40) −2.904 *** (−8.09) −0.622 *** (−4.18) −0.691 *** (−4.38)
id134 −31.36 *** (−34.83) −2.618 *** (−5.23) 0.488 * (2.40) 1.176 *** (6.93)
id135 −23.37 *** (−24.64) −22.02 *** (−35.69) 0.930 *** (4.58) 1.350 *** (7.18)
id136 3.358 *** (3.79) 4.212 *** (6.07) 2.661 *** (8.38) 2.709 *** (11.14)
id137 −23.49 *** (−24.93) −2.508 ** (−2.65) 0.0440 (0.26) 0.804 *** (4.16)
id138 −19.02 *** (−29.14) −18.74 *** (−37.30) −0.827 *** (−3.86) −0.890 *** (−3.54)
id139 −4.105 *** (−4.05) −1.187 * (−2.54) −0.922 ** (−3.06) −0.677 (−1.61)
id140 −2.970 ** (−3.06) −0.615 (−1.10) −1.276 *** (−3.79) −1.035 *** (-−3.61)
id141 −24.65 *** (−33.01) −23.40 *** (−44.51) −1.071 *** (−4.15) −1.100 *** (−4.52)
id142 −37.04 *** (−41.13) −0.873 (−1.69) 0.0500 (0.22) 0.175 (0.76)
id143 −37.41 *** (−40.91) −0.397 (−0.82) −0.368 (−1.15) −0.157 (−0.52)
id144 −0.585 (−0.65) 0.551 (1.04) 0.0261 (0.09) 0.167 (0.58)
id145 −2.485 * (−2.36) −1.273 * (−2.44) −0.750 (−1.56) −0.631 (−1.32)
id146 −22.93 *** (−26.06) −1.250 ** (−2.87) −1.130 ** (−2.83) −0.758 * (−1.97)
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id147 −2.851 *** (−3.75) −0.0796 (−0.17) −1.021 ** (−2.90) −0.896 ** (−2.59)
id148 −3.737 *** (−4.05) 1.617 *** (3.83) −0.0483 (−0.14) −0.0520 (−0.16)
id149 −3.202 *** (−3.53) −1.184 * (−2.01) −0.554 ** (−2.59) −0.343 (−1.54)
id150 −3.616 ** (−3.24) −0.905 * (−2.24) −1.167 *** (−4.30) −0.905 *** (−3.46)
id151 −0.362 (−0.51) −1.167 * (−2.07) −1.654 *** (−5.15) −1.677 *** (−4.32)
id152 −32.89 *** (−33.69) −3.751 *** (−6.31) −1.421 *** (−3.68) −1.382 *** (−4.40)
id153 −1.598 * (−2.14) −0.169 (−0.46) −2.936 *** (−5.34) −3.067 *** (−5.01)
id154 −21.84 *** (−20.17) −2.716 *** (−3.85) −1.703 *** (−4.38) −1.483 *** (−4.26)
id155 −4.238 *** (−3.67) −2.441 * (−2.46) −0.759 ** (−3.12) −0.814 ** (−2.63)
id156 −43.11 *** (−52.10) −1.456 ** (−3.27) −0.590 ** (−2.64) −0.429 * (−2.03)
id157 −1.868 * (−2.19) 0.337 (0.62) −0.753 ** (−2.82) −0.502 * (−2.35)
id158 −19.28 *** (−28.14) −18.96 *** (−35.46) 0.678 *** (4.39) 0.744 *** (3.87)
id159 −19.26 *** (−28.40) −19.02 *** (−33.84) 0.827 *** (4.09) 0.715 ** (3.07)
id160 −3.790 *** (−4.60) 0.550 (1.25) 0.148 (0.72) 0.337 (1.90)
id161 −22.11 *** (−30.73) −21.31 *** (−34.53) 0.608 *** (4.58) 0.494 *** (3.29)
id162 −20.15 *** (−18.45) −19.53 *** (−23.73) 0.431 (1.86) 0.176 (0.52)
id163 −22.31 *** (−22.00) −21.43 *** (−29.98) 1.844 *** (9.58) 1.656 *** (8.12)
id164 −2.923 ** (−2.69) −2.557 *** (−3.68) −0.245 (−1.66) −0.301 (−1.85)
id165 −20.82 *** (−28.93) −20.41 *** (−32.12) 1.341 *** (11.50) 1.447 *** (10.42)
id166 −25.44 *** (−20.51) −2.439 *** (−4.42) −0.158 (−0.49) −0.0534 (−0.15)
id167 −2.696 * (−2.28) −4.124 *** (−4.21) 1.119 *** (3.43) 1.089 *** (3.53)
id168 −5.731 *** (−6.49) −1.940 *** (−3.42) 0.0447 (0.23) 0.0115 (0.06)
id169 −26.04 *** (−24.96) −24.71 *** (−35.44) 0.473 * (2.06) 0.422 (1.82)
id170 −15.15 *** (−15.82) −15.11 *** (−19.48) −17.48 *** (−24.79) −0.684 (−0.99)
id171 −3.650 *** (−3.49) −1.497 ** (−2.86) −0.344 (−1.62) −0.313 (−1.47)
id172 −3.659 *** (−3.93) −1.951 *** (−4.53) −0.427 (−1.84) −0.367 (−1.34)
id173 −3.036 ** (−2.98) −3.500 *** (−4.94) −0.874 *** (−3.64) −0.888 *** (−3.41)
id174 1.453 (1.39) 0.361 (0.38) −1.484 *** (−6.68) −1.288 *** (−4.64)
id175 −0.688 (−0.99) 1.615 *** (3.66) 0.114 (0.57) 0.333 (1.64)
id176 −1.666 (−1.82) −0.313 (−0.81) 0.530 (0.98) −0.0614 (−0.13)
id177 −2.576 ** (−3.13) −1.675 *** (−3.66) −0.245 (−1.10) 0.187 (0.75)
id178 −0.823 (−0.51) 0.510 (1.04) 0.213 (1.00) 0.0436 (0.18)
id179 −19.54 *** (−27.56) −1.071 (−1.13) −1.386 *** (−4.24) −1.021 (−1.91)
id180 −4.457 *** (−3.85) −2.934 *** (−3.90) −0.402 * (−2.17) −0.277 (−1.44)
id181 −1.850 * (−2.18) −0.909 * (−2.21) −0.573 (−1.78) −0.354 (−1.41)
id182 −4.754 ** (−3.03) −2.082 ** (−2.75) 0.387 (1.35) 0.409 (1.60)

log-likelihood −952.2391 −1519.954 −3479.969 −3488.38
AIC 2292.478 3427.908 7347.937 7364.76
BIC 3261.657 4397.086 8317.116 8333.939

Observation 1092 1092 1092 1092
*** p < 0.01, ** p < 0.05, * p < 0.1.

Table A5. Driving risk scores for four near-miss events after winsorizing and Min-Max scaling on regression coefficients.

Variable Overspeed Highspeedbrake Harshacceleration Harshdeceleration

id1 4.824741 4.344986 2.622834 2.52286
id2 1.242371 4.033808 3.753797 3.75
id3 2.476298 1.628204 4.413078 4.113936
id4 2.578824 1.749502 4.312131 4.315106
id5 1.133814 3.574272 1.557084 1.542612
id6 4.646467 4.258833 3.576023 3.377835
id7 4.434299 4.244682 3.208862 3.286394
id8 2.244711 3.976736 2.4531 2.636247
id9 4.685306 4.334427 2.398606 2.423189

id10 4.449618 4.107521 2.314633 2.288771
id11 4.580368 4.164127 2.478113 2.27414
id12 4.662871 4.224932 2.692603 2.612564
id13 4.542011 4.219333 2.499553 2.404901
id14 4.441416 4.413722 2.060925 2.1891
id15 4.673486 4.370957 2.542969 2.547549
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id16 2.050515 1.186551 2.864928 2.924287
id17 2.12168 4.018102 2.444167 2.612747
id18 2.218175 4.2198 1.618724 1.364301
id19 4.704364 4.404081 3.147222 3.058705
id20 1.835814 3.761974 2.883688 2.607535
id21 2.124092 3.944234 2.910488 2.941661
id22 4.506067 4.309374 3.065928 3.014813
id23 4.729211 4.345159 2.199393 2.148866
id24 1.923866 1.063697 2.328926 2.428676
id25 2.207319 1.317181 1.834912 1.854426
id26 4.494367 4.189475 2.229766 1.912948
id27 1.957639 1.080804 2.581383 2.582846
id28 2.621041 1.695073 2.661426 2.805413
id29 4.687598 4.20938 3.150795 3.094367
id30 2.274866 1.419818 2.42362 2.42959
id31 4.77565 4.246703 1.597284 1.655084
id32 4.432128 3.890427 2.524567 2.653621
id33 2.476298 1.503794 2.464713 2.382955
id34 4.531518 4.10441 2.617715 2.482718
id35 4.362531 4.183099 2.080579 2.018105
id36 4.325984 3.970049 2.368233 2.209217
id37 0.021711 4.153396 2.194033 2.323519
id38 2.317082 4.132869 1.297123 1.497805
id39 0.024124 5 5 5
id40 4.664922 4.280294 2.374486 2.59519
id41 4.53007 4.186365 2.783634 2.664594
id42 4.768412 4.413722 3.165088 2.886796
id43 4.563723 4.379043 2.590763 2.605157
id44 4.527417 4.320727 2.922994 2.950805
id45 4.570236 4.140489 2.716634 2.780724
id46 4.840663 4.270341 2.344113 2.307974
id47 4.468072 4.193363 1.860818 1.923007
id48 4.883362 4.559747 3.363409 3.242502
id49 1.672979 4.100056 2.115419 2.200073
id50 4.51644 4.048426 2.253886 2.22019
id51 2.268835 1.384051 3.62605 3.565289
id52 2.192845 1.124347 2.306593 1.652341
id53 2.260391 1.348283 2.50402 2.705743
id54 4.236002 4.176723 2.010005 1.938552
id55 4.307288 4.075796 3.044488 2.95812
id56 4.527778 4.331519 2.729141 2.867593
id57 2.18802 4.236128 2.721101 3.180322
id58 4.59834 4.237372 2.315526 2.583211
id59 0 4.333961 1.974272 1.986101
id60 4.448773 3.752022 1.987672 2.006218
id61 4.923769 4.512628 1.472217 1.538954
id62 4.768654 4.429895 2.024299 2.090344
id63 2.165103 1.309405 3.86725 3.906364
id64 4.519697 4.079528 3.814544 3.747257
id65 2.171134 1.334287 0.904949 1.345099
id66 4.657202 4.110164 3.073075 3.410753
id67 1.641618 3.816248 2.291406 2.244879
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id68 2.459412 1.607987 1.474004 1.004938
id69 1.78636 1.116571 2.096659 1.951353
id70 2.194051 3.770683 1.292657 1.150329
id71 0.937206 0 3.147222 3.631127
id72 4.157238 4.180455 2.161872 1.934894
id73 4.303307 3.899757 1.25871 1.130212
id74 0.979422 0 2.889941 3.222385
id75 4.478807 4.084194 2.384313 2.439557
id76 2.198876 0.898855 1.152403 0.782736
id77 2.366536 1.433814 3.368769 3.189466
id78 1.845464 3.838019 0.07236 0
id79 4.408728 4.24888 2.41558 2.422275
id80 2.130123 1.197437 2.609523 2.569404
id81 0.595856 4.168947 2.318206 2.215618
id82 4.656961 4.260855 2.344113 2.224762
id83 4.641884 4.369402 2.512953 2.301573
id84 1.823752 4.054802 1.952832 1.741039
id85 2.061371 3.747356 1.345364 1.317666
id86 1.21101 4.028365 1.486511 1.50695
id87 4.601476 4.505785 2.797927 2.911485
id88 2.341206 1.475802 2.43702 2.371982
id89 1.641618 0.869308 3.605503 3.560717
id90 4.341302 4.214201 1.754511 1.624909
id91 2.40634 1.387161 3.226729 3.270849
id92 1.571659 0.774446 3.380382 3.129115
id93 1.873206 1.03415 2.363766 2.248537
id94 4.501001 4.184188 2.48258 2.535571
id95 1.736907 0.925292 2.173486 1.910205
id96 1.999855 1.163225 3.850277 3.750914
id97 2.23868 1.320291 2.208326 2.264996
id98 2.526958 1.600211 1.367697 1.711778
id99 2.583649 1.687298 1.038056 1.271031

id100 4.315007 1.200547 3.339289 3.276335
id101 2.014329 1.197437 3.475969 3.267191
id102 1.72967 0.847537 2.650348 2.495977
id103 2.619835 1.71218 3.107022 3.076993
id104 2.34 1.460251 2.739861 2.762436
id105 4.411502 4.278116 2.208326 1.67703
id106 1.711577 0.852202 2.906021 2.753292
id107 2.215762 1.324956 2.635698 2.657279
id108 1.917835 3.933348 2.147579 1.942209
id109 2.236268 1.290744 2.312846 1.807791
id110 2.288134 1.175666 1.013936 1.568215
id111 4.414035 4.146398 2.777381 2.703914
id112 2.390659 1.522456 1.324817 1.762985
id113 1.147082 3.878919 1.101483 1.337783
id114 1.90336 1.068363 3.191889 3.013899
id115 2.062577 1.197437 2.606843 2.423189
id116 2.119268 3.761352 1.417724 1.485004
id117 2.253154 1.382496 2.483473 2.273226
id118 2.469061 4.235351 2.726461 2.525942
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id119 2.30502 1.421373 2.4933 2.392099
id120 1.435361 0.55051 2.607647 2.644477
id121 1.255639 4.23815 2.836341 2.876737
id122 2.133742 3.953875 3.179382 3.119971
id123 1.987793 3.739736 3.246382 3.333029
id124 4.309941 3.938791 3.246382 2.852963
id125 4.363014 1.066808 2.887261 3.088881
id126 4.58073 4.005505 3.137395 3.015728
id127 2.083082 1.265862 3.657316 3.446416
id128 2.225412 1.262752 3.303555 3.087966
id129 4.638989 4.465819 2.647847 2.673738
id130 1.741732 0.892635 1.21315 1.027798
id131 4.624635 4.282315 1.747365 1.796818
id132 2.42202 1.567554 1.851885 2.125091
id133 1.568041 3.893381 2.067179 1.891002
id134 0.916701 3.937858 3.058781 3.598208
id135 1.906979 1.087024 3.453636 3.757315
id136 5 5 5 5
id137 1.893711 3.954964 2.66214 3.258047
id138 2.485948 1.635979 1.884045 1.709034
id139 4.329602 4.160394 1.799178 1.903804
id140 4.466504 4.249347 1.482937 1.576445
id141 1.759824 0.892635 1.666071 1.517008
id142 0.219526 4.209225 2.6675 2.682882
id143 0.171278 4.283248 2.294086 2.379298
id144 4.754179 4.430673 2.64615 2.675567
id145 4.525004 4.14702 1.952832 1.945867
id146 1.947989 4.150597 1.613364 1.829737
id147 4.480858 4.332608 1.710738 1.703548
id148 4.37399 4.596448 2.579686 2.475311
id149 4.438521 4.160861 2.127926 2.209217
id150 4.388585 4.204249 1.580311 1.695318
id151 4.781077 4.163505 1.145256 0.989393
id152 0.724917 3.761663 1.353404 1.259144
id153 4.631993 4.318705 0 0
id154 2.120474 3.922618 1.101483 1.166789
id155 4.31356 3.965383 1.944792 1.77853
id156 0 4.118562 2.095766 2.130578
id157 4.599426 4.397394 1.950152 2.063826
id158 2.434082 1.548893 3.228515 3.203182
id159 2.434082 1.480468 3.361622 3.176664
id160 4.367597 4.430518 2.755047 2.831017
id161 2.072226 1.250311 3.165982 2.974579
id162 2.325525 1.450921 3.007861 2.683797
id163 2.043278 1.16478 4.270145 4.037125
id164 4.472173 3.947344 2.403966 2.247623
id165 2.233855 1.31096 3.820797 3.846013
id166 1.624732 3.965694 2.481687 2.474031
id167 4.499554 3.703658 3.622476 3.518654
id168 4.133476 4.043294 2.662766 2.533376
id169 1.57769 0.707577 3.045381 2.908742
id170 2.962391 2.184934 0 1.897403
id171 4.384484 4.112186 2.315526 2.23665
id172 4.383398 4.041584 2.241379 2.187271
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id173 4.458543 3.800697 1.842058 1.710863
id174 5 4.401126 1.297123 1.345099
id175 4.741756 4.596137 2.724674 2.827359
id176 4.623791 4.296311 3.096302 2.466715
id177 4.514028 4.084505 2.403966 2.693855
id178 4.725472 4.424297 2.813114 2.562729
id179 2.40634 4.178434 1.38467 1.589247
id180 4.287144 3.888716 2.263713 2.269568
id181 4.601597 4.203627 2.110952 2.199159
id182 4.2512 4.021212 2.968555 2.896854

References

1. Guillen, M.; Nielsen, J.P.; Pérez-Marín, A.M. Near-miss telematics in motor insurance. J. Risk Insur. 2021, 1–21. [CrossRef]
2. Guillen, M.; Nielsen, J.P.; Pérez-Marín, A.M.; Elpidorou, V. Can automobile insurance telematics predict the risk of near-miss

events? N. Am. Actuar. J. 2020, 24, 141–152. [CrossRef]
3. Litman, T. Distance-Based Vehicle Insurance Feasibility, Costs and Benefits; Comprehensive Technical Report; Victoria Transport

Policy Institute: Victoria, BC, Canada, 2011.
4. Tselentis, D.I.; Yannis, G.; Vlahogianni, E.I. Innovative insurance schemes: Pay as/how you drive. Transp. Res. Procedia

2016, 14, 362–371. [CrossRef]
5. Paefgen, J.; Staake, T.; Thiesse, F. Evaluation and aggregation of pay-as-you-drive insurance rate factors: A classification analysis

approach. Decis. Support Syst. 2013, 56, 192–201. [CrossRef]
6. Tselentis, D.I.; Yannis, G.; Vlahogianni, E.I. Innovative motor insurance schemes: A review of current practices and emerging

challenges. Accid. Anal. Prev. 2017, 98, 139–148. [CrossRef]
7. Troncoso, C.; Danezis, G.; Kosta, E.; Balasch, J.; Preneel, B. Pripayd: Privacy-friendly pay-as-you-drive insurance. IEEE Trans.

Dependable Secur. Comput. 2010, 8, 742–755. [CrossRef]
8. Pesantez-Narvaez, J.; Guillen, M.; Alcañiz, M. Predicting Motor Insurance Claims Using Telematics Data—XGBoost versus

Logistic Regression. Risks 2019, 7, 70. [CrossRef]
9. Guillen, M.; Nielsen, J.P.; Ayuso, M.; Pérez-Marín, A.M. The use of telematics devices to improve automobile insurance rates.

Risk Anal. 2019, 39, 662–672. [CrossRef]
10. Sun, S.; Bi, J.; Guillen, M.; Pérez-Marín, A.M. Assessing driving risk using internet of vehicles data: An analysis based on

generalized linear models. Sensors 2020, 20, 2712. [CrossRef]
11. De Diego, I.M.; Siordia, O.S.; Crespo, R.; Conde, C.; Cabello, E. Analysis of hands activity for automatic driving risk detection.

Transp. Res. Part C Emerg. Technol. 2013, 26, 380–395. [CrossRef]
12. Siordia, O.S.; de Diego, I.M.; Conde, C.; Cabello, E. Subjective traffic safety experts’ knowledge for driving-risk definition.

IEEE Trans. Intell. Transp. Syst. 2014, 15, 1823–1834. [CrossRef]
13. Charlton, S.G.; Starkey, N.J.; Perrone, J.A.; Isler, R.B. What’s the risk? A comparison of actual and perceived driving risk.

Transp. Res. Part F Traffic Psychol. Behav. 2014, 25, 50–64. [CrossRef]
14. Peng, J.; Shao, Y. Intelligent method for identifying driving risk based on V2V multisource big data. Complexity 2018, 2018.

[CrossRef]
15. Wang, J.; Zheng, Y.; Li, X.; Yu, C.; Kodaka, K.; Li, K. Driving risk assessment using near-crash database through data mining of

tree-based model. Accid. Anal. Prev. 2015, 84, 54–64. [CrossRef]
16. Yan, L.; Zhang, Y.; He, Y.; Gao, S.; Zhu, D.; Ran, B.; Wu, Q. Hazardous traffic event detection using Markov Blanket and sequential

minimal optimization (MB-SMO). Sensors 2016, 16, 1084. [CrossRef]
17. Liao, Y.; Wang, M.; Duan, L.; Chen, F. Cross-regional driver–vehicle interaction design: An interview study on driving risk

perceptions, decisions, and ADAS function preferences. IET Intell. Transp. Syst. 2018, 12, 801–808. [CrossRef]
18. Jiang, K.; Yang, D.; Xie, S.; Xiao, Z.; Victorino, A.C.; Charara, A. Real-time estimation and prediction of tire forces using digital

map for driving risk assessment. Transp. Res. Part C Emerg. Technol. 2019, 107, 463–489. [CrossRef]
19. Yan, Y.; Dai, Y.; Li, X.; Tang, J.; Guo, Z. Driving risk assessment using driving behavior data under continuous tunnel environment.

Traffic Inj. Prev. 2019, 20, 807–812. [CrossRef]
20. Lu, J.; Xie, X.; Zhang, R. Focusing on appraisals: How and why anger and fear influence driving risk perception. J. Saf. Res.

2013, 45, 65–73. [CrossRef]
21. Wang, J.; Huang, H.; Li, Y.; Zhou, H.; Liu, J.; Xu, Q. Driving risk assessment based on naturalistic driving study and driver

attitude questionnaire analysis. Accid. Anal. Prev. 2020, 145, 105680. [CrossRef]
22. Handel, P.; Skog, I.; Wahlstrom, J.; Bonawiede, F.; Welch, R.; Ohlsson, J.; Ohlsson, M. Insurance telematics: Opportunities and

challenges with the smartphone solution. IEEE Intell. Transp. Syst. Mag. 2014, 6, 57–70. [CrossRef]

71



Entropy 2021, 23, 829

23. Joubert, J.W.; De Beer, D.; De Koker, N. Combining accelerometer data and contextual variables to evaluate the risk of driver
behaviour. Transp. Res. Part F Traffic Psychol. Behav. 2016, 41, 80–96. [CrossRef]

24. Verbelen, R.; Antonio, K.; Claeskens, G. Unravelling the predictive power of telematics data in car insurance pricing. J. R. Stat.
Soc. Ser. C Appl. Stat. 2018, 67, 1275–1304. [CrossRef]

25. Ma, Y.L.; Zhu, X.; Hu, X.; Chiu, Y.C. The use of context-sensitive insurance telematics data in auto insurance rate making.
Transp. Res. Part A Policy Pract. 2018, 113, 243–258. [CrossRef]

26. Jiang, Y.; Zhang, J.; Wang, Y.; Wang, W. Drivers’ behavioral responses to driving risk diagnosis and real-time warning information
provision on expressways: A smartphone app–based driving experiment. J. Transp. Saf. Secur. 2020, 12, 329–357. [CrossRef]

27. Jin, W.; Deng, Y.; Jiang, H.; Xie, Q.; Shen, W.; Han, W. Latent class analysis of accident risks in usage-based insurance: Evidence
from Beijing. Accid. Anal. Prev. 2018, 115, 79–88. [CrossRef]

28. Carfora, M.F.; Martinelli, F.; Mercaldo, F.; Nardone, V.; Orlando, A.; Santone, A.; Vaglini, G. A “pay-how-you-drive” car insurance
approach through cluster analysis. Soft Comput. 2019, 23, 2863–2875. [CrossRef]

29. Burton, A.; Parikh, T.; Mascarenhas, S.; Zhang, J.; Voris, J.; Artan, N.S.; Li, W. Driver identification and authentication with active
behavior modeling. In Proceedings of the 2016 12th International Conference on Network and Service Management (CNSM),
Montreal, QC, Canada, 31 October–4 November 2016; pp. 388–393.

30. Baecke, P.; Bocca, L. The value of vehicle telematics data in insurance risk selection processes. Decis. Support Syst. 2017, 98, 69–79.
[CrossRef]

31. Guelman, L. Gradient boosting trees for auto insurance loss cost modeling and prediction. Expert Syst. Appl. 2012, 39, 3659–3667.
[CrossRef]

32. Bian, Y.; Yang, C.; Zhao, J.L.; Liang, L. Good drivers pay less: A study of usage-based vehicle insurance models. Transp. Res. Part
A Policy Pract. 2018, 107, 20–34. [CrossRef]

33. Jafarnejad, S.; Castignani, G.; Engel, T. Towards a real-time driver identification mechanism based on driving sensing data. In
Proceedings of the 2017 IEEE 20th International Conference on Intelligent Transportation Systems (ITSC), Yokohama, Japan,
16–19 October 2017; pp. 1–7.

34. Paefgen, J.; Staake, T.; Fleisch, E. Multivariate exposure modeling of accident risk: Insights from Pay-as-you-drive insurance data.
Transp. Res. Part A Policy Pract. 2014, 61, 27–40. [CrossRef]

35. Boucher, J.P.; Pérez-Marín, A.M.; Santolino, M. Pay-as-you-drive insurance: The effect of the kilometers on the risk of accident. In
Anales del Instituto de Actuarios Españoles; Instituto de Actuarios Españoles: Madrid, Spain, 2013; Volume 19, pp. 135–154.

36. Sun, S.; Bi, J.; Ding, C. Cleaning and Processing on the Electric Vehicle Telematics Data. In Proceedings of the INFORMS
International Conference on Service Science, Nanjing, China, 27–29 June 2019; Springer: Berlin/Heidelberg, Germany, 2019;
pp. 1–6.

37. Gao, G.; Wüthrich, M.V.; Yang, H. Evaluation of driving risk at different speeds. Insur. Math. Econ. 2019, 88, 108–119. [CrossRef]
38. Gao, G.; Wang, H.; Wüthrich, M.V. Boosting Poisson regression models with telematics car driving data. Mach. Learn. 2021, 1–30.

[CrossRef]
39. So, B.; Boucher, J.P.; Valdez, E.A. Synthetic Dataset Generation of Driver Telematics. Risks 2021, 9, 58. [CrossRef]

72



entropy

Article

A Proposal of a Motion Measurement System to Support
Visually Impaired People in Rehabilitation Using Low-Cost
Inertial Sensors

Karla Miriam Reyes Leiva 1,2,*, Milagros Jaén-Vargas 1, Miguel Ángel Cuba 1, Sergio Sánchez Lara 1

and José Javier Serrano Olmedo 1,3

Citation: Reyes Leiva, K.M.;

Jaén-Vargas, M.; Cuba, M.Á.; Lara,

S.S.; Olmedo, J.J.S. A Proposal of a

Motion Measurement System to

Support Visually Impaired People in

Rehabilitation Using Low-Cost

Inertial Sensors. Entropy 2021, 23, 848.

https://doi.org/10.3390/e23070848

Academic Editors: Felipe Ortega and

Emilio López Cano

Received: 28 April 2021

Accepted: 29 June 2021

Published: 1 July 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Escuela Superior Técnica de Ingenieros de Telecomunicación, Universidad Politécnica de Madrid,
28013 Madrid, Spain; milagros.jaen@ctb.upm.es (M.J.-V.); ma.cuba@alumnos.upm.es (M.Á.C.);
sergio.sanchez.lara@alumnos.upm.es (S.S.L.); josejavier@ctb.upm.es (J.J.S.O.)

2 Engineering Faculty, Universidad Tecnológica Centroamericana UNITEC, San Pedro Sula 211001, Honduras
3 Networking Center of Biomedical Research for Bioengineering Biomaterials and Nanomedicine,

Instituto de Salud Carlos III, 28029 Madrid, Spain
* Correspondence: karla.reyes@ctb.upm.es

Abstract: The rehabilitation of a visually impaired person (VIP) is a systematic process where the
person is provided with tools that allow them to deal with the impairment to achieve personal
autonomy and independence, such as training for the use of the long cane as a tool for orientation
and mobility (O&M). This process must be trained personally by specialists, leading to a limitation of
human, technological and structural resources in some regions, especially those with economical
narrow circumstances. A system to obtain information about the motion of the long cane and the leg
using low-cost inertial sensors was developed to provide an overview of quantitative parameters such
as sweeping coverage and gait analysis, that are currently visually analyzed during rehabilitation.
The system was tested with 10 blindfolded volunteers in laboratory conditions following constant
contact, two points touch, and three points touch travel techniques. The results indicate that the
quantification system is reliable for measuring grip rotation, safety zone, sweeping amplitude and
hand position using orientation angles with an accuracy of around 97.62%. However, a new method
or an improvement of hardware must be developed to improve gait parameters’ measurements, since
the step length measurement presented a mean accuracy of 94.62%. The system requires further
development to be used as an aid in the rehabilitation process of the VIP. Now, it is a simple and
low-cost technological aid that has the potential to improve the current practice of O&M.

Keywords: absolute orientation; inertial sensors; orientation and mobility; visually impaired rehabilitation

1. Introduction

People with visual impairments face many daily challenges that limit their quality of
life. These challenges include basic life activities such as finding and keeping a job, mobility,
and displacement, using public transport, among others. When a person is born with a
visual disability or suffers from a traumatism or disease that leads to a visual impairment,
they must be assisted trough a rehabilitation process. During this rehabilitation process,
the person is provided with tools to help them deal with their visual impairments with
greater independence and self-confidence. Tools as learning braille, learning how to use
a long cane, sightless feeding, also to optimize the use of residual vision and teaching
skills in order to improve visual functioning in daily life as well as other daily activities as
O&M trained by specialists [1–6]. This process of rehabilitation is specialized according
to the cognitive capacities of each user, the regular rehabilitation programs worldwide,
as reported by the World Blind Union, which includes several stages, such as activities
of daily living services, career exploration services, travel-training services/O&M, and
others [7]. In several references [6,8–12] the emphasis and importance of the O&M service
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and training in order to improve the quality of life, is widely emphasized [5,13]. Therefore,
there is a specific health discipline in charge of the study, development, and improvement
of the O&M training in VIP [14–16]. The latest report of the international approaches to
rehabilitation programs from the World Blind Union [7] presents two important challenges
on which this project was motivated: (1) the limitation of resources to provide basic
rehabilitation services and (2) transportation and geographic limitations, where many VIP
must displace themselves to other cities in order to access the rehabilitation services which,
in some cases, is impossible for some VIP.

A fundamental part of the mobility training is the use of the long cane, the VIP should
learn how to hold it correctly, how to grip it, how to walk with it and sweep it in order to
detect obstacles, different techniques of exploration, and other parameters according to
the complexity of the environment in which the VIP will navigate [17,18]. This training
is usually done in person with an O&M specialist, which, as mentioned before, leads
to an accessibility problem in rural communities, also it compromises the rehabilitation
duration, as well as the number of VIP that can be rehabilitated at the same time. In this
training, depending on the scenario there is a recommended technique and according to
the complexity and advances of the training, the scenarios will change [19]. However,
the parameters for evaluation of the correct use, regardless of the change of scenario, will
remain the same; this allows the possibility to register parameters and quantitative values
of the motion of the person and the long cane [20], in order to support the O&M training in
the rehabilitation processes.

According to the literature, a diversity of technological proposals have been designed
for orientation and mobility, such as ETAS (Electronic Travel Aid Systems) [2], focused on
obtaining information from the environment and providing it to the visually impaired in
order to assist them in autonomous navigation. There have been many attempts to enhance
the long cane with technology [21–25]. These systems are developed from technologies
such as Global Positioning System, BLE beacons, RFID or radio frequency identification,
to obtain information on position and displacement and optical sensors (RGB-D cameras,
laser), inertial sensors, speed sensors among others for obtaining information regarding
object detection [26–32]. However, the use of any of these ETAS requires previous O&M
training [33,34], leading to an existing gap, which is the development of assistive technolo-
gies specifically focused on evaluation and assistance of the training process, so it can be
more accessible for users.

Three articles of assistive rehabilitation tools for O&M were found in the literature;
Schloerb et al. [35] developed a virtual environment system named BlindAid, created in
order to enhance the O&M training. This is a software with haptic and auditory feedback
in which the user can virtually visit different unknown places in order to create cognitive
mental maps of the representation of these places. Oliveira et al. [36] created a programming
language named GoDonnie, to be used as a tool to aid in the resolution of spatial problems
involving O&M. This programming language was developed considering the criteria of
accessibility and usability for VIP, with the assumption that by using GoDonnie, the user
could improve programming and O&M skills, since the users are able to create mental maps
of the environments and related objects. On the other hand, Gong et al. [37] developed
HeliCoach an O&M training system created to help VIP to train the ability of audio
orientation. This training environment is composed of a drone, which moves through
3D space and is used as a sound source. It is composed of a belt with a set of vibration
motors for haptic feedback, the belt also contains an BNO055 IMU and six vibration motors
controlled by an Arduino DFRobot Leonardo + Xbee. In this system high accuracy indoor
localization system is needed for the perspective-driven interaction. For this goal, Ultra-
Wide Bandwidth Microwave is used: the system uses four base stations and two tracking
tags which are embedded into the drone and the cap of the user, respectively.

In comparison to the mentioned developed technologies, the aim of this research was
to develop a simple-architecture hardware system using low-cost inertial sensors for data
acquisition and test its reliability in the quantitative analysis of the parameters evaluated in
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the rehabilitation process of VIP by obtaining metrics that the O&M specialists personally
examined to aid the rehabilitators during current practice of O&M while training travel
techniques.

The system can provide information about the hand grip rotation, the safety zone, the
hand height during the travel techniques, amplitude and patterns of the sweeping, and
gait parameters with a high accuracy using only two inertial sensors.

Technologies based on inertial measurement unit sensors (IMU) are used in a large
and ever-growing number of applications, such as intelligence guidance, self-driving
robots [38,39], full body motion tracking [40–43] and navigation [26,44–46]. An accelerom-
eter measures the external specific force acting on the sensor, which consists of both the
sensor’s acceleration and the acceleration due to the earth’s gravity. A gyroscope measures
angular velocity: the rate of change of the sensor’s orientation. Thus, the integration
of gyroscope measurements provides information about the orientation on the sensor.
Magnetometers complement accelerometers by providing sensor heading (orientation
around the gravity vector), which is information that accelerometers or gyroscopes cannot
provide. With the fusion of accelerometer, gyroscope and magnetometers, the orientation
is estimated based on the direction of the magnetic field [39,44]. In the system presented
in this paper, the parameters of O&M are calculated using absolute orientation values of
the sensor fusion provided by the BNO055 IMU module. Note that the present article is
an extended version of [47], where the algorithms to measure amplitude of the sweeping
techniques and the orientation of the long cane were tested with 97% and 98% accuracy,
respectively.

2. Materials and Methods

A tool was developed to evaluate the rehabilitation parameters during the experimen-
tal procedure. For the data acquisition an Arduino MKR1010 microprocessor was used
with two 9DOF BNO055 IMU Bosch sensors. One sensor placed on the outer side of the
leg of each participant and the other on the higher part of a 117 cm long cane. Serial com-
munication was done via I2C protocol at a sample rate of 0.01 s. In order to remove noise
components from the signal, a low pass filtering was performed, with a cutoff frequency of
20 Hz. The microprocessor was wired to a SD card module via SPI protocol and to two
push buttons settled as input parameters to control the acquisitions manually. With the
use of the Euler roll angle θleg and the interpretation of step detection according to the
values of the filtered absolute orientation, an algorithm was developed to calculate step
length using the local coordinates of the sensor placed in the leg. Additionally, to obtain
the sweeping metrics with the local coordinates of sensor placed in the cane, the Euler roll
ϕcane, pitch θcane and yaw γcane angles were used to provide the grip rotation, the safety
zone metrics and sweeping characteristics consecutively.

For the experimental procedure, the acquisitions were performed with 10 blindfolded
volunteers. First, the volunteers were instructed and trained for each travel technique while
sighted. A floor carrel was marked for the sweep training with an amplitude of around 1 m,
they were asked to train each technique walking 20 steps three times. After that, they were
blindfolded and asked to perform the travel techniques when displacing around 20 steps in
the indicated direction, as described in Table 1. Each acquisition was repeated blindfolded
three times, obtaining nine comparative metrics for each participant. The total time and
displacement were measured using a 50 m measuring tape and a chronometer. This value
served as references values to evaluate the accuracy of the measured gait parameters.
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Table 1. Description and representation of the top view of the travel techniques for the experimental evaluation of the
developed system.

Constant Contact Technique (CCT) Two Points Touch Technique (2PT) Three Points Touch Technique (3PT)

The CCT travel technique consisted of
sweeping the long cane on the floor

between two points with constant contact
with an approximate amplitude of 1 m in

order to provide coverage of the
walking path.

The 2PT travel technique consisted of
sweeping the long cane on the floor

between two points taking the cane off
the ground and creating an arc of around

5 cm, with an approximate amplitude
of 1 m.

The 3PT travel technique consisted of
sweeping the long cane on the floor

between three points. One point on the
left, one on the center and one on the

right. Taking the cane off the ground in
each point and creating an arc of

around 5 cm.

3. Results

3.1. Measurement of the Hand Height and the Safety Zone

The Hand Height (HH) and Safety Zone (SZ) are reference parameters to evaluate the
reaction distance in O&M, which refers to the warning distance provided by the cane of an
object in one’s path, the time that is provided by the cane to be warmed about an object
or danger [48]. By implementing trigonometrical ratios and using the local coordinates
of the sensor, the pitch angle θcane (which is the transversal axis, equivalent to the angle
produced between the floor plane and the long cane) was continuously measured to obtain
the height of the hand during and the distance between the tip of the cane and the leg, in
the repetitions of the three different travel techniques. Being the HH, the opposite leg of
the θcane, the SZ then is the adjacent leg from the θcane, as shown in Figure 1.

 

Figure 1. Local coordinate system of the sensor placed on the cane (A) and local coordinate system
of the sensor placed in the leg (B).

An extract of the measured values for HH and SZ for each subject is presented in
Table 2. This value is compared with the real value (RV), which is the self-reported HH
and the calculated SZ according to Pythagoras theorem. The mean value is the calculated
media of the HH and SZ measurements within the nine travel technique acquisitions. The
values of standard deviation (SD) and %Error vary for each subject. The major precision
and accuracy obtained was with S01, being the standard deviation of only 1.39 cm, which
represents 1.46% of the mean HH and 1.95 cm which represents 2.83% of the mean SZ
and the %Error of 0.63% and 1.37%, respectively. Additionally, S09 presented a very low
%Error, however a high SD (6.15) which together with S05 presented the less precision on
repeatability, the SD being 5.03% of the mean HH and 8.60% of the SZ. On the other hand,
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the lower accuracy was shown by S06, followed by S07 and S08 with a %Error of 4.62%
in the HH and 4.86% in the SZ measurement. Finally, a media accuracy of around 97.62%
was obtained by joining all the subjects in both measurements proving that the algorithm
applied is reliable to measure these O&M parameters using absolute orientation angles.

Table 2. Extract of the measured Hand Height and Safety Zone and statistic characteristics.

RV cm Mean cm SD cm %Error RV cm Mean cm SD cm %Error

Hand Height (HH) Safety Zone (SZ)

S01 94.00 94.59 1.39 0.63 69.66 68.71 1.95 1.37
S02 89.00 90.17 3.17 1.31 76.00 74.34 3.77 2.18
S03 95.00 94.28 3.37 0.76 68.29 69.35 5.03 1.55
S04 86.00 82.64 2.60 3.90 79.32 82.68 2.59 4.24
S05 94.00 92.56 4.66 1.53 68.66 71.04 6.11 3.47
S06 86.00 82.03 3.75 4.62 79.32 83.17 3.54 4.86
S07 87.00 90.85 2.38 4.43 77.10 73.50 2.86 4.68
S08 88.00 84.13 2.51 4.40 78.23 80.21 4.35 2.54
S09 82.00 81.86 6.15 0.17 83.46 83.08 6.32 0.46
S10 83.00 81.15 2.50 2.23 82.46 84.19 2.39 2.09

3.2. Measurement of the Grip Rotation

A proper grip was one of the first parameters to be observed by the rehabilitators
during the very first stage of the O&M training. With the inertial sensors, is not possible to
analyze all the characteristics of the grip, but it is possible to determine the variation of the
rotation of the cane which is the consequence of the grip rotation by analyzing the absolute
orientation angles, as shown in Table 3. In this table, the SD in degrees for each travel
technique by subject was calculated and presented. For this, it was taken into account
the total raw data of the roll angle ϕcane, which according to the local coordinates of the
placed sensor represents the rotation of the grip of the user during the development of
the travelling techniques. As shown in the Table 3, this value can be representative for
technical analysis of the performance of the traveling techniques independently of the
stage of and scene in which the user is being rehabilitated. It can also provide a numerical
representation to establish what is considered as adequate and acceptable grip rotation
according to each travel technique.

Note that the variation of the values represents the percentage of rotation of the grip
during each experiment which means that each column represents how much variation
in the rotation of the hand occurred during the experimental acquisition. In the results, it
can be observed that S04 and S10 present less grip rotation in the 2P and 3P techniques,
which is an indication of a better execution than for instance for S03 and S09. This is
direct indication for the specialist to determine which is the acceptable percentage of
rotation for each travelling technique and which technique is more appropriate for the
visually impaired; it can also allow to have a tracking of the performance during the
rehabilitation stages.
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Table 3. Standard deviation of the measured grip rotation for each subject in the acquisitions of the
different travelling techniques.

SD in Degrees

S01 S02 S03 S04 S05
CCT 2PT 3PT CCT 2PT 3PT CCT 2PT 3PT CCT 2PT 3PT CCT 2PT 3PT

4.55 7.21 5.34 3.44 3.05 2.82 4.34 4.43 2.88 3.72 3.12 2.13 4.45 4.28 3.01
5.68 6.47 4.97 2.76 4.12 3.84 1.88 4.45 3.06 1.93 2.11 2.03 3.67 3.49 3.01
5.31 6.29 4.25 6.14 4.93 3.09 4.84 5.18 2.9 2.66 2.12 2.22 3.43 3.42 3.28

     

S06 S07 S08 S09 S10

CCT 2PT 3PT CCT 2PT 3PT CCT 2PT 3PT CCT 2PT 3PT CCT 2PT 3PT

3.1 3.92 3.92 8.37 5.61 3.92 5.68 3.63 3.5 7.43 7.43 6.19 2.17 2.88 2.47
3.47 3.06 3.06 7.4 6.55 4.72 6.8 4.16 2.91 8.84 7.12 4.4 6.15 2.98 2.41
2.97 2.84 2.84 7.97 6.24 4.5 6.18 5.1 3.11 6.13 7.15 5.75 4.35 3.1 2.21

     

3.3. Representation of the Sweeping

In [47], it was clearly demonstrated that using absolute orientation angles was reliable
to measure the amplitude of the sweepings with the long cane. As described by Blasch
and LaGrow [48], the performance of the O&M rehabilitation can be evaluated in terms of
“coverage” provided by the long cane, where a full coverage includes, for instance, object
preview: the capacity to identify objects in the path of travel with a correct sweeping of
the long cane. As the carried out traveling techniques consists of sweeping oscillatory
movements, by extracting the motion of the yaw angle γcane, it is possible to graphically
represent the movement of the long cane beside the value of the sweeping amplitude, as
shown in Figure 2.

This graphical representation is indispensable in order to have an estimation of the
performance of the travelling techniques while the user is in training, since it is a detailed
characterization of the movement of the cane in each millisecond for the dynamic condi-
tions. Additionally, it can help the rehabilitators to evaluate the coverage that is being
provided in that moment of the execution of the travelling techniques. As well, for the
user to self-correct any lack of coverage with immediate feedback to prevent an accident
while correcting the amplitude and execution of the sweeping during the training. It can
also help the user and the rehabilitator to quantitatively determinate which is the most
appropriate travelling technique for the user. As shown in Figure 2, many differences are
observed in the development of the traveling techniques for two subjects (A and B) with
the same characteristics. This brings us to one last advantage of this tool, which is the
possibility to register the performance of each user during the entire rehabilitation process
for future data analysis.
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(A) (B) 

Figure 2. Sweeping preview (γcane) in the 20-step displacement for each travelling technique, S05 (A)
and S06 (B).

3.4. Measurement of Gait Parameters

In terms of coverage, an appropriate gait is crucial for the development of O&M
abilities [49], therefore during the O&M training, the gait velocity and the stride length
is being constantly visually evaluated by the rehabilitator. With this tool, the method
to evaluate the step length for calculating the gait parameters (Stride Length and Gait
Velocity) was developed using also absolute orientation angles. With the inertial sensor
placed on the outer side of the leg, with the same local coordinates as the sensor placed
in the long cane, the pitch angle was used to calculate the step length in a walking cycle
and two of the travelling techniques (see Figure 1). The step length was calculated in an
algorithm averaging the estimation of the displacement of the leg during the gait cycle
following the difference of each peak-to-peak representation of the oscillatory movements
of the pitch angle, where each peak represents the higher value of each phase in the gait
cycle. Therefore, by knowledge of the leg length of each user, and constantly laying up
the values of θlegmax and θlegmin, the step length could be calculated using the following
equation:

SL = 2 × sin
(

θlegmax − θlegmin

2

)
× LL (1)

where SL is the length of the step and LL is the length of the leg of the user. The algorithm
is capable of detecting if a step is being executed with the θlegmax and θlegmin thresholds.
Table 4 summarizes the measurements obtained in each experiment. Note that the value
of the measurement of the SL is an average of the three measurements obtained for each
repetition and the mean difference (MD) in centimeters is measured with the resulting
three values of the average.
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Table 4. Step length measurement analysis.

Activity SL m RSL m MD cm SL m RSL m MD cm

S01 S06

W 0.553 0.500
7.046

0.560 0.546
2.769CCT 0.517 0.405 0.490 0.443

3PT 0.577 0.539 0.500 0.478

S02 S07

W 0.553 0.551
2.704

0.678 0.625
4.224CCT 0.590 0.601 0.731 0.716

3PT 0.577 0.583 0.664 0.607

S03 S08

W 0.447 0.432
4.937

0.567 0.502
12.370CCT 0.530 0.534 0.581 0.536

3PT 0.483 0.542 0.572 0.540

S04 S09

W 0.603 0.592
3.333

0.520 0.502
3.047CCT 0.563 0.603 0.500 0.536

3P 0.580 0.550 0.536 0.540

S05 S10

W 0.637 0.498
9.800

0.538 0.505
5.152CCT 0.603 0.567 0.534 0.566

3P 0.673 0.554 0.515 0.425
W = walking.

The difference in centimeters between the actual value and the measured value is
very low in most of the cases (2.704 cm–12.370 cm), which indicates that the system is also
reliable to estimate the step length, however, in order to calculate traveled distances using
this value, it is necessary to set the measurement error and thus dismiss the accumulated
errors. This was not possible because there is an extended variation of the mean %Error
of the measurement from one subject to other, from 1.07% to 15.06%. The reason for this
variation is unknown, perhaps so the proposed method does not estimate hip displacement
in the gait cycle. Another reason could be the reliance on the sensor decalibration, however,
the accuracy of the absolute angles sensed varies very little with calibration but, as the step
length values lie in the order of centimeters, this can be a factor affecting the variation of
the %Error, which has a mean of 94.62%.

4. Discussion

Kim et al. [20], presented a quantification of the characteristics of long cane usage.
In this work, similar parameters are evaluated in terms of the coverage of the travelling
techniques in relation to the rotation angles of the movement of the long cane. However,
to develop this study, optical tracking cameras were needed in addition to an inertial
sensor placed in the long cane. The presented tool allows the dynamic quantification of
the characteristics of the movement of the long cane with a lower cost dispositive and
complexity and with high precision. With the inertial sensors and the presented metrics,
it will be possible to obtain outcome measures as stride rate, gate velocity (meters per
minute), and grip characteristics. Additionally, the provided coverage and long mechanics
will allow interpretations of the sweeping characteristics as amplitude, frequency and the
ability to detect obstacles in the path, as it has been done previously either with more
complex acquisition systems [15,50,51], simulated [52] or in some cases manually [53].

The presented measure of the SL can be considered for the estimation of the gait
parameters in O&M. Considering the limitations of the method, the most remarkable
element of this tool is the fact that the system brings a measurement with the simplicity of
one inertial sensor placed in the leg, using only one absolute orientation angle. Most of
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the algorithms found in the literature considered, beside orientation angles, acceleration
values for step detection and calculation of displacement [54], as addition of at least another
sensing method, which brings many other limitations and complexity in the development of
the algorithm [34]. This article presents a simple method for computing clinically relevant
gait parameters, with acceptable precision and accuracy, as in [55]. However, it is a fact
that more precision can be obtained implementing a new method considering the details of
the swing of the gait cycle or implementing artificial intelligence for instance [55,56].

Currently, a motion analysis device able to evaluate the percentage of coverage pro-
vided by a travelling technique according to specific parameters of a user cannot be found
in the literature. The RoboCane software [48] was not successfully adopted by the O&M
research community in the last decade. This software was designed to calculate the cov-
erage according to direct measurement (manual) of the specific variables of the user. On
the other hand, the proposed tool will allow the O&M specialists to have a real estimation
of the coverage that the users are providing to themselves in dynamic conditions, which
will also help them to be more objective in the evaluation of the O&M training. Among
O &M specialists and researchers, it is known that there is no standardization in training
methods, and these methods may vary according to the experience of each specialist. That
is why research in O&M can also benefit from this tool. The development of the presented
tool permits evaluating these mobility parameters independently of the environment com-
plexity in which the training is gradually subjected [57], as it is a low cost portable device.
Moreover, further development must be done to obtain more quantification characteristics
of the O&M performance of the VIP. By adding one more sensor to the body, for instance,
parameters of postural stability and balance analysis can be obtained.

5. Conclusions

This article proposed a system able to overview the quantitative parameters of O&M
for VIP, which are currently visually analyzed by O&M specialist during rehabilitation, such
as sweeping coverage and gait analysis. The proposed tool provides motion analysis of the
long cane and the leg by using placed low-cost inertial measurement unit sensors (IMU).
The system was tested in laboratory conditions by six blindfolded volunteers following
three travel techniques trained by VIP during rehabilitation. The experimental results
indicate that this system is reliable for measuring grip rotation, safety zone, sweeping
amplitude and hand position using orientation angles with an accuracy of 97%. In terms
of future work, a further development is required for the system to be implemented as
a rehabilitation aid. Thereby, a more precise method for step length must be obtained,
since the mean %Error varies between 1.07% and 15.06% among experiments. Also, more
parameters of O&M can be analyzed using IMU’s absolute angles, including postural
stability and balance analysis. Finally, as the main purpose, the proposed system is a new,
simple and low-cost technological aid that that has the potential to improve the current
practice of O&M.
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Abstract: Sensor placement is an important factor that may significantly affect the localization
performance of a sensor network. This paper investigates the sensor placement optimization problem
in three-dimensional (3D) space for angle of arrival (AOA) target localization with Gaussian priors.
We first show that under the A-optimality criterion, the optimization problem can be transferred to
be a diagonalizing process on the AOA-based Fisher information matrix (FIM). Secondly, we prove
that the FIM follows the invariance property of the 3D rotation, and the Gaussian covariance matrix
of the FIM can be diagonalized via 3D rotation. Based on this finding, an optimal sensor placement
method using 3D rotation was created for when prior information exists as to the target location.
Finally, several simulations were carried out to demonstrate the effectiveness of the proposed method.
Compared with the existing methods, the mean squared error (MSE) of the maximum a posteriori
(MAP) estimation using the proposed method is lower by at least 25% when the number of sensors is
between 3 and 6, while the estimation bias remains very close to zero (smaller than 0.15 m).

Keywords: 3D angle of arrival (AOA) localization; Cramér–Rao lower bound (CRLB); optimal
sensor placement; covariance matrix; fisher information matrix (FIM)

1. Introduction

Tracking and localization using sensor networks have a wide range of applications in
radar, sonar, and wireless sensor networks [1,2]. There are several types of localization tech-
niques that have been developed in recent years: time difference of arrival (TDOA) or time
of arrival (TOA) [3,4], angle of arrival (AOA) [5–7], and received signal strength (RSS) [8,9].

AOA target localization has been an active research area during the past two decades.
It does not require synchronization with the signal target or among the different distributed
sensors, unlike TOA and TDOA localization. Many estimators have been developed for
AOA-based localization. A 3D one-step pseudolinear estimator (PLE) with a bias compen-
sation strategy was proposed in [10]. An asymptotically unbiased weight instrumental
variable (WIV) technique was presented in [11] to solve the bias problem, and then a
3D, improved WIV estimator was derived to break down the correlation between the
instrumental variable (IV) matrix and the error vector in [12]. Furthermore, a closed-form
solution for 3D AOA localization, which can handle the presence of sensor location errors,
was presented in [13]. Recently, an approximately unbiased estimator was proposed by
approximating the bias and subtracting it from the weighted least squares (WLS) solution
obtained using semidefinite relaxation (SDR) in [14].

Apart from the above localization methods, generating the target–sensor geometry
for localization is also a non-trivial task and attracts great interest in the localization area.
The optimization problem for sensor placement was usually formulated to minimize the

Entropy 2021, 23, 1379. https://doi.org/10.3390/e23111379 https://www.mdpi.com/journal/entropy85
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Cramer–Rao lower bound (CRLB) or maximize the Fisher information matrix (FIM) [15–18],
and the differences between the above two methods were reported in [19]. In [20], the trace
of CRLB was adopted to find the optimal geometric configuration, which yielded the
minimum possible covariance of any unbiased target estimator in a constrained 3D space.
The optimal placement analysis for 3D AOA target localization using the A-optimality
criterion (minimize the trace of CRLB) appeared in [21]. In addition, a frame theory
was also presented that can handle the optimal sensor placement with three types of
sensor placement strategy in [22] as an identical parameter optimization problem in two-
dimensional (2D) and 3D space. In [23], the frame theory was used to derive an evaluation
function for optimal placement with random numbers of newly added sensors in AOA
target localization.

The majority of previous work on optimal sensor placement assumed that the target
location was known perfectly, which is impossible in actual scenarios. Therefore, it is
beneficial to solve the optimal sensor placement problem when the target location is uncer-
tain. The optimal sensor placement algorithm for TDOA localization with an unknown
target location was proposed in [24]. An equivalence between minimizing the estimation
mean squared error and minimizing the area of the estimation uncertainty ellipse was
established for the geometry optimization problem of target localization with Bayesian
priors in [25], which makes the optimal geometry conditions algebraically simple and
easy to be computed. However, the above proposed algorithms can only be used in 2D
space. In addition, an analysis of the performance measures of covariance and information
matrices in resource management for target state estimation was provided in [26]. Then the
analysis results were extended in [27] to find the optimal placement of heterogeneous sen-
sors for the target with Gaussian priors. Furthermore, the updated FIM was used to derive
optimal placement conditions for heterogeneous sensors tracking the unknown number of
targets in [28]. Nevertheless, the solutions in [27,28] were complicated, particularly in the
case of more than two sensors.

Several valuable conclusions have been obtained about the coordinate system rotation,
which provides a new path to solving target localization and optimal sensor placement.
As pointed out in [29], local coordinate translations and rotations do not influence the
PLE and maximum likelihood estimator (MLE) performance of the bearings-only target
localization algorithm. Furthermore, it was demonstrated that the trace of CRLB was
invariant in XY-coordinates and the AOA-based FIM was invariant to flipping a sensor
about the target in [21]. Lately, a TOA-based FIM invariant to sensor rotation about the
target in 3D space was shown in [30].

In this paper, we address the optimal 3D AOA sensor placement problem with Gaus-
sian priors. The key contributions of this paper are summarized as follows:

• A detailed 3D AOA optimal sensor placement problem with Gaussian priors is ana-
lyzed using the A-optimality criterion (minimizing the trace of the inverse FIM). We
show analytically that the problem can be transformed to diagonalize the AOA-based
FIM under the A-optimality criterion.

• The invariance property of the 3D rotation for the AOA-based FIM with Gaussian pri-
ors is deduced. Thus, the Gaussian covariance matrix of the FIM can be diagonalized
via 3D rotation.

• An optimal sensor placement method using 3D rotation is proposed for when prior
information exists as to the target location using the invariance property of the AOA-
based FIM and the A-optimality criterion.

• Simulation studies are presented to demonstrate the analytical findings. The compar-
ison results show that the proposed method significantly improves the localization
performance.

The rest of the paper is organized as follows: The 3D AOA sensor placement with
Gaussian priors optimization problem is formulated in Section 2. Section 3 derives the FIM
with Gaussian priors after the 3D rotation and then exploits the invariance property for
the 3D AOA-based FIM. Section 4 presents the optimal sensor-target geometric solutions
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with the help of a resistor network analogy. The main results are presented with simulation
examples in Section 5, and the conclusion and discussion of future work are in Section 6.

2. Problem Formulation

We consider a 3D AOA configuration with N sensors localizing a stationary target,
as depicted in Figure 1, and each sensor is assumed to be omnidirectional. s = (x, y, z)T is

the unknown location of the target with T denoting matrix transpose, pk =
(

pxk, pyk, pzk

)T
,

k = 1, 2, · · · N is the location of the sensors. It is assumed that s is a Gaussian random
variable with a distribution as s ∼ N (s0, P0), where s0 and P0 represent the mean and
the covariance matrix of s. Note that the gray ellipse in Figure 1 illustrates the confidence
region corresponding to the Gaussian priors, and {θk, φk} denotes the bearing measurement
with the azimuth and elevation angle in spherical coordinates. Using s0 = (x0, y0, z0)

T as a
reference, the AOA measurement of the kth sensor can be expressed as

θk = tan−1 y0 − pyk

x0 − pxk
,−π < θ ≤ π,

φk = sin−1 z0 − pzk
rk

,−π

2
< φ ≤ π

2
,

(1)

where rk = ‖s0 − pk‖, tan−1 is the fourth quadrant arctangent, and ‖·‖ denotes the Eu-
clidean norm. In terms of azimuth and elevation angles, the unit bearing vector g0

k can be
given by

g0
k =

⎡⎣cos φk cos θk
cos φk sin θk

sin φk

⎤⎦, (2)

In the 3D localization system, the AOA measurements are always affected by multi-
path effects, the propagation environment, the transmitted power, and other unfavorable
factors. In order to focus our study on the sensor placement optimization problem itself,
in our paper, although we do not consider these inference factors explicitly, we take them
into account, as a whole, by modeling them as the additive Gaussian white noise on the
true angle measurements

{
θ̃k, φ̃k

}
as

θ̃k = θk+nθk , nθk ∼ N
(

0, σ2
θk

)
,

φ̃k = φk + nφk , nφk ∼ N
(

0, σ2
φk

)
.

(3)

where σ2
θk

and σ2
φk

are sensor-dependent noise variances [31].
The sensor measurement covariance matrix can be expressed as

Σ =

[
P0 02N×3

03×2N Σ0

]
, (4)

with
Σ0 = diag

{
σ2

θ1
, σ2

φ1
, . . . , σ2

θN
, σ2

φN

}
, (5)

Here we define e(s) and r(s)

r(s) = s − s0,

e(s) =
[
θ̃1 − θ1(s), φ̃1 − φ1(s), . . . , θ̃N − θN(s), φ̃N − φN(s)

]T .
(6)

The Jacobian matrix of measurement errors evaluated at the mean location s0 can be
written as

J =
[
J1 J2

]T , (7)
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where J1 is the 3 × 3 Jacobian of r(s), given by

J1 = I3×3 , (8)

The Jacobian vector of the kth sensor measurement error evaluated at the true target
location s = (x, y, z)T as

J
′
k =

[
∂θk
∂sT ,

∂φk
∂sT

]T
∣∣∣∣∣
s

=

⎡⎢⎢⎣
∂θk
∂x

∂θk
∂y

∂θk
∂z

∂φk
∂x

∂φk
∂y

∂φk
∂z

⎤⎥⎥⎦
∣∣∣∣∣∣∣∣
s

=

⎡⎢⎣ − sin θk
rk cos φk

cos θk
rk cos φk

0

− sin φk cos θk
rk

− sin φk sin θk
rk

cos φk
rk

⎤⎥⎦,

(9)

Therefore, we can obtain the Jacobian matrix of the 2N measurements as

J2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− sin θ1

r1 cos φ1

cos θ1

r1 cos φ1
0

− sin φ1 cos θ1

r1
− sin φ1 sin θ1

r1

cos φ1

r1
...

...
...

− sin θN
rN cos φN

cos θN
rN cos φN

0

− sin φN cos θN
rN

− sin φN sin θN
rN

cos φN
rN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (10)

The FIM for 3D AOA localization with Gaussian problem yields

Φ = JTΣ−1J. (11)

For simplification, J is expressed as the following three vectors:

a =

[
− sin θ1

r1 cos φ1
,− sin φ1 cos θ1

r1
, · · · , − sin θN

rN cos φN
,− sin φN cos θN

rN

]T
,

b =

[
cos θ1

r1 cos φ1
,− sin φ1 sin θ1

r1
, · · · ,

cos θN
rN cos φN

,− sin φN sin θN
rN

]T
,

c =

[
0,

cos φ1

r1
, · · · , 0,

cos φN
rN

]T
,

(12)

Thus,
J =

[
a b c

]
(2N+3)×3 , (13)

Hence, the FIM is

Φ =

⎡⎣aT

bT

cT

⎤⎦Σ−1[a b c
]
=

⎡⎢⎣ âT â âTb̂ âT ĉ

b̂T â b̂Tb̂ b̂T ĉ

ĉT â ĉTb̂ ĉT ĉ

⎤⎥⎦, (14)

where â = Σ−1/2 a, b̂ = Σ−1/2 b, ĉ = Σ−1/2 c, and Σ−1/2 Σ−1/2 = Σ−1. Given â, b̂, and ĉ

in �2n, then |â|2 = 〈â, â〉 and
〈

â, b̂
〉
= |â|

∣∣∣b̂∣∣∣ cos
(
θ

âb̂

)
, from which it follows that the angle
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θ
âb̂

between vector â and b̂ is given by θ
âb̂

= cos−1
(〈

â, b̂
〉

/
(
|â|

∣∣∣b̂∣∣∣) )
, θâĉ. θ

b̂ĉ
are the

angle defined by vectors â; and ĉ, b̂, and ĉ [32]. With this notion, the FIM becomes

Φ =

⎡⎢⎢⎢⎣
|â|2 |â|

∣∣∣b̂∣∣∣ cos
(
θ

âb̂

) |â||ĉ| cos(θâĉ)

|â|
∣∣∣b̂∣∣∣ cos

(
θ

âb̂

) ∣∣∣b̂∣∣∣2 ∣∣∣b̂∣∣∣|ĉ| cos
(
θ

b̂ĉ

)
|â||ĉ| cos(θâĉ)

∣∣∣b̂∣∣∣|ĉ| cos
(
θ

b̂ĉ

) |ĉ|2

⎤⎥⎥⎥⎦, (15)

The determinant of Φ is
|Φ| = |â|2

∣∣∣b̂∣∣∣2|ĉ|2λ, (16)

where

λ = 1 − cos2(θ
âb̂

)− cos2(θâĉ)− cos2(θ
b̂ĉ

)
+ 2 cos

(
θ

âb̂

)
cos(θâĉ) cos

(
θ

b̂ĉ

)
. (17)

Thus, the trace of CRLB is

tr(CRLB) = tr
(

Φ−1
)

=

∣∣∣b̂∣∣∣2|ĉ|2(1 − cos2(θ
b̂ĉ

))
|Φ| +

|â|2|ĉ|2(1 − cos2(θâĉ)
)

|Φ| +
|â|2

∣∣∣b̂∣∣∣2(1 − cos2(θ
âb̂

))
|Φ|

=

(
1 − cos2(θ

b̂ĉ

))
|â|2λ

+

(
1 − cos2(θâĉ)

)∣∣∣b̂∣∣∣2λ

+

(
1 − cos2(θ

âb̂

))
|ĉ|2λ

,

(18)

Thus, we can get

tr(CRLB) ≥ 1

|â|2 +
1∣∣∣b̂∣∣∣2 +

1

|ĉ|2 . (19)

The tr(CRLB) is minimum when cos
(
θ

âb̂

)
= cos(θâĉ) = cos

(
θ

b̂ĉ

)
= 0. Note that

when tr(CRLB) becomes minimum, the FIM becomes diagonal, so the optimal sensor
placement is obtained by diagonalizing the FIM [33].

Figure 1. 3D AOA localization sensor placement with Gaussian priors.

3. The Proposed Method

Under the Gaussian assumption, the prior covariance matrix P0 may be a diagonal
or non-diagonal matrix, which physically represents an ellipsoid bounding the uncertain
target measurement estimators. Since the rotation does not affect the size of the ellipsoid,
the covariance P0 should be invariant to any similarity transform UP0UT , where U is a
unitary matrix. Therefore, a proper 3D rotation provides a solution for diagonalizing the
non-diagonal matrix P0. Additionally, in this section, we derive the FIM for 3D AOA
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localization with Gaussian priors after the 3D rotation, and then the invariance property of
the 3D AOA-based FIM is exploited.

3.1. 3D Rotation Matrix

First, we define rotation matrices of the AOA measurement as follows:

Rx =

⎛⎝1 0 0
0 cos α − sin α
0 sin α cos α

⎞⎠, Ry =

⎛⎝ cos β 0 sin β
0 1 0

− sin β 0 cos β

⎞⎠, Rz =

⎛⎝cos γ − sin γ 0
sin γ cos γ 0

0 0 1

⎞⎠. (20)

Here α, β, and γ are counterclockwise rotation angles around the x, y, and z axes,
respectively, which is depicted in Figure 2. The rotation matrix is

R = RxRyRz. (21)

and satisfies RRT = RR−1 = I.
Next, when the rotation happens in the 3D space, we can get

sr = Rs, sr
0 = Rs0, pr = Rp, Pr

0 = RP0RT . (22)

where sr, sr
0, pr, and Pr

0 are the new measurements compared with s, s0, p, and P0 after
rotation.

Figure 2. The rotation angles α, β, γ around the x, y, and z axes.

3.2. Invariance to 3D Rotation for AOA-Based FIM

When the 3D AOA measurements are assumed to be corrupted by additive white
Gaussian noise with zero mean, the k-th sensor bearing unit vector in (2) is modified as

gk =

⎡⎣cos φ̃k cos θ̃k
cos φ̃k sin θ̃k

sin φ̃k

⎤⎦, (23)

From (20) and (22), the bearing unit vector after rotation is

gr
k = Rgk =

⎡⎣cos φ̃r
k cos θ̃r

k
cos φ̃r

k sin θ̃r
k

sin φ̃r
k

⎤⎦, (24)

Therefore, the azimuth and elevation angles are given by

θ̃r
k = tan−1

(
gr

k(2)
gr

k(1)

)
, φ̃r

k = sin−1(gr
k(3)). (25)

Here we define
θ̃r

k = g
(
θ̃k, φ̃k

)
, φ̃r

k = h
(
θ̃k, φ̃k

)
, (26)
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To compute the covariance matrix after rotation, we can adopt the First-order Taylor
series approximation for the rotated noisy angles using (θk, φk) in

(
θ̃k, φ̃k

)
with respect to

the noise variables nθk and nφk. Therefore, (26) can be rewritten as

θ̃r
k = g

(
θ̃k, φ̃k

)
= g

(
θk + nθk , φk + nφk

)
= g(θk, φk) +

[
∂g(θk, φk)

∂θk

∂g(θk, φk)

∂φk

][
nθk
nφk

]
,

φ̃r
k = h

(
θ̃k, φ̃k

)
= h

(
θk + nθk , φk + nφk

)
= h(θk, φk) +

[
∂h(θk, φk)

∂θk

∂h(θk, φk)

∂φk

][
nθk
nφk

]
.

(27)

According to the error propagation law [34], the noise covariance matrix for the k-th
sensor after 3D rotation can be written as

Kr
k =

⎡⎢⎢⎣
∂g(θk, φk)

∂θk

∂g(θk, φk)

∂φk
∂h(θk, φk)

∂θk

∂h(θk, φk)

∂φk

⎤⎥⎥⎦×
[

σ2
θ 0

0 σ2
φ

]
×

⎡⎢⎢⎣
∂g(θk, φk)

∂θk

∂g(θk, φk)

∂φk
∂h(θk, φk)

∂θk

∂h(θk, φk)

∂φk

⎤⎥⎥⎦
T

, (28)

By substituting (26) into (27), the maximum likelihood (ML) covariance matrix of the
bearing measurement noise can be expressed as

Σr
0 =

⎡⎢⎣Kr
1 0 0

0
. . . 0

0 0 Kr
N

⎤⎥⎦, (29)

Using the prior covariance matrix after rotation Pr
0 given in (22) and the above equa-

tion, the covariance matrix after rotation is given by

Σr =

[
Pr

0 02N×3
03×2N Σr

0

]
. (30)

By substituting (22) into (8) and (10), Jr
1 and Jr

2 after rotation are computed. We
thus obtain

Jr =
[
Jr

1 Jr
2
]T , (31)

Hence, the FIM after three rotations becomes

Φ̂ = JrT(Σr)−1Jr. (32)

After the 3D rotations, the FIM becomes

Φ̂ = RΦR−1, (33)

Substituting (21) into the above equation yields

Φ̂ = RxRyRzΦRz
−1Ry

−1Rx
−1, (34)

By using (AB)−1 = B−1A−1, A and B are full rank square matrices. The inverse of
the new FIM Φ̂ is

Φ̂−1 = RxRyRzΦ-1Rz
−1Ry

−1Rx
−1, (35)

Based on the properties of the rotation matrix and the above expression, it can be seen
that Φ̂−1 and Φ−1 are similarity matrices. Thus,

tr
(

Φ̂−1
)
= tr

(
Φ−1

)
. (36)

91



Entropy 2021, 23, 1379

Thus, we can conclude that 3D rotations do not affect the tr
(
Φ−1) calculated from the

AOA-based FIM. In the next section, we will derive the optimal sensor placement with
Gaussian priors using the invariance of the trace of FIM to 3D rotations.

4. Optimal Sensor Placement with Gaussian Priors

In this section, we investigate the optimal sensor placement with Gaussian priors.
First, the FIM for 3D AOA localization with Gaussian priors is derived, and the solution
of minimizing the trace of CRLB is developed. Moreover, Section 3 provided a solution
for diagonalizing P0 with proper 3D rotation. The invariance property for 3D rotation of
the AOA-based tr

(
Φ−1) is used to diagonalize the non-diagonal covariance. Therefore, we

suppose that the coordinate system is rotated such that the covariance matrix is diagonal
P0 = diag([a, b, c]).

Based on (11), the FIM for the 3D AOA target localization problem is

Φ = P−1
0 + J2

TΣ−1J2 = P−1
0 +

N

∑
k=1

1
r2

kσ2
θk

cos2φk
ukuT

k +
N

∑
k=1

1
r2

kσ2
φk

vkvT
k , (37)

where uk and vk are unit vectors orthogonal to the 2D azimuth vector and 3D range vector,
respectively,

uk =

⎡⎣− sin θk
cos θk

0

⎤⎦, vk =

⎡⎣− sin φk cos θk
− sin φk sin θk

cos φk

⎤⎦. (38)

Following (19), we aim to determine optimal sensor locations, and the optimality crite-
rion is to minimize the trace of CRLB, which is also known as the optimality criterion [35].
This section first investigates the optimal palcement of one sensor and then expands to
multiple sensors.

4.1. Optimal Sensor Placement for One Sensor

Let us discuss the optimal placement for one sensor with Gaussian priors.
Substitute (38) into (37) and then use (19). Then we can see that the trace of CRLB satisfies

tr(CRLB) = tr(Φ−1) ≥
(

a−1 +
1
r2

(
sin2θ

σ2
θ cos2φ

+
1

σ2
φ

sin2φcos2θ

))−1

+

(
b−1 +

1
r2

(
cos2θ

σ2
θ cos2φ

+
1

σ2
φ

sin2φsin2θ

))−1

+

(
c−1 +

cos2φ

σ2
φr2

)−1

,

(39)

with equality if

− sin 2θ

σ2
θ cos2φ

+
1

σ2
φ

sin2φ sin 2θ = 0,

1
σ2

φ

sin 2φ cos θ = 0,
1

σ2
φ

sin 2φ sin θ = 0.
(40)

To satisfy the above expression, we compute the azimuth and elevation angle as follows:

{θ, φ} ∈ {{±π/2 , 0}, {±π/2 ,±π/2 }, {0, 0}, {0,±π/2 }}. (41)

Substituting the optimal angle {θ, φ} into (39), we can obtain different configurations,
as listed in Table 1. We set R1 = a, R2 = b, R3 = c, R4 = r2σ2

θ , and R5 = r2σ2
φ, then adopt

the resistor network model to find the minimum tr(CRLB), which depends on the prior
covariance matrices, the angle noise variances σθ and σφ, and the sensor-target ranges r.
The resistor network model for optimal sensor placement with different configurations is
shown in Figure 3.
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Table 1. Trace of CRLB with different optimal angles and configurations.

Configuration θ φ tr(CRLB)

1 ±π/2 0

(
a−1 +

1
r2σ2

θ

)−1

+ b +

(
c−1 +

1
r2σ2

φ

)−1

2 ±π/2 ±π/2

(
b−1 +

1
r2σ2

θ

+
1

r2σ2
φ

)−1

+ c

3 0 0 a +

(
b−1 +

1
r2σ2

θ

)−1

+

(
c−1 +

1
r2σ2

φ

)−1

4 0 ±π/2

(
a−1 +

1
r2σ2

θ

+
1

r2σ2
φ

)−1

+ c

Figure 3. Resistor network model for optimal sensor placement for one sensor.

Furthermore, the resistor networks can help determine the optimal geometry rapidly
using the analysis of different configurations, and the value of a, b, c with the prior covari-
ance matrix P0 mainly decides the optimal placement when r2σ2

φ and r2σ2
θ are fixed by

using the parallel resistor equation. The explanation of configurations in Table 1:

• Configuration 1: The values of resistors R1 and R2 can be reduced owing to the
parallel resistors R4 and R5. Thus, the angle is suited for a > c > b and c > a > b.

• Configuration 2: The value of resistor R1 is eliminated, so the angle is suited for
a > b > c.

• Configuration 3: The value of resistor R2, R3 can be reduced owing to the parallel
resistors R4 and R5. Thus, the angle is suited for b > c > a, c > b > a.

• Configuration 4: The value of resistor R2 is eliminated, so the angle is suited for
b > a > c.

In conclusion, when the maximum value is a, the optimal angle of {θ, φ} is {±π/2, 0},

{±π/2,±π/2}, and the line of sight (LOS)
{
[0, 1, 0]T , [0, 0, 1]T

}
is orthogonal to the largest

eigenvector of P0. A similar conclusion can be derived when the maximum value is b or c,
which has the same results as [26]. Moreover, the non-diagonal covariance placement can
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easily be attained using the above analytical finding. This method is much simpler than
the sensor update method in [26].

4.2. Optimal Sensor Placement for N = 2

In this subsection, we consider the case of two sensors and use the resistor network
model to determine the optimal sensor placement. Substituting N = 2 into (37), the trace
of inverse of FIM is written as

tr(CRLB) = tr(Φ−1) ≥
(

a−1 +
2

∑
k=1

1
r2

k

(
sin2θk

σ2
θk

cos2φk
+

1
σ2

φk

sin2φkcos2θk

))−1

+

(
b−1 +

2

∑
k=1

1
r2

k

(
cos2θk

σ2
θk

cos2φk
+

1
σ2

φk

sin2φksin2θk

))−1

+

(
c−1 +

2

∑
k=1

(
cos2φk

σ2
φk

r2
k

))−1

,

(42)

with equality if

2

∑
k=1

1
r2

k

(
1

σ2
φk

sin2φk sin 2θk − sin 2θk

σ2
θk

cos2φk

)
= 0,

2

∑
k=1

1
r2

kσ2
φk

sin 2φk cos θk = 0,
2

∑
k=1

1
r2

kσ2
φk

sin 2φk sin θk = 0.

(43)

For azimuth angles, the two-sensor optimal placement in the 2D plane that mini-
mizes the tr(CRLB) is given by |θ1 − θ2| = π/2, regardless of noise variance and sensor
ranges [23]. Since we set {θ1, θ2} = {0,±π/2}, and the above equations can be satis-
fied when

{φ1, φ2} ∈ {{0, 0}, {0,±π/2}, {±π/2, 0}, {±π/2,±π/2}}. (44)

By substituting (44) into (42), we can obtain the tr(CRLB) for {θ1, θ2} = {0,±π/2}
with different elevation angles that listed in Table 2. Besides, we set R1 = a, R2 = b, R3 = c,
R4 = r2

1σ2
θ1, R5 = r2

2σ2
θ2, R6 = r2

1σ2
φ1, and R7 = r2

2σ2
φ2. The minimum trace of CRLB depends

on the prior covariance matrix, the angle noise variances, and the sensor-target ranges.
The resistor network model for optimal sensor placement with the different configurations
is shown in Figure 4.

Table 2. Trace of CRLB for {θ1, θ2} = {0,±π/2} and different elevation-angles.

Configuration φ1 φ2 tr(CRLB)

1 0 0

(
a−1 +

1
r2

2σ2
θ2

)−1

+

(
b−1 +

1
r2

1σ2
θ1

)−1

+(
c−1 +

1
r2

1σ2
φ1

+
1

r2
2σ2

φ2

)−1

2 0 ±π/2
(

b−1 + 1
r2

1σ2
θ1

+ 1
r2

2σ2
φ2

)−1
+

(
c−1 +

1
r2

1σ2
φ1

)−1

3 ±π/2 0

(
a−1 +

1
r2

1σ2
φ1

+ 1
r2

2σ2
θ2

)−1

+

(
c−1 +

1
r2

2σ2
φ2

)−1

4 ±π/2 ±π/2 c
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Figure 4. Resistor network model for optimal sensor placement for N = 2.

4.3. Optimal Sensor Placement for N ≥ 3

In this section, we consider the optimal placement of N sensors in 3D space with
different angle noises and distances. The trace of inverse of FIM is written as

tr(CRLB) = tr(Φ−1) ≥
(

a−1 +
N

∑
k=1

1
r2

k

(
sin2θk

σ2
θk

cos2φk
+

1
σ2

φk

sin2φkcos2θk

))−1

+

(
b−1 +

N

∑
k=1

1
r2

k

(
cos2θk

σ2
θk

cos2φk
+

1
σ2

φk

sin2φksin2θk

))−1

+

(
c−1 +

N

∑
k=1

(
cos2φk

σ2
φk

r2
k

))−1

,

(45)

subject to
N

∑
k=1

1
r2

k

(
1

σ2
φk

sin2φk sin 2θk − sin 2θk

σ2
θk

cos2φk

)
= 0,

N

∑
k=1

1
r2

kσ2
φk

sin 2φk cos θk = 0,
N

∑
k=1

1
r2

kσ2
φk

sin 2φk sin θk = 0.

(46)

To diagonalize FIM, the azimuth and elevation angle can be shown to obey the
following equality [21]:

sin 2θk = 0, k = 1, . . . , N, sin 2φk = 0, k = 1, . . . , N. (47)

Define the subset of C as the optimal azimuth angles, which is given by

C={{θ1, θ2, . . . , θN}|θk ∈ {0,±π/2}, k = 1, . . . , N }, (48)

The elevation angles satisfy (45) form a set defined as

Z = {{φ1, φ2, . . . φN}|φk ∈ {0,±π/2}, k = 1, . . . , N }. (49)
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Thus, we can get the minimum trace of CRLB with the angle combination of C and Z.

tr
(

Φ−1
opt(θ1, . . . , θN , φ1, . . . , φN)

)
=

(
a−1 +

N

∑
k=1

1
r2

k

(
sin2θk

σ2
θk

cos2φk
+

1
σ2

φk

sin2φkcos2θk

))−1

+

(
b−1 +

N

∑
k=1

1
r2

k

(
cos2θk

σ2
θk

cos2φk
+

1
σ2

φk

sin2φksin2θk

))−1

+

(
c−1 +

N

∑
k=1

(
cos2φk

σ2
φk

r2
k

))−1

.

(50)

Therefore, (48) and (49) can be used to determine the optimal sensor placement N ≥ 3.
Based on the analysis above, we can get the optimal azimuth and elevation angles

subset. This conclusion is consistent with the literature [21]. In addition, it can be seen
that the parameters of P0 also affect the sensor placement with the analysis of the resistor
network models. Therefore, the minimum trace of CRLB depends on the angle noise
variances, the sensor-target distance, and the value of P0.

5. Simulation Studies

5.1. Gradient Descent Alogorithm Simulations

In this subsection, we adopt a gradient descent algorithm to verify the optimal sensor
placement conditions derived in the above section. Assume that the distribution of target
is given, and s0 = (0, 0, 0)T . The minimum distances between the target and sensors are
represented by dk. A group of mobile sensors is moving to minimize the trace of CRLB in
3D space [21]. This exact gradient descent simulation was run 10,000 steps.

• Example 1: For optimal sensor placement with one sensor

Case A: We used these simulation parameters: P0 =

⎡⎣500 0 0
0 200 0
0 0 100

⎤⎦, d = 150 m,

σ2
θ = σ2

φ = 1◦, and the initial sensor location was
[
200 −100 −100

√
2
]T

. The sensor
trajectory is shown in Figure 5a, and the final angles were θ = −91.34◦ and φ = −89.53◦,
which matches Configuration 2 (a > b > c) in Table 1, and the LOS was orthogonal to the
largest eigenvector of P0.

Case B: The simulation parameters were as follows: P0 =

⎡⎣100 0 0
0 200 0
0 0 500

⎤⎦, d = 200 m,

σ2
θ = 1◦, σ2

φ = 2◦, and the initial sensor location was
[
100 200 100

√
2
]T

. The sensor
trajectory is shown in Figure 5b and the final angles were θ = −0.03◦ and φ = −0.02◦,
which matches Configuration 3 (c > b > a) in Table 1, and the LOS was orthogonal to
the largest eigenvector of P0. Moreover, although the initial sensor location and d were
different in Cases A and B, it is shown that the final optimal sensor placement also matches
the analysis results in Figure 5a,b. The simulation results also can prove the proposed
method without any restriction on the sensor-target range and initial sensor locations.

Case C: We used the parameters of Case B except P0 =

⎡⎣100 50 20
50 200 30
20 30 500

⎤⎦. The rotation

angles were computed using (20) and (21), i.e., α = 7.10◦, β = 358.88◦, γ = 22.26, and P0

can be rewritten as Pr
0 =

⎡⎣79.17 0 0
0 216.31 0
0 0 504.52

⎤⎦. The rest of simulation parameters can

be obtained from (22), and the tr(CRLB) was computed using (33). The sensor trajectory is
shown in Figure 5c, and the final angles were θ = −0.03◦ and φ = −0.01◦, which matches
Configuration 3 (c > b > a) in Table 1. The LOS was orthogonal to the largest eigenvector
of P0.
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Case D: We used the parameters of Case B except P0 =

⎡⎣300 10 20
10 500 15
20 15 100

⎤⎦, and

Pr
0 =

⎡⎣301.46 0 0
0 501.13 0
0 0 97.41

⎤⎦ after the 3D rotation. As in Case C, the final angles were

θ= − 0.16◦ and φ= − 89.67◦, which matches Configuration 4 (b > a > c) in Table 1; and the
LOS was orthogonal to the largest eigenvector of P0, and the sensor trajectory is shown in
Figure 5d.

More specifically, the prior covariance matrices P0 in Cases A and B were diagonal
covariance matrices P0. We could quickly obtain the optimal placement through the
gradient simulation, and the results of Figure 5a,b match the findings in Section 4.1. Besides,
the prior covariance matrices P0 in Cases C and D were non-diagonal covariance matrices,
and the invariance property for 3D rotation of the AOA-based trace of CRLB was used
to diagonalize the non-diagonal covariance. Then, we obtained the optimal placement
using the gradient simulation, and the results of Figure 5c,d also match the findings in
Section 4.1.

• Example 2: Optimal sensor placement for two and three sensors:

Case A: The simulation parameters were as follows: P0 =

⎡⎣200 0 0
0 600 0
0 0 900

⎤⎦,

d1 = d2 = 200 m, σ2
θ1

= σ2
θ2

= 0.5◦, σ2
φ1

= σ2
φ2

= 1◦, and the initial sensor locations

were
[
200 −100 −100

√
2
]T

,
[
100 −100 200

]T . The sensors’ trajectories are shown
in Figure 6a, and the final angles were θ1 = −37.24◦, θ2 = −130.29◦, φ1 = −0.03◦, and
φ2 = 88.91◦, which matches Configuration 2 in Table 2.

Case B: We used the parameters of Case A except P0 =

⎡⎣200 20 15
20 600 50
15 50 900

⎤⎦, and

Pr
0 =

⎡⎣198.52 0 0
0 596.23 0
0 0 905.25

⎤⎦ after rotation. The sensors’ trajectories are shown in

Figure 6b, and the final angles were θ1 = − 27.95◦, θ2 = − 116.51◦, φ1= − 0.06◦, and
φ2 = 88.65◦, which also matches Configuration 2 in Table 2.

In Cases A and B, we adopted the same parameters except for the covariance matrix
P0. Similarly, the non-diagonal covariance matrix in Case B was diagonalized by the
3D rotation. It is shown that the sensor trajectories and the final optimal sensor-target
geometries were almost identical in Figure 6 a,b, which satisfies the results of Section 4.2.

Case C: For three sensors, we used the simulation parameters as follows:

P0 =

⎡⎣300 0 0
0 800 0
0 0 900

⎤⎦, d1 = d2 = d3 = 200 m, σ2
θ1

= σ2
θ2

= σ2
θ3

= 0.5◦, σ2
φ1

= σ2
φ2

= σ2
φ3

=

0.5◦, and the initial sensor locations were
[−100

√
2 100 −200

]T
,
[
100 −100

√
2 0

]T
,[−100

√
2 100 200

]T
. The sensors’ trajectories are shown in Figure 6c and the final angles

were θ1 = 118.51◦, θ2 = −61.49◦, θ3 = −155.64◦, φ1 = −0.01◦, φ2 = 0.01◦, and φ3 = 88.91◦.

Case D: We used the parameters of Case C except P0 =

⎡⎣300 15 20
15 800 30
20 30 900

⎤⎦, and

Pr
0 =

⎡⎣299.18 0 0
0 795.77 0
0 0 905.05

⎤⎦ after rotation. The sensors’ trajectories are shown in

Figure 6d, and the final angles were θ1 = 120.51◦, θ2 = −59.49◦, θ3 = −146.41◦, φ1 = 0.05◦,
φ2 = 0.01◦, and φ3 = 88.33◦.
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Similarly, we used the same parameters except for the covariance matrix P0 in Cases C
and D. The non-diagonal covariance matrix in Case D was diagonalized by the 3D rotation.
It is shown that the sensor trajectories and the final optimal sensor-target geometries were
almost identical in Figure 6c,d, which also satisfies the results of Section 4.3.

Figure 5. Optimal sensor placement for one sensor. (a) P0 is a diagonal matrix with a > b > c, (b) P0

is a diagonal matrix with c > b > a, (c) P0 is a non-diagonal matrix with c > b > a, (d) P0 is a
non-diagonal matrix with b > a > c.

For Cases A and B in Example 2, the tr
(

Φ−1
opt

)
computed by the gradient descent

algorithm were approximately the same; besides, we could obtain the theoretical minimum
trace of CRLB using (42) with the optimal sensor placement. The tr(Φ−1) from Case A
and tr

(
Φ̂−1) from Case B were equal, which is in agreement with the analytical result

of (36). Table 3 lists the tr
(

Φ−1
opt

)
, tr(Φ−1) and tr

(
Φ̂−1) for different cases of Example 2. It

is clear that the same conclusion was obtained for N = 3 in Example 2 for Cases C and
D. Furthermore, the tr

(
Φ−1

opt

)
is close to the theoretical minimum trace; i.e., tr(Φ−1) and

tr
(
Φ̂−1).

Table 3. Trace of CRLB for Example 2.

Example 2 tr(Φ–1
opt) (m2) tr(Φ–1) (m2) tr(Φ̂–1) (m2)

Case A 5.4678 5.4620 /
Case B 5.5156 / 5.4620
Case C 2.5389 2.5310 /
Case D 2.5680 / 2.5310
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Figure 6. Optimal sensor placement with two and three sensors. (a) P0 is a diagonal matrix with
N = 2, (b) P0 is a non-diagonal matrix with N = 2, (c) P0 is a diagonal matrix with N = 3, (d) P0 is a
non-diagonal matrix with N = 3.

5.2. The Comparison Results

This subsection demonstrates the optimal sensor placement with the maximum
a posteriori (MAP) estimation simulations, and the MAP is deduced in Appendix A.
In the example, the method in [21] and the method in [22] using the D-optimality cri-
terion are compared with the proposed method. In this paper, we use “the method
in [21]” and “the method in [22]” to denote the optimal placement methods in [21,22],

respectively. The parameters were as follows: s0 = (0, 0, 0)T , P0 =

⎡⎣100 0 0
0 200 0
0 0 800

⎤⎦,

and the initial sensor locations were
[−200 −100 −100

√
2
]T

,
[
100 −100

√
2 −200

]T
,[−100

√
2 100 200

]T
,
[
100

√
2 200 −100

√
2
]T

. We added different noise levels and
show the theoretical minimum trace of CRLBs and MSEs; i.e., σ2

θ1
= σ2

θ2
= σ2

θ3
= σ2

θ4
= 0.5◦,

and σ2
φ1

= σ2
φ2

= σ2
φ3

= σ2
φ4

, the value of σ2
φ from 0.2◦ to 1.8◦.

The theoretical trace of CRLBs and MSEs of different sensor placements are shown
in Figure 7. The MSEs of MAP were estimated using 10,000 Monte Carlo simulations.
The MAP estimator was implemented using the Gauss–Newton method and initialized to
the prior mean target location s0. The results showed that the optimal sensor placement
can always provide better MSEs than the other existing methods.

Next, we compare the localization accuracies of different methods. We fixed N = 3,
σ2

θ = 0.5◦ and increased the value of σ2
φ from 0.1◦ to 1◦. The settings of others parameters

were the same as in Case C of Example 2. The optimal angles in [21] are θ1 = 0◦, θ2 = 90◦,
θ3 = −90◦, φ1 = 0◦, φ2 = 0◦, and φ3 = 0◦. The correspondingly optimal angles were
adopted in Case C of Example 2 as θ1 = 118◦, θ2 = −62◦, θ3 = −152◦, φ1 = 0◦, φ2 = 0◦,
and φ3 = 90◦. Figure 8 shows the comparison of tr(CRLB)s computed by the method
in [21], the method in [22], and the final sensor locations in Case C of Example 2.
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Figure 8. The comparison results with σ2
θ = 1◦ and σ2

φ = 0.1◦ to 1◦.

From Figure 8, it can be seen that the proposed method in this paper had better
estimation performance than the existing methods, even if both the proposed method and
the method in [21] contained optimal azimuth and elevation angles subsets. This result
also can confirm the analytical optimal sensor placement in Section 4.

Finally, we compare the method in [21,22] in terms of estimation performance for
different sensor numbers. The sensors started from different original locations, and we

set P0 =

⎡⎣200 0 0
0 500 0
0 0 700

⎤⎦, d = 200 m, σ2
θ = σ2

φ = 1◦. Table 4 lists the MSEs and bias

norms when the number of sensors is N = 3, 4, 5, 6. Due to the effect of the prior covariance
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matrix, the performance of the existing methods was worse than that of the proposed
method. The MSEs of our proposed method were much smaller than those of the existing
methods with the different sensor numbers. From Figure 8 and Table 4, we conclude that
the proposed method can achieve the optimal estimation performance.

Table 4. MAP estimation performances of three different methods with N = 3, 4, 5, 6.

Number Method MSE (m2) Bias Norm (m)

N = 3 The proposed method 6.12 0.1472
The method in [21] 12.35 0.8225
The method in [22] 14.67 1.3557

N = 4 The proposed method 4.32 0.0925
The method in [21] 9.97 0.4634
The method in [22] 11.43 0.8143

N = 5 The proposed method 1.54 0.055
The method in [21] 4.81 0.2415
The method in [22] 5.94 0.5468

N = 6 The proposed method 0.48 0.0123
The method in [21] 1.61 0.1022
The method in [22] 2.58 0.3967

6. Conclusions

In this paper, an optimal sensor placement method for an uncertain target with
Gaussian priors was presented. Our analysis was conducted based on minimizing the
trace of the inverse FIM. The invariance property for the 3D rotation of the AOA-based
FIM was provided, which can be used to diagonalize the non-diagonal covariance matrix.
An optimal sensor placement analysis for the 3D space with the diagonal covariance matrix
of the target was presented, and a resistor network was used to represent the optimal
sensor placement strategy. It was demonstrated that the optimal localization placements
have a similar geometric configuration, regardless of the diagonality of the covariance
matrix. Finally, the analytical results were verified via a series of numerical simulations.
The analytical and numerical findings coincide with the simulation results.

For future work, we will consider a case with multiple uncertain targets with different
Gaussian priors, which changes the optimization problem to a convex combination of FIMs.
In addition, the optimal trajectories also can be developed for the uncertain moving target
with Gaussian priors.
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Appendix A. The Deduction of MAP

The MAP estimation of the target was obtained from maximizing ŝMAP = (x̂, ŷ, ẑ)T to
maximize the posterior probability density function (PDF) and can be written as

ŝMAP = arg max
s

p(s|q̃), (A1)
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where q̃ = [θ̃1, φ̃1, θ̃2, φ̃2, · · · , θ̃N , φ̃N ]
T is the 2N × 1 vector of noisy angle measurements.

In maximizing p(s|q̃), we observe that

p(s|q̃) = p(q̃|s)p(s)
p(q̃)

, (A2)

Note that (A1) is equivalent to the maximization of p(q̃|s)p(s). This is reminiscent of
the maximum likelihood estimation (MLE) except for the presence of the prior PDF [36].
Hence, the MAP estimation can be rewritten as

ŝMAP = arg max
s

p(q̃|s)p(s), (A3)

Assuming that the target location has a prior distribution as s ∼ N (s0, P0), the prior
PDF for the target is given by

p(s) =
1

(2π)N/2 det (P0)
1/2

× exp
[
−1

2
(s − s0)

TP−1
0 (s − s0)

]
,

(A4)

The maximum likelihood function of s is given by

p(q̃|s) = 1

(2π)N/2 det (K)1/2

× exp
[
−1

2
(q̃ − q(s))TK−1(q̃ − q(s))

]
,

(A5)

where K = diag(σ2
θ1

, σ2
φ1

, σ2
θ2

, σ2
φ2

, . . . , σ2
θN

, σ2
φN

) is the 2N × 2N diagonal covariance matrix
of the angle noise.

By substituting (A4) and (A5) into (A3), ŝMAP is obtained by the log-likelihood func-
tion ln p(q̃|s)p(s) over s, which is equivalent to

ŝMAP = arg min
s

JMAP(s), (A6)

with
JMAP(s) = e(s)TK−1e(s) + r(s)TP−1

0 r(s), (A7)

and the JMAP(s) is the maximum A posterior cost function.
Here e(s) and r(s) are defined by

e(s) = q̃ − q(s)

=
[
θ̃1 − θ1(s), φ̃1 − φ1(s), . . . , θ̃N − θN(s), φ̃N − φN(s)

]T ,

r(s) = s − s0,

(A8)

and the residual can be written as

Γ(s) = [e(s); r(s)], (A9)

Note that the error covariance matrix of ŝMAP is given by (A4) and (A5)

Q =

[
K 02N×3

03×2N P0

]
. (A10)
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J1i is the 2N × 3 Jacobian of e(s) with respect to s evaluated at s = ŝi, which can be
expressed as

J1i =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− sin θ
(ŝi)
1

d̂i1

cos θ
(ŝi)
1

d̂i1
0

− sin φ
(ŝi)
1 cos θ

(ŝi)
1

r̂i1
− sin φ

(ŝi)
1 sin θ

(ŝi)
1

r̂i1

cos φ
(ŝi)
1

r̂i1
...

...
...

− sin θ
(ŝi)
N

d̂iN

cos θ
(ŝi)
N

d̂iN
0

− sin φ
(ŝi)
N cos θ

(ŝi)
N

r̂iN
− sin φ

(ŝi)
N sin θ

(ŝi)
N

r̂iN

cos φ
(ŝi)
N

r̂iN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (A11)

In the above expression
r̂ik = ‖ŝi − pk‖,

d̂ik = r̂ik cos φk(ŝi),
(A12)

J2i is the 3 × 3 Jacobian of r(s) is given by

J2i = I3×3, (A13)

Combining (A11) and (A13), Ji is the Jacobian of (A9) defined by

Ji = −[Ji1; Ji2], (A14)

The MAP is calculated by the Gauss–Newton (GN) algorithm, as stated in [36], which
is defined as

t̂i+1 = t̂i −
(

JT
i Q−1Ji

)−1
JT

i Q−1Γ
(
t̂i
)
. (A15)
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Abstract: Typical applications of wireless sensor networks (WSN), such as in Industry 4.0 and smart
cities, involves acquiring and processing large amounts of data in federated systems. Important chal-
lenges arise for machine learning algorithms in this scenario, such as reducing energy consumption
and minimizing data exchange between devices in different zones. This paper introduces a novel
method for accelerated training of parallel Support Vector Machines (pSVMs), based on ensembles,
tailored to these kinds of problems. To achieve this, the training set is split into several Voronoi
regions. These regions are small enough to permit faster parallel training of SVMs, reducing compu-
tational payload. Results from experiments comparing the proposed method with a single SVM and
a standard ensemble of SVMs demonstrate that this approach can provide comparable performance
while limiting the number of regions required to solve classification tasks. These advantages facilitate
the development of energy-efficient policies in WSN.

Keywords: classification; machine learning; Support Vector Machines; sensor networks; distributed
algorithms

1. Introduction

Machine learning applications are radically changing our world as a key asset of
an Information Society. New algorithms and methods for data processing and analysis,
along with the capacity to deal with large and complex datasets, has led to the rise of a
new industry. Over the next decades, data science and machine learning are expected to
transform the way in which we interact with our surrounding environment.

One of the main challenges is to effectively prepare and analyze vast and distributed
datasets. Classical algorithms for classification, such as convolutional neural networks
(CNN) [1,2] or SVMs [3], are being pushed to their limits. Therefore, it is essential to
develop efficient parallel architectures and techniques that can cope with massive data in
distributed systems. As a result, algorithm parallelization is taking a key role, as it enables
the exploitation of computing power available in large data centers, especially in cloud
computing environments, to train and deploy these algorithms.

More classical machine learning algorithms, such as SVMs, can also be used as a viable
alternative for classification of large datasets. Nonetheless, one of their main disadvantages
is that, unlike CNN and other intrinsically parallel algorithms, SVMs lack from such prop-
erty. For this reason, several proposals have been presented for their parallelization [4–6].
In general, parallel Support Vector Machines (pSVMs) are based on algorithm modifications
to execute some code sections simultaneously. As well, alternative approaches consider
incremental executions deployed on distributed architectures, such as MapReduce [7].

In this article, we present an alternative method for machine learning classification
via SVMs, specially designed for structures similar to a federated network of sensors, such
as wireless sensor networks [8]. These networks are characterized by the fact that it is
necessary to discern between two classes in each region. These tasks arise in many contexts,
such as decentralized intrusion detection systems [9], controlling environmental conditions
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in smart buildings [10], or emergency alert networks [11], among others. Processing
large datasets acquired by WSN devices can be challenging. Specific goals in this context
are to minimize communication between nodes or groups of nodes, to optimize energy
consumption, as well as to attain conservative management of limited storage capacity [12].

The main contribution of our algorithm, in comparison to other similar approaches, is
that it takes advantage of this kind of spatial distribution. Roughly speaking, our method
works as a guided ensemble-type approach. In practice, this spatial distribution can be
emulated by dividing the dataset into Voronoi regions [13]. In the case of sensor networks,
data subregions contain almost complete Voronoi regions, with a rather empty intersection
to other regions. At this point, it is important to remark that, in cases in which the spatial
distribution of the data is known in advance and made up of small groups, this process
could be avoided by using the known groups as approximated Voronoi-type regions.
However, under the presence of large groups of data, the use of Voronoi regions will still be
of help from a computational point of view. For the sake of completeness, in this paper, we
describe the full process of building the Voronoi regions although, as commented above, it
could be skipped in some situations.

In the same way, each task can be independently solved, using a standard SVM
implementation such as libSVM [14], already available in popular programming languages
such as Python, R, or C. As a result, any system already based on SVM can take advantage
of this method, not only to reduce execution time but to also increase its processing capacity.

To this aim, we create a set of small SVMs that work as an ensemble of classifiers [15].
The key point is that members of the ensemble can be trained following a parallelization
scheme. The success of these kinds of ensembles based on SVMs have already been proved
in [16]. In related work, however, the SVM used for the selection of the ensemble does not
admit parallelization.

The rest of the paper is organized as follows. We review previous related work in
Section 2. In Section 3, the proposed algorithm is presented. Then, Section 4 describes the
experimental setup to validate the proposed algorithm and presents the discussion of the
results. Finally, the main conclusions and future lines of work are presented in Section 5.

2. Related Works

Nowadays, machine learning algorithms play a central role in wireless sensor net-
works [17]. In particular, SVMs are involved in diverse applications in this context such
as localization techniques, anomaly and fault detection, or congestion control, among
others. The new method introduced in this paper is based on the parallel implementation
of SVM algorithms in Voronoi regions, efficiently combining selected results from some of
these regions, following ensemble learning principles. In this section, we review the main
background machine learning concepts and tools related to this work.

2.1. Support Vector Machines

SVMs are one of the most popular supervised learning methods that is used for both
classification and regression tasks. They appeared by the end of the last century as optimal
margin classifiers in the context of Vapnik’s statistical learning theory [18]. The goal of
the SVM algorithm is to find a hyperplane that optimally separates a higher dimensional
space into different categories. SVM training consists of solving an optimization problem
whose objective function gives a tradeoff between margin and misclassification error over
the training dataset [19]. An advantage of the support vector method is that only a few
training samples are involved in the determination of the prediction functions, facilitating
the application of SVM to data mining problems with a huge amount of data. The whole
formulation and some discussion can be found at [20].
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SVM has been widely used in real application due to its efficient performance in
machine learning problems. In the last years, different SVM methods have been successfully
applied to solve the practical problems. In [21], a hybrid of k-means and SVM methods
is developed and its application on breast cancer detection is presented. The k-means
algorithm is applied to identify the patterns of the benign and malignant tumors which are
used as features to build the dataset for SVM training. This approach achieves competitive
performance results compared with other methods in cancer diagnosis. A multi-stage
framework for sentiment analysis and opinion mining is proposed in [22]. This approach
combines SVM and k-nearest neighbors methods, aiming to detect positive and/or negative
opinion trends within weblogs containing knowledge written by baseline adopters. The
authors in [23] introduced a SVM method for detection of American football head impacts
using biomechanical features. A combined use of head impact sensors with video analysis
was developed to the features extraction and to build training and validation datasets. A
method of fault detection in wireless sensor networks based on SVM is presented in [24].
All data collected by the sensors of the network are redirected to the server that uses them
to train an individual SVM with Gaussian kernel. Although this approach achieves good
performance results, it requires additional communication overhead and a significant delay
in data processing.

Although SVMs achieve excellent performance results, the computational time and
memory requirements increase rapidly on complex and large datasets. For this reason,
many research efforts have been conducted to design fast training algorithms of SVMs. The
authors in [25] suggest a decomposed algorithm which divides the problem into smaller
sub-problems that are solved iteratively. The method introduced in [26] proposes to reduce
the size of the optimization problem by solving a sequence of sub-problems considering
only a few features of the training dataset that are selected using a heuristic approach.
Similarly to the aforementioned approaches, a decomposition method, called Sequential
Minimal Optimization (SMO), is developed in [27]. The key idea behind the SMO method
is to split the problem into the smallest possible sub-problems. Each sub-problem is solved
analytically so the numerical optimization is avoided entirely, leading to a considerable
reduction in computation time. More recent work [28] proposes a novel approach to select
a representative subset from the training dataset using an algorithm based on convex hulls
and extreme points.

2.2. Ensemble Learning

An ensemble of classifiers is a set of classifiers whose performance as a group improves
the performance of individual classifiers. These individual classifiers are trained with
subsets of the original training set and generate their own separating surfaces that will be
later integrated in order to achieve more accurate and precise classification [29].

A nice theoretical property of ensembles is that the generalization error converges
as the number of members of the ensemble increases. This property guarantees that
overfitting will not become a problem [15]. Regarding accuracy, it can be demonstrated
that an ensemble’s accuracy depends on the strength of the individual classifiers and a
measure of the dependence between them. To guarantee this property, the best members of
the ensemble can be chosen during the training stage.

The widely used methods for constructing ensemble learning algorithms are boost-
ing [30] and bagging [31]. Boosting is an algorithm that works by training base learners
sequentially, so in each iteration the learner assigns higher weight to the observations of
the dataset that have been misclassified by its predecessor. In bagging, different sample
subsets are randomly drawn from the training dataset and each subset is used to train a
basic learning model in a parallel manner. To obtain the global decision of the ensemble
method, the outputs of the individual models are aggregated by voting.

Ensemble learning has been successfully used in diverse applications such as text
classification [32], speech recognition [33,34], sentiment analysis [35], protein folding
recognition [36], or streamflow forecasting [37]. Different learning algorithms have been
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used as base models to build ensemble methods such as neural networks, naive Bayesian, or
decision trees, among others. An ensemble method based on neural network with random
weights for online data stream regression is presented in [38]. The main idea of this method
is to train various neural networks with subsets of the training dataset generated from
combining bootstrap sampling with random feature selection. The results indicate an
accuracy improvement and reduction in computational time compared to other available
algorithms from literature. In [39], an ensemble of fine-tuned naive Bayesian classifiers
for text classification is proposed. A bagging method is used for ensemble construction
in combination with parameter modification over learning rate and number of iterations.
In [40], a novel approach for constructing ensembles of decision trees is proposed, where
each tree is trained with a subset containing all features of the training set, giving a different
weight to every feature. All the nodes in a tree use the same vector of random weights, but
different weights are used for each tree of the ensemble.

Finally, there is extensive research that has successfully applied SVMs as base mod-
els to build ensemble methods for solving machine learning problems, often leading to
improved results compared with alternative techniques. An approach developed in [41]
generates a new quality training dataset through the marginal density ratios transformation
on the original features. The transformed data is used to train several SVM classifiers and
feed their outputs to another SVM to train the final classification model. The results show
that their method performs better than other ensemble approaches in terms of accuracy and
training speed. The authors in [42] compared classification performance for breast cancer
prediction of an individual SVM and various SVM ensemble methods. They used bagging
and boosting methods for constructing the SVM ensembles combining different kernel
functions. The experimental results showed that the radial basis function (RBF) kernel
SVM ensemble based on the boosting method performed better than other classifiers.

2.3. Voronoi Diagrams

The Voronoi diagrams are an important method of computational geometry, designed
primarily for evaluating nearest neighbor over two-dimensional spatial points [43]. A
Voronoi diagram is characterized by regions of proximity, making the partitioning of a
plane into disjoint convex polygons where the distance of points is defined by Euclidean
distance so that all points in the same polygon have the same nearest neighbor, called
the centroid. Thereby, from a given polygon, every point is closer to its centroid than to
any other.

The Voronoi diagrams method has been used in a wide variety of applications [44] such
as virus spread analysis among mobile devices [45], cluster analysis [46–48], continuous
location-based services [49], or high-dimensional query evaluation [50].

In recent years, several works have been published presenting novel methods in
diverse fields such as computer graphics, pattern recognition, or robotics. For instance,
in [51], a method to achieve cost-effective 3-D printing of stiffened thin-shell objects is
proposed. For that, they use the finite element analysis to determine the regions of the
object with high stress and use a given number of seeds to create a Voronoi diagram to
distribute these seeds in the areas with higher stress. These seeds are mapped from a
3-D mesh to a 2-D space with least squares conformal maps (LSCMs) [52]. The authors
in [53] introduce the Voronoi diagrams for the analysis of the spatial organization in team
sports, such as basketball, and define the behavioral team patterns during a positional
attack. The approach in [54] proposes to reduce the computation time of the robots to make
quick decisions before they collide with obstacles, using Voronoi diagrams for building a
roadmap in the environment of the robot.

Finally, there are numerous studies using Voronoi diagrams to tackle imbalanced
classification problems [55–57]. These kinds of problems arise when the distribution of
examples among the classes is skewed. Real-world examples abound with problems of this
type from fields such as visual computing, text classification, medicine, security, finance,
among others. Furthermore, in the imbalanced classification problems, the class of interest
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is usually the minority class (e.g., credit card fraud detection, spam detection, disease risk
detection) and traditional classifiers typically maximize an overall performance, which
often results in the minority class being ignored. The synthetic minority oversampling
technique (SMOTE) [58] is probably the most widely used method to mitigate this problem.
It is based on the generation of synthetic samples for the minority class aiming to balance
the dataset. An alternative approach is that of [55]. They proposed an over-sampling
method based on Voronoi regions. The underlying idea of this method is to identify
exclusive regions of the feature space where the generation of new instances by random
resampling provides consistent data generalization. The results of this work suggest that,
in certain cases where the complexity of the datasets is high, their proposed method leads
to more accurate and better classification models than using SMOTE.

3. pSVM Algorithm

The key idea underpinning our novel method for pSVM is to build a guided ensemble
of SVM classifiers. In this ensemble, each SVM can be trained separately and in a parallel
environment. The ensemble is built using a clustering method over the training set that gen-
erates a Voronoi diagram, which splits the space into a specific number of regions defined
by its center. Then, these regions are used to generate the ensembles in a guided manner.

3.1. Data Partitioning

Typically, in a binary classification problem, a training set consisting of n samples can
be represented as:

D = {(xi, yi)}n
i=1, (1)

where xi ∈ Rd denotes the training samples and yi ∈ C = {−1,+1} the associated labels.
In this phase, we split D into P training subsets D1, . . . , DP, each consisting of np

samples. Thus, the jth subset can be represented as:

Dj = {(xi, yi)}nj
i=1. (2)

These subsets are created by ensuring that each Dj maintains a similar proportion
of samples from each class as in the original dataset D. For this, a partitioning approach
separately on each of the classes DC is used. Thus, we can represent D as a collection of
C classes:

D = {Di}C
i=1. (3)

The next step is to generate a Voronoi diagram from the samples of each of the classes
DC. This can be achieved using a cluster algorithm such as k-means [59]. The idea of this
method is to find k regions of the space, such that any point inside its region is closer to
its region’s center than to any other region’s center. It is important to remark that we do
not need to find a global minimum of the optimization problem involved in the k-means
algorithm. For our purposes, it is enough with a single execution of a limited number of
iterations of the k-means algorithm in order to obtain regions with a balanced number
of data.

In order to determine the optimal number of clusters in a dataset, several methods
have been proposed [60–63]. We have adapted the Sturges rule [64] to a multi-dimensional
setting. Show, given a dataset of n samples, the number of clusters is estimated through
the formula:

k = 1 + 3.332 log n. (4)

Therefore, as we mentioned above, we use k-means clustering on each of the classes
separately leading to generate different Voronoi diagrams, one per class. Let us assume
VC

i denotes the ith Voronoi region of class C and ci represents its associated centroid, the
Voronoi diagrams of class −1 and class +1 could be represented as V− = {(V−

i , c−i )}k−
i=1

and V+ = {(V+
j , c+j )}k+

j=1, respectively, where k− and k+ are estimated by Equation (4).
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Then, we generate the subset of all pairs, resulting as the combination of each Voronoi
region of the class −1 with each of the regions of the class +1. Therefore, the new training
subsets can be represented as:

D′ = {(V−
i , V+

j ) | i = 1, . . . , k− and j = 1, . . . , k+}. (5)

Figure 1 illustrates the steps carried out to perform data partitioning process.

Training dataset

Class +1 Class -1

V+
1 V+

2 V+
k

Group by class

. . .

k-means

V−
1 V−

2 V−
k

. . .

k-means

. . . . . . . . .. . .D11 D12 D1k− D21 D22 D2k− Dk+1 Dk+2 Dk+k−

Figure 1. The flowchart of data partitioning method.

3.2. Training

Let D1, . . . , DP represent the P training subsets generated in the previous stage that
contain data samples from both classes. Then, each of these subsets can be used to train a
small SVM (sub-SVM) that can be trained independently using a standard SVM training
algorithm. Each of the sub-SVM will generate a sub-model.

It is important to remark that the sub-models can be perfectly trained in a parallel
manner, as the input data for the sub-SVM models are independent thanks to the Voronoi
partitioning. Therefore, the training subsets are distributed among all available nodes.
When the number of nodes is less than P, several sub-SVM are trained sequentially by
each node. Otherwise, each node trains a sole sub-SVM. Formally, the parallelized sys-
tem composed of N nodes, where H training subsets are allocated in each node, can be
represented as:

SVMensemble = {SVMlh|l = 1 . . . N, h = 1 . . . H}. (6)

Additionally, in order to improve training times, the number of iterations required to
converge toward the solution within each sub-SVM model could be limited. This is possible
because the theory underlying ensembles guarantees that the accuracy of an ensemble
depends on the strength of the individual classifiers [15].

Learning Strategy of Each Sub-SVM

Each sub-SVM follows the typical learning strategy based on regularization the-
ory [20]. SVMs build a classification function through the solution of the following opti-
mization problem:

min
f∈Hk

1
n

n

∑
i=1

L(yi, f (xi)) + M‖ f ‖2
k , (7)

where (xi, yi), i = 1, . . . , n, is a training dataset with xi ∈ Rd and yi ∈ {+1,−1}; HK is a
reproducing kernel Hilbert space (RKHS) with a kernel K; ‖ f ‖K is the norm of f in the
RKHS; L(yi, f (xi)) is a loss function; and the cost M > 0 is a constant that penalizes non-
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smoothness of the possible solutions to optimization problem (7). The SVM loss function
for classification purposes is:

L(yi, f (xi)) = max(1 − yi × f (xi), 0). (8)

It can be shown that the solution of problem (7) using Equation (8) leads to a smooth
function f ∗ ∈ HK, such that:

f ∗(x) =
n

∑
i=1

αiK(x, xi) + b∗, (9)

where αi and b∗ are constants; K(x, y) = φ(x)Tφ(y) is the kernel function that generates
HK; and φ : Rn → Rp is a mapping defining K. φ maps the data from Rd (known as the
“input space”) into Rp (the so-called “feature space”).

The main steps of the training algorithm are illustrated in Algorithm 1.

Algorithm 1: pSVM training algorithm.

Data: D = {(xi, yi)}n
i=1, xi ∈ Rd, yi ∈ C = {−1,+1};

N: number of nodes;
Result: S (set of Voronoi regions pairs);
SVMensemble (ensemble of SVM);

1 {Dc}C
c=1 ← build a collection of C classes;

2 kc = 1 + 3.332 log nc, where nc is the number of samples in Dc and c ∈ C;
3 Vc = {(Vc

i , cc
i )}kc

i=1 ← k-means(Dc, kc), where cc
i is the centroid of the Voronoi

region Vc
i and c ∈ C;

4 D′ ← D′
ij = {(V−

i , V+
j )|i = 1, . . . , k−1 and j = 1, . . . , k+1};

5 H ← length(D′)
N ;

6 S = {Slh|l = 1 . . . N, h = 1 . . . H}, where S is the distributed version of D′ among
the nodes ;

7 for h ← 1 to H do
8 SVMlh = train-SVM(Slh), l = 1, . . . , N ;
9 SVMensemble = {SVMlh|l = 1 . . . N, h = 1 . . . H}

3.3. Classification

Once the training phase is finished, an ensemble of sub-SVMs could be used to classify
new data. Instead of using all sub-SVMs, the proposed algorithm selects a subset of them
based on k nearest neighbor approach (k-NN) [65]. To achieve this, for each new individual,
the Euclidean distance with the centroids of the Voronoi regions is computed and the γ
closest ones of each class are selected. Let T− and T+ represent, respectively, the γ nearest
Voronoi regions of class −1 and class +1 to the new individual. Then, a subset of the
training subsets of Equation (5), T ⊂ D′, is generated as the Cartesian product of T− and
T+:

T = {(v−, v+), v− ∈ T− and v+ ∈ T+}. (10)

Thereby, only the sub-SVM trained with the subsets on T are taken into account for
prediction, discarding the remaining sub-SVM.

The pSVM uses a voting scheme similar to the one described in [66], where each new
individual is evaluated by the selected sub-SVM, being the evaluation provided by each
sub-SVM considered as a vote. Once all the votes are aggregated, the new individual
is classified as a member of the most voted class. If there is an even number of sub-
SVMs, ties during the voting of some individuals might take place. Those individuals are
assigned at random, although more sophisticated schemes may classify those individuals
as undetermined in order to evaluate their classification later by an expert. To be more
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specific, if t sub-SVMs are available, the class assigned to an individual z will be denoted
as class(z) and determined by Equation (11).

class(z) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
sgn

(
t

∑
i=1

predictioni(z)

)
if

t

∑
i=1

predictioni(z) �= 0

±1(randomly) if
t

∑
i=1

predictioni(z) = 0
(11)

where predictioni(z) is the vote corresponding to sub-SVM i and sgn is a function de-
fined as:

sgn(x) =

⎧⎨⎩
1 if x > 0
0 if x = 0

−1 if x < 0
(12)

The steps to perform the classification stage are summarized in Algorithm 2.

Algorithm 2: pSVM classification algorithm.

Data: {V+, V−}: the set of Voronoi regions of class c ∈ {−1,+1} computed in
data partitioning stage;

N: number of nodes ;
{Sj}N

j=1, where Sj = {Sjh|h = 1 . . . H} is a set of pairs of Voronoi regions;

{SVMensemble
j }N

j=1, where SVMensemble
j corresponds to Voronoi pair Sj;

z: new point to classify;
γ: number of neighbors that we consider for voting;
Result: class(z)

1 Calculate {T+, T−}, where T+ and T− are, respectively, the γ closest regions to z
in V+ and V−;

2 ens ← 0 ;
3 for j ← 1 to length(S) do
4 l ← 1;
5 exit ← False;
6 while (l ≤ γ) AND (not exit) do
7 if (Sj contains T+

l ) OR (Sj contains T−
l ) then

8 ens = ens + 1;
9 pens ← prediction(p, SVMensemble

j ), with pens ∈ {+1,−1};
10 exit ← True;
11 l ← l + 1
12 class(z) = sgn(∑ens

j=1 pi);

3.4. Computational Complexity

The following theoretical result shows that the computational complexity of our
proposal lowers the computational complexity of a single SVM.

Theorem 1. For a bounded number of iterations of the k-means method, the worst case computa-
tional complexity of the pSVM training algorithm proposed in this work amounts to O(( n

log n )
3).

Proof. The worst case computational complexity of using a single SVM is O(n3) [67].
Regarding the k-means algorithm, it is well known that the optimization problem involved
in this method is NP-hard [68]. In practice, truncated versions of this algorithm are used,
so that a rough worst case bound can be assumed to be O(I ∗ k ∗ n), where I is the number
of iterations and k is the number of Voronoi regions. In a typical truncated version of
k-means method, the maximum number of iterations is fixed. Therefore, for a large k, this
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computational complexity can be considered to be lower than O(n2). By construction, each
sub-SVM used in the pSVM algorithm has a computational complexity of:

O((
n

1 + 3.332 log n
)3) = O((

n
log n

)3).

Since each sub-SVM can be trained simultaneously to the rest, the overall com-
putational complexity of our pSVM algorithm amounts to O(n2) + O(( n

log n )
3), that is,

O(( n
log n )

3).

4. Experimental Results

In this section, we provide empirical evidence of our analysis of guided pSVM based on
Voronoi regions using two synthetic datasets and discuss the results. All experiments were
conducted on a workstation running Linux with two Intel Xeon E5-2630 (6 cores per CPU,
two threads per core), at 2.3 GHz and 64 GB of RAM memory. A prototype implementing the
algorithms described in Section 3 was developed using the statistical software R v3.6.0 [69],
RStudio v1.4.1106, and the following additional R packages. Data processing was carried out
with packages stats v3.4.4 and dplyr v1.0.0. Visualization was undertaken using package
ggplot2 v3.3.3. We created a custom function based on package e1071 v1.6-8 to build the
SVM classifier, so that we can limit the number of iterations to achieve convergence. Finally,
parallelization was carried out through package doParallel v1.0.16.

4.1. One Region with Two Partially Overlapping Classes

A first simple experiment consists of the classification of two partially overlapping
classes, where all the data are located in the same space region. Figure 2 shows the situation
for the two-dimensional case. We use two d-dimensional Gaussian distributions (x, y) ∼
Nm(μm, σm), m ∈ {1, 2} to simulate each class, where μ1 = (0, 0), μ2 = (2, 2) and the
covariance matrix is ([1, 0]; [0, 1]) for both distributions. In particular, μ1 = (0, . . . , 0) ∈ Rd

and μ2 = (2, . . . , 2) ∈ Rd. The covariance matrices σm were randomly generated with
diagonal (1, . . . , 1),∈ Rd. The experiment is executed for d = 2. A balanced dataset is
artificially generated by randomly sampling 500,000 training points and 50,000 testing
points from each class.

As each class has a sample size of 500,000 points, from Equation (4), the number of clusters
obtained is 45 (k−1 = k+1 = 45). Since the Voronoi diagrams corresponding to classes −1 and
+1 are very similar, for conciseness, in Figure 3 we only show the diagram for class +1.

Results

Here, we evaluate the performance of pSVM versus a single SVM and a standard
SVM ensemble [70]. We choose the well-known SVM implementation provided by the
libSVM library [14]. We randomly split each dataset into a training and a testing group,
where the training set is 10 times larger than the testing set, and run all methods using this
setup. This procedure is repeated 10 times and we obtain the average value and standard
deviation of the accuracy performance measure, that is, the fraction of individuals correctly
classified, given by:

accuracy =
tp + tn

tp + fp + tn + fn
,

where tp (true positives) are defined as the set of individuals correctly classified in a certain
class, tn (true negatives) as the set of individuals correctly left out of a certain class, fp (false
positives) as individuals incorrectly classified in a certain class, and fn (false negatives) as
individuals that have been incorrectly left out of a certain class. Because we are using a
balanced dataset, this measure will work correctly providing reliable information to assess
the performance of these methods.
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Figure 2. An example of the synthetic dataset in a 2-D feature space.
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Figure 3. Voronoi diagram for class 1.

Each method is run with two different kernel functions (see [20] for different choices),
namely a linear kernel and a radial basis function (RBF) kernel with parameters estimated
by cross validation. Then, we compare the following approaches:

• Single SVM, ensemble, and pSVM with no limit of iterations;
• Single SVM, ensemble, and pSVM with a limit of 10 iterations;
• Single SVM, ensemble, and pSVM with a limit of 1 iteration.

As mentioned in Section 3.3, a k-NN approach based on Voronoi regions is used
to select the sub-SVMs considered as classifiers. It seems obvious that different values
of k lead to different performance results. To select the optimal value of this parameter
empirically, we tested different choices for k: 1, 3, 5, 7, and 9. As Figure 4 shows, the
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accuracy improves while we increase k from 1 to 7, whereas it is relatively stable for k larger
than 7. Therefore, k = 7 was chosen as the optimal number of Voronoi regions used in the
classification scheme.

Figure 4. Number of Voronoi regions, for each class, selected for classification.

Table 1 shows the average classification accuracy and the standard deviation of the
algorithms for ten runs on the synthetic dataset. As we can see, when the number of
iterations required to converge to the solution is not limited, all approaches provide
accuracy results over 91.0%. Best results are obtained by the ensemble with RBF kernel
and the pSVM with RBF kernel being, respectively, 92.69% and 92.65%. However, when
the number of iterations is limited, for energy saving reasons, the only methods providing
consistent results are the two versions of the pSVM approach, which do not seem to be
affected by the iteration limit. In these cases, the best accuracy results are 92.65% and
92.57%, for the two limited versions of the pSVM with RBF kernel. Furthermore, it is
important to notice that the only method whose accuracy systematically remains over
91.0% is pSVM, for all versions.

Table 1. Average (standard deviation) for accuracy for each method. The method with the best accuracy is boldfaced.

Iterations SVM
(Linear Kernel)

SVM
(RBF Kernel)

Ensemble
(Linear Kernel)

Ensemble
(RBF Kernel)

pSVM
(Linear Kernel)

pSVM
(RBF Kernel)

No limit 0.9223 (0.0030) 0.9246 (0.0125) 0.9237 (0.0011) 0.9269 (0.0076) 0.9130 (0.0139) 0.9265 (0.0122)
10 0.6641 (0.1929) 0.4465 (0.1226) 0.8963 (0.0128) 0.4958 (0.0227) 0.9150 (0.0049) 0.9265 (0.0120)
1 0.6543 (0.2790) 0.4241 (0.1266) 0.8887 (0.0167) 0.3107 (0.0189) 0.9107 (0.0078) 0.9257 (0.0129)

4.2. Eight Multi-Dimensional Regions with Two Partially Overlapping Classes

This second experiment is based on a synthetic dataset that emulates a federated
network of sensors. As mentioned above, such networks are characterized by providing
data distributed in different regions in which it is necessary to categorize events in different
classes. For this experiment, to simulate each class we generate sixteen d-dimensional
Gaussian distributions (x, y) ∼ Nm(μm, σm), m ∈ {1, . . . , 16}, paired two by two. For
simplicity, 16,000 elements in a 10-dimensional space have been generated (1000 elements
per class for each region), although similar results were obtained for larger dimensional
settings and datasets, up to one million elements. Figure 5 depicts this dataset for d = 2.
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Figure 5. A two-dimensional example with two classes and eight regions.

Results

Again, on this dataset, we compare the performance of our pSVM approach to a single
SVM and a standard SVM ensemble. For the three methods, two different versions are
implemented: one using a linear kernel and another using an RBF kernel, with parameters
estimated by cross validation. Moreover, for the ensemble and pSVM approaches, different
classification schemes are used. In particular, for both methods, we implement the classifi-
cation scheme described in Algorithm 2 for different values of the γ parameter, namely:
γ = 1, γ = 7, and γ = 15. In the case of the single SVM, the classification scheme is made
up of a single decisor and, in Table 2, the result appears in the row corresponding to γ = 1.
In a similar manner to the previous example, we randomly split each dataset 10 times into
a training and a testing set. Similarly, we run the methods and calculated the average value
and standard deviation of the accuracy performance measure.

Table 2 presents the average classification accuracy and the standard deviation of the
algorithms for ten runs on the multidimensional dataset. As we can observe, the best result
for the linear kernel versions of the algorithms are always provided by the pSVM approach.
This is because the method has been specifically designed for data whose structure is
similar to that of a federated network of sensors. As expected, using a more complex kernel,
the ensemble approach improved its results, especially for large values of γ. Unfortunately,
this approach requires a cross-validation process to estimate the parameters of the kernel,
whereas the linear kernel does not require this additional step. Finally, it is remarkable that,
under a severe reduction in the number of training iterations up to a single one, the best
overall accuracy result (94.95%) is obtained by the pSVM with an RBF kernel.
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Table 2. Average (standard deviation) for accuracy for each method. The method with the best accuracy is boldfaced.

Iterations γ
SVM SVM Ensemble Ensemble pSVM pSVM

(Linear
Kernel)

(RBF Kernel)
(Linear
Kernel)

(RBF Kernel)
(Linear
Kernel)

(RBF Kernel)

No limit

1 0.6183 (0.0580) 0.9747
(0.0047) 0.4404 (0.1000) 0.9687

(0.0028) 0.9641 (0.0053) 0.9695
(0.0051)

7 - - 0.4033 (0.0100) 0.9751
(0.0036) 0.8493 (0.0563) 0.8297

(0.0219)

15 - - 0.391 (0.0029) 0.9763
(0.0042) 0.5437 (0.0799) 0.6566

(0.0931)

10

1 0.5730 (0.0025) 0.5506
(0.0100) 0.4779 (0.0097) 0.6513

(0.0183) 0.8970 (0.0249) 0.9495
(0.0073)

7 - - 0.4289 (0.0083) 0.8956
(0.0088) 0.8218 (0.0787) 0.7950

(0.0670)

15 - - 0.3910 (0.0029) 0.9555
(0.0074) 0.5220 (0.0917) 0.6714

(0.1103)

1

1 0.5350 (0.0399) 0.5421
(0.0138) 0.4276 (0.0077) 0.5570

(0.0157) 0.7675 (0.0154) 0.8331
(0.0111)

7 - - 0.4372 (0.0099) 0.6736
(0.0093) 0.7637 (0.0449) 0.7616

(0.0288)

15 - - 0.4303 (0.0156) 0.7600
(0.0151) 0.5329 (0.0400) 0.6639

(0.0153)

4.3. A Numerical Estimation of Training Time

Finally, for completeness, we provide a table with the execution time exhibited by
the different methods on the 10-dimensional example in Section 4.2. It is important to
notice that, although the smallest time results are obtained by the single SVM with a
limited number of iterations, these implementations provide very poor classification results.
Therefore, it would never be chosen in practice. Considering a tradeoff between accuracy
and training times, the best implementations correspond to the pSVM approach with linear
kernel. In particular, the pSVM version without a limit of iterations is, on average, up to
11.88 times faster than the single SVM with linear kernel. This magnitude is in accordance
with the expected proportional reduction in the order of log(n), shown in Section 3.4.

Table 3 summarizes the execution time (in seconds) for all versions of the methods
implemented in this comparative.

Table 3. Average (standard deviation) for training time. The method with the shortest training time is boldfaced.

Iterations SVM
(Linear Kernel)

SVM
(RBF Kernel)

Nodes Ensemble
(Linear Kernel)

Ensemble
(RBF Kernel)

pSVM
(Linear Kernel)

pSVM
(RBF Kernel)

4 15.2576 (0.2009) 7.9840 (0.0817) 3.0220 (0.1934) 3.7600 (0.2626)
No limit 29.8763 (6.9040) 5.0406 (0.0184) 9 9.1846 (0.4014) 5.3840 (0.1412) 2.5140 (0.1260) 2.9566 (0.1526)

16 8.6923 (0.1162) 4.4406 (0.0155) 2.6280 (0.2912) 2.6910 (0.0818)

4 2.5753 (0.0307) 2.8840 (0.1424) 2.3566 (0.1353) 2.7400 (0.1582)
10 0.1240 (0.0006) 0.1202 (0.0015) 9 1.9853 (0.0186) 2.2166 (0.0200) 1.8656 (0.0558) 2.0940 (0.1471)

16 1.8790 (0.1065) 2.0703 (0.1079) 1.7970 (0.1799) 1.9126 (0.0489)

4 2.4300 (0.1455) 2.5233 (0.1459) 2.4100 (0.2364) 2.5756 (0.0895)
1 0.0933 (0.0011) 0.0683 (0.0049) 9 1.8416 (0.0256) 2.1013 (0.2426) 1.8203 (0.0592) 1.8686 (0.0499)

16 1.8903 (0.0584) 1.9260 (0.0270) 1.8460 (0.1292) 1.8860 (0.0770)

5. Conclusions

In this paper, we present a novel method for accelerated training of parallel Support
Vector Machines that is especially well-suited for problems involving a federated network
of sensors where optimization of energy consumption is required. The proposed algorithm

117



Entropy 2021, 23, 1605

builds on a parallel training alternative of SVM ensembles (pSVMs), determined by Voronoi
regions. Experimental results indicate that training time is reduced according to the
analytical computational complexity analysis of the method. This method exhibits a stable
performance when the convergence iterations within the training stage are limited. In
particular, it is important to remark that the simplest version of this pSVM approach, that
is, the one using a linear kernel, makes this method the most appropriate for a parallel
implementation. In that case, the evaluation of the kernel function simply involves a scalar
product without additional parameters, and thus cross validation is not needed.

Concerning further research, a more detailed complexity analysis including the effect
of the dimension of the data may be interesting, especially for data coming from very high
dimensional settings. Another interesting area of future research is the development of
multiclass versions of the pSVM approach. As well, a drastic acceleration of the training
stage could be achieved through a hardware implementation of this novel approach. To
this aim, pSVM versions with a limited number of iterations are even more suitable.

Regarding possible shortcomings of our proposal, there is still room for improvement.
Alternatives for constructing the Voronoi regions should be explored. Another limitation
that requires future attention is that the Sturges formula was originally developed for
one-dimensional data. Therefore, it would be advisable to develop a more sophisticated
version, including in its closed-form the dimension d of the representation space. This
is related to the necessary compromise between the number of Voronoi regions and the
number of data elements comprised in each region, which may be crucial to improve the
performance of this method.
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Abstract: Wearable sensor-based HAR (human activity recognition) is a popular human activity
perception method. However, due to the lack of a unified human activity model, the number
and positions of sensors in the existing wearable HAR systems are not the same, which affects
the promotion and application. In this paper, an information gain-based human activity model is
established, and an attention-based recurrent neural network (namely Attention-RNN) for human
activity recognition is designed. Besides, the attention-RNN, which combines bidirectional long short-
term memory (BiLSTM) with attention mechanism, was tested on the UCI opportunity challenge
dataset. Experiments prove that the proposed human activity model provides guidance for the
deployment location of sensors and provides a basis for the selection of the number of sensors,
which can reduce the number of sensors used to achieve the same classification effect. In addition,
experiments show that the proposed Attention-RNN achieves F1 scores of 0.898 and 0.911 in the ML
(Modes of Locomotion) task and GR (Gesture Recognition) task, respectively.

Keywords: human activity recognition; information gain; attention mechanism; Attention-RNN

1. Introduction

Human activity recognition (HAR) technology [1] has been widely used in various
areas, such as security monitoring [2], human-machine interaction [3], sports analysis [4],
medical treatment [5], and health care [6], etc. According to the types of sensors used,
HAR systems can be mainly divided into environmental sensor-based HAR, video-based
HAR, and wearable sensor-based HAR [7]. However, environmental sensor-based HAR
requires placing sensors in a fixed environment, which may cause certain limitations [8,9].
Although video-based HAR systems have made great progress, as the nature of this kind
of system requires using cameras to collect human activities and record as videos for
data analysis, this would raise several issues, such as susceptibility to light and occlusion,
vulnerability of privacy protection, and large data processing volume [10]. Wearable
sensor-based HAR systems integrate sensors, e.g., accelerometers, magnetometers, and
gyroscopes, into wearable devices such as smartphones, bracelets, smart glasses, helmets,
etc., and human body data is collected through these devices [11]. Wearable sensor-
based HAR has become popular due to its convenience of application and ability to
protect user privacy. Researchers have developed a variety of wearable sensor-based HAR
solutions. For example, Fu et al. integrated multiple heterogeneous sensors into a wireless
wearable sensor node for HAR and proved that the multi-modal data could achieve a
better accuracy [12]. Iqbal et al. used smartphones to collect the data and transferred these
collected data to a data server for processing and analysis [13].

The wearable sensor-based HAR can be divided into three stages: data perception,
feature extraction, and activity classification. In the data perception stage, since wearable
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sensor-based HAR systems lack unified protocols and specifications, the types, numbers,
and deployment locations of sensors in each system are different. For example, Köping et al.
deployed eight inertial sensors into an HAR system, which consisted of a mobile phone, a
glass, and a watch [14]. Hegde et al. combined insole-based and wrist-worn wearable sensors
for HAR [15]. Davidson et al. integrated accelerometers, gyroscopes, compasses, barometers,
and a GPS receiver into a device on the back of the body for analysis of running mechanics [16].
Due to the different types and deployment locations of wearable HAR sensors, it is difficult to
popularize and apply the HAR algorithms. In the past, there have been a few studies on the
number and location of sensors for wearable sensor-based HAR. Sztyler et al. used a classifier
for location selection and analyzed the impact of 7 different sensor locations on the HAR
results [17]. However, this method relied heavily on the accuracy of the classifier and only
obtained the position of one sensor. Atallah et al. measured the importance of each location
by calculating the overall weight of 13 artificial characteristics [18]. This method relied too
much on the selection of features by manual experience. In recent years, some researchers
have applied some methods based on information theory in their perception systems. For
example, Jin et al. used causal entropy to select high causal measures as input data, but did
not study the location of sensor deployment [19]. Lee et al. estimated the posture stability of
the elderly through permutation entropy, but only used a sensor fixed on the back [20].

In the feature extraction stage and activity classification stage of wearable sensor-based
HAR, technology development has gone through the traditional machine learning period and
the current deep learning period. Traditional machine learning relies on artificial features,
while deep learning can automatically extract features. Artificial features refer to the features
artificially constructed by experts through in-depth analysis and enlightening thinking of the
original data with the help of domain knowledge, which requires a lot of human resources.
Traditionally, various classical machine learning algorithms [21], such as random forest [22],
Bayesian network [23], Markov model [24], and support vector machine (SVM) [25], were
used for analyzing wearable HAR data. In a strictly controlled environment, the traditional
machine learning algorithms discussed can obtain excellent results. However, they need
professional domain knowledge for manual feature extraction and complex preprocessing
steps [26]. In recent years, deep learning algorithms have been applied to HAR and achieved
outstanding performances. For instance, Ignatov used a CNN to automatically extract features
from human activity data and combined them with artificial features to achieve relatively
excellent results on the WISDM dataset and UCI-HAR dataset [27]. The limitation of Ignatov’s
work is that artificial features were still necessary, i.e., its data processing was inefficient,
as it still required professional domain knowledge. Ronao and Cho used mobile phone
accelerometer data and gyroscope data to classify six human activities and achieved an
overall accuracy of 95.75% [28]. Since only one mobile phone device was used, the range of
perception was limited and only a few simple human activities could be recognized. Aiming
to mine temporal and spatial characteristics of human activities, Ordóñez et al. proposed a
deep neural network (namely DeepConvLSTM), which benefits from both LSTM and CNN
architectures [29]. Its weighted F1 scores of the daily activity recognition task and the 18-class
gesture recognition task on the UCI Opportunity Challenge dataset [30] reached 0.895 and
0.915, which was significantly higher than the pure CNN. Vaswani et al. used the attention
mechanism for machine translation task and achieved excellent results [31]. Then the attention
mechanism can also be applied in HAR. Although the deep learning algorithms work well in
HAR, their complex structures require high computing and storage resources, and require
special processor support, such as GPU, to meet the needs of real-time HAR.

Aiming at the problems of lacking unified standards for sensor placement and the over-
complexity of deep learning classification algorithms in the current wearable sensor-based
HAR, this paper proposes a new HAR method. First, an information gain-based human
activity model is established according to the characteristics of the human skeleton structure.
It serves as a standard for the placement location and number of sensors in the perception
stage. Second, a deep neural network (namely Attention-RNN) combined with the attention
mechanism and bidirectional LSTM (BiLSTM) is designed to extract the features of human
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activity data and classify the data. Finally, on the public UCI Opportunity Challenge dataset,
the balance effect of Attention-RNN in F1 score and running speed is verified, and the effect
of the information gain-based human activity model is verified. The follow-up content of
this paper is organized as follows: in Section 2, the information gain-based human activity
model is presented. Section 3 elaborates on the architecture and principles of Attention-RNN.
Section 4 introduces the UCI Opportunity Challenge dataset, the Attention-RNN training, the
performance metrics, the experiments on Attention-RNN, and the experiments on information
gain-based human activity model. Because experiments on the information gain-based
human activity model need to use the Attention-RNN for effect evaluation, experiments are
performed first to verify the effectiveness of Attention-RNN. Section 5 summarizes the entire
text and prospects for the follow-up research directions.

2. Information Gain-Based Human Activity Model

In the process of human activities, different parts of the human body can exhibit different
movement characteristics. The location and number of sensors are key issues in wearable
sensor-based HAR. A large number of studies have discovered the positions to place sensors
on the human body: head, ears, neck, torso, chest, abdomen, back, waist, pelvis, buttocks,
hands, wrists, arms, feet, ankles, calves, thighs, knees, and so on. Yu et al. summarized
these positions into the following categories: head, upper limbs, chest, waist back hip, lower
limbs, and feet [32]. In 2010, Microsoft released Kinect, a device that can collect color images
and depth images. The skeleton API in the Kinect for Windows SDK could provide position
information of up to two people in front of Kinect, including detailed postures and 3D
coordinate information of bone points. In addition, Kinect for Windows SDK could support
up to 20 bone points. The data object type was provided as skeleton frames, and each frame
could save up to 20 points [33]. Based on the past research and the human skeleton model
proposed by Microsoft, this paper proposes the information gain-based human activity model.

According to the relationship between bones and joints, bones can be regarded as rigid
bodies, and joints can be regarded as connecting mechanisms [34]. Therefore, in the modeling
of the articulated skeleton, the human body can be considered as a motion mechanism
composed of multiple linkages and multiple joints. Figure 1 shows an example of the
proposed human activity model. The skeleton of the model is composed of 15 linkages and
17 joints. Among them, 13 linkages are suitable for placing sensors, and the two linkages
of the span are not suitable for placing sensors, which have been shown by dotted lines, as
shown in Figure 1a. The deployable sensor nodes set of model is P = {K0, K1, K2, . . . , K14}, as
shown in Figure 1b, where K0 is the head perception node, K1 and K2 are shoulder perception
nodes, K3, K4, K5 and K6 are upper limb perception nodes, K7 and K8 are hand perception
nodes, K9, K10, K11 and K12 are lower limb perception nodes, and K13 and K14 are foot
perception nodes.

K13
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Figure 1. Information gain-based human activity model. (a) Human skeleton. (b) Positions of sensors
can be fixed. (c) Cartesian coordinate system.
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The joints of the proposed model all have three degrees of freedom, namely around the
X-axis, around the Y-axis, and around the Z-axis. In order to standardize the expression of
human activity, this paper adopts the spatial Cartesian rectangular coordinate system [35]
to establish a unified human activity model. In Figure 1c, ax, ay, and az represent the
acceleration component data collected by the 3-axis accelerometer along the X-axis, Y-axis,
and Z-axis in the coordinate system during human activities; ωx, ωy, and ωz represent
the angular velocity component data of the human body sensed by gyroscope along X, Y
and Z axes. Only the components of acceleration and angular velocity on each axis are
shown in Figure 1c. In fact, each axis may contain other components, such as magnetic
force. Suppose A is the human activity, Fext is the feature extraction function, and Fcls is
the human activity classification function, then the human activity can be expressed by
Equation (1).

A = Fcls (Fext (K0, K1, K2, . . . , K14)) (1)

note that:
Ki =

(
ai

x , ai
y, ai

z, ωi
x, ωi

y , ωi
z . . .

)
(2)

The contribution of Ki to HAR is an important basis for sensor deployment. The
human activity model uses information gain [36] to measure the degree of contribution.
Information gain is an evaluation method based on entropy. It measures the contribution
of feature F to the classification model. It is generally defined as the difference between the
information entropy of all category A before and after the feature F appears, as shown in
Formulas (3)–(5).

InfoGain(F, A) = H(A)− H(A|F) (3)

H(A) = −
m

∑
j=1

P
(

Aj
)

log P
(

Aj
)

(4)

H(A|F) = −∑
j

∑
v∈F

P
(

Aj
∣∣F = v

)
log P

(
Aj

∣∣F = v
)

(5)

where H(A|F) and H(A) are respectively the information entropy when the feature F
appears or not. The v in Equation (5) belongs to the set F, that is, v ∈ F. In addition, P(Aj) is
the prior distribution of category probabilities and P(Aj|F = v) is the posterior probabilities.

The information gain of Ki is the sum of the information gain of all its channels, as
shown in Formula (6). Among them, InfoGain(Kil) represents the information gain of Ki’s
lth channel, and Ci represents the total number of Ki’s sensor channels.

InfoGain(Ki) =
Ci

∑
l=1

InfoGain(Kil) (6)

Then sort all sensor nodes according to the information gain value, and adopt the
greedy strategy to select the optimal sensor combination with the top contribution. Human
activity can finally be expressed by Equation (7). Ktop_i represents the sensor whose
information gain ranks i.

A = Fcls (Fext (Ktop_1, Ktop_2, . . . , Ktop_i, . . . )) (7)

3. Attention-RNN for Wearable HAR

A deep learning network based on an attention mechanism, named Attention-RNN, is
designed to realize wearable HAR. The architecture of Attention-RNN is shown in Figure 2,
including 1 input layer, 1 batch normalization (BN) layer, 2 BiLSTM layers, 1 attention layer, 1
dense layer, and 1 output layer.
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Figure 2. Network architecture of the Attention-RNN.

The first layer of Attention-RNN is the input layer. The input data (X1, X2, X3 . . . Xt
. . . Xn) is a matrix of n × S × D, where D is the number of sensor channels, and S is the
number of temporal data for each sensor channel.

The second layer is a batch normalization (BN) layer. Ioffe and Szegedy’s research
proved batch normalization method [37] could reduce the number of training steps required
for model convergence, and could use a larger learning rate without paying too much
attention to the initialization parameters and dropout. Therefore, a batch normalization
layer is used here to simplify and speed up the training of the network.

The third layer (L1) and the fourth layer (L2) are both BiLSTM layers, and each layer
has 192 units. The L1 layer outputs the sequence, which serves as the input of L2. Karpathy
et al. proved through experiments that over two recurrent layers are more effective in
predicting temporal events [38], so two BiLSTM layers are added after the BN layer. The
Tanh function is used as the activation function when generating candidate memories.
Because the output of the Tanh function is −1 to 1, which is consistent with the feature
distribution of most scenes centered on 0, and the Tanh function has a larger gradient than
the Sigmoid function near the input of 0, which can speed up the model convergence. L2
outputs the hidden state values of all time steps as the input to the next layer (A1). BiLSTM
consists of forward LSTM and reverse LSTM. Each LSTM memory block is composed of
a forget gate, an input gate, and a memory cell. The calculation process of BiLSTM is
shown in Equations (8)–(16). In Equations (8)–(13), xt is the input information at the current
moment, ft is the forgetting factor of the forgetting gate, it is the output of the input gate,
C̃t is the candidate value of the cell, Ct is the cell state, ot is the output of the output gate,
and ht is the output of the LSTM memory block. In Equations (14)–(16), h f and hr represent
the output of forward LSTM and reverse LSTM, respectively. The output of BiLSTM is Ht.
In addition, w and b in the equations are the corresponding weight coefficient matrix and
bias term.

ft = σ
(

Wf

[
h(t−1), xt

]
+ b f

)
(8)

it = σ
(

Wi

[
h(t−1), xt

]
+ bi

)
(9)

C̃t = tanh
(

wc ∗
[

h(t−1), xt

]
+ bc

)
(10)

Ct = ftC(t−1) + it ∗ C̃t (11)

ot = σ
(

wo ∗
[

h(t−1), xt

]
+ bo

)
(12)
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ht = ot ∗ tanh(Ct) (13)

h f = f
(

w f 1xt + w f 2ht−1

)
(14)

hr = f (wr1xt + wr2ht+1) (15)

Ht = g
(

wo1 ∗ h f + wo2 ∗ hr

)
(16)

The A1 layer is an attention mechanism layer. The attention mechanism is designed
according to the importance of the temporal characteristics of human activities at different
moments, as shown in Equations (17)–(19). Among them, ut is the hidden layer unit, at
is the weight coefficient vector, Ht is the output of BiLSTM, vt is the output vector of the
attention mechanism, ww is the weight coefficient matrix from L2 to A1, and b is the bias.
The vector uw, which is randomly initialized and learned during training, is introduced
to capture temporal context. The similarity, which is used as a measure of importance, is
obtained by dot product ut and uw. The normalized weight coefficient vector at is obtained
through the Softmax function. The time attention mechanism assigns different weights to
the characteristics of human activities at different moments so that the characteristics at
important moments receive more attention to improve the accuracy of HAR.

ut = tanh(wwHt + b) (17)

at = softmax
(

uT
t uw

)
(18)

vt = ∑ at Ht (19)

The last layer is a dense layer, which is also an output layer. The units of this layer are
set to the number of human activity categories to be classified, which should be consistent
with the number of label categories of the human activity dataset. Softmax is used as the
activation function, as shown in Equation (20), where vt is the output vector of A1, wj is
the weight matrix from A to the output layer, bj is the offset corresponding to wj. Softmax
maps the results of various classes to the probability between 0 and 1, and the class with
the highest probability is the predicted class.

yj = softmax
(
wjvt + bj

)
(20)

4. Experiments and Analysis

4.1. Dataset

The public UCI Opportunity Challenge dataset is used as the experimental dataset,
which has 113 data channels (each sensor axis one channel). The dataset was recorded
by 19 sensors fixed on the body of the subjects and the sampling frequency was 30 Hz.
As shown in Figure 3, five yellow squares represent the RS485-networked XSense inertial
measurement unit (IMU). Two purple triangles represent InertiaCube3 inertial sensors, and
12 green circles represent Bluetooth acceleration sensors. Each XSense IMU comprised a
3-axis accelerometer, a 3-axis gyroscope, and a 3-axis magnetometer. Each InertiaCube3
included a gyroscope, magnetometers, and accelerometer. The dataset recorded two
types of activity data: Drill type, where subjects performed a set of pre-defined activities
in sequence, and ADL (activity of daily life) type, where subjects performed high-level
activities (getting up, grooming, preparing breakfast, cleaning). These high-level tasks
included multiple atomic activities (for example, preparing breakfast includes preparing
sandwiches, preparing coffee, drinking water, and other atomic activities), and there was
no limit to the order in which atomic activities were performed. The dataset contains 1 Drill
activity and 5 ADL activities of 4 subjects. In the Opportunity Challenge, task A and task B
were to classify 5 Modes of Locomotion (ML) and recognize 18 gestures (GR) respectively.
Since the data of subject 4 added noise in the challenge to perform other tasks, we only
used the data of subjects 1, 2, and 3. The dataset was divided into the training set and
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testing set consistent with the Opportunity Challenge. The ADL4 and ADL5 of subjects 2
and 3 constituted the testing set. The remaining activities of subjects 1, 2, and 3 were used
as the training set.

= RS485-networked XSense inertial measurement units
= InertiaCube3 inertial sensors
= Bluetooth acceleration sensor

RUA

RLA

LUA

LLA
BACK

R-SHOE L-SHOE

RUA^
RUA_

RWR

RH

RKN^
RKN_

LH

BACK

LWR

LUA_
LUA^

HIP

 
Figure 3. Sensors placement of the dataset.

The linear interpolation method was used to fill the missing values of the dataset in
the temporal direction. Since the records of the dataset were continuous, a sliding window
with a length of 24 and a sliding step of 12 was used to segment the continuous records. The
label of the last data in the sliding window was used as the label of the intercepted sample.
The final intercepted dataset is shown in Table 1. The Null class in the table represents data
that is not of interest.

Table 1. Composition of the dataset intercepted by the sliding window.

Task Activity Name # of Training Instances # of Testing Instances

GR

Open_Door1 864 58
Open_Door2 887 95
Close_Door1 806 60
Close_Door2 846 83
Open_Fridge 921 228
Close_Fridge 850 160

Open_Dishwasher 666 100
Close_Dishwasher 628 77

Open_Drawer1 490 39
Close_Drawer1 413 42
Open_Drawer2 457 40
Close_Drawer2 416 26
Open_Drawer3 566 67
Close_Drawer3 564 61

Clean_Table 904 99
Drink_Cup 3246 317

Toggle_Switch 623 105
Null 32348 8237

ML

Stand 19321 3101
Walk 10875 2272

Sit 7410 2016
Lie 1209 463

Null 7680 2042
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4.2. Attention-RNN Training

All experiments were carried out on a server with the Ubuntu system. The GPU of
the server was TITAN Xp 12G, and the CPU was Intel Xeon E5-2620 v4. The RAM size
of the server was 62 G. The experiments program was coded in Python 3.7. Pandas [39]
and Numpy [40] were used for data processing, and Keras [41] was used to realize the
Attention-RNN network. The CuDNNLSTM in Keras was used to construct the network to
improve the speed of the network.

During training, a random 5% of the training data was used to verify the loss and
F1 at the end of each epoch. The Adadelta method [42] with adaptive learning rate was
used as the network parameters optimizer. The initial learning rate of 1.0 and the batch
size of 16 were used for network training. The early stopping mechanism was used to
stop the training automatically. If the training loss did not decrease after 50 epochs, the
training would be stopped, otherwise, the training would continue. The verification F1
was monitored, and only the model with the highest verification F1 rate was saved.

4.3. Performance Metrics

Due to the imbalance of the dataset in different classes, it is more reasonable to use
the F1 score as the performance metric. The F1 score combines the effects of precision rate
and recall rate, as shown in Equation (21):

F1 = ∑ Fj = ∑
Nj

N
· 2Pj·Rj

Pj + Rj
(21)

where j is the class index, and Nj is the number of samples of class j. N is the total number
of samples. Pj and Rj are the precision rate and recall rate of class j, respectively.

The confusion matrix is suitable for visualizing the classification results of each class.
The vertical axis of the confusion matrix is the actual class, and the horizontal axis is the
predicted class. The sum of each column is the number of samples predicted as each class,
and the sum of each row is the number of each class in the dataset. The background of each
grid of the confusion matrix is filled with color according to the numerical value (the larger
the numerical value, the darker the color).

4.4. Results and Discussion
4.4.1. Experiments on Attention-RNN

Table 2 shows the F1 comparison between the proposed Attention-RNN and the
classification techniques published in the past. In the ML task, the F1 score of the proposed
Attention-RNN was 0.898, which was over 3% higher than Random Forest [43] and was
0.03 higher than the best DeepConvLSTM [29]. In the GR task, the F1 score of the proposed
Attention-RNN was 0.911, which was higher than Random Forest and CNN [44], but
slightly lower than DeepConvLSTM. The classification time of testing instances (namely
testing time) by Random Forest, DeepConvLSTM and Attention-RNN was 29.62 s, 9.82 s
and 3.75 s, respectively. The test speed of Attention-RNN was 7.8 times that of Random
Forest and 2.6 times that of DeepConvLSTM. The proposed Attention-RNN was more
efficient than Random Forest and DeepConvLSTM. Although the test speed of Attention-
RNN was slightly slower than that of CNN, the classification F1 value was greater than
that of CNN. The above comparison results prove the beneficial effect of the proposed
Attention-RNN. The proposed Attention-RNN had the largest F1 score in the ML task, the
second F1 score in the GR task, and the second running speed. It achieved the optimal
balance between F1 score and running efficiency.
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Table 2. F1 comparison of different classification algorithms.

Method F1 (ML Task) F1 (GR Task) Testing Time (S)

Random Forest [43] 0.870 0.900 29.62
CNN [44] - 1 0.851 2.29

DeepConvLSTM [29] 0.895 0.915 9.82
Attention-RNN (ours) 0.898 0.911 3.75

1 “-” means there is no relevant data in the original paper.

The confusion matrix in Figure 4 shows the test results of Attention-RNN in the ML task.
It can be seen from the figure that many Walk samples were misidentified as Stand and Null,
and many Stand samples were misidentified as Walk and Null. Since the Walk samples were
collected during daily indoor activities, the motion range was small. Therefore, Walk, Stand,
and Null had certain similarities, and it was easy to identify them incorrectly.

Figure 4. Confusion matrix of ML task.

The confusion matrix in Figure 5 shows the test results of Attention-RNN in the GR task.
Most of the errors were related to the Null class. The main reason is that the classes of the
dataset are extremely unbalanced, with Null classes accounting for 83.25% of the total samples.

The ablation experiments in Table 3 show the F1 score changes resulting from adding
or removing different components of the Attention-RNN. The models of this set of ex-
periments were all changed based on Attention-RNN. Model “A” removed the attention
layer. Its F1 (ML) was 0.004 lower than Attention-RNN, and F1 (GR) was 0.008 lower
than Attention-RNN. Model “B” removed the BN layer. Its F1 (ML) was 0.007 lower than
Attention-RNN, and F1 (GR) was 0.005 lower than Attention-RNN. Models “D” and “E”
changed the position of the BN layer, and their F1 scores were lower than the Attention-
RNN. Models “I” and “J” changed the position of the Attention layer, and their F1 scores
were not as good as Attention-RNN. Since Attention-RNN was only 0.01 orders higher
than the F1 scores of the above models and the estimated F1 scores had uncertainty, it
was unclear if it indicated an improvement. Models “C”, “F”, “G”, and “H” changed the
number of BiLSTM layers. The Attention-RNN model with 2 BiLSTM layers had a larger
F1 score than other models. Model “K” and “L” had two attention layers, and model
“M” had three attention layers. The F1 scores of models “K”, “L” and “M” were all lower
than Attention-RNN. The above results showed that increasing the number of attention
layers or BiLSTM layers based on Attention-RNN did not improve the classification perfor-
mance. In general, this set of experiments provided guidance for the establishment of the
Attention-RNN.
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Figure 5. Confusion matrix of GR task.

Table 3. Experiments on different model structures.

Model Structure F1 (ML Task) F1 (GR Task)

A BN + 2BiLSTM + Dense 0.894 0.903
B 2BiLSTM + Attention + Dense 0.891 0.886
C BN + 1BiLSTM + Attention + Dense 0.891 0.899
D 2BiLSTM + BN + Attention + Dense 0.893 0.903
E 2BiLSTM + Attention + BN + Dense 0.894 0.903
F BN + 3BiLSTM + Attention + Dense 0.891 0.904
G BN + 4BiLSTM + Attention + Dense 0.891 0.901
H BN + 5BiLSTM + Attention + Dense 0.891 0.906
I BN + Attention + 2BiLSTM + Dense 0.878 0.898
J BN + BiLSTM + Attention + BiLSTM + Dense 0.892 0.891
K BN + BiLSTM + Attention + BiLSTM + Attention + Dense 0.890 0.901
L BN + Attention + BiLSTM + Attention + BiLSTM + Dense 0.881 0.899
M BN + Attention + BiLSTM + Attention + BiLSTM + Attention + Dense 0.857 0.898

Attention-RNN BN + 2BiLSTM + Attention + Dense 0.898 0.911

A set of cross-validation experiments was implemented to verify the stability of
Attention-RNN. First, the training set in Section 4.1 was randomly divided into two sub-
training sets of the same size. Then, in the ML task, the two sub-training sets were used to
train two models, M1 and M2, respectively. In the GR task, the two sub-training sets were
used to train two models G1 and G2, respectively. Finally, the above four trained models
were tested on the test set in Section 4.1. The test F1 scores of M1, M2, G1, and G2 were
0.886, 0.894, 0.894, and 0.895, respectively. The results show that even if half of the training
set is used to train Attention-RNN, good classification results can be achieved. Besides,
the difference between M1 and M2 and the difference between G1 and G2 were relatively
small. Then, the stability of Attention-RNN had been verified.
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4.4.2. Experiments on Information Gain-Based Human Activity Model

To verify the validity of the human activity model, another set of experiments was
carried out as follows: First, the information gain of each sensor was calculated according
to the Formulas (3)–(6). The training set (including the validation set) without sliding
window processing was used to calculate the information gain. Each sensor channel was
selected as a feature, so that the F in the equations referred to each sensor channel, and
the v referred to the data of the sensor channel. Since there are multiple feature selection
methods, it may lead to different feature selection criteria and feature rankings. This set of
experiments can only verify the effect of the proposed feature selection method. For the ML
task and GR task, the information gain of each sensor was shown in Table 4. Second, the
top n (1, 2, 3, . . . 18, 19) information gain sensors’ data were used for training and testing
Attention-RNN in turn, and the results are shown in Figures 6 and 7.

Table 4. Information gain and ranking of each sensor.

Sensor Name Channels InfoGain(Ki) of ML Task (Ranking) InfoGain(Ki) of GR Task (Ranking)

RKNˆ 1–3 1.797 (8) 0.558 (15)
HIP 4–6 0.840 (18) 0.471 (19)

LUAˆ 7–9 1.092 (13) 0.615 (12)
RUA_ 10–12 0.927 (16) 0.600 (14)

LH 13–15 1.617 (9) 0.972 (9)
BACK (Acc) 16–18 0.861 (17) 0.618 (11)

RKN_ 19–21 1.332 (10) 0.603 (13)
RWR 22–24 1.308 (11) 1.464 (8)
RUAˆ 25–27 0.822 (19) 0.474 (18)
LUA_ 28–30 1.119 (12) 0.510 (16)
LWR 31–33 1.011 (14) 0.492 (17)
RH 34–36 0.963 (15) 0.741 (10)

BACK (IMU) 37–45 2.817 (3) 2.088 (3)
RUA 46–54 2.610 (6) 1.890 (6)
RLA 55–63 2.241 (7) 1.971 (4)
LUA 64–72 2.664 (5) 1.818 (7)
LLA 73–81 2.772 (4) 1.899 (5)

L-SHOE 82–97 4.832 (1) 2.400 (2)
R-SHOE 98–113 4.784 (2) 2.448 (1)

 

Figure 6. F1 scores for ML task with different numbers of sensors.
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Figure 7. F1 scores for GR task with different numbers of sensors.

F1 scores for ML tasks with different numbers of sensors are shown in Figure 6. For
example, when the number of sensors is 2, 2 refers to the sensors with the top 2 information
gain, namely L-SHOE and R-SHOE. The blue line in Figure 6 represents that the sensors
are sorted by the sensor information gain InfoGain(Ki), which is the sum of the informa-
tion gain over all channels of each sensor. The red line represents a set of comparative
experimental results, and represents the sensors are sorted by InfoGain(Ki)/Ci, which
is the average of information gain over all channels of each sensor. In the experiments
represented by the blue line, the F1 value continued to increase as the number of sensors
increased from 1 to 7. When the number of sensors was 7, the F1 score reaches the same
maximum value as 19 sensors. When the number of sensors was 12, the F1 score was
0.903, which reached the maximum and exceeded 0.898 of 19 sensors. In the comparative
experiments represented by the red line, the F1 score fluctuated and rose as the number of
sensors increased from 1 to 17. When the number of sensors was 17, the F1 score reached
the same maximum value of 0.898 as with all 19 sensors. The experiments represented by
the blue line required fewer sensors than the experiments represented by the red line to
achieve the high-level F1 score. Therefore, top 12 sensors sorted by the sensor information
gain InfoGain(Ki) can meet the requirements of ML task.

F1 scores for GR tasks with different numbers of sensors are shown in Figure 7. The
blue and red lines in Figure 7 represent the experiments of two different sensor sorting
methods, which are similar to Figure 6. In the experiments represented by the blue line,
the F1 score steadily increased to the maximum value of 0.911 when the number of sensors
gradually increased to 6. The F1 score of the experiment represented by the red line reached
9.09 when the number of sensors was 7, but it was smaller than that of the blue line with
6 sensors. Therefore, top 6 information gain sensors sorted by the sensor information gain
InfoGain(Ki) are enough to meet the requirements of GR task, and there is no need to
continue increasing the number of sensors.

The red circle in Figure 8 marks the sensors with the top 6 information gain in the
GR task, and the blue box marks the sensors with the top 12 information gain in the ML
task. The sensors with top 6 information gain are mainly distributed on the arms and back,
which are consistent with the characteristics of the upper limbs required to complete the
GR task. Because completing the four activities in the ML task requires the cooperation of
the upper and lower limbs, the top 12 information gain sensors that can achieve a good
classification effect are distributed in the upper and lower limbs.
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Figure 8. Top 6 information gain sensors in GR task and top 12 information gain sensors in ML task.

5. Conclusions

This paper proposed an information gain-based human activity model and an Attention-
RNN for wearable sensor-based HAR. The experimental results on the UCI Opportunity
Challenge dataset show that the proposed Attention-RNN has high accuracy and operating
efficiency. The F1 score of the proposed Attention-RNN was 0.03 higher than the Deep-
ConvLSTM in the 5-class ML task and 0.04 lower in the 18-class GR task. The test speed
of the proposed Attention-RNN was 2.6 times that of DeepConvLSTM. At the same time,
experiments prove that the proposed information gain-based human activity model provides
a quantitative basis for the deployment of the sensors and fills the research gap in this field.
The same classification effect can be achieved by using fewer sensors with high information
gain, which can reduce the amount of calculation.

In the future, classification algorithms will be studied to further improve the clas-
sification effect. In addition, methods to solve the problem of data imbalance will also
be explored. Finally, the stability of the overall control will be proved and its complete
theorem will be put forward.
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Abstract: Background: Electronic fetal monitoring (EFM) is the universal method for the surveillance
of fetal well-being in intrapartum. Our objective was to predict acidemia from fetal heart signal
features using machine learning algorithms. Methods: A case–control 1:2 study was carried out
compromising 378 infants, born in the Miguel Servet University Hospital, Spain. Neonatal acidemia
was defined as pH < 7.10. Using EFM recording logistic regression, random forest and neural
networks models were built to predict acidemia. Validation of models was performed by means
of discrimination, calibration, and clinical utility. Results: Best performance was attained using
a random forest model built with 100 trees. The discrimination ability was good, with an area
under the Receiver Operating Characteristic curve (AUC) of 0.865. The calibration showed a slight
overestimation of acidemia occurrence for probabilities above 0.4. The clinical utility showed that
for 33% cutoff point, missing 5% of acidotic cases, 46% of unnecessary cesarean sections could be
prevented. Logistic regression and neural networks showed similar discrimination ability but with
worse calibration and clinical utility. Conclusions: The combination of the variables extracted from
EFM recording provided a predictive model of acidemia that showed good accuracy and provides a
practical tool to prevent unnecessary cesarean sections.

Keywords: electronic fetal monitoring; fetal heart rate; sensors; acidemia; machine learning; random
forest; clinical utility curve

1. Introduction

Currently, the universal method for the surveillance of intrapartum fetal well-being
is the continuous monitoring of fetal heart rate (FHR) and maternal uterine contraction
(UC) signals [1]. Electronic fetal monitoring (EFM) requires complex electronic devices
developed to acquire, process, and display the signal. In the intrapartum period, an
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ultrasound transducer is used for the external FHR monitoring. This transducer contains
piezoelectric effect crystals that convert electrical energy into ultrasound waves and uses
the Doppler effect to detect movements of the cardiac structures [2,3]. In this context,
several systems have been developed for central monitoring of fetal signals to provide
simultaneous display of multiple tracings on several locations, allowing easier monitoring
of signals [4]. The rate and pattern of the fetal heart are displayed on the computer screen
and printed onto special graph paper.

Shannon defined entropy as a measure of the average information provided by a set
of events and informs on its uncertainty [5]. The information theory is a mathematical
theory of communication to quantify information. Information theory has been successfully
used to evaluate biological biochemical signal networks [6] or in evolutionary biology [7].
Metrics such as mutual information have been used in the information theory in order to
quantify the sharing of information in the presence of anomalies in electrocardiographic
heart signals [8]. Fetal heart rate is altered in the presence of adverse fetal problems, the
level of chaoticity in the signal may be measured using entropy. Higher entropy represents
higher uncertainty and a more irregular behavior of the signal. Entropy can even explain
how linked complex systems interact and exchange information.

The prediction of acidemia understood as fetal asphyxia was mainly based on the visu-
alization of morphological aspects of fetal heart recording (FHR) with limited accuracy [9].
The quantification of the magnitude of this information becomes a goal in the study of
FHR signals. Guidelines, such as the American College of Obstetricians and Gynecologists
(ACOG) [10,11], proposed the categorization of FHR parameters to predict acidemia, but
most categorization systems show lack of accuracy [12]. In addition, the interobserver
agreement between experts shows the need to make the prediction of acidosis through the
modeling of the EFM characteristics rather than the visual interpretation of the signal [13].

Two main objectives focused the effort on the improvement of the diagnosis of
acidemia in recent years, the proposal of new predictors derived from the fetal cardiotocog-
raphy (CTG) and their combination with previous features [14,15]. Automated systems can
extract data on the FHR [16] or patterns can be obtained using signal processing as fractal
analysis [17,18], but regarding combination of EFM variables, the artificial intelligence and
machine learning algorithms have opened a range of possible applications with multiple
development [19–22].

Machine learning algorithms had helped to improve prediction in different prob-
lems in medicine [23], although the nature of the used models is very diverse. Decision
trees [24], support vector machines [24–26], adaptative boosting [24], convolutional neural
networks [27,28], neuro fuzzy inference systems [29], neural networks [25,29], deep stacked
sparse auto-encoders [29], or deep-ANFIS models [29] are machine learning techniques
used for acidemia prediction. Machine learning algorithms are based on the minimization
of a loss function. The cross-entropy is a generalized loss function that can be interpreted
as an information measure [30], best models correspond to the minimum discrimination
information [31]. Abnormalities in the FHR tend to increase the cross-entropy function,
showing it as a candidate for quantifying the variety of physiological signals.

The success of machine learning models was distributed in a wide range, and can be
classified in two groups, models that were built from the FHR signal and others built with
the variables extracted from the signal. The most frequent parameters used to validate these
previous models were the area under the receiver operating characteristic (ROC) curve [32],
or the sensitivity and specificity that corresponds to a threshold probability of acidemia. To
our knowledge, none, or very few of the developed machine learning models analyzed the
clinical utility of these models although this is one the most important properties for the
applicability of a prediction model [33].

Complementing the prediction of acidosis [34–36], recent publications have analyzed
the importance of deceleration physiology and use parameters such as the deceleration area,
that reports accumulated hypoxemia [14,37]. In addition, it is essential to know about the
fetal time available to recover between deceleration and fetal ability to repeatedly activate
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the chemoreflex, fetal resilience [38,39]. Moreover, combining these parameters can provide
better-adjusted predictions, the fetal reserve index is a promising classification system that
proposed the improvement of EFM by adding three clinical variables: maternal, obstetrical,
and fetal risk-related information in a scoring system to assess fetal perfusion and resilience
rather than “hypoxia” [40].

In a previous study, we analyze a new parameter, the total reperfusion time (fetal re-
silience) to predict fetal acidemia [15]. In this study, we build a predictive model of acidemia
using the FHR variables extracted from the EFM recording, including the reperfusion time,
in a case–control study. For the combination of variables, we used the multivariate logistic
regression, random forest, and neural networks models, performing a complete validation
based on the analysis of the discrimination, calibration, and clinical utility of models.

2. Materials and Methods

2.1. Study Design and Patients Recruitment

The study was designed as a retrospective case–control analysis that involves preg-
nancy data recruited between June 2017 and October 2018 at the Miguel Servet University
Hospital, in Zaragoza, Spain. The inclusion criteria were singleton term gestation between
37 and 42 weeks, cephalic presentation, and no fetal anomalies. In addition, we selected
electrocardiographic recordings showing presence of a deceleration pattern in the EFM
defined as two or more decelerations in the last 30 min. As exclusion criteria, we defined
having experienced a sentinel event (uterine rupture, cord prolapse, or shoulder dystocia),
EFM with less than 30 min registered period, or anomalies that do not enable the analysis
of EFM. In the case of a monitoring that had not started active labor, the EFM register
was discarded.

The outcome of the study was neonatal acidemia defined as pH < 7.10, measured by
arterial cord blood at birth, these are the cases of the analysis. From the 5694 women in
the initial cohort, 192 (3.4%) infants were acidotic. In Figure 1 we show the flowchart of
the study, 72 acidemic fetuses were excluded from the analysis for lack of criteria. The
remaining 120 infants with arterial acidemia were included as cases, together with 258 in
the control group. The controls were selected using a non-randomized 1:2 consecutive
type method; each selected control is chronologically consecutive to a case, selecting two
controls for each case.

Figure 1. Flow chart of patient recruitment.
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We additionally recruited maternal and pregnancy information on parity, maternal
age, maternal pathologies, gestational age at birth, birthweight, estimated percentile weight,
and fetal gender.

2.2. Electronic Fetal Monitoring

For the monitoring of fetal well-being, as can be seen in Figure 2, a fetal activity
supervisor Corometrix 256CX was used. Two sensors were employed for this task: an
ultrasonic transducer to capture the electrocardiographic (ECG) fetal activity and a TOCO
(Tocotonometer) transducer to capture the uterine activity. Both were attached to the mother
with binding bands and the coming signals were analyzed continuously by obstetricians
during the final process of pregnancy prior to delivery.

 

Figure 2. Electronic fetal monitoring.

The ultrasound transducer is placed on the maternal abdomen by means of one belt
and transmits the ultrasonic signal of the fetal heart. It operates with a pulse repetition
frequency of 4 kHz, a pulse duration of 92 uS, and a transmission frequency of 1151 MHz.
It is capable of measuring heart rate from 50 to 210 bpm and its precision is 1 bpm.

The TOCO transducer is also placed on the maternal abdomen by means of one belt
and it detects the forward displacement of the maternal abdominal muscles during a
contraction. The TOCO transducer is composed of several strain gauges configurated to
transduce pressure measurements into displacement. This device can measure pressures
from 0 to 13.3 KPa with a resolution of 0.13 kPa and a bandwidth from 0 to 0.5 Hz.

In our study, the last 30 min of EFM prior to delivery were retrospectively analyzed
and interpreted between two obstetricians attached to the delivery section, blind to the
neonatal outcome, using the criteria and the patterns described in the Category system of
the Eunice Kennedy Shriver National Institute of Child Health and Human Development
(NICHD) [41]. Five elements of the EFM recording were extracted using the definitions
from the NICHD criteria and then used to categorize the EFM recordings into one of the
three accepted categories: Category I, Category II, or Category III to describe EFM data.

Additionally, as our purpose was to use machine learning algorithms in order to
predict acidemia, we recruited information about the non-NICHD parameters These pa-
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rameters were obtained from the EFM recordings as it is described in Figure 3. In the graph
it can be seen the electrocardiographic fetus signal measured in beats per minute (above)
and the mother’s uterine contractions measured as mm Hg (below).

Figure 3. Intrapartum electronic fetal monitoring analysis (1 cm/min). The panel contains the fetus
signal (above), where the following parameters can be observed: decelerations (y), time of reperfusion
(x), and depth of deceleration (z); and the mother’s uterine contractions measured in mm Hg (below)
not used for the analysis.

We divided the EFM signal into deceleration (y) and interdeceleration (x) periods.
The duration of reperfusions was defined as x (interdeceleration time), the duration of
decelerations was defined as y (deceleration time), and the depth of decelerations as z.

From x, y, and z, we calculated the parameters:

• Total reperfusion time as the sum in minutes of the period that the fetus remains at
baseline without deceleration during the last 30 min ∑ x.

• Deceleration time as the sum in minutes of the period of time that the fetus is deceler-
ating during the last 30 min ∑ y.

• Total deceleration area as the sum of all areas of deceleration, being the deceleration
area the product of the duration of deceleration in seconds and its maximum depth of
fall from baseline expressed in beats per minute divided by two ∑ yz

2 .

Additionally, we considered for the multivariate model the following variables: num-
ber of decelerations, minimum beats per minute (bpm), number of decelerations greater
than 60 s, number of decelerations greater than 60 beats per minute in depth, and the
presence of decelerations in more than 50% of contractions, considered to be recurring, thus
we defined the variables that describe the occurrence of recurrent decelerations greater
than 60 s, and recurrent decelerations with depth > 60 bpm.

2.3. Statistical Analysis

We descriptively analyzed data comparing acidotic and non-acidotic infants. The con-
tinuous variables were summarized by median and interquartile range (IQ) and categorical
variables by absolute and relative frequency of each category. Differences between acidotic
and non-acidotic groups were analyzed using the Mann Whitney or Chi-square test for
continuous or categorical data.

To predict acidotic infants in the last 30 min of labor, multivariate models were built
using logistic regression models, random forest, and neural networks. For building and
testing models the original database was randomly split into training (80%) and validation
data (20%).
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Validation of models was estimated by its discrimination measured by means of the
area under the receiver characteristic curve (AUC), and its calibration through calibration
curves and of the two informative parameters: ‘intercept’ (calibration-in-the-large) that
measures the difference between average predictions and average outcome; and ‘slope’,
which reflects the average effect of predictions on the outcome [42]. The AUC can be
interpreted as the probability that the model assigns a greater probability of being acidotic
for an acidotic case rather than a non-acidotic case, it ranges from 0 to 1, corresponding the
0.5 value to a random model, 0.7 to an acceptable model, 0.8 to a good model, 0.9 excellent
model, and 1 perfect discrimination. The 95% confidence intervals for AUC were calculated
using DeLong estimation [43]. The calibration curve analyzes graphically the concordance
between predictions and the real occurrence of the outcome, a perfect calibration corre-
sponds with the diagonal line. The predictive ability of the models summarized by their
AUC was compared using the De Long test [43].

We also analyzed the clinical utility of the developed machine learning models. This
property analyzes the practical use of a prediction model, that as a dichotomic classification
model, using a cutoff point that classified individuals as positive (1) or negative (0), above or
below the cutoff point. Several methods have been implemented for this purpose, probably
the most used is the decision curve [44], that measures for different cutoff points the net
benefit of the application of the model in comparison to classify all individual as 0 or 1, that
also can be applied to compare models. Although this proposal provides a good guide to
select the range of cutoff points with good net benefit, their interpretation is a weighted
estimation and cannot be interpreted as a parameter with an easy clinical interpretation.
Predictiveness curve also analyze the benefit of the application of a model, but with a less
wide diffusion in this field [45].

Here, we used to analyze the clinical utility of the developed models the clinical utility
curve [46] that we proposed previously in prostate cancer prediction with satisfactory
results. In this curve, the X axis corresponds to the threshold probability to consider
a neonate as acidotic, and on the Y axis we represent the percentage for two different
measures. The first corresponds to the percentage of missing acidotic infants below the
selected cut-off point, and the second one to the number of infants below the cut-off point.
Using this curve for different cutoff points we can evaluate the percentage of acidotic
fetuses with a wrong classification, and the fetuses with a very low risk of acidemia that
are going to be saved from an unnecessary cesarean section for loss of fetal well-being, that
are clinical practice parameters.

All analyses were performed using the R language programming v.4.0.3 (The R foun-
dation for statistical computing, Vienna, Austria) with the addition of the rms, random-
ForestSRC, nnet, neuralnet, and NeuralNetTools libraries [47].

3. Results

3.1. Descriptive Analysis

Descriptive analysis of data is shown in Table 1. In the maternal–fetal variables of
the study, we found statistically significant differences between acidotic and non-acidotic
groups in the nulliparity, type of delivery, and SGA variables. Regarding EFM variables, the
ACOG categories, № Decelerations > 60 sg, Recurrent decelerations > 60 sg, № Decelerations
depth > 60 bpm, Recurrent decelerations depth > 60 bpm, Deceleration area, Minimum
deep bpm, Maximum deep bpm, and Mean deep bpm showed differences between groups.
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Table 1. Descriptive characteristics.

Variable Acidotic (n = 120)
Non-Acidotic

(n = 258)
p-Value

Maternal–fetal variables
Maternal age 33 (29–37) 34 (30–36) 0.499

Hypertension disorders 5 (4.2%) 5 (1.9%) 0.362
Gestational diabetes 15 (12.5) 29 (11.2%) 0.855

Nulliparity 132 (51.2%) 80 (66.7%) 0.007
Gestational age 280 (274–285) 280 (273–286) 0.841

Male gender 64 (53.3%) 145 (56.2%) 0.681
Delivery <0.001
Vaginal 60 (50.0%) 187 (72.5%)

Operative vaginal 30 (25.0%) 52 (20.1%)
Cesarean 30 (25.0%) 19 (7.4%)

Birthweight 3238 (2918–3638) 3295 (2975–3620) 0.645
Percentile birthweight 43. 1 (20.0–74.5) 49.3 (24.1–77.4) 0.553

Small for gestational age 22 (18.3%) 28 (10.9%) 0.066
Large for gestational age 21 (17.5%) 32 (12.4%) 0.185

EFM variables
ACOG categories <0.001

Category 1 13 (10.8%) 123 (47.7%)
Category 2 57 (47.5%) 110 (42.6%)
Category 3 50 (41.7%) 25 (9.7%)

Reperfusion time (min) 18.1 (14.8–20.8) 21.8 (18.2–25.2) <0.001
Number of decelerations 8 (5–10) 7.5 (4–10) 0.509
№ Decelerations > 60 sg 2.5 (0–5) 0 (0–2) <0.001

Recurrent decelerations > 60 sg 25 (20.8%) 20 (7.8%) <0.001
№ Decelerations depth > 60 bpm 3 (1–5) 0 (0–3) <0.001

Recurrent decelerations depth > 60 bpm 33 (27.5%) 43 (16.7%) 0.021
Deceleration area 16.5 (11.3–22.6) 9.6 (5.1–15.5) <0.001

Minimum deep bpm 40 (30–54) 31 (24–40) <0.001
Maximum deep bpm 79 (68–92) 60 (52–78) <0.001

Mean deep bpm 58 (48–69) 48 (40–69) <0.001
EFM: electro fetal monitoring; ACOG: American College of Obstetricians and Gynecologists; bpm: beats
per minute.

3.2. Multivariable Prediction of Acidemia
3.2.1. Building Models

To predict acidemia we used a traditional approach in classification problems as
the logistic regression model, and the machine learning algorithms: random forest and
neural networks.

The logistic regression model was built using a backward stepwise selection process.
In Table 2 we show the significant variables in the multivariate analysis.

Table 2. Multivariate logistic regression model.

Variable Odds Ratio (95% C.I.) p-Value

Nulliparity 0.413 (0.217–0.763) 0.006
Large for gestational age 4.562 (1.969–10.840) <0.001

Reperfusion time (min) 0.809 (0.729–0.889) <0.001
Number of decelerations 0.804 (0.694–0.919) 0.002
№ Decelerations > 60 sg 1.190 (1.037–1.369) 0.013

№ Decelerations depth > 60 bpm 1.328 (1.111–1.599) 0.002
Recurrent decelerations depth > 60 bpm 0.178 (0.056–0.530) 0.005

Minimum deep bpm 1.034 (1.010–1.060) <0.001

The model showed good accuracy, with an AUC value in training data (80% data)
of 0.826 (0.778–0.875) (95% confidence interval (C.I.)), and 0.840 (0.750–0.930 95% C.I.) in
validation data (20% data).

Regarding the additive model of classification trees that is the random forest, it
was training with different set of parameters, and the best model was attained with the
configuration shown in Table 3.
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Table 3. Random forest parameter configuration.

Parameter Value

Number of trees 100
Forest terminal node size 5

Average number of terminal nodes 29.9
Resampling used to grow trees SWOR

Resample size used to grow trees 191
Splitting rule MSE

Number of random split points 10
SWOR: sampling without replacement; MSE: mean squared error.

The AUC value in training data was 0.991 (0.984–0.999 95% C.I.), and 0.865 (0.774–0.955
C.I.) in validation data. We found a slightly greater discrimination ability than that obtained
with the logistic regression model in the validation data. Random forest is an additive
model of classification trees where each model is built with different data and set of
variables, to quantify the effect of the predictor variables to predict acidemia, we show in
Figure 4 the variable importance (VIMP) plot. The VIMP measures the difference between
prediction error under a perturbed predictor, where a permutation is designed to push a
variable to a terminal node different than its original assignment, and the original predictor,
these are calculated for each tree and averaged over the forest. This yields Breiman–Cutler
VIMP [48]. The most influential variables in the prediction of acidemia were the number of
decelerations with a deep greater than 60 beats per minute, the reperfusion time and the
number of decelerations greater than 60 s.

Figure 4. Error rate plot (left panel) and Breiman–Cutler variable importance plot (right panel) in
random forest model.

Additionally, neural networks were trained with different architectures. We used
the multilayer perceptron model with 1 or 2 hidden layers, different activation functions,
initial weights, and training parameters. The best model on validation data was attained
using the 13-10-1 architecture with 151 weights, and the activation function was logistic.
The cross-entropy was used as the optimization function, this loss function measures the
discrepancy between predictions and real occurrence of acidemia.

E = − 1
N ∑N

i=1 yi· log(p(yi)) + (1 − yi)· log(1 − p(yi)) (1)

being yi the dichotomic outcome, acidotic (yi = 1) or non-acidotic (yi = 0), and p(yi) the
predicted probability of being acidotic for observation i out of N observations.

The architecture of the network is plotted in Figure 5, positive weights between layers
are plotted as black lines, and the negative weights as grey lines. Line thickness is in
proportion to relative magnitude of each weight.
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Figure 5. Neural network architecture with input (I), hidden (H), and output (O) layers. (B) is the
result obtained after applying the activation function.

The neural networks had an AUC value of 0.995 (0.985–1) (95% C.I.) for training data
and 0.857 (0.751–0.963 95% C.I.) for validation data, greater than that obtained using logistic
regression model but lower than the AUC that corresponds to random forest. Additionally,
we present the variable importance plot for the multilayer perceptron, shown in Figure 6,
following the method described by Garson 1991 [49], where the relative importance of
explanatory variables for a single response in a supervised neural network is estimated
by deconstructing the model weights. The most influential variables were the number of
decelerations, being large for gestational age fetus, and the number of decelerations greater
than 60 s.

Figure 6. Variable importance in neural network. dbpm: deep in beats per minute; SGA: small for
gestational age; RDd > 60: recurrent decelerations depth > 60 beats per minute; NDd > 60: number of
decelerations depth > 60 beats per minute; Rep_T: reperfusion time; Null: nulliparity; RD > 60 sg:
recurrent decelerations > 60 s; ND > 60 sg: number of decelerations > 60 s; LGA: large for gestational
age; ND: number of decelerations.

3.2.2. Validation of Models

In this section, we present the validation of the models developed using the validation
data. The agreement between predictions and real outcomes was analyzed by calibration
curves in Figure 7. For the logistic regression model, we found an overestimation of real
acidemia occurrence, this is even more clear for neural networks. In the X axis of the graph,
we show the predicted probabilities provided by models, for a 60% probability of acidemia,
the actual occurrence of acidosis (Y axis) was 40% for logistic regression model, and 30%
for neural networks, therefore, both models overestimate the real occurrence of acidosis.
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Figure 7. Calibration curves of logistic regression (top panel), random forest (center panel), and
neural network (bottom panel) models.

For the random forest model, this overestimation was present only for probabilities
below 0.4. The intercept showed also worse mean predictions for logistic regression (−0.591)
and neural networks (−0.917) than random forest (−0.273) which is closer to 0. The slope
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was closer to 1 for logistic regression (0.895) with better concordance between predicted
probabilities and real outcome.

The discrimination ability of models is shown by ROC curves in Figure 8. All models
show a good discrimination capacity. To compare the AUC of the models, we used the
Delong comparison test. Differences between areas were not significant in our study,
logistic regression vs. random forest (p = 0.561), logistic regression vs. neural networks
(p = 0.736), random forest vs. neural networks (p = 0.888).

Figure 8. Receiver characteristic curves of logistic regression, random forest, and neural network models.

Finally, the clinical utility of models was analyzed. As our purpose was to predict
acidemia, the most important issue was to analyze, for different threshold points, the false
negative cases, that is, patients that by means of a cut-off point are going to be classified
as non-acidotic below the cut-off point being acidotic. In the clinical utility curve, we
analyzed this measure and the number of cases below a cut-off point, which in our study
are candidates to a cesarean section that are going to avoid it.

Figure 9 presents the clinical utility curves. If we choose a maximum admissible level
of 5% missing acidemia cases wrongly classified, in the curves we can analyze the threshold
point that corresponds to this value. For the logistic regression model, this corresponds to
a 23% cut-off point, and the number of deliveries saved with a minimum loss of acidotic
cases was 40.8%. For the random forest model, it corresponds to a 33% acidotic probability
threshold point, with 46.1% saved deliveries. Finally, for the neural network, it corresponds
to a 1% cut-off point with 25% saved deliveries. Considering the clinical utility of the
models, it is clear that the random forest proved superior.
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Figure 9. Clinical utility curve for logistic regression (top panel), random forest (center panel), and
neural network (bottom panel) models.
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4. Discussion

Here, we developed a comparison analysis of machine learning techniques to predict
acidemia using FHR variables derived from the last 30 min of a continuous electronic fetal
monitoring during intrapartum period. Built models showed a good and similar discrimi-
nation ability, but with clear differences in the calibration and clinical utility analysis, in
which the random forest model showed the best performance.

The external monitoring of FHR is based mainly on the transmission of a transducer
placed on the maternal abdomen, binding by an elastic band encircling the abdomen,
localized at the fetal heart, although there is variability on CGT monitors [2]. Conductive
gel placed between the abdomen and sensor favors the transmission of sound waves,
but the signal can be affected by movement of maternal vessels or the fetus extremities,
causing artefacts. This is a limitation for all systems that try to predict acidemia in real time,
specially, in cases where the signal must be processed as in fractal analysis [17,18].

The development of devices to extract and monitor data should be followed by new
software to analyze the FHR. The information theory is an essential issue to transmit,
process, analyze data, and provide accurate information to the obstetrician in real time.
In this context, there is a variety of applications of the theory of information in signal
processing [50]. The digitalization of the signal provides the possibility of processing it
by means of convolutional type networks or even more complex encoder–decoder deep
learning structures in order to predict acidemia. Tang [27] designs a convolution neural
network (CNN) model named MKNet with an AUC value of 0.95, they proposed their use
by a real-time monitoring of fetal health on portable devices. Zhao [28] also uses CNN to
provide predictions with an AUC above 0.95 in a 10-fold cross validation procedure. The
accuracy of both models is very high but there is no analysis of calibration and clinical utility.

A different approach to the modeling of the complete signal is the extraction of
variables from the signal that are combined in binary classification models of acidemia. In
our analysis, we trained logistic regression, random forest, and neural networks using as
predictor variables EFM features easily obtained from the EFM recording. Our best model
was reached using random forest algorithm. These additive models provide robust models
as their prediction is based on the sum of combination of trees building using different
sets of data and variables. In our study, the best model was found using 100 trees, those
trees are built using the 40% of predictor variables and 63% of the training data sample.
The purpose of this selection is to guarantee that each tree explores the predictive ability
of predictor variables in different data sample and over a different set of variables. In
addition, the trees had a maximum number of cases at a terminal node of 5, preventing the
overfitting that occurs in trees with too many branches.

The AUC obtained in validation data was 0.86, below results of the previous CNN
models [27,28], but with good accuracy. Unfortunately, these studies lack a complete
validation analysis, this would make them more comparable with ours. In our calibration
analysis, we found that probabilities of acidemia provided by logistic regression and
random forest model are well distributed in a wide range between 0 and 1. By contrast, in
neural networks most probabilities are very close to 0 and 1, this is a clear sign of overfitting
in the model. As a consequence, it is very difficult to choose a threshold probability point
that separates acidotic and non-acidotic cases because probabilities are very concentrated
in a narrow range. Logistic regression and random forest are more robust models, allowing
the analysis of the advantages and disadvantages in terms of wrong classification of acidotic
cases and avoided cesarean sections. In the case of the random forest model, to prevent 46%
of unnecessary deliveries with a minimum loss of 5% of acidotic cases is a promising result.

Zhao [24] used an AdaBoost model with sensitivity of 92%, and specificity of 90%,
similar to our results, showing the robustness of the additive tree models, although there is
no information about how many cesarean sections could be saved with the 10% of academic
cases wrongly classified. Iraji [29] used neural networks to reach a sensitivity of 99% and
specificity of 97% which is near perfect classification. These values are extremely high and
probably need an external validation to verify them. Balayla [20] in a metanalysis conclude
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that the use of AI and computer analysis for the interpretation of EFM during labor does
not improve neonatal, but their conclusions are based only on risk ratio analysis. As we
showed in our study, global measures of accuracy such as AUC can give the appearance
that models are very similar, but their performance should be further explored using a
complete validation process.

As a strength of our study, we found a classification model developed by means
of a machine learning algorithm applied to EFM features that are easy to obtain from
EFM recording. These predictor variables have proved as good predictors of acidemia in
previous studies [14,15], but few studies have combined them in a predictive model using
different machine learning algorithms. In addition, this model has shown good clinical
utility to apply it in real clinical practice.

A limitation of the study is that it was a retrospective analysis with data sourced from
a unique hospital without an external validation.

5. Conclusions

Using EFM recording, based on fetal resilience parameters, we developed a random
forest model to predict acidemia that showed good accuracy, with AUC = 0.86 in validation
data. This model can be applied in clinical practice using a cutoff point of 33% for the prob-
ability of acidemia, that showed 5% of missing acidemia but prevented 46% of unnecessary
cesarean sections.
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Abstract: In this paper, a method to classify behavioural patterns of cattle on farms is presented.
Animals were equipped with low-cost 3-D accelerometers and GPS sensors, embedded in a com-
mercial device attached to the neck. Accelerometer signals were sampled at 10 Hz, and data from
each axis was independently processed to extract 108 features in the time and frequency domains. A
total of 238 activity patterns, corresponding to four different classes (grazing, ruminating, laying and
steady standing), with duration ranging from few seconds to several minutes, were recorded on video
and matched to accelerometer raw data to train a random forest machine learning classifier. GPS
location was sampled every 5 min, to reduce battery consumption, and analysed via the k-medoids
unsupervised machine learning algorithm to track location and spatial scatter of herds. Results
indicate good accuracy for classification from accelerometer records, with best accuracy (0.93) for
grazing. The complementary application of both methods to monitor activities of interest, such
as sustainable pasture consumption in small and mid-size farms, and to detect anomalous events
is also explored. Results encourage replicating the experiment in other farms, to consolidate the
proposed strategy.

Keywords: animal behaviour; pattern recognition; anomaly detection; clustering; spectral analysis;
accelerometer sensor; GPS sensor

1. Introduction

Monitoring activity of animals in livestock farms can provide relevant indicators
about their health and welfare level. In fact, ensuring animal well-being through objec-
tive evidence has become a major concern for both cattle producers and consumers [1].
For example, EU Directive 98/58/EC regarding the protection of animals kept in farms [2]
introduces general rules for protecting all animals species for production of food, wool, skin,
fur or other farming purposes. Later on, EU legislation has been progressively extended to
increase the well-being of farmed animals. Additionally, current EU regulation regarding
organic farming rules encourages high standards for animal welfare, requiring farmers to
meet specific behavioural needs of animals [3].

The development of systems to gather and analyse animal behaviour data can certainly
help cattle producers to meet these high quality standards. In recent years, wireless
sensor networks (WSN) and Internet of Things (IoT) technologies have paved the way for
implementing monitoring systems on farms [4–6]. Various methods have been proposed
for automated recording and identification of animal activity in this context. Sensors
embedded in electronic devices attached on animals legs or using neckbands can record
activity information, with great detail. Then, activity patterns of interest can be revealed
through the analysis of these behavioural records.
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A frequent case is the use of accelerometers to create motion logs by tracking move-
ment in a 3-D coordinate system. These devices have been used to register movements of
human users [7]. Moreover, it is possible to estimate the vertical component and magnitude
of the horizontal component of the user’s motion, even in absence of precise information
about the position and orientation of the device with respect to the body [8,9]. Many previ-
ous studies of livestock behavioural activity on farms use accelerometers to gather data
describing animal movements [10–15]. Furthermore, certain studies also use low-cost GPS
devices to register the location of animals, augmenting the information obtained from
accelerometers [16].

Machine learning (ML) classification algorithms can be used to classify cattle activity
patterns automatically, based on registers from accelerometer and GPS sensors [17,18].
Previous studies have documented accurate identification of cattle standing and walking
behaviour through accelerometer data [11,19], along with precise estimation of the duration
of standing behavioural patterns [20].

A comprehensive survey [21], comparing previous studies on ruminant behaviour
prediction, indicates that most of them are focused on identifying a predefined set of
activities. For instance, Smith et al. [22] differentiate among five possible classes (grazing,
walking, ruminating, resting and other activities), whereas Riaboff et al. [23] distinguish up to
13 different behavioural patterns. Usually, the initial problem is broken down into a set
of “one-vs-all” binary classification tasks. Hence, individual outputs from each classifier
must be integrated, which leads to some practical challenges. For instance, it is desirable
to follow a robust methodology for data acquisition and feature engineering that can be
shared among different classifiers [21,24]. In the same way, another limitation of previous
studies is the relatively narrow focus on specific cases of outlier detection techniques, such
as lameness [25], oestrus periods [14] or parturition events [18,26].

Likewise, current research works exhibit a noticeable scarcity with respect to the early
detection of specific cattle social interactions at group level, especially when they lead to
anomalous situations involving potential economic impact on livestock farm operations.

Wolf and other predator attacks constitute a prominent example of such anomalies.
When there exists a potential threat of attack, herds change their behavioural patterns to put
on an alert. They could also stop grazing and ruminating, or even move away to a different
location. The growing and perceptible concern among farm producers on this matter, and
the pressing need to find sustainable trade-off solutions, that preserves both protected
species, such as wolves in the northwest of Spain and other countries, and farmers’ rights
to continue their normal operations and guarantee their animals well-being, constitute a
challenging issue yet to be solved.

Disease transmission represents another good example. Early detection and subse-
quent application of proper corrective actions bring in an opportunity to avoid a severe
impact on productivity. Unusual resting behaviours, abnormal stance and gaits, the absence
of vertical or horizontal neck movements or the observation of too slow displacements can
provide key signals of possible ongoing diseases.

Similarly, despite not representing an anomalous activity itself, the detection of an
unbalanced use of pasture land can also help farmers to develop strategies aimed at a more
rational consumption of natural resources, achieving better management and saving costs.
In this regard, recurrent grazing habits and lack of displacement to alternative areas may
render valuable information to farmers on pasture land usage. Along these lines, recent
results shown in [27] suggest that the combination of movement records and GPS location
data can improve detection of anomalous situations on farms.

In this paper, we present a method to classify cattle behaviour from accelerometer
and GPS data, collected from collars attached to cows in two field experiments. Time and
frequency-domain features are extracted from accelerometer data, to train a supervised
ML classification model for cattle behaviour. GPS data is processed with an unsupervised
clustering method to estimate the number of herds and their spatial scattering. This general
method can be applied to a wide range of scenarios. Furthermore, new activities could be

156



Entropy 2022, 24, 336

incorporated to the classifier, provided that customised training data describing the new
patterns of interest are obtained, following the same preparation procedure. In addition,
potential applications for tracking interesting or anomalous activities, such as unbalanced
use of pasture land, disease transmission or predator attacks, are also explored.

The rest of the paper is organized as follows. Section 2 describes the equipment and
experimental setup for this study, along with our proposed method to analyse animal
behaviour records. Section 3 presents the main results from the two field studies to validate
the suggested approach. In Section 4, we discuss the main implications that can be drawn
from experimental results, as well as potential practical applications of the proposed
method. Finally, Section 5 concludes and describes further research directions.

2. Materials and Methods

2.1. Farms and Animals

In our study, we focus on beef cattle located on two different commercial farms, located
in the Spanish provinces of Avila and Segovia, respectively. Herds raised on these farms
comprise widespread breeds, including Fleckvieh or Salers, among others, along with native
Spanish breeds, such as the Berrenda en Colorado (brindle cow in red) or the Avileña-negra
Ibérica (Iberian Avila’s black). Most of time, animals were kept on pasture and moved freely
within the farm limits. Cows were mainly fed with pasture, although they also received
hay and concentrate supplements. A random sample of 30 cows in both livestock farms
were equipped with accelerometer and GPS devices (see Section 2.2, below). Selected cows
are representative of the most prevalent breeds in cattle from both farms, namely, Fleckvieh,
Salers, Berrenda en Colorado and cross-bred dairy specimens.

2.2. Device and Data Loggers

We explore the use of two different procedures to monitor and analyse animal behaviour:

• Tracking movement: Detailed movement registries are recorded through triaxial ac-
celerometers attached to the neck. In this way, we can identify more different be-
havioural patterns than when the accelerometer is installed on the leg.

• Tracking location: Animal location is registered with GPS sensors that periodically
transmit this information to a centralized server in a cloud computing infrastructure.

Accelerometers and GPS sensors for this study were provided and installed by Dig-
itanimal (https://digitanimal.com/?lang=en, accessed on 25 February 2022), a private
company based in Madrid that develops innovative hardware and software animal moni-
toring solutions on farms. These sensors are integrated in an electronic device developed
by this company, mounted inside a weatherproof plastic case and attached to the cow using
a neckband. Figure 1 depicts a model for the collar case containing the device, and the
three coordinate axes monitored by the accelerometer sensor. In turn, Figure 2 shows a
cow of Fleckvieh breed wearing the neckband attaching the device to monitor movement
and location.

Acceleration levels on cows necks are measured by using MEMS (Micro Electro
Mechanical System) accelerometers. This type of accelerometer measures acceleration in
3 orthogonal directions (triaxial accelerometer, see Figure 1). The sensor captures DC (direct
current or offset) acceleration (earth gravity), providing not only acceleration levels but also
sensor orientation. It is a low-power consumption sensor, with a working temperature
range of −40º to 85º Celsius, suitable for the required application. Raw data are acquired at a
10 Hz sampling frequency, using a dynamic range of ±2 g. Data are retrieved continuously
since the sensor is connected and directly stored in plain text format in a SD memory card.

With respect to GPS sensors, they must send information at more widely spaced
intervals than in the case of accelerometers in order to optimize battery consumption and,
therefore, avoid premature battery draining. We must take into account that the monitor
device is a commercial hardware solution, conceived to be affordable and remain operative
over relatively long time periods (usually, 2–3 months). The GPS device is configured to
use a maximum DOP (Dilution of Precision) threshold of 1, and to seek signal reception
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from a minimum of 7 different satellites. With this configuration, the estimated average
measurement error is 1.7 m, and 90% of measurements present an error lower than 5.2 m.

Figure 1. Monitoring device with 3-D accelerometer and GPS sensors. Coordinate axes represent
movement directions tracked by the accelerometer.

Figure 2. A Fleckvieh breed cow wearing the monitoring device, attached with a neckband.

A primary goal for this product is to avoid the need of frequent maintenance tasks
(such as replacing the battery or the SD card), that would interfere with normal farm
routines. In consequence, the sampling rate of GPS data is set to 5 min, that is, a single
message is sent at the end of each 5-min interval. In spite of this initial specification, it
is also possible that the GPS signal is lost in certain shadow regions on the farm, or that
transmitted data do not successfully arrive at the server, due to propagation issues, network
problems or other causes. For this reason, the system must be prepared to deal with missing
data in location records.

Next, we describe the procedure for data acquisition, the proposed method for pro-
cessing accelerometer and GPS data, as well as the approach for identification of animal
behaviours using ML algorithms.

2.3. Accelerometer and GPS Data Collection

Figure 3 shows an example of 3 raw signals produced by one of the accelerometers for
220 s. Each individual signal is the result of monitoring acceleration changes along a single
axis. The blue signal corresponds to the X-axis, the orange signal represents oscillations
along the Y-axis and the green signal stands for acceleration changes along the Z-axis. Raw
signals recorded by each accelerometer are inputs for the feature extraction step in data
analysis (see Section 2.6 for further details).
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Figure 3. Raw signals recorded by the 3-D accelerometer for each coordinate axis.

While triaxial accelerometers in collars store signal data locally, the GPS sensor moni-
tors the location of the animal and periodically transfer these data to a central server each
5-min interval, containing the following attributes:

• id: Unique identifier for the monitored cow.
• timestamp: A timestamp value in the format YYYY-MM-DD HH:MM:SS.
• longitude: Longitude coordinate for the current animal position.
• latitude: Latitude coordinate for the current animal position.

2.4. Behavioural Observations

One of the main limitations to validate the automated detection of behavioural patterns
in ruminants is the lack of a validation database, providing examples of specific behaviours
and their associated patterns captured by the accelerometer. In our experiments, this is
addressed by taking video recordings of a sample of animals on pasture fields, wearing
the monitoring devices described above. Hence, the main goal of these recordings is to
match each logged signal with its corresponding recorded behaviour. Furthermore, video
recordings also allow double-checking the correct alignment between signals and video
timestamps, a problem addressed via a specific methodology described in Section 2.5.

A team of 10 scientists were trained to supervise the recorded scene, annotating the
timestamp and observed behaviours. Each scientist was responsible for tracking a single
animal, annotating behavioural patterns over a 5 h session. Operators encoded activities
on log files using a shared predefined nomenclature, described in the ethogram shown
in Table 1. Annotated behaviours include: grazing, ruminating, steady standing, laying and
others. The last category encompasses less frequent behaviours, such as running, scratching,
drinking, calf nursing, etc.). The duration of individual behaviours was quite variable,
ranging from few seconds (e.g., for scratching) to several minutes, in some cases (e.g.,
∼16 min for a single instance of ruminating or ∼11.5 min for one instance of laying). Some
behaviours required immediate reactions from human observers, therefore reducing the
length of video recordings to identify them (e.g., in running operators must relocate to
follow the animals).

Table 1. Behavioural ethogram describing frequent activities observed by operators in the experiment,
ordered by total duration of recorded video evidence.

Behaviour Code Total Durat. (sec.) Description

Grazing GRA 12,056 Regularly lowering and raising its head to eat pasture, while standing or walking slowly
Ruminating RUM 4429 Ruminating previously eaten food, while standing or laying

Laying LAY 1940 Laying on the ground without performing any other relevant activity
Steady standing STA 1011 Standing almost still without performing any other relevant activity

Walking OTH#WALK 509 Walking at normal pace with calm steps
Licking OTH#LICK 414 Noticeably turning its neck to lick itself

Scratching OTH#SCRA 159 Raising one leg to scratch its head or body (also specified if scratching against a tree)
Running OTH#RUN 94 Moving at high pace with quick steps
Drinking OTH#DRI 93 Lowering its head to drink water

Calf nursing OTH#NUR 30 Steady while nursing a calf
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Video recordings and observational log files derived from them were subsequently
reviewed by independent supervisors, to ensure consistency of activity labelling between
files. After an initial screening, 3 animals were selected for this analysis, as their activity
logs provided the most accurate registries. A total of 238 unique behavioural patterns were
identified from these recordings. These patterns, together with their associated signals
recorded by accelerometers, constitute the gold standard for this study.

Figure 4 reports the percentage of samples corresponding to each individual activity,
over the total number of logged behaviours. Despite other activities were also annotated
by scientists in observational logs, only the most frequent ones are considered in this
classification analysis.

Figure 4. Proportion of observed behaviours of cows on the field, annotated by scientists.

2.5. Alignment between Accelerometer Data and Observations

To facilitate the matching of signal and video records, a special procedure was fol-
lowed to create a distinctive signature that clearly marked the start and the end of the
experimental scope:

• Before the sensor collar is installed, the operator swings the collar for 1 min, so that a
unique oscillation pattern is produced by the accelerometer on the 3 axes.

• When the experiment is finished and just after the collar is taken off from the animal,
the operator swings again the collar for 1 min to reproduce the same unique pattern
as in the starting point.

This pattern marking the start and the end of the experimental observation time cannot
be reproduced naturally by cows while wearing the collar. Hence, this signature signal can
be employed to fine tune the alignment between internal clocks in video cameras and the
accelerometer clock.

2.6. Processing Accelerometer Data

The procedure for accelerometer raw data processing consists of different steps, which
are depicted in Figure 5.

Figure 5. Overview of the proposed procedure for accelerometer data processing.

In the first step, time signals are divided in 10 s consecutive, non-overlapping time
intervals or time windows. As a result, each interval contains 100 consecutive samples,
since 10 samples per second are generated using a 10 Hz sampling rate. From now on,
we refer to the time intervals obtained from this process as xi(t), where i denotes the
interval index. Figure 6a illustrates the result from this step, dividing the original signal

160



Entropy 2022, 24, 336

(in this case, for the X-axis) in 4 different time windows, spanning adjacent intervals of
10 s. It must be remarked that, unlike many previous studies of this kind of data (see [21]
for a comprehensive survey), we process the signals from each of the 3 accelerometer axes
(X, Y, Z) separately. Previous studies analysing animal behaviour in wild habitats [28–30]
suggest that this alternative data processing method can provide advantages for accurate
detection of behavioural patterns, especially dynamic ones.

(a)

(b)

Figure 6. Time windows extracted from original signal generated by the accelerometer and their
corresponding components. (a) Raw time signal divided in 4 windows. (b) Time-domain signal and
components extracted from Window 2 in Figure 6a.

The second step in Figure 5 involves processing the time interval to obtain their AC
(alternating current) component, along with its representation in the frequency domain,
which are illustrated in Figure 6b. In this study, the AC component is extracted using a
method that differs from several previous research works, where digital filters are applied to
remove high-frequency noise and eliminate the DC component [31]. Hämäläinen et al. [9]
show that problems may arise when the orientation of the sensor changes (e.g., due to
sudden shakes) during data acquisition. Thus, they propose a simple alternative method
to avoid these problems, calculating instead the “jerk” (acceleration change) between two
consecutive samples. This approach renders orientation-independent features, avoiding
the need to estimate the actual acceleration accurately.

As a result, the AC component, identified as xi−AC(t), is computed as the regular
difference between two consecutive time windows. Finally, the frequency-domain rep-
resentation of the AC component is calculated in the last stage of this pipeline, as the
basis for subsequent spectral processing. To achieve this, we compute the Fast Fourier
Transform (FFT) [32,33] of the AC component, using a 1-s window size, a Hanning window
type [34] and 50% overlapping between consecutive time windows. Figure 7 summa-
rizes the pipeline for processing the raw signal from the accelerometer in the time and
frequency domains.

Figure 7. Pipeline performed within the accelerometer signal processing stage.

Calculating the FFT of the AC component renders a spectrogram in a frequency
range from 0 Hz to 5 Hz (according to Shannon’s theorem), with a 1 Hz resolution. For
this purpose, the Python SciPy signal processing toolbox (https://docs.scipy.org/doc/,
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accessed on 25 February 2022) is used. This will be denoted as the spectral component,
identified as Xi−AC( f ). The complete spectral component comprises 6 individual frequency
components, corresponding to each of the 1-Hz resolution bands. The panels in the lower
part of Figure 6 represent the three elements calculated in this second step. The lower-left
panel represents slice 2 from the original signal in the top panel. The AC component
extracted from the original signal in time interval 2 is shown in the lower-centre panel.
Finally, the time-domain representation of the spectral component for each frequency band
is depicted in the lower-right panel.

The three elements obtained from the preprocessing step (time window, AC compo-
nent and spectral component) are inputs for the extraction of different features, performed
in the third step of Figure 5. Finally, these features are used for automated behaviour
detection with ML algorithms. When the data inputs are the time window and the AC
component, features obtained in this way correspond to the time domain. In turn, when
the input is the spectral component, resulting features correspond to the spectral domain.
Table 2 describes the list of features extracted from each data input. Details about their
computation are explained below.

Table 2. Features extracted from each input generated after preprocessing the accelerometer signal.

Data Input Feature Description

Raw
accelerometer
axis (X,Y,Z)

Mean Average value of signal
Max Maximum value of signal
Min Minimum value of signal
Q5 5th percentile of signal values
Q95 95th percentile of signal values

AC component (time
domain) xi−AC(t)

Mean Average value
STD Standard deviation of values distribution
Kurtosis Kurtosis of values distribution
Skewness Skewness of values distribution
Max Maximum value
Q5 5th percentile of values
Q95 95th percentile of values

AC component (freq.
domain) xi−AC( f )

RMS Root mean square spectral density
STD Standard deviation spectral density
Min Minimum value spectral density
Max Maximum value spectral density

2.6.1. Time Domain Features

Table 2 shows the features obtained for each type of data input from accelerometer
signals. Using the raw accelerometer axis (X, Y, Z) input, the following features are obtained
(see first row in Table 2): mean, maximum, minimum, 5th percentile and 95th percentile.
A total of 15 time features are extracted, 5 features per each accelerometer axis (X, Y, Z).
Likewise, using the AC component representation in the time domain as a data input (see
second row in Table 2) the mean, maximum, standard deviation (STD), skewness, kurtosis,
5th percentile and 95th percentile features are computed. A total of 21 features are extracted
using this data source, that is, 7 features per each accelerometer axis.

2.6.2. Frequency Domain Features

The spectrogram represents how acceleration levels progress for each frequency and
time instant. According to the processing parameters previously defined, the spectrogram
of the AC component comprises 6 different frequency bands, at 0 Hz, 1 Hz, 2 Hz, 3 Hz, 4 Hz
and 5 Hz. Since the spectrogram represents information in 3 dimensions simultaneously
(time, frequency and amplitude), it cannot be used directly for feature extraction. To achieve
this, the spectrogram is decomposed of frequency, obtaining 6 spectral series that progress
along time. Figure 6b shows the resulting spectral series for a certain spectrogram.
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Once these spectral series are computed for the AC component, they can be used for
feature extraction. The third row of Table 2 presents the features that are extracted for each
spectral series: root mean square (RMS) value, standard deviation (STD), minimum and
maximum value. A total of 72 spectral features are obtained, that is, 4 features for 6 spectral
series, resulting in 24 features per axis.

2.7. Processing GPS Data

Location records transferred by GPS sensors to the server are stored in CSV files. There
is one file for each tracking collar attached to a cow. To start off, data in all CSV files are
coalesced into a single file and records are ordered according to their timestamp value.
Duplicate entries that might have been incorrectly recorded or transferred are also elided
in this first step. After this, we must clean the dataset filtering incorrect location entries.
This may be caused, for instance, due to inaccurate location detection by the sensor in areas
of the farm where GPS coverage is insufficient. To attain this, the daily average values
for latitude and longitude coordinates are calculated for each monitored farm. Then, any
location registry further than 1 km from the average position is eliminated. This figure
is well above the average value of the overall area of both livestock farms under analysis
(about 50 hectares, in both cases), to filter out clear data registration errors. Once GPS data
are completely prepared, the relevant attributes (id, timestamp, longitude and latitude) can
be used.

2.8. Machine Learning Algorithms

Features extracted from accelerometer signals are used to train a supervised ML
algorithm for behavioural pattern classification, whereas GPS location data is analysed
through an unsupervised machine learning method, to detect anomalous activity patterns.
Details on these analyses using machine learning models are provided below.

2.8.1. Behaviour Classification Based on Accelerometer Data

Classification of behavioural data from field experiments is performed using the
random forests (RF) algorithm [35]. This tool has been selected due to the high number of
descriptive features available and the capacity of RF to automatically identify important
features to detect each individual behaviour.

The complete set of 238 behavioural samples, including the 108 features extracted from
accelerometer signal processing, is split into 5 different folds, following a stratified random
sampling approach [36]. Then, a multi-class RF classification algorithm is trained for every
fold using 75% of data and the remaining 25% for testing. Video recordings are combined
with these input data to produce a validation database. The target categories for the
classification task are grazing, ruminating, laying and steady standing, while patterns included
in category others are filtered out, since not enough samples for each individual behaviour
in this group are available to identify them accurately. The hyperparameters selected for
RF are the following: we use information gain (entropy) to measure the quality of splits; the
minimum number of samples required to split an internal node is set to 20; we select using
out-of-bag samples to estimate the generalization score and we build 100 trees for each
forest. Then, the importance of each feature to identify individual activities is obtained in
every trained model. Finally, all feature importance values per activity are averaged over
the 5 folds to report the final results.

2.8.2. Automated Detection of Herd Scattering Using GPS

The main objective in our analysis of GPS location data is to automatically identify
groups of monitored cows within the limits of the farm and sudden changes in the scattering
of a given group. Rapid modifications in animal dispersion within a certain group may
indicate the occurrence of anomalous events that must be reported to farm operators
and managers.
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In the first place, data for each livestock farm is identified and analysed separately.
Given a location dataset describing the situation in a farm, a centre location for every group
of animals must be identified. Then, the dispersion of animals around their corresponding
group centre must be estimated and tracked, to account for abrupt alterations. We use the
Euclidean distance (L2 norm) [37] to measure the separation between any two cows, and
generate the distance matrix for all animals in the farm.

Identifying the groups and their representative location leads to an unsupervised
learning task. Among the different alternative algorithms that can be applied, partitioning
clustering algorithms [38,39] provide a convenient solution, as the total number of location
points in each farm is not large. Although the k-means algorithm [37] is a popular solution
for this kind of problems, we found that, in many cases, it does not provide representative
locations for each group of animals in this application. The main cause behind this problem
is the frequent presence of outliers in animal groups, that is, cows that are well-separated
from the rest of members of the same cluster, thus pulling the location of the k-means centre
for that group.

Due to this, a more robust clustering algorithm, insensitive to the presence of outliers
in a cluster, must be employed. The k-medoids algorithm [38,39] forces the selection of one
of the actual location points in a certain cluster to act as the centre for that group. We found
that cluster identification following this approach is much more reliable and better matches
extant information from farm workers and managers about the number and location of
herds. The appropriate number of clusters for each farm is selected by calculating the
within-clusters sum of squares (WCSS) for different values of k, evaluating the cohesion of
clusters in each case. Then, a scree plot of WCSS against k is generated and we choose the
value for k using the elbow method [37,40]. Alternatively, farm managers could override
this choice of k by entering extant information about the estimated number of herds.

Once the number of herds and a reference location for each group are found, we turn
to the problem of estimating the scattering of animals in a given group from their reference
point. In this case, we opt for choosing the farthest animal assigned to the cluster as the
delimiter of the maximum scattering range for that group, as shown in Figure 8. Since we
use the Euclidean distance to measure proximity between cows, we effectively establish a
circular region of radius r equal to the distance from the reference location in the group to
the farthest member of that herd.

Figure 8. Detection of the scattering limits for a herd. The farthest animal assigned to that group
determines the scattering radius r.

This procedure is periodically repeated for every new sample of locations sent by GPS
sensors from the farm. For each new sample, the total number of groups, the reference
location and the estimated value of r for each group are computed and stored.

3. Results

In this section, we summarize the results from the field experiments to identify animal
behavioural patterns using the features extracted from accelerometer signals represented in
the time domain and the frequency domain, and GPS location data.
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3.1. Relevant Classification Features

Table 3 shows the rank and feature importance values [35,41] (mean accumulation of
impurity decrease within each tree, known as Mean Decrease in Impurity or MDI), averaged
from the five RF models trained with time domain and frequency domain features obtained
from accelerometer signals. For the sake of conciseness, here we only report the top-five
features identified for each activity. Graphs displaying the complete set of features for each
activity and their associated importance values are presented in Appendix A.

Table 3. Identified animal behaviours, top-5 features used by trained RF models to classify them and
their importance (MDI), averaged over the 5 RF models.

Behaviour Rank Feature Avg. MDI

Grazing

1 Z_AC_Q5 0.06798
2 Z_AC_STD 0.06274
3 Z_2Hz_RMS 0.06189
4 Z_AC_Q95 0.06115
5 Z_1Hz_RMS 0.06007

Laying

1 Y_Q95 0.06129
2 Z_AC_Q5 0.05319
3 Y_MAX 0.04246
4 Y_AC_Q95 0.03975
5 Y_MEAN 0.03601

Ruminating

1 Z_AC_Q5 0.06787
2 Z_AC_Q95 0.04863
3 X_Q5 0.04849
4 Z_AC_STD 0.03537
5 Y_Q_95 0.03486

Steady standing

1 X_1Hz_MIN 0.06075
2 X_5Hz_MIN 0.04870
3 X_3Hz_MIN 0.04429
4 X_2Hz_MIN 0.04194
5 X_AC_KURT 0.04022

We can spot several interesting traits regarding the most important features used
by the RF algorithm to identify each behaviour. In the case of activity grazing, the most
important features to detect this pattern are related to movement along the Z-axis. This is
consistent with the observed movements, involving vertical necks displacements as the
cow lows down its head to eat pasture and raise it up to continue chewing. Moreover,
we also notice that two out of the top five features come from the frequency domain
representation of the AC component. This confirms the usefulness of the spectral analysis
of accelerometer signals for animal behaviour recognition. Another salient example of the
key role of spectral components in activity detection is the case of steady standing. four out
of the top five features come from the AC component processing in the frequency domain.

3.2. Classification Performance Metrics

Table 4 presents several performance metrics computed for the RF classification model,
namely, accuracy, recall and AUC [42,43]. In general, classification accuracy attained by this
algorithm was good for all behavioural patterns, with the highest score for grazing and the
lowest for ruminating. However, recall metrics drop for activities with fewer samples in the
dataset, such as laying or steady standing. Since we are developing a general detection proce-
dure, that targets a variety of activities, the algorithm still presents limitations detecting all
instances from under-represented categories, with fewer samples in the dataset.
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Table 4. Performance metrics for the RF classification model. All metrics are average values over the
5 folds.

Behaviour Accuracy Recall AUC

Grazing 0.93 0.945 0.974
Laying 0.907 0.611 0.894
Ruminating 0.881 0.893 0.967
Steady standing 0.922 0.58 0.912

4. Discussion

Previous research has shown the high interest of animal behaviour identification
on farms [4–6]. Therefore, this work aims to propose a general procedure to recognize
multiple activities based on accelerometer and GPS data. On top of this, previous studies
has been restricted, so far, to the use of one of these two types of data sources for tracking
animal behaviour, with only recent exceptions [16,18,44]. In this work, we explore the
potential of combining data from both types of sensors to achieve a more advanced activity
pattern identification.

4.1. Classification Model from Accelerometer Data

As described in Section 2.6, a separate analysis of accelerometer signals over each axis
(X, Y, Z) along with the use of jerk filters and spectrograms to compute relevant features is
proposed. Previous studies have shown [30] that the combination of this data processing
method with classification trees ML algorithms (like the RF ensemble learning method applied
in this work) can render good results for identification of animal behavioural patterns.

According to the feature importance metrics reported by the assessment of the RF
classification model, shown in Table 3, time-domain features play an important role in
the classification of certain behaviours such as laying or ruminating, where animals tend
to remain relatively still. In our data processing method, this is linked to the absence of
sudden shakes (“jerk” or “AC component” in this study), which turn the AC signal quite
stable over time. In turn, frequency-domain features are also relevant for detection of
dynamic behaviours such as grazing, or patterns with sudden activity peaks in any axis
such as steady standing, better captured by our definition of AC component.

In this regard, it is of key importance that the internal clock used by the accelerometer
marks precise regular intervals between samples. Otherwise, digital signal processing
techniques to obtain the spectrogram of the AC component for different frequency bands
will not be applicable, in case that sampling intervals present irregularities. However,
results from this field study with commercial, low-cost equipment are limited by the
accuracy of captured signals (that can be subject to sensor failures, battery drain due to
climatic conditions and other adverse situations) and the ability to precisely correlate
behaviours observed by human operators and registered on video recordings with the
corresponding patterns captured by sensor devices. For example, as shown in Section 3.2,
grazing was the most frequent activity pattern detected, which is in line with results from
previous studies [16]. Possibly due to this high number of available samples identification
of most frequent behaviours is more accurate than for other less represented patterns,
according to performance metrics in Table 4.

On top of this, 9.1% of behaviours included in the study were labelled as other. How-
ever, detailed annotations were taken by operators regarding actions jointly accounted for
in the omnibus other category. These include, among others, cows feeding younger calves,
running cows or animals licking themselves. Some of these behaviours were correctly
logged by human operators but not enough signal samples were obtained to generalize
their detection to other cases. As a result, this study confirms that the proposed method-
ology could be generalized to other behavioural patterns, as soon as new data becomes
available. An important implication in this sense is the absence of publicly available online
reference datasets, registering data captured by sensors and their related activity patterns.
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Therefore, addressing this lack of validation databases could be a very useful contribution
in further research works.

4.2. Potential of GPS Data for Activity Detection Based on Herd Scattering

Figure 9 presents the result of a preliminary algorithm for automated detection of
herds and within-herd spread, based on GPS data, corresponding to the livestock farm in
Avila. The red dots depict the location of animals tracked by the GPS sensors. The map
shows two separate herds, represented by the algorithm via the identified k-medoids for
each group (black point). Then, the algorithm calculates the scattering of animals around
the cow selected as the representative centre for that group. The algorithm could also detect
changes in the radii calculated for each herd, following a basic procedure based on change
point detection [45].

Figure 9. Example of automated detection of location and scattering of two different herds in one of
the farms, near Ávila (Spain).

As shown in previous research [27], accelerometer and GPS data can be combined to
detect anomalous events, such as unbalanced use of pasture land or disease transmission,
among others. Table 5 describe some potential cases in which both components could be
combined to eventually provide farmers with the proper tool for an early detection.

Table 5. Examples of anomalous/interesting activities and how analysis of accelerometer and GPS
data can be applied to detect them.

Activity of Interest Accelerometer Data GPS Data

Predator attacks Vertical axis with no movement Quick displacement to alternative location;
possible successive relocations

Pasture land use Detection of grazing behaviour Mapping of areas under use (presence
longer than a certain time threshold)

Disease transmission Detection of steady-standing or
laying behaviours

Erratic movements; very slow transitions
to alternative areas

In the case of predator attacks, cows are vigilant and in state of alert. This natural
response to a feasible external threat translates into the detection of noticeable periods
of time in which cows are not moving their heads (grazing and ruminating activities are
stopped). Likewise, herds may move away to an alternative location quite rapidly to
mitigate the detected risk [46,47].
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As for the use of pasture land, accelerometer data obtained from monitored cows
would inform about grazing activities. For its part, GPS data would provide clear indication
of the areas on which such activity occurs. Despite not being an anomalous activity, this
information may assist farmers to better manage resources and costs, or even reduce pasture
land required which is considered as a top priority demand [16,48,49].

Finally, the lack of vertical or horizontal movements in cow necks, an abnormal stance
and gait, an unusual resting behaviour or too slow (or even non-existent) displacements
detected via GPS data could offer an complementary perspective to detect disease transmis-
sion, whose modelling process would also require health scoring for each monitored animal.
Early disease detection could prevent severe cases and facilitate immediate application of
treatment measures, reducing productivity loss [50,51].

This procedure is also compatible with the automated detection of the number of herds
within the farm limits or with manual configuration of the number of herds to be tracked,
introduced by human users. Additionally, the proposed method can also be integrated in
existing tools for animal monitoring on farms. Operators can configure the appropriate
parameters to raise notifications, based on their own management experience with animals.
As additional data are tagged and become available, the tool can be linked to the detection
of particular patterns of interest (predator attacks, parturition, etc.). Again, the absence of
publicly available datasets that can serve as a benchmark for this type of automated tools
in animal behaviour recognition calls for filling this gap in further research.

Tracking the evolution of these indicators over time, it would be possible to identify
two types of interesting changes:

• As herds move around the terrain, the reference animal representing that herd will
register such displacement. Therefore, at the end of the day farm operators and
managers can review the trajectory followed by different herds, leading to a more
precise estimation of pasture consumption.

• Changes in the scattering radius r calculated for each herd may indicate interesting
behavioural patterns happening to that group of animals. In particular, a sudden
increase in the value of r may indicate among other possibilities) the attack of potential
predators or other threats.

Another interesting line for further research is exploring the formal combination of
activity records from accelerometers and GPS, for instance, through information fusion
techniques [44]. The validity of this approach has already been tested for the case of
outlier detection. Moreover, the only previous work that combines GPS and accelerometer
datasets [16] is tailored to detecting a single behaviour (grazing) and just employ the GPS
coordinates to locate every behaviour interval. However, there is a clear potential in the
simultaneous utilization of features extracted from both accelerometer and GPS location
data analysis to improve the recognition of animal activity patterns on farms.

5. Conclusions

In this work, we present a new method for automated classification of animal be-
havioural patterns, through the analysis of activity data registered by a triaxial accelerom-
eter and a GPS sensor. A unique aspect introduced in this approach is the application
of techniques for spectral analysis of accelerometer signals in the frequency domain. De-
scriptive features derived from the spectrogram of these signals play an important role in
detecting certain patterns of interest, such as grazing (the most frequent activity observed)
or steady standing. Likewise, this method is not restricted to a particular behavioural
pattern and it can be readily generalized to any behaviour of interest, provided that labelled
activity data is available. Furthermore, the analysis of GPS data recording animals locations
through unsupervised machine learning algorithms enables the detection of groups of
animals and their dispersion, which can be regularly tracked and reported to users. Jointly,
results from these two analyses can build a more complete picture of activity logs and facil-
itate decision-makers the necessary information to oversee pasture consumption, develop
actions in response to anomalous events and improve animal welfare in their farms.
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Abbreviations

The following abbreviations are used in this manuscript:

AC Alternating Current
AUC Area Under the Curve
CSV Comma Separated Values
DC Direct Current
FFT Fast Fourier Transform
GPS Global Positioning System
IoT Internet of Things
MDI Mean Decrease in Impurity
MEMS Micro Electro Mechanical System
ML Machine Learning
PCA Principal Components Analysis
RF Random Forests
RMS Root Mean Square
ROC Receiver Operating Characteristic
SD Secure Digital
STD Standard Deviation
WCSS Within-Cluster Sum of Squares

Appendix A

Next, we provide several graphs presenting the importance values of each feature
extracted from the analysis of signals captured by triaxial accelerometers, for identification
of the main behavioural patterns considered in this study, as reported by the RF algorithm.

Figure A1. Feature importance in detection of grazing behaviour.
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Figure A2. Feature importance in detection of lying behaviour.

Figure A3. Feature importance in detection of ruminating behaviour.

Figure A4. Feature importance in detection of steady standing behaviour.
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