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Preface to “UAV-Based Remote Sensing”

Active technological development has fuelled rapid growth in the number of Unmanned Aerial
Vehicle (UAV) platforms being deployed around the globe. Improved sensors and enhanced image
processing techniques have consolidated and confirmed UAVs as the technology of choice. Many
jurisdictions have regulated stringent restrictions on flying UAVs in numerous scenarios where they
could be of great value. Despite the increased regulation, UAVs or drones have rapidly become the
tool of choice for both the environmental science and the remote sensing communities. This is due,
in no small part, to a lowering cost of entry. The last few years has seen significant technological
development in UAV platforms, sensor miniaturisation, and robotic sensing. UAV technology
progresses apace. The design of novel UAV systems and the use of UAV platforms integrated with
RGB, multispectral, hyperspectral, thermal imaging, gas sensing and/or laser scanning sensors have
now been demonstrated in both research and practical applications. Novel UAV platforms, UAV-based
sensors, robotic sensing and imaging techniques, the development of processing workflows, as well
as the capacity of ultra-high temporal and spatial resolution data, provide both opportunities and
challenges that will allow engineers and scientists to address novel and important scientific questions
in UAV and sensor design, remote sensing and environmental monitoring. This work features papers
on UAV sensor design; improvements in UAV sensor technology; obstacle detection, methods for
measuring optical flow; target tracking; gimbal influence on the stability of UAV images; augmented
reality tools; segmentation in digital surface models for 3D reconstruction; detecting the location
and grasping objects; multi-target localization; vision-based tracking in cooperative multi-UAV
systems; noise suppression techniques; rectification for oblique images; two-UAV communication
system; fuzzy-based hybrid control algorithms; pedestrian detection and tracking as well as a range
of atmospheric, geological, agricultural, ecological, reef, wildlife, building and construction; coastal
area coverage; search and rescue (SAR); water plume temperature measurements; aeromagnetic and
archaeological survey applications.

Felipe Gonzalez Toro, Antonios Tsourdos

Special Issue Editors

vii
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Abstract: This article describes the configuration and technical specifications of a multi-rotor
unmanned aerial vehicle (UAV) using a red—green-blue (RGB) sensor for the acquisition of images
needed for the production of orthomosaics to be used in archaeological applications. Several flight
missions were programmed as follows: flight altitudes at 30, 40, 50, 60, 70 and 80 m above ground
level; two forward and side overlap settings (80%-50% and 70%—40%); and the use, or lack thereof,
of ground control points. These settings were chosen to analyze their influence on the spatial
quality of orthomosaicked images processed by Inpho UASMaster (Trimble, CA, USA). Changes in
illumination over the study area, its impact on flight duration, and how it relates to these settings
is also considered. The combined effect of these parameters on spatial quality is presented as well,
defining a ratio between ground sample distance of UAV images and expected root mean square of a
UAV orthomosaick. The results indicate that a balance between all the proposed parameters is useful
for optimizing mission planning and image processing, altitude above ground level (AGL) being
main parameter because of its influence on root mean square error (RMSE).

Keywords: unmanned aerial vehicle (UAV); positional quality; orthomosaick; archeology

1. Introduction

Traditional archaeological site surveys are a time-consuming effort proportional to the difficulty
of access of the site being investigated. Prospective sites are identified based on oral tradition, written
records or inspection using images [1]. Once a prospective site is identified, fieldwork starts to detect
evidence of human activity. With images, these have usually been registered by sensors on board
two traditional platforms, satellite and manned aircraft [2—4]. These platforms present problems with
spatial resolution applied to archaeology. One of the limiting factors of satellite images is the difficulty
to detect small- or even medium-sized details like sites smaller than a hectare [3]. There are also
reasons to be cautious about the effectiveness of satellite imagery in detecting prehistoric sites lacking
a long history of occupation [5]. On the other hand, manned aircraft are able to supply images with
better spatial resolution but no higher than at a 1:500 scale. Moreover, the economical cost of aerial
photogrammetry is usually too high for small surveyed areas [6].

Currently, unmanned aerial vehicles (UAVs) are an alternative for the acquisition of images with a
very high spatial resolution for documenting archeological areas [7]. UAVs are classified with different
characteristics like range, endurance, mass and architecture. Generally, most common UAV categories
used in civil applications are micro and mini UAVs with a mass of less than 5 and 150 kg, respectively.

Sensors 2016, 16, 1838 1 www.mdpi.com/journal/sensors
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Other characteristics, like endurance or range, depend mainly on the type of platform architecture,
for example multirotor, fixed wing and balloon.

Different types of UAVs have been used successfully to survey archeological areas such as
helium balloons [8], blimp [9], kites [10], fixed wing [11] and rotor wing [12]. In mapping, UAV flight
parameters are critical in obtaining adequate spatial quality on the derived geomatic products to survey
archeological sites. The correlation between flight parameters, spatial quality and photogrammetric
processing of images acquired by metric sensors have been well studied in classic photogrammetry [13].
Accuracy assessment of digital elevation models [14] or the influence of Ground Control Points
(GCPs) in aerial-triangulation [15], among others, have contributed to defining a standardized
processing framework.

In contrast, UAV photogrammetry for research applications is still at an early stage [16]. One
consequence of this is that operational frameworks for working with UAV platforms are not defined
in some aspects and applications. The operational framework depends on the type of UAV platform,
sensors on board and case of use. Ref. [17] analyzes the potential of UAVs for measuring area of land
plots for monitoring land policies, Ref. [18] explored the positional quality of orthophotos obtained by
a UAV following the requirements of National Mapping Agencies, and Ref. [19] defines specifications
to acquire remote images using a six-band multispectral sensor on board a UAV for use in precision
agriculture. Regarding cultural heritage, UAVs have rarely been used in scientific research [20].
Parameters like altitude above ground level (AGL), number of GCPs, or the percentage of forward-lap
and side-lap determine the spatial quality of orthomosaics.

One of the most important parameters in an UAV flight is altitude AGL. It determines the pixel
size on the registered images, flight duration and area covered. Firstly, it is necessary to define the
spatial quality requirements for the orthomosaics to achieve the ideal pixel size in the images registered
by the sensor. In general, at least four pixels are required to detect the smallest detail in an image [21].
In selecting altitude AGL, sufficiently fine spatial resolution has to be guaranteed and, as the same
time, as much surface as possible has to be covered. Very low altitude AGL UAV flights generate
very high spatial resolution images but cover a limited area and therefore increase flight duration.
As a result, the UAV operation has to be fragmented into different flights due to battery life, causing
variations in illumination, the appearance or disappearance of shadows, saturated images, depending
on the type of materials present, and so on.

As in traditional photogrammetry, the algorithms used process overlapping images acquired
from multiple viewpoints. Mainly, these techniques are based on imaging techniques called structure
from motion (SfM) [22]. SfM photogrammetry differs from conventional photogrammetric approaches
by calculating internal camera parameters (focal length, principal point and distortion coefficients),
camera position and orientation. SfM algorithms need a large number of overlapping images to cover
the area of interest [23,24], which impacts flight duration. High percentages of forward and side
overlap increase flight duration because it is necessary to capture more images for each individual
lap and to increase the number of total laps. However, this improves the spatial quality of geomatic
products. All of these parameters affect battery life and thus a balance between spatial quality, forward
and side overlap and flight time duration is necessary.

Finally, GCP distribution and its influence on the spatial quality of orthomosaics in traditional
platforms is well described [25]. With UAVs, the number and distribution of GCPs are not standardized,
being analyzed by [26,27]. The consequence is that the number of GCPs may covers a broad range,
from just four GCPs to more than 100 GCPs [27,28]. In addition, Ref. [29] analyzes the accuracy of
UAV orthomosaics without GCPs, with the resulting root mean square error (RMSE) being higher than
one meter.

To our knowledge, no detailed investigation has been conducted regarding the influence of UAV
flight parameters such as altitude AGL, forward and side overlap, and the use or lack of GCPs on the
spatial quality of orthomosaics using a red—green-blue (RGB) on board a multi-rotor UAV to be used
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in surveying archaeological areas. This paper defines the technical specifications for working with a
multi-rotor UAV to obtain an accurate spatial orthomosaics to be used to survey archeological areas.

The manuscript is divided in the following sections: in Section 2, the technology, study area,
and the materials and methods are described. In Section 3, results are presented, followed by
conclusions in Section 4.

2. Materials and Methods

2.1. UAV and Sensor Description

The unmanned aerial vehicle used for mapping was a MD4-1000 multi-rotor (Microdrones GmbH,
Siegen, Germany) (Figure 1). This UAV is a vertical takeoff and landing aircraft of an entirely carbon
design. The system has a maximum payload of 1.2 kg. It uses 4 x 250 W gearless brushless motors
powered by a 22.2 V battery. It reaches a cruising speed of 12.0 m/s and a maximum climb speed
of 7.5 m/s. Its maximum wind tolerance is up to 12.0 m/s, registering steady picture up to 6 m/s.
Flight duration depends on sensor weight and weather conditions. For this project, the multi-rotor
UAV was equipped with a Sony NEX-7 RGB sensor (Sony Corporation, Minato, Tokyo, Japan) with a
16 mm lens. The camera weighs 353 g including the camera body, card and battery and provides a
23.5 x 15.6 mm image (6000 x 4000 pixels). The sensor was field calibrated and the results used in
this research are summarized in Table 1. With this sensor, the UAV’s flight duration is approximately
30 min. During the flight, the sensor registers vertical images. The image trigger is activated by the
UAV’s autopilot flight settings. For each shot, the UAV autopilot sends a signal to the sensor to register
an image and simultaneously timestamps and records the GPS location and navigation angles (yaw,
roll and pitch) on a Secure Digital Card (SD-Card). This information will be used for the initial values
in photogrammetric processing.

Figure 1. The MD4-1000 multi-rotor (Microdrones GmbH, Siegen, Germany) taking off over the
study site.

Table 1. Results of the field-calibrated Sony NEX-7 (Sony Corporation, Minato, Tokyo, Japan).

Parameters Value Parameters Value
Focal length (mm) 16.6286 Radjial Distortion K2 0.0290259
Principal point—X (mm) 12.2712 Radial Distortion K3 —0.0338008
Principal point—Y (mm) 7.76064 Tangential Distortion T1 —0.00162188
Radial Distortion K1 —0.0108059 Tangential Distortion T2 —0.00094999
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2.2. Study Site and UAV Flights

The study area was approximately 1.13 ha (101 x 112 m) in size and was conducted in
Torreparedones, an old Iberian and Roman town situated between the Guadalquivir river and
the Guadajoz river in the province of Cérdoba (Southern Spain) (37°45’ N, 4°22 W) (Figure 2).
This settlement has been continuously populated between the 2nd Century Before Christ (BC) and
the 16th Century Anno Domini (AD). It reached its peak during the Iberian and Roman period as a
municipality and played an important role in the commercial trade routes throughout the southern
and eastern territories of the Peninsula as well as in the development of metallurgy. Evidence of public
buildings like shrines and a forum have been found in the archaeological remains.

PaN]

L]
.. Torreparedones

Algeria

Morocco

Figure 2. Overview of the study site.

Several flights above the remains were planned following the scheme presented below in Figure 3,
which combines different flight altitudes, overlap settings and the use, or lack thereof, of GCPs.
Descriptions of flight parameters and their formula are widely available, for example [30].

3

z UAV flights

g 30,40,50,80.70 and 80 m AGL
= /\

E o

§§ 40%-70%

=

[

é

12 UAV flights.

CRS
definition

‘ 24 orthomosaicks |

Figure 3. Scheme of unmanned aerial vehicle (UAV) flights and processing.

One of the most important flight parameters is altitude AGL. In this study, a set of flight missions
were flown at altitudes of 30, 40, 50, 60, 70 and 80 m AGL. Each altitude AGL is linked to a specific
ground sample distance (GSD) value. In this study, GSD ranged from 0.7 cm x pixel ! at 30 m AGL,
t0 2.0 cm x pixel ! at 80 m AGL. Additionally, two different forward-lap and side-lap settings were
used: 80%-50% and 70%—40%. In combining these settings, twelve missions were flown in total.
AllUAV flights were carried out under the same wind conditions, the wind speed being equal to 2m/s.
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In addition, all UAV flights were planned in such a way that each point in the study area was captured
in at least 3 images. Thus, the accuracy of the orthomosaicks was only dependent on altitude AGL and
forward and side lap settings.

Afterwards, each UAV flight was processed with and without GCPs. In the former case,
GCPs and the georreferentiation information registered by the UAV’s autopilot were used in the
aerial triangulation phase to accurately place the photogrammetric block into a coordinate reference
system (CRS). In the latter case, the aerial triangulation was processed with the information registered
by the UAV’s autopilot, and nothing more. In using, or not using, GCPs with the information from the
12 flights, a total of 24 orthomosaics were produced to assess spatial quality.

The coordinates of each GCP in the study area were determined by using traditional topography
methodologies instead of global navigation satellite system (GNSS) sensors. This decision was made
because the precision and accuracy of GCP coordinates have to be greater than the GSD of UAV flights.
In this context, a GNSS sensor receiving real-time corrections does not obtain results greater than 2 cm.
This value is higher or equal to the GSD of UAV flights, and, therefore, GNSS was rejected. GCPs
were chosen in the corners of the study area, one for each corner, and another in the center. Each GCP
was set with an artificial target and measured using a total station Leica TC805 (Leica Geosystem AG,
Heerbrugg, Switzerland) (Figure 4a) with an angle accuracy equal to 5/ and a distance measurement
precision equal to £(3 mm + 2 ppm).

(a) (b)

Figure 4. Assessing spatial resolution: (a) Measuring using the total station; and (b) Samples of spatial
details of the ground measurements.

2.3. Photogrammetric Processing

The photogrammetric processing is divided into 4 phases: (1) aerial triangulation; (2) Digital
Surface Model (DSM) generation; (3) rectification of individual images; and, lastly (4) orthomosaicking.

Aerial triangulation is the basic method for analyzing aerial images in order to calculate
the three-dimensional coordinates of object points and the exterior orientation of the images [31].
This process allows the absolute orientation of the entire photogrammetric block to be calculated.
To perform the bundle adjustment, algorithms based on “Structure from Motion” (SfM) techniques
are used. SfM algorithms operate with the same basic fundamentals of stereoscopic photogrammetry.
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However, it differs from traditional photogrammetry in the geometry of the scene, camera positions and
orientation. Using UAV platforms, this is resolved using highly redundant information extracted from
a set of multiple high percentage overlaps that register the three-dimensional structure of the scene [32].
In a first stage, SfM techniques extract individual features in each image of the photogrammetric block,
which are afterward matched to their corresponding feature in the other images of the photogrammetric
block. These features are used to determine the relative position of the sensor during the flight, which
allows the position and orientation for each individual sensor to be calculated. At this stage, the spatial
quality of the results depends on the quality of the geolocation sensor, GNSS sensor and IMU sensor.
In general, the attributed geolocational accuracy of images taken on commercial UAVs is medium
to low. Therefore, in this study, geolocation was calculated via aerial-triangulation. To improve the
spatial quality of the results, a group of GCPs were distributed over the study area. These GCPs were
measured on field with a greater spatial accuracy than GSD.

Once aerial-triangulation was calculated, a DSM was generated in three stages: feature extraction,
multi-image matching and blunder detection [6]. DSM and external orientation were used to
orthorectify each image. Finally, individual orthorectified images were mosaicked to obtain an UAV
orthomosaic of the entire study area. Each orthomosaic was produced with a GSD equal to the
corresponding GSD of each UAV flight.

The photogrammetric processing was performed using Inpho UASMaster (Trimble, CA,
USA) [33].

2.4. Assessment of Spatial Quality

Spatial accuracy is the accuracy of the position of a feature related to Earth [34] and can be
described in absolute or relative terms. Absolute accuracy is defined as the closeness of reported
coordinate values to values accepted as or being true. Relative accuracy is defined as the closeness
of the relative spatial positions of features in a dataset to their respective relative spatial positions
accepted as or being true.

Before the UAV flights, 150 check points were measured in the study area to assess the absolute
and relative spatial accuracies (Figure 4b). The check points’ coordinates were obtained using a total
station in the same manner as the GCPs (Figure 4a) and were well-defined and well distributed. These
coordinates were used as ground reference values to assess the spatial quality of the orthomosaics.

All check point locations were digitized on screen via the produced orthomosaics. These
coordinates were obtained using Quantum GIS (QGIS) [35]. Both sets of ground and orthomosaic
coordinates were compared to determine the spatial quality.

Absolute positional accuracy was assessed by RMSE, which is used to estimate positional
accuracy [36]. Relative positional accuracy was assessed using the methodology developed by
the Department of Defense of the United States [37]. Subsequently, all possible check point pair
combinations were determined. Afterwards, the absolute and relative errors in the X and Y dimensions
of each check point were calculated. These errors were used to calculate both the relative standard
deviations on each axis and the relative horizontal standard deviation (RHSD).

3. Results

A total of two single flights missions were flown, one for each forward and side lap setting. Once
the UAV completed the initial altitude, it ascended 10 m and flew the same area again. This process
repeated until all programmed altitudes were covered. Table 2 summarizes the duration of, and
number of images taken from, each UAV flight with each flight having a different altitude AGL and
forward and side overlap setting. In Table 2, time duration expresses the duration of the flight for an
individual altitude AGL, without time spent taking off and landing. Table 2 demonstrates, as altitude
AGL increases, flight duration and the number of images taken as a decrease because each image
covers more area, and, therefore, fewer laps and images are needed. This occurs independently of
the forward and side overlap settings, although higher percentages increase flight time and number
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of images taken. The longest UAV flight was 7 min and 35 s at 30 m AGL with 80%-50% forward
and side overlap, while the shortest was 33 s at 80 m AGL with 70%—-40% forward and side overlap.
Figure 5 shows an exponential correlation between altitude AGL, flight duration (Figure 5a) and the
number of images taken (Figure 5b). Inversely, as altitude AGL was reduced, flight duration and the
number of images taken exponentially increased.

Table 2. Flight durations and the number of images taken at different altitudes Above Ground Level
(AGL) and forward and side lap settings.

Forward/Side Lap 70%—40% Forward/Side Lap 80%-50%
Altitude AGL (m) - . . .
Time Duration Num Images Time Duration Num Images
30 0:07:12 27 0:07:35 34
40 0:02:40 12 0:06:03 27
50 0:02:12 10 0:03:08 14
60 0:01:52 8 0:02:44 12
70 0:00:46 4 0:00:56 5
80 0:00:33 3 0:00:56 5
600 — 40 —
w500
E ¢ %
g,‘xmo - & .
§ a0 2\ RE=0.951
570
2 200 | E
@ Z 5
E 100 -
0 T T T _'I 0
W 40 S0 60 70 BD o 40 S0 B T0 BD
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(@) b)
Forward and Side lap
T0%-40%
- BO0%-50%

Figure 5. Relationship between altitude above ground level (AGL) and forward and side lap settings
on: (a) Flight duration and (b) Number of images taken.

The shape of the study area in relation to the percentage of forward and side overlap also affects
the duration of UAV flights. In this study, there was a significant time difference at 40 m AGL due to
the forward and side overlap settings. Fewer laps were needed to cover the area of study at 70%-40%
because more distance needed to be covered between laps at 80%—-50%. At higher altitudes AGL,
for example 70 or 80 m, the differences in flight duration were reduced due to only one lap being
needed to capture both forward and side overlap, which reduced the number of images taken.

Another factor that affects flight duration is illumination. Sometimes, elements may appear in
the study area which can produce shadows depending on the direction of the flight. Moreover, some
materials, like marble, reflect light intensely, resulting in highly saturated images. Consequently, flying
within limited timeframes may be necessary to avoid problems caused by illumination. Therefore,
reducing flight times while simultaneously maintaining orthomosaic spatial quality is of interest.

Figure 6 compares images taken in the early morning (7:15 a.m.) and again close to midday
(11:30 a.m.) at the same altitude AGL. Elements such as walls (Figure 6a,b) or columns (Figure 6c,d)
project shadows if the images are taken at midday (Figure 6a,c). On the other hand, if taken in the early
morning, images do not contain shadows (Figure 6b,d). Because sun elevation is reduced and objects
do not drop shadows, as such images are darker. One option, to avoid shadows, is to fly when the
Sun is at the zenith position. In this case, it is necessary to take into account the coordinates of study
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area and day of the year to know when the Sun is at this position. However, in this case, problems can
arise with materials like marble, which can saturate images leading difficulties in visual interpretation.
As an example, in Figure 6¢, it is more difficult to identify individual elements at the top of the wall
compared to Figure 6d.

Midday images Early moming images

(e) (d)

Figure 6. (a—d) The effects of illumination on images taken by UAV flights at midday (a,c) and early
morning (b,d).

Figure 7 shows an example of two sets of images of two different areas taken at different altitudes
AGL and demonstrates that, as altitude AGL increases, the area covered by each image increases,
reducing flight duration. On the other hand, the quality of spatial resolution and border definition of
individual elements improve as altitude AGL decreases. At 30 m, element boundaries are well defined
and recognizable in an individual context, while at higher altitude AGL, definition incrementally
diffuses, and it becomes more difficult to define individual elements. However, this does not mean
that UAV flights at high altitude AGL are not useful in archaeological utilities, and it depends on the
need of the user. The geomatic product requirements of an archaeological area needing only a general
map, which typically meets or exceeds user expectations, are not the same as those of a specific site
prospection. Therefore, product features are said to posses “fitness for use” if they are able to serve
their purposes [38].

30m 40 m 50m

Figure 7. Effect of flight altitudes AGL on image coverage and quality.

60 m 70m 80m
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From the point of view of image interpretation, altitudes equal to 80 m AGL or higher allow
valuable information to be gained for a general analysis of the entire work area and surroundings
although details less than 2 cm in size are more difficult to properly identify. Conversely, lower altitude
AGL flights allow details to be better studied at the cost of increased flight duration.

3.1. Assesement of Absolute Positional Accuracy

Table 3 summarizes the results of the absolute positional accuracy assessment factoring:
(1) altitude AGL; (2) forward and side lap settings; and (3) processing with and without GCPs.
Error ranges from 3.8 cm (30 m altitude AGL and 80%-50% overlap settings with GCPs) to 934.2 cm
(80 m altitude AGL and 70%—40% overlap settings without GCPs). In Figure 8, the same factors from
Table 3 are applied to error box plots. Figure 8a,b show a lower RMSE where GCPs were used than
Figure 8c,d where GCPs were not used, these results being independent of altitude AGL and forward
and side lap setting.

Table 3. Absolute positional accuracy results factoring altitude AGL, percentage of forward and side
overlap and processing with or without GCPs.

Altitude AGL (m) GSD (cm) Forward/End Lap (%) GCP RMSE (cm) No GCP RMSE (cm)

30 0.7 80%/50% 3.8 507.8
70%/40% 54 178.0
40 1 80%/50% 59 138.4
70%/40% 6.3 73.3
50 1.2 80%/50% 6.2 99.2
70%/40% 6.5 53.8
60 1.5 80%/50% 6.9 120.7
70%/40% 6.8 151.9
70 1.7 80%/50% 9.6 179.6
70%/40% 9.2 229.0
80 2 80%/50% 9.5 179.6
70%/40% 10.0 934.2

AGL: Above Ground Level, GSD: Ground Sample Distance, GCP: Ground Control Point, RMSE: Root Mean
Square Error.

The absolute positional accuracy of orthomosaics produced without GCPs depends on the
accuracy of the navigation system of the UAV. Currently, these systems generally have an accuracy
of about 1 to 2 m, which is not accurate enough for direct georeferencing. Therefore, GCPs are
necessary to properly define the coordinate reference system. Alternatively, integrating an accurate
direct georeferencing system onto a UAV platform would allow the elimination of GCPs [39]. Although
most commercial UAVs are not equipped with an accurate direct georeferencing system, there are
UAVs in the market with this capability, which will likely be a more common solution in the future.

As altitude AGL increased, errors also increased when GCPs were used (Figure 8ab).
This behavior was constant independent of forward and side overlap settings. From 30 m to 40 m
AGL, flights showed a positional accuracy of less than 5 cm. From 50 m to 60 m AGL, the RMSE
was around 6 cm. RMSE was higher than 9 cm with altitudes 70 m AGL and up. This suggests that,
as the altitude AGL increases, GSD of images increases, which is reflected in RMSE. On the other
hand, the orthomosaics where GCPs were not used (Figure 8c,d) showed random RMSE behavior due
to the lack of geometric constraints of calculating aerial-triangulation which was because the RMSE
depended on the accuracy of the UAV’s navigational system, suggesting lower altitude AGL flights
and the use of GCPs give better absolute positional accuracy.

With the forward and side overlap settings, higher percentages (Figure 8a) resulted in lower
RMSE for all UAV flights. The cause of this may be that there was more redundant information
to extract tie points. SfM algorithms applied to UAV flights show better results when using a high
redundant bundle adjustment based on matching features in multiple overlapping images. As in [40],
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all individual flights with a forward and side lap equal to 80%-50%, respectively, showed better results
than a 70%—40% configuration. These improved results were more evident at lower altitudes AGL.

Forward and end lap 80% - 50% Forward and end lap 70% - 40%
25 9 25 4
20 20
o
] 154 T 154
& § 5
g . g |
° i 10 i 10 4
5 5
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Figure 8. (a—d) Root mean square error (RMSE) box plot graph factoring altitude AGL; forward and
side lap (a,c) 80%-50% (b,d) 70%—40% and; processing (a,b) with or (c,d) without ground control
points (GCPs).

Figure 9 shows the forward and side overlap settings related to altitude AGL and RMSE in the
flights where GCPs were used. Altitude AGL and RMSE show a linear relationship with a correlation
coefficient higher than 0.9, independently of forward and side lap settings. The two linear models
represented tend to converge. At lower altitudes AGL, the distance between both adjusted lines is
greater while tending to converge as altitudes AGL increases. The higher forward and side overlap
settings correlate with a lower RMSE having more influence on RMSE at lower altitudes AGL. On the
other hand, Figure 9 also shows that altitude AGL has more impact on RMSE than forward and side
overlap settings.

Also in Figure 9, GSD is represented by a continuous line, which has a moderate slope compared
to the linear models of error, representing its correlation to RMSE. The mean ratio between RMSE and
GSD of all UAV flights in this study was 5, suggesting that the expected RMSE of an UAV orthomosaic
is five times greater than GSD of images. Ref. [41] obtained a ratio of 3.7 in an experiment on an
archaeological site. This difference between results may be due to the fact that they used circular
targets as their well-defined check points, while, in this study, in order to approximate an applied
assessment, elements of archaeological interest were used as intersection and corner check points that
are more diffuse and therefore more difficult to locate and measure.
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Figure 9. Linear model analyzing forward and side lap settings against altitude AGL and RMSE.

3.2. Assesment of Relative Positional Accuracy

Referring to relative positional accuracy (Table 4), RHSD was stable when GCPs were used to
define the coordinate reference system in the aerial triangulation phase, ranging from 4.5 cm to 6.5 cm,
increasing as altitudes AGL increased and with both forward and side lap settings. RHSD showed
lower values with the higher forward and side lap setting.

Table 4. Relative horizontal spatial deviation.

Altitude AGL (m)
GCPs Forward-End Lap
30 40 50 60 70 80
With 70%—40% 5.1 55 6.1 6.2 6.2 6.5
80%—-50% 45 45 4.9 5.0 5.3 5.1
Without 70%—40% 440 633 567 381 44 888
80%—-50% 214 334 197 6.9 425 166

Without GCPs, RHSD showed random behavior similar to the results obtained in the absolute
positional accuracy assessment above. As such, the orthomosaics obtained only using data from the
UAV navigation system were rotated, translated and scaled respecting the coordinate reference system.
These products were not useful even in a relative coordinate system because any linear or surface
measurement is not going to appear correct because the coordinate system was not well defined.

Therefore, designing a UAV flight plan requires defined technical specifications related to
illumination, resolution and spatial quality. These parameters have to be considered equally to
produce an adequate UAV orthomosaic. Illumination and material effects e.g., marble and image
saturation, define the time frames for flying, which is important if the time frames are narrow and
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flights have to be short. In regards to spatial accuracy, the expected RMSE is five times greater
than the GSD registered on flight. AGL is the parameter that mainly influences RMSE. While using
higher forward and side overlap settings guarantee greater positional accuracy, flight duration will be
increased. Finally, if the navigation system of the UAV is inaccurate, it is necessary to use GCPs, even
if the orthomosaics are going to be used in a relative coordinate system.

In this manuscript, spatial resolution of UAV orthomosaicks has been assessed to survey
archaelogical areas. Another useful geomatic product in archaeology is model digital surface (MDS).
These models can be generated using passive sensors, as we explain and use in this manuscript,
or by active sensors like LIDAR. LiDAR sensors can be mounted on manned platforms, aitborne
and terrestrial [42] or unmanned platforms [43], and have been used successfully in archaelogical
prospection [44]. Future works should be performed to compare MDS obtained by LiDAR and
aerial imagery and assessing spatial resolution of LIDAR sensor onboard UAV and the influence of
flight parameters.

4. Conclusions

This study has shown that UAV systems are useful complements for archaeological
mapping, such as GNSS measurements or aerial photogrammetry among others. The main
objective of this investigation was to analyze the configuration and technical specifications of a
multi-rotor UAV equipped with a RGB sensor to produce accurate orthomosaics to be applied in
archaeological applications.

Concerning spatial resolution, flight altitude AGL is an important parameter because of the degree
detail achieved in the orthomosaic image to be used to for analysis and study in an archaeological
context. Additionally, adequate values of altitude AGL and forward and side overlap settings have to
be applied because of their impact on flight duration and positional accuracy of absolute and relative
RMSE obtained. Our results have shown a ratio between RMSE and GSD of UAV flights equal to 5.
Whenever possible, higher percentages of forward and side overlap are recommended for UAV flights.
Other flight planning configurations, including transversal laps, can be carried out in future works to
study their impact on flight duration and accuracy of results. Moreover, if the UAV’s navigation system
is not accurate enough, GCPs can be used instead, recalling that even if working in a relative coordinate
reference system, any linear or superficial measurement is not going to be accurate without GCPs.
The use of navigation systems based on differential-GPS can be an alternative to GPC measurements
to be taken into account, assessing its influence in spatial resolution.

The results herein presented can be used to configure flight missions using a RGB sensor
onboard a multi-rotor UAV to maximize the spatial positional accuracy of orthomosaics to be used in
archaeological mapping.
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Abstract: In view of the demand for a low-cost, high-throughput method for the continuous
acquisition of crop growth information, this study describes a crop-growth monitoring system
which uses an unmanned aerial vehicle (UAV) as an operating platform. The system is capable
of real-time online acquisition of various major indexes, e.g., the normalized difference vegetation
index (NDVI) of the crop canopy, ratio vegetation index (RVI), leaf nitrogen accumulation (LNA),
leaf area index (LAI), and leaf dry weight (LDW). By carrying out three-dimensional numerical
simulations based on computational fluid dynamics, spatial distributions were obtained for the UAV
down-wash flow fields on the surface of the crop canopy. Based on the flow-field characteristics
and geometrical dimensions, a UAV-borne crop-growth sensor was designed. Our field experiments
show that the monitoring system has good dynamic stability and measurement accuracy over the
range of operating altitudes of the sensor. The linear fitting determination coefficients (R?) for the
output RVI value with respect to LNA, LAI, and LDW are 0.63, 0.69, and 0.66, respectively, and the
Root-mean-square errors (RMSEs) are 1.42, 1.02 and 3.09, respectively. The equivalent figures for the
output NDVI value are 0.60, 0.65, and 0.62 (LNA, LAL and LDW, respectively) and the RMSEs are
1.44,1.01 and 3.01, respectively.

Keywords: unmanned aerial vehicle sensor; crop-growth model; computational fluid dynamics;
flow field analysis; monitoring system; field experiment

1. Introduction

Real-time, non-destructive, and high-throughput acquisition of crop-growth information is the
most important requirement for precision management of crop production. Traditional detection
methods which rely on the destructive sampling of plants and indoor physical and chemical analyses,
are time-consuming, laborious, and have poor timeliness. In recent years, technologies based on
feature recognition using reflection spectra have proven to have several advantages over the traditional
methods: non-destructibility, convenient access to information, and good real-time performance.
Therefore, this kind of technology has been widely used in research on the mechanisms of monitoring
crop growth [1-11].

At present, research institutions around the world have gained access to reflection spectra of crop
canopies obtained using various devices (e.g., Cropscan multispectral radiometers [12], ASD FieldSpec
3 hyper-spectrometers [13,14], GreenSeeker sensors [15,16], and CropCircle ACS-470) [17]. The research
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undertaken has indicated out that there is a good correlation between the reflection spectra of crop
canopies and crop nutrients. Hand-held sensors are usually used to statically acquire information about
the crop canopy. Although these types of sensors can produce a detailed determination of the spectral
characteristics of a crop’s biochemical components, they have several disadvantages including small
monitoring range, large labor intensities, and a monitoring regime that is discontinuous. Therefore,
these methods cannot provide the high-throughput of information needed for real-time decisions to
be made in the production and management of crops spread over large areas in the field. To address
this problem, research institutes have started to develop crop-growth monitoring equipment based on
vehicle platforms.

The German Yara and Japanese Topcon companies have designed ways to determine the nitrogen
content of crops (using their proprietary N-Sensor [18,19] and laser modulated light source sensor
CropSpec [20], respectively). In addition, the Trimble Navigation Company based in the United States
has also produced the GreenSeeker-RT200 sensor to determine the normalized difference vegetation
index (NDVI) of crops [21,22]. Such equipment can continuously gather information on crop growth
with a high-throughput and high labor efficiency. However, the vehicle platform causes a certain
amount of destruction of crops in operation. Also, operation is not flexible and is easily limited by the
size and terrain of the farmland.

The use of unmanned aerial vehicles (UAVs) for such operations promises to have several
advantages including high efficiency, good flexibility, convenient operation, and strong adaptability to
terrain. Thus, UAVs are becoming more extensively applied to the monitoring of crop growth [23].
By utilizing a miniature hyperspectral infrared thermograph on a UAV, Zarco-Tejada et al. [24] obtained
hyperspectral image information on a citrus canopy of large area. The water-stress state of the citrus
trees was analyzed offline using remote sensing image processing software including the Environment
for Visualizing Images (ENVI). By fixing a color camera onto a UAV, Bendig et al. [25] acquired
real-color images of a tree canopy and established a three-dimensional (3D) geometrical model of
the trees. Moreover, crop vegetation indices and plant heights could be measured with the use of a
ground-based hyper-spectrometer.

By using UAVs with spiral and fixed wings equipped with a real-color camera and a color-near
infrared camera, respectively, Rasmussen et al. [26] obtained information on a crop canopy under
different lighting environments. Image processing software was then used to splice and interpret the
information obtained so that crop vegetation indices could be obtained. Moreover, it was verified that
consumer-grade color cameras could be used to reliably acquire images to allow vegetation indices
to be retrieved. A multispectral camera carried on a UAV was used by Caturegli et al. [27] to obtain
multispectral images of lawns. By utilizing ENVI software to process the images, information on the
vegetation index of the lawns could be extracted to evaluate their nitrogen nutrition status.

Most of the abovementioned research used a UAV as a platform to carry various types of
imaging spectroradiometers to obtain images containing crop information. This information was
then corrected offline and spliced using special remote-sensing analysis software in order to interpret
the crop-growth information. Due to the complexity of the procedures employed, such an operation
needs remote-sensing specialists and is mainly used in scientific research. Furthermore, any possible
interpretation of the crop-growth information is delayed and the images cannot be directly used in
agricultural production. Besides this, the approach cannot be popularized in agricultural production
settings due to the high price of the equipment involved (mainly the various imaging spectrometers).

NDVI and the ratio vegetation index (RVI) are two commonly used indices when inverting
crop-growth parameters in the existing UAV-based remote sensing field. Gao et al. [28] carried out
experiments using a multi-rotor UAV as the platform from which a crop-growth monitoring system
composed of a Canon PowerShot G16 camera and an ADC-Lite multispectral sensor was trialled.
In the experiments, remotely sensed images of soybean in its podding and seed-filling stages were
obtained. On this basis, by using vegetation indices, including NDVI and RVI, and combining them
with LAI data synchronously measured in the field, they constructed univariate and multivariate LAT
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inversion models using empirical methods. By using an improved camera with an infrared filter borne
on an UAV, Ghazal et al. [29] acquired NDVI videos which were then processed to obtain the area of
crop growing spots, and relevant agronomic parameters were inverted at the same time. Tian et al. [30]
acquired remote sensing images of winter wheat using an UAV-borne ADC air vegetation canopy
camera. Based on the spectral characteristics of the images and the changing threshold of NDVI, they
proposed a quick classification and extraction method for crops. The results show that, using the
method to extract classification information of crops of different types from high-resolution images
collected by UAVs presents high accuracy and universality. All this suggests that, while being used for
inverting crop agronomic parameters and classifying crop characteristics, NDVI and RVI show high
accuracy and potential application value.

In this study, we present a new UAV-borne crop-growth monitoring system based on research
achievements of the Nanjing Agricultural University in China relating to crop-growth sensors [31-34].
The work is aimed at meeting the demands for a high-throughput, continuous, and online real-time
method of acquiring crop-growth information. Using a four-rotor UAV (DJI Phantom, SZ DJI
Technology Co., Ltd. Shenzhen, China) as the operating platform, we independently design a
UAV-borne crop-growth sensor and a matching ground-based data processor to complement the
platform. We subsequently used the system to determine, in real-time and online, the major
growth indices of a crop canopy including the NDVI, ratio vegetation index (RVI), leaf nitrogen
accumulation (LNA), leaf area index (LAI), and leaf dry weight (LDW). This research thus provides
a new technological means of acquiring high-throughput growth information for crops covering
large areas.

2. Design of the UAV-Borne Crop-Growth Monitoring System

2.1. Overall Design of the System

The UAV-borne crop-growth monitoring system consists of a UAV platform, a UAV-borne
crop-growth sensor, and a ground-based data processor. The UAV-borne crop-growth sensor is fixed to
the UAV platform and used to obtain reflection spectra of a crop canopy in real time. The data collected
are wirelessly transmitted to the data processor on the ground. The ground-based data processor
receives spectral information on the crop canopy which is input into a crop-growth monitoring model.
Derived information, including the NDVI, RVI, LNA, LAI, and LDW of the crop canopy;, is presented
online. The system structure is shown in Figure 1.

Crop growth monitoring system based on UAV

v v A 4

UAV platform UAV-based Crop Ground data
growth sensor processor

Figure 1. The structure of the UAV-borne crop-growth monitoring system.
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2.2. Optimization of the UAV Platform

At present, UAVs intended for agricultural use are mainly of the fixed-wing and multi-rotor
type [35]. The former drives the aircraft forwards according to the thrust produced by spiral wings or
turbine generators. The force of elevation required is generated by the relative movement of the wing
and the air. Before flying, the rotors of a UAV need to have a certain initial speed. Common takeoff
modes include catapult takeoff and running takeoff. The latter relies on the elevating forces generated
by the rotation of multiple spiral wings to balance the weight of the aircraft. This mode does not need
the UAV to have an initial speed for takeoff, and is able to realize vertical takeoff.

Although fixed-wing UAVs are fast and have long cruise durations, the flight speed is hard
to adjust according to demand. In addition, they cannot hover and are used merely to carry loads
of low weight. In contrast, the flight speed and height of a spiral-wing UAV are adjustable and,
in addition, its takeoff mode is simple and places no limits on the takeoff and landing sites [36].
Therefore, spiral-wing UAVs are more suitable for obtaining reflectance spectra of crop canopies in
the field. In this study, we used a DJI phantom UAV which is an ideal low-cost platform for use in
crop-growth monitoring (Figure 1). The aircraft’s mass, maximum load, flight speed, vertical hovering
precision, and horizontal hovering precision are 0.92 kg, 1.2 kg, 10 m/s, 0.8 m, and 2.5 m, respectively.
Furthermore, its maximum angular spin velocity, maximum tilt angle, rotor radius, motor speed, and
battery life are 1.11 rad /s, 35°, 10.30 cm, 16 r/s, and 18 min, respectively. The DJI phantom UAYV is
illustrated in Figure 2.

Figure 2. The DJI phantom UAV platform.

2.3. UAV-Borne Crop-Growth Sensor

The UAV-borne crop-growth sensor consists of a multispectral crop-growth sensor, a sensor
support, and a sensor signal-processing circuit. The multispectral crop-growth sensor works on the
same measurement principles that ground-based object spectrometers work on. We suppose that the
reflection from the crop canopy shows Lambertian reflection characteristics to obtain the bi-directional
reflectance of the canopy spectra. Measurement was conducted on sunny days in the absence of heavy
cloud cover and strong winds so that the crop canopy remains relatively static. The surface of the crop
canopy is close to being a Lambertian reflector and the sensor is placed 1.0-1.2 m directly above the
crop canopy in order to capture reflection spectra from it. The sensor support is used for installation of
the crop-growth sensor and fixing to the UAV. During low-altitude flight, the rotors of the spiral-wing
UAV produce strong airflow fields below the body of the UAV. These may disturb the crop canopy and
damage the Lambertian reflectance characteristics. The sensor support ensures that the detection fields
of the multispectral sensor relate to the canopy in the absence of airflow disturbance.

2.3.1. Multispectral Crop-Growth Sensor

The multispectral sensor consists of two kinds of lens (for detection at 720 and 810 nm), which are
used to measure the spectral reflectance of the crop canopy. The sensor system utilizes sunlight as the
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light source which is split using an optical filter. Structurally, there is a solar sensor and a two-band
sensor. The former is employed to collect radiation information from the sunlight at 720 nm and
810 nm and to conduct cosine correction. The latter is utilized to collect information on the radiation
reflected from the crop canopy at the same wavelengths.

The key to designing a multispectral sensor is to determine the correct aperture parameters
required for the detection lens. These need to guarantee the sensor system has a high resolution but
should also ensure that the signal from the sensor is sufficiently strong. The aperture parameters
used in our design are 12.8 mm, 26 mm, and 27°, for the aperture diameter, hole depth, and field of
view of the detection lens. The performance parameters correspond to a spectral filter bandwidth
of 10 nm and transmittance of 65%—70%. Furthermore, the sensitivity and spectral response of the
photoelectric detector selected are 0.55 A/W and 0.011 A/(W/cm?), respectively. With this combination
of parameters, each detection lens comprises a spectral filter and a photoelectric detector with a
simple light path. This guarantees good reliability of the transmitted signal and makes integration
and transplantation convenient. The design thus tackles some of the disadvantages of previous
crop-growth sensors (complex light paths and heavy use of optical devices). The sensor is packaged
within a cylindrical aluminum case, which is highly appropriate for field application. The measurement
principles underlying operation of the multispectral sensor are shown in Figure 3.

Sensor 1

Sensor 2

Figure 3. Measurement principles of the multispectral crop-growth sensor. Note: Sensor 1 and sensor 2
represent the solar sensor and two-band sensor, respectively.

As already mentioned, the maximum load of the UAV is 1.2 kg. In order to ensure that the UAV
equipped with the multispectral crop-growth sensor is capable of stable flight, the sensor design
should be as lightweight as possible. On the premise of retaining the optical structure of the sensor,
synthetic fiber (nylon) was adopted in place of the aluminum package holding the sensor to greatly
reduce the weight of the sensor (the weight of the improved sensor dropped from 142.7 to 11.34 g,
which clearly meets the maximum payload requirements of the DJI Phantom UAV). The structure of
the improved sensor is illustrated in Figure 4.
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Figure 4. The lightweight structure used for the multispectral crop growth sensor.

2.3.2. Design of the Sensor Support

The sensor support is used to install the two-band sensor of the multispectral crop-growth sensor
to measure the Lambertian reflection intensity of the crop canopy. To ensure measurement accuracy
and sensitivity, the working height was set to 1.0-1.2 m above the crop canopy. The canopy also
needs to be relatively static. At such low altitudes, the strong down-wash flow fields produced by the
spiral wings of the UAV may be expected to affect the sensing process. In particular, the leaves of the
canopy can be expected to be displaced towards a common direction under the effects of the airflow
field, thus showing Fresnel reflection characteristics and damaging the original Lambertian reflection
characteristics of the canopy structure. As a result, the multispectral crop-growth sensor would be
unable to correctly obtain the bidirectional reflectance of the canopy spectra. Therefore, the spatial
distribution of the down-wash flow field generated by the UAV on the surface of the crop canopy
needs to be analyzed. The aim is to determine the optimum length of the sensor support and position
of installation of the two-band sensor on the support to ensure that the working field of view of the
two-band sensor with respect to the crop canopy is not disturbed by the airflow to a significant extent.

In recent years, with the rapid development of computer technologies and fluid turbulence
models, computational fluid dynamics (CFD) has gradually become a powerful tool for studying
the distribution of airflow fields associated with UAVs [37,38]. Here, we use a 3D CFD method of
numerical simulation to analyze the distribution of the down-wash flow fields produced by the UAV’s
rotors on the surface of the crop canopy. The results are used to propose an optimization scheme for
the design of the sensor support.

Model Establishment
(1) Physical model of the DJI Phantom UAV

The situation is complicated by the irregular nature of the surfaces of the UAV’s rotors, making it
difficult to measure linear data. A 3D scanner was therefore used to scan the rotors in order to obtain a
uniform point diagram of a rotor blade. By utilizing reverse-engineering software (Imageware, Siemens,
Berlin, Germany), the uniform point diagram was then substantialized and the boundaries trimmed to
convert it into a blade entity model. Finally, the whole UAV body was modeled (based on measured
data) using appropriate modeling software (Creo, Parametric Technology Corporation, MA, USA),
and combined with the scanned blade entity, thus obtaining a 3D entity model of the UAV (Figure 5).

(2) The aerodynamic model

When the UAV hovers, the down-wash airflow exhibits 3D turbulence. The airflow can be
described using a series of mass, momentum, and energy conservation equations. We used the
standard k- model to solve this problem, resulting in a control equation which can be expressed in the
following common form [39,40]:
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where ¢, I', and S represent the generalized variable, diffusion coefficient, and source term, respectively,
and u, v, and w indicate the speeds in the x, y, and z directions (m/s), respectively. Furthermore, p and
t stand for the density (kg/m?) and time (s), respectively.

(a)

(b)

Figure 5. 3D models used for the DJI phantom UAV. (a) Rotor blade; (b) UAV.

Numerical Simulations

(1) Grid divisions

The flow fields are stable when the UAV is hovering and the whole of the circumferential flow
field tends to be consistent. Therefore, the flow fields of the hovering UAV rotor were simulated
as a cylindrical flow field. The calculation domain of this flow field is divided into two parts: an
inner, rotating flow field due to the four rotors, and an outer, static flow field which includes the UAV
body and airflow fields. The diameter and height of the static field are 1.2 and 1.85 m, respectively,
while those of the rotating field are 27.5 cm and 1.8 cm. The UAV rotors are taken to be 1.3 m from
the ground.

The interfaces between the rotating regions in the rotating inner field are axially averaged adopting
multiple reference frames, so as to make the values of the flow fields in the circumferential position be
identically the same at the same elevation. The interfaces of the rotating regions are rotating walls and
the rotating flow field rotates at the rated speed of the UAV rotors in the direction determined by the
right-hand rule.

Due to the complex 3D shape of the UAV structure, it is difficult to divide the whole model into
structured grids. Thus, we assume that the structure can be reasonably divided into unstructured
grids and use the integrated computer engineering and manufacturing code for computational fluid
dynamics (ICEM-CFD) to divide the body-fitted grids of the model. Furthermore, the high rotation
speeds of the rotor blades leads to a large airflow speed gradient in the inner flow field. However, the
outer flow field is only slightly affected. Based on this, dense and sparse grids were generated for the
rotor flow field and outer flow field, respectively. In order to improve the accuracy and completeness
of data transmission at the interfaces, the grid numbers in the interface regions should be as close as
possible. The grid division used is demonstrated in Figure 6.
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(@) (b)

Figure 6. The grid divisions of the flow fields. (a) Grid division of the outer flow field; (b) Grid division
of the inner flow field.

(2) Boundary conditions

As the UAV is to hover in a flow field corresponding to open space, the outer boundary of
the cylinder is set as open. The pressure boundary condition is set to one atmosphere and air at
25° is adopted as the fluid. The rotors are rotating bodies and rotate at a given speed (960 r/min).
The interface between the two fields is set as the interface and the reference pressure is taken to be
one atmosphere. The roughness of the gas boundary surface is assumed to be zero (i.e., wall without
slip). A second-order upwind scheme is utilized for the momentum, turbulent energy, and dissipation
equations. To improve the accuracy of the calculations, the residual error is set to have an order of
magnitude of 1074,

Calculation Results and Analysis

Using the parameters set above, CFX software was used for the numerical calculation and the
post-processing modules of the CFX package were utilized for display purposes. Figure 7 shows the
distribution of the velocity vectors on the axial section of the down-wash flow fields when the UAV
rotors are 1.3 m above the canopy.

Figure 7. Velocity vector distribution for the down-wash flow fields on the Z-Y section.
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Figure 8 illustrates the airflow velocities in horizontal planes 0.4, 0.6, 0.8, 1.0, and 1.2 m below
the rotors.

(0)

Figure 8. Cont.
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(e)

Figure 8. Air velocities in given horizontal planes below the rotors. (a) 0.4 m; (b) 0.6 m; (c) 0.8 m;
(d) 1.0 m; (e) 1.2 m.

It can be seen from Figure 7 that the air above the rotors shrinks and sinks under the rotating
action of the high-speed rotors. On the one hand, the air flow is thrown outwards by the high-speed
rotors. On the other hand, the flow is squeezed by the rotors and forms high-speed flowing regions
adjacent to the rotors. The airflow here has high velocity with many axial components. Moreover, the
airflow in the down-wash flow fields is concentrated under the rotors and the airflow velocity below
the UAV abdomen is significantly slower. After reaching the crop canopy, the airflow spreads around
and its velocity falls.

As shown in Figure 8, the flow fields in horizontal planes with different elevations below the
rotors show basically consistent forms and movement behavior. Because the high-speed rotors affect
the down-wash flow fields, a trail is formed in the circumferential direction whose speed gradually
decreases. The velocity fields are symmetrical around the central axis and the greater the distance
to the central axis, the smaller are the values and gradients of the velocity. The airflow velocities in
horizontal surfaces below the rotors gradually drop with increasing vertical distance from the rotors.
The maximum speed is 1.20 m/s in the plane 0.4 m from the rotors. This drops to 0.87 m/s in that
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1.2 m from the rotors. Furthermore, the area of action of the airflow gradually increases and the
maximum width of the flow field is 0.60 m in the horizontal plane 1.2 m from the rotors. Considering
the constraints placed on the balance and stability of the UAV, the sensor support should be installed
passing through the geometrical center of the UAV abdomen and the solar sensor and two-band sensor
should be installed at the two ends of the support. As the field angle of the multispectral crop-growth
sensor is 27°, when the operating altitude of the sensor is 1.2 m, the field radius is 0.29 m. To avoid the
down-wash flow fields disturbing the crop canopy (considering the maximum width of the down-wash
flow fields, the size of the UAV body, and field radius of the sensor), the designed length of the sensor
support is set to 1.5 m, as shown in Figure 9.

le

0.75m

Figure 9. The UAV-borne crop-growth sensor. (a) Installation of sensor support; (b) Two-band sensor.

2.3.3. Sensor Signal Processing Circuit

The signal processing circuit carries out photoelectric conversion, amplification, and filtering
of the optical information output by the solar sensor and two-band sensor. Then, the characteristic
spectral information must be extracted and wirelessly transmitted to the ground-based controller.
The circuit therefore includes a photoelectric conversion circuit, an amplifier circuit, a filter and
pulse-shaping circuit, and a wireless communication circuit. The radiation of the crop canopy are
collected by the two-band sensor and transformed from photonic energy to electrical energy using
a photodiode. However, after photoelectric conversion, the electrical signal is very weak. To ensure
that the system has high stability and is not likely to be self-excited when the conditioning circuit has
a high gain, we designed a T-type amplifier circuit with integral resistance to amplify and filter the
electrical signals in this study. The circuit’s principles are displayed in Figure 10.

2.4. Ground-Based Data Processor

The ground-based data processor is mainly used to collect and process the signals output by
the solar sensor and two-band sensor and to control the two sensors by configuring the wireless
communication modules. The processor also calculates certain vegetation indices (RVI and NDVI)
and obtains the major growth indices (including LNA, LAI, and LDW) by coupling the crop-growth
parameters with the spectral monitoring model. Furthermore, by controlling press keys, the results are
displayed on a liquid-crystal display (LCD).
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Figure 10. Principles used in the sensor signal processing circuit.

2.4.1. Hardware System

The hardware mainly consists of a controller module, a signal collection module for the solar
sensor, a wireless communication module, a key detection module, an LCD display module, and a
system power module. An Atmega328P-AU single-chip microcomputer (Atmel, San Jose, CA, USA)
was used as the processing core. The controller module receives and processes the data from the solar
sensor through a driving analog I/O port. In addition, it drives the digital I/O port to control the
key detection module and the LCD display module. Furthermore, by driving the TTL serial ports,
the XCBeep wireless communication module can be controlled to receive and send the data collected
by the two-band sensor. The communication states and fault test results can be displayed using a
light-emitting diode (LED) and configured by the I/O data port of the single-chip microcomputer.
The overall connection structure of the hardware system is illustrated in Figure 11.

System power module

1l

Key detection module

P -
- Digital I/O
Wireless TTL serial port 4 L Analog /O

communication
e — ——)

Digital /O Controller module Digital 1O

Communication <: :> Communication
fault indication < state indication

e
Digital I/O

Solar sensor

~

e’

LCD display module

Figure 11. The overall connection structure of the hardware system.
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2.4.2. Software System

The software system is comprised of three modules: a program initialization module, a resource
control module for the I/O port, and an application program. The program initialization module was
used for power-on self-testing and initialization of the Atmega328P-AU single-chip microcomputer
and initialization of the XCBeep wireless communication module (Xiangce Intelligent Technology
Co., Ltd., Nanjing, China) and the LCD. The resource control module of the I/O port was utilized for
key detection and function switching, LED indication control, and the LCD display. The application
program module was employed to collect radiation from the solar and the crop canopy, preprocess the
spectral information, calculate the reflectance of the crop canopy, and couple the vegetation indices and
crop-growth model. The software system as a whole adopts a modular design, which is convenient for
debugging, transplanting, and future upgrades.

The ground-based controller has function keys in three modes: measurement, calculation, and
reset. In the measurement mode, the Atmega328P-AU single-chip microcomputer receives information
from the solar sensor through the analog I/O port. The control command “Receiving” is sent to the
XCBeep wireless communication module through the serial port to communicate with the two-band
sensor. Received spectral information is preprocessed and displayed in real-time. The information
obtained by the two-band sensor is transmitted to the ground-based controller (whereupon the
LED indicating the communication state flickers at a frequency of 1 kHz). After data transmission,
the LED remains lit. When data packets are dropped and lost in transmission, the LED indicating
communication faults flickers at a frequency of 1 kHz. At this time, the measurement key needs to be
pressed to recollect data from the two-band sensor.

In the calculation mode, the Atmega328P-AU single-chip microcomputer calculates the major
growth indices including the canopy’s spectral reflection, the vegetation’s RVI and NDVI values, which
are then coupled with the crop-growth monitoring model to calculate the LNA and LAI of the crops.
These indices are displayed on the LCD. In the reset mode, the resources of the controller and the
external I/O ports are restored to their initial states.

3. Tests and Analysis of Results

3.1. Test Design

Systematic field tests were conducted in experimental wheat fields in Sihong County, Sugian City,
Jiangsu Province, China from March to May 2016. The test varieties Ningmai 13 and Huaimai 20
were fertilized using five levels of nitrogen application, namely, Ny (0 kg/hm?), N (90 kg/hm?),
N (180 kg/hm?), N3 (270 kg/hm?), and Ny (360 kg/hm?), each of which was repeated three times.
Each separate plot covered an area of 42 m? (6 m x 7 m plots). Moreover, 135 kg/hm? of potash
fertilizer (K,O) was applied so the ratio of nitrogenous to potash fertilizers was 5:5. The basic fertilizers
were applied before seeding, while the topdressing fertilizers were fertilized at the jointing stage.
In addition, 105 kg/hm? of P,Os base fertilizer was used for one time during soil preparation. The other
cultivation and management measures undertaken were the same as those commonly employed in
high-yield fields.

3.2. Test Methods

3.2.1. UAV-Borne Crop-Growth Sensor Measurements at Different Elevations

Before flying the UAV, static tests were carried out. This was done by holding the UAV-borne
crop-growth sensor at different elevations to verify the detection performance of the sensor after
making the improvement in system weight. The static tests made using the sensor in hand-held mode
remove the potential effects of several factors including the shake of the UAV body and rotor wind
fields. Tests were carried out at the tillering and jointing stages from 10:00 to 14:00 on sunny days.
For each test, the hand-held UAV-borne crop-growth sensor and a commercial ASD spectrometer were
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simultaneously employed to determine the reflection spectra of the canopy of the wheat. For these
measurements, the vertical distance between the two-band sensor and the wheat canopy was either
0.4 or 1.0 m. Three locations in each separate region were measured four times and the average values
computed. Then, the NDVI and RVI values determined using the ASD spectrometer at 720 and 810 nm
and those output from the UAV-borne crop-growth sensor were recorded.

Afterwards, the crop-growth sensor was fixed onto the UAV for the next set of measurements.
The initial flight tests made using the UAV /sensor combination were intended to verify the immunity
of the designed UAV-borne sensor to the effects of vibration encountered during the flight and
disturbance created by the down-wash wind fields from rotors. At the jointing, booting, and heading
stages, the reflection spectra of the canopy were dynamically tested at different elevations using the
UAV-borne crop-growth sensor from 10:00 to 14:00 on sunny days in the absence of wind. In these
tests, the flying height of the UAV was adjusted so that the vertical distance from the two-band sensor
to the wheat canopy was 0.4, 0.7, 1.0, and 1.2 m. At each height, the UAV was made to hover by
keeping its rotors rotating at the rated speed. In this way, the NDVI and RVI values as output by
the UAV-borne crop-growth sensor were recorded at the different elevations used. The field tests are
shown in Figure 12.

Figure 12. Field tests based on UAV-borne crop-growth monitoring system.

3.2.2. Performance Tests

Performance tests were conducted between 10:00 and 14:00 on sunny (windless) days at the
tillering, jointing, booting, and heading stages of wheat growth. During the tests, the UAV-borne
crop-growth monitoring system was used to measure reflection spectra of the wheat canopies. As a
further check, the ASD spectrometer was simultaneously used to detect the reflection spectra of
the canopies. The flight height of the UAV was adjusted so that the vertical distance between the
two-band sensor and wheat canopy being measured was 1.0 m. Three points in each separate region
were measured with four repetitions to permit more representative average values to be calculated.
The NDVI and RVI values measured using the ASD spectrometer at 720 and 810 nm and the values
output by the UAV-borne crop-growth sensor were recorded. At the same time that the spectral
measurements were made, 20 single stems were selected from each region and separated according
to their organs in the laboratory. A leaf area meter (model: LAI3000C) was used to measure the leaf
area and thereby the LAI of the whole field region could be calculated. Afterwards, the samples were
heated to 105 °C for 30 min (as green-killing treatment) and then dried to constant weight at 80 °C.
Thus, the LDW could be determined. After smashing the samples, the Kjeldahl nitrogen method was
used to determine their LNA values.
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3.3. Data Analysis

The data from the tests were statistically analyzed by using appropriate software (Excel 2010).
The correlation of the model was evaluated by calculating the root mean square errors (RMSEs)
and determination coefficients. The stability of the method was assessed through the variances and
variation coefficients derived. The necessary formulas required for the calculations are:
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In Equations (2)—(5), x;, , s, CV, d;, and RMSE represent the ith measured value, mean value,
standard deviation, deviation coefficient, difference between the ith measured and ith true value, and
the root mean square error, respectively.

3.4. Results and Discussion

3.4.1. Elevation Test Results

Figure 13 shows the NDVI values measured when the hand-held crop-growth sensor is 0.4 and
1.0 m from canopy for wheat at its tillering and jointing stages. It can be seen that the variation
exhibited by the NDVI curves is consistent at both of the elevations used. By calculating the deviation
coefficients, the stability variance of the NDVI values, as measured by the sensor at the two different
elevations, is found to be 0.03. The maximum deviation coefficient is 3.78%, so the difference is small.
This is a good indication of the high stability of the weight-improved sensor over its intended range of
operating altitudes.

The RVI and NDVI values measured by the ASD spectrometer and the UAV-borne crop-growth
sensor at an elevation of 1 m (relative to the canopy) were fitted to a one-variable linear function using
a least-squares fitting procedure (Figure 14).

The figure shows that a good linear relationship exists between the RVI and NDVI values output
by the UAV-borne crop-growth sensor and the ASD spectrometer. The coefficients are determined to be
0.82 and 0.77 and the RMSEs are 0.17 and 0.05, respectively. Thus, the measurements made using the
lightweight sensor can be seen to have a high level of precision. Figure 15 displays the NDVI values
measured when the UAV hovered at 0.4, 0.7, 1.0, and 1.2 m over the canopy (by adjusting to the rated
rotation) at the jointing, booting, and heading stages of the wheat. As can be seen from the figure, the
changes observed in the NDVI values are consistent at the different measurement elevations employed.
The deviation coefficients were then calculated. The variance of stability for the NDVI values measured
using the sensor at different elevations is 0.0034 and the maximum deviation coefficient is 5.30%,
so the differences are small. This suggests that the sensor installation position is reasonable, and that
the effects on the sensor of the UAV vibrations and down-wash flow fields are small. Furthermore,
the system has good dynamic stability over the range of operating altitudes of the sensor.
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Figure 13. NDVI values measured using the hand-held sensor at different elevations. (a) Tillering
stage; (b) Jointing stage; (¢) Deviation coefficients of the NDVI values measured.
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The RVI and NDVI values measured 1 m from the canopy by the ASD spectrometer and
UAV-borne crop-growth sensor were also fitted to a one-variable linear polynomial using least-squares
regression (Figure 16). The figure shows there is a good linear relationship between the RVI and
NDVI values output by the UAV-borne crop-growth sensor and those from the ASD spectrometer. The
coefficients are determined to be 0.74 and 0.75 and the RMSEs are 0.18 and 0.04, respectively. This
shows that the sensor support designed according to the numerical simulation of the down-wash flow
fields can effectively avoid disturbance from the wind fields. In addition, the UAV-borne crop-growth
sensor can be used to make dynamic measurements with high precision.
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Figure 14. Fitting curves for the hand-held sensor and ASD data. (a) NDVI; (b) RVI.
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3.4.2. Performance Test Results for the UAV-Borne Monitoring System

As shown in Figure 17, the UAV-borne crop-growth monitoring system can accurately reflect
the changes in the wheat growth indices (the measured RVI and NDVI values show good linear
relationships with LNA, LAI, and LDW). The determination coefficients R? of the RVI values with
respect to LNA, LAI, and LDW are 0.63, 0.69, and 0.66, and the RMSEs are 1.42, 1.02, and 3.09
respectively. Similarly, the determination coefficients R? of the NDVI values with respect to LNA,
LAI, and LDW are 0.60, 0.65, and 0.62 and the RMSEs are 1.44, 1.01 and 3.01, respectively. The fitting
equations thus established were subsequently stored in the control chips of the ground-based data
processor. The system thus calibrated is capable of quickly, non-destructively, and online quantitatively
analyzing the growth information subsequently collected on the wheat.

The research developed a UAV-borne crop-growth monitoring system for on-line, and real-time,
acquisition of continuous, high-throughput, information about crop growth. Much attention was
paid to the design of the matching UAV-borne crop-growth sensor and the crop-growth monitoring
system for UAVs. For the former, the key point in the design is to ensure that the working field of
view of the downward-looking optical sensor is crop canopies without airflow disturbance. Through
CFD simulations, spatial distributions were obtained for the UAV down-wash flow fields on the
surface of the crop canopy. Influenced by the high-speed rotation of the rotors, the down-wash
flow fields form a trail in the circumferential direction whose speed gradually decreases. When
the UAV is 1.2 m from the crop canopy, the maximum velocity is 0.87 m/s on the surface of the
crop canopy and the maximum width of the flow field is 0.60 m. Owing to the field angle of the
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multispectral crop-growth sensor being 27°, the field radius is about 0.29 m when the UAV hovers at
1.2 m above the canopy. In addition, considering the maximum width of the down-wash flow fields,
the size of the UAV body, and field radius of the sensor, the sensor support was designed to be 1.5 m
long, with which the multispectral crop-growth sensor was integrated with the UAV. It overcomes
shortcomings of hand-held multispectral crop-growth sensors such as their small monitoring region,
labour-intensity, and discontinuous monitoring: it also improves the test efficiency. As for the
UAV-borne crop-growth monitoring system, it needs to be designed to be capable of timeous processing
and on-line interpretation of the acquired data. To this end, wireless communication technology is
used to transmit information obtained by the UAV-borne crop-growth sensor to the ground-based
data processor in real-time. In addition, with the application of a single-chip microcomputer, the
information obtained by the sensor and the crop-growth monitoring model is integrated, which
overcomes the hysteresis induced by off-line interpretation of existing UAV-borne remote sensing data.

Meanwhile, this new UAV-borne crop-growth monitoring sensor can be operated at
two wavelengths, which remains insulfficient for the types of vegetation indices required. Therefore
the authors plan to develop crop-growth monitoring sensors capable of working at a greater number
of wavelengths in future studies, so as to establish more vegetation indices able to predict crop-growth
indices and therefore improve prediction accuracy and stability.
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Figure 17. The spectral model for the UAV-borne crop-growth monitoring system. (a) LNA-RVI/NDVI
fitting curve; (b) LAI-RVI/NDVI fitting curve; (c) LDW-RVI/NDVI fitting curve.

4. Conclusions

(1) The DJI Phantom quad-rotor UAV can be used as an operating platform to create a matched
crop-growth monitoring system. This complete system combines the UAV platform, a UAV-borne
crop-growth sensor, and a ground-based data processor. The system can continuously and conveniently
obtain the NDVI and RVI values of the crop canopy online (as well as growth indices including LNA,
LAI, and LDW) with high throughput and is not limited by the terrain.

(2) Numerical CFD simulations were conducted to investigate the spatial distribution of the
down-wash flow fields from the DJI phantom quad-rotor UAV at the surface of the crop canopy.
The results show that the airflow is mainly distributed underneath the rotors, and the speed of the
airflow below the UAV body is obviously slower. On reaching the crop canopy, the airflow spreads
around and its velocity falls. The airflow velocity in horizontal planes below the rotors gradually
decreases as the vertical distance from the rotors increases. The maximum velocity is 1.2 m/s at 0.4 m
from the rotors and 0.87 m/s at 1.2 m from the rotors. With increasing vertical distance from the rotors,
the airflow area gradually increases. The maximum width of the flow field is 0.60 m in the plane 1.2 m
from the rotors. On this basis, the length of the sensor support was chosen to be 1.5 m. The solar sensor
and two-band sensors were fixed onto the two ends of the support, and this is installed on the UAV so
that it passes through the geometrical center of the UAV’s abdomen. This arrangement can effectively
avoid the down-wash flow fields below the UAV significantly affecting measurement of the reflection
spectra of the crop canopy.

(3) The improved, lightweight UAV-borne crop-growth sensor showed good stability and
measurement precision over the range of operating altitudes required of the sensor. When measuring
at elevations 0.4 and 1.0 m from the wheat canopy, the stability variance of the NDVI values output
by the sensor was determined to be 0.03 and the maximum deviation coefficient was 3.78%. The RVI
and NDVI values output by the sensor vary linearly with those obtained by an ASD spectrometer
(determination coefficients of 0.82 and 0.77 and RMSEs of 0.17 and 0.05, respectively). Tests of the
UAV-borne sensor and UAV show that the designed size and installation position of the sensor support
are reasonable and that the effects of in-flight vibration and down-wash are small. Over the operating
range of altitudes of the sensor, the monitoring system demonstrated high dynamic stability and
measurement precision. When the UAV hovered at 0.4-1.2 m above the canopy (at its rated rotor
speed), the stability variance of the NDVI values output by the sensor was determined to be 0.0034
and the maximum deviation coefficient was 5.30%. In addition, the RVI and NDVI values output by

36



Sensors 2017, 17, 502

the sensor are linearly related to those obtained by the ASD spectrometer (determination coefficients
of 0.74 and 0.75, and RMSEs of 0.18 and 0.04, respectively).

(4) The UAV-borne crop-growth sensor performed well when it came to monitoring the growth
indices of wheat. The determination coefficients (R?) of the linear fits between the output RVI values
and LNA, LAI, and LDW values were 0.63, 0.69, and 0.66, respectively, and the RMSEs were 1.42,
1.02 and 3.09, respectively. The equivalent figures for the output NDVI values are 0.60, 0.65, and 0.62
(for LNA, LAI and LDW, respectively), and the RMSEs are 1.44, 1.01 and 3.01, respectively.
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Abstract: Floods are natural disasters which cause the most economic damage at the global level.
Therefore, flood monitoring and damage estimation are very important for the population, authorities
and insurance companies. The paper proposes an original solution, based on a hybrid network
and complex image processing, to this problem. As first novelty, a multilevel system, with two
components, terrestrial and aerial, was proposed and designed by the authors as support for
image acquisition from a delimited region. The terrestrial component contains a Ground Control
Station, as a coordinator at distance, which communicates via the internet with more Ground Data
Terminals, as a fixed nodes network for data acquisition and communication. The aerial component
contains mobile nodes—fixed wing type UAVs. In order to evaluate flood damage, two tasks must
be accomplished by the network: area coverage and image processing. The second novelty of the
paper consists of texture analysis in a deep neural network, taking into account new criteria for
feature selection and patch classification. Color and spatial information extracted from chromatic
co-occurrence matrix and mass fractal dimension were used as well. Finally, the experimental results
in a real mission demonstrate the validity of the proposed methodologies and the performances of
the algorithms.

Keywords: unmanned aerial vehicle; path planning; flood detection; feature selection; image
processing; image segmentation; texture analysis

1. Introduction

In the repertory of natural disasters, floods often cause the greatest material damage [1].
For example, floods in 2013 constituted 31% of the economic losses resulting from natural disasters [2].
Therefore, the forecasting, prevention, detection, monitoring, and flood damage assessment are of
paramount importance for public authorities and people. Because early warning is essential for limiting
the loss of life and property damage, many works examine real time flood detection systems [1,34].
For example, the integration of several existing technologies was used in Taiwan to develop a coastal
flooding warning system [3].

The problem that we are solving in this paper is the evaluation of small flooded areas in rural
zones with the aid of a cheap solution based on processing of images taken by the unmanned aerial
system designed by the authors. The result is necessary to evaluate the post-flood damage by the local
authorities (to determine relief funds) and assurance companies (to determine payments). Even small
flooded areas are investigated and classified. For this purpose two sub-problems must be solved. First
is the optimal coverage of the area to be monitored, from the point of view of energy consumption
(a limiting factor, especially if the UAV is electrically powered through a battery) and trajectory
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length. The second sub-problem is the detection and estimation in terms of flooded areas of the
covered regions.

For the purpose of flood detection and monitoring, different sensors have been used: optical
sensors, multi-spectral sensors and synthetic aperture radars (SARs). Satellite remote sensing imagery
offers less spatial and temporal resolution than aircraft and UAVs, but a larger field of view. It was
successfully used on large-scale geographic analysis on the flood overflow area. For example, images
from Landsat Thematic Mapper/Enhanced Thematic Mapper Plus (TM/ETM+) sensors were used to
monitor the floods near Lena River (Siberia) with a spatial resolution of 30 m and a temporal resolution
of 2.6 days [5]. On the other hand satellite images in the visible and near infrared spectrum are highly
dependent on cloud conditions whereas radar transmitters and receivers can be used independently of
weather conditions [6]. Based on the surface water extent, measured with a microwave remote sensor
(Radiometer for Earth Observation System AMSR-E and AMSR2), the authors in [7] implemented
a method for detecting floods at large scale. In [8] the authors propose to combine aerial thermal data
with high resolution RGB images in order to quickly and accurately identify the sub fluvial springs of
a stream. Both cameras, thermal and action, are installed on a rotor platform which is able to support
more weight, but has a smaller surveillance area.

Combining information from space, aerial and ground [6], an integrated system using different
technologies (remote sensing, the Global Navigation Satellite System (GNSS), data transmission, and
image processing) was implemented in China for monitoring and evaluating flood disasters. Because of
the high cost, aircrafts use SAR only for serious and urgent flood cases. The spatial resolution is of
3 m at 9 km swath and the monitoring is in real time, independent of weather. Among the methods
for flood detection, the interpretation of optical remote images is widely used and also gives the best
results concerning price and accuracy.

In order to detect the flood by image analysis, three solutions usually appear in the literature:
(a) use of images from satellites [9-11]; (b) use of images from fixed cameras on the ground [4,12,13];
and (c) use of images from aircrafts or UAVs [14].

The Advanced Land Observing Satellite Phased Array type L-band Synthetic Aperture Radar
(ALOS PALSAR) satellite [11] provides multi-temporal data which maps large zones of flood via
a classification into flood and non-flood areas. Based on this classification and on images taken at
pre-flood and post-flood time instants, information about the flooding hazard is provided. In general
the satellite applications for flood detection, like those presented in [10] from Spot-5 imagery,
or in [15] by WorldView-2 satellite imagery, are based on high spatial resolution images and have the
disadvantage of being high-cost solutions, hence less approachable for public use. In addition, these
solutions have the disadvantage of being sensitive to weather patterns (clouds or other obscuring
weather features will render them useless).

An alternative approach for monitoring flood disasters is the system of fixed cameras proposed
in [12] which is based on the dynamic detection of floods via intrusions of objects in the video frames.
These objects are separated by segmentation from the rest in the image.

To monitor and evaluate the flood disasters, concatenated images, created by photomosaic
generation, can be useful. Thus, the gaps or duplications of flooded regions, in different analyzed
images, are avoided. In this case, the UAV solution is a cheaper and more flexible one which can ensure
superior image resolution even under adverse weather conditions. In this direction, the authors in [16]
developed a solution for detection and evaluation of the dynamic evolution of the flood based on
a collaborative team of UAVs. More recently a multicopter-based photogrammetry procedure was used
to evaluate the effect of an earthquake on complex architectural landscapes [17]. Also, Feng et al. [18]
used a UAV for urban flood monitoring and showed that such platforms can provide accurate flood
maps. In their proposed method, the authors show how the acquired images are ortho-rectified and
combined into a single image. Subsequently, the flood detection is realized through feature extraction
from gray co-occurrence matrix and forest tree classifier methods. Boccardo et al. [19] compare the
main advantages/disadvantages of fixed-wing UAV versus rotor platforms for area surveillance.
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So, rotor platforms can be used only for very small areas or isolated buildings, while for small and
medium areas fixed-wing UAVs are recommended. For large areas, UAV teams with pre-positioned
stand-by can successfully perform the aerial surveillance of the disaster affected areas. Systems using
UAVs are able to operate at lower altitude and to acquire multi-view, repetitive images with high
resolutions [20]. These systems (fixed-wing type) are used to provide large image blocks to perform
an image-based registration on multi-temporal datasets.

Control of a team of collaborative agents (UAVs in our case) is challenging, especially so under
external perturbations, loss or delay of communication, etc. Therefore, the usual approach is to have
a hierarchical control structure: the lower-level controller (the “autopilot” implemented on-board
tracks a given reference) and the higher-level controller (“mission flight management”) provides
a reference trajectory [21].

Any mission has specific design requirements for the trajectory generation procedure [22,23].
Foremost in observation missions (surveillance, photogrammetry, target tracking, etc.) is to maintain
a constant velocity or to allow variation within a narrow band (such that the photos taken cover
uniformly the area under observation [24]). Whenever a team of UAVs is considered, additional issues
appear (e.g., collision and avoidance constraints [25]). Not in the least, the trajectory has to be feasible
(in the sense that it respects the UAV dynamics) Additional limitations on trajectory length, obstacle
and collision avoidance are also encountered.

A promising framework is the flat representation of dynamical systems [26]. This approach
expresses the states and inputs independently though a so-called flat output (which “hides” the
underlying link between the states and inputs). Relatively recent work, has concentrated on providing
flat characterizations which handle well numerical issues and have a manageable complexity [27,28].
In this sense, B-spline functions are an interesting choice: their geometrical properties lead to a good
flat output parametrization and allow construct optimization problems which integrate costs and
constraints in order to obtain the desired results [29]. Assuming that all low-level control loops are
already designed such that a predefined trajectory is followed accurately and the payload is stabilized,
we can reduce the path generation problem to an optimization problem where various constraints,
parameters and costs are taken into account. To conclude, a flat representation which accounts for
the low-level dynamics of the autopilot (approximated by first and second-order dynamics) and uses
the properties of B-spline basis functions will provide a comprehensive and flexible framework [30].
In particular, it is possible to penalize trajectory length and energy costs, guarantee obstacle avoidance
and pass through or within a pre-specified distance from a priori given way-points.

In order to detect and segment the flooded regions from the acquired images, texture and
color analysis can be employed. Texture analysis techniques are a subject extensively studied in
literature [31-34], but all suggested solutions are tailored to the specific context of the application
considered. Moreover, there is a substantial interest in studying methods using the grey level
co-occurrence matrix for texture characterization, but extremely little work is done when multi-spectral
(color) co-occurrence is concerned [33,34]. All the above image acquisition strategies impose strict
constraints on the photographs’ capture during the UAV mission, i.e., photographs have to be captured:
at a constant height (low/medium/high—the classification is relative, depending on context and
application); such that there is a predefined overlap between neighboring photographs and there are
no gaps in the area of interest (such that a photo-mosaiced image covering the entire area is computed).
While there are many specialized software applications which can merge photographs with partial
overlap to generate a continuous mapping and detect features of interest, there are still open issues in
the generation of the flight path to be followed by a UAV [22]. This apparently simple problem has
a number of intricacies: turn maneuvers of the UAV should not “cut” into the shape of the area under
observation, maximal distance between consecutive path lines has to be respected and, not in the least,
the UAV operational costs (energy, time of travel) should be minimized [23,24].

In this paper, we implemented new solutions concerning the system concept, path generation and
image segmentation. As first novelty, we propose a multilevel system, with two components, terrestrial
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and aerial, as support for image acquisition and transmission from a specified region. The terrestrial
component comprises a Ground Control Station (GCS, as coordinator or master node at distance), more
Ground Data Terminals (GDTs, as a fixed nodes network for data acquisition and transmission), and
a launcher. The aerial component contains mobile nodes (UAV—fixed wing type). The communication
is established via internet (GDTs—GCS) or direct radio (in rest). This hybrid network has the advantage
of extending operational area. The fixed-wing type UAV for image acquisition was developed by the
authors in the Multisensory Robotic System for Aerial Monitoring of Critical Infrastructures (MUROS)
project [35] funded by the Romanian National Research Program Space Technology and Advanced
Research (STAR) from the Romanian Space Agency (ROSA) [36]. The proposed system is completely
autonomous, apart from the take-off stage where a human operator is needed, and can be monitored
and controlled at distance from the operational field. The area to be monitored is covered with the aid
of a trajectory designed by a suitable optimization problem while the acquired images are analyzed
in order to detect and assess the extent of floods. The second novelty refers to previous trajectory
design implementations. So, the main contributions are: (a) the full dynamics (GCS + autopilot
levels)—described in the flat representation and (b) the area under surveillance—partitioned between
UAVs, such that the workload is balanced and collision with another UAV is impossible. The third
novelty is a new solution for detection and quantitative evaluation of flooded small areas, based on the
gliding box algorithm and local image processing. The advantages of this solution are the following:
lower cost compared to a manned aircraft or a satellite solution, better resolution than a satellite
solution, and the possibility of operating on cloudy conditions. The proposed method simultaneously
uses pixel distribution and color information taking into account the chromatic co-occurrence matrix
and mass fractal dimension on color components. The features used are not fixed as in [18] but
rather they are being adapted to each application and environment condition. Results of the feature
selection (especially associated with color channels) eliminate the temporal (colors of vegetation) and
geographical influences (soil and vegetation colors, buildings and infrastructures).

The rest of the paper is organized as follows: in Section 2, first, the model of the UAV system
based on hybrid wireless network is presented and second, the methodology and algorithms for image
processing with the aim of flooded area detection, segmentation and estimation are described and
implemented. The results obtained from images acquired with a fixed-wing UAV, designed by a team
including the authors, are reported and analyzed in Section 3. For image acquisition, a path generated
by the method introduced in Section 2 is used. Finally, the conclusions and discussions are reported in
Section 4 and, respectively, Section 5.

2. Instruments and Methods

It is difficult and expensive to obtain precise data of the flood size within a certain small area
from aerial photographs. As it was stated in Section 1, in this paper we propose a cheap and accurate
solution to estimate the size of the dispersed small flooded areas. The solution is based on image
segmentation obtained by a hybrid aerial—ground network integrated in internet. Three important
sides are investigated: (a) the configuration of the network (which was partially implemented in
the MUROS project [35] and will be finalized in SIMUL project [36]); (b) the trajectory control; and
(c) the image processing for flooded area detection and estimation. The entire system is monitored and
controlled remotely by GCS, via the Internet.

2.1. UAV System

The proposed system is configured as a hybrid network both with fixed nodes (terrestrial part)
and mobile nodes (aerial part). The terrestrial part consists of the following components, which
are considered at fixed locations during the mission (Figure 1): Ground Data Terminals (GDTs),
Launchers (Ls), Ground Control Station (GCS) and Image Processing Unit (IPU). The aerial part
contains mobile nodes (UAVs, fixed wing type) which fly over a specified flooded zone. GCS is located
at distance from the operational field and the communication is made via GSM + Internet. Four wireless
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communication channels were used: GCS-GDT (GSM + internet), UAV-GDT (radio) and L-GDT (radio),
and UAV-UAV (radio). GDT-GCS connection uses a modem GPRS/LTE as router via Ethernet interface.
It is a Virtual Private Network. The block diagram of the system consists of several modules, wired
to a common control bus. Each module contains a Central Processor Unit (CPU), a Power Supply
Unit (PSU), and a Controller Area Network (CAN) adaptor. The wireless module is characterized
by the following: (a) radio modem; (b) frequency: telemetry—[3.3 GHz-3.5 GHz], video—2.4 GHz;
(c) Data rate: telemetry—230 kbps, video—analog PAL; (d) range: telemetry—20 km, video—15 km.
The significance of the module abbreviations in Figure 1 and their functions are presented in Table 1.
Figures 2 and 3 present the principal components of UAV system, used for flood detection: UAV
MUROS, GCS, GDT with ID box, Payload with camera, and Launcher.
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Figure 1. Block diagram of the system.

Figure 2. UAV MUROS on launcher.
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Table 1. MUROS UAV—Abbreviations and functionality.

Abbreviation/Module Name

Function

FMCU
Flight and Mission
Control Unit

-Coordinates the flight mission;

-Provides the platform’s stability and quick response in case of
disturbances that may deflect the drone from its pre-defined route
or its removal from the flight envelope;

-Allows for manual piloting by an operator on the ground;
-Implements the automated low-level control loops which assure
path tracking.

AHRS
Attitude and Heading
Reference System

-Provides information for an autonomous flight;

-Contains the sensor subsystem composed of static and dynamic
pressure sensors for speed measurement (ADXL352), accelerometer
(ASDXRRX005PD2A5), magnetometer (HMC5983), altimeter
(MPL3115A2) and gyroscope (ADXRS450);

-Data provided by AHRS are used by FMCU.

-Assures the permanent monitoring of the signals sent by other units
and interprets the error signals received;

suU -Taking into account the fault-tree and the reported error, the SU may

Safety Unit decide the future functioning of the UAV. Thus, it can decide to continue
the mission, to return to the launching point or the designated retrieval
point, or, as a last step, to deploy the parachute.
-Assures the electrical power to the other components of the UAV,

PU especially to the propulsion motor;

Power Unit -Contains power sources and a storage balance sensor used to
equilibrate the energy consumed.

VD -Sends video data from the camera (PS) to the ground (via the GDT,

Video Datalink to the GCS). It contains a modem RF (TXR) and a power amplifier RFA.

D -Assures a duplex communication for both transmission and reception

Telemetric Datalink

of telemetry data. It has a structure similar to the VD.

-Has a dedicated CPU for device retracted;

Paylo.ad -Provides high resolution imagery or video HD;
Working load (payload) & 8ery
8 pay -Based on a gyro-stabilized mechanism.
-Antenna based tracking system;
GDT -The operational range is extended by using multiple ground

Ground Data Terminal

data terminals;
-Radio and Internet connections.

GCsC
Ground Control Station Coordinator

-Is the main component of the system;
-Has a friendly user interface for operational purposes;
-Internet connection with GDTs and IPU.

GCSL -Optional

Local Ground Control Station -Transfer the control to operational field for each UAV.

CSuU -Ensures the control of the electric actuators;

Control for Servomotor Unit -Provides a feedback on their state.

CRU -Ensures the radio data transmission to and from GDT: telemetry,
Control Radio Unit video/images and control.

DESP -Data exchange between GCS and UAV via GDT;

Data Exchange & Signal Processing

-Encoding/ decoding of video data;
-Interface with Ethernet IP (ETH).

SPTU _—

Servo Pan Tilt Unit -Transmission of control to the payload servomotors.
PECT Is the main module of GCS and is based on a CPU
PC for Flight Control and Telemetry s the oduie o s based o '
ETH . -

Switch Bthernet -Ensures the data transmission at distance.
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Table 1. Cont.

Abbreviation/Module Name

Function

RC .

Radio Control -Ensures the control transmission to the GDT.

LL -Ensures the interface of GCS with the launcher;

Launcher Link -Transmits the launch command.

SL Lo .

Safety Launcher Module -Assures the start of UAV propulsion, if the speed launch is correct.
IPU -Processes the images for flood detection

Imge Processing Unit -Estimate the size of flooded areas.

ORT e 1

Ortho-rectified module -Creates the ortho-rectified images.

PLAN

Ortho-photoplan module -Creates the ortho-photoplan.

LP -Establishes the patches for feature selection;

Learning module -Establishes the class representatives and features for patch signatures.
cp -Divides the image in patches;

Clssification module -Classifies the patches as flood and non flood.

DE -Creates the segmented images

Flood detection and estimation module -Estimates the flooded area (in percent).

WiFi

Module for WiFi communication

-Assures WiFi communication.

(©

Figure 3. System components: (a) Payload photo; (b) GCS; (c) GDT; (d) ID box; (e) Launcher.

2.2. Trajectory Control

(d) (e)

For image acquisition, the UAVs must follow specific trajectories such as simultaneously cover
the monitored area (Figure 4). As stated earlier, we propose to use flat output characterizations to
describe the dynamics of the UAVs and further use B-spline parameterizations of the flat output
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in order to enforce various constraints and penalize some desired cost in the resulting constrained
optimization problem.

Launcher;

GoT,

Launcher

Figure 4. Model for trajectory generation in two-UAV applications.

Let us consider the nonlinear dynamics in standard notations [37]:

x(t) = f(x(t),u(t) M

where x(t) € R" is the state vector and u(t) € R™ is the input vector. The system (1) is called
differentially flat if there exists z(t) € R™ such that the states and inputs can be expressed in terms of
z(t) and its higher-order derivatives:

x(t) = O(z(t),2'(t), .., 29 (1))

() = D(z(1), 2 (1), ., 2T (1)) @

where z(t) = Y(x(t),1/ (1), ..., ulD ().
Further, let us consider the simplified UAV dynamics with north, east, down directions (py, pe
and h) and yaw angle 1 as states:

p', = Vacospeosy, p', = Vysinpcosy

W = V,sinvy, P = % tan @ S

The autopilot is assumed to control directly the fligth-path angle v, airspeed V, and roll angle ¢
through input elements y¢, V;¢ and ¢¢, respectively:

Y =by(v'=v), Vi =by, (Vi =Va), @ =be(e— ) 4

with parameters by, by, and b, accordingly chosen. Note that the closed-loop dynamics of the autopilot
are simplified to first-order dynamics (a reasonable assumption in many circumstances).
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The major difficulty lies in the fact the constraints and costs are expressed as functions of state and
input which do not necessarely translate well in formulations involving the flat output z. The usual
solution is to parametrize the flat output after some basis functions (B ;(t)):

z =X PBy;(t) = PBy(t), @

and to find the parameters P; which are, in some sense, feasible and optimal. Here, the parameter d
denotes the degree of the B-spline functions. That is, each B-spline function can be seen as a piecewise
combination of polynomial terms of degree d. Due to the particularities of the construction, a B-spline
function of order d is continuous at least up to its (d-1) derivative. B-splines, due to their properties [30],
permit to express the constrained optimization problem in terms of their control points P; (grouped
here in column form in matrix P):

N
P* = argmin [||2(By(t), P)||dt ©
to

subject to ¥ (By(t), P) =0, ¥2(B4(t),P) <0

where mappings Z(B;(t), P), ¥1(B4(t), P), ¥2(By(t), P) are short-hand notations which denote the
cost, equality and inequality constraints, respectively. The cost can impose any penalization we deem
necessary (length of the trajectory, input variation or magnitude, etc.) and constraints cover way-point
validation, input magnitude constraints, etc. In general, a problem like Equation (8) is nonlinear and
hence difficult to solve (particular solutions exploit the geometrical properties of the B-spline functions
and/or heuristic methods).

Considering multiple UAVs further increases the difficulty of the problem. In particular, we need
to decide how the way-points are partitioned between the UAVs. One, rather cumbersome, solution is
to attach to each way-point a binary variable and force that at least one of the UAVs passes through
it. In practice, this can be relaxed, without any loss of generality to a condition which assumes that
each UAV covers a contiguous part of the surveilled region. Moreover, it makes sense to partition
the regions into areas of equal length parallel with the direction of travel. Then, each UAV has to
cover its own independent region with additional collision avoidance constraints which may become
active around the edges (since the UAV make turns which get out from under their surveillance
area). To cover this possibility we may consider collision avoidance at the autopilot level (proximity
sensors) or, more robustly, at the GCS level by either introducing additional constraints in the trajectory
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design procedure or, preferably, by changing the start and end points for each of the agent (such that
neighboring points are reached at different moments in time).

2.3. Image-Based Flood Detection System

In order to fulfill the mission of detection, segmentation and estimation of the flooded areas,
successive images are taken with constant rate on the pre-determined trajectory, like in the above
section. For flooded area estimation, a patch-based segmentation was used. So, each image is
partitioned in small boxes (e.g., in our application, patches of dimension 50 x 50 pixels), using
a partitioning algorithm of images [38]. Note that the patch dimension is chosen depending on the
image resolution and the texture of the segmented Rol (in our case, the flood). From a cluster of such
patches (boxes), manually selected, a group of efficient features for flood detection is established
based on a performance indicator. The features are used to create two classes: flood class (F) and
non-flood class (NF). The propose method for image processing and interpretation has two phases: the
learning phase and the mission phase. Both the learning images and test images were captured
by the same camera device. Because the characteristics of the flood images can differ for each
application, the learning phase is necessary to establish the class representatives and the signature patch
structure. In the mission phase, a trajectory covering the investigated area is established. The acquired
images are concatenated and processed to create an orthophotoplan without overlapping and without
creating gaps. To this end, an overlap of 60% between two adjacent images is necessary to create an
orthophotoplan. Then, they are indexed with an ID number in chronological order and are partitioned
in the same way as in the learning phase. Based on the features selected in the learning phase,
a similarity criterion is used to assign each patch to the class F or NF. Finally (estimation step), on one
hand each patch of F is marked with white and is returned to the initial image, and, on the other hand
a binary matrix of patches (BMP) is created with logical 1, if the correspondent patch belongs to F, and
0, in rest. By counting the “1”s from BMP, taking into account the total number of patches, the relative
flooded area is evaluated.

The image characteristics may change as a function of distance from the ground and camera
inclination with respect to the vertical axis. To avoid such issues the UAV has to respect a few additional
constraints: (a) the altitude remains constant (even through some ground areas, may have different
heights, we take as reference the water level, which remains constant). Floods are approximately at the
same distance from the UAV, hence, if the flight plan is accurately followed, the resolution remains
approximately the same for a given reference altitude; (b) the payload camera has to be oriented such
that the lens are perpendicular to the surface of the Earth.

For each UAV there is a channel in GCS for image acquisition and, at the end of the mission,
the images from all the UAVs are stored and processed in IPU. The methodology for flood evaluation
based on patch analysis consists in the following steps:

1. InIPU, ortho-rectified images are created and then they are combined into a single image without
overlapping and without gaps (orthophotoplan).

2. From the orthophotoplan, adjacent cropped images of dimension 6000 x 4000 pixels are
investigated for flood evaluation.

3. non-overlapping box decomposition of the tested image is made. So, a grid of boxes is created and
its dimension will represent the resolution of flood segmentation. Thus, if the image dimension
is R x M = 2" x 2™ and the box dimension is 2% x 27, then the resolution of segmentation
(BMP dimension) is 2"~ x 2"~7,

4. The flood segmentation is made by patch classification in two regions of interest (flood—F and
non flood—NF) taking into account the patch signatures and class representatives, which contain
information about color and texture. As we mentioned earlier, the process has two phases: the
learning phase (for feature selection and parameter adjustment) and the mission phase (for flood

49



Sensors 2017, 17, 446

detection, segmentation and evaluation). Flood evaluation is made for each cropped image and,
finally, the sum of partial results is calculated.

2.3.1. Learning Phase

Generally, the aerial images taken from UAVs have textural aspects. Moreover, the remote images
for water (and particularly for flood) are characterized by high contrast in texture behavior between
the flooded zones and the remaining soil. Therefore, the texture information and, in particular, texture
features can be used for flood detection. The selection of effective features must group the patches
with flood and differentiating them from the non-flood ones (it must increase the between-class
separability and decrease the within-class variance). To this end, a set of significant texture features
were analyzed in the learning phase, in order to select the most efficient ones for the classification
process. The tested features are of different types: mean intensity (In1), contrast (Con), energy (En),
entropy (Ent), homogeneity (Hom), correlation (Cor), variance (Var), mass fractal dimension (Dm),
lacunarity (L) and histogram of Local Binary Pattern (LBP). They take into account the chromatic
information as well (on R, G, B, H, S and V color components). The general formulas for the most
used features in texture classification are given in Table 2, where: R is the number of rows of the
image representation (matrix I), M is the columns of I and K represents the levels on color channels.
C, is the normalized co-occurrence matrix [38] calculated as an average of the co-occurrence matrices
Cy,x taken on eight directions, k =1, 2, ..., 8 (for § = 0°, 45°, 90°, 135°, 180°, 225°, 270° and 315°,
respectively) at distance d (in pixels). The notations: Hy, Hy, ... , Hs_1 represents the components of
LBP histogram [39]. Dm (15) is calculated, based on Differential Box-Counting (DBC), for monochrome
images, in [40]. A grid of boxes is created with the image divided in boxes with the factor r. For a box
in position (1, v), the difference n,(1, v) between the maximum value p(u, v) and minimum value
q(u, v) of the intensity are considered. Then, the sum of all the differences (17) is used to evaluate Dm.
Similarly, the lacunarity L(r) is calculated as in [38].

Table 2. Analyzed features.

K K a2 KK . ...
Energy Eng =Y, ¥ Cyli,j) Contrast Cong= 1. ¥ (i—)"Caliij)
i=1j=1 i=1j=1
K K K K e
Entropy Entg ==Y ¥ Cy(i,j) -logy[Cy(i,j)]  Correlation x Zl ”C“(,'#
i=1j-1 i=1j=
. _ &K qup ; ; o kMo
Homogeneity Homg =Y. ). TH]] Mean intensity Im = 3% ):1 II(LI)
i=1j=1 i=1j=
K . 2 ..
Variance Y X (i—u)-Calisf) LBP Histogram H = [Ho,Hy,...,Hy—]
i=1j=1
o log(X Tt (1,0)) . LnP(nr) i
Mass fractal dimension Dm = “lo# Lacunarity L(r) = m, n= %gm(u, )

To evaluate the characteristics derived from co-occurrence matrix, besides the classical gray level
co-occurrence matrix [33], applied on each color channel, we used the mean color co-occurrence matrix
(CCM), between pairs of two spectral components of an input image [41]. So, in H, S, V decomposition,
the image I is seen as a three-dimensional array with R rows, M columns and 3 layers (spectral bands).
Each array element can take L positive integer (discrete values representing the color component’s
intensity of each pixel). The image I can be mathematically defined as: I € NR*Mx3),

Let H and S two components of a color space H, S, V. So, the mean CCM is considered as a square
matrix, having L x L elements in N. It has two parameters: the distance d (the co-occurrence is the same
as in GLCM case), and the component-pair (H, S) between which it is calculated. Each element of the
mean color co-occurrence matrix CMMZ!5 (i, j) represents how many times a pixel of the H component,
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having an intensity level of i, is located near a pixel with intensity j in the spectral component S, at a d
distance. Then, the elements of the mean CCM are [37]:

coMs( ii{ 1, if H(x,y) =i andS(x—i—d,y.—i-d):j} )

0, otherwise
Obviously, the next symmetry can be easily demonstrated:

cemffs = [cems) M] L k=1,2,3,4 (10)
A simple example of calculating the mean CCM is given in Figure 5, where we consider two

image components H,S € N4, having 4 levels of pixel intensity, and the mean CCM computed
between these two components, along a distance d = 1:

1112 332 2
H=|0 3 3 1| and S={0 0 3 2| =C=cum /"5 =
2100 1 030

Ao W
DN - & W»

Figure 5. Example of calculating mean CMM.

The algorithm for calculating CMM is presented [41] and the pseudocode in Appendix A. In order
to establish the features to be selected, a cluster of 20 patches containing only flood (PF) are considered
to form the representatives of the class “flood” (F) and 20 patches containing non flood elements (PNF),
e.g., buildings and vegetation, are considered for the class “non flood” (NF). Each candidate feature T;
to flood signature is investigated according to the following algorithm:

i. T; is calculated for all the learning patches (PF) and the confidence interval
[m; — 30;,m; + 30;] = Sjis determined, where m; and 0; represents, respectively, the
mean and the standard deviation of T;.

ii. Similarly, T; is calculated for all the learning patches from PNF and the resulting set of values is
noted as NF;.

iii. A confidence indicator for feature T;, CI; is created:

1- 0, if SiNNF =X (1)

1, if S;NNF=
CI_:{ f =0

where, 11(A) is the cardinal number of the set A.

iv. The features T; with greatest CI; are selected in decreasing order, until the fixed number of
features imposed for flood signature is reached. For example, in Section 3, a signature T, with 6
elements is considered (12):

= [T, To, T3, Ts, T5, T 12)
V. As a consequence of the signature T, a set & of confidence intervals is created (13). & will be
the representative of the class F:
S =[S, B, I3, Sy, Vs, S (13)
where:
S; = [m; — 303, m; — 30} (14)
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Vi. For each selected feature T; a weight w; is calculated as follows. Another set of 100 patches
(50—flood and 50—mnon flood) is considered and the confusion matrix for the feature T; is
calculated based on a preliminary classification criterion: the patch B € Fif T; € ;.

The weight w; is established as in Equation (15):

F,F+ NF,NF

Y= EFYE NF+ NF,NF+NEF

(15)

where F,F represents the number of patches manually selected as belonging to class F and classified
to class F after feature T;. Similarly, F,NF represents the number of patches manually selected as
belonging to class IF and classified to class NF after feature T;.

Observations:
a.  Obviously, CI; = 1 represents an ideal situation and are not encountered.
b. IfA = Aj, then T; and T; are redundant and one can be eliminated.

2.3.2. Mission Phase

In the mission phase, the images from orthophotoplan are decomposed in patches with dimension
of 50 x 50 pixels. Each patch (box) is indicated by a pair (row number, column number) in the squared
grid of the image with an ID number. The mission phase has three steps: patch classification, image
segmentation and flood estimation.

For classification of a box (B) of as flooded, a weighted vote D is considered (16), where D(B) is
the sum of partial weighted vote for each selected feature (17):

D(B) =) Di(B) (16)
i=1
where:
Di(B) = { il nes a7)

The patch B is considered as flood (18) if the weighted vote is greater than 0.8 from the sum of all
weights (the maximum of D):
S
BeF if D(B)>08-() w) (18)
i=1
where 0.8 is an experimentally chosen threshold.

Inside of the analyzed image, a segmentation process is done with the aid of the detected flood
patches. For visualization purposes, the flood boxes are marked with white. With the patches from
an image, an associate matrix BMP is obtained. Each patch corresponds to an element in BMP; so,
for an image dimension of 4000 x 6000 pixels and a patch of 50 x 50 pixels, then the BMP matrix
dimension is dim BMP = 80 x 120. If the number of marked boxes is 1, then the percentage of flood
zone in the analyzed image is PF (22):

PF x 100 [%] 9)

_ n
"~ dimBMP
2.3.3. Algorithm for Flood Detection

The proposed algorithm has two phases: the Learning Phase—Algorithm 1 and the Mission
Phase—Algorithm 2.
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Algorithm 1: Learning Phase

Inputs:  Learning patches (40 patches for feature selection—set 1 and 100 patches for weight
establishing—set 2), set of feature to be investigated;

Outputs: Selected features T;, the weights for selected features w;, and the intervals S, i=1,..., 6.
For each patch of the first set:

1. Image decomposition on color channels (R, G, B, H, S, V) of patches;

2. Reject noise with median local filter;

3. Calculate the features: Im, Con, En, Hom, Ent, Var, Dm and L on color channels;

4. Until end of set 1;

5. Calculate the Confidence Indicator CI; for each feature based on Equation (11);

6. Feature selection: T;,i=1,...,6;

7. Determine the intervals for flood class representative 3;, Equations (13) and (14)
For each Ti:

8. Calculate the confusion matrices CM; from the set 2;

9. Calculate the weights w;, i =1, ... , 6; Equations (15) and (17)

10. Return {T;, w;}.

Algorithm 2: Classification Phase

Inputs: Images to be analyzed, Selected features T;, the weights for selected features w;, and
the intervals S;,i=1,...,6;

Outputs: Segmented images and percent of flooded areas

For each image I:

1 Image decomposition in small non-overlapping patches (50 x 50 pixels);
For each patch B

. Calculate the selected features Img, Conyp, Enys, Homyy, Dmg and Lg;

. Calculate D;(B);

. Patch classification based on voting scheme (18);

Until end of patches from image I;;

Create the matrix of patches for each feature;

N o wN

Noise rejection based on local median filter in matrices of patches;
8.  Create the final matrix of patches based on voting scheme;

9. Create segmented image;

10. Calculate the percent of flooded area from image with Equation (19);
11. Until end of images to be analyzed;

12. Return the segmented images and percent of flooded area.

Algorithm 1 is executed only once, at the beginning of the mission, while Algorithm 2 runs
continuously throughout the mission. Both are implemented in deep neural networks (DNN). The DNN
for Algorithm 2 is presented in Figure 6 and contains, besides the input and output layers, other
three layers.

Layer 1 is dedicated to simultaneously calculate the features of patches and create the
corresponding binary matrices of patches. Layer 2 is dedicated to local filtering of matrices from
Layer 1, in order to eliminate the noise from BMP. Layer 3 creates the final BMP by voting scheme.
Finally, the Output layer provides the segmented image and the relative flood size.

53



Sensors 2017, 17, 446

Inputlayer
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Laver1 Layer 2 Laver 3 Qutputlayer

Feature calculation Local filter Voting scheme

Figure 6. The neural network for the mission phase.

3. Experimental Results

For experimental results we used a UAV, designed, as coordinator, by University POLITEHNICA
of Bucharest, MUROS project [35]. The main characteristics and technical specifications of UAV
MUROQOS, as mobile node for image acquisition, are presented in Table 3.

Table 3. MUROS UAV—Characteristics and technical specifications.

Characteristics Technical Specifications
Propulsion Electric
Weight 15 kg
Wingspan 4m
Endurance 120 min
Operating range 15 km in classical regime and 30 km in autopilot regime
Navigation support GIS
Navigation manual/automatic
Communication antenna tracking system
Payload retractable and gyro-stabilized
Mission Planning software
Recovery system Parachute
Maximum speed 120 km/h
Cruise speed 70 km/h
Maximum altitude 3000 m
Maximum camera weight 1kg

Camera type

Sony Nex7, objective 50 mm, 24.3 megapixels, 10 fps

Parameters for flood detection

Flight speed of 70 km/h and flight level 300 m

Typical applications

Monitoring of critical infrastructures, reconnaissance missions over the
areas affected by calamities (floods, earthquakes, fires, accidents, etc.),
camera tracking, photography and cartography

To evaluate the algorithms presented in Section 2, an image dataset of a flooded area was gathered
with MUROS. The photographs have been captured along a path generated as in Section 2, with
distances between lines d = 75 m and height of flight de = 100 m (wind strength was considered to
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be negligible). The portion from the orthophotoplan of an application near Bucharest, during a flood,
is presented in Figure 7. The images analyzed with the algorithm described in Section 2 are marked
with the specified IDs.

In the learning phase, for patch signature determination T, the first set of 40 patches of dimension
50 x 50 pixels (20 patches for flood and 20 for non-flood), manually selected, was used (Figure 8).
From this set, a cluster of 20 patches containing only flood (PF) are considered to form the prototypes
for the class “flood” (F) and 20 patches, containing non flood elements (PNF), e.g., buildings and
vegetation, are considered for the class “non-flood” (NF).

The results obtained in the learning phase (Table 4) show that the selected features (with CI
criterion) are: ImR, ConHH, HomHH, EnHS, DmG and LR, where R, G, H, and S are the components
of the color spaces. Thus, features on different types (first order statistics, second order statistics
and fractal), on different channel color are selected. If CI falls below 0.80, then the accuracy can
also decrease. It must be mentioned that the list of selected features can be changed in the learning
phase, upon the requirements of the application. The fractal dimension was calculated by means of
FracLac [42] plug-in of Image] and the features extracted from co-occurrence matrix were computed
using MATLAB software. In Table 4, the values marked with * are those that are not within the
corresponding confidence intervals.

Next step is the calculation of the confusion matrices for the selected features (Table 5). To this
end, we used the second set (100 patches) for the learning phase, which contains 50 patches marked as
flood (actually) and 50 patches marked as non-flood. From the confusion matrices we calculate the
weights w; which will be used further for patch classification.

DSCO5439: 560 DC05349 jpg

DSCO5350.p2

Figure 7. Image created from acquired images (with yellow ID) without overlapping or gaps. The image
was generated with Agisoft Photoscan Professional Edition (www.agisoft.com).

So, the signature of the patch is:
T =Ty, Ty, T3, T4, T5, Ts] = ImR, ConHH, HomHH, EnHS, DmG, LR]
and the associate weights are:
[wy, wy, w3, wy, ws, we] = [0.95, 1, 1, 1, 0.90, 0.95]

The representative of the class F is:

[S1, S0, 3, Sy, S5, J6] =[[0.418; 0.535], [0.994; 1.002], [—0.004; 0.011], [0.896; 0.951], [2.605; 2.709], [0.344; 0.502]]
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In order to analyze the performances of the algorithm for flood detection, a set of 50 images with
flood was investigated (see orthophotoplan from Figure 7). Random patches of flood and non flood
types (Figure 9) are classified based on the voting scheme and the results are presented in Table 6.

S
Here, D(B) is calculated as in (16) and compared with maximum value of 0.8 - (‘): w;) = 5.59 as in

(17). For example, patches B6_F and B10_F with flood are wrongly classified asln})n flood. For the
mission phase, an example of 6 images used for the algorithm test is presented in Figure 10 and the
result of the segmentation, in Figure 11. Figure 12 overlaps the RGB images with masks generated by
segmented images.

The random errors of the classification process are characterized by sensitivity, specificity, and
accuracy [10,43] which are calculated in Table 7, where: TP is the number of true positive cases, TN is
the number of true negative cases, FP is the number of false positive cases, and FN is the number of
false negative cases. In [12] an accuracy of 87% is obtained using RGB information and six texture
features (fixed) extracted from gray level co-occurrence matrix. Our method uses selected features
(selected by a performance criterion at the beginning of the segmentation operation) on color channels
(chromatic co-occurrence matrix and fractal type) and the accuracy was of 98.1%.

P11_NF P12_NF P13_NF P14_NF P15_NF P16_NF P17_NF P18_NF P19_NF P20_NF

Figure 8. Patches for establish the flood signature (Pi_F as patch with flood and Pj_NF as non flood patch).

B1_F B2_F B3_F B4_F B5_F BS_F BY_F

BT6_F BY_F BIO_F

B11_F BI2_F B14_F BI15_F B16_F B17_F

B1_NF B2_NF B3_NF B4_NF B5_NF B6_NF B7_NF B8_NF B9_NF B10_NF

|
.

B11_NF B12_NF B13_NF B14_NF B15_NF B16_NF B17_NF B18_NF B19_NF  B20_NF

Figure 9. Patches for establish the weight signature (Bi_F as patch with flood and Bj_NF as non
flood patch).
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15 16
Figure 10. Images acquired by UAV MUROS to be evaluate for flood detection.

145 ’ 158 165

I6

Figure 12. The overlap of RGB images with the segmented images.
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Table 4. The selected features, their confidence indicators and the representatives for the class F.

Patch ImR HomHH ConHH EnHS DmG LR
P1_F 0.460 0.999 0.001 0.916 2.667 0.445
P2_F 0.472 0.997 0.003 0.921 2.690 0.432
P3_F 0.484 0.998 0.001 0.911 2.665 0.387
P4_F 0.504 0.998 0.007 0.932 2.641 0.455
P5_F 0.478 0.999 0.007 0.926 2.668 0.485
P6_F 0.488 0.996 0.001 0.919 2.643 0.415
P7_F 0.475 0.996 0.008 0.915 2.639 0.395
P8_F 0.485 0.997 0.002 0.912 2.635 0.401
P9_F 0.506 0.999 0.001 0.928 2.664 0.413
P10_F 0.443 0.998 0.001 0.926 2.671 0.398
P11_F 0.433 0.995 0.001 0.934 2.648 0.446
P12_F 0.486 0.997 0.002 0.924 2.685 0.432
P13_F 0.479 0.999 0.003 0.909 2.645 0.457
P14_F 0.502 0.996 0.003 0.914 2.654 0.395
P15_F 0.477 0.996 0.001 0.921 2.675 0.438
P16_F 0.491 0.997 0.002 0.929 2.632 0.442
P17_F 0.465 0.999 0.007 0.941 2.643 0.413
P18_F 0.451 0.998 0.005 0.937 2.642 0.428
P19_F 0.462 1.000 0.006 0.938 2.685 0.391
P20_F 0.498 0.999 0.004 0.917 2.650 0.394
m; 0.476 0.997 0.003 0.923 2.635 0.423
R7 [0.418; 0.535]  [0.994;1.002]  [—0.004; 0.011]  [0.896; 0.951]  [2.605; 2.709]  [0.344; 0.502]
P1_NF 0.161 0.195 0.392 0.415 2.601 0177
P2_NF 0.302 0.176 0.591 0.580 2.581 0.182
P3_NF 0.226 0.187 0.560 0.602 2.592 0.164
P4_NF 0.201 0.588 0.621 0.604 2.557 0.161
P5_NF 0.241 0.576 0.399 0.424 2.569 0.345 *
P6_NF 0.151 0.192 0.581 0.522 2.590 0.194
P7_NF 0.160 0.184 0.395 0.589 2.583 0.176
P8_NF 0.215 0.177 0.581 0.449 2.596 0.167
P9_NF 0.210 0.583 0.632 0.608 2.562 0.155
P10_NF 0.151 0.593 0.481 0.625 2.568 0.174
P11_NF 0.356 0.192 0.492 0.519 2.656 * 0.255
P12_NF 0.152 0.201 0.353 0.450 2.592 0.162
P13_NF 0.169 0.171 0.372 0.561 2.590 0.175
P14_NF 0.211 0.581 0.367 0.382 2.577 0.145
P15_NF 0.205 0.544 0.624 0.613 2.573 0.198
P16_NF 0.174 0.193 0.368 0.402 2.590 0.207
P17_NF 0.195 0.576 0.634 0.634 2.562 0.184
P18_NF 0.382 0.476 0.587 0.596 2.606 * 0.195
P19_NF 0.421 % 0.425 0.456 0.545 2.584 0.198
P20_NF 0.203 0.543 0.429 0.512 2.597 0.178
n(A;) 1 0 0 0 2 1
n(PNF) 20 20 20 20 20 20
CI 0.95 1 1 1 0.90 0.95
*: The values are not within the corresponding confidence intervals.
Table 5. The confusion matrices and the resulting weights for the selected features.
ImR=T, HomHH =T, ConHH =T, EnHS =T, DmG =Ts LR =T
45 5 46 4 50 O 49 1 46 4 47 3
4 46 3 47 4 46 2 48 2 48 3 47
wy =0.91 wy =0.93 w3 =0.96 wy = 0.97 ws = 0.88 we = 0.94
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Table 6. Some experimental results concerning the patch classification based on voting scheme. Gray
rows mean wrong classification.

Patch (Actual)  ImR/D(B;) HomHH/D(By) ConH/D(By) EnHS/D(By) DmGID(Bs) LRID®B) o 0 FNE
B1_F 0.494/091  0.996/0.93 0.001/0.96 0.942/097 2.661/0.88 0.372/0.94 5.59/F
B2_F 0.506/0.91  0.998/0.93 0.003/0.96 0.9340.97 2.637/0.88 0.421/0.94 5.59/F
B3F  0457/091 0999/093  0006/0.96 0961097 2643/0.88 0446/094  559/F
B4_F 0.464/0.91  0.999/0.93 0.005/0.96 0.9160.97 2.701/0.88  0.497/0.94 5.59/F
B5F 0515091 0997/093  0004/0.96 0952097 2621/0.88 0480/094  559/F
B6_F 0.398/0 0.995/0.93 0.021/0 0.899/0.97 2.587/0 0.346/0.94 2.84/NF
B7F  0437/091 0998/093  0003/0.96 0919097 2678/0.88 0405/094  559/F
BSF  0493/091 0997/093  0004/096 0931097 2671/0.88 0417/094  559/F
B9_F 0.476/0.91  0.995/0.93 0.003/0.96 0.9150.97 2.682/0.88  0.482/0.94 5.59/F

B10_F 0350/0  0.992/0 0013/0  0850/0  2623/0.88 0321/0  088/NF
B1_NF 0.172/0 0.204/0 0.387/0 0.423/0 2.599/0 0.167/0 0/NF
B2NF  0137/0  0189/0 0582/0  0502/0  2579/0  0202/0 0/NF
BINE  0224/0  0526/0 0353/0  0412/0  2564/0  0327/0 0/NF
BANE  0198/0  0537/0 0624/0 06230  258/0  0211/0 0/NF
B5_NF 0.249/0 0.592/0 0.617/0 0.589/0 2.521/0 0.149/0 0/NF
B6_NF 0.335/0 0.213/0 0.457/0 0.501/0 2.599/0 0.268/0 0/NF
B7NF  0186/0  0555/0 0602/0  0654/0  255%/0  0172/0 0/NF
BSNE  0139/0  0.185/0 0366/0 05730  2572/0  0161/0 0/NE
BONF  0231/0  0593/0 0401/0  0438/0  2569/0  0339/0 0/NF
B10_NF 0.391/0 0.821/0 0.009/0.96 0.722/0 2.651/0.88 0.311/0 1.84/NF

Table 7. Statistic for flooded area in images: 1000 pathces (500—flood, 500—non flood).

TP TN FP FN  Sensitivity Specificity Accuracy
486 495 5 14 97.2% 99% 98.1%

4. Discussion

Because we considered only complete flooded boxes, the approximation will be underestimated.
Similarly, if mixed boxes are considered, an over approximation will be obtained. Table 8 presents
the number of patches considered as F and the corresponding percent of flooded area for each
images. The main cause was the patches from the contour of flooded which appear as mixed ones.
Further studies will consider the decomposition of these patches in boxes increasingly small.

Table 8. Percent of flooded area.

Images 151 1S2 1S3 IS4 IS5  ISé6

Percent 32.88 3279 1685 28.07 21.57 244
No. patches 3156 3148 1617 2695 2071 234

On the other hand, by properly choosing textural features on color channels and patch dimension,
the proposed algorithm can be extended to more classes like: road, vegetation, buildings, etc.
Combining thermal camera with video, the system is able to detect possible persons in difficulty
and to monitor the rescue operation. In this case, a flexible and dynamic strategy for trajectory design
is necessary. Also the collaboration between the mobile nodes (UAVs) will improve the mission
efficiency. The algorithms used for trajectory design minimize total path length while in the same
time passing through (or within predefined distance) of a priori given way-points. In further work we
plan to: (i) reconfigure trajectories on the fly such that the flooded areas are covered efficiently; and
(ii) partition the workload of the UAVs such that total time/effort is minimized (for now we simply
divide the area of observation into disjoint regions, one per each UAV).
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5. Conclusions

The paper presented a comprehensive system and methodology for the detection and
segmentation of flooded areas in a pre-determined zone. The contributions are focused on two
important objectives: the planning of an optimal trajectory to cover the area under investigation
and the image processing required to detect and to evaluate the flood spread. For the first the novelty
lies in the analysis and computation of an optimal path covering the area of interest and for the second,
the novelty lies in combining the information for different color channels with information about spatial
pixel distribution obtained from chromatic co-occurrence matrix and mass fractal dimension. First, the
paper studied a typical photogrammetry problem through the prism of control and optimization
theory. That is, for a given polyhedral region which has to be covered by parallel lines (along which
photographs are taken) we have given both an estimation of the required number of photographs and
provided a minimum-length path covering the area. For the latter case we formulated a constrained
optimization problem where various constraints and parameters were considered in order to obtain
a minimum-length path. We took into account the maximum distance between consecutive lines
and turn conditions (such that the UAV is guaranteed to follow the interior lines). We have also
discussed the path generation problem in the presence of wind and for regions with non-convex
shapes. Second, a methodology for the detection, segmentation and evaluation of flooded areas from
the acquired images was presented. A color co-occurrence matrix was introduced and some efficient
features. Furthermore, we illustrated that fractal type features on color component improve the local
classification process on flooded and non-flooded boxes. The algorithm was tested on a large number
of sub-images and the results showed good performances. We conclude that, by including the color
information to texture analysis, by selection of feature based on maximum criterion and by using the
fractal techniques, the accuracy of the detection of flooded boxes was increased up to 99.12%.
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Appendix A. The Pseudo Code (Matlab) for the Proposed Algorithm for Computing CCM
between Spectral Components A and B

BEGIN Compute(A, B, xdimension, ydimension,~n)
A = normalize(A,n);
B = normalize(B,n);
Initialize result as a n X n array of 0;
bExtended = extendMatrix(B, xdimension, ydimension);
offset = calculateOffset([xdimension, ydimension]);
for i =0 ton
for j =0 ton
positions = searchAppearences(A, 1i);
if positions ! = null
for k = 0 to positions[0].length
bRow =positions[0][k] +offset[1l] + xdimension;
bCol = positions[1][k] + offset[2] + ydimension;
if bExtended[bRow][bCol] == j
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result[i][j] ++;

return result;
END
BEGIN calculateOffset(offsetln)
for i = 1 to offsetIn.length

if offsetIn(i) >= 0

offsetOut(i) = 0;

else offsetOut(i) = abs(offsetIn(i));
END
BEGIN searchAppearences(A, x)
count = countAppearences(A, X);
initialize positions as a 2 x count array;
if count ==

return null;
int k = 0;
for i = 0 to rows
for j = 0 to cols

if A[Li][j] == x

positions[0][k] = i;

positions[1][k] = j;

K++;
return positions;

END
BEGIN countAppearences(A, int x)
count = 0;

for i = 0 to rows
for j = 0 to cols
if A[i][j] == x
count++;
return count;
END
BEGIN extendMatrix(A, noRows, noCols)
initialize result as an array (A.length + abs(noRows))x(A[0].length + abs({noCols));
offset = calculateOffset([rowsNo, colsNo]);
for i = 0+offset[1] to A.length+offset[1]
for j = O+offset[2] to A[O].length+offset[2]
result[i][j] = A[i1[j];
for i = A.length to A.length + noRows
for k = 0 to A[0].length + noCols
result[i][k] = —1;
for i = A[O].length to A[0®].length + noCols
for k = 0 to A.length + noRows

result[k][i] = —1;
return result;
END
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Abstract: The article presents a vision system for the autonomous grasping of objects with Unmanned
Aerial Vehicles (UAVs) in real time. Giving UAVs the capability to manipulate objects vastly extends
their applications, as they are capable of accessing places that are difficult to reach or even unreachable
for human beings. This work is focused on the grasping of known objects based on feature models.
The system runs in an on-board computer on a UAV equipped with a stereo camera and a robotic arm.
The algorithm learns a feature-based model in an offline stage, then it is used online for detection of
the targeted object and estimation of its position. This feature-based model was proved to be robust
to both occlusions and the presence of outliers. The use of stereo cameras improves the learning stage,
providing 3D information and helping to filter features in the online stage. An experimental system
was derived using a rotary-wing UAV and a small manipulator for final proof of concept. The robotic
arm is designed with three degrees of freedom and is lightweight due to payload limitations of the
UAV. The system has been validated with different objects, both indoors and outdoors.

Keywords: UAV; grasping; outdoors

1. Introduction

The use of unmanned aerial vehicles (UAVs) is becoming increasingly popular; not only for
military purposes, but also in many other fields, from wildlife and atmospheric research to disaster
relief and sports photography [1]. Applications in agriculture and industrial environments are currently
being exploited, for example, in inspection and maintenance. They can be used as a fast and safe
response in a critical situation against disasters, plagues, or working in dangerous or inaccessible places.

Some important incidents—such as the nuclear disaster in Fukushima in 2011—also clearly
illustrated the problem that UAVs are today nearly exclusively used as flying sensors. UAVs are
equipped with different types of sensors providing situational awareness, but are so far not
equipped with any type of actuators, unlike many ground-based mobile robots. Unfortunately, flying
manipulation comes with many unsolved problems. A suitable manipulator that can be attached to a
small UAV must also be small and lightweight.

The work presented in this paper is focused on the development of an on-board perception system
for autonomous object manipulation using UAVs. The objective is to provide the aerial robot with
capabilities to perform inspection and maintenance tasks (which imply manipulation) that can be
dangerous for human operators or in places that are difficult to reach. Sending UAVs will minimize
the risks and increase the response speed and automation of operations.

Currently, perceiving the environment remains a challenging task. The robot needs to recognize
the targeted objects and minimize false positives. Particularly, in aerial vehicles, a wrong detection can
result in disastrous consequences for the platform. The use of different machine learning algorithms
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for object detection has rapidly expanded. Algorithms such as Support Vector Machines (SVM) and
Neural Networks (NN) have been used successfully for this task.

For grasping objects, it is also necessary to analyze the 3D information of the object. Estimating its
pose accurately is needed so that a manipulator can grasp it. The use of a monocular camera requires
the recovery of the 3D information. Utilizing depth sensors, stereo cameras, or lasers can simplify the
task, as they directly provide this information.

Once the object is found and located relative to the robot, it is necessary to analyze how to perform
the grasp. Usually, the object is defined as a mesh or a primitive shapes (spheres, cylinders, etc).
This information can be provided by depth sensors, stereo cameras, or lasers, producing point clouds
and processing them. Grasping information is generated using the full 3D shape with approaches like
force-closure and/or quality metrics [2]. However, the object might be occluded in real applications,
in addition to the fact that these kinds of methods can be time consuming and may be impractical if
the object is fully known.

Our work focuses on the task of object detection and pose estimation for real-time tasks on UAVs
for grasping objects. We only consider objects that contain textured surfaces and which are graspable
by the UAV (for example, the algorithm will not be able to learn a plain white folder, and the UAV the
manipulator on the UAV cannot grasp objects larger than the gripper) The algorithm is based on the
work presented in [3,4], but varies in the use of stereo cameras to improve the learning process (as they
provide 3D information) and introduces improved feature filtering. Furthermore, as proof of concept,
the UAV has been equipped with a three degrees of freedom (DOF) arm with a gripper as end-effector.

The remainder of this article is structured as follows. In Section 2 we describe the related work.
Section 3 is divided in three subsections: feature extraction and filtering, creation of object model, and
how to find the object in new scenes. Section 4 shows the validation tests we performed, and the final
section presents the conclusions and future work.

2. Related Work

As mentioned before, for the development of an on-board perception system for autonomous
object manipulation using UAVSs, the robot needs to detect the targeted tools to be grasped for the
task. This process can be split into three parts. The first part involves the detection and recognition
of the object, the second is the estimation of its position (and orientation), and the third is the grasp
analysis. Object detection is a wide area of research: there exist several algorithms depending on the
prior knowledge, the environment, and also on the sensor used. Some authors use machine learning
algorithms as neural networks [5], or classifiers such as Support Vector Machine (SVM) [6] using a
bag-of-words model. However, for grasping objects, it is also necessary to estimate the position of the
object and grasping points. Authors in [7-9] used depth sensors such as Kinect to model the object and
segment it using the depth information. Depth information is very useful for the estimation of object
position, but the sensors usually have limitations in outdoor environments, as they use IR-structural
light. Other authors use monocular cameras aided with geometrical models of the objects, as in [10].
Authors in [3,4] showed how to describe objects using image features to recognize and estimate its
position accurately while being robust to occlusions. Finally, it is necessary to analyze how to grasp
the object. Authors in[2] show a complete survey about quality metrics for comparing different grasps
using the available geometrical information of the object to generate virtual grasps. This geometrical
information can be provided by depth sensors [11], cameras [12], or haptic sensors [13]. In [14], authors
used SVM to estimate the quality of the grasp.

References [15-18] studied the grasping of objects using UAVs, paying particular attention to the
mechanical and control aspects of the grasp. In general, for grasping with aerial robots, the authors
assume that the position of the object is known, or they use simple markers such as color or tags [19-21].
In [22], authors studied the dynamics, control, and visual servoing of an aerial vehicle for grasping
inspired by animal movements. Nevertheless, they assume that the object is a cylinder with known
radius. Conversely, in this article, the proposed algorithm allows the robot to robustly detect more
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complex objects. In this work, it is assumed that the UAV has an internal control that is sufficient for
movement and manipulation. The arm is lightweight, and the movements are slow enough that the
control system is able to stabilize the robot.

In a previous work, the authors [23] developed a system with a low-cost stereo camera for object
detection and location. In this system, a local map is created to localize a list of object candidates and
the relative position of the UAV on the map. Once the candidates are located, their volume is projected
into the images, and a machine learning algorithm is run to recognize the object category. This was
called a bottom-up approach which firstly detects that there is something in the environment, and then
categorizes the object.

In the present paper, a top-down approach is used. The kind of objects that are to be grasped
were known, and it was possible to generate a model for each one. In an offline stage, the algorithm
learned the model using visual features. Afterwards, in the online stage, the model was used to seek
and locate the object (see Figure1). A small arm was 3D printed to test the grasping results, and
everything ran on an on-board Intel NUC computer [24]. Finally, for image acquisition, the UAV was
equipped with a commercial stereo camera called ZED [25]. Through its SDK, this camera can be used
to compute depth maps using CUDA (NVIDIA parallel computing platform and API for Graphic
Processor Units), but this software has range limitations and cannot be used for distances shorter than
one meter. Nonetheless, the built-in cameras have high quality, the auto-focus and auto-exposure are
remarkable, their construction is stiff, and they provide a versatile combination between resolution and
frames per second (FPS). Moreover, the baseline of the camera (120 mm) is good for a reconstruction
on relatively short distances (within 20-100 cm). For these reasons, this camera was chosen for this
project. The object detection and pose estimation algorithm was tested on-board, and it was shown to
be robust to vibrations, occlusions, and illumination changes. However, for security reasons, the robot
was hanging on a structure while testing the grasping algorithm.

Learning stage (offline) Localization stage (online)

Images Images

Feature model Ohject Pose Feature model

Figure 1. Pipeline of both stages of the algorithm.

3. Object Detection and Pose Estimation

This algorithm is divided into two stages: the learning stage (or offline stage), in which the model
of the object is created, and the localization stage (or online stage), in which the object is detected and
its position is estimated. Figure 1 summarizes the pipeline of the algorithm in both the modeling and
localization stages.

3.1. Feature Extraction and Filtering Using Stereo Cameras

Image features have been widely used and studied. SIFT (Scale-Invariant Feature Transform) [26]
is a well-known detector and descriptor, and it has been proven to be robust to scales, rotations, and
translations on images. However, it has a high computational time. Authors in [27,28] proposed some
optimization to speed it up, but it is sometimes still not fast enough, or some losses of information are
caused by their approximation. Vision algorithms for UAVs have a strong speed requirement, as they
need a faster response for the control loop than ground robots. Several new feature detectors and

66



Sensors 2017, 17,103

descriptors have been developed, such as SURF (speeded up robust features) [29], ORB (Oriented FAST
and Rotated BRIEF) [30], DAISY (an efficient dense descriptor applied for wide baseline stereo) [31],
BRIEF (Binary Robust Independent Elementary Features) [32], FAST (features from accelerated segment
test) [33], and more. These methods have been designed according to different objectives, such as being
faster or more robust.

The performance of the image feature detection and matching for the model creation and object
position estimation depends on the combination of the detector and descriptor chosen. Nevertheless,
for both the object modeling and detection algorithms, the features are completely exchangeable.
In Section 4, we show the processing time for the different combinations of detectors and descriptors.

As mentioned before, a ZED stereo camera was used for image acquisition. This particular camera
has a wide-angle lens, so a rectification of the images is needed to properly detect and match the
features. Initially, features are detected on each pair of images, then these features are matched with
either a FLANN (Fast Library for Approximate Nearest Neighbors) [34]-based matcher or just a force
brute matcher. The first advantage of using stereo images is to improve the filtering of matches, making
it more robust to outliers. Despite this, it needs more process time, as features are computed in both
images. The resulting inliers are assumed to be key features of the object. This makes our algorithm
more robust to outliers, as they are rejected at the beginning of the process, so only the features that
are more invariant are used. Figure 2 shows examples of feature filtering using stereo, as described in

this paragraph.
(b) © (d)
(e) ) (8 (h)

Figure 2. Filtering bad features using known stereo geometry. (a) Whoopies box 640 x 480; (b) Gena
box 640 x 480; (c) Drilling tool 640 x 480; (d) Coke 640 x 480; (e) Whoopies box 1280 x 720; (f) Gena
box 1280 x 720; (g) Drilling tool 1280 x 720; (h) Coke 1280 x 720.

3.2. Object Modeling

The learning stage (or offline stage) generates a model of an object from a set of images.
This approach differs from [3,35] in the use of a stereo camera, automating the learning process
(providing 3D information of the real-world scale) and improving the filtering of outliers. The process
is summarized in the following points:

e Image rectification from camera calibration.

e Detection of features on both images and matching them. Use of stereo geometry and RANSAC
(Random sample consensus) to filter outliers.

e  Matching of sequentially filtered features.

e Performance of bundle adjustment to create a 3D model of the object and store the
corresponding descriptors.

e  Scale model of the object to its real size using stereo information.

67



Sensors 2017, 17,103

The first stages of the object modeling are feature detection and filtering using the stereo system
and its calibration following the procedure described in previous section. Once all the images are
processed, and the corresponding set of cleaned features is obtained, a bundle adjustment (BA) of
both features and camera positions is performed [36] in order to reconstruct the correct object shape.
Further, the camera positions—where the images were taken—are obtained (however, this information
is not used for the proposed method). We used the library cvSBA as implementation for the Sparse
Bundle Adjustment (SBA). It is a wrapper of the SBA library [37] for use with OpenCV.

In order to perform the BA, it is necessary to correlate the points within all the images. Only left
projections are used for this step, since cvSBA does not allow users to establish custom restrictions
between camera frames. Nonetheless, left projections contain enough information to reconstruct the
object (the stereo information will be used to scale the object after the optimization, as described
later). It is assumed that all of the pictures from the dataset are arranged as they were captured. Then,
the features are matched sequentially to obtain the inter-frame visibility of the features. With this step,
we obtained the relations in sequential frames (Figure 3 shows sequential matches of features for the
creation of the inter-frame visibility matrix).

(d

(b)

Figure 3. Sequential association of features to compute their inter-frame visibility. (a) Whoopies box
640 x 480; (b) Gena box 640 x 480; (c) Drilling tool 640 x 480; (d) Coke 1280 x 720. Then, following
Algorithm 1, the visibility between non-sequential frames is computed.

Nevertheless, it is necessary to obtain the remaining relations within all of the frames. Let us
denote P = {p; Vk = 1...K} a vector in which each py is a vector with the features on the frame k; M a
matrix where each element m;; contains a vector with the matches between the frame i and the frame j.
All the elements m1;(; 1) are filled from the sequential match of frames. Then, the rest of the elements
of m;j above the diagonal (i.e., j > i) can be filled using Algorithm 1. An improvement can be made
in detecting loop closure; however, for most cases, this method is enough to reconstruct the object.
A diagram of this visibility problem is shown in Figure 4.

Algorithm 1 Correlate back matches

1: foroffset =2,0f fset < K do

2: fori=0,i < K—offset do

3 j=i+offset

4 for match in m;(; 1 do

5: if match is visible in m1(;_1); then
6

7

8

add match in m;j
end if
end for
9: end for
10: end for

The BA consists of a global optimization using Levenberg and Marquardt’s [38] algorithm to
minimize the re-projection errors. Let there be a set of N 3D points, observed from K cameras (at T,
position and Ry orientation). Then, given the correlations between the projections of the 3D points
into the cameras, an optimization is performed, minimizing the errors. Using the previously defined
matrix M of matches between frames, it is possible to generate a unique list of 3D points and the
inter-visibility of the points within the frames. Gordon and Lowe [3] mentioned that, in order to ensure
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the convergence of the BA, it is enough to place all the cameras at the same distance from the origin on
the Z-axis and place all the projections in the XY-plane. It is important to highlight that it is necessary
to keep track of the descriptors of the features, as they need to be stored with the 3D points as part of
the model of the object. Figure 5 shows how the model has been iteratively constructed using the BA.

Figure 4. Diagram of elements in the Bundle Adjustment problem. A, B, and C represent the position
of the camera from where the observations were taken. p;¥i = 1...6 are six features in the space and
a;, by, and ¢; are the features observed by each of the positions.

o S\l Rl =i

(a) (b) (c) (d)

Figure 5. Different steps of the Bundle Adjustment optimization process. (a) Starting state; (b) First
iteration; (c) Iteration 5; (d) Iteration 20.

Moreover, before computing the BA, an additional filtering can be done to improve the
performance. Therefore, due to the fact that the inter-visibility matrix was obtained, we can compute
the number of times that each point appears (i.e., in how many images each point is observed). Some of
the features can be badly matched or just not matched. Hence, this could produce duplicated points
that might complicate the convergence of the algorithm. To avoid this, removing points that appear
in less than k images can improve and speed up the convergence of the BA. The minimum value for
k is 2, as the points need to appear in at least two images to be able to “triangulate” it. On the other
hand, increasing this parameter too much is not possible, because the SBA solver might not be able to
solve the problem if the number of observations is lower than the number of variables in the problem.
Therefore, k is set to 3.

Once the BA process is performed, we obtain a 3D model of the object. However, as described
in [4], because of the optimization algorithm, the points are not scaled according to the real size.
Authors in [4] record an extra dataset in which the position and orientation of the object is known,
then a second optimization algorithm is performed to obtain the correct model scale. In contrast, this
extra dataset is not needed when using stereo cameras. As the correlation of all the points is known,
it is possible to get the projections on both left and right images at each frame. P™ are the points
obtained from the BA, and P! is a cloud reconstructed from features of a frame k using the known
stereo geometry. It is possible to estimate the transformation T between them using a SVD (Singular
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Value Decomposition) based estimator. k is the current frame, Ny, is the number of points seen on that
frame, p!* is the point i on the model, and p! is the triangulated point from the stereo pair; the score of
each transformation is computed as

score =) (llp" = pilD/Ni
i=1..Nj
the transformation that produces the minimum score is used to scale the model to the real-world
size. Being

aj1 A 413 Iy
To |1 a2 a3 ty
asy azp a3 ity

0 0 0 1
the scale factor can be computed as
sx = ||[a11, 221, a31] |
s = [sx,5y,8:] = Sy = a1, 421, az1]||
sz = ||[a11, a1, az1] ||

Eventually, this model does not contain information about how to grasp it. This is done now
manually in order to ensure a correct manipulation. As the object modeling is performed offline,
it is realistic to choose it manually at this stage. Nevertheless, the detection of the grasping points
can be analyzed depending on the manipulator and the geometry of the object using diverse quality
metrics [2]—this is beyond the scope of this paper.

3.3. Finding Object in a Scene

In this subsection, the online detection of the object in new images and the position estimation is
described. First of all, using the camera calibration, the acquired images are undistorted. The same
feature detector and descriptor as the one used in the modeling stage is used to extract features in both
input images. Then, the features in the pair of images are matched. As described before, the known
parameters of the stereo calibration are used to filter the outliers. Hence, the remaining points are
stronger as they appear in both cameras and they are easy to match.

At this point, there is a set of point candidates on the scene that become part of the object. To detect
it and estimate its position, a PnP (Perspective-n-Points) formulation is used. P = {[x;, y;, z;], Vi = 1..N}
is a set of 3D points, and U = {[u;, v;], Vi = 1...N} is their projection on the camera plane. The objective
is to find the rotation R and translation T of the object in the camera’s coordinates (knowing the
calibration parameters of the camera), minimizing the re-projection error of the points. Particularly,
a RANSAC [39] implementation is used. It computes randomly possible solutions using the data
matched between the scene and the model. Then, the matched points that lie far from the model are
considered as outliers (i.e., rejected). In conclusion, it is less sensitive to local minima, and more robust
to outliers.

Now, we need to match the features in the scene with the model of the object to be able to start
the PnP problem. In order to do that, each descriptor is matched with the points in the scene, and then
filtered to remove outliers. The inliers are used in the PnP problem to detect the position of the object.
Figure 6 shows screen-shots of results outdoors with a featured floor.

70



Sensors 2017, 17,103

(a) (b)

Figure 6. Examples of detection and position estimation of objects outdoors. White thin circles are
candidate features in the scene. Green thick circles are the features assigned to the object, and the
coordinate system is the representation of the position of the object. It depends on the coordinate
system chosen at the modeling stage. (a) Drilling tool; (b) Whoopies box; (¢) Gena box.

Nevertheless, during each step, several features belonging to the background are detected and
described, which slows down the algorithm and increases the possibility of bad matches. In order to
speed up the online stage, a moving window tracker was implemented. In the beginning, the algorithm
searches for the objects over the whole image. However, if the confidence of the result is larger than a
threshold, the expected portion of the next image in which the object appears is computed. As the pixel
area of the following images are reduced, the amount of features computed decreases, and consequently,
the algorithm runs faster. Algorithm 2 summarizes the process in the online stage.

Algorithm 2 Online stage for finding learned objects.

1: searchWindow < size(images)
2: while images < camera do

3: Compute features on pair of images
4: Filter features
5: Match scene features with model features
6: Estimate object relative pose
7: if Number inliers threshold then
8: Found object
9: searchWindow < boundBox(inliers)
10: move arm to relative pose
11: else
12: searchWindow < Size(images)
13: end if

14: end while

Finally, once the object is detected and its pose estimated, the algorithm sends the desired relative
position to the robot arm and orients the gripper using the estimated orientation. This only happens
if the number of detected inliers is higher than a manually set threshold. If the number of inliers
decreased, the robot is returned to a safe position to start again when the object is detected again.
Therefore, the gripper closes when the error between the estimated position of the object and the
end-effector (using the direct-kinematic of the arm) is lower than a threshold. As mentioned before,
the grasp position is determined in the offline stage, ensuring it is graspable for the designed arm.

4. Experimental Validation

4.1. Hardware Setup

In order to test the algorithm, a hexacopter was built and equipped with an on-board computer,
the ZED cameras, and a 3DOF robotic arm (also designed by the authors). The UAV uses a F550 frame,
and the engines were chosen to have a maximum thrust of 6 kg. The whole system (including batteries)
weighs 4 kg. The arm is capable of lifting up to 500 g. The inertial measurement unit (IMU) and
controller of the hexacopter is the well known 3DR PIXHAWK [40]. To ensure enough computational
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power, the computer that was used was an INTEL NUC5i7RYH [24]. This compact computer has a
CPU i7 3.1 GHz and 8 GB of RAM. An Arduino Uno [41] board was added as an interface between the
computer and the manipulator.

The specifications of the robotic arm are: to be lightweight, have large range operation, and 3-DOF
to accomplish the grasping task. Figure7a shows a simplified model for the kinematics of the arm.
Joints are represented in blue, and its variables in red. The inverse kinematic of the arm is governed by:

6, =atan(y/x)
[01,602,603] = F(x,y,2) = { 6, =acos((I3 —d? —13) /(-2 x d x 1))
03 =acos((d> — 2 —13)/(—2+ 11 x L))
being, d = {/p? +2z2 and p = /22 +12.
Figure 7b shows the CAD design of the parts, which were built by 3D printing. Finally, Figure 7c

shows the whole structure that we built. The arm is attached to the bottom part of the drone (centered)
with a custom piece that screws to the base of the robot and to the arm.

(b)

Figure 7. Model of robotic arm designed for the aerial robot. (a) Simplified model of the arm; (b) CAD
design; (¢) Final built-in platform.

Additionally, a transformation is needed between the coordinate system of the camera and the
coordinate system of the arm. This transformation is composed of a translation between the centers of
the coordinates and a simple spin on the X axis:

1 0 0 ty
TC{—A = 0 ':05(“) - Sln(c‘t} ty
0 sin(a) cos(a) t.
0 0 0 1

The parameters of the transformation were experimentally obtained as a = 30°, t, = 0.06 m,
ty=01m,t; =0.

4.2. Validation Tests

Figure 8 shows pictures of the testing environment. As mentioned, the UAV was hung on a
structure for security reasons (since its control is not the target of this article). The objects were placed
in its workspace so it could detect them and grasp them. The drone was controlled in loiter mode,
describing up and down movements.

72



Sensors 2017, 17, 103

Figure 8. Robot grasping an object. The camera’s view is given in the inset. The green rectangle is the
tracked moved window.

As mentioned in Section 3, the performance of the system depends on the election of the features
extractor and descriptors. Table 1 summarizes the results for different combinations of detectors and
descriptors at different resolutions in an outdoor environment. Results in indoor environments with
poor light conditions are usually faster, generally because fewer features are detected so fewer features
need to be described. Table1 presents the performance of the algorithm for total image resolution
without using the window tracker (i.e., before the object is tracked).

Table 1. Average computational times for the feature detection, matching, and stereo filtering for
different feature detectors and descriptors. Using different image resolutions (640 x 480 and 1280 x 720).
FAST: features from accelerated segment test; SIFT: scale-invariant feature transform; SURF: speeded
up robust features; BRIEF: binary robust independent elementary features; rBRIEF: rotated BRIEF;
DAISY: an efficient dense descriptor applied for wide baseline stereo.

FAST Detector SIFT Detector SUREF Detector
640 x 480 1280 x 720 640 x 480 1280 x 720 640 x 480 1280 x 720
SIFT descriptor 0.318s 0.739 s 0.510 s 1299 s 1.532s 2412s
BRIEF descriptor 0.042 s 0.214s 0.250 s 0.660 s 0.235s 1.012s
rBRIEF descriptor 0.045s 0229 s 0.237 s 0.715s 0.256 s 1.100s
SUREF descriptor 0.074 s 0215s 0.380 s 0.986 s 0.368 s 1.098 s
DAISY descriptor 0.319s 0.876 s 0.523 s 1516s 0489 s 1421s

The algorithm’s execution time is divided mainly into two processes; the first is the feature
detection and description (Table 1), matching, and filtering, and the second one is the PnP solving
method. If the object is not on the scene, the PnP solver takes longer due to the fact that it does not
converge, and it performs all the defined number of iterations. On the other hand, the time for the
first stage is usually stable. This only depends on the choice of the detector and descriptor, and on the
smoothness of the image.

The PnP process was analyzed regarding the confidence parameter and the reprojection error
parameter. These two parameters affect the performance of the algorithm in both time and pose
estimation. To give a numerical idea of the influence of the parameters, Table 2 summarizes the average
time for the algorithm, varying the parameters using FAST and SIFT. The reprojection error is the
maximum allowed “projection” error for the inliers, and the confidence parameter’s influence on the
quality of the result.
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Table 2. Computation times of the PnP (Perspective-n-Points) algorithm varying the confidence
parameter and the reprojection error.

Reprojection Error

3pxs. 5pxs. 7pxs. 8pxs.

confidence =0.99  0.031s 0.028s 0.025s 0.024s
confidence = 0.999  0.036s 0.031s 0.027s 0.026s
confidence = 0.9999 0.039s 0.034s 0.028s 0.028s

Increasing the reprojection error increases the speed, but as shown in Figure 9, results in worsening
of the position. Similarly, decreasing the confidence parameter speeds up the PnP algorithm,
but decreases the quality of the result. Figure9 shows the estimated position of an object, varying
the reprojection parameter. It can be seen that the estimation on the Z axis (forward direction of the
camera) is worst when the reprojection error increases. As the projections of the points are allowed to
fall further, larger errors in translation and rotation can be produced. Additionally, these computation
times are reduced up to 75% thanks to the optimization described in Algorithm 2.
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Figure 9. Result of pose estimation algorithm varying the reprojection error. Lines from top to bottom
are: Z-coordinate (yellow), X-coordinate (blue), and Y-coordinate (red). Increasing the parameter
decreases the quality of the results. However, as described in Table 2, it is slightly faster. (a) Reprojection
error 3; (b) Reprojection error 5; (c) Reprojection error 7; (d) Reprojection error 8.

The algorithm is also proven to be robust to occlusions. The position of the object can be
reconstructed with a small fraction of points of the model. Figure 10a,b shows the estimated position
of an object occluded partially by a person. Additionally, in Figure 10c,d, one can see how the position
of the object remains stable, even with the arm occluding the object during the grasping trajectory. It is
noticeable that the position is more stable than the orientation against partial occlusions.
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(b)

(d)

Figure 10. Testing detection and position estimation with partial occlusions. (a) Non-occluded indoor;
(b) Occluded indoor; (¢) Non-occluded outdoor; (d) Occluded outdoor. The top figures show an indoor
test, where the object is occluded by a human hand. In the bottom figures, the object is occluded by the
arm of the UAV during the grasp process.

The performance of the FAST/SIFT features under different light conditions was also validated,
as can be seen in Figure 11. This figure shows the result of the object detection and pose estimation
with different types of lights and shadows (indoor, outdoor with shadows, and without shadows).
The algorithm performs well in outdoor environments with and without shadows, as the camera
automatically adjusts the exposure of the sensor. Indoors, the result is initially the same. However,
as the exposure time of the camera increases, the image is more prone to have motion blur. This implies
large variations in the feature descriptors. Because of this, the algorithm may lose the object tracking
during fast movements.

(b) (© (d)

Figure 11. Testing algorithm with different light conditions. (a) Without shadow; (b) Partial tree
shadow; (c) Complete tree shadow; (d) Lamp light.

It was observed that the use of the FAST detector and SIFT descriptors produced the best results.
In the learning stage, these features produced accurate models. Subsequently, the position estimation
was recovered—in both indoor and outdoor environments—more easily than with the other feature
descriptors. However, the computation time of this descriptor is too high. Indoors, a frame speed
within 8 and 13 FPS was obtained without using Algorithm 2, and 15-19 FPS using it. Outdoors,
however, due to the light conditions and the texture of the floor, the FPS decreased drastically to within
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2 and 4 FPS without optimization and up to 11 FPS with the moving window. This happened because
the feature detector detects more features outdoors, as images are sharper.

The second-best option is the use of the FAST detector and rBRIEF (rotated BRIEF).
The computation time for this descriptor is significantly lower than SIFT, and the computation of
distances in the PnP solver takes less time, as the descriptors are smaller. It works within 25-30 FPS
indoors and reaches 25 outdoors thanks to the optimization. Nevertheless, this descriptor showed the
worst behavior against variations in the scale.

Last but not least, the algorithm was tested with multiple objects at the same time in the scene.
Figure 12 shows the results obtained by varying the chosen object model for the detection.

Figure 12. Testing grasp with multiple objects. The algorithm is able to switch the targeted object
according to any desired task if the model is learned. (a) Picking whoopies box; (b) Picking drilling tool.

5. Conclusions and Future Work

An on-board object detection method for an aerial robot that computes the needed information
for the autonomous grasping of objects was developed. The algorithm was tested outdoors to test
strong light conditions and its robustness against the vibrations generated by the UAV. The UAV was
provided with a lightweight 3DOF arm for proof of concept of grasping objects.

In contrast to previous work, stereo cameras were chosen for two reasons: (1) to automate the
learning process (the images are filtered using the stereo geometry, and the scale of the object is
obtained automatically from the set of images without needing a manually calibrated dataset); and
(2) for filtering bad features in the detection stage, making it more robust.

This can be used in several manipulation applications, such as inspection or maintenance of
pipes or wind turbines. A drop-off/pick-up zone for objects (sensors, tools, etc.) can be selected,
and the drone is able to pick up objects autonomously without requiring any information about the
exact location. In contrast to RGB-D systems, the proposed method can be used robustly in outdoor
environments. Furthermore, the method performs well under occlusions and the presence of outliers
due to the feature-based modeling of the objects.

A speed comparison of different features has been made. This made it possible to choose the
features that are better suited to the problem. As mentioned, the SIFT descriptors are more robust, as
they perform well with different rotations and scales. However, this descriptor is slower than others,
so if the UAV needs faster results, it is better to use other descriptors. rBRIEF (rotated BRIEF) is a good
alternative. It is much faster than SIFT, and it is also invariant to rotations. Its main disadvantage is
being less robust to scales.

As a future step, it might be interesting to compute the grasping points using quality metrics
instead of choosing them manually at the learning stage. So far, all the tests have been performed by
tying the UAV to a secure structure. The next step is to perform experiments while undertaking an
autonomous flight. Finally, we want to speed up the feature detection using GPU to reduce the CPU
computations and allow the UAV to perform more operations on the computer.
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Abstract: This paper presents a system for identification of wind features, such as gusts and
wind shear. These are of particular interest in the context of energy-efficient navigation of Small
Unmanned Aerial Systems (UAS). The proposed system generates real-time wind vector estimates and
anovel algorithm to generate wind field predictions. Estimations are based on the integration of an
off-the-shelf navigation system and airspeed readings in a so-called direct approach. Wind predictions
use atmospheric models to characterize the wind field with different statistical analyses. During the
prediction stage, the system is able to incorporate, in a big-data approach, wind measurements from
previous flights in order to enhance the approximations. Wind estimates are classified and fitted into
a Weibull probability density function. A Genetic Algorithm (GA) is utilized to determine the shaping
and scale parameters of the distribution, which are employed to determine the most probable wind
speed at a certain position. The system uses this information to characterize a wind shear or a discrete
gust and also utilizes a Gaussian Process regression to characterize continuous gusts. The knowledge
of the wind features is crucial for computing energy-efficient trajectories with low cost and payload.
Therefore, the system provides a solution that does not require any additional sensors. The system
architecture presents a modular decentralized approach, in which the main parts of the system are
separated in modules and the exchange of information is managed by a communication handler
to enhance upgradeability and maintainability. Validation is done providing preliminary results
of both simulations and Software-In-The-Loop testing. Telemetry data collected from real flights,
performed in the Seville Metropolitan Area in Andalusia (Spain), was used for testing. Results show
that wind estimation and predictions can be calculated at 1 Hz and a wind map can be updated at
0.4 Hz. Predictions show a convergence time with a 95% confidence interval of approximately 30s.

Keywords: wind prediction; wind estimation; UAS; wind shear; gust; multi-platform integration

1. Introduction

Current UAS technology has advanced in such a way that any unexperienced user is able to
plan a route with relatively good accuracy. As the reliability has increased, applications using small
UAS are growing rapidly. In addition, nonlinear natural effects, such as winds, can be compensated
even with Commercial-Off-The-Shelf (COTS) components. Nevertheless, to compensate wind effects
efficiently, the use of a sensor that can provide wind measurements is sometimes limited by the
platform payload and the cost. This leads to inefficient attitude compensations, producing drift and
sometimes missing waypoints, which may result likely into higher energy consumptions [1]. Currently,
there are several research efforts to provide wind estimations without a direct measurement of the wind.
Langelaan, et al. [2] proposed two ways of estimating the wind field, both using measurements from a
standard sensor suite, i.e., Inertial Measurement Unit (IMU) and Global Navigation Satellite System
(GNSS). The first method consists in a comparison between predictions generated with a dynamic
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model and actual measurements of the aircraft motion. The second one consists in the estimation
on wind acceleration and its derivatives from the GNSS velocity, i.e., using the pseudorange rate
of change together with direct measurements of the vehicle acceleration. Johansen, et al. [3] have
developed a method in which the wind is estimated using an observer which leads to the calculation of
sideslip and Angle-of-Attack (AOA). They estimate the wind from the difference between the platform
velocity relative to the wind and the velocities in the body frame utilizing a Kalman Filter, which is
a similar approach than the one presented in [4]. Other approaches, such as the one presented by
Larrabee et al. [5] uses flow angle sensors and a Pitot tube with two Unscented Kalman Filters (UKF).
This innovation compares information from different platforms in order to produce real time estimates.
Neummann & Bartholmai [6] produced wind estimations with a quadcopter UAS without the use
of any additional sensors rather than its standard sensor suite, even without a dedicated airspeed
sensor, and /or anemometer, based mainly in the wind triangle and the vector difference between the
ground speed and an estimated speed. Condomines, et al. [7] have published a set of results of a
flight campaign with estimations of the wind field considering non-linear wind estimation with an
square-root UKF in which the platform was equipped with an standard sensor suite which provides
measurements that estimate angle of attack and sideslip.

Previously, as part of this research effort, the authors have introduced an algorithm that can
estimate the wind field in such way that the different wind features (gust, shear, etc.) can be identified
separately with a method that calculates statistical properties and based on distribution models of the
wind, such as the 1 — cos model for gusts and the wind shear model [8,9]. Lawrance & Sukkarieh [4]
propose a method that incorporates a Gaussian regression in order to predict within a limited
amount of time (up to 10s) the local wind field despite the feature that is present. The identification
of features, such as shear, thermals [10], gusts is of particular importance in the so-called
atmospheric energy harvesting [4]. On this field, several authors such as Cutler et al. [11] and
Chakrabarty et al. [12] have published successful results on the generation of static soaring trajectories
and others, such as Montella & Spletzer [13] and Bird et al. [14] have developed systems that produce
and follow dynamic soaring trajectories. In addition, Bencatel et al. [15] have performed an analysis
on necessary conditions for dynamic soaring and how this problem can be seen as a function of
aircraft and environmental parameters. Despite the advances in the generation of the trajectories
(Rucco et al. [16]), there are few methods for identifying wind features, and the creation of real-time
algorithms for energy harvesting should be addressed and improved. A few authors have described
the integration of such methods in a level of detail that can identify areas of opportunities in hardware
selection, software architecture, computational time, etc.

This paper presents and describes the detailed integration at a hardware and software level of the
system. This enables the estimation of the wind vector and identification of the features in real-time
with a standard sensor suite. In the previous works of the authors [8,9], the identification system was
firstly introduced. In the work presented, wind features (wind shear and discrete gusts) are identified
separately based on statistical analysis by fitting wind estimates into a Weibull distribution. The wind
identification system allows the generation of a 3-dimensional wind map with predictions of what the
wind vector would be at a certain location. The system presents innovations regarding its architecture,
and adds the capability for continuous gust identification. Preliminary results are presented in two
stages: simulations of the different features and a Software-In-The-Loop (SITL) testbed fed up with
previous flight information. The verification with actual experiments is going to be presented in a
follow-up manuscript.

The paper is organized as follows: Section 2 presents a brief summary of the methods and
statistical analysis utilized. Section 3 describes the hardware and software architecture of the system.
Section 4 shows the validation results of the different components. Section 5 presents a discussion on
the obtained results. Finally, conclusions are presented in Section 6.
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2. Wind Field Estimation and Wind Field Prediction

The generation of the wind field considers both the estimation and prediction processes. Both are
equally important, however they not necessary have to occur at the same time and rate. This section
provides the insights of the selected methods for these operations.

2.1. Wind Field Estimation

The selected method for estimation process was originally presented in [2]. It estimates the wind
without the use of an observer (Kalman or Particle filters) by using the velocity vector calculated by
the GNSS module together with measurements of the vehicle acceleration and a portion of the state
vector of the platform. The goal is to calculate the wind acceleration and velocity using the relationship
between the GNSS velocity and the body-axis state from the COTS Autopilot Module (APM).

Consider a UAS located in r in the inertial frame 1. The unit vectors of this frame are defined as
(%1, J1,21). Consider also a body frame b with unit vectors (Zp, i, £») with its origin at the center of
mass of the vehicle. The wind vector w and the airmass-relative velocity v, are illustrated in Figure 1.

X

Figure 1. Reference frames utilized in the formulation of the identification of wind vector problem.

The velocity of the vehicle expressed in the inertial frame is.
r=v,+wW 1)

From Equation (1), two relationships are used to characterize the instantaneous wind vector.
Further details on the derivation of these relationships can be found in [2,8,9].

The first one indicates the correspondence between the vehicle kinematics and the GNSS velocity
expressed with respect to the I frame:
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where (wy, wy, w;)1 is the wind velocity vector, (¥, 1/, Z)15yss i the GNSS velocity vector and (u, v, w)y,
are the components of the velocity with respect the air mass expressed in the body frame and assumed
to be calculated by the autopilot. CP is the Direction Cosine Matrix, which transforms a vector
expressed in the inertial frame to one expressed in the body frame.
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The second relationship aims to calculate the wind acceleration expressed in the body frame at the
previous step (k — 1). Since the IMU body-axis accelerations expressed in the body frame are given by.

ay Wy u qu —rv + gsinf
ay| = |wy| +|9| + |ru—pw—gcosbsing| + bimy + Nimu @)
az ], Wz |y wly po — qu — g cos B cos ¢

where (ay, ay, a,) is the body axis accelerations vector, (p, g, 7) is the rotation rate vector, g is the gravity
force, 6 is the roll angle, ¢ is the pitch angle, by, is the accelerometer bias and njp,, is the white noise
from the IMU.

Since the calculation of the rate of change of the velocity with respect the air mass can’t be
determined with the on-board sensors it can be estimated with a second order numerical differentiation.
Therefore, the wind speed rate of change at the previous step k — 1 was derived:

Wy ax by —gsinf quw —ro 1| e 2
Wy = |ay — | by + | gcos@sing — |pw—ru ~oAf | U vk2 4)
Wz ]y |1 b, 1 g cosf cos P 1 qu—po]|,_, Wy — Wg_o

Equations (2) and (4) are necessary for trajectory planning. Using different sources of error
increases the reliability of the solution. Moreover, the calculation of wind acceleration and velocity
based on actual inertial and GNSS measurements ensures bounded errors which is a key advantage
compared to other methods (e.g., the use of a dynamic model).

2.2. Wind Field Prediction

The wind field could be estimated at each time step from the data provided by the IMU, GNSS
and the vehicle dynamics as shown in Section 2.1. Previous results [8,9] show that the estimation
algorithm produce accurate results. However, these estimations are not sufficient if the information is
going to be used for precise trajectory planning. Therefore, a prediction stage is needed so that the
wind field could be inferred within a reasonable time window.

In this context, three models of different wind features have been selected: the wind shear model,
the discrete gust model and the continuous (Dryden) wind turbulence model. These are widely used in
the aerospace industry and are contained in the Military Specification MIL-F-8785C [17] and Military
Handbook MIL-HDBK-1797 [18].

2.2.1. Wind Shear Model
The magnitude of the wind is modeled by the following equation:

h

Wahear = Wa 1m < h < 300m 5)

0—2_
6.09
In S
where Wype,r is the mean wind speed, Wy is the wind speed at 20 ft (6.096 m) and z, varies depending
on the flight phase. However, a value of 0.0457 m (0.15 ft) is selected due to the characteristics of the
platform, i.e., flight below 1000 ft. Finally, & is the actual altitude of the vehicle.
The wind shear is illustrated in Figure 2.
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Figure 2. Typical shear profile that shows the increase of wind speed over as the altitude increases.

The relationship is exponential between the two variables.

In order to characterize the wind shear, it is assumed that the wind varies with the altitude
following the Prandtl Ratio based on an Empirical Power Law (EPL) [8]:

¢
W (i Y
Wa hy
where ¢ is the Prandtl coefficient that shapes the EPL function. (W;, W;) are two wind speeds and

(h1, hy) are the corresponding altitudes.

2.2.2. Discrete Gust Model

This model uses the implementation of the 1 — cos shape and its mathematical representation is
as follows:

0 x <0
Woust = 4 “2(1—cos 7%) 0<x <dy @)
Wi x> dy

where W), is the magnitude of the gust and dy, is the gust length and x is the distance traveled.
The discrete gust is illustrated in Figure 3.
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Figure 3. Typical discrete gust profile that shows a growth over the wind on a short period of time from
the initial wind speed of the gust magnitude, and a permanent increase at the end of the gust length.
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2.2.3. Continuous Gust Model

The selected model for continuous gust utilizes the Dryden spectral representation in which the
turbulence is considered a stochastic process defined by velocity spectra. In [17-19], the power spectral
densities are defined. Note that for simulation purposes the Low-Altitude scale lengths have been used.

The number of variables in the continuous gust model is vast. Therefore, inferring these values
from actual wind measurements trough a regression is very complex. Thus, this model is used only as
a simulation input.

Two methods are proposed for continuous gust identification in both short and long term. The first
one incorporates a Standard Gaussian Process (GP) Regression [20].

Considering a set of vertical wind observations of size M, W, = Wz,i|f\£ 1~ The wind speed
prediction W, (x) at any location x can be expressed as:

M
Wy(x) = Zki N i 8

in which k; is the i-th coefficient of the linear combination of wind measurements W,. Based on the work
presented by Park et al. [21], an optimal coefficient is determined by minimizing the prediction error.

minE (W, (x) — Wy (x))*] = min(k" [QOCX) +Gi1| k= 2KTq(X,x) +q(x ) ©)

which can be determined by calculating the covariance matrix Q(X, X) and the covariance vector
q(X, x) between every two observations at locations X and x; finally q(x, x) represents the covariance
value . This leads to express standard GP regression of the linear predictor as:

~ -1,
pX) =KW, = q(x,X) [QOXX) + 021 W, (10)

and the covariance value cov(f(x))) can be expressed as:

cou(p(x) = (%) — a(xX) [QOX) +021] " q(x,X) ay

where ¢? is the measurement noise covariance.

An alternative approach can be used to perform long-term predictions by employing a non
homogeneous regression prediction model. Lerch and Thoraninsdottir [22] have performed a
comparison between three non-homogeneous regression model, which allows to produce predictions
in day time window. Since the intention of the intended testing flight campaigns is to store data into
a single database, a big amount of data can be utilized to perform the predictions with the selected
regression model.

At this stage, the truncated normal model was selected as a form of wind estimation. Being W
the wind speed and Xj, ..., Xj the ensemble member forecasts, the predicted distribution of W can be
approximated by a truncated normal distribution:

WXy, ..., Xj ~ Nigo) (11, 0%) (12)

where the mean p is an affine function of the ensemble forecast and the variance ¢ is an affine function
of the ensemble variance. If these exchange members are exchangeable [22], the distribution function

of the Truncated Normal (TN) distribution F(z) is given by:
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Mg (22H
Fo) =@ (b)) o(=F 13
@=o(t) o (") 13)
for z > 0, where ® is the cumulative standard normal distribution.

This is indeed a simple non-homogeneous method. However, results indicate that the training
period to produce accurate predictions in one-day ahead forecasts is of the equivalent 30 days of
continuous measurements [22].

2.2.4. Weibull Distribution

The Weibull distribution is a key part of the research performed as many datasets, including wind
speed have been proved to fit in. The Weibull distribution has three main parameters, the shaping
factor «, the scaling factor v and the threshold. Given a dataset W= (Wj...W,,), the Weibull probability
density function can be expressed as a function of a wind magnitude W [8]:

=1 .,
fowy = SN (14)

Y,

From this function the most probable wind speed Wi, at a particular location can be expressed
in terms of the Weibull parameters:

Winp = v(1 — 5)1 (15)

A typical Weibull distribution is shown in Figure 4.
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Figure 4. Typical weibull distribution from a National Oceanic and Atmospheric Administration
(NOAA) measurement station at an altitude of 30 m.

2.2.5. Genetic Algorithm and the Weibull Distribution Parameters

Genetic Algorithm is a searching method that simulates the evolution theory. The method aims to
generate possible random solutions (chromosomes) to a problem stated in a for of an objective function
(fitness function). A given set of chromosomes is a population in a generation. Every one of them
will produce evolved chromosomes based on three operations: reproduction, crossover and mutation.
Details in the implementation of the GA can be found in [23].

In order to calculate the shaping parameter x of a Weibull-distributed data set, one has to calculate
the residual error € between the measured mean and the standard deviation of the wind estimates
(see Section 2.1) and a theoretical mean and standard deviation derived from the Weibull distribution
moment, as stated in the following equation:

86



Sensors 2017,17, 8

- > T(1+2/x)+T2(1+1/x)
c=0/p - r2(1+1/x)

(16)

where I' is the gamma function ¢ is the standard deviation of the wind estimates and y is the mean of
the wind estimates.

Once Equation (16) converges to a desired tolerance value, an acceptable « value is obtained and
the scaling parameter can be calculated based on the following equation:

u=vuvl(1+1/k) 17)

2.3. Wind Mapping

In order to generate a full 3D wind map, a combination of methods is required. Initially, the work
presented in [8] suggests the use of a Newton polynomial extrapolation in order to generate local
values of the Prandtl coefficient, ¢, from which the shaping and scaling parameters can be calculated
in order to obtain a local most probable wind speed Wy This is true in case of the presence of a wind
shear. However, if a gusts is detected, the extrapolation will accumulate error, producing an inaccurate
wind map.

Therefore, a 3D map can be generated based on the feature that is detected. The GP regression
shown in Section 2.2.3 allows the generation of a wind map with predictions based on the estimates
found at position X. These estimates carry information of the covariance which is continuously
updated with the different feature detection algorithms. Details on the wind mapping algorithm and
the results are to be found in the Part 2 of this research.

3. System Architecture

This section describes the hardware, software and communication architecture of the wind
identification system.

The selected hardware takes mainly two COTS components in order to perform the estimation
and the prediction of the wind field. The selected autopilot is the Pixhawk (3D Robotics, Berkeley, CA,
USA) which is based on the PX4 open-hardware project. The characteristics of this module can be
found in [24]. Given the processor characteristics, the wind estimation and wind prediction algorithms
have to reside in a dedicated computer. The selected computer is the ODROID-C2 (Hardkernel,
Anyang Gyeonggi-do, Korea) [25] that contains a quad-core processor at 2 Ghz at 64 bit. The main
characteristics are enumerated in Table 1.

Table 1. ODROID-C2 Specifications from [25].

CPU Amlogic S905 SoC, 4x ARM Cortex-A53 2 GHz, 64 bit ARMv8 Architecture @28 nm
RAM 2 GB 32 bit DDR3 912 MHz
Flash Storage Micro-SD UHS-1 @83MHz/SDR50, eMMC5.0 storage option
ADC 10 bit SAR 2 channels
Size 85 mm x 56 mm (3.35 inch x 2.2 inch)
Weight 40 g (1.41 0z)

The required algorithms need an additional platform that shall do the data analysis of the stored
variables. All the wind estimates and predictions are kept in a database. As more flights are to be
performed as part of the validation, verification and other applications, the wind database will grow.
Due to its size and for reliability, a ground station contains the wind prediction and estimation database.
A PC with an ©Intel Core(TM) i755000U CPU (Seattle, WA, USA) at 2.4 GHz with 16 GB of RAM
was used.

The software design has evolved deeply since its conception. Initially the system was created in a
multi-platform way with different computing languages interacting at a very high level. The proposed
architecture intends to minimize these interfaces at component-level in order to enhance maintainability
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and upgradeability of the system. In the architecture shown in Figure 5, the autopilot sends information
from a request made by the communication module, this information is sent to the wind estimation
algorithm that generates wind estimates that will go to the prediction block which uses information
from the wind database and also calls the storage module once a prediction is performed.

Figure 5. High level software architecture that shows the flow of information of the wind identification system.

As it was mentioned before, the designed architecture considered a diversity of programming
languages and even various operating systems. The modules communication of this system was done
in Linux with pymavlink (MAVLINK (Micro Air Vehicle Communication Protocol) is a communication
library for UAS that can pack C-structures over a serial channel and send this packets with other
modules. It was originally released in 2009 by Lorenz Meier with a GNU Lesser General Public
Licence (LPGL). Pymavlink is a Python implementation of MAVLINK [26]). The wind estimations and
the simulation test-bed with the models shown in Section 2 were done using MATLAB, Simulink®
(The MathWorks, Inc., Natick, MA, USA). Finally, in order to generate a database, initially the idea was
to create comma separated (*.csv) files, however, Structured Query Langate (SQL) was selected to be
utilized for Database Accessing and Management, which required Java and C++ connector of SQL.

After observing problems in the synchronization of the systems, the solution was to migrate
everything to C++ leaving only the database management in JAVA with the MySQL® (Oracle
Corporation, Redwood Shores, CA, USA) C++ connector. The concept was to build a modular
architecture that runs under a handler that manages the communication between the various modules
that interact to identify the wind (see Figure 6).

Figure 6. Architecture design with communications handler.

The modules are the same shown in Figure 5 plus the alerts generation.
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An advantage of the modular implementation is that the system can be easily expanded to provide
additional functionalities besides the wind identification system. This was thought in order to be able
to integrate trajectory optimization functions and controlling modules to follow the desired trajectory.

The details on the implementation of the modules are described in Sections 3.1-3.4.

3.1. Communication Block and Handler

The explanation of the communications is divided in two parts. The first one, described in
Section 3.1.1 analyzes the details of the communication between the three main hardware components:
the ODROID, the Pixhawk and the PC with SQL. The second part, Section 3.1.2, explains the details of
the communication between the functional software blocks.

3.1.1. Hardware Communication

The hardware communication is performed by a C++ Software implementation derived from the
MAVCONN software created by Lorenz Meier as a complementary MAVLINK toolset [27]. The main
characteristic is the low latency that allow the communication between processes approximately
at 100 microseconds. The system was implemented asynchronously, allowing the data to be sent
immediately after it is available. The asynchronous communication is an alternative solution to the
widely use polling which is proven to require extra CPU resources because of the context switch.
On the other hand, asynchronous design requires minimum CPU resources. Nevertheless, it needs
a multi-threaded implementation which is computationally more complex. The ODROID computer
allows this type of implementation. Further details of this implementation can be found in [28].

3.1.2. Module Communication

The communication between modules is managed by a handler (see Figure 6). Each module
publishes its information at a certain order based on a request and the importance of the information.
Therefore, if a module requires priority information the framework will designate this request over
others. Table 2 shows the selected requirements in terms of communication rate and an assigned
priority based on the importance of its information to other subsystems.

Table 2. Communication Scheme of Handler. The publishing rate which was determined based on the
results found in [9] and the priority based on the system requirements.

Function Publishing Rate  Priority
APM Comm Request 2Hz 1
Wind Estimation 1Hz 1
Wind Prediction 0.25Hz* 2
Database Management 0.2Hz 3
Database Search 0.25Hz 2
Alert Generation 0.1Hz 4

* This rate was selected due to the current time required to scan the wind database. Future work will optimize
this rate allowing the generation of predictions at a lower rate.

The main advantage of this system is the modularity, since the intention is to have total
independence between systems. If there is any communication problem, or the data is proved to be
corrupted, this is handled directly by the communication handler which will continue to serve the
other functions to preserve the overall integrity.

The processes with highest priority of publishing are the communication request between the
ODROID and the PIXHAWK and the wind estimation processes (see Table 2). The first one was based
on the publishing rate of the information available from the User Datagram Protocol (UDP) connection
with MAVLINK. The second one was based on the computational time that requires the prediction
which was subject of previous study in [8,9].
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3.2. Wind Prediction

The main part of the system consists in a prediction algorithm that is able to recognize wind
features (gust and shear) separately. The algorithm performs a statistical analysis to wind velocity
estimates in order to determine if a feature is present. First, the module requests a wind estimation to
the communication handler. Once it is requested, it stores the data into a temporary database that is
going to be used for analysis.

If there are sufficient estimates from the current flight, the system starts a feature detection process
by ordering the wind database with respect the UAS altitude. Since the altitude reading vary a lot
with time, even in small amounts, the estimates are grouped according to a reference altitude by
selecting those altitudes that are close within a given tolerance. Normally the references altitudes
are integer numbers and the groups are conformed by those readings between a +1m tolerance.
At this point the module calls the communication handler in order to request additional measurements.
These measurements may introduce significant noise to the system. Therefore, the conditions for
the selection of previous measurements include date, time, location, altitude and some weather
information. The database query instructions may vary from flight to flight, therefore, the specific
conditions and the tolerances value can be specified on a flight-to-flight basis.

For those grouped wind estimates, the module tries to find the corresponding Weibull parameters
using GA. If the system finds the Weibull parameters, a most probable wind speed at the corresponding
reference altitude is generated. The process is repeated until the local maximum altitude is reached.

At first, the system performs an analysis to determine the presence of a shear, which is a very
common feature [23,29]. The wind prediction module tries to find a Prandtl coefficient that minimizes
the error between the most probable wind speeds for the reference altitudes. If the estimates are
distributed according to the Weibull distribution and there is a Prandtl coefficient ¢ that produces
an acceptable error into the system (during the testing, the Prandtl coefficient was selected when
the average error among the different altitudes was € < 5m/s). Then, and alert is triggered and the
system recognizes the presence of a shear. Afterwards, the system performs a statistical analysis to
determine anomalies (significant jumps) in consecutive wind estimates. These were performed by
looking for sudden increases into the running standard deviation of the wind estimates. If there is a
sudden increase an initial alert is generated that potentially a discrete gust is identified. If the system
is not capable to determine accurately the Weibull parameters of the system, most probable wind
speeds cannot be fitted into a shear, and/or the running standard deviation presents drastic changes,
i.e., there are continuous increases in the running standard deviation, the system assumes the presence
of a continuous gust which triggers a short term Gaussian Regression process in order to characterize
the feature. Algorithm 1 describes the insights of the prediction algorithm.
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Al

gorithm 1 Wind prediction algorithm.

1

2:

43:

45:
46:

: procedure REQUESTWINDESTIMATION

WindEst = CommHandler.Request.CurrentWind Vel > Request a wind speed estimation
(see Equation (2)).

WDb(CommHandler.Request.WVelCount++)= WindEst; > Store WindEst to Database.
end procedure

: procedure DETECTFEATURE(WDb) > Requires Wind Database (WDb) with at least 30 elements
: Start=False;
if WDb.Size > 30 then
Start = True; > Start detection of features.
else
CommHandler.Alert = InsufficienElements; > Wait until DB has sufficient elements.
end if
if Start==True then
WDb = OrderAltitudes(WDb); > Order WDb based on altitude.
fori =1 < AltMax do > Check for altitudes 1 m to maximum altitude .

NearAlts = FindNearAltitudes(WDD,i, thres);
AdNearAlts = CommHandler.RequestDb(i); > Additional WDb elements to master Db.
NearAlts = [NearAlts:AdNearAlts]; > Group elements.
WindVelMP = FindMPW Vel(NearAlts) > Find most probable wind speed at altitude i m.
MPS(i) = Store(Wind VelMP); > Store the most probable wind speeds.
end for
Prandtl = CalcPrandtl(MPS) > Calculate Prandtl coefficient from Equation (6).
if Prandtl.Exist = True then
¢ = Prandtl;
CommHandler.Alert = ShearDetected;
end if
i+ 4+

if Exist(Prandtl) = False then

DetectJumps(WDb.Velocity,Std(WDb.Velocity)) > Look for jumps in running std. dev.
end if
if CommHandler.Request.Alert.JumpDetected = True then

JumpCounter++;
end if
if JumpCounter>threshold then

Commbhandler.Alert = ContGustDetected; > Is a continuous gust.
else

Commbhandler.Alert = DiscGustDetected; > Is a discrete gust.
end if

if CommHandler.Request.Alert. DiscGustDetected = True then
Gust = DetectJumps.Jumpsize

else if CommHandler.Request.Alert.DiscGustDetected then
ContGust = PerformGaussianRegressionWDb > See note **.
end if
else
CommHandler.Alert = NoFeatureDetected; > No feature was detected.
end if

end procedure

** The system may perform a long-term and a short term prediction. For this research activity only the short-term
which is a Standard GP regression. The non-homogeneous GP regression requires a vast amount of information
which is part of future activities.

The algorithm that is used to group the altitudes based on a reference is shown in Algorithm 2.
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Algorithm 2 Grouping near altitudes algorithm.

1
2
3
4
5:
6
7:
8
9

pr

ocedure FINDNEARALTITUDES(WDDb,alt, thres) > Find altitudes in WDb close to alt.
Counter = 0;
fori =1 +WDb.Size do
if alt-thres<WDb(i).Altitude<alt+thres then
NearAlts(Counter++) = WDDb(i); > Store whole WDb.
end if
end for
return NearAlts;

end procedure

T

he determination of the most probable wind speed at a given altitude is described in Algorithm 3.

Algorithm 3 Weibull parameter calculation algorithm.

1: procedure FINDMPWVEL(NearAlts) > Find altitudes.
2: x = CalcKappa(NearAlts) > Calculate shaping parameter using GA.
3: v= mr(l + 1 > Calculate scaling parameter from Equation (17).
4: end procedure
5. procedure CALCKAPPA(Altitudes) > GA Implementation (see note***).
6: PopulationSize = 50;
7 FunctionTolerance = 1 x 103;
8: MaxGenerations = 100;
9: CrossOverFraction = 0.8;
10: StdAlt = Std(NearAlts); > Calculate standard deviation.
11: MeanAlt = Mean(NearAlts); > Calculate mean.
12: PopKappa == rand(PopulationSize); > Initialize with random population.
13: while € > FunctionTolerance do
14: for j = 1 <—PopKappa.Size do
15: Results(j) = ObjFunc(PopKappa(j),Std Alt, MeanAlt); > Evaluate Objetive Function.
16: end for
17: Parents = Selection(Results,PopKappa); > Selection of elements for newGeneration
Equation (16)).
18: Reproduction(Parents, PopKappa,MaxGenerations;) > Creation of new population.
19: Crossover(CrossOverFraction); > Scattered crossover function.
20: Migration(); > Gaussian Mutation function.
21: end while

22: end procedure

*** The selected parameters were the same ones utilized in previous implementations [8,9].

Algorithm 4 describes the calculation of the Prandtl coefficient once the system detects a stable
running standard deviation.
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Algorithm 4 Wind Prediction Algorithm.

1: procedure CALCPRANDLT(WindSpeeds) > Determine Prandtl Coefficient.
2 Prandtl.Exist = False; > Initialize values.
3 Prandtl.Value = 0;
4 form = 0.01 < 1 do > Evaluate potential Prandtl coefficient.
5: for/ =1 <MaxAlt do > Evaluate for altitudes in MPWS.
6 CalError = ComparePrandtlValues
7 end for
8 if Mean(Error)<thres and Std(erorr)<thres then
9 Prandtl.Exist = True; > If coefficient gives a minimum average error.
10: Prandtl.Value = m; > Prandtl coefficient is m.
11: break;
12: end if
13: end for
14: return Prandtl

15: end procedure

Algorithm 5 is used for detection of anomalies in the running standard deviation.

Algorithm 5 Jump detection algorithm.

1: procedure DETECT]JUMPS(WindSpeeds) > Look for jumps in running std dev.
2 PrevStd = Std(WindSpeeds(k — 1)); > Look for previous std. dev.
3 DiffStd = PrevStd-Std(WindSpeeds) > Difference between std. deviations.
4 AcumDiffStd(count + 1) = DisffStd

5: if DiffStd > thres then > If error is bigger than threshold.
6 CommHandler.Alert = JumpDetected

7 JumpSize = Mean(AcumDiffStd) > Estimate the size of the jump.
8 end if

9: end procedure

3.3. Data Storage and Wind Database

An important part of the designed system is the storage and management of the information.
This information is the one generated by the estimation and the prediction modules, and also the one
generated by the autopilot (vehicle state: position, velocity, acceleration).

SQL is selected as a means of the generation, storage and management of the database. This was
because SQL is a standardized language for database management. SQL is a language by itself,
therefore, it requires an interface with the wind identification system. The SQL system that is selected
for this research is MySQL® and the interfacing between the database and the wind identification
comm-handler is done trough the MySQL® C++ connector. This allows the generation of C++
commands that will read and write information from any SQL database.

The communication scheme is shown in Figure 7.

Figure 7 illustrates the two modules that are required to interact with wind database. One is the
MySQL C++ connector and the other the MySQL system, which have to be compatible with the used
operating system.
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Figure 7. Database interfacing with communication handler.

The algorithm for accessing the database, perform a query of the useful data and write the

generated data for the modules consists in a series of calls to the SQL connector which needs to open a
Connection to the SQL server and then to execute an update or a query to the database based on the
parameters that are needed. This is described in Algorithm 6.

Algorithm 6 Database Access, Query and Writing Algorithm.

1:
2
3.
4
5:
6:
7.
8.
9.

10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:

procedure WAITFORREQUEST(D BReq)

if DBReq = Write then
WriteDB(DB);

else if DBReq = Query then
Query(DB,Cond);

else
TriggerException;

end if

: end procedure

procedure WRITEDB(D B,Wind Vector)

Con— CreateDriver(); > Create Database Driver
Con—GetDriverInstance(); > Used to get the Driver Instance and Load the DB.
Con—setSchema(DB) > Set the DB to write to
Stmt— Wind Vector

end procedure
procedure QUERYDB(DB,Cond) State Con— CreateDriver();

Con—GetDriverInstance();

Con—setSchema(DB);

execute;

stmt—executeQuery(Condition); > See note below.
end procedure

In the previous algorithm, the query is based on the location the time of the year. Since the

location of a typical mission may not vary the data should be valid, however a future step is to include
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Meteorological Terminal Aviation Routine Weather Report (METAR) weather reports to the query so
that it only looks for wind predictions and estimations performed in similar meteorological conditions.

3.4. Alert Generation Module

A complementary part of the estimation module is the alert generation algorithm. This part
illustrates what kind of alerts need to be triggered internally to the system and to the user so that it can
take a decision. These alerts are related to the detection and the uncertainty of a feature . In addition,
there are different alerts that are generated inside each module related to the information that each
module produces, including the generation of software exceptions.

Table 3 shows the main alerts that are generated once a feature is detected, the variable type of
the alert and the priority.

Table 3. Alerts, data types and the priority values.

Alert Type Data Type Priority Value
Feature Is Present Boolean 1
Wind Shear Detected Boolean 1
Discrete Gust Detected Boolean 2
Continous Gust Detected Boolean 3
Prediction Time Window Integer 2
Uncertainty Level Double 4

The alert priority value aids on determining how often an alert is generated. The goal of the system
is to alert to other modules the presence of a feature and to display these alerts in the ground station.

The prediction time window () requires additional computational resources. If a discrete gust of
a shear is detected, and the running standard deviation remains stable, a prediction time window alert
is not required (for computation purposes is considered as infinite). However, if a continuous gust is
detected the time window of the prediction goes critical depending to the behavior of the difference
between the prediction and the estimation. If the running standard deviation of this difference is
bounded, the prediction window can be slightly increased. If there is an unbounded behavior, then the
system stays at its initial value (19 = 55s), based on the results published by Passner et al. [30].

4. Simulation and Experimental Results

This section presents the preliminary validation results of the system obtained with simulations
and Autopilot/Framework SITL experiments with real telemetry data obtained in four flights which
took place in the Seville Metropolitan Area in Andalusia (Spain).

4.1. Simulation Test Bed Description

MATLAB® and Simulink® has been utilized for simulation. The Aerospace toolbox contains
wind-model blocks of shear, discrete and continuous gusts. In addition the AeroSim® blockset has
been utilized to generate 6DOF model of a small UAS.

The 6DOF model utilized together with the wind dynamic model blocks are shown in Figure 8.
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Figure 8. Simulink model of the simulation environment for the wind identification system.

The blue block shows the 6 DOF dynamic model and the white blocks show the wind dynamic
model. In addition, there is an actuator block that corresponds the dynamic model of the actuators.
There are two additional blocks that show the navigation and the control modules which are a series
of nested Proportional-Integral-Derivative (PID) controllers.

Table 4 show the characteristics of the computer used in order to perform the simulations.

Table 4. Simulation computer relevant characteristics.

Component Specification

CPU Intel Core i7-5500U CPU 2.40 GHz x 4
RAM 15.6 GiB

Graphics Intel HD Graphics 5500 (Broadwell GT2)
OS Type 64-Bit

oS Ubuntu 16.04 1ts

The corresponding trimming parameters for a typical flight condition [31] are utilized in the
simulation are shown in Table 5.
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Table 5. Selected Trimming Parameters.

Parameter Value
Trim airspeed 25m/s
Trim altitude 150 m
Trim bank angle 0°
Fuel mass 2kg
Flap setting 0

The scenario considers a planned helix flight ascending trajectory. Once the vehicle starts its
flight, the trajectory is under the influence of different wind types. Two scenarios are considered.
The first one considers each feature separately (shear, discrete gust, continuous gust) and the second
one considers all features at the same time. The purpose of this simulation is to prove the ability of the
system in controlled conditions of detecting the features separately. Figure 9 depicts the wind effects

on the trajectory.
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Figure 9. Effects of different simulated features on the vehicle trajectory: (a) the effect of a shear wind
with increasing deviation as altitude rises; (b) the effects of a discrete gust with a constant deviation
on the trajectory in a single direction; (c) a chaotic deviation due to the effects of a continuous gust;
and finally (d) the total effects of the wind present at the same time.

4.2. Simulation Results

The detection capabilities of the system are illustrated Figure 10. It shows the information that
feeds up the system and how it will detect and identify the different features.

Figure 10d shows two trends (vertical successions of wind velocity points). One in which the
wind speeds are distributed uniformly across altitudes with a mean value of approximately 3m/s.
At 100 m one can observe another succession of points with a mean value of approximately 8.2m/s.
This produces a sudden increase (jump of aproximately 5m/s) in the standard deviation which triggers
an alert of gust detected and forces the system to characterize two separate distributions, one after and

one before the gust.
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Figure 10. Wind Speed / Altitude maps of the different simulation scenarios: (a) the wind shear as
an increase of wind speed with altitude; (b) a sudden increase in wind speed at a certain altitude
(discrete gust); (c) a continuous gust with a chaotic effect and rapid increases and decreases of wind
speed; and (d) the sum of the three effects.

The results of the wind estimates and predictions of the wind are show in Figure 11.
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Figure 11. Actual, estimated an predicted wind speed (a) and wind speed error (b) in the considered
scenario. The predicted wind starts with high dispersion, however, it converges to the actual value
within 100 s.

In this flight, an alert of a continuous gust detected was triggered almost immediately
(at approximately 20s). In addition, there was an alarm of two detected gusts: one occurred at
approximately 40s and the other occurred at 250 s. This coincides with the jumps, abrupt changes of
the wind speed, that can be seen in Figure 11.

4.3. Software-in-the-Loop Experiments

The wind identification system has been functionally tested with real telemetry data. The data
were fed into the system using Mavlink interfacing with a Ground Control Station as in [32]. The sensor
information was transmitted to the wind identification system at a rate of 0.5Hz. Nevertheless
the communication framework demands varied in frequency due to the asynchronous scheme.
The transmission to the system does not match the actual duration of the telemetry log, it was
truncated once the platform had landed.
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The test-bed architecture uses a MATLAB®- Mavlink interface implemented in the Robotic
Operating System (ROS). The wind identification system interfaces with MATLAB® through a series
of S-Functions. This concept is illustrated in Figure 12.

Figure 12. Information flow for on-the-loop experiments of the wind identification system. The blocks
show the multi-platform interfaces that allowed the validation tests.

The platform and the airspeed sensor in which the experiments were performed is shown in
Figure 13a.

/

*

(a) (b)

Figure 13. Sensor and UAS platform utilized in experiments. (a) UAS SkyWalker X8, (SkyWalker
Technology Co., Ltd, Wuhan, China) with carbon fiber frame equipped with a 12 x 6 prop with
2 % 20 g servomotor; (b) Digital airspeed sensor utilized in experiments which contains a 4525D0O
sensor (TE Connectivity Ltd., Schaffhausen, Switzerland) which enables a resolution of .84 Pa [33].

Table 6 presents the characteristics of the platform shown in Figure 13a.

Table 6. Skywalker Characteristics.

Parameter Value
Wing Span 2122mm
Wing Area 80 dm?
Max Payload 2kg

Center of Gravity =~ 435 mm away from nose

The vehicle was equipped with an APM2.6 autopilot (3D Robotics, Berkeley, CA, USA) with the
airspeed sensor illustrated in Figure 13b.

4.4. Software-in-the-Loop Experiments Results
The information of the flights performed in the Seville Metropolitan Area (Brenes) is shown in Table 7.
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Table 7. Experiments information.

Flight1 Flight2 Flight3 Flight4

Duration 521s 315s 631s 749 s
Distance Traveled 51km  3.7km 6.3 km 7.4 km
Maximum Altitude 179 m 125 m 134 m 146 m

Figure 14 depicts the flight trajectories of the scenarios described in Table 7. The first flight
shows 8 maneuvers performed at different altitudes. The other three flights consisted on takeoff,
several spirals at a target altitude and then the descent and landing.
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Figure 14. UAS Trajectory for validation of the wind information system. (a) shows a medium altitude
with few spirals; (b) shows the shortest flight; (c) shows a flight with spirals performed at an altitude
of 120 m; and (d) shows a flight with wide spirals at an altitude of 120 m.

Figure 15 depicts the results obtained from Experiment 1:
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Figure 15. (a) shows the estimation, most probable wind speeds and last shear wind prediction
generated throughout the flight; (b) indicates the wind speed estimation (blue line), wind speed
prediction (red dots) and airspeed (orange line).

The red dots in Section 4.4 indicate the predicted wind speed. The blue line represents
the estimations which were obtained with the direct computation method presented in [2,8,9].
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A continuous gust alarm was generated almost at the beginning of the flight due to the continuous
changes in wind speed over time.

The second experiment (see Figure 16) shows a significant decrease of the estimates estimation
as the UAS reaches its maximum altitude. The system interpreted this tendency as a negative gust,
i.e., a sudden reduction of the wind speed. Once the system generates the corresponding alarm and the
running standard deviation of the estimates stops growing, the system starts characterizing a second
shear which is represented by the purple line.
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Figure 16. Estimation, most probable wind speeds and last wind prediction generated throughout the
flight shown in Figure 14b.

Experiments 3 and 4 (see Figures 17 and 18) show a very similar behavior. The wind speed
estimates show higher values as the altitude grows. The high concentration of estimations of the wind
speed between 120 m and 140 m altitude show big dispersion which suggests that the UAS maneuvers
affect the speed reading as the accelerometers and the GNSS speed readings affect the computation of
the estimates. More testing is required to support this hypothesis.
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Figure 17. Estimation, most probable wind speeds and last wind prediction generated throughout the
flight illustrated in Figure 14c.
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Figure 18. Estimation, most probable wind speeds and last wind prediction generated throughout the
flight depicted in Figure 14c.

The average Weibull shaping parameter, x, Weibull scaling parameter, v, and the calculated
Prandtl coefficient, ¢, are shown in Figure 14d.

Table 8. Main SITL outputs (single run).

Scenario # (%) (V) #(©)
1 424 1.9825 0.6628
2 1.1579 & 3.1425 0.4531 & 1.6671  0.5314 & 0.6628
3 2.9820 0.8349 0.3124
4 5.7425 0.9623 0.7614

Note that in scenario 2 of Table 8 two values of shaping parameter, scaling parameter and Prandtl
coefficient appear for scenario 2. They correspond to two different shear characteristics detected before
and after the presence of a discrete gust.

Figure 19 shows the difference comparison between the estimations and the predictions of the
wind speed magnitude. It is important to consider that it is the difference, therefore, it cannot be
considered as an absolute error. However it aims to prove that this difference is bounded since it
considers local measurements.
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Figure 19. Predicted (red circles) vs. Estimated wind speed (blue line): (a) shows the difference
between the estimation and the prediction of the wind speeds with the airspeed (orange) as a reference;
(b) shows the actual difference between these two quantities which appears to be bounded and shows
a normal behavior.

The difference analysis between all the flights together showing the mean p(W.,) and the standard
deviation ¢(W, ) are shown in Table 9.
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Table 9. Mean and standard deviation of difference between the wind speed estimations and the wind
speed predictions.

Flight  u (We) o (We)

1 1985 m/s 254m/s
2 1.197m/s 121m/s
3 0932m/s 0.74m/s
4 0.854m/s 0.27m/s

5. Results Discussion

In the simulation results, the effects of the wind features (continuous and discrete gusts and
shear) are shown in Figure 9. It is observed that single or multiple features can affect the trajectory
without any sort of drifting compensation. Figure 10 illustrates the effects of the features in wind
speed/altitude charts. The system is able to identify this feature from the summed effects plot shown
in Figure 10d. However, at this stage noise is not considered and it can have a significant impact to
the plot, so the estimation process has to be accurate enough since it is the only input to the wind
identification system. The case shown in Figure 10d is analyzed in detail since the effects of each
feature separately were analyzed in [8,9].

The results plotted in Figure 11 show the behavior of the estimation and prediction processes.
The estimation process considered a slight Gaussian noise which is typical for airspeed sensors [2].
The error of the estimation process is bounded as observed in Figure 11b which is indeed the expected
behavior and is consistent with the result presented in [2,8,9]. On the other hand, the prediction shows
a different behavior. At the beginning and up to 70 s there is a considerable dispersion of the prediction
due to the assumption that only a shear feature is present since the beginning. Then, the system
starts identifying other features. At 40 s a rapid change is observed which triggers a discrete gust
alarm. Up to that point the system starts converging and the predictions with a variable window
start happening. Since there is a continuous gust during the entire scenario, the system utilizes
Gaussian regression to start predicting the behavior of the plot. Even though there are rapid changes
at some parts, the identification of the discrete gust minimizes the effect in the Gaussian regression.
The prediction error shows a gradual decrease up to the point that it follows a similar behavior than
the estimation. This concludes that the prediction error tends to be bounded as more data is fed to
the system.

The SITL testing illustrates four scenarios with actual airspeed measurements. Figure 14 shows
different paths with different maneuvers at various altitudes. These scenarios are very helpful to
comprehend how the noise of the airspeed measurements affects the estimation. However, these results
have to be treated carefully since there is no ground-truth and intend to validate the functionality of
the system only. Full validation of the results needs to come from full validation and verification with
Software, and Hardware-In-The-Loop and extensive flight testing in different conditions. The intention
of the upcoming testing activities is to prove every aspect of the system and to analyze how the
obtained results support the hypotheses on the wind identification problem. Nevertheless, current
preliminary results prove that the wind estimates behave statistically as expected, in cases of shear and
discrete gusts, estimations and predictions are Weibull distributed and they keep following the Prandtl
law with a low increasing running standard deviation. In the case of continuous gusts, the short-term
regression has proved to be accurate, keeping the running standard deviation of the predicted wind
bounded throughout the flight.
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In the scenario shown in Figure 14a the results of the prediction and estimation process show
a very dispersed behavior (see Figure 15a). The system triggers a continuous gust alarm and the
prediction process employs a GP Regression. Note that a shear is identified (red line), however, this is
not taken into account in the prediction, since the system always assumes that once there are sufficient
wind estimates there is a shear. Once the continuous gust is detected and during the computation of
the GP regression, the system stops calculating the shear characteristics releasing computational load
as no GA is performed.

The scenario shown in Figure 14b shows two shear features that are identified due to a sudden
change of wind speed that occurs at 40 m. Since a discrete gust was detected the system tries to identify
this two features. It is observed that there is are three points that the most probable wind speeds looks
constant. This is due to the lack of measurements possibly by a communication error between the
system and the ground station.

The remaining two flights (see Figure 14c,d) show a very similar behavior at high altitude.
Nevertheless in the fourth flight there is a lack of airspeed measurements and the most probable wind
speed is assumed to be constant. However the actual prediction (red line) shows what in reality the
airspeed has to behave. Since a lot of spiral maneuvers were performed, the system has a vast amount
of estimations over an altitude of 120 m, however, there is a substantial dispersion that follows the
Weibull distribution allowing the generation of coherent most probable wind speeds and to treat this
measurements as part of a wind shear feature.

The prediction models illustrated in Figure 16 show two characterized shear predictions as a
results of the identification of a gust. The system performs this interpretation as the estimates from
40 m to 120 m show a tendency of a sustained growth, however when the vehicle passes 130 m most of
the estimates go back to values around 2 m/s.

In Figure 17 one can observe dispersion in the wind estimates from the lowest altitude up
to 120 m even with a few measurements at some altitudes, e.g., between 50 m and 80 m. However,
the system was able to identify a Prandtl coefficient to characterize an average shear. The last prediction
(red line) is moved ot the left as most of the available estimates were above 120 m. In higher altitudes,
the measurements are dispersed (2 m/s to 8 m/s), however, the alerts generated indicate that the
system was able to find Weibull parameters for these measurements. This indicates that the system
might require an adjustment of the tolerances for continuous gust detection.

Figure 18 depicts a more stable behavior across different altitudes. Most of the measurements are
concentrated above 120 m, however, with the measurements below those altitudes the system is able
to produce a solution in which a wind shear is identified. The measurements above 120 m show big
dispersion, possibly due to sensor noise, however these were proved to be Weibull-distributed, hence,
the system was able to produce a set of most probable wind speeds and a prediction tendency.

For the last scenario, a comparison between estimation and the prediction can be observed in
Figure 19. The error between the predictions and estimation is bounded since the very beginning,
mainly to the absence of continuous gust features. This results can be confirmed with the study of the
dispersion of this difference that is shown in Table 9.

6. Conclusions and Future Work

This paper presents the integration of a wind identification system using small UAS. It describes
the high and low level architecture and provides a initial validation with simulations and
software-in-the-loop testing.

The system architecture integrates different components at various levels, and presents significant
advances from the previous research activities presented in [8,9]. In terms of hardware, the proposed
system uses COTS components which help on cost efficiency without the sacrifice of functionality or
reliability mainly due to the system characteristics and current state-of-the-art. On the other hand,
the software has a decentralized integration at system and component level due to the development
of a communication handler. This manages the information exchange between the different modules
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of the system. The main advantages of this communication scheme are the separation between
different functional modules, which ensures the upgradeability and the module dependencies.
Also the possibility can be easily expanded by adding other functional modules, such as trajectory
generation/optimization. Another factor considered in the design was the possibility of asynchronous
communication between blocks. This is an important requirement due to the possible variation on
the processing time for different modules regardless if the variation is generated at a software or
hardware level.

The core function of the system which is the prediction module is described and presents
significant improvements from the previous research activities. The algorithm has unique way to
characterize the features as it intends to find statistical key values that will lead to the identification
of a feature. The system now triggers alarms to the communication handler and the sub-procedures
were clearly defined and tested. Other modules such as the communication handler and the database
management and query were also analyzed. The implemented algorithms work asynchronously and
even though the computational demand may be significant to the use of nested loops and complex
algorithms such as GA, they do not impact the prediction computation since the algorithms intend to
find a minimum of variables. The most costly algorithm is the database management as it intends to
do a smart search of accumulated data from previous flights. This is not an issue since it is done in a
separate dedicated computer. Even though there is no information from the wind database, the system
is able to produce results as it depends only in the current estimates.

In terms of the wind speed estimation and wind speed prediction validation, the system was
tested with both simulations and software-in-the-loop. In the simulations, results indicate that the
wind identification system is capable of identifying the different features and eventually converges to
the actual wind field within variable time windows. However, the accuracy varies according to the
identification of other features. Therefore, as clearer features are identified, the convergence time is
reduced together with the error magnitude and dispersion. In the SITL testing, the system exhibits
dispersion on the wind estimates which is mainly attributable to the noise from the airspeed sensor.
The system estimates were Weibull-distributed in altitudes on which the aircraft remains for longer
periods and presented inaccurate predictions at altitudes in which the aircraft has low or null density
of measurements. The presented results lead to the conclusion that the system fulfills the design
requirements and provides the identification of separated wind features which could be really useful
for trajectory planning and optimization. The novelty of the system relies in two main aspects: first
the architecture with a upgradeable system with minimum module dependency and secondly the
information that the system generates since the identification of separated wind field features could
easily be used for efficient trajectory planning, for instance in dynamic soaring.

Future work includes details on the generation of 3D wind maps and a complete validation and
verification of the system at system and component levels, as well as on-board /real-time testing of
the system. This paper intends to present a detailed description and the initial stages of validation
and verification of the system. The full testing, including hardware-in-the-loop and on-board testing
activities and the integration of the mapping feature will be subject of a further publication (Part 2)
which will provide results at system and component level in terms of accuracy and reliability and
a detail analysis of the computational cost of the different methods. In addition, upcoming work
includes the integration of a trajectory generation module and the generation of control commands
to follow the wind-efficient trajectories which ultimately is derived from the objective of increasing
substantially the flight duration in a given mission.
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Abb

reviations

The following abbreviations are used in this manuscript:

ADC  Analog to Digital converter
AOA  Angle of Attack

APM  Autopilot Module

COTS Commercial-Off-The-Shelf

CPU
DB
EKF
GA
GEV

Central Processing Unit
Database

Extended Kalman Filter
Genetic Algorithm
Generalized Extreme Value

GNSS  Global Navigation Satellite System

GP
MU

Gaussian Proccess
Inertial Measurement Unit

LPGL  GNU Lesser General Public License

PID

Proportional, Integral, Derivative

RAM  Random Access Memory

SITL  Software-In-The-Loop

SQL Structured Query Language

™ Truncated Normal (Distribution)

UAV  Unmanned Aerial Vehicle

UDP  User Datagram Protocol

UKF  Unscented Kalman Filter
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Abstract: Unmanned Aerial Vehicles (UAVs) are being extensively used nowadays. Therefore,
pilots of traditional aerial platforms should adapt their skills to operate them from a Ground
Control Station (GCS). Common GCSs provide information in separate screens: one presents
the video stream while the other displays information about the mission plan and information
coming from other sensors. To avoid the burden of fusing information displayed in the two screens,
an Augmented Reality (AR) tool is proposed in this paper. The AR system has two functionalities
for Medium-Altitude Long-Endurance (MALE) UAVs: route orientation and target identification.
Route orientation allows the operator to identify the upcoming waypoints and the path that the
UAV is going to follow. Target identification allows a fast target localization, even in the presence of
occlusions. The AR tool is implemented following the North Atlantic Treaty Organization (NATO)
standards so that it can be used in different GCSs. The experiments show how the AR tool improves
significantly the situational awareness of the UAV operators.

Keywords: situational awareness; augmented reality; unmanned aerial vehicle; tool;
ground control station

1. Introduction

The use of Unmanned Aerial Vehicles (UAVs) has become increasingly popular in recent years,
especially because the majority of them are equipped with at least an Electro-Optical (EO) sensor.
Consequently, the use of these platforms has been considered for applications that traditionally use
aerial imagery, such as surveillance [1] and remote sensing [2]. Additionally, UAVs have enabled
the use of aerial images to improve tasks in which they were not previously used, such as structure
inspection [3].

The research work involving the use of UAVs is oriented to solve problems that are directly related
to the type of used platforms. This is because the quality and accuracy of the sensors, as well as the
mission specifications, are different for each one. There are studies for the autonomous navigation of
micro aerial vehicles (MAV) [4], while others focus on target detection with platforms that can reach
higher altitudes and can fly during longer periods of time [5].

MAVs can be operated by people without previous experience piloting aircrafts. On the contrary,
Medium-Altitude Long-Endurance (MALE) UAVs are usually operated by pilots of traditional manned
aerial platforms that have adapted their expertise to control the aerial systems from a Ground Control
Station (GCS). These MALE UAVs are usually operated in automatic or semi-automatic mode and are
used in Intelligence, Surveillance, Target Acquisition and Reconnaissance (ISTAR) missions. Therefore,
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the operator is simultaneously supervising the flight and manually operating the payload to fulfill
the specific mission requirements. The GCS has at least two different screens. One of them shows the
mission plan, as it is represented in Figure 1a, and the other screen shows the video stream captured
by the drone, as depicted in Figure 1b. In the example, the operator must accomplish a task as fast as
possible: to determine the region of the images captured by the UAV (Figure 1b) where the target of
interest is placed (illustrated in Figure 1c). However, such a task can be tedious and sometimes leads
to misinterpretations when the targets are occluded. To this end, we propose to use augmented reality
(AR) to help the UAV operator.

(a) screen where the mission planning is shown during the operation. In a standard GCS, the route (in green),
the waypoints (in red), the targets (in blue) and the UAV (aircraft icon) position are shown

(b) raw video stream from the UAV, without any (c) augmented video: video stream from the UAV
virtual aid camera, augmented with the proposed Augmented
Reality (AR) tool

Figure 1. Information available in the screens of the Ground Control Station (GCS) of the Unmanned
Aerial Vehicles (UAVs).

AR systems have numerous possibilities and can be used to obtain information about the
environment [6]. This can be done by mixing virtual objects and annotations in the user’s view of the
surroundings, increasing the meaningful semantic context of the world. In addition, if we take into
account that, besides the sensed information by the UAV (such as a video stream), we have as input
some additional geographic information, research related to integrating this kind of information
is paramount. In [7], an example of the importance of integrating geographical information is
given. They remark that one of the main challenges in this kind of integration is the establishment
of a link between the geographic information system (GIS) data and the real world context
(i.e., comprehensibility of the AR visualization and the geographic database). The goals they want
to solve with their work are: (i) easy interpretation of the visualized information; (i) understanding
between the spatial location of virtual elements and the real world; and (iii) consistency in AR
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visualization when the GIS dataset is modified. However, they do not show results with aerial data,
which is the type of information that is considered in this work.

The situational awareness problem has been addressed in the past [8-10]; some solutions proposed
the enhancement of the acquired video stream with virtual elements to provide the operator with
additional information. In this research direction, some techniques of AR have been used for outdoor
elements annotation [8] of the objects seen by the user. A study of the optimal representation of
occluded elements has been discussed in [9]. Finally, an AR system to improve the situational
awareness and depth perception of UAV operators is proposed in [10], with a focus on small platforms.

Examples of how AR can be useful for UAV operations are given in [11,12]. The AR system in [11]
increases the safety during take-off and landing UAV operations under harsh conditions such as fog,
or at night. However, the tests are not carried out for MALE UAVs, do not follow standards and are
not oriented to reconnaissance missions. In [12], a vision-based navigation method for UAVs using
AR is proposed. The idea is to develop a system that can be used to superimpose the virtual elements
over the video captured by the UAV. However, they only show experiments detecting markers in
a controlled environment.

The purpose of this paper is to improve the situational awareness of UAV operators by providing
a tool with AR capabilities valid for MALE UAVs in reconnaissance missions, and to make the tool
available to the public on a website. Our system avoids the burden of fusing information that comes
from different sources and is displayed on separate screens. Additionally, the tool complies with North
Atlantic Treaty Organization (NATO) standards, which increases its usability: the application can be
executed in different GCSs that follow the same standards. The contribution of this work is shown by
the development of two different AR capabilities:

e Enhancement of the video stream with the UAV flight route.
e  Identification of targets (as illustrated in Figure 1c) and viewpoint-based classification of targets
according to occlusion with respect to geographical information.

The paper is organized as follows. Section 2 describes the main functionalities of the AR tool.
Section 3 describes the structure of the proposed AR system. Input data processing is explained in
Section 3.1. Then, the AR solution is presented in Section 3.2 and the augmented video that is shown
to the operators is detailed in Section 3.3. Finally, results and conclusions are presented in Sections 4
and 5, respectively.

2. Functionalities of the Augmented Reality (AR) Tool

The functionalities of the AR solution are oriented to improve the situational awareness of the UAV
operators when they have to accomplish a specific mission. The proposed tool provides two different
functionalities: route orientation and target identification.

2.1. Route Orientation

MALE UAVs are usually equipped with a gimbal camera sensor payload. The sensor can operate
in automatic or manual mode. When the manual mode is activated, the operator can steer the UAV
camera with a joystick and point it in any direction. This freedom of movement gives flexibility to
explore the world because the sensor is not limited to the flight or the downward-looking directions,
but it can also lead to disorientation of the operator. After managing the payload for a while, it may be
difficult for the operator to distinguish if the camera is aligned with the flight direction. The proposed
AR solution overcomes that problem by superimposing the flying route on the video stream.

The visual assistance given to the operators allows their situational awareness without having to
establish correspondences between the 2D map mission information and the video stream, which are
shown on different screens. Operators become aware of the camera orientation, not in a global frame
but with respect to the flying route at a glance. This can benefit the world exploration because they can
infer the remaining time to visit a waypoint and what the next movements of the UAV will be.

111



Sensors 2017, 17,297

2.2. Target Identification

During a mission, the UAV operator could be in charge of identifying some strategic positions.
The strategic positions can be targets that are detected by additional sensors (e.g., radar) or a list of
targets that are known in advance and should be monitored. Sometimes, it can be difficult for the
operators to distinguish the exact position of these targets in the video stream if they are carrying out
manual inspection operations. If the targets are far from the UAV, the operators may not distinguish
them easily unless they use the camera zoom (if available). This situation, i.e., looking for a target with
a close-up view, reduces the situational awareness of the operators. The proposed AR tool overcomes
this problem by superimposing virtual beacons on the acquired video stream, even in the presence of
occlusions, thus improving target identification.

The functionalities included in the proposed AR tool give assistance to the operators to easily
determine where the targets are in the video stream. Additionally, the tool informs the operators about
the visibility of the targets with respect to the terrain. This reduces the impact of using the camera
zoom because the operators can distinguish if the target is going to be visible when zooming in or if it
is occluded by the terrain (e.g., by a mountain) and they should wait for a more appropriate viewpoint
along the UAV trajectory.

3. Structure of the AR Tool

The system is structured in three different modules, as it is shown in Figure 2. One of the main
parts of the system is that of input data processing; this module encompasses the processing of data
coming from the UAV and the information available in the GCS. The AR solution module comprises
the information of both real and virtual worlds as well as the establishment of the relationship between
them to achieve visual coherence of the whole. Finally, the augmented video module is where the
semantic meaning of the virtual elements is explained.

INPUT DATA AR SOLUTION
- —‘ Real world ]\
| uAvdata | i L
' “| Projection Model ] i| Augmented video
| terrain data ] I :
P vitualwold |
I mission data ] '

Figure 2. Principal modules of the AR tool: input data processing, AR solution and augmented video.
The input data module encompasses the processing of data coming from the UAV and the GCS (terrain
and mission). The AR solution module is responsible for achieving coherence of real and virtual worlds.
Finally, the augmented video module manages the information shown to the UAV operator.

3.1. Input Data Processing

The input data of the AR tool is provided by the GCS. Two types of data are distinguished

according to their availability: (i) mission planning data and (i) mission execution data.

3.1.1. Mission Planning Data

Mission planning data are available before the flight is carried out. During mission planning,
the route and the flying parameters are settled to allow the autonomous flight of the UAV. The proposed

AR tool uses the route path and the digital terrain model from the GIS.
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The route information is obtained from the mission plan, exported in an Extensible Markup
Language (XML) file using the Common Route Definition (CRD) that is defined according to the
standard interfaces of the UAV Control System for NATO UAV interoperability. The latitude and
the longitude of each waypoint are obtained from the XML file. The XML file also encapsulates the
information about the order in which the waypoints will be visited and the flight altitude when the
UAV visits them. The terrain data available in the GCS are the Digital Terrain Elevation Data (DTED).
This data consists of a grid of square pixels that contain height information as well as a header with
geographic information used to geo-reference the data. The DTED used in the performed experiments
is DTED-Level 2, which has a Ground Sampling Distance (GSD) of 30 meters.

3.1.2. Mission Execution Data

Mission execution data provide the information that the GCS receives from the UAV payload
(i.e., camera, Global Positioning System-GPS, Inertial Measurement Unit-IMU) after the mission starts.
During the flight, the GCS collects information through the datalink established with the UAV.

The proposed AR tool uses the payload data provided by a Motion Imagery Standards Board
(MISB) stream file constructed from technologies approved by the MISB and referenced in the
NATO Motion Imagery Standard STANAG 4609 [13]. Any Motion Imagery Standards Profile (MISP)
compliant file for Full Motion Video must have three components [14]: (i) motion imagery (MI);
(ii) metadata; and (ii7) a media container. The MI is the essence of the file. It corresponds to the
imagery obtained from the Electro-Optical (EO) capture device. The imagery can be in compressed or
uncompressed format. The metadata contains the information coming from other sensors (e.g., GPS,
IMU) and is encapsulated in Key-Length-Value (KLV) form. Finally, the media container carries the MI
and the metadata in two possible ways: using MPEG-2 transport stream (TS) or using a Real-Time
Transport Protocol (RTP). The former is the one used in the proposed AR tool.

The metadata is usually collected by the mission computer, although on some occasions more
information such as an operator command can be included. In the end, the source is not relevant until
the information is interpreted. For this reason, the most important thing is to know how the metadata
is encoded. All the MISB metadata is encoded following the Society of Motion Picture and Television
Engineers (SMPTE) KLV with the specifications given in MISB STD 0902.1 [15]. This document specifies
the Minimum Metadata Set of metadata elements to enable the functionality required for the Situational
Awareness Product for Intelligence, Surveillance and Reconnaissance (ISR) missions.

Each metadata package associated to an image has the same scheme, which is illustrated in
Figure 3. The set starts with the 16-bytes Universal Label (UL) key (in green), it is followed by the
length of the KLV packet (in purple) and a sequence of Tag-Length-Value (TLV) encoded data. The TLV
consists of a byte with the metadata tag (in cyan), the length of the metadata package (in magenta), and
the value itself depending on the tag data type (in orange). All the metadata as well as the bytes, are
represented using big-endian encoding (with the most significant bit first). The information relative to
the interpretation of each TLV is given in the document MISB Standard 0601.2 [16]. The tag of the TLV
is a unique identification of the type of encapsulated metadata, and the interpretation is reported in
the first two columns of Table 1. The rest of the columns correspond to the values and interpretation of
an example of KLV packet.

The KLV packets contain:

e information that remains constant throughout a mission: mission identification (tag 3), the type
of image sensor (tag 11) and the coordinate system (tag 12).

. information that changes in time: the UNIX Time Stamp (tag 2), the camera sensor, the platform
position and orientation.

This information is used to obtain the intrinsic and extrinsic camera parameters that are needed
to create the projection matrix. The intrinsic camera parameters are obtained from the Horizontal and
Vertical Field of Views (FOVs). They correspond to the metadata with tags 16 and 17, respectively.
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Concerning extrinsic parameters, the position of the sensor in the world and the pose are needed.
The former is given by the Sensor Latitude (tag 13), Sensor Longitude (tag 14) and the Sensor True
Altitude (tag 15), and the latter is calculated from the Platform Heading Angle (tag 5), Platform Pitch
Angle (tag 6), Platform Roll Angle (tag 7), Sensor Relative Azimuth Angle (tag 18), Sensor Relative
Elevation Angle (tag 19) and Sensor Relative Roll Angle (tag 20).

06 OE 2B 34 02 0B 01 01 OE 01 03 01 01 00 00 00
81 AE 02 08 00 04 60 50 58 4E 01 80 03 OA 4D 69
737369 6F G6E 20 31 32 §5 88 71 €2 @5 @2 FD 3D
07 02 08 B8 OA 08 50 72 65 64 61 74 6F 72 OB 07
45 4F 20 4E 6F 73 65 0C OE 47 65 6F 64 65 74 69
63 20 57 47 53 38 34 0D 04 55 95 B6 6D OE 04 5B
53 60 Cc4 OF 02 c2 21 10 02 ¢cD 9c 11 02 D9 17 12
04 72 4A OA 20 13 04 87 F8 4B 86 14 04 00 00 00
00 15 04 03 83 09 26 16 02 12 81 17 04 F1 01 A2
29 18 04 14 BC 08 2B 19 02 34 F3 30 1C 01 01 01
02 01 07 03 05 2F 2F 55 53 41 Oc 01 07 0D 06 00
55 00 53 00 41 16 02 04 01 41 01 02 01 02 29 72

Figure 3. Example of a metadata Key-Length-Value (KLV) packet. It is formed by a key (in green), the
length of the whole packet (in purple), and a sequence of metadata. Each metadata is identified by a tag
(in cyan), the length of the data (in magenta) and the information itself (in orange). Grid patterned
colors have the same meaning as the solid colors [15].

Table 1. Example of Tag-Length-Value (TLV) packets contained in a Key-Length-Value (KLV) packet.
The table shows: the TLV hexadecimal value (last column), the tag (first column) of the metadata (second
column) and its value (third column), and the interpretation of the specific value (fourth column).

Tag Name Value Interpretation TLV Hex Bytes

2 UNIX Time Stamp 1,231,798,102,000,000 ms ~ Mon Jan 12 2009 22:08:22 (UTC) ~ 02 08 00 04 60 50 58 4E 01 80

3 Mission ID Mission 12 Mission 12 03 0A 4D 69 73 73 69 6F 6E 20 31 32

5  Platform Heading Angle 0x71C2 159.9744 Degrees 050271 C2

6  Platform Pitch Angle 0xFD3D —0.4315251 Degrees 06 02 FD 3D

7  Platform Roll Angle 0x08B8 3.405814 Degrees 07 02 08 B8

11  Image Source Sensor EO Nose EO Nose 0B 07 45 4F 20 4E 6F 73 65

12 Image Coordinate System  Geodetic WGS84 Geodetic WGS84 0C OE 47 65 6F 64 65 74 69 63 20 57
475338 34

13 Sensor Latitude 0x5595B66D 60.17682296 Degrees 0D 04 55 95 B6 6D

14  Sensor Longitude 0x5B5360C4 128.42675904 Degrees OE 04 5B 53 60 C4

15  Sensor True Altitude 0xC221 14190.72 Meters 0F02C221

16  Sensor Horizontal FoV 0xCD9C 144.5713 Degrees 1002 CD9C

17  Sensor Vertical FoV 0xD917 152.6436 Degrees 1102 D9 17

18  Sensor Rel. Azimuth Angle  0x724A0A20 160.71921147 Degrees 1204724A 0A 20

19  Sensor Rel. Elevation Angle 0x87F84B86 —168.79232483 Degrees 1304 87 F8 4B 86

20 Sensor Rel. Roll Angle 0x00000000 0.0 Degrees 1404 00 00 00 00

The video stream with the motion imagery data should be parsed, decoded, and decompressed.
We have used the Fast Forward MPEG (FFMPEG) libraries to read a User Datagram Protocol (UDP)
stream, demultiplex the MPEG-2 TS into video and metadata, and perform video decoding. However,
it is not possible to decode the KLV metadata format with them, so we have implemented a decoder to
collect the information associated with each frame.

3.2. AR Solution Module

The AR solution module encloses the procedures to achieve visual coherence of the whole scene,
so that virtual elements can be included in the video stream in a natural way. Three essential elements
of an AR system are distinguished: the real world information, the virtual world, and the relation
between the real and virtual worlds.

114



Sensors 2017, 17,297

3.2.1. Real World

Real world information is obtained from the UAV in real-time through the GCS encapsulated
in the MPEG-2 TS, as it is explained in Section 3.1.2. MI that is captured by the gimbal camera of
the drone is the canvas where the virtual elements will be displayed. In addition, the information
corresponding to the acquisition of the images and the UAV position and orientation is needed to
build the appropriate projection model.

3.2.2. Projection Model: Conversion between Coordinate Systems

The inclusion of virtual elements in a scene is done by rendering the projection of such elements
on the images: virtual elements are defined in the same reference system as the scene and are then
rendered on the image using a perspective projection model.

Let us consider that the scene is given in a Cartesian world reference system called Earth-Centered
Earth-Fixed frame (ECEF) (Figure 4a). In this system, the Earth’s center corresponds to the origin of
the ECEF frame, the x-axis points to the intersection of the prime meridian with the Equator (point at
(07 latitude, 0° longitude)); the y-axis points to (0° latitude, 90° longitude), and the z-axis points to 90°
latitude along the Earth axis of rotation.

(a) Earth-Centered Earth-Fixed reference system (ECEF) (b) local geographic frame, North-East-Down (NED)

Figure 4. Geographic coordinate systems used: ECEF and NED [17].

The perspective projection is given by the pinhole camera model [18], which may include lens
distortion parameters. In this work, we consider that the lens distortion is negligible so that the
projection model is solely described by a 3 x 4 projection matrix P. In practice, the optics of the
camera may be calibrated using an algorithm such as [19], so that lens distortion can be considered
compensated. In homogeneous coordinates [18], a world point X = (X,Y,Z,1)T projects onto the
image pointx = (x,y,1) T according to x ~ PX, where ~ means an equality up to a non-zero scale factor.
The projection matrix P = K[R|t] consists of the intrinsic (K) and the extrinsic camera parameters (R, t).

The intrinsic parameter matrix

fx 0 X0
K=10 fy Yo @)
0 0 1

comprises the focal lengths in horizontal and vertical directions (f, and fy, respectively) and the
principal point (x, o), assumed to be at the center of the image. For an image of size w x h pixels
(width x height), the principal point is at (xo,y) = (w/2,h/2). The focal lengths, f; and f,, may be
calculated from the horizontal and vertical FOVs (FoVy and FoVy) and the image size as follows:
fx = (w/2)/ tan(FoVy/2) and f, = (h/2)/ tan(FoV,/2).

115



Sensors 2017, 17,297

The extrinsic camera parameters (translation t and rotation R) provide the position and orientation
(i.e., the pose) of the camera in the world, but they are not as straightforward to set as the intrinsic
parameters. Since the experiments performed are based on simulated data (see Section 4), the metadata
used to build the camera orientation and position matrix are error free. However, when working with
real data, the provided extrinsic parameters will be subject to error, which could lead to virtual objects
not being projected on the desired image location. Accurate pose estimation is a different problem
from the one tackled here. The proposed AR tool assumes that the pose provided in the metadata is
accurate enough for a correct projection of virtual elements.

The camera pose in the world reference system is obtained by interpreting the metadata, which is
given in a different coordinate system: World Geodetic System 1984 (tag 12 in Table 1). This standard
states that a world location is specified by its latitude, longitude and height with respect to an oblate
spheroid that models the shape of the Earth. Thus, the position of the camera in the scene coordinate
system is obtained by converting the sensor geodetic coordinates given in the metadata (latitude «,
longitude w, and true altitude h—tags 13-15 in Table 1) to the ECEF reference system:

X = (N + h) cos(a) cos(w),
Y = (N +h) cos(a) sin(w), )
Z = (N(1 —ec?) + ) sin(«),

where ec and N are the eccentricity and prime vertical radius of curvature of the spheroid, respectively.
Such parameters are given by

ec = M, N = ;/ 3)
1—ec?sin(a)
where a = 6,378,137 and b = 6,356,752.3142 are the lengths, in meters, of the semi-mayor and
semi-minor axes of the spheroid.

The orientation of the camera is obtained by concatenating the rotations that define (i) the
orientation of the UAV’s local navigation frame (NED) with respect to the world (ECEF) frame;
(ii) the orientation of the UAV with respect to its NED frame; and (iii) the orientation of the camera
with respect to the UAV. These three changes of coordinates are specified next.

The local geographic reference system used by the UAV is defined by the gravity direction and its
perpendicular plane (i.e., plane parallel to the ground). It is called the North-East-Down (NED) system
and is shown in Figure 4b. As it can be observed, a plane tangent to the Earth spheroid contains the
North and East directions, and the Down (i.e., gravity) is normal to this plane. The center of this local
geographic reference system coincides with the position of the sensor in the world. As illustrated in
Figure 4b, the NED frame is constructed in two steps, by applying the longitude (w) and latitude (&)
rotations to the NoEgDy frame defined by the vectors

ng=(0,01)T, e =(0,1,0", do=(-1,0,0)". @)

Recall that a frame is rotated by multiplying each of its basis vectors by the rotation matrix. Let the
matrix describing the rotation of a point by an angle 6 around axis n (in a right-handed way) be Rq (6),
which is given by Rodrigues’ formula ([18], p. 585):

Rn(68) = (1 —cos(8))nn " + cos(8)15 + sin()[n] «, ()

where n has unit norm, I is the 3 x 3 identity matrix, and [n] is the cross-product matrix associated
with n. Hence, the NED frame (n, e, d) is obtained from the NyE(Dy frame (4) by concatenating two
rotations (Figure 4b): (ny, e1,d;) = Ryy(w) (ng, €, do), and (n,e,d) =R_¢, () (ny, ey, dq).
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Next, the rotation of the UAV with respect to the NED system is performed (Tags 5-7 in
Table 1). The rotation angles of the platform are illustrated in Figure 5. First, the heading is
rotated around d, (xo, yo,20) = Rq(heading) (n, e, d); then, the pitch is rotated around the rotated e,
(x1,¥1,21) = Ry, (pitch)(xo, yo,Zo), and, lastly, the roll angle is rotated around the latest rotated n
(ie., x), yielding (x2,y2,22) = Rx, (roll)(x1,y1,21)-

Finally, the rotation of the sensor with respect to the platform is applied (Tags 18-19 in Table 1).
A rotation of the sensor relative azimuth angle, (X4, Ya, 21) = Rq, (azimuth) (x2,y2,22), is followed by
a rotation of the relative elevation angle, (x, ye, z.) = Ry, (elevation) (X4, Ya, Za).

In summary, the camera rotation matrix is R = (X, y, Z.), and the camera translation is t = —RC,
where the optical center of the camera (C) is the position of the camera in ECEF coordinates (2).

A

(a) heading (b) pitch {c) roll

Figure 5. On the left, the heading angle of the platform in the plane N-E. In the middle, the pitch
angle of the platform with respect to the plane D-N. On the right, the roll angle of the platform in the
D-E plane.

3.2.3. Virtual World

The proposed AR tool has been developed with OpenSceneGraph [20] as a 3D rendering
engine for the virtual world. This is an open source 3D graphics engine written in C++ that acts
as an object-oriented wrapper for OpenGL. The virtual world is defined according to the WSG84 Earth
model but in the ECEF reference system. Therefore, to place virtual elements in correspondence with
their real world positions, the latitudes, longitudes and altitudes are converted to the ECEF reference
system [21].

3.2.4. Flying Route

The flying route is composed of two different entities: the waypoints and the legs (i.e., the part
of the route between two waypoints). The positions of the waypoints are defined in the mission
planning step, obtained from the XML file, and then transformed from WGS84 to the ECEF reference
system. Each waypoint is represented by a semi-transparent sphere and its correspondent leg
(a semi-transparent cylinder that extends from one waypoint to another). The route can be interpreted
as a directed graph G = (W, L) where W = {wo, w1, ..., wj, ..., w,_1} denotes the set of waypoints and
L = {lo1,lh2, s li—1i s ln—2,n—1} denotes the directed legs (i.e., l;_1, is the directed leg from w;_;
to w;). The colors of the waypoints and legs change according to the UAV position during flight to
give additional information to the operators. Three different colors are used: green, gray and white.
They correspond to three different states of the waypoints and legs, respectively: upcoming, visited,
and not visited.

Two different situations are considered in the algorithm that controls the waypoint state:
(i) initialization and (ii) standard use case. The initialization step is not crucial if the video stream
is received before take-off, but it becomes essential if the datalink is lost and the connection is
re-established at any time during the flight. The route information is also taken into consideration to
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distinguish the conectivity among waypoints. Although a more complex color code could have been
chosen, the one selected is a trade-off between giving enough relevant information to the operators
and not overloading them.

Figure 6 illustrates the initialization process. The first step in this stage is determining the closest
waypoint (highlighted with a dash red circle), wjgsest, to the current position of the UAV (in blue).
Once this is known, the next step is distinguishing whether the UAV is getting closer or getting further
away from wj,g,s- If the UAV is getting closer, as it is shown in Figure 6a, w55t is the upcoming one,
SO Wejgsest aNd the leg Iojpsest—1,closest are rendered in green. Otherwise, if the UAV is getting further
away, as it is illustrated in Figure 6b, w,jys.; is set as visited (in gray) and the next one, wjyspst+1,
is set as the upcoming one, so that the leg shown in green is I jysest closest+1- Finally, when the upcoming
waypoint is identified (i.e., the green one is selected), the previous ones in the route are settled as visited
(in gray) and the others as non-visited (in white). During the standard case of use, a waypoint changes
from upcoming to visited when the UAV is in a sphere of a predefined radius centered in the waypoint.

Oy

P g
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S, /W

e

I_/' 1

b 4 &
(a) UAV approaching closest waypoint. The closest (b) UAV getting further away from the closest waypoint;
waypoint coincides with the upcoming waypoint. the next waypoint is the upcoming one.

Figure 6. Initialization process of the flying route. The top of each subfigure shows the UAV situation
with respect to the closest waypoint (in red). The bottom of each subfigure shows the color coding of
the legs and waypoints that will be presented to the operator. The upcoming waypoint and the currently
flown leg are always displayed in green.

3.2.5. Localization and Visualization of Targets

The targets are represented, as it is illustrated in Figure 7, using four different virtual entities:
a cylinder, a cube, a label and a semi-transparent sphere. The cylinder represents a post that starts at
the target position and ends at the same latitude and longitude but with a higher altitude. At the top of
the post, a cube is added to highlight where the targets are. Both the cylinder and the cube are colored
in blue. Additionally, next to the cube, a label that contains information of the specific target is shown
in red. This allows the operator not only to distinguish where the targets are, but also to identify them.
Finally, a semi-transparent red sphere is displayed at the bottom of the post. This sphere encloses the
part of the image where the target should appear, and it is used to represent a region of uncertainty
around the target.

The positions of the targets are obtained from an XML file and then transformed from the WGS84
to the ECEF reference system. The use of an XML provides the possibility to exchange information
between different sensor types regardless of the specific format used in each one of them.

To achieve a correct visualization of the targets and therefore improve the situational awareness
of the operators, it is paramount to take into account occlusions. To this end, the proposed AR tool
incorporates the terrain information into the virtual world. The terrain is built from the DTED-Level 2
information of the area that is going to be flown over during the mission, which is established in the
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mission planning stage. Occlusions are computed on the fly using the 3D rendering engine. The terrain
information is stored in a polygon mesh defined with pointers to a vertex list. In particular, we have
chosen Wavefront Object (OB]) format [22], a useful standard for representing polygonal data in the
ASCII form that is widely used in computer graphics. This format is chosen because it is not limited
to a specific terrain model and it provides the possibility to add terrain models built using different
methods such as computer vision techniques, like those in [23]. In addition to the terrain, the use of the
OBJ format allows the incorporation of other modeled elements such as buildings, which can improve
the situational awareness when the mission requires target identification in an urban environment.

Figure 7. Virtual target beacon—composed by a blue post with a cube at the top, a red label,
and a semi-transparent red sphere at the bottom.

Figure 8. Augmented video with highlighted route (waypoint and legs) and four targets. Same notation
for virtual targets as in Figure 7. Same notation for waypoints and legs as in Figure 6: the camera is
looking at the last visited waypoint (hence, it is colored in grey, as in Figure 6b).

3.3. Augmented Video

The result of fusing the real world images and the virtual world elements with the correct
projection model, as explained in Section 3.2, is an augmented video stream, as illustrated in Figure 8.
The UAV operators reduce their workload by visualizing the information contained in the video:
they can distinguish the route that the UAV is going to follow and the targets that must be monitored.
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The route has three different colors: green, for the upcoming waypoint, gray for the visited ones,
and white for the non visited. The operators can easily infer from the colors the direction of flight.
Indeed, they can also infer when a waypoint is going to be reached because the closer you get to the
waypoint, the bigger it is displayed on the screen.

The targets can be identified even if the UAV is flying far away from them. The operators can
obtain information about the target positions quickly by observing the video. Then, they can identify
them with the labels.

4, Results

The proposed AR tool for improving drone operations has been tested in a GCS demonstrator at
Airbus facilities in Getafe, Madrid, Spain. The input data of the application is a synthetic video and
metadata stream following the NATO standard 4609 [13] transmitted through UDP protocol. An XML
file containing mission planning information, following the common route definition standards, is also
provided. Additionally, digital terrain information and a list of targets that should be identified by the
operator are given.

The AR tool has been tested during a mission that takes place in the south of Spain. The objective
of the mission was the identification of several targets that were reported to the operator. The targets
chosen for the test were buildings, and the operator had to check if the targets were actually present in
the indicated locations. This assignment was framed in a reconnaissance procedure. The UAV followed
a route that was predefined according to several restrictions (e.g., non-flying zones) during mission
planning. The UAV is flown with an automated control system and the operator is responsible for the
supervision the flight, the alerts and the payload. The operator can control the camera sensor manually
with a joystick. Several tests were carried out with different operators and some representatives
moments of the mission are discussed below. Additional material, including the proposed tool, are
publicly available (http:/ /www.gti.ssr.upm.es/data/) [24].

&

(a) currently flown leg and next waypoint (in green). (b) same view as Figure 9a, after a short time.
(c) next waypoint: the UAV starts turning left. (d) the leg has changed the color after the UAV has

turned to the left.

Figure 9. Route orientation. Four different moments of the video stream augmented with the proposed
AR tool during a mission.
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4.1. Results on Route Orientation

Figure 9 shows four different frames of the video stream, augmented with the route during the
flight. In Figure 9a, the next waypoint of the route as well as the leg that is being currently followed
are shown in green. The operator can easily infer from the image that there is enough time to inspect
the environment and the UAV is then going to turn left. Therefore, it is important to explore the zone
to the right of the UAV. In Figure 9b, the same waypoint is shown after approximately half a minute.
It can be seen that the waypoint is bigger than before, thus indicating that it is going to be reached
shortly. Figure 9c shows the waypoint when the UAV is turning left. It can be seen that the UAV is
turning left because of the white leg in the image. Finally, Figure 9d shows, in green, the leg that is
being currently followed. This leg corresponds to the one shown in white in Figure 9c. This illustrates
that, as the UAV progresses, the color information changes accordingly to the situation, thus improving
the situational awareness of the operator.

(a) screen displaying the map with the mission plan: in green, the route followed by the UAV; in blue, the
targets and two different UAV positions during the flight; in red, the labels.

(b) augmented video (AR tool) from position A. (¢) augmented video from position B. Targets are not
Occluded targets are easy to locate using the occluded. Beacons highlight location and uncertainty
virtual beacons. of the targets.

Figure 10. Target identification. Results of the AR tool, displayed on the screens of the GCS. A blue
circle is surrounding the targets to mark the true position.

4.2. Results on Target Identification

During the mission, the operator is in charge of identifying four targets, which correspond
to four buildings. Figure 10 illustrates how some of such targets are seen from different positions
along the UAV route. In Figure 10a, the map with the route (in green) is shown. In the middle of
the map, two targets labeled with “3” and “4” are depicted in red. The operator should find these
targets with the camera. However, in this example, the targets are placed over a mountainous terrain.
Thus, an appropriate point of view should be found. The results from two different UAV positions
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are shown in Figure 10b,c. The targets seen from “position A” are displayed on Figure 10b: the
operator can infer from the image that the targets are occluded by the terrain because the post beacons
do not end in semi-transparent red spheres; they end with the shape of the mountain. With this
information, the operator is aware of the fact that the camera zoom is not going to improve the
visibility, hence another point of view is needed. In contrast, the augmented video observed from
“position B”, displayed in Figure 10c, allows the operator to note that such a position is appropriate to
distinguish the targets since they are not occluded. In such a case, the semi-transparent red spheres
are shown at the end of the posts, which indicate that the targets are visible from that point of view.
Therefore, the target inspection can be carried out from that perspective.

Finally, Figure 11 illustrates the difference between having the raw video stream and the
augmented one. The images in this figure show how difficult it is for the operator to know if there are
visible targets in the video stream. As it can be seen, the proposed tool significantly benefits the target
search. The benefits of the tool have been validated by the GCS experts of Airbus. Their comments
have been considered in order to improve the tool because they are aware of the operator needs.
For further validation, the AR tool could be tested by UAV operators under some experimental cases
in order to provide objective time search measurements.

(a) Raw video stream (b) Augmented video

Figure 11. Difference between the raw video stream (a) and the augmented with the proposed AR tool
(b) for distinguishing buildings in reconnaissance missions. A blue circle surrounding the targets has
been superimposed on both images to mark the true position.

5. Conclusions

An AR tool to improve the situational awareness of UAV operators during ISTAR missions with
MALE UAVs has been presented. The tool is available online with test data in a public website. The AR
system provides information about the flying path, letting the operator know the direction of flight
and the next waypoints to visit. Additionally, the targets are highlighted, allowing the operator to
easily identify them. Moreover, the presence of occlusions is taken into account so that the operator
can reduce the time to find them and prevent the use of the camera zoom when it is not necessary.
The usability of the proposed AR tool is assured by the adoption of NATO standards for motion
imagery, KLV for metadata and CRD for mission plans. Therefore, the tool is valid for any GCS
that follows the same standards. The performance of the AR tool has been tested in an Airbus GCS
demonstrator, where it has been shown how the enhancement of the video stream with virtual elements
avoids the burden of fusing information displayed in separate screens and improves the situational
awareness of the UAV operators.
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Abbreviations

The following abbreviations are used in this manuscript:

AR

CRD

Augmented Reality
Common Route Definition

DTED  Digital Terrain Elevation Data
ECEF Earth-Centered Earth-Fixed Coordinate system

FOV
GCS
GPS
GSD
MU

Field of View

Ground Control Station
Global Positioning System
Ground Sampling Distance
Inertial Measurement Unit

ISTAR  Intelligence, Surveillance, Target Acquisition and Reconnaissance

KLV

Key-Length-Value

MALE  Medium-Altitude Long-Endurance

MAV

MI

Micro Aerial Vehicles
Motion Imagery

NATO  North Atlantic Treaty Organization

NED

OBJ

North-East-Down Coordinate System
Wavefront Object

SMPTE  Society of Motion Picture and Television Engineers

TLV

UAV

UL

Tag-Length-Value
Unmanned Aerial Vehicle
Universal Label

WGS84  World Geodetic System 1984

XML

Extensible Markup Language
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Abstract: This paper investigates the joint target parameter (delay and Doppler) estimation
performance of linear frequency modulation (LFM)-based radar networks in a Rice fading
environment. The active radar networks are composed of multiple radar transmitters and
multichannel receivers placed on moving platforms. First, the log-likelihood function of the received
signal for a Rician target is derived, where the received signal scattered off the target comprises
of dominant scatterer (DS) component and weak isotropic scatterers (WIS) components. Then,
the analytically closed-form expressions of the Cramer-Rao lower bounds (CRLBs) on the Cartesian
coordinates of target position and velocity are calculated, which can be adopted as a performance
metric to access the target parameter estimation accuracy for LEM-based radar network systems in a
Rice fading environment. It is found that the cumulative Fisher information matrix (FIM) is a linear
combination of both DS component and WIS components, and it also demonstrates that the joint
CRLB is a function of signal-to-noise ratio (SNR), target’s radar cross section (RCS) and transmitted
waveform parameters, as well as the relative geometry between the target and the radar network
architectures. Finally, numerical results are provided to indicate that the joint target parameter
estimation performance of active radar networks can be significantly improved with the exploitation
of DS component.

Keywords: Cramer-Rao lower bound (CRLB); Fisher information matrix (FIM); joint parameter
estimation; linear frequency modulation (LFM) signal; Rician target; active radar networks

1. Introduction

1.1. Related Works and Motivation

With widely separated transmitters and receivers, the distributed radar networks, also known as
spatial distributed multiple-input multiple-output (MIMO) radar systems [1-3], can view the target
from different aspect angles and provide spatial and signal diversities. To be specific, for a distributed
radar network system with M transmitters and N receivers, the various transmitter-receiver pairs
observe the different aspects of the target. In this way, we can obtain the equivalent of MN radars
by optimizing the selection of the transmitted signals from different transmitters. However, the
conventional radar observes only single aspect of the target. As we can conclude in [4], the advantage
of the radar network is that the average received energy across all the transmitter-receiver pairs is
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approximately constant, and it overcomes deep fades other than the conventional systems. Therefore,
the radar network systems have attracted considerable attention and on a path from theory to
practice [4-10].

The Cramer-Rao lower bound (CRLB) is an important tool for analyzing the performance of
radar networks, which can provide the smallest variance estimates for any unbiased estimation [11,12].
The mean-square error (MSE) of the maximum likelihood estimator (MLE) is close to the CRLB when
the high signal-to-noise ratio (SNR) is satisfied. It is also worth mentioning that the performance of
multiple signal classification (MUSIC) in computational time-reversal (TR) applications is studied
in [13,14], where the closed-form MSE matrix of TR-MUSIC is calculated for the single-frequency
case in multistatic co-located and non co-located scenarios. Simulation results show that TR-MUSIC
can predict a more accurate MSE than CRLB, while it is a sub-optimal estimator since it does not
asymptotically achieve the CRLB as the MLE. In the last couple of years, there is a growing interest
on the CRLB studies for the target estimation performance of distributed radar networks [11-19].
The authors in [11] derive the analytical expressions of CRLB for both noncoherent mode and
coherent mode in MIMO radar systems, which shows that the CRLB is inversely proportional to the
carrier frequency and signals averaged effective bandwidth. In [12], the problem of target parameter
estimation for noncoherent MIMO radar is addressed, and the joint CRLB of target position and
velocity is computed. Reference [15] further extends the results in [12] to a multiple targets scenario.
Later, He et al. investigate the coherent MIMO radar performance when the oscillators at each
transmitter and receiver are aligned in phase [16]. The work in [17] studies the target localization
accuracy for MIMO radar systems with static phase errors. In [18], the CRLBs of the joint time
delay and Doppler shift estimation are derived for an extended target, and the effects of transmitted
waveform parameters on the CRLBs are analyzed. Assuming that the approximation state of the target
is unknown without previous target detection, a generalized CRLB for distributed active and passive
radar networks is calculated in [19].

Recently, the CRLB has been investigated and applied to passive radar systems that employ
signals of opportunity as illuminators for target detection, estimation and tracking [20-24]. Since
passive radar does not use its own transmitter to radiate electromagnetic wave, it has been a potential
technology for low cost, low probability of intercept (LPI) [25-27], antijamming and other advantages.
The authors in [20] present the CRLB analysis for the joint target estimation of position and velocity in
a frequency modulation (FM) based passive radar networks. In [21-24], the modified CRLB (MCRLB)
is employed as a good alternative to the classical CRLB due to the presence of random parameters in
the transmitted waveforms, which has been shown to offer a looser bound in practical applications.
The target estimation performance of a universal mobile telecommunications systems (UMTS)-based
passive multistatic radar and an orthogonal frequency-division multiplexing (OFDM)-based passive
radar network in a line-of-sight (LoS) environment is analyzed in [23,24] respectively, where the Rician
target model is composed of two components, that is, fixed amplitude or dominant scatterer (DS)
and weak isotropic scatterers (WIS). It is shown that the target estimation accuracy will be increased
with an increase in reflection coefficient, number of transmitter-receiver pairs, the choice of the
transmitter-receiver pairs and duration time. Furthermore, the work in [28] proposes two transmitter
of opportunity selection algorithms for FM-based passive radar network systems, which are formulated
as knapsack problems (KPs) and tackled with greedy selection approaches. On the basis of the research
mentioned above, almost all of previous works focus on stationary platforms. The CRLB analysis for
joint moving target position and velocity estimation of linear frequency modulation (LFM) based active
radar networks with sensors placed on moving platforms operating in a Rice fading environment,
which has not been considered, needs to be investigated.

1.2. Major Contributions

The major contributions of this paper are fourfold:
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(1) We formulate the linear frequency modulation (LFM) signal model and derive the log-likelihood
function of the received signal for a Rician target. The Rician target model is composed of
DS component and WIS components, which are the signals received after striking from the
target [21,22]. It is worth pointing out here that [15,16,27] only study the target parameter
estimation accuracy limits either when the target’ radar cross section (RCS) observes as a Rayleigh
model in a non-coherent scenario or the target is modeled as a point target in a coherent scenario
for all the transmitter-receiver pairs [23]. While utilizing a Rician target model, the estimation
performance can be generalized and evaluated when the target has different RCS models for
different transmitter-receiver pairs.

(2) On the basis of the previous works [15-24,29], almost all the studies concentrate on stationary
platforms. In this paper, we build an LEM-based active radar network configuration and extend it
to a more general case, which consist of multiple radar transmitters and multichannel receivers
placed on moving platforms. On the other hand, only the CRLBs for LFM-based bistatic radar
channels are computed in [29]. To the best of our knowledge, the CRLB for an LFM-based radar
network has not been derived. Thus, the joint CRLB for position and velocity estimation of a Rician
target in LFM-based radar networks is computed, where we assume that the signals scattered off
the target due to different radar transmitters can be received and separated at the receivers. The
cumulative Fisher information matrix (FIM) can be factored into two terms: one term accounting
for the effect of the DS component, and another incorporating the effect of the WIS components.

(3) Simulation results have shown that the DS component can be exploited to decrease the target
parameter estimation errors, which is due to the fact that the reception of DS component increases
the received SNR at the radar receiver. Previous results in [20,29] only show that the CRLB is
a function of the signal parameters as well as the geometry between the target and the radar
network architecture. In this paper, the effects of SNR and target’s RCS on the target parameter
estimation performance are also analyzed. It is demonstrated that the joint CRLB is not only a
function of SNR, target’s RCS and transmitted waveform parameters, but also a function of the
geometry between the target and the active radar network systems.

(4) The closed-form expressions of CRLB can be used as a performance metric to access the target
estimation performance for LEM-based active radar networks in a Rice fading environment.
Since the DS component can be exploited to increase the received SNR at the receiver,
the geometry-dependent CRLB analysis will open up a new dimension for active radar network
systems by aiding the optimal power allocation for radar networks to achieve a given estimation
requirement with the minimum system cost.

1.3. Outline of the Paper

The rest of the paper is organized as follows. Section 1 describes the signal model for LFM-based
radar networks. In Section 2, the joint CRLB is computed for target position and velocity estimation by
deriving the closed-form expressions of FIM. The numerical simulations are provided to demonstrate
our analytical results in Section 3. Finally, conclusion remarks are drawn with potential future work in
Section 4.

Notation: The superscript T represents the transpose operator; E{-} and (-)* represent the
expectation and conjugation operators, respectively. | - | denotes the absolute value, R{-} is the real
part, and {-} is the imaginary part. S;(f) denotes the Fourier transform of s;(t).

2. Signal Model

Consider a active radar network architecture comprising of Nt radar transmitters and Ng
multichannel receivers. Let the ith radar transmitter and the jth receiver be located at ;I; = [}, y!] and

?j = [x;f, y; ] respectively, in a 2-dimensional Cartesian coordinate system for simplicity. The target
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position and velocity are supposed to be deterministic unknown and denoted by = [x,y] and
v = [o,, vy]. We define the unknown target state vector:

U = [x,y,04,0y]". @

Without loss of generality, we will concentrate on a single target scenario. However, the results
can be extended to multiple targets.

Let 7; represent the bistatic time delays corresponding to the path between the ith radar
transmitter, moving target, and the jth radar receiver, which is a function of the unknown target
position P = [x,v]:

_ VPG v>2+\/x )2 -(y—y7)?
H A

- p; H denotes the distance from the ith radar transmitter to the

@

] L ol

where ¢ i

target and ” P —p; H denotes the distance from the target to the jth receiver, respectively. In this paper,

—

Vi = [ x,i’ vy,i]
and 7 = [v;l]-, v;,]-], respectively. With the aforementioned positions/velocities of the target, the radar
transmitters and receivers, the Doppler shift of the moving target corresponding to the ijth path is the
time rate of change of the total ijth path length:

the ith radar transmitter and the jth multichannel receiver are moving with velocities v

6H_>—pz
foj; = A T

R

. ] D | e veloait ‘
where A denotes the carrier wavelength, and are the relative velocities for the ith

radar transmitter and the jth receiver, respectively. Then, we have:

. =4 2 +3 i %’ 4
for =X |\ o Al EIE [r-+] " T57
1|t xxd ¢ vy 1| X ro_ VY

Nl i R 4 [

which is a function of the unknown target position p = [x,y] and velocity V = [uy, vyl.
The LEM signal transmitted by the ith radar transmitter is given by [29]:

2 (t = nTg), ©)
where
1 e
u;(t) = feﬂkt ;o< (62)
0, elsewhere (6b)

N is the number of subpulses for each transmitted burst, T is the pulse repetition interval (PRI)
and T is the duration of each pulse, such that T < T /2. Moreover, kT2 = BT represents the effective
time-bandwidth product of the signal and B denotes the total frequency derivation. Note that each
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transmitter-receiver pair has its own angle of view for the target because of the widely spaced antennas
that leads to different attenuation factors [20]. It is assumed that the signals from different radar
transmitters are supposed to be received and processed at the multichannel radar receivers. For a
Rician target, it consists of a DS and many independent WIS. In this paper, by utilizing the Rician target
model [23], the reflection coefficient { ij is modeled as a complex Gaussian random variable with mean
d,vj and variance 02, i.e., 14 ij ~ CN (d,vj, 02). Then, the signal from the ith radar transmitter arriving at
the jth receiver can be expressed as:

rig(t) = Gysi(t — )P ), )

where w;;(t) denotes the additive zero-mean white Gaussian noise of variance corresponding to the
ijth path, i.e., w;; ~ CN (0, 02), which is independent to g; j- We assume that the parameters d;;, o2 and
02 are deterministic and known.

Following the concepts and derivations in [12,23], the likelihood ratio of the ijth

transmitter-receiver pair can be given by:

:rw rl](t)S?(t - Tij)e

2
A(r(t);0) = exp{ 02‘10%

7j27rfD (t=Tj dt‘

—j2 = 2
S aryst (= ) I gy

T2 +0,,

®)

R[5 n(0s7 (e = wp)e T gy

Uz+¢72
j27fp, (=) 2
Xd;‘,,si(t —Tjj)e j / dt] } + (02‘:_0’21) ,

2
where d’f/ represents the mean of the received signal ri]-(t), ie., d’f/ = djs si(f — Tl])el o (%) .
Furthermore, the log-likelihood ratio is written as:

L(rj(t)0) = =

o2+op

—00

—j2nfp. (b)) 5|2
(s (- gy)e TPl “ﬂd4

1 T4
T | drys si(t—T)e

+ R * —j2 (t—Ti7)

ﬁv& {f—oo rij(t)si (t— I,‘]')e 7 nfDx/ Tij dt
27t fp..(t—T;

Xd;‘ijsi(t_ Tz‘]‘)e] fD,/( T dt} I (

_jZHfDij(l_Ti/')dt 2

©)

)

Due to the fact that the radar transmitters and receivers are widely separated, the received
signals 7;;(t) are mutually independent for different transmitter-receiver pairs. Therefore, the joint
log-likelihood ratio across all the transmitter-receiver pairs can be written as the sum of all single
transmitter-receiver pair log-likelihood ratios:

L(x(t);U) IZI-NT NR 1 L(rij();U)

(10)

=N (ﬂ—ﬂ+ﬁ)c
where r(t) = [r1(t), r12(t), - rNTNT(t)]T is the observed signals from the entire set of the
receivers. I’ ,1], F2 and F3 denote the first, second and third terms in (9), respectively. The constant
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C= ): ZNR In ( % ) is independent of the target state vector U. Therefore, the MLE of the

o2+o?
unknown target state vector U can be expressed as:

Uy = argmaxy L(r(t); U)

= arg maxy Z,» 1 ZNR L(r;(t);U) an
= arg maxy Zl 1 ZNR (1"1 FIZJ + 1"13]),

where Uy, represents the MLE of the unknown parameter vector U.

3. Derivation of Joint Cramer-Rao Lower Bound

It is discussed in [12,16] that the CRLB indicates the smallest variance estimate of any unbiased
estimate, which can be adopted as a performance metric in parameter estimation problems because that
the CRLB is close to the MSE of the MLE when the high SNR is satisfied. Using the derivations in [12,21],
the FIM is a 4 x 4 matrix related to the second-order derivatives of the joint log-likelihood function:

J(U) = (vuQNJ(Q)(vuvQ")T

12)
= (7Q") (~Exnu{Valvol (1 U)}) (vu@!)T,
where we define Q as an alternative representation of the unknown parameter vector:
T P
Q= [Tij, fDij] (Vi, 7). (13)

We first derive the Jacobian matrix (VUQT), whose entries can be obtained by taking the
first-order derivatives of the time-delays in (2) and the Doppler shifts in (4) with respect to
target positions:

oy 1 amx oy "
ox ¢ | ||w =
MRk
7w _1( _y—y y-yi as)
v lm-ell 7 Al
oy _ 4 (y— y,) (yav,’-)z ‘o (=D y—y) (=) v,)
ox =2 =3 y | 3 =
S T EXIEE] "
U e ) [V yl)} P ) U /)
+ [0 v ol - ,
[X"M?—PAP gl E-p[r v B
o;  _ 4 o | 202 )y j/) (=) y-vj) (x=x)? (x=x7)?
Ty T\ _, _;
E i R [T .
CoxDE—y) | <x—*’>2} G 24 R s i
+ |—of SR gt i —o . . i ,
{ P -ple Ik B -pl Y| B —pl |
Similarly, the derivatives with respect to the target velocities can be calculated as:
97, Tij
50, =0 (18)
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gz;—o (19)
Afp, 1 x—xt X —Xx;
=1 20)
P APl ‘TFwl)
afDiv_] y—yt
w3 e e “

After lengthy algebraic derivations, the FIM J(Q) can be correspondingly expressed by:

1(Q) = —Eypnu{lvol(t);U)][voL(x(t);U)]"}
= —E,pu{volvol(x(t);U)]"}

8204 & i
= E I e [1+ 20+ gy | ¢ Lq 17,-1}'

22)

where the terms ¢;, Wijs and v; j are dependent on the radar waveforms, which can be calculated as:

{o¢] {o¢] 2
= ['S ISP af = | [73 FIsiHP af] o
= a2t
— [too 2
= [ Rl eRdf - | 12 s Paf| ”
=572+ LT3(N? - 1),
v = (‘{ Tt (02 arh — [T () Pat [T si(0) 25 e o
= —LlknT?

The derivation of J(Q) is provided in Appendix A. Then, we can write the final expression for
total FIM across all the transmitter-receiver pairs as:

Np Nk g2t
W=LEgerra

1+ 2h; + ; 26
,‘:1]-:1 |i ] (2/ ) ]]( ) ( )

The expressions for the elements of the bistatic FIM J;;(U) corresponding to the ijth transceiver
pair are given in Appendix B. The CRLB for the joint position and velocity estimation of a Rician target
can be obtained by taking inverse of FIM in (26), i.e.,

CRLB(U) =J'(U). (27)

Remark 1. It is obvious that the final expression of FIM in (26) is a linear combination of FIMs due to DS
component and WIS components [23]. In this paper, one of our goals is to increase the SNR value at the
radar receiver by employing the DS component, which leads to lower radar transmit power and better target
estimation performance.

Remark 2. From (26) and (27), we can observe that the MCRLB depends on a number of factors. It not only
depends on the relative geometry between the target and the radar networks, but also depends on the transmitted
LFM waveform parameters such as the duration of each pulse and bandwidth. In addition, it shows dependence
on the target’s RCS and the SNR.
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4. Simulation Results

In the following, numerical results are dedicated to compute the joint CRLB for active active radar
networks as well as reveal the effects of several factors on the CRLB.

For numerical simulations, we consider a radar network with five active radar transmitters and
an equal number of multichannel receivers, i.e., Nt = 5 and N = 5. The Cartesian coordinates of
their positions are provided in Figure 1. The position/moving parameters of the radar transmitters
are shown in Table 1. The receivers are co-located with the corresponding transmitters and have the
same velocities. It is assumed that the target is located at [6000, 6000] m with velocity [30,50] m/s.
For simulation parameters, we set the LEM signal parameters as follows [29]: the number of subpulses
N = 256, the bandwidth B = 50 MHz, the duration of each pulse T = 1 ps, the PRI Tz = 0.1 ms,
and the carrier wavelength A = 0.03 m.

7000 T T T
D Radar transmitter

6000 F z Radar receiver *
Target
(30.50):;1-*5/
5000 (80, 20) m/s

| ./7

(60, 30) m/s

(10, 70) m/s
3000

(30, 50) mis /
2000 I/ p [°]

(40, 40) m/s
1000 : :

~1000 i L i i L i i
-1000 0 1000 2000 3000 4000 5000 6000 7000

X position[m]

Y position[m]

Figure 1. Target and radar networks configuration used in the numerical simulations.

Table 1. Location and Moving Parameters of the Radar Transmitters.

Transmitter Index Locations [m]  Velocities [m/s]

Transmitter 1 [3000, 1000] [30,50]
Transmitter 2 [5000,2000] [10,70]
Transmitter 3 [2000, 4000] [80,20]
Transmitter 4 [0,2000] [60, 50]
Transmitter 5 [5000, 0] [40, 40]
Define the SNR as: )
o
SNR = 10log (—2> . (28)
(Tn

Without loss of generality, we assume that the reflection coefficients are the same for all
transmitter-receiver pairs, i.e., h;; = h. In Figures 2 and 3, the MSE curves are plotted versus SNR in
the x-dimension and y-dimension of target position with different /. Solid and dashed curves show the
CRLBs and the MSE curves of the ML estimation, respectively. As indicated in [12], it can be observed
that the MSE is close to the CRLB in value and slope at an SNR threshold, see the green arrows in
the figures. Similarly, we depict the MSE curves of target velocity against SNR in Figures 4 and 5.

132



Sensors 2016, 16, 2072

From Figures 2-5, we can notice that as the value of SNR goes up, the MSE decreases for both target
position and velocity estimates.

In addition, it should be pointed out that the CRLB decreases significantly with an increase in /.
This is due to the fact that an increase in h provides a rise in target RCS [23], which leads to the
increase in the received SNR at the radar receiver. The CRLB will achieve a maximum value when
DS component does not exist, i.e., h = 0, where the target RCS follows Rayleigh fluctuations in a
non-coherent mode for all the transmitter-receiver pairs. In contrast, the CRLB will be minimum at an
asymptotic limit, i.e., 1 — oo, and the target is idealistically a point target in a coherent mode, which
has a fixed amplitude RCS value for all the transmitter-receiver pairs. For the rest of the other cases,
the CRLB lies in between these two values [23].

MSE

| | === CRLB for px {(h=0)

| =p— CRLB for px (h=1)
——CRLB for px (h=3)
| == CRLB for px (h=10)
| == MLE for px (h=0)
{ == MLE for px (h=1)
=il MLE for px (h=3)
|+ == MLE for px (h=10)

10°

1

10
SNR[dB]

Figure 2. MSE versus SNR for x-dimension of target position with different /.
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<@~ MLE for py (h=3)
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Figure 3. MSE versus SNR for y-dimension of target position with different h.
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Figure 4. MSE versus SNR for x-dimension of target velocity with different .
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Figure 5. MSE versus SNR for y-dimension of target velocity with different /.

Furthermore, we change the location of the target to different positions to investigate the effects
of the geometry between the target and the radar networks. In Figures 6-9, we show the CRLBs for
both target position and velocity in different position when SNR = 0 dB, 1 = 3. From these results,
we can observe that the CRLBs on the Cartesian coordinates of target position and velocity are different
when the target is in different positions. This is because the geometry between the target and the radar
network systems impacts the derivatives of the delay-Doppler terms with respect to the Cartesian

coordinates significantly [20,23].
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Figure 6. CRLB for x-dimension of target position in different position when SNR =0 dB, = 3.
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Figure 7. CRLB for y-dimension of target position in different position when SNR =0 dB, i = 3.
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Figure 8. CRLB for x-dimension of target velocity in different position when SNR = 0dB, 1 = 3.
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Figure 9. CRLB for y-dimension of target velocity in different position when SNR =0 dB, 1 = 3.

In Figure 10, we depict the square root of CRLBs (RCRLBs) for target position coordinates against
the duration time of each pulse T and bandwidth B at 0 dB with different 1. One can notice that
the RCRLBs reduce as the waveform parameters increase, confirming that a waveform with a larger
time-bandwidth product can provide better target estimation performance. It is worth mentioning
that the figures of target velocity are omitted for the sake of brevity, which are similar to the figures of
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target position. Overall, it can be concluded that the CRLB shows dependence on the SNR, target’s
RCS, geometry and waveform parameters.

0.18 . . . . : : :
. +p‘(h=0)

0.16 =P py (h=0) H
| = (h=1)

0.14 =ade—py (h=1) |1

RCRLB[m]

RCRLB[m]

Figure 10. RCRLB in the target position dimensions versus waveform parameters when SNR = 0 dB
with different Ii: (a) T; (b) B.

5. Conclusions

In this paper, we examined the problem of moving target parameter estimation for active radar
network systems with sensors on moving platforms in a Rice fading environment, which consist of
multiple radar transmitters and multichannel receivers. The CRLB for joint position and velocity
estimation of a Rician target has been derived. It should be noted that the cumulative FIM is a linear
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combination of both DS component and WIS components. Numerical examples have been provided
to demonstrate that the joint target parameter estimation accuracy of active radar networks can be
significantly improved with the exploitation of the DS component. Furthermore, it is shown that the
joint CRLB is a function of the transmitted waveforms as well as the geometry between the target and
the radar networks. Also, it depends on the SNR and target’s RCS. In future work, we will utilize this
framework to investigate the problem of optimal power allocation of the radar networks in a Rice
fading environment.
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Appendix A. The Derivation of FIM J(Q)

We have:
i = #221 /_J:o rij(t)s; (t = n;)eﬁﬂhf(t’f"f)dtr. (A1)
Let us suppose G;; = f j;o Tij (H)sF(t— Tij)t’ iy () dt, then the first derivative with respect to
Tij is given by:
1 "
m = et () -
= iy X R (6 [ vy Z ),

To compute the expectation with respect to the second-order derivative, we have:

le“}j 2(72(02+d2 as t ‘L',]
E(5) =T ER(Ts af

- (A3)
[ it — ) e [T s1(E - ) s’” T“dt)}
With the derivations in [29,30], hence we obtain:
aZrl 87'[2(74
-E ) = (14 2hy)e; A4
(5) = e st 2 =

where hy; = |d;; [2/(202).
To calculate the expectation with respect to other second-order derivatives, we follow the same
procedure and arrive at the following closed form expression:

azr}j 8ot

_E = oo
afgij o2 (02 +0?)

(1 + Zh,']')iji]'. (AS)
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The off-diagonal terms can be obtained as:

22Tl 8204
-E 7| = 14 217) i
(ar,-,-afpl) A ey

(A6)

Following the same lines, we can get the expectation of second-order derivatives of 1"72]- and 1"3J

as follows:
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Appendix B. The Elements of FIM ],»]-(U)

(A7)

(A8)

(A9)

(A10)

(Al1)

(A12)

The elements of the symmetric FIM J;;(U) corresponding to the ijth transmitter-receiver pair are

given by:

2

K22 (91;\*  knT? [0\ (9fp; 1 9fp,
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Abstract: This paper presents a platform for airborne sensor applications using low-cost, open-source
components carried by an easy-to-fly unmanned aircraft vehicle (UAV). The system, available in
open-source , is designed for researchers, students and makers for a broad range of exploration and
data-collection needs. The main contribution is the extensible architecture for modularized airborne
sensor deployment and real-time data visualisation. Our open-source Android application provides
data collection, flight path definition and map tools. Total cost of the system is below 800 dollars. The
flexibility of the system is illustrated by mapping the location of Bluetooth beacons (iBeacons) on a
ground field and by measuring water temperature in a lake.
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1. Introduction

The use of civilian unmanned aircraft vehicles (UAVs, or simply, drones) by professionals,
researchers and hobbyists alike, has increased over the recent years. Commonly, the drones are
used for aerial photography, inspection and surveys. Possible applications extend to any conceivable
task where an aerial presence with minimal environmental impact brings value or new insights [1].
What sets a modern UAV platform apart from earlier flying robots is that enhancements in technology
allow for the UAV to carry a networked computer payload. Consequently, the UAVs now have the
ability to collect, process, store and relay data on their own and in real time.

UAVs afford three-dimensional, spatial coverage, which makes them particularly suitable for
airborne sensor deployment in, for instance, ecology research and disaster management [2—4]. The most
common deployed sensors are cameras sensitive to different light spectra. They are most useful for
manual as well as automated inspection, and are often assisted by computer vision to identify relevant
conditions or objects on the ground. Single drones can be programmed to follow predefined paths,
covering a particular area of interest, or are flown manually either in line-of-sight, if possible, or guided
by GPS or other sensory feedback. Multiple drones may be deployed in swarms, e.g., to map out and
track pollution [5] or to make up a grid network and relay the data over large distances.

This paper proposes an airborne sensor platform based on commercial off-the-shelf components
that provides a modularized sensor system and data acquisition infrastructure. The drone is
a commercial quad-copter that allows for attaching external sensors and relaying the data back
to a ground station using a telemetry communications link. The platform supports a simple
and expandable interface for attaching custom sensors to the UAV, overcoming the limitation of
single-purpose platforms which are costly to convert for other tasks. Since the sensor system is
modularized, sensors can be exchanged rapidly. Besides the hardware platform, which easily integrates
sensors, we provide the possibility to use an established open-source infrastructure to collect and
visualize sensor data from the drone in real time. This allows for both autonomous path generation and
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following (see Figure 1) and operator-assisted (see Figure 2) flights towards areas of interest based on
sensor feedback — and beyond line-of-sight if needed (The drone needs not be visible to the operator,
but some line-of-sight is, however, required in the sense that telemetry signals may not be blocked, as
this would result in lost data points).

(b)

Figure 1. For autonomous flight: (a) Install sensor (Bluetooth in this scenario) and write a small sketch
in Arduino, (b) mark the area to cover and (c) take-off and interpret the data (see “Supplementary files”
for the data collected from this flight).

.

e |

(b) (0)

Figure 2. Operator-assisted flight: (a) A sensor (i.e., water thermometer) is mounted in the multi-socket
and a small sketch in Arduino is written, (b) entire system with drone, sensor, smart-phone and antenna
(c) flying manually over the lake to measure water temperature.

Our choice of a multi-rotor aircraft delivers desirable operational parameters in some respect
(i.e., agility, vertical take-off and landing, hovering and low-altitude performance), but sacrifices on
other parameters like range, speed, and altitude. However, the proposed design targets makers,
students and researchers that intend to conduct experiments with custom sensors and only need data
collected within the boundaries of unlicensed operation. To that end, our system may be considered
a prototyping platform for airborne sensor deployments, although it provides a way to rapidly
implement a concrete application in its own right. In particular, we hope it may become a flexible
first-step learning tool for students within engineering and environmental programmes.

While designing the system, four primary design objectives were kept in mind. The system
should be: (1) low-cost; (2) easy to use; (3) modularized, for fast development and deployment of
sensors; and (4) provide real-time data.

The following sections will first outline some usage scenarios. A more detailed system description
follows with its technical implementation presented and illustrated with a field demonstration. Finally,
we discuss shortcomings and future improvements.
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2. Previous Work

Low-cost, light-weight UAVs have been used extensively within research for more than a decade
to measure, for instance, air quality [6,7], mapping of 3D geodata [8-10] and remote sensing within
agriculture [1,11-13]. These UAVs were build with a single purpose and with one particular sensor
on board. While relatively cheap in comparison with other means for airborne measurements (e.g.,
airplanes, helicopters or high-grade UAVs), they cost several thousand dollars.

The use of open source UAV software is promoted by several research teams, (e.g., [10,14]).
Aside from research, amateurs with an interest in UAVs have formed communities at places like
diydrones.com to show their prototypes and discuss further developments. Some of the drones are
made of parts from electronics outlets, while others are built using open-source Arduino parts intended
for aviation (e.g., “Arducopters”). Anderson [15], who initiated the diydrones community, sees this
as an example of amateur makers potentially revolutionizing the industry by sharing, for instance,
code for a 3D-printout of a construction part. When cheap, consumer-grade drones became available,
their flight computers were hacked almost immediately (e.g., [16]). Even with this "maker” movement,
modifying low-cost UAVs for remote sensing is still difficult, which may prevent people with limited
technical skills in computers and embedded control systems to take advantage of them.

Sensor measurements from UAVs may benefit teaching, for example, in engineering and
environmental disciplines. Jung et al. [17] developed a low-cost UAV test-bed based on a model
airplane, with in-house -design and -assembling of most system parts. They argue that a way to
provide interdisciplinary skills for UAV development is to promote educational projects on UAV
technologies. Recently, Eriksen et al. [18] and Mathias [19] augmented low-cost drones with the same
educational purpose.

3. Usage Scenarios

The following fictitious scenarios guided our implementation. All address the collection of
real-time data from the sensor attached to the drone.

e  Mapping WiFi coverage in outdoor areas

The task is to map out wireless network (WiFi) coverage in 2D or 3D for a large outdoor area, for
instance a festival venue. A technician sets up access points and mounts a sensor on the drone that
collects signal strength (i.e., received signal strength indicator (RSSI) values). A telemetry radio
dongle is connected to the technicians’ smart phone on which a flight path covering the entire area
is marked out using an Android ground station application. The drone will then fly between the
set way-points at regular intervals. For each flight, it sends timestamped and absolute positioned
sensor values back via the telemetry link. The Android app generates a heat map in real time,
allowing the technician to quickly assess the coverage without waiting for the entire flight path to
complete. Offline, the technician further analyses the data collected.

e Detecting radio beacons

A simple Bluetooth 4.0 (BLE) module is used to detect and track radio tags, i.e., iBeacons [20].
A beacon is attached to a key-chain that has been lost on a field. The drone flies over the field and
maps signal strengths, guiding the search for the key-chain.

A signal map can be updated by flying over the area multiple times, for example, when tracking
objects in motion. A zoologist tags a beacon to a badger cub. In the following weeks, the drone
tracks the cub when outside its cave, mapping how its territory expands day by day.

e  Tracking pollution sources

An agriculturalist detects an airborne aggressive pollutant on field crops by manual inspection.
The source of it needs to be tracked down quickly, and the agriculturalist, therefore, mounts a
sensor for the drone platform that measures the concentration of the pollutant in the air. The drone
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is instructed to follow an inwards spiraling pattern from the point of detection. The agriculturalist
receives values sent from the sensor as the drone continues its flight path. A heatmap pattern
starts to emerge on his mobile phone, indicating a stronger concentration of pollutants in a certain
direction. The agriculturalist can choose to manually alter the flight path or specify a concentration
threshold for the drone sensor on the ground station software.

4. System Description

Our system is meant for attaching arbitrary low-cost sensors to an open-source robotics vehicle

platform. Figure 3 provides a conceptual overview of the entire platform. The sensors are, in part,
a piece of hardware that attaches to the drone. A simple protocol based on the common I2C peripheral
protocol is used for interfacing with the flight computer. As long as the sensor modules conform to
our hardware and software specifications, any low-weight sensor can be used.

Interchangeable sensor
modules

Quadcopter with
onboard flightcomputer
that handles sensor and
groundstation
communication

Android groundstation
software for sensor
data collection,
configuration, flight
path planning and
heatmapping

Figure 3. System overview. Interchangeable sensor modules attach to the quadcopter platform. Sensor
data is relayed through the flight computer via a wireless telemetry link to the Android ground station
application. The ground station software stores sensor data and provides intelligent survey flight path
planning, heat-maps and platform configuration.

The UAV, a 3D Robotics IRIS+ [21], which can be classified as an MAV (Micro Arial Vehicle) and

a VTOL (Vertical Take-Off and Landing) according to [1], is a common commercially available drone.
It was selected from a set of criteria that met our needs:

Cost and availability. The drone is relatively low-cost, produced in high quantities and obtainable
from resellers in both North America and Europe. Total cost for the system described herein runs
just short of $800.

Spare-parts and repairability. Except for the body, no legacy components are used; all spare-parts
are low-cost and available from alternative brands.

Open-source hardware and software. The drone is equipped with a Pixhawk flight controller [22,23].
This is a spin-off from an ETH Ziirich research project [24], where the software and hardware are
open-source, and the system is well-documented and supported through a community effort.
Telemetry options. The drone ships with long-range radio telemetry modules. One is attached
to the Pixhawk, and the other can be tethered to a computer or smart phone using a USB cable.
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The radio module firmware is optimized for communication using the open standard MAVLink
protocol [25].

e Attaching payloads. The drone has mounting holes underneath the body for attaching a camera
gimbal. This makes it easy to make a custom bracket for attaching other hardware without altering
the body.

We prototyped a casing that attaches to a bracket that fits in the gimbal mounting points (see the
first image at Figure 1). The housing contains an Arduino-based microcontroller that is powered by
and interfaces with the flight computer. Smaller housings containing the actual sensors can then be
attached to the microcontroller unit.

The readings picked up by the sensor module are relayed to a ground station using the featured
telemetry modules; on the drone, the radio link module is connected directly to the flight computer
(the Pixhawk /PX4). For this to work seamlessly with the drone setup, modifications have been made
to the open-source flight computer firmware and ground station. Firstly, drivers and user space code
on the Pixhawk computer interface with the sensor module and communicate with the ground station
using custom messages defined as part of an existing open protocol format. Extensive modifications
have gone into the code base of an open-source ground station application for Android. This allows
the user to configure flight paths for surveying and retrieving the sensor data stream that, in turn, are
seen in real time and are visualized on the map for every 10th reading—used later for offline analysis
(see “Supplementary file” for example of collected data).

In addition, built-in safety features in the flight computer manage potentially dangerous situations;
the UAV will automatically land when the battery is running low or when crossing a geofence boundary.
In its current state, the drone is operational for ~25 min on a single battery, while the Android phone
(the used Android phone is a Google Nexus 5 running Android 6.0) is able to operate for ~1 h. The
Pixhawk flight computer is not solely intended for air vehicles. It may just as well be applied for
autonomous path following in rovers or other ground vehicles, and our sensor platform may be ported
to these vehicles without changing any parts in the system.

5. Technical Implementation

Our design goals call for a "full stack" implementation, touching components from sensors to the
ground station. This includes an IRIS+ drone, a Pixhawk flight computer, an ArduPilot flight stack
and a microcontroller driving the sensors of choice.

Substantial previous work [22,23,26,27] has gone into creating the flight computer, its firmware
and the ground station software, thus enabling us to focus on integrating the features supporting
the usage scenarios. Our original contributions include building and programming sensor modules,
developing drivers and communication extensions for the flight computer, and building system specific
features into the Android ground station application. Figure 4 shows the overall system components
and the software packages that our project has contributed.
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Flight path |

| s
Weirenns

Figure 4. General package diagram of software involved in the system. The green packages are
contributions of our package, including map tools, i.e., heat-map visualization.

5.1. Sensor Modules

To facilitate easy module installation, a bracket has been designed [28] to fit two mounting points
underneath the drone, as originally intended for a camera gimbal. A sensor module can then be fitted
to the bracket in various ways. It will not interfere with the structural integrity of the drone as long as
the module is kept within certain physical limits: The IRIS+ specifications list a maximum payload
of 400 g, and, to minimize handling interference, we suggest a sensor module design no larger than
approximately the volume of the body of the drone (L 200 x W 120 x H 70 mm). The design of the
module can be seen in image 1 of Figure 1: three parts are 3D printed to act as (i) base; (ii) container for
micro controller and (iii) sensor mount. The sensor mount is for convenience to easily replace a sensor,
while the base and container for the micro controller are the main parts of the system. By 3D-printing
the mounts ourselves, we can comply with a broad range of sensors within a very short production
time (see Figure 5 for examples), at a low cost, and just adding a few extra grams to the payload of
the drone.

The Pixhawk flight controller exposes several pins useful for connecting peripherals. Besides
digital GPIO (general purpose input/output) pins, there are dedicated connectors for UARTs (universal
asynchronous receiver/transmitter) and SPI (serial peripheral interface)/I12C (inter-integrated circuit)
buses. Since most UARTs are used for other peripherals and SPI requires a dedicated slave-select
signal for each connected device, the 12C bus [29] was chosen for its availability and the possibility to
daisy-chain multiple devices using just two signal wires.

The choice of I2C also means that a cable with just four wires (+5 V, Ground, Data and Clock)
needs to be brought out from the flight computer to the underside of the chassis where the sensor
module attaches to the mounting bracket. Power is provided by the Pixhawk as a regulated 5 V source,
but the I2C clock and data lines are designed for 3.3 V logic only. The sensor module therefore must be
able to accept 5 V power while honoring the 3.3 V levels on the bus lines, a common feature for several
modern microcontrollers.

Although many sensor ICs support 12C directly, these are meant to be connected to
an intermediary, such as a microcontroller for offloading communication and to perform preliminary
data processing. This is also our strategy: a sensor module must contain at least a microntroller
or embedded processor with a hardware 12C interface and support for the addressing and register
scheme that we outline. The embedded computer can then connect to and retrieve readings from
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any number of sensor peripherals and relay the data back to the flight computer upon request in a
standardized format.

Figure 5. Examples of 11 low-cost sensors that can be integrated with the Arduino based micro
controller. From top left are the following modules/sensors: HM-10 (Bluetooth), ESP8266 (WiFi),
MQ-135 (air quality: NH3, NOx, alcohol, benzene, smoke and CO3), Figaro TGS2600 (air quality:
methane, CO, ethanol, hydrogen and iso-butane), Figaro TGS2602 (air quality: ammonia, hydrogen
sulfide, toluene, ethanol and hydrogen), MQ-7 (air quality: CO), Figaro TGS2442 (air quality: CO),
SparkFun 13683 (humidity and temperature), SparkFun 12758 (electric microphone), IR (infrared
light) receiver and IR receiver module. The weight and cost of the sensors can be seen in Table 1.

At this point, we only support one sensor module at a time. This limitation is a result of not
being able to handle requests for more than one value at a time from the sensor module. The module
must respond when addressed using the address reserved for this purpose, and it must implement
responses to the virtual registers that make up a simple protocol on top of the I2C layer (see GitHub
repository [30] for details of the protocol).

i Pulse-out sensors Sensor modules |

é . E

aodrawik :
. : Analog sensors Digital sensors :

ADC Digital 10 SPI/12C UART (Serial)

Power + 12C

Flight computer

Sensor module

Figure 6. Electronic components on the drone. Basically, any type of sensor peripheral can be attached
to the development board as long as it can be connected to the the Pixhawk via the 12C + power
interface and implements the I12C register semantics (see code repository [30]). Photo by PixHawk /CC.
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The two sensor modules we developed use a Teensy 3.1 development board [31] that contains
an ARM Cortex-M4 processor running at 3.3 V. The board supports a 5V power input. Combined
with a small footprint, the Teensy board is well suited for this application. The module design only
occupies one I2C interface and all remaining pins (GPIO and DAC (digital to analog converter)) and
bus interfaces can be used to connect the actual sensors. Figure 6 shows the electronic components
involved on the drone.

If a new sensor is required, it can be implemented within hours, as the Arduino related world
allows for rapidly prototyping new sensors — they just need to comply with the simple requirement
that the interface is 12C at a 3.3v logic level, which many MCUs (micro controllers units) support, e.g.,
the entire Arduino world. If a specific MCU is needed, a voltage regulator makes it possible to use the
drone’s battery as a power source, while having a logical converter to bridge between the device and
the Pixhawk.

Table 1 provides cost and weight information for some of the sensors that may be attached to the
drone within a few hours, while Figure 5 provides a visual of those sensors.

Table 1. Examples of sensors, including cost and weight, which may be used with the proposed system.
The sensors can be seen in Figure 5.

Sensor Price Weight Notes

HM-10 2,92 USD 4g Bluetooth Low Energy (BLE) 4.0 module for iBeacon detection
ESP8266 1.90 USD 2g WiFi module, that i.e., can measure signal strength

MQ-135 1.70 USD 4g For air quality: NH3, NOx, alcohol, benzene, smoke and CO,

Figaro TGS2442 18.19 USD 2g For air quality: CO
Figaro TGS2600 15.71 USD 2g For air quality: Mehtane, CO, ethanol, hydrogen and iso-butane

Figaro TGS2602 15.52 USD 2¢g For air quality: Ammonia, hydrogen sulfide, toluene, ethanol
and hydrogen

MQ-7 7.25 USD 2g For air quality: CO
SparkFun 13683 41.95 USD 2¢g Humidity and temperature
SparkFun 12758 5.95 USD 2g Electric microphone (noise filtering will be needed)

IR receiver 2.04 USD 2¢g Just the IR component. (Price includes emitter)
IR receiver module  1.29 USD 2g IR light module

5.2. Flight Computer Firmware

In order to communicate with the sensor module, a driver for the Pixhawk firmware is needed.
The software that runs on the flight computer consists of firmware on top of a real-time OS (RTOS)
and a flight stack. The RTOS, based on NuttX [32], is responsible for scheduling and generally adding
deterministic behavior to the timing of critical paths in the flight control software, i.e., position and
attitude control. The firmware takes care of hardware abstraction, inter-module communication, and
drivers. The flight stack is a set of modules or processes that perform specific tasks. These modules
cooperate to get the wanted behavior from the drone. At its core, the flight stack uses inertial sensors
and precise motor drivers to maintain attitude and position while responding correctly to user RC
(radio controlled) inputs. These tasks have the highest priority and update frequency. Other modules
with lower priority provide telemetry communication, waypoint management and more. Currently,
two open-source flight stacks exist for the Pixhawk:

1. PX4: a highly modularized flight stack where each flight function runs in separate threads.
It builds on the current NuttX and PX4 firmware development efforts.

2. ArduPilot: flight control runs as one large program on top of NuttX and the PX4 firwmare.
The reason for this is legacy considerations. The ArduPilot flight stack can also be compiled for
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older integrated flight computers. In addition, it has a huge code base that supports casual and
light commercial flying very well.

We have chosen the ArduPilot flight stack because it provides good support for the drone and the
software ecosystem around it. From a software engineering perspective, the monolithic structure is
not ideal. However, since we are running it on the Pixhawk hardware, most of the ArduPilot codes are
thin wrappers around the PX4 firmware layer.

The driver that we developed for the sensor module is a native PX4 firmware driver. It is loaded
by the firmware, and its update cycle is scheduled directly in NuttX. Hence, it runs autonomously
from the ArduPilot flight stack, and, to access it, a wrapper driver is needed to communicate with the
native driver using an ioct! (input/output control) like interface. This wrapper driver can then be used
in the Ardupilot flight stack to read and configure the sensor module and relay data to the ground
station using its own telemetry transport.

To recap, our modifications to the flight computer to support the external sensor modules are:

e PX4 firmware native driver: a low-level driver that accesses the I2C peripheral directly and exposes
a device interface for configuration and reading data. The driver runs at a user-defined interval
where it commands the sensor module to convert readings and read the actual values after an
appropriate amount of time depending on the sensor.

o Wrapper driver for the ArduPilot flight stack: an adapter class that wraps the ioctl interface of the
native driver and exposes methods that can be used directly in Ardupilot user space code.

e ArduPilot user space code: minor additions to the ArduPilot handles messaging to and from the
sensor module drivers using a radio telemetry link.

5.3. MAVLink Protocol Messages

Micro Air Vehicle Link (MAVLink) is “a very lightweight, header-only message marshalling library
for micro air vehicles” [25]. It defines an extensible set of messages and mechanisms to transfer data
such as streams. The IRIS+ drone comes with MAVLink optimized radio telemetry modules, and we
take advantage of this feature by describing our own MAVLink messages for sending and receiving
sensor data. Because the active set of MAVLink messages must be identical on both the drone flight
computer and the ground station, all messages are defined in a platform-agnostic XML file that can be
used in different development projects to automatically generate the necessary message code. The
code generation is done by utilities provided by the MAVlink project.

We have added two new message types to the hundreds of existing messages. The messages
contain GPS position, timestamp and sensor values. Even though GPS coordinates and timestamps are
sent via other messages, it is important that the sensor values are reliably correlated to the position
and time of conversion. At this point, the two custom messages are just placeholders for simple single
integer or floating point values. The basic structure of the sensor messages, which may be e-mailed
post-flight, are: latitude, longitude, altitude in cm, sensor value, and time. e.g., 55.4868037, 12.1692884,
461.0, 27, Fri Jun 24 15:33:31 GMT+02:00 2016.

To illustrate how data collection may be used for educational purposes, a student assignment
could be to conduct a test of the accuracy by which the Bluetooth sensor locates a beacon on the ground
(cf. Figure 2). The students would then be asked to place two beacons somewhere on a field and collect
data from e.g. a 2 m altitude. First, students should make a graph of signal strengths (i.e., RSSI-values)
from their test flight (cf. Figure 7). The next assignment could then be to compare these results with
recordings made when flying at, for example, 10 m, to conduct low-pass filtering of the raw data [33],
and, finally, to depict the relation between true distance to the beacons and the RSSI-values.
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Signal strength during flight
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Figure 7. Signal strength measures during a flight above two beacons on a field. These data were
collected with the drone flying at an altitude between 2 to 3 m.

5.4. Android Ground Station Application

The Android application is divided into two parts because of the modularized APIs provided by
3D Robotics. The first part is the 3DR Services Library [26]. Its responsibility is to transmit and receive
data between the device itself and the drone via the included radio telemetry module. This part is
acting as a service on the device, providing a pipeline to other applications that need to communicate
with the drone. The service will copy and store the latest of each data type coming from the drone,
i.e., altitude, battery level, etc, just before notifying all subscribing applications. The subscribers may
then collect the latest data in a way that prevents jeopardizing the stability of the 3DR Services Library.
Our contribution to this part of the system is the ability to handle sensor values and provide these to
other applications.

The second part of the Android system is the user interface (UI) named Tower [27], which allows
the user to interact with the drone by using the 3DR Services Library. We have extended this to
include the possibility to collect the sensor values and store these in a local database (the SQLite
implementation for Android) from where they can be forwarded by email in a CSV (comma separated
values) format. This is done pre-flight by defining the flight parameters in terms of, for example,
frequency of measurements, how long each measurement is estimated to take, altitude, etc. After the
flight, the email address may be defined, if not already done, and the data are then forwarded. Another
feature is the possibility to show the 300 latest sensor values as a heat map, either by defining the area
to be observed in the Ul and letting the autopilot handle the rest, or by manually controlling the drone.
In both cases, real-time data are displayed in terms of the measured value, while a graphical map is
updated with every 10th data point.

If an area is marked for observation, the UI will show the flight path based on an algorithm
that creates a spiral going outside-in (see Figure 1 for the process of using the drone autonomously
in a scenario to locate two iBeacons in a soccer field). It is possible to easily mark an area and scan
it, while still being able to override the autopilot at any given point—or not use the autopilot at all,
but instead operate it manually (see Figure 2).
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6. Discussion

The main contribution of this paper is the extensible architecture that facilitates modularized
airborne sensor deployment and real-time data feedback. We expand and augment a proven
embedded robotics research platform and provide a foundation for continued work on airborne
sensor prototyping.

Most previous research concerning drone measurements of the environment have used computer
vision (CV). Our motivation went towards a more generic sensor approach, contributing to a
system that may be applied on both multi-copters, fixed-wings, rovers, and other vehicles as well.
We developed a platform for of-the-shelf sensors, based on the PX4 driver, as this supports a great
variety of vehicle platforms and is open-source. The PX4 system by Meier et al. [22] was intended
not just for aerial vehicles but for any novel vehicle platform, and we have deliberately chosen a
commercial drone based on the PX4 platform. This allows for taking our contribution to the PX4
middleware and using it in application where other types of vehicles may be more suited, be it in the
air, under water or on the ground. Villa et al. [7] points to a number of limitations for the use of small
lightweight UAVSs in research that is critical for our system, namely short range operation, low payload
capacity, and sensitivity limitations of smaller sensors. Undoubtedly, there will be research projects
requiring far more than this system supports. However, the area of UAV deployment of sensors is
rapidly evolving, and we believe it will take some years to sort out when to use what equipment—just
like land transportation conducted with a range of vehicles, from mini-vans to long-haul trucks. Our
present system offers some of the benefits that Villa et al. [7] mentions: cost effectiveness, flexibility,
short time for set-up, high repeatability of data collection and safety in operation.

The used drone from 3D Robotics, which is based on the PixHawk flight computer, comes
with two default telemetry systems: one for communicating with the remote control and one for
communicating with other systems which can interface with the USB antenna, i.e., a computer or
a smartphone. Throughout the testing and usage of the proposed system, we experienced that the USB
signal was rather weak, compared to the remote control signal. At a distance of roughly 100 m, the
signal strength was occasionally too weak.

In its current state, the proposed system does not support the recovery of a missed data package.
Thus, a measurement may be permanently lost if the drone moves out of the telemetric field of the
ground station, which also is prohibited in several countries.

A key aspect for the project was uncovering the benefits and possibilities of the system. We devised
three usage scenarios that the platform should ultimately support. A weakness of this approach is the
lack of proper validation of the scenarios. Are they credible to potential users and how should they be
evaluated under real task conditions?

The community around research and DIY drones is thriving, and open designs and software for
UAVs are becoming increasingly available. This makes it harder to maintain a plug-and-play solution
for a particular brand of drone. One could picture at least two paths for future efforts: one solution is
to simply ignore the drone and flight systems and make a go for an isolated and autonomous payload.
Another path is to support a complete open design for a research drone system that is tailored for
carrying generic sensor modules. It is our hope and ambition that we have contributed to the latter
approach by the work presented in this paper and by the available source code.

7. Future Work

To prevent data from getting lost, the firmware on the drone should be improved to expect
a confirmation message from the ground station upon retrieval of a measurement. In case the
confirmation signal is absent, the measurement should be stored until the connection is re-established.

At the moment, the system is unable to accurately track a moving source in real time. However,
since the system can collect and store all measured values, with some further work, it might eventually
track down a source in motion. This requires an algorithm for determining the vehicles” next most
optimal heading, while the system already supports a change of way-points in mid-air.
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The current usage scenarios are outdoor. However, we foresee a range of indoor sensing tasks
in which drones—flying or driving—may do well, for instance locating gas leaks or mapping signal
strengths in a building. Our future research will address indoor navigation by use of various non-vision
sensors, e.g., ultra-sound, IR-beacons and by fingerprinting ubiquitous radio waves. In order to do
this, we need a platform that can change sensors easily and quickly. Eventually, the current platform
should be improved in order to carry more than one sensor at a time.

8. Conclusions

We have demonstrated the feasibility of turning a commercial drone into an extensible airborne
sensor platform by adding new functionality to the stack of components in a drone system, from the
sensor attachment to the user interface in the ground station software. The one important premise for
this to succeed, however, is the availability of well-documented open-source or open-API software
(and hardware for that matter) in all of the subsystems.

Acknowledgments: John Paulin Hansen’s contribution was supported by the Bevica foundation.

Author Contributions: Lars Yndal Serensen contributed with concept and design of the technical platform,
acquisition of data, drafting and revising the manuscript. Lars Toft Jacobsen contributed with concept and design
of the technical platform, and drafting of the manuscript. John Paulin Hansen contributed with data interpretation
and revising the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Watts, A.C.; Ambrosia, V.G.; Hinkley, E.A. Unmanned Aircraft Systems in Remote Sensing and Scientific
Research: Classification and Considerations of Use. Remote Sens. 2012, 4, 1671-1692.

2. Erman, A.T.; Hoesel, L.; Havinga, P.; Wu, J. Enabling mobility in heterogeneous wireless sensor networks
cooperating with UAVs for mission-critical management. IEEE Wirel. Commun. 2008, 15, 38—46.

3. Kerle, N.; Heuel, S.