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Preface to ”Value of Mineralogical Monitoring for the

Mining and Minerals Industry”

This Special Issue of Minerals provides an overview on the value of mineralogical monitoring

during the mining and processing of ores and minerals. Selected case studies from “green

metals”, e.g., lithium ores, nickel laterites, bauxite, copper ores, and heavy mineral sands, highlight

how frequent and accurate mineralogical monitoring has become a standard tool to monitor

geometallurgical properties, increase recovery rates, and boost energy efficiency. Most contributions

use X-ray diffraction (XRD) as an industrial sensor to identify and quantify mineralogical composition

and monitor process parameters. Recently, statistical methods such as cluster analysis and partial

least squares regression (PLSR) in combination with XRD raw data have become increasingly popular

for handling large amounts of data and correlating process-relevant parameters directly with XRD

measurements. This next generation of information, analytical sensors and data enables the use of

artificial intelligence (AI) and machine learning (ML) in the mining industry to enhance performance

and efficiency.

Herbert Pöllmann and Uwe König

Editors
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Editorial

Value of Mineralogical Monitoring for the Mining and Minerals
Industry

Uwe König 1,* and Herbert Pöllmann 2,†

1 Malvern Panalytical B.V., 7602 EA Almelo, The Netherlands
2 Department of Mineralogy, Institute of Geosciences and Geography, Martin-Luther Halle-Wittenberg

University, 06108 Halle, Germany
* Correspondence: uwe.koenig@malvernpanalytical.com
† Herbert Pöllmann passed away during the preparation of this Editorial.

The shift towards lower grade ore deposits, sustainable energy, CO2 reduction, volatile
market conditions and digitalization has pushed the mining and minerals industry towards
predictive, sustainable and agile analytical solutions to improve safety and increase
operational efficiency. Therefore, fast and frequent mineralogical monitoring,
geometallurgical modeling, and the prediction of process-related parameters provides
value for mining operations.

Traditionally, quality control in mining industries has relied on time-consuming wet
chemistry and on the analysis of elemental composition. However, the mineralogy ruling
the physical properties of an ore is often monitored infrequently (if at all). The use of
high-speed detectors has turned X-ray diffraction (XRD) into an important tool for fast
and accurate process control, even for ores with a complex mineralogy. Recent statistical
methods such as cluster analysis or partial least squares regression (PLSR) in combination
with XRD raw data have become increasingly popular for handling large amounts of data
and correlating process-relevant parameters directly with XRD measurements [1]. The next
generation of information processing, new analytical sensors, and big data enables the use
of artificial intelligence (AI) and machine learning (ML) in the mining industry to further
enhance performance and efficiency.

Mineralogical monitoring is already the standard method to control and monitor
processes in other industries, such as cement manufacturing [2] and aluminum smelting [3].
This Special Issue of Minerals demonstrates the value of its applications for the mining
and minerals industry. The focus is on so-called “green metals” such as nickel, lithium,
copper, aluminum and titanium. These metals will be required for energy transition in the
coming years.

Nickel laterite production is on the rise and is surpassing conventional sulfide deposits.
The efficiency of mining and processing nickel laterites is defined by their mineralogical
composition. Mineralogy plays a key role in the production of nickel metal from nickel
laterites. The value of mineralogical monitoring for grade definition, ore sorting, and
processing is explained by König [4].

As lithium cannot be analyzed by X-ray fluorescence (XRF), this element is monitored
by time-consuming wet chemical methods. The use of XRD for the quantitative analysis
of lithium minerals and the recalculation of lithium content using statistical methods is
discussed in the paper by Pöllmann and König [5]. In addition to addressing hard rock
lithium ore analysis, more complex considerations on how to analyze lithium salt brines
are included.

Quantitative XRD as a tool to monitor optimal blending and the detection of penalty
minerals—which affect the flotation and concentration quality of copper ores—is described
by Pernechele et al. [6]. The use of mineralogical monitoring for real-time decisions is
discussed. The paper by Can et al. [7] on copper sulfides demonstrates the influence of

Minerals 2022, 12, 902. https://doi.org/10.3390/min12070902 https://www.mdpi.com/journal/minerals1
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pyrite mineralogy on the flotation process, and the possibility of developing alternative
conditions to improve the performance of the process.

Available alumina and reactive silica are the main parameters controlling the beneficiation
of bauxite, which is traditionally measured by laborious, expensive, and time-consuming
wet chemical digestion. Alternative methods based on XRD analysis are evaluated by
Melo et al. [8]. The potential of these methods industrially applied for rapid and automated
quality control of bauxites is demonstrated. The use of mineralogical analysis of alumina-rich
clays—covering the largest and most important bauxitic deposits of northern Brazil—
as possible raw materials for the local cement and ceramic industry are discussed by
Negrao et al. [9].

Heavy mineral sands are the source of various commodities, such as white titanium
dioxide pigment and titanium metal. König and Verryn [10] provide information about
the use of XRD to determine the composition of raw ores, heavy mineral concentrates,
and titania slag. The paper highlights the importance of the fast and direct analysis of
the phase composition due to the fact that the efficiency of the different process steps
depends on the exact composition of the various titanium and iron phases and the different
oxidation stages.

Otoijamun et al. study barite from selected locations in Nigeria [11] and aim to
determine its suitability for various industrial applications. The paper shows the added
value of XRD in developing beneficiation procedures, processes, and technologies for
barite purification.

A systematic review concerning developing solutions based on machine learning
to utilize mineralogical data in mining and mineral studies is given in the paper by
Jooshaki et al. [12]. They highlight the importance of high-quality and extensive mineralogical
information with respect to the increasing global demand for raw materials and evaluate
the complexities of the geological structure of ore deposits and decreasing ore grades.

Author Contributions: Writing—original draft preparation, U.K. and H.P.; writing—review and
editing, U.K.
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Abstract: Nickel laterite ore is used to produce nickel metal, predominantly to manufacture stainless
steel as well as nickel sulfate, a key ingredient in the batteries that drive electric vehicles. Nickel
laterite production is on the rise and surpassing conventional sulfide deposits. The efficiency of
mining and processing nickel laterites is defined by their mineralogical composition. Typical profiles
of nickel laterites are divided into a saprolite and a laterite horizon. Nickel is mainly concentrated
and hosted in a variety of secondary oxides, hydrous Mg silicates and clay minerals like smectite or
lizardite in the saprolite horizon, whereas the laterite horizon can host cobalt that could be extracted
as a side product. For this case study, 40 samples from both saprolite and laterite horizons were
investigated using X-ray diffraction (XRD) in combination with statistical methods such as cluster
analysis. Besides the identification of the different mineral phases, the quantitative composition of
the samples was also determined with the Rietveld method. Data clustering of the samples was
tested and allows a fast and easy separation of the different lithologies and ore grades. Mineralogy
also plays a key role during further processing of nickel laterites to nickel metal. XRD was used to
monitor the mineralogy of calcine, matte and slag. The value of mineralogical monitoring for grade
definition, ore sorting, and processing is explained in the paper.

Keywords: nickel laterite; ore sorting; XRD; Rietveld; cluster analysis

1. Introduction

Battery manufacturing together with the demand for stainless steel is the biggest
driver for the global nickel mining industry. About 60% to 70% of the current worldwide
nickel resources are derived from laterites whereas the rest is extracted from nickel sulfide
ores [1,2]. However, nickel laterites account currently only for about 40% of the global
nickel production. Since ore grades and resources of sulfide nickel deposits generally
decrease, mining companies are forced to focus more on the extraction of nickel from
laterites in the future, see Figure 1.

Primary nickel production is generally divided into two main product categories.
Nickel class I (nickel content > 99%) describes a group of nickel products comprising
electrolytic nickel, powders, and briquettes, as well as carbonyl nickel. Nickel class II (nickel
content < 99%) comprises nickel pig iron and ferronickel. These nickel products are used
especially in stainless steel production. Roughly 48% of the total nickel mining output is
related to class I nickel products, with class II nickel products accounting for the remaining
52% [3]. While class II nickel is mainly obtained from laterites, the production of class I
nickel is based primarily on sulfide ores but moving to laterites too. Battery production
requires class I nickel. Currently, approximately 5% of the world nickel production is used
to manufacture batteries. The high demand for electric vehicles together with increasing the
energy density of the batteries forces manufacturers more and more to increase the nickel
content and to decrease the cobalt content in batteries. In 2025 the demand for nickel for
batteries is expected to increase by approximately 15% of the world nickel production [3].
The additional nickel supply will be mined mainly from lateritic deposits.

Minerals 2021, 11, 1178. https://doi.org/10.3390/min11111178 https://www.mdpi.com/journal/minerals5
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Figure 1. World nickel resources, production, and use (%).

To extract nickel from laterites hydrometallurgical [4] and pyrometallurgical [5–7]
processes are used. Whereas high-grade nickel laterites (>2% Ni) are mainly processed pyromet-
allurgically, lower-grade nickel deposits (<1.3% Ni) are processed mainly hydrometallurgically.

Nickel laterites form under humid tropical conditions during the weathering of serpen-
tinite rocks. The mineralogy and ore grade depend on the lithology and climate during the
formation of the deposit. Nickel is hosted in several minerals such as oxides, Mg silicates
and clays. Laterite-type resources are found in Indonesia, the Philippines, Brazil, Cuba,
Australia and New Caledonia. Lateritic nickel deposits can be classified in mainly three
groups [8,9]: (a) oxidic or “limonitic” deposits dominated by minerals such as goethite
FeOOH, (b) smectitic or “clay mineral” deposits dominated by nickel-bearing swelling
clays such as smectite or nontronite and (c) hydrous Mg-Si-silicate deposits dominated by
talc- and serpentine-like minerals, collectively referred to as “garnierites” [10,11] that occur
in the saprolite zone of the yellow laterite profile, Figure 2.

 
Figure 2. Schematic hydrous Mg-Si-silicate laterite profile modified after [12,13].

Garnierite is a general name defining greenish, poorly crystallized, clay-like Ni ores
that generally comprises an intimate mixture of Ni/Mg hydrosilicates like serpentine,
lizardite, talc, sepiolite, smectite, and chlorite [10].

Currently, ore grades are mainly defined based on the elemental composition. Min-
eralogical analysis is only used for research on dedicated samples during mining and
processing of nickel laterites or for the exploration of new deposits. This paper provides
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an overview of the value of mineralogical monitoring of lateritic nickel ores to increase
the efficiency and the metal recovery during mining, ore sorting and blending as well as
during pyrometallurgical processing.

2. Materials and Methods

2.1. Samples and Sample Preparation

40 nickel laterite samples from New Caledonia plus 6 samples from processed laterites
were analyzed for this case study. The 40 samples are from both laterite and saprolite
horizons of the nickel laterite profile, Figure 3. To guarantee a reproducible and constant
sample preparation for the XRD measurements, the samples were prepared as pressed
pellets using automated sample preparation equipment. All powder samples were milled
for 30 s and pressed 30 s with 10 tons into steel ring sample holders. No binder was used
to prepare the samples.

 

Figure 3. Selected nickel laterite samples prepared for XRD measurements representing five main groups in the nickel
laterite profile, left = high goethite, right = high lizardite.

2.2. X-ray Diffraction (XRD)

X-ray powder diffraction (XRD) is a versatile, non-destructive analytical method for
the identification and quantitative determination of crystalline phases present in powdered
and bulk samples. For the studies presented in this paper, a Malvern Panalytical “Aeris
Minerals” benchtop diffractometer (Almelo, The Netherlands) with a cobalt anode, an
incident iron filter and a linear detector was used, featuring measurement times of about
5 min per sample. The XRD patterns were collected in the range 5◦ to 82◦ 2θ. The setup
consists of an X-ray source, a spinning sample stage for optimizing counting statistics, a
high-speed detector, and several optics.

Data evaluation was performed with the software package HighScore Plus version
4.9 [14]. The identification of all crystalline mineral phases is achieved by comparing
measured diffraction data to a reference database. For this study, the Crystallography Open
Database (COD) from 2021 was used [15].

2.3. Rietveld Quantification

The mineral quantification of all samples was determined using the Rietveld
method [16–18]. Modern XRD quantification analysis techniques such as Rietveld analysis
are attractive alternatives to classical peak intensity or area-based methods since they do
not require any standards or monitors. The method offers impressive accuracy and speed
of analysis. The knowledge of the exact crystal structure of all minerals present in the
nickel laterite samples is mandatory for the Rietveld refinements.

2.4. Cluster Analysis

To handle large amounts of data achieved by rapid data collection using a linear
detector, “cluster analysis” is a useful tool to combine different XRD measurements (and
thus different ore grades) into similar groups (clusters) [19,20]. The method can be used for
stockpiling different grades of the nickel laterite profile with different mineralogical prop-
erties and thus varying process behavior. Cluster analysis can be also used to automatically
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apply dedicated Rietveld runs on different groups of samples with different mineralogical
contents, to improve the accuracy of the quantitative results.

Cluster analysis greatly simplifies the analysis of large amounts of data. It automat-
ically sorts all (closely related) scans of an experiment into separate groups and marks
the most representative scan of each group as well as the most outlying scans within
each group. Cluster analysis is basically a three-step process, but it contains optional
visualization and verifications steps as well:

1. Comparison of all scans in a document with each other, resulting in a correlation
matrix representing the dissimilarities of all data points of any given pair of scans.

2. Agglomerative hierarchical cluster analysis puts the scans in different classes defined
by their similarity. The output of this step is displayed as a dendrogram, where each
scan starts at the left side as an individual cluster. The clusters amalgamate in a
stepwise fashion until they are all united in one single group.

3. The best possible grouping (=number of separate clusters) is estimated by the KGS
test [19] or by the largest relative step on the dissimilarity scale. This number can be
adapted manually too. Additionally, the most representative scan and the two most
outlying scans within each cluster is determined and marked.

4. Next to hierarchical clustering you can use three independent tools, namely Prin-
cipal Components Analysis (PCA), Metric Multi-Dimensional Scaling (MMDS), or
t-Stochastic Neighbor Embedding (t-SNE) to define clusters; they are all shown in
pseudo-three-dimensional plots.

t-SNE [21], as used in this case study, is a separate and independent method to
visualize and to judge the quality of the clustering. Either the correlation matrix of step 1,
or the raw data is used as input, the output is again a pseudo-3-dimensional plot.

2.5. Fuzzy Clustering

Cluster analysis is not only a data reduction tool; it can also be used to discover hidden
patterns in data as well as expose phase relationships in large numbers of patterns of
complex mixtures. In order to be able to deal with phase mixtures without prior knowledge
of the possible constituents, fuzzy clustering can be applied to the samples [22,23]. This
cluster validation technique allows a member to join more than one cluster. It is sometimes
called soft clustering too. For each member the probability (between one and zero) to join
every cluster is calculated. The results are shown in a table.

• Probabilities < 0.2 indicate members, which surely do not belong to this cluster.
• Probabilities > 0.7 indicate members, which certainly do belong to a specific cluster.
• Probabilities between 0.2 and 0.7 indicate members, which could belong to more than

one cluster. These should be inspected in more detail.

2.6. X-ray Fluorescence (XRF)

Elemental analysis was determined using X-ray fluorescence (XRF) technology. The
powder samples were first dried in an oven at 105 ◦C overnight. The mixture with 12 g
dried sample material plus 3 g binder was ground with tungsten carbide swing mill for
30 s. The mixture was then pressed into a 40 mm diameter pellet under 20 tons for 30 s. A
Malvern Panalytical “Epsilon 4” bench-top spectrometer (Almelo, The Netherlands) with
Rh tube was used with measurement times of about 3 min per sample. Secondary Ni ore
standards from New Caledonia were used to setup the calibration.

3. Results and Discussion

Evaluation of the XRD measurements was done in several steps. As a first step
data clustering was applied to define mineralogical domains within the laterite horizon.
A second step included minerals identification and quantification, and the results were
compared to a typical nickel laterite horizon. Finally, the XRD results were validated with
the elemental composition determined by XRF.

8
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In addition to the lateritic raw material 6 processed samples were analyzed to identify
and quantify the phase composition.

3.1. Cluster Analysis of Nickel Laterite

All 40 samples of the lateritic profile were used for cluster analysis to define groups
of similar mineralogical composition. Based on the correlation matrix the dendrogram
in Figure 4 defines 4 cluster plus 3 outliers. The different cluster are visualized in a
3-dimensional t-SNE plot, Figure 5.

 

Figure 4. Dendrogram after cluster analysis based on the correlation matrix from 40 nickel laterite
samples (cluster 1 = orange, cluster 2 = yellow, cluster 3 = light green, cluster 4 = dark green), X-axis
shows the dissimilarity of the tie bars.

Phase identification and quantification, Section 3.2, confirmed that the 4 cluster repre-
sent different parts of the laterite horizon. Cluster 1 represents samples from the laterite
horizon with high content of goethite whereas cluster 2 contains laterite samples with high
quartz content. Clusters 3 and 4 consist of saprolite samples with high lizardite content in
cluster 3 and high olivine and pyroxene content in cluster 4.

The outliers are samples with very low goethite content (<10%, samples 19, 21, 22)
and with a far higher amount of gibbsite (sample 19) compared to the other samples.

9
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Figure 5. 3D t-SNE score plot after data clustering of 40 samples, visuals from 3 different angles.

To explore the possible transitions between the different mineralogical horizons (in
contrast to sharp borders) fuzzy clustering was applied. The fuzzified 3D t-SNE score plot,
Figure 6, clearly points towards such transitions. Mixed colors mark the scans that belong
to transitions and larger spheres indicate those scans where the membership coefficient
exceeds/falls under a certain threshold.

The results in Table 1 show the matrix notation, the so-called membership matrix M,
with all calculated probabilities for each measurement. Clusters are organized in columns,
probabilities for each sample are shown in a row.

 

Figure 6. Fuzzified 3D t-SNE score plot, phase mixtures are indicated by mixed colors and
larger spheres.

The results prove the capability of fuzzy clustering to detect transitions as mixtures
of adjacent clusters. Figure 7 shows the 4 cluster and the membership coefficients. The
trendlines indicate high membership and better separation for clusters 1, 3 and 5. Cluster 2
with lower coefficients is made up by mixing mineral associations from cluster one and
three and represents transition mineralogy.
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Table 1. Results of fuzzy clustering of 40 nickel laterite samples, refined membership coefficients,
colors represent the different cluster as identified in Figures 5 and 6, Liz = Lizardite, Oli = Olivine,
Ens = Enstatite.

Cluster No. Sample No. Laterite Transition
Saprolite

(High Liz)
Saprolite (High

Oli/Ens)
Mixture

*
1 1 0.8 0.2 0.1 0.1
2 2 0.4 0.8 0.2 0.0 X
2 3 0.5 0.7 0.1 0.1 X
1 4 0.7 0.4 0.2 0.0
1 5 0.8 0.3 0.1 0.1
1 6 0.8 0.4 0.1 0.0
1 7 0.9 0.4 0.1 0.1
2 8 0.6 0.7 0.1 0.0 X
1 9 0.7 0.1 0.3 0.1
1 10 0.8 0.2 0.2 0.1
2 11 0.5 0.7 0.1 0.1 X
1 12 0.8 0.4 0.2 0.1
1 13 0.7 0.2 0.1 0.1
1 14 0.9 0.3 0.1 0.1
1 15 0.7 0.3 0.3 0.1
1 16 0.8 0.4 0.1 0.0
2 17 0.5 0.4 0.5 0.1 X
2 18 0.3 0.8 0.3 0.1 X
2 20 0.2 0.7 0.3 0.0 X
3 23 0.2 0.3 0.7 0.2
2 24 0.5 0.5 0.4 0.0 X
3 25 0.2 0.1 0.9 0.3
3 26 0.1 0.3 0.8 0.2
3 27 0.1 0.1 0.7 0.4
3 28 0.2 0.2 0.8 0.2
3 29 0.1 0.4 0.7 0.1
3 30 0.1 0.3 0.8 0.2
3 31 0.2 0.2 0.9 0.2
3 32 0.2 0.1 0.9 0.3
3 33 0.2 0.1 0.9 0.2
4 34 0.1 0.0 0.6 0.6 X
3 35 0.2 0.1 0.8 0.3
3 36 0.2 0.2 0.8 0.4
4 37 0.1 0.1 0.6 0.7
4 38 0.1 0.1 0.4 0.7
4 39 0.1 0.1 0.4 0.8
4 40 0.1 0.1 0.4 0.8

* Indicated by Fuzzy Clustering.

 

Figure 7. Plot of membership coefficients and trendlines of all clusters against sample number, colors
represent the different cluster as identified in Figures 5 and 6 and Table 1.

3.2. Mineral Identification and Quantification

Mineral identification of all 40 nickel laterite samples confirmed the presence of
two main groups of ores as determined previously using cluster analysis. One group is
dominated by oxidic minerals such as goethite, hematite, gibbsite and quartz whereas the
second group is characterized by the presence of residual primary Fe/Mg-silicates such as
pyroxene and olivine as well as secondary silicates including lizardite and talc. Lizardite
peaks appear broad with an FWHM around 0.3◦ 2θ which indicates lower crystallinity. Such
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poorly ordered hydrous equivalents are commonly referred to as “garnierites” [8,12,13,24,25],
named after Jules Garnier who first discovered them in 1864 in New Caledonia [26]. It is a
generic name for a green nickel ore that has formed by lateritic weathering of ultramafic
rocks (serpentinite, dunite, peridotite). Garnierite is mostly a mixture of various Ni- and
Ni-bearing magnesium layer silicates and occurs in many nickel laterite deposits in the
world [27]. Lizardite is the main nickel-bearing mineral in the analyzed samples. A
synonym for Ni-Lizardite is “Népouite” [26]. Expandable clay silicates (e.g., smectite
with peaks at ~16 Å and ~19 Å) or (semi)amorphous phases [28,29] were not detected.
Structure refinement of the goethite peaks does not show Co-substitution [30–35]. Table 2
summarizes all identified minerals in the investigated nickel laterite samples.

Table 2. Identified minerals in the nickel laterite samples.

Mineral Formula References

Goethite FeOOH [27]
Hematite Fe2O3 [36]
Gibbsite Al(OH)3 [37]
Quartz SiO2 [38]
Lizardite (Mg,Ni)3(Si2O5)(OH)4 [39]
Talc Mg3[(OH)2Si4O10] [40]
Enstatite (Pyroxene) Mg15.44Ca0.56Si16O48 [41]
Forsterite (Olivine) Mg7.17Fe0.8Ni0.02Mn0.01Si4O16 [42]

Figure 8 gives an overview of all XRD measurements from the lateritic profile as a
surface plot. Different colors indicate the different intensities of the peak of the minerals.
The upper laterite horizon of the profile is dominated by the oxide minerals, while in the
lower saprolite horizon secondary and primary silicates are the main minerals.

 

Figure 8. XRD scan surface plot of the region between 10◦ 2θ and 50◦ 2θ showing intensities of the main mineral phases.

After mineral identification, the quantitative composition of the samples was de-
termined using the Rietveld method. The Rietveld method is a full-pattern fit method.
The measured profile and a profile calculated from crystal structure data are compared.
By variation of many parameters, the difference between the two profiles is minimized.
Structures and crystallographic data for all phases present in the samples are derived from
the COD database, Table 2.
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Since refinement depends on finding the best fit between a calculated and experimental
pattern, it is important to have a numerical figure of merit quantifying the quality of the fit
and to provide insight into how well the model fits the observed data. For this case study,
the Rwp (weighted profile R-value) was used [16].

Figure 9 shows an example of the resulting full-pattern Rietveld refinement of one
lateritic and one saprolitic ore sample. The mineralogical composition and the Rwp factors
of all samples are summarized in Table 3.

Figure 9. Example of a full-pattern Rietveld quantification of a lateritic (Rwp = 3.3) and saprolitic
(Rwp = 4.6) ore.

After generating a model containing all structures of the expected phases, minerals
quantification using the Rietveld method can be applied completely automatic without
operator interference. It can be used to collect fast feedback for defining grade blocks
in the mine, or to sort and blend ores from different mineralogical domains and laterite
horizons for a more homogenous ore. This is important because ore mineralogy directly
influences downstream processing as described in Section 3.3. and the nickel recovery
rates respectively.

To validate the mineralogical composition obtained with the Rietveld method, the
theoretical elemental composition was calculated by breaking down mineral phase concen-
trations into oxide concentrations, and by comparing them with XRF elemental analysis.
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Table 3. Mineral composition determined using the Rietveld method, Rwp value of the quantification and main elements
analyzed with XRF.

#
Goe *
[%]

Hem
* [%]

Gib *
[%]

Qua *
[%]

Tal *
[%]

Liz *
[%]

Ens *
[%]

Oli *
[%]

Rwp
Ni
[%]

Co
[%]

Fe2O3

[%]
MgO
[%]

SiO2

[%]

1 89.4 2.1 5.6 0.7 0.0 2.2 0.0 0.0 4.6 0.6 0.0 74.7 0.7 1.2
2 49.0 0.7 8.2 33.2 5.3 3.6 0.0 0.0 3.5 1.6 0.1 41.1 4.2 35.8
3 50.4 0.8 4.5 34.3 9.2 0.9 0.0 0.0 4.6 0.7 0.1 46.1 3.6 39.3
4 77.4 0.7 9.1 10.2 0.5 2.1 0.0 0.0 1.9 1.6 0.6 66.3 0.9 2.6
5 83.6 0.3 6.7 7.5 0.2 1.7 0.0 0.0 3.1 1.2 0.2 69.9 0.7 2.1
6 81.6 0.7 6.3 7.7 0.8 3.0 0.0 0.0 2.4 1.9 0.3 66.5 0.9 2.8
7 79.2 1.7 8.3 7.5 0.3 3.0 0.0 0.0 2.7 1.7 0.4 67.2 0.8 2.3
8 63.8 0.3 5.4 27.7 0.2 2.7 0.0 0.0 2.5 1.2 0.2 54.4 0.8 22.2
9 72.5 4.0 7.5 10.4 0.1 5.6 0.0 0.0 6.6 0.7 0.0 59.8 2.9 8.9

10 59.5 3.1 4.9 26.0 0.1 6.3 0.0 0.0 6.9 0.9 0.0 55.5 3.3 19.0
11 47.6 0.4 5.6 44.5 0.2 1.6 0.0 0.0 3.2 0.9 0.1 44.4 0.8 34.2
12 74.2 1.7 11.5 6.4 0.3 5.8 0.0 0.0 2.9 1.4 0.1 64.2 2.6 9.8
13 63.9 3.4 9.5 10.9 2.6 9.7 0.0 0.0 9.6 0.8 0.0 61.7 4.8 12.7
14 83.3 2.8 1.4 9.6 0.0 2.8 0.0 0.0 3.3 0.3 0.0 72.0 0.7 7.1
15 65.7 2.9 8.9 7.2 0.6 14.7 0.0 0.0 4.7 1.1 0.0 56.5 7.1 11.4
16 79.8 0.5 7.6 8.2 0.7 3.2 0.0 0.0 2.3 1.5 0.2 67.1 1.4 6.6
17 85.3 1.3 0.1 4.4 0.6 8.3 0.0 0.0 5.5 0.8 0.1 75.3 4.6 4.5
18 83.8 0.9 0.1 10.4 0.7 4.0 0.0 0.0 8.9 0.9 0.0 71.8 3 11.1
19 9.2 0.5 12.5 45.1 0.1 30.6 1.7 0.1 9.9 2.4 0.1 6.2 16.6 54.9
20 19.6 0.3 0.4 60.4 1.6 15.6 1.9 0.4 6.2 1.2 0.0 12.9 9.4 65
21 5.5 0.2 0.2 86.2 0.1 4.5 2.5 0.7 6.1 0.5 0.0 3.7 5.1 83.4
22 7.8 0.3 0.3 69.9 1.9 19.2 0.5 0.1 8.3 0.9 0.0 4.7 14.2 67.5
23 28.0 1.1 1.8 5.4 25.5 32.4 1.9 3.9 9.4 2.2 0.1 21.2 23.4 37.5
24 45.4 1.0 1.6 19.3 1.1 19.0 9.9 2.6 4.6 1.4 0.0 37.2 15.1 34.9
25 37.2 0.7 1.6 5.8 0.1 40.4 9.3 5.0 7.2 2.6 0.1 27.7 24.7 37.6
26 18.8 0.2 0.5 42.1 0.6 25.0 6.2 6.7 8.5 1.4 0.1 14.7 15.6 62.1
27 25.5 0.1 1.0 21.1 0.3 39.3 6.1 6.6 8.7 2.4 0.0 17.3 20.9 49.9
28 24.3 0.4 0.8 13.2 0.8 26.9 24.9 8.7 8.3 1.9 0.1 17 23.4 48.8
29 21.2 0.5 0.8 29.2 1.9 21.6 14.7 10.2 8.5 1.6 0.0 14.8 21.2 53.6
30 28.4 0.8 0.9 22.2 1.8 34.1 6.9 4.9 7.1 2.6 0.1 23.9 21.0 43.7
31 34.9 1.0 1.5 11.0 0.6 33.4 9.2 8.4 6.9 2.5 0.1 26.4 22.7 38.1
32 35.9 0.7 1.1 8.9 0.5 38.1 7.3 7.4 7.8 2.4 0.1 24.5 23.2 34.1
33 36.5 0.8 1.3 5.5 0.7 39.9 9.3 6.1 7.1 2.3 0.1 26.8 25.3 32.5
34 25.8 0.4 0.2 4.4 0.0 44.7 9.4 15.0 9.7 3.3 0.0 19.5 29.7 39.7
35 26.7 0.3 0.5 6.9 1.8 43.8 11.2 8.7 9.8 3.2 0.0 20.2 28 39.9
36 29.0 0.6 0.6 6.6 1.2 29.7 16.6 15.7 6.9 2.5 0.0 21.2 26.8 37.6
37 21.2 0.0 0.3 2.7 0.7 30.8 12.2 32.1 8.4 2.6 0.0 17.6 31.6 37.2
38 15.0 0.3 0.2 0.7 0.3 18.0 24.8 40.6 7.0 1.5 0.0 15.2 35.7 39.8
39 18.4 0.5 0.0 2.4 0.2 15.7 21.4 41.4 6.3 1.4 0.0 17.1 33.9 43.6
40 18.7 0.2 0.3 1.6 0.3 20.6 18.7 39.6 7.1 1.9 0.0 17.0 33.8 39.9

* Goe = Goethite, Hem = Hematite, Gib = Gibbsite, Qua = Quartz, Tal = Talc, Liz = Lizardite, Ens = Enstatite, Oli = Olivine.

Figure 10 summarized the mineralogical and elemental composition of all samples
within the laterite profile. The results for Fe2O3, MgO and SiO2 show a good agreement.
The samples analyzed for this case study represent a typical hydrous Mg-Si-silicate laterite
profile based on the mineralogical and elemental composition. The goethite dominated
iron crust and red laterite are followed by a transition zone with relatively high amounts
of quartz. The saprolite is dominated by the increasing amounts of Fe/Mg-silicates such
as pyroxene and olivine as well as secondary silicates including lizardite and talc. The
high amounts of pyroxene and olives in samples 38–40 indicate proximity to the bedrock
of the deposit.
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Figure 10. Summary of the mineralogical and elemental composition of 40 samples from a hydrous Mg-Si-silicate lat-
erite profile.

Lizardite is the nickel-bearing mineral in the saprolite and therefore of special eco-
nomic interest. A comparison of the lizardite and the elemental nickel concentration,
Figure 11, shows a good correlation between both values. It proofs that nickel is indeed
contained in the mineral lizardite and shows that XRD is beneficial to track not only differ-
ent ore grades and mineralogical domains but can also give fast feedback about the main
nickel mineral and indirectly about the total nickel concentration.

 
Figure 11. Comparison of the amount of lizardite (XRD) and the nickel content (XRF) in the saprolitic
samples of the profile.

3.3. Mineralogical Monitoring during Pyrometallurgical Processing of Nickel Laterites

To ensure optimal efficiency for both mining and ore processing, knowledge about
the mineralogical composition of the ore feed, but also of the processed materials and
products is mandatory. Varying mineralogical composition of the ore blends can affect

15



Minerals 2021, 11, 1178

the lifetime of refractories, melting temperature, reducibility and recovery rates during
pyrometallurgical processing.

Nickel laterites are suited for pyrometallurgical processing involving drying, calcina-
tion/reduction and electric furnace smelting to produce ferronickel or nickel sulfide matte.
Figure 12 shows a schematic overview of nickel extraction from laterites by smelting them
in an electrical furnace.

 

Figure 12. Schematic overview of the pyrometallurgical extraction of nickel from laterites, stars =
samples analyzed.

Nickel matte production starts after the ore screening with the drying to reduce the
water content from 30–40% to 20%. The dried nickel ore is further treated in a reduction
kiln to remove the final water content. The product of this process is called calcine. Calcine
is melted and reduced in an electric arc furnace producing a sulfidic matte and an oxidic
slag. The slag is skimmed from the furnace continuously and is disposed of. The matte
is tapped periodically as required by the converters. Molten furnace matte is transferred
to the converters through ladles. Air/oxygen is blown in to oxidize the remaining iron.
Silica flux is added to melt the oxidized iron that is then incorporated into the slag. During
converting, the lower grade electric furnace matte is converted to Bessemer matte [43]. The
final converter product is granulated, dried, screened and packed for shipment.

It is important to control not only the mineralogical composition of the run-of-mine
ore but also the blended feed material, calcine, matte and slag. Samples from six different
materials were analyzed for the mineralogical composition. All identified phases are
summarized in Table 4. Figure 13 gives an overview of the phase composition investigated
with the Rietveld method of the different process streams from the ore blend to the Bessemer
matte and slag.
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Figure 13. Example of a full-pattern Rietveld quantification for several processed materials of the
pyrometallurgical extraction of nickel from laterites (Ore Rwp = 4.6, Calcine Rwp = 5.0, Electric
Furnace Matte Rwp = 5.5, Slag Rwp = 5.5, Bessemer Matte Rwp = 2.2, Converter Slag Rwp = 6.3).

Table 4. Identified minerals in the process samples.

Mineral Formula References

Magnetite Fe3O4 [44]
Hornblende (Ca,Na)2–3(Mg,Fe,Al)5(Al,Si)8O22(OH,F)2 [45]
Pyrrhotite Fe(1–x)S [46]
Fayalite (Olivine) Fe2SiO4 [47]
Nickel Ni [48]
Heazlewoodite Ni3S2 [49]
Iron Fe [50]
Troilite FeS [51]
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Lizardite is transformed to forsterite [52] in the calcination. The electric furnace matte
consists of 40.2% nickel metal, 35.7% iron metal and 24% iron sulfide (troilite) whereas the
corresponding slag consists mainly of silicates (forsterite and enstatite). The final product
of the pyrometallurgical processing, Bessemer matte, has a nickel content of about 80%,
consisting of 27% nickel metal and 73% nickel sulfide. The converter slag is rich in iron
silicate and minor amounts of magnetite and pyrrhotite.

The examples demonstrate that frequent and fast mineralogical monitoring during
the processing of nickel laterite ores can be a highly valuable tool to stabilize the furnace
operation and increase the production of nickel matte despite lower feed grades.

4. Conclusions

X-ray diffraction (XRD) can be used as a fast and powerful tool to monitor nickel
laterite mining and downstream processing. XRD is a fast and reliable technique to monitor
the mineralogical composition of run-of-mine (RoM) ore, ore blends, calcine, matte and slag.

The mineralogy of the analyzed mine samples represents a typical nickel laterite profile
with high amounts of goethite in the lateritic part and Mg-Fe-Silicates in the saprolitic
part. The nickel concentration is correlated with the mineral Lizardite. Cluster analysis
allows fast sorting of samples in groups of similar mineral composition and can be used as
pass/fail analysis tool to sort nickel laterites. It allows objective grade control based on the
mineralogical composition. Fuzzy clustering even allows the detection of mixtures of ores
from different horizons or mineralogical domains.

Each step of the pyrometallurgical processing can be monitored for the phase compo-
sition of products (matte) and waste material (slag). This can lead to increased profitability
of a mining operation. Table 5 summarizes the values that mineralogical monitoring using
X-ray diffraction can deliver.

Table 5. Value and parameter to increase the profitability of nickel laterite processing.

Value Tool

Optimization of ore blends from various nickel laterite deposits Cluster analysis
Adjustment of superheat in the feed and optimization of energy costs Mineralogy of ore blend
Control of mineralization acidity Silicate composition
Prevention of highly corrosive slag causing erosion of the refractories Silicate composition
Better reducibility in the furnace Olivine content
Boost nickel recovery rates and reduction of metal loss in slag Slag composition
Increase of cobalt recoveries. Co-bearing minerals

Today’s optics, detectors, and software for XRD analysis can provide rapid (<5 min)
and accurate analyses, suitable for process control environments as well as research even
with a small benchtop diffractometer. All evaluation methods such as cluster analysis,
phase identification and quantification can run simultaneously and allow fast counteraction
on changing conditions in the plant or in the mine. The complete analysis is ready for
automation and can be easily included in existing automation lines.

Funding: This research received no external funding.

Data Availability Statement: All data were gathered and treated at Malvern Panalytical B.V labora-
tories in Almelo (The Netherlands).

Conflicts of Interest: The author declares no conflict of interest.

References

1. Butt, C.R.M.; Cluzel, D. Nickel Laterite Ore Deposits: Weathered Serpentinites. Elements 2013, 9, 123–128. [CrossRef]
2. Garvin, M.M.; Simon, M.J. A detailed assessment of global nickel resource trends and endowments. Soc. Econ. Geol. Inc. Econ.

Geol. 2014, 109, 1813–1814.
3. DERA. Batterierohstoffe für Die Elektromobilität; DERA Themenheft: Berlin, Germany, 2021; p. 26.

18



Minerals 2021, 11, 1178

4. Meshram, P.; Pandey, B.D. Advanced review on extraction of nickel from primary and secondary sources. Miner. Process. Extr.
Metall. Rev. 2019, 40, 157–193. [CrossRef]

5. Agatzini-Leonardou, S.; Tsakiridis, P.E.; Oustadakis, P.; Karidakis, T.; Katsiapi, A. Hydrometallurgical process for the separation
and recovery of nickel from sulphate heap leach liquor of nickelliferrous laterite ores. Miner. Eng. 2009, 22, 1181–1192. [CrossRef]

6. Tian, H.; Pan, J.; Zhu, D.; Yang, C.; Guo, Z.; Xue, Y. Imporved beneficiation of nickel and iron from a low-grade saprolite laterite
by addition of limonitic laterite ore and CaCO3. J. Mater. Res. Technol. 2020, 9, 2578–2589. [CrossRef]

7. Lv, X.W.; Bai, C.G.; He, S.P.; Huang, Q.Y. Mineral change of Philippine and Indonesian nickel laterite ore during sintering and
mineralogy of the sinter. ISIJ Int. 2010, 50, 380–385. [CrossRef]

8. Brand, N.W.; Butt, C.R.M.; Elias, M. Nickel laterites: Classification and features. AGSO J. Aust. Geol. Geophys. 1998, 17, 81–88.
9. Maurizot, P.; Sevin, B.; Iseppi, M.; Giband, T. Nickel-Bearing Laterite Deposits in Accretionary Context and the Case of New

Caledonia: From the Large-Scale Structure of Earth to Our Everyday Appliances. GSA Today 2019, 29, 4–10. [CrossRef]
10. Brindley, G.W.; Hang, P.T. The nature of garnierites—I. Structures, Chemical Composition and Color Characteristic. Clays Clay

Miner. 1973, 21, 27–40. [CrossRef]
11. Brindley, G.W.; Maksimovic, Z. The nature and nomenclature of hydrous nickel-containing silicates. Clay Miner. 1974, 10, 271–277.

[CrossRef]
12. Wells, M.A.; Ramanaidou, E.R.; Verrall, M.; Tessarolo, C. Mineralogy and crystal chemistry of “garnierites” in the Goro lateritic

nickel deposit, New Caledonia. Eur. J. Miner. 2009, 21, 467–483. [CrossRef]
13. Horn, R.A.; Bacon, W.G. Goro Nickel-Cobalt Project Located in French Overseas Territorial Community (Collectivite Territoriale) of New

Caledonia; Goro Nickel Technical Report; Goro Nickel: Noumea, New Caledonia, 2002; p. 116.
14. Degen, T.; Sadki, M.; Bron, E.; König, U.; Nénert, G. The HighScore suite. Powder Diffr. 2014, 29, S13–S18. [CrossRef]
15. COD Crystallography Open Database. Available online: http://www.crystallography.net/cod/ (accessed on 24 October 2021).
16. Rietveld, H.M. A profile refinement method for nuclear and magnetic structures. J. Appl. Crystallogr. 1969, 2, 65–71. [CrossRef]
17. Rietveld, H.M. Line profiles of neutron powder-diffraction peaks for structure refinement. Acta Crystallogr. 1967, 22, 151–152.

[CrossRef]
18. Young, R.A. The Rietveld Method. International Union of Crystallography; Oxford University Press: Oxford, UK, 1993; p. 298.
19. Kelley, L.A.; Gardner, S.P.; Sutcliffe, M.J. An automated approach for clustering an ensemble of NMR-derived protein structures

into conformationally related subfamilies. Protein Eng. Des. Sel. 1996, 9, 1063–1065. [CrossRef] [PubMed]
20. Liao, B.; Chen, J. The application of cluster analysis in X-ray diffraction phase analysis. J. Appl. Crystallogr. 1992, 25, 336–339.

[CrossRef]
21. Van der Maaten, L.J.P.; Hinton, G.E. Visualizing High-Dimensional Data Using t-SNE. J. Mach. Learn. Res. 2008, 9, 2579–2605.
22. Sato, M.; Sato, Y.; Jain, L.C. Fuzzy Clustering Models and Applications, Studies in Fuzziness and Soft Computing; Springer: NewYork,

NY, USA, 1997; Volume 9, p. 122.
23. Everitt, B.S.; Landau, S.; Leese, M. Cluster Analysis, 5th ed.; Wiley: London, UK, 2011; 346p.
24. Garnier, J. Essai sur la geologie et les ressources minerales de la Nouvelle-Caledonie. Ann. Des Mines 1867, 6, 1–92.
25. Faust, G.T. The hydrous nickel-magnesium silicgroup—The garnierite group. Am. Min. 1966, 51, 279–298.
26. Glasser, M.E. Note sur une espèce minérale nouvelle, la népouite, silicate hydraté de nickel et de magnésie. Bull. De La Société

Française De Minéralogie 1907, 30, 17–28. [CrossRef]
27. Brindley, G.W.; Wan, H.M. Composition, structures, and thermal behavior of nickel-containing minerals in the lizardite-nepouite

series. Am. Mineral. 1975, 60, 863–871.
28. Gamaletsos, P.N.; Kalatha, S.; Godelitsas, A.; Economou-Eliopoulos, M.; Göttlicher, J.; Steininger, R. Arsenic distribution and

speciation in the bauxitic Fe-Ni-laterite ore deposit of the Patitira mine, Lokris area (Greece). J. Geochem. Explor. 2018, 194, 189–197.
[CrossRef]

29. Samouhos, M.; Godelitsas, A.; Nomikou, C.; Taxiarchou, M.; Tsakiridis, P.; Zavasnik, J.; Gamaletsos, P.N.; Apostolikas, A. New
insights into nanomineralogy and geochemistry of Ni-laterite ores from central Greece (Larymna and Evia depositis). Geochemistry
2018, 12, 5.

30. Alvarez, M.; Sileo, E.E.; Rueda, E.H. Structure and reactivity of synthetic Co-substituted goethites. Am. Miner. 2008, 93, 584–590.
[CrossRef]

31. Gasser, U.G.; Jeanroy, E.; Mustin, C.; Barres, O.; Nüesch, R.; Berthelin, J.; Herbillon, A.J. Properties of synthetic goethites with Co
for Fe substitution. Clay Miner. 1996, 31, 465–476. [CrossRef]

32. Cornell, R.M.; Schwertmann, U. The Iron Oxides; VHC Verlagsgesellschaft: Weinheim, Germany, 1996; pp. 35–47.
33. Cornell, R.M.; Giovanoli, R. Effect of cobalt on the formation of crystalline iron oxides from ferrihydrite in alkaline media. Clays

Clay Min. 1989, 37, 65–70. [CrossRef]
34. Cornell, R.M. Simultaneous incooperation od Mn, Ni, Co in the goethite (α-FeOOH) structure. Clay Miner. 1991, 2, 427–430.

[CrossRef]
35. Pozas, R.; Rojas, T.C.; Ocaña, M.; Serna, C.J. The Nature of Co in Synthetic Co-substituted Goethites. Clays Clay Miner. 2004, 52,

760–766. [CrossRef]
36. Blake, R.L.; Hessevick, R.E.; Zoltai, T.; Finger, L.W. Refinement of the hematite structure. Am. Min. 1966, 51, 123–129.
37. Saalfeld, H.; Wedde, M. Refinement of the crystal structure of gibbsite, Al(OH)3. Z. Für Krist. 1974, 139, 129–135. [CrossRef]
38. Gualtieri, A. Accuracy of XRPD QPA using the combined Rietveld–RIR method. J. Appl. Crystallogr. 2000, 33, 267–278. [CrossRef]

19



Minerals 2021, 11, 1178

39. Guggenheim, S.; Zhan, W. Effect of temperature on the structures of lizardite-1T and lizardite-2H1. Can. Min. 1998, 36, 1587–1594.
40. Perdikatsis, B.; Burzlaff, H. Strukturverfeinerung am Talk Mg3[(OH)2Si4O10]. Z. Für Krist. Cryst. Mater. 1981, 156, 177–186.

[CrossRef]
41. Nestola, F.; Gatta, G.D.; Ballaran, T.B. The effect of Ca substitution on the elastic and structural behavior of orthoenstatite. Am.

Miner. 2006, 91, 809–815. [CrossRef]
42. Ottonello, G.; Princivalle, F.; Della Giusta, A. Temperature, composition, and fO2 effects on intersite distribution of Mg and Fe2+

in olivines. Phys. Chem. Miner. 1990, 17, 301–312. [CrossRef]
43. Bessemer, H. Sir Henry Bessemer, F.R.S. An Autobiography; Offices of “Engineering”: London, UK, 1905; p. 176.
44. Nakagiri, N.; Manghnani, M.H.; Ming, L.C.; Kimura, S. Crystal structure of magnetite under pressure. Phys. Chem. Miner. 1986,

13, 238–244. [CrossRef]
45. Mancini, F.; Sillanpaa, R.; Marshall, B.; Papunen, H. Magnesian hornblende from a metamorphosed ultramafic body in southwest-

ern Finland: Crystal chemistry and petrological implications. Can. Mineral. 1996, 34, 835–844.
46. Elliot, A.D. Structure of pyrrhotite 5C (Fe9S10). Acta Crystallogr. Sect. B Struct. Sci. 2010, 66, 271–279. [CrossRef]
47. Lottermoser, W.; Steiner, K.; Grodzicki, M.; Jiang, K.; Scharfetter, G.; Bats, J.W.; Redhammer, G.; Treutmann, W.; Hosoya, S.;

Amthauer, G. The electric field gradient in synthetic fayalite α-Fe2SiO4 at moderate temperatures. Phys. Chem. Miner. 2002, 29,
112–121. [CrossRef]

48. Leineweber, A.; Jacobs, H.; Hull, S. Ordering of Nitrogen in Nickel Nitride Ni3N Determined by Neutron Diffraction. Inorg. Chem.
2001, 40, 5818–5822. [CrossRef]

49. Fleet, M.E. The crystal structure of heazlewoodite, and metallic bonds in sulfide minerals. Am. Min. 1977, 62, 341–345.
50. Woodward, P.M.; Suard, E.; Karen, P. Structural Tuning of Charge, Orbital, and Spin Ordering in Double-Cell Perovskite Series

between NdBaFe2O5 and HoBaFe2O5. J. Am. Chem. Soc. 2003, 125, 8889–8899. [CrossRef] [PubMed]
51. Bertaut, F. La structure de sulfure de fer. J. De Phys. Et Du Radium 1954, 15, 775.
52. Setiawan, I.; Febrina, E.; Subagja, R.; Harjanto, S.; Firdiyono, F. Investigations on mineralogical characteristics of Indonesian

nickel laterite ores during the roasting process. IOP Conf. Ser. Mater. Sci. Eng. 2019, 541, 012038. [CrossRef]

20



minerals

Article

Monitoring of Lithium Contents in Lithium Ores and
Concentrate-Assessment Using X-ray Diffraction (XRD)

Herbert Pöllmann 1,* and Uwe König 2

Citation: Pöllmann, H.; König, U.

Monitoring of Lithium Contents in

Lithium Ores and

Concentrate-Assessment Using X-ray

Diffraction (XRD). Minerals 2021, 11,

1058. https://doi.org/10.3390/

min11101058

Academic Editor: Fang Xia

Received: 22 July 2021

Accepted: 14 September 2021

Published: 28 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Mineralogy, Institute of Geosciences and Geography,
Martin-Luther Halle-Wittenberg University, 06108 Halle, Germany

2 Malvern Panalytical B.V., 7602 EA Almelo, The Netherlands; uwe.konig@panalytical.com
* Correspondence: herbert.poellmann@geo.uni-halle.de

Abstract: Lithium plays an increasing role in battery applications, but is also used in ceramics and
other chemical applications. Therefore, a higher demand can be expected for the coming years.
Lithium occurs in nature mainly in different mineralizations but also in large salt lakes in dry
areas. As lithium cannot normally be analyzed using XRF-techniques (XRF = X-ray Fluorescence),
the element must be analyzed by time consuming wet chemical treatment techniques. This paper
concentrates on XRD techniques for the quantitative analysis of lithium minerals and the resulting
recalculation using additional statistical methods of the lithium contents. Many lithium containing
ores and concentrates are rather simple in mineralogical composition and are often based on binary
mineral assemblages. Using these compositions in binary and ternary mixtures of lithium minerals,
such as spodumene, amblygonite, lepidolite, zinnwaldite, petalite and triphylite, a quantification of
mineral content can be made. The recalculation of lithium content from quantitative mineralogical
analysis leads to a fast and reliable lithium determination in the ores and concentrates. The techniques
used for the characterization were quantitative mineralogy by the Rietveld method for determining
the quantitative mineral compositions and statistical calculations using additional methods such as
partial least square regression (PLSR) and cluster analysis methods to predict additional parameters,
like quality, of the samples. The statistical calculations and calibration techniques makes it especially
possible to quantify reliable and fast. Samples and concentrates from different lithium deposits and
occurrences around the world were used for these investigations. Using the proposed XRD method,
detection limits of less than 1% of mineral and, therefore down to 0.1% lithium oxide, can be reached.
Case studies from a hard rock lithium deposit will demonstrate the value of mineralogical monitoring
during mining and the different processing steps. Additional, more complex considerations for the
analysis of lithium samples from salt lake brines are included and will be discussed.

Keywords: lithium; quantification; XRD; PLSR; clustering; Rietveld; cluster analysis; spodumene;
petalite; lepidolite; triphylite; zinnwaldite; amblygonite

1. Introduction

Lithium is an element in the chemical periodic system with ordinal number 3. The for-
mation and details on the metal are summarized by [1–5]. Almost half of the lithium
production is nowadays increasingly used in the fabrication of batteries [5,6]. Therefore,
an increasing demand in the metal supply is visible [7,8]. Other uses of lithium are in
ceramics industry, grease, polymers and air treatment among others. The main lithium
resources are coming from lithium salt lake brines in arid areas and from different lithium
containing minerals, often concentrated in economic mining sites [9–13]. Lithium resources
in Europe were summarized by [14]. The worldwide situation was described by [15–17].
Some lithium containing clays are also promising nowadays. Lithium forms 124 mineral
species [18,19]. 44% of all lithium minerals occur in LCT-pegmatites and associated meta-
somatic rocks [20,21]. Other main sources of lithium minerals are non-LCT pegmatites and
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their metasomatic rocks, metasomatic rocks not associated with pegmatites, and manganese
deposits [19]. A list of widely abundant minerals is given in [18]. However, not all of these
are enriched in quantities to be mined. The mineral with the highest lithium-content is
the rare Zabuyelite Li2CO3 (18.79%). A summary of lithium demand and supply is given
in [22]. By analyzing elements associated in LCT pegmatites (LCT = lithium-cesium tanta-
lum pegmatites) [23] (Ga, Rb, Nb, Sn, Cs, Ta, Tl) satisfactorily lithium can be predicted [24]
by μ-XRF. Another basis for lithium is also the occurrence in salt lakes in dry areas. The
lithium must be concentrated by thermal and leaching processes [25–30]. A review of en-
richment techniques is given by [31]. Some investigations are included in this publication.
Li-Minerals, which can be mined in large quantities, as a basic source from geological
enrichment with their chemical compositions and XRD data files, are summarized in Table
1. The lithium determination in these mineral concentrates will be described.

Table 1. Important lithium-bearing minerals, compositions and crystal structure files.

Mineral Composition
Lithium-Content in

wt.%
Lithium Oxide Content

in wt.%
ICSD-No. Literature

Spodumene LiAl[Si2O6]—(α, ß, γ) 3.73 8.03

30,521
9668 (α)

14,235 (ß)
69,221 (γ)
Virgilite

[32]

Petalite LiAl[Si4O10] 3.09 4.50 100,348 [33]

Lepidolite
Polylithionite KLi2[AlSi3O10/(OH,F)2] 3.58

3.00
7.7

6.46

30,785
34,336

(with F)
[30]

Zinnwaldite KLiFeAl[AlSi3O10/(F,OH)2] 3.42 432,226 [34]

Amblygonite/
Montebrasite

LiAl[PO4F]/
LiAl[PO4OH]

3.44/3.80
4.74

10.21
7.49 (at 5% Na2O)

26,513
68,925 (OH/F)

68,921 (OH)
[18]

Lithiophilite/
Triphylite

LiMn[PO4]/
LiFe[PO4]

4.43
4.40

9.53
9.47

75,283
72,545 [35]

For these lithium minerals from definite occurrences, different calibration curves
were set up and statistical methods were successfully introduced to determine the rele-
vant lithium oxide content of these mixtures. The lithium content of these Li-minerals
increases from Zinnwaldite, Petalite, Lepidolite, Spodumene, and Triphylite to Amblygo-
nite/Montebrasite. It must also be taken into account that these minerals can form solid
solutions which do influence these absolute lithium contents and must be adapted and
determined separately [36]. In Figure 1 the theoretical calibration curves of the six lithium
containing minerals, with ideal composition, showing their maximum lithium contents, are
given. In practical work these curves with the lithium contents of the respective occurrence
must be adapted due to the investigated mineral composition and ore compositions from
different geological occurrences.

The used lithium minerals in this study come from different origins. These determined
compositions can be representative for other occurrences, but must otherwise simply
be adapted, mainly when different solid solutions of these minerals do occur. For all
calibrations, the standard mineral compositions of the relevant occurrences were used.
Calibrations must be changed when larger differences in mineral compositions occur. The
used lithium ores and their matrices can be seen in Figure 2a–f showing the different
lithium minerals coming from varying origins. These used ores and concentrates are rather
simple in mineralogical compositions as mineral paragenesis for these processed ores are
very uniform. Many of these ores are only composed of additional quartz, and some also
contain feldspar.

22



Minerals 2021, 11, 1058

Figure 1. Maximum lithium oxide contents in different lithium minerals. Variation of lithium
depending from content of the minerals (wt.%).

   
(a) (b) (c) 

   
(d) (e) (f) 

Figure 2. (a) Underground image of slightly green spodumene crystals (green crystal size ca. 1 m) in quartz matrix—MG—Brazil,
(b) Montebrasite/Amblygonite occurrence with quartz—Serra Branca, Brazil, image: 30 m, (c) Triphylite with small quartz
intergrowth—Hagendorf, Germany, image: 10 cm, (d) Zinnwaldite mica—Ore mountains/Germany, image: 5 cm, (e): Lepidolite
in quartz/feldspar assemblage—Mangualde, Portugal, image: 10 cm, (f) Petalite/Rubicon mine–Namibia, image: 10 cm.

The lithium contents of the minerals must be carefully calculated due to their chemical
compositions. Spodumene, petalite and triphylite minerals are easy to handle since their
solid solutions are rather restricted. For Montebrasite/Amblygonite, Zinnwaldite and
Lepidolite, the lithium contents must be determined in advance, since different solid
solutions of these minerals may occur in different occurrences.
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For all determinations it is also necessary to verify these contents from time to time, as
some change may also be possible in the geological surroundings within one occurrence.

2. Experimental

A technical approach for lithium determination by quantitative mineral determination
and following Li2O calculation was performed using XRD powder techniques and different
interpretation methods. Due to the non-possibility of a direct XRF analysis for lithium, a
new method based on quantitative X-ray Diffraction of the lithium minerals, combined
with calculation of lithium from their mineralogical composition, is proposed. Time-
consuming wet chemical analysis procedure is only used from time to time for verification
purposes. The following XRD techniques and combined calculating statistical procedures
were applied for these quantitative mineral and lithium determinations:

2.1. Qualitative and Quantitative Mineral Analysis by XRD Combined with Rietveld
Refinement Calculations

The XRD analysis was performed using a PANalytical Expert system (Panalytical
Highscore Version 4.9, Almelo, The Netherlands) with X’celerator detector and program
Highscore Plus for analytical treatment of qualitative mineral compositions. Mineral
determinations were done by using the actual ICDD (PDF4, 2021) (International Centre for
Diffraction Data, Newtown Square, PA, USA) database. Also, the same program was used
for Rietveld [22,37] refinement and statistical procedures. The relevant ICSD (Inorganic
Crystal Structure Database, FIZ Karlsruhe) structure files are summarized in Table 1. The
sample preparation for XRD was conducted by filling fine milled powders into steel ring
sample holders using the backload preparation methodology.

The following parameters for X-ray experiments were used (Table 2).

Table 2. XRD measurement parameters. (LFF = long fine focus spot).

Parameter LFF-Tube-Cu LFF-Tube-Co

Measurement range (2 theta) 5–70 5–90
Step (2 theta) 0.02 0.02

Counting time in s 10 10
Antiscatter slit 1/8 1/8

Soller slits 2.3 2.3
Voltage in kV 45 40
Tension in mA 30 35

ß-filter Ni Fe

Quantitative analysis of the samples was mainly made using Rietveld analysis in
Highscore Plus program. Quantification of amorphous contents was made by the addition
of an Inner standard (Rutile) of 10%. Background calculation was added as determined
manually. Refinement control of the samples was performed using the Pseudo-Voigt profile
function, scale factor, zero shift, unit cell and W-profile parameter. The verification of the
determined contents was obtained by addition of definite amounts of mineral phases and
following calculations and construction of the regression curves.

2.2. PLSR—Partial Least Squares Refinement Techniques for Different Mineral Mixtures

Full pattern Rietveld quantification [2,8,38,39] using crystal structures can be replaced
by partial least squares refinement calculations using high score plus platform and the
specific part of the program for correlating mineral contents and XRD results. The PLSR can
be mainly used also in industrial applications to correlate mineral components with their
quantitative contents. With this method no pure phases, crystal structures or modelling of
peak shapes are necessary. For setting up this method a number of samples for calibration
and validation are needed. Data are afterwards processed by calculating diagrams showing
regression plots of reference values (X-axis) versus predicted values (Y-axis). Different
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scaling mode methods can be used to find the best calibration model (center method (the
mean is subtracted from each value for the definite variable) and standardize method
(the variables are standardized by subtracting the mean and dividing by the standard
deviation). After calibration these models can be used for unknown samples to predict
the defined property. With the used equipment, a precise result can be obtained within
minutes and therefore the method can be used for process control. No specific preferred
orientation refinement model was used, as this can influence the content of the minerals.
Instead, for the calibration the preparation was standardized.

2.3. Cluster-Analysis of Obtained XRD Patterns of Mixtures

Cluster analysis is a statistical method [2,40–42] which can be used for obtaining rapid
results in ore assessment by finding similar groups (clusters) which are more similar to
each other than to those of other groups. The technique is mainly used for data reduction.
It is applied here to find clusters containing similar grades of lithium contents in the ores
(high, intermediate, and low grade) to obtain arguments for further ore treatment. Within
this method additional possibilities can be used for further optimizations (PCA (principal
component analysis), dendrogram, KGS (Kelley, Gardner, Sutcliffe) test and others). The
dendrogram is a possibility to define different clusters using the cut off between less similar
XRD patterns. Mainly, cluster analysis is used for data reduction of complex systems.

2.4. Principal Component Analysis—PCA

PCA plots [40,43] using the resulting eigenvectors, can create a three-dimensional
arrangement of first three principal components and can show thereof the XRD data
belonging to the different clusters.

2.5. Determination of Detection Limits for Different Lithium Minerals in Matrices

The minimal detection of minerals in the relevant matrices is the basic fact that must be
done to see what is the lowest lithium concentration which can be detected. Despite these
low concentrations not being as interesting as lithium ores, these mixtures can be classified
in the different group of low content lithium ore or otherwise a different fourth grade can
be added, meaning low lithium contents without any interest for lithium extraction. The
lowest lithium concentration which can be measured is dependent on the possibility of
identifying the lithium mineral in the matrix and is given for any lithium mineral used in
this study.

Furthermore, the program High Score Plus was used for Rietveld refinement and
some additional statistical procedures. The relevant ICSD structure files necessary for
Rietveld analysis are summarized in Table 1.

For these investigations of lithium content determinations in lithium concentrates dif-
ferent localities with several relevant lithium minerals from deposits in Germany, Portugal,
Namibia, Brazil, Finland, and Australia were used. The results for these 6 main important
lithium minerals, ores and concentrates are presented. Different additional interesting
results were obtained for complex analyses of multi-mineral lithium brine investigations
originating from Chile.

3. Results for the Quantifications of Different Lithium Minerals in Binary Mixtures
with Quartz

3.1. Quantification of Petalite—LiAlSi4O10-Quartz SiO2

Petalite ore samples from the Namibian occurrence were used in a typical binary
mixture with quartz and 10% of weight differences were used. These samples were used to
determine the mineral contents and thereof the lithium contents. A calibration curve for
Petalite [33] with different amounts (10% weight portions) of accompanying quartz was
set up using XRD’s with different contents of the minerals (Figure 3). It can easily be seen,
that high and medium grade ores (contents of 100 weight% to 20 weight% Petalite) show
strong Petalite peaks in XRD patterns, which can easily be identified.
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Figure 3. XRD patterns used for the calibration of petalite–quartz weight% mixtures (triplet of
petalite peaks and main peak of quartz highlighted).

In the mixtures also the minimum content of the lithium mineral petalite, which can
be detected, was determined. In Figure 4 the XRD patterns of pure petalite and a mixture
of quartz with 5% of petalite is shown. Figure 4b shows several XRD patterns of binary
mixtures and also the binary mixture at the detection limit of Petalite in a quartz matrix.
It can be seen, that the main peak of petalite is easily detectable, meaning, that lithium
contents down to 0.5% Li2O can be detected. In Figure 5 the linear calibration curve using
PLSR curves of petalite in quartz matrix is given.

(a) (b) 

Figure 4. Determination limit of petalite in quartz matrix using main peaks of petalite. (a) Part of
XRD pattern petalite and mixture of 95% quartz/5% Petalite; (b) Main peak of petalite in quartz
matrices of different contents.
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Figure 5. PLSR calibration curve for petalite–quartz mixtures.

From these different contents of petalite in lithium mineral quartz matrix the detection
limit for lithium oxide can be derived (Table 3) showing the contents of lithium oxide
derived from XRD patterns in Figure 4b. The PLSR calibration curve for petalite–quartz
mixtures is given in Figure 5.

Table 3. Lithium oxide content as given from several selected petalite/quartz mixtures.

XRD-Mixture of Petalite/Quartz in % Li2O Content in %

Petalite 100 4.5
Petalite/Quartz 80/20 3.6
Petalite/Quartz 50/50 2.25
Petalite/Quartz 20/80 0.9

Petalite/Quartz 1.25/98.75 0.056

The cluster analysis brings similar contents of minerals into selective groups when
necessary. Segments of three different clusters, containing areas with comparable lithium
contents (high-medium-low grade ores) were determined in this case (Figure 6), but it is
also possible to calculate other different clusters (and derived lithium contents thereof)
in application cases when necessary. Here it is possible to determine for instance cut off
values of economic lithium mineral contents.
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Figure 6. Clustering of petalite–quartz mixtures (three clusters with differing lithium contents).
*** most representative sample of cluster, + are the most different ones in the clusters.

3.2. Quantification of Spodumene LiAlSi2O6-Quartz SiO2

As spodumene is an important lithium mineral [32,44] some determinations on rather
pure ores and concentrates were made. The results of the XRD calibration measurement of
spodumene and quartz mixtures from Brazilian occurrence are summarized in Figure 7. The
main peaks of spodumene and quartz are highlighted, to verify, that precise identifications of
minerals can be made rather easily. The PLSR calibration curve for mixtures of spodumene
and quartz is shown in Figure 8.

Figure 7. XRD patterns of different spodumene–quartz mixtures (main peak of quartz and spo-
dumene highlighted).
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Figure 8. Calibration curve for spodumene–quartz mixtures.

As an example for Rietveld refinement control of the different mixtures, the Rietveld
plot for a mixture of 95% spodumene and 5% of quartz and the calculated composition is
given in Figure 9.

Figure 9. Rietveld refinement of a spodumene–quartz mixture.

It is also possible to cluster these spodumene containing mixtures in three different
lithium grade ores as given in Figure 10 (low, medium, and one high lithium containing
grade). The detection limit of spodumene was also determined.
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Figure 10. Clustering of spodumene–quartz mixtures (three clusters with different lithium contents). *** most representative
sample of cluster, + are the most different ones in the clusters.

3.3. Quantification of Triphylite LiFePO4-Quartz SiO2

Investigations using Triphylite (LiFePO4) (Hagendorf/Bavaria) [36] ore must primarily
deal with the possible solid solution with Lithiophorite (LiMnPO4). This composition for the
geological occurrence is definitely used for making the calibration curves. Figure 11 shows the
PLSR calibration curve for triphylite–quartz mixtures for a typical Hagendorf lithium ore.

Figure 11. Calibration curve for triphylite–quartz mixtures.
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The different mixtures were additionally clustered into four different triphylite con-
taining lithium mineral mixtures (Figure 12). The detection limit for triphylite in quartz
mixtures and the lithium content of these ores was determined as well (Figure 15).

Figure 12. Clustering of triphylite–quartz mixtures showing four different lithium ore grades.
*** most representative Scheme 2. contents, low triphylite, medium triphylite, and high triphylite
contents. The XRD patterns of these mixtures and their calculated groups, including their similarities,
are given in Figure 14. To show the relevant main peaks of the mineral quartz in these mixtures, with
special emphasis to low amounts, Figure 15 is added.

The graphical way to determine detection limits of triphylite is given in Figure 13
by showing the relevant XRD patterns of quartz–triphylite mixtures. 1% of triphylite in a
quartz matrix can easily be determined in these mineral mixtures.

Figure 13. XRD pattern of small additions of triphylite to quartz matrix (1% Triphylite/99% Quartz).
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Figure 14. XRD patterns belonging to the respected determined clusters with different triphylite–
quartz contents.

Figure 15. Main peak of quartz in triphylite–quartz calibration mixtures.

3.4. Quantification of Montebrasite LiAlPO4(OH,F)-Quartz SiO2

For the determination of different montebrasite (F-containing) contents from NE-Brazil in
the mixtures with quartz a calibration curve using PLSR was set up. The derivation of this
method must also include the solid solution of the minerals montebrasite and Amblygonite [45].
The XRD patterns of montebrasite/quartz mixtures are shown in Figure 16 and the PLSR
calibration curve for montebrasite is given in Figure 17.
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Figure 16. XRD patterns showing different contents of montebrasite–quartz mixtures.

 

Figure 17. Calibration curve for montebrasite–quartz mixtures.

The clustering of XRD scans revealed four clusters of (a) SiO2-rich, (b) Montebrasite-
rich, (c) intermediate Montebrasite, and (d) intermediate SiO2-contents (Figure 18).

The following cluster details showed the different XRD patterns which compose these
separated four clusters with different montebrasite contents (high, medium, medium low,
low) (Figure 19).
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Figure 18. Clustering of montebrasite–quartz XRD diagrams. *** most representative sample of cluster, + are the most
different ones in the clusters.

Figure 19. XRD patterns of quartz–montebrasite mixtures forming the four relevant calculated clusters.
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3.5. Quantification of Lepidolite KLi2AlSi3O10(OH,F)2-Quartz SiO2

For the calibration of lepidolite mica and quartz some samples from Portugal were
used. For micas the preparation must be done very carefully to obtain a comparable kind
of preferential orientation in all samples, as this can influence the intensity of the peaks.
Especially for small amounts of mica, a highly preferential orientation can be included to
increase the determination limit. The intensity of a main peak of lepidolite in the mixtures
with quartz is given in Figure 20. The calculated PLSR calibration curve for lepidolite is
given in Figure 21.

Figure 20. Details of XRD patterns showing main peak of lepidolite in different contents.

 

Figure 21. Calibration curve for lepidolite–quartz mixtures.

The results of the clustering into four lepidolite containing clusters and the relevant
XRD patterns are given in Figures 22 and 23.
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Figure 22. Clustering of XRD patterns of lepidolite–quartz mixtures. *** most representative sample of cluster, + are the
most different ones in the clusters.

Figure 23. XRD patterns of quartz–lepidolite mixtures forming the relevant calculated clusters.
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3.6. Calibration of Zinnwaldite KLiFeAl2Si3O10(F,OH)2-Quartz SiO2

Using zinnwaldite [35] as a lithium source the same precautions in the preparation
of XRD patterns as in lepidolite case for micas must be used controlling the preferential
orientation of mica platelets. Typical XRD patterns showing varying contents of quartz
and zinnwaldite peak areas are given in Figure 24. The calculated PLSR calibration curve
for zinnwaldite-quartz mixtures is given in Figure 25.

Figure 24. XRD patterns of different zinnwaldite–quartz mixtures with main peaks highlighted.

 

Figure 25. PLSR calibration curve for zinnwaldite–quartz mixtures.
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Using the cluster calculation, the following four clusters containing different lithium
contents based on zinnwaldite can be generated (Figure 26).

Figure 26. Clusters derived from different zinnwaldite–quartz mixtures. *** most representative sample of cluster, + are the
most different ones in the clusters.

The XRD patterns used for PLSR calculation and the different XRDs in the clusters are
given in Figure 27.

Figure 27. XRD patterns of the different cluster in zinnwaldite–quartz mixtures.
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3.7. Analysis of Complex Lithium Ores and Process Mixtures

Different compositions of complex ores from different parts of the world were also
analyzed and compared (Figure 28). These mixtures were all put into separate clusters by
cluster analysis due to their mineralogical variances.

Figure 28. Dendrogram showing lithium ores from different parts of the world arranged in different clusters.

Some more ores from different parts of the world were clustered into lithium–rich
mineral ores and those having higher contents of quartz. The different main lithium miner-
als which composed these ores could also be clustered. The different lithium ore minerals
were arranged in different clusters due to their varying XRD-patterns, representing also
different Li2O-contents. A separation of the different lithium ores to different mines is
possible. As the mica minerals zinnwaldite and lepidolite show close related and similar
XRD patterns and therefore their main peaks do fall in the same cluster areas (Figure 29).
In geological surroundings of these lithium ores normally only one type of mica is present
and can then be shown, included and clustered separately here.

The following five lithium containing clusters could be separated Cluster 1: MICA:
lepidolite–zinnwaldite, Cluster 2: triphylite, Cluster 3: petalite, Cluster 4: amblygonite,
and Cluster 5: spodumene (Figure 29).

3.8. Investigation of Complex Ores Composed of Spodumene, Mica (Lepidolite), Quartz
and Feldspar

Different binary, ternary, and quaternary mixtures in relevant compositional miner-
alogical variances from different occurrences were investigated. In Figure 29, the different
mixtures are shown to fall into separate clusters from mixtures containing different min-
erals. The clusters represent XRD patterns with high contents of the lithium minerals,
but also some with ternary mixtures including gangue minerals (spodumene, quartz and
mica). The combinations of binary mixtures of quartz-spodumene, quartz-feldspar and
feldspar-spodumene out of the quaternary tetrahedron including mica is given in Figure
30, represented by their PLSR calibration curves.
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Figure 29. Five Clusters of different lithium mineral ores from different parts of the world with the main minerals separated
into different clusters. *** most representative XRD, + most different XRD’s in the cluster.
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Figure 30. Calibration curves of the three binary mixtures in the system quartz-feldspar-spodumene arranged along the
triangle spodumene-quartz-orthoclase.

It is also possible to treat complex mixtures by XRD, using statistical methods. The three
calibration curves for binary mixtures obtained by PLSR techniques are given in Figure 30. The
binary and ternary calibration curves including orthoclase, spodumene and quartz are given in
Figure 31a–c. For ternary mixtures the calibration curves can be derived also by PLSR (Figure
31d) and are based on increasing spodumene contents. In Figure 32 the derived 4 clusters of the
different mineral mixtures (binary and ternary) are given.
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(a) (b) 

(c) (d) 

Figure 31. (a) Calibration curve of binary system orthoclase–quartz, (b) calibration curve of binary system orthoclase–
spodumene, (c) calibration curve of binary system spodumene-quartz, and (d) calibration curve for spodumene in ternary
mixtures orthoclase–spodumene–quartz.

Figure 32. Separate clusters of three binary and one ternary mixture of minerals orthoclase, quartz, and spodumene.
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In Figure 32 the four clusters of spodumene-rich, quartz-rich, orthoclase-rich, and
ternary mixtures can be calculated.

When this system is opened up by the addition of all of the other already described
binary mixtures containing lithium minerals, the clusters containing different, but definite
mineral associations can be derived as given in Figure 32. These arrangements are basi-
cally due to the relevant lithium-containing mineral from which the Li2O content can be
calculated.

By the aid of this technique the different mineral associations can be separated and
different mixtures of lithium containing minerals are separated (Figure 33). Only lepidolite
and zinnwaldite, due to their similar XRD patterns (typical mica XRD patterns), are difficult
to distinguish from each other. In practical measurements from different occurrences
worldwide, not all these different combinations will be available, which concludes that
these calculations for lithium minerals are even more simple to obtain.

Figure 33. PCA analysis of binary, ternary, and quaternary mixtures containing all six different lithium minerals, and
orthoclase and quartz, one cluster is formed containing two mica minerals.

A definite content of lithium oxide can be derived from all these mixtures, making a
wet chemical analysis of lithium redundant.

4. Investigation of Special Hard Rock Ores and Brines—Industrial Case Studies on
Complex Ores

4.1. Hard Rock Lithium Deposits—Characterization of Raw and Processed Materials

Lithium hard-rock ores are extracted either using open-pit or underground mining.
The economically valuable fraction of lithium hard rock deposits is represented by spo-
dumene, apatite, lepidolite, tourmaline, and amblygonite, of which spodumene is the
most common lithium-bearing mineral. The gangue fraction of lithium hard-rock deposits
typically consists of quartz, feldspar and other silicates.
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Figure 34 describes the basic steps to extract lithium carbonate from pegmatite hard
rock deposits. After crushing and separation of non-valuable ore, α-spodumene is con-
centrated by grinding and flotation. Byproducts such as quartz-feldspar sand can be used
as filler material in various applications. α-Spodumene is calcined into β-spodumene to
enable further processing towards lithium carbonate or hydroxide. Leaching, dewatering,
removal of impurities, crystallization, and filtration transform β-spodumene into lithium
carbonate or hydroxide. The byproduct analcime, a porous zeolite, can be used in several
applications during manufacturing of ceramics, cement, and asphalt.

 

Figure 34. Schematic flow sheet for production of lithium carbonate from hard rock deposits.

The different minerals of hard rock lithium ores have different properties during
processing and influence the efficiency of flotation and calcination. Therefore, frequent
mineralogical monitoring allows to sort and blend different ore grades to ensure a consistent
quality for processing, minimize costs for reagents and reach optimal recovery rates.

Fourteen samples including raw ores as well as processed material (flotation and calci-
nation) were mineralogically analyzed for this case study. A benchtop X-ray diffractometer
Aeris Minerals was used for the case study. Five minutes of measurement time per samples
was chosen to enable fast and frequent monitoring in a process environment [15].

Prior to phase identification and quantification, cluster analysis of the raw ore samples
(n = 9) was trialed to investigate the potential of fast ore sorting based on mineralogical
in formation from XRD measurements. Two cluster (groups of similar samples) could be
identified as well as two outliers (not belonging to any cluster), (Figure 35). Later mineral
quantification will show, that these two clusters reflect high- and low-grade ores and can
potentially be used to identify different ore domains in the mine.

 

Figure 35. PCA (principal component analysis) plot with two different cluster of lithium ores
representing different ore grades (n = 9), *** indicates the most representative scan of a cluster, +
indicates the two most different scans within one cluster.

Figure 36 shows the XRD patterns of the representative raw ore sample, α- and
β-spodumene concentrates and corresponding tailings.
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θ

α

β

Figure 36. XRD patterns from lithium ore, concentrates and tailing after flotation and calcination, Δ—α-spodumene,
�—β-spodumene, O—albite, +—quartz, �—analcime, modified after Norberg et al. (2020) [37].

Phase identification of the ore samples revealed a complex mineralogy. Main minerals
identified are spodumene LiAl(SiO3)2, quartz SiO2, albite NaAlSi3O8, anorthite CaAl2Si2O8,
minor amounts of lepidolite K(Li,Al)3(Al,Si,Rb)4O10(F,OH)2, orthoclase KAlSi3O8 and
traces of tourmaline (elbaite) Na(Li1.5Al1.5)Al6Si6O18(BO3)3(OH)4, and beryl Be3Al2(SiO4)6.
The major peaks of the main phases are marked in the Figure 36.

The Rietveld method was applied to quantify the mineral concentration of the lithium
ore samples. Figure 37 shows an example of the resulting full-pattern Rietveld refinement
of one ore sample and relative quantities of all available ore samples. The information
about the different ratios of spodumene and gangue minerals can be used to define grade
blocks in the mine and to sort and blend ores from different mineralogical domains. Further,
ore mineralogy directly influences the efficiency of the flotation step and subsequently
spodumene recovery rates. The types and quantities of reagents used during flotation
require carefully adjustment based on the mineralogy. In addition, the presence and amount
of hard minerals such as quartz allows to react on changing ore composition and enables
fast feedback times to ensure optimal lifetime of processing equipment like grinding mills.

Besides the definition of ore grades, XRD can also be used to directly monitor the
efficiency during downstream processing. Figure 38 shows the quantitative phase com-
position of α-spodumene concentrate, tailings, or rejects after flotation [44], the calcined
product, and the by-product analcime. For this example, the flotation product contains
89.6% α-spodumene with the minor amounts of quartz, albite, anorthite, and traces of
lepidolite, beryl, orthoclase and mainly analcime in the residue. The main fraction of
the gangue minerals is separated in the rejects, which primarily consist of albite, quartz,
and anorthite.
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Figure 37. Example of a full-pattern Rietveld quantification of a complex hard-rock lithium ore (a) and variation of mineral
quantities in the different products (b).
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Figure 38. Example of a full-pattern Rietveld quantification of a spodumene concentrate (a) and composition of concentrate,
tailing, calcination product and residue (b).

The efficiency of the transformation from α-spodumene to β-spodumene can be
monitored by XRD. The two different modifications consist of different crystal structures
and show different XRD patterns. In the example in Figure 38, over 92% of the calcined
concentrate is transformed into β-spodumene. Impurities are minor amounts of anorthite
and quartz. The corresponding by-product analcime still has a residue of β-spodumene
that might require adjustments during the calcination process to further increase recovery
rates. To summarize the use of XRD for monitoring hard rock lithium ores and processing
materials enables easy and fast definition of mineralogical domains in the mine. Cluster
analysis can be used as a tool to distinguish fast and easy between different ore grades and
allows the definition of grade blocks (Figure 39) and the sorting and blending of ores based
on the mineralogical composition. XRD also enables process control during the extraction
of β-spodumene from the ore feed.
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Figure 39. XRD cluster analysis (a), corresponding mineral quantities (b) and visualization of a theoretical grade block
model (c) and mineralogical domains of a lithium hard rock deposit.

4.2. Lithium Brines—Mineralogical Characterization of Salts

Besides hard rock lithium deposits, lithium brines are also a main primary resource
of lithium with 60% of the global identified reserves [46]. Salars, dried salt lakes, hold
78% of the lithium brine reserves. The process to produce lithium from lithium brines
revolves around concentrating the brines up to 6% lithium and removing the impurities
subsequently (Figure 40). Careful monitoring of the different salts crystallizing out of a
brine helps to adjust extraction of the lithium.

 

Figure 40. Simplified flow sheet for production of lithium carbonate from brines.

Forty-three samples from a lithium brine were used to cluster, identify and quantify the
different mineral phases. Focus of this study was to find a fast way to characterize different
salt domains. Due to the hygroscopic behavior of some salt phases, special attention was
also put on the optimal sample preparation for the XRD measurements. Lithium salts
like Li-Carnallite or Li-Sulfates are hygroscopic under ambient conditions and changing
from solid to liquid within minutes. Although XRD offers short measurement times of
about 5 min, the hygroscopic behaviour challenges phase identification and quantification.
Figure 41 shows the measurement of one sample form a brine containing lithium salts.
Extremely short measurement times of 1 min were chosen to follow to decrystallization of
Li-Carnallite. Within 10 min all Li-Carnallite peaks disappear completely whereas the other
salts are still stable. To avoid decrystallization a capton foil was used on top of the sample
during the measurement (Figure 42). After 10 min, Li-Carnallite still appears crystalline
and all corresponding peaks have the same intensities.
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Figure 41. XRD measurement of one brine sample containing lithium carnallite using an open sample holder under ambient
conditions, sample measured in 1 min intervals directly after preparation.

 

Figure 42. XRD measurement of one brine sample containing lithium carnallite using capton foil on top of the sample,
measured in 1 min intervals directly after preparation.

To investigate a fast method to identify and monitor different types of salts with
different mineralogical composition, cluster analysis was applied using all 43 available
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samples. Figure 43 shows a principal component analysis (PCA) with corresponding
dendrogram, identifying seven distinct clusters. During subsequent quantification of all
samples the different cluster could be connected to a certain mineral composition. Not only
the chlorides, sulfates, and lithium containing salts could be separated, but also samples
with different ratios of the minerals (e.g., halite and sylvine).

 

Figure 43. Cluster analysis identifying different clusters of evaporites from a lithium brine deposit (n-43) and the relevant
dendrogram, *** indicates the most representative scan of a cluster, + indicates the two most different scans within one cluster.

For the set of 43 samples, 13 different mineral phases are identified using XRD, Table 4.
Main lithium containing phases are Li-Carnallite and Li-Sulfate Monohydrate.

Table 4. Minerals identifies in the brine samples investigated.

Mineral Formula

Halite NaCl
Sylvine KCl

Carnallite KMgCl3·6H2O
Bischofite MgCl2·6H2O

Chloromagnesite MgCl2
Anhydrite CaSO4
Gypsum CaSO4·2H2O

Syngenite K2Ca(SO4)2·H2O
Polyhalite K2MgCa2(SO4)4·2H2O

Kainite KMg(Cl,SO4)·2.75H2O
Picromerite (Schoenite) K2Mg(SO4)2·6H2O
Li-Sulfate Monohydrate Li2SO4·H2O

Li-Carnallite LiMgCl3·7H2O

Quantification of the different mineral phases in all samples was applied using the
Rietveld method. Figure 44 shows an example of a Rietveld refinement quantifying eight
crystalline mineral phases.

The case study demonstrates that XRD can be used to monitor different salts of lithium
brines. Special sample preparation is required due to the hygroscopic of the lithium salts.
Cluster analysis is a fast method to identify different mineralogical compositions of the
salts. Due to measurement times of about 5 min and quantification of the total mineral
content (crystalline phases) it is possible to use XRD as process control method to monitor
the mining and processing of lithium brines.
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Figure 44. Example of a full-pattern Rietveld quantification of a lithium ore from a brine.

5. Conclusions

By using the XRD method for the quantitative determination of minerals, followed by
a recalculation of the Li2O-content, it is possible to replace the wet chemical analysis and
obtain contents of lithium increasingly fast. It could be proved that Li2O-contents down to
0.1% can be reliably determined in the presented mixtures after definition of the occurring
lithium mineral in the sample. The method must be adapted to more complex mixtures.
Nowadays besides the determination of lithium in primary ores the determination of
lithium in lithium mineral leaching residues can also be of interest. It can be summarized
as follows:

1. Quantitative lithium determination by mineral quantification is possible;
2. Definite mineral composition must be known for calculations of contents;
3. Rapid and fast lithium determination in mineral mixtures by XRD is possible;
4. XRD quantification method is easily applied for simple mineralogical compositions

of minerals and can replace wet chemical analysis;
5. XRD methods for typical ternary mineral systems can already be successfully applied;
6. XRD methods and interpretations combined with statistical treatment methods can

be applied in practical applications:

(A) Rietveld quantification—no calibration curve necessary
(B) Partial Least Squares—refinement with calibration curves—rapid and reliable

for lithium concentrates
(C) Clustering of different lithium mineral compositions—identifies different

lithium ore qualities
(D) Classic lithium content determination using chemical methods—time consum-

ing but useful for referencing

7. More complex ores and brines can be treated by XRD and useful results are obtained
methodology is more complicated;

8. Determination of lithium in brines is more complicated due to lower lithium contents
and due to complex mineralogy;

9. For detailed mineralogical determinations a more sophisticated Rietveld analysis is
useful for multi-mineral mixtures and more detailed results.

6. Summary

Thus, also XRD technique can be used for the determination of lithium in lithium ores
as fast, quantitative and reliable method. The detection limits for the different minerals are
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summarized in Table 5. In concentrates however, mainly the higher lithium concentrations
are of interest for further processing.

Table 5. Detection of lithium in six different lithium-minerals and their detection limits.

Mineral Name
Detection Limit

(% of Li2O)

Detection Limit
(Mineral Content in

%)

Content Li2O in %
(Ideal Composition)

Triphylite 0.1% <1 9.47
Spodumene 0.1% 1–2 8.03

Amblygonite 0.1% 1 7.4
Lepidolite <0.1% <1 7.7

Zinnwaldite 0.1% 1 3.42
Petalite 0.1% 1 4.5

The procedures followed in this type of analysis, using primarily the quantitative
mineral content and performing a recalculation of the lithium content in these minerals,
can be used on the different raw materials. A short description is given schematically in
Figure 45.

Figure 45. Schematic procedure of lithium determination in lithium ores by XRD.
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Some examples of typical concentrates of lithium minerals with quartz were analyzed
and their determination results based on the PLSR curves are given in Table 6 and Figure
46. The measured results of different mixtures can be determined rather exactly, sometimes
some difference can be observed (maximum 2% of mineral contents). But mainly, very
precise contents could be obtained.

Table 6. Examples of PLSR results of lithium ores based on definite initial values given and their measured results from XRD.

Initial
Value (%)

Measured
Value (%)

Spodumene Triphylite Petalite Montebrasite Zinnwaldite Lepidolite
10 9.88 8.02 10.34 10.13 10 9.92
50 49.89 50.14 51.32 49.99 49.85 49.93
80 80.02 79.97 80.33 80.02 80.26 79.63
95 95.22 94.75 94.85 95.02 94.93 94.55

97.5 96.1 96.89
99 97.01 97.03

100 99.7

Figure 46. Measurements and results of typical concentrates of the lithium minerals and the measured
contents determined by XRD.

Therefore, X-ray powder diffraction (XRD) is an established, fast, and accurate miner-
alogical method providing valuable information for mining and beneficiation of lithium
hard-rock deposits. Accurate mineralogical analysis during mining and processing of
lithium ores allows efficient mine planning, ore sorting and blending as well as optimizing
the different steps of beneficiation and extraction. XRD is beneficial to optimize the use of
expensive reagents in the flotation cells. Mineralogical analysis of concentrates and tailings
during flotation and calcination of lithium hard-rock treatment allows fast counteractions
on changing ore grades or process conditions and subsequently increases the recovery
rate of lithium minerals. Modern diffraction instruments are fast, accurate and compact in
size. Their infrastructure can be easily implemented in the process flow at the beneficiation
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plant, including full automation, from sampling to results reporting into a centralized
plant control system. Compact XRD instruments can even be a part of a mobile container
lab, located directly at a mine site. Automated sample preparation in combination with
intuitive measurement flow setup and fully automated analysis significantly low is the
entry level, required to operate a modern XRD instrument in the efficient manner.
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Abstract: An essential operation in the mineral processing of copper ores into concentrates is blending,
as it guarantees a constant feed for the flotation cells, increases metal recovery rate and reduces
tailings. In this study, copper ores from Huelva province (Spain) were investigated by quantitative
XRD (X-ray diffraction) methods to optimize blending and detect penalty minerals, which can affect
flotation and concentrate quality. The Rietveld method in combination with cluster analysis, PLSR
and more traditional chemical analysis provide a more complete and in-depth characterization of the
ore and the whole process. The mineralogical monitoring can be fully automated to enable real-time
decision making.

Keywords: chalcopyrite; ore blending; copper flotation; XRD; Rietveld; PLSR

1. Introduction

Copper is an essential element for today’s technologies, including the pursuit of
a green economy and electrification of transport. Mining of copper ores has generated
20 Mt of copper in 2020 globally, and the total reserves are estimated to be 870 Mt [1].
Approximately 250 Mt of copper ores are located at the Iberian Pyrite Belt (IPB), a massive
sulfide deposit, which has been mined throughout history. The mineral beneficiation of the
ores into concentrates involves comminution followed by flotation, which increases the
copper content by 1–2 orders of magnitude. The selection and optimization of the separation
and concentration process ultimately affect the economic recovery of the copper ore.

The ore grade is defined by both chemistry and mineralogy, but the mineralogy has
a more important role in the recovery rate. When dispersed in a solution, different minerals
(as well as different surfaces of the same minerals) have different interfacial energies and
surface properties, such as point of zero charge, wettability and chemical affinities [2]. The
flotation process exploits the difference in wettability of the different surfaces in aqueous
solution to separate the valuable minerals from the gangue. The addition of different
pH regulators, ions or surfactants to the solid-water dispersion can selectively change
the wettability of different minerals, therefore allowing a high degree of flexibility to the
separation and beneficiation process.

The knowledge and control of the mineralogy during ore blending operation, therefore,
have an impact on the flotation optimization and ultimately on the copper recovery. Proper
blending and optimized flotation also minimize unwanted elements which can decrease the
value of the concentrates, such as arsenic (As) and antimony (Sb). The surface properties
of minerals also affect agglomeration during comminution. They influence the colloidal
properties of a material in suspensions and the flocculation and agglomeration phenomena
during dewatering operation. For instance, the presence of swelling clays has a detrimental
role in the dewatering of the tailings; therefore, the mineralogy also plays an important role
in water consumptions and tailing management. If present in large quantities, clay minerals
can also cause pipe blocking and, therefore, halt part of the mineral processing operations.
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The main characterization technique to probe the mineralogy of a material is X-ray
powder diffraction (XRPD), as it detects the atomic planes that are defined by the mineral
space group and unit cell atomic content. In this work, we assess the use of the XRPD
technique for the rapid quantification of minerals through the flotation process. The
Rietveld refinement [3] is carried out by control files, which contain a database of tens of
structures together with a pre-defined refinement strategy. The precision of the analysis
was assessed by comparing the results to independent elemental analysis. The capability
of clustering techniques such as PCA (principal component analysis) and predictive tools
such as PLSR (partial least square regression) were also evaluated and compared with
classical Rietveld results.

Correlation between mineralogy and mineral processing are presented in the dis-
cussion. The fast generation of reliable data which can be used for decision making is
a key component to the digitalization of the mining industry. This research on copper ore
materials and their mineral processing can easily be translated to other industrial activities,
where the mineralogical knowledge can spark innovation directed toward sustainable
goals [4–8].

2. Materials and Methods

2.1. Materials

In this study, we characterized different copper ore blends from the Iberian Pyrite
Belt and quantified the mineralogical changes occurring during the flotation beneficiation
process. The samples were provided by Atalaya (Minas de Riotinto, Spain), a European
mining company focused on research, exploration and processing of copper ores. The assay
results are reported in Table 1 and they were obtained using inductively coupled plasma-
optical emission spectrometry (ICP Avio 500, Perkin Elmer Inc., Waltham, United States)
(ICP-OES). The metal zonation of the copper ore in the region (Huelva province) is mostly
composed of chalcopyrite and pyrite, while the host rock is mostly made of chlorite-group
minerals, sericite and silica varieties [9]. A total of 265 samples were characterized and
equally divided in three categories: the blended ores used as feed for the flotation cells, the
flotation concentrates and the flotation tailings.

Table 1. Average chemical composition of the available samples. #Samples represents the number of XRD samples analyzed
per each material type.

Material Type #Samples Cu (%) S (%) Zn (%) Pb (ppm) Fe (%) As (ppm) Sb (ppm) Bi (ppm)

Blends 87 0.46 5.11 0.11 157 12.3 190 58 29
Tailings 88 0.07 4.58 0.06 115 11.98 178 17 26

Concentrates 90 20.33 35.90 3.26 2800 30.36 1260 2443 230

2.2. Method

The particle sizes of the materials were below 250 μm. Sample preparation for XRD
(X-ray diffraction) included grinding with a swing mill (also known as shatterbox, vibratory
disc mill or pulverizer) to reduce the particle size below 60 μm and improve mineral
quantification by quantitative X-ray diffraction (QXRD). Samples were prepared the for
XRD analysis in a 27 mm backloading sample holder to reduce the preferential orientation.

The XRD scans were collected using the Minerals Edition of Aeris benchtop X-ray
diffractometer (Malvern Panalytical B.V., Almelo, The Netherland) (40 kV–15 mA), with
a goniometer radius of 145 mm, Kα = 1.79 Å cobalt-anode X-ray tube, 0.04 Soller slits,
1
4 divergence slits, 23 mm mask, low beam-knife, step size 0.02◦ and acquisition time of
80 s/step. The Bragg-Brentano measurement covered a range of 5–80 ◦2θ (atomic planes
from 1.39 Å to 20.51 Å), allowing the detection of clay minerals. The use of a cobalt
tube avoids iron fluorescence usually observed with Cu-radiation, therefore improving
penetration depth of X-rays in the sample and improving counting statistics. The use of
a linear PIXcel1D Medipix3 detector (Malvern Panalytical B.V., Almelo, The Netherland)

58



Minerals 2021, 11, 1142

with an active length of 5.54 ◦2θ allows a scan acquisition time of a few minutes, and the
results are immediately analyzed by automatic Rietveld routines installed in the Minerals
Edition of Aeris.

2.3. Analysis

The phase identification was done with the HighScore Plus software package version
4.8 (Malvern Panalytical B.V., Almelo, The Netherland) [10] and the ICDD PDF-4 database
(accessed on 3 March 2021) [11]. The phase identification was performed on specific, rep-
resentative XRD scans selected by cluster analysis, which will be covered in the results
section. The identified mineral phases are reported in Table 2, together with their averaged
weight percentages as determined by the Rietveld refinement [12]. More than 10 other
minerals were identified, but are mainly present in minor amounts, e.g., tennantite, galena,
arsenopyrite, dolomite, gypsum, marcasite and chalcocite. The Rietveld routines were
created with HighScore Plus and executed by software RoboRiet 4.8, a dedicated imple-
mentation of Rietveld quantification for automation projects. The results were verified by
executing manual Rietveld refinements in HighScore Plus.

Table 2. Average weight percentages of major minerals as determined by Rietveld refinements. The mineral variability
within the same material type is reported as the absolute standard deviation (1σ) in between brackets.

Material
Agreements

Index
Minerals Quantification (wt%)

Cu and Zn Bearing Minerals Gangue

Rwp GOF Chalcopyrite Sphalerite Tetrahedrite Pyrite Quartz Chamosite Muscovite Siderite

Blends 7 (1) 3.4 (0.4) 1.1 (0.3) 0.1 (0.1) 0.0 (0.0) 5 (2) 53 (4) 30 (5) 6 (2) 0.8 (0.6)
Tailings 7 (1) 3.5 (0.5) 0.2 (0.1) 0.0 (0.0) 0.0 (0.0) 5 (2) 53 (5) 31 (6) 6 (2) 0.8 (0.3)
Concent. 3.5 (0.4) 2.2 (0.2) 55 (8) 5.1 (1.6) 0.9 (0.8) 24 (9) 4 (2) 4 (2) 0.2 (0.2) 0.9 (0.3)

3. Results

3.1. Minerals Present in the Blends, Tailings and Concentrates

The major minerals with their distinctive most intense peak positions are reported in
Figure 1. The material is an ore blend used as feed for flotation. Its diffraction pattern is the
representative scan as defined by cluster analysis. The main diffraction peaks correspond
to quartz, pyrite and phyllosilicates (chamosite and muscovite). The main copper-bearing
mineral is chalcopyrite, which has several diffraction peaks in the range of 20–70 ◦2θ, the
most intense at 34.2 ◦2θ, which is better observed in the diffractograms of a representative
concentrate material (Figure 2). The diffraction patterns of tailings and feeds are quite
similar, while the patterns of the concentrates display lower diffraction intensity of gangue
minerals and higher intensity for copper, zinc and iron sulfide minerals. A list of major
minerals can be found in Table 2.

The Rietveld refinement requires XRD scans of a certain quality, especially when
the mineral quantification is performed in a quality control environment with automatic
RoboRiet routines. The data should be characterized by features such as a low and flat
background and high diffraction intensities (most intense peak with >10,000 counts). The
peak position overlap of certain minerals, e.g., sphalerite with pyrite, chalcopyrite with
gypsum and tetrahedrite, supports the use of Rietveld refinement as a full pattern fitting
approach, whereas classical straight-line calibration methods can cause a bias in the results.
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Figure 1. XRD scan of a flotation feed. The diffraction pattern of this feed is the representative scan as defined by the
cluster analysis.

Figure 2. Characteristic XRD scans of the ore blend used as feed for the flotation cell, tailings and concentrates. XRD scans
of tailings and concentrates are here vertically shifted by 3000 and 6000 counts for clarity.

3.2. Details on Chalcopyrite and Tetrahedrite Monitoring

In this section we focused on the capability of XRD techniques to detect and quantify
minerals present at minor concentrations, in particular the residual chalcopyrite content in
a tailing sample (Figure 3) and Bi-Sb-Pb-As sulphosalts present in a concentrate sample
(Figure 4).

The visualization of the Rietveld results of different ore blends over time allows
the plants to assess and control the mineral variability of the feed used in the flotation
cell. The most prominent difference in the ore blends is the type of gangue mineralogy,
characterized by the amount of pyrite and chamosite, Figure 5. The flotation parameters,
the surfactant selection and surfactant amount can therefore be optimized based on such
quantities. The variation over time of the chalcopyrite content as well as other relevant
minerals included in the Rietveld analysis is shown in Figure 6. Chalcopyrite is the main
copper ore mineral and it varies between 0.5 wt% and 1.9 wt%, which is well above the
limit of detection, see Figure 3. The limit of detection is approximately 120 net counts,
as calculated from LOD = [3 ∗ net intensity ∗ (background)−0.5] [13]. A SNR > 10 is the
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minimum prerequisite to accurately quantify a mineral in a mixture. The accuracy of the
Rietveld results depends also on (1) particles statistic, (2) degree of overlap with peaks
from other phases, (3) preferential orientation, (4) overgrinding and (5) microabsorption.

Figure 3. XRD pattern of a tailing sample with 0.16 wt% of copper in the range 26–38 ◦2θ. Upper curve represents measured
data, lower curve in blue represents Rietveld contribution of 0.45 wt% chalcopyrite. Vertical bars are peak positions of
crystalline phases.

Figure 4. XRD pattern of ore concentrate in the range 26–38 ◦2θ. Upper curve represents measured data, lower curve in
gray represents Rietveld contribution of 1.6 wt% of tetrahedrite. Vertical bars are peak positions of crystalline phases.

For the tailing sample, the copper concentration is Cu = 0.16 wt% as determined by
ICP, while the chalcopyrite is 0.45 wt% as determined by automatic Rietveld refinement.
Chalcopyrite contains 34.6% of copper and the back-calculated copper content from Ri-
etveld analysis is 0.16 wt%, in agreement with ICP results. Vertical bars show diffraction
peaks of chalcopyrite CuFeS2, including its most intense peak at 2θ = 34.2◦. The latter peak
is due to the diffraction of Kα = 1.79 Å X-rays and chalcopyrite atomic planes with distance
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d = 3.03 Å (space group I-42d, a = b = 5.290 Å and c = 10.426 Å, miller indexes h = 1, k = 1
and l = 2). With a background count of 1680 counts and a peak intensity of 572 counts,
the chalcopyrite diffraction peak has a signal-to-noise ratio SNR ≈ 14.4, which passes the
criteria of limit of detection (SNR)LOD = 3 and limit of quantification (SNR)LOQ = 10 [13].
One advantage of Rietveld refinement over classical straight line calibration method is the
proper intensity extractions of overlapping peaks, such as chalcopyrite peak at 2θ = 34.2◦
and gypsum peak at 2θ = 34.0◦, see Figure 3.

Similarly, the main diffraction peak of Bi-Sb-Pb-As sulphosalts partially overlap with
chalcopyrite peak, Figure 4. The phase ID with HighScore Plus assigned the diffraction peak
at 2θ = 34.74◦ to the tetrahedrite family, specifically to ICDD: 01-074-3633, a mercury-copper-
antimony-arsenic sulfide. Such phase was selected as the best available structural model
based on scores of search-match algorithm of HighScore, graphical refinement criteria
and agreement with antimony elemental concentration in the concentrates, see Figure 7.
From the net peak intensity I = 1425 counts and background intensity B = 3120 counts, the
signal-to-noise ratio can be calculated: SNR = I/

√
B ≈ 25.

3.3. Rietveld Refinements and Trends

The mineralogical quantification of the major phases is reported in Table 2. The
chalcopyrite in the concentrate is 40–50 times higher than in the ore blends. Other major
minerals which show higher percentage in the concentrate are sphalerite, tetrahedrite
and pyrite.

The visualization of the Rietveld results of different ore blends over time allows
the plants to assess and control the mineral variability of the feed used in the flotation
cell. The most prominent difference in the ore blends is the type of gangue mineralogy,
characterized by the amount of pyrite and chamosite, Figure 5. The flotation parameters,
the surfactant selection and surfactant amount can therefore be optimized based on such
quantities. The variation over time of the chalcopyrite content as well as other relevant
minerals included in the Rietveld analysis is shown in Figure 6. Chalcopyrite is the main
copper ore mineral and it varies between 0.5 wt% and 1.9 wt%, which is well above the
limit of detection, see Figure 3. The limit of detection is approximately 120 net counts,
as calculated from LOD = [3 ∗ net intensity ∗ (background)−0.5] [13]. A SNR > 10 is the
minimum prerequisite to accurately quantify a mineral in a mixture. The accuracy of the
Rietveld results depends also on (1) particles statistic, (2) degree of overlap with peaks
from other phases, (3) preferential orientation, (4) overgrinding and (5) microabsorption.

Figure 5. Mineralogical variability of ore blends for the major gangue minerals as determined by XRD and Rietveld refinement.
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The accuracy of the XRD results was verified for all 265 materials by comparing the
elemental composition calculated from the Rietveld refinements with the ICP values, see
Figure 7. The elemental composition of copper, zinc and antimony can be fitted with
straight lines which give, respectively, R2 values of 0.99, 0.98 and 0.96, and slope values of
0.99, 1.05 and 0.94. The automatic Rietveld analysis gave accurate results with precision
that depends on the mineral species and their concentrations. For instance, the precision of
zinc calculated from Rietveld greatly decreases when the zinc content is below 0.2 wt%,
which corresponds to a sphalerite concentration of 0.3 wt%, Figure 7. The relatively higher
LOD of sphalerite is due to its strong overlap with pyrite diffraction peaks.

Figure 6. Mineralogical variability of ore blends for minor mineralogical phases, as determined by XRD and Rietveld refinement.

Figure 7. Agreement between chemical compositions obtained from ICP and Rietveld refinement. Zero values obtained by
Rietveld are set to 0.001 for graphical purpose.
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Deviation from expected results can be attributed to incorrect Rietveld structural mod-
els and refinement strategy, but most importantly, on sample preparation. The materials
in this study are highly complex as they contain hard minerals, such as quartz and pyrite,
and soft minerals, such as phyllosilicates, sphalerite and chalcopyrite. The mass absorption
coefficient of pyrite is almost twice the value of quartz; therefore, microabsorption effects
are likely to affect the analysis if samples are not properly ground. Vice versa, when
samples are overly ground, the soft minerals can be partially amorphized. The disc mill
used in this study has its disadvantages and advantages: it can affect sample crystallinity
due to high energy impacts, but it fastens sample preparation operations, which can be in-
tegrated in a fully automated laboratory for quality control purposes. The use of dedicated
XRD sample preparation procedures (milling and pressing parameter) and optimized data
collection strategies can further improve the quantification of crystalline phases, including
secondary copper minerals.

3.4. Statistical Methods—Principal Component Analysis (PCA): Clustering of
Copper Concentrates

An alternative and powerful method to study the major minerals trends is the clus-
ter analysis. In this example, the copper concentrate scans are grouped into clusters
which are then visualized using Principal Component Analysis. During cluster analysis,
the proprietary search-match algorithm of HighScore compares all the XRD scans and
calculates a correlation matrix. The three principal components of the PCA substitute
the 3300 datapoints of each XRD scan and they explain the majority of variance in the
correlation matrix.

The first, second and third principal component explain, respectively, 50%, 31% and
9% of the variance, see the eigenvalue plot in Figure 8. In total, 89.55% of the variance of
the correlation matrix is described in the PCA plot in Figure 9. The 90 different copper
concentrates can be grouped into four major clusters plus an outlier that could not be
grouped into any of the four clusters. The size of each marker is proportional to the pyrite
content as determined by Rietveld refinement. The PCA plot shows that the pyrite content
varies along the second principal component of the PCA plot. Each cluster has specific
mineralogical properties; Table 3 focuses on the main differences among the clusters. The
blue and gray cluster are the richest in chalcopyrite, but the blue cluster is higher in quartz
and chamosite and lower in pyrite. The green and brown clusters are progressively richer
in pyrite and poorer in chalcopyrite. Finally, the one outlier has a composition similar to
the brown cluster, but it has a significant amount of secondary copper minerals, such as
digenite Cu9S5 and covellite CuS.

Table 3. Average weight percentages of selected minerals of different clusters of copper concentrate, as determined by
Rietveld refinements. The mineral variability within the same cluster is reported as the standard variation in between
brackets. #Samples represents the number of samples included in each cluster.

Cluster Color #Samples Cluster Features
Minerals Quantification [wt%]

Chalcopyrite Pyrite Quartz Chamosite

Blue Cluster 9 High CuFeS2/Low FeS2 60 (7) 12 (2) 10 (2) 6 (1)
Gray Cluster 53 High CuFeS2/Medium FeS2 63 (4) 20 (4) 4 (1) 2 (1)

Green Cluster. 25 Medium CuFeS2/Medium FeS2 50 (5) 33 (7) 4 (1) 1 (1)
Brown Cluster 2 Low CuFeS2/High FeS2 40 (13) 45 (14) 4 (1) 2 (1)
Black Outlier 1 Secondary copper minerals 35 45 3 1
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Figure 8. Eigenvalues plot explaining how the data variance is described by the most relevant
principal components (PCs).

Figure 9. Principal Components Analysis plot of XRD scans of copper concentrates. Each scan is represented by a sphere
with a radius proportional to its pyrite content. The four clusters and the one outlier are visualized in different colors.
*** representative XRD scan of each cluster, + most different XRD scans within a cluster.
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The XRD scans and the cluster algorithm parameter can be saved and used in the
future to automatically classify an unknown material based on which cluster it belongs to.
With such information, the processing plant can quickly and automatically decide if and
where a copper concentrate needs to be further processed, blended and stored.

3.5. Statistical Methods—Partial Least Squares Regression (PLSR): Predicting Antimony in
Copper Concentrates

Essential information for the mining process can also be extracted from the raw XRD
scans by training the SIMPLS algorithm (statistically inspired modification of the partial
least squares) [14] implemented in HighScore Plus. The algorithm belongs to the data
mining method of partial least square regression. In this example, the training values of
antimony content in the concentrates were provided by ICP chemical analysis. Since PLSR
is a statistical method, several scans are needed to obtain a reliable PLSR calibration file.
Here, we used 72 XRD scans for building the model and 17 XRD scans, i.e., 20% of the scans,
to cross-calibrate the model (Figure 10). The latter were used to calculate the Root Mean
Square Error of Prediction RMSEP = 556 ppm, which represents 1σ standard deviation
of the predicted values. The PLSR model can then be used to estimate the antimony
concentration of unknown samples without the need of Rietveld refinement, especially for
copper concentrates with antimony concentration between 287 ppm and 10,650 ppm, the
concentration range of the training values.
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Figure 10. PLSR plot of predicted values and reference values of antimony concentration in copper concentrates. The plot
contains both training and validation data of the model.

Several evaluation plots are available to assess the calibration model as well as ex-
tracting further information from the raw data. For instance, in Figure 11, the regression
coefficients vs ◦2θ plot reveals the diffraction angles ranges most useful to build the PLSR
calibration model. The regression coefficient has large values (>0.02) at the ◦2θ values of the
tetrahedrite peaks, Table 4. As expected, this shows that the tetrahedrite is the main carrier
of Sb in the analyzed samples. Such information was not accessible by wet chemistry or
by Rietveld refinement alone and can be used to select the right surfactant to depress this
mineral species. The comparison of the regression coefficient in Figure 11 with the relative
peak intensity I[%] of tetrahedrite in Table 4 reveals how the PLSR model considers both
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the diffraction peak intensities as well as their degree of overlap with other phases. For
instance, the less intense but isolated 2θ = 28.2◦ peak, has a higher coefficient than the main
peak at 2θ = 34.7◦, partially overlapping with the chalcopyrite peak at 2θ = 34.3◦ (Figure 4).
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Figure 11. PLS regression coefficients for antimony concentration in concentrates. The coefficients identify the parts of the
diffractogram contributing most to the PLSR regression model.

Table 4. 2theta angles in the diffraction pattern of copper concentrates with the highest regression
coefficient for the PLSR model of antimony, and diffraction peaks of the corresponding phase.

◦2θ
Phase

Assignment
H K L

Miller Indexes
I [%]

from 01-074-3633

18.9 Tetrahedrite 0 2 0 2.5
28.2 Tetrahedrite 0 2 2 7.1
34.7 Tetrahedrite 2 2 2 100
40.4 Tetrahedrite 0 4 0 21.2
42.9 Tetrahedrite 0 3 3 7.7
45.4 Tetrahedrite 0 4 2 1.6
50.0 Tetrahedrite 2 4 2 1.6
52.2 Tetrahedrite 1 4 3 6.1
58.4 Tetrahedrite 0 4 4 39.8
64.2 Tetrahedrite 1 6 1 6.3
69.7 Tetrahedrite 2 6 2 20.3

4. Discussion

In this study, we demonstrated the fast and accurate mineralogical monitoring of cop-
per ore blends, tailing and concentrates. The fully automatable XRD analysis and Rietveld
refinement of the Minerals Edition of Aeris provides both mineralogical overviews and
precious details throughout the entire copper process, from exploration to final products.
Such information is accessible to non-expert users and can be easily visualized on screen or
stored into a LIMS system. Hard minerals, such as quartz, should be monitored to increase
the lifetime of crushing and milling equipment. The type of copper bearing minerals (such
as chalcopyrite, digenite and covellite) allows a better selection of collectors in the flotation
process. Similarly, the correct depressant and suspension chemistry should be selected to
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suppress the flotation of a minerals bearing penalty elements, such as tetrahedrite, which
contains antimony.

Accurate quantitative mineralogical analysis is not the only added value of XRD. If
the minerals carry information of specific properties of a material, the information can also
be extracted using algorithms other than Rietveld. Clustering and predictive tools, such as
PCA and PLSR, add further possibilities to process control and allow mineral processing
engineers and scientist to collect invaluable insights. In this work, these two analysis
techniques were evaluated and compared with classical Rietveld results. They can be even
easier to use than crystallographic information and Rietveld experience is not needed.

PCA analysis is particularly useful for qualitative or discriminatory analysis, as well
as to simplify the classification problem of complex high dimensional data. As the higher-
grade deposits are depleted, there is an increasing need to beneficiate more challenging
ore bodies. XRD and PCA can be used to mix different ore grades to an optimal blend,
adapt the downstream process and increase recovery [15]. Cluster analysis can be used to
identify samples which best describe groups of materials and it reduces the time spent by
staff performing manual analysis. The representative scans of each cluster as well as the
most diverse scans within each cluster are automatically calculated. PCA can also quickly
identify outliers: samples with peculiar mineralogical composition or badly prepared and
mislabeled specimens. Therefore, PCA can fasten and improve the process of data cleaning
before further processing the data.

Thanks to the modern detectors and diffractometers, it is easy and cheap to collect
tens of training sets to build PLSR calibration models. The implementation of such models
on the Aeris extracts indirect properties from the raw XRD data, such as their chemistry or
more complex quantities, such as process-relevant parameters [16]. In general, any physical
or chemical quantity with a high degree of correlation with the mineralogical composition
of the material can be estimated using PLSR. Therefore, XRD and PLSR can replace more
time- and cost-consuming analytical techniques, such as wet chemistry.

In conclusion, X-ray diffraction (XRD) is an essential tool for mineralogical analysis
and it can be easily implemented in process environments to improve mine operations and
save costs.
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Abstract: Pyrite particles, having framboidal/altered texture, are known to significantly affect pulp
chemistry and adversely affect flotation performance. Therefore, the main objectives of this study
were to demonstrate influence of pyrite mineralogy on the flotation of copper (sulphidic) ores and
develop alternative conditions to improve the performance. Two copper ore samples (Ore A and Ore
B) having different textural/modal mineralogy and flotation characteristics were taken from different
zones of the same ore deposit. Ore B contained framboidal pyrite and altered pyrite/marcasite, which
is considered the main reason for the low flotation performance in both copper and pyrite flotation
sections of the process plant. Flotation tests were conducted under different conditions using the two
ore samples and a 50:50 blend. The results showed that Ore A could be concentrated under the base
conditions, as applied in the existing flotation plant. On the other hand, Ore B did not respond to the
base conditions and a copper recovery of only 5% could be obtained. Besides, blending Ore B with
Ore A negatively affected the flotation behavior of Ore A. An alternative flotation chemistry was
applied on Ore B using Na2S for surface cleaning and Na-Metabisulfite (MBS) for pyrite depression
in the copper flotation stage. The surface cleaning reduced the rate of oxidation of the framboidal
pyrite in Ore B. As a result, the copper recovery could be increased to 52% Cu for Ore B, and 65% for
the mixed ore sample.

Keywords: framboidal pyrite; sulfide minerals; flotation; process mineralogy

1. Introduction

Pyrite (FeS2) is the most abundant sulfide mineral and usually occurs both as a primary
and secondary mineral according to its genesis. Lattice substitution of some minor and trace
elements such as nickel, cobalt, arsenic, lead, and gold are also the results of this ore genesis
and geographical location [1] and may have an impact on pyrite floatability [2]. Pyrite is
widespread in hydrothermal veins, modern and ancient sedimentary (volcano, exhalative)
rocks, contact metamorphic deposits/rocks and as an accessory mineral in igneous rocks [3].
The genesis of pyrite has been considered as one of the main causes of variation in surface
chemical characteristics and, thereby, of the differences in their floatability [4]. Contact
angle measurements of different types of pyrite showed a significant relationship between
the origin of pyrite and its wetting characteristics. Flotation characteristics of pyrite are
also influenced by morphology, crystallography, and the presence of impurities in the
crystal structure [5]. The marcasite mineral (FeS2), the polymorph of pyrite, has different
crystallography and stability and, hence, different flotation behaviour than that of pyrite,
even when they exist in same deposits [3,6].

Pyrite has a simple cubic crystal structure, while marcasite, which has the same
chemical composition as pyrite, has an orthorhombic crystal structure [7]. Another micro-
morphological feature, called framboid, is also described for pyrite. Framboidal form of
pyrite can be defined as raspberry-shaped masses. This spherical structure is composed
of numerous microcrystals, which are equant and equidimensional [8]. This microcrystal
packing is typically irregular and disordered. A framboidal morphology of pyrite is one
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of the common ore textures observed in disseminated massive sulfide ore deposits [9]. It
is also ubiquitous in modern sediments and ancient sedimentary rocks but occurs less
frequently in hydrothermal deposits [10].

Oxidation of pyrite produces hydroxide/oxide coating products which have signif-
icant effects on floatability and associated minerals. The rate of surface oxidation varies
as a function of pulp chemistry, the grinding conditions and mineralogical characteristics.
For example, marcasite (FeS2) is more reactive than pyrite and reacts more readily with
moisture and oxygen [11,12]. Relative reaction rates for different morphological forms of
pyrite are described in the order of marcasite > framboidal pyrite > massive pyrite [13]. The
stabilities of these minerals are different, and framboidal pyrite decomposes more readily
under mildly oxidizing conditions than cubic pyrite [14]. Thus, it can be said that differ-
ent crystalline pyrite forms would react differently to mild oxidation conditions during
flotation. Miller et al. [15] observed the same finding for reactive auriferous pyrite. Air was
replaced by nitrogen gas to remove the dissolved oxygen from the flotation system and
thereby auriferous pyrite oxidation could be minimized [16], particularly for framboidal
pyrite and marcasite.

It is known that selective flotation of the base metal sulfide minerals from pyrite is
strongly influenced by the type and concentration of metal oxidation species produced
during grinding [17]. These species may affect the floatability of minerals, rendering the
surfaces hydrophilic or leading to inadvertent activation [18,19]. The pyrite content of
the flotation feed also plays an important role in increasing the oxidation of minerals as
it consumes dissolved oxygen in the flotation pulp [20]. Since the framboidal pyrite has
a large surface area, the oxidation rate is faster than with the standard texture of pyrite,
producing a variety of iron oxidation products. It has been proposed that the presence of
framboidal pyrite in an ore is a critical parameter affecting Pb flotation rather than the high
amount of purely pyrite, since it increases the rate of galvanic interaction with other metal
sulfides [5].

Pyrite is the most common of the gold-bearing minerals and, therefore, pyrite morphol-
ogy is of paramount importance for its association with gold. Submicroscopic association
with framboidal pyrite is one of the main textures observed in gold deposits [21]. Sim-
mons [14] reported that the occurrence of gold in auriferous pyrite may differ, as relatively
low levels of gold were detected in coarse grained pyrites, whereas fine grained, amor-
phous and framboidal pyrite contained much higher levels of gold. In other words, the
framboidal structure of pyrite may have the highest intrinsic gold value. However, signifi-
cant amounts of gold loss to tailing may occur due to the problems in floatability of fine
grained, framboidal pyrite particles.

Similar effects are also observed in leaching gold from pyrite particles. The pyrite
source is an important parameter in the kinetic behaviour of bacterial oxidation of pyrite,
particularly for gold recovery from refractory types of ores. It is reported that the oxidation
of framboidal and euhedral pyrites are completely different. Framboidal pyrite has a
granular and irregular surface structure and is more chemically reactive than the highly
crystalline surface structure of euhedral pyrite. Hence, the rate of surface oxidation by
Thiobacillus ferrooxidans microorganism is higher than the other pyrite forms [22].

Previous works in the literature have shown that the textural mineralogy of pyrite
determines its surface characteristics and flotation behaviour in complex sulfide ores.
Pyrite particles having a framboidal/altered texture are known to significantly affect pulp
chemistry and adversely affect flotation performance. Therefore, the main objectives of this
study were to demonstrate the influence of pyrite mineralogy on the flotation of copper
ores, and to develop an alternative condition to improve performance. Two copper ore
samples (Ore A and Ore B) having different textural/modal mineralogy and flotation
characteristics were taken from different zones of the same ore deposit. Ore B contained
framboidal pyrite and altered pyrite/marcasite, which is considered the main reason for the
low flotation performance in both copper and pyrite flotation sections of the process plant.
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2. Materials and Methods

Representative samples were taken from the two ore types, named as Ore A and Ore
B, from a complex Cu-Zn ore deposited located in northeast of Turkey. Both ore types
were treated by flotation at a primary grind size of 80% passing 38 μm to produce copper
and pyrite concentrates. Production of a separate zinc concentrate was not considered
feasible in the operation due to the highly variable zinc grade of the ore. Therefore, the
zinc was recovered to the copper concentrate. Table 1 shows size-by-size assays of different
major metals in the two ore samples ground to d80: 38 μm. Ore A was a typical copper ore
containing high amount of pyrite. On the other hand, Ore B contained significant amounts
of Zn and Pb, indicating its complex nature.

Table 1. Chemical composition of Ore A and Ore B on a size by assay basis.

Weight, % Cu, % Zn, % Pb, % Fe, % S, %

Ore A

+38 μm 22.30 2.09 0.10 0.04 45.44 51.24
−38 + 20 μm 25.90 2.39 0.10 0.07 45.75 50.63
−20 + 10 μm 49.02 2.99 0.19 0.10 44.98 47.20

−10 μm 2.78 3.45 0.38 0.27 40.10 39.90
Head assays 100.00 2.94 0.20 0.08 44.47 50.31

Ore B

+38 μm 20.89 0.84 2.75 0.60 33.27 38.54
−38 + 20 μm 21.86 0.82 2.71 0.83 33.04 35.36
−20 + 10 μm 51.26 1.60 3.97 1.20 26.94 31.20

−10 μm 5.99 1.88 4.43 1.35 23.56 27.40
Head assays 100.00 1.34 3.66 1.08 28.03 33.90

BMA (Bulk Mineralogical Analysis) and PMA (Particle Mineral Analysis) charac-
terization were performed on a size-by-size basis for both samples. Polished sections
of +38 μm, −38 + 20 μm, and −20 + 10 μm size fractions were prepared and analyzed
using QemSCAN, which has an FEI Quanta 650F electron microscope equipped with a
field-emission gun as an electron source. The −10μm size fraction was not included in
the mineralogical analysis because of the agglomeration of fine particles observed during
preparation of the polished sections. For imaging and X-ray based microchemical analysis,
the instrument is equipped with a four-quadrant, solid state back-scattered electron (BSE)
detector and two Bruker XFlash 5030 detectors. The liberation criterion was selected as
90%, which means any particle containing 90% and 100% by area of the mineral of interest
is regarded as liberated. Particles that contain between 50% and 90% by area are referred to
as middling/binary particles, while those containing less than 50% by area are referred to
as locked particles.

In addition to quantitative mineralogical characterization, petrography analysis by
transmitted and reflective light microscopy was performed to determine Fe sulfide specia-
tion. The samples were prepared as 20 × 40 mm polished thin sections and analyzed with
a petrographic microscope under polarized transmitted and polarized reflected light. This
analysis provides information about petrographic rock classification, microstructure of the
samples, and the modal percentage of each mineral.

Ethylene diamine-tetra acetic acid disodium salt (EDTA) extraction tests were con-
ducted to characterize surface oxidation of the sulfide minerals in both ore samples. A
fraction (10 g) of dry ore was leached for 30 min in a 200 mL solution containing 3% EDTA
at pH 7.5. The pulp was filtrated, and the filtrate was assayed for Cu, Zn, Fe, Pb using AAS.
The results indicated that surface oxidation of the copper minerals and galena was higher
in Ore B (Table 2).

Batch scale flotation tests were performed on both ore types and on a composite
sample prepared from their blend to evaluate the effects of Fe sulfide forms on flotation.
The flotation feed was ground to d80: 38 μm in a ball mill at 60% w/w pulp density. The
flotation tests were carried out at 30% pulp density using a 4.5 L Denver flotation cell. In
the flotation plant, a proprietary blend collector Kimfloat900 (150 g/t), a thionocarbamate
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formulation, was used in the copper flotation circuit at pH 11.5–12. The pH was kept
constant at the target values by adding lime into the ball mill and flotation. A TPS meter
was used to measure pH and Eh values during the flotation process. Following the copper
flotation stage, an ether amine form collector, TomAmine (100 g/t), was used as the collector
for pyrite flotation at pH 11. These flotation conditions were termed the Base Condition (BC)
which is applied in the plant. Alternative collectors, diisobutyl phosphinate (Aerophine
3418A), sodium isopropyl xanthate (SIPX) and thionocarbamate (Aero 5100) were tested
to improve copper flotation performance. Potassium amyl xanthate (KAX) was tested for
pyrite flotation. Methyl isobutyl carbinol (MIBC) was used as the frother. Sodium sulfide
(Na2S) and sodium hydrosulfide (NaHS) were tested for surface cleaning of the tarnished
minerals and framboidal pyrite, particularly for Ore B (Table 3).

Table 2. EDTA results for Ore A and B.

Extractable Metal/Total Metal (%)

Cu Fe Pb Zn

Ore A 1.67 0.11 44.90 4.51

Ore B 3.69 0.09 72.70 0.86

Table 3. Reagent scheme used in the flotation tests.

Collectors for copper flotation

Kimfloat900 (used as base condition, BC)
Aero5100

Aerophine 3418A
SIPX

Collectors for pyrite flotation TomAmine (used as base condition, BC)
KAX

Frother MIBC

Sulphidization agents for surface cleaning NaHS, Na2S

Depressant Na-MBS

3. Results and Discussion

3.1. Modal/Particle Mineralogy and Fe Sulfide Identification

Mineral distribution is given on a size-by-size basis for both ore samples in Table 4.
The major sulfide minerals were pyrite/marcasite, chalcopyrite, sphalerite, and minor
amount of galena. The Ore B sample contained significant amounts of barite as the non-
sulfide gangue mineral. Pyrite/marcasite accounted for the major iron sulfide gang mineral
together with the altered pyrite in both ore types.

Grain size and liberation characteristics of the sulfide minerals were completely
different in the two ore samples. Both chalcopyrite and pyrite showed higher liberation in
Ore A with values of more than 80% and 90%, respectively (Table 5). Percentage of free
particles decreased at −20 + 10 μm size fraction in both ore samples. This unexpected
result was attributed to agglomeration problems during preparation of polished sections.
Unlike Ore A, the sulfide minerals in Ore B were in the form of fine grains (Figure 1) and
showed complex liberation characteristics. It was seen that in every size fraction, the grain
size distribution was finer in Ore B, particularly for pyrite (Figure 1). The liberation value
of chalcopyrite in Ore B was only ~15%, and the chalcopyrite particles were mostly in the
form of binary chalcopyrite/pyrite particles. The percentage of sphalerite was higher in
Ore B and had a low degree of liberation, in the range of 18–33%. A significant part of
sphalerite was in the form of binary association with pyrite and barite. The pyrite particles
in Ore A showed a considerably higher degree of liberation (91%) than those in Ore B (57%).
The aggregate and inclusion-rich form of pyrite was also seen from binary association data.
The back-scatter electron (BSE) images clearly showed that some of the pyrite in Ore B had
a framboidal structure and the rest had an altered structure and marcasite (Figure 2).
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Table 4. Modal mineralogy of Ore A and Ore B on size-by-size basis.

Minerals
Ore A (%) Ore B (%)

+38 μm −38 + 20 μm −20 + 10 μm +38 μm −38 + 20 μm −20 + 10 μm

Chalcopyrite 5.96 6.54 7.33 1.29 1.16 1.68

Sphalerite 0.08 0.07 0.19 3.99 3.96 4.35

Pyrite/Marcasite 90.72 89.59 85.52 66.83 56.71 40.75

Galena <0.01 <0.01 <0.01 0.67 0.94 0.37

Barite 0.05 0.04 0.10 22.17 25.62 18.06

Quartz 0.03 0.06 0.07 0.02 0.07 0.03

Biotite 0.07 0.01 <0.01 0.09 0.03 <0.01

Pyrite-Altered/Aggregate 2.85 3.45 6.43 2.59 7.46 17.47

Sulfide-Clay Mixed 0.09 0.04 0.05 0.03 0.07 0.21

Sulfides-Barite Aggregates 0.01 0.01 0.04 2.13 3.64 16.14

Others 0.13 0.18 0.27 0.19 0.34 0.94

Total 100.00 100.00 100.00 100.00 100.00 100.00

Table 5. Size-by-size liberation of chalcopyrite and pyrite minerals in Ore A and Ore B.

Chalcopyrite
Binary Association

Free Pyrite Sphalerite Barite Galena Quartz Aggregates Other Total

Ore A/+38 μm 80.53 17.80 0.21 0.17 0.00 0.00 0.07 1.23 100.00

Ore A/−38 + 20 μm 82.81 15.63 0.17 0.23 0.00 0.00 0.19 0.97 100.00

Ore A/−20 + 10 μm 56.21 38.05 0.25 0.27 0.01 0.00 3.96 1.25 100.00

Ore B/+38 μm 5.72 50.37 7.52 7.34 0.21 0.00 0.08 28.76 100.00

Ore B/−38 + 20 μm 15.13 39.33 8.18 16.62 0.11 0.00 0.82 19.82 100.00

Ore B/−20 + 10 μm 13.89 34.49 6.56 9.28 0.08 0.06 7.00 28.63 100.00

Pyrite
Binary Association

Free Sphalerite Barite Galena Chalcopyite Quartz Aggregates Other Total

Ore A/+38 μm 92.05 0.43 0.06 0.01 5.28 0.00 1.99 0.18 100.00

Ore A/−38 + 20 μm 91.18 0.40 0.03 0.00 5.25 0.01 2.79 0.34 100.00

Ore A/−20 + 10 μm 81.74 0.49 0.25 0.01 11.59 0.00 5.14 0.77 100.00

Ore B/+38 μm 77.01 10.67 7.30 0.18 2.07 0.00 2.03 0.75 100.00

Ore B/−38 + 20 μm 51.09 7.55 6.45 0.10 2.27 0.00 31.44 1.09 100.00

Ore B/−20 + 10 μm 44.39 8.48 14.37 0.24 2.94 0.01 15.87 13.71 100.00

The framboidal structure is very well defined by Wilkin and Barnes [10], and is consid-
ered to form as a result of consecutive processes such as nucleation and the growth of initial
iron monosulfide microcrystals, reaction of the microcrystals to greigite, framboid growth
of microcrystals and replacement of these framboids by pyrite. Since it is very difficult to
quantify Fe sulfide species with QemSCAN, petrography analysis was performed using a
transmitted and reflective light microscope on both ore types. According to the analysis
of thin sections of Ore B, ~1.5% of pyrite particles were defined as framboidal with a size
range of 0.01–5 mm. The marcasite particles were observed as alteration and weathering
minerals in an amount of 2–3%, with a size range up to 0.3 mm. In some fragments, the
pyrite crystals were immersed within a second generation of pyrite. In other fragments,
the pyrite was intergrown with sphalerite (Figure 3a), and the two minerals formed crus-
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tiform intergrowths. Although only 1.5% of the pyrite appeared in framboidal form, the
rest of the pyrite was found to exist with spongy inclusions, forming aggregates and an
anhedral crystal form (Figure 3b). These aggregates tended to form rounded framboidal
aggregates, which were clearly distinguished by the subhedral and inclusion-free crystals
or the inclusion-poor interstitial aggregates of pyrite.
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Figure 1. Grain size distributions of pyrite in size fractions of Ore A and B.

 

(a) (b) 

Figure 2. Framboidal pyrite (a) and altered pyrite/marcasite (b) from Ore B.

In Ore A, pyrite dominated the composition of the fragments and formed quasi-
massive aggregates intergrown with subordinate crystals of chalcopyrite and marcasite
(Figure 4). Pyrite accounted for 95–97% of modal mineralogy ranging in a size of 0.01 mm
to massive. The amount of marcasite was 1.5% and found as fine-to medium-grained
anhedral crystals which were heterogeneously dispersed in pyrite.
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(b) 

(a) 

Figure 3. Very fine-grained crystals of pyrite (py) are intergrown with the sphalerite (sl) and define
crustiform and layered intergrowths (a). Porous and spongy aggregates of pyrite define rounded
framboidal aggregates and irregularly shaped domains associated with subordinate inclusion-free
interstitial pyrite (b) from Ore B.

 

cp 

cp 

Figure 4. Pyrite (py) hosts medium-grained crystals of marcasite (mrc) and fine-grained crystals of
chalcopyrite (cp) from Ore A.
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3.2. Flotation Behavior of Ore A

Mineralogical investigation and chemical assays showed that Ore A had a relatively
simpler ore texture and low Zn content. The test performed at the Base Condition (BC)
produced a copper rougher concentrate at 71% copper recovery (Table 6). Pyrite flotation
was applied on the copper rougher tail using TomAmine at pH 10.5–11. A pyrite concentrate
was produced assaying 50% S at 68% recovery.

Table 6. Flotation behavior of Ore A under the Base Condition.

Cu Rougher Concentrate Pyrite Concentrate

Cu Rougher
Concentrate

Mass
Pull, %

Grade (%) Recovery (%) Grade (%) Recovery (%)

Cu Zn Cu Zn S S

Base Condition 13.69 13.99 0.74 70.98 48.93 50.31 68.22

3.3. Flotation Behavior of Ore B

Chemical and mineralogical characteristics of Ore B were completely different from
those of Ore A. Rougher kinetic tests were conducted to determine its flotation response
at the Base Condition and investigate effects of alternative flotation chemistry (collector
type, sulphidization for surface cleaning, use of MBS as depressant) and particle size. In
the BC test, stage addition of 150 g/t Kimfloat900 collector was applied at about pH 12. A
combined copper rougher concentrate was produced assaying 2.4% Cu at 5.1% recovery.
Following the copper flotation stage, pyrite rougher flotation was performed at the same pH
using 100 g/t TomAmine as collector. A pyrite rougher concentrate was produced assaying
28% S at 25% recovery and 29% mass pull. These results show that the performance of both
copper and pyrite flotation stages were considerably lower than those obtained with Ore A
(Table 6).

Alternative flotation conditions were investigated to improve the flotation perfor-
mance of Ore B. In one of the tests, the collector was added at the milling stage. Aero5100
(120 g/t) and a mixture of Aero3418A + SIPX (90 + 90 g/t) were used as alternative collec-
tors. Figure 5 shows that the copper recovery increased to 67% at 31% mass pull using a
mixture of Aero3418A + SIPX.
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3.3.1. Effects of Surface Cleaning

Ore B contained altered marcasite and framboidal pyrite, which oxidizes faster than
pyrite. Therefore, Na2S and NaHS were tested as sulphidization agents in order to remove
the surface oxidation species from mineral surfaces and minimize further oxidation during
flotation [9,23]. The mixture of Aerophine 3418A + SIPX was used as a collector in these
tests at natural pH (pH 8.8–9.6). Na2S was tested in 500 g/t, 1000 g/t and 1500 g/t dosages
and added at the grinding stage. Addition of Na2S decreased the pulp Eh as a function of
reagent dosage down to the lowest value −150 mV (Ag/AgCl) after grinding. Pre-aeration
(5 min) was applied prior to collector addition to increase the dissolved oxygen content
and Eh to slightly positive values (−2 to 60 mV).

The results showed that sulfidization improved the flotation performance and the
Cu recovery increased to 75% at a 1000 g/t Na2S dosage. Increasing Na2S dosage to
1500 g/t did not further improve the copper recovery (Figure 6). NaHS was also tested as
an alternative sulfidizing reagent to Na2S at a 1000 g/t dosage. Similar recovery values
were obtained using both Na2S and NaHS, and a 1000 g/t dosage was required for an
effective surface cleaning.
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3.3.2. Effects of MBS Addition

Effective depression of pyrite during the copper rougher flotation stage directly affects
the quality of both the copper rougher concentrate and the pyrite concentrate. It is well
known that sulfoxy reagents such as sodium metabisulfite are widely used as for pyrite
depression as they enhance formation of hydrated iron oxide layers on pyrite and suppress
the adsorption of xanthate by reducing the mixed potential [19,24]. For this purpose, Na-
metabisulfite (MBS) addition in the grinding stage was tested. The pulp potential (Eh) was
monitored and recorded as −198 mV and 40 mV just after the grinding and pre-aeration
stages, respectively. It was found that pyrite could be effectively depressed at 3000 g/t
dosage and pH 6.5. Figure 6 shows that the highest copper grade values were obtained in
the presence of MBS because of the effective depression of pyrite.
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3.4. Flotation Behavior of Mix Ore

During plant scale operation, it may not be possible to always process Ore B and
Ore A separately. A blend of these two ore types could be treated in the flotation plant.
Therefore, effects of blending Ore B with Ore A were investigated under two different
flotation conditions. The two ore types were blended at equal proportions for these tests
according to the recommendations from the mine site.

The negative effect of Ore B on flotation performance was clearly seen in the mixture.
The copper recovery in Ore A was 71% under the base flotation conditions (Table 6), and
dropped to 22% when it was mixed with Ore B. Therefore, the flotation conditions were
changed, and the optimum conditions developed for Ore B were applied to the blend
ore. Use of Na2S and MBS was tested at various dosages. The best results were obtained
at 3000 g/t of MBS and 1000 g/t Na2S added at the grinding stage with a mixture of
Aero3418A + SIPX as collector in the copper flotation stage and with 200 g/t KAX in pyrite
flotation. Table 7 shows that the copper grade and recoveries were significantly improved
using the optimum flotation conditions developed for Ore B.

Table 7. Results of the open cleaner flotation test performed using a blend of Ore A:Ore B (50:50)
under optimum flotation conditions (3000 g/t MBS, 1000 g/t Na2S, 180 g/t 3418A + SIPX in copper
flotation and 200 g/t KAX in pyrite flotation.

Stream Mass Pull, %
Grade, % Recovery, %

Cu S Cu S

Cu Rougher Concentrate 12.88 11.04 37.67 72.28 12.24
Cu Concentrate 2.11 32.59 28.38 34.94 1.51

Pyrite Rougher Concentrate 73.63 0.71 45.84 26.56 85.16
Pyrite Concentrate 59.82 0.65 48.51 19.76 73.22

Tail 13.49 0.17 7.63 1.16 2.60
Feed 100.00 100.00

Effects of alternative conditions on flotation performance of the two ore types and
their mixture were evaluated based on the results of open cleaner flotation tests. In these
tests, the influence of recirculating cleaner flotation tailing was not taken into consideration.
Therefore, simulation studies were performed using JKSimFloat software to estimate
metallurgical performance of closed-circuit operation. In the simulation studies, first
mineral assays and stage recoveries were determined by mass balance of the open cleaner
flotation tests. Stage recoveries of the minerals were assumed constant in each flotation
stage during simulation.

Table 8 shows the results of the simulation studies for Ore A, Ore B and their mixture
under optimum flotation conditions. A copper concentrate could be produced from Ore
A with approximately 28% Cu grade at 76% recovery. Use of Na2S and MBS improved
flotation response of Ore B to some extent, and a copper concentrate was produced assaying
21.62% Cu at 52.36% recovery. The copper flotation performance of the mixed ore samples
was just between the two ores, as expected.

Table 8. Flotation performance of Ore A, Ore B and a mixture of the two ores under optimum
flotation conditions applied on each ore type.

Copper Concentrate Pyrite Concentrate

Mass Pull
(%)

Cu %
Cu Recovery

(%)
Mass Pull

(%)
S %

S Recovery
(%)

Ore A 7.42 27.74 76.42 92.58 50.79 95.05
Ore B 2.93 21.62 52.36 63.98 44.26 92.78
Mix 4.02 31.49 65.46 77.93 49.17 93.06
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Pyrite flotation was conducted following the copper flotation section. Table 8 shows
that saleable grade pyrite concentrate could be produced from the three samples at
high recoveries.

Surface cleaning by Na2S and depression of pyrite by MBS mitigated the negative
effect of framboidal, spongy, altered pyrite from Ore B. Following copper flotation, a
high-grade pyrite concentrate could be produced from all ore samples.

4. Conclusions

Two different ore types, Ore A and Ore B from the same ore deposit, were used
to investigate effects of pyrite mineralogy on the performance of the copper and pyrite
flotation stages.

Mineralogical characterization showed that Ore A did not contain framboidal and
altered pyrite. High grade copper concentrates could be produced at acceptable recoveries
at the base conditions applied in the flotation plant.

Ore B contained framboidal and altered pyrite/marcasite and did not respond to the
base flotation conditions. This was attributed to the framboidal and spongy, inclusion-rich,
altered pyrite content and relatively high surface oxidation of altered marcasite particles.

Na2S and NaHS were used for surface cleaning purpose of the sulfide minerals
and control of the pulp redox potential. Both reagents improved the copper flotation
performance. The copper recovery increased from about 5% up to 52%.

Blending Ore B with Ore A reduced the overall flotation performance under the base
conditions. However, the flotation could be restored after sulphidization, i.e., using the
optimum conditions developed for the problematic Ore B. Flotation performances of the
new mix samples with different mass contents of Ore A and B can be investigated in
future work.

The results of this study showed clearly the importance of process mineralogy for
identification of the problematic components for flotation. Framboidal/altered pyrite
particles were the main source of the problem in this case. An alternative flotation chemistry
was developed based on sulphidization and the use of selective copper collectors and
improved the flotation performance successfully.
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Abstract: Mineralogical appraisal is an important tool for both mining and industrial processes.
X-ray powder diffraction analysis (XRPD) can deliver fast and reliable mineralogical quantification
results to aid industrial processes and improve ore recoveries. Furthermore, X-ray fluorescence
(XRF) chemical data, thermal analysis (TA), and Fourier-transformed infrared spectroscopy (FTIR)
can be used to validate and refine XRPD results. Mineralogical assessment of non-traditional ores,
such as mining wastes, is also an important step to consider them for near-future industries. In
the Brazilian Amazon, alumina-rich clays cover the largest and most important bauxitic deposits
of the region and have been considered as a possible raw material for the local cement and ceramic
industry. In this work, a mineralogical evaluation of these clays (Belterra Clays) is performed using
XRPD, XRF, TA, and FTIR. XRPD-Rietveld quantification confirmed that kaolinite is the main phase
of the clay overburden, followed by variable contents of gibbsite and goethite and minor quantities
of hematite, anatase, and quartz. The chemistry derived from Rietveld, based on stoichiometric
phase compositions, presents a good correlation with the XRF data and is also supported by the TA
and FTIR data. The initially assumed homogeneous composition of Belterra Clay is revealed to be
variable by the present mineralogical study.

Keywords: bauxite overburden; Belterra Clay; mineralogical quantification; Rietveld analysis

1. Introduction

Chemical and phase assemblage characterizations are essential steps during industrial
and mining processes to aid and improve ore processing. Traditional wet chemistry has
been a reference method used for both ore and industrial products. However, these analyses
are very expensive, known to consume large amounts of chemical reagents (including
strong acids), and relatively slow. X-ray fluorescence (XRF) is currently one of the most
used methods to determine the chemical composition of many ore types [1]. Nevertheless,
XRF is not always the best option to obtain a comprehensive evaluation, as mineralogical
information is necessary to understand the chemical distribution within the mineral phases
and thus to evaluate ore deportment.

Mineralogical characterization is usually performed by X-ray powder diffraction
(XRPD) analysis, which, when coupled with the Rietveld method, [2] enables the delivery
of fast and reliable mineral phase quantifications. Online XRPD and XRF analyses are
already standardized in the cement industry [3–5]. In the mining industry, the mineralogical
evaluation of a variety of ores is commonly carried out by XRPD analysis, including Fe-
[6,7], Ni (Co)- [8,9], Au- [10], Cu- [11,12], and Al-ore (bauxites) [13–16]. Other techniques
are used to validate or even complement XRPD mineralogical analysis, such as XRF, Scan
Electron Microscopy (SEM), Thermal Analysis (TA), and Fourier-transformed infrared
spectroscopy (FTIR). Moreover, in many cases, assessment of ores and industrial products
is performed alongside the characterization of mining residues, i.e., coal-related clays [17]
and Al-refining tailings [18]. Some of these residues have been referred to as alternative
raw materials, and their characterization is one of the first steps to evaluate their usage in
the industry.

Minerals 2021, 11, 677. https://doi.org/10.3390/min11070677 https://www.mdpi.com/journal/minerals83
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Bauxites, the main aluminum ore, have their largest reserves in Central and West
Africa, Australia, Vietnam, and Brazil [19]. Open-pit mining of bauxite implies the removal
of the bauxite overburden material, which might be shallow, as in Australia [20] and some
bauxite deposits of West Africa [21,22], or relatively thick (>2 m), as in Brazil [23–25]. The
bauxite overburden material in Brazil includes some topsoil and lateritic crusts, as well
as thick clays that cover most bauxite deposits of the Brazilian Amazon region. These
thick overburdens are usually considered a drawback during mining, as their removal
increases the cost-effectiveness of the whole mining process. The bauxite overburdens in
the Brazilian Amazon region are known as Belterra Clays (BTC, Figure 1) [23–26].

 

Figure 1. (A) Samples location; (B) Bauxite mining trench in Rondon do Pará (Brazil) showing the thick Belterra Clay.

Belterra Clays are dominated by kaolinite and locally have high contents of gibbsite,
with minor hematite, goethite, and anatase. Their high alumina contents, associated with
broad availability and low exploitation costs, have turned attention to BTC as a possible
near-future raw material for the local industry. Industrial applications of these clays
for the production of red ceramics [27,28] and eco-friendly cements have recently been
gaining attention [29]. In this work, we performed a detailed mineralogical evaluation of
Belterra Clays from different locations within the bauxite deposits of Rondon do Pará in
the Brazilian Amazon region. XRPD analysis was used as the basis of the mineralogical
monitoring and is discussed in light of XRF, TA, and FTIR data. These data provide
an important database for the potential use of these overburdens for the production of
CO2-reduced cementitious materials.

2. Materials and Methods

For this study, we used eleven samples of Belterra Clay from three different pilot mines
performed to test the bauxite ore in Rondon do Pará (Eastern Brazilian Amazon). The
samples were collected in selected representative parts of the exposed clayey overburdens,
with at least one sample from the top, one from the middle, and one from the base of the
sequences in each pilot mine.

The samples are named according to their location and depth (in meters) within the
BTC packet, and consist of three samples from the Branco bauxite pilot-mine (BRA0.5m,
BRA5.0m, and BRA10m), three from the Décio pilot-mine (DEC0.8m, DEC7.2m, and
DEC10m), and five samples from the Ciríaco pilot-mine (CIR1.0m, CIR5.0m, CIR7.5m,
CIR10m, and CIR12m). All samples were carefully grinded to powders with clay size
in an agate mortar until all grains were consistently fine for analysis. The analysis was
performed using the following techniques.

XRPD analysis was performed using a Panalytical X’Pert Pro MPD X-ray diffractome-
ter (Panalytical, Halle, Germany) equipped with a Cu anode, operated with 45 kV and
40 mA, set with a Ni Kβ-filter, and linear X’Celerator RTMS detector in the θ-θ Bragg-
Brentano-Geometry. The samples were mounted by back-loading in 16 mm diameter
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sample holders and measured under 5–70◦ 2θ angular range, with a 0.013◦ step size, and
at 38 s per step. Despite the use of a Cu source and the samples having relatively high iron
contents, XRPD diffractograms had a good resolution with low background intensity and,
therefore, were considered suitable for the Rietveld analysis. The data were evaluated with
the software Highscore 4.5 Plus (Panalytical, Halle, Germany) from Panalytical. Principal
component analysis (PCA) found large systematic variances (eigenvalues) in the set of
observed samples. The method used a correlation matrix to display the most important
eigenvalues (or Principal Component, PC) in a 3D plot. PCA was used to cluster similar
diffractograms by similar profiles and peaks, using a Euclidian average linkage and a
cut-off of 9.5. The closest sample of each sphere centroid (centroid method) was chosen as
the representative sample of each group. The PDF-4 mineralogical database was used for
the mineralogical characterization.

Rietveld refinement was used for the mineralogical quantification of the selected sam-
ples, which were spiked with 10% of highly crystalline fluorite to quantify the amorphous
content using the internal standard method. The crystal structures (Table 1) used in the
refinement were obtained from the ICSD (Inorganic Crystal Structure Database, from FIZ
Karlsruhe, Germany). The accuracy of the Rietveld refinements was verified according
to [30] by mixing the samples BRA13m with hematite and the sample BRA0.5m with
gibbsite at 99:1, 95:5, and 90:10 ratios.

Table 1. Phases and their respective ICSD codes used in the Rietveld refinements.

Phase Chemical Formula Space Group ICSD Code Reference

Anatase TiO2 I41/amd 92363 [31]
Fluorite CaF2 Fm-3m 60368 [32]
Gibbsite Al(OH)3 P21 6162 [33]
Goethite (Fe,Al)O(OH) Pnma 109411 [34]
Hematite Fe2O3 R-3c 82137 [35]
Kaolinite Al2Si2O5(OH)4 P1 63192 [36]
Quartz SiO2 P3121 16331 [37]

The refinements were performed with the software Highscore 4.5 Plus after preparing,
measuring, and refining each sample in triplicate. The scale factor, the zero shift, and the
unit cells were systematically refined. The Pseudo-Voigt profile function and W profile
parameters were used to better refine the peak shapes.

For comparison purposes, the sample CIR14m was also refined with the software
Profex BGMN [38], with a model for disordered kaolinite downloaded from the BGMN
database (Kaolinitedis.str, in http://www.bgmn.de/download-structures.html, accessed
on 4 February 2021). The stacking faults in the structure of kaolinite (as b/3 shifts and
layers rotations within the structure) is refined with the sub-phase approach of the soft-
ware, where the disordered kaolinite is described by two sub-phases that share the same
lattice parameters but have individual broadening models to describe the hkl-dependent
broadening in a phenomenological way [39].

FTIR spectroscopy was also used for the mineral characterization. Approximately
1 mg of dried sample was ground with 160 mg of KBr and pressed into a disk shape. The
transmission IR spectra were recorded between 370 and 4000 cm−1 at room temperature,
with a 4 cm−1 resolution, using a Bruker Tensor II TGA-IR spectrometer (Bruker, Billerica,
MA, USA).

XRF was used to measure the chemical composition of the selected BTC samples. Four
fused pearls were prepared by mixing 1 g of sample and 8 g of fondant (Li2B4O7) and
measured in a Bruker SRS 3000 (Bruker, Billerica, MA, USA) sequential spectrometer. The
loss on ignition (LOI) of the samples was determined after calcination at 1000 ◦C for one
hour (Supplementary Materials, Table S1).

Thermal characterization of the selected samples was performed by thermogravimetric
(TGA) and differential scanning calorimetric (DSC) analysis, using a Netzsch STA 449 F3
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Jupiter® (Netzsch, Selb, Germany). Approximately 20 mg of sample was heated from 35 to
1000 ◦C in alumina crucibles under Ar-atmosphere, using a heating rate of 10 K/min.

3. Results

PCA analysis of the XRPD patterns enabled classifying them into three groups using
the centroid method (Figure 2). Group 1 (green sphere) includes all BTC samples from
Branco (BRA0.5m, BRA5.0m, and BRA13m) and all from Décio (DEC0.8m, DEC7.2m
and DEC10m). Group 2 (blue sphere) is formed by the samples CIR0.5m, CIR5.0m, and
CIR7.5m of Círiaco, whereas group 3 (gray sphere) includes the samples CIR10m and
CIR14m from Círiaco.

 

Figure 2. Principal component analysis showing the grouping of the diffractograms. Group 1: green
sphere (BRA0.5m, BRA5.0m, BRA13m, DEC0.8m, DEC7.2m, and DEC10m); Group 2: blue sphere
(CIR0.5m, CIR5.0m, and CIR7.5m); Group 4: gray sphere (CIR10m and CIR14m).

The samples BRA0.5m and BRA13m were chosen as representative of group 1, whereas
CIR0.5m was chosen for group 2, and CIR14m was chosen for group 3. These samples
were quantified with the Rietveld method, and their mineralogical assemblage consists of
kaolinite, gibbsite, goethite, hematite, anatase, and quartz, which vary only in contents
(Figure 3). The only exceptions are quartz, which occasionally occurs in some samples, and
hematite, which is present only in the samples closest to the surface (BRA0.5m, DEC0.8m,
and CIR1.0m).
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Figure 3. X-ray diffractograms of selected BTC samples spiked with fluorite (Fl). Kln: kaolinite; Gbs: gibbsite; Gt: goethite;
Hem: hematite; Ant: anatase; and Qtz: quartz.

The Rietveld refinements confirm that kaolinite is the main mineral phase of the
material (Figure 4, Supplementary Materials, Table S2), reaching up to 76.5% (BRA0.5m)
and a minimum of 60.4% (CIR14m). Goethite varies slightly among the samples, from
14.8% to 15.9%. Gibbsite shows a stronger variation, from 3.2% to 19.2%, with higher
contents in the Ciríaco mine samples. Hematite is absent in the samples close to the surface
(0.5m) and represents close to 2% of the deepest samples. Anatase also shows only minor
fluctuations, from 2.1% to 2.3%. Up to 2.6% of quartz was quantified, but it occurs rather
occasionally as sparse quartz grains in BTC [25].

Even though the Rietveld results do not show a strong variation in the quantitative
mineralogy, the Rietveld-calculated patterns presented visible misfittings in the regions
19.6–26 2θ (4.5–3.4 Å) and 34.5–37 2θ (2.6–2.4 Å) (Figure 5). These are essentially related
to the refinement of kaolinite, which presents anomalous diffraction bands due to its low-
ordered configuration. The disorder in kaolinite structure is mainly caused by faults in
layer stacking [40]. In order to overcome this issue when refining bauxite samples rich in
low-ordered kaolinites, Paz et al. [13] successfully used a calibrated hkl phase to refine
this mineral in bauxites. Nevertheless, depending on the degree of disorder, an hkl phase
might not accurately fit the XRPD pattern of significantly disordered kaolinites.
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Figure 4. Mineralogical quantification of selected samples by XRPD-Rietveld. The results are the triplicate average shown
with the standard deviation bars.

Figure 5. Refined X-ray pattern of sample CIR14m and its difference plot using Highscore Plus. Goodness of fit: 1.6 and
R—weighted profile: 5.5.

An improved Rietveld-calculated fitting was achieved when using a model for disor-
dered kaolinite (Figure 6). When compared to the previous results (Figure 5), the quantified
mineral contents using the model diverge little for most of the phases (differences are
close to 1%). However, kaolinite and the amorphous show a greater discrepancy. The
kaolinite content is 4.6% lower when using the model for disordered kaolinite, and the
amorphous is proportionally 3.7% higher. These differences are most likely related to
the amorphous quantified using the internal standard method, where the over-quantified
content of fluorite (internal standard) from its known added amount (10%) is recalculated
as amorphous. Referencing the content, for 10.46% of fluorite quantified by the Rietveld
method, the indirect calculated amorphous will be 4.6% (Figure 5), whereas it would be
0.9% (Figure 6) for a quantification of 10.09% of fluorite in the sample. Therefore, even
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minor differences in the first decimal case will strongly influence the amorphous quan-
tifications when using the internal standard method. Nevertheless, 62% of kaolinite was
stoichiometrically calculated after XRF (considering that all SiO2 is in this phase), which is
similar to the amount obtained in the refinement without the model (60.4%, Figure 5) and
indicates that the amorphous composition in both cases (whether 0.9% or 4.6%) should
have a composition close to that of kaolinite.

Figure 6. Refined X-ray pattern of sample CIR14m, refined in PROFEX-BGMN using a model of disordered kaolinite. Good
of fitness: 1.3 and R—weighted profile: 3.2.

Besides the improvement in the Rietveld fit using the model of disordered kaolinite,
the refinement was more unstable and time-consuming due to the increased interactions
among the Rietveld parameters. Another attempt to better understand the contribution of
defects in the structure of kaolinite was presented by Leonardi and Bish [41], who simulated
the XRPD patterns of kaolinites with different layer-stacking defects and used them to
analyze the patterns of natural samples. They observed that the 00l reflections are solely
affected by the quantity of layers in the crystals, whereas the hkl reflections are also related
to the amount and the nature of stacking defects, for which the stacking distance, the lateral
indentation, the structure misorientation, and the structure shift were accounted. However,
while the work helps to understand the nature of stacking faults in kaolinites and their
contributions to their XRPD profiles, such complex profile simulations still require the use
of supercomputers.

The hematite and gibbsite mixture additions proved the accuracy of the refinements
(Figure 7). For both mixtures, measured in triplicate, R2 is higher than 0.99. The resulting
linear function permitted knowing the calibrated amounts of gibbsite and hematite in
the samples (when x = 0). These are 3.15% of gibbsite in the sample BRA0.5m and 1.99%
of hematite in the sample BRA13m, values very close to the 3.1% and 2.2% quantified
in the original samples, respectively. A wider standard deviation is observed for the
addition of 5% of gibbsite, as a result of the preferred orientation of (00l) planes of gibbsite
crystallites, which could not be completely solved using the March–Dollase function in the
Rietveld refinement.
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Figure 7. Mixture additions of gibbsite for the sample BRA0.5m and hematite for the sample BRA13m.

Fourier-transformed infrared spectra of the Belterra Clay samples BRA13m and
CIR14m are very similar (Figure 8), showing the same bands with different intensities. Mod-
eled and well-ordered kaolinites have well-defined OH stretching bands at 3697 (strong),
3669 (weak), 3652 (weak), and 3620 cm−1 [42,43]. Except for the weak band at 3669 cm−1,
these other bands are present in the FTIR spectra of BTC and confirm the presence of kaoli-
nite. The disappearance of the 3669 cm−1 band was observed in low-ordered kaolinites by
Brindley et al. [44]. These authors also reported a stronger 3652 cm−1 band in low-ordered
kaolinites, which is a characteristically strong band in dickites and related to a disorder in
the structure of kaolinite caused by the displacement of the octahedral sites’ vacancies.

 

Figure 8. FT-IR spectra of BTC samples BRA13m and CIR14m: (A) OH-stretching region and
(B) middle IR range. The IR bands characterized for each mineral are marked by color for a quicker
interpretation. Overlapping colors means the bands are attributed to more than one mineral. Non-
marked bands are related to the displacement contribution of Si, Al, and H.
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The band at 3620 cm−1 is also an intense and characteristic band of gibbsite OH
stretching, which presents its further common bands at 3526, 3441 (wider), 3393, and
3373 cm−1 [45]. The bands attributed to gibbsite are much more intense for CIR14m due to
its higher gibbsite content. The wide band with a maximum of 3441 cm−1 also coincides
with a non-stoichiometric OH stretching of goethite [46,47]. This mineral presents the less
obvious band at ~3062 cm−1, attributed to stoichiometric OH.

In the mid-IR range (Figure 8B) of the spectra, the bands at 1112, 1103, 1032, and
1008 cm−1 are characteristic of the Si-O stretching modes of kaolinite, whereas the band
at 798 is due to the OH bend of goethite. The further bands are mainly related to the
contribution of the displacement of Si, Al, and H.

The thermal analysis (Figure 9) shows four main mass-losses resulting from the heating
of the BTC samples. They are well-evidenced by both DTG and DSC peaks with maximums
at 50 ◦C, 270 ◦C, 375 ◦C, and 535 ◦C. The first is related to the loss of residual water absorbed
by the BTC grains, whereas the following ones represent gibbsite, goethite, and kaolinite.
Gibbsite dehydroxylates from 240 to approximately 380 ◦C, forming ρ-Al2O3 [48], with
a consequent mass-loss of 5.49% for the CIR14m sample and 1.8% for BRA13m. The
mass-loss from 340 to 410 ◦C corresponds to the dehydroxylation of goethite [46,47],
releasing approximately 1.85% of water. The last mass-loss, 59.5% in the CIR14m and
71.9% in BRA13m, is attributed to kaolinite’s decomposition to form metakaolinite [49],
which later goes to mullite at approximately 980 ◦C [50]. The thermal analyses not only
confirm the main mineralogy of the BTC samples, but are also consistent with their relative
mineralogical abundancy. Using the observed mass-losses to stoichiometrically calculate
mineral contents, 59.5% of kaolinite, 15.8% of gibbsite, and 16.2% of goethite are estimated
for CIR14m. For BRA13m, 71.9% of kaolinite, 3.8% of gibbsite, and 16.2% of goethite are
computed after the mass-losses. The calculated results are a good approximation to those
obtained by the Rietveld analysis. Minor differences might be due to low-ordered and non-
stoichiometric phases, such as goethite, known to be rich in Al [15]. For instance, an Al-free
goethite [FeO(OH)] has 10.14% of H2O, whereas an Al-rich goethite [(Fe0.66Al0.34)O(OH)]
has 11.73% of H2O to be stoichiometrically balanced. Furthermore, non-stoichiometric
hydroxyl units normally occur incorporated into the structure of goethites and were found
to increase proportionally to the Al/Fe ratio in this mineral [46,47].

Figure 9. Thermal analysis of the BTC samples CIR14m and BRA13m. Heating rate 10 K/min. TG: termogravimetric curve;
DTG: first derivate of TG and; DSC: differential scanning calorimetry.
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4. Discussions

The influence of the different minerals on components of the PCA analysis is easily
seen in the mineralogical quantification of the representative samples of each PCA group
(Figure 4). The major difference concerns their kaolinite vs. gibbsite contents, which are
proportional to the intensity of the main XRPD peaks of these minerals. Minerals with
concentrations lower than 3% (quartz, hematite, and anatase, right portion of Figure 4) have
some contrasting values within the same group (i.e., BRA0.5m and BRA13m of group 1).
Nevertheless, these changes in minor contents (~1%) did not affect the PCA grouping,
whereas the changes for kaolinite and gibbsite contents (over 10%) controlled the PCA
sorting. If one wishes to consider the changes caused by minerals in minor proportions, the
defined cut-off of PCA must be reduced, and the clustering would result in PCA groups
composed of two or even only one scan, therefore not reducing the amount of data.

In XRPD, PCA can also be used to build calibration curves for specific minerals by
inserting XRPD patterns of pure mineral phases (for example, varying from 0% to 100%)
added to series of samples. However, a kaolinite standard with a XRPD pattern similar to
ours is necessary to build a calibration curve for our samples, which is challenging due to
the varying crystallinity of it.

The low-ordered character of kaolinite was confirmed by the different techniques used.
Poorly defined peaks, or even the absence of them, were noticed in the XRPD patterns,
which were better fitted in the Rietveld refinements using a special model of low-ordered
kaolinite. The OH bands of kaolinite observed in the FTIR spectra are also typical of
low-ordered ones. Nevertheless, a crystallinity estimation (i.e., crystallinity index) for
kaolinite from the XRPD patterns [51,52] was not possible in this work, as the (02l) and
(11l) reflexes of kaolinite in Belterra Clay are partially overlapped by the reflexes of gibbsite
and goethite.

The chemical composition and LOI of the samples, calculated after the Rietveld results
(Table S1), are plotted against the ones measured by XRF in Figure 10. The results show a
good correlation with R2 > 0.9 for the most abundant components (Al2O3, SiO2, Fe2O3, and
LOI) when using the following stoichiometric compositions: for kaolinite, Al2Si2O5(OH)4;
for gibbsite, Al(OH)3; and for goethite, (Fe0.66Al0.34)O(OH), which is close to the average
composition of BTC goethites in Rondon do Pará [15,25]. Instead, if Al-free goethite is
considered, this correlation is much poorer for Fe2O3 (R2 = 0.8334). The poorest correlation
is notably for TiO2 (R2 = 0.6297), which shows very low content and is solely influenced
by the anatase. Due to its small quantities, this phase is consequently more influenced by
expected errors of the Rietveld refinement [53].

Belterra Clay has indeed a similar chemical composition among the studied samples,
except for Al2O3, which shows a variation of 4.8% from the BTC at Círiaco mine (CIR14m)
to the BTC at Branco mine (BRA0.5m). Such variable alumina contents will further influence
BTC’s possible applicability. For ceramic purposes [27], an increase in alumina is usually
related to an increase in refractoriness [54]. When applied to the production of calcium
sulphoaluminate-based cements (CSAs), BTCs richer in alumina will favor the formation
of calcium sulphoaluminates, whereas those with lower alumina (and consequently higher
SiO2) will result in CSA cements richer in calcium silicates [29].

Finally, the variations in SiO2 and Al2O3 are mostly controlled by kaolinite and gibbsite
in Belterra Clay, as the higher the gibbsite-to-kaolinite ratio is in BTC, the more enriched
in alumina it will be. Gibbsite is mostly found in bauxitic nodules that occur within the
clayey fraction of Belterra Clays [15,24,25,55].
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Figure 10. Comparison of the chemical composition measured by XRF and calculated after the
Rietveld analysis.

5. Conclusions

The mineralogical evaluation of the clay-rich overburden of bauxites from Brazil based
on XRPD analysis shows good agreement with the independently acquired results obtained
by XRF chemical analysis, FTIR, and TA. When compared to traditional wet chemistry
methods, the use of XRPD analysis is enhanced by the possibility of acquiring data faster,
using simpler and cheaper sample preparation. Applied to BTC, the Rietveld analysis was
able to deliver reliable mineralogical and chemical-derived results for the main oxides.

XRF, FTIR, and TA were complementary and crucial for an initial validation of the
XRPD results and for the verification of minor phases (close to 1%). After such validations,
XRPD can be applied to a variety of similar samples for rapid mineralogical control. For
reliability of the results, the chemistry composition calculation after Rietveld analysis must
consider the possibility of solid solutions and non-stoichiometric compositions, as was
seen for Al-rich goethites in BTC.

The studied BTC samples have a quasi-homogeneous composition for Fe2O3 and TiO2,
controlled, respectively, by goethite and anatase. On the other hand, SiO2 and Al2O3 are
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more variable, influenced by the abundancies of kaolinite and gibbsite. The major differences
in an industrial application of BTC will be further related to its alumina contents. Whereas
the alumina content of Belterra Clay is too low for Al-ore (as bauxite), it is high enough to
consider it as a non-traditional raw material to be used in the cement or ceramic industries.

Supplementary Materials: The following materials are available online at https://www.mdpi.com/
article/10.3390/min11070677/s1, Table S1. Chemistry (wt. %) of the studied representative Belterra
Clay samples, Table S2. Mineralogical composition of the studied representative Belterra Clay
samples after the Rietveld-XRPD quantifications. Rwp: R-weighted profile; GOF: goodness of fit.
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Abstract: Available Alumina (AvAl2O3) and Reactive Silica (RxSiO2), the main parameters of bauxite
controlled in the beneficiation process are traditionally measured by laborious, expensive, and time-
consuming wet chemistry methods. Alternative methods based on XRD analysis, capable to provide
a reliable estimation of these parameters and valuable mineralogical information of the ore, are being
studied. In this work, X-ray diffraction data in transmission mode was used to estimate AvAl2O3

and RxSiO2 from Brazilian bauxites using the Partial Least Square Regression (PLSR) statistical tool.
The proposed method comprises a routine of sample classification according to their similarities by
Principal Component Analysis (PCA) and K-means, calibration of the PLSR model for each group of
samples, grouping new bauxite samples according to the generated clustering model, and subsequent
estimation of the parameters AvAl2O3 and RxSiO2 using the PLSR models for these samples. The
results showed good accuracy and precision of the models generated for samples of the main ore
lithology. The quality and pre-processing of the XRD data required for this method are discussed.
The results demonstrated that this method has the potential to be industrially applied to quality
control of bauxites as a rapid and automated procedure.

Keywords: bauxite; available alumina; reactive silica; XRD; PLSR

1. Introduction

Bauxite is the main aluminum ore with global resources estimated to be 55–75 billion
tons. Brazil holds the 4th largest reserve and produces annually 35 million tons of bauxite,
mainly to produce smelter grade alumina [1].

The main aluminum-ore mineral present in Brazilian lateritic bauxite is gibbsite
(known as available alumina—AvAl2O3), and therefore, these bauxites are processed in
low-temperature digestion (LTD) conditions (100–150 ◦C) [2,3]. In this context, among
the silicon-bearing minerals, only kaolinite is leached in the Bayer process. This gangue
mineral is well known in the industry as reactive silica (RxSiO2) since it rapidly and unde-
sirably reacts with the sodium hydroxide solution releasing Na2SiO3 to the pregnant liquor
(Equation (1)), which must be precipitated as zeolitic phases known as DSP (desilication
product) even during the digestion stage (Equation (2)) [4]. These neoformed products sig-
nificantly affect the costs of the process, either because they dictate the time and influence
the temperature of digestion, but mainly because of the loss of caustic soda, making it, in
many cases, economically unfeasible to process bauxites with RxSiO2 > 5% [3–5].

3Al2Si2O5(OH)4 (s) + 18NaOH(aq) → 6Na2SiO3 (aq) + 6NaAl(OH)4 (aq) + 3H2O(l) (1)

6Na2SiO3 (aq)+6NaAl(OH)4 (aq) + Na2X(aq)

→ Na6(Al6Si6O24)Na2X(s) + 12NaOH(aq) + 6H2O(l)
(2)
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In the mineral industry, it is common to have quality control and process parameters
based on chemical data instead of mineralogical. It is mainly due to the consolidation
and availability of quantitative chemical analysis using wet methods, while methods for
mineralogical determination are still under development. In the aluminum industry, it is no
different. Quality control of ore in the mine and the Bayer process is done almost exclusively
in terms of its chemical composition. Thus, samples from geological research, beneficiation,
and Bayer process feedstock are analyzed to determine the content of available alumina
(AvAl2O3) and reactive silica (RxSiO2)—traditionally determined by wet chemistry [2,6,7].

Paz et al. [2] report that the RxSiO2 content determined by such methods can be
underestimated, depending on the content and the degree of crystallinity of the kaolinite
in bauxite, which may change significantly over the bauxite profile. This means that the
clay mineral present can be more reactive to the process, despite its concentration [2,8].
Thus, there is no guarantee that simple knowledge of the chemical composition of bauxite
will allow efficient control in metallurgical processes [9]. Another downside of traditional
methods is that they are time-consuming, demand manpower and space, and involve the
handling of dangerous reagents [10,11].

In this context, several methods based on the mineralogical composition of the ore,
obtained by X-ray diffraction (XRD) are being developed as an alternative for the process
control in the bauxite and alumina industry. These methods are, in general, based on
powder XRD data using Rietveld refinement [6,10–17] and multivariate statistics [18–21].
Feret [13] states that XRD has become a fundamental and irreplaceable tool in the control
of raw materials of the aluminum industry. The advent of high-speed XRD detectors
have enabled a fast data collection and, consequently, the development of rapid and
accurate methods, as they use the whole XRD pattern, reducing the effect of preferred
orientation and reflection extinction and even mitigating the inaccuracies due to amorphous
content [10,11,13–15]. König et al. [10] demonstrated the mineralogical quantification of
certified bauxite samples from several countries. Aylmore and Walker [14] and Nong
et al. [15] also applied Rietveld-XRD for the quantification of Australian lateritic and
Chinese karstic bauxites, respectively. Applications of powder XRD to quantify Brazilian
bauxites from Paragominas and Juruti (northern Brazil) were also studied by Angélica
et al. [6] and Negrão et al. [16], respectively. Feret and See [17] reported a bauxite analysis
by XRD using synchrotron radiation to improve mineralogical quantification.

Principal Component Analysis (PCA) and Partial Least Square Regression (PLSR)
are two statistical methods widely used in the chemometric field [22–24]. Viscarra Rossel
et al. [25,26] demonstrated the use of PLSR from UV-Vis and infrared data to predict various
soil properties (such as pH, organic carbon (OC), cation exchange capacity (CEC), etc.) and
to determine the composition of mineral-organic mixtures in soils, while PCA was used
to compare the synthetic mixtures with respective soils. Olatunde [27] reported excellent
results using PLSR on infrared data to estimate the extractible total petroleum hydrocarbon
(ETPH) in soils. The author highlights the accuracy and rapidness of this method. PLSR
was also used on Energy dispersive X-ray fluorescence (EDXRF) data to predict some
soil parameters (CEC, sum of exchangeable bases (SB), and base saturation percentage
(BSP)) [28]. From XRD data, König et al. [29] demonstrated the utilization of PLSR for
quality control of iron ore sinter as a reliable, easy and rapid method in contrast to wet
chemistry.

Melo et al. [19,20] developed a methodology using PLSR on XRD data (reflection
geometry), applied to estimate the bauxite quality control parameters. The authors re-
ported that the estimation of AvAl2O3 and RxSiO2 obtained were in good agreement with
the reference and within the acceptable limits of precision (<1.0–1.5% and <0.5%, respec-
tively) [30]. However, it was observed that in samples of marginal ore lithologies with
higher kaolinite content and degree of crystallinity (low defects kaolinite), the method
does not meet the precision limits, probably due to the preferred orientation effect from
manual sample preparation. To overcome this issue, this study aimed to use XRD data in
transmission mode following a methodology similar to that of Melo et al. [19] applied to
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Brazilian gibbsitic bauxites. It is worth mentioning that the proposed method has several
advantages over the traditional methods: rapidness, can be completely automated, no
chemical reagents are required, and the ore mineralogy can also be monitored providing
relevant information to the process.

2. Materials and Methods

The bauxite samples were provided by Mineração Paragominas SA (Norsk Hydro) and
correspond to a drilling campaign on the Miltonia 3 plateau, Pará state, northern Brazil [31].
In this study, 105 samples were used, corresponding to four lithologies: Nodular Bauxite
(BN), Nodular-Crystalized Bauxite (BNC), Crystalized Bauxite (BC), and Crystalized-
Amorphous Bauxite (BCBA). Details of this lithological profile and sample preparation can
be found in Silva et al. [32] and Melo et al. [19]. Figure 1 depicts a schematic representation
of the Miltonia location and geological profile.

Figure 1. Location and typical geological profile of Miltonia plateau (Pará state, northern Brazil). Legend: BN: Nodular
Bauxite, BNC: Nodular-Crystalized Bauxite, LF: Ferruginous Laterite, BC: Crystalized Bauxite, and BCBA: Crystalized-
Amorphous Bauxite lithology.

The powder XRD data were collected using a diffractometer (Empyrean, Panalytical,
Almelo, The Netherlands), Co X-ray tube (Kα1 = 1.789 Å), Fe Kβ filter, and PIXel3D 2 × 2
area detector (linear scanning mode) with an active length of 3.3473◦ 2θ (255 channels). The
following conditions of data collection were used: Transmission mode; 40 kV and 35 mA;
soller slit of 0.04 rad; fixed divergent and anti-scattering slits of 1/8◦; 0.066◦ 2θ step-size;
22.96 s of time/step and scanning range from 5◦ to 70◦ 2θ. The step-size was defined based
on Melo et al.’s [14] optimization conditions. Diffractograms were evaluated using the
software HighScore Plus 4.8 (Panalytical, Almelo, The Netherlands).

Each sample was assembled in the sample holder and analyzed in duplicate by XRD.
To perform the PCA, K-means and PLSR analyses, XRD data were used as dataset. Thus, all
diffractograms are organized as an m × n matrix, where m (rows) are the bauxite samples

99



Minerals 2021, 11, 1054

and n (columns) are the intensity count value for each ◦2θ step of the XRD measurement
for the respective sample. Here, the complete XRD pattern is taken as dependent variables,
resulting in 984 features for modeling [19].

PCA was carried out to identify possible outliers and samples with mineralogical
similarity; and K-means clustering algorithm (with k = 3, considering Euclidean distance
measure) was used to group the samples with similarities (the clusters were named as C1,
C2, and C3).

The samples classified in each cluster were randomly divided into two subsets: a
calibration set (containing ~70% of the samples) and a test set (~30% of the samples). The
samples from the calibration set were used to build the PLSR models. This statistical
algorithm is particularly suitable for handling multi-collinear data, and an interesting
alternative for predicting relevant information Y (obtained from expensive, difficult, or time-
consuming measurements—e.g., wet chemistry) from X data (in general, cheap, easy, or
fast measurements—e.g., XRD, Fourier Transform Infrared Spectroscopy (FTIR)) [18,22,33].
Thus, in this study, the content of AvAl2O3 and RxSiO2 (from wet chemistry) was predicted
by using XRD data.

A “leave-one-out” cross-validation was used to find the best number of factors to
include in the models and the Root Mean Square Error of Prediction (RMSEP, Equation (3)),
Ratio of Prediction Deviation (RPD, Equation (4)), and Relative Error (RE, Equation (5))
were used to assess the performance of the models.

RMSEP =

√√√√∑n
i=1

(
yi, predicted − yi, re f erence

)2

n
(3)

RPD =
SDprediction set

RMSEP
(4)

RE (%) = 100

√√√√√∑n
i=1

(
yi, predicted − yi, re f erence

)2

∑n
i=1 yi, re f erence

2 (5)

3. Results and Discussion

3.1. XRD Data

Figure 2 shows the X-ray diffractograms of all the bauxite samples used in this study
collected by transmission mode. It can be noted that the bauxites of the four lithologies
have the same mineralogical composition. The main phase is gibbsite (d002 = 4.85 Å and
d110 = 4.37 Å). In general, the only SiO2 mineral identified is kaolinite (d001~7.14 Å and
d002~3.58 Å). Quartz (d101 = 3.34 Å) may be present in some samples, but in minor content.
Hematite (d104 = 2.69 Å) is observed as the main iron mineral, with intensity varying
significantly among the lithologies, and Al-goethite (d101 ranging from 4.18 Å to 4.14 Å) is
also observed, usually as a broad peak due to variations in the isomorphic substitution of
Al in the structure [12,34]. Anatese (d101 = 3.52 Å) is also present in all samples.

Layered minerals (such as clay minerals) tend to orient themselves strongly during
samples’ assembling in the sample holders for XRD analysis. Thus, for those samples rich
in kaolinite and/or gibbsite, it is common to observe high intensities of the basal reflections
(d00l) in detriment of the other reflections of the XRD pattern [35]. This effect is believed
to be the major source of error in quantitative analysis based on XRD data [14,36]. It is
interesting to note that this deleterious effect was avoided using the transmission mode,
as evidenced by the intensity ratio of the peaks d110 and d002 of the gibbsite (~50%). For
comparison, the same samples were analyzed by reflection mode with manual sample
holder assembling [14], resulting in a ratio d110/d002 of only ~8%, a very low value consid-
ering the scale factor of this phase. At low angles, the noise is significant, although this
mode of data collection allows a better resolution of possible peaks in this region of the
diffractogram.
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Figure 2. XRD patterns of the bauxite samples from BN, BNC, BC and BCBA lithologies.

3.2. Data Evaluation by Principal Component Analysis (PCA)

Figure 3 presents the score-plots for the first three principal components. As noted,
the principal components PC-1, PC-2, and PC-3 explain, respectively, 35%, 22%, and 12% of
the data variability (only 69% of the explained variance). Even considering 8 components,
the explained variance remains lower than 75%. In contrast, Melo et al. [19] achieved 98%
of the explained variance with only two components by using XRD reflection data. This
shows that, although the preferred orientation effect was mitigated, the conditions of data
collection by transmission mode used in this work resulted in a significant reduction in
the intensities, which in turn, reduced the sensitivity of the statistical treatment in finding
significant factors to reduce the data dimensionality.
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Figure 3. PCA score-plots: (a) PC-1 vs. PC-2; (b) PC-1 vs. PC-3. Explained variance of each component given in parentheses.

It is observed that no clustering is evidenced, even for those samples of the same
lithology [8]. In this context, a K-means method was used to group the samples for further
PLSR prediction. Figure 4 shows the PCA score-plot with the three clusters obtained (C1,
C2, and C3). Although samples from the same lithology were classified into different
clusters, C1 mostly contains BC; BNC and BCBA were mainly grouped in C1 and C2, while
most BN samples were grouped in C3.

Figure 4. Clustering of samples by K-means represented in the PCA score-plot.

Figure 5 presents the linear-plot of the PCA loadings for PC-1, PC-2 (Figure 5a), and
PC-6 (Figure 5b). It is observed that the reflections of the main mineral in the bauxite
(gibbsite) have greater effect on PC-1 whilst PC-2 is more influenced by noise from low
angles. The variability related to kaolinite were most extracted by PC-6.
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Figure 5. Linear-plot of PCA loadings: (a) PC-1 and PC-2; (b) PC-6. Dashed line represents 70% of the factors on the
principal components.

3.3. Prediction of AvAl2O3 and RxSiO2 by PLSR

Once the samples were classified into C1, C2, and C3 clusters, the respective sample
calibration sets were used to build the PLSR models. Melo et al. [19] achieved an optimized
condition of XRD data collection by increasing the step-size from 0.026◦ to 0.065◦ (2θ) and
reducing the 2θ range up to 13–34◦, such optimized condition for reflection mode allowed
a less than 1 min XRD scan time. As observed in the PCA loadings-plot (Figure 5), using
transmission data, the full pattern is relevant to extract the latent variables, therefore, in this
study, the diffractograms were reduced only to the 13–65◦ (2θ) interval, just removing the
background noise. This treatment resulted in a scan time of 1 min 15 s. Comparing to the
traditional wet chemistry in which analyses can take 3–8 h, the use of PLSR on XRD data is
much faster, being able to provide quick feedback to the process for decision-making.

After calibrating the models, defining the best pre-processing method for the dataset
(mean-centered or standardized) and the number of factors to be included in the models
through cross-validation, each sample in the test set was classified into one of the three
clusters and then the parameters of bauxite quality control—AvAl2O3 and RxSiO2 were
predicted using the respective models. It can be observed in Figure 6 that there is a good fit
of the predicted values for both parameters, mainly in those samples classified in C1.

Although the predicted mean values are close to the reference values, the models
C2 and C3 showed a precision slightly lower than the acceptable limits for the quality
control of bauxites [30]. The parameters that indicate the performance of the models are
summarized in Tables 1 and 2 for AvAl2O3 and RxSiO2, respectively.

A mean of residuals (mean of the difference between reference and predicted) close to
zero denotes that the models present a good accuracy. The RMSEP denotes the precision of
the model in the same unit as the predicted parameters (%AvAl2O3 and %RxSiO2). Thus,
a model with high precision presents lower RMSEP. In terms of bauxite quality control,
a precision of <1.0–1.5% for AvAl2O3 and <0.5% for RxSiO2 [14,25] is usually required.
Feret [30] argues that these numbers are sometimes difficult to attain in the industrial
practice using traditional wet chemistry methods.

The RPD indicates how well the model performs compared to using only the average
of the original data [26]. Some authors argue that RPD < 1.0 denotes a very poor model,
1.0 ≤ RPD < 1.4 a poor model, 1.4 ≤ RPD < 1.8 a fair model, 1.8 ≤ RPD < 2.0 a good model
and RPD ≥ 2.0 an excellent model [26–28]. It can be observed that the models C1 and C2
for both AvAl2O3 and RxSiO2 performed well with RPD ~2.0. It is interesting to note that,
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although the RMSEP of C3 model is high, it presented RPD = 2.9 which means an excellent
model to predict AvAl2O3, denoting that the samples in this cluster have a wide range
of AvAl2O3 content (min: 38.57%, max: 52.79%), and therefore, the model is sensitive to
variations and capable of predicting this parameter satisfactorily.

Figure 6. Comparison of reference and estimated values using PLSR models for each cluster: (a) AvAl2O3; (b) RxSiO2. Bars
indicating residual standard deviation (RSD).

Table 1. Results of the prediction of AvAl2O3 with the models for each cluster.

Models Mean of Residuals RMSEP (%) RE (%) RPD
Preprocessing Method

(No. of Factors in the Model)

C1 0.24 0.85 1.63 1.98 Mean-centered (5)
C2 0.35 1.24 2.37 1.98 Mean-centered (4)
C3 −0.30 1.71 3.58 2.90 Mean-centered (5)

Table 2. Results of the prediction of RxSiO2 with the models for each cluster.

Models Mean of Residuals RMSEP (%) RE (%) RPD
Preprocessing Method

(No. of Factors in the Model)

C1 −0.28 0.49 10.72 2.38 Standardized (3)
C2 −0.14 0.78 17.90 2.04 Mean-centered (5)
C3 −0.11 0.78 19.16 1.36 Standardized (4)

It is interesting to note that the best model (C1) mostly contains samples of the main
ore lithology (BC), denoting that the method is suitable for quality control. In contrast,
the worst model (C3) is mainly related to the samples of the marginal ore (BN, generally
considered as gangue). This bauxite lithology presents the highest kaolinite content and the
lowest gibbsite content in the Miltonia 3 bauxite profile. The low degree of crystallinity of
the kaolinite in this lithology affects the XRD profile [13,14]. Melo et al. [19] also observed
a lower precision for this material that could be related to the preferred orientation. As this
effect was eliminated using transmission mode, the low precision of the C3 model may be
related to the wide range of AvAl2O3 and RxSiO2 content in the sample group or another
unknown effect. It also may represent a limitation of this method (or an optimization
point), that is, it is not suitable for geological survey applications; where it may be present,
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samples that strongly deviate from the ore in terms of mineralogical composition and
phases’ content.

Feret et al. [37] state that methods of phase quantification based on regression may
successfully be used in bauxite exploration, however, they are deposit-specific. Similarly,
the method presented in this work (and also in Melo et al. [19]) represents a case study
with lateritic gibbsitic bauxite from the Miltonia plateau. Although König and Norberg [18]
reported satisfactory prediction using a generic PLSR model for bauxites from different
locations, the results suggest that changes in the ore’s mineralogy, related only to the
concentration and crystallinity of the phases, may impact prediction. Nevertheless, it is
believed that the methodology can be easily adapted to bauxites of different origins, in
particular, the Amazon lateritic bauxites (Paragominas plateau Miltonia 5, Juruti, Trombetas
and Rondon do Pará) with similar mineralogy and containing only gibbsite as an aluminum-
bearing mineral [6,12,16,38].

As depicted in Figure 7, the coefficients and factors of each PLSR model can be plotted
in relation to the ◦2θ position, allowing to interpret the obtained model in terms of the XRD
pattern of the clustered bauxite samples. It is observed that the largest coefficients of the
AvAl2O3 models (C1, C2, and C3) are negatively correlated with kaolinite basal reflections
and positively correlated with gibbsite (d110), whereas basal gibbsite reflection (d002) has
greater weights on the factor loadings. The asymmetry shape of this reflection, however,
was revealed as at least two generations of gibbsites. Similar results were observed by Melo
et al. [19], and according to König et al. [10] and Negrão et al. [16], it could be associated
with aluminum-rich horizons, where along the bauxite profile, well-formed coarse gibbsite
crystals fills microvoids, and a new generation of fine, poor-crystalline gibbsite is dispersed
in the matrix. Interestingly, Al-goethite (d110) has a high impact on model coefficients
(highlighted area in Figure 7a,c). The respective broad peak area in C1 and C2 coefficients
denote the presence of several %Al-substitution in the goethite structure. It is also noted
that, in the C3 model, a wide area from 15–20◦ 2θ presented high coefficients. This area,
however, has no XRD reflection associated, and therefore, may be related to the amorphous
in these samples. It was not possible to quantify the amorphous, but it is assumed that this
is more evident in the overlying lithologies, in particular, BNC and BN due to different
laterization cycles and the greater presence of neoformed minerals [8,16]. This assumption
is in agreement with the results since BN samples were mainly grouped in C3, and is
probably related to the relatively low prediction of this model.

On the models for RxSiO2, higher coefficients related to kaolinite and Al-goethite were
also observed, however, positively. For models with standardized datasets (C1 and C3),
the basal reflections of kaolinite have greater impact on loadings, while in the C2 model
(mean-centered), the d002 peak of gibbsite had greater weight. A double peak referring
to the d001 of kaolinite was observed for the coefficients of models C2 and C3, which
must also be associated with kaolinite generations with different degrees of crystallinity.
Melo et al. [8] demonstrated that this difference actually occurs, so that kaolinites from
the overlying lithologies are less ordered and, consequently, more reactive to the Bayer
process. It is interesting to note that, although this significantly impacts processing costs,
this information is not known by the industry in the context where all the quality control
of bauxite is by traditional wet methods. The variability of kaolinite crystallinity in these
two clusters may be associated with the reduced accuracy of the respective models.
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Figure 7. Linear representation of the coefficients and main factors of the models: (a) AvAl2O3 (C1); (b) RxSiO2 (C1); (c)
AvAl2O3 (C2); (d) RxSiO2 (C2); (e) AvAl2O3 (C3), and (f) RxSiO2 (C3).
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4. Conclusions

In this work, the use of a method for quality control of bauxites based on statistical
tools on XRD transmission data was evaluated. The method comprises classifying bauxite
samples by PCA and K-means according to their latent mineralogical characteristics,
building PLSR models for each sample group, and using these models to predict the
AvAl2O3 and RxSiO2 parameters in new samples.

The samples were classified into three clusters (C1, C2, and C3) and the respective
models were evaluated in relation to the wet chemistry reference values. The C1 model
presented satisfactory accuracy and precision for both parameters. The RMSEP of 0.85%
(AvAl2O3) and 0.49% (RxSiO2) attain the required limits (1.0–1.5% and 0.5%, respectively).
The C2 and C3 models, related to marginal ore lithologies presented satisfactory accuracy
but low precision.

These results also indicate that, although the preferred orientation was eliminated us-
ing the XRD transmission data collection, there was no incremental improvement compared
with the PLSR models obtained with reflection data [14].

These results cleared showed that the methodology can be applied for quality control
in the beneficiation plant, but not suitable for geological survey applications. It is worth
mentioning that this method presents several advantages over traditional wet chemistry,
mainly due to its speed (less than 5 min to run XRD analysis and obtain the prediction),
ease of being completely automated, and no dangerous chemical reagents are required.
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Abstract: Heavy mineral sands are the source of various commodities such as white titanium dioxide
pigment and titanium metal. The three case studies in this paper show the value of X-ray diffraction
(XRD) and statistical methods such as data clustering for process optimization and quality control
during heavy mineral processing. The potential of XRD as an automatable, reliable tool, useful in the
characterization of heavy mineral concentrates, product streams and titania slag is demonstrated.
The recent development of ultra-high-speed X-ray detectors and automated quantification allows
for ‘on the fly’ quantitative X-ray diffraction analysis and truly interactive process control, especially
in the sector of heavy mineral concentration and processing. Apart from the information about the
composition of a raw ore, heavy mineral concentrate and the various product streams or titania slag,
this paper provides useful information by the quantitative determination of the crystalline phases
and the amorphous content. The analysis of the phases can help to optimize the concentration of ores
and reduction of ilmenite concentrate. Traditionally, quality control of heavy mineral concentrates
and titania slag relies mainly on elemental, chemical, gravimetrical, and magnetic analysis. Since the
efficiency of concentration of minerals in the different product streams and reduction depends on the
content of the different minerals, and for the latter on the titanium and iron phases such as ilmenite
FeTiO3, rutile TiO2, anatase TiO2, or the various titanium oxides with different oxidation stages, fast
and direct analysis of the phases is required.

Keywords: heavy minerals; ilmenite; titania slag; XRD; cluster analysis; rietveld; Magneli phases

1. Introduction

Mineral sands, also commonly known as heavy minerals because of their relatively
high specific density compared to sand (more than 4 kg/m3), are an important source of
various titanium raw materials and zircon. These metals and their oxides have become
extremely important for various sectors of industry.

Heavy minerals naturally occur in relatively small concentrations, so that specialized
preparation systems equipped with spiral separators, electrostatic separators and magnetic
separators are required for concentration and separation.

Mineral beneficiation relies on quantitative knowledge of phases present in the process
streams. This information is necessary to optimize each step from the flowsheet in Figure 1
to process and upgrade the mined heavy mineral sand. Often X-ray fluorescence (XRF)
or wet chemistry are used to obtain elemental information which assists the metallurgists
to estimate the mineral processing performance. When more accurate mineral phase
information is needed, X-ray diffraction (XRD) is the most useful technique as a fast and
accurate alternative to time consuming scanning electron microscopy. Due to the diverse
applications and the improvements in speed, accuracy, and flexibility of the analysis,
during the last two decades, XRD has become a standard tool in industries, such as cement
or aluminium production [1–3].
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Figure 1. Simplified flowsheet for the process of heavy mineral separation and TiO2 production. Left triangles = intermediate
and final products, middle = process flow, right triangles = by-products or waste. Stars indicate the case studies investigated
in this paper.

Figure 1 simplifies a typical process flow for the extraction of TiO2 from heavy mineral
sands, as well as further products of interest. Separation of the valuable heavy minerals
from the primary ore is carried out in two stages: (a) wet concentration, utilizing sizing and
gravity differentiation between heavy minerals, clay and quartz, and (b) dry separation,
exploiting the magnetic and electrostatic properties of the minerals of interest. Case studies
I and II deal with the fast analysis of heavy mineral concentrates improving the efficiency
of the separation processes. Case study III demonstrates the use of XRD for checking the
performance of the ilmenite smelting (reduction) process.

Ilmenite as well as rutile are the principal feedstocks for titanium dioxide produc-
tion. Titanium dioxide is used as pigment for the manufacture of paints, coatings and
plastics and also in other applications such as pharmaceutical, paper, cosmetics (e.g.,
sunscreen), toothpaste, inks and fibres. Titanium dioxide can be used in specialist appli-
cations including welding rods and the production of titanium metal for industrial and
aerospace applications.

Zircon is used in the manufacture of ceramic products including tiles, sanitaryware
and tableware, and as an opacifier in surface glazes and pigments. Zircon is also the
main component in the production of zirconium chemicals used in antiperspirants, paper
coatings, paint driers and catalysts. Zircon can also be used as foundry sand, cathode ray
tube television glass and in refractories.

Most garnet is mined for industrial uses such waterjet cutting purposes, abrasive
blasting media, water filtration granules and abrasive powders.

The objective of the three case studies in this paper is to demonstrate that X-ray
diffraction (XRD) can be used as fast and reliable process control tool for heavy mineral
sand concentration and beneficiation.

2. Materials and Methods

The three case studies form part of the typical process flow for the extraction of TiO2
from heavy mineral sands. Case study I describes the monitoring of the concentration
of heavy mineral sands using statistical cluster analysis. Case study II demonstrates the
mineralogical quantification of the different material streams during separation of the

110



Minerals 2021, 11, 1253

various heavy minerals. The use of XRD for process control during ilmenite smelting is
discussed in case study III.

2.1. Samples and Sample Preparation

For case studies I and III, samples were prepared as pressed pellets using automatic
sample preparation equipment for minimized preferred orientation and to guarantee
a constant sample preparation quality. All powder samples were milled for 30 s and
pressed for 30 s at 10 tons into steel ring sample holders. Constant sample preparation and
the highest sample throughput could be realized using fully automated preparation and
analysis setups.

For case study II samples were prepared using a backloading preparation technique.
These samples were milled for 10 min in a Cr-steel milling vessel as it was found to be the
optimum time for these Heavy Mineral Concentrate (HMC) samples.

2.2. X-ray Diffraction (XRD)

X-ray diffraction (XRD) is a versatile, nondestructive analytical method for identifica-
tion and quantitative determination of crystalline phases present in powdered and bulk
samples. Establishing which phases are present in a sample is usually the first step of a
whole series of analyses and forms the basis of investigations on how much of each phase
is present (quantitative phase analysis).

All crystalline materials have their own unique, characteristic X-ray fingerprint based
on their crystal structure. When diffraction data for a particular sample are compared
against a database of known materials, the crystalline phases within the sample can be
identified. For this study the Crystallography Open Database (COD) was used [4]. Data
evaluation was performed with the software package HighScore Plus version 4.9 [5].
Diffractograms were measured with a Malvern Panalytical Aeris Minerals diffractometer
with a PIXcel detector, fixed slits and Fe-filtered Co-Kα radiation. The instrument was
optimized for the rough needs of mineral industry environments (remote control possible),
featuring measurement times of 5–10 min per scan. The samples were measured under
room temperature within a range of 10 to 80◦2θ and a step size of 0.02◦2θ. Compared
with traditional XRD approaches, the capabilities of high-speed XRD detectors allow
measurements within minutes instead of hours.

2.3. Rietveld Quantification

The mineral quantification of all samples was determined using the Rietveld method [6–8].
Modern XRD quantification analysis techniques such as Rietveld analysis are attractive
alternatives to classical peak intensity or area-based methods since they do not require
any standards or monitors. The Rietveld method offers impressive accuracy and speed of
analysis. The knowledge of the exact crystal structure of all minerals present in the samples
is mandatory for the Rietveld refinements. An example of the accuracy of the results
is given in Section 3.2, using a comparison of TiO2 content recalculated from Rietveld
refinement results with TiO2 content determined by X-Ray Fluorescence Spectroscopy
(XRF). A quality indicator of a Rietveld refinement is the weighted profile R-value (Rwp),
which is minimized. The weighting is such that higher intensity data is more important
than lower intensity data. Therefore, fitting the peaks is more important than fitting the
background. In general, this value should be less than 10, [8]. Amounts below 0.5 w%,
may, however, be unreliable. The advantage of using Rietveld analysis over automated
quantitative scanning electron microscope analysis for the analysis of HMC samples, such
as speed of analysis, sample size, and cost effectiveness, is demonstrated in [2].

2.4. Cluster Analysis

To handle large amounts of data achieved by rapid data collection using a linear
detector, “cluster analysis” is a useful tool to group different XRD measurements into
similar clusters, [9,10]. The method can be used to sort different ore grades with different
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mineralogical composition and thus varying process behavior or to detect instabilities
during processing.

Cluster analysis greatly simplifies the analysis of large amounts of data. It automat-
ically sorts all (closely related) scans of an experiment into separate groups and marks
the most representative scan of each group as well as the most outlying scans within
each group. Cluster analysis is basically a three-step process, but it contains optional
visualization and verifications steps as well:

1. Comparison of all scans in a document with each other. The result is a correlation
matrix representing the distances (or dissimilarity) of all data points of any given pair
of scans.

2. Agglomerative hierarchical cluster analysis puts the scans in different classes defined
by their similarity. The output of this step is displayed as a dendrogram, where each
scan starts at the left side as an individual cluster. The clusters amalgamate in a
stepwise fashion until they are all united in one single group.

3. The best possible grouping (=number of separate clusters) is estimated by the KGS
test, named after Kelley, Gardner, Sutcliffe [9], or by the largest relative step on the
dissimilarity scale. Additionally, the most representative scan and the two most
outlying scans within each cluster are determined and marked.

4. As well as hierarchical clustering, independent tools such as Principal Components
Analysis (PCA) can be used to define clusters. The PCA method finds systematic
large variances in the set of observations, i.e., the so-called principal components or
“eigenvalues”. It uses the correlation matrix as input and displays the three most
important principal components in a pseudo-3D plot. They explain the major part of
the total overall variance in the correlation matrix.

3. Results

3.1. Case Study I: Cluster Analysis of Heavy Minerals Concentrates

For this case study, cluster analysis was used to classify heavy mineral concentrates
from different spiral stages of the concentration process at a wet concentration plant. Grav-
ity separation with spirals was performed after the ore had passed scrubbing and screening.
The wet concentration process consists of several stages: rougher spiral, cleaner spiral,
scavenger spirals, and re-cleaner spirals, as shown in Figure 2. Intermediate heavy minerals
concentrate from each spiral stage passes to the next stage to be further concentrated.

 

Figure 2. Simplified flow sheet of spiral separation of heavy minerals.

The XRD pattern of 46 samples from the four different spiral stages were collected.
Without further processing, a cluster analysis was performed on the measurement. The
principal component analysis (PCA) score plot in Figure 3 shows four groups of samples.

The four clusters represent the four different spirals. The spread of the data points
indicates the diversity in the mineralogical phase content in the clusters. Samples from
the rougher spirals have a more diverse mineralogical composition compared to the other
three clusters. Most similar are the samples coming from the re-cleaner spirals.
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Figure 3. (a) 3D PCA score plot for the cluster analysis of 46 samples from a wet concentration plant, illustrated in three
views. The three axes represent the three most important principal components explaining a major part of the total overall
variance in the correlation matrix. The covered total variance is 94.95%. (b) Corresponding dendrogram with agglomerative
hierarchical cluster analysis showing the scans in different classes defined by their similarity and vertical cut-off lines. Each
dataset is connected by a tie bar to another dataset or to a cluster. The horizontal length of the tie bars is proportional to the
dissimilarity (x-axis). The color of the spheres indicates the cluster they belong to. The *** after a scan name indicates the
most representative scan of a cluster. The + after a scan name indicates the two most different (outlying) scans within one
cluster. Each dot represents one measurement. All measurements are compared with each other to find similarities.
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Generally, a larger spread within the cluster illustrates either varying compositions of
heavy mineral concentrates or unstable separation conditions within the spirals. Outliers,
which do not belong to any cluster, usually signal problems in the processing step. As
a result, cluster analysis can be used as a fast tool to immediately control and adjust the
efficiency and accuracy of the spiral stages. This enables fast responses to changes in raw
materials or process conditions and with that, a greater focus on profitability. Cluster
analysis not only allows producers to standardize and monitor concentration processes
objectively, but it enables them to compare spiral performance across different processing
plants quickly and easily.

Cluster analysis can be performed before further investigations on measurements, such
as phase identification and quantification. The most representative scan and the scans that
differ most within a cluster can be used as starting points for more detailed investigations.

3.2. Case Study II: Quantification of Heavy Minerals Concentrates

Samples for this case study originated from a heavy mineral sand mine in South
Africa. The Heavy Minerals Concentrate (HMC) was split into three commercial products
through various processes in the mineral processing plant. There were three concentrate
product streams: ilmenite concentrate, high grade zircon/rutile and high-grade garnet
concentrate (almandine).

This study focuses on these three streams as they are the main commodities for
the mine. Minor additional products such as magnetite concentrates are also marketed.
REE minerals only occur as traces and are currently not commercialized. Heavy mineral
sands are mined in a free dig operation using conventional trucking and excavation using
mobile excavators, front-end loaders and trucks. The ore is processed via a Primary Bulk
Concentrator (PBC), where the minerals are separated by a chemical-free gravity process.
Subsequently garnet is separated at a garnet stripping plant and the nonmagnetic material
is separated from the heavy mineral concentrate as shown in Figure 4.

 

Figure 4. Simplified flow sheet of heavy mineral separation.

The HMC quantified in Figure 5 is the product of density separation of beach sand
composites. The typical amount of total heavy minerals ranges between 10% and 45%.

After separation each of the product streams must fulfill predefined specifications not
only based on chemical composition but also mineral quantities. Frequent monitoring of the
mineral composition allows for estimation of stockpile compositions and optimal blending
of materials to achieve the quality targets before shipment. XRD together with Rietveld
quantification is a fast and easy method that can be completely automated. Figures 5–8
show examples of Rietveld quantifications of a typical heavy mineral concentrate (HMC),
ilmenite, garnet and zircon concentrates. Each concentrate represents a weekly composite
sample of 21 subsamples.
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Figure 5. Typical Heavy Mineral Concentrate (HMC). Rietveld quantification (top) including the difference plot between
measured and calculated profiles, as well as the Rwp (bottom).

Figure 6. Typical ilmenite concentrate. Rietveld quantification (top) including difference plot between measured and
calculated profiles, as well as the Rwp (bottom).
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Figure 7. Typical garnet concentrate. Rietveld quantification (top) including difference plot between measured and
calculated profiles as well as the Rwp (bottom).

Figure 8. Typical zircon concentrate. Rietveld quantification (top) including difference plot between measured and
calculated profiles as well as the Rwp (bottom).

Figure 9 shows the quantitative results of the heavy minerals content in the ilmenite
product over several days. In this example of samples mainly containing ilmenite and gar-
net, the comparison of weight % TiO2 between XRF analysis and TiO2 content recalculated
from Rietveld refinement results is a suitable indicator of the accuracy and relevance of
using XRD for quantification of mineral content.
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Figure 9. Variation of mineral compositions (wt%) of ilmenite concentrate, TiO2 content (wt%)
calculated from XRD results, as well as determined by XRF of 25 samples representing 25 days,
(x-axis).

Similar scenarios apply to the garnet and zircon products. Average mineral abun-
dances obtained over time can be used to predict and optimize shipment blends and
compositions to match target values (see Figure 10 and Table 1).

Table 1. Average mineral abundancies (weight%) of 25 weekly composite samples each, and target values.

Ilmenite Concentrate Garnet Concentrate Zircon Concentrate

Product Average Target Value Product Average Target Value Product Average Target Value

Zircon 2 0–4 1 76 >67
Rutile 1 0–3 1 17 >15
Quartz 1 4 3
Anatase 0 0 1

Clinopyroxene 1 13 0
Ilmenite 46 35–55 2 1
Hematite 2 1 1

Garnet 46 45–54 72 70–75 3
Plagioclase 0 6 0
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Figure 10. Average mineral abundancies of HMC and product streams of 25 weekly composite samples each.

3.3. Case Study III: Process Control during Ilmenite Smelting

Ilmenite smelting is one of the methods to upgrade the iron-titanium oxide mineral
ilmenite (FeTiO3) to a high-titanium feedstock for rutile pigment manufacture. In ilmenite
smelting, the FeO content of the feed material (FeO·TiO2) is decreased by reduction with
carbon. In a parallel reaction, a significant amount of TiO2 is reduced to Ti2O3. The amount
of Ti2O3 is an important parameter to control the smelting process to produce an acceptable
slag product on a consistent basis, [11–13]. Improving the understanding of a slag product,
and the factors relevant in the production of a liquid slag leads to more efficiency in the
smelting process.

The XRD pattern shown in Figure 11 represents a pattern of a reduced ilmenite sample.
Ilmenite was reduced to predominantly rutile (TiO2) and metallic iron. Besides metallic Fe
(peak at approximately 52.5◦2θ) most phases in the reduced ilmenite are titanium-based.

 

Figure 11. Phase identification for a reduced ilmenite sample, gray = detailed view Figure 12.
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Figure 12. Detailed measurement showing different titanium oxides of a reduced ilmenite sample.

A significant variation in the different titanium phases was observed in the range
29◦ ≤ 2θ ≤ 35◦. In the zoomed view in Figure 12 series of satellite reflections, so-called
Magnéli phase reflections [14] are detected around the main unreduced rutile peak. These
subpatterns are partly superposed. Magnéli phases are a suite of super-lattices derived
from the rutile structure due to systematic oxygen vacancies. They have stoichiometries
of TinO2n−1 where n ≥ 4. In the limit of large n, the stoichiometry approaches that of
rutile. Magnéli phases form in high temperatures under reducing kiln conditions, which
are required to produce synthetic rutile of higher grade (i.e., higher titanium content) at
commercially reasonable throughputs [15]. In a well-run kiln, the unreduced rutile peak at
32.0◦2θ is less intense than the satellite peaks from partially reduced rutile. The peak at
approximately 32.6◦2θ is caused by reduced rutile. As the degree of reduction increases, the
peak shift to higher 2θ values and forms doublets with highly reduced material. Therefore,
the degree of reduction during the smelting process can be estimated by:

(a) Intensity ratio between the unreduced rutile peak and the reduced rutile peaks
(b) Peak position of the reduced rutile peak and the shifts of the Magnéli peaks towards

higher 2θ values.

Future work will focus on a full pattern Rietveld quantification of the different titanium
oxides, especially the various Magnéli phases. This requires structural data of all phases
present. A quantification of the different phases will enable even more efficiency during Ti
slag production.

4. Conclusions

All three case studies demonstrated that XRD is a fast, accurate and flexible method
to monitor heavy mineral mining and processing. Cluster analysis can be used to monitor
and control the performance of spirals for heavy mineral concentration. The quantification
of the heavy minerals during separation ensures optimal product quality and efficient
stockpiling and processing. Knowledge about the degree of reduction during ilmenite
smelting ensures optimal kiln operation and energy consumption. Monitoring of the
different titanium oxide phases can help to produce high-quality titanium slag.
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Insights into the mineralogical composition of material streams during heavy mineral
processing allows fast counteractions on changing raw materials and process conditions
during concentration, separation and smelting.
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Abstract: This work aimed to characterize barite samples from selected different locations in Nigeria
and determine their suitability for various industrial applications. The properties determined include
mineralogy, chemical composition, morphology, functional groups, and specific gravity. Samples
were obtained from ten locations in Nasarawa and Taraba states as well as a standard working
sample (WS) obtained from a drilling site. The samples were characterized using scanning electron
microscope and energy dispersive X-ray (SEM-EDX), Fourier infrared analysis (FTIR), and X-ray
diffraction (XRD). Specific gravity (SG) was determined using the pycnometer method. Results of
SEM-EDX analysis show that the WS has a Ba-S-O empirical composition of 66.5% whereas these of
the ten samples investigated vary between 59.36% and 98.86%. The FTIR analysis shows that the
functional groups of S-O, SO4

2−, Ba-S-O, OH of the ten samples match that of the WS. Results of XRD
show that the ten samples have the same mineralogical composition as the WS and all meet American
Petroleum Institute (API) standards for industrial barite. Similar matching results are shown from
EDXRF spectra intensity, position, and composition analysis of the ten samples compared to the
WS. Specific gravity (SG) results show that six out of the ten samples have SG above 4.2 which
is the recommended minimum for the American Petroleum Institute (API) standard. The other
four samples will require beneficiation to meet the standard for drilling mud application. Using all
the parameters of the assessment together, results show that while some (6) of the samples can be
used for drilling fluid application, some (4) require beneficiation but all ten samples can be used
for other industrial applications including healthcare, construction, plastic, cosmetics, paper, and
rubber industries. The results of the study can be used for value addition in developing beneficiation
procedures, processes, and technology for purification along with new materials for the industries.

Keywords: barite; mineralogy; industrial application; beneficiation; specific gravity

1. Introduction

The Federal Government of Nigeria is currently implementing the National Economic
Recovery and Growth Plan (ERGP) aimed at re-directing the economy back to the path of
recovery [1]. A major aspect of the plan is diversification of the economy away from oil
and increasing the local content in operations of the oil industry. One way of diversifying
the economy is by developing the mining sector, including adding value to extracted
minerals. Approximately 85% of barite goes into the oil industry, about 10% into the
chemical industry, 5% into the filler market. Barite is used as a weight density agent in
drilling mud for gas and oil exploration to avoid the high-pressure formation and prevent
blowouts. This is compressing the high pressure created by the drill bit as it passes through
various formations with different characteristics. The deeper the drilling hole, the more
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barite is required for the total mud mix. For oil drilling, a specific gravity of barite is the
only property checked. Other chemical and physical properties are needed for other barite
applications. The physical appearance of barite used in drilling petroleum wells can be
black, blue, brown, or grey dependent on the ore body. The used barite must be dense
enough so that its specific gravity is greater than 4.1 and smooth not to damage the drill
bit [2,3]. One of the minerals being promoted by the Federal Ministry of Mines and Steel
Development is barite [4]. This mineral is not only useful in the oil industry but can also be
used for other industrial applications. Most of the current use of barite in the oil industry
is imported [4]. Therefore, there is a need to promote the exploitation and use of barite for
the oil industry and other industrial applications.

One way of diversifying the economy is by developing the mining sector, including
adding value to extracted minerals. This is mainly in the oil industry which depends on
the appreciable supply of barite ore as a key constituent of drilling mud used to stabilize
the oil well; prevent blow-outs; remove drill cuts by the fluid. It is a key constituent of
drilling mud, which is the fluid pumped into the oil or gas well to lubricate the bit and
drill stem, removes rock chips, prevents a collapse of well walls, and prevents blowouts if
over pressured strata are encountered [5–8]. Barite is chemically stable, making it useful
as an additive in the manufacturing of different products like rubber, paints, enamels,
plastics, paper goods, wallpapers, asbestos goods, glass, and ceramics. Moreover, it is
used in radiology for X-rays of the intestines and to make high-density concrete resistant
to nuclear radiation [7]. Barite (BaSO4) is crucial to the oil and gas industrial application.
This is due to a key constituent of the drilling mud used in oil and gas wells. Additionally,
elemental barium is an additive in ceramic glazes, optical glass, paint, and other products.
Barite deposits are categorized into different main types which include; bedded-volcanic,
bedded-sedimentary, vein, cavity-fill, and metasomatic and residual. Bedded-sedimentary
deposits are found in sedimentary rocks with properties of high biological productivity
during sediment accumulation and they are the major sources of barite production that
account for the majority of barite reserves worldwide [8]. In recent years, barite has found
usage in brake shoe linings, noise reduction in engine compartments, and spark-plug
alloys [9].

Barite is a heavy mineral that normally occurs with Pb-Zn ore, barite vein, barite-
fluorite vein deposit, strata bound SEDEX-type deposit among other deposits as a gangue
mineral, in sedimentary deposits, and rarely in salts [8]. It is usually mined as barium
content. It occurs either in crystalline form, as tabular, prismatic, or bladed crystals. The
pure crystals are often colorless, cream-colored, or white, but may also acquire various
colors based on the impurities it contains. Granitic rocks characteristically have a somewhat
higher content of barium than average continental crust, and basaltic rocks characteristically
have lower barium content. The range of barium content of shales spans approximately
the same range as the barium content of granitic rocks [8]. Some smaller mines exploit
barite in veins, which formed when barium sulfate was precipitated from hot subterranean
waters. In some cases, barite is a by-product of mining lead, zinc, silver, or other metal
ores [10], in the paper and rubber industries, as a filler or extender in cloth, ink, and plastics
products; in radiography (“barium milkshake”); as getter (scavenger) alloys in vacuum
tubes; deoxidizer for copper; lubricant for anode rotors in X-ray tubes, spark-plug alloys,
and white pigment. Other uses of barite include as an additive for friction materials,
rubbers, plastics, paints, feedstock for chemical manufacturing, and shielding in X-ray and
gamma-ray applications [8,11].

The status of barite mining activities in Nigeria currently shows that the barite quality
from these different localities proves that Nigeria does not necessarily need to import
high grade or any other specification of barite from foreign countries for its usage in the
desired industries [12]. However, a large percentage of the barite used in the oil industry is
imported. In 2020 alone, this is valued at about $96 million, and the estimated consumption
is 440,000 metric tons for this year. To boost the mineral sector, the Federal Government of
Nigeria has taken initiatives to encourage local mining, beneficiation, and mining of barite
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for the industries [4]. The valuation activities are usually done by the Federal Ministry of
Mines and Steel Development (MMSD), Nigerian Geological Survey Agency (NGSA), and
Nigerian Content Development and Monitoring Board (NCDMB).

Drilling activity accounts for nearly 95 percent of domestic consumption and about
90 percent of global consumption. Economic deposits of barite are relatively common and
are found in many countries [8]. Literature shows that some Nigerian barites are suitable
for drilling fluid formulations [13]. In another study, it was shown that barite and oil
drilling fluid additives affect reservoir rock characteristics [13]. Another study reported
on the effect of barite and ilmenite mixture on enhancing the drilling mud weight [14].
Mohamed et al. showed that barite sag can be prevented in oil-based drilling fluids using
a mixture of barite and ilmenite as weighting material [7]. The future of drilling-grade
barite weight material was presented by [15]. There are frequently auxiliary criteria used
to compare deposits of barite. Some raw materials have sensitive costs which include
transportation of raw materials and market, involving land and sea costs. This can inform
how much surplus remains for mining and milling for the deposits to be considered
economically viable. The grade of the deposits also renders economic viability including
the revenue for the cost of mining and milling [16]. The mining process may have little
or no effect on the policy change of the companies or management. For example, the
change of management from a GmbH and Co. KG to a GmbH did not affect the economic
identity of the legal entity and never lead to a transfer of assets. The alteration was limited
to changing the legal control while preserving the legal identity. This is because there is
no act of company asset transfer and results in no exchange of services, hence no legal
taxes charged [17]. Characterization results from previous work were mostly centered on
discovering the chemical composition (XRF), mineralogy (SEM), organic, polymeric (FTIR),
specific gravity (SG), needed for the same oil industry. The use in other industries is not
well documented even though it plays an important role in these industries.

This work aims at the characterization of barite samples from different locations in
Nigeria and the determination of their suitability for different industrial applications. The
properties determined include mineralogy, chemical composition, morphology, functional
groups, specific gravity, and the physical appearance of the powdered samples.

2. Materials and Methods

2.1. Study Location

Barite occurs in various locations within the Benue Trough. These include Adamawa,
Benue, Cross River, Ebonyi, Gombe, Nasarawa, Plateau, and Taraba. But studies have
shown that the major producing states are Benue, Cross River, Nasarawa, and Taraba.
Samples used in the study were taken from Nasarawa (NS) and Taraba states (TS). The
samples from Nassarawa state were obtained from nine different locations: Azara vein 1,
Azara vein 17, Azara vein 18, Aloshi, Keana, Kumar, Ribi, Sauni, and Wuse. One sample
was from Ibi in Taraba state. A sample was picked from one active well as a working
sample was obtained from Port Harcourt (Rivers state) from a drilling site. These state
locations are shown on the map of Nigeria in Figure 1.

2.2. Sample Collection

Different barite deposit sites were visited, including Nasarawa and Taraba states of
Nigeria with representative samples collected from mining pits being worked by artisanal
miners. Rocks exposure within the deposits were studied to understand the lithology of
the deposits. Samples were collected across the veins and stored in sample bags with name
tags as highlighted in the supplementary information.
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Figure 1. Map of Nigeria showing active mining sites for various minerals [18]. The location and
local Government area of the mine sites is shown in Table S1 (Supplementary Materials).

2.3. Sample Characterization

The samples were studied in the field as hand specimens and further characterized for
physical and chemical properties which include: scanning electron microscope and energy
dispersive X-ray (SEM-EDX, Carl ZEISS, Bangalore, India) for the in-depth surface analysis,
the FTIR (Fourier transform infrared, Bruker Optik GmbH Vertex 70, Ettlingen, Germany),
the XRD (X-ray diffraction, Riguku Smartlab Autosampler (RIGAKU Corp., Tokyo, Japan),
the EDXRF (Malvern Panalytical B.V., Almole, Netherland) for oxides analysis [18–20]. SG
was used to evaluate the physical, mineralogical, and chemical properties of the barite ores
from the various locations [21–23] as described in the supplementary information.

Sample from Aloshi Nasarawa state was labeled as (NT) and Sample from Ibi, Taraba
state was labeled as (TS); all other samples were labeled by the name of the location it was
obtained from. The sample which was picked from the Port Harcourt drilling site labeled
as (WS) was taken as the working standard.

3. Results and Discussion

The scanning electron microscope (SEM) and energy dispersive X-ray (EDX) analysis
of morphology and element percentage composition data are shown in Figure 2 and
supplementary information Figure S1 (Supplementary Materials). The morphology of
samples NS, TS, Azara vein 1, Azara vein 17, Azara vein 18, Keana, Kumar, Ribi, Sauni,
Wuse, and WS, showed surfaces of barite embedded form of material structure with
clear unit boundaries. The working standard sample (WS) showed a fine surface in
the morphology monograph. The surface chemical analysis was carried out with EDX,
revealing the different elemental compositions of the material in-depth surfaces (Table 1).
Sample NS revealed a composition of Ba as 46.73%, S as 33.55%, and oxygen as 1.93%. This
gave 82.21% of the Ba-S-O empirical composition. Sample TS showed a composition of Ba
as 50.37%, S as 35.63%, and oxygen as 1.87%. This gave 87.87% of the Ba-S-O empirical
composition. Sample Azara vein 1 showed a composition of Ba as 51.73%, S as 43.36%,
and oxygen as 2.11%. This gave 97.2% of the Ba-S-O empirical composition. Sample
Azara vein 17 showed a composition of Ba as 38.59%, S as 36.84%, and oxygen as 2.88%.
This gave 78.31% of the Ba-S-O empirical composition. Sample Azara vein 18 showed a
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composition of Ba as 34.79%, S as 31.48%, and oxygen as 3.74%. This gave 70.01% of the
Ba-S-O empirical composition. Sample Keana showed a composition of Ba as 50.12%, S
as 42.75%, and oxygen as 3.14%. This gave 96.01% of the Ba-S-O empirical composition.
Sample Kumar showed a composition of Ba as 31.36%, S as 23.82%, and oxygen as 4.18%.
This gave 59.36% of the Ba-S-O empirical composition. Sample Ribi showed a composition
of Ba as 51.38%, S as 44.17%, and oxygen as 2.59%. This gave 98.14% of the Ba-S-O empirical
composition. Sample Suani showed a composition of Ba as 51.17%, S as 44.75%, and oxygen
as 3.94%. This gave 99.86% of the Ba-S-O empirical composition. Sample Wuse showed a
composition of Ba as 51.42%, S as 42.58%, and oxygen as 2.98%. This gave 96.98% of the
Ba-S-O empirical composition. Sample WS showed a composition of Ba as 38.26%, S as
25.89%, and oxygen as 2.35%. This gave 66.5% of the Ba-S-O empirical composition. The
working standard sample showed a much lower element composition empirical percentage
indicating that most of the samples will be suitable for drilling purposes [23–26].

Figure 2. SEM-EDX morphology and sample element atomic percentages.

Table 1. Energy-dispersive X-ray spectroscopy (EDS) atomic percentage of elements from barite mineral samples from
different mining sites.

Samples EDS Elemental Percentage Composition

Ba S O Fe Al Si Te Ce K La Nb

NS 46.73 33.55 1.93 2.53 5.7 1.08 2.55
TS 50.37 35.63 1.87 2.66

Azara Vein 1 51.73 43.36 2.11 2.64 0.17
Azara Vein 17 38.59 36.84 2.88 21.66 0.03
Azara Vein 18 34.79 31.48 3.74 23.89 2.2 3.25 0.29 0.36

Keana 50.12 42.75 3.14 2.21 0.02
Kumar 31.36 23.82 4.18 28.64 11.68 0.32

Ribi 51.38 44.17 2.59 0.07 1.79
Sauni 51.17 44.75 3.94 0.14
Wuse 51.42 42.58 2.98 2.05
WS 38.26 25.89 2.35 5.77 20 1.12 1.81 1.99

The FTIR technique was used for bond identification for chemical structures in the
materials. This is used as a fingerprint for the mineral group identification and informa-
tion about the structure of the mineral. The FTIR spectra for the samples are shown in
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Figure 3a,b and supplementary information Figure S2. All samples show several peaks in
both fingerprint and functional regions which are comparable to the working standard
material (WS). There are strong peaks at 600, 1059, 1197 cm−1 wavenumber in the finger-
print region and 1640, 2047, and 3468 cm−1 wavenumber in the functional region. The
peaks at 600 cm−1 with strong transmittance indicate the Ba-S-O polyhedral stretching
which is the sheet structure of barite minerals. The peak at 1059 cm−1 demonstrates the
triple asymmetric S-O stretching in barite which also indicates the stretching of SO4

2−
tetrahedral. The peak at 1197 cm−1 shows the asymmetric and bond vibration [27]. In
the functional region, the samples depicted peaks at different wavenumbers. The peak
at 1640 cm−1, which is medium, indicates the stretching vibration of the oxygen group.
This is an indication of the S-O bond for the structure. The peak at 2047 cm−1 shows the
formation of the Ba-S-O bond stretching vibration in the functional region. This contributes
to the empirical structure of barite [28]. The peak formation at 3468 cm−1 indicates the OH
stretch which is due to the formation of crystalline structure in the material [27,29]. The
peaks in the samples NS and TS are matching with those of the working standard sample.
This means that the samples have the same functional groups which match the working
standard sample. The sample results are identical to others in the literature [30].

 

Figure 3. (a) FTIR spectra for the barite samples from different mining sites; (b) FTIR spectra for the
barite samples from different mining sites.

The XRD spectra for all the samples are shown in Figure 4. Samples exhibit the main
peak at 2θ = 28.75◦ with d-spacing of 3.102 Å with a plane of (211). Other peaks appeared at
2θ = 26.85◦ with d-spacing of 3.32 Å and plane of (102), at 2θ = 25.8◦ and d-spacing of 3.44 Å
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and plane of (210), and 2θ = 42.89◦ with d-spacing of 2.10 Å and plane of (112). The XRD
data revealed a structure formation with a phase of BaSO4 in the chemical form of Ba4S4O16
and the calculated density of 4.47 g/cm3. Sample NS exhibited different peaks at slightly
no difference in position from other samples with a peak from 2θ = 25.86◦ with d-space
of 3.44 Å and plane of (210), the main peak at 2θ = 28.75◦ with d-spacing of 3.10 Å and
plane of (211) same as other samples. Other peaks appeared at 2θ = 26.85◦ with d-spacing
of 3.32 Å and plane of (102) also at 2θ = 31.54◦ with d-spacing of 2.83 Å with a plane of
(112) for all the samples. The samples also revealed a structure formation with a phase of
BaSO4 and the same chemical form of Ba4S4O16 and the calculated density of 4.47 g/cm3.
XRD peaks of the crude Barite powder, which indicates peaks corresponding to Barite with
chemical formula BaSO4 on ICPDS card number 00-024-0020 [16,29,30].

Figure 4. XRD spectra for samples from different mining sites.

The working sample (WS) depicted the main peaks at 2θ = 28.737◦ with d-spacing of
3.104 Å and a plane of (211) as the main peak. Other peaks appeared at 2θ = 25.841◦ with
d-spacing of 3.445 Å and plane of (211), 2θ = 26.837 with d-spacing of 3.319 Å and plane
of (102), 2θ = 31.522◦ with d-spacing of 2.836 Å and plane of (112), 2θ = 32.797◦ d-spacing
of 2.729 Å and plane of (020), 2θ = 42.871◦ with d-spacing of 2.11 Å. The main peaks in
the working sample at 2θ of 28.737, 25.841, 26.837, 32.797, and 42.871◦ match with the
main peaks in the samples. This means that the samples have the same composition which
was also shown by FTIR results (Figure 3a,b). The amount of barium sulphate shown by
the chemical analysis revealed that the tested local barite samples are following the API
requirements for barite [12,30].

The samples were further analyzed by EDXRF as shown in the supplementary infor-
mation (Figure S3–S10 in Supplementary Materials), show the spectra of a K feldspar and
their quantification results as listed in Table 2. All the samples match well the chemical data
of the working sample (WS) as shown in other figures in the supplementary information
(Figure S3–S10). In general, the mineral distribution maps of both classifications of the
samples correspond well with that of the working sample in the spectra intensity, position,
and composition. Texture and grain structures of samples’ complex intergrowth are notice-
ably well in the monographs. A few variances can be found in details of the other trace
elements which were able to be detected in the microstructures such as micro-perthitic
intergrowth in sample WS and other samples. This was due to the smaller beam diameter
and the crushing limitations to a few micrometers.
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Table 2. EDXRF elemental oxide percentage composition of the samples from different mining sites.

OXIDES/
Elements

Percentage of Elemental Oxide Composition for Samples

WS NS TS
AZARA
VEIN 1

AZARA
VEIN 17

AZARA
VEIN 18

KEANA KUMAR SAUNI RIBI WUSE

Fe2O3 0.175 0.307 0.028 0.101 0.292 9.76 0.028 0.553 0.165 0.102 0.015
SiO2 1.831 1.878 1.164 6.752 5.036 10.11 1.709 2.989 0.592 4.355 1.362

Al2O3 0.722 0.681 0.667 1.193 0.914 2.415 0.783 1.281 0.397 1.229 0.463
MgO 1.731 0.34 1.14 0.18 0.19 0.05 1.69 0.53 0.28 1.18
P2O5 0.023 0.05 0.023 0.021 0.056 0.033 0.05
SO3 17.3 7.609 7.687 13.73 16.3 10.81 16.65 16.53 12.3 16.29 13.44
TiO2 6.353 6.572
MnO 0.013 0.421 0.014 0.069
CaO 0.389 0.166 0.01 0.004 0.113 0.002
K2O 0.030 0105 0.092 0.092 0.048 0.496 0.029 0.055 0.015 0.116 0.008
CuO 0.002 0.001 0.001 0.002 0.002 0.015 0.002 0.003 0.005 0.001 0.003
ZnO 0.001 0.045

Cr2O3 0.023 0.03 0.028 0.002 0.032 0.018 0.011 0.034 0.02
PbO 0.281 0.006 0.001 0.001 0.274 0.001 0.001

Rb2O 0.002 0.001 0.001 0.002
Cl 0.451 0.494 0.644 0.432 0.526 0.469 0.447 0.556 0.314 0.515 0.322

BaO 30.45 18.04 18.62 26.32 31.42 24.18 32.57 31.32 22.94 31.64 24.33
Ta2O5 0.017 0.003 0.003 0.001 0.002
WO3 0.312 0.016 0.106 0.304
SrO 2.855 0.546 4.687 4.258 3.309 2.72 2.834 5.68 2.666 1.421 6.148

CeO2 1.712 1.42 1.744 1.513 1.661 1.772 1.3 1.658 1.234
ThO3 0.001 0.001 0 0.001 0.001
Y2O3 0.002 0.017 0.002

Nb2O5 0.001 0.001 0.001 0.002 0.002 0.002 0.002 0.002 0.002 0.02
SnO2 0.017
Sb2O3 0.001 0.11 0.001 0.001 0.001 0.001

Cs 0.156 0.055

The specific gravity of the samples was determined and the results are shown in
Table 3 for all the samples from different mining sites. In reference to the American
Petroleum Institute (API) standard specification of not less than 4.15, barite is used to
increase the apparent density of a liquid drilling fluid system. Most of the samples showed
higher SG apart sample TS, NS, and Azara vein 18 with lower SG than the API standard.
This makes barite [BaSO4] the most common weighting agent used today. It is a mined
material ground to an API specification such that particle sizes are predominantly in the 3
to 74 μm. The results in Table 3 displayed that the specific gravity (SG) of the samples is
higher than that of the working sample. This implies that these samples from the field can
be used as a replacement for the working sample.

Table 3. The specific gravity of samples from different mining sites.

Sample Specific Gravity (g/cm3)

SAMPLE TS 4.0087
SAMPLE NS 3.8122

AZARA VEIN 1 4.2138
AZARA VEIN 17 4.3761
AZARA VEIN 18 4.0106

KEANA 4.4052
KUMAR 4.4000

RIBI 4.4200
SAUNI 4.3800
WUSE 4.4000

WORKING SAMPLE (WS) 3.6001

4. Suitability of Barites for Industrial Applications

As noted earlier, barites can be used in several industries including oil and gas
(drilling fluid formulation); healthcare (X-ray, Plaster of Paris, making barium solution for
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stomach and intestine reflections); construction (paints, blocking emission of gamma-rays
through walls in hospitals, power plants, and laboratories); plastic (filler), cosmetics, paper
(filler), and rubber industries. The suitability of the barite samples for different industrial
applications was evaluated. The samples which were analyzed from selected mining sites
have a barite percentage ranging between 30 to 50% of barium content before beneficiation
and removal of other impurities. This means that the barite from those different mining
sites can be used for preliminary mining activities and other application which require a
barite composition in the range of 18 to 34% like kilns, mud drilling, construction, among
others [29–31]. If the materials are to be used for the main applications, some of the
impurities need to be removed which will help to increase the composition percentage of
barite. The removal of silica from the samples can increase the purity of the material for
applications where silica is not needed [6]. Some impurities are used with barite to improve
the properties of the materials as shown in Table 4. All samples can be beneficiated
and hence improved for different applications as shown in Table 4 because they have
the required chemical constituents. When the unwanted impurities are removed, the
percentage composition of barite can be increased to suit the required application. In
chemical manufacturing, some samples were eliminated because they lack CaCO3 in their
initial composition.

Table 4. American Petroleum Institute (API) and American Society for Testing and Materials (ASTM) general specification
standards for various uses of barite ores for different industrial applications.

Barite Application
(%) BaSO4

Sinimum std
Constituents

Specific Gravity
Minimum std (g/cm3)

Study Samples Suitable for
Application after Purification

Oil well drilling 90 4.15 All samples apart from TS
Chemical manufacturing 97 SiO2, CaCO3, Al, Fe 4.0 NS, TS, Azara 1, Azara 17, Azara 18, Ribi

Paint manufacturing 95 4.45 All samples
Glass 90–96 SiO2, Al, Fe All samples

Pharmaceuticals 97 Fe2O3, SiO2, Al2O3 All samples
Rubber 99.5 SiO2 All samples

Asbestos products 90 Fe2O3, SiO2, Al2O3 All samples
Plastering 95 SiO2, Al2O3 All samples
Cement 95 SiO2 All samples

5. Conclusions

The ten barite samples were obtained from different mining locations in the Nasarawa
and Taraba states of Nigeria. Their properties were determined and compared with a
standard working sample used by an oil industry operator in Nigeria. Using different char-
acterization parameters (SEM-EDX, FTIR, XRD, SG, and physical appearance) exhibiting
the molecular structure of BaSO4. The characterization has shown that some (6) of the
samples can be used for drilling fluid formulation for the oil and gas industry due to their
good specific gravity greater than 4.15 for API. Samples like TS, NS, and Azara vein require
beneficiation to reach the standard for oil application due to their low specific gravity. All
ten samples can be used for other industrial applications including healthcare, construction,
plastic, cosmetics, paper, and rubber industries due to their level of barium content in
the range of 30 to 50%. The results of the study are being used to develop beneficiation
procedures, actions, and technology along with new materials for industrial applications.
Different samples exhibited different colour appearances from white to off-white which
be used as filler materials in paint and ceramics as shown in Table S2. These samples will
further be purified by the removal of some other mineral content to increase the yield of
barium concentration.
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Abstract: Machine learning is a subcategory of artificial intelligence, which aims to make computers
capable of solving complex problems without being explicitly programmed. Availability of large
datasets, development of effective algorithms, and access to the powerful computers have resulted
in the unprecedented success of machine learning in recent years. This powerful tool has been
employed in a plethora of science and engineering domains including mining and minerals industry.
Considering the ever-increasing global demand for raw materials, complexities of the geological
structure of ore deposits, and decreasing ore grade, high-quality and extensive mineralogical in-
formation is required. Comprehensive analyses of such invaluable information call for advanced
and powerful techniques including machine learning. This paper presents a systematic review of
the efforts that have been dedicated to the development of machine learning-based solutions for
better utilizing mineralogical data in mining and mineral studies. To that end, we investigate the
main reasons behind the superiority of machine learning in the relevant literature, machine learning
algorithms that have been deployed, input data, concerned outputs, as well as the general trends in
the subject area.

Keywords: machine learning; artificial intelligence; mineralogy; mining; mineralogical analysis

1. Introduction

Artificial intelligence (AI) and machine learning (ML) have been used in a wide range
of applications in the development of technology. AI is a branch of science and engineering
focusing on the development of techniques to make computers capable of solving certain
problems through simulating or extending human intelligence [1,2]. As a subset of AI, ML
includes computational approaches aiming at extracting expertise out of experience [3,4].
In other words, the goal of ML is to use past data or known information to extract (learn)
meaningful patters and associations which can be generalized to make relatively accurate
predictions [3,4].

In the realm of ML, the process of leaning the past information is called training.
Learning through training experiences to acquire new or improve previous capabilities
distinguishes ML methods from traditional explicit programming of computers for per-
forming a specific task [4–6]. Conventional programming relies on explicit modeling of a
problem using the physical rules governing a specific system under study. In ML, however,
the aim is to analyze the data to predict the behavior of complex systems that cannot be
explicitly modeled using conventional approaches. The learning process can be either
supervised or unsupervised. While in the former, the training data is labeled and the
correct output is known for every instance of the past information, the latter entails the
recognition of hidden patterns in the data without knowing specific outcomes a priori [5,7].

Minerals 2021, 11, 816. https://doi.org/10.3390/min11080816 https://www.mdpi.com/journal/minerals133



Minerals 2021, 11, 816

With the capability of learning from the past data or experience and generalizing that to
the unseen data, ML techniques are able to solve complex problems, which cannot be
effectively and efficiently addressed by the traditional methods. Such problems typically
involve intricate associations among several variables influencing the system under study,
fluctuating environments, and large amount of data which needs to be processed [8].

AI and ML researchers have devised a plethora of effective tools to solve the most
difficult problems in computer science and engineering including speech recognition,
machine vision, control of autonomous vehicles, robot control, natural language processing,
medical diagnosis, climate and power demand forecasting, playing games, filtering spam
emails, designing performance-based regulations based on unsupervised ML methods,
and optimizing engineering problems using soft computing intelligence, to name but a
handful [5,6,9–16]. Such tools have been leveraged in various industries so as to enhance
the performance and efficiency. These next generation information tools, that have become
more refined over the recent years, have been also applied to the mining industry—a
capital-intensive business, thus, conservative and reluctant to radical changes—to improve
safety, increase productivity, and reduce costs [17,18].

With the continuously increasing demand for raw materials, deeper mining, facing
the complexity of the geological structure of ore deposits, and decreasing ore grade, high-
quality and extensive mineralogical information is required [19–22]. The mineralogical
analysis is providing critical information for calculating the duration of extraction period
of a mine. Intimate knowledge of the mineralogical assembly of ores is key to understand-
ing and solving problems encountered during exploration and mining, and during the
processing of ores, concentrates, and related materials [23].

Additionally, mineral process engineering is now evolving. In the past, the practical
challenges of managing and optimizing a process plant were very complex and were not
effective enough to justify further development of data-based optimization. Most designs
were based around empirical characterization tests, and plant operation relied heavily on
operator intuition. Given the standard process operating systems, it was a challenge for
the plant operators to manage the large amount of process information in a fashion where
all of it was used effectively. There also is now technology available that has the capacity
to revolutionize how mineral processing plants are designed and how they are operated.
Instrumentation used to collect data and information has become much more sophisticated,
and capable. This data can be also collected from many more positions throughout the
process plant, and it can be collected at a much higher degree of resolution.

ML, a revolutionary new method of handling vast amounts of data, has been de-
veloped in the past few years to the point where it can be applied to mineral processing
applications. The combination of more sophisticated instrumentation in conjunction with
ML has the potential to revolutionize mineral processing standard operating practice. In
the past, many mineral processing plants struggled with high variability in throughput,
power draw and recovery, where most operations are designed to operate at a steady state
of throughput, recovery, and metal production. Poor recovery was often observed as it
happened, with limited understanding in why it was happening.

ML, if coupled with quality and timely measurement of the appropriate parameters,
has the potential to diagnose the true metrics of good recovery. Time stamped measure-
ments at multiple strategically decisive points in the plant could quantify, for example,
how recovery relates to ball mill performance (under grinding or over grinding) or how
cyclone performance could interact with final metal reconciliation. The true link between
mineral content, mineral texture, and process performance could be quantified.

Using ML, the cause of plant variability could be isolated in real time. Depending on
circumstance, this could happen soon enough to make an engineering decision, followed
by operational optimization. An example of this could be using a Raman spectrometer
instrument to estimate mineral content of the semi-autogenous grinding (SAG) mill feed,
the results of which could be used to optimize reagent application at the flotation cells.
ML could be used to focus on the best outcome. For instance, in a comminution circuit,
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which is the most energy and cost consuming step in mineral processing, it is proposed
to use SAG Mill real-time operational variables such as feed tonnage, bearing pressure,
and spindle speed in order to predict the upcoming energy consumption via ML and
deep learning techniques [24]. It should be highlighted that the authors of [25] achieved
impressive accuracy of 97% with the emulation of the industrial grinding circuit by the
designed recurrent neural networks for the SAG mill in lead-zinc ore beneficiation process.

The potential here is that the true relationship between process units during operation
could be quantified with the application of ML. The whole process flow sheet could be
optimized in operation. Additionally, any given example of poor performance could be
diagnosed, and the original cause could be isolated to individual process units. If this
potential is realized, the next generation of mineral process practice could be developed.

ML algorithms such as artificial neural network (ANN), support vector machine (SVM),
regression tree (RT), and random forest (RF) are powerful data driven methods that are
becoming extremely popular in such applications as the mapping of mineral prospectiv-
ity [26–28], mapping geochemical anomalies [29–31], geological mapping [32–35], drill-core
mapping [36–38], and mineral phase segmentation for X-ray microcomputed tomography
data [39–41].

Inspired by these remarks, this paper aims to systematically survey the relevant
literature for the sake of investigating what has been carried out in the realm of enhanced
exploitation of mineralogical analysis data in mining and minerals industry. In a systematic
review, the body of knowledge on a specific subject is investigated to answer a set of
predetermined questions in such a way that the data and methods used are definite.
Given the sufficient details provided in a systematic literature review, the users can more
conveniently determine its trustworthiness and the usefulness of the statistics, discussions,
and findings it provides [42].

To be more specific, areas examined in this paper include mainly the problems in the
field of utilizing mineralogical analysis data for mining and minerals industry that have
been solved using ML techniques. The reason behind using ML in such studies, ML tools
that have been developed and applied, data inputs, required outputs, as well as the main
trends in this subject area are also assessed in this paper.

The remainder of this paper is organized as follows. In Section 2, the main research
questions that we aim to answer in this review as well as the search method, information
source, and the selection criteria are explained. Section 3 provides answers to the research
questions, and lastly, Section 4 concludes the paper.

2. Main Research Questions and Review Methods

As pointed out before, in a systematic review, the main objective is to investigate
the body of knowledge to address a set of research questions [42,43]. This must be done
using concrete methods and procedures for the sake of transparency and ease of evaluating
the objectivity and trustworthiness of the figures and outcomes reported for the potential
readers [42].

Considering the groundbreaking advances and flourishing developments in the area
of ML, it has been leveraged in various fields to unprecedentedly solve complex problems
that could not be tackled via conventional methods effectively. Given the crucial role of
mineralogical monitoring at every stage of minerals industry value-chain, from geoscience
research and exploration phases to the final processing, and the complexities associated
with exploiting valuable information out of mineralogical data, we aim to investigate the
steps taken towards adopting ML in this area. In other words, this review focuses on the
applications of ML for enhancing and facilitating the mineralogical monitoring and the
utilization of mineralogical data in mining and minerals industry. To that end, the main
questions that this review aims to answer comprise:

(1) What problems in the area of mineralogical studies for mining industry have been
addressed using ML techniques in the existing literature?

(2) Why the use of ML in such applications is required?
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(3) What are the outputs predicted or modeled using ML in those problems? What input
parameters have been used?

(4) What ML methods have been employed?
(5) What are the general trends in the area under study?

The purpose of the first two questions is to investigate the sort of problems in the
area under study for which the use of ML techniques is advantageous and their specific
complexities that favor ML over traditional approaches. Considering that ML techniques
are typically used to find useful associations in the data to predict specific outputs in the
case of supervised learning or to determine significant patterns among input features in an
unsupervised setting, the third question intends to explore the input and output variables
employed in the existing literature. This can be particularly useful for understanding
potential data that needs to be collected for estimating a specific set of desired output
variables. Complementary to the previous question, the fourth question focuses on the
methods used to model the relationships between input and output variables. Lastly, the
final question will address the general trends in the application of ML in mineralogical
monitoring in mining and minerals industry.

2.1. Information Source and Search Strategy

We utilized Scopus [44] as the search engine for finding the relevant publications.
Based on our review objectives, we considered three main tiers of keywords, namely
target modeling approach, analysis, and industry, each including few relevant keywords as
depicted in Figure 1. As illustrated, using the logical operators available in Scopus search
tool, we set a query so as to search through the records and reach the publications that
include at least one of the keywords in each tier in their title, abstract, or list of keywords.
In order to have an estimate of the early works published in the subject area, we did not
filter any record based on the publication date in our search query. Nonetheless, as we will
discuss in the next section, the works published before 2000 were disregarded during the
selection procedure. It is worth mentioning that we set no limitations on the search source,
thereby the search query was applied to all the records covered by Scopus—the largest
database of peer-reviewed literature [44].

 

Artificial 
Intelligence

Machine 
Learning

Mineralogical

Mineralogy

XRD

Mining  

Minerals 

OR

OR

OR

ORAND AND

Tier 1: Target 
Modeling Approach

Tier 2: Target Analysis Tier 3: Target Industry

Figure 1. Search keywords and search query logic.

2.2. Eligibility Criteria

Based upon the search method explained in the previous section, we reached
145 candidate scientific publications. As depicted in Figure 2, in the first step, we dis-
carded 9 manuscripts including non-English papers and those published before the year
2000. In the next stage, the review articles and conference reviews were disregarded, a
total of 8 records. The remaining 128 records were all sequentially evaluated by each of the
authors to select the publications relevant to this review. The evaluation entailed reading
the title, abstract, and list of keywords of the records and skimming through the papers
if required. Lastly, 55 papers were selected to be included in the review and answer the
questions. It is worth mentioning that the publications excluded in the last stage comprise
different topics not directly relevant to the mining and minerals industry.
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Number of records in the 
search outcome: 145

Records Excluded:
Non-English: 3

Published before 2000: 6

Number of records in 
English published after 2000: 

136

Records Excluded:
Review Article: 4

Conference Review: 4
Number of records included 

as scientific papers: 128

Number of records included 
based on the review subject: 

55

Records Excluded:
73

Figure 2. Process of screening the search results.

Figure 3 shows the share of the topics excluded at the last stage of the selection pro-
cedure. As per this figure, the majority of the papers excluded are related to petroleum
and gas industry, soil, and space exploration. About a quarter of the records excluded is
on environmental studies, works in which ML techniques are not employed, and miscella-
neous topics such as metallurgy, recycling in cement industry, archaeometry, geophysics,
medicine, and sedimentology.

Petroleum and 
Gas 46%

Soil 15%

Space Exploration
10%

Environment 6%

Not Using ML 6%

Other Topics
17%

Figure 3. Share of the topics excluded from the review in the last stage of the selection process.

Title of the journals with more than one record in the list of selected records are
provided in Table 1.

Table 1. Title of journals with more than one entry in the final list.

Journal Title Number of Selected Records

Minerals Engineering 6
Journal of Geochemical Exploration 6

Computers and Geosciences 4
Applied Geochemistry 4
Ore Geology Reviews 3

Lecture Notes in Computer Science 3
Remote Sensing 2

3. Results

In this part, the main research questions stated in Section 2 are addressed based upon
the assessment of the selected works.

3.1. Problems in the Selected Studies Addressed Using ML Techniques

During the last decade, the number of available multi-parameter datasets in the
mining industry increased rapidly as a result of applying advanced technologies to assist
in the exploration process. To integrate and handle such large datasets, special tools are
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required. One such tool is the ML, which is well suited and proved to be promising for
tackling the problem of mapping geochemical anomalies [45–47] and mineral prospectivity,
due to its ability to effectively integrate and analyze large geoscience datasets [48–53].
ML and AI are actively used for mining complex, high-level, and nonlinear geospatial
data and for extracting previously unknown patterns related to geological processes [45].
These techniques were applied in the identification of mineralization related geochemical
anomalies in China [45,47,54–56], as well as generating a prospectivity map for targeting
gold mineralization in Canada [49,50] and China [51], for the detection of iron caps in
Morocco [57], for creating a continuous mineral systems model for chromite deposits in
Iran [58], and geological mapping studies using the characteristics of rocks [59,60]. The
authors in [61,62] integrated multi-sensor remote sensing techniques such as drone-borne
photography and hyperspectral imaging for processing with ML algorithms in order to
generate the geological mapping.

Another important field, where the analysis of the hyperspectral imaging has been
applied is drill-core mapping. It is well known that drilling is a decisive step for validating
and modeling ore deposits. The hyperspectral imaging technique provides a rapid and
non-invasive analytical method for the core samples in terms of mineralogical character-
ization [63]. Recently, ML techniques have been suggested for automating the process
of mineral mapping based on drill-core hyperspectral data [63–68]. However, several
obstacles might occur due to the small amount of representative data for training purposes.
To tackle this problem, resampling and co-registration procedures for the high-resolution
mineralogical data obtained by the scanning electron microscope (SEM)-based mineral
liberation analysis (MLA) of the hyperspectral data was implemented in [63,64,67]. The
new co-registered data was used for training purposes through a classification algorithm.
Mainly, the RF classifier is used due to its high performance when small training samples
are available [64,67]. Nevertheless, in [63], three methods, namely RF, SVM, and ANN
were employed for the classification and regression tasks. The authors reported that the RF
is more robust to unbalanced and sparse training sets.

Mineral processing should always be considered in the context of geological, mineral
assemblage, and texture of ores in order to predict grinding and concentration requirements,
feasible concentrate grades, and potential difficulties of separation [69]. A promising
technique was proposed by the authors of [70] in the context of control of mineral processing
plants for the identification of minerals in slurry samples through multispectral image
processing. The study was focused on the base metal sulfides minerals and the main goal
was to develop set-up aims to enable the measurement of specular-like reflections on the
surface of the particles. A supervised classification approach has been used to process
the acquired data. In [71], the mineralogical composition of the final products (copper
concentrates) was analyzed by a near-infrared hyperspectral camera. ML has been used to
provide the mineralogical spatial distribution of the different components in the samples
through the analysis of the reflective images.

The application of X-ray microcomputed tomography (μCT) in the mineral industry
has been growing due to its noninvasive nature of sample analysis. X-ray microtomography
allows achieving high-resolution images with pixel sizes in the micrometer range. However,
the grayscale values of mineral phases in a sample should be different enough to be
segmented. Despite the fact that the manual segmentation of those images made by a
highly experienced specialist is one of the best methods for segmentation, the process is
highly time-consuming. Moreover, the procedure of preparing polished thin-section for
microscope is long and the number of core samples is limited. As a consequence, the main
challenge in using ML is the limited number of ground-truth (or segmented) images that
are available for the training step. For instance, in [72], only 20 images were manually
segmented to be analyzed by a convolutional neural network (CNN), thereby resorting
the authors to employ data augmentation techniques. The authors in [73] have applied
supervised and unsupervised methods to the training data obtained by the matching
method for back-scattered electron (BSE) mineral map to its corresponding μCT slice for
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one drill core sample. Classifying voxels in X-ray microtomographic scans of mineralogical
samples is another problem that has been solved by applying the ML techniques [74].

The observation of optical properties of a mineral in a polarized microscope rota-
tion stage is a commonly used method for mineral type classification. This task can be
automated by the application of digital image processing techniques and AI technolo-
gies [75–78].

Interesting solutions by the implementation of an ML methodology to the prediction
of material properties from the nepheline syenite deposit was discussed in [79]. The
challenges with calculating the amphibole formula from electron microprobe analysis
can be solved by applying ML [76]. Another problem in mineralogy study that can be
addressed directly via deep learning algorithms is differentiation of quartz from resin in
optical microscopy images of iron ores [80].

3.2. The Main Resaons behind Using ML in the Selected Studies

ML techniques are typically employed to solve problems for which the application of
traditional approaches is either impossible or very sophisticated [8]. Such problems might
entail typical tasks that human beings or animals can perform routinely, yet the process
of doing such tasks is relatively unknown, tasks that involve processing an excessive
amount of data with complex unidentified relationships and patterns, or tasks that require
interaction with constantly changing environments such that high levels of adaptivity are
required [4]. Our review of the selected papers revealed that, albeit all these three reasons
can account for the necessity of using ML techniques in the area under study, the second
category of tasks is more common. In other words, in most of the studies investigated, the
researchers attempted to leverage ML techniques to cope with large and complex datasets.

Let us take mineral exploration as an example, new mineral prospect or deposit targets
are deeper, thus, more difficult to find [81]. Therefore, it becomes of utmost importance
to predict, relatively accurately, regions with higher potentials for new deposits based on
the large datasets of various types of measurements. The dataset can contain lithogeo-
chemical [49,82], spatial [49,50], geochemical [45,55,81,83], geophysical [81], geological [81],
concentration of indicator elements [47,51,52,54,56,65,68], hyperspectral [57,60,61], spatial
proxies [58], total magnetic intensity [52], isostatic residual gravity [52] data. It is worth
emphasizing that in most of such studies mineralogical analyses results are either used to
generate the input features for the ML models or ground truth for training such models.
Obviously, analyzing such massive and complex datasets is challenging, adding to that
the nonlinearities and hidden interdependencies and patterns among different features.
This calls for deploying multivariate ML models to effectively explore the data and attain
valuable insights.

In some applications, especially the tasks entailing image processing, ML is proposed
to automate manual operations to enhance productivity via enhancing speed and reducing
human errors. As an example, the authors in [78] proposed a technique for the identifica-
tion and classification of hematite crystals in iron ore using optical microscopic images.
Presence of high noise can also result in the ineffectiveness of the conventional techniques,
thereby giving rise to the application of ML. For instance, extracting quantitative miner-
alogical information about composition, porosity, and particle size through processing
X-ray microtomography scans of ore samples can be quite challenging due to the presence
of noise [74].

Another important driving force for the deployment of ML is the cost reduction.
In [47], ML is leveraged to select a small set of indicator elements to detect chemical
anomalies with the main goal of avoiding the unnecessary cost of element concentration
measurements for mineral exploration. To save time and money through reducing the
number of samples on which X-ray diffraction (XRD) measurements must be obtained,
the authors in [84] proposed an artificial neural network-based model for estimating the
mineralogical compositions based upon the elemental data from X-ray fluorescence (XRF)
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instruments. In a conceptually similar manner, ML is used in [85] to reconstruct synthetic
3D models of porous rocks from 2D images of thin sections.

3.3. The Outputs Predicted/Modeled Using ML in the Selected Literature and the Inputs Utilized

Based on the reviewed literature it can be considered that the most widely used input
data for analyzing by ML in the mining and mineral industry is a set of digital images. As
some examples, the hyperspectral data was used for discrimination of lithologic domains
in geology mapping [61], and a combination of the multispectral, RGB, and hyperspectral
data was analyzed by ML algorithms to create a digital outcrop model for precise geology
mapping [62]. Moreover, the hyperspectral imagery has been used for classifying rock
type and mineralogy [86], for predicting the presence of specific minerals [64] or mineral
abundance [63] in drill-core samples, as well as for drill-core mineral mapping [67,68]
and mapping of mine face geology [53]. In [87], a three-stage method is proposed for the
segmentation of hyperspectral images with the main goal of preparing the data required for
the classification of such images. In order to curb the noise in the spectral domain, Gaussian
processes (GP)—a type of supervised ML model—are used in [88] as a preprocessing step
before extracting the mineralogical information from the images.

The authors in [89] have discriminated a rock texture information through image
processing and machine learning algorithms by studying a geologist-labeled digital photo-
graph database from drill-hole samples. The main contribution of this work is “a novel
texture characterization technique to compare image textures of drill-hole samples and
discriminate between different rock texture classes”.

The study [41] used the association indicator matrix (AIM) and local binary pattern
(LBP) texture analysis methods to get quantitative textural descriptors of drill core samples
with relatively high accuracy of 84% and 88%, respectively, for AIM and 3D LBP. An
automatic method for the classification of hematite textures in Brazilian iron ores according
to their textural types through applying an AI technique for analyzing the images from a
reflected light microscope and a digital camera is described in [78]. New optical properties
have been extracted from the digital images acquired under cross and plane-polarized light
from different rock thin sections. ML was deployed for mineral classification by analyzing
the optical properties of color and texture of a pair of images of the same mineral taken on
different lights [77].

Deep learning and ML have produced accurate results in different applications when
various images are available for the training [72]. The researchers in [72,73] proposed
implementing ML algorithms to enhance automatic segmentation of mineral phases based
on the analysis of the images from the X-ray microcomputed tomography (μCT). However,
it should be noticed that acquiring μCT images is expensive and time-consuming, which
affects the limited available dataset. Therefore, a supervised ML algorithm in which the
user pre-defines the underlying pattern of the data, and the computer system builds a
prediction model based on the pre-defined pattern (training data) [73] could be successfully
applied to tackle this problem even with a small number of images. The supervised
classification method was used for generating a 2D mineral map of chromite sample from
optical microscopic images [90].

Alongside the image analysis, other input features among the mineralogical study for
the mining and minerals industry have been addressed using ML techniques. The dataset
containing geochemical data was used for extracting features related to mineralization
via a deep learning algorithm and these features were then integrated as an anomaly
map [45,47,54,56]. Applying the deep learning algorithms as a subcategory of machine
learning algorithms can lead to improving the accuracy of classification or prediction by
replacing the manual selection [45]. Such techniques have been employed in recognizing
geochemical anomalies related to mineralization via deep autoencoder networks [46],
deep variational autoencoder network [45], convolutional autoencoder networks [91], and
combining deep learning with other anomaly detection methods [54,56].
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The bulk chemistry data from the mining company open-pit database was used as
an input for the prediction of laboratory concentrate yield and modal mineralogy for the
nepheline syenite deposit in Norway by adopting a neural network approach [79]. The
data collected by the electron probe microanalyzer (EPMA) was analyzed with an ML
method aimed to be established for calculating the amphibole formula [76].

The lithogeochemical data of sandstones from diamond drill cores [82] and lithogeo-
chemical major oxide data from the Swayze greenstone belt [49] have been used for the
identification of sandstones above blind uranium deposits through an ML technique in a
first case and for modeling of orogenic gold prospectivity mapping by deploying a support
vector machine and an artificial neural network in the second one.

3.4. The ML Methods Leveraged in the Selected Works

ML methods are typically categorized based on different aspects. From the stand-
point of the learning type, they are generally regarded as supervised and unsupervised
approaches [3,4]. Other classes, namely semi-supervised and reinforcement learning, are
also available [3], yet we found no instances for the applications of these methods in the
reviewed papers.

In supervised learning, the data is labeled with the correct outputs such that during
the training process, the model can understand the underlying associations between input
features and output variables. Moreover, for testing the performance of the algorithm,
predictions of the trained model for test examples can be benchmarked against the known
labels to estimate the accuracy of the resulting model. In stark contrast, unsupervised
learning entails unlabeled data from which the learner must find meaningful patterns [3].
In this setting, it can be challenging to estimate the performance of the model [3].

As shown in Figure 4a, the majority of the methods used in the reviewed papers fall in the
supervised learning category. More precisely, among the 17% of the reviewed works that used
unsupervised learning models, only 6% solely leveraged unsupervised learning [48,55,83],
but in the remaining 11%, a combination of the supervised and unsupervised learning
techniques is utilized [54,61,73,79,92,93]. In such works, unsupervised learning methods
are typically used for the feature extraction and preprocessing of the data to be used in a
supervised learning process.

  

(a) (b) (c) 

Supervised
83%

Unsupervised
6%

Combination of both
11%

Classification
90%

Regression
10%

Conventional
64%

Deep Learning
21%

Combination of both
15%

Figure 4. Type of ML techniques employed in the reviewed papers: (a) type of learning; (b) type of problem; (c) type of
ML model.

The task of supervised learning can be either classification or regression [8]. In a
classification task, the labels are categorical, i.e., have a set of limited values, however, in
the case of regression, labels take continuous numerical values. As per Figure 4b, in 90% of
the reviewed records, the objective of using ML is classification. Classification tasks can be,
for instance, determining the type of minerals [73,77,94,95], texture [66,89], or rock [86,93],
class of mineral face [86], class of hematite crystals [78], distinguishing between quartz
and resin in optical microscopy images [80], presence or absence of specific minerals in
a sample [96], zeolite type [97], material fingerprints [98], class of regolith landform [99],
and class of carbonates [100] based on a set of measurements or known features about a
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material. On the other hand, in regression problems, the goal is to estimate a continuous
numerical value, for instance, prediction of concentrate yield and modal mineralogy [79]
and estimation of drill-core mineral abundance [63], mineral density of elements [101], and
calculation of amphibole formula [76].

From another perspective, ML methods can be categorized as conventional models
and deep learning techniques. The latter is based upon the multilayer artificial neural
networks. As presented in Figure 4c, deep learning models have been used in 36% of the
reviewed papers from which 21% solely utilized deep learning, whereas the remainder
employed both deep learning and conventional machine learning methods to choose the
best [49,54,58,63,66,70,96]. It is worth noting that the superiority of an approach depends
on the application.

A list of different ML methods used in the reviewed papers together with their
frequency of usage is provided in Table 2. As per this table, SVM, RF, and different
types of feed-forward ANN are the most frequently used approaches in the supervised
learning category. SVM classifiers are very powerful and flexible for linear and nonlinear
classification of complex but relatively small-sized datasets [8]. The main idea behind
a linear SVM classification is to find an optimal hyper plane that can separate different
classes while maximizing the margin of the plane [102]. In the case of nonlinearly separable
datasets, the data is mapped to a higher dimension space, where the classes become linearly
separable [102]. The mapping is carried out using a kernel function, typically a polynomial
or Gaussian radial basis function (RBF) [8]. In most of the reviewed works, SVM is used
with a Gaussian RBF kernel.

RF belongs to a category of ML named ensemble methods. Ensemble methods are based
on the wisdom of crowd concept, implying that aggregating the outputs of numerous simple
models through a voting system usually performs better than leveraging a single but more
complex model [8]. An RF comprises several classification and regression trees, each of
which are trained on a bootstrap sample of the original dataset [103]. Notwithstanding
their simplicity, RFs are among the most powerful ML techniques [8,104].

ANNs have a relatively long history and were originally developed to simulate the
nervous system. An ANN is comprised of numerous basic units called artificial neurons.
From a mathematical perspective, an ANN is a complex nonlinear function, which can be
tuned for a specific task to perform the desired mapping from an input vector to the output
value(s) [104]. ANNs proved to be very powerful tools and outperformed the other ML
algorithms in many applications [104].

On the other hand, in the class of unsupervised learning techniques, K-means and
hierarchical clustering are used more frequently compared to the other techniques. K-
means algorithm partitions datapoints into a predetermined number of clusters such
that the similarity among the points in a cluster is the highest, while it is the lowest for
the datapoints falling in different clusters. To achieve this goal, in K-means method, an
optimization model is solved to minimize the sum of the distances of the datapoints to the
nearest cluster center, where the positions of the cluster centers are the decision variables
of the optimization model [105]. In contrast to the K-means algorithm, which is centroid-
based, i.e., assigning a datapoint to the cluster with the nearest cluster center, in hierarchical
clustering datapoints with distances lower than a specific threshold are assigned to the
same cluster [106].

Aside from the ML techniques presented in Table 2, the implementation of real-time
expert systems in mineral processing operations is discussed in [107], where generating
quantitative data using natural language processing (NLP) of process data including ore
mineralogy is proposed.

Table 3 summarizes the applications of ML methods as well as the type of datasets uti-
lized in the reviewed papers. As per this table, principal component analysis (PCA) is the
most frequently used technique for feature engineering, more specifically for dimensional-
ity reduction [48,49,56,67,76,82,83,95,96]. Weight of evidence (WOE) [49], minimum noise
fraction (MNF) [61], orthogonal total variation component analysis (OTVCA) [61,62,65],
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stacked denoising autoencoder (SDAE) [56], hierarchical clustering [56], CNN [72,80],
grey-level co-occurrence matrix (GLCM) statistics [66], local binary patterns (LBP) [66],
maximum margin metric learning (MMML) [55], and K-means++ [93] are the other tech-
niques leveraged in the selected works for feature engineering.

Table 2. ML models leveraged in the selected papers.

Category ML Method Reference

Supervised

Support vector machine (SVM) [49,52,54,57,59,61–
63,65,66,68,86,87,92]

Random forest (RF) [47,58,63,64,66–68,73,82,87,90–
93,97]

Feed-forward artificial neural network
(FF-ANN) [58,63,66,70,79,84,87,94–96,99]

k-nearest neighbors (k-NN) [66,71,73,77,87,89]
Convolutional neural network (CNN) [50,51,72,80,85]

Gaussian processes (GP) 1 [53,60,86,88]
Decision tree (DT) [75,77,87,96]

Linear discriminant analysis (LDA) [70,78,82,92]
Radial basis function neural networks

(RBFNN) [49,81]

Adaptive Coherence Estimator (ACE) [55]
Bayes nets [100]

Isolation forest (IF) [56]
Linear regression (LR) [101]

Naive Bayes (NB) [78,87]
Principal components regression (PCR) [76]
Quadratic discriminant analysis (QDA) [92]

Support vector regressor [101]
Variational autoencoder (VAE) network [45]

Unsupervised

K-means clustering [48,73,92,93]
Hierarchical clustering [48,79,92]

Deep belief networks(DBNs) [54]
Fuzzy C-means clustering [73]

Gaussian mixture model (GMM)
clustering [48]

Unsupervised random forest [83]
1 With either the squared exponential (SE) or the observation angle dependent (OAD) covariance functions.

3.5. General Trends and Research Gaps in the Application of ML in the Selected Literature

Development of effective methods together with the availability of large datasets and
more powerful hardware have resulted in flourishing of ML in recent years [6,8]. This
has been reflected in the application of ML in various science and engineering domains.
Figure 5 shows the yearly distribution of reviewed literature and their type, namely re-
search articles and conference papers. As per this figure, the number of publications has
increased rapidly since 2018. It is worth mentioning that 9 out of 55 papers reviewed are
open access.
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Table 3. ML models leveraged—application and dataset.

Application Dataset Feature Engineering Method ML Technique

Calculating amphibole formula Routine electron microprobe
analysis (EMPA) data PCA [76] PCR [76]

Characterizing the composition
of igneous rocks

Raman spectra of mineral
samples PCA [96] DT [97]; ANN [96]

Classification and prediction of
alteration facies Multi-element geochemical data Hierarchical clustering [92];

K-means [92]

SVM [92]; LDA [92];
QDA [92]; CART [92];

RF [92]

Classification of inorganic solid
materials of known structure

Topological attributes of
Delaunay simplex properties -1 RF [97]

Classifying hematite crystals Optical microscope images LDA [78] NB [78]

Detecting potential Cu
mineralization in bedrocks

based on the composition of
basal till

Geochemical data PCA [83] Unsupervised RF [83]

Determining mineralogical
spatial distribution of the
different components in a

concentrate sample

Near-infrared hyperspectral
image - k-NN [71]

Determining type of rock
texture Rock images - k-NN [89]

Discrimination of lithologic
domains Hyperspectral data MNF [61]; OTVCA [61] SVM [61]

Drill-core mapping Hyperspectral data PCA [67] RF [64,67,68]; SVM [68]

Hyperspectral short-wave
infrared (SWIR); scanning
electron microscopy-based

image analyses using a mineral
liberation analyzer (SEM-MLA);

visible/near-infrared (VNIR);
long-wave infrared (LWIR)

OTVCA [65] RF [63]; SVM [63]; [65];
FF-ANN [63]

Estimating the mineralogical
compositions

Elemental data acquired using
X-ray fluorescence (XRF)

instruments
- ANN [84]

Finding association between
imaging and XRF sensing Images of rock samples - LR [101]; SVM [101]

Generating 2D mineral map of
chromite samples Optical micrograph images - RF [90]

Geochemical anomaly detection;
prospectivity for future

exploration

Geochemical exploration data;
concentration of major and trace

elements

Feature elimination with
cross-validation based on

random forest [47];
unsupervised deep belief

networks (DBNs) [54]; MMML
[55]; hierarchical clustering [56];

SDAE [56]; PCA [56]

VAE [45]; RF [47]; CNN
[51]; SVM [54]; ACE [55];

IF [56]

Litho geochemistry of
sandstones obtained from drill

cores
PCA [82] LDA [82]; RF [82]

Geochemical assay (ppm Cu);
total magnetic intensity;
isostaticresidual gravity

- SVM [52]

Spatial proxies - ANN [58]; RF [58]
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Table 3. Cont.

Application Dataset Feature Engineering Method ML Technique

Geochemical imaging Qualitative LIBS spectral data PCA [48]
K-means [48]; agglomerative
hierarchical clustering [48];

GMM [48]

Geological and Geophysical
Mapping for mineral

exploration, mine planning,
and ore extraction

Multispectral, RGB, and
hyperspectral data OTVCA [62] SVM [62]

Geological texture
classification Images of drill cores GLCM [66]; LBP [66] RF [66]; SVM [66]; k-NN [66];

ANN [66]

Identifying and mapping
geology andmineralogy on a

vertical mine face
Hyperspectral data - GP [60]

Mapping of gold deposits and
prospects

Lithogeochemical major oxide
data; spatial data PCA [49]; WOE [49] RBFNN [49]; SVM [49]

Geoscience data - CNN [50]

Geological, geochemical,
structural, and geophysical

datasets
- RBFLN [81]

Mineral identification

Reflected light optical
microscopy (RLOM) images - CNN [80]

μCT images - CNN [72]

Multispectral images - LDA [70]; FF-ANN [70]

Reflectance spectra - Bayes nets [100]

X-ray spectrum data PCA [95] ANN [95]

X-ray microtomography scans - Fuzzy inference system (FIS)
[74]

Images of microscopic rock
thin section (RGB pixels) - k-NN [77]; DT [77]

Optical identification of
minerals

Mineral properties such as
color, hardness, pleochroism,

anisotropism, and internal
reflections

Cramer’s Vand Pearson
correlation coefficient (PCC)

[75]
DT [75]

Prediction of concentrate yield
and modal mineralogy

Bulk chemistry data from the
mining company open pit

database
- ANN [79]

Predicting rock type and mine
face, detecting hydrothermal

alteration

Physical properties of rocks - SVM [59]

Hyperspectral data - GP [53,86]; SVM [86]; SAM
[86]

Multi-element geochemistry K-means++ [93] RF [93]

Images of the rocks - ANN [94]

Reducing noise in
hyperspectral data

Hyperspectral imagery from
vertical mine faces - GP [88]

Regolith landform mapping

Gamma-ray spectrometry
data; derivatives of the SRTM
elevation model, Landsat, and

polarimetric radar

- ANN [99]
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Table 3. Cont.

Application Dataset Feature Engineering Method ML Technique

Segmenting hyperspectral
images Hyperspectral data - SVM [87]; RF [87]; ANN [87];

k-NN [87]; DT [87]; NB [87]

Segmenting mineral phases μCT dataset - K-means [73]; FCM [73]; RF
[73]; k-nearest neighbors [73]

1 Feature engineering methods are not used/mentioned in the corresponding works.

0
2
4
6
8

10
12
14
16
18

N
um

be
r o

f R
ec

or
ds

Year Published

Article Conference Paper

Figure 5. Yearly distribution of the number of selected papers (January 2000–April 2021).

For the sake of providing a general insight into the scope of the reviewed papers,
Figure 6 illustrates the word frequency map of their titles, where the more popular words
are represented with a bigger font size. As depicted, aside from the common keywords,
namely using, machine, learning, and mineral, we can generally infer the main trends dis-
cussed in the previous sections considering the relatively high frequency of the words
hyperspectral, mapping, and classification. Complementary to this, Figure 7 presents the word
frequency map for the authors’ keywords as well as index keywords, where aside from the
familiar words, the terms exploration, geochemical, and mapping are perceptible. These, in
line with the findings presented previously, represent the current trends in the application
of ML for processing large datasets comprising mainly hyperspectral and geochemical data
for anomaly detection and mapping of minerals in exploration studies.

Based upon our review of the selected works, we noticed the lack of high-quality
data for applying ML in the mining and mineral studies. This issue, in many cases, is
not simply related to not storing the data, but the unavailability of accurate and reliable
labels for the data, which is required for training the supervised learning models. In
many cases, the required labels need to be generated manually, thereby it is not only time
consuming but also prone to biases and human errors. Unfortunately, since most of the
works lack economic studies about the practical value of leveraging ML in the proposed
applications, investing in providing reliable datasets seems to be challenging. Thus, a
potentially valuable research avenue is the economic evaluation of using AI and ML in
mining and mineral industry.

146



Minerals 2021, 11, 816

 

Figure 6. Word frequency map of the title of the reviewed records.

Figure 7. Frequently used words in the author and index keywords of the reviewed papers.

Considering the case dependency of the ML models and lack of sufficient training
data, potential benefits of the transfer learning concept can be evaluated in the future works
to curb such issues. It is worth emphasizing that in the reviewed works, we found examples
of using transfer learning, yet they are limited to utilizing the models trained for general
applications such as conventional image classifiers in special domains, e.g., geochemical
anomaly identification [51]. However, the possibility of benefiting from a model trained on
a specific dataset in a different case, e.g., using a model trained for mapping gold deposits
in an area to facilitate the development of a new model for another geographic location,
needs further evaluation.

Another point that is typically overlooked in the studied literature is the importance of
feature engineering, especially in the case of conventional ML techniques, and hyperparameter
setting. As the success of ML methods is highly sensitive to the selection of the input features
as well as hyperparameters of the models [10], it is always beneficial to assess different sets of
input features as well as hyperparameters to reach a more accurate model.

In addition, to the best of our knowledge, the application of semi-supervised tech-
niques and reinforcement learning is missing in the existing literature on the application of
ML in exploiting mineralogical data in mining and mineral industry. Such techniques can
prove valuable especially in the reviewed applications where the judgement of specialists is
always required considering the criticality of the tasks and that the frequency of unexpected
cases where the ML models cannot generalize well may be relatively high. In this regard, a
potential solution could be the application of a semi-supervised learning method on top of
the current supervised techniques to decide whether the outcomes are reliable or further
analysis and evaluations need to be carried out for specific samples.

4. Conclusions

In this paper, a systematic review of the works carried out on the application of
machine learning for innovative use of mineralogical information in mining and mineral
studies was presented. The search strategy resulted in a total of 145 records from which
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55 publications were carefully chosen following the presented selection criteria. The se-
lected papers were then thoroughly investigated to answer the main research questions
involving (1) the types of problems in the area under study for which applying ML tech-
niques are advantageous, (2) the specific complexities that favor ML over traditional
approaches in such problems, (3) the most common type of datasets and output variables
employed in the existing literature, (4) the ML algorithms leveraged, and (5) general trends
in the area under investigation.

The review results revealed that the ML techniques have been used in a wide range
of applications including geochemical anomaly mapping, mineral prospectivity, drill-
core mapping, mineral processing, segmentation of μCT images, prediction of material
properties, and calculating the amphibole formula, to name but a few. Analyzing massive
and complex datasets with nonlinearities and hidden underlying interdependencies and
patterns among different features, automating manual operations to improve productivity
via enhancing speed and reducing human errors, cost reduction, and dealing with the
problems caused by high noise are among the most significant reasons behind using
ML in such studies. The main datasets used in these studies comprise hyperspectral
images, μCT images, optical microscopic images, geochemical data, lithogeochemical
data, data collected by the electron probe microanalyzer, as well as spatial, geophysical,
geological, total magnetic intensity, and isostatic residual gravity data. In addition, support
vector machine, random forest, and artificial neural networks are concluded to be the
most frequently used supervised learning algorithms, whereas K-means clustering and
hierarchical clustering are among the unsupervised learning models used more in the
selected literature.
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