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Preface to ”Big Data for eHealth Applications”

In the last few years, the rapid growth of the available digitised medical data has opened new

challenges for the scientific research community in the healthcare informatic field. In this scenario,

the constantly increasing volume of medical data, as well as the complexity and heterogeneity of

this kind of data, requires innovative big data analytics methods for extracting valuable insights

from them, and, at the same time, these new approaches must also guarantee the required levels

of privacy and security. These solutions must provide effective and efficient tools to support the

daily routine of physicians, medical professionals, and policy makers, improving the quality of the

healthcare systems. The recent pandemic emergency has made the need for new big data approaches

for the processing of such data more urgent.

Stefano Silvestri and Francesco Gargiulo

Editors
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1. Introduction

In the last few years, the rapid growth in available digitised medical data has opened
new challenges for the scientific research community in the healthcare informatics field.
In this scenario, the constantly increasing volume of medical data, as well as the complexity
and heterogeneity of this kind of data require innovative approaches based on Big Data An-
alytics (BDA) and Artificial Intelligence (AI) methods for extracting valuable insights [1–5],
and at the same time, these new approaches must also guarantee the required levels of
privacy and security [6]. These solutions must also provide effective and efficient tools
for supporting the daily routine of physicians, medical professionals, and policy makers,
improving the quality of healthcare systems. Finally, they should leverage the huge amount
of information buried under these Big Data [7], exploiting, in this way, their full potential.

Furthermore, new heterogeneous and extensive COVID-related datasets have been
collected during the recent pandemic and have often been made available to the scientific
community. In this case, the need for new and specific Big Data approaches for processing
such data makes exploiting these data and providing new and innovative approaches for
facing the COVID-19 pandemic more urgent [8–10].

In this Special Issue, some innovative applications, tools, and techniques specifically
tailored to address issues related to the eHealth domain by leveraging BDA methodologies
are presented. Moreover, these techniques are also presented in this Special Issue, given
the definition of complex systems and architectures for the eHealth domain fundamentally
based on the combination of Internet of Things (IoT) devices and Artificial Intelligence (AI)
methods. Finally, the Cyber Security (CS) for eHealth topic is also addressed given the
significant increase in cyber threats in the healthcare sector during the last few years.

2. Big Data for eHealth Applications

In light of the above, this Special Issue was introduced to collect the latest research
on relevant topics and, more importantly, to address present challenges with using Big
Data for eHealth applications. Moreover, it considered AI and/or IoT-based technologies,
the combined use of which can lead to the definition and implementation of effective and
innovative solutions [11]. Finally, CS techniques for the eHealth domain were also taken
into account.

There are 10 contributions selected for this Special Issue, representing innovative
applications in the areas mentioned above from original contributions of researchers with
broad expertise in various and multidisciplinary fields, considering the medical, informatics,
and engineering fields. The Special Issue includes the following papers:

• Iterative Annotation of Biomedical NER Corpora with Deep Neural Networks and
Knowledge Bases [12]

• Cyberattack Path Generation and Prioritisation for Securing Healthcare Systems [13]
• The Assessment of COVID-19 Vulnerability Risk for Crisis Management [14]
• Survey of BERT-Base Models for Scientific Text Classification: COVID-19 Case Study [15]
• Design of a Wearable Healthcare Emergency Detection Device for Elder Persons [16]

Appl. Sci. 2022, 12, 7578. https://doi.org/10.3390/app12157578 https://www.mdpi.com/journal/applsci1
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• Reducing the Heart Failure Burden in Romania by Predicting Congestive Heart Failure
Using Artificial Intelligence: Proof of Concept [17]

• Nonlinear Random Forest Classification, a Copula-Based Approach [18]
• A Novel Unsupervised Computational Method for Ventricular and Supraventricular

Origin Beats Classification [19]
• A Systematic Review of Federated Learning in the Healthcare Area: From the Perspec-

tive of Data Properties and Applications [20]
• On Combining Feature Selection and Over-Sampling Techniques for Breast Cancer

Prediction [21]

The aforementioned papers refer to the following main topics within the healthcare
scenario: (i) COVID-19 datasets and models [14,15], (ii) large dataset annotation [12],
(iii) cyber security [13], (iv) federated learning [20], (v) smart biomedical systems and
devices [16], and (vi) artificial intelligence approaches [17–19,21].

More in detail, in [12], a methodology for reducing the manual effort needed to
annotate a biomedical-named entity recognition (B-NER) corpus was presented, exploiting
both active learning and distant supervision, respectively, based on Deep Learning models
(e.g., Bi-LSTM, word2vec FastText, ELMo, and BERT) and biomedical knowledge bases to
speed up the annotation task. The proposed approach is also able to limit class imbalance
issues. The results showed that this method allows us to annotate an effective and large
B-NER corpus with a fraction of the time required by a fully manual annotation, addressing
the lack of annotated corpora in the biomedical domain [22]. The authors also analysed the
most effective embedding model to represent the input words [23] and the applicability of
this approach to other domains.

In [13], a novel methodology for the cyberattack path discovery to ensure security
within the healthcare ecosystem is presented. This approach is based on the Common
Vulnerability Scoring System (CVSS), so that base metrics and exploitability features can
be used to determine and prioritise the possible attack paths based on the threat actor
capability, asset dependency, and target user profile and evidence of indicator of compro-
mise. The work includes a real example from the healthcare use case to demonstrate the
methodology used for attack path generation. The result from the studied context, which
processes Big Data from healthcare applications, shows that the uses of various parameters
such as CVSS metrics, threat actor profile, and the indicator of compromise are able to
generate realistic attack paths. In this way, healthcare practitioners can be supported in
identifying the controls that are required to secure the overall healthcare ecosystem.

The authors of [14] presented a methodology that is used determine COVID-19 vul-
nerability risk and its change over time in association with the state health care system,
turnover, and transport to support the crisis management decision-making process. In de-
tail, this method aims to determine the COVID-19 Vulnerability Index (CVI) based on the
selected criteria. The risk assessment was carried out with methodology that includes the
application of a multi-criteria analysis and spatio-temporal aspects of available data. Partic-
ularly, the Spatial Multicriteria Analysis (SMCA) compliant with the Analytical Hierarchy
Process (AHP), which incorporated selected population and environmental criteria were
used to analyse the ongoing pandemic. The influence of combining several factors in an
analysis of the pandemic was illustrated, and the static and dynamic factors to COVID-19
vulnerability risk were determined to prevent and control the spread of COVID-19 at the
early stages of the pandemic. As a result, areas with a certain level of risk in different
periods of time were determined. Furthermore, the number of people exposed to a COVID-
19 vulnerability risk was presented with time. The results obtained proved that the this
approach can support the decision-making process by showing the area where preventive
actions should be considered.

In [15], a new pre-trained neural language model based on the BERT model [24]
was introduced. This model was named CovBERT, and it was specifically designed to
improve the overall review task performances on the COVID-19 literature with respect
to the classic BERT model. CovBERT was pretrained on a very large corpus formed by
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scientific publications in the biomedical domain related to COVID-19. The CovBERT was
tested on the classification task of short texts of biomedical articles. The obtained results
demonstrated significant improvements. In addition, the authors also made a COVID-19
corpus available, entitled COV-Dat-20.

The authors of [16] proposed a wearable system that takes advantage of sensors
embedded in a smart device to collect data for movement identification (running, walking,
falling, and daily activities) of an older adult user in real-time. To provide high efficiency in
fall detection, the sensor readings were analysed using a neural network. If a fall is detected,
an alert is sent though a smartphone connected via Bluetooth. The proposed system was
tested in both inside and outside environments, and the results of the experiments showed
that it is extremely portable and is able to provide high success rates in fall detection in
terms of accuracy and loss.

In [17], a noncontact system that can predict heart failure exacerbation through vocal
analysis was studied and implemented. The system was designed to evaluate the voice
characteristics of every patient, used to identify variations using a Machine Learning-based
approach. The authors collected voice data from real hospitalised patients since their
admission to a hospital, when their general status was critical, until the day of discharge,
when they were clinically stable. Each patient was classified adopting the New York
Heart Association Functional Classification (NYHA) classification system for heart failure
in order to include them in different stages based on their clinical evolution. Different
ML algorithms were tested, namely Artificial Neural Networks (ANN), Support Vector
Machine (SVM), and K-Nearest Neighbours (KNN), trained on voice data. The experiments
demonstrated that the KNN obtained the best results and was able to correctly classify
the NYHA stages of the patients exploiting only their voice recording, with an accuracy
of 0.945.

In [18], a study on the copula-based approach to selecting the most important fea-
tures for a Random Forest classification was used to classify a label-valued outcome.
The methodology was simulated on a real dataset of COVID-19 and diabetes. In detail,
based on associated copulas between these features, the authors carried out this feature
selection and then embedded the selected features into a Random Forest algorithm to
classify a label-valued outcome. This algorithm allowed us to select the most relevant
features when the features are not necessarily connected by a linear function, and it can
stop the classification when the desired level of accuracy is reached. The experimental
assessment successfully applied the proposed method on a simulation study as well as a
real dataset of COVID-19 and for a diabetes dataset.

The study presented in [19] focused on a new unsupervised algorithm that adapts to
every patient using the heart rate and morphological features of the ECG beats to classify
beats between supraventricular origin and ventricular origin in order to predict arrhythmia.
The results of the experiments performed obtained F-scores equal to 0.88, 0.89, and 0.93
for the ventricular origin beats for three popular ECG databases and around 0.99 for the
supraventricular origin for the same databases, comparable with supervised approaches
presented in other works, opening a new path to making use of ECG data to classify
heartbeats without the assistance of a physician.

The work presented in [20] is a review paper, where a comprehensive and up-to-date
review of research employing Federated Learning in healthcare applications was provided.
Moreover, the paper highlighted a set of recent challenges from a data-centric perspective
in Federated Learning, such as data partitioning characteristics, data distributions, data
protection mechanisms, and benchmark datasets, was evaluated. Finally, several potential
challenges and future research directions in healthcare applications were pointed out.

In [21], the imbalanced class problem was addressed, in particular for breast cancer
prediction datasets. The authors presented a methodology that used a combination of
the Information Gain (IG) and Genetic Algorithm (GA) feature selection methods and the
Synthetic Minority Over-sampling TEchnique (SMOTE) to overcome this issue. The experi-
mental results based on two breast cancer datasets showed that the combination of feature
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selection and over-sampling outperformed the single usage of either feature selection and
over-sampling for the highly class imbalanced datasets. In particular, performing IG first
and SMOTE second is the better choice. For other datasets with a small class imbalance
ratio and a smaller number of features, performing SMOTE is enough to construct an
effective prediction model.

3. Future in Big Data for eHealth Applications

Although this Special Issue is now closed, more in-depth studies in Big Data Analytics
applications developed explicitly for eHealth are expected. The outcomes of the research
published in this Special Issue provided some new solutions in this area but also highlighted
some of the still open issues that must be addressed to fully exploit Big Data in the
healthcare domain in the future.

In detail, the presented papers underlined the need for extensive collections of biomed-
ical annotated data, allowing for the training of high-performance ML and DL models to
support physicians in their daily work. ML and AI approaches will support the daily rou-
tine of physicians and medical practitioners, but their extensive use will also raise privacy
and security issues. It is also clear that the integration among IoT devices and sensors, AI
and ML models, and Big Data approaches will be more pervasive for developing eHealth
complex systems in the future. Adopting specifically pretrained neural language models
will enable the researchers to define more intelligent systems for analysing large natural
language clinical documents, fully exploiting their informative content. Finally, the large
and heterogeneous data analyses related to COVID-19 can provide innovative pathways,
more profound knowledge, and innovative approaches to address the risks of the current
pandemic.
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Abstract: The large availability of clinical natural language documents, such as clinical narratives
or diagnoses, requires the definition of smart automatic systems for their processing and analysis,
but the lack of annotated corpora in the biomedical domain, especially in languages different from
English, makes it difficult to exploit the state-of-art machine-learning systems to extract information
from such kinds of documents. For these reasons, healthcare professionals lose big opportunities
that can arise from the analysis of this data. In this paper, we propose a methodology to reduce the
manual efforts needed to annotate a biomedical named entity recognition (B-NER) corpus, exploiting
both active learning and distant supervision, respectively based on deep learning models (e.g., Bi-
LSTM, word2vec FastText, ELMo and BERT) and biomedical knowledge bases, in order to speed
up the annotation task and limit class imbalance issues. We assessed this approach by creating an
Italian-language electronic health record corpus annotated with biomedical domain entities in a small
fraction of the time required for a fully manual annotation. The obtained corpus was used to train a
B-NER deep neural network whose performances are comparable with the state of the art, with an
F1-Score equal to 0.9661 and 0.8875 on two test sets.

Keywords: biomedical NER; corpus annotation; distant supervision; active learning; deep learning

1. Introduction

Nowadays, a huge amount of digitised information is produced in clinical and health-
care domains. A large part of this data is formed by or contains natural language (NL) texts,
such as electronic health records (EHRs), diagnoses, medical reports, or patient summaries.
Extracting and analysing the information in these documents has a great potential for
caregivers and policy makers, making possible to support and improve the quality of the
healthcare [1,2]. On the other hand, this huge amount of NL text can be processed only
through Natural Language Processing (NLP) systems able to automatically extract the re-
quired information. An essential NLP task for the Information Extraction (IE) from clinical
and biomedical NL documents is the biomedical named entity recognition (B-NER) [3],
namely the identification and the classification of words and multi-word expressions be-
longing to the biomedical domain. The information through NER can be leveraged for
many purposes, ranging from primary and secondary use analyses [4] to the support for
the standardisation and interoperability of clinical data [5].

Deep learning (DL)-based NER methodologies are actually the best performing ap-
proaches in terms of realising NER systems [6–8], but they actually have two main limits:
they are strictly language- and domain-dependent and they need a large annotated corpus
to train a deep neural network (DNN) with optimal results. The lack of annotated corpora is
one of the open issues related to automatic clinical document analysis [9]. An annotated cor-
pus can be obtained only through laborious and costly work performed by domain experts,
who must manually analyse and annotate a large number of documents, following precise
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guidelines in order to produce a high-quality corpus [10,11]. Thus, not many annotated
corpora are freely available, especially in the clinical domain and in languages different
from English. Some methods have been proposed in the literature trying to overcome the
lack of these important resources by using unsupervised machine-learning (ML) [12–14]
or rule-based (RB) approaches [15–17], but in both cases the quality of the results is not
comparable with that obtained through the manual efforts of domain experts. Other recent
works have leveraged cross-language approaches [18,19], but in these cases annotated
training and test sets in at least one language are required, in addition to knowledge bases
or multi-lingual language models. Methodologies able to ease the work of the experts in
the realisation of annotated corpora are required to narrow the gap between automatic and
manual annotation, to the end of speeding up the manual annotation process, lowering its
cost and reducing the needed efforts [20].

Interesting approaches for the annotation of corpora in an easier and less costly way
are based on active learning (AL) and distant supervision (DS). Active learning [21] is an
iterative annotation process supported by an ML model. In the first step of this approach,
a small dataset extracted from a bigger corpus must be manually annotated. This set is
then used to train a machine-learning classifier, to the end of annotating automatically
the rest of the corpus. Among these automatic annotations, a human oracle must select
the samples with presumably high utility to improve the classifier training, eventually
correcting wrong predictions caused by an incomplete or small available dataset. More
complex methodologies have been also proposed to improve the selection of the new
samples [22]. The selected new samples are then added to the annotated training set and
the ML model is retrained, improving the overall classification results in the prediction
phase of the unannotated corpus. This process can be iterated until stop criteria or optimal
performances are reached. AL methods can generate annotated corpora with less human
efforts, but often the data are biased, depending on the method used for the new samples’
selection during each iteration and on the content of the original corpus [23].

Distant supervision [24] is a completely automatic approach and exploits the knowl-
edge extracted from knowledge bases (KBs) such as thesauri or a dictionary, assuming
that if a string in text is included in a KB, then that string can be automatically annotated
as an entity. This approach has no human cost, but the resulting corpus usually suffers
from incomplete and noisy annotations. Incomplete annotations are named entities not
listed in the KB, which will not be automatically annotated in the training corpus. On
the other hand, a noisy annotation is a partial identification of a named entity, due to the
presence in the KB of only an entity part (e.g., missing some words of that entity) or due to
slight differences between the entity listed in the thesaurus and the one in the corpus (e.g.,
the use of a synonym of one of the words in multi-word entity, or a plural version of the
same word).

In this paper a methodology that leverages both AL and DS for the annotation of
B-NER clinical corpora is proposed, addressing some of the issues of both approaches
to improve the quality and the speed of the annotation process. Firstly, an AL-based
annotation is performed, exploiting a deep-learning NER architecture as an automatic
classifier. Then, biomedical KBs are used for DS annotation and dataset expansion through
data augmentation, with the purpose of mitigating the class imbalance problems [25] that
could affect the annotations obtained through AL. In the experimental assessment the
contribution of different pretrained Word Embedding (WE) models trained on a closed
biomedical domain corpus as input of the DNN is also analysed, in particular comparing
the contribution of word2vec [26], FastText [27] and ELMo [28] with a fine-tuned BERT
model [29] pretrained on a general domain corpus. The proposed approach was used to
easily and rapidly create an Italian language B-NER annotated corpus with very little effort
with respect to a fully manual annotation procedure. The obtained corpus was evaluated
on the aforementioned B-NER task, achieving performances comparable with the state of
the art, as demonstrated in the experimental assessment.

In summary, the main contributions of this paper are:
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• An automatic annotation methodology for B-NER corpora based on AL and DS
techniques;

• An analysis of the contribution of different clinical closed-domain WE models (includ-
ing word2vec, FastText and ELMo models), compared to a fine-tuned BERT model
trained on a general-domain document collection;

• The annotation of an Italian clinical B-NER corpus.

The paper is organised as follows: in the next Section 2, an overview of the recent
related works is presented, mainly focusing on methods for the annotation of texts from
clinical and biomedical domains. Then, the details of the proposed approach are described
in Section 3. In Section 4, the experimental assessment and the obtained results are shown
and discussed and, finally, in Section 5 the final considerations, conclusions and future
works are highlighted.

2. Related Works

Many methodologies devoted to the support of the annotation of an NER corpus
have been proposed in recent years. Some studies are related to the guidelines for manual
annotation of large corpora [10,11], which are very important for ensuring that the domain
experts will follow the same approach during the annotation process. Besides them, many
automatic and semi-automatic methods based on active learning and distant supervision
have been presented. In [30], several AL algorithms were implemented to produce and
assess corpora for a clinical text classification task in detail to determine the assertion
status of clinical concepts. The results demonstrated that AL strategies are able to generate
better classification models than the passive learning method such as random sampling.
In [20,22], different sample selections for AL methods devoted to the clinical concept
extraction task were proposed and evaluated, demonstrating their effectiveness in terms
of building effective and robust ML models, reducing the time and the efforts involved in
manual annotation. The authors of [31] described an AL method for the annotation of a
corpus formed by MEDLINE abstracts annotated with pathological named entities. They
proposed two different annotations, namely a short annotation that maps well defined
diseases, and a long annotation that describes longer statements related to pathological
phenomena and observations. Then, they defined an AL approach, which introduces
a sampling bias by focusing on the most uncertain annotation samples, generating the
annotated corpus. A clustering-based AL approach for B-NER is described in [32]. A
document vector representation is obtained through TF-IDF; shared nearest neighbour
(SNN) clustering is used to select documents with higher informative content during
the iterations of AL, following the assumption that documents sharing similar named
entities provide less information to the ML classifier. This AL method achieved a sensible
improvement compared with random selection.

The authors of [33] presented a method to support the annotation of proteins, lever-
aging and ensemble learning together with WE, recurrent convolutional neural network,
logistic regression and support vector machine models to effectively classify whether the
title of a journal publication provides the information needed to show that experimental
evidence of protein function for a given protein annotation is presented in the publication,
reducing the manual effort only to a simple final confirmation. Their approach proved to
outperform the transformer-based BioBERT model [34] fine-tuned on the same data.

The work described in [35] investigates whether conditional random fields (CRF)
can be efficiently trained for NER in German texts, by means of an iterative procedure
combining self-learning with a manual annotation—active learning—component, which
leverages a CRF-based annotation and a manual correction to iteratively increase and
improve the available dataset. Their results showed that their approach enabled the
training of more accurate models with the annotation of fewer, more relevant data points,
which are most helpful for modelling training.

In [36], the authors described an approach to deploy an annotated corpus for NER
with minimal data and a light effort from experts combining both statistical and rule-based
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approaches. The authors of [24] proposed a novel approach to mitigate the incomplete
and noisy annotations obtained from automatic annotation through DS. This approach
is based on an instance selector, exploiting reinforcement learning. The selector chooses
sentences from a candidate dataset to expand training data, improving the performances
of a DL NER architecture. The instance selector is trained on a reward provided by the
NER tagger. The authors of [37] provided a tool which is able to leverage and integrate the
information from many available biomedical knowledge bases with the purpose, among
the other things, of creating and annotating new corpora. In [38], the authors presented a
method to reduce human efforts for the annotation of a clinical text classification corpus,
exploiting weak supervision and deep representation. In detail, they annotated training
data using KBs and a rule-based approach, and then they used WEs as deep representation
features as input to different ML models. They proved that this approach is very effective
when used to train a convolutional neural network, but needs many training samples and
suffers when applied in multi-class problems. Other methods to annotate a corpus through
DS using domain KBs and rule-based approaches are discussed in [15,16]. In these latter
cases, the results are strongly dependent on the predefined rule set and the considered KBs.

In [39], a semi-supervised self-learning technique is presented to extend an Arabic
sentiment annotated corpus with unlabeled data. In detail, a long short term memory
(LSTM) neural network is used to train a set of models on a manually labeled dataset.
These models were then used to extend the original corpus, ensuring an improvement in
the Arabic sentiment classification task. In [40], an approach to automatically annotate
EHRs is described. First, a DS based on KBs is used to create an annotated training set.
Then, a weighted function of WEs was used to create a sentence-level vector representation
of relevant expressions, which are used to train an ML classifier, with the purpose of
assessing the presence, absence, or risk of urinary incontinence and bowel dysfunction. The
resulting model outperformed a other rule-based models for annotation with a significant
margin. In [41], the authors described an approach for the annotation of a B-NER corpus,
exploiting an automatic translator and knowledge bases, such as UMLS or ICD9, which
contain lists of medical domain terms. They first used automatic translators to convert
the English language annotated corpus into Italian. Then KBs were used to address the
limits of the machine translations when applied to the specific lexicon from the biomedical
domain, improving in this way the quality of the obtained corpus. In [42], the authors
proposed a method to enhance the performance of a DL biGRU-CRF model devoted to
clinical named-entity recognition in the French language, exploiting medical terminologies.
Regardless, we also compared the results of the proposed approach with a fine-tuned BERT
model pretrained on a generic domain Italian corpus, leveraging it for both the AL phase,
as well as for the analysis of the performances of the annotated biomedical NER corpus.

3. Methodology

The proposed annotation methodology can be split into two main phases: an iterative
active learning phase, followed by a distant supervision phase.

3.1. Active Learning

In the preliminary step of the methodology, human experts have manually annotated
a small number of documents extracted from an unannotated corpus. A small part of
these annotated documents is used as a training set of a DL model, whereas the remaining
annotated samples are used as a test set during all iterations of the AL phase, with the
purpose of assessing the improvement obtained in each step and providing a stop criterion
when no more performance increment is observed. The few samples of the training set can
lead to poor performances in the DL model; on the other hand, the reduced time and efforts
for the annotation of a small fraction of the whole corpus make this process affordable. At
this point, experts will not annotate more documents, but they must simply review a subset
of new documents from the whole dataset automatically annotated through DL, eventually
correcting the wrong or missing predictions. These new annotated samples are then added
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to the training set, in order to retrain the ML model with higher precision thanks to a
larger training set. The same procedure, namely the selection and review/correction of
new AL-annotated samples and the retraining of the DL model, must be iterated until
no further improvements of the ML results are observed. Figure 1 illustrates a schematic
representation of the proposed AL-based annotation procedure.

Figure 1. Schematic representation of the active learning annotation procedure.

The iterative AL annotation, followed by a manual review of the data, improves the
quality of the obtained results with respect to a single-step AL annotation, because the
effort of the human experts allows to correct any missing or wrong annotation obtained
after each AL phase.

The selection of new samples from the dataset that will be annotated by the ML system
is demanded of the domain experts without further support of automatic algorithms, such
as those done in more complex AL approaches [22]. An improvement of the performance
of the automatic annotation system is obtained using WE models trained on a biomedical
closed domain corpus, as explained in Section 3.1.1. Deep neural network architectures are
actually the state-of-the-art approaches for the B-NER task [3]. Thus, a DNN architecture
for NER is used as an automatic ML classifier in the AL procedure. We adopted the classic
DNN model presented in [43], known as Bi-LSTM CRF. This architecture is formed by the
following layers: a bidirectional long short term memory (Bi-LSTM) character embedding
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layer, concatenated with a pretrained WE layer, a Bi-LSTM layer for words and a conditional
random field (CRF) layer, counting in total 166, 082, 553 parameters. The Bi-LSTM CRF
model offers both good performance and reasonable training times. Moreover, the BERT
model [29,34] pretrained on a general domain was also considered, in comparison with the
Bi-LSTM CRF architecture.

3.1.1. Closed Domain Embedding Models

As mentioned above, the proposed methodology requires the preliminary training
of an ML model in order to start the iterative AL process. In this first step, a manually
annotated training set that counts few examples is used. While it does not require a long
time to be manually annotated, its limited number of samples limits the performances of the
ML system trained on it. In order to mitigate this issue, we represented the input text using
WE models pretrained on biomedical-domain document collections [44], improving in this
way the performance of the NER DNN. A higher precision of the results during the AL
phase can provide a substantial help to the experts, further reducing the efforts required for
the selection and correction of new samples. In particular, following the results described
in [44–46], we conducted experiments with several WE models specifically trained on a
biomedical closed-domain corpus. For this purpose, a further collection of documents
related to the biomedical domain were collected in order to train the embedding models
(see Section 4.3 for further details on this corpus). Five different WE models are tested:
two word2vec (W2V) models [26], two fastText (FT) models [27], considering in both cases
skip-gram and cbow algorithms, and ELMo [28], a contextual embedding model, pretrained
on the Italian language biomedical domain, following the same approach presented for the
BioELMo model in English [47].

We analysed the performance of these embedding models when used to represent the
text in the first layer of the adopted DNN architecture, during the training of the AL model
in the preliminary step of the proposed method, when only a small manually annotated
training set is available. All embedding models during the subsequent steps of the proposed
methodology are also tested to better underline their contribution when a larger training
set is available. Finally, the results are compared with models trained on a very large Italian
language general domain corpora: a word2vec model [48], provided by ISTI-CNR (the
model is publicity available at https://github.com/MartinoMensio/it_vectors_wiki_spacy,
accessed on 6 June 2022), and a BERT model [29], fine tuned on the B-NER task, as better
explained in Section 3.1.2.

3.1.2. Fine-Tuned BERT Model

As explained above, we also adopted in our experimental assessment a BERT model [29],
with the main purpose of comparing the performance of the Bi-LSTM CRF model with
WEs trained on a biomedical closed-domain corpus, with a fine-tuned BERT model
pretrained on a general domain corpus. In particular, we adopted the bert-base-italian-
xxl-uncased model from the MDZ Digital Library team (dbmdz) BERT Italian model
(https://huggingface.co/dbmdz/bert-base-italian-cased, accessed on 6 June 2022). This
model is based on the BERT-base architecture, which is formed by a stack of 12 layers of
decoder-only transformers [49], 768 hidden dimensional states and 12 attention heads. This
model was pretrained on a very large general domain Italian corpus, whose size is 81 GB
and counts 13,138,379,147 tokens, exploiting the masked language modelling approach,
which consists in randomly applying a mask on a fraction of the words in the training
corpus, encoding in this way information of the sentences from both directions and training
at the same time the model to predict the masked words.

The transformer-based language models, such as BERT, allow for the transfer learning
of the knowledge acquired through the pretraining on large corpora, as well as for the
fine-tuning of the model on other tasks. Several pretrained BERT models are available in
the literature due to the long time and computational resources required for the pretraining
phase, as well as due to the need for collecting sufficiently large document collections. For
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these reasons, we were not able to pretrain the BERT model on a biomedical closed-domain
document corpus, neither a biomedical domain Italian language pretrained BERT model
is available.

3.2. Distant Supervision Dataset Augmentation

Corpora annotated using ML-based methods are often affected by the problem of
skewed class distribution [23]. An imbalanced class in the training set could limit the
performance of a DNN trained with such corpora [50]. Undersampling or oversampling
can help to mitigate the class imbalance problem [51], but undersampling can also lower
the overall performances, deleting samples of all classes. With the purpose of improving
the quality of the annotated corpus and resolving some of the problems related to class
imbalance, a distant supervised annotation and augmentation after the AL phase is pro-
posed. In detail, the annotated corpus is augmented with new samples belonging to the
imbalanced classes, obtained through DS-exploiting domain KBs. The KB must contain a
list of entities of the same class that must be augmented.

The dataset augmentation after the AL annotation is performed as follows. The
sentences containing at least one entity belonging to the imbalanced classes are extracted
from the corpus. Then, new sentences are obtained by substituting the named entities in
these sentences with new entities of the same class randomly extracted from the respective
KB. The process is iterated until a sufficient number of new sentences is obtained; that
is, the respective class is less imbalanced, and, at the same time, all the entities from
the KBs have been considered. In this way, we also include new entities in the dataset,
in addition to reducing the class imbalance. Moreover, the augmentation process also
oversamples the entities belonging to not imbalanced classes, providing in general more
samples for all classes. As demonstrated by the results described in Section 4, this improves
the overall performance, not only in the cases of imbalanced classes. Finally, the obtained
new sentences are randomly reinserted in the corpus.

The whole proposed annotation methodology, including both iterative AL and DS
phases, is represented in the block diagram depicted in Figure 2.
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Figure 2. Schematic representation of the active learning annotation procedure.
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4. Experimental Assessment and Discussion

In this section, in the following, after a description of the features of the original
dataset and the details of the obtained annotated corpus, the performances of the DNN
trained using the self-made corpus will be discussed, measured in terms of precision, recall
and F1-score and considering also the contribution of the closed-domain WE models.

4.1. B-NER Annotated Corpora

The original unannotated dataset is formed by the narrative parts of NL text extracted
from a set of 1011 anonymized EHRs in the Italian language, which has a total word count of
1, 657, 970. In detail, the dataset contains EHRs acquired from the eHealth systems of some
different hospitals in Italy. As mentioned above, the EHRs had been previously anonymized
and they are related to patients admitted to different departments of the hospitals. The
content of these documents is relatively homogeneous, containing the clinical diary of the
patients, where the causes of the admission to the hospitals, the diseases, the prognosis, the
follow-ups, the exams, the procedures and the prescriptions are described. Some sample
sentences extracted from two different EHRs (translated into English) are reported below.

• Found sub-capital fracture and dislocation of left shoulder and contusion of right hip caused
by accidental fall at home.

• Tomorrow follow-up exams.
• Patient admitted to cardiology from 9 February to 19 February due to episodes of arrhythmia,

likely secondary to chronic renal failure.

Eight different named-entity classes are identified, as shown in Table 1, following
UMLS semantic types [52] and considering at the same time possible real-world applications
of the trained ML models [2].

Table 1. Entity classes with corresponding acronyms and examples. The English translation of the
examples is in italics between parentheses.

Class Type Acronym Examples

Diseases and Symptoms DIS
Febbre (Fever), pressione alta
(High blood pressure), cirrosi

epatica (liver cirrhosis)

Drug names DRU Paracetamolo (Paracetamol),
antibiotico (antibiotic)

Departments DEP
Ortopedia (Orthopedics),

pronto soccorso (emergency
room)

Therapeutic procedures and
Medical Instruments THE

Ecografo (ultrasound scanner,
profilassi antitrombotica

(thrombosis prophilaxis), stent
(stent)

Body Parts BOD
Piede destro (right foot), testa

dell’omero (humeral head),
fegato (liver)

Measures MEA 30 cc, 12 mm, 120 bpm

Dates DAT 23 giugno 2012 (23 June 2012),
oggi (today), ore 12:30 (12:30)

Diagnostic procedures or lab
tests ANA

Radiografia (radiography),
valutazione cardiologica

(cardiac assessment), glicemia
(glycaemia), coronarografia

(angiography)

As explained in Section 3.1, in the preliminary step of the annotation process a small set
of documents formed by the text extracted from 25 randomly selected EHRs was manually
annotated by two domain experts. The annotation procedure was conducted according to
predefined guidelines, which describe general and specific annotation rules. The labelling

15



Appl. Sci. 2022, 12, 5775

process followed the IOB notation [53], i.e., each token belonging to an entity is labelled
with the corresponding class adding the prefix B (Begin) if it is the first token of the entity,
the prefix I for all subsequent tokens of the same multi-word entity and the tag O (Outside)
if the token does not belong to an entity. The result of the manual annotation is a small
dataset, which counts 7421 tokens and 1963 named entities, as shown in the first row
of Table 2. The experts worked for approximately eight hours to produce this dataset,
including the discussion about conflicts and disambiguation of the conflicting annotations.
To the end of providing a stop criterion for the iterative AL phase (see Section 3.1), a further
test set, which counts 21,133 tokens, was also manually annotated.

Table 2. Number of words and annotated entities in each step of the iterative AL annotation proce-
dure.

Step Word Number Entity Number

1 7421 1963
2 20,083 5621
3 32,856 9285
4 78,449 21,914
5 133,200 37,029
6 201,956 55,601
7 304,797 60,669

This small dataset is used to train the DNN Bi-LSTM-CRF [43] architecture. This DL
model has been used to automatically annotate new documents randomly extracted from
the whole dataset, starting the iterative AL phase. In each iteration, the human experts
had to review the correctness of the annotations produced by the DL model, eventually
correcting the wrong or the missing ones. They worked each step for approximately eight
hours, but, in this case, they were able to annotate wider datasets, thanks to the reduced
effort provided by the partial annotation of the data, as shown in Table 2. The new data
obtained in each iteration were added to the training set, producing a larger dataset, which
was used to retrain the DL model. The same process was iterated and at each step the
experts were able to speed up the annotation process, producing at the same time an
increasing number of annotations thanks to the higher precision of the DL model trained
on a larger and more complete dataset (see Table 2 for the details). The iterative AL process
was stopped after seven iterations (see Section 4.3) when no more notable performance
improvements of the ML model were observed. At the end of the AL phase, a corpus
counting 304,798 words and 60,669 entities was annotated.

The results shown in Table 2 demonstrate that the proposed approach allows one to
obtain a sensitive improvement of the time required for the annotation, with respect to a
fully manual process. In the first preliminary step, a human expert was able to annotate a
document collection formed by almost 8000 words in about 8 h, with a rate of 1000 words
per hour. The dataset obtained through the AL phase counts 304,797 words: considering
the same annotation rate of the preliminary step, the fully manual annotation of this dataset
would have required about 300 h. The proposed AL process required seven steps where the
experts reviewed and corrected the annotations of the new data obtained from the DNN for
about 8 h for each step, with a total manual effort of 56 h. Moreover, the process required
an average training time of the DNN equal to 1.5 h for each iteration (the training time
increases with larger training sets) on the hardware used for the experimental assessment
(see Section 4.2). In summary, the proposed iterative AL phase required in total about 66 h,
allowing one to obtain an annotated dataset in almost 1/5 of the time required by a fully
manual annotation.

Table 3 shows the distribution of the classes in the dataset obtained at the end of the AL
phase. We note that there are very few examples of DEP (Departments) and DRU (Drugs)
classes. This skewed class distribution can limit the performances of the ML systems, in
particular for these two specific classes (see next Table 7). Then, in order to mitigate the
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skewed class distribution, the annotated corpus was automatically augmented using DS
with our proposed approach, exploiting knowledge sources related to the more imbalanced
classes, such as a complete list of drugs and pharmaceutical substances extracted from the
Pharmaceutical Reference Book officially maintained by the Agenzia Italiana del Farmaco
(https://farmaci.agenziafarmaco.gov.it/bancadatifarmaci/cerca-farmaco, accessed on 6
June 2022), the Italian government agency in charge for drug administration, and a list of
medical departments was obtained from the main Italian medical centre (hospitals, clinical
facilities, etc.) websites. These two KBs were used to expand the corpus, applying the data
augmentation/oversampling, as described in Section 3.2. The final resulting annotated
corpus has a total word count equal to 1,699,028 and a total entity count equal to 424,776.
In Table 3, it is shown that the distribution of the samples after the DS augmentation clearly
reduces the original skewness.

Table 3. Number of entities in the annotated corpus before and after the application of DS entity ex-
pansion.

Class Type
Entity Number

No Expansion Expansion

MEA 12,168 65,668
DRU 2046 45,336
DEP 1099 25,469
THE 8170 46,900
BOD 11,423 33,203
DIS 31,179 125,059
DAT 4933 34,263
ANA 12,258 48,878

Total 60,669 424,776

The final corpus was split into a training set and a test set, randomly selecting about
15% of the data for the test and the remaining data for the training. In this way, the entity
classes, respectively, in the training set and the test set are distributed as shown in Table 4.
The test set was used to assess the performance of the DNN with the annotated corpus.

Table 4. Number of entities in the final annotated corpus, split into test set and training set.

Class Type
Entity Number

Test Set Training Set

MEA 9458 56,210
DRU 6624 38,712
DEP 3860 21,609
THE 6859 40,041
BOD 4539 28,664
DIS 17,354 107,705
DAT 4920 29,343
ANA 7055 41,823

Total 60,669 364,107

Finally, a further test set was also manually annotated by the domain experts, extract-
ing documents from a different medical domain document collection, with the purpose of
assessing the quality of the corpus obtained with the proposed methodology. The aforemen-
tioned document collection, named hereinafter out-of-corpus, is formed by short medical
notes and diagnoses from various medical departments and counts 15,728 words and 3816
entities. A common problem of the Bi-LSTM CRF B-NER architecture is that it often fails to
generalise to out of vocabulary words, namely words that do not appear in the training
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set [54]. Thus, we tested the DL model also on the out-of-corpus test set, which contains
many named entities not present in the original dataset.

4.2. Hardware

The AL phase requires the availability of hardware equipped with GPUs capable of
training the DNN in a reasonable time. The hardware used in our experiments was a dual
CPU Intel Xeon E5-2630, clocked at 2.2 GHz, with 256 GB of RAM and 1TB SDD, equipped
with four Nvidia Titan X 1080 GPU with 11 GB of VRAM. With this system, the average
time required to train the DNN during each iteration of the AL phase was about 1.5 h,
considering that the training time increases with the size of the dataset.

4.3. Performances

To verify the effectiveness of the annotated corpus, we evaluated the performance of
the same DNN used in the AL phase, trained on the obtained corpus. As explained above,
we also tested different WE models to represent the input of the DNN, whose details are
reported below.

Firstly, we considered a word2vec model [26] trained on a general domain Italian
language corpus, hereinafter called W2V ISTI, formed by a Wikipedia dump and a collection
of 31,432 novels [48]. This document collection is very large (242,261,172 sentences and
2,534,600,769 words), and its content is related to many knowledge fields. The training
parameters used for this model are: skip-gram algorithm, vector size 300, window size 10
and negative samples 10.

Then, a more specific biomedical closed domain text corpus, hereinafter BIO-Corpus,
was used to train the embedding models. This corpus was created considering different
biomedical sources, in detail: (i) a dump of a selection of Italian Wikipedia pages related to
medicine, biology, healthcare and other similar domains, following the procedure and the
tools described in [45]; (ii) the text extracted from the package leaflets of all drugs available
in Italy, downloading all pdf files from Agenzia Italiana del Farmaco (AIFA) and extracting
the corresponding text exploiting Apache Tika (https://tika.apache.org/, accessed on 6
June 2022) and some specific Python scripts; (iii) the text extracted from the Italian Medical
Dictionary of the Corriere della Sera (https://www.corriere.it/salute/dizionario/, accessed
on 6 June 2022) through a set of custom web scraping Python scripts; and (iv) the text
extracted from other Italian biomedical documents freely available online, such as scientific
papers, presentations, technical reports and other things, exploiting also in this case Tika
pipelines and Python scripts. The BIO-corpus is made up of 2,160,704 sentences and
511,649,310 words and it was used as a training set for five different WE models: two
word2vec (W2V) [26] models and two FastText (FT) models [27], considering in both cases
skip-gram and cbow algorithms and setting the vector size equal to 300, the window size
equals to 10, the negative samples equals to 10 and, in the case of FastText embeddings, the
char n-gram size varying from 3 to 6, as well as one contextual embedding model based on
ELMo [28]. These latter models trained on the BIO-Corpus were called, respectively, W2V
cbow, W2V skip, FT cbow, FT skip and ELMo.

Finally, we also tested the obtained annotated corpus by fine-tuning the BERT model
pretrained on a very large general domain corpus, previously described in Section 3.1.2.

Table 5 shows the results obtained on the manually annotated test set (see Section 3.1)
in the preliminary step of the AL phase when the DNN has been trained with few manually
annotated data. The results are in terms of F1-Score, precision and recall averaged over all
classes. It is possible to observe that ELMo embeddings trained on the BIO-Corpus and
used to represent the input to the DNN obtain performances sensibly higher than the other
cases, despite a training set with few samples. This can provide substantial help to the
experts during the next steps of the AL phase, further reducing the effort in the correction
of wrong predictions.

Thus, this model was selected for further steps of the AL phase for the annotation of
the B-NER corpus, as well as the input layer of the DNN used to test the effectiveness of the
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annotated corpus. Moreover, the experiments also considered the fine tuning of the BERT
model pretrained on a general domain document collection, that being the current reference
model for NER tasks in the literature and because it obtained performances comparable to
the ELMo case in the preliminary step of the proposed approach.

Table 5. Results in terms of F1-Score, precision and recall averaged on all classes obtained during the
first training of the DNN of the AL phase, using different pretrained embedding models.

WE Model F1-Score Precision Recall

W2V ISTI 0.4520 0.5274 0.4624
W2V cbow 0.3905 0.4764 0.3738
W2V skip 0.4734 0.6062 0.4131
FT cbow 0.3758 0.3976 0.4478
FT skip 0.4611 0.4438 0.4913
ELMo 0.6900 0.6758 0.7078
BERT 0.6787 0.6557 0.7034

The AL-based iterative annotation stopped when no further improvements to the
results were obtained. Seven iterations are considered empirically sufficient to produce in
the AL phase an annotated corpus with 304, 977 words and 60,669 entities. Table 6 shows
the performance improvements obtained in the test set at each step of the iterative AL
procedure, using the ELMo model with BiLSTM CRF and the BERT model. As shown
in Table 6, increasing the size of the annotated corpus during the steps of the iterative
AL phase improved the performances of both the ELMo and the BERT experiments. We
also note that the ELMo model pretrained on the biomedical domain corpus performs
slightly better when fewer data in the training set are available during the first iterations
of the procedure, while, when larger training sets are obtained during the AL phases, the
BERT model pretrained on a general domain corpus obtains slightly better results. In any
case, both models obtain comparable performances, demonstrating that a simpler neural
language model, such as ELMo, pretrained on the biomedical domain corpus obtains
performances comparable with the ones produced by a more complex DNN, such as
BERT, pretrained on a general domain corpus. Then, we focused the next phase of the
experimental assessment only on the ELMo model, investigating the contribution of the DS
data augmentation phase.

Table 6. Performance of the best performing DNNs (ELMo Bi-LSTM CRF and BERT fine tuned) at
each step of the AL phase of the annotation procedure, in terms of precision, recall and F1-Score
averaged over all classes.

ELMo BiLSTM-CRF BERT Fine Tuned

Iteration
Step

Precision Recall F1-Score Precision Recall F1-Score

1 0.6758 0.7078 0.6900 0.6557 0.7034 0.6787
2 0.7195 0.7504 0.7346 0.7187 0.7517 0.7349
3 0.7269 0.7567 0.7406 0.7252 0.7638 0.7440
4 0.7364 0.7697 0.7522 0.7449 0.7738 0.7590
5 0.7552 0.7743 0.7646 0.7581 0.7849 0.7712
6 0.7629 0.7767 0.7695 0.7639 0.7915 0.7775
7 0.7635 0.7889 0.7760 0.7790 0.8001 0.7893

In Table 7, the results of the ELMo experiment obtained in the last step of the AL
phase are highlighted, showing the precision, recall and F1-Score obtained for each class of
the dataset. Observing at the same time the left column of Table 3, where the number of
entities of each class are shown, and Table 7, with the results obtained by the DNNs trained
on the corpus obtained at the end of the AL phase, it is possible to note that the worst

19



Appl. Sci. 2022, 12, 5775

performances were obtained in the cases of the entities belonging to the more imbalanced
classes, namely DRU (Drugs) and DEP (Departments), also limiting the average results.

Table 7. Performance of the ELMo Bi-LSTM CRF at the last step of the AL phase of the annotation
procedure, in terms of precision, recall and F1-Score for each class.

Entity Type Precision Recall F1-Score

MEA 0.8436 0.8599 0.8517
DRU 0.8085 0.3576 0.4959
DEP 0.1845 0.1404 0.1595
THE 0.5668 0.8459 0.6788
BOD 0.8283 0.8949 0.8603
DIS 0.8316 0.9125 0.8702
DAT 0.8905 0.9492 0.9189
ANA 0.8145 0.9137 0.8612

Average 0.7635 0.7889 0.7760

We introduced the DS data augmentation phase in order to limit this issue. After
the expansion and the balancing of the training set using the second part of the proposed
approach, where new sentences are obtained leveraging DS with domain KBs containing
lists of entities of two more imbalanced classes, the performance of the ELMo DNN trained
on the training set obtained with both the AL and DS phases are sensibly improved,
as shown in Table 8. In this case, we reported only the results obtained by the best
performing model, which was the Bi-LSTM CRF architecture with the ELMo embeddings.
This behaviour is expected, due to overfitting issues of the BERT model trained on very
large datasets [55].

In particular, comparing the obtained results for DRU and DEP classes in Table 8,
where the DS augmentation for balancing and expansion were applied for the annotation
of the training set after the AL, with the results achieved in the same class types shown in
Table 7, where only the AL is performed, it is possible to observe that the DS augmentation
applied to the most unbalanced classes DEP and DRU provided a sensible performance
boost. Moreover, we can also note an improvement in all the other classes thanks to the
oversampling performed during the DS data augmentation.

Table 8. Results obtained by the ELMo Bi-LSTM CRF trained with the final annotated corpus (AL
and DS augmentation) in terms of precision, recall and F1-Score for each class.

Entity Type Precision Recall F1-Score

MEA 0.9636 0.9675 0.9655
DRU 0.9863 0.9893 0.9878
DEP 0.9878 0.9860 0.9869
THE 0.9609 0.9636 0.9622
BOD 0.9203 0.9262 0.9232
DIS 0.9595 0.9634 0.9615
DAT 0.9783 0.9809 0.9796
ANA 0.9647 0.9718 0.9682

Average 0.9642 0.9679 0.9661

To the end of further verifying the effectiveness of the final obtained annotated corpus,
we also tested the DNN models on the out-of-corpus test set, previously described in
Section 4.1. This additional manually annotated test set was extracted from a different
document collection, which contains many entities not present in the dataset used to build
and annotate the training set. Table 9 shows the results obtained by the ELMo BiLSTM CRF
architecture trained on the final annotated corpus and tested on the out-of-corpus test set.
It is worth noting that, despite a slight performance drop, the DNN model still performs at
a good level, assessing the effectiveness of the obtained annotated training corpus.
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Table 9. Results in terms of precision, recall and F1-Score averaged on all classes obtained with the
DNN with ELMo embeddings trained on the final annotated corpus and tested on the out-of-corpus
test set.

Entity Type Precision Recall F1-Score

MEA 0.9374 0.9051 0.9210
DRU 0.6429 0.8824 0.7438
DEP 0.9000 1.000 0.9474
THE 0.7983 0.8559 0.8261
BOD 0.9112 0.8701 0.8902
DIS 0.8475 0.9278 0.8858
DAT 0.5608 0.9222 0.6975
ANA 0.9364 0.8805 0.9076

Average 0.8809 0.8986 0.8875

In summary, these results demonstrate that the DS data augmentation phase is capable
of further improving the quality of the dataset obtained from the previous iterative AL
phase, mitigating the issues of the AL related to unbalanced classes and out-of-corpus
named entities.

Finally, the next Table 10 reports the metrics averaged on all classes obtained by each
considered DNN model, namely the Bi-LSTM CRF with the various considered WE models
as input layer and the fine-tuned BERT model, trained on the final annotated dataset (AL
and DS) and tested on the out-of-corpus test set. The purpose of this last experiment is
to evaluate the contribution of different neural language models on a corpus containing
many named entities not present in the training set. The results in Table 10 show that the
WE model trained on a biomedical closed-domain document collection (W2V cbow, W2V
skip, FT cbow and FT skip) provides sensible improvements with respect to the W2V ISTI
model, trained on a general domain corpus. We also note that the WEs trained using the
skipgram algorithm provide improved performance with respect to the cbow algorithm.
The ELMo model produces the best performance, but the simpler W2V skip model also
obtains good results, although it does not reach the performance obtained by more complex
ELMo and BERT architectures. As in the previous case, the performances of the BERT
model are limited by the overfitting issues, although we adopted a drop-out rate equal to
0.7 to limit them, following the literature [55].

Table 10. Results in terms of F1-Score, precision and recall obtained by the DNN on the out-of-corpus
test set, using different pretrained WE models.

WE Model Precision Recall F1-Score

W2V ISTI 0.7794 0.7714 0.7714
W2V cbow 0.8047 0.8000 0.8010
W2V skip 0.8676 0.8464 0.8545
FT cbow 0.8164 0.8143 0.8125
FT skip 0.8367 0.8107 0.8213
ELMo 0.8809 0.8986 0.8875
BERT 0.7356 0.7246 0.7301

5. Conclusions

This paper presented an approach based on both active learning and distant super-
vision, which makes the manual annotation of a corpus for biomedical named entity
recognition (B-NER) a less costly process, reducing the efforts needed by human experts.
In detail, the method is based on a first AL phase, where a DNN architecture for NER
composed of a BiLSTM-CRF is used to support the manual annotation. When no further
improvements are achieved by the AL-based process, the corpus is augmented using DS,
exploiting domain KBs, in order to mitigate the class imbalance. Finally, an assessment of
the utility of using a WE model trained on a closed domain document collection as input
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for the DNN was carried out, considering word2vec, FastText and ELMo embeddings, and
also comparing the obtained results with the fine tuned BERT model pretrained on a very
large general domain document collection.

The approach was tested by creating an Italian language B-NER corpus used to train
different B-NER DNNs. The experiments demonstrated that the obtained corpus is capable
of training a B-NER DNN with very good performance, allowing one to annotate an NER
corpus in a fraction of the time required for a fully manual annotation. Moreover, they
showed that the pretraining of the ELMo contextual embedding model on a biomedical
closed domain corpus allows one to obtain results comparable with the more complex
BERT architecture pretrained on a very large general domain document collection, which
demands more computational resources.

The proposed annotation methodology can facilitate the development and the imple-
mentation of AI-powered information extraction and indexing systems, improving the
management of large natural language document collections, as well as supporting the
analysis and the extraction of knowledge from such documents. On the other hand, a limit
of the proposed approach is that KBs in the domain and the language of the annotations
must be available to apply the DS phase. Moreover, the method is not fully automatic,
requiring in any case human supervision, as well as a fully manual annotation in the
preliminary phase. It also requires the availability of DL-dedicated hardware to carry out
the AL phase in a reasonable time. Finally, the training of the NLM (in particular, the
BERT-based models) requires the collection of a very large closed-domain unannotated
document corpus, which in some cases may not be easy to obtain.

In future work, the B-NER DL model trained on the obtained annotated corpus on
more out-of-corpus documents, such as medical tweets or scientific papers, assessing the
effectiveness of the proposed annotation methodology will be evaluated. Moreover, we
want to collect a very large biomedical closed domain corpus in order to pretrain a domain-
specific Italian biomedical BERT model, following the BioBERT [34] approach, in order to
further test the proposed annotation approach.

Finally, the presented annotation methodology could be applied to other languages
and domains in order to demonstrate its general validity. In particular, the same approach
was also developed, tailored and tested for the annotation of a cyber security (CS) English
NER corpus, exploited for an innovative ML-based threat assessment methodology [56]
proposed in the EC-funded AI4HEALTHSEC project (https://www.ai4healthsec.eu, ac-
cessed on 6 June 2022). In this case, a large document collection was previously extracted
from a CS news website, allowing for the creation of an unannotated training set for the
neural language models, while CAPEC (https://capec.mitre.org, accessed on 6 June 2022)
and CPE (https://nvd.nist.gov/products/cpe, accessed on 6 June 2022) KBs were used in
the DS phase for the annotation of CS threats and the corresponding assets. Moreover, a CS
closed-domain BERT model was also exploited, confirming the effectiveness of the use of a
closed-domain transformer-based NLM.
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Abstract: Cyberattacks in the healthcare sector are constantly increasing due to the increased usage
of information technology in modern healthcare and the benefits of acquiring a patient healthcare
record. Attack path discovery provides useful information to identify the possible paths that potential
attackers might follow for a successful attack. By identifying the necessary paths, the mitigation of
potential attacks becomes more effective in a proactive manner. Recently, there have been several
works that focus on cyberattack path discovery in various sectors, mainly on critical infrastructure.
However, there is a lack of focus on the vulnerability, exploitability and target user profile for the
attack path generation. This is important for healthcare systems where users commonly have a
lack of awareness and knowledge about the overall IT infrastructure. This paper presents a novel
methodology for the cyberattack path discovery that is used to identify and analyse the possible attack
paths and prioritise the ones that require immediate attention to ensure security within the healthcare
ecosystem. The proposed methodology follows the existing published vulnerabilities from common
vulnerabilities and exposures. It adopts the common vulnerability scoring system so that base metrics
and exploitability features can be used to determine and prioritise the possible attack paths based
on the threat actor capability, asset dependency and target user profile and evidence of indicator
of compromise. The work includes a real example from the healthcare use case to demonstrate
the methodology used for the attack path generation. The result from the studied context, which
processes big data from healthcare applications, shows that the uses of various parameters such as
CVSS metrics, threat actor profile, and Indicator of Compromise allow us to generate realistic attack
paths. This certainly supports the healthcare practitioners in identifying the controls that are required
to secure the overall healthcare ecosystem.

Keywords: healthcare ecosystem; medical devices; cyberattack path; vulnerability; exploitability

1. Introduction

The healthcare sector is becoming more digitally connected due to the advancement
of technology, and so the potential risk of a cyber incident will increase. The connectivity
of medical devices with other software and information communication technology (ICT)
infrastructures poses potential risks. There is increasing concern that the connectivity of
these medical devices will directly affect healthcare service delivery and patient safety,
which is unique compared to traditional computing systems [1]. Research studies have
shown that the number of hacking incidents reported in healthcare was 42% more in
2020 [2]. The healthcare information infrastructure is equipped with medical devices that
require both physical and cyber interaction, which can create new attacker capabilities [3].
It is necessary to identify the possible attacks and related paths that can pose potential risks
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within the healthcare context. To our knowledge, this is the first study that focuses on the
vulnerabilities related to healthcare devices and their dependencies on other information
technology (IT) infrastructures to propagate an attack.

The present paper illustrates an evidence-based attack path discovery method, consid-
ering the unique characteristics of the healthcare information infrastructure, such as assets,
and its cyber and physical dependencies, vulnerabilities, threat actor and user profile, and
indicator of compromise (IoC). There are three main contributions of this work. Firstly,
the proposed approach includes a systematic process for attack path identification based
on the assets, dependencies, and vulnerabilities. It adopts the existing standards, such
as common vulnerabilities and exposures (CVE) and the common vulnerability scoring
system (CVSS), to identify and analyse the vulnerabilities relating to the attack paths. These
repositories contain huge amounts of data about the vulnerabilities. The identified attack
paths are prioritised based on the IoC, which shows the evidence of any attack. Secondly, a
knowledge base is developed that consists of rule-based reasoning to identify the possible
attack paths. The rules are based on certain conditions that are necessary for a successful
attack campaign. This allows us to determine possible attack paths so that appropriate
control actions can be taken for securing the system. Finally, a real healthcare use case
scenario that processes big data of healthcare applications is considered to validate the
applicability of the proposed method. The results show that it is a practical approach for
the attack path generation and determine the necessary areas that need adequate protection
for the overall cyber security improvement.

2. Related Work

There are a number of studies that focus on attack path discovery. Existing research
treats attack path discovery as an important stage focused on identifying and understanding
the routes in a network that potential attackers might follow to gain unauthorized access to
a system. This section provides an overview of the existing related work.

The attackers first infiltrate vulnerable hosts to access the system and use the previous
attack result as a precondition and repeat this process until they achieve the level of
control desired. Previous studies [4,5] aimed to evaluate all possible attack paths in a
network and to predict future attacks by combining components from a collaborative
filtering recommender systems and attack path discovery approaches using Naïve Bayes
and random forest. This method searches for all non-circular attack paths that exist between
assets that belong to the network and induces a model where an attacker can gain access
to information system sources following a directed path. The security weaknesses of an
asset follow the vulnerability assessment, conducting a thorough analysis of the existing
and potential threat landscape within a network that can be valued. A stochastic analysis
is considered for the evaluation of cyberattack paths through sophisticated methods to
measure the probability and acceptability of faults [6]. The development of threat scenarios
can delineate the underlined threat landscape and thus facilitate the threat knowledge and
improve the visualization [7]. Other groups consider Attack Trees or Attack Graphs, which
are widely used approaches for considering threat analysis during the risk assessment
process. The attack graph network measurement can be classified into structure and
probability-based metrices to quantify network security [8] to illustrate the network’s
agility in taking preemptive measures to respond to attacks and stochastic-based metrices
to estimate large nodes of networks. Another work focuses on attack modelling as a
useful tool in risk assessment for cyber physical systems based on the attack vector within
the technical and operational environment [9]. Attack graphs are considered a series of
exploitation of atomic attacks, which can drive the process to an undesirable state and are
used for various applications including threat detection and forensic analysis [10].

More recently, research has appeared that focuses on discovering and analysing attack
paths using threat intelligence and vulnerability exploitation. The exploration of attacks
based on threat intelligence data is collected using cloud-based web service in [11]. The
attack surface classification methodology of mobile malware with known threat actors
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through automated tactics, techniques and procedures (TTP) and IoC analysis is described
in [12]. Hence, IoC is considered as a key parameter to analyse the attack surface and
attackers’ motivations. A further study [13] focuses on just certain parts of the network
to identify and generate attack graphs. For instance, in this strategy, they assume that
there is a privilege over an asset across the network. If it is accurate, that means that the
user gained access to the asset. An attack path discovery in the dynamic supply chain is
proposed using the MITIGATE method in [14]. The approach considers a dynamic risk
management system to detect the vulnerabilities that can deliver attack paths based on
certain criteria. It considers attacker capability, attack path and its length, and knowledge
base for analysing the attack paths. Another work proposes a recommended system that
focuses on possible methods that can be used to classify future cyberattacks in terms of
risk management [15]. This approach considers the exploitability features for attack path
generation and uses a multi-level collaborative filtering method to predict the future attacks.
Another indicative example for supply chain context is presented by [16], where cyber
threat intelligence is integrated into the cyber supply chain for analysing the threats and
determining suitable control strategies. An integrated cyber security risk management
integrates vulnerability and threat profile for risk management and predication [17]. In
particular, various threat actor parameters such as skill, motivation, location and resources
are considered important for determining the likelihood of the risks related to a specific
threat. A distributed approach for attack path generation based on a multi-agent system is
considered by [18]. It follows an in-depth search, where the performance is improved with
the use of agents after a specific graph size.

The contributions presented above have greatly contributed to the identification and
analysis of attack paths. Several observations have been made based on the existing litera-
ture. Firstly, there is a lack of focus on specific vulnerabilities and their exploitability that
contribute to the attack path discovery, particularly in the healthcare sector. Additionally,
there is also a need to understand the threat actors’ profiles in terms of attacker capability
and motivation, as well as target user profiles for a successful attack campaign. Healthcare
systems consist of interconnected cyber systems and infrastructures at the physical and cy-
ber levels for critical healthcare service delivery [16]. There is a pressing need to understand
the possible attack paths and prioritise the paths so that possible control actions can be
identified to ensure the security and resilience of healthcare service delivery. The proposed
work contributes towards this direction and adopts the widely used CVE vulnerability
database and CVSS scoring system to examine the vulnerabilities that exist within the
healthcare system.

3. The Proposed Attack Path Discovery

A cyberattack path determines the possible routes that an attacker can propagate to
execute an attack. In general, all high-impact cyberattacks have several phases where an
attacker conducts lateral movement from the initial point to the target landing point. A
healthcare ecosystem by its inherent nature is complex and interconnects with a number of
medical and IT assets for service delivery. The attack within the ecosystem can propagate
from any initial point to the final target asset depending on the attacker profile and moti-
vation. It is necessary to understand the vulnerabilities within the attack surface to adopt
suitable control measures. The proposed method follows the existing attack path discovery
methods such as MITIGATE [17], cyber-physical attack paths against critical systems [18],
and attack path discovery in a dynamic supply chain context [19] and extends with new
parameters and rule sets to formulate the attack paths. Additionally, the proposed method
adopts the widely used CVE vulnerability database and CVSS scoring system to examine
the vulnerabilities that exist within the healthcare system [20–22]. There is also a need
to understand the threat actor profile in terms of attacker capability and motivation for a
successful attack campaign. The proposed methodology also adopts the NIST’s SP800-30
guideline [23] for profiling the attacker. This section presents an overview of the proposed
methodology in terms of the general assumptions and process.
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3.1. Assumptions

The proposed attack path discovery method considers the following assumptions:

• The assets within the healthcare ecosystem are dependent upon each other for the
healthcare service delivery;

• Each asset may link with single or multiple confirmed vulnerabilities published by the
National Vulnerability Database (NVD) or CVE, which are required to be considered
for the attack path generation. CVE contains a huge list of published vulnerabilities
that assist in determining vulnerabilities related to specific healthcare assets;

• The threat actor needs a certain profile in terms of attacker capability (knowledge and
skill) and access vector (local, adjacent, network, and physical) to exploit a vulnerability
and discover an attack path;

• Each user within the healthcare system performs certain functionalities based on the
roles and responsibilities. Threat actors could take advantage of target user profiles to
execute an attack;

• Each attack path includes several variables, such as entry point asset, intermediate
point (if any), target point asset, dependencies among the assets, and underlying
characteristics of the vulnerability within the assets;

• The methodology follows the CVSS for attack path generation and vulnerability esti-
mation. It mainly considers the base score metric values for generating the attack path.

3.2. Cyberattack Path Generation and Analysis Process

This section presents the attack path generation and analysis process, which consists
of seven distinct steps. Each step performs specific functionalities and contributes towards
the attack path discovery. It initiates source and target asset identification, followed by
the vulnerability chain for a successful attack campaign. An overview of the steps is
given below.

Step 1—Identify possible entry points: This initial step identifies the healthcare ecosys-
tem’s potential assets that the attacker may consider as an entry point to execute an attack.
This can be a medical device and software that runs the device, hardware, or other assets
within an ICT infrastructure. A medical device defined by the FDA as software, electronic
and electrical hardware, including wireless, is a critical asset for healthcare systems. The
entry point is a point of failure where the attack exploits the vulnerability to propagate the
target point. Generally, the attacker spends a lot of time trying to understand the existing
system, and specifically, the healthcare system consists of several interconnected healthcare
and IT devices. Vulnerabilities within these assets can be exploited by an attacker to achieve
their intention. Almost every aspect of the network and application has a potential entry
point, and securing the weakest link principle should be followed by the healthcare entity
in order to make it difficult for an attacker to identify the entry point.

Step 2—Determine asset dependencies: Once the entry point is identified, it is nec-
essary to determine the dependencies of these assets within the healthcare ecosystem.
The goal is to focus on the potential cyber interaction of the entry point asset. A cyber
dependency of assets is assumed to be a cyber-asset pair (node) interrelation and/or in-
terconnection (edge) aiming to fulfil a healthcare service delivery or specific operation
over communication networks. For instance, it is necessary to exchange patient treatment
data from various sources for clinical decision making. Such dependency is critical for an
attacker to propagate an attack from the entry point to the target point.

Step 3—Identify possible target points: This step aims to identify the possible target
points that an attacker strives to reach by following the entry point asset and associated
dependencies. An attacker needs to exploit single or multiple vulnerabilities to reach target
points to achieve its objective. This includes assets that are compromised at interim stages
of an attack campaign. Therefore, the accessibility of a target point depends on the entry
point asset, cyber dependencies, and capability of the actor for possible exploitation. This
step develops assets’ dependency graph that shows assets and their dependencies.
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Step 4—Determine entry and target point vulnerabilities: Once the entry and target
points are identified, it is necessary to determine the vulnerabilities related to the assets.
These vulnerabilities are preconditions based on the attacker’s profile for a successful
attack path campaign. The goal of this step is to accurately reflect the exploitability level
of the identified vulnerabilities and link the vulnerabilities to formulate the vulnerability
chain. These vulnerabilities are identified by following the CVE and NVD published
vulnerabilities entries. The proposed method follows a rule-based reasoning approach
(filters) to produce the chain of sequential vulnerabilities on different assets that arise from
consequential multi-step attacks, initiated from the entry points in order to exploit the
vulnerabilities. Individual vulnerability is measured by following the CVSS base metrics
and possible further exploitation for the vulnerability chain. CVSS allows us to determine
the criteria relating to discoverability, exploitability, and reproducibility to materialize a
threat relating to the vulnerability. Therefore, the vulnerability chain demonstrates and
escalates the attack vector from local to network access or vice versa.

Step 5—Define the threat actor and user profile: A threat actor needs a certain profile
to exploit a vulnerability for a successful attack. Depending on the asset dependencies
and nature of the vulnerability, the profile may vary. The threat actor profile includes
sub-attributes relating to attacker capability (very low, low, moderate, high, and very high)
and location (local, adjacent, network, and physical) for an attack campaign by following
the NIST SP800-30 guidelines. Additionally, it is also necessary to consider existing users of
the healthcare ecosystem and their profiling, which may assist the threat actor to exploit the
vulnerability. Depending on the user role and access rights to various systems and other
assets, the user profiling can be categorized into three scales of high, medium, and low.

Step 6—Generate attack paths: This step of the described methodology aims to gen-
erate the possible attack paths against target point assets. The individual and chain vul-
nerabilities are examined using a number of parameters, including assets, vulnerabilities,
threat actor profiles, and exploitability level, for this purpose. The vulnerability chain
demonstrates a series of exploitation of vulnerabilities using appropriate access vectors and
escalation of the privilege. We follow the individual and propagated vulnerability level to
determine the attack path. This step is iterative to generate the possible attack paths for the
chosen healthcare context and the impact of the vulnerability are considered for selecting
the appropriate ones.

Step 7—Generate and prioritise an evidence-based vulnerability chain: Once the attack
paths are identified, it is necessary to generate the vulnerability chains whose exploitation
can lead to possible attack paths on given cyber-dependent assets. It is also necessary to
collect the evidence relating to the attack path so that we can prioritise which paths need to
be taken into consideration for suitable control measures. This step consists of a number of
sub-steps (7.1–7.4):

Step 7.1—Identify the vulnerability chain: The attack path discovery relies on unique
characteristics, i.e., entry and target point assets and related vulnerabilities, the threat
actor’s capability, and asset interdependencies to identify all possible paths that can be
exploited to gain access by generating vulnerability chains. At this stage, only the vulnera-
bility chains that are under the attack capability for the exploitation are considered.

Step 7.2—Assess the vulnerability chain: Once all vulnerability chains are identified,
it is necessary to assess the vulnerabilities for a given chain. The step considers individual,
cumulative and propagation vulnerability values:

The individual vulnerability assessment (IVL): This measures the probability that a
threat actor can successfully reach and exploit a specific confirmed vulnerability in a given
asset. We follow the Exploit Prediction Scoring System (EPSS) of individual vulnerability
and CVSS 3.1 score metrics (if EPSS is not available) to estimate the vulnerability level.
Hence, several external sources such CVSS, EPSS, exploit-db are considered for IVL. Table 1
shows the individual vulnerability assessment scales. A list of generic assumptions for
calculating the probability is made.
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Assumption 1. If exploitability features (proof-of-concept exploit code or weaponized exploits or
arbitrary code execution) are available, then the probability of exploitation for a specific vulnerability
is higher than without exploitable features.

Assumption 2. If a security control is not defined or there is a lack of evidence about the existing
control for a specific vulnerability, then the Attack Complexity (AC) can be low and increase the
probability of exploitation. Otherwise, AC should be considered based on the CVSS base metrics.

Assumption 3. If the Access Vector (AV) is a physical or adjacent network and the threat actor has
a root or user-level access, then the probability of exploitation can be very high or high.

Table 1. Individual vulnerability assessment.

Vulnerability Scale Description of Vulnerability Level

Vulnerability Occurrence Value Range (%)
Description of Successful

Exploitation of the Vulnerability

Very High (5) 80–100 >80%
High (4) 60–80 60–80%

Medium (3) 40–60 40–60%
Low (2) 20–40 20–40%

Very low (1) 1–20 <20%

The cumulative chain vulnerability level assessment: This includes the threat actor’s
exploitation capability to assess a specific vulnerability chain and determines the probability
of exploitation for an individual chain. The reason for considering the threat actor’s
exploitation capability is that the exploitability level of an individual vulnerability may be
high, but the threat actor may not have the right capability to exploit the vulnerability due
to lack of access vector or attack complexity. Additionally, it is necessary to have knowledge
about the specific medical device to exploit a vulnerability related to the medical device.
This sub-step measures if a threat actor can successfully reach and exploit each of the
vulnerabilities identified in a given vulnerability chain. Figure 1 shows how the threat actor
capability is linked to the CVSS metrics and the vulnerability chain. To accomplish this, the
calculated individual vulnerability levels and the asset cyber-dependencies produced in
the first step and the threat actor profile are considered. Figure 1 also shows that the threat
actor capability is linked to the vulnerability chain.

Figure 1. Threat actor capability linking with vulnerability chain.

Table 2 shows the threat actor’s exploitation capability, which includes the availability
of exploitation features and the required access vector for successful exploitation.
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Table 2. Threat actor exploitation capability.

Threat Actor Capability Scale Description of Scale

Qualitative
Values

Semi-Quantitative
Values

Description Exploitability Features Metrics

Very High 80–100

TA has a very sophisticated level of
expertise and is well-resourced for the

required access vector and attack
complexity. TA can generate opportunities
to support multiple successful, continuous,

and coordinated attacks.

Availability of all features
= PoC and Weaponized
Exploit, arbitrary code

execution

PR = required level
Entry point asset

AV = required level

High 60–80

TA has a sophisticated level of expertise,
with significant resources for the required

access vector and attack complexity. TA
has opportunities to support multiple

successful coordinated attacks.

Availability of all features
= PoC and Weaponized
Exploit, arbitrary code

execution

PR = required level
Entry point asset

AV = required level

Medium 40–60

TA has moderate resources, expertise, and
opportunities for the required access vector
and attack complexity to support multiple

successful attacks.

Availability of some
features = PoC and

Weaponized Exploit,
arbitrary code execution

PR = required level
Entry point asset

AV = required level

Low 20–40

TA has limited resources, expertise, and
opportunities for the required access vector

and attack complexity to support a
successful attack.

Availability of some
features = PoC and

Weaponized Exploit,
arbitrary code execution

PR = not required level
Entry point asset

AV = not required level

Very Low 0–20

TA has very limited resources, expertise,
and opportunities for the required access
vector and attack complexity to support a

successful attack.

No Availability = PoC and
Weaponized Exploit,

arbitrary code execution

PR = not required level
Entry point asset

AV = not required level

Table 3 presents the cumulative vulnerability level by combining individual vulnerabil-
ity level and threat actor exploitation capability. The propagated vulnerability assessment
estimates how deep into the network an attacker can penetrate if a vulnerability is exploited.

Table 3. Cumulative exploitability vulnerability level.

Threat Actor’s Exploitation Capability
IVL

Very Low Low Medium High Very High

Very Low VL VL L L M
Low VL L L M H

Medium L L M H H
High L M H H VH

Very High M H H VH VH

Step 7.3—Gather and correlate evidence: This sub-step aims to collect relevant evi-
dence that is necessary to consider for the attack path. The approach advocates considering
the IoC and related point of compromise (PoC) for the gathering and correlating of the evi-
dence. IoC is a commonly used term for cyber threat intelligence, which broadly indicates
unusual behaviour in a system and network. IoCs are the artefacts left due to malicious
activity, whereas vulnerabilities are possible weaknesses presented within a system that
can be exploited by a threat actor. Evidence of IoC specifies that the vulnerability is already
exploited, and the system is compromised. Therefore, the early detection of IoC could
delimit the damage of any attack. The possible IoC includes hash code, IP addresses, do-
mains, network traffic, unauthorised setting change, log, suspicious activities on accounts.
Additionally, healthcare devices can have other indicators, including configuration changes,
disconnection of patient monitors, disruption of healthcare services, or amendment of drug
level. Figure 2 shows the possible indicator types for the evidence chain generation.
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Figure 2. Possible IoCs for healthcare information infrastructure.

Once IoC is gathered, then it is necessary to correlate the evidence using the PoC. A
PoC is a specific location such as an asset that is compromised by a threat actor. At this
stage, it is necessary to determine the common PoC based on the vulnerability and its
exploitability within the overall healthcare information infrastructure. The PoC allows us
to correlate the IoC to formulate the evidence-based vulnerability chain and reproduce the
attack path. The reproducibility also depends on the threat actor’s capability to exploit the
related vulnerabilities for a successful attack campaign. It is also necessary to determine
the level of exploitability for a specific attack path based on the IoC and threat actor’s
exploitation capability.

Step 7.4—Prioritise Attack Path: This is the final sub-step of the proposed method
that aims to prioritise the attack paths. The reason for prioritising the attack path is that
attack path generation may identify a high number of paths, but some of the paths may
not be materialized due to various factors such as lack of exploitability feature, threat actor
capability, or a number of security measures in place. Therefore, it is necessary to prioritise
the attack paths that are relevant to a specific healthcare context based on the evidence and
attacker exploitation capability for the attack path reproduction. The proposed approach
exploits the chain level for a confirmed event for this purpose. The prioritisation focuses
on the evidence chains which have more chances to the confirmed incident and exhibits
potential risks.

Figure 3 shows the attack path generation and analysis process by including the seven
defined steps. It considers the overall healthcare ecosystem, which consists of healthcare
entities, such as hospitals and clinics, medical and IT devices and healthcare processes and
services. This allows attackers to identify the possible entry point and target points for
any attack.

34



Appl. Sci. 2022, 12, 4443

Figure 3. Attack path generation and analysis process.

4. Attack Path Generation Rules

Rule sets are essential for a successful attack campaign. In particular, the propagation
rules are the certain conditions that need to be fulfilled to propagate an attack in different
phases. The rules provide certain conditions that are necessary to satisfy and exploit a
vulnerability based on the attack profile and asset interdependencies. The rules are created
based on different parameters such as attack profile, asset dependency, and vulnerability
metrics. The rules are independent of the device specification or the IT infrastructure, so
there is no need to amend the rule sets due to the evolution of infrastructure or due to new
vulnerabilities. To generate these rules, several variables and the knowledge base (KB) are
necessary to be defined and understood.

4.1. Variables

The propagation rules determine the possible vulnerabilities that an attacker can
exploit for the implementation of a successful attack campaign. Asset dependency, vulner-
ability exploitability, threat actor profiles and target user profiles are key parameters for
propagation rules. A European funded project, named ‘A Dynamic and Self-Organized
Artificial Swarm Intelligence Solution for Security and Privacy Threats in Healthcare ICT
Infrastructures’ (AI4HEALTHSEC) [24] works towards developing a solution to enhance
the identification and analysis of threats and cyberattacks on healthcare information in-
frastructures (HCII). The project AI4HEALTHSEC considers a number of attributes for the
attack propagation rule set, which are presented below.

Asset dependency: An asset within a healthcare ecosystem may have a number of
dependencies in order for the related healthcare service to be delivered within the HCII. For
instance, an insulin pump needs to inject insulin into the patient’s body. The cyber-asset
pair enfolds a source cyber-asset and a destination cyber-asset. There are two infrastructures
necessary for the transfer and processing of cyber resources, i.e., communications (transmis-
sion of big data and information) and IT (use and processing of big data). The dependency
type is capable of defining in which manner a cyber-asset pair is interdependent within
the healthcare service. To fulfil this, the following cyber dependency types are considered:
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exchanging, storing, controlling, processing, accessing, and installing. Additionally, there
are also physical dependencies among the assets when one asset is physically connected
with another asset.

Vulnerability exploitability: Each asset includes a single or multiple vulnerabilities
that could be exploited for a given attack path to materialize. Additionally, there are depen-
dencies among the assets that allow us to exploit the vulnerabilities from an entry point
asset to a target asset. The attacker needs to identify the entry point asset vulnerabilities
that could be discovered and exploited to initiate the attack and then use the target point
asset vulnerability to complete the attack path. Therefore, there is a dependency among the
assets for the attack path generation.

Threat actor profile: The threat actor profile indicates the capability, skills, and motives
of an attacker for an attack campaign. Depending on the skill and sophistication, there are
variations in the threat actor profile. It is necessary to identify the threat actor profile for
the attack path generation. The threat actor profile considers two variables:

• Threat actor capability: Defines the attackers’ necessary skill, goals supplication,
resources required to execute an attack. It includes five given scales (very low, low,
moderate, high, and very high);

• Attack access vector: Define the necessary access path for an attack campaign. There
are four different access vectors for executing an attack: Local—A vulnerability is
exploitable with only local access; Adjacent—A vulnerability is exploitable with
adjacent network access; Network—A vulnerability is exploitable with network access;
Physical—A vulnerability is exploitable with physical access.

Target user profile: Threat actors are targeting various users for an attack campaign.
The AI4HEALTHSEC cyberattack path discovery method considers the target user profile
that assists the threat actor to execute the attack. The actors involved in the overall health-
care ecosystem, such as healthcare practitioners, nurses, admin workers and IT service
workers, could be targeted by a threat actor. The target user profile considers user context
such as knowledge and skill (high, medium, and low) for running various healthcare
services, applications, and maintenance operations. Users have different execution rights
within the system, e.g., an IT admin has the right to install and update applications and a
doctor uses different healthcare applications and devices for the healthcare service delivery.

4.2. Knowledge Base

As stated before, the attack path identification follows certain rules. However, to
generate the rules, it is necessary to define the KB as a foundation for the rule set generation.
The KB includes a set of predicate symbols to describe a predicate within the rule set. These
will mainly constitute domain elements attributes (e.g., the attributes of assets), along
with predicates used in the reasoning process. The list is not exhaustive, and the KB and
quantifiers can be extended to capture a more complete or different view of the domain.

Symbols: The following symbols are used for the KB rule set generation:

• Vul denotes Vulnerability which links with an asset;
• Asset denotes specific assets of the overall healthcare ecosystem and possible cyber de-

pendencies with other assets including Hosting, ExchangingData, Storing, Controlling,
Processing, Accessing, Installing, Trusted, Inclusion, Interaction, and Connected;

• TA and TAP denotes Threat Actor and Threat Actor Profile, respectively with capability
VeryHigh, High, Moderate, Low, and VeryLow, threat require for an attack;

• AV denotes Access Vector with Local Network, Adjacent Network, Local and Physical;
• Vuln_PR denotes Privileged Required as a level of privileges, i.e., None, Low, and

High, before successfully exploiting a vulnerability by a Threat Actor;
• Vuln_AC denotes Attack complexity in terms of certain conditions, i.e., Low and High,

beyond the attacker’s control that must exist in order to exploit the attack;
• Vuln_UI denotes the user interaction, i.e., None and Required, excluding the threat

actors for an attack;

36



Appl. Sci. 2022, 12, 4443

• TUP denotes the Target User Profile, i.e., High, Medium, and Low, that assists an
attacker to execute an attack;

• Vuln_Exp denotes vulnerability exploitability level, i.e., High, Medium, and Low,
based on the exploitability properties;

• Vul_Exp_Fea denotes specific exploitability features of the vulnerability.

The following relationship symbols are used for the KB rule set generation:
Connected relation defines the connectivity between two assets due to the dependency

or through the related vulnerabilities. Asset dependencies and inherent vulnerabilities
within the asset are considered for the connected relation. Additionally, connectivity can be
also achieved if the assets are in the same network. The KB for the connected relation is
given below.

Connected using assets dependency.

• ∀asset1,asset2 ExchangingData(asset1,asset2) ∨ Storing(asset1,asset2) ∨ Configur-
ing(asset1,asset2) ∨ Updating(asset1,asset2) ∨ Accessing(asset1,asset2) ∨ Installing
(asset1,asset2 ⇒ Connected (asset1,asset2) ∧ Connected(asset2,asset1)

Connected using vulnerability.

• ∀vuln1,vuln2,asset1,asset2 Connected(vuln1,asset1, vuln2,asset2) ⇒ Connected
(vuln2,asset2, vuln1,asset1)

Accessible relation denotes threat actors with specific profiles that can access the asset
using a specific access vector required for a confirmed vulnerability.

• ∀vuln, asset,TA vuln_AV() ∧ TAP() ⇒ Accessible(vuln,asset,TA)

Exploitable relation denotes threat actors that exploit a specific vulnerability on an
asset. The threat actor needs to access the asset for exploitation using the appropriate
profile that links with the required base metric values.

• ∀vuln,asset,TA Accessible(vuln,asset,TA) ∧ (vul_UI() ∨ vul_PR() ∨ vul_AC()) ∧ TAP()
⇒ Exploitable(vuln,asset,TA)

Attacked relation denotes when a threat actor successfully attacks an asset based on a
specific vulnerability exploitation and certain profile. Therefore, threat actor accessibility
and vulnerability exploitability are required for an attack.

• ∀vuln,asset,TA Accessible(vuln,asset,TA) ∧ Exploitable(vuln,asset,TA) ⇒ Attacked
(vuln,asset,TA)

4.3. Attack Path Generation
4.3.1. Rules Using Access Vector

An existing vulnerability on an asset is accessible by a threat actor based on the possible
access vectors such as Network, Adjacent Network, Local, Physical (AV: N/A/L/P).

• If AV is ‘Network’ (i.e., remotely exploitable), this means both asset and TA are
connected to the same network (Internet).

• ∀vuln, asset,TA, locNetwork(TA,loc) ∧ ConnectsTo(asset,loc) ∧ Vulnerability(vuln,asset)
∧ Network(vuln) ⇒ Accessible(vuln,asset,TA).

Otherwise, if AV is ‘Adjacent Network’ (i.e., exploitable over local network) and both
asset and TA are connected to the same local network.

• ∀vuln,asset,TA,loc AdjacentNetwork(TA,loc) ∧ ConnectsTo(asset,loc).
• ∧Vulnerability(vuln,asset) ∧ (AdjacentNetwork(vuln) ∨ Network(vuln)) ⇒ Accessi-

ble(vuln,asset,TA).

4.3.2. Rules Using Base Metrics

The reason for considering vulnerability exploitability is that there are too many con-
firmed vulnerabilities published each month and it is challenging for healthcare entities to
fix all these vulnerabilities. It is necessary to consider the base metrics such as attack vector,
attack complexity, privileges required and user interaction for attack path generation. It is
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worth mentioning that not all vulnerabilities can be easily exploited due to the nature of
the specific product, overall system context and threat actor profile. Additionally, vulnera-
bilities do not always exploit in isolation, and there is a link between the vulnerabilities
and healthcare assets for an attack campaign.

4.3.3. Access Vector and Privileges Required

If two vulnerabilities are linked into two different dependent assets, and entry point
assets’ vulnerability requires AV = N and PR = L and target point assets’ vulnerability
requires AV = L and PR = N, then TA with AV = N can easily act as a local user to exploit the
vulnerability for the target asset. Hence, TA can reach the target asset using the vulnerability
of the entry point asset.

Note that if a threat actor obtains (PR = H) for a specific vulnerability on an asset,
then TA can exploit the other vulnerabilities on the same asset with lower PR. It implies
PR:H ≥ PR:L ≥ PR:N.

• ∀vuln1,asset1,vuln2,asset2, TA(vuln1_AV(N)∧ vuln1_PR(L))∧ (vuln2_AV(N) vuln2_PR(L))
⇒ Accessible(vuln2,asset2,TA).

4.3.4. Target User Profile and User Interaction

Vulnerabilities often require a certain level of user interaction for successful exploita-
tion. AI4HEALTHSEC correlates the target user profile with the user interaction for this
purpose. Generally, three types of user profiles (high, medium, and low) exist depending
on knowledge, skill, and experience. If a vulnerability needs user interaction and the target
user profile is low for that interaction, this indicates that the user has a lack of knowledge
about the context. It is assumed that in such a scenario, the threat actor with a very high
and high profile (AC = VH/H) can exploit the vulnerability with the required access vector.

• ∀vuln,asset,TA Vuln_UI(R) ∧ Vuln_TUP(L) ∧ TA_AC(VH or H) ⇒ Exploitable
(vuln,asset,TA).

4.3.5. Threat Actor Profile and Attack Complexity

If the attack complexity (AC = H) is high, then the threat actor requires a very high or
high profile to exploit the vulnerability. For such cases, there are specific conditions beyond
threat actor control that are required to be completed before exploitation. A threat actor
with very high and high profile is more likely to successfully exploit the vulnerability.

If the threat actor is capable of high AC to trigger an attack on an asset, then it is more
likely that the threat actor can exploit also the other low AC on vulnerabilities on the same
asset. It implies AC:H ≥ AC:L.

• ∀vuln,asset, TA Vuln_AC(H) ∧ Vuln_TAP(VH ∨ H) ⇒ Exploitable(vuln,asset,TA).

4.3.6. Rules Using Vulnerability Exploitability

There are a number of key exploit features, such as proof-of-concept, weaponized,
and arbitrary code execution. The exploitability provides the threat actor to reproduce
the attack.

4.3.7. Exploitability Level and Threat Actor Profile

If the exploitable level for a vulnerability is high, then a threat actor with any profile
can attack the specific asset. Additionally, if a low-profile threat actor can successfully
attack an asset, then it is more obvious that a threat actor with any other profile level can
also attack the asset.

• ∀vuln,asset,TA Accessible(vuln,asset,TA) ∧ Vuln_Exp(H) ∧ Vuln_TAP(VH ∨ H VM ∨
L ∨ VL) ⇒ Attacked(vuln,asset,TA).
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4.3.8. Proof of Concept Exploit, Weaponized Exploit, Arbitrary Code Execution

There is a strong correlation between the availability of proof of concept and weaponized
exploitation for a successful exploitation. Weaponized exploits indicate that the exploit
works for every potential threat actor. Additionally, arbitrary code execution also provides
more exploitability possibilities.

• ∀vuln,asset, TA Vuln_Exp_Fea(PoC ExploitCode) ∧ Vuln_Exp_Fea(weaponized ex-
ploits) ∨ Vuln_Exp_Fea(arbitrary code execution) ⇒ Exploitable(vuln,asset,TA).

5. Evaluation: A Healthcare Scenario

The proposed attack path approach is evaluated using a real healthcare case study sce-
nario. This section presents an overview of the scenario, incorporating the implementation
of the attack path process. The studied context may identify the potential attacks and take
necessary measures to tackle the attacks and related vulnerabilities. The aims of this evalu-
ation are to: demonstrate the applicability of the proposed attack path generation method
into a real healthcare scenario; highlight the usefulness of CVSS metrics and exploitability
for attack path generation; and display the benefits of the KB rules and IoC for analysing
the attack path.

5.1. Healthcare Use Case Scenario

The chosen scenario is based on a user-centred Digital Health Living lab, which
provides a systematic user co-creation and co-production approach while integrating
research and innovation processes in a real-life setting [25]. The residents, council, service
providers, academic institutions, and technology companies are the key stakeholders within
this living lab and are involved in every step of the way, from the creation of a product or
service to commercialization. In particular, the related stakeholders contribute to health
innovation in a new way, receive the opportunity to help individuals and society and can
be key partners in inspiring health innovation based on their needs, perceptions, and user
experience. It is an open innovation ecosystem where the living lab acts as a unique test
bed for developing and testing prototypes or more mature digital healthcare solutions. The
scenario is mainly based on Tier 3 test and trial category according to the UK National
Institute for Health and Care Excellence (NICE) for Digital Health Technologies (DHTs). In
particular, Tier 3 aims to help people with a diagnosed condition and provides treatment
and health management. It includes tools used for treatment and diagnosis, as well as
those influencing clinical management through active monitoring or calculation. This may
include a symptom tracking function which records patient information and transmits this
to the healthcare team for the derivation and the support of the clinical decision.

Every involved stakeholder, such as patients, healthcare practitioners, residents, and
service providers, will engage with the living lab within their own infrastructures and
network connections. As such, they connect to the internet through their own Wi-Fi
(routers) and communicate through emails (PCs) or their mobile devices (mobile phones,
tablets, laptops). There is much critical big data involved in the scenario including patient
healthcare information, personal information, device usage and connectivity with other
devices. Additionally, the living lab includes various patient healthcare devices such as
insulin pump, infusion pump and Internet of Things (IoT) devices for healthcare treatment.
The scenario presented above is used to demonstrate the proposed methodology. The next
section provides a detailed description of the implementation.

5.2. Implementation of the Attack Path Generation

We follow the living lab healthcare scenario to implement the attack path generation
(see Figure 4). This section presents the implementation of the attack path generation.
Vulnerabilities of healthcare services and systems are the main components for the path
generation. In particular, the vulnerabilities in the healthcare sector are unique compared
to the other sectors. This is due to the connectivity of different medical devices with
the other parts of the network, and these medical devices, in general, have a lack of
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security measures. Healthcare information infrastructure contains a large number of legacy
systems that are hard to replace and threat actors are always looking into this system for
potential exploitation. Healthcare practitioners need to collect sensitive patient data, such
as personal and financial information, and therefore potential breaches of this data could
provide additional benefits to the criminals or inside attackers.

We made several assumptions for the purpose of implementation. In particular, the
home patients use an infusion pump and insulin pump for their treatment and the pump is
managed and configured by the healthcare practitioner. Additionally, there are IT devices,
such as computers, routers, servers and applications software and operating systems, that
are required for the overall system infrastructure. Finally, the low cost of IoT devices,
such as smart lamps and IP surveillance cameras, in both home and service provider
environments are considered. The security of medical devices is critical to protect patient
information and to ensure healthcare service delivery since the devices are connected to the
internet. These devices are dependent on the other IT devices and network infrastructure
to exchange and collate data from various sources for making clinical decisions. There
are vulnerabilities due to the interdependencies among the assets from the hardware,
software, human, and overall healthcare system context. Compromised healthcare devices
can be used to propagate the attack path on the other part of the healthcare information
infrastructure. Software is embedded in the devices to assist their functions and operation
of the medical devices. Therefore, an attack path can also be initiated and propagated from
this embedded software. Additionally, web services are commonly used for interfacing the
connected medical devices with the other parts of the system.

A list of assets is identified based on the scenario which consists of medical devices, IT
devices, IT infrastructure and applications. These assets are critical for the overall healthcare
service delivery and research activities for the living lab. The potential threat actors and user
profiles are also considered to demonstrate the attack path. We have extracted a number
of vulnerabilities from the CVE database and categorised them based on the assets of the
studied scenario. Additionally, CVSS is also considered for the base metrics properties
which are necessary for the ruleset. The identified vulnerabilities and base metrics are used
to generate the attack paths. The process allows the generation of a possible attack path
and the CVSS metrics impact value is considered to select the appropriate ones. The attack
path generation is iterative to generate the possible attack paths.

Figure 4. Living lab healthcare scenario.
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5.2.1. Identify Entry, Target Point Assets, and Possible Dependencies

This section combines the first three steps of the attack paths, providing a list of assets
identified based on the healthcare use case scenario, specifically, the healthcare service
delivery and related healthcare information infrastructure. Each device needs an interface
such as a wireless or network interface to connect with the other devices. For instance,
an insulin pump management system that is physically located at home has one wireless
interface to interact with another device interface. Note that we have only considered the
devices for the demonstration of the attack path. Entry and Target Point Assets: Medical
and IT device:

• Infusion Pump (A1): Braun’s Infusion System 871305U aims to deliver fluid such as
nutrients and medications into the patient’s body. Trained healthcare practitioners
should program the rate and duration for the medication. The pump stores patient
drug information;

• Insulin pump (A2): Medtronic MiniMed 508 is one of the most widely used pumps
for delivering a specific amount of insulin to the diabetic patient’s body. The device is
programmed to inject a specific amount of insulin set by the doctor into the patient
body. The pump stores patient sensitive insulin information;

• Insulin management system (A3): Omnipod DASH Insulin Management System
19191 is a tubeless and wireless system that allows continuous insulin delivery for
3 days. It consists of a pod that is worn directly on the patient’s body and a personal
diabetic manager which programs and controls the delivery;

• IoT devices (A4): There are several IoT devices that are relevant to the scenario. A
heartrate monitor (Maxim’s 700-MAXREFDES117) can be used to monitor the heart
rate (wearable device). Additionally, a smart light system (Philips) is also considered
for the healthcare service delivery;

• Information and communication network (A5): This includes multiple devices, such
as routers, WiFi, switches, wireless interface cards, and others that are responsible for
the connection from the device to the network;

• Computer system (A6): Windows-based workstation and servers connected to the
medical devices, patient interfaces and servers;

• Rugged tablets (A7): These tablets are commonly used for patient care applications
such as medication alerts and tracking, Electronic Health Records (EHR) support,
blood pressure monitoring, and connecting to barcode readers and can directly inter-
face to the other medical equipment. Healthcare practitioners can directly use these
tablets for patient treatment.

5.2.2. Information and Software

• Hospital information management system (A8): Care 2X software is a patient med-
ical record and staff management system. It supports web-based platforms and a
simple user interface. The patient medical record includes patients’ identifiable and
treatment information;

• SpaceCom and SpaceStation (A9): This is the software that operates the infusion
pump and resides either on the pump or the space station. Generally, the pump is
attached to the space station. We have considered Braun’s Infusion System 871305U,
which is linked with the SpaceCom 012U000050. SpaceCom is responsible to update
two critical functions, i.e., drug library and pump configuration. Drug libraries can
prevent incorrect dosing of drugs;

• Device usage information: This includes the amount of time used by the patient from
the device and the relevant programme data.

5.2.3. Possible Asset Dependencies

The identified assets rarely perform any operation alone. Assets within the healthcare
system are connected for a specific service delivery. For instance, the data from the home
infusion pump are transferred to the pump server. The server correlates the data for making
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clinical decisions. The home care service software needs to update the medical device
installed into the home healthcare system. The insulin pump needs to inject insulin into
the patient’s body and is controlled by the software through wireless communication.
Therefore, there are different types of dependencies among the assets, which are shown in
Table 4.

Table 4. Asset dependency.

Entry Point Asset and Type Target Point Asset and Type Dependency Type

A9 (SpaceCom Software) A1 (Infusion Pump) Configured_to, Updated_to
A3 (Insulin Management System) A2 (Insulin Pump) Configured_to, Updated_to

A8 (Care2X-Hospital Management System) A6 (Windows System) Installed_on, Updated_by
A5 (Router) A6 (Windows System) Connected_to, Exchange_data

A4 (IoT Device) A5 (Router) Connected_to, Exchange_data
A7 (Tablet) A8 (Care2X-Hospital Management System) Exchange_data

A9 (SpaceCom Software) A1 (Infusion Pump) Configured_to, Updated_to

The asset dependency graph is also presented in Figure 5.

Figure 5. Asset-dependency graph.

5.2.4. Entry and Target Point Vulnerabilities

Once the assets and their dependencies are identified, the next step is to identify the
vulnerabilities that can be exploited in order to compromise the assets. As mentioned
before, the CVE list is used for vulnerability identification. There are fifteen confirmed
recent vulnerabilities considered among those assets which go as follows:

• two vulnerabilities are identified on asset A1;
• one vulnerability is identified on asset A2;
• one vulnerability is identified on asset A3;
• one vulnerability is identified on asset A4;
• three vulnerabilities are identified on asset A5;
• three vulnerabilities are identified on asset A6;
• one vulnerability is identified on asset A7;
• one vulnerability is identified on asset A8;
• two vulnerabilities are identified on asset A9.

Once the vulnerabilities are identified, it is necessary to understand the base nature
of exploitability and the base metric for each specific vulnerability. This allows for the
analysis regarding how the asset of this scenario can be exploited considering the threat
actor profile. Table 5 presents details regarding the identified vulnerabilities.
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Table 5. Vulnerabilities and CVSS metrics for each asset.

Asset Vulnerabilities & Exploitability

A1 = Braun’s Infusion Pump

A1,V1 = Lack of input validation provides command line access and privilege escalation. TA requires in the same
network as device

CVE-2021-33886, A1.V3 = VH(8.8)
AV:A/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H

A1,V2 = Unrestricted file upload that can overwritten critical files due to privilege escalation
CVE-2021-33884, A1.V4 = VH(9.1)

CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:H/A:H

A2 = Medtronic MiniMed 508 insulin pump

A2,V1 = lack of security (authentication and authorization) in RF communication protocol with other devices such as
blood glucose meter and glucose sensor transmitters. TA requires in the same network as device can inject or intercept

data and change pump settings
CVE-2019-10964, A2.V1 = VH(8.8)

CVSS:3.0/AV:A/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H

A3 = Insulin Management System

A3,V1 = improper access control in the wireless RF communication protocol allows local TA to intercept or modify
insulin data and change pump settings.

CVE-2020-10627 A3.V1 = VH(8.1)
CVSS:3.1/AV:A/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:N

A4 = IoT device Philips Hue light bulb

A4,V1 = communication protocol can be abused to remotely installed malicious firmware in the light bulb as remote
code execution through buffer overflow and spread to other IoT devices that use Zigbee communication protocol.

CVE-2020-6007 A4.V1 = H(7.8)
CVSS:3.1/AV:A/AC:H/PR:N/UI:R/S:C/C:H/I:H/A:H

A5 = Router (Buffalo, Cisco RV
Series—Netgear)

A5,V1 (Buffalo routers) = Bypass authentication procedures on the affected routers though files which do not need
authentication and gain root level access. It enables telnet service to connect other devices’ control such as IoT Devices.

CVE-2021-20090 A5.V1 = VH(9.8)
CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H

A5,V2 (Cisco RV series) = Remote TA with administrative privileges inject arbitrary commands into operating system
due to lack of input level validation through web-based interface.

CVE-2021-4012 A5.V2 = H(7.2)
CVSS:3.1/AV:N/AC:L/PR:H/UI:N/S:U/C:H/I:H/A:H

A5,V3 (Netgear router) = unauthenticated TA can affect the device through buffer overflow attack.
CVE-2018-21224 A5.V3 = VH(8.8)

CVSS:3.1/AV:A/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H

A6 = System (Windows Compatible)

A6,V1 = A remote code execution vulnerability allows TA to execute arbitrary code and gain same right as current
user. This allows to install program modify files based on the existing user rights.

CVE-2019-1236 A6.V1 = H(7.5)
CVSS:3.1/AV:N/AC:H/PR:N/UI:R/S:U/C:H/I:H/A:H

A6,V2 = A remote code execution vulnerability allows TA to execute arbitrary code and gain same right as current
user. TA needs control of a server to execute this vulnerability and tricks the user for the to connect the server.

CVE-2019-1333 A6.V2 = H(7.5)
CVSS:3.1/AV:N/AC:L/PR:N/UI:R/S:U/C:H/I:H/A:H

A6,V3 = A remote code execution vulnerability allows TA to run arbitrary code with system privilege. TA could install
program, amend files, and create new users with full rights.

CVE-2021-36958 A6.V3 = H(7.8)
CVSS:3.1/AV:L/AC:L/PR:N/UI:R/S:U/C:H/I:H/A:H

A7 = Rugged Tablet (Dell)

A7,V1 = A local TA without the necessity of authentication can exploit this vulnerability and execute arbitrary code in
system management mode.

CVE-2020-5348 A8.V1 = H(7.8)
CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H

A8 = web-based hospital management
system (Care2X)

A8,V1 = A cross site scripting vulnerability exploited during patient registration. TA can send the XSS payload to this
vulnerable parameter and take control of another register user. TA needs victim user interaction

Exploitability features = PoC and Weaponized Exploit,
CVE-2021-36352 A9.V1 = M(5.4)

CVSS:3.1/AV:N/AC:L/PR:L/UI:R/S:C/C:L/I:L/A:N

A9 = SpaceCom

A9,V1 = Lack of authentication for critical space com function allows connection to the pump
Exploitability features = PoC and Weaponized Exploit, arbitrary code execution

CVE-2021-33882, A1.V1 = VH(8.6)
AV:N/AC:L/PR:N/UI:N/S:C/C:N/I:H/A:N

A9,V2 = Clear text transmission allows TA to snoop network traffic.
Exploitability features = PoC and Weaponized Exploit, arbitrary code execution

CVE-2021-33883, A1.V2 = H(7.5)
AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:N/A:N

5.2.5. Threat Actor and User Profile

The threat actor profile considers capability and attack vectors for exploiting a vul-
nerability. The threat actors can be external or internal with different motivations such as
financial gain, harm to the patient, and/or competitors. In general, a threat actor needs
to understand the device-specific verification information, and specifically for the med-
ical devices, it is necessary to understand spectrum, transmission radio frequency, and
data structure.
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• Infusion Pump: TA should have knowledge regarding the access to the local network,
CAN bus data structure, escalation of privilege from user access to admin access and
the pump configuration;

• Medtronic Insulin Pumps: Knowledge regarding how to access the network and
intercept radio frequency and the pump configuration;

• Smart bulb: Knowledge of smart bulb operation and access point to overtake the
bulb control.

Finally, healthcare practitioners and other users need to perform various activities
based on the roles for the healthcare service delivery. For instance, a practitioner needs
to update the patient’s medical records, set insulin levels, and monitor infusion pump
activities for the service delivery. Therefore, the practitioner needs to have basic knowledge
about how to operate the devices and their security. IT users need to update and manage
all devices, including medical and IT, within the network.

5.3. Results: Attack Path Generation

Once the asset dependencies and vulnerabilities are identified, this final step aims to
generate the attack path. There are a number of attack paths generated from the source asset
to the target asset through the combination of vulnerabilities and dependencies. Note that
there can be additional attack paths generated from the scenario, but this section presents
only the relevant ones. Additionally, we only considered the three critical target point assets,
i.e., infusion pump, insulin pump, and healthcare system, for the attack path generation.

Attack Path—Target Point Infusion Pump: It is assumed that the threat actor (TA)
is acting as an outsider without any prerequisite credential (PR:N) and user interaction
(UI:N) can gain user level access to the SpaceCom system (A9,V1) through the network
(AV:N) and escalate the privileges to gain root access. This allows the TA to communicate
with the pump (A1,V1) with no privilege (AV:A) and user interaction (UI:N). The TA
can finally manipulate the drug library or pump configuration. The TA can also execute
malicious code in the pump’s RTOS by accessing the SpaceCom (A9,V2) and executing the
code and overwrite the pump (A1,V2) RTOS. Additionally, a TA who is able to access the
hospital management system can obtain the patient drug information and further exploit
the infusion pump. The TA can also exploit the hue light bulb (A4,V1) to access the home
network and then further propagate into the infusion pump. This can happen mainly when
the pump is idle or in standby mode. There are four potential attack paths through which
the target point infusion pump can be exploited:

A5,V1 → A9,V1 → A1,V1
A9,V2 → A1,V2
A8,V1 → A9,V1 → A1,V2
A4,V1 → A9,V1 → A1,V1

Attack Path—Target Point Insulin Pump: It is assumed that an internal threat actor
(i.e., may be an employee) who has access to the insulin management system (A3,V1) using
(AV:A/L), unrestricted (user) access (PR:N), basic computer skills (AC:L) and without user
interaction (UI:N) exploits the insulin pump (A2,V1). The TA can also exploit the router
(A5,V3) through an adjacent network and access the insulin management system (A3,V1)
to access the pump (A2,V1). A TA from an adjacent network can take control of the hue
lightbulb (A4,V1), become unreachable to the user and send malicious code to other devices
and networks. It is assumed that a patient as the user may have a lack of knowledge about
the smart bulb operation, which can be exploited by the TA. When the user interacts with
the bulb, the TA can take over the control and propagate to the other part of the network.
There are three potential attack paths which can exploit the target point insulin pump.

A5,V3 → A3,V1 → A2,V1
A3,V1 → A2,V1
A4,V1 → A3,V1 → A2,V1
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Attack Path—Target Point Hospital Management System: It is assumed that a TA with
network access through the router (A5,V2) can exploit the healthcare system (A8,V1) that is
installed on a Windows-based system (A6,V1). User interaction is necessary to exploit this
attack path; therefore, a healthcare practitioner needs to interact with the system for the
exploitation. Additionally, such an attack path needs a TA with high skills who needs root
level privilege to exploit the router and amend the user rights within the windows system.
It allows them to access the hospital management system and add new users and gather
sensitive data from the system. Another possibility could be that an internal TA with local
access from tablet (A7,V1) may also attempt to exploit the (A9,V1) through the windows
system (A6,V3). This path needs a local access vector and user interaction. There are three
potential attacks through which the target point infusion pump can be exploited.

A5,V3 → A6,V1 → A8,V1
A5,V3 → A6,V2 → A8,V1
A7,V1 → A6,V3 → A8,V1

5.4. Generate and Prioritise Evidence-Based Vulnerability Chain

We assume that there are two confirmed events that occurred in the studied living lab
scenario. The first event occurred in the patient homecare unit, where cyber threats are
detected on the home care and the IoCs are analysed. In the current scenario, unauthorized
access to the SpaceCom software (PoC = A9) allows the threat actor to access the infusion
pump (PoC = A1). The IoCs in this case are the log (IoC1), amendment of drug library
(IoC2), pump configuration (IoC3), and obtained pump data (IoC4). This case enfolds
a confirmed event of a cyberattack. To discover and produce the potential cyberattack
paths for the compromised asset A1, cyber dependency with the infusion pump (A1) is
considered, and possible attack paths for A1 are listed. The second event is data leak, where
high-profile TAs access the hospital management system (PoC = A8) and collect the data
(IoC6) through Windows system (PoC = A6) using IoC5 and IoC7 (user right and install
program). Cyber threats are detected in the healthcare service provider infrastructure.
Table 6 shows the evidence chain for the identified security incidents.

Table 6. Attack path based on confirmed security events and potential evidence chains.

Security Incident Attack Path Evidence Chain

Amendment of drug level
and pump configuration

A5,V1 → A9,V1 → A1,V1
A9,V2 → A1,V2

A8,V1 → A9,V1 → A1,V2
A4,V1 → A9,V1 → A1,V1

A5,V1 → A9, IoC1 → A1, IoC2
A9, IoC4 → A1, IoC3

A8,V1 → A9, IoC1 → A1, IoC2
A4,V1 → A9, IoC1 → A1, IoC2

Patient data leak
A5,V3 → A6,V1 → A8,V1
A5,V3 → A6,V2 → A8,V1
A7,V1 → A6,V3 → A8,V1

A5,V3 → A6, IoC5 → A8, IoC6
A5,V3 → A6, IoC7 → A8, IoC6

A7,V1 → A6,V3 → A8, IoC6

To estimate the exploitability for each reconstructed attack path, different attackers’
profiles are considered and displayed in Table 7. To estimate the EL per vulnerability, with
respect to the analysed IoC, only vulnerabilities of the assets interconnected with the IoCs
are considered.

Once the individual vulnerability and TA exploitability level are identified, then it
is necessary to determine the probability of an attack path exploitation level. This needs
to consider IoCs related to the attack path. Note that the probability of exploitation for
a disclosed IoC is the maximum value; therefore, exploitation level for the attack path
depends on the vulnerabilities that are not exploited. These values are converted to
qualitative values to estimate the attack path exploitability level (APEL) defined in the
previous section. This is depicted in Table 8 for APEL. We made a number of assumptions
for a given vulnerability based on the CVSS metrics. For instance, attack path 1 in the
initial node, A5,V1, and threat actor capability is considered as a medium to exploit the
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vulnerability. Therefore, the exploitation level for the A5,V1 is H by following Table 8 and
APEL for the overall attack path is H. Another example could be attack path 2, where both
nodes are exploited; therefore, the APEL should be the maximum value. The TA capability
for the A4,V1 is low, A5,V3 is medium A7,V1 is high, and A6,V3 is medium.

Table 7. Individual vulnerability exploitation.

Vulnerability Asset
Individual

Vulnerability
Level (IVL)

Threat Actor’s Exploitability Level

Capability =
Very Low (VL)

Capability =
Low (L)

Capability =
Moderate (M)

Capability =
High (H)

Capability =
Very High (VH)

V1 A1 IVL(A1,V1) = VH M H H VH VH
V2 A1 IVL(A1,V2) = VH M H H VH VH
V1 A9 IVL(A9,V1) = VH M H H VH VH
V2 A2 IVL(A9,A2) = H L M H H VH
V1 A6 IVL(A6,V1) = H L L H H VH
V2 A6 IVL(A6,V2) = H L L H H VH
V1 A8 IVL(A8,V1) = VH M H H VH VH

Table 8. Prioritised attack path.

AP No. Attack Paths Evidence Chains
Exploitation Level

Chain (ELC)
Exploitation
Probability

APEL

1 A5,V1 → A9,V1 → A1,V1 V1 → IoC1 → IoC2 H → IoC1 → IoC2 0.75 × 1 × 1 = 0.75 H
2 A9,V2 → A1,V2 IoC4 → IoC3 IoC4 → IoC3 1 × 1 = 1 VH
3 A8,V1 → A9,V1 → A1,V2 V1 → IoC1 → IoC2 M → IoC1 → IoC2 0.5 × 1 × 1 = 0.5 M
4 A4,V1 → A9,V1 → A1,V1 A4,V1 → A9, IoC1 → A1, IoC2 M → IoC1 → IoC2 0.5 × 1 × 1 = 0.5 M
5 A5,V3 → A6,V1 → A8,V1 A5,V3 → IoC5 → IoC6 H → IoC5 → IoC6 0.75 × 1 × 1 = 0.75 H
6 A5,V3 → A6,V2 → A8,V1 A5,V3 → A6, IoC7 → A8, IoC6 H → IoC7 → IoC6 0.75 × 1 × 1 = 0.75 H
7 A7,V1 → A6,V3 → A8,V1 A7,V1 → A6,V3 → A8, IoC6 H → H → IoC6 0.75 × 0.75 × 1 = 0.56 M

6. Discussion

The purpose of this research was to present the attack path discovery method consid-
ering the unique characteristics of the healthcare information infrastructure, such as assets
and their cyber and physical dependencies, vulnerabilities, threat actor and user profile,
and IoC. A scenario in a real-life healthcare setting has also been used to prove the imple-
mentation of the attack path discovery method. The cyber threat landscape is constantly
evolving, and threat actors are highly skilled in conducting sophisticated and multiple
attacks on a number of infrastructures. They target the initial access point assets and exploit
possible vulnerabilities to reach the target point through several intermediate nodes.

Research shows that most studies on cybersecurity in the healthcare field focus on
technical aspects [26]. Following this focus on technology, other significant components,
such as threat actors’ profiles and related psychosocial and behavioural characteristics
remain understudied in the field [20]. This comes as a surprise when taking into considera-
tion that most cyberattacks are caused by individuals and the adopted risk mitigation by
technological solutions is successful to a limited extent. The core of a sturdy strategy for
cyberattacks needs to be human-centric and consider attackers’ profiles for ultimate benefit.
It is worth noting that attack potentials are positively connected to attackers’ profiles, while
studying this further would shed light on the early detection, prevention, and protection
of cybersecurity incidents within healthcare organizations. Examining involved human
aspects is also of paramount importance to further investigate how healthcare professionals
understand data privacy and security and its significance. This significance lies on the
attitudes towards cyber threats, operations, and related controls.

The proposed methodology provides an understanding of possible entry point assets
for the studied context and possible paths to reach the target point asset. It adopts the CVSS
metrics and its exploitability feature for a common understanding of how the threat actor
can exploit particular attack paths. Additionally, threat actor individual and exploitability
capability are also taken into consideration for attack path generation and prioritisation.
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Hence, the combination of threat actor capability, i.e., skill, motivation, and location, with
the availability of exploitability features justifies the prioritised attack paths. Healthcare
information infrastructure is an attractive target for the threat actor due to the potential
benefits of obtaining sensitive patient data. In recent years, the value of personal medical
data has increased on the black market. Credit card information sells for USD 1–2 on
the black market, but personal health information (PHI) can sell for as much as USD 363.
Therefore, the proposed attack path discovery and prioritisation provides an effective way
to identify the potential attacks and undertake suitable control to tackle the attacks.

Cybersecurity issues should be considered from the design stage of the medical
devices, otherwise risks will continue to grow. Medical devices are no longer a standalone
component, but they are rather connected with other devices for overall healthcare service
delivery. Vulnerabilities in connected devices used in hospital networks would allow
attackers to disrupt healthcare service delivery and medical equipment. There is a need for
sound and proven cybersecurity approaches for ensuring overall security. Threat actors
tend to exploit vulnerabilities within a network and form attack paths from one asset to
another until they have reached the asset they wish to harm. The proposed approach
assists in identifying the common vulnerabilities that can be exploited within the healthcare
context so that the necessary course of action can be taken into consideration.

7. Conclusions

Enhancing the security and resilience of healthcare service delivery is of paramount im-
portance for securing the overall healthcare ecosystem. It is always necessary to ensure the
safety of patients’ data and secure healthcare service delivery. The proposed approach pro-
vides an understanding of the areas that have potential for cyberattacks. This is conducted
by looking for existing vulnerabilities and their possible exploitations based on the assets
and their dependencies for possible attack path generation. This work contributes to the
identification of the vulnerabilities from both healthcare and IT devices and demonstrates
how the attack paths can be propagated from a connected medical device to other parts
of the system. This can also be possibly achieved in other infrastructures and scenarios,
identifying the relevant attack areas and deploying appropriate measures. The novelty of
the proposed approach is to analyse the threat actor profile to generate attack paths and use
evidence-based vulnerability chain to prioritise the attack path. This allows us to determine
the suitable control to tackle the attacks. Finally, the approach is applied to the living lab
healthcare scenario, and the results from the studied context identify the possible attack
paths based on the asset and related vulnerabilities. These paths are prioritised so that
suitable controls can be identified to tackle the attack for secure healthcare service delivery.
As part of our future research, we would like to deploy the proposed methodology in
different healthcare context and other supply chain system. Additionally, it is necessary to
develop a checklist of controls that would link with the attack paths for the overall cyber
security improvement.
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Abstract: The subject of this article is to determine COVID-19 vulnerability risk and its change over
time in association with the state health care system, turnover, and transport to support the crisis
management decision-making process. The aim was to determine the COVID-19 Vulnerability Index
(CVI) based on the selected criteria. The risk assessment was carried out with methodology that
includes the application of multicriteria analysis and spatiotemporal aspect of available data. Partic-
ularly the Spatial Multicriteria Analysis (SMCA) compliant with the Analytical Hierarchy Process
(AHP), which incorporated selected population and environmental criteria were used to analyse the
ongoing pandemic situation. The influence of combining several factors in the pandemic situation
analysis was illustrated. Furthermore, the static and dynamic factors to COVID-19 vulnerability risk
were determined to prevent and control the spread of COVID-19 at the early stage of the pandemic
situation. As a result, areas with a certain level of risk in different periods of time were determined.
Furthermore, the number of people exposed to COVID-19 vulnerability risk in time was presented.
These results can support the decision-making process by showing the area where preventive actions
should be considered.

Keywords: risk management; decision-making; Spatial Multicriteria Analysis; temporal analysis;
vulnerability risk; COVID-19

1. Introduction

The end of 2019 brought the outbreak of SARS-CoV-2 followed by introducing a global
state of emergency that affected the lives of people around the world [1,2]. For this reason,
it became a popular subject of research for scientists from various disciplines. The spatial
nature of the pandemic determines the increasing number of articles with the use of spatial
data. Among them, the discussion on new challenges in operational crisis management
and the role of spatial information and spatial technologies is visible [3].

The search performed on the “crisis management” phrase only in the Web of Science
database (WoS) resulted in 59,138 research items (as of 20 October 2021), 5620 of them have
been published in 2021, and 4424 were related to the pandemic of COVID-19. This leads
to the conclusion that the problem of crisis management is a hot topic of science. In order
to identify the ongoing trends in literature, “crisis management spatial analysis” research
was performed and the obtained results were presented with the use of Weighted Network
Visualization (WNV) shown in Figure 1.

The WNV was prepared with the use of the fractionalization method for normalizing
the strength of the links between items [4]. The bigger the label, the higher the weight of
certain terms. The colours are determined by the cluster to which the term belongs, while
lines represent links: the closer two terms appear, the stronger the correlation between them.
For example, Geographic Information System (GIS) is strongly related to “vulnerability”,
“model”, “framework” etc. The homonyms joining were not performed.
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Figure 1. Weighted network visualisation of associations between terms within “crisis management
spatial analysis” keyword relations (own study).

The WNV shows a strong presentation of management, crisis, model, and GIS in the
body of literature. Also, well-established trends on the possible applications of spatial anal-
ysis and SMCA (the analyses take into consideration a group of variable factors and assess
their changes over time) were noticeable in broadly understood decision process and deci-
sion management with: suitability map [5–9], scenario evaluation method [10–12], resources
allocation [13], transportation and vehicle routing [14–18], impact assessment [19–21], loca-
tion migration and allocation [13,20,22,23], risk management and natural hazards occur-
rence can be noted [2,24–32]. This state according to [30,33–35] will persist, driven by the
new applications of spatial analysis in GIS, and will include crisis management aspects.

More detailed analysis shows the use of the GIS environment [36–38] with recently
developed methodologies to support the decision-making process in crisis management at
the local level [29,39] and it is emphasized that its essential part was the visualisation of
crisis progress, shown with the use of interactive, realistic, large-scale simulations [40].

The results of analyses may be used in several crisis situations like flooding,
landslides [24,41] or for vulnerability or risk index estimation of selected areas or infras-
tructure elements [40,42–44] in order to provide the recommendation for the administrative
strategies to minimize the social and economic effects of crisis situations [32,45–47].

According to the authors, the vulnerability index [31], susceptibility models, or sus-
ceptibility maps [48,49] should be determined with the use of different methods [50],
depending on the area and crisis situation in order to ensure optimal performance and
reliable results [51,52]. Reliability of results depends on the accuracy of data which is
one of the crucial problems revealed in publications on spatial data next to the tech-
niques for information extraction [24,41,53,54]. Those are followed with conclusions on
the use of heterogeneous data sources and remotely sensed data to improve the analysis
results, [53,55,56], furthermore, authors show that the potential improvement in the accu-
racy of GIS-based analysis can be achieved by applying a dedicated approach, for example,
neural network [54], integrated uncertainty-sensitivity analysis approach, and attributed
model of criteria weights [56].
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Pandemic situation publications are considering the causes and potential effects of
COVID-19. Researchers show the positive associations between new COVID-19 cases and
death cases linked to several factors: public transport usage [15,23,46–60], temperature
and humidity [21,61], age, sex, blood group, had influenza [50,62,63], poverty [64], and
socio-cultural factors [65]. Furthermore, the juxtaposition of virus transmission acceleration
in several countries in relation to the global policy and government responses, human
mobility, environmental impact, socioeconomic, lockdown, migration, and vaccination
was delivered [20,59,66,67] based on the developed spatiotemporal data matrix of factors
and open data sources. The above leads to the determination of the most significant
factors, enabling the prediction and modelling of the spatial patterns of virus spread. The
researchers commonly use spatial statistic tools such as linear and non-linear regression [50],
Bayesian Belief Networks [68], Adaboost algorithm [69], Potential Model [70], Joinpoint
analysis [71], machine learning [50,72] in modelling COVID-19 spatial pattern. As a result,
it is possible to forecast the COVID spread and to deliver an effective response in cluster
containment for crisis situations with intelligent computing [20,62,70,73,74].

Publications considering the effects of the pandemic show the use of socioeconomic
data collection on daily new COVID-19 cases to link them to real gross domestic product, un-
employment rate, housing prices, export and import, energy system environment [73,75–79].

In the analysed publications on the subject of crisis management, the following prob-
lems are considered: the definition of risk, vulnerability, and hazard [80], the analysis of the
existing crisis situation, and the management process [2,32,38,65,81–83]. The pivotal role of
crisis management is to ensure public safety, in the matter of a pandemic, it is closely related
to the capacity of the healthcare system [44,84–86]. Therefore, crisis management has to
eliminate the possibility of an overload of the healthcare system, so that the number of
new hospitalisations does not exceed the capacity of the healthcare system in a given area,
as shown in Figure 2. Therefore, it is necessary to efficiently manage the available forces
(medical staff, volunteers, services) and resources (infrastructure, equipment, equipment,
and material reserves, restrictions, vaccinations) in time.

Figure 2. Healthcare system capacity and possible new cases.

Thus, it was assumed that the essential knowledge on the pandemic situation and
COVID-19 vulnerability should be considered in a spatiotemporal approach. This deter-
mined the aim of our research: to estimate the vulnerability index based on selected criteria
along with the determination of its change over time in order to assess the threat caused by
COVID-19 in the given area. This will extend the approach presented [31].
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Based on a comprehensive analysis of the literature, the aim of this article was to
answer the following questions:

• What information can a study of the spatiotemporal vulnerability and risk provide?
• What is the influence of selected criteria on the final value of the COVID-19 vulnerability?
• What direction of changes over time can be observed in the distribution and concen-

tration of vulnerability risk?
• What decisions can be made based on the result of the spatiotemporal vulnerability map?

The novelty of our approach is the use of spatiotemporal multicriteria analysis for
COVID-19 situation vulnerability risk assessment in order to support a quick decision-
making process. The solution will be valuable to making decisions on implementing
preventive actions in the selected area, especially in the initial period of a pandemic by
showing the change of vulnerability risk in the selected area in time. Furthermore, the use
of basic data in COVID-19 vulnerability estimation plays a pivotal role by addressing the
methodology to the countries where more detailed data are not available.

2. Materials and Methods

The spatiotemporal analysis approach applied in this research was based on Spatial
Multicriteria Analysis (SMCA) with Analytical Hierarchy Process (AHP) for weights calcu-
lation described in. The used methodology is presented in Figure 3. The general concept
of SMCA was described in [87,88]. In this article, SMCA allows for the determination
of COVID-19 Vulnerability risk—defined as a situation where the risk of exposure to the
hazard might be increased [89]. The presented approach allows for the estimation of the
COVID-19 Vulnerability risk index (CVI) of the selected area and its characteristics over
time. The test field of the solution was Germany.

Figure 3. The methodology of spatiotemporal index estimation performed in research (own study).

AHP methodology allows for the importance estimation by calculating the weight of
selected criteria by means of pairwise comparisons of each evaluation criterion.
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The application of the AHP methodology is based on a value-function type and as
such requires an estimation of the value function and criterion weights to determine the
summary statistics on the selected area as below [87]:

CVI =
n

∑
i=1

Wi × Sn (1)

where CVI is COVID-19 Vulnerability Index, Wi is normalized weight, and S is the Vul-
nerability Score of the area on the selected layer (n) as value function. Value function and
weights are obligatory for estimation. The function values in the paper case study were
determined by calculation based on the available dataset. The weights were estimated by
pairwise comparisons of each evaluation criteria. This determines the relationship strength
between the criteria, that was used to rank selected criteria based to the [90].

In this paper CVI calculations were extended by authors with the spatiotemporal
analysis to show CVI change in time as follows:

ΔCVI = CVIti − CVIti−1 (2)

where ΔCVI is the change in time for summary COVID-19 Vulnerability Index for three
months’ interval.

Furthermore, based on the value of CVI on the selected area the population number
endangered with a certain level of vulnerability in time was estimated. This was performed
with the use of GIS systems.

The results validation consists of comparing the values of CVI with new cases over time
and this is followed with the calculation of the value of the R-squared, to show the propor-
tion of the variance for confirmed COVID-19 cases and CVI index as dependent variables.

Criteria and Weights

Based on the literature review it was assumed that the criteria needed to determine
the CVI were basic country demographic statistics listed in Table 1.

Table 1. SMCA criteria and criteria data sources (own study).

Criteria Criteria Explanation Data Source Criteria Type

Cas Number of COVID cases per 100,000 inhabitants rki.de

Dynamic
Serv Turnover rate for accommodation and food services in relation

to the period before the pandemic destatis.de

Mb The estimation of population movement destatis.de
Hsp Number of COVID hospitalisations per 100,000 inhabitants rki.de
Vacc Population percentage of two doses vaccinated rki.de

Hos Number of hospitals in the region per 100,000 inhabitants destatis.de

Static
Hbed Total number of hospital beds on region per 100,000 inhabitants destatis.de
PDen Population density per sq. km destatis.de

Rd Total length of roads in the region OSM
Rs Total length of railways in the region OSM

This simple set of criteria enables the implementation of the COVID-19 vulnerability
risk assessment algorithm by all, even less advanced countries if needed. The research
was based on several open data sources, such as web services that present demographic
statistics: destatis.de [91] and the Robert Koch Institute Site [92], were used. Furthermore,
to estimate the information on the transport network, selected data from OpenStreetMap
were acquired and analysed. [93]. The case study area was limited to Germany, and the
analyses were divided by regions.

The listed criteria presented in Table 1 can be grouped into two categories: dynamic
(quickly changing in time) and static (slowly changing in time or static).
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The criteria determination process was followed by the pairwise comparison that
resulted in the importance determination (in accordance with the AHP methodology). The
importance of relations can be found in Table 2. The larger the relative importance values
were, the stronger the relation that can be assigned to the pair of criteria.

Table 2. Determination of relative importance based on own study [90].

Relative Importance Definition Explanation

1 Equal importance Two activities contribute equally to objective
3 Weak importance Experience and judgement slightly favour one activity over another
5 Strong importance Experience and judgement strongly favour one activity over another
7 Demonstrated importance One activity is strongly favoured and demonstrated in practice

9 Extreme importance The evidence favouring one activity over another is of the highest
possible order of affirmation

2, 4, 6, 8 Intermediate values When compromise is needed between two adjacent judgments

The methodology was used to select and compare the criteria. Pairwise comparisons
resulted in the estimation of weights that are presented in Table 3. Validation of calculated
weights returns Consistency Ratio (CR), which was 0.10; Consistency Index (CI) 0.15.
According to the weights listed in the table, the greatest importance can be assigned to the
following criteria: Hos, Hbed, Cas, PDen, Hsp.

Table 3. AHP pairwise comparison matrix with calculated weights (own study based the [90]).

PDen Serv Hos Hbed Cas Vacc Hsp Mb Rd Rs Criteria Weight

PDen 1.00 6.00 0.25 0.25 0.50 2.00 3.00 4.00 3.00 4.00 0.10
Serv 0.16 1.00 0.11 0.11 0.14 0.25 0.25 0.33 0.50 0.33 0.02
Hos 4.00 9.00 1.00 2.00 3.00 4.00 3.00 8.00 8.00 8.00 0.26

Hbed 4.00 9.00 0.50 1.00 4.00 4.00 6.00 8.00 8.00 8.00 0.25
Cas 2.00 7.00 0.33 0.25 1.00 3.00 3.00 6.00 6.00 6.00 0.14
Vacc 0.50 4.00 0.25 0.25 0.33 1.00 0.25 5.00 4.00 5.00 0.07
Hsp 0.33 4.00 0.33 0.16 0.33 4.00 1.00 4.00 3.00 4.00 0.08
Mb 0.25 3.00 0.13 0.13 0.16 0.20 0.25 1.00 2.00 2.00 0.03
Rd 0.33 2.00 0.13 0.13 0.16 0.25 0.33 0.50 1.00 2.00 0.03
Rs 0.25 3.00 0.13 0.13 0.16 0.20 0.25 0.50 0.50 1.00 0.02

Analysis of results in the static and dynamic groups show that the static criteria affected
the CVI estimation twice as strongly as the dynamic criteria (static sum weights: 0.66;
dynamic sum weights: 0.34).

To calculate the CVI of the region, the criteria vulnerability score was determined
based on the categories in Table 4 (the remaining criteria risk score available in Appendix A).
The assigned vulnerability score (VSc) takes values in the range from 2 to 8. The high
score represents a high vulnerability in the term of the relevant criterion. For example,
density—greater than 2000 people per sq. km—corresponds to the vulnerability value of 8.

Table 4. The selected criteria scores (own study based on [90]).

Criteria/VSc PDen Serv Hos Hbed Cas Vacc

2 <100 <20 >10 >2000 <1 >75
3 100–200 20–40 8–10 1400–2000 1–2 60–75
4 200–300 40–55 6–8 800–1400 2–6 50–60
5 300–500 55–70 4–6 400–800 6–12 30–50
6 500–1000 70–85 2–4 200–400 12–20 15–30
7 1000–2000 85–100 1–2 100–200 20–30 5–15
8 >2000 >100 <1 <100 >30 <5
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3. Results and Discussion

3.1. Vulnerability Score Value Analysis for Individual Criteria

For each criterion, the VSc values were estimated. Next, the VSc map was developed
as a choropleth map. The example map is presented in Figure 4.

Figure 4. VSc map for population density.

The map shows the information on a selected day (12 May 2021) and gives the rep-
resentative vulnerability level in accordance with the selected criteria score related to
COVID-19 pandemic and its spatial location.

The intensive colours represent large numbers of density and correspond to the high
COVID-19 VSc. The light colours represent low populated areas and correspond to a
low score of vulnerability for selected criteria. High value can be noticed in Hamburg,
Bremen, and Brandenburg. The population density criteria generate vulnerability risk that
is constant in time for each region. A similar effect of constant vulnerability can be observed
for all static criteria. VSc values of individual criteria can be found in Figures 5 and 6.

All maps present various VSc. The highest score value of criteria in summary for all
regions can be assigned to the numbers of hospitalisations and new cases, the lowest to the
railway and road density.

Areas marked with the highest score values may generate potential COVID-19 vulner-
ability risk so the preventive actions should be there considered.
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3.2. COVID-19 Vulnerability Index Analysis

The CVI was a result of summaries of the vulnerability values for each criterion
multiplied by their weight. The CVI map in Figure 7 presents the various risks classified
into five categories from very low to very high. The highest CVI occurs e.g., in the Hamburg,
Bremen, Niedersachsen Mecklenburg-Vorpommern, Berlin, Brandenburg. Bayern and
Nordrhein-Westfalen were classified as low CVI. The low value of CVI resulted from the
summary weighted VSc of criteria.

Figure 5. Maps of VSc for selected dynamic criteria on 12 May 2021 (a) new cases (b) hospitalisations
(c) public transport (d) fully vaccinated (e) turnover from food and accommodation services.
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Figure 6. Maps of VSc for selected static criteria on 12 May 2021 (a) number of hospital beds
(b) number of hospitals (c) density of roads (d) density of railways.
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Figure 7. COVID-19 Vulnerability risk map.

Considering the example of Bayern, high VSc values of: new cases, number of hospi-
tals, and number of hospitalisations should result in a high vulnerability risk value; instead
the vulnerability of: population density, service turnover, number of vaccinated people,
railways, and road lengths caused the occurrence of a low CVI.

The presented CVI analysis may be used in the crisis management process to determine
if certain actions (restrictions) have to be taken to prevent further spread of the COVID-19
pandemic. The developed vulnerability risk map allows for measurable assessment of the
current situation and determining the risk state of a selected day. The above statements
were crucial for research, because the presentation of data on a selected day validates the
possibility of the SMCA application in the development of a vulnerability map sequence
on selected days and vulnerability change maps over time.

3.3. Criteria Vulnerability Score Analysis in Time

The estimated Vulnerability Score for selected days was presented as a sequence of
VSc maps. The example of a selected Vulnerability Score for criteria map on selected days
with a three-month interval is shown in Figures 8, 9 and 11. (The number of maps was
limited—the remaining maps are provided in Appendix B).
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Figure 8. Cumulative COVID-19 Vaccinations on selected days: (a) 12 February 2021 (b) 12 May 2021
(c) 12 August 2021 (d) 22 October 2021.
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Figure 9. New cases of COVID-19 on selected days: (a) 4 March 2020 (b) 12 May 2020 (c) 12 August
2020 (d) 12 November 2020 remaining maps available in Figure A1.

Figure 8 presents the vaccinations vulnerability on selected days. The increase of
vaccinated people decreased the risk score. The process of vaccinations began in 2021—all
maps before 12 February 2021 present a constant vulnerability risk valued by eight.

Figure 9 shows vulnerability risk resulting in new cases on selected days of the
COVID-19 pandemic.

A gradual increase in new cases is noticeable over time. This was confirmed by the
chart of new cases according to the data acquired from the Koch Institute (Figure 10).

A juxtaposition of the vaccination vulnerability risk maps and new cases caused by
the COVID-19 in corresponding days, explains the fact that at the beginning of 2021 the
number of new cases decreased. The noticeable slowing down of the pandemic as a result of
reaching 50% vaccination rate of the population in the region visible in Figure 8. Similar ob-
servation can be taken on hospitalisations change in time caused by COVID-19 (Figure 11).

60



Appl. Sci. 2022, 12, 4090

Figure 10. COVID-19 new cases in time chart [93].

Figure 11. COVID-19 Hospitalisations on selected days: (a) 4 March 2020 (b) 12 May 2020
(c) 12 August 2020 (d) 12 November 2020 remaining maps available in Figure A2.
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3.4. COVID-19 Vulnerability Index in Time

Based on the Vulnerability Score summaries for selected days, the CVI was calculated.
Figure 12 presents the sequence of CVI maps in time. Based on Figure 12a it can be noticed
that the federal states: Bremen, Saarland, and Hamburg were classified as high or very high
vulnerability risk from the very beginning of the pandemic. This suggests that preventive
actions like increasing the number of hospitals beds, preparing field hospitals or restrictions
should be considered to ensure public safety in those federal states.

Figure 12. Sequence of CVI estimated in selected days: (a) 4 March 2020 (b) 12 May 2020
(c) 12 August 2020 (d) 12 November 2020 remaining maps available in Figure A3.
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These recommendations, despite the low number of new cases and hospitalisations,
were a result of high vulnerability values assigned to static criteria of the listed federal
states. The static and dynamic criteria vulnerabilities of selected countries in time are
shown in Figure 13.

Figure 13. The static (a) dynamic (b) static and (c) summary vulnerability risk for each federal state
on selected days.

The high level of static vulnerability increases the overall level of COVID-19 vulner-
ability as shown in Figure 13a,c. On the other hand, the low level of static vulnerability
decreases the final level of COVID-19 vulnerability. In real life scenario, this will correspond
to the situation, where the number of hospitals and hospital beds exceeds the number of
potential patients.

The analysis in the area of Germany, allows us to estimate the number of people
endangered at a certain level of COVID-19 vulnerability in time. Results were presented in
Table 5. Pursuant to the above it may be concluded that 22,102,833 population of Germany
were at risk of very high COVID-19 vulnerability risk and the number of population
endangered changes over time.
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Table 5. Number of the German population endangered with a certain level of vulnerability over time.

4 March
2020

12 May
2020

12 August
2020

12 November
2021

12 February
2021

12 May
2021

12 August
2021

22 October
2021

Very Low 44,717,994 33,610,761 44,717,994 0 13,142,063 15,671,946 44,717,994 33,610,761
Low 15,391,927 24,374,711 15,391,927 44,717,994 31,575,931 29,046,048 9,097,291 14,017,604

Medium 15,273,831 17,398,280 14,288,686 9,097,292 17,366,538 17,366,538 20,583,322 26,770,242
High 7,810,535 7,129,840 8,114,985 22,194,140 13,299,220 18,577,079 6,263,004 8,114,985

Very High 0 680,695 680,695 7,184,861 7,810,535 2,532,676 2,532,676 680,695

The COVID-19 vulnerability risk maps were used to develop the maps shown in
Figure 14, One may be easily noticed in which area the pandemic situation has changed.

Figure 14. Vulnerability risk changes over time. (a) 4 March 2020–12 May 2020 (b) 12 May 2020–12
August 2020 (c) 12 August 2020–12 November 2020 (d) 12 November 2020–12 February 2021 remaining
maps are available in Figure A4.

In this regard, Figure 14c shows the increase in vulnerability caused by post-holiday
returns and the re-opening of schools. Figure A4b presents the general decrease in the
risk caused by a significant increase in the number of fully vaccinated people. This was
followed by another increase in vulnerability Figure A4c.
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3.5. Validation

The validation of results was performed in two stages: the first stage was the jux-
taposition of CVI and confirmed cases in the time presented. The second stage was the
comparison of CVI and COVID-19 active cases. The validation was performed according to
the data from Table 6.

Table 6. CVI and new COVID-19 Cases in time for Berlin, Brandenburg, Nordrhein-Westfalen.
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Berlin
Cases 7 2 111 1132 485 510 358 713
CVI 5.52 5.67 5.86 6.34 6.03 5.95 5.67 5.74

Brandenburg Cases 1 5 8 452 374 397 116 685
CVI 3.09 3.13 3.21 3.59 3.63 3.43 3.13 3.43

Nordrhein-Westfalen
Cases 115 201 413 4615 1881 3108 1886 2284
CVI 3.59 3.81 3.82 4.56 4.26 4.32 3.81 3.82

Figure 14 shows the CVI and confirmed cases in selected days on Berlin, Brandenburg,
Nordrhein-Westfalen. According to Figure 14 the COVID-19 vulnerability risk in Berlin
and Brandenburg, Nordrhein-Westfalen on the first three bars (4 March 2020, 12 May 2020,
and 12 August 2020) was growing constantly and this, despite the constant number of new
cases, suggests that some actions or preventive steps should be taken in order to reduce the
large increase in COVID-19 infections that occurred on the following days: 12 November
2020, 12 February 2021, and 12 May 2021. The above shows that the growing or high value
of the COVID-19 vulnerability risk index predicts an upcoming pandemic wave that can be
foreseen in a short period of time.

Figure 15 shows the CVI and confirmed cases in selected days on Berlin, Brandenburg,
Nordrhein-Westfalen.

Figure 15. CVI and COVID-19 confirmed cases in (a) Berlin, (b) Brandenburg and (c) Nordrhein-Westfalen.
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The chart analysis reveals a positive exponential trend between CVI and the number
of confirmed cases with the R2 value of 0.92 respectively (Figure 16).

Figure 16. The CVI and new cases relation in the (a) Berlin, (b) Brandenburg and (c) Nordrhein-Westfalen.

The study has the following known limitations:

• Weights summary estimation was based on the AHP method. In this regard, it is
essential to pay attention to the problem of criteria selection key and criteria quan-
tity. The increase in criteria quantity would result in a more precise view of the
situation in terms of several factors. However, more criteria will cause difficulties in
performing analysis due to the lack of available data. If the number of criteria will be
decreased—the analysis would be more general, but the data acquisition problem will
be less probable.

• Criteria proposed by the authors, and calculated weights create a perspective, focused
on health care state image and selected population statistics. This excludes the possi-
bility of insight and of estimating the influence of other factors on pandemic situation.
The presented approach and selected criteria include the static criteria groups that
allow for early vulnerability risk detection (e.g., in risk of shortage of hospital beds)
and furthermore dynamic criteria group for tracking the progress of pandemic in time
(new cases).

• The performed analysis was limited to the inference at the strategic level, which results
from the limited detailed data access. Obtaining the data in subregions division would
allow for more precise identification of pandemic vulnerability risk and would result
in appropriate crisis response ensuring public safety. The authors argued that there
is quite an immerse gap in the possibilities of conducting spatiotemporal analysis
caused to the lack of accurate data. More detailed data are required to prepare
recommendations for the selected subregion.

The comparison of the obtained results with the results of works by other authors
reveals that those criteria that provide a thematic direction for the analysis results and
data are important for the results. As far as the proposed methodology is concerned, data
obtained from open data sources were used. What distinguishes the proposed approach
from others is the use of both static and dynamic criteria are used, which enable making
decisions related to hospital infrastructure and the available resources in the given area.
Most studies on COVID-19 involve the modelling of the influence of selected factors, while
the proposed approach focuses on modelling the risk connected to the SARS-CoV-2 virus.
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4. Conclusions

The outbreak of SARS-CoV-2 caused a pandemic situation and affected the lives of
people around the world. For this reason, it became crucial to provide an appropriate crisis
response based on research, allowing for the determination of the hazards it implies. The
studies on the COVID-19 vulnerability risk index as a result of a weighted summary of the
determined individual criteria risk score show the dynamics of threat change in time in the
selected area. This allows for tracking the increase of vulnerability risk, caused by the virus
spreading and delivering appropriate crisis response.

In terms of the impact of individual criteria on the value of vulnerability risk, it
was found that each of the criteria had a different influence on the final value of the CVI
coefficient. Furthermore, the division of criteria into static and dynamic ones enabled us to
identify factors that were causing a certain level of vulnerability risk to COVID-19 spread
even in the early stages of the pandemic. This could help to provide an early reaction,
which may prevent the rapid increase of pandemic threat.

The directions of vulnerability risk changes over time were different in each region.
However, there is a visible correlation between the CVI change in time and certain, typical
events in the annual life cycle e.g., return to school and work from vacation (visible increase)
and with such preventive actions as reaching a high level of vaccination (visible decrease),
can be noted.

Taking the above into consideration, based on the spatiotemporal vulnerability risk
analysis, the decisions on taking actions at an early stage of a pandemic, e.g., relocation of
equipment, forces, and resources, are available. Moreover, the conducted analysis illustrates
the level of threat better than the number of new cases, which makes it a relevant source of
information to identify the areas where restrictions should be introduced.

Furthermore, the performed spatiotemporal analysis allows backward and current
modelling of COVID-19 vulnerability risk. The precision of the model of vulnerability risk
in the time presented in the case study is low due to the limited number of days taken for
the temporal analysis in the article. The increase in time model precision could be obtained
as a result of setting smaller time intervals between the COVID-19 vulnerability risk maps.
However, this would result in an increased number of maps that would be impossible to
be included in the article due to its limited length. Therefore, only the concept and the
methodology of the research were presented.

The analysis provided in the case study focused on revealing the COVID-19 vulnera-
bility from the point of view of the healthcare system demonstrated that the spatial data
enables the determination of the impact of a crisis situation in the field and, eventually,
allows making decisions on an appropriate crisis response. This signifies the role of spatial
analysis and spatial data sources in the decision-making process.

According to the authors, future research in this field should be continued and the
application of proposed methods with different time data intervals and the results should
be assessed to reveal the optimal interval for maps to detect vulnerability change. More-
over, the authors believe that the use of the determined static criteria of vulnerability in
combination with the selected pandemic prediction model would extend the perspective
to a specific future period of time. This would be a significant potential advantage of the
proposed method.
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comments and supervision while writing this article that greatly improved the research.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Table A1. The remaining criteria scores.

Criteria/Score Hsp Mb Rd Rs

2 <0.1 <10 K 1–2 0.1–0.2
3 0.1–0.2 10 K–50 K 2–4 0.2–0.4
4 0.2–0.4 50 K–100 K 4–6 0.4–0.8
5 0.4–0.8 100 K–250 K 6–8 0.8–1.5
6 0.8–1.4 250 K–400 K 8–10 1.5–2.5
7 1.4–2.2 400 K–500 K 10–12 2.5–5.0
8 >2.2 >500 K 12–15 5.0–5.2

Appendix B

Figure A1. New cases of COVID-19 on selected days: (a) 4 March 2020 (b) 12 May 2020 (c) 12 August
2020 (d) 12 November 2020.
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Figure A2. COVID-19 Hospitalisations on selected days: (a) 12 February 2021 (b) 12 May 2021
(c) 12 August 2021, (d) 22 October 2021.
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Figure A3. Sequence of CVI estimated in selected days: (a) 12 February 2021 (b) 12 May 2021
(c) 12 August 2021 (d) 22 October 2021.

70



Appl. Sci. 2022, 12, 4090

Figure A4. Vulnerability risk change over time. (a) 12 February 2021–12 May 2021 (b) 12 May 2021–12
August 2021 (c) 12 August 2021–22 October 2021.
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Abstract: On 30 January 2020, the World Health Organization announced a new coronavirus, which
later turned out to be very dangerous. Since that date, COVID-19 has spread to become a pandemic
that has now affected practically all regions in the world. Since then, many researchers in medicine
have contributed to fighting COVID-19. In this context and given the great growth of scientific
publications related to this global pandemic, manual text and data retrieval has become a challenging
task. To remedy this challenge, we are proposing CovBERT, a pre-trained language model based on
the BERT model to automate the literature review process. CovBERT relies on prior training on a
large corpus of scientific publications in the biomedical domain and related to COVID-19 to increase
its performance on the literature review task. We evaluate CovBERT on the classification of short
text based on our scientific dataset of biomedical articles on COVID-19 entitled COV-Dat-20. We
demonstrate statistically significant improvements by using BERT.

Keywords: BERT; COVID-19; scientific text classification; transfer learning; scientific publications;
deep learning

1. Introduction

Since December 2019 and possibly before, the world has faced one of the most serious
dangers in its history: the new coronavirus pandemic [1]. By the end of February 2022, the
world had recorded an affected population of more than 430 million people and around
6 million deaths [2]. The entire world is on high alert to find a radical solution to this
pandemic and to minimize the cases of death.

1.1. Context

We collaborated with epidemiologists to help medical researchers accelerate research
on COVID-19. The researchers appreciated having relevant data exposed and classified.
Research laboratories in epidemiology constantly need to collect relevant and pertinent data
to be able to analyze an epidemic (or pandemic), predict the evolution of contamination
in the population in question, determine the shape of the virus, discover its genome
sequencing, produce a vaccine, develop a drug, conceive a screening method or implement
a medical device dedicated to the epidemic (intensive care, etc.). We are aware of the
time and effort put in by medical researchers to develop their epidemiological studies.
The manual pre-screening by researchers of all the information available on the web, in
specialized datasets and other research, can be overwhelming as well as time and energy
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consuming. Search engines provide an astronomical amount of information; many are
unclassified and irrelevant to the researcher’s query. Therefore, we aimed at providing
epidemiology researchers with a configurable open-source platform for automatic pertinent
data retrieval and classification from scientific abstracts and full papers on COVID-19 by
using various search engines, in particular PubMed, Google Scholar, Science Direct, etc.
To achieve our goal, we advanced Deep Learning (DL) techniques to classify unclassified
biomedical abstracts. In the context of scientific research, DL, part of the large field of
artificial intelligence, allows machines to learn and perform decisions in an automatic
way. Given the heterogeneity of the data available in the scientific field, the search for
information seems to be a difficult task and can generate difficulties for researchers. For our
work, we were interested in the literature review component in the field of epidemiological
research, which represents a challenging task. Particular attention was given to this major
challenge. To overcome it, DL techniques and algorithms were investigated and adapted
to our context of text classification related to fighting COVID-19. In this context, we
exploited algorithms to facilitate the learning process based on sourced data in order to
better manipulate target data. The main approach is called transfer learning, which enables
information and knowledge from a past task in order to improve the next task [3,4]. Transfer
learning is based on a recent approach called “Universal Embeddings”, which is essentially
pre-trained embeddings obtained from the training models of DL on a large corpus. In fact,
“Universal Embeddings” enables using the pre-trained embeddings in various NLP tasks,
including scenarios with constraints such as heterogeneity of unlabeled data.

The aim of this article is twofold:

1. First, to produce an appropriate dataset for training. Our research is oriented to
multiclass classification rather than to multilabel classification. When we began our
research in January 2020, we could not find any datasets on COVID-19 with short text
that is classified according to categories. For this reason, we were required to build a
new dataset on COVID-19 by using the PubMed search engine, and it was validated
by experts from Community and Preventive Medicine at the Faculty of Medicine,
Department of Epidemiology. The validation process took over 6 months. We advance
a method to build the required dataset and address our needs.

The proposed dataset, entitled Cov-Dat-20, contains 4304 papers distributed in an
equitable manner according to four categories, namely: COVID-19, Virology, Public Health
and Mental Health.

2. Based on the literature, we considered concerns and issues that can now be addressed
through natural language processing (NLP) based on different pre-trained language
models including Glove [5], ELMo [6], OpenAI GPT model [7] and Bidirectional
Encoder Representations from Transformers (abbreviated as BERT) [8]. Compared
to the cited models, BERT provides better results for many use cases and without
necessarily requiring a large amount of labelled data thanks to a “pre-training” phase
without labels, allowing it to acquire a more detailed knowledge of the language.
In addition, the BERT model uses a specific manner to handle several limits such
as the reduced size of input text and the lack of vocabulary as was our case when
we deal with the summary of scientific articles. Bearing in mind the several benefits
of BERT, we propose the CovBERT model to help medical research epidemiologists
fight against COVID-19. We have released the CovBERT model as a new resource to
enhance the performance of NLP tasks in the scientific domain. Our proposed model
is a pre-trained language model based on BERT and trained on our large corpus of
scientific text, Cov-Dat-20. After training, we fine-tuned the CovBERT model with a
specific subject related to COVID-19. Finally, we evaluated the CovBERT model on
different numerously studied text classification datasets.

1.2. Traditional ML versus DL Models

Since 2005, the outlook of artificial intelligence has changed dramatically with machine
learning (ML) and the emergence of DL, which draws inspiration from neuroscience. In
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fact, traditional learning, or ML, as part of artificial intelligence is using techniques (such as
DL) which allow machines to learn from their experiences in order to improve the way they
perform their tasks. In traditional learning, the learning process is based on several steps:

• Feed an algorithm with data;
• Use this data to train a model;
• Test and deploy the model;
• Use the deployed model to perform an automated predictive task.

DL is one of the main ML and artificial intelligence technologies that are based on
neural networks. The learning process is qualified as deep because the structure of ar-
tificial neural networks consists of several input, output and hidden layers. Each layer
contains units that turn the input data into information that the next layer can use for
a specific predictive task. Based on this structure, a machine can learn through its own
data processing.

The remainder of the paper is organized in four sections in addition to the introduction.
The present introduction includes a first subsection illustrating the context of our work.
Traditional versus DL models are then discussed in a separate subsection. Section 2 is
devoted to presenting related works. In Section 3, we will provide our methodology.
Section 4 discusses the presented experimental results. In Section 5, we will have our
concluding remarks and include our strategies for future research.

2. Related Works

This section is devoted to past and current research in biomedical text classification [9,10].
Text classification is a fundamental task of natural language processing (NLP), with the
aim of assigning a text to one or more categories. The applications of text classification
include sentiment analysis [11], question classification [12] and topic classification [13],
the latter of which we are interested in for this work. We investigated several proposed
approaches related to text-classification tasks based on deep neural networks and pre-
trained language models.

Today, deep neural networks have several techniques and models that prove/demonstrate
new state-of-the-art results on fully examined text-classification datasets. There are some
models, such as convolutional neural networks (CNN) [14], recurrent neural networks
(RNN) [15] and artificial neural networks (ANN) [16], as well as some more complex
networks such as C-LSTM [17], CNN-LSTM [18] and DRNN [19].

Nevertheless, DL models mention additive advantages over traditional ML models
based on the backpropagation algorithm. In fact, related to [20], the backpropagation
algorithm is an optimization algorithm that adjusts the parameters of a network of multi-
layer neurons to match inputs and outputs referenced in a learning dataset. According to
reference [21], the usage of DL for text classification requires entering the text into a deep
network to obtain the text representation then entering it into the Softmax() function and
obtaining the probability of each category. Yao et al. [22] proposed an improvement of
distributed document representations by adding descriptions of medical concepts for the
classification task of the clinical files for the benefit of traditional Chinese medicine. The
active learning technique [23] was applied in the clinical domain, which exploits untagged
corpora to enhance the clinical text-classification process. An ordinary approach is to first
map the narrative text to concepts of different knowledge sources such as the Unified
Medical Language System (UMLS), then train the classifiers on document representations
that include the unique concept identifiers of the UMLS—Concept Unique Identifiers
(CUIs)—as functionalities [24]. In [25], the authors are interested in the acute kidney injury
(AKI) prediction based on DL models. They used knowledge-guided CNNs to merge
word features with UMLS CUI features. They used pre-trained word embeddings and CUI
embeddings of clinical notes as the input.

Nevertheless, the neural networks proved their effectiveness until the advent of
the transfer learning approach. In 2018, that main approach appeared and proved its
effectiveness. It consists of training a complete model to perform a task with many data.
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Then, the pre-trained model can be used to complete other tasks, building on previous
learning. This is called transfer learning.

By definition, a pre-trained model is a recorded network that has already been trained
on a large dataset. Generally, we use them on large-scale text-classification tasks. A pre-
trained model is ready to be used as is, or, based on the transfer learning technique, the
model can become personalized for a given task. The intuition behind transfer learning for
text classification is that if a model is trained on a sufficiently large and general dataset, that
model will effectively serve as a generic model. The model is efficient at taking advantage
of the data learned without the necessity of starting from scratch by training a large model
on a large dataset.

In general, NLP projects rely on pre-trained word embedding on large volumes of
unlabeled data by means of algorithms such as word2vec [26] and GloVe [5]. They aim
at initializing the first layer of a neural network. Then, the obtained model is trained on
specific data for a particular task. That said, many current models for supervised NLP
tasks are pre-trained as models in language modeling (which is an unsupervised task)
and then fine-tuned (which is a supervised task) with tagged task-specific data. Recent
advances in ULMFiT [27], ELMo [6], OpenAI Transformer [28] and BERT [8] present a
quintessential shift, in paradigmatic terms, from the simple initialization of the first layer
of models to pre-training the entire model with hierarchical representations to improve the
natural language processing process, including text classification. All these approaches
enable pre-training an unsupervised language model on a large dataset such as Wikipedia
and then fine-tuning these pre-trained models on specific tasks.

Instead of associating a static embedding vector with each word, pre-trained models
build richer representations that consider the semantic and syntactic context of each word.

Related to [27], ULMFiT (Universal Language Model Fine-Tuning) is a recent generic
method used to build efficient text-classification systems, setting a new state of the art on
several benchmarks in NLP tasks. The present method has proven its efficiency in terms of
not requiring a huge amount of data to train the model.

In addition, ELMo (Embeddings from Language Models) examines the entire sentence
before assigning and embedding each word it contains instead of using a fixed embedding
for each word [6]. It uses a bidirectional LSTM trained on a particular task to be able to
create these embeddings. ELMo can be trained on a massive dataset. ELMo is trained to
reveal the next word in each sentence. This is convenient because of the large amount of
textual data.

In [7], the authors present the OpenAI GPT, short for Generative Pre-Training Trans-
former, which is a multi-layered unidirectional transformer decoder. The proposed model
was trained on a huge corpus and aims to perform various NLP tasks based on precise
adjustments. To start, the transformer language model was trained in an unsupervised
manner. The training process is based on a few thousand books from the Google Books
corpus. From there, the pre-trained model will be adapted to the supervised target task.

In the same context, recently, the BERT model has achieved state-of-the-art results in
a broad range of NLP tasks [8]. It is a variation of transfer learning. The main operating
mode of BERT corresponds to a transfer by fine-tuning that is like the one used by ULMFiT.
Furthermore, BERT can also be used in the transfer mode by extracting features like ELMo.
The BERT model uses transformer architecture, which is a recent and powerful alternative
to RNNs to achieve deep bidirectional pre-training. In addition, the use of two new tasks
for pre-training, one at the word level and the other at the sentence level, defines the main
innovation of BERT.

In our work, we revolve around the classification of scientific text in the biomedical
field, and we intersect with the summary of the scientific article. The main challenge en-
countered is a reduced size of text and the lack of vocabulary. Based on BERT’s advantages,
the main model is instantiated in different general and specialized domains (biomedical
and scientific domains, for example). In fact, BERT’s contextualization introduces different
advantages related to the performance of the model, the learning time, the learning cost,
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the quantity of data requested for the learning, the length of the input text, etc. In our
context, we looked at BERT-base models in three different fields: multiple domains (the
general case), the scientific domain (the scientific articles) and the biomedical domain (the
COVID-19 case study) presented in Table 1.
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3. Methodology

We are interested in offering relevant information when searching available media
(search engines, datasets). In this context, text classification [29–31], defined as the process of
associating a category with a text of various length based on the information it contains, is an
important element of information-retrieval systems. We face text-classification challenges
and accuracy issues. For each new entry, the main challenge consists of determining
the category to which this entry belongs. The text annotation process is time-consuming
and is generally performed manually because of the language complexity. Therefore, the
automation of this process has become a priority for the scientific community to be efficient.
For our work, we aim to collaborate with epidemiologists to help medical research fight
COVID-19. Our main goal is to not only classify scientific texts but to predict unseen data
based on the pre-trained model.

3.1. COV-Dat-20 Dataset Creation

We propose a dataset containing data on COVID-19 extracted from summaries of
PubMed. It is made up of 4304 articles distributed in an equitable manner according to
four categories, namely: COVID-19, Virology, Public Health and Mental Health.

For the methodology, amongst the articles that were proposed by PubMed, some could
have been classified under more than one category. For our work, our research is oriented
to the multiclass classification type rather than to multilabel classification. In this case,
our experts in the Department of Epidemiology recommended that we classify the articles
based on the highest percentage proposed by PubMed.

The Cov-Dat-20 dataset is elaborated based on advanced SQL queries from PubMed.
For example, we present an advanced SQL query in PubMed: (((“public health” [MeSH
Major Topic]) OR “preventive medicine” [MeSH Major Topic])) AND “COVID-19” [Supple-
mentary Concept]; (health knowledge, attitudes, practice [MeSH Terms]) AND COVID-19
[Supplementary Concept]; (((COVID-19 [Title/Abstract]) OR COVID-19 [Supplementary
Concept])) AND (((epidemiological assessment [Title/Abstract]) OR public health interven-
tions [Title/Abstract]) OR epidemiology [Title/Abstract]).

Figure 1 presents the scientific paper distribution in the dataset according to the
categories mentioned above.

 

Figure 1. Data repartition in the Cov-Dat-20 dataset.

For more details, 4304 rows and 3 columns, 1,013,901 words, 43,123 unique words and
4304 sentences characterize the Cov-Dat-20 dataset.

Table 2 presents the label encoding related to our dataset. In our work, we were
interested in the multi-class concept in the classification process. For each category, we
offer a selective and detailed list of keywords.
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Table 2. Label encoding.

Category Description

COVID-19 It is interested in scientific papers of probable treatment and the
different symptoms related to COVID-19.

Virology It deals with scientific papers about the study of viruses, genome
sequencing, etc.

Public Health
It focuses on scientific papers about the study, prevention,

control, in particular through vaccination, and epidemiological data
against COVID-19.

Mental Health It spotlights several scientific papers about the impact of COVID-19 on
mental health.

• COVID-19: focus on the (1) COVID-19 treatment and (2) COVID-19 symptoms:
(1) treatment, chloroquine, hydroxychloroquine, interferon beta-1a, remdesivir, lopinavir/
ritonavir; (2) fever, headache, cough, chills, shortness of breath or difficulty breathing,
muscle pain, repeated shaking with chills, new loss of taste or smell;

• Virology: genome sequencing, phylogenetic analysis, SARS-CoV-2, MERS-CoV, nomen-
clature, virus composition, virus layers;

• Public Health: COVID-19, interventions, awareness, behavior, behavioral change,
coronavirus, pandemic, public health protection, public health measures;

• Mental Health: COVID-19, mental health disorders, SARS-CoV-2, neural taxonomies,
personalized medicine, precision psychiatry, social connection, mental health, psychiatry.

The Cov-Dat-20 is available on https://www.kaggle.com/mayarakh/Cov-Dat-20
accessed on 6 March 2022.

3.2. Data Pre-Processing

Raw data needs to be transformed into an understandable format. To do this, we
opted for applying data pre-processing techniques to build a DL classifier. In fact, data pre-
processing techniques eliminate characteristics of less important data and improve accuracy.

For our case, we used a common preprocessing approach that can integrate with vari-
ous NLP (natural language processing) tasks using NLTK (Natural Language Toolkit) [32].
Before tackling the learning process, the text in the dataset goes through some stages,
namely, the elimination of punctuation, putting all the text in lower case, tokenization,
cleaning and lemmatization.

• Lowercasing is a widespread approach to reduce all the text to lower case for simplicity.
• Tokenization: text pre-processing step, which involves splitting the text into tokens

(words, sentences, etc.)
• Cleaning is a form of pre-processing to filter out useless data such as punctuation

removal and stop-word removal (a stop word is a commonly used word in text and
stop-word removal is a form pre-processing to filter out useless data).

• Lemmatization is an alternative approach to stemming for removing inflection.

At the end of this step, data are ready to move to the step of decomposing the dataset
into a part for “Learning” and a part reserved for the “Test” phase. We chose to carry out
this decomposition by reserving 80% for the training set and 20% for testing.

3.3. Exploration of the BERT Model

As mentioned before, we focused on the scientific-text-classification task. In the
same context, Google’s BERT [8], having received deep bidirectional training using the
transformer, gave state-of-the-art results for many NLP tasks, more precisely, in the text-
classification task. In addition, our decision to explore the BERT model is justified by its
several advantages compared to similar models. BERT aims at improving the understand-
ing of users’ requests in order to provide more relevant results, especially for requests
formulated in a natural way.
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3.3.1. BERT-Base Characteristics

BERT is a neural network that can treat a wide variety of NLP (natural language
processing) tasks [8]. To do so, the learning phase is broken down into two phases. First, we
proceed with the pre-training phase, which is very time and computation consuming. Once
this phase is performed, a network is created that has a certain general understanding of the
language. Then, the second phase is called the adjustment phase, which trains the network
on a specific task. Moreover, BERT uses a part of the transformer network architecture. The
advantage of this architecture is that it treats the relationships between distant words better
than recurrent networks (LSTM/GRU) [33]. On the other hand, the network cannot process
sequences of any length but has a finite input dimension to learn in a reasonable time.
At the scale of this work, we use the basic model of BERT-base with fixed characteristics:
12-layer, 768-hidden, 12-heads, 110 M parameters.

3.3.2. BERT-Base Operation

The Bert model is a bidirectional model. Unlike its predecessors, which were unidirec-
tional and so read the text in a particular direction (e.g., left to right), the main model of
BERT goes through the entire text in both directions simultaneously, which presents the
property of “bidirectionality”. Technically speaking, BERT consists of multiple layers form-
ing a “Transformer”, which learns contextual relationships between the different words
composing the text. The transformers aim at analyzing the words of a complex query to
relate them in order to comprehend the semantics of the sentence and to better understand
its overall meaning. TPU Clouds are integrated circuits that accelerate the workload of
transformers to make them faster and more efficient.

The BERT architecture in our proposal is illustrated in Figure 2. We took the case of the
category Virology and an input text composed of two sentences: “The COVID-19 genome
is decrypted. The virus composition is . . . ”. The algorithm will go in both directions, from
sentence 1 to sentence 2 until the end of the text (Abstract, full article, . . . ) but also from
sentence 2 to sentence 1 until the beginning of the text as depicted in Figure 2.

The core of the architecture is mainly decomposed into two components. It uses an
encoder to read the input text and thus generates a vector representation of the words. In
addition, BERT uses a specific decoder to perform the expected prediction task.

BERT-base offers a vocabulary of 30,522 words. The vocabulary is built in a way that
is based on the tokenization process. Indeed, the main process consists in dividing the
input text into a list of words, called tokens, that are available in the constructed vocabulary.
To process words that are out-vocabulary, BERT-base uses a technique, called BPE-based
WordPiece tokenization. Regarding non-vocabulary words, this approach proposes to
divide them into sub-words. Each word is then represented by a group of sub-words. For
each sub-word, BERT-base provides contextual representations. Therefore, the context of
the word is merely the combination of the sub-words’ contexts. In this work, we adopted
the BERT idea to epidemiology by optimizing the word keys and subkeys.
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Figure 2. BERT-base fine-tuning model architecture: COVID-19 case study.

3.3.3. Contextual Embeddings in Biomedical and Scientific Domains

Considering the literature, the word-embedding technique shows its effectiveness in
traditional word-level vector representations [25] GloVe [5] and fastText [34]. However,
this technique faces some limitations by expressing all possible meanings of a word as a
single vector representation. In addition, it cannot disambiguate the word senses based on
the surrounding context. To overcome these limitations, ELMo and BERT present efficient
solutions by providing contextualized word representations. For example, ELMo creates a
context-sensitive embedding for each word in each sentence by pre-training it on a large
text corpus as a language model. Compared to ELMo, BERT goes deeper and involves
much more parameters for contextualized word representations. It can be fine-tuned to
accomplish a specific task in several domains such as the biomedical domain. In this
context, we present BioBERT and ClinicalBERT models. In [35], BioBERT is a BERT-base
model finetuned over a corpus of biomedical research articles from PubMed. BioBERT
focused on several NLP tasks presented in Table 2. In the same context, we present the
ClinicalBERT model [36]. The main model is based on BERT and then pre-trained on
clinical notes from the MIMICIII dataset. In addition, several works utilize the BERT-base
model and then perform fine-tuning in scientific domains, such as SciBERT [37]. SciBERT
is concerned with named entity recognition, relation extraction and text classification as

87



Appl. Sci. 2022, 12, 2891

pointed out in Table 2. Furthermore, we used the BERT model pre-trained in the English
language to classify scientific papers from PubMed, and we aim to fine-tune it in the field
of COVID-19 for biomedical- and scientific-text-classification tasks.

In Table 3, we produce a comparative study of BERT and its variants in terms of NLP
tasks. The dataset and the main size, the special domain, the several hyper parameters, the
length period and the different methods used are presented in Table 3.

Table 3. Comparative study of BERT variations.

Model NLP Tasks
Dataset

/Size
Characteristics Hyperparameters

Learning
Period

Methods

BioBERT
[35]

NER
Biomedical relation

extraction
Bio question
answering

PubMed
Abstracts/4,5B

PMC Full
Papers/13,5B

Biomedical
domain

Sentence length:
128–512 tokens

23 days
8 NVIDIA V100

(32GB) GPUs

Word piece
tokenization

Pre-training BERT
on biomedical
corpora: Naver

Smart ML
Fine-tuning

BioBERT

ClinicalBERT
[36]

Readmission
prediction
Diagnosis

predictions
Mortality risk

estimation

MIMIC-III Clinical domain Sequence length:
128–512 tokens

Amazon Web
Services using a
single K80 GPU

Subword
embeddings
Self-attention
mechanism

SciBERT
[37]

NER
Text classification

Relation
classification
Dependency

parsing

Semantic
Scolar/1.14M

Scientific
domain

Sentence length:
128–512 tokens

5 days + 2 days
TPU v3 with 8 cores

Finetuning BERT:
Frozen BERT
embeddings

Contextualize word
embeddings

KnowBERT [38]

Relation extraction
Entity typing
Word sense

disambiguation

Wikipedia Knowledge domain - -

Mention-span
representations

Retrieval of
relevant entity
embeddings

Recontextualization
of entity span
embeddings

3.3.4. Self-Attention Mechanism

This section is devoted to detailing the self-attention mechanism. In fact, the func-
tioning of our cerebral cortex freely inspires the attention mechanism. For example, when
analyzing an image to describe it, our attention is instinctively focused on a few areas
containing important information without looking at every part of the image equally. This
mechanism, therefore, resembles a means of saving processing resources in the face of
complex data for analysis. Similarly, when an interpreter translates a text from a source lan-
guage into a target language, it focuses, based on several experiences, on which words in a
source sentence are associated with a certain term in the translated sentence. This attention
mechanism is now an integral part of most modern semantic analysis solutions [39]. The
attention mechanism is formulated as follows:

Attention(Q, K, V) = softmax
(

QKT
√

dk

)
V (1)

where the parameters Q, K and V stand for three vectors, which are query, key and
value, generated through input embedding, and dk designates the size of key vectors. KT

stands for transposed vector of K. For example, let us consider that we have four queries,
which means:
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Q =

⎡
⎢⎢⎣

q1
q2
q3
q4

⎤
⎥⎥⎦, and three keys (dk =3), that is =

⎡
⎣ k1

k2
k3

⎤
⎦, then

QKT
√

dk
=

⎡
⎢⎢⎣

q1
q2
q3
q4

⎤
⎥⎥⎦·[ k1 k2 k3

]
=

1√
dk

⎡
⎢⎢⎣

q1·k1
q2·k1
q3·k1

q1·k2
q2·k2
q3·k2

q1·k3
q2·k3
q3·k3

q4·k1 q4·k2 q4·k3

⎤
⎥⎥⎦ (2)

where, for example, q3·k2 means the second key, k2, applied on the third query, q3. Then,
the maximum of the matrix is calculated according to the function Softmax(), also called
soft argmax or normalized exponential function.

4. Pre-Training BERT-Base on COV-Dat-20

To demonstrate the pertinence of Cov-Dat-20 for language model pre-training, we
trained BERT-base on 4304 abstracts on several topics such as COVID-19 treatment, COVID-
19 symptoms, virology, public health and mental health. Therefore, CovBERT is a BERT-base
model trained on multiple domains of scientific abstracts. In fact, we chose to focus on
abstracts only from the complete scientific papers. Our choice is justified by a comparative
study [40] between the experimental results of a scientific-text-classification approach
based on (1) the full article and (2) the abstract only. Based on the experimental results,
we observed that the abstract classification approach is more efficient than the full article
approach in terms of learning time, the model size and complexity.

Furthermore, the tokenization step is essential in the BERT fine-tuning phase. To feed
our text into BERT, we divided it into tokens, and then these tokens were mapped to their
index in the tokenizer vocabulary. Related to BERT-base model, the maximum sentence
length is 512 tokens. Applying pre-trained BERT requires us to use the tokenizer provided
by the model. In fact, the BERT-base generates a specific vocabulary of a fixed size. Added
to that, BERT’s tokenizer uses a specific manner to handle out-of-vocabulary words.

4.1. Importing Libraires

In order to adjust the BERT-base model to our needs, we imported several neces-
sary libraries related to the text-classification task, such as tensorflow, pandas, numpy,
transformers, etc.

4.2. Needed Parameters for Training

In order to obtain a high performance of our model, we followed the pre-training
hyper-parameters used in BERT [8]. For fine-tuning, most hyper-parameters are the same
as pre-training, except for batch size, learning rate and number of training epochs.

• Max Length: 64;
• Batch size: 32;
• Learning rate (Adam): 2e-5;
• Number of epochs: 4;
• Seed val.: 42.

4.3. Model Characteristics

In order to be suitable to our classification task, we modified the pre-trained BERT
model and we trained it on our dataset. The CovBERT model has several layers and output
types designed to accommodate our specific NLP task.
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4.4. Evaluation Metrics

In the main subsection, we present several indicators measuring the quality of the
model. To measure the performance of this classifier, we introduce four types of elements
classified for the desired class, namely, TP, FP, TN and FN:

• TP: the positive class correctly predicted by the models;
• FP: the positive class incorrectly predicted by the models;
• TN: the false class correctly predicted by the models;
• FN: the false class incorrectly predicted by the models.

In what follows, we present the evaluation metrics adopted to measure the perfor-
mance of the different DL models used. Indeed, our assessment is based on four different
measures, including: Accuracy, Precision, Recall, F1-Score. The evaluation metrics are defined
as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
(3)

Precision =
TP

TP + FP
(4)

Recall =
TP

TP + FN
(5)

F1Score = 2 ∗ Precision ∗ Recall
Precision + Recall

(6)

We tackled the text-classification task based on the BERT-base model after exploring
DL and experimenting with its limitations. Let us begin by describing our experiments.
We started with the automatic collection of scientific papers related to COVID-19 from
PubMed. We then created our dataset made up of 4304 scientific papers distributed in an
equitable way on four different categories: COVID-19, Virology, Public Health and Mental
Health. In order to validate the data classification process in our dataset, we contacted
epidemiologists to carry out this task. Based on the manual verification, we concluded that
some papers were misclassified. Based on our previous experiments and considering some
related works, we opted for performing the scientific paper classification with the PubMed
engine. We converged towards a DL solution to tackle the pandemic of COVID-19. We
named our model CovBERT.

To adapt the existing pre-trained BERT model to our needs, we applied some mod-
ifications, and we trained it on our dataset Cov-Dat-20. We then explored the modified
BERT-base model with the graphics processing unit (GPU) to obtain a better performance
in terms of learning cost. In addition, we fixed the training hyper-parameters such as the
max. length, the batch size, the learning rate, the epoch’s number, and the seed val. We
monitored the validation loss and kept the best model on the validation set.

Figure 3 presents the CovBERT accuracy with four epochs. We notice, with CovBERT,
an accuracy of 94% at epoch four. Beyond four epochs, we risk falling into overfitting.

Figure 3. CovBERT model accuracy.

The related confusion matrix of the proposed model is presented in Figure 4. We
noticed that the high precision was maintained for the Public Health category with 94%. It
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was also maintained for the Mental Health and the Virology categories with 79% being the
least precision value.

Figure 4. Model confusion matrix of our proposed CovBERT model.

The error related to the training set (training loss) of the proposed dataset is shown
in Figure 5. The training loss value starts with 0.8. Then, it gradually falls until 0.2 in the
third epoch. Figure 6 shows the accuracy evolution over time. We noticed that the accuracy
increases over time from 84% in epoch 1 to 94% in epoch 4. We concluded that, from one
epoch to another, the model acquired more knowledge and proved its effectiveness.

 
Figure 5. Training loss of our proposed CovBERT model.

Figure 6. CovBERT model accuracy evolution over time with 4 epochs.
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In summary, we proved the high performance of the modified BERT model. We
noticed that this training model is better suited for the specific NLP task compared to other
DL training models such as CNN and BiLSTM. Among the advantages of the modified
BERT model, we noticed that it is easy to implement. The pre-trained modified BERT
model weights already encode a large quantity of information on the English language.
The fine-tuning step is based on a much smaller dataset for a specific task. Furthermore, we
noticed that using the modified BERT model is more efficient in terms of cost and learning
time, as well as in terms of model complexity and size.

5. Discussion

In this section, we present, in Table 4, BERT’s variants, the relative domains and natural
language processing (NLP) tasks. Then, we discuss the main results of our comparative
study. Indeed, we used Huggingface’s models in our approach resumed in Table 5.

Table 4. BERT’s variants, relative domain and NLP tasks.

Models Domain NLP Tasks

roberta-base Multi-Domain
1. Named Entity Recognition
2. Sequence Classification
3. Question Answering

albert-base-v1 Multi-Domain 1. Sequence Classification
2. Question Answering

allenai/scibert_scivocab_uncased Scientific Domain

1. Named Entity Recognition (NER)
2. PICO Extraction
3. Text Classification
4. Relation Classification (REL)
5. Dependency Parsing (DEP)

allenai/scibert_scivocab_cased Scientific Domain

1. Named Entity Recognition (NER)
2. PICO Extraction
3. Text Classification
4. Relation Classification (REL)
5. Dependency Parsing (DEP)

emilyalsentzer/Bio_ClinicalBERT Biomedical Domain

1 Biomedical Named Entity
Recognition
2. Biomedical Relation Extraction
3. Biomedical Question Answering

dmis-lab/biobert-base-cased-v1.1 Biomedical Domain

1. Biomedical Named Entity
Recognition
2. Biomedical Relation Extraction
3. Biomedical Question Answering

monologg/biobert_v1.1_pubmed Biomedical Domain

1. Biomedical Named Entity
Recognition
2. Biomedical Relation Extraction
3. Biomedical Question Answering

dmis-lab/biobert-v1.1 Biomedical Domain

1. Biomedical Named Entity
Recognition
2. Biomedical Relation Extraction
3. Biomedical Question Answering

gsarti/biobert-nli Biomedical Domain

1. Biomedical Named Entity
Recognition
2. Biomedical Relation Extraction
3. Biomedical Question Answering

CovBERT Biomedical and Scientific Domains 1. Text Classification
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Table 5. Comparative study of BERT, its variants and our proposed CovBERT model.

Models Accuracy
Average

Loss
Recall Precision F1 Metric

roberta-base 83% 29% 51% 68% 57%

albert-base-v1 84% 39% 41% 56% 47%

allenai/scibert_scivocab_uncased 84% 33% 70% 71% 69%

allenai/scibert_scivocab_cased 84% 30% 74% 74% 73%

emilyalsentzer/Bio_ClinicalBERT 87% 25% 83% 82% 82%

dmis-lab/biobert-base-cased-v1.1 87% 14% 68% 68% 66%

monologg/biobert_v1.1_pubmed 87% 17% 77% 79% 76%

dmis-lab/biobert-v1.1 88% 19% 68% 68% 66%

gsarti/biobert-nli 89% 19% 66% 71% 65%

CovBERT 94% 18% 88% 86% 86%

Based on the Tables 4 and 5, we conclude that BERT-base models that are instantiated in
the biomedical domain perform better in terms of accuracy than models that are instantiated
in other domains.

Table 5 presents a comparative study of the initial BERT [8] and its variants such as
SciBERT [37], BioBERT [35] and CovBERT. We noticed that the BERT model has proven
its effectiveness in 11 NLP tasks. The BERT model is fine-tuned in several domains such
as the scientific domain, SciBERT, for five NLP tasks, namely, NER, PICO extraction, text
classification, relation classification and dependency parsing. In addition, BioBERT is
another BERT variant for the biomedical domain. BioBERT focuses on the recognition of
biomedical named entities, on biomedical relation extraction, as well as on biomedical
question answering. Furthermore, we presented our proposed model, titled CovBERT,
trained on PubMed abstracts in the scientific and biomedical domains.

Based on the comparative study, we concluded that BERT-base multi-domain models,
such as ALBERT and Roberta, are less relevant than domain-specific models, with 84%
and 83% accuracy, respectively. In addition, models pre-trained on biomedical domains
are more accurate than models in the scientific domain with 89% accuracy. In addition,
models in the biomedical field (specific field) are more relevant than pre-trained models
in scientific domain (several fields). From there comes the effectiveness of our model,
which concentrates the biomedical and scientific fields. We were able to show an accuracy
improvement in the text-classification NLP task from 84% (SciBERT) in the scientific domain
to 94% in the biomedical and scientific domains (CovBERT).

6. Conclusions

In this context of COVID-19, we advanced a new BERT-base pre-training model,
referred to as CovBERT. The BERT model largely outperforms previous state-of-the-art
models in a variety of NLP tasks. Furthermore, our choice is justified by the effectiveness
of BERT to handle a lack of vocabulary, considering that, in our context, we deal with
short texts (the summary of scientific articles). To assess the performance of our proposed
model, we created a novel dataset, Cov-Dat-20, in the context of COVID-19, which contains
several scientific papers collected from PubMed and classified into different categories
according to COVID-19. Based on our experience, the CovBERT model outperforms the
BERT-base model on text-classification tasks. The main approach is promising and presents
an efficient increase based on the accuracy, precision, recall and F1 metrics. In future work,
we intend to extend this study by enriching our dataset and developing our model in order
to improve classification and prediction performance and to compare the new results to
the present ones. Based on our promising results, we are inspired and aim to adapt our
techniques to other subjects.
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Abstract: Improving quality of life in geriatric patients is related to constant physical activity and fall
prevention. In this paper, we propose a wearable system that takes advantage of sensors embedded
in a smart device to collect data for movement identification (running, walking, falling and daily
activities) of an elderly user in real-time. To provide high efficiency in fall detection, the sensor’s
readings are analysed using a neural network. If a fall is detected, an alert is sent though a smartphone
connected via Bluetooth. We conducted an experimental session using an Arduino Nano 33 BLE
Sense board in inside and outside environments. The results of the experiment have shown that the
system is extremely portable and provides high success rates in fall detection in terms of accuracy
and loss.

Keywords: neural networks; e-health; Arduino; wearable; machine learning

1. Introduction

Among the leading causes of severe harm and death in the elderly, there is the problem
of falls at home. Lack of balance, sudden lurching and confusion after getting out of bed
cause much mortality and bedriddenness. The effect is greatest in patients with dementia,
who often receive harm that limits their mobility, forcing them to spend the rest of their
lives bedridden or in assisted living residences.

According to the best statistics available, in Italy, people over 65 years of age fall at
least once during the year. Of these, 43% fall more than once, and of these falls, over 60%
occur at home. A large portion of those who fall are seniors with dementia. The bedroom
accounts for as many as 25% of total falls. In the United States, falls are the leading cause of
unintentional death and the 7th leading cause of death in persons aged ≥65 years. In 2018,
there were 32,522 fall-related deaths of people ≥65 and only 4933 fall-related deaths of
people younger than 65; thus, 85% of fall-related deaths occur in the 13% of the population
who are ≥65 [1].

How a person falls will dictate the types of injuries that may result. For example,
falling forward or backwards, striking the hand first as an unconditional reflex, usually
causes a wrist fracture. Instead, a rupture of the hip is characteristic of falls to one side or
the other. When an older adult suddenly gets out of bed, their or her body needs time to
restore balance and cope with the new situation.

The main problem is not the fall and the fracture, but its consequences. In fact, in the
elderly, pathologies such as osteoporosis and other physiological changes related to ageing
cause slower healing, additional discomfort and effects from the psychological point of
view. Many elderly patients are reluctant to report falling because they view falling as part
of the ageing process or fear being restricted in their activities or hospitalised.

Falls can impair the independence of older adults and cause a range of personal
and socioeconomic consequences. In fact, falls were responsible for more than 3 million
emergency department visits by older persons. Medical expenditures for nonfatal fall
injuries were approximately $50 billion in 2019 and are sure to increase [2]. However,
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clinicians often underestimate the damage from a fall unless the patient has an obvious
injury, as history and objective examination usually do not include detailed assessments.

Anyone who lives with, helps or works with seniors, particularly those with illnesses,
knows how difficult it is to get them to listen to and follow the suggestions and directions
they are given. Therefore, we designed a wearable emergency recognition device for
elder persons with the aim of detecting dangerous events, such as falls, in order to trigger
assistance. In our case study, we used patients with metabolic disorders, who are more
likely to be prone to falls.

The paper is organised as follows. Section 2 reports a discussion of related works on
the fall detection topic. In Section 3, we describe our fall detection system and its constituent
components. In Section 4, the experimental results and evaluation are presented. Lastly,
conclusions and future work are described in Section 5.

2. Related Works

At present, several solutions have been proposed for elderly fall detection. Such
solutions are categorised into three main types according to the sensor-technology used:
non-wearable systems (NWS), wearable systems (WS) and fusion or hybrid systems (FS).

In particular, NWS systems [3–5] use vision-based sensors strategically distributed
in the home of the elder. They have been proven powerful and robust at detecting falls;
however, these systems have high costs, can be obviously be effective only in indoor
environments and could generate privacy issues for the elders or the people that assist them.

To overcome these limitations, WS systems were proposed. They typically use inertial
sensors, such as an accelerometer or gyroscope, usually attached to the elder for motion
detection. Accelerometers are being increasingly used in WS systems because they offer
advantages: low power consumption; affordability; lightness; ease of use; small size; the
potential to be mounted on various body parts; and most importantly, extreme portability.
Therefore, in some representative papers [6–8] a 3-axis accelerometer with the threshold-
based algorithm was used. In these papers, the authors detected falls when the acceleration
from a 3-axis accelerometer exceeded the threshold. One of the essential advantages of using
the threshold-based method is that it is less complex and less computationally intensive
than the other methods. However, finding suitable thresholds to detect all types of falls
without mislabelling activities of daily living (ADL) has proven to be a complex problem.

A similar approach uses a smartphone’s built-in accelerometer to monitor the move-
ment data of an elderly person continuously. In [9], the collected data were used to test
three different learning classifiers offline: decision trees, k-nearest-neighbours (KNN) and
naive Bayes. The results show that the decision-trees-based algorithm had the best perfor-
mance, with more equilibrated sensitivity and specificity values compared with the other
algorithms. Nevertheless, due to smartphones’ relatively high energy consumption, this
system could only be active for a short period.

Recently, WS systems based on machine learning (ML) approaches have been
proposed [10–14] to address these limitations and improve the accuracy of fall detection.
One study [15] used a nonlinear support vector machine to extract features and gain mean-
ing from body data captured by an accelerometer attached to a smart textile. Two feature
extractions were required to identify the peak to detect the fall direction, requiring more
processing than a single extraction algorithm. The authors of [16] detected and predicted
falls using a method based on the hidden Markov model (HMM), which involved gathering
time series from the movements obtained by a three-axis accelerometer placed on the upper
body. The test results show a perfect success rate of drop detection (100% sensitivity and
100% specificity). However, they used data samples from adolescents’ simulated activities
to train and adjust the HMM and the system’s thresholds.

3. Fall Detection System

Our methodology foresees developing a wearable system for detecting falls of older
people, which takes advantage of low-power smart devices’ capabilities and a neural

98



Appl. Sci. 2022, 12, 2345

network for movement detection recognition. In this work, we have followed an ML
approach by using a neural network for fall detection, but we differ from related works in
the system’s design.

While other related works exploit multiple sensors that collect movements and send
data to a device that analyse them, in this work, we used a single device for activity
monitoring and recognition through a neural network deployed on an Arduino nano
33 BLE Sense board. The board has a small size of 45 × 18 mm, which makes it suitable
for prototype wearables, and is equipped with several integrated sensors to measure
environmental variables. In Figure 1, one can see the board’s main components and
input/output interfaces. This choice brings versatility and portability advantages, since
the other related works’ solutions are constrained to indoor environments that rely on
non-portable infrastructures or require multiple sensors to be worn on the body.

Figure 1. Arduino 33 Nano BLE Sense pinout.

Another innovation of our work is that the monitoring board interacts with a smart-
phone to collect and manage events. The board can communicate with the smartphone
through a Bluetooth Low Energy (BLE) module: when it detects a fall, it sends a notification
to the smartphone. To avoid false alarms, a mobile application on the smartphone manages
the notifications, asking to the user if there is an emergency. If no response is provided
within 60 s, the smartphone forwards an alert by calling a healthcare professional and
sending information about the location of the older person. Furthermore, the detected
events are stored on the smartphone—one the one hand to give more accurate information
to healthcare professionals and on the other hand to provide an efficient way to enhance the
neural network’s training, together with feedback provided in response to detected events.

3.1. Datasets

The analysis of the recent related literature showed that current studies tend to prefer
the use of already existing public repositories containing falls and ADLs, although no
particular dataset can be considered a globally accepted benchmarking tool. For neural
network training, we used two different datasets.

The first dataset chosen for recognition of falls and daily activities (ADL) [17] includes
11 activities and three trials for each of them. For the dataset collection, 17 different subjects
performed six different activities of daily living (walking, standing, lifting an object, sitting
and lying down) and five different types of falls (falling forward using hands, falling
forward using knees, falling backwards, falling sitting, and falling sideways). Data were
collected with a multi-modal approach using wearable sensors, ambient sensors and vision
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devices. For data consistency, we selected a single subject and chose to refer only to
the data acquired by inertial sensors placed on the right wrist. For each type of activity
(excluding walking), we selected five samples for a total of 50 samples for falls and daily
activities, respectively.

We used Power BI to eliminate redundant data and measurements unrelated to the
right wrist or related to the three axes of acceleration and gyroscope. Therefore, the resulting
dataset was trimmed to be used in the training of the neural network that we show in detail
in the dedicated section.

The Run or Walk dataset [18] contains running and walking data collected from iOS
devices. Initially, the dataset consisted of a single file representing 88,588 data samples
collected by the device’s accelerometer and gyroscope during an interval of 10 s and at
a frequency of approximately 5.4/s. For each row, there is an activity type represented
by “activity” column which acts as label and a “wrist” column which represents the
wrist whereupon the device was placed to collect samples. Specifically, each row of the
dataset contained:

• acceleration_x;
• acceleration_y;
• acceleration_z;
• gyro_x;
• gyro_y;
• gyro_z;
• label “0” for walking;
• label “1” for running;
• label “0” for the left wrist;
• label “1” for the right wrist.

The original dataset also contained the columns columns "date”, “time” and “user-
name”, which for obvious reasons, have been eliminated by PowerBI. Moreover, we chose
to consider the measurements made only on the right wrist (for consistency with data
collected for the others activities). Then, we collected 50 samples for walking and 50 for
running. Angular velocity values were transformed from rad/s to deg/s to align them
with the fall/adl dataset values. Therefore, all values contained in the gyro axes columns
were multiplied by 57.2958°/rad.

3.2. Data Pre-Processing

When data are transmitted to the designed neural network, the size of each input
datum should be the same as the number of input layer variables (in our model, the input
layer size is 300). However, since the duration of each action, including falling, is different,
we needed to make the sizes of the data the same. Based on this, all data were unified to
have 50 values.

We split complete dataset into four lists of gestures, namely, “adl”, “fall”, “walk” and
“run”; we had 50 samples for each gesture. For each of these files we had to normalise
input data between 0 and 1 in order to create tensors. Each row contained normalised input
data, coming from acceleration and angular velocity values, and the output represented by
an eye matrix encoding the expected activity value. Data pre-processing reported in the
following Listing 1.
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Listing 1. Dataset parsing and pre-processing.

1 # Set a fixed random seed value , for reproducibility , this will allow us to

get the same random numbers each time the notebook is run

2 SEED = 1337

3 np.random.seed(SEED)

4 tf.random.set_seed(SEED)

5

6 # the list of gestures that data is available for

7 GESTURES = ["adl", "fall", "walk", "run" ,]

8 NUM_GESTURES = len(GESTURES)

9 SAMPLES_PER_GESTURE = 50

10

11 # create a one -hot encoded matrix that is used in the output

12 ONE_HOT_ENCODED_GESTURES = np.eye(NUM_GESTURES)

13

14 inputs = []

15 outputs = []

16

17 # read each csv file and push an input and output

18 for gesture_index in range(NUM_GESTURES):

19 gesture = GESTURES[gesture_index]

20 print(f"Processing index {gesture_index} for gesture ’{gesture}’.")

21

22 output = ONE_HOT_ENCODED_GESTURES[gesture_index]

23

24 df = pd.read_csv("/content/" + gesture + ".csv")

25

26 # calculate the number of gesture recordings in the file

27 num_recordings = int(df.shape [0] / SAMPLES_PER_GESTURE)

28

29 print(f"\tThere are {num_recordings} recordings of the {gesture} gesture.")

30

31 for i in range(num_recordings):

32 tensor = []

33 for j in range(SAMPLES_PER_GESTURE):

34 index = i * SAMPLES_PER_GESTURE + j

35 # normalize the input data , between 0 and 1:

36 tensor += [

37 (df[’aX’][index] + 4) / 8,

38 (df[’aY’][index] + 4) / 8,

39 (df[’aZ’][index] + 4) / 8,

40 (df[’gX’][index] + 1000) / 2000,

41 (df[’gY’][index] + 1000) / 2000,

42 (df[’gZ’][index] + 1000) / 2000

43 ]

44

45 inputs.append(tensor)

46 outputs.append(output)

47

48 # convert the list to numpy array

49 inputs = np.array(inputs)

50 outputs = np.array(outputs)

51

52 print("Data set parsing and preparation complete.")

3.3. Training, Testing and Validation Datasets

For model training we randomly split input and output pairs into a training set (60%),
a testing set (20%) and a validation set (20%), as reported in the following Listing 2.
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Listing 2. Dataset randomisation and splitting.

1 # Randomise the order of the inputs , so they can be evenly distributed for

training , testing , and validation

2 num_inputs = len(inputs)

3 randomise = np.arange(num_inputs)

4 np.random.shuffle(randomize)

5

6 # Swap the consecutive indexes (0, 1, 2, etc) with the randomised indexes

7 inputs = inputs[randomise]

8 outputs = outputs[randomise]

9

10 # Split the recordings (group of samples) into three sets: training , testing

and validation

11 TRAIN_SPLIT = int (0.6 * num_inputs)

12 TEST_SPLIT = int (0.2 * num_inputs + TRAIN_SPLIT)

13

14 inputs_train , inputs_test , inputs_validate = np.split(inputs , [TRAIN_SPLIT ,

TEST_SPLIT ])

15 outputs_train , outputs_test , outputs_validate = np.split(outputs , [

TRAIN_SPLIT , TEST_SPLIT ])

16

17 print("Data set randomisation and splitting complete.")

3.4. Model Training

In this work, we used Google TensorFlow for neural network configuration and learning,
since it makes neural network implementation convenient, because it provides functions used
for machine learning, including activation functions and an initialisation function.

To exploit the advantages of neural networks while keeping a simple model, able to
be deployed on the Arduino board, we designed a sequential neural network model for
ADL recognition consisting of:

• A dense layer with 50 neurons and a sigmoid activation function;
• A dense level with 25 neurons and a sigmoid activation function;
• A final level with four neurons and an activation function softmax.

The following Listing 3 shows the implemented model:

Listing 3. Neural network model definition and training.

1 # build the model and train it

2 model = tf.keras.Sequential ()

3 model.add(tf.keras.layers.Dense(50, activation=’ReLU’))

4 model.add(tf.keras.layers.Dense(25, activation=’ReLU’))

5 # softmax is used , because we only expect one gesture to occur per input

6 model.add(tf.keras.layers.Dense(NUM_GESTURES , activation=’softmax ’))

7 model.compile(optimizer=’adam’, loss=’mse’, metrics =[’accuracy ’])

8 history = model.fit(inputs_train , outputs_train , epochs =80, batch_size =1,

validation_data =( inputs_validate , outputs_validate))

Since the sample size of the experiment was 50, and we had three components for
acceleration and angular velocity per sample (x, y and z; gx, gy and gz), the number of
variables in the input layer was set to 50 × 6. In the hidden layers, a ReLU function was
used as the activation function, for performance reasons.

The output layer consists of four neurons—[0, 1]—for the “adl”, “fall”, “walk” and “run”
activities. In the output stage, the activation function is softmax, so the sum of the output
probabilities has to be 1. In our case, having four different classes, we obtained a probability
for each of them. The predicted movement is the one with the highest probability.

3.5. Model Deployment

The model was built and trained using the TensorFlow and Keras libraries. The
obtained model was converted to a Tensor Flow Lite version, as reported in Listing 4,
suitable to be loaded into the Arduino IDE and then flashed into the board. Thus we built
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a classifier that prints a prediction on a serial monitor and sends emergency notifications
through Bluetooth messages to a smartphone.

Listing 4. Neural Network conversion into Tensorflow Lite model.

1 # Convert the model to the TensorFlow Lite format without quantization

2 converter = tf.lite.TFLiteConverter.from_keras_model(model)

3 tflite_model = converter.convert ()

4

5 # Save the model to disk

6 open("model.tflite", "wb").write(tflite_model)

7

8 import os

9 basic_model_size = os.path.getsize("model.tflite")

10 print("Model is %d bytes" % basic_model_size)

The classifier implemented for the Arduino board predicts four possible motions (as
illustrated above). The detection of a movement is signalled by turning on the RGB LED of
the board, as shown in Figure 2, according to the following scheme:

• Red LED, when a fall is detected;
• Blue LED, for running;
• Green LED, for walking;
• LED off, for actions of daily life (ADL).

Figure 2. From the top: falling, running, walking and standing detection.
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4. Results

How to evaluate fall detection systems (FDSs) in realistic conditions is still an unre-
solved experimental problem. The main users of FDSs are supposed to be the elderly. The
current public databases containing actual falls experienced by older adults are certainly
scarce. In our scenario of monitoring older persons’ activities (generally people with limited
mobility), falls could be identified as movements that clearly deviate from the detected
patterns of the samples in the training set. Anyway, in the absence of measurement reposi-
tories with a significant number of actual falls, experiments were conducted to obtain the
acceleration values of falls. We excluded older people from falls simulations because they
could have resulted in severe injuries to such subjects.

For fall simulations, we prepared an experimental environment consisting of a floor
mat capable of absorbing one’s fall on which we put an unstable platform. The subject, to
which the smart device was attached on the right wrist by a strip string, was asked to stand
on the unstable platform. By slightly moving the platform, the subject’s fall was induced.

The model for motion detection (ADL, fall, walk, run) was trained for 80 epochs,
obtaining the results shown in Figure 3.

The parameters shown are:

• loss, defined as the root mean square error between the actual value and the predicted
value during training;

• accuracy, as the percentage of correct predictions, compared to the total predictions
during training;

• val_loss, loss on the validation data;
• val_accuracy, accuracy on the validation data.

(a) (b)

Figure 3. Training of the movement detection model: (a) loss and val_loss functions for the movement
classifier. (b) accuracy and val_accuracy functions for the movement classifier.

Figure 3a shows the loss and val_loss obtained for the motion classifier. On the valida-
tion data, the loss function was 0.10. Figure 3b shows the accuracy and val_accuracy obtained
for the motion classifier. On the validation data, the accuracy did not get beyond 78%.

For a real-world validation session, we tested an elderly person performing ADLs and
walking, since they are safe experiments. These data are more representative of the posture,
walking speed and other factors typical of older people.

The subject performed ADLs wearing the device for a week and provided feedback on
the alert notifications prompted by the smartphone. The subject also performed a prefixed
set of activities at the end of each day to compare the results. We estimated network
classification performance at the beginning and the end of the experiment by evaluating
samples of data collected during test set of activities performed on day 1 and day 7. We
reported the results in Figure 4.
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Figure 4a shows the confusion matrix obtained by the model during day 1. The
recognition of fall, walk and run activities were good (all five running activities were
recognised, along with the four walking activities and the two falling activities). However,
in the case of the ADLs, due to their variability, only one was recognised adequately, and
the remainder were predicted to be falls. Figure 4b shows the model’s confusion matrix
obtained during day 7, after tuning the network with feedback provided by the subject
through the smartphone. Fall, walk and run recognition were still good; and in ADLs
recognition, 50% of events were correctly recognised.

(a) (b)
Figure 4. Model’s confusion matrix. (a) Confusion matrix for the movement detection classifier on 1.
(b) Confusion matrix for the movement detection classifier on day 7.

5. Conclusions

In this work we have presented a system for fall detection for elderly people. The
system exploits a smart sensor board on which we use a neural network trained to recognise
and monitor the activity of the patient. The board interacts with a smartphone application,
connected through Bluetooth with the board, which is responsible for getting user feedback
to supposed fall events and forwarding emergency calls if necessary.

In previous fall detection studies, falls have recognised using acceleration sensors on
the waist or the chest, and the recognition rate has been over 95%. However, when an
acceleration sensor on the wrist was used, the recognition rate was about 75%. The artificial
neural network proposed in this work was able to recognise activities with 78% accuracy
using the acceleration of the wrist. This is a relatively small improvement compared to the
conventional fall detection mechanism, which is due to the simple neural network model
that was designed to suit the limited computational capabilities of such devices.

However, with wrist-band type devices, we can cut down the system costs (we may
use existing smart-watches or bands) and provide comfort to the user. Moreover the
proposed system is portable, usable in outdoor environments and upgradeable through the
firmware. Furthermore, the system analyses sensor data with an embedded computational
unit (CU), not having the need for streaming data to an external CU, thereby preventing
draining of the battery of the connected smartphone. The latter is only responsible for
obtaining feedback from the user and forwarding emergency notifications.

In future developments we will provide the ability to classify more activities, so that
the living patterns of older persons can be better recognised. Furthermore, we could also
integrate speech recognition features to recognise help requests, including those not related
to falls [19,20]. Moreover, we foresee the need to apply security and privacy techniques in
order to process the data acquired by the sensors [21,22].
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Abstract: Due to population aging, we are currently confronted with an increased number of chronic
heart failure patients. The primary purpose of this study was to implement a noncontact system that
can predict heart failure exacerbation through vocal analysis. We designed the system to evaluate
the voice characteristics of every patient, and we used the identified variations as an input for a
machine-learning-based approach. We collected data from a total of 16 patients, 9 men and 7 women,
aged 65–91 years old, who agreed to take part in the study, with a detailed signed informed consent.
We included hospitalized patients admitted with cardiogenic acute pulmonary edema in the study,
regardless of the precipitation cause or other known cardiovascular comorbidities. There were no
specific exclusion criteria, except age (which had to be over 18 years old) and patients with speech
inabilities. We then recorded each patient’s voice twice a day, using the same smartphone, Lenovo
P780, from day one of hospitalization—when their general status was critical—until the day of
discharge, when they were clinically stable. We used the New York Heart Association Functional
Classification (NYHA) classification system for heart failure to include the patients in stages based
on their clinical evolution. Each voice recording has been accordingly equated and subsequently
introduced into the machine-learning algorithm. We used multiple machine-learning techniques for
classification in order to detect which one turns out to be more appropriate for the given dataset and
the one that can be the starting point for future developments. We used algorithms such as Artificial
Neural Networks (ANN), Support Vector Machine (SVM) and K-Nearest Neighbors (KNN). After
integrating the information from 15 patients, the algorithm correctly classified the 16th patient into
the third NYHA stage at hospitalization and second NYHA stage at discharge, based only on his
voice recording. The KNN algorithm proved to have the best classification accuracy, with a value of
0.945. Voice is a cheap and easy way to monitor a patient’s health status. The algorithm we have
used for analyzing the voice provides highly accurate preliminary results. We aim to obtain larger
datasets and compute more complex voice analyzer algorithms to certify the outcomes presented.

Keywords: artificial intelligence; chronic heart failure; cardiogenic pulmonary edema; machine learning

1. Introduction

Age-related morphological and physiological changes lead to cardiogeriatric syn-
drome, predisposing the elder individual to develop Chronic Heart Failure (CHF) [1]. CHF
is a significant public health issue, with a prevalence of over 37.7 million cases world-
wide [2]. It is ranked by the substantial morbidity and mortality first and the significant
annual healthcare and economic burden second [3,4].
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CHF is the consequence of cardiac functional impairment secondary to many etiolo-
gies, commonly hypertension and coronary heart disease [5,6]. CHF symptoms, such as
dyspnea, poor exercise tolerance, and fluid retention, strongly affect patients’ quality of
life [7]. The plurietiological substrate of heart failure has a critical variability depending
on sex, ethnicity, age, comorbidities, and environment [8,9]. Globally, heart failure is one
of the most important causes of hospitalization among adults over 65 years old, with
medical costs ranging from USD 868 per patient in South Korea to USD 25,532 per patient
in Germany, according to a study published in 2018 by Lesyuk W et al. [10]. The estimated
lifetime cost of a chronic heart failure patient is 126,819 $ [11]. The situation in Romania is
far from good; 4.7% of the population above 35 years old is diagnosed with CHF with an
annual mortality rate of approximately 60% [3,12]. Once diagnosed with heart failure, a
patient has an expected survival rate of 50% at five years and 10% at ten years [13,14].

However, the severity of the left ventricular dysfunction is associated with an even
greater risk of sudden death [4]. Although the survival prognosis of heart failure is not
good, the numbers have undergone a substantial improvement over time. [15]

1.1. Pathopyshiology of Acute Heart Failure

Heart failure is a clinical syndrome characterized by acute exacerbations resulting
from gradual or rapid changes in the heart, with signs (elevated jugular venous pressure,
pulmonary congestion) and symptoms (dyspnea, orthopnea, lower limb swelling) needing
urgent therapy [16,17]. Acute heart failure’s most frequent clinical tableaus are chronic
heart failure decompensation, cardiogenic shock, and acute pulmonary edema [18].

The Cardiogenic Acute Pulmonary Edema (CAPE) develops secondary to a sharp
increase in left ventricular pressure, impacting the left atrium retrogradely. Therefore,
pressure in pulmonary capillaries results in fluid exudation in the intravascular compart-
ment [19,20]. This mechanism leads to a low diffusion capacity in the lungs, causing
dyspnea and fluid retention, which can progress into anasarca, depending on the severity
of the cardiac dysfunction [21,22].

Anasarca represents a generalized form of edema, with subcutaneous tissue swelling
throughout the body, including the swelling of the larynx, also known as the voice box [23].

The link between the phonation process and generalized edema was underlined in
2002, when Verdolini et al. stated that systemic dehydration mediates the augmentation
of phonation threshold pressure [24]. In 2017, Murton et al. conducted a speech analysis
on patients with heart failure and obtained significant speech accuracy improvement after
pulmonary decongestion and clinical stabilization [25].

In terms of clinical decisions, management of acute heart failure aims to decrease the
number of readmissions and long-term mortality [26]. Despite medical efforts, acute heart
failure remains a pathology with a sober prognosis, and there is no therapy proven to have
long-term mortality benefits [27]. To avoid rehospitalization, the need for better secondary
prevention strategies is evident. [28]

1.2. Artificial Intelligence in Cardiology

Artificial intelligence is an engineering branch that uses novel concepts to resolve
complex challenges [29]. As biology and medicine are rapidly becoming data-intensive,
deep-learning algorithms have been used to assist physicians [30].

Twenty-first-century medicine is now spinning around the patient’s individuality, and
big data algorithms are efficient assistance tools in the medical environment [31]. Artificial
intelligence should not be regarded as a futuristic phenomenon but rather as a tool that
saves medical staff time and minimizes human error [30].

In a study conducted in 2017, Dawes et al. managed to predict outcome in pulmonary
hypertension patients with an algorithm of three-dimensional patterns of systolic cardiac
motion. The software copied the MRI data from 256 patients and learned which config-
urations were associated with early death or right heart failure. The algorithm used the
short-axis cine images segmentation for the three-dimensional model. The prediction tool
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assessed survival using the median survival time and area under the curve with time-
dependent receiver operating, for 1-year survival. Alongside conventional imaging and
biological markers, this algorithm increased the accuracy of survival prediction [32].

The Artificial Intelligence-Clinical Decision Support System (AI-CDSS) is a hybrid
(expert-driven and machine-learning-driven) tool designed to assist physicians in heart
failure diagnosis. Dong-Ju Choi, Jin Joo Park et al. evaluated in their published study the
diagnostic accuracy of AI-CDSS on a group of 97 patients with dyspnea. They assessed the
concordance rate between the algorithm results and those of heart failure specialists. Out of
the 97 patients, 44% had heart failure, with a concordance rate between AI-CDSS and heart
failure specialists of 98%. On the other hand, the concordance rate between AI-CDSS and
non-heart failure specialists was 76%. Finally, they underlined the usefulness of AI-CDSS
in heart failure diagnosis, especially when a heart failure specialist is unavailable [33].

A recent review by Aixia Guo, Michael Pasque et al. summarized the recent findings
and approaches of machine-learning techniques in heart failure diagnosis and outcome
prediction. The review evaluated studies which used electronic health records, varying
from demographic characteristics, medical treatment history, laboratory and imaging
results to genetic profiles. They assert high-accuracy results of these prediction tools, taking
into consideration at the same time the challenges that novel machine-learning models still
need to overcome. Among the most common shortcomings in this area is the impossibility
of full integration of the electronic health record (medical reports, a wide variety of imaging
results, etc.). On the other hand, given that these algorithms are based on machine learning,
patients with rare diseases and atypical profiles cannot benefit from this technology. Thus,
it is necessary in the future to further enrich management techniques in order to provide
interpretable and actionable models [34,35].

Our study offers a new perspective on the applicability of artificial intelligence in
medicine. We pursue this software development in order to integrate it as a smartphone
application in the near future. This application will run in the smartphone background,
performing vocal analysis on heart failure patients. If it finds signs of heart failure de-
compensation, it will refer them to medical services. In this way, it will be possible to
avoid severe presentations of acute heart failure, which require hospitalization and emer-
gency treatment.

1.3. Main Contributions

The primary purpose of this study was to implement a noncontact system that can
predict heart failure exacerbation through vocal analysis. The system was designed to
evaluate every patient’s voice characteristics, and the identified variations were used as an
input for a machine-learning-based approach. This new concept proposes an implementa-
tion of a silent intelligent recorder in patients’ home, capable of predicting heart failure
decompensation.

Our preliminary results managed to highlight an important link between the phona-
tion process and heart failure status. Voice is a cheap parameter that would prove extremely
useful in the secondary prevention management of heart failure. In order to have effective
secondary prevention campaigns in the future, we need an easy-to-use, fast-to-implement,
cheap tool.

In our knowledge, there is currently no other open-source algorithm capable of
predicting heart failure decompensation using artificial intelligence. The aim of our research
study is to highlight the heart failure burden around the globe and the beneficial impact
that a secondary prevention algorithm could have on frequent hospitalizations of heart
failure patients.

2. Materials and Methods

2.1. Study Population

The selective criterion of inclusion was the cause of hospitalization. Patients presenting
with cardiogenic acute pulmonary edema were selected regardless of the precipitation
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cause or other known cardiovascular comorbidities. Patients’ enrollment in the study was
voluntary, after a detailed presentation of the study design. The patients’ data collection
could not be completely anonymous, so the pseudoanonymization alternative was chosen.
Thus, each participant was assigned an identifier, through which personal information is
separated from the data collection of the study. All participants were informed about their
right to privacy and about the private storage and use of their data. The study conducted
did not present any potential psychological, social, physical or legal harm to patients. A
total of 16 patients, 9 men and 7 women, aged 65–91 years old, agreed to participate in the
study and signed a comprehensive informed consent. There were no specific exclusion
criteria, except age (which had to be over 18 years old) and patients with speech inabilities.

2.2. Intervention

We recorded the voices of all patients twice a day, using a Lenovo P780 smartphone,
from day one of hospitalization, until the day of discharge. We asked the patients to
repeatedly pronounce two specific keywords (number thirty-three and vowel E) while
recording. We attempted to minimize environmental noise as much as possible. The mean
hospitalization period was seven days, with two recordings per day. We built a small
database of 240 audio recordings. We classified them according to the New York Heart
Association Functional Classification (Table 1) [36].

Table 1. New York Heart Association Functional Classification.

Class Patient Symptoms

I No limitation of physical activity. Ordinary physical activity does not cause undue
fatigue, palpitation, dyspnea (shortness of breath)

II Slight limitation of physical activity. Comfortable at rest. Ordinary physical activity
results in fatigue, palpitation, dyspnea (shortness of breath).

III Marked limitation of physical activity. Comfortable at rest. Less than ordinary
activity causes fatigue, palpitations or dyspnea.

IV Unable to carry on any physical activity without discomfort. Symptoms of heart
failure at rest. If any physical activity is undertaken, discomfort increases.

2.3. Feature Extraction

Voice is a continuous-time signal; however, for computation, it is represented as a
discrete-time signal. We measured the amplitude at equal distances in a set number of
points per second, along with the continuous signal. We set the sampling rate at 48 kHz
in this study. Sampling refers to the recording of the speech signals at a regular interval
(Figure 1).

Figure 1. Original signal representing the samples amplitudes over time. In this audio, a female
pronounced “33” once.
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The raw data were processed to compute the input for the proposed machine-learning
algorithms. Calculating the Mel-Frequency Cepstral Coefficients (MFCCs) is an essential
step to extract the relevant voice features and reduce each file’s dimension. Figure 2 presents
the steps for MFCCs extraction, where Discrete Fourier Transform (DFT) is applied on the
time signal generating the frequency spectrum. The logarithm function is used, and the
Inverse DFT is computed. The final step is to add the Mel Cepstrum or Discrete Cosine
Transform (DCT) [37] (Figure 2).

Figure 2. Steps involved in MFCC Features’ extraction.

In the described method, the output is represented by up to 40 feature vectors;
20 feature vectors were used, graphically represented in Figure 3. As the dataset com-
prises different length audio files, the mean MFCC is computed for each feature. To
minimize the noise impact, the values are normalized (Figure 3).

Figure 3. Visual representation of the 20 feature vectors—the Mel Frequency Cepstral Coefficients.
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2.4. Machine-Learning Approaches

As a data analytic technique, machine-learning teaches computers to learn from
experience, similar to human and animal nature. Machine-learning approaches use com-
putational methods in order to absorb the data, without having to rely on predetermined
equations as a model [38].

For classifying the audio files into the four heart-failure classes, we used multiple
machine-learning techniques. Each method is generally explained below.

2.4.1. Support Vector Machine (SVM)

Support Vector Machine (SVM) is a machine-learning technique that analyzes data for
classification and regression analysis using supervised learning models with associated
learning algorithms. Being a nonprobabilistic binary linear classifier, SVM algorithm settles
a given set of training examples into one of two categories. Consequently, SVM creates a
gap between the two categories, in order to maximize the space between them. The new
examples are then mapped into that space and predicted to a category, based on the gap
side they fall in. SVM is a standard and suitable method for audio classification [39].

Figure 4 describes a schematic manner of the general SVM algorithm. There are multi-
ple SVMs, using different mathematical functions (or kernels), as follows: linear, nonlinear,
radial basis function (RBF), polynomial, and sigmoid. They were tested and evaluated to
conclude which is the best kernel to use to determine heart-failure severity [40,41] (Figure 4).

Figure 4. Classification procedure using SVM.

2.4.2. Artificial Neural Networks (ANN)

Artificial Neural Networks (ANN) represent computing systems inspired by the
neural networks of animal brains. They are made up of nodes (artificial neurons) and
connections that can transmit signals. These signals are represented by real numbers, and
the output of each neuron is the sum of all its inputs. Usually, these artificial neurons are
aggregated in layers. Each layer can produce different changes to its inputs. Correctly, the
signal goes from the first to the last layer, often even repeatedly [42].

Figure 5a,b represent the used models, the chosen layers with the activation function
specified for each of them: (Rectified Linear Activation Function, SoftMax, and Hyperbolic
Tangent). A facile way to compute the model is by utilizing Keras, a high-level API that
gives the user the necessary tools to build and evaluate the neural networks.
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(a) 

(b) 

Figure 5. (a,b) The models used in the ANN method.

2.4.3. K-Nearest Neighbors (KNN)

K-Nearest Neighbors (KNN) represents a nonparametric classification method used
in classification and regression. This algorithm performs classification based on distance,
thus its function is only locally approximated and computation is postponed until function
evaluation. If the analyzed units have different physical characteristics, it is recommended
to normalize the data in order to improve its accuracy [43].

In our study, the classification is computed, and a new object is classified according to
the votes of its neighbors. The 20 mean MFCCs extracted are used in this approach, and
for this reason, it is employed as a 20-dimension classifier. This algorithm provides high
accuracy for problems with unknown distributions [44].

The Principal Component Analysis (PCA) is computed to evaluate whether the noise
is introduced and determine if it can be reduced. For model generation, a Grid Search is
performed. For calculating a model with KNN, Scikit learn, an easy-to-use and efficient
library from python, was selected.

The dataset was split into two parts for all three methods: the train set (80%) and the
test set (20%).

3. Results

The study group has 16 patients, 9 men and 7 women. The small sample size of
our study group is due to the COVID-19 pandemic. Our local hospital was dedicated to
COVID-19 patients and it was not possible to continue enrolling new patients in the study.
Consequently, we decided to move forward with the analysis of this group in order to see
if the algorithm works.

Despite the small patient study group, we believe that the results obtained are relevant,
considering the used algorithm. KNN is able to deliver high-accuracy results for small
databases. The obtained results show a link between patients’ vocal changes and heart
failure status. Given these favorable preliminary results, we expect them to strengthen as
the number of patients increases.

In terms of cardiovascular risk factors, the enrolled patients have a minimum age value
of 65 years old, a maximum age value of 91 years old, with a mean value of 72.68 years old.
An increased body mass index is found in 7 out of 16 patients, with a maximum value of
46.88 kg/m2, corresponding to morbid obesity. High blood pressure and dyslipidemia are
two very common risk factors in the study group: out of the 16 patients, 12 are known to
have high blood pressure and/or dyslipidemia, with ambulatory treatment. Furthermore,
10 patients have type 2 diabetes, and 7 of these patients need insulin therapy (Table 2). The
medical history of the 16 patients enrolled in the study revealed ischemic coronary heart
disease in 16 out of 16 patients. Additionally, seven of them have history of percutaneous
angioplasty, four have history of coronary artery bypass grafting and five were on ischemic
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visa drug therapy. All patients have heart failure, 10 of which have severe left ventricular
systolic dysfunction (Table 3). The New York Heart Association functional classification
(NYHA) of heart failure is a widely used tool in cardiologists’ daily practice. It evaluates
heart failure patients’ symptom severity and the exertion threshold needed to provoke
symptoms. Each patient was given a daily assessment on the NYHA scale, the result being
associated with the voice recordings performed [36].

In order to be able to use the voice signals as input data for the proposed algorithm,
the audio files were converted to vectors of numerical values. These values represent the
audio signal’s amplitude measured at equal intervals in the temporal space. Consequently,
the audio files were converted to vectors of numbers. The different length files resulted in
different sized vectors. Their processing led to the extraction of 22 representative values
for 22 vocal characteristics (see Section 2.2 Feature Extraction). This process is mandatory
in order for the final data collection to have files of the same size.

With the dataset available, the algorithms described in Sections 2.4.1–2.4.3 were tested,
and the KNN algorithm was the most relevant as it generated the highest accuracy for
classification. Additionally, the result was sustained by the confusion matrix available in
(Table 4). This kind of matrix is used to validate the accuracy of the KNN classification
method. The three columns from the matrix represent the three classes associated with the
audio files. Each element from the diagonal represents the number of correctly classified
data from each class and the other elements represent the erroneous ones.

Table 2. Cardiovascular risk factors of enrolled patients.

Patient No. Age Sex Smoker Status
Body mass

Index
Arterial

Hypertension
Diabetes Mellitus

Type 2
Dyslipidemia

1 75 F No 24.21 kg/m2 Yes (grade 2) Yes Yes
2 71 F Yes 34.66 kg/m2 Yes (grade 3) No Yes
3 73 M No 38.06 kg/m2 Yes (grade 3) Yes Yes
4 76 M No 24.8 kg/m2 Yes (grade 3) No No
5 70 M Yes 27.65 kg/m2 Yes (grade 3) No Yes
6 65 M No 27.7 kg/m2 Yes (grade 3) Yes Yes
7 91 M No 24.68 kg/m2 Yes (grade 3) Yes Yes
8 70 M No 31.04 kg/m2 No No Yes
9 66 F Yes 44.17 kg/m2 Yes (grade 2) Yes No
10 79 F No 23.43 kg/m2 Yes (grade 3) Yes No
11 75 M Yes 26.23 kg/m2 No No No
12 78 M Yes 26.89 kg/m2 Yes (grade 2) No Yes
13 67 M Yes 30.86 kg/m2 Yes (grade 3) Yes Yes
14 74 F No 44.92 kg/m2 No Yes Yes
15 67 F Yes 33.58 kg/m2 Yes (grade 2) Yes Yes
16 66 F Yes 46.88 kg/m2 No Yes Yes

The high accuracy obtained, having a value of 0.945, and the validation that was
performed through the confusion matrix indicate that this method succeeded in classifying
the data with high precision and is reliable for further development.

Alongside daily vocal analysis of the enrolled patients, their clinical and paraclinical
monitoring was performed. Thus, weight at admission and discharge, daily diuresis, daily
water intake and NTproBNP values were monitored. The clinical and paraclinical evolution
of the patients enrolled in the study fits the results of the vocal analysis performed by the
proposed algorithm (Table 5).
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Table 3. Medical history of enrolled patients.

Patient
NO.

Left Ventricular
Ejection
Fraction

IHD
IHD
Type

Atrial
Fibrillation

Aortic Valve
Disease

Mitral Valve
Disease

Tricuspid Valve
Disease

1 15% Yes PCI Yes Metal
prosthesis Metal prosthesis Tricuspid

annuloplasty

2 50% Yes PCI No No Easy mitral
regurgitation No

3 19% Yes CABG No No Severe mitral
regurgitation

Severe tricuspid
regurgitation

4 35% Yes MTh. No Easy aortic
regurgitation

Moderate mitral
regurgitation

Moderate
tricuspid

regurgitation

5 30% Yes PCI Yes No Moderate mitral
regurgitation

Moderate
tricuspid

regurgitation

6 20% Yes PCI No No Moderate mitral
regurgitation

Moderate
tricuspid

regurgitation

7 40% Yes CABG No
Moderate

aortic
stenosis

Severe mitral
regurgitation

Easy tricuspid
regurgitation

8 25% Yes MTh No No Easy mitral
regurgitation No

9 40% Yes MTh No No Moderate mitral
regurgitation

Moderate
tricuspid

regurgitation

10 30% Yes MTh Yes No Moderate mitral
regurgitation

Easy tricuspid
regurgitation

11 25% Yes CABG Yes Severe aortic
stenosis Metal prosthesis Severe tricuspid

regurgitation

12 50% Yes PCI Yes
Moderate

aortic
regurgitation

Moderate mitral
regurgitation

Moderate
tricuspid

regurgitation

13 45% Yes PCI No No Easy mitral
regurgitation

Easy tricuspid
regurgitation

14 20% Yes MTh Yes No Moderate mitral
regurgitation

Moderate
tricuspid

regurgitation

15 40% Yes CABG No No Moderate mitral
regurgitation

Easy tricuspid
regurgitation

16 10% Yes PCI No No Moderate mitral
regurgitation

Moderate
tricuspid

regurgitation

IHD = ischemic heart disease; IHD type = ischemic heart disease type; PCI = percutaneous coronary intervention; CABG = coronary artery
bypass graft surgery; MTh = medical therapy.
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Table 4. Approach score.

Method Results

SVM
Accuracy obtained using radial basis function (rbf) kernel = 0.709
Accuracy obtained using linear kernel = 0.618
Accuracy obtained using polynomial kernel = 0.527

ANN

Model 1:
Maximum value of the loss function obtained during testing: 1.1447
Maximum accuracy obtained during testing: 0.418
Model 2:
Maximum value of the loss function obtained during testing: 1.3237
Maximum accuracy obtained during testing: 0.436

KNN

Model score obtained for KNN: 0.945
Confusion Matrix:
[[20 0 2]
[0 13 0]
[1 0 19]]

Table 5. Evolution of water retention and NTproBNP during hospitalization.

Patient No.
Admission

Weight
Discharge

Weight
Mean Value of
Daily Diuresis

Daily Water
Supply

Ntprobnp
Admission

Ntprobnp
Discharge

1 62 kg 58 kg 2500 mL/24 h 2000 mL/day 3480 pg/mL 1200 pg/mL
2 78 kg 73 kg 3500 mL/24 h 1000 mL/day 4638 pg/mL 900 pg/mL
3 110 kg 102 kg 2600 mL/24 h 750mL/day 17,545 pg/mL 500 pg/mL
4 70 kg 65 kg 3000mL/24 h 2000 mL/day 3131 pg/mL 1000 pg/mL
5 78 kg 74 kg 3000 mL/24 h 1500 mL/day >30.000 pg/mL 1200 pg/mL
6 96 kg 90 kg 3500 mL/24 h 1000 mL/day 1207 pg/mL 400 pg/mL
7 78 kg 71 kg 2700 mL/24 h 1000 mL/day 8987 pg/mL 700 pg/mL
8 95 kg 90 kg 3100 mL/24 h 1000 mL/day 4277 pg/mL 800 pg/mL
9 110 kg 103 kg 4000 mL/24 h 1500 mL/day 3664 pg/mL 650 pg/mL
10 60 kg 55g 3800 mL/24 h 1500 mL/day 5200 pg/mL 1105 pg/mL
11 85 kg 79 kg 3400 mL/24 h 1000 mL/day 15.300 pg/mL 940 pg/mL
12 85 kg 80 kg 3500 mL/24 h 1500 mL/day 4325 pg/mL 456 pg/mL
13 100 kg 94 kg 4000 mL/24 h 2000 mL/day 6800 pg/mL 670 pg/mL
14 115 kg 109 kg 4500 mL/24 h 1500 mL/day 2262 pg/mL 370 pg/mL
15 90 kg 82 kg 3800 mL/24 h 1000 mL/day 3797 pg/mL 800 pg/mL
16 120 kg 110 kg 4300 mL/24 h 1000 mL/day 10.939 pg/mL 589 pg/mL

4. Discussion

The purpose of this study was to prove that the phonation process suffers during
acute heart failure. Therefore, the voice can be used as a prognostic marker and to monitor
patients’ health status.

The data of the patients admitted to the hospital for acute heart failure have been
evaluated. The subject data have been analyzed from the critical status (first day of
admission) to the stable status (day of discharge). Out of 16, severe left ventricular systolic
dysfunction was noted in 10 patients, with a hypersodium diet as precipitating factor. In
comparison, six patients have had moderate left ventricular systolic dysfunction associated
with bronchopneumonia with or without moderate to severe valvulopathy (Table 4).

The machine-learning algorithm integrated the audio recordings from 15 patients. We
used the last patient to test the algorithm, and he was classified accordingly and correctly
after vocal analysis into the third NYHA stage at hospitalization and class II NYHA at
discharge.

Numerous factors are known to contribute to the development of heart failure (HF).
The potential causes include coronary artery disease, hypertension, cardiomyopathies,
valvular and congenital heart disease, arrhythmias, alcohol and drugs, high output failure
(anemia, thyrotoxicosis, Paget’s disease, etc.), pericardial disease, and primary right heart

118



Appl. Sci. 2021, 11, 11728

failure [45]. The meta-analyses conducted by Jones et al. found an improvement in the
survival rates secondary to CHF over the past 70 years. The estimated 1-year survival rate
was 85.5%; however, the 5-year and 10-year survival rates were 56.7% and 34.9%, and most
patients died directly from heart failure or cardiovascular diseases [46]. Although the risk
of HF decompensation among older patients has declined over time, it remains one of the
leading causes of hospitalization [47].

Cook et al. evaluated the annual global heart failure burden from all published
sources and estimated it at $108 billion per annum in 2012. The direct costs accounted for
$65 billion, and the indirect cost was $43 billion per annum. The mean immediate HF bur-
den value for the high-income countries was 1.42% versus 0.11% for low- or middle-income
countries [48,49]. The hospitalization expenses are the most significant cost component fol-
lowing the expenditures for the medication [50]. In hospitalization costs, room and board
were the most important contributors, accounting for 43% of inpatient costs, followed by
procedures, imaging, and laboratory testing [51]. Dialysis required the highest part of
procedural costs, but it was needed only by a small number of patients [10].

Notable AI models with a successful history include echocardiogram images to iden-
tify patients with HF with preserved ejection fraction [7]. It is possible to predict the 1-year
mortality from normal ECGs [8]. By reflecting the elevated potassium level in tall T-waves,
AI models quantify the potassium regardless of the blood test [9]. The noninvasive cardio
acoustic biomarkers were shown to offer reliable results in predicting the parameters of
heart failure [10,11]. Misumi et al. used a machine-learning algorithm to examine the
valuable predictors obtained from the left ventricular assistance device to provide a model
for identifying aortic regurgitation [12].

Therefore, creating software for heart failure decompensation could be timesaving for
clinicians and could play a vital role in improving patients’ morbidity and mortality. In
addition, it could prove to be a money-saving mechanism for healthcare systems and a
pioneer in disease management technology [52].

5. Conclusions

We believe that our study serves as the first brick in the future construction of a
software that will offer secondary prevention in chronic heart failure patients. Voice is an
easy way to monitor a patient’s health status as it is an easy-to-understand process, and it
is not time- or money-consuming.

6. Limitations

The study sample is small, and consequently the obtained results are preliminary.
Further research will be conducted in order to certify the outcomes presented. Addition-
ally, patients enrolled in the study had to be capable of understanding and signing the
comprehensive informed consent, a fact which had limited the enrollment of critical-state
patients and low-educational background patients.
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Abstract: In this work, we use a copula-based approach to select the most important features for
a random forest classification. Based on associated copulas between these features, we carry out
this feature selection. We then embed the selected features to a random forest algorithm to classify
a label-valued outcome. Our algorithm enables us to select the most relevant features when the
features are not necessarily connected by a linear function; also, we can stop the classification when
we reach the desired level of accuracy. We apply this method on a simulation study as well as a real
dataset of COVID-19 and for a diabetes dataset.

Keywords: random forest; copula; mutual information; classification; COVID-19

1. Introduction

Dimension reduction is a major area of interest within the field of data mining and
knowledge discovery, especially in high-dimensional analysis. Recently, the issue of
machine learning has received considerable attention; hence, a number of researchers
have sought to perform more accurate dimension reductions in this issue [1,2]. While
dimension reduction tries to reduce the dimension of data by selecting some functions
of the original dataset, feature selection is one of its special cases, which selects the most
important features among all of them. There are many areas of statistics and machine
learning that benefit from feature selection techniques. From the statistics point of view,
Han and Liu et al. (2013) [3] and Basabi (2008) [4] have applied feature selection for
multivariate time series. Debashis et al. (2008) [5] have investigated feature selection and
regression in high-dimensional problems.

It is known that selecting the most important and relevant features is the main aim in
decision tree/random forest algorithms. Although there are many classification approaches
proposed in the literature, they rarely deal with the possible existence of nonlinear relations
between attributes. On the other hand, note that mutual information-based filter methods
have gained popularity due to their ability to capture the non-linear association between
dependent and independent variables in a machine learning setting. Mutual information
based on a copula function will be a good choice to carry out a feature selection in which
the results are stable against noises and outliers [6,7]. So, one of the major aims of this work
is using feature selection in a classification context based on a copula function, especially
in random forest classification.

Random forests are commonly used machine learning algorithm, which are a combi-
nation of various independent decision trees that are trained independently on a random
subset of data and use averaging to improve the predictive accuracy and control over-/
under-fitting [8–11]. In this work, in order to extract the most important features in random
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forest, we use associated copula of features. In this regard, the connection copula between
the exploratory variables as well as the associated copula of exploratory attributes and
the class labeled attribute are considered. The rest of the paper is organized as follows:
we review preliminaries and introduce our method in the next section; we illustrate our
algorithm considering simulated data as well as two real datasets in Section 3; finally,
Section 4 is devoted to some concluding remarks.

2. Preliminaries and Related Works

The application of feature selection in machine learning and data mining techniques
has been extensively considered in the literature. Kabir et al. (2020) [12] used a neural
network to carry out a feature selection, while Zheng et al. (2020) [11] used a feature
selection approach in a deep neural network. Li et al. (2017) [13] reviewed the feature
selection techniques in data mining; see also the book of Lin and Motoda (2012) [14].
For more information, we refer to Hastie et al. (2009) [3], Chao et al. (2019) [15] and
Sheikhpour et al. (2017) [16].

Peng et al. (2019) [17] and Yao et al. (2020) [18] have discussed random forest-based
feature selection. It is known that the dependence structure between features plays an
important role in dimension reduction. Huag et al. (2009) [19] carried out a dimension
reduction based on extreme dependence between attributes. Paul et al. (2017) [5] used
feature selection for outcome prediction in medical sciences. Zhang and Zhou (2010) [20]
investigated multi-label dimensionality reduction features by maximizing the dependence
between the original feature description and the associated class labels; see also Zhong et al.
(2018) [21]. Shin and Park (2011) [22] analyzed a correlation-based dimension reduction.

In this work, we use dependence structures between variables to find the best feature
selection and construct an agglomerative information gain of random forest. We apply our
algorithm to classify influenza and COVID-19 patients. Iwendi et al. (2020) [23] carried out
a COVID-19 patient health prediction using a random forest algorithm. Li et al. (2020) [13]
applied machine learning methods to generate a computational classification model for
discriminating between COVID-19 patients and influenza patients only based on clinical
variables. See also Wu et al. (2020) [24], Ceylan (2020) [25] and Li et al. (2020) [13] and
references therein for more information. Azar et al. (2014) [26] applied a random forest
classifier for lymph diseases. See also Subasi et al. (2017) [27] for chronic kidney disease
diagnosis using random forest; Açıcı et al. (2017) [28] for a random forest method to detect
Parkinson disease; Jabbar et al. (2016) [29] for a prediction of heart disease using random
forest. Additionally, a review work of Remeseiro et al. (2019) [30] may be helpful regarding
this subject.

Sun et al. (2020) [31] have implemented a mutual information-based feature selection.
Assume that FX1,X2,...,Xd is the joint multivariate distribution function of the random

vector X = (X1, X2, . . . , Xd) and FXi , i = 1, 2, . . . , d, are the related marginal distribution
functions. A grounded d-increasing uniformly marginal function C : [0, 1]d → [0, 1] is
called a copula of X whenever it couples the multivariate distribution function FX1,X2,...,Xd
to its marginals FXi , i = 1, 2, . . . , d, i.e.,

FX1,X2,...,Xd(x1, x2, . . . , xd) = CX
(

FX1(x1), FX2(x2), . . . , FXd(xd)
)
. (1)

Note that if X is a continuous random vector, then the copula CX is unique. For
more details concerning copulas, their families and association measures, we recommend
Nelsen (2006) [32] and Durante and Sempi (2016) [33]. Merits of copulas and dependence
measures in dimension reduction have been discussed in the literature. See, for instance,
Snehalika et al. (2020) [34] and Chang et al. (2016) [35] for copula-based feature selection;
Ozdemir et al. (2017) [36] and Salinas-Gutiérrez et al. (2010) [37] for classification algo-
rithms using copulas; Marta et al. (2017) [38] and Lascio et al. (2018) [39] for copula-based
clustering approaches; Houari et al. (2106) [40] and Kluppelberg and Kuhn (2009) [41] for
copula functions used in dimension reduction.
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A well-known measure of uncertainty in a probability distribution is its average
Hartley information measure called (Shannon) entropy. For a discrete random variable X
with values x1, x2, . . . , xn and mass density function p(.), its entropy is defined as:

H(X) = −
n

∑
i=1

p(xi) log p(xi), (2)

and for a continuous random variable X, its (differential) entropy is given by:

H(X) = −
∫
X

p(x) log p(x)dx, (3)

where X is the support of X. Similarly, for a (continuous) multivariate random vector X of
dimension k with the multivariate density p(X), the entropy is defined as:

H(X) = −
∮
X

p(X) log p(X)dX, (4)

where
∮

is an k-integral on X . For two random variables X and Y with joint distribution
p(x, y), the conventional information gain (IG) or mutual information (MI) is defined as:

I(X, Y) =
∫
X

∫
Y

p(x, y) log
p(x, y)

p(x)p(y)
dxdy, (5)

which is used to measure the amount of information shared by X and Y together, with
convention 0

0 = 1. Moreover, one may generalize this concept to a continuous random
vector X = (X1, X1, . . . , Xk) as:

I(X) =
∮
X

p(X) log
p(X)

∏k
i=1 p(xi)

dX, (6)

Ma and Sun (2011) [42] defined the concept of “copula entropy”. Based on their
definition, for a multivariate random vector X, which is associated with copula density
c(u), its copula entropy is:

hc(X) = −
∮

u
c(u) log c(X)du.

Additionally, they have pointed out that the mutual information is a copula entropy.
Indeed we have the following lemmas

Lemma 1. Ref. [32] For a multivariate random vector X with the multivariate density p(X) and
copula density cX(u),

I(X) = −hc(X).

Finally, the conditional mutual information is useful to express the mutual information
of two random vectors conditioned by a third random vector. If we have a k-dimensional
random vector X, m-dimensional random vector Y and n-dimensional random vector Z,
such that X ∼ pX(x), Y ∼ pY(y), Z ∼ pZ(z), (X, Z) ∼ pX,Z(x, z), (Y, Z) ∼ pY,Z(y, z) and
(X, Y, Z) ∼ pX,Y,Z(x, y, z), then mutual information of X,Y given Z which is referred to as
“conditional information gain” or “conditional mutual information” of variables X and Y
given Z is obtained as:

I(X, Y|Z) =
∮
Z

∮
Y

∮
X

pX,Y,Z(x, y, z) log
pZ(z)pX,Y,Z(x, y, z)
pX,Z(x, z)pY,Z(, y, z)

dxdydz. (7)
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3. Copula-Based Random Forest

The connection between mutual information and copula function has been investi-
gated in the literature. We can also represent the conditional mutual information via the
copula function through the following proposition:

Proposition 1. If the random vector (X, Y, Z) is associated with copula CX,Y,Z(u, v, w) , then
Equation (7) is

I(X, Y|Z) = hc(X, Z) + hc(Y, Z)− hc(X, Y, Z)− hc(Z) (8)

Proof of Proposition 1. By an appropriate equivalent modification of the argument of the
log function in the integrand of (7), we readily obtain:

I(X, Y|Z) =
∮
Z

∮
Y

∮
X

pX,Y,Z(x, y, z) log
pZ(z)pX,Y,Z(x, y, z)
pX,Z(x, z)pY,Z(, y, z)

dxdydz

= −h(X, Z)− h(Y, Z) + h(X, Y, Z) + h(Z)

= hc(X, Z) + hc(Y, Z)− hc(X, Y, Z)− hc(Z).

The last equality comes from one of the results of Ma and Sun (2011), which proves
that for X = (X1, X2, . . . , Xn),

h(X) =
n

∑
i=1

h(Xi) + hc(X).

In order to use the mutual information in the decision trees, assume we have a dataset
D = {(x1, y1), (x2, y2), . . . , (xn, yn)}, where xi ∈ X is the i-th input or observation and
yi ∈ Y is the corresponding outcome variable. In a machine learning approach, the major
goal is constructing (or finding) a classification map f : X → Y which takes the features
x ∈ X of a data point as its input and outputs a predicted label. The special case of the
outcome variable is a class label yi ∈ {−1, 1}; i.e., it has two possible values, such as:
negative/positive, pathogenic/benign, patient/normal, etc. The general objective function
that must be maximized is:

JCMI(Xk) = I(Xk, Y)− β
n

∑
i=1

I(Xi, Xk)− γ
n

∑
i=1

I
(
Xi, Xj

∣∣Y) (9)

where I(Xk, Y) measures the relation between term Xk and target variable Y, I(Xi, Xk) quan-
tifies the redundancy between Xi and Xk; while I(Xi, Xj

∣∣Y) measures the complementarity
between terms Xi and X.�

Similar to Proposition 1, one may state the Equation (9) based on copula as:

JCMI(Xk) = hc(Xk, Y) + β
n

∑
i=1

hc(Xi, Xk)

− γ
n

∑
i=1

[hc(Xi, Y) + hc(Xk, Y)− hc(Xi, Xk, Y)− hc(Y)]

= (1 − γ(n + 1))hc(Xk, Y) + nγh(Y)

+ β
n

∑
i=1

hc(Xi, Xk)− γ
n

∑
k �=i=1

hc(Xi, Y) + γ
n

∑
i=1

hc(Xi, Xk, Y),

where the first term of the last part of equality refers to the relevancy of the new feature
Xk. Peng et al. (2019) [17] introduced the “Minimum Redundancy Maximum Relevance
(mRMR)” criterion to set the value of β to be the reverse of the number of selected features
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and γ = 0. We generalize their results by simplifying JCMI(Xk). In particular, we have the
following criterion, which we have to maximize:

JMRMR(Xk) = I(Xk, Y)− 1
|S|

n

∑
i=1

I(Xi, Xk) = −hc(Xk, Y) +
1
|S|

n

∑
i=1

hc(Xi, Xk) (10)

From this formula, it can be seen that mRMR tries to select features that have high
correlation to the target variable while they are mutually far away from each other, and in
this case, the couple of functions plays an important role in the connection between the
input and class level variables.

Since decision trees are prone to overfitting and do not globally find an optimal solu-
tion, their generalization, random forests, are suggested to overcome these disadvantages.
Our algorithm considers the dependence between attributes to provide the best feature
selection set and embeds these selected features to a random forest procedure. In this
approach, we first use the dependence between attributes to choose the max-dependent
as well as the max-relevant features to the class label and eliminate the max-redundant
features. From the point of view of these three criteria, our approach is equivalent to the
method presented by Peng et al. (2019) [17].

The confusion matrix is a metric that is often used to measure the performance of a
classification algorithm. It is also called a contingency table and in a binary classification it
is a 2 × 2 table, as shown in Figure 1.

Sensitivity =
TP

TP + FN
. (11)

Speci f icity =
TN

TN + FP
. (12)

Accuracy =
TP + TN

TP + TN + FP + FN
. (13)

Figure 1. Confusion matrix.

We use our copula-based random forest to find the most relevant features and carry
out a classification task. For this, using the copula function which connects input variables
with each other as well as with the class variable, we find the most important variables
by maximizing of these three criterions and then, based on their priorities, we embed
them to a random forest approach to classify the class label feature. We continue our
selection to find the most important feature until we reach the desired level of criteria.
Traditional criteria can define some values of accuracy/sensitivity/specificity. Inspired by
Snehalika et al. (2020) [34], Algorithm 1 presents a pseudo code of this method. Without
loss of generality, we consider that the criterion is the accuracy. The algorithm for the
sensitivity and specificity is the same.
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Algorithm 1. Algorithm of copula-based random forest classification.

Result Data: data set D = (X, Y), thereshold value δ.
Result: Selected feature set S , Classification results.

1 Initialization: S = 0, accuracy = 0, F = all features,
2 while accuracy ≤ δ do

3 xR = argmax︸ ︷︷ ︸
Xk∈F\S

[
−hc(Xk, Y) + 1

|S| ∑n
i=1 hc(Xi, Xk)

]
;

4 S = S ⋃
xR;

5 F = F\S ;
6 Perform a random Forrest classification;
7 the accuracy of random forest classification using 13;
8 accuracy = Accnew + accuracy;
9 end

4. Numerical Results

A simulated dataset as well as real data analysis is presented to illustrate our method.

4.1. Simulation Study

In order to carry out a simulation study, we generated data from normal distribution
with copula dependence. Our considered copulas were Gaussian, t and Gumbel copulas;
see, e.g., Nelsen (2006) [32]. Using the copula library, we first generated n = 10,000 random
samples x1, . . . , x10 from a 10-variate Gaussian copula where all off-diagonal elements
of their correlation matrix equal to ρ = 0.85 and their marginals follow the standard
normal distribution. In a similar fashion, again, we generated another 10 variates x11,
. . . , x20 independent from the first 10 variables. Then, for simulating from t-copula, we
generated 10-variates x21, . . . , x30 from t-copula with all correlation values equal to ρ = 0.85,
df = 19 [43] and their marginals follow the standard normal distribution. Finally, a bivariate
Gumbel copula with θ = 5 [44] and normal marginals were generated and inserted into x31,
x32. A schematic heatmap plot of these 32 features is shown in Figure 2. Using a linear
combination, we added values of these feathers and made the outcome variable. In order
to obtain a class-valued variable, we recoded the negative values of the outcome variable
to “0” and other values to “1”.

Using Algorithm 1, we started with n = 2 features. The most important features to
classify y were x26 and x32 with sensitivity = 0.869, specificity = 0.867 and accuracy = 0.875.
Continuing the selection of the most relevant features has led us to x26, x32 and x31 as the
first three relevant features. In order to obtain unbiased results, we performed a 10-fold
cross validation, and in each fold, we left out 1000 cases as a test group and the remainder
for the train set. Averages of sensitivity, specificity and accuracy were calculated to assess
the algorithm. Table 1 shows the most relevant and least redundant features with their
evaluation scales sensitivity, specificity and accuracy. This table helps us to assess our
algorithm by monitoring its running time as well as its comparison with other algorithms.
Since, after selecting the features, we use the traditional random forest approach, it is
reasonable that we compare our results with the results of the traditional random forest
approach. Comparing the last two rows of Table 1, we deduce that the results of our
algorithm and the traditional random forest algorithm are the same.
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Figure 2. Heatmap plots of simulated data.

Table 1. Selected feature with their measures of assessment in simulate data.

n Relevant Attributes Sensitivity Specificity Accuracy Running Time

2 x26, x32 0.869 0.867 0.875 4.51
3 x26, x32, x31 0.879 0.869 0.879 4.91
4 x26 x32 x31 x16 0.880 0.873 0.880 5.12
5 x26, x32, x31, x16, x13 0.881 0.878 0.881 5.55
6 x26, x32, x31, x16, x13, x12 0.888 0.880 0.886 5.83
7 x26, x32, x31, x16, x13, x12, x20 0.891 0.888 0.891 6.33
8 x26, x32, x31, x16, x13, x12, x20, x18 0.893 0.892 0.892 6.55
10 x26, x32, x31, x16, x13, x20, x12, x18, x17, x14 0.898 0.895 0.893 6.92

15 x26, x32, x31, x16, x13, x12, x20, x18, x14, x17
x15, x11, x19, x3, x7 0.908 0.896 0.901 8.34

20 x26, x32, x31, x16, x13, x12, x20, x18, x14, x17
x11, x15, x19, x3, x7, x9, x8, x5, x6, x1 0.918 0.909 0.917 11.30

25
x26, x32, x31, x16, x13, x12, x20, x18, x17, x14,

x11, x15, x19, x3, x7, x8, x9, x6, x5, x1
x4, x2, x10, x27, x29

0.929 0.939 0.934 13.61

32 All attributes: x1, x2, . . . ,x32 0.982 0.979 0.981 16.75

32 Traditional random forest 0.982 0.979 0.981 16.75

Additionally, from the running time point of view, as seen from the last column of the
table, for a small number of attributes, the running time (based on seconds) is negligible,
and by increasing the number of attributes, the running time increases significantly. From
the pros and cons point of view of the proposed approach, as understood from this table,
there is a design-of-experiment approach that physicians may encounter. They can regulate
the number of desired attributes to carry out a reasonable random forest classification
based on the percentage of accuracy, specificity and sensitivity. Evidently, as seen from
the last column of Table 1, after selecting attributes using copula, such a classification
algorithm will run fast for a small number of attributes; one may think this is an operation
research problem. Specifically, the sample size, the number of attributes and the complexity
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of relationship between attributes play important roles in such a classification procedure.
So, from the point of view of the practical implications, these results enable researchers to
specify the number of attributes based on the desired levels of sensitivity, specificity and
accuracy, and if the relationship between attributes is not complicated, one can choose a
greater number of attributes and achieve more accuracy, and vice versa.

4.2. COVID-19 Dataset

Li et al. (2020) [13], in a meta-analysis, merged 151 datasets of COVID-19 including
patient symptoms and routine test results. Nineteen clinical variables were included as
explanatory inputs. The variables included age, sex, serum levels of neutrophil (contin-
uous and ordinal), serum levels of leukocytes (continuous and ordinal), serum levels of
lymphocytes (continuous and ordinal), results of CT scans, results of chest X-rays, reported
symptoms (diarrhea, fever, coughing, sore throat, nausea and fatigue), body temperature,
and underlying risk factors (renal diseases and diabetes) [13]. By applying machine learn-
ing methods, they reanalyzed these data and investigated correlation between explanatory
variables and generated a computational classification model for discriminating between
COVID-19 patients and influenza patients based on clinical variables alone.

In a COVID-19 patient case, an agglomerative approach test may help diagnosis of
illness. We used our copula-based feature selection to identify the most effective attributes
to make a discrimination between COVID-19 patients and influenza patients. We started
with two attributes. The most relevant attributes were “age” and “fatigue”. We then
applied these two attributes to separate the COVID-19 and influenza patients and obtained
evaluation values sensitivity, specificity and accuracy, respectively as 0.755, 0.864 and
0.836. Seeking the three most important classification attributes lead us to “age”, “fatigue”
and “nausea/vomiting” with sensitivity equaling 0.840, specificity equaling 0.886 and
accuracy equaling 0.873. Table 2 summarizes the 10 most important features with their
classification evaluation’s scores. As understood from this table, there is a design-of-
experiment approach that a physician may encounter. In fact, the required percentage of
information determines the number and types of tests of patients. For example, if there is
a required 85% accuracy of classification only, then it is enough to know “age”, “fatigue”
and “nausea/vomiting” of patients, while for 91.4% accuracy, we need to test the 15 most
important attributes.

Table 2. Selected features with their measures of assessment in COVID-19 dataset.

n Names of Attributes Sensitivity Specificity Accuracy

2 Age, Fatigue 0.755 0.864 0.836
3 Age, Fatigue, Nausea/Vomiting 0.840 0.886 0.873
4 Age, Fatigue, Nausea/Vomiting, Diarrhea 0.826 0.875 0.860
5 Age, Fatigue, Nausea/Vomiting, Diarrhea, Sore Throat 0.783 0.891 0.860

10

Age, Fatigue, Nausea/Vomiting, Diarrhea, Sore Throat,
X-ray Results,

Shortness of Breath, Neutrophil, Serum Levels of White
Blood Cell, Risk Factors

0.735 0.922 0.865

15

Age, Fatigue, Nausea/Vomiting, Diarrhea, Sore Throat,
X-ray Results, Shortness of Breath, Neutrophil, Serum
Levels of White Blood Cell, Risk Factors, Temperature,
Coughing, Lymphocytes, Neutrophil Categorical, Sex

0.873 0.929 0.914

4.3. Diabetes 130-US Hospitals Dataset

In this subsection, we assess our approach in a big data analysis. We apply our
algorithm to classify the Diabetes 130-US hospitals dataset [45]. This dataset represents
10 years (1999–2008) of clinical care at 130 US hospitals and integrated delivery networks.
It is comprised of 101,721 observations of 50 features representing patient and hospital
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outcomes. The data contains such attributes as “race”, “gender”, “age”, “admission type”,
“time in hospital” and another 45 attributes. Detailed descriptions of all the attributes are
provided in Strack et al. (2014).

We used the “diabetesMed” variable (0 and 1) as our response/target class variable
and applied the other attributes to classify patients into two groups: no medical prescription
needed and medical prescription needed. Similar to the previous subsection, the results
are summarized in Table 3.

Table 3. Selected features with their measures of assessment in Diabetes 130-Us hospital dataset.

n Names of Attributes Sensitivity Specificity Accuracy

2 num_medications, num_procedures 0.742 0.756 0.708

3 num_medications, num_procedures, A1Cresult 0.766 0.771 0.780

5 num_medications, num_procedures, A1Cresult, epaglinide,
max_glu_serum 0.837 0.806 0.801

10
num_medications, number_diagnoses, age, A1Cresult,

repaglinide, max_glu_serum, weight, glimepiride, rosiglitazone,
pioglitazone

0.921 0.948 0.871

20

num_medications, number_diagnoses, age, A1Cresult,
repaglinide, max_glu_serum, weight, glimepiride, rosiglitazone,

pioglitazone, glyburide, number_emergency, glipizide,
number_outpatient, race, metformin, diag_2, readmitted,

repaglinide, diag_3

0.981 0.977 0.972

50 All attributes 0.986 0.981 0.978

5. Conclusions

A copula-based algorithm has been employed in a random forest classification. In this
regard, the most important features were extracted based on their associated copulas. The
simulation study as well as real data analysis have shown that the proposed couple-based
algorithm may be helpful when the explanatory variables are connected nonlinearly and
when we are going to extract the most important features instead of all features.

The idea of this paper may be extended in some manners. One may use this idea in
a multi-class random forest classification. Additionally, a random forest regression con-
sidering the connecting copula of features will be useful. Moreover, the associated copula
of features in order classification tasks such as the support vector machine, discriminant
analysis and naive Bayes classification will be of interest. Many extensions of random
forest have been investigated by several authors, for example, boosted random forest, deep
dynamic random forest, ensemble learning methods random forest, etc. Each extension
of the random forest classification may be combined with our approach to obtain better
results. We are going to extend these results in a longitudinal dataset in which the outcome
variables are connected using some copulas.
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Abstract: Arrhythmias are the most common events tracked by a physician. The need for continuous
monitoring of such events in the ECG has opened the opportunity for automatic detection. Intra- and
inter-patient paradigms are the two approaches currently followed by the scientific community. The
intra-patient approach seems to resolve the problem with a high classification percentage but requires
a physician to label key samples. The inter-patient makes use of historic data of different patients
to build a general classifier, but the inherent variability in the ECG’s signal among patients leads to
lower classification percentages compared to the intra-patient approach. In this work, we propose a
new unsupervised algorithm that adapts to every patient using the heart rate and morphological
features of the ECG beats to classify beats between supraventricular origin and ventricular origin.
The results of our work in terms of F-score are 0.88, 0.89, and 0.93 for the ventricular origin beats for
three popular ECG databases, and around 0.99 for the supraventricular origin for the same databases,
comparable to supervised approaches presented in other works. This paper presents a new path
to make use of ECG data to classify heartbeats without the assistance of a physician despite the
needed improvements.

Keywords: beats classification; ECG; algorithms; ML

1. Introduction

The electrocardiogram (ECG), the electrical activity of the heart, has been studied
extensively because of its high relevance in clinical practice. In most cases, it can provide
insights into the heart condition. Common but important events physicians track are the
arrhythmias, which are any disturbance in rate, regularity, site of origin, or conduction
of the heart signal activity. An arrhythmia can be a single aberrant beat or a sustained
rhythmic disturbance that can be present through a time period. The ECG is the best tool
to diagnose these irregularities from the heart signals [1].

ECG signal is represented in a waveform graph shape, and it is considered the heart’s
primary source of information, as well as the primary source for detection of cardiac
irregularities [2]. An arrhythmia may lead to severe heart disease such as atrial premature
contraction (APC), premature ventricular contraction (PVC), right bundle branch block
(RBBB), etc. [3,4]. At present, a topic that is becoming highly relevant in the application
of deep learning (AI) in health are the so-called computer-aided detection (CADe) and
diagnosis (CADx) in which, through a system based on recognition of patterns in images,
meaning lesions in complex structures can be identified and classified through the different
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shapes and intensity levels in the pixels; some examples of this are the CADe/CADx
systems developed for detection of lung and breast cancer, colonoscopy, etc. [5–8], but there
are still no applications thus far for the classification and diagnosis of cardiac arrhythmias.

As an example of arrhythmia, we have the ventricular extrasystoles, which are a
reflection of the activation of the ventricles from a site below the AV node. Its outcome is
linked to an underlying disease, and there could be three causes for it: reentry, increased
automatism, and triggered activity.

The increased automatism suggests an ectopic group of cells in the ventricle. This
process is the underlying mechanism of arrhythmias secondary to hyperkalemia. Reentry
occurs in patients with underlying scarring ischemic heart disease or myocardial ischemia.
This mechanism can produce isolated ectopic beats or trigger ventricular tachycardia and
eventually sudden cardiac death [9,10]. Moreover, nowadays, a new trend is emerging in
the deep learning (DL))-based ECG heartbeat classification, and several scientists present
their efforts in this field. Although extensive experimental work is carried out on this topic,
it is not suitable yet for real-time scenarios. Their approaches are not optimally efficient to
cover the inter-patient variability issue in ECG signals [11,12].

Although ECG signals have been used for diagnosis for over a century, manually
tracking these arrhythmias over even a thousand heartbeats is an infeasible task, even
for expert physicians, because of the amount of time required to perform such endeavors.
These kinds of tasks require automated mechanisms to detect and classify all these events.
This is why AI is now an extremely relevant and important part of the algorithms for
automated learning in electrocardiographic signals [13–15].

On an ECG, rhythm refers to the part of the heart that is controlling the initiation of
electrical activity. Under normal circumstances, the sinoatrial node (SAN) initiates electri-
cal activity because it undergoes spontaneous depolarization first at a rate of 60–100 bpm.
When a rhythm originates from above the ventricles in the atria, it is termed a supraven-
tricular (SVB) rhythm (narrow QRS or <120 ms), and when a rhythm originates from
within the ventricles, it is termed a ventricular (VB) rhythm (broad QRS or >120 ms); these
characteristics are represented in Figure 1.

The Association for the Advancement of Medical Instrumentation (AAMI) provides
guidelines to classify heartbeats in an ECG signal into normal beats (N), supraventricular
beats (SVB), ventricular beats (VB), fusion beats (FB), and unclassified beats (QB) [16,17].
However, because of their rarity in patients, the last two types of heartbeats are not usually
included, and both QB and FB are relabeled simply as VB, leaving the task to classify only
between NB, SVB, and VB.

An issue is the way research approaches the use of data sets. There are two accepted
approaches to the problem, namely, inter- and intra-patient methodologies [18].

Works related to the inter-patient paradigm have lower performance against intra-
patient works because of the use of different patients’ heartbeats in training, validation,
and testing sets. However such works reflect the reality accurately since the inevitable
variabilities among patients are incorporated in their results.

In this research, we present a review of previous work wherein it is shown that until
nowm it has not been possible to overcome the variabilities among patients and train a
generalized model from the databases available. The guidance of a physician is still needed
to develop a patient adaptive model. This means that in the future, physicians would need
to label new data because the signal for every individual patient changes in shape and
heart rate, and the old parameters of the algorithm may need to be updated.

In this article, a novel unsupervised method is introduced that classifies between
beats of supraventricular origin (SVBo), formed by the NB and SVB classes, and beats of
ventricular origin (VBo), formed by the VB and FB. This approach does not require the
assistance of a physician since it tries to capture the inherent patterns in the signal, and it
uses heartbeat features from previous works across patients. Based on our experiments, it
was concluded that this methodology works best when they are at least 40 VBo. The present
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approach may be used as a first step to distinguish between the remaining NB and SVB in
future experiments.

Figure 1. A supraventricular origin beat shows a narrow QRS (left) and a ventricular origin beat
appears to be similar to a broad QRS (right).

The silhouette coefficient was implemented in MATLAB and used at the beginning to
evaluate the quality of the clustering based on some parameters. For the experiments, an
algorithm for clustering was implemented in MATLAB, and since this is an adaptive model
for self-organizing maps, meaning that we could not use the silhouette score in general,
and we would have to use it for every particular case or patient, which would yield just a
distribution with no information worth for our purposes, as explained in Section 3.7, we
chose between some parameters from the outcome that we derived from the comparison
against the labels. In a future study with a modified algorithm, we aim to use the silhouette
coefficient for the fine-tuning of the algorithm and better parameters.

2. Previous Research

Chazal et al. [19] extracted features in the time domain including heart rate and wave-
form descriptors of the ECG signal on both leads available in the MITBIH Arrhythmia
Database. They used a linear discriminant classifier that outperforms their past work at
that time. Llamedo et al. [20] presented a global classifier using the same training set as in
Chazal et al. [19] but included two more databases to further test their method. He used the
heart rate and features extracted from discrete wavelet transforms. He tested various sets
of features and two different Bayesian linear classifiers ending with the linear discriminant
classifier. Llamedo et al. [21] modified their past work to include more than two leads,
using the same features and classifier. He used the INCART database in which every record
has 12 leads. Using all the leads available, he outperformed their past work using this
database. This is the only database available with 12 leads. Ye et al. [22] classified all types
of heartbeats in the MITBIH database using the AAMI classification scheme. The mor-
phological features used are coefficients of DWT and the result of applying independent
components analysis, reducing the dimensionality with principal components analysis.
The heart rate was also used as a feature. The classifier used is a support vector machine
that combines the two leads of the MITBIH database. Once the features are extracted,
the patients’ heartbeats are used for training and testing resulting in overoptimistic results
of nearly 100%. However, the same model trained and tested as Chazal et al. [19] and
Llamedo et al. [20,21] produced lower performance because of the variabilities among
patients. Their results are comparable to Chazal et al. [19] and Llamedo et al. [20,21].
Mar et al. [23] principally worked on feature selection to classify ECG signals. They used a
number of features in the temporal domain, morphological waveform features, statistical
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features, and features from the temporal–frequency domain using the DWT. The sequential
forward floating search algorithm was used to determine relevant features, along with a
linear discriminant classifier.

Once the optimal features are extracted, they are used to classify through a multilayer
perceptron. The results are comparable to Chazal et al. [19], Llamedo et al. [20,21], and
Ye et al. [22].

It is mentioned in [24] that general classification models are highly unreliable with
ECG signals and are not widely used in practice. In order to overcome this problem faced
by the intra-patient methodology, an adaptive patient model may be more effective because
the patterns within a single patient are much easier to capture than in the inter-patient
methodology. Such work involves the use of a certain number of beats previously labeled
by a physician to train a learning algorithm. Works presented in [24,25] obtain results
above 95% in almost all the cases, and some very close to 100%, in both precision and recall
for the AAMI types of heartbeats.

Only Llamedo et al. [26] and Al Rahhal et al. [27] showed results without initial expert
labeling. Wiens et al. [24] tested their algorithm developed using active learning with
the same patients’ beats against the software from HAMILTON and with the advantage
that it does not require data from the patient, but it only recognizes premature ventricular
beats. Wiens et al. [24] outperformed HAMILTON. Llamedo et al. [26] modified their
previous work in [21], which uses a general classifier by including a clustering algorithm,
the K-means method. This modification slightly improves the performance, compared to
their previous work, and also allows an expert to contribute to the output of the algorithm.
The final results are around 95% with the help of the expert for each patient record. Al
Rahhal et al. [27] used active classification through the deep learning approach. They
suppressed the low frequency parts of the heartbeat and processed those employing an
autoencoder algorithm to represent the signal in a lower dimension. A final softmax func-
tion is recorded similar to that in Chazal et al. [19], Llamedo et al. [20,21,27], Ye et al. [22],
and Mar et al. [23]. Their results with beats labeled by an expert is close to 100% for
every database they tested, while the automatic results when they used only the trained
algorithm are much lower, representing the variability among patients. The only drawback
is that a physician is needed to locate these labels on the ECG signal and as the heart’s
beats rhythm and signals may change over time, future relabeling may be required to tune
the trained model. Other interesting and related approaches are proposed in [15,28–30];
these deal with abnormalities in ECG segments based on supervised learning.

3. Materials and Methods

3.1. ECG Databases

All experiments were performed using selected records from public databases avail-
able in Physionet [31]. Each database has different files that correspond to the digitized
signals, the information about the patients’ annotations, and the labels for heartbeats in the
records. The following databases were used:

(a) MIT-BIH Arrhythmia database (MITBIH), consisting of 48 half-hour signals recorded
with two channels each one sampling at 360 samples per second with 11-bit resolu-
tion over 10 mV. The annotations for each heartbeat were made by cardiologists.

(b) MIT-BIH Supraventricular Arrhythmia database (SUPRA), made up of 78 records,
each 30 min long. Each record has two-lead signals, sampled at 120 Hz, with anno-
tation files produced automatically first and then corrected by a medical student.

(c) St. Petersburg Institute of Cardiological Technics (INCART) 12-lead Arrhythmia
database, built up of 75 annotated records, each consisting of 12-lead signals sam-
pled at 257 Hz for 30 min.

Following the labels suggested by the AAMI and the subsequent classification pro-
posed in Llamedo and other works [20,21,26], the heartbeats were relabeled to NB, SB, and
VB. For the purpose of this first unsupervised work, the later labels were changed to their
anatomic origin in the heart as SVBo and VBo.
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3.2. Summary Approach

The algorithm requires a series of preprocessing and processing steps in order to cluster
and distinguish the beats of supraventricular and ventricular origin. Figure 2 provides a
high-level illustration of the processing pipeline divided into stages. In the first stage, Data
extraction and cleaning, the patient signal is preprocessed and every beat of each record is
sliced to form a matrix to work on. In stage 2, Clustering and descriptors, the clustering is
performed and a set of different descriptors are computed to characterize each cluster (the
expanded version of this stage is shown in Figure 3). The labeling processing is in stage 3,
Classification, where the descriptors are used to compute a series of proportions for each
cluster, and if these proportions reach a certain threshold, the cluster is classified as SVBo;
otherwise, it is classified as VBo.

Figure 2. A high-level illustration of the processing pipeline.

Three important assumptions for the algorithm are as follows:

(a) With a significant number of VBo, the clustering algorithm is able to separate
the signals;

(b) If a trend is computed on the R–R interval signal, almost all the beats above this
trend are going to be SVBo and most of the VBo occur below the trend, along with
the rest of SVBo;

(c) In the feature space, the SVBo signals are grouped together because they share
similar waveform shapes, and the VBo signals are spread all over the feature space.

These assumptions were used to compute the descriptors and subsequently the pro-
portions for the labeling of the clusters.

3.3. Data Extraction and Cleaning

The preprocessing of the signals is an important task to allow the extraction of use-
ful information from them and for further analysis. The following four preprocessing
procedures were performed:

(a) Baseline wander removal;
(b) Beat extraction;
(c) Normalization;
(d) Resample of signals.
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The baseline wander is generated by a low-frequency signal. Removing this noise
benefits the extraction of time-domain features. For this task, the Discrete wavelet transform
(DWT) is employed. Via the DWT coefficients, the ECG signal can be described in both
time and frequency. The values of the coefficients are the results of passing the ECG signal
through a series of high pass filters (HPFs) and low pass filters (LPFs). Depending on the
wavelet applied, the LPF has specific coefficient values. The HPF is derived from the LPF
as follows:

HPF[L − 1 − k] = [−1]kLPF[k] (1)

where L is the length of the filter in the number of samples, and k are the coefficients of the
filter. Each pair of filters can be represented as follows:

A[n] =
K

∑
k=0

LPF[k]x[n − k] (2)

D[n] =
K

∑
k=0

HPF[k]x[n − k] (3)

The filter has a half downsample after it to make the DWT efficient, represented
as follows:

Ao[n] = A[2n] (4)

Do[n] = D[2n] (5)

where n is the length of the signal produced. The DWT sends the signal through a cascade
of HPF and LPF, resulting in an average signal detailed and differentiated for classification.

Following the recommendations in [32], the signal was decomposed into the ninth
level using Daubechies wavelet family and the wavelet Daubechies 6 (db6), where the
frequency in this level was about 0–0.351 Hz [32] levels of resolution. The signal proceeds
through all the necessary levels to isolate the energy of the noise. To eliminate the baseline
wander from the ECG, the signal was constructed from the eighth coefficient to the first,
replacing the coefficients of the ninth with zeros. Figure 4 shows the denoising process of
the ECG signal.

The heartbeats were extracted from the denoised signal. Every record had a file
indicating the heartbeat location in the sample and its type. After analyzing the research
and results of Martis et al. [32], which uses a window of approximately 552 ms and the
research and results of Marinucci et al. [33] that uses a window of 700 ms, in our case, we
considered a slightly wider window, i.e., 730 ms–330 ms before the R peak and 400 ms after
it—which were enough to cover the heartbeats of our test signals, making sure the whole
beat and its characteristic waveform are totally covered. Every beat has a length of 0.73
s but because the sampling frequency varies among the databases, the length in samples
varies depending on the database employed:

(a) MITBIH ECG signals consisted of 263 samples;
(b) INCART consisted of 188 samples;
(c) SUPRA had 93 samples.

Finally, the signal values were normalized between 0 and 1 and resampled at 360 Hz,
the sampling frequency of the MITBIH database signals. This was carried out following
the recommendations of Llamedo et al. [26].
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Figure 3. Expanded version of the stage “clustering and descriptors” of Figure 2.

Figure 4. Illustration of denoising an ECG signal.

3.4. Clustering and Descriptors

In the clustering and descriptors step, three major procedures were performed accord-
ing to the assumptions previously stated.

Firstly, the signals were clustered in groups. This work proposes that the clustering
algorithm, self-organizing maps (SOM), is able to distinguish between SVBo and VBo, then
the problem is reduced to classifying the clusters in SVBo or VBo using a set of descriptors.
The SOM is an arrangement of neurons connected in a single-layer network, with most of
the cases presented in a two-dimensional network. It is characterized by soft competition
between neurons in the output layer, where a winner neuron and its neighbors are updated
at every iteration in the training. The SOM learns the distribution and topology of the
input vectors, generally mapping data Rn onto a regular bidimensional grid. A parametric
reference vector mi ∈ Rn is associated with every node i in the map. Every input x is
compared with every node, and the closest match is selected, and then the input is mapped
onto that location c = argmini‖x − mi‖. Nodes topographically close to others in the array
will learn from the same input with the following formula:

mi(t + 1) = mi(t) + ∞ ∗ hc,i(t)[x(t)− mi(t)] (6)

The heartbeats extracted are sliced from the 60th to 170th sample and clustered, using
the self-organizing map (SOM) algorithm. The time frame extracted from the heartbeats
ensures that the hearbeat QRS complex is used for clustering, which is an important
differentiator between the SVBo and VBo.
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Secondly, this work stated that if we computed the trend of the heart rate in a window
time, most of the heartbeats above the trend are SVBo, and most of the VBo will be located
below the trend. The heart rate is computed taking the distance in samples from the
heartbeats that the R peak selected and the previous one. All databases identify a heartbeat
with its R peak location; thus, every R peak is already identified in the data. The trend t[N]
is computed using a moving average filter as follows:

y[n] =
K

∑
k=0

w[k]x[n − k] (7)

where k represents the index terms of the signal, w[k] represents the window signal, x[n− k]
is the signal value that is being filtered shifting k terms, and y[n] is the filtered output
signal. RR features such as mean, kurtosis, and SD were not part of the inputs for final
clustering. RR intervals as features were used as an initial reference to preclassify the
clusters as “normal” if they were above the red trend line, as can be seen in Figure 5 and
explained in Section 3.4.

The beats above the trend level are labeled as above-the-trend beats (ATBs), and they
are used in the third step as SVBo, and all those below are labeled as below-the-trend
beats (BTBs). These labels become descriptors for each cluster. In Figure 5, a patient’s R–R
interval, its trend, and the labeling of ATB and BTB in the heart rate are shown.

Figure 5. Comparison of real label and label above and below the trend. The blue marks indicate
SVBo and ATB, green marks indicate VBo, and white are BTB.

The third assumption is that, in the feature space, most of SVBo are grouped and
VBo are scattered. With the help of the second assumption, most heartbeats identified
above the trend are labeled as SVBo and with this one class, the one-class SVM (OC-SVM)
classifier algorithm is trained to create a nonlinear discriminant function to include more
SVBo, and the rest of the heartbeats are classified as VBo. The OC-SVM separates the data
using a subset of the class identified as reference for outliers by some prior value specified
v ∈ (0, 1). The solution is to estimate a function f , which is a discriminant between the
points marked as outliers and the insiders. The function f can be seen as

f (x) =

{
SVMo if x ∈ S
VBo if x ∈ S̄

(8)
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where the SVMo are identified as the subset inside the function and VBo outside. For this,
it is necessary to resolve the quadratic programming function

min

(
1
2
‖w‖2 +

1
vN

N

∑
i=1

ξi − ρ

)
(9)

subject to
w · φ(xi) � ρ − ξi

i = 1, 2, . . . , N

xi � 0

where φ : X → H represents a kernel map, which transforms the training examples to
another space, N is the maximum number of training samples, w and ρ are the weight
and offset parameterizing the hyperplane in the feature space, and ξi is the classic slack
variable from the standard support vector machines to prevent over-fitting.

Resolving the quadratic problem, the decision boundary is as follows:

f (x) = sign(w · φ(xi)− ρ) (10)

The matrix X′(s) ∈ RN×S containing the heartbeats is converted into feature space
Φ(N × f ), where f is the feature dimension used. In this work, different sets of features
were used in experimentation and will be explained in the next sections. In order to help
to distinguish which clusters are SVBo or VBo, a partial number of SVBo are identified
utilizing One-Class SVM. The ATBs are used as SVBo class, the only class in this step,
and the OC-SVM creates a discriminant function to englobe similar heartbeats. Further-
more, Figure 5 shows the beats above the trend located in a feature space. Figure 6 shows
different decision boundaries in a feature space created with different hyperparameters
in the OC-SVM. The beats identified as SVBo from the one-class SVM serve as well as
descriptors to characterize each cluster.

In Table 1, an example of data separated in clusters with its descriptors is displayed;
this is from the same signal used for Figures 5 and 6.

Figure 6. Illustration of different decision boundaries using different hyperparameter values in
one-class SVM.
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Table 1. Example of ECG signal separated in clusters and its descriptors.

Cluster (clj) # Beats in Cluster (clj) # ATB in Cluster (clj) # BTB in Cluster (clj) # SVBo Identified

1 227 0 227 0
2 292 195 97 273
3 346 216 130 221
4 478 316 162 385
5 451 299 152 394
6 229 0 229 0

3.5. Classification

To determine if a cluster clj is SVBo or VBo, three proportions Pclj

i , where i = 1, 2, 3
and clj is a cluster, are computed using the descriptors previously defined. Each proportion
Pclj

i is compared with its corresponding di threshold and the results from the comparisons

are used to label that clj as SVBo or VBo. The first proportion, Pclj

1 is computed as follows
in Equation (11):

Pclj

1 =
#SVBo

#beats in clj (11)

This proportion is the percentage of SVBo identified in the cluster by the one-class
SVM algorithm. If the proportion surpasses the threshold d1, then the clj is labeled as
being SVBo.

The second proportion, Pclj

2 is shown in the next Equation (12).

Pclj

2 =
#SVBo

#beats in clj (12)

This proportion represents the error of the one-class SVM in labeling the SVBo or the
error of SOM clustering SVBo with VBo. It is expected that clusters that are VBo only have
mostly BTB and much less ATB. However, some of SVBo may be mixed in a cluster of
VBo, and the one-class SVM may identify them as VBos. In such cases, comparing the rate
between the number of SVBo in this cluster and the total number of BTB with its threshold
d2 tells us what type of cluster it is. A majority of BTB will not let the proportion reach the
threshold. If the cluster does not contain any BTB, this proportion is not computed. Pclj

3 is
shown in (13).

Pclj

3 =
#ATB

#beats in clj (13)

Lastly, as mentioned before, because it is hypothesized that most of the ATBs are SVBo
because a great number of beats are NB in many signals, this rate represents the relation
between the ATB and the number of beats in this cluster. The values of the thresholds are
determined experimentally, as will be explained. If any of these thresholds are reached,
the cluster is labeled as SVBo; otherwise, it is represented as VB.

3.6. Hyperparameters and Features

The approach has a great number of hyperparameters, changing their values may
change the output of the approach. The SOMs parameters include the following:

1. Type of grid for cluster nodes;
2. Number of neurons;
3. Number of neighbors;
4. Number of iterations;
5. Learning rate.

As the SOM is a clustering algorithm, in this case, a reproducibility experiment was
performed to ensure that the results can be reproduced multiple times to guarantee its use
outside this study.

The one-class SVM has the hyperparameter ν, which determines the proportion
of beats outside of the decision function. The kernel employs the radial basis function
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(RBF) that uses the γ hyperparameter, which plays an important role in determining the
decision boundary.

Additionally, the threshold di to determine if a cluster is SVBo or VBo needs to be
specified as well.

The default hyperparameters used for SOM training have a neighbor size of 3 and a
hexagonal grid topology with 200 iterations.

Furthermore, the hyperparameters whose values are determined experimentally are
as follows:

1. The dimension of the grid of SOM;
2. The ν in the One-Class SVM algorithm;
3. γ for the RBF kernel;
4. The thresholds di.

Different subsets of features were extracted and merged together to form the final fea-
tures set to be experimented with to reach the highest classification performance. The first
feature subset is the DWT db3 coefficients of the QRS complex; the second feature subset
is DWT db6 coefficients of the whole beat; the third feature subset feature is statistical
computations of the sections before, after, and within the QRS complex; the fourth feature
subset is the statistical computations of the QRS complex. The statistical computations
are the mean, the standard deviation, the maximum, the minimum, the skewness, and the
kurtosis. The final feature sets to experiment with were as follows: feature set 1 is the PCA
transformation of the first features subset; feature set 2 is the PCA transformation of the
second feature subset; feature set 3 is the merged of the first and fourth feature subsets;
feature set 4 is the fourth feature subset; feature set 5 is the PCA transformation of the third
feature subset; feature set 6 is the merged of the first and third feature subsets; features set
7 is the merge of the second and fourth feature subsets.

Table 2 summarizes the basic features and the set of features created with all these.

Table 2. Subset and Set of Features Formed.

Features Description

subset feature 1 QRS complex + DWT db3
subset feature 2 Whole beat + DWT db6
subset feature 3 Sections + SO + HOS
subset feature 4 QRS complex + SO + HOS

feature set 1 feature 1 + PCA
feature set 2 feature 2 + PCA
feature set 3 feature 1 + feature 4
feature set 4 feature 4
feature set 5 feature 3 + PCA
feature set 6 feature 1 + feature 3
feature set 7 feature 2 + feature 4

3.7. Experimentation Setup

Figure 7 shows the experimental setup. First, five types of topologies were used
in SOM to determine which one is more appropriate for the given data: 2 × 2, 3 × 2,
3 × 3, 4 × 3, and 4 × 4. Each type of SOM was run five times using the set of the default
hyperparameters (ν = 0.1, γ = 1.5, d1 = 0.5, d2 = 0.7, and d3 = 0.3) and with the
default set of features (DWT + PCA of the QRS complex of the signals) to determine the
reproducibility of the results. These parameter values and features were selected because
they produce good results in the first trials. Experimenting with these variables as defaults
gave us an insight into the proper topology to use for this task.
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Figure 7. Experiment setup.

Once a topology was selected, the set of features and parameters were determined
first using three different values for each hyperparameter for each set of features for each
database, and the best three sets of features were selected. Then, we experimented with
five different values of hyperparameters and the best one was selected to obtain the final
results to compare it with prior works.

3.8. Evaluation

Because of the high imbalance among the classes, the results are in terms of sensitivity
(S) also known as recall and positive predictive value (P+) also known precision, as pre-
sented in [26]. In addition, the F-score is presented here, which is the harmonic mean of
these two parameters. F-score is computed as given in Equation (14).

F = 2 ∗ S × P+

S + P+
(14)

The F-score (F) can be seen as a measure of combined performance involving both S
and P+. With values between 0 and 1, highest performance with 1, each S and P+ needs to
be high to have a high F-score. In other words, it involves a balance between these two
performance measures.

The searches for the best SOM topology and the best set of features and parameters
values possible result in a great number of results in terms of S, P+, and F. As for specific
values of parameters and specific selection of features, the performance varies for each
database, and changing these can cause increased or decreased performances.

The purpose of these experiments is to set the hyperparameters’ values that can main-
tain the best balance possible among the performance for the three databases. To achieve
this, a modification of the F-score formula is made to compare the performance of each
F-score for each database. We call it F-general (Fg), and the equation is shown in (15).

Fg = 3 ∗ FSUPRA × FMITBIH × FINCART
FSUPRA + FMITBIH + FINCART

(15)

This equation is motivated by the way F-score is computed, from a precision value and
recall. It is also a harmonic mean of the three F-scores for the three databases. The reason
we used this equation is that we looked for hyperparameters and features not biased
towards any of the databases. The purpose is to have a generalized set of hyperparameters
and features that could balance the performance among the databases. This equation was
applied to select the SOM network, the hyperparameters, and set of features.

4. Results

Table 3 shows the results of inserting every patients’ signal through the algorithm for
each network topology proposed with the default hyperparameters and set of features.

In order to ensure the reproducibility of the results, in terms of S and P+, the mean
and the standard deviation were taken from the five runs of every database for every
network topology.
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Table 3. SOM Reproducibility Experiments Results.

SOM
VBo SVBo VBo

Topology

S P+ S P+ F Score

SUPRA

2 × 2 0.85905 0.78189 0.98632 0.99191 0.81866
0.0002 0.00052 0.00004 0.00001 0.0003

3 × 2 0.89814 0.79383 0.98654 0.99115 0.84277
0.00216 0.00071 0.00019 0.00407 0.00109

3 × 3 0.89386 0.77637 0.9853 0.99389 0.83095
0.0046 0.00717 0.00067 0.00026 0.00299

4 × 3 0.87991 0.79268 0.98368 0.99083 0.7909
0.03701 0.09298 0.00667 0.00414 0.00551

4 × 4 0.90934 0.68555 0.97617 0.99473 0.78168
0.00798 0.014 0.00152 0.00046 0.01005

MITBIH

2 × 2 0.8075 0.94047 0.99576 0.98423 0.86893
0.00027 0.00013 0.00001 0.00002 0.00021

3 × 2 0.83549 0.91752 0.99377 0.986 0.87458
0.00108 0.0031 0.00026 0.001 0.00116

3 × 3 0.84905 0.88435 0.99078 0.98753 0.86631
0.00207 0.00994 0.00092 0.00016 0.00378

4 × 3 0.8544 0.84955 0.98738 0.98792 0.85177
0.00229 0.02786 0.00273 0.00018 0.01351

4 × 4 0.86079 0.85686 0.98807 0.98845 0.85879
0.0023 0.01002 0.001 0.00018 0.00436

INCART

2 × 2 0.89461 0.94787 0.9936 0.9864 0.92047
0.00119 0.0005 0.00006 0.00015 0.00071

3 × 2 0.92128 0.91843 0.98936 0.98976 0.91985
0.00178 0.00336 0.00048 0.00023 0.00188

3 × 3 0.92325 0.88574 0.98452 0.98997 0.9041
0.00231 0.00296 0.00043 0.0003 0.00231

4 × 3 0.92732 0.86486 0.98116 0.99046 0.89498
0.00226 0.00752 0.00122 0.00029 0.00381

4 × 4 0.92359 0.87453 0.98277 0.99 0.89839
0.00042 0.00249 0.00039 0.00005 0.00129

It can be seen that the standard deviation from the runs of every topology of every
database has a value near zero, which means minimum or insignificant changes between
the results within the topology but not between topologies.

In order to select one, Table 4 presents the F of the VB origin because the results in
the SVB origin are nearly 1 in every database. For the SUPRA database, the two F highest
values are obtained with the topologies 3× 2, and 3× 3 with 0.8427 and 0.8309, respectively.
With the MITBIH database, the highest valued topologies are 2 × 2, 3 × 2 and 3 × 3, with
F-scores of 0.8689, 0.8745, and 0.8663, respectively. The INCART database produces the
highest values with the 2 × 2 and 3 × 2 topologies, with 0.9204 and 0.9198 F-scores values,
respectively. The 3 × 2 topology has the highest performances for SUPRA and MITBIH
databases compared to other topologies, while for INCART, the 2 × 2 topology is just
slightly above 3 × 2. However, the Fg of each database shows that the 3 × 2 topology has
the highest performance for the three databases, and because of that, this SOM network
was used to run the next experiments involving the selection of the parameters and set
of features.

As the default parameters gave good results in the first tests, other similar and close
values were tested as upper and lower bound values, with sets of features as presented
before, in order to find better combination of hyperparameters and features to improve our
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results. The test values for each parameter are as follows: ν = 0.001, 0.1, 0.5; γ = 0.001, 1.5,
3; d1 = 0.4, 0.5, 0.6; d2 = 0.5, 0.6, 0.7; d3 = 0.2, 0.3, 0.4. Each parameter has three different
values, giving rise to 243 experiments for each set of features for each record in every
database. In each experiment, the S, P+, and F for each set of features (for each database)
were computed, and only the highest performance in terms of F are shown in Table 5.

Table 4. Selecting the Best of SOM Topology.

SUPRA MITBIH INCART F-General

2 × 2 0.81866 0.86893 0.92047 0.75318503
3 × 2 0.84277 0.87458 0.91985 0.77126533
3 × 3 0.83095 0.86631 0.9041 0.75056012
4 × 3 0.7909 0.85177 0.89498 0.71276568
4 × 4 0.78168 0.85879 0.89839 0.71262883

Results with the highest values are in Table 5, and these are presented for each set of
features. For example, parameters for feature set 1 = ν = 0.1, γ = 1.5, d1 = 0.4, d2 = 0.5,
d3 = 0.3. The Fg is computed from with each VBos F of every database for every set of
features. The best three were set of features 1, 3, and 4. It is important to mention that
these features involve only the QRS complex, which, in fact, is very accurate medically in
distinguishing the heartbeat between SVBo and VBo.

Table 5. Selecting the Best Three Features.

SUPRA MITBIH INCART F-General

feature 0.8892 0.8755 0.9214 0.801129807set 1
feature 0.8602 0.8755 0.928 0.787117392set 2
feature 0.8892 0.8755 0.9214 0.801129807set 3
feature 0.8957 0.8723 0.9468 0.817466775set 4
feature 0.8946 0.8721 0.8687 0.771506723set 5
feature 0.8184 0.7725 0.9029 0.686694226set 6
feature 0.8608 0.8721 0.8919 0.765261291set 7

As the hyperparameters values for the three different sets of features were nearly the
same, just varying d2 = 0.6 in feature set 4 and d2 = 0.5 in feature set 1 and 3, the final
hyperpameter values to experiment with were as follows: ν = 0.05, 0.1, 0.15, 0.25, 0.3;
γ = 1, 1.25, 1.5, 2, 2.5; d1 = 0.3, 0.35, 0.4, 0.45, 0.5; d2 = 0.55, 0.575, 0.6, 0.625, 0.65; d3 = 0.25,
0.275, 0.3, 0.325, 0.35. In this case, 3125 experiments were performed for each set of features
for each database.

In order to select the best set of features with parameters, Table 6 presents the Fg
values computed with the highest F for each database for each set of features. The hyper-
parameters of each feature set presented the best F were as follows: feature set 1 = ν = 0.05,
γ = 2.25, d1 = 0.45, d2 = 0.55, d3 = 0.35; feature set 3 = ν = 0.1, γ = 1.25, d1 = 0.3,
d2 = 0.55, d3 = 0.3; feature set 4 = ν = 0.15, γ = 1, d1 = 0.35, d2 = 0.55, d3 = 0.3. It has
to be noticed that even though these set of features were selected with almost the same
parameters values, they ended up with completely different and Fg values. The best set of
features with its parameters was feature set 4, with 0.8220%. With this, the experimentation
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concludes with a SOM network of 3 × 2 neurons, with feature set 4 and the parameters
ν = 0.15, γ = 1, d1 = 0.35, d2 = 0.55, d3 = 0.3.

Table 6. Example of ECG signal separated in clusters and its descriptors.

SUPRA MITBIH INCART F-General

feature 0.9005 0.8655 0.9276 0.80519243set 1
feature 0.8892 0.8862 0.9187 0.80614369set 3
feature 0.89569357 0.8862 0.9394 0.8220299set 4

The results of all the databases are compared with similar works in Table 7. The
approach was tested also with two databases derived from the MITBIH database, as
in [21,27]. Even though some other authors such as Kiranyaz et al. [34] claim that the
average detection accuracies of both VB and SPV ectopic beats were over 97% using the
MIT-BIH arrhythmia database, for both training and testing of the algorithm, this shows
that the supervised algorithms so far continue being of higher precision or accuracy.

In Figure 8, the performance of the algorithm for 109 records that have at least 40 VBos
is shown. The histogram shows that 89 out of 109 records have at least a 0.85 F-score, and
60 out of 109 are over 0.95 F-score. These records are 30 min long; in other words, there are
approximately 1500 and up to 2500 heartbeats depending on the heart rate. These records
represent most of the VBos in the three databases.

Figure 8. F-score performance with at least 40 VoB.
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5. Discussion

One of the main differences among all works is the percentage of P+ in VBo, where
our approach produces percentages above 90%, with the exception of the SUPRA database
with 0.8930%. This means that a great number of beats classified as VBo are indeed VBo.

The F-score of this work outperforms the general classifier models. Martis et al. [23]
and Ye et al. [22] present the lowest F-score because of their P+ around 0.60, plunging
the F-score value, while Chazal et al. [19] and Llamedo et al. [20] maintain similar values
for both S and P+, with F-score of 0.79 and 0.83 respectively. The inevitable variability
between patients lowers the performance of these general classifiers. The results for this
work are higher, with 0.88, because it presents a P+ near 100%.

An additional comparison is made with works where they present models that
can be adapted to a patient. The results to be compared are the models before physi-
cian’s help is provided for the adaptive algorithms, otherwise, their results are nearly
95%. Only Llamedo et al. [26] and Al Rahhal et al. [27] presented this type of results,
and Wiens et al. [24] presented the performance of the HAMILTON software on the MIT-
BIH database for comparative results. As in the general models, the performance on the
F-score for VBo in the algorithm proposed was superior over these methods. No patterns in
their results exist showing misclassification measurements, which vary depending on the
database. For example, Llamedo presents balanced results in the MIIBIH database, while a
very low 0.54 in P+ is presented in the SUPRA database, and in the INCART database, the
P+ is 0.96 against a 0.88 for S. Meanwhile, Al Ranhal et al. [27] have very similar results
with the HAMILTON software, with a low performance of 0.79% for the MITBIH database
in P+, 0.93 for the SUPRA database for the same measurement, and very lower, 0.37, in
the INCART database. Our approach has higher performance because it maintains an
S always above 0.9 for P+ in every database; in this way, the derived F-score presents a
superior performance. Overall, our approach has produced better results in F-score for
VBo, compared to these studies.

The physicians’ need for constant monitoring of the arrhythmias presented the oppor-
tunity for the creation of algorithms or methodologies that perform automatic measure-
ments of arrythmia. Different approaches have been used by the scientific community, such
as the intra- and inter-patient paradigms. Such approaches have historically employed
manual data tagging by an expert. The works of Llamedo et al. [20] and Al Rahhal et al. [27]
were the first to show results from prelabeled data.

Those studies showed progress, compared to previous studies, but they maintained
the limitation of not being able to overcome the variations between patients or to train a
general model that uses the available databases, as explained in Section 3.1. Our work
introduces a new unsupervised method that classifies beats of SVBo origin, formed by
classes NB and SVB, and beats of ventricular origin VBo, formed by VB and FB. This method
does not require the assistance of an expert physician, as it captures the inherent patterns
found in the captured signal and makes use of the heartbeat characteristics captured from
previous patient studies.

Previous works need labels in order to create a heartbeat classifier. A general classifier,
created by heartbeat samples from other patients, may not be the best solution as the
inevitable variability lowers the performance of the classifier. Even though the adaptive
patient classifiers are a promising solution in classifying arrhythmias, it needs a physician
to identify a certain number of heartbeats to feed the algorithm for every patient.

In this work, a new unsupervised algorithm was proposed to classify between
supraventricular and ventricular heartbeats in a single patient, in a window time, with-
out previous labels provided by a physician.

Three assumptions were proposed to implement this algorithm. A never used one was
that most of the heartbeats above a computed trend in the heart rate are of supraventricular
nature. This can be used as a new feature in future works.

151



Appl. Sci. 2021, 11, 6711

6. Conclusions

In this work, a new unsupervised algorithm was proposed to classify between
supraventricular and ventricular heartbeats without the need for any labeling by a physi-
cian. A new feature is using as a reference the trend in the heart rate to classify the
heartbeats above that trend as of “supraventricular” nature.

The results of this algorithm show better performance against other generalized
models and/or adaptive patient models without the need for a physician’s assistance.

These results show a promising path for unsupervised models to classify these types
of heartbeats, and it can be seen as a milestone to develop further stages for classification
between supraventricular heartbeats and normal heartbeats.

This comes from the fact that this model adapts itself to the patient’s heartbeats
waveform. Our algorithm works better without the need for a large number of VBo
heartbeats. These results show a promising path for unsupervised models to be used as
classifying indicators for SVBo and VBo types of heartbeats.

No other similar work has been developed thus far, though some improvements
in the algorithm are needed to reach higher performance in precision and recall metrics.
Although the purpose of this research is to develop an adaptive system granting better
results, compared to those from other authors, we also concluded that the silhouette
criterion can be applied in a new research study or proposal in the classification of ECG
signals, which, to the best of our knowledge, nobody has performed thus far.
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Abstract: Breast cancer prediction datasets are usually class imbalanced, where the number of data
samples in the malignant and benign patient classes are significantly different. Over-sampling
techniques can be used to re-balance the datasets to construct more effective prediction models.
Moreover, some related studies have considered feature selection to remove irrelevant features from
the datasets for further performance improvement. However, since the order of combining feature
selection and over-sampling can result in different training sets to construct the prediction model, it is
unknown which order performs better. In this paper, the information gain (IG) and genetic algorithm
(GA) feature selection methods and the synthetic minority over-sampling technique (SMOTE) are
used for different combinations. The experimental results based on two breast cancer datasets
show that the combination of feature selection and over-sampling outperform the single usage of
either feature selection and over-sampling for the highly class imbalanced datasets. In particular,
performing IG first and SMOTE second is the better choice. For other datasets with a small class
imbalance ratio and a smaller number of features, performing SMOTE is enough to construct an
effective prediction model.

Keywords: breast cancer; data mining; machine learning; feature selection; over-sampling;
class imbalance

1. Introduction

Breast cancer, which is cancer that develops from breast tissue, is one of the important
problems in the medical domain. It is the second most severe cancer among all of the
cancers that have already been discovered. Some factors have been found to cause breast
cancer, such as obesity, a lack of physical exercise, alcoholism, hormone replacement
therapy during menopause, ionizing radiation, a family history of breast cancer, etc. [1].
In practice, many medial institutes have paid much attention to the early detection of
breast cancer.

In related literatures, many data mining and machine learning techniques have been
used to develop various kinds of breast cancer prediction models. Among them, some
focus on the improvement of learning models and some focus on data pre-processing
steps. For example, convolutional neural networks (CNN), as one representative of a deep
learning technique, were modified to improve their prediction performance [2,3]. On the
other hand, some studies focus on feature selection for filtering out irrelevant features from
a given dataset for the construction of more effective classifiers [4,5] and data sampling
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for re-balancing class imbalanced datasets in order to decrease the effect of skewed class
distribution in the learning process [6,7].

For related works of feature selection, Sasikala et al. [8] propose a novel feature selec-
tion method based on the genetic algorithm to select a gene subset from high dimensional
gene data, which causes different classifiers perform better than the ones without feature
selection. In [9], a genetic algorithm is used for feature selection, where the selected subset
is used to construct different classifiers for performance comparisons. On the other hand,
Jiang and Jin [10] use a gradient boosting decision tree with Bayesian optimization to
remove the irrelevant and redundant features from gene expression data. Raj et al. [11]
compare several feature selection methods to determine the best one to combine with the
random forest classifier.

For related works on class imbalance learning, Zhang et al. [12] propose a clustering-
based under-sampling method to select informative samples from the clusters identified in
the majority and minority classes, and the decision tree based on this boosting technique is
employed for the prediction model. In [13], eighteen different under- and over-sampling
methods are used to balance related class imbalanced cancer datasets, in which the over-
sampling methods perform better than the under-sampling ones. Cai et al. [14] apply the
synthetic minority over-sampling technique (SMOTE) to balance the training dataset and
employ the stacking ensemble method to combine multiple classifiers, which achieved
better performance than conventional methods. Rani et al. [15] investigated the effect
of performing SMOTE on five different classifiers to determine the best one for breast
cancer prediction.

According to Fernandez et al. [16], SMOTE over-sampling can benefit from the use of
feature selection, where feature selection is performed over the class imbalanced dataset
to select a subset feature of it, and then the reduced dataset is over-sampled to make it
contain the same size of the data samples as in the majority and minority classes. Recently,
Solanki et al. [17] propose the contrary procedure that SMOTE be performed first to re-
balance the breast cancer dataset, and then wrapper-based feature selection methods can
be applied to reduce the feature dimensions.

However, to the best of our knowledge there is not any study examining the per-
formances of both procedures to combine feature selection and over-sampling for breast
cancer prediction. Therefore, the research objective of this paper is to compare these
two combination orders with two baselines by employing feature selection and over-
sampling individually. Particularly, filter and wrapper-based feature selection methods
are combined with SMOTE for performance comparison. In addition, one small- and
one large-scale breast cancer datasets are used in order to understand the performance of
different approaches.

The contribution of this paper is two-fold. First, the procedures of combining the
feature selection and over-sampling steps are compared in terms of breast cancer prediction,
which has never been done before. Second, the best combination procedure and combined
algorithms that will be identified in this paper can be used as one the representative
baseline methods for future research.

The rest of this paper is organized as follows. Section 2 overviews related literature
on feature selection and over-sampling. Section 3 describes the two different combination
procedures and the experimental setup. Section 4 presents the experimental results, and
Section 5 concludes the paper.

2. Literature Review

2.1. Feature Selection

Feature selection is an important data pre-processing step in data mining and knowl-
edge discovery from databases. It focuses on selecting representative features from a given
training set, which have higher discriminative power to make classifiers better able to
distinguish between different classes. Moreover, another advantage of feature selection is
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to reduce feature dimensionality, which lowers the computational complexity during the
classifier training stage [5,18].

In general, feature selection algorithms are composed of four basic steps, which are a
generation procedure to generate the candidate feature subset, an evaluation function to
evaluate the effectiveness of the feature subset, a stopping criterion to determine when to
stop the previous steps, and a validation procedure to examine whether the feature subset
is valid [19].

Existing feature selection algorithms can be divided into filter, wrapper, and embedded
methods depending on how they combine the feature selection search with the construction
of the classifiers. In filter methods, the relevance of features such as distance, consistency,
dependency, information, and correlation are assessed,. That is, the feature relevance score
is calculated, in which low-scoring features are removed. Some representative methods
include relief, the Fisher score, and information gain.

In wrapper methods, a specific classification algorithm is used to determine the quality
of different subsets of features. Since the space of feature subsets can grow exponentially
with the number of features, heuristic search methods are used to guide the search for an
optimal subset. Therefore, wrapper methods are very computationally intensive, especially
when the construction of the chosen classifier requires a high computational cost. One
representative wrapper method is the genetic algorithm.

In embedded methods, feature selection is incorporated as part of the classifier train-
ing process. That is, the feature selection method is embedded in the modeling algorithm,
where the classifier is used to evaluate the quality of the selected subset of features. Em-
bedded methods have the advantage of including interaction with the classification model,
while at the same time being far less computationally intensive than wrapper methods.
One representative wrapper method is the decision tree classifier.

2.2. Over-Sampling

In practice, the class imbalanced dataset problem usually occurs since the number of
data samples in one class are significantly different from those of the other one; say the
imbalance ratio is 1:100. For the example of breast cancer datasets, they do not usually
contain both the malignant and benign patient classes, denoted as the minority and majority
classes, respectively. Without dealing with the class imbalance problem, most machine
learning models aim at maximizing the accuracy of its classification rule by ignoring the
minority class examples, with the classification of all testing examples being organized into
the majority class [6].

In general, there are three types of solutions to the class imbalance problem, which
are algorithm level, data level, and cost-sensitivity methods. Among them, the data level
methods based on data sampling techniques are usually considered first since they are used
independently of the classifier [6]. Data sampling techniques focus on re-balancing the
given training set. Particularly, under- and over-sampling techniques have been used, in
which the former is for reducing the size of the majority class, whereas the latter is used for
enlarging the size of the minority class. Among them, the synthetic minority over-sampling
technique (SMOTE) is one representative method, which has been used as the baseline in
many related studies [16].

The aim of SMOTE is to produce new synthetic examples for the minority class. For
example, a minority class instance i is selected as the basis to create new synthetic data.
According to a specific distance metric, usually the Euclidean distance, the number of the
neighbors nearest to i are chosen from the training set, e.g., i1, i2, and i3. Next, a randomized
interpolation is conducted to obtain new synthetic data, i.e., s1, s2, and s3.

3. Research Methodology

3.1. Two Combination Orders for Feature Selection and Over-Sampling

In this paper, two orders of combining the feature selection and over-sampling steps
are compared by being given a training set, denoted as TR, which is composed of M and N
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majority and minority class data samples, respectively, and each data sample is represented
by k dimensional features. For the first order, i.e., performing feature selection first and
over-sampling second, a chosen feature selection algorithm is employed to select some
representative features from the TR. As a result, a reduced feature subset of TR is produced,
denoted as TRreduced, where each data sample is represented by o dimensional features
(k > o). Next, the over-sampling algorithm is used to generate M–N synthetic data samples
for the minority class, leading to a balanced training set, denoted as TRreduced_balanced, which
is composed of 2M data samples. That is, the number of data samples in the majority and
minority classes are the same.

On the other hand, for the second combination order, the over-sampling algorithm is
used first to re-balance the training set, i.e., TR, which results in a balanced training set,
denoted as TRbalanced. TRbalanced is composed of 2M data samples, and each data sample
is represented by k dimensional features. Next, the chosen feature selection algorithm is
performed over TRbalanced, leading to a reduced feature subset of TRbalanced, denoted as
TRbalanced_reduced. In TRbalanced_reduced, each data sample is represented by p dimensional
features (k > p). Note that the number of features in TRreduced_balanced by the first combina-
tion order and TRbalanced_reduced by the second combination order are not necessarily the
same, i.e., o �= p.

Therefore, the performances of the classifiers trained by TRreduced_balanced and
TRbalanced_reduced can be compared individually based on the same testing set. More-
over, other classifiers trained by TRreduced through performing feature selection alone
and TRbalanced through performing over-sampling alone are regarded as the baseline ap-
proaches for further performance comparison.

3.2. Experimental Setup
3.2.1. Datasets

In order to examine the performances of both orders of combining feature selection
and over-sampling, two related breast cancer datasets are considered. The first one is
based on the KDD Cup 2008 breast cancer dataset (https://www.kdd.org/kdd-cup/view/
kdd-cup-2008 (accessed on 15 February 2021)), which contains 102294 data samples, and
each data sample is represented by 117 different image features, which are extracted from
4 X-ray images per patient. Particularly, the class imbalance ratio is 163.2.

The second dataset is based on the Breast Cancer Wisconsin Dataset downloaded
from the UCI Machine Learning Repository (https://archive.ics.uci.edu/ml/datasets/
breast+cancer+wisconsin+%28original%29 (accessed on 15 February 2021)). It is composed
of 699 data samples, in which each data sample is represented by 10 features including
clump thickness, uniformity of cell size, uniformity of cell shape, marginal adhesion, single
epithelial cell size, bare nuclei, bland chromatin, normal nucleoli, and mitoses. In addition,
the class imbalance ratio is 1.86.

To train and test the classifier, the 5-fold cross validation method is used to divide
each dataset into 80% and 20% training and testing sets. This means that every subset
will be trained and tested five times, and the average prediction accuracy can obtained
consequently be. In other words, each patient data will be used as the training and testing
data example. In addition, the class imbalance ratio of the training set in each fold is
controlled to be the same as the original dataset.

3.2.2. The Feature Selection and Over-Sampling Methods

In this paper, the information gain (IG) as the filter method and the genetic algorithm
(GA) as the wrapper method are used for feature selection. Particularly, these two methods
have been used in many research problems, including text classification [20], gene expres-
sion microarray analysis [21], intrusion detection [22], financial distress prediction [23],
software defect prediction [24], etc.

IG evaluates the gain of each variable in the context of the target variable, which is
based on calculating the reduction in entropy. That is, the feature ranking stage focuses on
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ranking the subsets of features by high information gain entropy in decreasing order. In GA,
an initial set of candidate solutions (i.e., individuals) are created and their corresponding
fitness values are calculated for the later cross-over and mutation steps. Specifically, the
individuals are subsets of predictors, and the fitness values are measures of the model
performance.

Analyses were performed using the WEKA data mining software package. Most
related parameters are based on its default values, except for the genetic algorithm, where
the population size, crossover rate, and mutation rate were set as 50, 0.8, and 0.01, respec-
tively [25].

On the other hand, the over-sampling method is based on SMOTE. It has been widely
used as a baseline over-sampling method for breast cancer datasets [14–17]. The percentage
of synthetic instances was set to make the two datasets become balanced datasets where
the malignant and benign classes contain the same numbers of data samples. Other related
parameters were based on the default values of WEKA.

3.2.3. The Classifier Design

After the original training set TR was pre-processed by different approaches, i.e.,
TRreduced_balanced, TRbalanced_reduced, TRbalanced, and TRreduced, they were used to train the
support vector machine (SVM) classifier for performance comparisons. In related literature,
SVM has been widely used as the baseline classifier for breast cancer prediction [26–29].

The implementation of SVM was based on the RBF kernel function, and its related
parameters were based on the default values of WEKA.

4. Experimental Results

4.1. The KDD Cup 2008 Breast Cancer Dataset

Figure 1 shows the AUC (area under the ROC curve) rates of different approaches. In
addition, Figure 2 shows the type I errors of the different approaches, which represent the
error of miss-classifying the malignant cases into the benign class. Note that IG+SMOTE
and GA+SMOTE mean the combination order of performing feature selection first and
over-sampling second, whereas SMOTE+IG and SMOTE+GA represent the opposite com-
bination order. In addition, the baseline represents using the original training set without
performing any feature selection or over-sampling steps to train the SVM classifier.

 
Figure 1. AUC rates of different approaches over the KDD Cup 2008 breast cancer dataset.
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Figure 2. The type I errors of different approaches over the KDD Cup 2008 breast cancer dataset.

As we can see, the combinations of feature selection and over-sampling can allow the
SVM to provide higher AUC rates and related lower type I errors than the ones with feature
selection and over-sampling alone at the baseline. More specifically, the combination order
of performing feature selection first and over-sampling second outperforms the opposite
combination order. In particular, IG+SMOTE is the best combined approach, which causes
the SVM to provide an AUC rate of 0.788 and a type I error rate of 0.003, which significantly
outperforms the others (p < 0.05). On the other hand, for the feature reduction result, using
IG and GA produce the selection of 94 and 14, respectively.

4.2. The Breast Cancer Wisconsin Dataset

Figures 3 and 4 show the AUC rates and the type I errors of different approaches,
respectively. Different from the previous results, the approach that performed the best for
the AUC was SMOTE (i.e., 0.962), whereas the second one was the baseline (i.e., 0.960). On
the other hand, the approach that performed the best for the type I error is SMOTE+IG
(i.e., 0.032), whereas the second-best ones are the baseline and SMOTE (i.e., 0.037). The other
approaches producing similar AUC results were IG (i.e., 0.959), IG+SMOTE (i.e., 0.957) and
SMOTE+IG (i.e., 0.955), whereas IG+SMOTE and IG produced similar type I errors, which
were0.038 and 0.044. These approaches do not have a significant level of performance
difference. In particular, for the feature reduction result, using IG and GA produce 8 and
1 selected features, respectively.

The experimental results based on two different breast cancer datasets indicate that
when the collected dataset is highly class imbalanced and contains a certain number of
features, it is better to consider the combination of feature selection and over-sampling.
Particularly, performing feature selection first and over-sampling second is likely to cause
the classifier to provide higher accuracy than performing over-sampling first and feature
selection second.

On the other hand, if the imbalance ratio of the collected dataset is not very high and
it does not contain a large number of features, there is no need to consider the combination
of feature selection and over-sampling. On the contrary, performing over-sampling to re-
balance the dataset is enough to allow the classifier to provide relatively good performance.
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Figure 3. AUC rates of different approaches over the Breast Cancer Wisconsin Dataset.

 

Figure 4. The type I errors of different approaches over the Breast Cancer Wisconsin Dataset.

5. Conclusions

Feature selection aims at selecting representative features from a given training set,
whereas over-sampling is for re-balancing the class imbalanced training set. In this paper,
the order of combining feature selection and over-sampling for breast cancer prediction
are compared in terms of classification accuracy. In order to assess the performances of
different combination approaches, the information gain (IG) and the genetic algorithm (GA)
as the filter and wrapper-based feature selection methods and the synthetic minority over-
sampling technique (SMOTE) were employed for creation of the combinations. Moreover,
two breast cancer datasets with significantly different class imbalance ratios and number
of features were used for the experiments.

Regarding the experimental results, for the highly imbalanced dataset containing a
large number of features, performing both feature selection and over-sampling can cause
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the SVM classifier provide higher AUC rates than performing feature selection and over-
sampling alone as well as at the baseline. In particular, it is recommended to execute
feature selection first and over-sampling second. On the contrary, for the dataset with the
low imbalance ratio and small number of features, performing over-sampling alone is the
better choice.
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Abstract: Recent advances in deep learning have shown many successful stories in smart healthcare
applications with data-driven insight into improving clinical institutions’ quality of care. Excellent
deep learning models are heavily data-driven. The more data trained, the more robust and more
generalizable the performance of the deep learning model. However, pooling the medical data
into centralized storage to train a robust deep learning model faces privacy, ownership, and strict
regulation challenges. Federated learning resolves the previous challenges with a shared global
deep learning model using a central aggregator server. At the same time, patient data remain with
the local party, maintaining data anonymity and security. In this study, first, we provide a com-
prehensive, up-to-date review of research employing federated learning in healthcare applications.
Second, we evaluate a set of recent challenges from a data-centric perspective in federated learning,
such as data partitioning characteristics, data distributions, data protection mechanisms, and bench-
mark datasets. Finally, we point out several potential challenges and future research directions in
healthcare applications.

Keywords: federated learning; deep learning; artificial intelligence; healthcare; data privacy-preserving

1. Introduction

Deep learning technology has shown promising results in smart healthcare applications
to assist medical diagnosis and treatment based on clinical data. For instance, deep learning
assists cancer diagnosis and prediction [1–3], brain tumor segmentation and classification from
magnetic resonance image (MRI) [4–6], and text detection of medical laboratory reports [7,8].
Good performance of the deep learning model on smart healthcare applications highly
depends on a diverse and vast amount of training data [9]. These training data were obtained
from various clinical observations such as biomedical sensors, individual patients, clinical
institutions, hospitals, pharmaceutical industries, and health insurance companies. However,
acquiring the healthcare data required to develop a deep learning model may be challenging
due to fewer patients and pathologies with a low incidence rate available in a single healthcare
institution. Furthermore, Zech et al. [10] showed that deep learning models trained with
single institutional data are vulnerable to institutional data bias, as shown in Figure 1a. This
institutional data bias has been shown to have high accuracy when evaluated on the same
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clinical institution’s data. However, it does not work well when applied to data from a
different institution or even across departments within the same institution. Simultaneously,
training deep learning models in a centralized data lake [11], as depicted in Figure 1b, is
infeasible because of patient privacy and government regulations related to clinical data. Thus,
to increase both the diversity and quantity of training data is through the collaboration of
several healthcare institution to create a single deep learning model while maintaining patient
privacy and confidentially.

Figure 1. Single-institution and collaborative learning: (a) single-institution learning: machine learning model trained and
validated with single institution dataset; (b) collaborative learning: machine learning model trained and validated with
medical data collected from external institutions pooled in a central data lake.

Medical data are usually fragmented due to the complex nature of the medical system
and processes. For instance, each medical institution may be able to access the medical data
of their patients only. As protected health information (PHI), these medical data are only
disclosed strictly regulated by law to third parties. The process of accessing and analyzing
medical data is strictly regulated by laws and regulations, such as the Health Insurance
Portability and Accountability Act (HIPAA) [12]. In addition, with an increasing number
of data breaches at healthcare organizations, the prominence of data security and privacy
protection has become a global consensus. For instance, in the American Medical Collection
Agency (AMCA) recent healthcare data breach, the perpetrators have access to medical
data, financial information, and payment details, affecting 11.9 million patients [13]. As a
result, many countries around the globe are enacting stricter legislations to protect data
security. For example, the General Data Protection Regulation (GDPR) went into effect in
2018 by the European Union to ensure users’ privacy while protecting their data [14]. Under
this GDPR, business entities must clearly explain why they need user data access and offer
them the right to withdraw or delete their data. Business entities violating the regulation
would face severe penalties. Many similar actions have taken place in the United States
and Taiwan to protect individuals’ privacy and security. For instance, Taiwan’s Personal
Data Protection Act (PDPA) and Cyber Security Management Act, enacted in 2018, prohibit
online business entities from leaking or tampering with personal data details that they
obtain [15]. This regulation enforces the business activities following the obligations of
legal data protection. On the one hand, establishing these regulations will contribute to a
more civil society’s growth. On the other hand, these regulations introduce new challenges
to data transaction and collaboration procedures for multi-institutional collaboration to
train a deep learning model.

One recent approach to solving the problem of training a robust deep learning
model from federated medical data while preserving patient privacy is federated learning
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(FL) [16,17]. This method provides decentralized machine learning model training with-
out transmitting medical data through a coordinated central aggregate server. Medical
institutions, working as client nodes, train their deep learning models locally and then
periodically forward them to the aggregate server. The central server coordinates and
aggregates the local models from each node to create a global model, then distributes
the global model to all the other nodes. It is worth noting that the training data are kept
private to each node and never transmitted during the training process. Only the model’s
weight and parameters are transmitted, ensuring that medical data remain confidential. For
these reasons, FL mitigates many security concerns because it retains sensitive and private
data while enabling multiple medical institutions to work together. FL holds an excellent
promise in healthcare applications to improve medical services for both institutions and
patients—for instance, predict autism spectrum disorder [18], mortality and intensive care
unit (ICU) stay-time prediction [19], wearable healthcare devices [20,21], and brain tumor
segmentation [22]. However, FL algorithms face several challenges, mainly due to the
properties of medical data, such as:

• Data partitions: FL technique aims to solve the limited sample size problem for
training a secure collaborative machine learning model by aggregating a group of
clients’ data. However, choosing a data partition (horizontal or vertical) for FL is
essential to solve the limited sample size, limited sample features, or both.

• Data distribution (statistical challenge): In developing a machine learning model
in a centralized manner, the training data are centrally stored and balanced during
training. However, with federated learning, each client generated the training data
locally, remained decentralized, and cannot access the other clients’ data. Thus, data
distribution at one client can differ significantly from others, i.e., nonindependent and
identically distributed (non-IID), impacting the performance of the federated learning
model [23,24].

• Privacy and security: Data privacy and security are critical issues in medical appli-
cations. It is impossible to assume all of the clients in FL are reliable because the
number of clients expected to participate is potentially thousands or millions. Thus,
privacy-preserving mechanisms are needed to protect medical data from untrusted
clients or third-party attackers.

• Benchmark medical dataset: Medical dataset quantity and quality have often limited
the development of a robust solution to the FL algorithm. For various research
purposes, the dataset used in FL experiments could vary significantly. For instance,
some datasets focus on medical image classification and segmentation performance
while others focus on network communication performance. However, the benchmark
datasets have not already been compiled, specifically for medical datasets. Thus,
a trusted benchmark is necessary to evaluate the performance of the FL that uses
multiple medical data sources. Finally, we provide a comprehensive list of relevant
medical datasets for future research on this topic.

Due to the ever-changing development in FL, several valuable studies on FL have
been published in reputable publications from 2018 to 2021. Therefore, this paper aims
to provide a recent review of federated learning in the medical domain. Specifically, this
study describes the existing FL techniques related to solving the challenges inherent in
medical data together with future research direction on FL for healthcare applications.

This study differs from existing reviews. General descriptions of FL are given in [16,17],
while detailed discussions of recent challenges are presented in [25,26], security analy-
sis [27], and personalization techniques [28]. Resumes of FL applications in edge comput-
ing [29], wireless networks [30], and healthcare [31,32] also have been published. However,
none of the existing studies have explored the impact of medical data properties on the
performance of FL in great detail. Moreover, it is necessary to provide a comprehensive
overview related to benchmarking the FL in medical data. To fill the gap, this review
presents a survey of FL from the perspective of data properties including data partitions,
data distribution, data privacy, benchmarking, and its promising applications.
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After a brief introduction of FL in this study, the rest of this paper is structured as
follows. Section 2 describes the research method to conduct this study. Furthermore, in
Section 3, we provide the search results from existing publications. Section 4 discusses our
findings in data partition, data distribution properties, data privacy threats and protections,
benchmark medical dataset, and open challenges applied in federated learning for medical
applications. Finally, we have our paper’s conclusion in Section 5.

2. Research Method

The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA)
statement [33] was the research method to guide this study. PRISMA technique is a widely
accepted standard for reporting evidence in systematic reviews that health-related organi-
zations and journals have adopted [34]. PRISMA approaches provide several advantages,
such as showcasing the review’s quality, allowing readers to assess the review’s strengths
and flaws, replicating review processes, and structuring and formatting the review using
PRISMA headings [33]. However, doing a systematic review and thoroughly publishing
it may take time. Additionally, it can soon become out of date, thus it must be updated
regularly to incorporate all newly published primary material since the project began.

2.1. Formulate Research Questions

We divide the research question into the following research questions.

- RQ1: What are the state-of-the-art FL methods in the healthcare area?
- RQ2: What are the FL methods proposed by scholars to solve challenging medical

applications from a data properties perspective?
- RQ3: What are the research gaps and potential future research directions of FL related

to medical applications?

The first research question (RQ1) aims to provide a comprehensive and systematic
overview of all articles related to FL. Furthermore, RQ1 aims to provide evidence that
the healthcare area can benefit by incorporating FL. Additionally, the second research
question’s (RQ2) motivation is to answer FL medical data settings challenges in FL such
as data partition, statistic heterogeneity, and security. Finally, the third research question
(RQ3) provides future directions for a researcher in the FL field primarily related to medical
data challenges.

2.2. Data Eligibility and Analysis of the Literature

The article selection procedure uses the PRISMA flow diagram [33], as shown in
Figure 2, which outlines papers’ search, inclusion, and exclusion. There are three steps
in the PRISMA flow diagram: identification, screening, and included. Firstly, in the
identification step, we performed a comprehensive literature review between 1 January
2018 and 31 June 2021, using PubMed, Web of Science (WoS), Association of Computing
Machinery Digital Library (ACM DL), Science Direct, and IEEEXplore digital libraries. We
start from 2018 because we are interested in further implementation in the medical area one
year after federated learning was proposed in 2017 [16]. The following search phrases were
used in general are “Federate learning,” and “Healthcare,” and “data privacy protection.”
Because each publication database has its own set of filters for search queries, the specific
query terms are specified in Appendix A Table A1. The initial result from digital libraries
showed 197 articles satisfying the search criteria. Then, 28 articles were removed due to
duplications, ending with 169 articles in the identification step.
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Figure 2. Study selection using PRISMA flow diagram method consisting of identification step,
screening step, and included step.

While systematic reviews offer various advantages, they are prone to biases that
obscure the study’s objective results and should be evaluated cautiously [35]. Several ap-
proaches were used to eliminate bias and ambiguity in the research selection process, such
as (i) conducting a dual review, (ii) defining clear and transparent inclusion and exclusion
criteria, and (iii) tracing the resulting flow diagram using the PRISMA flow diagram. Firstly,
two researchers independently analyzed the data and resolved inconsistencies through
group discussion (P. and K.T.P). Then, the abstracts and complete texts of all relevant
articles were carefully studied, and only those that fit the inclusion and exclusion criteria
were chosen. Researchers then confirmed the selected papers and resolved any conflicts; if
any disagreements persisted, third researchers were invited to discuss the matter, and the
findings were appraised (Z.-Y.S., C.-R.S., and W.J.). There was no dispute over the papers
included in this review.

This study should propose a good overview of FL for the healthcare sector and more
in-depth about establishing FL’s secure medical data mechanism. Thus, in the screening
step, we define the inclusion and exclusion criteria. We included publications that (i) use
FL to develop a model on a medical dataset, (ii) are published in well-known journals, and
(iii) are published in English. Exclusion criteria were used to exclude the published studies
that were not related, based on the following criteria: (i) articles that are not related to
FL, (ii) FL for nonmedical application or not using medical dataset in the experiment, (iii)
non-English language, (iv) review article, (v) proceeding or conference papers, (vi) arXiv
preprints, and (vii) book, book chapter, book section.

Numerous considerations exist against the inclusion of conference papers in this
study [36]. Firstly, conference proceedings usually contain various topics and much larger
set of publications such that identifying suitable conferences, accessing their abstracts, and
sifting through the frequent thousands of abstracts can be time-consuming and resource-
consuming. Secondly, conference proceedings may lack sufficient information for system-
atic reviewers to evaluate the methods, risk of bias, and outcomes of the studies submitted
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at the conference due to their brevity. Finally, the reliability of the results is also in question
especially in the healthcare area, partly because they are frequently preliminary or based
on limited investigations undertaken in a position to meet conference deadlines. Thus, we
do not include the conference papers in the inclusion criteria.

After applying inclusion and exclusion criteria from each study’s title, abstract, and
keywords, 56 articles were identified in the screening step. Next, 32 articles were excluded
in the reports assessed for eligibility step due to exclusion criteria from full text in the
article, ending with 24 articles. Finally, in the included step, 24 articles using FL in the
healthcare application were selected for further analysis, and their results are discussed in
this study. All of the 24 selected FL studies in the healthcare domain are listed in Table A2.

To provide a numerical description of the literature review, we gathered information
from each article as follows: (i) paper information, such as author, title, year, and keywords;
(ii) proposed methods, such as FL training algorithms and deep learning/machine learning
models; (iii) data properties, such as medical datasets, data distribution techniques and
challenges, data partition techniques, privacy attacks, and privacy mechanisms; and (iv)
experiment results and discussion.

3. Results

We compiled the data properties in FL for healthcare applications from 24 published
articles, as shown in Figure 3. The data scheme settings consisted of four layers: (i) data
partitions such as horizontal federated learning (HFL), vertical federated learning (VFL),
and federated transfer learning (FTL) (as discussed in Section 4.2); (ii) data distribution
characteristics (non-IID) such as quantity skew, label distribution skew, feature distribution
skew, and concept shift skew (as discussed in Section 4.3); (iii) possible data privacy attacks
such as model inversion and membership inference attacks (as discussed in Section 4.4.1); (iv)
additional data privacy protections such as differential privacy and homomorphic encryption
(as discussed in Section 4.4.2). Above the medical data properties is the application task,
where the task can be a classification or segmentation (as discussed in Section 4.6).

Figure 3. Medical data properties in federated learning for medical applications, consisting of data partitions, data
distribution (i.e., non-IID) characteristics, possible data privacy attacks, and data privacy protections.

Numerical description. The following observations were made based on numerical
analysis of the 24 included studies between 2018 and June 2021. Firstly, Figure 4a depicts the
number of FL studies published in the medical application by year of publication. Since 2020,
the number of articles published on FL has been continuously increasing. The number of
papers published in 2021 should continue to increase linearly throughout the year. Secondly,
Figure 4b shows the number of studies with data partition characteristics employed in FL.
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According to the figure, most published FL studies use horizontal federated learning (HFL) as
a medical data partition. Thirdly, Figure 4c shows the number of studies with various defense
methods to protect from data privacy attacks. We can see that differential privacy is the most
often employed type of data privacy protection. All of the possible data privacy protection
methods will be discussed in Section 4.4. Based on Figure 4d, quantity skew is typical when
dealing with multi-institutional medical data from FL experiments.

Figure 4. Numerical description of published articles in federated learning for medical applications. (a) The number of FL
studies published in medical application included in the review, 2018–2021; (b) number of data partition characteristics
employed in FL; (c) various data privacy algorithms employed in federated learning for the healthcare area; (d) number
of non-IID characteristics discussed in FL studies published in the medical domain; (e) various machine learning models
employed in federated learning for the healthcare area; (f) number of FL studies published in medical application included
in the systematic review.
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Machine learning algorithms. Additionally, we want to outline the machine learning
models employed in the studies and evaluate their proposed FL algorithms. The outlined
result of the machine learning model is shown in Figure 4e, where multilayer perceptron
(MLP) is the most commonly used model when predicting with tabular medical datasets
such as mortality prediction. Meanwhile, convolutional neural network (CNN) is the
frequent model architecture used for medical image datasets. Other models include
support vector machine (SVM) and autoencoder (AE) models. Additionally, we compile
the machine learning task based on the 24 published articles, as shown in Figure 4f. There
were 21 studies on classification tasks and three studies on segmentation tasks. Finally,
we summarized in Table 1 the strengths and weaknesses of machine learning algorithms
performing on federated learning.

Table 1. Summary of machine learning algorithms performing on federated learning, along with strengths and weaknesses.

ML
Algorithms

Strength Weakness FL Study

AE

AE is mainly designed for dimensional
feature reduction and denoising medical

datasets via an unsupervised learning
method. AE aims to recreate effective

compact and effective feature
representation.

An autoencoder may exclude essential
information from a medical dataset’s

characteristics.
[19,21,37]

CNN
Performs well on medical image

classification tasks such as prediction of
COVID-19 using X-ray images

The training process of CNN that
contains multiple layers will be

time-consuming if the client in the FL
environment does not have powerful

computation resources.

[18,20,38–42]

GAN
Generate a synthetic sample of medical
data for limited quantity in experiments

datasets.

Training GAN is challenging due to the
unstable training process, no standard

metric evaluation, and numerous
trial-and-error experiments required for

effective outcomes.

[43,44]

LSTM
Performs well on time series or sequential
medical datasets, for instance, detection of

human activity recognition.

Due to the vanishing and exploding
gradient challenges, training LSTM is

difficult.
[45]

MLP
Good generalization performance on

tabular medical datasets such as mortality
prediction based on drug data

MLP is limited to learning elementary
problems. Additionally, it is

feature-scaling sensitive and involves
setting numerous hyperparameters such

as the number of hidden neurons and
layers.

[46–51]

SVM

SVM is capable of modeling nonlinear
decision boundaries and a variety of

kernels are available. Additionally, it is
highly resistant to overfitting, particularly

in high-dimensional space.

SVM is memory-consuming, more
difficult to modify because of critically

selecting the appropriate kernel, and does
not scale well to more extensive datasets.

[52]

U-Net

Achieve accurate results when performing
segmentation tasks on medical image

datasets, for example, when segmenting
brain tumors disease using brain magnetic

resonance medical images.

U-Net model development is
time-consuming because the network

must be operated independently for each
patch, and redundancy due to

overlapping patches. Additionally, a
tradeoff exists between the precision of

localization and the utilization of context.

[38,53]

AE: autoencoder; CNN: convolutional neural network; GA.: generative adversarial network; LSTM: long short-term memory; MLP:
multilayer perceptron; SVM: support vector machine.
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4. Discussion

RQ1: What are the state-of-the-art FL methods in the healthcare area?

4.1. Federated Learning Overview

FL is a technique to develop a robust quality shared global model with a central ag-
gregate server from isolated data among many different clients. In a healthcare application
scenario, assume there are K nodes where each node k holds its respective data Dk with nk
total number of samples. These nodes could be a healthcare wearable device, an internet
of health things (IoHT) sensor, or a medical institution data warehouse. The FL objective
is to minimize loss function given total data n = ∑K

k=1 nk and trainable machine learning
weight vectors with d parameters w ∈ Rd using Equation (1):

min
w∈Rd

F(w) =
K

∑
k=1

nk
n

Fk(w) where Fk(w) =
1
nk

∑
xi∈Dk

fi(w) (1)

where fi(w) = �(xi, yi; w) denotes the loss of the machine learning model made with parame-
ter w. For instance, Huang et al. [19] used the categorical cross-entropy loss function to update
the model parameters on the binary classification of patient mortality. In addition, Yang
et al. [53] used the soft dice loss function for the COVID-19 region segmentation application.

In 2016, the basic concept of data parallelism in FL namely federated averaging
(FedAvg) algorithm, was introduced by McMahan et al. [16]. As stated in the FedAvg
algorithm, every communication round t consists of four phases. Firstly, the aggregate
server initializes a global model with initial weights wg

t , then shared with a group of clients
St (medical nodes in our case), which was picked randomly with a fraction of C ∈ {0, 1}.
Secondly, each client k ∈ St, after received a global model wg

t from the server, the client
conducts local training steps with epoch E on minibatch b ∈ B of nk private data points.
The local model parameters are updated with local learning rate η and optimized by
minimizing loss function L(.). Thirdly, once client training is completed, the client k sends
back its local model wk

t+1 to the server. Finally, after receiving the local model wk
t+1 from

all selected groups of clients St, the aggregate server updates the global model wg
t+1 by

averaging of local model parameters using Equation (2):

wg
t+1 ←

K

∑
k=1

αk × wk
t+1 (2)

where αk is a weighting coefficient to indicate the relative influence of each node k on the
updating function in the global model, and K is the total nodes that participated in the
training process. Choosing the proper weighting coefficient αk in the averaging function
can help improve the global model’s performance (as discussed in Section 4.3.2 non-IID
mitigation methods). The entire FL procedure is described in Algorithm 1.
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Algorithm 1 FL with Federated Averaging (FedAvg) algorithm [16]

Input: T global round, C number of fractions for each training round, K number of clients, η

learning rate at a local client, E number of epochs at a local client, B local minibatch at a local client.
01: Initialize global model wg

t=0
02: for each round t = 1, 2, . . . , T do

03: m ← max(C × K, 1)
04: St ← (m clients in a random order)
05: for each client k ∈ St do

06: wk
t+1 ← ClientUpdate

(
k, wg

t

)
07: wg

t+1 ← ∑K
k=1 αk × wk

t+1
08:

09: ClientUpdate
(

k, wg
t ) :

10: wk ← wg
t

11: for each local epoch e = 1, 2, . . . E do

12: for each local batch b ∈ B do

13: wk ← wk − η∇L(b; wk)
14: return local model wk

Output: wg
t+1 a global model at round t + 1

FL has differentiated from the standard collaborative learning in the following prop-
erties: (1) training is carried out across a vast number of many client nodes, and commu-
nication speed between the client nodes and the aggregate server is slow; (2) the central
aggregate server does not have a control to individual nodes or devices, and full partici-
pation of all nodes is unrealistic because there are inactivate devices that do not respond
to the server; (3) in real-world case scenario, data distribution is nonindependent and
identically distributed (non-IID). Non-IID data distribution means that each node has a
different distribution pattern from the other node. These properties are shown when the
first proposed of FL algorithm is applied for mobile keyboard prediction [16,17]. However,
these properties are different when FL is implemented in the healthcare area. First, the FL
training is carried out across a limited number of healthcare nodes from 2 to 100 as listed
in Table 2, and communication speed between healthcare participants and the aggregate
server is usually reliable. Second, the aggregate server coordinates the participant nodes in
the FL training scheme without exposing the participant’s local data to the network; thus,
data privacy and security can be guaranteed.

FL is divided into two categories based on the aggregation schema: (a) centralized
FL and (b) decentralized FL. As shown in Figure 5a, for centralized FL, the central server
selects a subset of nodes at the beginning of training and aggregates the model updates
received from client nodes. As nodes, the medical institutions periodically communicate
the local updates wk

t−1 with a central server to learn a global model wg
t . The central

server aggregates the updates and sends back the parameters of the updated global model.
However, if the centralized server fails, the whole FL environment will collapse. This
failure is one of the reasons that the decentralized FL was proposed. Specifically, all nodes
coordinate themselves and work together from node to node to develop a global model in
decentralized FL, as shown in Figure 5b.

RQ2: What are the FL methods proposed by scholars to solve challenging medical applica-
tions from a data properties perspective?

4.2. Data Partition Characteristics

This section discusses FL based on the healthcare data partition characteristics. Since
FL uses data kept in various medical institutions, it is frequently presented in a feature
matrix. Let matrix Dk denote medical data held by the medical institution k. Notably, a
row in the matrix represents a patient index denoted by I , a column represents a patient
features diagnosis denoted by X , and some data may contain a label data Y . The complete
training medical dataset Dk in a medical institution k is denoted by (Ik, Xk, Yk). Thus, data
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partition in FL can be divided into horizontal federated learning (HFL), vertical federated
learning (VFL), and federated transfer learning (FTL) [26].

Figure 5. Federated learning framework for healthcare application based on aggregation schema. (a) Centralized FL:
the central server selects the nodes, aggregates the updates, and sends back the updated global model parameters;
(b) decentralized FL: to develop a global model, there is no central server to orchestrate all nodes.

4.2.1. Horizontal Federated Learning (HFL)

The horizontal federated learning (HFL) data partition, shown in Figure 6, is rec-
ommended in the case of limited sample size variability when developing a model. In
this data partition setting, the nodes could be different health institutions or health data
application providers. The HFL aims to develop a global model by integrating patients’
sample data from different institutions without affecting patient privacy. Each node shares
different patients’ index I but has the same features X and labels Y information [26]. HFL
is denoted as:

Xj = Xk, Yj = Yk, Ij �= Ik, ∀Dj, Dk, j �= k (3)

where Di represents the dataset held by client i. For instance, two healthcare providers of
the same business located in different countries would like to develop an AI model. User
features of these two healthcare providers will mostly be the same because both operate
the same business. However, the patient samples held by the two healthcare providers
are different due to geographic locations. In this regard, we can use HFL to increase the
total training sample by aggregating both of the healthcare providers’ user samples in a
privacy-preserving manner to enhance the model’s performance. Therefore, the HFL data
partition resolves the lack of sample size in data training because it combines all healthcare
institutions’ sample data.
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Figure 6. The typical medical data partitions scenario for horizontal federated learning (HFL). Each node is a medical
institution data silo or wearable medical device. They share the same feature of medical diagnosis Xj = Xk but have
different patients index Ij �= Ik.

HFL data partition is quite common in FL applied for medical applications. More than
half of FL studies on medical applications implemented horizontal medical data partition in
their experiment [18,19,21,37,39–49,51,52,54,55]. Unlike FL applied for nonmedical applica-
tions where training is carried out across many nodes, FL studies in medical applications only
handle limited nodes from 2 to 100, as listed in Table 2. For instance, Li et al. [18] experimented
with four medical institutions in different places for the autism spectrum disorder (ASD)
prediction scenario. Each medical party shares the same user features generated by medical
equipment and combines all patient samples from four medical nodes.

4.2.2. Vertical Federated Learning (VFL)

Data partition in vertical federated learning (VFL) is depicted in Figure 7. In this data
partition setting, two nodes shared the same users’ profile but different features information.
The nodes could be different health institutions or health data application providers. VFL
aims to develop a global model by integrating patient features from different institutions
without directly sharing patient data. Each node shares different patients’ features X and
labels Y information but has the same sample data I [26]. VFL can be denoted as:

Xj �= Xk, Yj �= Yk, Ij = Ik, ∀Dj, Dk, j �= k (4)
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Figure 7. The typical medical data partitions scenario for vertical federated learning (VFL). Each node can be a different
medical institution and application. They share the same patients’ index Ij = Ik but have different features of medical
diagnosis Xj �= Xk.

For example, two distinct healthcare organizations exist in the same region: one
hospital and one health insurance company. Users of these two healthcare organizations
may mostly be the same because they are the region’s residents. However, the user features
may not have anything in common because healthcare insurance records users’ income
and medical reimbursement, while hospitals keep users’ medical treatment histories. VFL
data partition securely combines different features sets to enhance the performance of the
model. Thus, the VFL data partition increases feature dimension in data training.

In contrast to HFL, there are a few published VFL-based studies applied in medical
applications. One such an example was proposed by Cha et al. [56]. The authors developed
an autoencoder federated learning model for the vertically partitioned medical data. An
autoencoder model is used for transforming user features in each client into a latent dimen-
sion. The proposed method does not share any raw medical data but latent dimensions as
secure perturbed data. After receiving the clients’ latent dimensions, the aggregate server
concatenates all latent dimensions for training the global model. However, this approach
is prone to reverse-engineering, which could discover the original medical data from the
latent dimensions. In addition, the proposed method needs all the clients to perform data
alignment, which means the user data has the same row indices in all data silos (first row
data on clients k must be the same as client j).

4.2.3. Federated Transfer Learning (FTL)

Unlike the data configurations in HFL and VFL, data partition in federated transfer
learning (FTL) considers the situation of multiple nodes shared neither the same users’
profile nor features information, as shown in Figure 8. The main issue in this data partition
configuration is that one node lacks labeled data. The nodes could be different health
institutions or health data application providers located in different regions. Furthermore,
each node shared different patients’ features X , labels Y , and sample data index I [26].
FTL can be denoted as:

Xj �= Xk, Yj �= Yk, Ij �= Ik, ∀Dj, Dk, j �= k (5)

177



Appl. Sci. 2021, 11, 11191

Figure 8. The typical medical data partitions scenario for federated transfer learning (FTL). One party is a medical institution,
while the other is a healthcare application located in a different region. They share neither the patients’ index Ij �= Ik nor
features of medical diagnosis Xj �= Xk.

For example, there are two distinct healthcare entities: one is a hospital in Taiwan,
while the other is in the United States. Due to the geographical limitations, the two
healthcare entities’ user groups have little overlap, and the data features of the two entities
datasets may slightly overlap. FTL addresses limited data sets and label samples in this
scenario, thus increasing the model’s performance while protecting user privacy.

The research in FTL is still in the early stages, and there is plenty of room for im-
provement. Chen et al. [20] proposed FedHealth assuming FTL data partition. FedHealth
method collects data from several users/organizations using FL then offers a personalized
model for each user/organization using transfer learning. First, the model learns to classify
human activity and then extends the task to Parkinson’s disease classification with transfer
learning. In this case, FTL developed a global model for disease prediction in one task and
then could be transferred to another task.

4.3. Data Distribution (Statistical Data Heterogeneity) Challenge

FL can solve the limited data quantity issue by combining data from each client
without directly sharing each client’s private data. However, FL also faces statistical data
heterogeneity challenges due to data distribution at each client. The data distributions at
each client are likely to be different, leading to poor global model performance [23,24]. Zhao
et al. [23] demonstrated that the data distributions might considerably decrease FL model
performance due to weight divergence induced by different population distributions.
Within an FL environment, data distribution is frequently classified into IID and non-
IID. Non-IID can result from an imbalance in the amount of data quantity, features, or
labels. Non-IID is a common occurrence in the medical domain. Various medical tools
manufacturers, different calibrated techniques, and different medical data acquisition
techniques are the main reasons why each medical institution generates nonidentical data
distribution. For instance, Li et al. [18] described how each medical institution uses various
brain scanner manufacturers and instructions for each patient when taking autism brain
imaging data. Specifically, during data acquisition, one medical site instructs patients to
keep their eyes open while others instruct them to close their eyes during scanning. In the
following subsection, we describe the non-IID characteristics and mitigation methods.
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4.3.1. Non-IID Characteristics

The non-IID characteristics among healthcare nodes in the FL environment can take
on four different forms such as (1) quantity distribution skew, (2) label distribution skew,
(3) feature distribution skew, and (4) concept shift skew [24,25]. The non-IID characteristic
summarized from 24 published FL studies applied for medical application is listed in Table 2.

Quantity skew (imbalance data) characteristic. Quantity skew characteristic in non-
IID occurs when the class distribution of data instances I is not equal or far from equal
across nodes in the FL scheme. An illustration of quantity skew is shown in Figure 9.
In the IID scenario, the amount ratio of positive and negative instances is almost equal.
For instance, in node two, the negative and positive amount ratios are 45% and 55%,
respectively. In the non-IID case, the ratio of positive and negative instances is far from
equal. For example, in node one, positive instances are around 5%, while negative ones
are 95%. Krawczyk et al. [57] divided imbalance data categories into slight imbalance
and severe imbalance. A slight imbalance is when the majority class is uneven by a small
amount in the training dataset, and the ratio ranges from 1:4 up to 1:100. Severe imbalance
data distribution is when the data distribution of the majority class is uneven by a vast
amount in the training dataset, the ratio is more than 1:100. For example, the ratio of
imbalance data in fraud detection tasks is up to 1:1000.

Figure 9. Non-IID from quantity skew (i.e., imbalanced dataset) characteristic. (a) IID: the amount ratio of positive and
negative instances is equal or slightly equal; (b) non-IID: the ratio of positive and negative instances is far from equal. For
example, the positive and negative instances ratio is 5% and 95% in node one, respectively.
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Quantity skew characteristic exists in FL for medical application experiment datasets
such as [18,19,46,52,53]. Quantity skew (i.e., imbalanced dataset) is common in the med-
ical dataset since it is acquired from multiple healthcare institutions, and the number of
instances in a class is not equally distributed for each institution. For instance, larger
hospitals have more patient records than small clinics in rural areas. Huang et al. [19]
tried to resolve this challenge by developing an imbalanced eICU dataset to predict patient
mortality where the ratio is 5% and 95% for death and alive categories, respectively.

Label distribution skew characteristic. For label distribution skew, the distribution of
labels P(yi) varies between different nodes. In the medical case, larger hospitals generally
have more disease-related records than small clinics in rural areas. An illustration for label
distribution skew characteristic is shown in Figure 10. In the IID setting, the distribution
of labels Y is the same across all nodes. However, in the non-IID setting, the distribution
of labels Y varies between each node. Specifically, there is a label yi that only exists in
one or several nodes in the FL environment. This label distribution skew characteristic
was initially demonstrated in FedAvg’s experiment [16]. Data samples with the same label
are divided into subsets, and each client is assigned to no more than two subsets with
distinct labels. Following FedAvg, this configuration is employed in published FL studies
for medical applications [38].

Figure 10. Non-IID from label distribution skew (prior probability shift) characteristic. (a) IID: The distribution of labels Y
exists in all nodes; (b) non-IID: the distribution of labels Y varies between different nodes. For instance, node two does not
have the labels y2 and y3 while node one has all labels.

Feature distribution skew characteristic. In the feature distribution skew character-
istic, the distribution of features P(xi) varies between different nodes. An illustration
of features distribution skew is shown in Figure 11. In the case of IID, the distribution
of features X is the same across all nodes, while in the non-IID case, the distribution of
features X varies between each node. Specifically, there is a feature xi that only exists in
one or several nodes in the FL environment. For instance, node two does not have the x1
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and x2 features while other nodes have those features. Missing features or missing data is
a common occurrence in medical datasets. For instance, missing features can be caused by
failures of measurement on medical images. Measurement in medical image acquisition
requires the images to be in focus. Medical images that are not in focus or blur can cause
missing pixel values. The absence of some features in one or several nodes in the features
distribution skew can be a problem in the FL training process. Data imputation techniques
such as probability principal component analysis (PPCA) and multiple imputations using
chained equations (MICE) can be employed to mitigate the problem [58].

Figure 11. Non-IID from feature distribution skew characteristic. (a) IID case: the distribution of features X exists in all
nodes; (b) non-IID case: the distribution of features X varies between each node. For instance, node two does not have the
features x1 and x3 while the other nodes have those features.

Concept Shift Skew. There are two forms in the concept shift skew: the same label but
different features P(x|y) and the same features but different label P(y|x). An illustration of
concept shift skew is depicted in Figure 12. The same label but different features in non-IID
characteristic is related to vertical federated learning data partition where each node shares
the sample index I but have different features X , while in the case of the same features but
the different label in non-IID characteristics is not applicable in most FL studies.
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Figure 12. Non-IID from concept shift skew characteristic. (a) IID case; (b) non-IID same features but different label case;
(c) non-IID same label but different features case.

4.3.2. Non-IID Mitigation Methods

Different non-IID characteristics may need different mitigating measures. There
are three methods in the published FL for medical applications to improve the model
performance with the non-IID dataset: (1) balancing the training dataset, (2) tuning the
model hyperparameter in the FL algorithm, and (3) domain adaptation.

Balance the training dataset method. When dealing with quantity skew in non-IID
characteristics, researchers balance the quantity of minority and majority classes in the
training dataset with the synthetic data augmentation technique. It is important to note
that the balancing method in the FL environment should keep the data secure and private.
There are two methods to generate synthetic data augmentation in the FL environment: (1)
local data augmentation and (2) server data sharing.

(1) The healthcare node generates a synthetic sample to balance the training dataset in
the local data augmentation method. The synthetic minority oversampling technique
(SMOTE) [21,49], generative adversarial method (GAN) [44], or geometric transfor-
mation [40,48,53] is employed to generate a synthetic sample in an FL environment.
The SMOTE algorithm is an oversampling technique where the synthetic data are
generated for the minority class. For instance, Wu et al. [21] and Rajendran et al. [49]
employ SMOTE to balance the heavy imbalance in a fall detection and lung cancer
training dataset, respectively. Zhang et al. [44] proposed secure synthetic COVID-19
data by combining the GAN and differential privacy method. Feki et al. [40], Duo
et al. [48], and Yang et al. [53] applied geometric transformations such as random
flipping, random rotation, and random translation to balance the quantity of minority
class in their training dataset for the data augmentation method.

(2) The aggregate server securely shares a small portion of data to the healthcare node
in the server data sharing method. For instance, Zhao et al. [23] proposed a global
shared dataset partition to train non-IID data. The author demonstrated that by
simply sharing 5% of data, they could get a 30% boost accuracy score. However, it
raises model communication costs and is prone to data privacy attacks during the
data sharing process.
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Adaptive Hyperparameters Method. The adaptive hyperparameters method tries to
find the proper FL hyperparameters values for each node during the training process. Each
node can have different values of the FL hyperparameters, such as learning rate, loss score,
and weighting coefficient. There are two published adaptive hyperparameters methods
in the published FL studies for medical application: (1) weighting coefficient [16,19,20,45],
and (2) adaptive loss function [46].

(1) The weighting coefficient αk is a variable that indicates the relative influence of each
node k on the aggregation equation in Equation (2) to update the global model.
Initially, McMahan et al. [16] proposed FedAvg that the weighting coefficient is
αk =

nk
n as shown in Equation (6), where nk and n are the private data points hold by

node k and the total data from all nodes that participated during training, respectively.
In this case, a node with significant data points has a considerable effect on the
global model. This method worked well when dealing with label distribution skew
characteristics experimented in their studies [16,20].

wg
t+1 ←

K

∑
k=1

nk
n

× wk
t+1 (6)

In comparison, Chen et al. [20] proposed that the weighting coefficient is αk = 1
K ,

where K is the total nodes participating in FL as shown in Equation (7). In this scenario, the
author considered that each node would contribute equally to the aggregation function.

wg
t+1 ←

K

∑
k=1

1
K
× wk

t+1 (7)

Huang et al. [19] proposed that the weighting coefficient is αk =
mc

k
∑C

c=1 mc
k
, as shown in

Equation (8), where mc
k and ∑C

c=1 mc
k are denoted as the clusters size in medical node k and

the total number of clusters in community-based federated learning, respectively. In their
method, the algorithm considers the weighted average from the cluster patient community.

wg
t+1 ←

K

∑
k=1

mc
k

∑C
c=1 mc

k

× wk
t+1 (8)

Finally, Chen et al. [45] proposed that the weighting coefficient is αk =
nk
n ×( e

2
)−(t−timestampk), as shown in Equation (9), where e is the natural logarithm number to

denote the time effect and timestampk is the round in the newest updated local model.
Their proposed weighting coefficient considers not only the data samples held by node k
shown by the portion of data nk

n but also the time required to update the global model in
the local node.

wg
t+1 ←

K

∑
k=1

nk
n

×
( e

2

)−(t−timestampk) × wk
t+1 (9)

(2) In addition, the adaptive loss function has the ability to change conditions based on
the loss score function. The loss function was used to measure the model performance.
The lower the loss score, the better a model was trained. Specifically, Huang et al. [46]
proposed the LoAdaBoost method based on loss function in the FL environment for
patient mortality prediction. In their proposed method, the adaptive loss function
boosts the training process adaptively from the weak learners node. On each training
step, the local node will send both the local model and training loss. If the training
loss score is more than the loss threshold, it will be retraining again. Otherwise, it will
send to the aggregate server.

Domain Adaptation Method. Domain adaptation (DA) is a subset of transfer learning
in which a model developed in one or more “source domains” is applied to a new (but
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related) “target domain.” DA is used when the source and target domains share the same
feature space but different data representations and distribution [59]. In comparison,
transfer learning is used when the target domain’s feature is different from the source
domain’s feature. The goal of DA is to minimize discrepancies in data distributions.
Li et al. [18] incorporated domain adaptation in their FL algorithm. The fundamental
assumption is that DA approaches can increase the overall performance of multiple nodes in
the FL environment with non-IID. Specifically, the author implemented a mixture of expert
(MoE) and adversarial domain adaptation methods. The MoE implements adaptation near
the model output layer, whereas the adversarial domain alignment implements adaptation
on the data knowledge representation level.

Table 2. Summary of different data partition methods, number of nodes, non-IID characteristics, and non-IID mitigation
employed in the published federated learning for healthcare applications.

Data
Partition

Purpose
Number of

Nodes
Non-IID

Characteristics
Non-IID Mitigation Studies/Year

HFL

Combining all
samples from a

group of selected
nodes St to
increase the
sample size

10 Quantity Skew Balancing the training dataset Brismi et al., 2018 [52]

50 Quantity Skew Not Available Huang et al., 2019 [19]

20 Quantity Skew Balancing the training dataset Chen et al., 2020 [45]

90 Quantity Skew Adaptive Hyperparameters:
Adaptive Loss Function Huang et al., 2020 [46]

4 Quantity Skew
Domain Adaptation: Mixture

of Expert and Domain
Adversarial

Li et al., 2020 [18]

5 Quantity Skew Not Available Shao et al., 2020 [47]

10 Quantity Skew Not Available Sheller et al. [38]

5 Quantity Skew Balancing the training dataset:
SMOTE Algorithm Wu et al., 2020 [21]

10 Not Available Not Available Abdul Salam et al.,
2021 [54]

4 Quantity Skew Balancing the training dataset:
Geometric Transformation

Chhikara et al., 2021
[37]

8 Quantity Skew Not Available Cui et al., 2021 [39]

3 Quantity Skew Balancing the training dataset:
Geometric Transformation Dou et al., 2021 [48]

4 Quantity Skew Balancing the training dataset:
Geometric Transformation Feki et al., 2021 [40]

6 Quantity Skew Not Available Lee et al., 2021 [41]

10 Quantity Skew Balancing the training dataset Liu et al., 2021 [42]

2 Quantity Skew Balancing the training dataset:
SMOTE Algorithm Rajendran et al. [49]

3 Not Available Not Available Sarma et al. [50]

5 Quantity Skew Not Available Vaid et al., 2021 [55]

8 Not Available Not Available Xue et al., 2021 [51]

8 Not Available Not Available Yan et al., 2021 [43]

3 Quantity Skew Balancing the training dataset:
Geometric Transformation Yang et al., 2021 [53]

100 Label Distribution
Skew

Balancing the training dataset:
Generative Adversarial

Network (GAN)
Zhang et al., 2021 [44]
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Table 2. Cont.

Data
Partition

Purpose
Number of

Nodes
Non-IID

Characteristics
Non-IID Mitigation Studies/Year

VFL

Combining all
features from a

group of selected
nodes St to

increase features
dimension

7 Not Available Not Available Cha et al., 2021 [56]

FTL

Improve the model
performance with
small data size and
unlabeled samples

7 Quantity Skew Balancing the training dataset Chen et al., 2020 [20]

HFL: horizontal federated learning; VFL: vertical federated learning; FTL: federated transfer learning.

4.4. Data Privacy Attacks and Protections

Data security and privacy are critical issues in medical applications. In FL, it is usual
for all nodes to calculate and upload their local model weights and parameters to an
aggregate server. The steps of uploading and processing the weights and parameters may
leak sensitive patient information contained in the medical data. The possible attacks
include model inversion and membership inference attacks, which may leak patient data to
an attacker. The common solutions for data privacy protection include differential privacy
and homomorphic encryption [21] based techniques, which can guarantee the security
of transferring the local weights and parameters in federated learning. In the following
subsection, we describe the possible data privacy attacks and protections in FL.

4.4.1. Data Privacy Attacks on Federated Learning

There are two types of possible data privacy attacks on federated learning. The first
attack is trying to recreate the input data, such as model inversion attack, and the second
attack is to discover the training data such as membership inference attack.

Model Inversion (MI) Attack. The model inversion attack is an attack method for
recreating data on which a machine learning model was trained [60]. In the case of federated
learning for healthcare applications, this can leak the sensitive patient data used in the
model’s training process. Fredrikson et al. [60] demonstrated the MI attack that, given
the machine learning model and several demographic data about a patient, an attacker
could generate the patient’s genetic markers. Specifically, the attack exploits the predicted
output probability confidence score from the machine learning model when predicting
the class given the features data. Given a machine model learning model as a function
ŷ = f (w; x1, . . . , xn) where ŷ, w, and X = {x1, x2, . . . , xn} are predicted probability class,
machine learning parameters, and features vector as an input, respectively. The model
inversion attack aims to exploit a sensitive feature, for instance feature x1, given some
information about the other features x2, . . . , xn and the predicted output probability ŷ. One
solution to overcome this threat is to use differential privacy mechanism which can be
incorporated into the learning process to protect the data from inversion attacks, such as
inferring model weights (discussed in Section 4.4.2).

Membership inference attack. Given a machine learning model f (w; x1, . . . , xn) and
some sample instances, the membership inference attack task tries to discover whether
the instance exists or not in the training dataset [61]. Membership inference attack poses
a significant privacy issue as the membership can expose a person’s private information.
For instance, determining a person’s presence in a hospital’s clinical trial training dataset
indicates that this patient was once a patient at the hospital. The patient and the hospi-
tal are the two key parties interested in defending against such membership inference
attacks. The patients consider their memberships confidential and do not wish for their
sensitive information to be made public. At the same time, the hospital does not want
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to be prosecuted for leaking patient data. Almadhoun et al. [62] demonstrated the first
membership inference attack in the medical area that infers the personal information of
the participants in a genomic dataset. Truex et al. [63] showed the threats of membership
inference attack when the attacker is a member in the FL environment. The member could
be the aggregation service or one of the client nodes. Their FL configuration is different
from the one discussed above. Instead of pooling the weights to construct a new global
model, each node trains their local model and contributes just the prediction probability
when inferring a new instance. The process of membership inference attack consists of three
steps [61]. Firstly, the attackers aim to develop a shadow dataset D′ that mimics the target
model training dataset D. Secondly, the attacker create a shadow model using the shadow
dataset D′ which mimics the target model behavior. In this step, the attacker observed the
shadow model behavior in response to instances known to have been provided during
training against those that were not. This behavior is utilized to create an attack dataset
that captures the different instances in the training data and data that have not been seen
previously. Finally, this attack dataset is used to construct a binary classifier that predicts
whether an instance was previously used in the target model output.

4.4.2. Data Privacy Protections for Federated Learning

There are two methods to protect data privacy from data leakage and attacker in
the FL environment: perturbation and encryption. The perturbation method preserves
private data and model privacy by adding a controlled random noise to the training data
or the machine learning model parameters during the training process. For instance,
differential privacy [18,43,44,55] and hybrid exchange parameters [39] algorithms are the
perturbations techniques implemented in the FL studies published in medical applications.
In comparison, the encryption method preserves private data and model privacy by
encrypting the parameters exchanged and the gradients in the aggregation process in the
FL environment, such as the homomorphic encryption algorithm [20,21,51].

Data Privacy Protections with Differential Privacy (DP) Method. Combining
a deep learning model with privacy protection is an emerging research focus. For
instance, many researchers use differential privacy (DP) methods to secure the deep
learning model. Inspired by the successfully implemented DP in centralized learning,
several researchers implemented DP in distributed training, especially in FL studies
for medical application [18,43,44,55]. Dwork et al. [64] introduced differential privacy as
a notion of privacy, ensuring that data analytics do not compromise privacy. It ensures
that the effect of an individual’s data on the model output is restricted. In other words,
differential privacy aims for an algorithm’s result to be nearly identical whether or not
the dataset contains data about a specific individual. This technique can prevent the
membership inference attack where the attacker tries to find if a specific individual is
in the training dataset. Differential privacy is achieved by adding controlled statistical
noise to the machine learning model’s input or output. Whereas the addition of noise
ensures that specific individual data contributions are hidden, it also provides insights
into the entire population without compromising privacy. The quantity of added noise is
called the privacy budget denoted by epsilon (ε). Gaussian and Laplace are two controlled
random noise mechanisms implemented in differential privacy for the FL studies in medical
applications. Differential privacy with Gaussian noise mechanism is a common technique
used in FL studies [18,43,44,55]. For instance, in their training dataset, Li et al. [18] and
Vaid et al. [55] incorporated the Gaussian noise in the model learning process to protect
from model inversion attacks. In addition, Zhang et al. [44] and Yan et al. [43] proposed a
differential privacy technique with a generative adversarial network (DPGAN) to generate
private data samples at a medical node in a federated environment. Specifically, Zhang
et al. [44] implemented controlled noise to the gradient value in the discriminator part
of their generated adversarial network (GAN) for image sampling in federated learning,
interfering with original data distribution. Their experiments showed that this method
could address the lack of data availability and the non-IID issue in FL while keeping patient
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data private. In addition, Zhang et al. [44] evaluated that the smaller the Gaussian noise as
part of DP will improve the model performance. Besides the Gaussian noise mechanism,
differential privacy with the Laplace noise mechanism is implemented by Li et al. [18] in
their studies. Li et al. [18] showed when the Laplace noise level was too high the deep
learning model performance failed to classification task.

Data Privacy Protection with Homomorphic Encryption Method. Homomorphic
encryption (HE) was used to ensure data privacy by encrypting the parameter exchanged
in the gradient aggregation process. There are many recent FL studies for healthcare
application that implemented HE during FL training [20,21,51]. Homomorphic encryption
was categorized into fully homomorphic encryption (FHE) and additively homomorphic
encryption (AHE) [65]. An FHE scheme is an encryption method that allows analytical
functions to be run directly on the encrypted data while producing the same encrypted
output as if the functions were executed in plaintext. In other words, if we perform an
add or multiply operation on the ciphertext, the decryption result is the same as the actual
result obtained by performing the same operation on the plaintext. In comparison, the AHE
is an encryption method that allows only one type of operation to be run directly on the
encrypted data and produces the same encrypted output as if the functions were executed
in plaintext. In other words, the AHE scheme is intended for use with specific applications
that require simple addition or multiplication operations. Formally, an encryption method
is called homomorphic over an operation “+” if it supports Equation (10):

E〈w1〉+ E〈w1〉 = E〈w1 + w2〉 ∀w1, w2 ∈ W (10)

where E〈.〉 is the encryption method and W is the machine learning model parameters.
For instance, in the AHE scheme, for parameters w1 and w2, one can obtain E〈w1 + w2〉 by
using E〈w1〉 and E〈w2〉 without knowing w1 and w2 explicitly. Most of the FL studies for
healthcare applications leverage the AHE rather than the FHE since FHE is computationally
more expensive than AHE. For example, Chen et al. [20] and Wu et al. [21] incorporated the
AHE in their local model parameters sharing and gradient aggregation between healthcare
nodes and the aggregate server. Xue et al. [51] adopted two AHE schemes for a lightweight
privacy module to prevent the patient EMRs’ privacy leakage in the medical edge devices.

4.5. Benchmark Medical Dataset for Federated Learning

The dataset utilized in FL studies can vary depending on the task. For instance, some
datasets concentrate on the performance of classification tasks, while others concentrate
on segmentation tasks. There are datasets such as LEAF [66] and FedVision [67] for FL
algorithm benchmarking. However, there is no specific open public medical dataset for FL
algorithm benchmarking due to limited quantity, patient security, and privacy. Therefore,
a comprehensive list of relevant medical datasets is compiled from published FL papers
for future research on this topic. From 24 published FL papers in the healthcare area,
16 publications used the public dataset listed in Table 3. We exclude eight publications
from the list because these papers use their institution/private dataset.

Besides benchmark medical datasets for federated learning, numerous scientific re-
search communities and industries have developed various tools to accelerate the growth
of federated learning. We summarized in Table 4 the federated learning tools based on
data configuration challenges.
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Table 3. Summary of public medical datasets in recent FL studies applied for a medical area for algorithm benchmarking.

Dataset Type Dataset Name Description FL Study

H
ea

lt
hc

ar
e

da
ta

se
t

Medical Image
Classification

Autism Brain Imaging
Data Exchange (ABIDE)

I [68]

The ABIDE I is a consortium dataset openly sharing
1112 functional magnetic resonance imaging (fMRI)

dataset from 539 patients with autism spectrum
disorders.

[18]

Public COVID-19
Image Data Collection

[69]

The dataset consists of 108 healthy chest X-ray
images and 108 confirmed with COVID-19 chest

X-ray images taken from 76 patients.
[40,44,54]

Facial Emotion
Recognition (FER) 2013

[70]

The FER2013 dataset consists of 35,887 human facial
emotion images. The dataset is labeled into seven

emotions: neutral, anger, disgust, sadness, happiness,
surprise, and fear.

[37]

Medical Image
Segmentation

Brain Tumor Image
Segmentation

Benchmark (BraTS)
2017 and 2018 [71]

The BraTs 2017 were collected from 13 institutions
and consisted of 359 patients’ brain tumor scans. [38]

SPIE-AAPM
PROSTATEx dataset

[72]

The PROSTATEx dataset consists of 343 MRI prostate
image cancer from Siemens 3T MR scanners, the

MAGNETOM Trio, and Skyra.
[43,50]

Electronic Health
Record

MobiAct [73] The MobiAct dataset is human activity dataset taken
from 57 volunteers (42 men and 15 women). [21]

Human Activity
Recognition (HAR) [74]

The HAR dataset was collected from 30 volunteers.
Each subject performed different activities such as
walking, sitting, standing, and laying. There are

10,299 with 561 time-series features.

[20,45]

WESAD (Wearable
Stress and Affect
Detection) [75]

The WESAD is a dataset for wearable effect and
stress detection. Taken from 15 participants, the
WESAD consists of 12 features with 63,000,000

time-series samples.

[42]

Medical Information
Mart for Intensive Care

(MIMIC) III [76]

The MIMIC III dataset was collected from 40,000
patients during stayed in the ICU at Beth Israel

Deaconess Medical Center between 2001 and 2012.
[46]

The eICU collaborative
research database. [77]

Critical care datasets consist of 200,859 patients data
from 208 hospitals in the United States. [19,39,56]

N
on

he
al

th
ca

re
da

ta
se

t

Image classification,
sentiment analysis LEAF Dataset [66]

The LEAF Dataset Benchmarking framework consists
of images and text datasets such as EMNIST, Celeba,

Shakespeare, and Synthetic datasets.
[66]

Image
Classification

FedVision—Real World
image dataset for FL

[67]

The FedVision dataset contains more than 900
real-world images generated from 26 street cameras.

Precisely, it consists of 7 classes with a detailed
bounding box. This dataset has non-IID properties

reflecting a real-world data distribution.

[67]

ABIDE: autism brain imaging data exchange; BraTS: brain tumor image segmentation benchmark; eICU: electronic intensive care unit;
FER: facial emotion recognition; FL: federated learning; fMRI: functional magnetic resonance imaging; HAR: human activity recognition;
MIMIC: medical information mart for intensive care; MR: magnetic resonance; IID: independent and identical data distribution; WESAD:
wearable stress and affect detection.
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Table 4. Federated learning tools.

Framework
Name

Creator

Supported Techniques

URL
Data Partition

Data
Distribution

Data Privacy
Attack

Simulation

Data Privacy
Protection
Methods

PySyft Open
Mined

�
HFL, VTL

�
IID, non-IID �

�
DP, HE

https://github.com/
OpenMined/PySyft

(accessed on 7 July 2021)

TFF Google �
HFL � � �

https:
//www.tensorflow.org/
federated (accessed on 7

July 2021)

FATE Tencent �
HFL, VFL, FTL � �

�
HE

https://github.com/
FederatedAI/FATE
(accessed on 21 July

2021)

Sherpa.ai Sherpa.ai �
HFL

�
IID, non-IID

�
Data Poison

�
DP

https:
//developers.sherpa.ai/

privacy-technology/
(accessed on 27 August

2021)

LEAF Sebastian
Caldas

�
HFL � � �

https://leaf.cmu.edu/
(accessed on 21 July

2021)

HFL: horizontal federated learning; VTL: vertical transfer learning; FTL: federated transfer learning; IID: independent and identically data
distribution; DP: differential privacy; HE: homomorphic encryption.

4.6. FL Studies for Healthcare Applications

Published FL studies in medical applications mostly come with two tasks: classi-
fication and segmentation, as summarized in Table 5. In our selected papers, there are
24 studies. Out of these studies, 21 studies are on classification tasks, and three are on
segmentation tasks. The following subsections describe the existing studies on FL for
healthcare applications, organized by the application task type.

4.6.1. Classification Task in FL for Healthcare Applications

Classification is a common task tackled in the published FL applications in the medical
domain. In machine learning, classification algorithms learn how to classify or annotate
a given set of instances with classes or labels. There are several classification tasks that
are studied in federated learning setting in healthcare, e.g., autism spectrum disorder
(ASD) [18], cancer diagnosis [41,43,49], COVID-19 detection [40,44,48,54], human activity
and emotion recognition [20,21,37,42,45], patient hospitalization prediction [52], patient
mortality prediction [19,39,46,47,55,56], and sepsis disease diagnosis [51]. The summary of
classification tasks in FL studies for medical application is listed in Table 5.

Cancer diagnosis. Recent studies show that researchers are employing FL technology
to develop machine learning models for cancer diagnostic applications [41,43,49]. For
instance, Lee et al. [27] proposed a CNN-based model to classify whether thyroid nodules
were benign or malign. The training data were 8457 ultrasound images collected from
six institutions. The results show that the performance of the FL-based method was
comparable with centralized learning with accuracy, sensitivity, and specificity of 97%,
98%, and 95%, respectively. Similarly, Rajendran et al. [49] implemented FL with an MLP
model for lung cancer classification using two independent cloud providers. The model
initialized, trained, and transferred from one node to another node using a cloud repository.
The model achieved 92.8% accuracy to classify cancer. Another study by Yan et al. [43]
transformed all nodes’ raw medical image data onto a common space via image-to-image
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translation without violating FL’s privacy settings. The image-to-image translation was
done using a cycle generative adversarial network (CycleGAN) model. The performance
of the proposed method trained with eight medical nodes achieved 98% accuracy and 99%
area under the curve (AUC) to classify prostate cancer.

Table 5. Summary of FL publications applied in medical applications.

ML Task Clinical Tasks Medical Input Data Model Architecture FL Study

Classification

Autism spectrum disorders
(ASD) or Healthy control (HC) fMRI CNN [18]

Cancer diagnosis:

- Prostate cancer
- Thyroid cancer
- Lung cancer

- MRI
- Ultrasound

images
- Tobacco and

radon data

- GAN
- CNN
- MLP

[43]
[41]
[49]

COVID-19 detection X-ray images CNN [40,44,48,54]

Human activity Wearable device LSTM [20,21,45]

Human emotion Wearable device CNN [37,42]

Patient hospitalization Patient EHR SVM [52]

Patient mortality Critical care data MLP [19,39,46,47,55,56]

Sepsis disease Patient EHR Double Deep Q
Network [51]

Segmentation

Brain tumor MRI U-Net [38]

COVID-19 region 3D Chest CT 3D U-Net [53]

Prostate cancer MRI 3D Anisotropic Hybrid
Network [50]

CNN: convolutional neural network; CT: computed tomography; EHR: electronic health record; fMRI: functional magnetic resonance imaging;
GAN: generative adversarial network; MLP: multilayer perceptron; MRI: magnetic resonance imaging; SVM: support vector machine.

COVID-19 detection. For COVID-19 detection applications [40,44,48,54], FL is a po-
tential approach for connecting medical images data from medical institutions, enabling
them to develop a model while maintaining patient privacy. In this case, the model’s
performance is considerably enhanced from diverse medical datasets from several institu-
tions. For instance, Abdul Salam et al. [54] experimented with different federated learning
architectures for binary COVID-19 classification. Their results showed that the federated
learning model with GAN architecture and stochastic gradient descent (SGD) optimizer
had a higher accuracy while keeping the loss score lower than the centralized machine
learning model. The model performance achieved accuracy and AUC of 98.30% and 9.63%,
respectively. Similarly, Dou et al. [48] showed the efficacy of a federated learning system for
detecting COVID-19-related CT anomalies using patients’ medical data from one country
hospital as training data, then validating the model with medical data from other countries.
Specifically, the authors trained an MLP-model using 132 patients from three hospitals
in Hong Kong and validated the model generalizability performance using the medical
dataset from China and Germany. The system achieved 83.12% in terms of AUC. Feki
et al. [40] showed that increasing the number of medical nodes will decrease the training
round for the model to converge and increase the model performance in CT–X-ray COVID-
19 prediction. The authors proposed the CNN-based model architecture and achieved a
performance of 95.27% AUC score. Similar results were obtained by Zhang et al. [44], who
proposed an FL framework that enables medical nodes to generate high-quality training
data samples with a privacy-protection approach. Specifically, the proposed method solves
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the challenge of lacking COVID-19 medical training data in a federated environment. The
GAN-based architecture was employed in the proposed system and achieved a comparable
performance of 94.11% accuracy.

Human activity and emotion recognition. With increasing research on wearable
technology and the internet of health things (IoHT), FL technology is one of the solutions to
keep users’ privacy while collaborating to develop a model for human activity and emotion
recognition [20,21,37,42,45]. For example, Chen et al. [20] developed a deep learning model
for human activity classification such as walking, sitting, standing, and laying. Then the
author elaborates the trained CNN-based model with federated transfer learning to achieve
a personalization model for each edge device. The system achieved 99.4% accuracy in
classifying human activities. Similarly, Wu et al. [21] developed a cloud-edge federated
learning infrastructure to create a patient privacy-aware deep learning model for in-home
monitoring applications. The authors developed an autoencoder (AE) model architecture
then deployed the model into five different healthcare nodes. The FL system achieved an
accuracy of 95.41%. Chhikara et al. [37] combined the speech signal and facial expression
to create an emotion index for monitoring the patient’s mental health. Using the facial
emotion recognition (FER) dataset collected from several data silos, the author employed a
federated learning technique and AE-based architecture to create a secure machine learning
model to classify a human emotion. The FL algorithm showed an AUC of 88%.

Patient mortality prediction. Similarly, FL enables early predictive modeling based
on several sources, which can help to assist clinicians with extra information into the risks
and benefits of treating patients earlier [19,46,47,51,52,55,56]. Huang et al. [19] used drug
features to forecast critical care patients’ mortality, and ICU stays time. Their algorithm
based on AE architecture also addresses non-IID ICU patient data by grouping patients
into clinically significant communities with shared diagnoses and geographical regions,
then training one model per community. The proposed FL algorithm showed an AUC of
69.13%. In a similar study, Brismi et al. [52] proposed a method to forecast future patient
hospitalizations with heart-related disorders by solving the L1-regularized sparse support
vector machine (SVM) classifier in a federated learning environment. The proposed FL
model performed an AUC of 77.47%. Shao et al. [47] proposed an MLP-based model
framework to predict in-hospital mortality among patients admitted to the intensive care
unit. Their findings indicate that training the model in a federated learning framework
produces outcomes comparable to those obtained in a centralized learning environment
with an AUC of 97.76%. Vaid et al. [55] demonstrated federated learning with an MLP-
based model architecture to predict patient mortality with COVID-19 disease within seven
days. Their experiment showed that the federated learning algorithm successfully produces
a robust predictive model while preserving the patient’s confidential information with an
82.9% AUC score.

Other healthcare areas. Besides the healthcare areas mentioned above, FL also ap-
plied for sepsis disease [51] and autism spectrum disorder classification [18]. Xue et al. [51]
developed a fully decentralized federated framework (FDFF) that integrates a neural net-
work model across edge devices to extract knowledge from internet-of-things for healthcare
applications. The edge devices using FDFF can create a double deep Q-network (DDQN)
that gives suggestions for sepsis treatment. In addition, Li et al. [18] proposed FL for
multisite autism spectrum disorder (ASD) fMRI analysis.

4.6.2. Segmentation Task in FL for Healthcare Applications

Segmentation tasks with medical images have become an essential clinical task in health-
care applications. The medical image segmentation task is the process of identifying and
selecting a region of interest within a medical image. Medical images can be in several forms,
such as MRI or CT image scan. There are several published FL studies in medical image
segmentation, namely brain tumor disease [38], COVID-19 region [53], and prostate cancer
region [50]. The summary of published FL studies on segmentation tasks is listed in Table 5.
Specifically, in brain tumor segmentation using brain MRI medical images, Sheller et al. [38]
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applied the FL algorithm with CNN-based architecture for multi-institutional collaboration
in brain tumor segmentation tasks while preserving the patient data. Compared to existing
collaborative learning approaches, FL achieved the highest dice score of 85% and scaled
more effectively as the number of collaborating institutions increases. Using multinational
three-dimensional chest CT images from three countries, Yang et al. [53] applied federated
semi-supervised learning with 3D u-shape fully connected layer model architecture to seg-
ment the COVID-19 disease region. Federated semi-supervised learning can assure good
training performance even when some healthcare sites have a limited number of annotated
data compared to unannotated data. Additionally, the semi-supervised environment may
alleviate some of the strain associated with expert annotation, which is critical given the
present pandemic crisis. Similarly, Sarma et al. [50] performed prostate segmentation with a
3D anisotropic hybrid network (3D AH-Net) model on MRI with collaboration from industry,
public universities, and the federal institution. The proposed FL algorithm experimented with
three medical nodes showed a dice score of 88.9%.

RQ3: What are the research gaps and potential future research directions of FL related to
medical data?

4.7. Open Challenges

In this survey, we review the current progress on federated learning in the healthcare
field. We highlight the comprehensive solutions to federated learning issues related to
medical data configurations to provide a valuable resource for researchers. In what follows,
we list some potential research directions or open questions when federated learning is
applied in the healthcare area.

FL with Medical Data Stream. Medical data streams are collections of medical data
that increase constantly and rapidly over time, generated during the treatment and monitor-
ing of patients. For instance, in telemedicine or patient monitoring, the medical monitoring
devices generate a large amount of time-sensitive data when monitoring patient vital signs
such as temperature, heart rate, and blood pressure. This medical data is a stream of medi-
cal signals displayed for interpretation by physicians. Certain pieces of these data could
be used in real-time to alert physicians about changes in patient circumstances. Medical
data streams arrive periodically, and we would like to develop an analytic model that
extracts meaningful patterns or risk factors in real-time. Federated learning incorporated
with the medical data stream could improve training tasks and security performance, as
inconsistencies in evolving medical datasets and the data transmission between the FL
coordinator and participant nodes can be highly decreased [25]. However, the medical
data streams are usually fast, large, and we must handle them in real-time. In addition, the
medical data streams are dynamic, so our FL algorithm has to respond to these changes.
Thus, it is essential to design an efficient federated learning algorithm to achieve good
accuracy, low total memory, and minimum time in medical data streams.

FL with Hybrid Medical Data Partition. In the HFL data partition, the nodes share
the same features X and label Y but have different data samples I . Thus, the HFL aims
to solve limited sample size variability by combining data samples from all nodes when
developing a model, while for the VFL data partition the nodes share the same data
samples I but have different features X and labels Y . Therefore, the VFL aims to enrich
the features by combining features from all nodes when developing a model. However, we
need to simultaneously solve a limited sample size variability and enrich the features when
developing a model in practice. For instance, a healthcare node may possess either partial
features or data samples in healthcare insurance, which serves only a fraction of users and
only has partial records. Incorporating both the HFL and the VFL data partition will result
in a hybrid data partition. Compared to the HFL and the VFL, a hybrid FL data partition
has its challenges. In HFL, each node shares neither its local data nor labels. In contrast, in
VFL, the node shares the user’s index to the server or is securely stored in one node as a
key for aligning the features [56]. A hybrid FL data partition needs to deal with both types
of nodes, so the FL training algorithm can run without requiring the aggregate server to
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access any data, including the users’ index. New architecture and training algorithms in FL
will be required to utilize the benefits of the hybrid data partition effectively.

FL with Incentive Mechanism for Good Data Contributor. The internet of health
things (IoHT) uses internet of things (IoT) devices on e-health applications that enable
the connection between healthcare resources and patients. The IoHT devices such as
smartwatches and healthcare wearable trackers can record heart rate, body temperature,
and blood pressure. These rich healthcare data are excellent for personal smartphone
healthcare apps that can run on device federated learning. However, the IoHT nodes are
burdened by significant computation and communication costs during the federated model
training process. Without a proper incentive mechanism design, those IoHT nodes will be
reluctant to participate in federated learning. In addition, a suitable incentive mechanism
can have rewards and punishments. A good quality personal healthcare data contributor
can obtain a good incentive, while harmful data contributors can receive a punishment.
Thus, an effective and efficient incentive mechanism can attract good data contributors to
join federated learning.

Limitation and future perspective. There are two limitations to the present study.
The first limitation is that existing FL experiments focus exclusively on one of the non-IID
properties, such as data imbalance or label skew. However, there are no comprehensive
experiments in the medical dataset that examine multiple properties of non-IID. The future
perspective will find additional algorithms for addressing the issues associated with hybrid
non-IID features. The second limitation is the hyperparameter framework search for FL.
Hyperparameter tuning is a critical yet time-consuming step in the machine learning work-
flow. Optimization of hyperparameters becomes considerably more difficult in federated
learning, in which models are trained across a dispersed network of heterogeneous data
silos. Thus, an automatic tool or framework to select the optimal hyperparameters in the
FL model is critically needed in the future research.

5. Conclusions

We presented the advancement of federated learning growth in the context of health-
care applications over the last four years in terms of data properties such as data partition,
data distribution, data privacy attack and protection, and benchmark datasets. We hope
that this study stimulates additional research into FL in healthcare applications and even-
tually becomes a guideline for handling sensitive medical data. Several open challenges
remain, including FL for the medical data stream, FL with medical data hybrid partitions,
and incentive mechanisms for good medical data contributors. We envision the increased
popularity of FL for medical purposes in the near future, resulting in more advanced proto-
cols with security and privacy guarantees and the actual deployment of FL technology for
solving real-world problems in the healthcare domain.
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MLP Multilayer perceptron
MRI Magnetic resonance image
PDPA Personal data protection act
PHI Protected health information

Appendix A

Table A1. Full query term in publication databases.

Scientific Database Query Studies Results #

PubMed

((federated learning AND ((fft[Filter]) AND
(english[Filter]) AND (2018:2021[pdat]))) AND

(healthcare OR hospital OR clinic AND ((fft[Filter])
AND (english[Filter]) AND (2018:2021[pdat]))))
AND (“data quality” OR privacy protection OR
non iid AND ((fft[Filter]) AND (english[Filter])

AND (2018:2021[pdat]))) AND ((fft[Filter]) AND
(english[Filter])) AND ((fft[Filter]) AND

(english[Filter]))

21

IEEE Xplore

(“All Metadata”:federated learning) AND (“All
Metadata”:healthcare OR “All Metadata”:hospital

OR “All Metadata”:clinic) AND (“All
Metadata”:data quality OR “All Metadata”:privacy

protection OR “All Metadata”:non iid)

14

Web of Science
”Healthcare OR Hospital OR Clinic” AND

”federated learning” AND ”Data Quality OR
Privacy Protection OR non iid”

17

Science Direct
(“federated learning”) AND (healthcare OR
hospital OR clinic) AND (“data quality” OR

“privacy protection” OR “non iid”)
105

ACM Digital Library

[All: “federated learning”] AND [[All: healthcare]
OR [All: clinic] OR [All: hospital]] AND [[All:

“data quality”] OR [All: “privacy protection”] OR
[All: “non iid”]] AND [Publication Date: (1

January 2018 TO 30 June 2021)]

40

194



Appl. Sci. 2021, 11, 11191

Table A2. Federated learning studies for medical applications.

Authors Year Title Journal FL Studies

Brismi et al. 2018 Federated learning of predictive models from
federated electronic health records

International Journal of
Medical Informatics [52]

Huang et al. 2019
Patient clustering improves efficiency of federated
machine learning to predict mortality and hospital

stay time using distributed electronic medical records

Journal of Biomedical
Informatics [19]

Chen et al. 2020 FedHealth: A Federated Transfer Learning
Framework for Wearable Healthcare IEEE Intelligent Systems [20]

Chen et al. 2020
Communication-Efficient Federated Deep Learning
With Layerwise Asynchronous Model Update and

Temporally Weighted Aggregation

IEEE Transactions on
Neural Networks and

Learning Systems
[45]

Huang et al. 2020
LoAdaBoost: Loss-based AdaBoost federated
machine learning with reduced computational

complexity on IID and non-IID intensive care data
PLOS ONE [46]

Li et al. 2020
Multi-site fMRI analysis using privacy-preserving
federated learning and domain adaptation: ABIDE

results
Medical Image Analysis [18]

Shao et al. 2020

Stochastic Channel-Based Federated Learning With
Neural Network Pruning for Medical Data Privacy

Preservation: Model Development and Experimental
Validation

JMIR Formative Research [47]

Sheller et al. 2020
Federated learning in medicine: facilitating

multi-institutional collaborations without sharing
patient data

Scientific Reports [38]

Wu et al. 2020 FedHome: Cloud-Edge based Personalized
Federated Learning for In-Home Health Monitoring

IEEE Transactions on
Mobile Computing [21]

Abdul Salam
et al. 2021 COVID-19 detection using federated machine

learning PLOS ONE [54]

Cha et al. 2021
Implementing Vertical Federated Learning Using

Autoencoders: Practical Application, Generalizability,
and Utility Study

JMIR Medical
Informatics [56]

Chhikara et al. 2021
Federated Learning Meets Human Emotions: A

Decentralized Framework for Human–Computer
Interaction for IoT Applications

IEEE Internet of Things
Journal [37]

Cui et al. 2021
FeARH: Federated machine learning with

anonymous random hybridization on electronic
medical records

Journal of Biomedical
Informatics [39]

Dou et al. 2021
Federated deep learning for detecting COVID-19
lung abnormalities in CT: a privacy-preserving

multinational validation study
npj Digital Medicine [48]

Feki et al. 2021 Federated learning for COVID-19 screening from
chest X-ray images Applied Soft Computing [40]

Lee et al. 2021
Federated Learning for Thyroid Ultrasound Image

Analysis to Protect Personal Information: Validation
Study in a Real Health Care Environment

JMIR Medical
Informatics [41]

Liu et al. 2021
Learning From Others Without Sacrificing Privacy:
Simulation Comparing Centralized and Federated

Machine Learning on Mobile Health Data

JMIR mHealth and
uHealth [42]

Rajendran et al. 2021 Cloud-Based Federated Learning Implementation
Across Medical Centers

JCO Clinical Cancer
Informatics [49]
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Table A2. Cont.

Authors Year Title Journal FL Studies

Sarma et al. 2021 Federated learning improves site performance in
multicenter deep learning without data sharing

Journal of the American
Medical Informatics

Association
[50]

Vaid et al. 2021

Federated Learning of Electronic Health Records to
Improve Mortality Prediction in Hospitalized
Patients With COVID-19: Machine Learning

Approach

JMIR Medical
Informatics [55]

Xue et al. 2021
A Resource-Constrained and Privacy-Preserving

Edge-Computing-Enabled Clinical Decision System:
A Federated Reinforcement Learning Approach

IEEE Internet of Things
Journal [51]

Yan et al. 2021 Variation-Aware Federated Learning with
Multi-Source Decentralized Medical Image Data

IEEE Journal of
Biomedical and Health

Informatics
[43]

Yang et al. 2021
Federated semi-supervised learning for COVID

region segmentation in chest CT using multi-national
data from China, Italy, Japan

Medical Image Analysis [53]

Zhang et al. 2021
FedDPGAN: Federated Differentially Private

Generative Adversarial Networks Framework for the
Detection of COVID-19 Pneumonia

Information Systems
Frontiers [44]
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