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Abstract: As an important follow-up report on the latest study of the first author (H.S.) on an off-shell
quantum field causing a dressed photon and dark energy, we further discuss a couple of intriguing
subjects based on the new notion of simultaneous conformal symmetry breaking. One is the dressed
photon constant. If we use it, in addition to h̄ and c, as the third component of natural units, it is
defined as the geometric mean of the smallest and the largest lengths: Planck length and that relating
to the cosmological constant. Interestingly, this length (≈50 nanometers) seems to give a rough
measure of the Heisenberg cut for electromagnetic phenomena. The other is a new perspective on
cosmology that combines two original notions, i.e., twin universes and conformal cyclic cosmology,
proposed, respectively, by Petit and Penrose, into one novel picture where universes expand self-
similarly. We show the possibility that twin universes having a dual structure of (matter with (dark
energy and matter)) vs. corresponding anti-entities, separated by an event horizon embedded in
the geometric structure of de Sitter space, undergo endless cyclic processes of birth and death, as in
the case of the pair creation and annihilation of elementary particles through the intervention of a
conformal light field.

Keywords: dressed photon; dressed photon constant; natural units; Heisenberg cut; de Sitter space;
dark energy; dark matter; cosmological constant; twin universes; conformal cyclic cosmology

1. Introduction

Application studies of quantum theory in nanosciences have continued to accomplish
a variety of spectacular modern technological achievements. The technology involving
the dressed photon (DP) phenomena is one such achievement that makes the impossible
possible. While a reliable theory has not yet been established to explain the characteristic
behaviors of DPs, a comprehensive review of DP studies, including the impossibility of
understanding DP phenomena within the conventional framework of Maxwell’s equation,
was given by Ohtsu [1], together with a series of associated intriguing technologies and
the status of theoretical attempts to understand DPs up to 2017. The research on the DP
phenomena is now being pursued more actively than ever before both experimentally
and theoretically. The most important point on the DP, clarified through decades-long
investigations, is that the DP field is not a simple variant of the light field such as evanes-
cent light, which is essentially a free mode, but involves largely transmuted and locally
condensed (within an area smaller than several tens of nanometers) electromagnetic field
energy achieved through light–matter field interactions involving point-like singularities,
which seem to be a key factor for DP generation. The peculiarity of the DP field compared
with the free light field is concisely summarized in Section 1 of the latest paper on DPs by
Sakuma et al. [2] (S3O hereafter), where a new theory is proposed, focusing on the aspects
of quantum field interactions thus far neglected.

The real reason for the unsuccessful attempts at a full-fledged theory of DPs seems to
be related to the fact that a DP is not a free mode, but is the outcome of light–matter field
interactions, the complexity of which makes constructing a simple mathematical model

Symmetry 2021, 13, 593. https://doi.org/10.3390/sym13040593 https://www.mdpi.com/journal/symmetry1
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difficult. In fact, contrary to the above-mentioned remarkable technological successes
of quantum theory, the current stage of development of quantum field theory (QFT) is
far from a firmly established one, such as the theory of Newtonian mechanics. From
this viewpoint, a major stumbling block might be the lack of mathematical support for
interacting quantum field models satisfying the covariance under the Poincaré group P in
4-dimensional Minkowski spacetime (defined as the crossed product P := R4 �L of the
Lorentz group L acting on the 4-dimensional Minkowski spacetime R4). While the main
subject here is the DP system, to be described as a subsystem of relativistic 4-dimensional
QFT, a survey of the basic structure of the 4-dimensional QFT itself would be useful for our
purpose of discussing the various aspects of the DP system.

First, the physical interpretations of QFT described by the interacting Heisenberg fields
ϕH are realized by the notion of on-shell particles contained in ϕH with the 4-mometum pμ

given by Equation (1):

p2 := ημν pμ pν := pν pν = (m0c)2 ≥ 0, μ, ν = 0, 1, 2, 3, (1)

where we adopt the sign convention (+1,−1,−1,−1) for the Minkowski metric η given by

ημν =

⎛⎜⎜⎝
+1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

⎞⎟⎟⎠.

The physical meaning of the asymptotic fields φas (as = in or out) can be seen in their
role in a scattering process formed by the in-fields φin

1 (p1), · · ·, φin
m (pm) with momenta

p1, · · ·, pm converging from the remote past to the scattering center and by the out-fields
φout

1 (q1), · · ·, φout
m (qn) with momenta q1, · · ·, qn diverging from the scattering center to

the remote future. In contrast with the interacting Heisenberg field ϕH , which causes and
controls the above scattering process behind the scenes, the asymptotic field φas carrying
the above momentum spectrum as an observable quantity can be easily realized as a free
field obtained by the so-called second quantization, as shown below. Owing to its linearity,
the asymptotic field φas is governed by the well-known Klein–Gordon (KG) Equation (2).

In the simplest case of a scalar field φas, the first quantization pμ → ih̄∂μ applied to (1)
realizes the KG equation:

[h̄2∂ν∂ν + (m0c)2]φas = 0, (2)

where the operand φas determined by the second quantization becomes a quantum field
φas describing a multi-particle system given by

φas(x0, x̃) =
∫ d3k̃√

(2π)32Ek
[a(k̃) exp (−ikνxν) + a†(k̃) exp (ikνxν)]. (3)

Here, (a†(k̃), a(l̃)) and (x̃ and k̃), respectively, denote a pair of creation-annihilation oper-
ators and of 3-vectors consisting of spatial components of xμ and kν, with Ek defined by

Ek :=
√
(k̃)2 + (m0)2. A familiar Fock space is constructed on the basis of (3) and of the

vacuum state vector |0〉 satisfying a|0〉 = 0, according to which a positive energy spectrum
is selected in the state vector space. While the field φas thus constructed embodies the
wave–particle duality of a quantum system, it still lives in the realm of linearity due to the
linear KG Equation (2). With the restriction due to this linearity (or the on-shell property (1))
overlooked, however, essential features of Fock spaces such as the positive energy spectra
in the state vector space generated by repeated applications of the creation operators on
the Fock vacuum |0〉 (under the cyclicity assumption) are misinterpreted as the univer-
sal structure to be found in interacting multiparticle systems. Accordingly, |0〉 becomes
as mysterious as the creation of everything from emptiness. We return to this point in
Section 4 on cosmology.
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The mutual relations among the Poincaré group P , Heisenberg field ϕH , asymptotic
field φas, and momentum spectrum (pμ) can be clearly visualized by means of the quadral-
ity scheme to describe the duality relation between Micro and Macro (Micro-Macro duality
based on the quadrality scheme [3]):

(Macro System) (pμ) : Spectrum (Spacetime)
Spec

↗
States : (φas) ←− t−→±∞←− ←− (ϕH) : Algebra

�
P

Dynamics (MicroSystem)

Remark 1. In the specific example of scattering process with asymptotic completeness, the original
quadrality scheme of micro–macro duality can be seen in the above relations among the dynamics P
acting on the algebras of interacting Heisenberg fields ϕH and of their asymptotic fields φas and
the spectrum of energy-momentum pμ. It gives a unified categorical description of the system of
interacting quantum fields in terms of quantum and classical systems, both of which are characterized
dynamically by their non-commutative and commutative algebras. As our new ideas on quantum
field theory of the dressed photons depends heavily on this quadrality scheme, it will be convenient
to explain here its minimal essential points to those who are familiar only with quantum mechanics
with finite degrees of freedom.
The scheme is a theoretical framework consisting of a couple of different dualities that are interweaved
to describe the theoretically phenomena under consideration: among the four basic ingredients in the
scheme, Dynamics and the Algebra X of physical quantities belong to the micro side of the quantum
system, while the remaining two elements—States (and their representations) and Spectrum—
belong to the macro side. To visualize the invisible quantum micro system, we need to exert certain
action E : A → X on the microscopic quantum system X from the macro side A. The response of
the acted micro side to the acting macro side is to be given by F : A ← X , according to which we
have an adjoint pair of functors A F(x) � E(a) X ; (x ∈ X and a ∈ A). In this way, we see that the
basic structure of the quantum theory is mathematically formulated by the so-called “adjunction” in
category theory, which can be understood as the precise mathematical form of “duality”A 	 X (one
of the weaker forms of equivalence), where X and A, respectively, denote unknown mathematical
object belonging to micro system and known object (as the familiar vocabulary) in the classical
macro system and symbol 	 denotes natural equivalence.
As we see in the above diagram, the abscissa axis represents the duality between the algebra X of
quantum variables and its states with Gel’fand–Naimark–Segal (GNS) representations realized in a
Hilbert space. Central problematic issues we have in considering quantum systems with infinite
degrees of freedom would be those on unitary nonequivalence and the uniqueness of irreducible
decomposition, which are usually regarded as a pathological aspect of systems with infinite degrees
of freedom. However, omitting the details of extensive researches so far done on the generalized
sector problem, we can briefly summarize the main conclusions of them as follows. A system with
infinite degrees of freedom can be represented with multiple sectors where a sector is defined by
a factor representation with trivial center containing only scalar multiples of the identity, which
generalizes the notion of irreducible representations with trivial commutants. Here, disjointness
means the absence of intertwiners, as the refined notion of unitary nonequivalence adapted to the
situations with infinite degrees of freedom. By this kind of generalization, we also have the change in
the classification of representation, that is to say, an irreducible representation is to be replaced by a
factorial representation which has a self-evident center playing the role of a commutative (classical)
order parameter. Thus, we show that macroscopic order parameters emerge naturally from
the disjoint representations appearing in the micro systems and the spectrum of those
order parameters gives the classification space for describing a variety of configurations
the micro system would take. The duality relation illustrated in the ordinate axis, that is,

3
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[Dyn � Spec] expresses the duality between invariability and variability of coupled micro
and macro systems.

The asymptotic fields φas given by (3) are placed in this scheme in duality relation
with the interacting Heisenberg fields ϕH , where φas itself consist only of linear free modes
without anything to do with nonlinear field interactions having the off-shell property.
Because the clear-cut mathematical criterion to distinguish nonlinear field interactions
from the free time evolution of noninteracting modes, known as the Greenberg–Robinson
theorem [4,5], states that if the Fourier transform ϕ(p) of a given quantum field φas(x) does not
contain an off-shell spacelike momentum pμ with pν pν < 0 (cf. Equation (1)), then φas(x) is a
generalized free field. A caveat to be made here is that a spacelike momentum field does
not necessarily mean the presence of a tachyonic field representing particle-like localized
energy field moving with superluminous velocity, which violates the Einstein causality.
This localized field is known to be unstable such that the existing spacelike momentum
fields take naturally simple wavy forms. Another crucial piece of knowledge necessary
to understand the enigmatic DP phenomena is the important property of quantum fields
with infinite degrees of freedom, referred to in the above remark. As is well known, we
have only one sector in the familiar case of quantum mechanical systems with finite
degrees of freedom which are governed by unitary time evolution (the Stone–von Neumann
theorem [6]). In sharp contrast to this situation, quantum fields with infinite degrees
of freedom have multiple sectors [3,7], which are mutually disjoint (i.e., separated by
the absence of intertwiners), stronger than unitary inequivalence. Regarding the unitary
equivalence, Haag’s theorem [8] states that any quantum field satisfying Poincaré covariance
is a free field if it is connected to a free field by a unitary transformation. According to this
no-go theorem, it is meaningless to consider that an interacting Heisenberg field can be
realized through a unitary transformation of a free field by means of the well-known Dyson
S-matrix involving the interaction term. In this way, the essential part of our common
knowledge cultivated in quantum mechanical systems with finite degrees of freedom is
invalidated in relativistic QFT.

The notions of spacelike momentum field and the existence of multiple sectors must
be quite foreign for many who are unfamiliar with quantum systems with infinite degrees
of freedom, so that it is worthwhile to give a simple heuristic example. Let us consider a
simple wave propagation, ψ = exp i(k0x0 − k1x1), in a certain background field. One may
regard it as a wave, say, in the atmosphere. When the wave exists in a uniform background,
it propagates such that it satisfies (∂ν∂ν + k2)ψ = 0, with k2 := (k0)

2 − (k1)
2, which may

be compared to a “unitary” time evolution of a free mode in the timelike sector. If the
background field becomes nonuniform but its degree of nonuniformity is rather smooth,
then though its way of propagation is deformed to some extent, we can describe the
deformed propagation pattern by employing perturbative methods, and the solution still
remains in the timelike sector mentioned above. As an extreme case of severe interactions
with the environmental field for which the perturbative method is break down, we can
consider a frontal instability of the atmosphere in which the front is defined as a line of
discontinuity of the temperature and velocity fields. A wavelike perturbation with small
amplitude put into this frontal zone, due to hydrodynamic shear instability, can no longer
keep its wavy form, and its amplitude starts to either (i) grow or to (ii) damp exponentially
in a region that is narrow in the traverse direction. In view of such situations that QFT is
basically a theory involving complex numbers and that the frequency and wave number
of a given wavelike field represent the energy and momentum, the abrupt change in the
energy and momentum brought about by a certain kind of discontinuity of the field can
be represented in the simplest crude model by a discrete jump of (k0, k1) into (±il0,−il1)
with l2 := (l0)2 − (l1)2 > 0. Note that with this abrupt change, (∂ν∂ν + k2)ψ = 0 becomes
(∂ν∂ν − l2)ψ = 0, namely, the wave dynamics shifts abruptly from a timelike sector to a
spacelike one with the properties exp(∓l0x0) and exp(−l1x1) (valid in the domain x1 ≥ 0),
respectively, corresponding to the above-mentioned properties of (i) and (ii). Needless

4
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to say, this example, due to the atmospheric dynamics, could be transferred to situations
involving interactions among elementary particles, where a “severe interaction” would
evoke these changes on the interacting Heisenberg fields to which on-shell field theory
cannot be applied. We believe that this simple toy model gives an intuitive explanation of
the essential features of severe field interactions involving a certain kind of discontinuity
and why spacelike momentum modes are necessary to describe these field interactions. We
will further discuss this problem in Section 2.2 on DP model.

Now, going back to the general argument on QFT, notice that the above two theo-
rems in axiomatic QFT for relativistic quantum fields, especially the first one, justify our
investigation into the existence of a spacelike momentum domain, in the sense of a different
sector, with which the conventional Maxwell’s equation is to be augmented for a complete
description of electromagnetic field interactions. A helpful hint regarding an appropriate
form of the spacelike momentum can be found in the longitudinal Coulomb mode or the
virtual photon, which behaves as a carrier of electromagnetic force. In their series of papers,
Sakuma et al. (and the latest S3O [9–12]) derived an extended field covering the spacelike
momentum domain by applying a mathematical technique called Clebsch parameterization
to electromagnetic 4-vector potential Aμ. The extension of the field was accomplished in
two steps: (I) semi-spacelike and (II) spacelike extensions. To avoid confusion, here we
replace the common notation Aμ for a 4-vector potential with Uμ. In step (I), Uμ satisfies

[∂ν∂ν − (κ0)
2]Uμ = 0, UνUν = 0, (4)

where κ0 is an important constant, to be identified as the DP constant. At first glance,
one may consider this to be the wrong equation, as a null (massless) condition UνUν = 0
seems to be incompatible with the first equation in (4). As shown in the next section,
however, it is indeed correct. The reason why it looks bizarre is because it corresponds
to a longitudinally propagating electromagnetic wave of which the quantum version is
eliminated as unphysical in the conventional interpretation. We believe that this bizarre
mode, massless in the sense of UνUν = 0, corresponds qualitatively to an invisible virtual
photon, i.e., a U(1) gauge boson, and in step (II), this field is extended further to the case of
a genuine spacelike field satisfying UνUν < 0. As we will touch upon in Section 2.2, the
formulation of steps (I) and (II) is generalized to cover the case of a curved spacetime. As
the first equation in (4) can be considered a dual form of the timelike Proca equation, i.e.,
[∂ν∂ν + (m0)

2]Aμ = 0, we call it the Clebsch dual (CD) field and denote its skew-symmetric
field strength by Sμν := ∂μUν − ∂νUμ.

As the source-free Maxwell’s equation is conformally invariant, the derivation of
an augmented Maxwell field can be viewed mathematically as a conformal extension of
the electromagnetic field Fμν. From this viewpoint, note that the derivation of the CD
field is conceptually similar to the notion of a twistor introduced by Penrose [13], and
in this sense, the essence of our new proposal on cosmology has a closer connection to
the conformal cyclic cosmology (CCC) proposed by Penrose [14] than the antipodal twin
universe model of Petit [15]. To see this, let us consider the rotation group SO(3) acting on
three-dimensional vectors. For SO(3), the universal covering group SU(2) exists, which is
locally isomorphic to SO(3) and in relation to which a spinor is defined as its irreducible
representation. Extending this context to the Lorentz group SO(1, 3) in four-dimensional
spacetime, SL(2, C) arises as the universal covering group corresponding to SU(2). If we
further extend SO(1, 3) to a four-dimensional conformal group, then SO(1, 3) and SL(2, C)
are extended, respectively, to SO(2, 4) and SU(2, 2), and Penrose’s twistor appears as an
element of the complex four-dimensional space on which SU(2, 2) acts. As a parallel
argument, we can consider the case of a conformal extension of the electromagnetic field
Fμν that acts on the spinor as a U(1) gauge field. CD field Sμν, introduced as the spacelike
extension of Fμν, is thus also regarded as a conformal extension of Fμν. As has been shown
in S3O, we believe that this fact explains why the CD field plays an important role in the
dark energy dynamics of the self-similarly (conformally) expanding universe described as
a de Sitter space, in sharp contrast to the simple-minded intuition that the mutual relations

5
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between the DP and cosmological phenomena are irrelevant owing to their extremely large
scale difference.

This paper is organized as follows. To discuss the theme addressed in the title, we
first need prior knowledge on the CD field, which is a very new concept, and on several
important conclusions on cosmology reported in S3O. We reserve Sections 2 and 3 for
the purpose of recapitulating the minimal required knowledge in a simple way. Then, in
Section 4, we discuss the main topics of this paper, namely, the dressed photon constant
and a perspective on the possible relation between our novel cosmology and the CCC.

2. Augmented Maxwell’s Theory

2.1. Clebsch Dual Field

As mentioned above, the CD field can be regarded as a field of longitudinal elec-
tromagnetic waves. To understand this, we first note that a serious misunderstanding
regarding the longitudinally propagating wave modes has persisted. In the physical science
communities, this misunderstanding has been prevailing and left untouched, but it cannot
be overlooked in the present context. As a matter of fact, one frequently encounters this
statement in standard textbooks on electromagnetism, which asserts that electromagnetic
waves are not longitudinal but transversal. This concept seems, however, to be a super-
fluous reaction to the assertion in “advanced” quantum electrodynamics (QED), where
longitudinal modes are eliminated as unphysical. In the classical theory of electromag-
netism, however, the longitudinally propagating modes have been proved unmistakably
to exist in a light beam with finite width, both theoretically in [16] and experimentally in [17].
In these papers, the existence of longitudinal modes is shown without using the electro-
magnetic 4-vector potential Aμ. Here, the significance of introducing the CD field can be
seen in the following two aspects:

(i) in the above classical theory, the longitudinally propagating electric field can be
reinterpreted as the null current vector ∂μφ (φ := ∂ν Aν), and

(ii) through a process similar to the analytic continuation in complex analysis, the electro-
magnetic field Aμ is extended to a CD field Uμ. Via the Clebsch parameterization of
Uμ, Aμ is extended to the semi-spacelike momentum domain, which is regarded as the
classical version of the U(1) gauge boson as the mediator of the electromagnetic force.
Thus, we can obtain a consistent picture of the classical electromagnetic longitudinal
modes: the non-virtual one reported in [16,17] and the “virtual” one of the CD field.

To confirm what is stated above, let us consider Maxwell’s Equation (5) and the
associated energy-momentum tensor (7), together with its divergence (8):

∂νFμν = ∂ν(∂μ Aν − ∂ν Aμ) = [−∂ν∂ν Aμ + ∂μ(∂
ν Aν)] = jμ, (5)

Aμ = αμ + ∂μχ, (∂ναν = 0, φ := ∂ν Aν = ∂ν∂νχ). (6)

T ν
μ = −FμσFνσ +

1
4

η ν
μ Fστ Fστ , (Fστ Fστ = 0 for free wave modes), (7)

∂νT ν
μ = ∂ν(−FμσFνσ) = Fμν∂σFνσ = Fμν jν. (8)

If the Lorentz gauge condition ∂ν Aν = 0 is imposed, additionally or formally, to the above
Maxwell’s equation, then Equation (5) reduces to ∂ν∂ν Aμ = 0, according to which the free
Maxwell’s equation can be identified in the sense of jμ = 0. Apart from this conventional
method, however, another possibility to find the free equation begins with

∂ν∂ν Aμ = 0, (9)

without assuming ∂ν Aν = 0. In this case, (5) tells us that we have a nontrivial (∂μφ �= 0)
balance equation

∂νFμν = ∂μφ, → ∂μ∂μφ = ∂μ∂νFμν = 0. (10)

The first equation in (10) can be justified in two steps: First, from (5) and (8), we see that
the conservation law of ∂νT ν

μ = 0 is satisfied when jν = 0 in the usual free case (8). In the
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case of (10), however, we use the expression ∂νT ν
μ = Fμν∂σFνσ in (8) and ∂νFμν = ∂μ∂ν Aν

in (5), which leads to
∂νT ν

μ = Fμν∂νφ = 0, (11)

if Fμν ⊥ ∂νφ with ∂μ∂μφ = 0. This expression indicates that the longitudinally propagating
vector ∂νφ is physical in the sense that it satisfies the energy-momentum conservation.

In the second step of the physical justification of (10), we consider (9) in terms of αμ

and χ given in (6), which becomes

∂ν∂να
(h)
μ = 0, ∂ν∂να

(i)
μ + ∂ν∂ν(∂μχ) = 0, (12)

with homogeneous and inhomogeneous solutions, i.e., α
(h)
μ and α

(i)
μ , respectively, for a

given χ satisfying the second equation in (10). α
(h)
μ obviously represents a transverse mode,

and the second equation gives a balance between the rotational and irrotational modes. The
existence of this balance is well documented in the hydrodynamic literature explaining the
mathematical description of the irrotational motion of a two-dimensional incompressible
fluid. Due to the irrotationality of the motion, the velocity vector (v1, v2) is expressed in
terms of the gradient of the vector potential φ̂, namely, (v1 = ∂1φ̂, v2 = ∂2φ̂); on the other
hand, the incompressibility of the fluid makes its motion nondivergent such that (v1, v2)
is alternatively expressed as (v1 = −∂2ψ̂, v2 = ∂1ψ̂), where ψ̂ denotes a stream function.
Equating these two, we obtain ∂1φ̂ = −∂2ψ̂, ∂2φ̂ = ∂1ψ̂, showing that φ̂ and ψ̂ satisfy the
Cauchy–Riemann relation in complex analysis. This heuristic example serves as a helpful
reference in proving that a null vector current ∂μφ propagating along the x1axis perpendicular
to Fμνcan be reinterpreted as the current of the longitudinal (x1-directed) electric field, of which
a detailed explanation is given in [10]. As referred to at the beginning of this subsection,
the existence of this longitudinally propagating electric field was actually reported in
[16,17]. Thus, we can say that the vector field ∂μφ is the physical mode that represents a
longitudinally propagating electric field.

The orthogonality condition (11) is mathematically equivalent to the relativistic hy-
drodynamic equation of motion of a barotropic (isentropic) fluid [18]: ωμν(wuν) = 0,
where ωμν := ∂μ(wuν)− ∂ν(wuμ), uν, and w are the vorticity tensor, 4-velocity, and proper
enthalpy density of the fluid, respectively. This observation suggests that the unknown
form of the 4-vector potential Uμ can be clarified through the Clebsch parameterization [19]
because the Clebsch parameterization is used to study the Hamiltonian structure of the
above-mentioned barotropic fluid motion in terms of a couple of canonically conjugate
scalar parameters (λ, φ) whose two degrees of freedom are equal to those of (�E, �M) in
electromagnetic waves. Thus, in case (I) of the semi-spacelike CD field, the electromagnetic
vector potential Uμ is parameterized as

Uμ = λ∂μφ, (φ = ∂ν Aν, which satisfies ∂ν∂νφ = 0), (13)

∂ν∂νλ − (κ0)
2λ = 0, (14)

where κ0 is a constant determined by DP experiments. If we introduce two gradient
vectors—Lμ := ∂μλ and Cμ := ∂μφ, then the skew-symmetric field strength Sμν can be
represented by a simple bivector of the form

Sμν = LμCν − LνCμ, → P f (S) := S01S23 + S02S31 + S03S12 = 0, (15)

which shows that, as in the case of �E and �H of an electromagnetic wave, the “electric” and
“magnetic” fields of the CD field also satisfy the above orthogonality condition. P f (S) in (15)
is the Pfaffian of the skew-symmetric matrix Sμν : (P f (S))2 = Det(Sμν) and the barotropic
fluid motions governed by the equation of motion ωμν(wuν) = 0 are characterized by the
condition that the Pfaffian vanishes. Another important property of an electromagnetic
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wave is that �E and �H are advected along a null Poynting vector. In the CD model now
under consideration, a null vector Cμ would naturally be expected to satisfy

Cν∂νLμ = 0, (16)

from which we obtain

Lμ(Cν∂νLμ) = 0, → Cν∂ν(LμLμ) = 0, (17)

Cμ(Cν∂νLμ) = 0, → Cν∂ν(CμLμ) = 0. (18)

In deriving (18), we utilized the fact that Cν∂νCμ = 0. For (18), the following orthogonality
condition in the CD field

LνCν = 0 (19)

can be imposed as an additional condition, which turns out later to be an important equa-
tion.

To see in what sense (19) is consistent with (15), we consider a null geodesic field
(UνUν = 0):

Uν∂νUμ = Uν(∂νUμ − ∂μUν) = 0, (20)

which is expected to satisfy an extended light field. Using (13) and (15), we readily obtain

Uν∂νUμ = −Sμν(λCν) = (CμLν − LμCν)(λCν) = (LνCν)λCμ, (21)

which vanishes by the orthogonality condition (19). The importance of (19) in the CD field
formulation is that Lμ must be a spacelike vector, because Lμ satisfying (19) is either Cμ or a
spacelike vector, which explains why the λ field introduced in the CD formulation satisfies
the spacelike KG equation given in (14). Using the relations derived above between Cμ and
Lμ, we can show the form of the extended Maxwell’s equation:

∂νSνμ = (κ0)
2Uμ ⇐⇒ [∂ν∂ν − (κ0)

2]Uμ = 0, (with ∂νUν = 0). (22)

The energy-momentum tensor T̂ ν
μ of the lightlike CD field can be derived easily from

the conventional one with the following form: T ν
μ = −FμσFνσ. Considering the sign change

of the energy at the boundary between the timelike and spacelike domains, we define the
tensor as

T̂μν : = SμσS σ
ν = (LμCσ − CμLσ)(LνCσ − CνLσ)

= (LσLσ)CμCν = ρCμCν, ρ := LσLσ < 0. (23)

The negative density ρ corresponds to the negative norm of the longitudinal modes in the
QED, which makes this mode unphysical in the conventional interpretation. However, we
believe that the usage of the term “unphysical” in this context is inappropriate, because if
we regard the CD field as virtual photons, then the former is physical in the sense that the
latter, as the mediator of the electromagnetic force, is physical though it is invisible. As
the argument regarding the reference point of the gravitational potential energy shows,
the decision regarding whether a given quantity under consideration is physical depends
essentially on the physical setting of our problem; therefore, the Clebsch duality relation
between Fμν and Sμν should not be viewed as the duality between physical and unphysical
aspects but instead as the duality between the positive and negative sides of the light-cone
p2 = 0, the latter of which is, as we will see in Section 3 on cosmology, often closely
related to the invisibility of a given quantity. Actually, the “state-dependent” physicality
of the longitudinal photons was already pointed out by Ojima [20], who stated that while
the longitudinal photons or unphysical Goldstone bosons in the Higgs mechanism are
eliminated from the physical space of states in the usual formulation, this statement applies
to the above modes only in their particle forms. In their non-particle forms, the former
appear physically as infrared Coulomb tails, and the latter, as the so-called “macroscopic
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wave functions” arising from the Cooper pairs, both of which play essential physical
roles. The CD formulation based on the Greenberg–Robinson theorem has revealed that
the momenta of the non-particle forms in the above statement are invisible non-localized
spacelike ones. Thus, regarding the negativity of ρ, we point out that it can be likened to
the simple fact that the complexified time coordinate ict in Minkowski space is invisible,
though it is an important element without which we cannot describe a given dynamical
system in a satisfactory way.

In step (II) of the CD field formulation, we relax the condition ∂ν∂νφ = 0 given by
the second equation in (10) to allow the following extended vector potential Uμ, which is
advected by itself along a geodesic:

Uμ :=
1
2
(λCμ − φLμ), =⇒ Uν∂νUμ = −SμνUν +

1
2

∂μ(UνUν) = 0,

UνUν < 0, (24)

∂ν∂νλ − (κ0)
2λ = 0, ∂ν∂νφ − (κ0)

2φ = 0, CνLν = 0. (25)

The form of Sμν, given by the first equation in (15), remains unchanged in (24). Note
that the condition ∂ν∂νφ = 0 (φ = ∂ν Aν) can certainly be considered a gauge fixing
condition, but at the same time, the second equation in (10) can be interpreted as a special
gauge condition where gauge invariance is represented by the charge conservation due to
∂μ∂νFμν = 0, while ∂μφ is not a usual timelike electric current.

In the extended Maxwell’s equation given in (22), an electrically neutral current
(κ0)

2Uμ = (κ0)
2(λ∂μφ) behaves exactly like jμ in the original Maxwell’s equation, which

shows that the constant κ0 serves as a fundamental unit, such as the electric charge. There-
fore, violation of condition (10) causes gauge symmetry breaking, according to which the
CD field extended in step (II) suffers from breakdown of both the gauge symmetry and
conformal symmetry in the sense of UνUν = 0.

Corresponding to the above extension, the energy-momentum tensor satisfying the
conservation law of ∂νT̂ν

μ = 0 is redefined as

T̂μν = Ŝ σ
μσν − 1

2
Ŝ αβ

αβ ημν, Ŝαβγδ := SαβSγδ,

⇐⇒ Gμν := Rμν − Rgμν/2. (26)

Note that Ŝαβγδ defined above has the same skew-symmetric properties as those of the
Riemann tensor Rαβγδ, including the first Bianchi identity, Sα[βγδ] = 0 (equivalent to
the second equation in (15)), which is valid as Sμν is a bivector field given by the first
equation in (15). Thus, T̂μν given in (26) becomes isomorphic to the Einstein tensor Gμν :=
Rμν − Rgμν/2, where the Ricci tensor Rμν := Rσ

μνσ.

2.2. Quantization of the CD Field and DP Model

Going back to (23), we note that it is isomorphic to the energy-momentum tensor of
freely moving fluid particles. The ρ field for an actual fluid will be discretized if the kinetic
theory of molecules is taken into account. When the light field is quantized, this form will
obey Planck’s quantization of light energy E = hν. As the CD field variable Lμ has the
dimension of length, we introduce a certain quantized elemental length ldp whose inverse
is κ0, namely, the discretization of ρ leads to

κ0 := (ldp)
−1, (27)

which can be considered an energy quantization of the CD field. Recall that the Dirac
equation of the form

(iγν∂ν + m)Ψ = 0 (28)

9
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can be regarded as the “square root” of the timelike KG equation (∂ν∂ν + m2)Ψ = 0.
Therefore, the Dirac equation for the spacelike KG equation (∂ν∂ν − (κ0)

2)Ψ = 0 must be

i(γν∂ν + κ0)Ψ = 0. (29)

On the other hand, an electrically neutral Majorana representation exists for (28), in
which all the γ matrices become purely imaginary such that these matrices have the
form (γν

(M)
∂ν + m)Ψ = 0, which is identical to (29). The Majorana field is fermionic with a

half-integer spin 1/2; thus, the same (momentum) state cannot be occupied by two fields
according to Pauli’s exclusion principle. Note that by using the Pauli–Lubanski vector
Wμ to describe the spin polarization of moving particles, we can find a specific orthogo-
nal momentum configuration of a pair of Majorana fields whose resultant spin becomes
1, namely,

Mμν pν = Nμνqν = Wμ, (30)

where Mμν and pν denote the angular and linear momenta of a given Majorana field,
respectively, while Nμν and qν are the corresponding momenta of the other, of which the
linear momentum qν is perpendicular to pν. We believe that this configuration (30) gives
a quantum mechanical justification for the orthogonality condition (19) and (25) of the
CD field.

For a plane wave solution (λ = λ̂c exp[i(kνxν)]) to the spacelike KG equation (14),
Lν = ∂νλ satisfies

LνL∗ν = −(κ0)
2(λ̂cλ̂∗

c ) = const. < 0, (31)

which shows that the momentum vector Lμ lies in a submanifold of the Lorentzian manifold,
called de Sitter space in cosmology, which is a pseudo-hypersphere with a certain constant
radius embedded in R5. Quite independent of the cosmological arguments on de Sitter
space, Snyder [21] discussed the unique role of this space in spacetime quantization. He
showed that with the introduction of the hypothetical momentum 5-vector ημ(0 ≤ μ ≤ 4)
in R5 constrained to lie on the de Sitter space, i.e., ηνη∗ν = −(ηc)2 = const., the following
commutation relations are derived. For the definitions of pμ, p̂μ, and x̂μ, we have

pμ : =
h̄
lp

ημ

η4
, p̂μ := − ih̄

lpη4

∂

∂ημ
, x̂μ := ilp

(
η4

∂

∂ημ
− ξμημ

∂

∂η4

)
;

(0 ≤ μ ≤ 3), (32)

where lp denotes the Planck length, and ξμ takes a value of −1 when μ = 0 and 1 when
μ �= 0, from which we obtain

[
x̂μ, p̂μ

]
= ih̄

[
1 + ξμ

(
lp

h̄

)2

(pμ)
2

]
,

[x̂μ, p̂ν] =
[
x̂ν, p̂μ

]
= ih̄

(
lp

h̄

)2

pμ pν 0 ≤ (μ, ν) ≤ 3, (33)

[
x̂i, x̂j

]
=

i(lp)2

h̄
εijkLk,

[
x̂0, x̂i

]
=

i(lp)2

h̄
Mi ; 1 ≤ (i, j, k) ≤ 3, (34)

where εijk is Eddington’s epsilon, and Li and Mi are angular momentum vectors generated,
respectively, by (spatial-spatial) and (spatial-temporal) rotations. Snyder further showed that
the “Lorentz transformation” in his spacelike momentum space {ημ}, (0 ≤ μ ≤ 3) naturally
induces the Lorentz transformation in the usual spacetime {xμ}. Thus, the energy-momentum
tensor T̂μν of the CD field given in (26) can be regarded as the one constructed on this Snyder’s
momentum “spacetime” ημ with Lorentz invariance as in the case of Rμν, also constructed on the
spacetime xμ with Lorentz invariance, which becomes a very important property in the discussion
of dark energy in the next section. In [12] and S3O, we showed that, by virtue of the bivector
property of Sμν given in (15), the form of T̂μν can be extended to a curved spacetime. Thus,

10



Symmetry 2021, 13, 593

the intriguing isomorphism between T̂μν and Gμν in (26) seems to suggest an important
consequence: the quantization of the CD field attained by the above commutation relations
may also be applied to the quantization of the gravitational field. The research pursuing
this goal can be found, for instance, Girelli [22] and Glikman [23].

Now, we move on to a new DP model. Although the constant κ0 plays a crucial role in
formulating the CD field, its value clearly cannot be determined solely by theoretical argu-
ments. We already explained in S3O how the value of the DP constant κ0 was estimated by
the extensive DP experiments by Ohtsu, who utilized the photochemical vapor deposition
and autonomous etching techniques [24]. Through those experiments, the maximum size
of the DP that can be considered as ldp introduced in (27) was estimated to be

50 nanometer < ldp = (κ0)
−1 < 70 nanometer. (35)

As emphasized in the introduction, we do not yet know a reliable QFT that can deal
with the off-shell properties of the field playing an important role in the DP generating
mechanism. Thus, we need to resort to a certain kind of simplified argument to bring in
the experimental outcome to CD field theory. In the following, we give such a simplified
argument. In the first paragraph of the introduction, we mentioned that the existence
of point-like singularities, similar to the pointed end of a fiber probe or impurities with
extremely tiny size scattered across a given background material, is the crucial element for
generating DPs. We can safely say that field interactions in which these singularities come
into play should be so serious that the involvement of the spacelike momenta predicted
by the Greenberg–Robinson theorem will be crucial in these cases compared with those
without singularities.

Remember that, in the introductory Section 1, we have touched upon a heuristic
toy model with which we show the intervention of spacelike momentum in the field
interactions. Aharonov et al. [25] conducted an advanced analysis of the response behavior
of the spacelike KG equation perturbed by a point-like delta function δ(x0)δ(x1), in which
the above essential aspect was incorporated. They showed that the solutions excited by
this point-like disturbance consist of two different types: the stable spacelike mode and
the unstable timelike mode. The unstable timelike mode excited from the spacelike KG
Equation (14) with spherical symmetry has the form λ(x0, r) = exp(±k0x0)R(r), where
R(r) satisfies

R′′ +
2
r

R′ − (κ̂r)
2R = 0, (κ̂r)

2 := (k0)
2 − (κ0)

2 > 0, (36)

according to which R(r) is the Yukawa potential of R(r) = exp(−κ̂rr)/r. For a Majorana
field, as with the quantum version of the λ field, the energy in terms of k0 is discretized by
κ0, as shown in (27). Thus, the nonzero minimum Min[κ̂r] in the Yukawa potential is κ0,
which gives the maximum size of the localized DP to be compared with the experimental
result (35). Although the CD field consists of a pair of Majorana fields satisfying the orthog-
onality conditions (19) and (25), the orthogonal configuration must be broken down by the
perturbation, and the timelike pair will turn, respectively, into λ(x0, r) = exp(±k0x0)R(r),
namely, particle and antiparticle pairs, as an electrically neutral antiparticle can be consid-
ered a particle traveling backward in time. The excited field is non-propagating in nature;
thus, a pair of particle and antiparticle fields will be combined into either an “electric” field
with spin 0 or a “magnetic” field with spin 1 [26]. We believe that the DP is generated
through this pair annihilation of the Majorana field. As the DP field is basically electromag-
netic, once it is generated, its behavior in a uniform environment can be described by the
Proca equation of the form ∂ν∂ν Aμ + (κ0)

2 Aμ = 0. From the viewpoint of nanophotonical
engineering, however, what really matters is the control of the DP energy flows driven by
the existence of point-like sources and sinks. In the above argument, we showed that the
energy of incident photons working as the triggering cause of δ(x0) at the singular point
eventually turns into the energy of the DP. At the present stage, we do not have clear knowl-
edge of the sink mechanisms, but the research on DP energy flow with source–sink-type
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driving forces is pursued actively by employing a certain class of quantum walk models
[27–29]. Intuitively, however, we can expect that some kind of ζ-function enters here as the
carrier to convey the above singularity waves, which explains the observation of ζ-function
singularities in the quantum walks. Moreover, the parallelism between ζ-functions and
partition functions (the latter appearing in statistical mechanics) explains the relevance of
Tomita–Takesaki modular duality [30] to the basis of the conformal symmetry discussed
below.

3. On Dark Energy and Dark Matter

In our discussion so far, we have developed a new concept of a CD field carrying
spacelike momentum modes, which are required for electromagnetic field interactions. In
comparison to the conventional QFT, the CD field can be compared with invisible virtual
photons that can be excited from the vacuum (|0〉 = 0), regarded as the ground state of
a one-sided energy spectrum within the bound of the uncertainty principle. Apparently,
simply employing this excitation scenario is problematic because the concept of the CD
field contradicts the vacuum state mentioned above. We believe that the orthogonal relation
between a pair of momentum vectors pν and qν given in (30) gives us a hint to solve this
problem concerning the ground state. For spacetime with three spatial dimensions, as
shown below, the maximum number of Majorana fermion fields as the limited capacity of
spacetime is also three, of which the configuration is shown by

Mμν pν = Nμνqν = Lμνrν = Wμ. (37)

This compound state with a resultant spin 3/2 is called a Rarita–Schwinger state, which
we denote by |M3〉g. The role of the vector |M3〉g is to give the GNS cyclic vector of a
mixed state which is disjoint from the vacuum state whose cyclic vector is given by |0〉 [31].
The important characteristic of |M3〉g is that the CD vector boson field can be excited from
any of the three different pairs, which propagates along one of the (x1, x2, x3) directions.
In view of the universality of electromagnetic interactions, the incessant occurrence of
excitation–de-excitation cycles between |M3〉g and non-ground states makes |M3〉g a fully
occupied state in the macroscopic time scale. Therefore, we can say that |M3〉g exists not as
a momentary virtual state, but also as a stable invisible off-shell state. In the following, we
show that |M3〉g exerts on the universe a cosmological effect identified as dark energy.

To investigate the property of |M3〉g, let us consider plane wave solutions λ and φ for
the spacelike case of UνUν < 0, in which λ = Nλλ̂c exp(ikνxν) and φ = Nφφ̂c exp(ikνxν),
with kνkν = −(κ0)

2, where λ̂c and φ̂c denote elemental amplitudes of the respective fields,
and Nλ and Nφ are the numbers of the respective modes. As Equation (15) shows, λ and φ
always appear in the form of a product; thus, we may rewrite these two expressions as

λ = N(κ0)
−2 exp (ikνxν), φ = φ̂c exp (ikνxν), (38)

where N is a combined number N := NλNφ, and we can identify λ̂c as λ̂c = (κ0)
−2, as λ̂c

has the dimension of (length)2. By substituting these into the first equation in (26) and
setting N = 1, we obtain the absolute value of T̂ ν

ν (1), denoted as |T̂ ν
ν (1)|:

|T̂ ν
ν (1)| = −2[φ̂c(φ̂c)

∗] < 0, (39)

where (•)∗ denotes the complex conjugate of (•). The right-hand side of (39) can be
evaluated by the light-like case of the CD field (23), in which we have T̂μν = ρCμCν. For the
light-like case, we have φ = φ̂c exp(ikνxν), kνkν = 0 and λ = N(κ0)

−2 exp(ilνxν), lνlν =
−(κ0)

2, from which we have

(Cμ)
∗Cν = kμkνφ̂c(φ̂c)

∗, ρ = −N2(κ0)
−2. (40)
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Next, we consider a case in which the kμ vector of φ is parallel to the x1 direction and
consider a rectangular parallelepiped V spanned by the vectors (1/k1, 1, 1). For k0 = ν0/c,
where c and ν0 denote the light velocity and the frequency of the φ field, the volume integral
of T̂ 0

0 /(−N2) over V as the energy per quantum is

1
(−N2)

∫
V

T̂ 0
0 dx1dx2dx3 = (κ0)

−2ε[φ̂c(φ̂c)
∗]

ν0

c
, (41)

where ε denotes the unit length squared. Equating (41) with E = hν0, we obtain

hc(κ0)
2 = ε[φ̂c(φ̂c)

∗], ε = 1(meter)2. (42)

As stated after (37), we need three fields propagating along the x1, x2, and x3 di-
rections to achieve isotropic radiation of the CD field. These three fields are given by
(S23, S02), (S31, S03), and (S12, S01). The energy-momentum tensor T̂ ν

μ (3) derived by the
superposition of these fields becomes

T̂ ν
μ (3) =

⎛⎜⎜⎝
−3σ2 −τσ −τσ −τσ

τσ 2τ2 − σ2 0 0
τσ 0 2τ2 − σ2 0
τσ 0 0 2τ2 − σ2,

⎞⎟⎟⎠. (43)

In deriving (43), we set S23 = S31 = S12 = σ and S01 = S02 = S03 = τ. We note that T̂ ν
μ (3)

can be regarded as the energy-momentum tensor of the anti-dark energy (dark energy with
a negative energy density, that is, T̂0

0 (3) = −3σ2 < 0). Dark energy (with positive energy
density) ∗T̂ ν

μ (3) having exactly the same trace as that of the anti-dark energy T̂ ν
μ (3) can be

introduced by the Hodge dual exchange between (σ, τ) and (iτ, iσ) in (43), which becomes

∗T̂ ν
μ (3) =

⎛⎜⎜⎝
3τ2 τσ τσ τσ
−τσ −2σ2 + τ2 0 0
−τσ 0 −2σ2 + τ2 0
−τσ 0 0 −2σ2 + τ2,

⎞⎟⎟⎠. (44)

At this point, we recall the important remark on the validity of extending our discus-
sion, which started from Minkowski space, to the case of a curved spacetime. As already
pointed out in the explanation of Snyder space written in italics below in Equation (34), the
isomorphism between T̂μν and Gμν given in (26) can be extended to a curved spacetime
by virtue of the bivector property of (15). If the dark energy is modeled by a cosmological
term of Λgμν, then the Einstein field equation with the sign convention of Rμν = Rσ

μνσ

together with the metric convention of (+1,−1,−1,−1) becomes

R ν
μ − R

2
g ν

μ + Λg ν
μ = −8πG

c4 T ν
μ , (45)

where Λ becomes negative for an expanding universe. Before proceeding further, we
note that ∗T̂ ν

μ (3) is not a quantity that directly fits into the conventional cosmological
analysis utilizing the isotropic spacetime structure assumed by Weyl’s hypothesis on the
cosmological principle. First, as ∗T̂ ν

μ (3) is spacelike in nature, it cannot be reduced to
a diagonalized matrix form. Second, it is the energy-momentum tensor of fermionic
|M3〉g with spin 3/2. The crucial problem in our analysis therefore is whether we can
find observable quantities in ∗T̂ ν

μ (3). Because the relevant criterion for singling out an
observable quantity may depend on the situation, we have no choice but to make a
good guess. The fact that seems to work as “the guiding principle” is that within the
framework of relativistic QFT, any observable without exception associated with a given
internal symmetry is invariant under the action of a transformation group materializing

13
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the symmetry under consideration. By extending this knowledge on the internal symmetry
to the external (spacetime) one, we assume that the trace Λdeg ν

ν defined by

Λdeg ν
ν := −8πG

c4
∗T̂ ν

ν (3) > 0, → Λde =
12πGh

c3ε
(κ0)

2 (46)

is observable as the invariant of the general coordinate transformation, which is consistent
with the built-in Lorentz invariance of Snyder’s momentum space on which the CD field
is constructed. Thus, the validity of our new model on dark energy can be checked by
comparing the following two models:

R ν
μ − R

2
g ν

μ − Λobsg ν
μ = −8πG

c4 T ν
μ ,

R ν
μ − R

2
g ν

μ = −8πG
c4 T ν

μ + Λdeg ν
μ , (47)

where Λobs denotes the value obtained by Planck satellite observations. (In S3O, Λobs in
the above Equation (47) appeared with the wrong sign in the corresponding Equation
(25), which should be corrected.) Using (39), ∗T̂ ν

ν (3) = 3T̂ ν
ν (1), and (42), we obtain

Λde ≈ 2.47 × 10−53 m−2 and Λobs ≈ 3.7 × 10−53 m−2 [32]. Thus, |M3〉g seems to be a
promising candidate model for dark energy.

In the above arguments on the dark energy model, the physical meaning of the “real”
cosmological term Λgμν should be revised, because it does not correspond in our model to
dark energy. We believe that one of the intriguing possibilities is that Λdmgμν with Λdm > 0
(valid in our sign convention) represents dark matter. The main reason for this is due to a
simple fact that we can represent the metric tensor gμν in terms of the Weyl (conformal)
curvature tensor Wαβγδ as long as its magnitude does not vanish, namely,

gμν =
4

W2 WμαβγW αβγ
ν , W2 := WαβγδWαβγδ �= 0, (48)

as shown by straightforward calculations [33]. Recall that Weyl curvature represents the
deviation of spacetime from the conformally flat Friedmann–Robertson–Walker (FRW)
metric for an isotropic universe. In addition, the monotonic decrease in W2 along the radial
direction in the field of Wαβγδ in the well-known spherically symmetric Schwarzschild
outer solution of a given star suggests that the local maxima of W2 would behave as
“particles” or that its existence tends to correlate with the created matter field. Therefore,
T̃μν, defined as

T̃μν := Λdmgμν, Λdm > 0, g00 > 0, (49)

to be put on the left-hand side of (45), gives an energy-momentum tensor of this pseudo-
matter field as a candidate for dark matter. The existence of T̃μν will further accelerate the
deviation of spacetime from the FRW metric and thus serve as the fostering mechanism
of galaxy formation. (In Equation (30) of S3O, the above T̃μν was defined with negative
Λdm, which is a second error related to the first error of +Λobs in (47)). In determining the
magnitude of Λdm, we first refer to the observational fact that the estimated abundance
ratio of dark energy to dark matter is 3 : 1. AS Λde = −∗T̂ ν

ν (3) = −3T̂ ν
ν (1), we have

Λdm = −T̂ ν
ν (1) =

Λde
3

, (50)

the theoretical justification of which is given in the next section. Notice that the constant
T̂ ν

ν (1) appearing first in (39) is a quantity belonging to the off-shell electromagnetic field
discussed in Section 2.1 in which spacelike CD field is introduced by the conformal symme-
try breaking (CSB) of light-like CD field. Although we already alluded to the importance
of CSB in our previous paper (S3O), our discussion on it in the context of cosmological
dynamics remains quite vague. In the subsequent section covering the main theme of
this paper, we will show that the new notion of CSB which applies simultaneously to

14
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electromagnetic as well as gravitational fields will play an important role in connecting our
novel cosmological model to the preceding intriguing CCC proposed by Penrose [14,34].

4. Dressed Photon Constant and a New Version of CCC

4.1. Dressed Photon Constant

Using (39), (42), and (50), we have

Λdm =
4πGh(κ0)

2

c3ε
, (51)

which is rewritten as follows in terms of the Planck length lp, length scales of the universe
ldm, and DP:

lp :=
√

hG/c3, ldm :=
√
(Λdm)−1, ldp = (κ0)

−1, (52)

lpldm =

√
ε

2
√

π
ldp →

[
lpldm = (l̂dp)

2
]
. (53)

Equation (53) reveals that if we choose l̂dp := ldp/2
√

π as the third component of a natural
unit in which we set l̂dp = 1, then l̂dp gives the geometric mean of the smallest scale lp
and the largest one of ldm in that natural unit system. By rewriting the second equation
in (46) as

ldp =

√
12πGh

c3ε
(Λde)

−1/2, → l†
dp =

√
12πGh

c3ε
(Λobs)

−1/2, (54)

we can use this equation to estimate the DP constant l†
dp solely by the fundamental physical

constants G, h, and c together with the observed cosmological constant Λobs in place of the
above Λde. Directly from the second equation in (54), we obtain

l†
dp ≈ 40.0 nm,

[
Experiments : 50 nm < ldp < 70 nm

]
. (55)

4.2. New Version of CCC

The main aim of this subsection is to explain a new factor we would like to add to the
CCC which has more than a decade of research history. At the present moment, we are not
sure whether our new factor will fit consistently into the basic schemes of the CCC so far
investigated. However, we hope that our proposal presented here could be a somewhat
useful contribution to the CCC which is related, for instance, to a particular study by
Lübbe [35] who discussed the inclusion problem of a cosmological constant. As our dark
energy model introduced in (47) is related to de Sitter space, we start from the run-through
of the well-known characteristics of it by looking into the Einstein field equation

R ν
μ − R

2
g ν

μ − Λdeg ν
μ = 0, (56)

which yields a familiar solution given by

ds2 = (cdt)2 − (R0)
2 exp [2

√
Λde

3
ct][dr2 + r2(dθ2 + sin2 θ)dϕ2], (57)

where the constant R0 serves as the coefficient of the time-dependent scale factor. In the
use of (50), this solution can be simplified by taking R0 = lp into

ds2 = (cdt)2 − (lp)
2 exp [2

√
Λdmct][dr2 + r2(dθ2 + sin2 θ)dϕ2]. (58)

At the end of Section 3, the simultaneous CSB in electromagnetic and gravitational
fields was mentioned. We now explain what this exactly means. Recall that the energy-
momentum tensor T̂ ν

μ of the spacelike (UνUν < 0) CD field is given in Section 2.1 by (26),

15



Symmetry 2021, 13, 593

which is isomorphic to the Einstein tensor G ν
μ . The same quantity T̂ ν

μ also emerges from
the light-like case of UνUν = 0 by replacing ∂ν∂νφ = 0 with [∂ν∂ν − (κ0)

2]φ = 0, which
can be regarded as the breaking of both symmetries, i.e., conformal and gauge (cf. (10)).
Therefore, this CSB from the light-like to the spacelike CD field can be seen as responsible
simultaneously for the breaking from ds2 = 0 to nonzero ds2 in (58) through (53), which
corresponds to the CSB of gravitational field with the scale parameter Λdm.

A well-known remarkable characteristic of the solution (58) is that it is transformed
into a stationary solution

ds2 =
(

1− Λdm(r′)2
)
(cdt′)2 − (dr′)2

(1− Λdm(r′)2)
− (r′)2(dθ2 + sin2 θdϕ2) (59)

by the following variable changes:

lpr =
r′√
D

exp [−
√

Λdmct′], t = t′ +
1
2c

√
1

Λdm
ln D, (60)

where D is defined either by 1 > D := 1 − Λdm(r′)2 > 0 (case I) or by 1 > D :=
Λdm(r′)2 − 1 > 0 (case II). Note that the metric (59) is similar in form to the Schwarzschild
metric given below, for which an event horizon exists at r′ = α, while that in (59) exists at
r′ =

√
1/Λdm. (See Figure 1)

ds2 =
(

1− α

r′
)
(cdt′)2 − (dr′)2(

1− α
r′
) − (r′)2(dθ2 + sin2 θdϕ2). (61)

Figure 1. Dual configuration of twin universes.

In case I of the stationary metric (59), we have r′ = 0 by the synchronization t = t′

of t and t′ owing to (60). If t′ is adjusted as t′ = Θt, (Θ > 1), then we see that r′

moves from 0 to 1/
√
(Λdm) as t moves from 0 to +∞. Similarly, in case II, we see that

r′ moves from
√

2/(Λdm) to 1/
√
(Λdm) as t moves from 0 to +∞. This dual structure,

illustrated in Figure 1, clearly shows that by taking t = 0 as the origin of time from which
twin Big Bang universes evolve, they will meet at the event horizon in (59) an eon later
(t = ∞). To the best of our knowledge, the concept of twin universes with matter vs.
antimatter duality was first discussed by Petit [15]. We believe that his cosmological model
fits exactly into the configuration illustrated in Figure 1, which tells us that

√
(Λdm)−1

is a genuine characteristic length scale of our universe. This justifies the fact that Λdm
defined in (50) is the cosmological constant that appears in the form of (49). The forward
and backward time evolutions of twin universes correspond, respectively, to positive and
negative field operators of the 4-momentum, while the existence of twin universes naturally
explains the reason why one-sided energy spectra at the level of state vector space works
for many practical situations in each universe. If the birth of these twin universes was
brought about by conformal symmetry breaking of certain light fields in which the duality
between “matter (with positive energy) and antimatter (with negative energy)” works as
the separation rule of the twin structure, then the twin pair will return to the original light
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fields when they meet at the event horizon. The next Big Bangs of the twin pair will occur
at certain locations on this event horizon distant from each other by

√
2/Λdm.

According to the arguments developed thus far, we can say that the original conformal
light field is composed of light fields with the following duality structures:[

T ν
μ = −FμσFνσ, ∗T̂ ν

μ =∗ (SμσSνσ), T 0
0 > 0, ∗T̂ 0

0 > 0
]
, (62)[

∗T ν
μ = −∗(FμσFνσ), T̂ ν

μ = SμσSνσ, ∗T 0
0 < 0, T̂ 0

0 < 0
]
, (63)

where the symbol ∗ denotes the Hodge duality explained in the derivation of (44). Although
(62) and (63) can be considered as light and anti-light (light with positive energy moving
backward in time) fields, respectively, they can coexist as free modes without interacting
with each other, unlike the case of matter and antimatter interactions. As all of these fields
are trace free, the associated Ricci scalar curvature is zero. Equation (26) tells us that the
Riemann curvature associated with these light fields takes the form Rλρμν = FλρFμν(=
SλρSμν). In addition to R ν

ν = 0, we can readily show RμνRμν = 0 using (23). Under the
former condition R ν

ν = 0, the Weyl tensor Wλρμν assumes the form

Wλρμν = Rλρμν +
1
2
(Rλμgρν − Rλνgρμ − Rρμgλν + Rρνgλμ); (64)

thus, by direct calculations using the latter condition of RμνRμν = 0, we obtain W2 = 0.
Therefore, for light fields (62) and (63), we have

R ν
ν = 0, W2 = WναβγWναβγ = 0. (65)

The second equation in (65) is related to Penrose’s Weyl curvature hypothesis [14].
In modern cosmology, cosmic inflation theory was introduced to explain the observed

highly tuned initial condition of the Big Bang, in which the notion of “false vacua” plays a
key role in explaining the tremendous exponential expansion of space. In the introduction,
however, we pointed out that the notion of the vacuum state in conventional QFT is
highly biased by the one in Fock space, which may be called “Fock vacuum prejudice” if
adhering to the idea of creation from emptiness. One of the aims of our present paper is to
overcome this prejudice in the spirit of Occam’s razor as follows: in view of the present
circumstances showing that inflation theory seems to be “lost in a maze” in achieving the
above-mentioned original goal, the basic premise of our working hypothesis in cosmology
can be shifted from the Fock vacuum to the phase transition of the extended light field
arising from its CSB, according to which a simpler alternative view emerges such that the
initial condition of the Big Bang and the dynamics of both dark energy and matter can be
naturally explained.

For light fields, ds2 = 0, the amplitude of the smallest perturbations of CSB in the
length scale would be lp in (58), but its magnitude in the converted energy scale is tremen-
dously large because energy is inversely proportional to length. By virtue of the Weyl
curvature hypothesis of (65), and especially of the peculiar form of (49) through which
the Weyl tensor contributes to part of the energy-momentum field, we see that the Weyl
contribution to the energy field is a very low value of Λdm. Therefore, the energy field with
extremely high density thus created must have a distribution in spacetime very close to the
FRW metric on which small amplitude perturbations of W2 exist. The emergence of the
FRW metric is the result of unfolding the “blueprint” (14) encoded in the lightlike CD field.
Note that in the limit of W2 → 0, the energy-momentum field (49) approaches the anti-de
Sitter (AdS) space; thus, the weak gravitational field and high energy conformal field share
a common AdS spacetime, which is an essential part of the Maldacena duality [36]. In our
new revised version of the CCC of twin universes, the beginning and end of the cycle are,
respectively, compared to the pair creation and annihilation of elementary particles through
the intervention of conformal light fields. Within the cycle in each universe, a couple of
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different classes of entities exist, i.e., both visible matter and invisible dark energy and dark
matter exist. In S3O, we already discussed an extended thermodynamical viewpoint on
the dynamics at cosmological scales.

When we take into account the remarkable abundance ratios of invisible dark energy
and dark matter in comparison to the negligible one of ordinary visible matter, the time evo-
lution of visible material subsystems in the universe, for instance, galaxy cluster formations,
may be compared to the “heat engines” working between invisible “heat reservoirs” with
higher and lower temperature, which, respectively, correspond to dark matter with positive
energy and negative dark energy. If we denote the space averaged W2 by W2|ave., then
due to the property of universal gravitation, it will increase with the passage of time and
thus may be related to the gravitational entropy of the visible subsystem in the universe.
From this viewpoint, the effect of the gravitational field, including that of dark matter,
modeled as Λdmgμν in our theory, can be interpreted by a certain model of thermodynamics.
Actually, attempts at this have already been made, for instance, in [37,38].

As the final remarks on CCC, first, we note that the conformal symmetry of source-
free Maxwell’s equation holds well only in four dimensions, which may explain why
the dimensions of spacetime in which we live are four. Second, the first author would
appreciate if his philosophical preference of helical evolution to cyclic motion is reflected
in CCC. His speculative “Book of Genesis” on CCC is as follows:
In the beginning, God, as a mathematician, created the primordial light with conformal
symmetry, and God said: “Let there be conformal symmetry breaking, and there were twin
universes, beginning their long journey towards a brighter future of a light world one stage
higher in eternal evolution.”
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Abstract: Motivated by describing the symmetry of a theoretical model of dressed photons, we
introduce several spaces with Lie group actions and the morphisms between them depending on
three integer parameters n ≥ r ≥ s on dimensions. We discuss the symmetry on these spaces
using classical invariant theory, orbit decomposition of prehomogeneous vector spaces, and compact
reductive homogeneous space such as Grassmann manifold and flag variety. Finally, we go back to
the original dressed photon with n = 4, r = 2, s = 1.

Keywords: dressed photon; Grassmann manifold; flag manifold; pre-homogeneous vector space;
invariants

1. Introduction

A formulation of dressed photons in quantum field theory is given by the Clebsch
dual variable, motivated by fluid dynamics [1–3]. The Clebsch parametrization of the
rotational model of the velocity field Uμ is formulated of the form Uμ = λ∇μφ with two
scalar fields λ, φ. We define the covariant vectors Cμ = ∇μφ and Lμ = ∇μλ, and the
bi-vector Sμν = CμLν − LμCν. The energy–momentum tensor is defined by T̂ν

μ = −SμσSνσ.
It is shown

T̂ν
μ = ρCμCν (1)

by a simple computation [1].
Our main concern is this last Equation (1). This looks like Veronese embedding

in projective geometry. In this paper, we introduce the model in arbitrary dimension
and describe the symmetry of this model. Most of the material comes from the modern
treatment of classical invariant theory [4,5]. Especially, the quadratic map arising in
reductive dual pair [6,7] is used as one of the key ingredients in this paper to construct
geometric objects describing the symmetry. This enables us to give another explanation of
the last Equation (1) on T̂.

Physical study of dressed photons, including experiments and related applications,
called dressed photon phenomenon, has already been summarized in our previous pa-
per [8]. This paper serves as a complementary observation on symmetry of theoretical
foundations of dressed photon Equation [1], which would be expected as is in classical
electromagnetism. We conclude that the symmetry is well described in terms of com-
pact homogeneous space, such as Grassmann manifolds and flag manifolds, as well as
pre-homogeneous vector spaces, which is not a homogeneous space, but still has a large
symmetry. It is also significant that a part of discussion is not restricted to a specific
dimension, so that half of them are formulated in arbitrary dimension.

The construction of this paper is as follows: In Section 2, we work over the complex
number field C, and do si in arbitrary dimensions n ≥ r ≥ s. In Section 3, we consider the
special case n = 4, r = 2, s = 1 with the real number field R. The symmetry and invariants
are mostly the same for C and for R; however, there is a subtle and rather complicated
problem on connected components over R. In order to concentrate this complication for
R, the common features of the model are discussed over C, and the different point is
separately treated in Section 3.

Symmetry 2021, 13, 1283. https://doi.org/10.3390/sym13071283 https://www.mdpi.com/journal/symmetry21
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2. The Model over the Complex Numbers

2.1. Symmetry in Arbitrary Dimension

Let M(n, r,C), Sym(n,C), Alt(n,C) be the set of n by r matrices, symmetric matrices,
and skew-symmetric matrices with complex entries. We denote by M(n, r,C)rk≤i the subset
consisting of matrices of rank at most i. The transpose of a matrix X is denoted by XT .
Classical invariant theory gives the following maps:

Let J ∈ Alt(r,C)rk=r. We define the map

S : M(n, r,C) −→ Alt(n,C) by X �→ XJXT .

If r ≥ n, then this map is surjective. If r < n, then the image of this map is Alt(n,C)rk≤r.
This map is GL(n,C)× Sp(r,C)-equivariant, in the sense that S(lXh) = l S(X) lT for any
l ∈ GL(n,C) and h ∈ Sp(r,C), where the symplectic group attached to J is defined by
Sp(r,C) = Sp(J,C) = {h ∈ M(r,C) | hJhT = J}.

Let g ∈ Sym(n,C)rk=n. We define the map

G : M(n, r,C) −→ Sym(r,C) by X �→ XT gX.

If r ≥ n, then this map is surjective. If r < n, then the image of this map is
Sym(r,C)rk≤n. This map is O(n,C) × GL(r,C)-equivariant, in the sense that
G(lXh) = hTG(X)h for any l ∈ O(n,C) and h ∈ GL(r,C), where the orthogonal group
attached to g is defined by O(n,C) = O(g,C) = {l ∈ M(n,C) | lT gl = g}. Especially, put
r = n and restrict the domain, we define

T : Alt(n,C) −→ Sym(n,C) by X �→ XgXT = −XgX = XT gX.

This is O(n,C)-equivariant: T(lXlT) = l T(X) lT .
From now on, we assume that n ≥ r ≥ s. Each GL(r,C)-orbit on Sym(r,C) is

parametrized by the rank. The closure relation of orbits is linear, so that the closure of
Sym(r,C)rk=s is Sym(r,C)rk≤s. We define

Y(C) = M(n, r,C)rk=r ∩G−1(Sym(r,C)rk≤s)

Our main target is the description of the image of Y(C) by the map T ◦ S:

Sym(r,C)rk≤s
G←− M(n, r,C)rk=r

S−→ Alt(n,C) T−→ Sym(n,C). (2)

In order to state the main result, we introduce several auxiliary spaces and maps. We
fix g′ ∈ Sym(s,C)rk=s. We define the maps

V : M(n, s,C) −→ Sym(n,C) by V(X) = Xg′XT .

V′ : M(r, s,C) −→ Sym(r,C) by V′(X′) = X′g′X′T ,

Note that these maps are similar to G, but transposed. Especially, the orthogonal
group O(g′,C) acts transitively on each fiber of an element of Sym(r,C)rk=s.

We define Z(C) to be the fiber product of the map G : Y(C) → Sym(r,C)rk≤s and
V′ : M(r, s,C)rk=s → Sym(r,C)rk≤s:

Z(C) = Y(C)×Sym(r,C)rk≤s
M(r, s,C)rk=s

= {(X, X′) ∈ M(n, r,C)× M(r, s,C) | rk(X) = r, rk(X′) = s, XT gX = X′g′X′T}.
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We have the commutative diagram

M(n, r,C) ←− Y(C) Ṽ′
←−−−− Z(C)

G

⏐⏐⏐� G

⏐⏐⏐� � G̃

⏐⏐⏐�
Sym(r,C) ←− Sym(r,C)rk≤s

V′
←−−−− M(r, s,C)rk=s

(3)

where the right square is Cartesian.
The map T ◦ S does not factor through the map V. However, when we lift the map

from Y(C) to Z(C), the map factor through V. To be more precise, we have the following:

Theorem 1. (T ◦ S)(X) = (V ◦ φ)(X, X′) for all (X, X′) ∈ Z(C), where we define

φ : M(n, r,C)rk=r × M(r, s,C)rk=s −→ M(n, s,C)rk=s by (X, X′) �→ XJX′ (4)

Proof. (T ◦ S)(X) = T(XJXT) = (XJXT)g(XJXT)T = XJG(X)JTXT

= XJV′(X′)JTXT = (XJX′)g′(XJX′)T = V(XJX′) = (V ◦ φ)(X, X′).

This theorem is illustrated as the following commutative diagram:

Z(C) −−−→ M(n, r,C)rk=r × M(r, s,C)rk=s
φ−−−−→ M(n, s,C)rk=s

Ṽ′
⏐⏐⏐� ⏐⏐⏐� ⏐⏐⏐�V

Y(C) −−−→ M(n, r,C)rk=r
S−−−−→ Alt(n,C) T−−−−→ Sym(n,C)

(5)

Note that the maps S,G,T,V,V′ are common in classical invariant theory and theory
of reductive dual pair, though the space Y(C) and Z(C) is unique in our setting.

2.2. Grassmann and Flag Manifold

We will show that the map φ introduced in Theorem 1 has an interpretation in the
projective setting. We still assume n ≥ r ≥ s. The Grassmann manifold Grass(n, r,C) is the
set of r-dimensional subspace of Cn. This is identified with

M(n, r,C)rk=r/GL(r,C) ∼= Grass(n, r,C).

Every r-dimensional subspace of Cn is spanned by r linear independent column
vectors in Cn.

The flag manifold Flag(n; k1, . . . , km,C) is the set of flags of type (k1, k2, . . . , km), which
is defined to be a sequence of subspaces V1 ⊂ V2 ⊂ · · · ⊂ Vm of Cn, where 1 ≤ k1 < k2 <
· · · < km < n, with dim Vi = ki (i = 1, . . . , m). Grassmann manifold is a special case of flag
manifolds with m = 1. On the other hand, a flag variety is regarded as the incidence variety
of the product of Grassmann manifolds. For example, Flag(n; k1, k2,C) = {(V1, V2) ∈
Grass(N, k1,C)× Grass(N, k2,C) | V1 ⊂ V2}. We have an isomorphism

(M(n, r,C)rk=r × M(r, s,C)rk=s)/(GL(r,C)× GL(s,C)) ∼= Flag(n; s, r,C).

In the following commutative diagram, each space in the upper line, which arises in
Theorem 1, is a locally closed subset of an affine space, while each space in the lower line is
a projective variety.

M(n, r,C)rk=r ←−−− M(n, r,C)rk=r × M(r, s,C)rk=s
φ−−−−→ M(n, s,C)rk=s⏐⏐⏐� ⏐⏐⏐� ⏐⏐⏐�

Grass(n, r,C) ←−−− Flag(n; s, r,C) −−−→ Grass(n, s,C).

(6)
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The maps in the lower line are given by V2 ← (V1, V2) �→ V1. This double fibration is
often used in Radon transform and Heck correspondence [9].

In the case r = 2, the map

S : M(n, 2,C)rk=2 −→ Alt(n,C)rk=2

induces the Plücker embedding

Grass(n, 2,C) −→ Alt(n,C)rk=2/C× ⊂ Pn(n−1)/2−1(C).

3. The Model over Real Numbers

We now consider the special case n = 4, r = 2, s = 1, and replace C by R. Let

J =
(

0 1
−1 0

)
be the standard non-degenerate skew-symmetric matrix. Note that JT = −J

and det J = 1. Let g be the diagonal matrix with diagonal entries (1,−1,−1,−1). Finally,
we put g′ = 1.

Most of the story in the previous section does hold over the real number field R as
well. However, the disconnectedness makes things complicated. For example, although
the map V′ : M(2, 1,C) −→ Sym(2,C)rk≤1 given by V′(X′) = X′X′T is surjective, the map

V′ : M(2, 1,R) −→ Sym(2,R)rk≤1 is not surjective, because
(

0 0
0 −1

)
is not in the image.

In order to improve this defect, we introduce a non-zero scalar multiplication so that we
modify the map V′ by V2 given below (7).

3.1. Quadratic Polynomial

Let us consider the matrix X = (C, L) =

⎛⎜⎜⎝
C0 L0
C1 L1
C2 L2
C3 L3

⎞⎟⎟⎠ ∈ M(4, 2,R) with the column

vectors C, L ∈ R4. Here, M(m, n,R) the set of m by n matrices with real coefficients. The
entry of the map

S : M(4, 2,R) � X �→ XJXT ∈ Alt(4,R)rk≤2

is given by
Sμν(X) = (XJXT)μν = CμLν − LμCν,

which realizes the definition of Sμν. The map S is GL(4,R)× SL(2,R)-equivariant, where
we remark the accidental isomorphism of lower rank groups:

SL(2,R) = {h ∈ M(2,R) | det h = 1} = Sp(2,R) = {h ∈ M(2,R) | hJhT = J}

The action of GL(4,R) on Alt(4,R) is prehomogeneous [10]. The image Alt(4,R)rk≤2
is the complement of the open GL(4,R)-orbit Alt(4,R)rk=4, and its defining equation is
given by the basic relative invariant, Pfaffian

Pf(S) = S01S23 + S02S31 + S03S12.

Then, the singular set Alt(4,R)rk≤2 = {S ∈ Alt(4,R) | Pf(S) = 0} is the zero locus of
Pfaffian, and the open orbit Alt(4,R)rk=4 has two connected components {S ∈ Alt(4,R) |
±Pf(S) > 0}. The relation Pf(S) = 0 is considered as a Plücker relation of Grassmann
manifold Grass(4, 2,R).
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3.2. Symmetry Breaking

We restrict the general linear group GL(4,R) to the subgrouop O(1, 3). Let

g =

⎛⎜⎜⎝
1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

⎞⎟⎟⎠ be the standard non-degenerate symmetric matrix with signature

(1, 3). Define Lorentz group (indefinite orthogonal group of signature (1, 3)) by

O(1, 3) = {l ∈ M(4,R) | lT gl = g}.

Gram matrix with respect to this metric is given by the map

G : M(4, 2,R) � X �→ XT gX ∈ Sym(2,R)

where Sym(n,R) is the set of real symmetric matrices of size n. The map G is O(1, 3)×
GL(2,R)-equivariant:

G(lXh) = hTG(X)h, ∀l ∈ O(1, 3), h ∈ GL(2,R).

We define
Y(R) := M(4, 2,R)rk=2 ∩G−1(Sym(2,R)rk≤1),

an O(1, 3)× SL(2,R)-invariant subset of M(4, 2,R). Moreover, let

S1 := {v =

(
v1
v2

)
∈ R2 | v2

1 + v2
2 = 1}

and an analogue of Veronese map is defined by

V2 : S1 ×R× � (v,−ρ) �→ −ρvvT ∈ Sym(2,R)rk≤1. (7)

The fiber product of two maps

G : Y(R) −→ Sym(2,R)rk≤1, C̃ �→ G(C̃),

V2 : S1 ×R× → Sym(2,R)rk≤1, (v,−ρ) �→ −ρvvT

is defined by

Z(R) := Y(R)×Sym(2,R)rk≤1
(S1 ×R×)

= {(X, v,−ρ) ∈ M(4, 2,R)rk=2 × S1 ×R× | G(X) = −ρvvT},

then we obtain a real counterpart of (3):

Z(R)
Ṽ2−−−−→ Y(R)

G̃

⏐⏐⏐⏐⏐� �

⏐⏐⏐⏐⏐�G
S1 ×R× −−−−→

V2
Sym(2,R)rk≤1

3.3. Tensor T̂

The map
T : Alt(4,R) � S �→ −SgS ∈ Sym(4,R)

has been defined to be compatible with T̂ν
μ = −SμσSνσ. This map is O(1, 3)-equivariant

T(lSlT) = lT(S)lT , ∀l ∈ O(1, 3)
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We replace φ by Φ, and V by V4 given as follows:

Φ : Z(R) � (X, v,−ρ) �→ (XJv,−ρ) ∈ M(4, 1,R)rk=1 ×R×,

V4 : R4 ×R× � (w,−ρ) �→ ρwwT ∈ Sym(4,R)rk≤1.

Theorem 2. (T ◦ S)(X) = (V4 ◦ Φ)(X, v,−ρ) for all (X, v,−ρ) ∈ Z(R).

Proof. (T ◦ S)(X) = (XJXT)g(XJXT)T = XJG(X)JTXT = −XJρvvT JTXT

= V4((XJv,−ρ)) = (V4 ◦ Φ)((X, v,−ρ)).

This theorem is illustrated as

Z(R) −→ M(4, 2,R)rk=2 × S1 ×R× Φ−−→ M(4, 1,R)rk=1 ×R×

Ṽ2

⏐⏐⏐� ⏐⏐⏐� ⏐⏐⏐�V4

Y(R) −→ M(4, 2,R)rk=2
S−→ Alt(4,R)rk=2

T−−−−→ Sym(4,R)

3.4. Grassmann and Flag Manifold

Y(R)
Ṽ2←−−−− Z(R) Φ−−→ M(4, 1,R)rk=1 ×R×⏐⏐⏐� ⏐⏐⏐� ⏐⏐⏐�

M(4, 2,R)rk=2 ←−−− M(4, 2,R)rk=2 × S1 ×R× Φ−−→ M(4, 1,R)rk=1 ×R×⏐⏐⏐� ⏐⏐⏐� ⏐⏐⏐�
Grass(4, 2,R) ←−−−−− Flag(4; 1, 2,R) −−→ Grass(4, 1,R)

The flag manifold is realized as an incidence variety of the product of two Grassmann
manifold:

Flag(4; 1, 2,R) = {(V1, V2) | dim V1 = 1, dim V2 = 2, V1 ⊂ V2 ⊂ R4}
Flag(4; 1, 2,R) = {(V1, V2) ∈ Grass(4, 1,R)× Grass(4, 2,R) | V1 ⊂ V2}.

For (X, v) ∈ M(4, 2,R)rk=2 × S1, two column vectors of X spans a two-dimensional
subspace V2, and a column vector XJv generate a one-dimensional subspace V1 in V2.
The map

Grass(4, 2,R) ←− Flag(4; 1, 1, 2,R) −→ Grass(4, 1,R)
V2 ← (V1, V2) �→ V1
X ← (X, v) �→ XJv

is the double fibration.

3.5. The Interpretation of the Off-Shell Condition

The vectors C and L in Clebsch parametrization should satisfy the following off-shell
conditions [2]:

CνCν = 0, LνCμ = 0, LνLμ = −ρ. (8)

We putR̄ :=
(

0 0
0 −ρ

)
. Then, the condition (8) is written as

G(X) = R̄.

In particular, in the case v =

(
0
1

)
∈ S1, we compute the maps V2, Φ and V4:

• V2((v,−ρ)) = −ρvvT = R̄,
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• (w,−ρ) = Φ((X, v,−ρ)) = (XJv,−ρ) = (C,−ρ), this implies w = C,
• V4((w,−ρ)) = ρwwT = ρCCT = T̂.

This coincides with the result in [2]. An unnatural J in the definition of Φ is for the
sake of compatibility with the existing formula.

We now remark R ∈ Sym(2,R)rk≤1.

Z(R)⏐⏐�
G−1(R̄) −→ Y(R)⏐⏐� ⏐⏐�G

R̄ ∈ Sym(2,R)rk=1

The group GL(2,R) acts on Sym(2,R)rk=1 and the stabilizer at R̄ is a Borel subgroup

B =

{(
a 0
c d

)}
⊂ GL(2,R).

Then, G : Y(R) −→ Sym(2,R)rk=1 is a GL(2,R)-equivariant bundle. We regard
the off-shell condition specifies a fiber of this bundle. A symmetry is hidden in the
horizontal direction of this bundle, the group action of GL(2,R). Of course, form the
Clebsch parametrization point of view, the role of C and L is not the same; the off-shell
condition specifies the special isotropic direction for C: the choice of this direction is
controlled by the homogeneous space GL(2,R)/B.

4. Discussion

We describe the symmetry of equations of dressed photon in a general manner. The
tensor S is understood as an affine version of Plücker coordinates of Grassmann manifold
Grass(4, 2,R). The splitting expression of the tensor T̂ is related with an affine version of
flag manifold Flag(4; 1, 2,R). We find the off-shell condition (8) chooses the special fiber
of the homogeneous bundle. This mathematical interpretation of the choice may have a
physical interpretation, especially in the context of Clebsch variables, however, which must
be a future work. We also remark that the existence of the symmetry in arbitrary dimension
suggests a feedback from the theory of dressed photon to the theory of reductive dual pairs
on the pullback of nilpotent orbits [6], which is also a topic of future study.
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Abstract: In this study, we develop quantum measurement theory for quantum systems described by
C∗-algebras. This is the first step to establish measurement theory for interacting quantum fields with
off-shell momenta. Unlike quantum mechanics (i.e., quantum systems with finite degrees of freedom),
measurement theory for quantum fields is still in development because of the difficulty of quantum
fields that are typical quantum systems with infinite degrees of freedom. Furthermore, the mathematical
theory of quantum measurement is formulated in the von Neumann algebraic setting in previous
studies. In the paper, we aim to extend the applicable area of quantum measurement theory to quantum
systems described by C∗-algebras from a mathematical viewpoint, referring to the sector theory that
is related to symmetry and based on the theory of integral decomposition of states. In particular, we
define central subspaces of the dual space of a C∗-algebra and use them to define instruments. This
attempt makes the connection between measurement theory and sector theory explicit and enables us
to understand the macroscopic nature and the physical meaning of measurement.

Keywords: quantum measurement; C∗-algebra; algebraic quantum field theory; local net; extension
of local net; completely positive instrument; macroscopic distinguishability

1. Introduction

In this study, we develop a measurement theory for quantum systems described by
C∗-algebras. Interacting quantum fields assumed in this study are quantum systems with
infinite degrees of freedom and with off-shell momenta, whose observables are given by
self-adjoint elements of C∗-algebras. The C∗-algebraic approach to quantum fields is not
unrelated to the usual approach by field operators. It is a powerful way to remove the
difficulty of unbounded operators by making them bounded operators. For example, in a
free real Bose field, the exponential eiφ( f ) (or resolvent) of the field operator φ( f ), where
f is a real function, is a bounded operator, and the collection of them generates a C∗-
algebra. This study is inspired by the measurement of the quantum field generated by the
interaction between the electromagnetic field and electrons at the nanoscale, which is called
the dressed photon (DP) phenomenon [1]. It is known to behave completely differently
from electromagnetic waves propagating in free space or electromagnetic fields in a uniform
medium, and has long been studied as near-field optics. The measurement theory for such
systems is still unexplored, and we believe that a framework extending the current theory
is necessary. For this reason, we adopt an approach based on both algebraic quantum
field theory (AQFT) and quantum measurement theory and their mathematics. There are
many examples of the contribution of mathematics to the progress of physical theories,
and the introduction of new mathematics contributes greatly to the implementation of
new physical concepts. In the study, we will actively use the mathematical framework for
conceptual advancement.

In the algebraic formulation of quantum theory, the observable algebra of a quantum
system is described by a ∗-algebra X , and a state is described by an expectation functional
ω on X . From an algebraic point of view, Hilbert space is treated as a secondary one

Symmetry 2021, 13, 1183. https://doi.org/10.3390/sym13071183 https://www.mdpi.com/journal/symmetry29
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to be used in analysis as needed. For each state ω, a Hilbert space is given by the GNS
representation (πω,Hω, Ωω):

ω(X) = 〈Ωω |πω(X)Ωω〉 (1)

for all X ∈ X . C∗-algebras, a special case of ∗-algebra, are used in AQFT [2–4]. Various
Hilbert spaces can be given by the GNS representation, and the fact that the representation
has a physical meaning as well as the Hilbert space itself primarily promotes the conceptual
understanding of the algebraic formulation. The contribution of Haag and Kastler [2] to
this progress has been significant. Although there are studies on the algebraic formulation
prior to their study, Ref. [2] is probably the first to successfully confront the fact that
there are many different representations (depending on the choice of state). In [2], the
“physical equivalence” of representations (also called weak equivalence) was used to give a
clear meaning to the replacement between equivalent representations. In [5–8], a physical
meaning was given to the situation in (A)QFT where different representations chosen by
the DHR selection criterion coexist. It is a criterion that selects representations equivalent
(through unitary transformations) to the vacuum representation (obtained from the GNS
representation from the vacuum state) of the observable algebra on the domain which is
spatial to some bounded domain. A representation satisfying this criterion describes a
situation in which localized excitations of the quantum field exist. It was shown in [9] that a
class (collection) of representations satisfying certain conditions corresponds to a situation
where topological charges exist, and that, by using these representations, field algebra
F and global gauge group G are reconstructed from observable algebra A. This result
is known as an iconic result in AQFT. Representations with different charges form their
own sectors (with unitary equivalence), which are not only unitarily inequivalent but also
mutually “disjoint”, giving rise to the so-called “superselection rule”. This result is closely
related to the representation theory of field operators including the algebra of canonical
commutation relations, where unitarily inequivalent representations arise (see [10–13] and
references therein). Global gauge group G here is an unbroken symmetry, and the results
of [9] are not valid for broken symmetries [14]. The extension of Ref. [9]’s results to broken
symmetry situations was done in [14,15], and Ojima [16] defined the generalized sector as
a “quasi-equivalence class of factor states”, allowing for a unified treatment of macroscopic
aspects in quantum systems in various contexts, including measurement.

To date, the instrument introduced by Davies and Lewis [17] has contributed greatly to
the development of quantum measurement theory. They introduced instruments from a sta-
tistical viewpoint, and specified probability distributions and states after the measurement
obtained by measuring a system using the measurement apparatus. However, because the
relationship between the instrument and the usual quantum mechanical description was
not clear at first, the analysis using the instrument did not progress until the investigation
by Ozawa [18]. He introduced a completely positive instrument and a measuring process,
the latter being used for quantum mechanical modeling of measurement. Every measuring
process defines a completely positive instrument. The main result of [18] is the converse in
a quantum system with finite degrees of freedom, i.e., every completely positive instrument
in such a system is defined by a measuring process. This is a standard fact in quantum
measurement theory now. Furthermore, the theory of completely positive instruments in
quantum systems with infinite degrees of freedom described by the general von Neumann
algebra has recently been developed in [19,20]. C∗-algebras and von Neumann algebras can
be viewed as non-commutative versions of topological and measurable spaces, respectively.
The latter is a special case of the former, but their analysis methods are very different. In
the current measurement theory, focusing on probability distributions and states after the
measurement has led to the selection of components to be macroscopic by the measurement
and the successful investigation of the relationship with quantum mechanical modeling.

In order to formulate the measurement theory for quantum systems described by C∗-
algebras, the more general case compared to von Neumann algebras, we believe that it is
necessary to integrate a completely positive instrument and the sector theoretical treatment
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of the macroscopic aspect of the quantum system. The reason for this is that, because the
concept of state is statistically characterized, we consider that the difference of values output
by the measurement should be macroscopically distinguished by the disjointness of states
of the composite system of the system and the measuring apparatus. In other words, a
measurement is a physical process that leads to the situation wherein different output values of
the measuring apparatus correspond to mutually disjoint states of the composite system. From
this viewpoint, a measuring process, a quantum mechanical modeling of the measurement,
is of course important historically and theoretically, but it should not necessarily be the first
consideration in establishing the physical meaning and description of the measurement.
On the other hand, this study is advantageous in that the identification of sectors by the
measurement is justified by the measurement-theoretic description. We are convinced that the
establishment of the measurement theory in quantum systems described by C∗-algebras will
open up new perspectives for the understanding of macroscopic aspects of quantum systems.
Herein, we reexamine the result of [21]. While [21] focused on the use of measuring processes,
we make thorough use of the instrument in this study.

In Section 2, the local net and open system are discussed and the description of dynamics as
an open system in AQFT is stated. In Section 3, we review the sector theory and its mathematics.
In Section 4, the central subspaces of the dual of a C∗-algebra are defined. In the C∗-algebraic
setting, we define instruments in terms of central subspaces. Furthermore, we define and
characterize central instruments in order to examine the differences between the C∗-algebraic
setting and the von Neumann algebraic setting. In Section 5, we summarize the results of the
study and present the perspective.

2. Systems of Interest: Local Nets and Open System

2.1. C∗-Algebraic Quantum Theory

All the statistical aspects of a physical system S are registered in a C∗-probablity space
(X , ω), a pair of a C∗-algebra X , and a state ω on X [21]. Observables of S are described
by self-adjoint elements of X . On the other hand, the state ω is an expectation functional
on X and statistically describes a physical situation (or an experimental setting) of S. We
keep claiming that every quantum system is described in the language of noncommutative
(quantum) probability theory (see [22] for an introduction to quantum probability theory).
In Appendix A, the basic facts on operator algebras are summarized.

2.2. Local Net

Let M be a manifold or a (locally finite) graph. We suppose that M describes the
space-time or the space under consideration. R denotes the set of bounded regions of M,
which satisfies ∪R = M. M ∈ R is assumed when M is bounded.

Definition 1 (local net). A family {A(O)}O∈R of C∗-algebras is called a local net on M if it
satisfies the following conditions:
(i) For every inclusion O1 ⊂ O2, we have A(O1) ⊂ A(O2).
(ii) For any mutually causally separated (spatial) regions O1 and O2,

[A(O1),A(O2)] = {AB − BA|A ∈ A(O1), B ∈ A(O2)} = {0}. (2)

For every local net {A(O)}O∈R on M, there exists a C∗-algebra

A =
⋃

O∈R
A(O)

‖·‖
, (3)

called the global algebra of {A(O)}O∈R. If M is bounded, then A = A(M) since M ∈ R
and O ⊂ M for all O ∈ R. When a group G acts on R as a symmetry, we assume the
covariance condition for {A(O)}O∈R: there exists an automorphic action α of G on A
such that
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αg(A(O)) = A(gO) (4)

for all g ∈ G and O ∈ R, where gO = {gx|x ∈ O}.
To describe the statistical aspect of quantum fields by a local net {A(O)}O∈R, states

on the global algebra A or “local states” [23] are used.

2.3. Open System

We shall discuss how to describe the dynamics of open systems. In the context of
quantum statistical mechanics, open systems are a subject that has been discussed for a
long time. Open systems are also fundamental in quantum field theory, and are closely
related to scattering theory. In particular, it is a necessary description of the dynamics
in the paper concerning the DP as a typical example of off-shell quantum fields. This is
because the DP phenomena are known to involve the process of generation by incident
light and annihilation that changes to scattered light. On the other hand, it is essential that
the quantum field considered here is a quantum system with an infinite degree of freedom
system, and we should pay attention to the description of its dynamics (see Section 4 for
details). In the following, we introduce the mathematical concepts necessary to describe
the dynamics of open systems.

The discussion below is based on the understanding that closed systems are a special
case of open systems. We consider a quantum system S described by a C∗-algebra X . Every
time evolution of S as a closed system is described by an automorphism of X . Furthermore,
when the time t is parametrized by R, the time evolution of S as a closed system is
described by a strongly continuous automorphism group α : R � t �→ αt ∈ Aut(X )
satisfying α0 = idX , αs ◦ αt = αs+t and α−t = α−1

t for all s, t ∈ R. In contrast to a closed
system, the time evolution of an open system is described by a completely positive map
T : X → X . The complete positivity of maps between C∗-algebras is defined as follows:

Definition 2 (Complete positivity [24–27]). Let C and D be C∗-algebras. A linear map T : C →
D is said to be completely positive (CP) if

n

∑
i,j=1

D∗
i T(C∗

i Cj)Dj ≥ 0 (5)

for all n ∈ N, C1, · · · , Cn ∈ C and D1, · · · , Dn ∈ D.

It is known that a CP map is positive, but the converse is not true. Every homo-
morphism of a C∗-algebra C into a C∗-algebra D is CP. In particular, all automorphisms
of a C∗-algebra C are CP. For every C∗-algebra C and n ∈ N, Mn(C) denotes the C∗-
algebra of square matrices of order n whose entries are elements of C. For every lin-
ear map T : C → D and n ∈ N, a linear map T(n) : Mn(C) → Mn(D) is defined by
T(n)(C) = (T(Cij)) for all C = (Cij) ∈ Mn(C). A linear map T : C → D is said to be
n-positive if T(n) : Mn(C) → Mn(D) is positive. A linear map T : C → D is CP if and only
if it is n-positive for all n ∈ N. The dual map T∗ : D∗ → C∗ of T : C → D is defined by

(T∗ϕ)(C) = ϕ(T(C)) (6)

for all ϕ ∈ D∗ and C ∈ C. T is CP if and only if the linear map D∗ � ϕ �→ ∑n
i,j=1 CiT∗(Di ϕD∗

j )

C∗
j ∈ C∗ is positive for all n ∈ N, C1, · · · , Cn ∈ C and D1, · · · , Dn ∈ D. Here, for every

A, B ∈ D and ϕ ∈ D∗, Aϕ, ϕB, AϕB ∈ D∗ are defined by

(Aϕ)(D) = ϕ(DA), (7)

(ϕB)(E) = ϕ(BE), (8)

(AϕB)(F) = ϕ(BFA), (9)

respectively, for all D, E, F ∈ D.
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The following structure theorem for normal CP maps defined on B(H) is well-known.

Theorem 1. Let H be a separable Hilbert space. Let T be a normal CP map on B(H).
(1) There exist a separable Hilbert space K, an element ξ of K, a positive operator R on K, and a
unitary operator U on H⊗K such that

T(X) = TrK[U∗(X ⊗ R)U(1⊗ |ξ〉ξ|)] (10)

for all X ∈ B(H).
(2) There exists a family {Ki}∞

i=1 of bounded operators on H such that

T(X) =
∞

∑
i=1

K∗
i XKi (11)

for all X ∈ B(H).

The proof of this theorem is given in Appendix B. The dynamics of open systems in the
Heisenberg picture are described by a quantum stochastic process in the sense of Accardi–
Frigerio–Lewis [28,29]. Following their study, measurement theory in the Heisenberg
picture is formulated in [20].

3. Sector Theory

The concept of sector is defined by Ojima [16] as follows:

Definition 3. A sector of X is a quasi-equivalence class of a factor state.

A state on X is called a factor if the center Zω(X ) = πω(X )′′ ∩ πω(X )′ of πω(X )′′

is trivial, i.e., Zω(X ) = C1. Let π be a representation of X on a Hilbert space H. We say
that a linear functional ω on X is π-normal if there exists a trace-class operator σ on H
such that

ω(X) = Tr[π(X)σ] (12)

for all X ∈ X .

Definition 4. Let π1 and π2 be a representation of X on Hilbert spaces H1 and H2, respectively.
(1) π1 and π2 are quasi-equivalent, written as π1 ≈ π2, if every π1-normal state is π2-normal
and vice versa.
(2) π1 and π2 are mutually disjoint, written as π1 ◦

–

π2, if no π1-normal state is π2-normal and
vice versa.

Two states ω1 and ω2 onX are quasi-equivalent (mutually disjoint, resp.), written as ω1 ≈ ω2
(ω1 ◦

–

ω2, resp.), if πω1 and πω2 are quasi-equivalent (mutually disjoint, resp.).

The sector theory based on sector defined above has already been discussed in [16,21].
However, we believe that mathematics related to sector theory should be reexamined in
order to develop measurement theory for quantum systems described by C∗-algebras.
The following theorem mathematically justifies the definition of sector, which is obvious
from [30] (Corollary 5.3.6).

Theorem 2. Two factor states ω1 and ω2 are either quasi-equivalent or disjoint.

By the above theorem, two factor states ω1 and ω2 belong to different sectors if and
only if ω1 ◦

–

ω2. A sector corresponds to a macroscopic situation where order parameters
of the system have definite values. Although the unitary equivalence of states is efficient
for pure states, physically important states are not always pure. For example, KMS states
in some quantum system with infinite degrees of freedom are of type III. We would like to
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stress that the unitary equivalence class of a pure state is not appropriate for a unit of the
state space. The reason will be discussed later.

Next, we shall define the notion of orthogonality of states. The order relation ω1 ≤ ω2
for two positive linear functionals ω1 and ω2 on X is defined by

ω1(X) ≤ ω2(X) (13)

for all X ∈ X+.

Definition 5. Let ω1, ω2 be positive linear functionals on X . We say that ω1 and ω2 are mutually
orthogonal, written as ω1⊥ω2, if there exists no non-zero positive linear functional ω′ such that
ω′ ≤ ω1 and ω′ ≤ ω2.

The following theorem shows the gap between the disjointness and the orthogonality
of states.

Theorem 3 ([31] (Lemma 4.1.19 and Lemma 4.2.8)). Let ω1, ω2 be positive linear functionals
on X . Put ω = ω1 + ω2.
(1) If ω1 and ω2 are mutually orthogonal, then there exists an orthogonal projection P ∈ πω(X )′

such that

ω1(X) = 〈Ωω |Pπω(X)Ωω〉, ω2(X) = 〈Ωω |(1− P)πω(X)Ωω〉 (14)

for all X ∈ X .
(2) If ω1 and ω2 are mutually disjoint, then there exists an orthogonal projection C ∈ Zω(X )
such that

ω1(X) = 〈Ωω |Cπω(X)Ωω〉, ω2(X) = 〈Ωω |(1− C)πω(X)Ωω〉 (15)

for all X ∈ X .

The topology of S(X ) used here is the restriction of the weak∗-topology of X ∗ to
S(X ). That is to say, it is generated by the basis B = {Oω({Xi, εi}n

i=1) | ω ∈ S(X ), n ∈
N, X1, · · · , Xn ∈ X , ε1, · · · , εn > 0}, where Oω({Xi, εi}n

i=1) = {ω′ ∈ S(X) | ∀i =
1, · · · , n, |ω(Xi)− ω′(Xi)| < εi}. Then, S(X ) is a compact convex set, and we use the
Borel field B(S(X )) of S(X ) generated by this topology. A positive linear functional ω on
X is called a barycenter of a regular Borel measure μ on S(X ) if

ω =
∫
S(X )

ρ dμ(ρ). (16)

μ is then called a barycentric measure of ω.

Definition 6. A regular Borel measure μ on S(X ) is orthogonal if∫
Δ

ρ dμ(ρ) ⊥
∫

Δc
ρ dμ(ρ) (17)

for all Δ ∈ B(S(X )). Oω(S(X )) denotes the set of orthogonal measures on S(X ) with barycenter ω.

The following theorem characterizes orthogonal measures of a state.

Theorem 4 ([31] (Theorem 4.1.25)). Let X be a unital C∗-algebra and ω a state on X . There is a
one-to-one correspondence between the following three sets:
(i) the orthogonal measures μ ∈ Oω(S(X ));
(ii) the abelian von Neumann subalgebras B of πω(X )′;
(iii) the orthogonal projections P on Hω such that PΩω = Ωω and Pπω(X )P ⊆ {Pπω(X )P}′.
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If μ, B and P are in correspondence, one has the following conditions:
(1) B = (πω(X ) ∪ {P})′;
(2) P is the orthogonal projection onto BΩω;
(3) μ(X̂1 · · · X̂n) = 〈Ωω |πω(X1)Pπω(X2)P · · · Pπω(Xn)Ωω〉;
(4) B is ∗-isomorphic to the range of the map κμ : L∞(S(X ), μ) � f �→ κμ( f ) ∈ πω(X )′

defined by

〈Ωω |κμ( f )πω(X)Ωω〉 =
∫
S(X )

f (ρ) X̂(ρ) dμω(ρ) (18)

for all X ∈ X and f ∈ L∞(S(X ), μ), where X̂ ∈ C(S(X )) is defined by X̂(ρ) = ρ(X) for all
ρ ∈ S(X ). κμ satisfies

κμ(X̂)πω(Y)Ωω = πω(Y)Pπω(X)Ωω (19)

for all X, Y ∈ X .

By Theorems 3 and 4, we have the following theorem:

Theorem 5 ([31] (Proposition 4.2.9)). Let ω be a state on X and μ a barycentric measure of ω.
The following conditions are equivalent.
(1) For every Δ ∈ B(S(X )), ∫

Δ
ρ dμ(ρ) ◦

– ∫
Δc

ρ dμ(ρ). (20)

(2) μ is orthogonal, and κμ(L∞(S(X ), μ)) is a von Neumann subalgebra of the center Zω(X ) of
πω(X )′′.

For every ω ∈ S(X ), μω denotes the orthogonal measure with barycenter ω corre-
sponding to the center Zω(X ) of πω(X )′′. μω is called the central measure of ω. The
following theorem shows that the central measure gives the unique integral decomposition
into mutually different sectors.

Theorem 6 ([31] (Theorem 4.2.11)). The central measure μω of a state ω on X is pseudosup-
ported by the set S f (X ) of factor states on X , i.e., μω(Δ) = 0 for all Δ ∈ B(S(X )) such that
Δ ∩ S f (X ) = ∅. If X is separable, then μω is supported by S f (X ).

That is to say, the concept of sector is applicable to any states via their central measures.
L∞(S(X ), μω) then describes the observable algebra that distinguishes sectors in ω and
is ∗-isomorphic to Zω(X ). The ∗-isomorphism κω := κμω : L∞(S(X ), μω) → Zω(X ),
defined by

〈Ωω |κω( f )πω(X)Ωω〉 =
∫
S(X )

f (ρ) X̂(ρ) dμω(ρ) (21)

for all X ∈ X and f ∈ L∞(S(X ), μω), justifies this statement. By the definition, all elements
of the center Zω(X ) of πω(X )′′ are compatible with those of πω(X )′′. The following theorem
is also shown.

Theorem 7 ([31] (Theorem 4.2.5)). Let ω be a state on X and μ an orthogonal measure with
barycenter ω corresponding to a maximal abelian von Neumann subalgebra (MASA) of πω(X )′.
Then, μ is pseudosupported by the set Se(X ) of pure states on X . If X is separable, then μ is
supported by Se(X ).

An orthogonal measure corresponding to a MASA of πω(X )′ gives an irreducible
decomposition of the state. In general, MASA of πω(X )′ is not unique. The situation where
MASA of πω(X )′ is unique is special. This is the reason why the unitary equivalence class
of a pure state is not appropriate for a unit of the state space. It is known that πω(X )′′ is a
type I von Neumann algebra if πω(X )′ is abelian. The following theorem characterizes
such a situation in the context of orthogonal decompositions of states.
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Theorem 8 ([31] (Theorem 4.2.3)). Let ω be a state on X , and P the projection operator on Hω

whose range is πω(X )′Ωω. The following conditions are equivalent:
(1) πω(X )′ is abelian;
(2) Pπω(X )P generates an abelian algebra.

4. Completely Positive Instrument

In this section, we analyze the concept of CP instrument in the C∗-algebraic setting.
In previous investigations [17–20], it has been examined in the von Neumann algebraic
formulation of quantum theory. The generalization to C∗-algebra is realized in terms
of central subspaces of the dual of a C∗-algebra. Our approach enables us to unify the
measurement theory with sector theory.

4.1. Definition

Since the investigation [17] by Davies and Lewis, instruments have been defined on
the predual of a von Neumann algebra. In order to define its C∗-algebraic generalization,
the dual space of a C∗-algebra is too big in general. When a von Neumann algebra M
on a Hilbert space K is not finite-dimensional, the predual M∗ of M does not coincide
with M∗, i.e., M∗ � M∗. In addition, in the case where all physically relevant states are
contained in M∗, the whole space M∗ is not needed. This does not depend on whether
M is treated as a C∗-algebra or a von Neumann algebra. In the C∗-algebraic formulation
introduced here, we can naturally use M∗ as a domain of instruments.

Let X be a C∗-algebra and π a representation of X on a Hilbert space H. Let M be a
von Neumann algebra on a Hilbert space K. Z(M) denotes the center of M. We define
the subset V(π) of X ∗ by

V(π) = {ϕ ∈ X ∗ | ∃ρ ∈ (π(X )′′)∗, ∀X ∈ X , ϕ(X) = ρ(π(X))}. (22)

A subspace L of X ∗ is said to be central if there exists a central projection C of X ∗∗,
i.e., C ∈ Z(X ∗∗), such that L = CX ∗. Central subspaces of X ∗ are characterized as closed
invariant subspaces (see [26] (Chapter III, Theorem 2.7)). A central subspace L(= CX ∗) is
said to be σ-finite if its dual L∗(∼= CX ∗∗) is a σ-finite W∗-algebra. For every M1, M2 ∈ V∗

and ρ ∈ V , we define M1ρ, ρM2, M1ρM2 ∈ V by

〈M, M1ρ〉 = 〈MM1, ρ〉, (23)

〈M, ρM2〉 = 〈M2M, ρ〉, (24)

〈M, M1ρM2〉 = 〈M2MM1, ρ〉, (25)

respectively, for all M ∈ V∗. The usefulness of the central subspace can be seen in the
following example:

Example 1 (See [26] (Chapter III) for example). (1) Let X be a C∗-algebra and π a representa-
tion of X on a Hilbert space H. There exists a central projection C(π) of X ∗∗ such that

V(π) = C(π)X ∗ = {C(π)ϕ | ϕ ∈ X ∗} = {ϕ ∈ X ∗ | C(π)ϕ = ϕ}. (26)

(2) Let M be a von Neumann algebra on a Hilbert space H. There exists a central projection C of
M∗∗ such that M∗ = CM∗.

The following theorem is known.

Theorem 9. Let X be a C∗-algebra and π1 and π2 representations of X on Hilbert spaces H1 and
H2, respectively. The following conditions are equivalent:
(1) π1 ≈ π2. (2) V(π1) = V(π2). (3) C(π1) = C(π2).

Similarly, the following conditions are equivalent:
(4) π1 ◦

–

π2 (5) V(π1) ∩ V(π2) = {0}. (6) C(π1)C(π2) = 0.
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The former part of this theorem is shown in [26] (Chapter III, Proposition 2.12). We
can show the latter part in a similar way.

We shall define instruments in terms of central subspaces in the fully C∗-algebraic
setting. Let M and N be W∗-algebras. P(M∗,N∗) denotes the set of positive linear maps
of M∗ into N∗. In addition, for any Banach space L, 〈·, ·〉 denotes the pairing of L∗ and L.

Definition 7 (instrument). Let Vin and Vout be σ-finite central subspaces of C∗-algebras X and
Y , respectively, and (S,F ) a measurable space. I is called an instrument for (X ,Vin,Y ,Vout, S)
if it satisfies the following three conditions:
(1) I is a map of F into P(Vin,Vout).
(2) 〈1, I(S)ρ〉 = 〈1, ρ〉 for all ρ ∈ Vin.
(3) For every ρ ∈ Vin, M ∈ V∗

out and mutually disjoint sequence {Δj}j∈N of F ,

〈M, I(∪jΔj)ρ〉 =
∞

∑
j=1

〈M, I(Δj)ρ〉. (27)

WhenX = Y , an instrument I for (X ,Vin,Y ,Vout, S) is called that, for (X ,Vin,Vout, S).
Furthermore, when Vin = Vout = V , an instrument I for (X ,Vin,Vout, S) is called for
(X ,V , S). In particular, an instrument for (M,M∗, S) is called for (M, S). For every
instrument I for (Vin,Vout, S) and normal state ϕ on V∗

in, we define the probability measure
‖Iϕ‖ on (S,F ) by ‖Iϕ‖(Δ) = ‖I(Δ)ϕ‖ for all Δ ∈ F . For every instrument I for
(X ,Vin,Y ,Vout, S), the dual map I∗ : V∗

out ×F → V∗
in of I is defined by

〈M, I(Δ)ρ〉 = 〈I∗(M, Δ), ρ〉 (28)

for all ρ ∈ Vin, M ∈ V∗
out and Δ ∈ F .

Definition 8. An instrument I for (X ,Vin,Y ,Vout, S) is said to be completely positive (CP) if
the map V∗

out � M �→ I∗(M, Δ) ∈ V∗
in is CP for all Δ ∈ F .

For every map J : V∗
out ×F → V∗

in satisfying the following three conditions, there
uniquely exists an instrument I for (X ,Vin,Y ,Vout, S) such that J = I∗:
(1) For every Δ ∈ F , the map V∗

out � M �→ J (M, Δ) ∈ V∗
in is normal, positive, and linear.

(2) J (1, S) = 1.
(3) For every ρ ∈ Vin, M ∈ V∗

out and mutually disjoint sequence {Δj}j∈N of F ,

〈J (M,∪jΔj), ρ〉 =
∞

∑
j=1

〈J (M, Δj), ρ〉. (29)

From now on, I denotes the dual map I∗ of an instrument I for (X ,Vin,Y ,Vout, S).
The dual map of an instrument for (X ,Vin,Y ,Vout, S) is also called an instrument for
(X ,Vin,Y ,Vout, S).

4.2. Central Decomposition of State via CP Instrument

Let V be a σ-finite central subspace of the dual space of a C∗-algebra X and (S,F )
a measurable space. Let C : F → Z(V∗) be a projection valued measure (PVM). A CP
instrument IC for (X ,V , S) is defined by

IC(Δ)ρ = C(Δ)ρ (30)

for all ρ ∈ V and Δ ∈ F .
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Theorem 10. IC satisfies the following conditions:
(1) IC(S)ρ = ρ for all ρ ∈ V .
(2) It is repeatable, i.e., it satisfies

IC(Δ)IC(Γ) = IC(Δ ∩ Γ) (31)

for all Δ, Γ ∈ F .
(3) For every ρ ∈ V+ := V ∩ X ∗

+ and Δ ∈ F , IC(Δ)ρ and IC(Δc)ρ are mutually disjoint.
(4) For every Δ ∈ F , IC(Δ) is V∗-bimodule map, i.e., for every Δ ∈ F , ρ ∈ V and M1, M2 ∈ V∗,

IC(Δ)(M1ρM2) = M1(IC(Δ)ρ)M2. (32)

Conversely, if an instrument I for (V , S) satisfies the conditions (2) and (4), then there exists a
spectral measure C : F → Z(V∗) such that I = IC.

Proof. We can easily check (1), (2), and (4). (3) is shown by using Theorem 9.
The converse is also obvious as follows. We define a map C : F → V∗ by C(Δ) =

I(1, Δ) for all Δ ∈ F . For every Δ ∈ F , ρ ∈ V and M ∈ V∗, we have

〈M, I(Δ)ρ〉 = 〈1, I(Δ)(ρM)〉 = 〈C(Δ), ρM〉 = 〈MC(Δ), ρ〉. (33)

〈M, I(Δ)ρ〉 = 〈C(Δ)M, ρ〉 is also shown in the same way. Therefore, we have 〈[C(Δ), M], ρ〉
= 0 for all Δ ∈ F , ρ ∈ V and M ∈ V∗. When ϕ is normal faithful state on V∗ and
ρ = ϕ([C(Δ), M])∗, 〈([C(Δ), M])∗[C(Δ), M], ϕ〉 = 0, so that [C(Δ), M] = 0 for all Δ ∈ F
and M ∈ V∗. We obtain C(Δ) ∈ Z(V∗) for all Δ ∈ F .

By the conditions (2) and (4),

〈C(Δ ∩ Γ), ρ〉 = 〈1, I(Δ ∩ Γ)ρ〉 = 〈1, I(Δ)I(Γ)ρ〉 = 〈C(Δ), I(Γ)ρ〉
= 〈1, I(Γ)(ρC(Δ))〉 = 〈C(Γ), ρC(Δ)〉 = 〈C(Δ)C(Γ), ρ〉. (34)

Thus, C : F → Z(V∗) is a PVM, and we have I = IC.

An instrument I for (X ,Vin,Y ,Vout, S) is said to be subcentral if, for every ρ ∈ Vin,+
and Δ ∈ F , IC(Δ)ρ and IC(Δc)ρ are mutually disjoint. The condition (3) in Theorem 10
is a special case of the subcentrality of instruments. P(X ,V) denotes the subset {IC|C :
F → Z(V∗) is a PVM.} of the set of instruments defined on V . An instrument I for
(X ,V , S) is said to be central if it is an element of P(X ,V) and is the maximum in P(X ,V),
where the maximum is due to the (pre)order ≺ on instruments defined as follows: For
instruments I1, I2 for (X ,Vin,Y ,Vout, S1) and (X ,Vin,Y ,Vout, S2), respectively, I1 ≺ I2 if
I1(F )ρ ⊂ I2(F )ρ for all ρ ∈ S(X ) ∩ Vin, where Ii(Fi)ρ, i = 1, 2, is the subset of (Vin)+
defined by Ii(Fi)ρ = {Ii(Δi)ρ | Δi ∈ Fi}. By Theorem 10, we have the following theorem.

Theorem 11. Let (S,F ) be a measurable space, V a σ-finite central subspace of the dual of a
C∗-algebra X , and C : F → Z(V∗) a PVM. IC is central if and only if the abelian W∗-algebra
generated by {C(Δ)|Δ ∈ F} is isomorphic to Z(V∗).

5. Operational Requirement and Macroscopic Distinguishability

In this section, we discuss the characterization of CP instruments. We deepen our
conceptual understanding of measurement theory by referring to the mathematics of sector
theory. In sector theory, we explained that a sector is a macroscopic unit. As an application
of sector theory to measurement theory, we follow the macroscopic distinction made by the
disjointness of states. That is, in contrast to the usual understanding of measurement, our
understanding is that a measurement is a physical process that realizes macroscopically
distinguishable situations when different values are output. In past investigations, the
concept of CP instrument has been justified by clarifying the statistical properties that a
measuring apparatus should satisfy from an operational point of view in the (extended)
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Schrödinger picture. We first review this here. Next, we proceed to characterize CP
instruments from the perspective of the macroscopic distinguishability of states, which is
related to sector theory.

Here, we assume that the system S is described by a C∗-algebra X and that Vin a
σ-finite central subspace of X ∗. We consider a measuring apparatus A(x) with output
variable x to measure the system S, where x takes values in a measurable space (S,F ). In
the following, we consider three assumptions from an operational point of view. They are
modified from [19,32] in the C∗-algebraic setting.

Assumption 1. A(x) statistically specifies the following two components:
(1) the probability measure Pr{x ∈ Δ‖ω}, Δ ∈ F , on (S,F ) for every initial state ω ∈ S(X )∩Vin.
(2) the state ω{x∈Δ} (on a C∗-algebra Y) after the measurement under the condition that ω is an
initial state and output values not contained in Δ are ignored. For every ω ∈ S(X ) ∩ Vin and
Δ ∈ F , ω{x∈Δ} is unique whenever Pr{x ∈ Δ‖ω} �= 0, or is indefinite otherwise.

From now on, we consider only the case of X = Y for simplicity. The joint probability
distribution of the successive measurement of A(x) and A(y) in this order in a state
ω ∈ Vin ∩ S(X ) is given by

Pr{x ∈ Δ, y ∈ Γ‖ω} = Pr{x ∈ Δ‖ω}Pr{y ∈ Γ‖ω{x∈Δ}} (35)

for all Δ ∈ F and Γ ∈ F′.

Assumption 2. For every Δ ∈ F , measuring apparatus A(y) whose output variable y takes values
in a measurable space (S′,F′), and Γ ∈ F′, the map S(X ) ∩ Vin � ω �→ Pr{x ∈ Δ, y ∈ Γ‖ω}
is affine, that is,

Pr{x ∈ Δ, y ∈ Γ‖αω1 + (1− α)ω2} = αPr{x ∈ Δ, y ∈ Γ‖ω1}+ (1− α)Pr{x ∈ Δ, y ∈ Γ‖ω2} (36)

for all α ∈ [0, 1] and ω1, ω2 ∈ S(X ) ∩ Vin.

The affine property of joint distributions of successive measurements characterizes
the instrument as shown in the following theorem.

Theorem 12. Let A(x) be a measuring apparatus satisfying Assumption 1. Suppose that there
exists a σ-finite central subspace Vout of X such that {ω{x∈Δ}|ω ∈ S(X ) ∩ Vin, Δ ∈ F} ⊂ Vout.
The following conditions are equivalent:
(1) A(x) satisfies Assumption 2.
(2) There exists an instrument I for (Vin,Vout, S) such that

Pr{x ∈ Δ‖ω} = ‖I(Δ)ω‖ (37)

for all ω ∈ S(X ) ∩ Vin and Δ ∈ F , and that

ω{x∈Δ} =
I(Δ)ω
‖I(Δ)ω‖ (38)

whenever Pr{x ∈ Δ‖ω} �= 0.

The complete positivity of instrument is based on the general description of the
dynamics of open systems. In Section 2, we discussed the dynamics of open systems
state/representation-independently. We consider the following assumption that is called
the trivial extendability.

39



Symmetry 2021, 13, 1183

Assumption 3. For any quantum system S′ that is described by a C∗-algebra Y and does not
interact with an apparatus A(x) nor S, A(x) can be extended into an apparatus A(x′) measuring
the composite system S + S′ with the following statistical properties:

Pr{x′ ∈ Δ‖ω ⊗ ϕ} = Pr{x ∈ Δ‖ω}, (39)

(ω ⊗ ϕ){x′∈Δ} = ω{x∈Δ} ⊗ ϕ (40)

for all ω ∈ Vin ∩ S(X ), ϕ ∈ W ∩ S(Y) and Δ ∈ F , where W is a central subspace of Y∗.

Let M and N be von Neumann algebras. For every σ ∈ N∗, we define a map
id⊗ σ : M ⊗ N → M by 〈ρ ⊗ σ, X〉 = 〈ρ, (id⊗ σ)(X)〉 for all ρ ∈ M∗ and X ∈ M ⊗ N .

A measuring apparatus that satisfies Assumption 3 is described by a CP instrument.
In the von Neumann algebraic setting, a measuring process is defined as follows.

Definition 9 (Measuring process [19] (Definition 3.2)). Let M be a von Neumann algebra on a
Hilbert space H, and (S,F ) a measurable space. A 4-tuple M = (K, σ, E, U) is called a measuring
process for (M, S) if it satisfies the following conditions:
(1) K is a Hilbert space,
(2) σ is a normal state on B(K),
(3) E : F → B(K) is a spectral measure,
(4) U is a unitary operator on H⊗K,
(5) {IM(M, Δ) | M ∈ M, Δ ∈ F} ⊂ M, where IM : B(H)×F → B(H) is defined by

IM(X, Δ) = (id⊗ σ)[U∗(X ⊗ E(Δ))U] (41)

for all X ∈ B(H) and Δ ∈ F .

As shown in [18], every CP instrument for (B(H), S) is defined by a measuring
process. By contrast, in the case where M is a non-atomic injective von Neumann algebra,
it is shown in [19] that there exist CP instruments for (M, S) which cannot be defined
by any measuring processes. Furthermore, a necessary and sufficient condition for a CP
instrument to be defined by a measuring process is given in [19].

In the context of measurement, we do not always care about sectors as a macroscopic
unit, but we actively utilize the macroscopic distinction based on the disjointness. We
introduce two kinds of subcentral lifting property for instruments as follows.

Definition 10. An instrument I for (X ,V , S) is said to have the first subcentral lifting property
if there exists a central subspace W of the dual space of a C∗-algebra Y(⊃ X ) and an instrument Ĩ
for (X ,V ,Y ,W , S) satisfying the following two conditions:
(1) For every ω ∈ S(X ) ∩ V and Δ ∈ F , Ĩ(Δ)ω ◦

– Ĩ(Δc)ω.
(2) For every ω ∈ S(X ) ∩ V , X ∈ X and Δ ∈ F , [Ĩ(Δ)ω](X) = [I(Δ)ω](X).

Definition 11. An instrument I for (X ,V , S) is said to have the second subcentral lifting property
if there exists a central subspace W of the dual space of a C∗-algebra Y(⊃ X ) and an instrument Ĩ
for (Y ,W , S) satisfying the following two conditions:
(1) For every ϕ ∈ S(Y) ∩W and Δ ∈ F , Ĩ(Δ)ϕ ◦

– Ĩ(Δc)ϕ.
(2) For every ω ∈ S(X ) ∩ V , there exists ω̃ ∈ S(Y) ∩ W such that ω̃(X) = ω(X) and
[Ĩ(Δ)ω̃](Y) = [I(Δ)ω](Y) for all X, Y ∈ X and Δ ∈ F .

Both subcentral lifting properties characterize the measurement obtained by restricting
a measurement, which realizes the disjointness of states (after the measurement) of a larger
system corresponding to different output values, to the target system. On the other hand,
the difference between these two properties may be obvious from the definitions.
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An instrument I for (X ,Vin,Y ,Vout, S) is said to be finite if there exists a finite subset
S0 of S and a map T : S0 → P(Vin,Vout) such that

I(Δ) = ∑
s∈S0∩Δ

T(s) (42)

for all Δ ∈ F .

Theorem 13. Every finite instrument for (X ,V , S) has the first subcentral lifting property and
the second subcentral lifting property.

Proof. Let I be a finite instrument for (X ,V , S), a finite subset S0 of S, and a map T :
S0 → P(V) satisfying Equation (42) for all Δ ∈ F . For every Δ ∈ F , a linear map
Ĩ(Δ) : V → V ⊗ l1(S0) is defined by

Ĩ(Δ)ω = ∑
s∈S0∩Δ

T(s)ω ⊗ δs (43)

for all ω ∈ V . Then, Ĩ is a finite instrument for (X ,V ,X ⊗min l∞(S0),V ⊗ l1(S0), S).
Then, Ĩ satisfies Ĩ(Δ)ω ◦

– Ĩ(Δc)ω for all ω ∈ S(X ) ∩ V and Δ ∈ F . Furthermore, every
ω ∈ S(X ) ∩ V , X ∈ X and Δ ∈ F , [Ĩ(Δ)ω](X ⊗ 1) = [I(Δ)ω](X). Therefore, I has the
first subcentral lifting property.

Next, we define a finite instrument Î for (X ⊗min l∞(S0),V ⊗ l1(S0), S) by

Î(Δ)ϕ = Ĩ(Δ)(j(ϕ)) (44)

for all Δ ∈ F and ϕ ∈ V ⊗ l1(S0), where j : V ⊗ l1(S0) → V is a linear map defined by

[j(ϕ)](X) = ϕ(X ⊗ 1) (45)

for all X ∈ X . For every ϕ ∈ S(X ⊗min l∞(S0))∩ (V ⊗ l1(S0)) and Δ ∈ F , Î(Δ)ϕ ◦

– Î(Δc)ϕ.
For every ω ∈ S(X ) ∩ V , ω̃ = ω ⊗ δs0 , where s0 ∈ S0 satisfies ω̃(X ⊗ 1) = ω(X) and
[Ĩ(Δ)ω̃](Y ⊗ 1) = [I(Δ)ω](Y) for all X, Y ∈ X and Δ ∈ F . Therefore, I has the second
subcentral lifting property.

We conjecture that every CP instrument has both subcentral lifting properties.

6. Discussion and Perspectives

In the study, we have defined instruments by using central subspaces of the dual of a
C∗-algebra. We have checked its consistency with the definition in the von Neumann alge-
braic setting. This result means that the extension of the measurement theory to C∗-algebra
in the paper is valid. Furthermore, we have proposed a unification of the measurement the-
ory and the sector theory: we have defined and characterized the centrality of instruments.
In addition, we have discussed the operational characterization and macroscopic nature
of quantum measurement. In the context, we have actively used the disjointness of states
to distinguish different output values of the meter. Our results are, of course, applicable
to systems described by C*-algebras generated from field operators, and the macroscopic
aspects of quantum fields can now be discussed in terms of measurement theory.

In the setting of AQFT, we use a local net {A(O)}O∈R1 on a space M1 in order to
describe the DP phenomena. In describing the measurement of DPs, only the use of the local
net first adopted is not enough. In fact, to detect (the effect of) DPs, we need an operation
wherein some probe is brought closer to the spatial scale at which DPs are generated. We
introduced an extension of a local net to mathematically describe the operation at the level
of observable algebras.
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Definition 12. Let {A(O)}O∈R1 and {B(O)}O∈R2 be local nets on M1 and M2, respectively.
{B(O)}O∈R2 is an extension of {A(O)}O∈R1 if it satisfies the following three conditions:
(i) M1 ⊂ M2.
(ii) R1 ⊂ R2.
(iii) For every O ∈ R1, A(O) ⊂ B(O).

We use the extensions of a local net because the construction of the composite system
of the system of interest and a measuring apparatus is not so simple. In particular, the
construction of the composite system by the tensor product is not always applicable to
quantum fields.

Let {B(O)}O∈R2 be a local net on M2 and an extension of a local net {A(O)}O∈R1 on
M1. We suppose that M1 is bounded. The composite system of the original system and a
probe, which is close to the original system on the spatial scale where DPs are generated, is
described by {B(O)}O∈R2 as a quantum field. Furthermore, the material system, which
is a part of the composite system, is assumed to be localized in the neighborhood of M1.
In the composite system, the generation and annihilation of DPs constantly occur near
non-uniform materials in the unstable situation where light continues to incident constantly.
By measuring the emitted light at regions far from M1, we check (or estimate) the effect of
DPs generated in M1.

Constructing a concrete model of DPs as a quantum field in order to correlate experi-
ments of DPs with the theory is a future task. We hope to describe the DP phenomena as
open systems at the next stage. In the future, clarification of the relationship between this
study and the recent trends in DP research [33] is required. Moreover, the mathematical
theory of quantum measurement for quantum systems described by C∗-algebras should be
further developed.

Funding: This research received no external funding.

Acknowledgments: The author thanks anonymous reviewers for their comments to improve the
quality of this paper.

Conflicts of Interest: The author declares no conflict of interest.

Abbreviations

Abbreviations
The following abbreviations are used in this manuscript:

AQFT algebraic quantum field theory
CP completely positive
DP dressed photon
PVM projection valued measure

Appendix A. Operator Algebra

We introduce the basic facts on operator algebras. See [26,30,31,34–37] for more details
on operator algebras. A set X is called a C∗-algebra if it satisfies the following conditions:
(1) X is a Banach space over C.
(2) X is a ∗-algebra, i.e., it is an algebra with involution. The involution ∗ : X → X satisfies
(aX + bY)∗ = āX∗ + b̄Y∗, (XY)∗ = Y∗X∗, and X∗∗ := (X∗)∗ = X for all a, b ∈ C and
X, Y ∈ X .
(3) The norm of X satisfies ‖X∗X‖ = ‖X‖2 for all X ∈ X .

We assume that C∗-algebras are unital.
Let X and Y be C∗-algebras. A map j : X → Y is called a ∗-homomorphism if it

satisfies the following conditions:
(i) j(aX1 + bX2) = aj(X1) + bj(X2) for all a, b ∈ C and X1, X2 ∈ X .
(ii) j(X1X2) = j(X1)j(X2) for all X1, X2 ∈ X .
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(iii) j(X∗) = j(X)∗ for all X ∈ X .
(iv) j(1) = 1.

A ∗-homomorphims β of X is called a ∗-automorphism of X if there exists a ∗-
homomorphims γ of X such that β ◦ γ = idX and γ ◦ β = idX . Aut(X ) denotes the set
of automorphisms of X . A ∗-homomorphism and a ∗-automorphism are simply called a
homomorphism and an automorphism, respectively.

Let ω be a linear functional on X .
(i) ω is positive if ω(X∗X) ≥ 0 for all X ∈ X .
(ii) ω is normalized if ω(1) = 1.

X ∗ denotes the set of (complex) linear functionals on X . X ∗
+ denotes the set of positive

linear functionals on X . A linear functional on X is called a state on X if it is positive and
normalized. S(X ) denotes the set of states on X . A state ω on X is faithful if ω(X∗X) = 0
implies X = 0. A C∗-algebra W is called a W∗-algebra if it is the dual of a Banach space W∗,
called the predual of W . The second dual X ∗∗ = (X ∗)∗ of a C∗-algebra X is a W∗-algebra
and is called the universal enveloping algebra of X . A W∗-algebra W is said to be σ-finite
if it admits at most countably many orthogonal projections. A positive linear functional
ϕ on W is said to be normal if {ϕ(Aγ)}γ∈Γ converges to ϕ(A) for all non-decreasing nets
{Aγ}γ∈Γ of positive operators in W convergent to a positive operator A ∈ W . A positive
linear functional ϕ on W is normal if and only if ϕ ∈ W∗. B(H) denotes the set of bounded
linear operators on a Hilbert space H. A W∗-algebra M is called a von Neumann algebra
on a Hilbert space H if it is a subset of B(H), and the involution of M coincides with the
adjoint operation on B(H). The predual M∗ of a von Neumann algebra M on a Hilbert
space H satisfies

M∗ = {ϕ ∈ M∗|∃ρ ∈ T(H) s.t. ϕ(M) = Tr[Mρ] for all M ∈ M}, (A1)

where T(H) denotes the set of trace-class operators on H.
For every state ω on X , there exist a Hilbert space Hω, a representation πω of X on

Hω and a unit vector Ωω of Hω such that

ω(X) = 〈Ωω |πω(X)Ωω〉, X ∈ X , (A2)

and Hω = πω(X )Ωω. Here, a map π : X → B(H) is called a representation of X on a
Hilbert space H if it satisfies π(aX + bY) = aπ(X) + bπ(Y), π(XY) = π(X)π(Y), and
π(X∗) = π(X)∗ for all a, b ∈ C and X, Y ∈ X . The triple (πω,Hω, Ωω) is called the GNS
representation of ω and is unique up to unitary equivalence.

For any subset S of B(H), we define the commutant S′ of S by S′ = {A ∈ B(H) | ∀B ∈
S, AB = BA} and the double commutant S′′ of S by S′′ = (S′)′. πω(X )′′ and πω(X )′ are
then von Neumann algebras on Hω.

Appendix B. The Proof of Theorem 1

First, we present theorems used to show Theorem 1.

Theorem A1 ([24–27,31]). Let X be a C∗-algebra and H a Hilbert space. For every CP map
T : X → B(H), there exist a Hilbert space K, a representation π of X on K, and V ∈ B(H,K)
such that

T(X) = V∗π(X)V (A3)

for all X ∈ X , and that K = span(π(X )VH). If X and H are separable, then so is K.

The triplet (π,K, V) is called a Stinespring representation of T, and is unique up to
unitary equivalence.

Theorem A2 ([26] (Chapter IV, Theorem 5.5)). Let M1 and M2 be von Neumann algebras on
Hilbert spaces H1 and H2, respectively. If π is a normal homomorphism of M1 onto M2, then
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there exist a Hilbert space L, a projection E of M′
1 ⊗ B(L), and an isometry U of E(H1 ⊗ L)

onto H2 such that

π(M) = UjE(M ⊗ 1)U∗ (A4)

for all M ∈ M1, where jE : B(H1 ⊗ L) → EB(H1 ⊗ L)E is defined by jE(X) = EXE for all
X ∈ B(H1 ⊗L). M1 ⊗ C1 is then a multiplicative domain of jE.

As a corollary of Theorem A2, the following holds:

Corollary A1. Let H1 and H2 be Hilbert spaces. If π is a normal homomorphism of B(H1) onto
B(H2), then there exist a Hilbert space K and a unitary W of H1 ⊗K onto H2 such that

π(X) = W(X ⊗ 1)W∗ (A5)

for all X ∈ B(H1).

Let X and Y be C∗-algebras. We define a partial order T1 ≤ T2 on CP(X ,Y) by
T2 − T1 ∈ CP(X ,Y).

Theorem A3 ([25] (Theorem 1.4.2)). Let T1, T2 be elements of CP(X , B(H)) such that T1 ≤ T2,
and (π,K, V) is the Stinespring representation of T2. There exists a positive operator R of π(X )′

such that
T1(X) = V∗Rπ(X)V (A6)

for all X ∈ X .

By using the above theorems, we show Theorem 1.

Proof of Theorem 1. Put P = T(1). Suppose P �= 0 without loss of generality. We define a
unital normal CP map T′ on B(H) by

T′(X) =
1

‖P‖T(X) +

(
1− P

‖P‖

) 1
2
X
(

1− P
‖P‖

) 1
2

(A7)

for all X ∈ B(H). By Theorem A1, there exist a separable Hilbert space K′, a normal repre-
sentation π′ of X on K′, and an isometry V′ ∈ B(H,K) such that K′ = span(π′(X )V′H)
and that

T′(X) = (V′)∗π′(X)V′ (A8)

for all X ∈ B(H). Since
1

‖P‖T(X∗X) ≤ T′(X∗X) (A9)

for all X ∈ B(H), by Theorem A3, there exists a positive operator R′ of π′(X )′ such that

1
‖P‖T(X) = (V′)∗π′(X)R′V′ (A10)

for all X ∈ B(H). By Corollary A1, there exist a separable Hilbert space L1 and a unitary
operator W ∈ B(H⊗L1,K′) such that

π′(X) = W ′(X ⊗ 1)W ′∗ (A11)

for all X ∈ B(H). There then exists a positive operator R′′ on L1 such that R′W ′ =
W ′(1⊗ R′′).
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Let L2 be an infinite-dimensional separable Hilbert space, v a unit vector in L2, and y
a unit vector in L1. We define an isometry U : H⊗Cy ⊗Cv → H⊗L1 ⊗L2 by

U0(x ⊗ y ⊗ v) = (W ′)∗V′x ⊗ v (A12)

for all x ∈ H. Since H⊗Cy ⊗Cv and U0(H⊗Cy ⊗Cv) satisfy dim((H⊗Cy ⊗Cv)⊥) =
dim((U0(H⊗Cy ⊗Cv))⊥) as subspaces of H⊗L1 ⊗L2, there exists a unitary operator
U on H⊗L1 ⊗L2 such that U|H⊗Cy⊗Cv = U0. We put K = L1 ⊗L2 and ξ = y ⊗ v, and
define a positive operator R on K by R = ‖P‖R′′ ⊗ 1. For every X ∈ B(H) and x1, x2 ∈ H,
we obtain

〈x1|T(X)x2〉 = ‖P‖〈x1|(V′)∗W ′(X ⊗ R′′)(W ′)∗V′x2〉
= ‖P‖〈(W ′)∗V′x1 ⊗ v|(X ⊗ R′′ ⊗ 1)[(W ′)∗V′x2 ⊗ v]〉
= 〈U(x1 ⊗ y ⊗ v)|(X ⊗ R)[U(x2 ⊗ y ⊗ v)]〉
= Tr[U∗(X ⊗ R)U(|x2〉〈x1| ⊗ |ξ〉〈ξ|)] (A13)

= Tr[TrK[U∗(X ⊗ R)U(1⊗ |ξ〉〈ξ|)]|x2〉〈x1|]
= 〈x1|TrK[U∗(X ⊗ R)U(1⊗ |ξ〉〈ξ|)]x2〉,

which completes the proof of (1).
Next, we show (2). By Theorem A1, there exist a separable Hilbert space K1, a normal

representation π of X on K and V ∈ B(H,K) such that K1 = span(π(X )VH) and that

T(X) = V∗π(X)V (A14)

for all X ∈ B(H). By Corollary A1, there exist a separable Hilbert space K2 and a unitary
operator W ∈ B(K1,H⊗K2) such that

π(X) = W(X ⊗ 1)W∗ (A15)

for all X ∈ B(H). Let {yi}dim(K2)
i=1 be a complete orthonormal system of K2. For every

1 ≤ i ≤ dim(K2), we define Ki ∈ B(H) by

〈x1|Kix2〉 = 〈x1 ⊗ yi|W∗Vx2〉 (A16)

for all x1, x2 ∈ H. For every 1 ≤ i ≤ dim(K2), X ∈ B(H) and x1, x2 ∈ H, we have

〈x1|K∗
i XKix2〉 = 〈Kix1|XKix2〉 =

dim(H)

∑
j=1

〈Kix1|zj〉〈zj|XKix2〉

=
dim(H)

∑
j=1

〈Kix1|zj〉〈X∗zj|Kix2〉

=
dim(H)

∑
j=1

〈W∗Vx1|zj ⊗ yi〉〈X∗zj ⊗ yi|W∗Vx2〉 (A17)

=
dim(H)

∑
j=1

〈W∗Vx1|(|zj〉〈zj| ⊗ |yi〉〈yi|)(X ⊗ 1)W∗Vx2〉

= 〈W∗Vx1|(X ⊗ |yi〉〈yi|)W∗Vx2〉 = 〈x1|V∗W(X ⊗ |yi〉〈yi|)W∗Vx2〉.
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Therefore, for every X ∈ B(H) and x1, x2 ∈ H, we obtain

〈x1|T(X)x2〉 = 〈x1|V∗W(X ⊗ 1)W∗Vx2〉

=
dim(K2)

∑
i=1

〈x1|V∗W(X ⊗ |yi〉〈yi|)W∗Vx2〉 (A18)

=
dim(K2)

∑
i=1

〈x1|K∗
i XKix2〉 = 〈x1|

(
dim(K2)

∑
i=1

K∗
i XKi

)
x2〉,

which completes the proof of (2).

The proof of (1) in the above theorem refers to that of [18] (Theorem 5.1). The results
of this appendix are related to the theory of Hilbert modules [38–43].
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Abstract: The purpose of this paper is to build a new bridge between category theory and a general-
ized probability theory known as noncommutative probability or quantum probability, which was
originated as a mathematical framework for quantum theory, in terms of states as linear functional
defined on category algebras. We clarify that category algebras can be considered to be generalized
matrix algebras and that the notions of state on category as linear functional defined on category alge-
bra turns out to be a conceptual generalization of probability measures on sets as discrete categories.
Moreover, by establishing a generalization of famous GNS (Gelfand–Naimark–Segal) construction,
we obtain a representation of category algebras of †-categories on certain generalized Hilbert spaces
which we call semi-Hilbert modules over rigs. The concepts and results in the present paper will be
useful for the studies of symmetry/asymmetry since categories are generalized groupoids, which
themselves are generalized groups.

Keywords: category; algebra; state; category algebra; state on category; noncommutative probability;
quantum probability; GNS representation

1. Introduction

In the present paper, we study category algebras and states defined on arbitrary
small categories to build a new bridge between category theory (see [1–4] and references
therein, for example) and noncommutative probability or quantum probability (see [5–7]
and references therein, for example), a generalized probability theory which was originated
as a mathematical framework for quantum theory.

A category algebra is, in short, a convolution algebra of functions on a category.
For example, on certain categories called finely finite category [8], which is a categorical
generalization of locally finite poset, the convolution operation can be defined on the set of
arbitrary functions and it becomes a unital algebra called incidence algebra. Many authors
have studied the notions of Möbius inversion, which has been one of fundamental part of
combinatorics since the pioneering work by Rota [9] on posets, in the context of incidence
algebras on categories ([8,10–14], for example).

There is another approach to obtain the notion of category algebra. As is well known,
a group algebra is defined as a convolution algebra consisting of finite linear combinations
of elements. By generalization with replacing “elements” by “arrows”, one can obtain
another notion of category algebra (see [13], for example), which also includes monoid
algebra (in particular polynomial algebras) and groupoid algebras as examples. Please
note that for a category with infinite number of objects, the algebra is not unital.

The category algebras we focus on in the present paper are unital algebras defined
on arbitrary small categories, which are slightly generalized versions of algebras studied
under the name of the ring of an additive category [15]. These category algebras include
the ones studied in [13] as subalgebras in general, and they coincide for categories with
finite number of objects. Moreover, one of the algebras we study, called “backward finite
category algebra”, coincides with incidence algebras for combinatorically important cases
originally studied in [9].
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The purpose of this paper is to provide a new framework for the interplay between
regions of mathematical sciences such as algebra, probability and physics, in terms of
states as linear functional defined on category algebras. As is well known, quantum theory
can be considered to be a noncommutative generalization of probability theory. At the
beginning of quantum theory, matrix algebras played a crucial role (see [16] for example).
In the present paper, we clarify that category algebras can be considered to be generalized
matrix algebras and that the notions of states on categories as linear functionals defined on
category algebras turns out to be a conceptual generalization of probability measures on
sets as discrete categories (For the case of states on groupoid algebras over the complex
field C it is already studied [17]).

Moreover, by establishing a generalization of famous GNS (Gelfand–Naimark–Segal)
construction [18,19] (as for the studies in category theoretic context, see [20–22] for example),
we obtain a representation of category algebras of †-categories on certain generalized
Hilbert spaces (semi-Hilbert modules over rigs), which can be considered to be an extension
of the result in [17] for groupoid algebras over C. This construction will provide a basis
for the interplay between category theory, noncommutative probability and other related
regions such as operator algebras or quantum physics.

Notation 1. In the present paper, categories are always supposed to be small (This assumption may
be relaxed by applying some appropriate foundational framework). The set of all arrows in a category
C is also denoted as C. |C| denotes the set of all objects, which are identified with corresponding
identity arrows, in C. We also use the following notations:

C′ CC := C(C, C′), CC := #C′∈|C|C(C, C′), C′ C := #C∈|C|C(C, C′),

where C(C, C′) denotes the set of all arrows from C to C′.

2. Category Algebras

We introduce the notion of rig, module over rig, and algebra over rig in order to study
category algebras in sufficient generality for various future applications in noncommu-
tative probability, quantum physics and other regions of mathematical sciences such as
tropical mathematics.

Definition 1 (Rig). A rig R is a set with two binary operations called addition and multiplication
such that

1. R is a commutative monoid with respect to addition with the unit 0,
2. R is a monoid with respect to multiplication with the unit 1,
3. r′′(r′ + r) = r′′r′ + r′′r, (r′′ + r′)r = r′′r + r′r holds for any r, r′, r′′ ∈ R (Distributive

law),
4. 0r = 0, r0 = 0 holds for any r ∈ R (Absorption law).

Definition 2 (Module over Rig). A commutative monoid M under addition with unit 0 together
with a left action of R on M (r, m) �→ rm is called a left module over R if the action satisfies
the following:

1. r(m′ + m) = rm′ + rm, (r′ + r)m = r′m + rm for any m, m′ ∈ M and r, r′ ∈ R.
2. 0m = 0, r0 = 0 for any m ∈ M and r ∈ R.

Dually we can define the notion of right module over R.
Let M is left and right module over R. M is called R-bimodule if

r′(mr) = (r′m)r

holds for any r, r′ ∈ R and m ∈ M.
The left/right action above is called the scalar multiplication.
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Definition 3 (Algebra over Rig). A bimodule A over R is called an algebra over R if it is also a
rig with respect to its own multiplication which is compatible with scalar multiplication, i.e.,

(r′a′)(ar) = r′(a′a)r, (a′r)a = a′(ra)

for any a, a′ ∈ A and r, r′ ∈ R.

Usually the term “algebra” is defined on rings and algebras are supposed to have
negative elements. In this paper, we use the term algebra to mean the module over rig
with multiplication.

Definition 4 (Category Algebra). Let C be a category and R be a rig. An R-valued function α
defined on C is said to be of backward (resp. forward) finite propagation if for any object C there
are at most finite number of arrows in the support of α whose codomain (resp. domain) is C. The
module over R consisting of all R-valued functions of backward (resp. forward) finite propagation
together with the multiplication defined by

(α′α)(c′′) = ∑
{(c′ ,c)| c′′=c′◦c}

α′(c′)α(c), c, c′, c′′ ∈ C

becomes an algebra over R with unit ε defined by

ε(c) =

{
1 (c ∈ |C|)
0 (otherwise)

,

and is called the category algebra of backward (resp. forward) finite propagation R0[C] (resp. 0R[C])
of C over R. The algebra 0R0[C] over R defined as the intersection R0[C] ∩ 0R[C] is called the
category algebra of finite propagation of C over R.

Remark 1. 0R0[C] coincide with the algebra studied in [15] if R is a ring.

In the present paper, we focus on the category algebras R0[C],0R[C] and 0R0[C] which
are the same if |C| is finite, although other extensions or subalgebras of 0R0[C] are also of
interest (see Examples 4 and 7).

Notation 2. In the following we use the term category algebra and the notation R[C] to denote
either of category algebras R0[C],0R[C] and 0R0[C].

Definition 5 (Indeterminates). Let R[C] be a category algebra and c ∈ C. The function χc ∈
R[C] defined as

χc(c′) =

{
1 (c′ = c)
0 (otherwise)

is called the indeterminate (See Example 2) corresponding to c.

For indeterminates, it is easy to obtain the following:

Theorem 1 (Calculus of Indeterminates). Let c, c′ ∈ C, χc, χc′ be the corresponding indetermi-
nates and r ∈ R. Then

χc′χc =

{
χc′◦c (dom(c′) = cod(c))
0 (otherwise),

rχc = χcr.
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In short, a category algebra R[C] is an algebra of functions on C equipped with the
multiplication which reflects the compositionality structure of C. By the identification of
c ∈ C �→ χc ∈ R[C], categories are included in category algebras.

Let us establish the basic notions for calculation in category algebras:

Definition 6 (Column, Row, Entry). Let α ∈ R[C] and C, C′ ∈ |C|. The elements αC, C′
α, C′

αC ∈
R[C] defined as

αC(c) =

{
α(c) (c ∈ CC)

0 (otherwise),

C′
α(c) =

{
α(c) (c ∈ C′ C)
0 (otherwise),

C′
αC(c) =

{
α(c) (c ∈ C′ CC)

0 (otherwise),

are called the C-column, C′-row and (C′, C)-entry of α, respectively.

Please note that either of the data αC(C ∈ |C|) , C′
α(C′ ∈ |C|) or C′

αC (C, C′ ∈ |C|)
determine α. Moreover, if |C| is finite,

α = ∑
C,C′∈|C|

C′
αC.

By definition, the following theorem holds:

Theorem 2 (Polynomial Expression). For any α ∈ R[C]

C′
αC = ∑

c∈C′ CC

α(c)χc = ∑
c∈C′ CC

χcα(c).

If |C| is finite,
α = ∑

c∈C
α(c)χc = ∑

c∈C
χcα(c).

The formulae above clarify that category algebras are generalized polynomial algebra
(see Example 2). On the other hand, the following theorem, which shows that category
algebras are generalized matrix algebras (see Example 7), also follows by definition:

Theorem 3 (Matrix Calculus). For any α, α′ ∈ R[C], C, C′ ∈ |C| and r ∈ R, the followings hold:

(α′ + α)C = α′C + αC, C′
(α′ + α) =C′

α′ +C′
α,

C′
(α′ + α)C =C′

α′C +C′
αC

(r′αr)C = r′ αCr, C′
(r′αr) = r′ C′

αr, C′
(r′αr)C = r′ C′

αCr

(α′α)C = α′ αC = ∑
C′′∈|C|

α′C′′
C′′

αC

C′
(α′α) =C′

α′ α = ∑
C′′∈|C|

C′
α′C′′

C′′
α

C′
(α′α)C =C′

α′ αC = ∑
C′′∈|C|

C′
α′C′′

C′′
αC.

The theorem above implies the following:
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Theorem 4. α ∈ R[C] is determined by its action on columns εC/ rows C′
ε of the unit ε for all

C, C′ ∈ |C|.

Proof. Let α ∈ R[C] and ε be the unit of R[C]. Then by definition

α = αε, α = εα

holds and it implies αC = αεC, C′
α = C′

ε α, which determines α.

Remark 2. It is convenient to make use of a kind of “Einstein convention” in physics: Double
appearance of object indices which do not appear elsewhere means the sum over all objects in the
category. For instance,

C′
(α′α)C =C′

α′C′′
C′′

αC

means
C′
(α′α)C = ∑

C′′∈|C|

C′
α′C′′

C′′
αC.

The notation is quite useful especially for category algebra R[C] where |C| is finite. In that
case it is easy to show the decomposition of unit:

ε = εC
Cε.

As a corollary,
α′α = α′εα = α′εC

Cεα = α′C
Cα,

holds, which means that the multiplication can be interpreted as inner product of columns and rows.
Hence, you can insert C

C in formulae when C does not appear elsewhere.

3. Example of Category Algebras

Let us see some important examples of category algebras.

Example 1 (Function Algebra). Let C be a set as discrete category, i.e., a category whose arrows
are all identities. Then R[C] is nothing but the R-valued function algebra on |C|, where the
operations are defined pointwise.

When the rig R is commutative such as R = C, the function algebra is also commu-
tative. On the other hand, a category algebra is in general noncommutative even if the
rig is commutative. In this sense, category algebras can be considered to be generalized
(noncommutative) function algebras.

As we have noted, category algebras can also be considered to be generalized polyno-
mial algebras:

Example 2 (Monoid Algebra). Let C be a monoid, i.e., a category with only one object. Then
R[C] is the monoid algebra of C. For example, in the case of C = N as additive monoid, R[C] is the
polynomial algebra over R.

Since a monoid C has only one object, any α ∈ R[C] can be presented as,

α = ∑
c∈C

α(c)χc

by Theorem 2 which make it clear that R[C] is a generalized polynomial algebra.
As special cases of Example 2, we have group algebras.

Example 3 (Group Algebra). Let C be a group, i.e., a monoid whose arrows are all invertible.
Then R[C] coincides with the group algebra of C. For example, in the case of C = Z, R[C] is the
Laurent polynomial algebra over R.
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By another generalization of Example 3 other than Example 2, we have groupoid algebras.

Example 4 (Groupoid Algebra). Let C be a groupoid, i.e., a category whose arrows are all
invertible. When |C| is finite, R[C] is nothing but the groupoid algebra of |C|. Otherwise R[C] is a
unital extension of the groupoid algebra in conventional sense which is nonunital. R[C] is quite
useful to treat certain algebras which appeared in quantum physics [17]. (See Example 5 also.)

As special cases of the Example 4 we have matrix algebras:

Example 5 (Matrix Algebra). Let C be an indiscrete category, i.e., a category such that for every
pair of objects C, C′ there is exactly one arrow from C to C′. Denote the cardinal of |C| is n. Then
R[C] is isomorphic to the matrix algebra Mn(R).

Example 5 above shows that matrix algebras are category algebras. Conversely, any
category algebra can be considered to be generalized matrix algebra (see Theorem 3). This
point of view is also useful to study quivers [23], i.e., directed graphs with multiple edges
and loops.

Example 6 (Path Algebra). Let C be the free category of a quiver Q. R[C] coincides with the
notion of path algebra when the quiver Q has finite number of vertices. Otherwise, the former
includes the latter as a subalgebra.

Another important origin of the notion of category algebra is that of incidence algebra
([8,10–14], for example) originally studied on posets [9].

Example 7 (Incidence Algebra). Let C be a finely finite category [8], i.e., a category such that for
any c ∈ C there exist finite number of pairs of arrows c′, c′′ ∈ C satisfying c = c′ ◦ c′′. Then RC ,
the set of all functions from C to R, becomes a unital algebra and called the incidence algebra of C
over R.

Let C be a category such that for any C ∈ C there exist at most finitely many arrows
whose codomain is C. Then R0[C] coincides with the incidence algebra on C. (One of
the most classical examples is the poset consisting of all positive integers ordered by
divisibility). For the category satisfying the condition above, R[C] includes the zeta function
ζ defined as

ζ(c) = 1

for all c. The multiplicative inverse of ζ is denoted as μ and called Möbius function. The
relation μζ = ζμ = ε is a generalization of the famous Möbius inversion formula, which
has been considered to be the foundation of combinatorial theory since one of the most
important papers in modern combinatorics [9].

4. States on Categories

We will introduce the notion of states on categories to provide a foundation for
stochastic theories on categories. As we will see, we can construct noncommutative
probability space, a generalized notion of measure theoretic probability space based on
category algebras. The key insight is that what we need to establish statistical law is
the expectation functional, which is the functional which maps each random variable
(or “observable” in the quantum physical context) to its expectation value. Considering
a functional on R[C] as expectation functional, we can interpret R[C] as an algebra of
noncommutative random variables, such as observables of quanta.

Definition 7 (Linear Functional). Let A be an algebra over a rig R. An R-valued linear function
on A, i.e., a function preserving addition and scalar multiplication, is called a linear functional on
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A. A linear functional on A is said to be unital if ϕ(ε) = 1 where ε and 1 denote the multiplicative
unit in A and R, respectively.

Definition 8 (Linear Functional on Category). Let R be a rig and C be a category. A (unital)
linear functional on R[C] is said to be an R-valued (unital) linear functional on the category C.

Although the main theme here is stochastic theory making use of positivity structure
defined later, linear functionals on category algebras are used not only in the context
with positivity. A very interesting example is “umbral calculus” [24], an interesting tool
in combinatorics, which can be interpreted as the theory of linear functionals on certain
monoid algebras. Hence, studying the linear functionals on a category will lead to a
generalization of umbral calculus.

Given a linear functional on a category, we obtain a function on the set of arrows.
For categories with a finite number of objects, we can characterize the former in terms of
the latter:

Theorem 5 (Linear Function and Function). Let ϕ be a R-valued linear functional on C. Then
the function ϕ̂ defined as

ϕ̂(c) = ϕ(χc)

becomes a Z(R)-valued function on C, i.e., an R-valued function satisfying rϕ̂(c) = ϕ̂(c)r for any
c ∈ C and r ∈ R. Conversely, when |C| is finite, any Z(R)-valued function φ on C gives R-valued
linear functional φ̌ defined as

φ̌(α) = ∑
c∈C

α(c)φ(c) = ∑
c∈C

φ(c)α(c)

and the correspondence is bijective.

Proof. Let ϕ be a R-valued linear functional. Since rχc = χcr for any r ∈ R and c ∈ C, we
have rϕ(χc) = ϕ(χc)r which means rϕ̂(c) = ϕ̂(c)r. The converse direction and bijectivity
directly follows from definitions and Theorem 2.

As a corollary we also have the following:

Theorem 6 (Unital Linear Functional and Normalized Function). Let C be a category such
that |C| is finite. Then there is one to one correspondence between R-valued unital linear functionals
ϕ and normalized Z(R)-valued functions φ on C, i.e., Z(R)-valued functions φ satisfying

∑
C∈|C|

φ(C) = 1.

(Please note that we identify objects and identity arrows.)

To define the notion of state as generalized probability measure which can be applied
in noncommutative contexts such as stochastic theory on category algebras, we need the
notions of involution and positivity structure.

Definition 9 (Involution on Category). Let C be a category. A covariant/contravariant endo-
functor (·)† on C is said to be a covariant/contravariant involution on C when (·)† ◦ (·)† is equal
to the identity functor on C. A category with contravariant involution which is identity on objects
is called a †-category.

Remark 3. For the studies on involutive categories, which are categories with involution satisfying
certain conditions, see [20,22] for example.
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Definition 10 (Involution on Rig). Let R be a rig. An operation (·)∗ on R preserving addition
and covariant/contravariant with respect to multiplication is said to be a covariant/contravariant
involution on R when (·)∗ ◦ (·)∗ is equal to the identity function on R. A rig with contravariant
involution is called a ∗-rig.

Definition 11 (Involution on Algebra). Let A be an algebra over a rig R with a covariant (resp.
contravariant) involution (·) . A covariant (resp. contravariant) involution (·)∗ on A as a rig is
said to be a covariant (resp. contravariant) involution on A as an algebra over R if it is compatible
with scalar multiplication, i.e.,

(r′ar)∗ = r′a∗r (covariant case), (r′ar)∗ = ra∗r′ (contravariant case).

An algebra A over a ∗-rig R with contravariant involution is called a ∗-algebra over R.

Theorem 7 (Category Algebra as Algebra with Involution). Let C be a category with a
covariant (resp. contravariant) involution (·)† and R be a rig with a covariant (resp. contravariant)
involution (·). Then the category algebra 0R0[C] becomes an algebra with covariant involution
(resp. ∗-algebra) over R.

Proof. The operation (·)∗ defined as α∗(c) = α(c†) becomes a covariant (resp. contravari-
ant) involution on 0R0[C]. For the contravariant case,

(αβ)∗(c) = αβ(c†) = ∑
c†=c′◦c′′

α(c′)β(c′′) = ∑
c†=c′◦c′′

α(c′)β(c′′) = ∑
c†=c′◦c′′

β(c′′) α(c′)

which is equal to ∑c=c′′†◦c′† β(c′′) α(c′). By changing the labels of arrows, it can be rewritten
as

∑
c=c′′†◦c′†

β(c′′) α(c′) = ∑
c=c′◦c′′

β(c′†) α(c′′†) = ∑
c=c′◦c′′

β∗(c′)α∗(c′′) = β∗α∗(c).

The proof for the covariant case is similar and more straightforward.

Every category/rig has a trivial involution (identity). Thus, any category algebra
0R0[C] can be considered to be algebra with involution. In physics, especially quantum
theory, the ∗-algebra 0R0[C] where C is a groupoid as †-category with inversion as involution
and R = C as ∗-rig with complex conjugate as involution. (For the importance of groupoid
algebra in physics, see [17] and references therein, for example).

Based on the involutive structure we can define the positivity structure on algebras:

Definition 12 (Positivity). A pair of rigs with involution (R, R+) is called a positivity structure
on R if R+ is a subring such that r, s ∈ R+ and r + s = 0 implies r = s = 0, and that a∗a ∈ R+

for any a ∈ R.

The most typical examples are (C,R≥0), (R,R≥0), and (R≥0,R≥0). Another interest-
ing example is the tropical algebraic one (R∪ {∞},R∪ {∞}) where R∪ {∞} is considered
to be a rig with respect to min and +.

Definition 13 (State). Let R be a rig with involution and (R, R+) be a positivity structure on
R. A state ϕ on an algebra A with involution over R with respect to (R, R+) is a unital linear
functional ϕ : A −→ R which satisfies ϕ(a∗a) ∈ R+ and ϕ(a∗) = ϕ(a) for any a ∈ R, where
(·)∗ and (·) denotes the involution on A and R, respectively.

Remark 4. The last condition ϕ(a∗) = ϕ(a) follows from other conditions if R = C.
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Definition 14 (Noncommutative Probability Space). A pair (A, ϕ) consisting of an algebra A
with involution over a rig R with involution and an R-valued state ϕ is called a noncommutative
probability space.

There are many studies on noncommutative probability spaces where the algebra A
is a ∗-algebra over C. As is well known, the notion of noncommutative probability space
essentially includes the one of probability spaces in conventional sense, which corresponds
to the cases that algebras A are commutative ∗-algebras (with certain topological structure).
On the other hand, when the algebras are noncommutative, noncommutative probability
spaces provide many examples which cannot be reduced to conventional probability spaces,
such as models for quantum systems.

Definition 15 (State on Category). Let R be a rig with involution and (R, R+) be a positivity
structure on R. A state on the category algebra 0R0[C] over R with respect to (R, R+) is said to be
a state on a category C with respect to (R, R+).

As category algebras are in general noncommutative, states on categories provide
many concrete noncommutative probability spaces generalizing such simplest examples
as interacting Fock spaces [25] which are generalized harmonic oscillators, where the
categories are indiscrete categories corresponding to certain graphs.

The notion of state can be characterized for the categories with finite number of objects
as follows:

Theorem 8 (State and Normalized Positive Semidefinite Function). Let C be a category
such that |C| is finite. Then there is one to one correspondence between states ϕ with respect to
(R, R+) and normalized positive semidefinite Z(R)-valued functions φ with respect to (R, R+),
i.e., normalized functions such that

∑
{(c,c′)|dom((c′)†)=cod(c)}

ξ(c′)φ((c′)† ◦ c)ξ(c)

is in R+ for any function ξ on C with finite support and that φ(c†) = φ(c), where (·)∗ and (·)
denotes the involution on A and R, respectively.

Proof. Please note that a function ξ on C with finite support can be considered to be
an element in 0R0[C] and vice versa when |C| is finite. Then the theorem follows from
the identity

ξ∗ξ = ( ∑
c′∈C

ξ((c′)†)χc′)(∑
c∈C

χcξ(c))

= ( ∑
c′∈C

ξ(c′)χ(c′)†
)(∑

c∈C
χcξ(c))

= ∑
{(c,c′)|dom((c′)†)=cod(c)}

ξ(c′)χ(c′)†◦cξ(c).

and the condition corresponding to ϕ(ξ∗) = ϕ(ξ).

The theorem above is a generalization of the result stated in Section 2.2.2 in [17] for
groupoid algebras over C. For the case of discrete category, the notion coincides with the
notion of probability measure on objects (identity arrows). Hence, the notion of state on
category can be considered to be noncommutative generalization of probability measure
which is associated with the transition from set as discrete category (0-category) to general
category (1-category).
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Given a state on a †-category, we can construct a kind of GNS (Gelfand–Naimark–Segal)
representation [18,19] (as for generalized constructions, see [20–22,26,27] for example) in a
semi-Hilbert module defined below, a generalization of Hilbert space:

Definition 16 (Semi-Hilbert Module over Rig). Let R be a rig with involution (·). A right
module E over R equipped with a positive semidefinite sesquilinear form, i.e., a function 〈·|·〉 :
E × E −→ R satisfying

〈v′′|v′r′ + vr〉 = 〈v′′|v′〉r′ + 〈v′′|v〉r
〈v′|v〉 = 〈v|v′〉
〈v|v〉 ∈ R+

for any v, v′, v′′ ∈ E and r, r′ ∈ R is called a semi-Hilbert module over R.

When a semi-Hilbert module over E is also a left module over R, the set End(E) con-
sisting of module endomorphisms over R on E becomes an algebra over R: The bimodule
structure is given by (r′Tr)(v) = r′T(rv), where T ∈ End(E) and r, r′ ∈ R.

Theorem 9 (Generalized GNS Representation). Let A be an ∗-algebra over a rig R with
involution (·)∗. For any state ϕ on A with respect to (R, R+), there exist a semi-Hilbert module Eϕ

over R which is also a left R module equipped with a positive semidefinite sesquilibear form 〈·|·〉ϕ,
an element eϕ ∈ Eϕ such that 〈eϕ|eϕ〉ϕ = 1, and a homomorphism πϕ : A −→ End(Eϕ) between
algebras over R such that

ϕ(α) = 〈eϕ|πϕ(α)eϕ〉ϕ

and
〈v′|πϕ(α)v〉ϕ = 〈πϕ(α∗)v′|v〉ϕ

hold for any α ∈ A and v, v′ ∈ Eϕ.

Proof. Let Eϕ be the algebra A itself as a module over R equipped with 〈·|·〉ϕ defined by
〈α′|α〉ϕ = ϕ((α′)∗α). It is easy to show that 〈·|·〉ϕ is a positive semidefinite sesquilinear
form and satisfies ϕ(α) = 〈eϕ|πϕ(α)eϕ〉ϕ, and 〈v′|πϕ(α)v〉ϕ = 〈πϕ(α∗)v′|v〉ϕ where πϕ

denotes the homomorphism πϕ : A −→ End(Eϕ) defined by πϕ(α) = α(·), the left
multiplication by α, and eϕ denotes the unit ε of A as an element of Eϕ.

Remark 5. When the rig R is actually a ring, we can construct ∗-representation of A as follows
(This idea is due to Malte Gerhold): We call an endomorphism T on a semi-Hilbert module E
adjointable if there is a (not necessarily unique) adjoint, i.e., an endomorphism T∗ with 〈v′|Tv〉 =
〈T∗v′|v〉 for any v, v′ ∈ E. When E is also a left R module, the set of adjointable endomorphisms
Adj(E) becomes a subalgebra over R of End(E). The set Nul(E) = {T|〈v′|Tv〉 = 0, ∀v, v′ ∈ E}
becomes a two-sided ideal in Adj(E). When R is a ring, the quotient of Adj(E) by Nul(E) becomes
a ∗-algebra and we can construct the ∗-representation of A, since we can show that the two “adjoints”
of an endomorphism coincide up to some element of Nul(E) by taking subtraction of endomophisms
and can define the “taking adjoint” as involution operation in the quotient. In more general
cases (especially for the rigs such that the cancellation law for addition does not hold), the GNS
construction might not necessarily lead to a ∗-representations by adjointable endomorphisms.

When A is a ∗-algebra over C, we can prove Cauchy-Schwarz inequality for semi-
Hilbert space. Then the set Nϕ = {α ∈ A|〈α|α〉ϕ = 0} becomes a subspace of A. By taking
the quotient Eϕ = A/Nϕ, which becomes a pre-Hilbert space, we obtain the following
“GNS (Gelfand–Naimark–Segal)” representation of A.

Theorem 10 (GNS Representation). Let A be a ∗-algebra over C. For any state ϕ on A with
respect to (C,R≥0), there exist a pre-Hilbert space Eϕ over C equipped with an inner product
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〈·|·〉ϕ, an element eϕ ∈ Eϕ such that 〈eϕ|eϕ〉ϕ = 1, and a homomorphism πϕ : A −→ End(Eϕ)
between algebras over R such that

ϕ(α) = 〈eϕ|πϕ(α)eϕ〉ϕ

and
〈v′|πϕ(α)v〉ϕ = 〈πϕ(α∗)v′|v〉ϕ

hold for any α ∈ A and v, v′ ∈ Eϕ.

By taking completion we have usual Hilbert space formulation popular in the context
of quantum mechanics.

Remark 6. If the state ϕ is fixed as “standard” one, such as “vacuum”, the Dirac bracket notation
becomes valid if we interpret as follows:

|α〉 = πϕ(α), 〈α| = ϕ(α∗(·)), 〈α′|α〉 = ϕ(a∗b), |0〉 = |ε〉 (vacuum).

As corollaries of theorems above, we have the following results, which are extensions
of the Theorem 1 in [17]. :

Theorem 11 (Generalized GNS Representation of †-Category). Let C be a †-category and R
be a ∗-rig. For any ϕ be a state on C with respect to (R, R+), there exist a semi-Hilbert module Eϕ

over R which is also a left R module equipped with a sesquilinear form 〈·|·〉ϕ, an element eϕ ∈ Eϕ

such that 〈eϕ|eϕ〉ϕ = 1, and a homomorphism πϕ : 0R0[C] −→ End(Eϕ) between algebras over
R such that

ϕ(α) = 〈eϕ|πϕ(α)eϕ〉ϕ

and
〈v′|πϕ(α)v〉ϕ = 〈πϕ(α∗)v′|v〉ϕ

hold for any α ∈ A and v, v′ ∈ Eϕ.

Theorem 12 (GNS Representation of †-Category). Let C be a †-category. For any ϕ be a
state on C with respect to (C,R≥0), there exist a pre-Hilbert space Eϕ over C equipped with
an inner product 〈·|·〉ϕ, an element eϕ ∈ Eϕ such that 〈eϕ|eϕ〉ϕ = 1, and a homomorphism
πϕ : 0R0[C] −→ End(Eϕ) between algebras over C such that

ϕ(α) = 〈eϕ|πϕ(α)eϕ〉ϕ

and
〈v′|πϕ(α)v〉ϕ = 〈πϕ(α∗)v′|v〉ϕ

hold for any α ∈ A and v, v′ ∈ Eϕ.
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Abstract: In the present paper, we propose a new axiomatic approach to nonstandard analysis and
its application to the general theory of spatial structures in terms of category theory. Our framework
is based on the idea of internal set theory, while we make use of an endofunctor U on a topos of sets S
together with a natural transformation υ, instead of the terms as “standard”, “internal”, or “external”.
Moreover, we propose a general notion of a space called U -space, and the category USpace whose
objects are U -spaces and morphisms are functions called U -spatial morphisms. The category USpace,
which is shown to be Cartesian closed, gives a unified viewpoint toward topological and coarse
geometric structure. It will also be useful to further study symmetries/asymmetries of the systems
with infinite degrees of freedom, such as quantum fields.

Keywords: category theory; nonstandard analysis; coarse geometry

1. Introduction

Nonstandard analysis and category theory are two of the great inventions in founda-
tion (or organization) of mathematics . Both of these have provided productive viewpoints
to organize many kinds of topics in mathematics or related fields [1,2]. On the other hand,
a unification of the two theories is yet to be developed, although there are some pioneering
works, such as [3].

In the present paper, we propose a new axiomatic framework for nonstandard analysis
in terms of category theory. Our framework is based on the idea of internal set theory [4],
while we make use of an endofunctor U on a topos of sets S together with a natural
transformation υ, instead of the terms as “standard”, “internal”, or “external”.

The triple (S ,U , υ) is supposed to satisfy two axioms. The first axiom (“elementarity
axiom”) introduced in Section 2 states that the endofunctor U should preserve all finite
limits and finite coproducts. Then, the endofunctor U is viewed as some kind of extension
of functions preserving all elementary logical properties. In Section 3, we introduce another
axiom (“idealization axiom”), which is the translation of “the principle of idealization”
in internal set theory and proves the appearance of useful entities, such as infinitesimals
or relations, such as “infinitely close”, in the spirit of Nelson’s approach to nonstandard
analysis [4].

Section 4 is devoted to provide a few examples of applications on topology (on metric
spaces, for simplicity). Although the characterizations of continuous maps or uniform
continuous maps in terms of nonstandard analysis are well known, we prove them from
our framework for the reader’s convenience. In Section 5, we characterize the notion of a
bornologous map, which is a fundamental notion in coarse geometry [5].

In Section 6, we introduce the notion of U -space and U -morphism, which are the
generalizations of examples in the previous two sections. We introduce the category
USpace consisting of U -spaces and U -morphisms, which is shown to be Cartesian closed.
This will give a unified viewpoint toward topological and coarse geometric structure, and
will be useful to study symmetries/asymmetries of the systems with infinite degrees of
freedom, such as quantum fields.

Symmetry 2021, 13, 1573. https://doi.org/10.3390/sym13091573 https://www.mdpi.com/journal/symmetry61
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2. Elementarity Axiom

Let S be a topos of sets, i.e., an elementary topos with a natural number object
satisfying well-pointedness and the axiom of choice (See [1], which is based on the idea
in [6]). We make use of an endofunctor U : S −→ S with a natural transformation
υ : IdS −→ U satisfying two axioms, “elementarity axiom”, and “idealization axiom”.

Elementarity Axiom: U preserves all finite limits and finite coproducts.

Remark 1. U does not necessarily preserve power sets. This is the reason for the name of “elementarity”.

It is easy to see that “elementarity axiom” implies the preservation of many basic
notions, such as elements, subsets, finite cardinals (in particular, the subobject classifier 2),
and propositional calculi. Moreover, the following theorem holds.

Theorem 1. U is faithful.

Proof. It preserves diagonal morphisms and complements.

Theorem 2. For any element x : 1 −→ X, υX(x) = U (x) ◦ υ1.

Proof. By naturality of υ.

Corollary 1. All components of υ are monic.

From the discussion above, a set X in S is to be considered as a canonical subset of
U (X) through υX : X −→ U (X). Hence, U ( f ) : U (X0) −→ U (X1) can be considered as
“the function induced from f : X0 −→ X1 through υ.”

Definition 1. Let A, B be objects in S . The function evA,B : A × BA −→ B satisfying

evA,B(a, f ) = f (a)

for all (a, f ) ∈ A × BA is called the evaluation (for A, B) . The lambda conversion ĝ : Z −→ YX

of g : X × Z −→ Y is the function satisfying

g = evX,Y ◦ (1X × ĝ),

where 1X × ĝ denotes the function satisfying

(1X × ĝ)(x, z) = (x, ĝ(z)).

We define a family of functions κA,B : U (BA) −→ U (B)U (A) in S by the lambda conversion of
U (evA,B) : U (A × BA) ∼= U (A)× U (BA) −→ U (B).

The theorem below means that κA,B ◦ υBA represents “inducing U ( f ) from f through
υ” in terms of exponentials.

Theorem 3. Let f : A −→ B be any function in S . Then,

κA,B ◦ υBA( f̂ ) = Û ( f ).

(Here, ̂ denotes the lambda conversion operation.)
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Proof. Take the (inverse) lambda conversion of the left hand side of the equality to be
proved. It is evU (A),U (B) ◦ (idU (A) × κA,B) ◦ (idU (A) × υBA) ◦ (idU (A) × f̂ ). By the naturality
of υ and functorial properties of U , it is calculated as follows:

U (A)× BA

idU (A)×υBA

��
U (A)× 1 ∼ ��

idU (A)× f̂
��

∼

��

U (A)× U (1)
idU (A)×U ( f̂ )

��

∼

��

U (A)× U (BA)
idU (A)×κA,B

��

∼

��
U (A) ∼ ��

U ( f )
��

U (A × 1)
U (idA× f̂ )

�� U (A × BA)

U (evA,B)

��

U (A)× U (B)U (A)

evU (A),U (B)��U (B)

Corollary 2. κA,B ◦ υBA is monic.

Notation 1. From here, we omit υ and κ. U ( f ) : U (X) −→ U (Y) will be often identified with
f : X −→ Y and denoted simply as f instead of U ( f ).

Theorem 4. Let P : X −→ 2 be any proposition (function in S). Then,

∀x∈XP(x) ⇐⇒ ∀x∈U (X)P(x).

Proof. P : X −→ 2 factors through “true′′ : 1 −→ 2 if and only if P : U (X) −→ 2 factors
thorough “true′′ : 1 −→ 2.

Dually, we obtain the following:

Theorem 5. Let P : X −→ 2 be any proposition (function in S). Then,

∃x∈XP(x) ⇐⇒ ∃x∈U (X)P(x).

The two theorems above are considered as the simplest versions of “transfer principle”.
To treat with free variables and quantification, the theorem below is important. (The author
thanks Professor Anders Kock for indicating this crucial point.)

Theorem 6. U preserves images.

Proof. As U preserves all finite limits, it preserves monics. On the other hand, it also
preserves epics since every functor preserves split epics and every epic in S is split epic
(axiom of choice). Hence, the image, which is nothing but the epi-mono factorization, is
preserved.

3. Idealization Axiom

From our viewpoint, nonstandard Analysis is nothing but a method of using an
endofunctor, which satisfies the “elementarity axiom” and the following “idealization
axiom”. The name is after “the principle of idealization” in Nelson’s internal set theory [4].
Most of the basic ideas in this section have much in common with [4], although the
functorial approach is not taken in internal set theory.

Remark 2. Internal set theory (IST) is a syntactical approach to nonstandard analysis consisting
of the “principle of Idealization (I)” and the two more basic principles, called “principle of Standard-
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ization (S)” and “Transfer principle (T)”. In our framework, the role of (S) is played by the axiom of
choice for S , and (T) corresponds to the contents of Section 2.

Notation 2. For any set X, X̃ denotes the set of all finite subsets of X.

Idealization Axiom: Let P be an element of U (2X×Y). Then,

∀x′∈X̃∃y∈U (Y)∀x∈x′P(x, y) ⇐⇒ ∃y∈U (Y)∀x∈XP(x, y).

Or dually,

Idealization Axiom, dual form: Let P be an element of U (2X×Y) Then,

∃x′∈X̃∀y∈U (Y)∃x∈x′P(x, y) ⇐⇒ ∀y∈U (Y)∃x∈XP(x, y).

When X is a directed set with an order ≤ and P ∈ U (2X×Y) satisfies the “filter
condition”, i.e.,

∀x0∈X(P(x0, y) =⇒ ∀x∈X(x ≤ x0 =⇒ P(x, y))),

or dually, the “cofilter condition”, i.e.,

∀x0∈X(P(x0, y) =⇒ ∀x∈X(x0 ≤ x =⇒ P(x, y))),

then “idealization axiom” is simplified as the “commutation principle”:

Theorem 7 (Commutation Principle). If P ∈ U (2X×Y) satisfies the “filter condition” and
“cofilter condition” above, respectively, and then

∀x∈X∃y∈U (Y)P(x, y) ⇐⇒ ∃y∈U (Y)∀x∈XP(x, y)

and
∃x∈X∀y∈U (Y)P(x, y) ⇐⇒ ∀y∈U (Y)∃x∈XP(x, y)

holds, respectively.

By the principle above, we can easily prove the existence of “unlimited numbers” in
U (N), where all arithmetic operations and order structure on N are naturally extended.

Theorem 8 (Existence of “unlimited numbers”). There exists some ω ∈ U (N) such that n ≤ ω
for any n ∈ N.

Proof. It is obvious that, for any n ∈ N, there exists some ω ∈ N ⊂ U (N) such that
n < ω.

As in S , we can construct rational numbers and the completion of them as usual, we
have the object R, the set of real numbers. Then, we obtain the following:

Corollary 3. “Infinitesimals” do exist in U (R). That is, there exists some r ∈ U (R) such that
|r| < R for any positive R ∈ R.

4. Topological Structure: Continuous Map and Uniform Continuous Map

We will take an example of basic applications of nonstandard analysis within our
framework, i.e., the characterization of continuity and uniform continuity in terms of a
relation ≈ (“infinitely close”) on U (X), which is based on essentially the same arguments
that are well-known in nonstandard analysis—particularly, internal set theory [4]. For
simplicity, we will discuss only for metric spaces here. (For more general topological spaces,
we can define ≈ in terms of the system of open sets. See [4] for example.)
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Definition 2 (Infinitely close). Let (X, d) be a metric space. We call the relation ≈ on U (X)
defined below as “infinitely close”:

x ≈ x′ ⇐⇒ ∀ε∈Rd(x, x′) < ε.

That is, d(x, x′) is infinitesimal. It is easy to see that ≈ is an equivalence relation on
U (X).

Theorem 9 (Characterization of continuity). Let (X0, d0), (X1, d1) be metric spaces and ≈0,≈1
be infinitely close relations on them, respectively. A map f : X0 −→ X1 is continuous if and only if

∀x∈X0∀x′∈U (X0)
( x ≈0 x′ ⇒ f (x) ≈1 f (x′) )

holds.

Proof. We can translate the condition for f by using the usual logic, “commutation princi-
ple”, and “transfer principle” as follows:

∀x∈X0∀x′∈U (X0)
( x ≈0 x′ ⇒ f (x) ≈1 f (x′) )

⇐⇒ ∀x∈X0∀x′∈U (X0)
( ∀δ∈R d0(x, x′) < δ ⇒ ∀ε∈R d1( f (x), f (x′)) < ε )

⇐⇒ ∀x∈X0∀x′∈U (X0)
∀ε∈R∃δ∈R ( d0(x, x′) < δ ⇒ d1( f (x), f (x′)) < ε )

⇐⇒ ∀x∈X0∀ε∈R∀x′∈U (X0)
∃δ∈R ( d0(x, x′) < δ ⇒ d1( f (x), f (x′)) < ε )

⇐⇒ ∀x∈X0∀ε∈R∃δ∈R∀x′∈U (X0)
( d0(x, x′) < δ ⇒ d1( f (x), f (x′)) < ε )

⇐⇒ ∀x∈X0∀ε∈R∃δ∈R∀x′∈X0
( d0(x, x′) < δ ⇒ d1( f (x), f (x′)) < ε ).

Theorem 10 (Characterization of uniform continuity). Let (X0, d0), (X1, d1) be metric spaces
and ≈0,≈1 be infinitely close relations on them, respectively. A map f : X0 −→ X1 is uniformly
continuous if and only if

∀x∈U (X0)
∀x′∈U (X0)

( x ≈0 x′ ⇒ f (x) ≈1 f (x′) )

holds.

Proof. We can translate the condition for f by using usual logic, “commutation principle”
and “transfer Principle” as follows:

∀x∈U (X0)
∀x′∈U (X0)

( x ≈0 x′ ⇒ f (x) ≈1 f (x′) )

⇐⇒ ∀x∈U (X0)
∀x′∈U (X0)

( ∀δ∈R d0(x, x′) < δ ⇒ ∀ε∈R d1( f (x), f (x′)) < ε )

⇐⇒ ∀x∈U (X0)
∀x′∈U (X0)

∀ε∈R∃δ∈R ( d0(x, x′) < δ ⇒ d1( f (x), f (x′)) < ε )

⇐⇒ ∀ε∈R∀x∈U (X0)
∀x′∈U (X0)

∃δ∈R ( d0(x, x′) < δ ⇒ d1( f (x), f (x′)) < ε )

⇐⇒ ∀ε∈R∃δ∈R∀x∈U (X0)
∀x′∈U (X0)

( d0(x, x′) < δ ⇒ d1( f (x), f (x′)) < ε )

⇐⇒ ∀ε∈R∃δ∈R∀x∈X0∀x′∈X0
( d0(x, x′) < δ ⇒ d1( f (x), f (x′)) < ε ).

As we have seen, a morphism between metric spaces is characterized as “a morphism
with respect to ≈”. This suggests the possibility for considering other kinds of “equivalence
relations on (some subset of) U (X)” as generalized spatial structures on X. In the next
section, we will take one example related to large scale geometric structure.

5. Coarse Structure: Bornologous Map

Let us consider another kind of equivalence relation ∼ (“finitely remote”) defined
below. For simplicity, we will discuss only for metric spaces here.
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Definition 3 (Finitely remote). Let (X, d) be a metric space. We call the relation ∼ on U (X)
defined below as “finitely remote”:

x ∼ x′ ⇐⇒ ∃R∈Rd(x, x′) < R.

Note that we use ∃ instead of ∀, in contrast to “infinitely close”. This kind of dual
viewpoint will be proven to be useful in the geometric study of large scale structures, such
as coarse geometry [5].

In fact, we can prove that a “bornologous map”, a central notion of a morphism for
coarse geometry, can be characterized as “a morphism with respect to ∼”, similar to how
(uniform) continuity can be viewed as “a morphism with respect to ≈”.

Definition 4 (Bornologous map). Let (X0, d0) and (X1, d1) be metric spaces. A map f : X0 −→
X1 is called a bornologous map when

∀R∈R∃S∈R ∀x∈X0∀x′∈X0
( d0(x, x′) < R ⇒ d1( f (x), f (x′)) < S )

holds.

Theorem 11 (Characterization of bornologous map). Let (X0, d0), (X1, d1) be metric spaces
and ∼0,∼1 be finitely remote relations on them, respectively. A map f : X0 −→ X1 is bornologous
if and only if

∀x∈U (X0)
∀x′∈U (X0)

( x ∼0 x′ ⇒ f (x) ∼1 f (x′) )

holds.

Proof. We can translate the condition for f by using the usual logic, “commutation princi-
ple”, and “transfer principle” as follows:

∀x∈U (X0)
∀x′∈U (X0)

( x ∼0 x′ ⇒ f (x) ∼1 f (x′) )

⇐⇒ ∀x∈U (X0)
∀x′∈U (X0)

( ∃R∈R d0(x, x′) < R ⇒ ∃S∈R d1( f (x), f (x′)) < S )

⇐⇒ ∀x∈U (X0)
∀x′∈U (X0)

∀R∈R∃S∈R ( d0(x, x′) < R ⇒ d1( f (x), f (x′)) < S )

⇐⇒ ∀R∈R∀x∈U (X0)
∀x′∈U (X0)

∃S∈R ( d0(x, x′) < R ⇒ d1( f (x), f (x′)) < S )

⇐⇒ ∀R∈R∃S∈R∀x∈U (X0)
∀x′∈U (X0)

( d0(x, x′) < R ⇒ d1( f (x), f (x′)) < S )

⇐⇒ ∀R∈R∃S∈R∀x∈X0∀x′∈X0
( d0(x, x′) < R ⇒ d1( f (x), f (x′)) < S ).

6. The Notion of U -Space and the Category USpace

Based on the characterizations of topological and coarse geometrical structure, we
introduce the notion of U -space.

Definition 5 (U -space). A U -space is a triple (X, K,�) consisting of a set X, a subset K of U (X),
which includes X as a subset, and a preorder � defined on K.

When the preorder � is an equivalence relation, i.e., a preorder satisfying symme-
try, we call the U -space symmetric. A symmetric U -space (X, K,�) is called uniform if
K = U (X). The “infinitely close” relation and the “finitely remote” relation provide the
simplest examples of uniform U -space structure.

Actually, any topological space X with the set of open sets T can be viewed as U -space
(X,U (X),⇀) where x ⇀ x′ denotes the preorder “∀O ∈ T x ∈ U (O) =⇒ x′ ∈ U (O)”. If
(X, T) is a Hausdorff space, we can construct the symmetric U -space (X, K,�), where K
denotes

K = {x ∈ U (X)|∃x0 ∈ X x ⇀ x′}

66



Symmetry 2021, 13, 1573

and x � x′ is defined as the relation “∃x0 ∈ X x0 ⇀ x&x0 ⇀ x′.” The transitivity of ⇀
follows from the fact that if (X, T) is Hausdorff, x0 ⇀ x and x′0 ⇀ x imply x0 = x′0 for all
x0, x′0 ∈ X. In fact, the preorder � becomes an equivalence relation.

The concept of U -space will provide a general framework to unify various spatial
structure, such as topological structure and coarse structure. The notion of morphism
between U -spaces is defined as follows:

Definition 6 (U -spatial morphism). Let (X0, K0,�0) and (X1, K1,�1) be U -spaces. A func-
tion f : X0 → X1 is called a U -spatial morphism from (X0, K0,�0) to (X1, K1,�1) when
f (K0) ⊂ K1 and

x �0 x′ =⇒ f (x) �1 f (x′)

holds for any x, x′ ∈ K0.

The uniform continuous maps and bornologous maps between metric spaces are
nothing but U -spatial morphisms between corresponding uniform U -spaces. The notion of
continuous maps between Hausdorff spaces can be characterized as U -spatial morphisms
between the corresponding symmetric U -spaces.

Definition 7 (Category USpace). The category USpace is a category whose objects are U -spaces
and whose morphisms are U -spatial morphisms.

Definition 8. Let (X0, K0,�0) and (X1, K1,�1) be U -spaces. The U -space (X0 × X1, K0 ×
K1,�), where the preorder � is defined as

(x0, x1) � (x′0, x′1) ⇐⇒ x0 �0 x′0 & x1 �1 x′1,

is called the product U -space of (X0, K0,�0) and (X1, K1,�1).

Theorem 12. The projections become U -spatial morphisms. The diagram consisting of two U -
spaces, the product space of them, and projections becomes a product in USpace.

Proof. Easy.

Definition 9 (Exponential U -space). Let (X0, K0,�0) and (X1, K1,�1) be U -spaces. We
denote the set of all U -spatial morphisms from X0 to X1 as [XX0

1 ], which is the subset of XX0
1 . The

restriction of evX0,X1 : X0 × XX0
1 −→ X1 onto X0 × [XX0

1 ] −→ X1 is denoted as [evX0,X1 ]. The
U -space ([XX0

1 ], K,�), where K is defined as the subset of U ([XX0
1 ]),

K = { f |∀x ∈ K0[evX0,X1 ](x, f ) ∈ K1 and x �0 x′ =⇒ [evX0,X1 ](x, f ) �1 [evX0,X1 ](x, f ′)}

and � is defined as

f � f ′ ⇐⇒ ∀x ∈ K0 [evX0,X1 ](x, f ) �1 [evX0,X1 ](x, f ′),

is called the exponential U -space from (X0, K0,�0) to (X1, K1,�1).

Theorem 13. Let (X0, K0,�0) and (X1, K1,�1) be U -spaces and ([XX0
1 ], K,�) be the exponen-

tial U -space from (X0, K0,�0) to (X1, K1,�1). The morphism [evX0,X1 ] : X0 × [XX0
1 ] −→ X1,

the restriction of evX0,X1 , is a U -spatial morphism. Moreover, it becomes an evaluation in USpace
and [XX0

1 ] is an exponential in USpace.
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Proof. First, we prove that [evX0,X1 ] is a U -spatial morphism: For any (x, f ) ∈ K0 × K,
[evX0,X1 ](x, f ) is in K1 since x ∈ K0 and f ∈ K. Suppose that (x, f ), (x′, f ′) ∈ K0 × K and
(x, f ) � (x′, f ′), that is, x, x′ ∈ K0, f , f ′ ∈ K, x � x′ and f � f ′. Then, we have

[evX0,X1 ](x, f ) � [evX0,X1 ](x, f ′)

since f � f ′. We also have

[evX0,X1 ](x, f ′) � [evX0,X1 ](x′, f ′)

since f ′ ∈ K. Hence, [evX0,X1 ](x, f ) � [evX0,X1 ](x′, f ′).
Next, we prove that [evX0,X1 ] : X0 × [XX0

1 ] −→ X1 becomes an evaluation in USpace,
and [XX0

1 ] is an exponential in USpace: Let (X2, K2,�2) be any U -space and f : X0 ×X2 −→
X1 be any U -spatial morphism. Consider the lambda conversion f̂ : X2 −→ XX0

1 . By
assumption that f is U -spatial,

(x, c), (x′, c′) ∈ K0 × K2 & (x, c) � (x′, c′) =⇒ f (x, c), f (x′, c′) ∈ K1 & f (x, c) �1 f (x′, c′)

holds, where � denote the preorder on K0 × K2. It is equivalent to the statement that
c, c′ ∈ K2 and c �2 c′ implies that

x, x′ ∈ K0&x �0 x′ =⇒ f̂ (c)(x), f̂ (c′)(x′) ∈ K1& f̂ (c)(x) �1 f̂ (c′)(x′).

Applying the implication above for the case c = c′ ∈ X2, we have f̂ (c) ∈ [XX0
1 ]. Hence,

we can replace f̂ : X2 −→ XX0
1 with [ f̂ ] : X2 −→ [XX0

1 ] by restricting the codomain to the
image of f̂ . Moreover, we can also prove that [ f̂ ] is U -spatial from the implication: By the
implication above, we have [ f̂ ](c), [ f̂ ](c′) ∈ K and [ f̂ ](c) � [ f̂ ](c′) when c, c′ ∈ K2 and
c �2 c′. This means that [ f̂ ] is U -spatial.

It is easy to show that this [ f̂ ] is the unique U -spatial morphism from X2 to [XX0
1 ]

satisfying [evX0,X1] ◦ (1X0 × [ f̂ ]) = f . This completes the proof.

Combining the two theorems above, we have:

Theorem 14. The category USpace is a Cartesian closed category.
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Abstract: In the present paper, we propose a new approach to quantum fields in terms of category
algebras and states on categories. We define quantum fields and their states as category algebras
and states on causal categories with partial involution structures. By utilizing category algebras
and states on categories instead of simply considering categories, we can directly integrate relativity
as a category theoretic structure and quantumness as a noncommutative probabilistic structure.
Conceptual relationships with conventional approaches to quantum fields, including Algebraic
Quantum Field Theory (AQFT) and Topological Quantum Field Theory (TQFT), are also be discussed.

Keywords: quantum field; category; category algebra; state on category

1. Introduction

Quantum fields are the most fundamental entities in modern physics. Intuitively,
the notion of quantum field is the unification of relativity theory and quantum theory.
However, the existence of a non-trivial interacting quantum field model defined on a
four-dimensional Minkowski spacetime, which is a covariant with respect to the Poincaré
group, has not yet been proven. In axiomatic approaches to the quantum field theory,
there have been shown many fundamental theorems including no-go theorems such as
Haag’s theorem [1,2], which implies that the “interaction picture exists only if there is no
interaction” [3] through the clarification of the concept of the quantum field (see [3,4] and
references therein). To put it roughly, we cannot go beyond the free fields if we remain at
the axioms that we take for granted in conventional quantum field theories.

In this paper, we propose a new approach to quantum fields: The core idea is to
investigate quantum fields in terms of category algebra, which is noncommutative, in
general, over a rig (“ring without negatives”), i.e., an algebraic system equipped with
addition and multiplication, in which the category and rig correspond to the “relativity”
aspect and the “quantum” aspect of nature, respectively. By utilizing category algebra
and states on categories instead of simply considering categories, we can directly integrate
relativity as a category theoretic structure and quantum nature as a noncommutative
probabilistic structure. The cases in which the rig is an algebra over C, the field of complex
numbers become especially important for our approach to quantum fields. For other
regions of physics, such as classical variational contexts, the tropical semiring (originally
introduced in [5]), i.e., a rig with “min” and “plus” as addition and multiplication, will
be useful. The author believes that it is quite interesting to see the quantum–classical
correspondence from the unified viewpoint of the category algebras over rigs.

As is well known, the essence of the relativity is nothing but the structure of the
possible relationships between possible events. If we assume the structure of the rela-
tionships between events, we can essentially reconstruct the relativity structure. More
concretely, in [6], it is shown that two future-and-past-distinguishing Lorentzian manifolds
are conformally equivalent if and only if the associated posets are isomorphic, where the
poset consists of events and of the order relation defined by the existence of future-directed
causal curves, based on [7]; what really matters are the causal relationships (for details,
see [8] and reference therein). This viewpoint is quite essential and there is an interesting
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order-theoretic approach to spacetime (for example, the “causal set” approach [9]). How-
ever, to investigate the off-shell nature of quantum fields, which seems to be essential in
modeling interacting fields on the spacetime, we need to take not only causal relationships
but also more general relationships between spacelike events into consideration. Then, the
question arises: how should we generalize a framework of previous approaches?

The strategy we propose is to think categories, which are generalizations of both of
ordered sets (causality structures) and groups (symmetry structures), “as” relativity in a
generalized sense. More concretely, we identify the notion of causal category equipped
with partial involution structure, introduced in Section 2, as the generalized relativity struc-
ture. To combine this relativity structure with quantum theory, which can be modeled by
noncommutative rigs, especially effectively by noncommutative algebras over C as history
has shown, we need noncommutative algebras that reflect the structures of categories.
Category algebras are just such algebras. As categories are generalized groups, category
algebras are generalized group algebras.

The above discussion intuitively explains why we use category algebras to model
quantum fields. For simplicity, in this paper, we focus on a category algebra which satisfies
a suitable finiteness condition. Importantly, the category algebras can be considered as
generalized matrix algebras over R as well as generalized polynomial algebras [10], which
provides a platform for concrete and flexible studies as well as calculations. The extension
to larger algebras is, of course, of interest but the category algebras we focus on already
have rich structures as covariance and local structures of subalgebras reflect the causal
and partial involution structure of the category, as we will see in Section 3. By focusing on
these structures, we can also see the conceptual relationship between our approach and
the preceding approaches such as Algebraic Quantum Field Theory (AQFT) [4,11] and
Topological Quantum Field Theory (TQFT) [12,13].

Identifying a quantum field to be a category algebra over a rig, the next problem,
which is treated in Section 4, concerns how to define a state of it. In general, the notion
of state on ∗-algebra over C is defined as positive normalized linear functional. We can
naturally extend the notion in the context of algebras with involution over rigs ([10] for
details). We call the states on category algebras as states on categories. If the number of
objects in the category is finite, states can be characterized by functions on arrows satisfying
certain conditions [10], which is a generalization of the result in [14] for groupoids with
finite numbers of objects. More generally, to define a state on a category whose support
is contained in a subcategory with finite numbers of objects is equivalent to defining the
corresponding function which assigns the weight to each arrow. By considering such states,
we can see a quantum mechanical system as an aspect of the quantum field. This viewpoint
will shed light on the foundation of quantum theory.

For the study of quantum fields, a localized notion of state, or a “local state” [15,16],
is important. We can define the counterpart of the notion, originally studied in the AQFT
approach, as the system of states on certain subalgebras of category algebras called local
algebras, introduced in Section 3. These matters will be explained in Section 4 with more
clarification of the conceptual relationship with AQFT and TQFT. The discussion in Section 4
will provide a new basis for generalizing the DHR (Doplicher–Haag–Roberts)–DR (Doplicher–
Roberts) sector theory [17–23] as well as for developing Ojima’s micro–macro duality [24,25]
and quadrality scheme [26] from the viewpoint of category algebras and states on categories.

In the last section, we will discuss the prospect of research directions based on our
framework. In addition to the importance of mathematical research, such as taking topo-
logical or differential structures into account, there is the challenge of integrating various
approaches to quantum fields and of conducting research on quantum foundations based
on our framework. These are where new concepts such as quantum walks on categories
will be useful. One of the most exciting problems is, of course, to construct a model of a
non-trivial quantum field with interactions. The author hopes that the present paper will
be a small, new step towards these big problems.
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2. Structure of Dynamics as Category

In this section, the “relativistic structure” as the basic structure of dynamics, consisting
of possible events and relations (or “processes”) between them, is formulated in terms of
category theory.

2.1. Definition of Category

A category is a mathematical system composed of entities called objects and arrows
(or morphisms) satisfying the following four conditions.

Condition 1. For any arrow f , there exist an object called dom( f ) and another object called cod( f ),
which are called the domain of f and the codomain of f , respectively.

When dom( f ) = X and cod( f ) = Y, we denote it as

f : X −→ Y

or

X
f−→ Y.

Arrows are also denoted in any direction, not only from left to right, as above.

Condition 2. For any pair of morphism f , g satisfying dom(g) = cod( f )

Z
g←− Y

f←− X,

there exist an arrow g ◦ f

Z
g◦ f←−−− X

called the composition of f , g.

For the composition of arrows, we assume the following conditions:

Condition 3 (associative law). For any triple f , g, h of arrows satisfying dom(h) = cod(g)
and dom(g) = cod( f ),

(h ◦ g) ◦ f = h ◦ (g ◦ f )

holds.

Condition 4 (identity law). For any object X, there exists an arrow called identity arrow
1X : X −→ X. For any arrow f : X −→ Y

f ◦ 1X = f = 1Y ◦ f

holds.

By the correspondence from objects to their identity arrows, objects can be considered
as special kinds of arrows by identifying each object X with its identity arrow 1X .

In sum, the definition of a category is as follows.

Definition 1 (category). A category is a system composed of two kinds of entities called objects
and arrows, equipped with domain/codomain, composition, and identity, satisfying the associative
law and the identity law.
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In a category, we can define the “essential sameness” between objects via the notion
of invertible arrows (isomorphism).

Definition 2 (invertible arrow (isomorphism)). Let C be a category. An arrow f : X −→ Y in
C is said to be invertible in C if there exists some arrow g : Y −→ X such that

g ◦ f = 1X , f ◦ g = 1Y.

An invertible arrow in C is also called an isomorphism in C.

There are many categories whose collection of arrows is too large to be a set. In the
present paper, we focus on small categories:

Definition 3 (small category). A category C is called small if the collection of arrows is a set.

Let us see the examples of small categories which are used in the present paper.

Definition 4 (preorder). A pair (P,�) of a set P and a relation � on P satisfying p � p for
any p ∈ P and

p � q and q � r =⇒ p � r

for any p, q, r ∈ P is called a preordered set. The relation � on P is called a preorder on P. The
preordered set (P,�) can be viewed as a category whose objects are elements of P when we define
the relation p � q between p, q as the unique arrow from p to q. Conversely, we can define a
preordered set as a small category such that for any pair of objects p, q, there exists at most one
arrow from p to q.

Note that the notion of preorder is a generalization of a partial order and an equiv-
alence relation. As a special extreme case of the concept of preordered sets, we have
the following.

Definition 5 (indiscrete category and discrete category). An indiscrete category is a small
category such that for any pair of objects C, C′, there exists exactly one morphism from C to C′. A
discrete category is a small category such that all arrows are identity arrows.

Note that an indiscrete category corresponds to a complete graph and that any set can
be considered as a discrete category.

Additionally, the notion of group, which is essential in the study of symmetry, can
also be defined as a small category as follows.

Definition 6 (monoid and group). A small category with only one object is called a monoid. A
monoid is called a group if all arrows are invertible.

To see the equivalence between the definition of the group as a category, define the
arrows as the elements and the unique identity arrow (which can be identified with the
unique object) as the identity element.

By definition, the concept of monoid is a generalization of that of a group, allowing for
the existence of non-invertible arrows. the concept of groupoid is another generalization of
that of a group:

Definition 7 (groupoid). A small category is said to be a groupoid if all arrows are invertible.

As for the importance of groupoids in physics, see [14] and references therein, for
example. From the mathematical point of view, the present paper is based on an extension
of the previous work [14] on groupoid algebras over C into category algebras of an arbitrary
(small) category over a (in general, noncommutative) rig R, i.e., “ring without negatives”
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(algebraic system with addition and multiplication), which will be introduced in the next
section. Even in the case of R = C, this extension physically means allowing for irreversible
processes considering a category can be seen as a generalized groupoid allowing for invert-
ible arrows in general. The involution structure of the category algebra is provided by the
partial involution structure of the category, as we will see in the next section (†-category
introduced later can be seen as a generalization of groupoid).

A functor is defined as a structure-preserving correspondence between two categories,
as follows.

Definition 8 (functor (covariant functor)). Let C and C′ be categories. A correspondence F from
C to C′, which maps objects and arrows in C to objects and arrows in C′, is said to be a covariant
functor or simply a functor from C to C′ if it satisfies the following conditions:

1. It maps f : X −→ Y in C to F( f ) : F(X) −→ F(Y) in C′.
2. F(g ◦ f ) = F(g) ◦ F( f ) for any (compositable) pair of f , g in C.
3. For each X in C, F(1X) = 1F(X).

Definition 9 (contravariant functor). Let C and C′ be categories. A correspondence F from C
to C′, which maps objects and arrows in C to objects and arrows in C′ is said to be a contravariant
functor from C to C′ if it satisfies the following conditions:

1. It maps f : X −→ Y in C to F( f ) : F(X) ←− F(Y) in C′.
2. F(g ◦ f ) = F( f ) ◦ F(g) for any (compositable) pair of f , g in C.
3. For each X in C, F(1X) = 1F(X).

Definition 10 (composition of functors). Let F be a functor from C to C′ and G be a functor from
C′ to C′′. The composition functor G ◦ F is a functor from C to C′′, defined as (G ◦ F)(c) = G(F(c))
for any arrow c in C.

Definition 11 (identity functor). Let C be a category. A functor from C to C, which maps any
arrow to itself, is called the identity functor.

We can consider categories consisting of (certain kind of) categories as objects and
(certain kind of) functors as arrows.

The concept of involution on the category is important throughout the present paper.

Definition 12 (involution on category). Let C be a category. A covariant/contravariant endo-
functor (·)† from C to C is said to be a covariant/contravariant involution on C when (·)† ◦ (·)† is
equal to the identity functor on C. A category with contravariant involution, which is the identity
on objects, is called a †-category.

We conclude this subsection by defining the concept of natural transformation and
the related concepts. The concept of natural transformation can be seen as a general-
ization of the various concepts of transformations in mathematics and other sciences,
including physics.

Definition 13 (natural transformation). Let C,D be categories and F, G be functors from a
category C to a category D. A correspondence t is said to be a natural transformation from F to G if
it satisfies the following conditions:

1. t maps each object X in C to the corresponding arrow tX : F(X) −→ G(X) in D.
2. For any f : X −→ Y in C,

tY ◦ F( f ) = G( f ) ◦ tX .

The arrow tX is called the X component of t.
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Definition 14 (functor category). Let C and C′ be categories. The functor category C′C is a
category consisting of functors from C to C′ as objects and natural transformations as arrows
(domain, codomain, composition, and identity are defined in a natural way).

Definition 15 (natural equivalence). An isomorphism in a functor category, i.e., an invertible
natural transformation, is said to be a natural equivalence.

Notation 1. In the rest of the present paper, categories are always supposed to be small. The set of
all arrows in a category C is also denoted as C. |C| denotes the set of all objects, which are identified
with corresponding identity arrows in C.

2.2. Relativistic Structure as Category

If we intuitively consider the spacetime degrees of freedom with the geometric notion
of the “set” of possible events, it is natural to think that the structure of dynamics of
quantum can be modeled with “category” as the total system structure of relationships.

Definition 16 (causal category). A category C equipped with a subcategory Ccau satisfying
|C| = |Ccau| is called a causal category. Arrows in Ccau are said to be causal.

Any category can be considered as a causal category by taking C = Ccau. Note that |C|
is equipped with preorder �, defined as the existence of causal arrows between objects.

A typical example of causal categories is constructed as follows. For a spacetime
(with inner degrees of freedom) E, usually modeled by a manifold and sometimes by a
symmetric directed graph (as in the lattice gauge theory [27]), we can construct a category
C = M[E] whose objects and arrows are points and paths between them. More precisely,
we consider M(E) as a subcategory of the “Moore path category” [28] of E, consisting of
smooth paths in the manifold case and as the free category of E in the discrete case. Then,
we can define Ccau as the subcategory consisting of “causal paths”. For the manifold case,
the notion of causal paths can be defined as the paths whose tangent vectors are all in the
future light cone. For the graph case, a path (i.e., an arrow in the free category) c is said
to be causal if c = c′ ◦ c′′ implies dom(c′) � cod(c′) and dom(c′′) � cod(c′′), where �
denotes a preorder previously defined on the set of vertices.

Definition 17 (relevant category). Let C be a causal category and O be a subset of |C|. The
subcategory of C generated by

arrows whose domain and codomain are in O;
causal arrows whose domain is in O and whose codomain is in |C| \ O;
causal arrows whose codomain is in O and whose domain is in |C| \ O; and
identity arrows (identified with objects) in |C| \ O,

is called the relevant category for O and denoted as Orel .

By the definition of relevant categories, the following structure theorem holds.

Theorem 1 (structure theorem for relevant category). Let C be a causal category and O be a
subset of |C|. Any arrow in the relevant category Orel can be written in either of the following forms:

c, cout ◦ c, c ◦ cin, cout ◦ c ◦ cin, i,

where c denotes an arrow whose domain and codomain is in O; cout denotes a causal arrow whose
domain is in O and whose codomain is in |C| \ O; cin denotes a causal arrow whose codomain is in
O and whose domain is in |C| \ O; and i denotes an identity arrow in |C| \ O.

The notion below is quite important to see the essence of the relativistic structure.
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Definition 18 (spacelike separated). Let C be a causal category and O,O′ be a subset of |C|. O
and O′ are said to be spacelike separated if there is no causal arrow between their objects.

By definition, two spacelike separated subsets are disjoint considering the identity
arrows are causal. Moreover, we have the following directly from the structure theorem of
the relevant category.

Theorem 2 (non-existence of non-trivial compositable pair). Let C be a causal category and
O,O′ be a pair of spacelike separated subsets of |C|. There is no pair of arrows (c, c′) /∈ |C| × |C|
satisfying c ∈ Orel , c′ ∈ (O′)rel and cod(c) = dom(c′).

For the application to quantum theory, the involution structure is important. From
now on, we consider a causal category with partial involution structures as defined below.

Definition 19 (partial involution structure on category). Let C be a category. A partial
involution structure on C is a subcategory C∼ equipped with an involution such that |C| = |C∼|.

Note that any category C has the trivial partial involution structure, since C is equipped
with the involution structure |C|, defined as C† = C.

The notion is important because the category C∼ physically means the category
consisting of “bidirectional” processes. Although this notion is a generalization of the core
(i.e., the maximal groupoid in a category consisting of isomorphisms), it does not require
the reversibility of the process in the meaning of invertible arrows as isomorphisms. The
author believes that this generalization from groupoids to categories and from cores to
partial involution structures is quite important for the application to physical phenomena,
which include irreversibility.

Based on the partial involution structure, we define the notion of relevant category
with involution.

Definition 20 (relevant category with involution). Let C be a causal category with the partial
involution structure C∼. The maximal subcategory Orel∼ of C∼ closed under the involution is
called the relevant category with involution on O.

The importance of the relevant categories with involution concerns the fact that we
can naturally define algebras with involution from them. We will see the details of this in
the next section.

3. Quantum Fields as Category Algebras

In the previous section, we introduced the notion of causal category equipped with
partial involution structures as a generalized “relativity” structure. To combine this struc-
ture with the “quantum” structure, which can be modeled by noncommutative algebras,
especially effectively by noncommutative algebras over C as history has shown, we need
noncommutative algebras that reflect the structures of categories: category algebra is just
the right concept.

3.1. Category Algebra

We introduce the notion of category algebra in this subsection, which is based on [10].

Definition 21 (rig). A rig R is a set with two binary operations called addition and multiplication,
such that

1. R is a commutative monoid with respect to addition with the unit 0;
2. R is a monoid with respect to multiplication with the unit 1;
3. r′′(r′+ r) = r′′r′+ r′′r, (r′′+ r′)r = r′′r+ r′r holds for any r, r′, r′′ ∈ R (distributive law); and
4. 0r = 0, r0 = 0 holds for any r ∈ R (absorption law).
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Note that, in general, a rig can be noncommutative. The notion of center is important
for noncommutative rigs.

Definition 22 (center). A subrig Z(R) of a rig R defined as the set of elements, which are
commutative with all the elements in R, is called the center of R.

A rig R is commutative if and only if Z(R) = R.
Based on the notion of rigs, we define the notion of modules and algebras over rigs.

Definition 23 (module over rig). A commutative monoid M under addition with unit 0 together
with a left action of R on M (r, m) �→ rm is called a left module over R if the action satisfies the
following conditions:

1. r(m′ + m) = rm′ + rm, (r′ + r)m = r′m + rm for any m, m′ ∈ M and r, r′ ∈ R; and
2. 0m = 0, r0 = 0 for any m ∈ M and r ∈ R.

Dually, we can define the notion of right module over R.
Let M be the left and right module over R. M is called an R-bimodule if

r′(mr) = (r′m)r

holds for any r, r′ ∈ R and m ∈ M. The left/right action above is called the scalar multiplication.

Definition 24 (algebra over rig). A bimodule A over R is called an algebra over R if it is also a
rig with respect to its own multiplication, which is compatible with scalar multiplication, i.e.,

(r′a′)(ar) = r′(a′a)r, (a′r)a = a′(ra)

for any a, a′ ∈ A and r, r′ ∈ R.

We define the principal notion of the present paper:

Definition 25 (category algebra). Let C be a category and R be a rig. An R-valued function α
defined on C is said to be of finite propagation if for any object C there are, at most, a finite number
of arrows whose codomain or domain is C. The module over R consisting of all R-valued functions
of finite propagation together with the multiplication defined by

(α′α)(c′′) = ∑
{(c′ ,c)| c′′=c′◦c}

α′(c′)α(c), c, c′, c′′ ∈ C

becomes an algebra over R with unit ε. This is defined by

ε(c) =

{
1 (c ∈ |C|)
0 (otherwise),

and is called the category algebra of finite propagation, which is denoted as R[C]. In the present
paper, we simply call R[C] the category algebra of C.

The multiplication defined above is nothing but the “convolution” operation on the
category C. R[C] coincides with the algebra studied in [29] if R is a ring. In [10], it is
denoted as 0R0[C] to distinguish them from other kinds of category algebras.

A functor from one category to another induces a homomorphism between the corre-
sponding category algebras if the functor is bijective on objects. If the bijective-on-objects
functor is also injective on arrows, the induced morphism becomes injective. Hence, the
category algebra R[C◦] of a subcategory C◦ of a category C becomes a subalgebra of R[C].
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Definition 26 (indeterminate). Let R[C] be a category algebra and c ∈ C. The function ιc ∈ R[C]
defined as

ιc(c′) =

{
1 (c′ = c)
0 (otherwise)

is called the indeterminate corresponding to c.

In the previous work [10], we denoted the indeterminate ιc as χc. We change the
notation to avoid confusion with “character” in representation theory.

For indeterminates, it is easy to obtain the following.

Theorem 3 (calculus of indeterminates). Let c, c′ ∈ C, ιc, ιc
′
be the corresponding indeterminates

and r ∈ R. Then,

ιc
′
ιc =

{
ιc
′◦c (dom(c′) = cod(c))

0 (otherwise),

rιc = ιcr.

In short, a category algebra R[C] is an algebra of functions on C, equipped with the
multiplication which reflects the compositionality structure of C. By the identification of
c ∈ C �→ ιc ∈ R[C], categories are included in category algebras.

A category algebra can be considered as a generalized matrix algebra. In fact, matrix
algebras are isomorphic to category algebras of indiscrete categories. For the basic notions
and rules for matrix-like calculations in category algebras, see [10].

For the main application of the present paper, we need the involution structure
on algebras.

Definition 27 (involution on rig). Let R be a rig. An operation (·)∗ on R preserving addition
and covariant (resp. contravariant) with respect to multiplication is said to be a covariant (resp.
contravariant) involution on R when (·)∗ ◦ (·)∗ is equal to the identity function on R. A rig with
contravariant involution is called a ∗-rig.

Definition 28 (involution on algebra). Let A be an algebra over a rig R with a covariant (resp.
contravariant) involution (·). A covariant (resp. contravariant) involution (·)∗ on A as a rig is
said to be a covariant (resp. contravariant) involution on A as an algebra over R if it is compatible
with scalar multiplication, i.e.,

(r′ar)∗ = r′a∗r (covariant case), (r′ar)∗ = ra∗r′ (contravariant case).

An algebra A over a ∗-rig R with contravariant involution is called a ∗-algebra over R.

Theorem 4 (category algebra as algebra with involution). Let C be a category with a covariant
(resp. contravariant) involution (·)† and R be a rig with a covariant (resp. contravariant) involution
(·). Then, the category algebra R[C] becomes an algebra with covariant involution (resp. ∗-algebra)
over R.

3.2. Quantum Fields as Category Algebras

In this section, we will show that category algebras provide appropriate models for
quantum fields. As already mentioned in the introduction, a quantum field is intuitively a
synthesis of relativistic and quantum structures. In the previous section, we argued that
the relativistic structure as the basic structure of possible dynamics can be understood
from a general point of view by the causal category. The next problem is to construct a
noncommutative algebra which is consistent with relativistic covariance as well as with
causality. The category algebra R[C], where C is a causal category equipped with partial
involution structure, is just such an algebra.
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Note that by generalizing groupoid algebras to category algebras, we can naturally
incorporate processes that are not necessarily reversible. If we focus on the core of the
category, i.e., the subcategory consisting of all invertible arrows, we have the corresponding
groupoid algebra, which is a subalgebra of R[C].

Definition 29 (quantum field). Let C be a causal category with partial involution structure C∼
and R be a rig with involution. The category algebra R[C] is called the quantum field on C over R.

For quantum physics, the cases in which R is some ∗-algebra over C are important.
The category C is considered as “spacetime with inner degrees of freedom of the field”.
Note that a quantum field on a causal category C over a rig R might be isomorphic to or
embedded into another quantum field on another causal category C over another R. Hence,
even if we focus on the case that R = C, we might cover many kinds of quantum fields.
Nevertheless, we maintain letting R be a general rig R with involution when we can in the
present paper for future applications.

Let us see how a quantum field, as a category algebra, incorporates the relativistic
covariance structure. To begin, let us assume that a group G (say, the Poincaré group) acts
on |C| and there is a map u(·) sending a pair (g, C) ∈ G × C to the arrow u(g,C) : C −→ gC
in C, satisfying u(g′g,C) = u(g′ ,gC) ◦ u(g,C) and u(e,C) = C, where e denotes the unit of G and
C denotes the identity arrow on C in the last equation. Note that each u(g,C) is an invertible
arrow. Then, we can define the endfunctor ũg : C −→ C by

ũg(c) = u(g,cod(c)) ◦ c ◦ (u(g,dom(c)))−1

which becomes invertible and induces the corresponding isomorphism on the category
algebra R[C]. Note also that u(g,·) becomes a natural equivalence from C (identity functor
on C) to ũg.

In general, given a natural equivalence u from the identity functor C to an invertible
functor û from C to C, we can define an invertible element ιu ∈ R[C] as

ιu(c) =

{
1 (c is a component of u)
0 (otherwise),

and isomorphism ι̃u on R[C] as

ι̃u(α) = ιuα(ιu)−1.

This kind of transformation will be useful to study flows, generators, and symmetries
such as the local gauge invariance from the viewpoint of category algebras. In sum, the
category algebra intrinsically incorporates covariance structures coherent with the structure
of “spacetime” category C.

In order to consider the essential features of relativity, it is necessary to consider the
structure of causal categories. For this purpose, let us consider the category algebras on
relevant categories and relevant categories with involution.

Definition 30 (relevant algebra and local algebra). Let R be a rig and C be a causal category.
The category algebra R[Orel ] is called the relevant algebra on O over R. The subrig Rloc[O] of
R[Orel ] whose elements are in the form of α + δ, where α denotes an element in R[Orel ], satisfying
α(C) = 0 for any C ∈ |C| \O, and δ denotes an element in R[Orel ]∩ Z(R[C]), becomes an algebra
over Z(R) and is called the local algebra on O.

Definition 31 (relevant algebra with involution and local algebra with involution). Let R
be a rig with involution and C be a causal category with partial involution structure. The category
algebra R[Orel∼] is called the relevant algebra with involution on O over R. The subrig Rloc∼[O]
of R[Orel∼], whose elements are in the form of α + δ, where α denotes an element in R[Orel∼],
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satisfying α(C) = 0 for any C ∈ |C| \ O, and δ denotes an element in R[Orel∼] ∩ Z(R[C]),
becomes an algebra with involution over Z(R) and is called the local algebra with involution on O.

The family of local algebras with involution {Rloc[O]}, especially when R is a ∗-algebra
over C, is the counterpart of {A(O)} in AQFT [4], where A(O) denotes the observable
algebra defined on the bounded region O in the spacetime. So far, our framework does not
focus on the topological aspect of algebras but the conceptual correspondence between our
framework and AQFT is remarkable, as we will see below.

Note that our “local” algebras in general contain a certain kind of information of the
“outside” of the regions. Nevertheless, they contain no information of the local algebras
corresponding to spacelike separated regions. From the structure theorem of the relevant
category and the definition of local algebras, we have the following concepts.

Theorem 5 (commutativity of spacelike separated local algebras). Local algebras Rloc[O]
and Rloc[O′] are commutative with each other if the regions O and O′ are spacelike separated from
each other.

As a collorary, we have the following.

Theorem 6 (commutativity of spacelike separated local algebras with involution). Local
algebras Rloc∼[O] and Rloc∼[O′] with involution are commutative with each other if the regions O
and O′ are spacelike separated from each other.

The theorem above is the conceptual counterpart of one of the axioms called the
“Einstein causality” (“Axiom E” in [4]).

3.3. Remarks on the Comparison to TQFT

Our category algebraic framework of quantum field theory can also be compared to
the conceptual ideas in other axiomatic approaches to quantum fields, such as Topological
Quantum Field Theory (TQFT) [12,13]. In the axiomatization of TQFT, a quantum field
theory is considered as a certain functor from the category of n-cobordism nCob into the
category Mod(R) of modules over some unital commutative ring R (the typical case is
R = C and Mod(R) = Vect, where Vect denotes the category of vector spaces over C).

We can construct such a functor in a generalized setting based on our framework. Let
C be an object in a †-category C and R be a rig. We define the submodule CR[C] of R[C],
consisting of elements whose support is included in the set of arrows whose codomain is
C. Then, we can define a functor (·)R : C −→ Mod(R) by cR = ιc(·), the multiplication of
ιc, i.e., a module homomorphism sending each α ∈ dom(c)R[C] to ιcα ∈ cod(c)R[C], for any
c ∈ C.

Since nCob is a †-category, the above construction works and we obtain a canonical
functor from nCob to Mod(R). Although this functor does not satisfy all the technical
parts of the axioms proposed in TQFT, it is coherent with the physical ideas of relativistic
covariance and quantum properties behind the axioms. This coherence will become more
clear after introducing the notion of states on categories in the next section.

4. States of Quantum Fields as States on Categories

4.1. State on Category

While an algebra embodies the intrinsic structure of a system, a state embodies the
interface between that system and its environment. This view, which has been advo-
cated by Ojima [30], is consistent with the mathematical framework of algebraic quantum
field theory and quantum probability theory: states provide concrete representations of
an algebra.

In general, a representation refers to an expression of intrinsic structures in a certain
way, which corresponds to the concrete realization of the intrinsic properties of a system
in the way it interacts with its environment. To be more specific, a state is a mapping
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which sends elements of an algebra to scalar values as “expectation values”. In short,
states define the statistical laws, which generalize the notion of probability measures to the
noncommutative context. Conversely, if the algebra is a unital commutative C∗-algebra,
we have the Radon measure on a compact Hausdorff space by the Riesz–Markov–Kakutani
theorem [31]. In other words, a pair of an algebra and state on it is a generalized probability
space: a noncommutative probability space.

As for the category algebras that reflect the structure of the possible dynamics, defining
a state on it means evaluating arrows corresponding to the individual processes with
expectation values. Conversely, for a category with a finite number of objects, the weighting
of the arrows gives a state. Based on this fact, we call a state on a category algebra, a state
on category by abuse of terminology.

The rest of this subsection is based on [10].

Definition 32 (linear functional). Let A be an algebra over a rig R. An R-valued linear function
on A, i.e., a function preserving addition and scalar multiplication, is called a linear functional on
A. A linear functional on A is said to be unital if ϕ(ε) = 1, where ε and 1 denote the multiplicative
units in A and R, respectively.

Definition 33 (positivity). A pair of rigs with involution (R, R+) is called a positivity structure
on R if R+ is a subrig with involution such that r, s ∈ R+ and r + s = 0 imply r = s = 0, and
that a∗a ∈ R+ for any a ∈ R.

Definition 34 (state). Let R be a rig with involution and (R, R+) be a positivity structure on
R. A state ϕ on an algebra A with involution over R with respect to (R, R+) is a unital linear
functional ϕ : A −→ R, which satisfies ϕ(a∗a) ∈ R+ and ϕ(a∗) = ϕ(a) for any a ∈ R, where
(·)∗ and (·) denote the involutions on A and R, respectively (the last condition ϕ(a∗) = ϕ(a)
follows from other conditions if R = C).

Definition 35 (noncommutative probability space). A pair (A, ϕ) consisting of an alge-
bra A with involution over a rig R with involution and a state ϕ is called a noncommutative
probability space.

Definition 36 (state on category). Let R be a rig with involution and (R, R+) be a positivity
structure on R. A state on the category algebra R[C] over R with respect to (R, R+) is said to be a
state on a category C with respect to (R, R+).

Given a state ϕ on a category C with involution, we have a function ϕ̂ : C −→ R
defined as ϕ̂(c) = ϕ(ιc). For the category with a finite number of objects, we can obtain the
following theorem [10], which is a generalization of the result in [14] for groupoids.

Theorem 7 (state and normalized positive semidefinite function). Let C be a category such that
|C| is finite. Then, there is a one-to-one correspondence between states ϕ with respect to (R, R+) and
normalized positive semidefinite Z(R)-valued functions φ with respect to (R, R+), i.e., normalized
functions such that

∑
{(c,c′)|dom((c′)†)=cod(c)}

ξ(c′)φ((c′)† ◦ c)ξ(c)

is in R+ for any R-valued function ξ on C with finite support and that φ(c†) = φ(c), where (·)∗
and (·) denote the involutions on C and R, respectively.

Conceptually, the theorem above means that states on a category with involution
(with finite objects) are nothing but the weights on arrows, which are generalizations of
probability distributions on a (finite) set as the discrete category (with finite objects). More
generally, we can say that to define a state on a category whose support is contained in
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a subcategory with finite numbers of objects is equivalent to defining the corresponding
function which assigns the weight to each arrow.

For a state on a category whose support is not contained in a subcategory with finite num-
ber of objects, we will need some topological structures (or coarse geometric structures [32]).
Nonstandard-analytical methods (see [33], for example) will provide useful tools.

4.2. States of Quantum Fields as States on Categories

As we see quantum fields as category algebras, it is quite natural to model physical
states of quantum fields as states on category algebras.

Definition 37 (state of quantum field). Let C be a causal category with partial involution
structure C∼and (R, R+) be a positivity structure on a rig R with involution. A unital linear
functional on C, which is also a state on C∼ with respect to (R, R+), whose image is contained in a
subrig R′ with involution of R, is said to be an R′-valued state of the quantum field on C over R
with respect to (R, R+).

In conventional cases, R is supposed to be a ∗-algebra over C and R′ = C. The phrase
“with respect to (R, R+)” will be omitted if it is clear in the context. In general, given a state
ϕ on ∗-algebra A over a ∗-rig R with involution, we can construct the representation of
the algebra into the algebra consisting of endomorphism on a certain module (generalized
GNS representation [10]). In particular, when R is a ∗-rig over C and ϕ is C-valued, we
have a representation called the GNS (Gelfand–Naimar–Segal) representation [34,35] into a
pre-Hilbert space consisting of the equivalence class of the elements in A, equipped with
the inner product structure induced by the sesquilinear form 〈a′, a〉 = ϕ((a′)∗a) (a, a′ ∈ A).
The unit of the algebra plays a role of a “vacuum” vector (see [10] and reference therein,
for example).

In sum, a noncommutative probability space, i.e., a pair (A, ϕ) of a ∗-algebra over
C and a C-valued state on it, is sufficient to reconstruct the ingredients in conventional
quantum physics based on the Hilbert spaces. In fact, the approach based on the non-
commutative probability space is more general than the conventional approach: if we
focus onto the local structures of quantum fields, it is known that we cannot use one a
priori Hilbert space as a starting point of the theory (actually, this fact itself was one of the
historical motivations of AQFT, the pioneer of noncommutative probabilistic approach;
see [4], for example).

Our category algebraic approach is a new unification of the noncommutative proba-
bilistic approach and the category theoretic viewpoint. As we observed in the previous
section, for †-category (or in general, categories with involution), its category algebra is a
∗-algebra (or in general, an algebra with involution). Note that our algebra is unital, even if
C has infinitely many objects. Then, the construction above holds and we can see the unit ε
as a “vacuum” in our theory.

The concept of states on categories also shed light on the foundation of quantum me-
chanics as a part of the quantum field theory. From our viewpoint, a quantum mechanical
system of finite degrees of freedom can be defined as a noncommutative probability space
whose algebra is a subalgebra of a category algebra on a causal category with partial invo-
lution and whose state satisfies the condition that the support is contained in a subcategory
with finite numbers of objects.

In general, quantum fields as category algebras together with states “contain” vast
numbers of quantum mechanical systems, or, more precisely, considering a state whose
support is contained in some subcategory with finite numbers of objects, is focusing on
a quantum mechanical system as an aspect of the quantum field. Note that quantum
mechanical systems in the above meaning are not necessarily contained in a single point
but can have spatial degrees of freedom, e.g., a system in the double slit experiment, in
which the support of the state can be considered to be contained in a subcategory with
finite objects. Understanding the situation in which multiple observers are involved in a
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single quantum field—such as the EPR (Einstein–Podolsky–Rosen) situation [36]—through
the concepts of local algebra and local states also seems to be an important research topic.

The idea at the heart of the above discussions is that we are free to think of “localized
states” (not just “global” states such as vacuum states). The concept corresponding to
these kinds of states is particularly important in the context of AQFT and is called “local
states” [15,16]. We can define the local states in our framework, which is a conceptual
counterpart of the local states in AQFR, as follows.

Definition 38 (local state). Let C be a causal category equipped with partial involution structure
C∼ and R be a rig with involution. A state on R[C∼(O)] for a subset O of |C| is called a local state
of the quantum field R[C] on O.

From a physical point of view, the notion of local state is quite natural. A macroscopic
setting of the environment for the quantum field basically concerns only a bounded space-
time domain and the global state should be seen as an idealization of it. Considering a
family of local states, instead of a single state, can be seen as a sheaf theoretic extension of
the conventional quantum field theory. The extension will lead to the notion of consistent
families of Hilbert spaces and operators on them through the GNS construction, which will
be mathematically interesting.

By translating the previous study of [15] into our context, we will be able to con-
struct the generalized sector theory, which is the generalization of DHR (Doplicher–Haag–
Roberts)–DR (Doplicher–Roberts) Theory [17–23], as well as develop Ojima’s micro–macro
duality [24,25] and quadrality scheme [26] from the viewpoint of category algebras and
states on categories.

4.3. Remarks on the Comparison to TQFT (Continued)

In Section 3, we constructed for any †-category C a functor (·)R : C −→ Mod(R) by
cR = ιc(·) for c ∈ C. For quantum physical studies, we need to induce a functor into
Hilb, which is a category of Hilbert spaces over C. Let us explain the role of states in
this induction.

Given any state ϕ on the †-category C, CR := CR[C] for each object C ∈ C can be
equipped with the “almost inner product” (semi-Hilbert space structure) by defining the
sesquilinear form 〈·|·〉ϕ by 〈α′|α〉ϕ := ϕ((α′)∗α) (generalized GNS construction, see [10]
and references therein). When R is a ∗-algebra over C and ϕ is a C-valued “good” state ϕ
on the category given, this functor induces a functor into Hilb. More precisely, suppose
that R is a ∗-algebra over C and the C-valued state ϕ satisfies the condition

ϕ(α∗α) ≥ ϕ((ιcα)∗(ιcα))

for any α ∈ R[C] and c ∈ C. Then, the functor (·)R : C −→ Mod(R) induces the functor
(·)Rϕ : C −→ preHilb, where preHilb denotes the category of the pre-Hilbert spaces, tak-
ing the quotient of CR equipped with 〈·|·〉ϕ by Nϕ = {α ∈ CR|ϕ(α∗α) = 0}, which
can be shown as a submodule of CR (note that by the assumption ϕ(α∗α) = 0 =⇒
ϕ((ιcα)∗(ιcα)) = 0 holds; this kind of construction itself has a certain generalization
to a more general R by using this condition directly). Then, by the assumption of ϕ, (c)Rϕ

extends uniquely to the morphism in Hilb by completion and we have the corresponding
functor from C to Hilb, which sends c to the unique bounded extension of (c)Rϕ (note that
a bounded operator between pre-Hilbert spaces extends to the unique bounded operator
between Hilbert spaces). By applying this construction for C = nCob, we have a version of
TQFT. Note that our framework is naturally incorporated with the causal structure and it
is quite interesting to the counterpart of the structure in TQFT.

5. Prospects

As we have seen, our new approach to quantum fields is conceptually related to
conventional approaches such as AQFT and TQFT. Elucidating this relationship at a deeper
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level will be important in the study of quantum fields. In order to carry out such research, we
will need to include more detailed structures such as topological or differential structures
in addition to the algebraic and noncommutative probabilistic structures that we have
discussed in this paper.

Additionally, it should be emphasized that our approach is directly applicable to the
lattice gauge theory [27] and other discrete spacetime approaches, as can be seen from the
fact that our approach works on general categories. Its applicability extends to the context
of unifying general relativity and quantum theory.

Needless to say, the relationship with categorical approaches to quantum theory, such
as “categorical quantum mechanics” [37,38] based on the †-category, should also be explored.
The categorical structure of the submodules of the category algebra, as a generalized matrix
algebra and regarding the computations based on it, will play an important role. It is also
interesting to clarify the relationship between our framework and the approach in a recently
published article [8], which also investigates the AQFT and Quantum Cellular Automata
(QCA) approach [39,40] from a general categorical viewpoint.

The notion of quantum walk (see [41,42] and references therein, for example), which
is closely related to the QCA approach, can also be formulated from our standpoint. Based
on our framework, we can model a concrete dynamics of quantum fields as a sequence or
flow of the states on a category. In general, the dynamics can be irreversible. The typical
examples of reversible dynamics are called quantum walks. The notion of quantum walks
on general ∗-algebras and quantum walks on †-categories can be defined as follows:

Definition 39 (quantum walk). Let A be a ∗-algebra. A sequence of states given by

ϕt(α) = ϕ((ω∗)tαωt) t = 0, 1, 2, 3, ...

generated by a unitary element ω ∈ R[C], i.e., an element satisfying ω∗ω = ωω∗ = ε, is called a
quantum walk on A.

Definition 40 (quantum walk on †-category). Let C be a †-category and R be a ∗-rig. A quantum
walk on R[C] is said to be a quantum walk on a †-category C.

A quantum walk can be considered as a sequence of “state vectors” through the GNS
construction. the notion of quantum walk defined on †-category includes the various concrete
dynamical models under the name of quantum walks. For example, this includes quantum
walks on simple undirected graphs as a certain sequence of states on an indiscrete category.
The category algebraic approach will play a fundamental role for the quantum walks on
graphs with multiple edges and loops. Quantum walks on graphs have been used in the
modeling of the “dressed photon” [43], which cannot be understood without focusing on
the off-shell nature of quantum fields [44], i.e., the aspect of quantum fields which cannot
be described as the collection of the modes satisfying the on-shell conditions, and quantum
walks on categories may become important in quantum field theory in general. They will
also connect the QCA approach to quantum fields and other approaches to quantum fields.

One of the most exciting problems is, of course, to construct a model of a non-trivial
quantum field with interactions. We believe we can approach such problems. In particular,
it seems that the fact that relevant categories have arrows that go through objects in very
distant regions, while the local algebras defined on them satisfy commutativity, may be the
key to avoiding various no-go theorems. Note also that our approach extends the coefficients
to general (commutative or noncommutative) rigs, which greatly expands the possibilities of
investigating interactions. Finally, it should be emphasized that our approach is not limited
to quantum fields but can be extended to give a very general noncommutative statistical
models with causal structures. The author hopes that the present paper will be a small, new
step towards these big problems.
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Abstract: Several interesting physical phenomena and industrial applications explained by the
dressed photon have been reported in recent years. These require a novel concept in an off-shell
science that deviates from the conventional optics, satisfying energy and momentum conservation
laws. In this paper, starting from an original model that captures dressed-photon characteristics
phenomenologically, the dynamics of the dressed photon in a nanomatter system and the mechanism
for extracting internal degrees of freedom of the dressed photon to an external space have been
examined by theoretical and numerical approaches. Our proposal is that basis states of the dressed
photon can be transformed to the form that reflects the spatial distribution of the dressed-photon
steady state in the system, and some of basis states with predetermined spatial distribution can relate
to the dissipation components in the external space by means of the renormalization technique. From
the results of numerical simulation, it is found that quasi-static states are regarded as the photon
with light mass or massless, and the extraction of active states strongly affects the spatial distribution
in a new steady state. The concept for extracting dressed-photon energy to an external space will
contribute to a detailed understanding of dressed-photon physics and future industrial applications.

Keywords: dressed photon; localization; dissipation; off-shell science; non-equilibrium open system;
quantum master equation; quantum density matrix; projection operator; renormalization

1. Introduction

In recent years, some novel and fundamental experimental studies have been reported
that originate from the photon localized at a nanometer scale. For example, a Si light emitter
with a nanostructure of boron dopants has been demonstrated, where Si is an indirect
semiconductor and such an optical transition is forbidden in the conventional optics [1,2].
For microfabrication techniques, size-selective and non-adiabatic photochemical reactions
(etching [3] and deposition [4]) have been observed on rough surfaces with nanostructures
and under nanometrically tapered optical fiber probes. Furthermore, a giant magneto-
optical effect using a ZnO single crystal with a nanostructure of the dopant has been
confirmed as a surprising experimental result [5]. To explain these experimental facts, it
is necessary to step into an off-shell science [6,7], which is a concept that overcomes the
conventional optics limited by energy and momentum conservation laws. The origin of
the appearance of strange optical phenomena in the off-shell region is considered to be
environmental effects of background materials, such as the electronic excitation field and
the phonon field, on the internal photon field, which is called the dressed photon. However,
it is a challenging task to build a complete theory, since this would require incorporating an
unknown contribution of infinite degrees of freedom. Thus, a simple theoretical expression
without losing the essence of the dressed photon is strongly desired.

In this paper, a phenomenological model of the dressed photon is proposed without
touching on the specific generation process of the dressed photon. At first glance, such a
model may resemble an exciton–polariton picture, but the dressed photon is considered to
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be a quasi-particle bounded in a finite distance with the help of the surrounding electronic
and phononic excitations, and the energy transfer of the dressed photon via the off-shell
region or non-resonant region is allowed. This is the difference between the dressed photon
and the exciton polariton. A numerical simulation is also demonstrated for expressing
the dressed photon dynamics, and discussing the extraction of energy from the internal
dressed-photon system to the external field.

The logical flow in this paper is summarized as follows. The spatial distribution of
the dressed photon has been decomposed into plural characteristic basis states reflecting a
certain steady state. At this time, the basis states can be distinguished into strong and weak
contributions to the system dynamics by referring to the formula for renormalizing the
weak interaction into the strong one. The weak-interacting basis states can be regarded as
quasi-particle states with a light mass that resemble a photon reservoir system. In this way,
the influence of a microscopic system on a macroscopic one can be formulated, and the
microscopic system can be controlled from the macroscopic one. It will be a clue to explain
the emergence of optical functions via the dressed photon, such as the light emission from
indirect semiconductors.

The following sections are constructed to evaluate the above concept as follows.
Section 2 describes the formulation of dressed-photon dynamics. Here, in addition to
providing the equation of motion in a non-equilibrium system, dressed-photon basis states
characterized by the spatial distribution is introduced for the subsequent discussions.
In Section 3, a method for dividing a dressed-photon system into the systems with strong
and weak contributions is proposed using the renormalization technique. Section 4 gives
an insight for connecting the dressed photon with the external free photon, based on the
method obtained up to Section 3. In addition, we will discuss how to control the dressed
photon from the external degree of freedom. Finally, Section 5 summarizes this paper.

2. Theoretical Model of a Dressed-Photon System

2.1. Quantum Master Equation

From the experimental situation for a nanophotonics system, one can understand
that the system always exists under an environment with the external photoexcitation and
the dissipation, and the balance of the input and the output is maintained. This is a non-
equilibrium open system. For describing the dressed-photon dynamics, the dressed photon
is assumed to be a carrier bounded in a nanomatter system, and a part of energy dissipates
to the external field as the free photon, where the optical coherence is disappeared. In other
words, it is a problem to analyze the internal states of the dressed photon distributed in a
non-equilibrium open system.

A nanomatter with an arbitrary shape is expressed as a collection of nodes that bind
the dressed photon, and are freely arranged inside a matter. To avoid misunderstanding,
note that the node does not mean the atomic site, but a center of mass for the dressed
photon with spatial spreading. Therefore, the nodes are not restricted by a periodic array
structure representing the translational symmetry of such an electron wave, and can set
freely. This paper is not intended to describe a rigorous structure of a matter, but rather
to represent adequately the essence of dressed-photon mediating phenomena. From this
point of view, this model is equivalent to a quantum walk on a graph. Several studies
have also been reported that suggest that dressed-photon phenomena correspond to some
stationary solution in a quantum-walk system [8,9].

The dressed photon as a carrier is assumed to be transferred among the nodes by the
hopping conduction, such that the coupling strength is expressed as a function of distance
between a target node and all the others. Figure 1 illustrates a dressed-photon system,
where a nanoscale two-dimensional taper structure and a nanomatter are expressed as
just a collection of nodes without distinguishing the two separated parts. In this system,
the dressed photon is injected from the upper part of a taper structure, released to the
external field radiatively, and returns to the input side non-radiatively. This model is a non-
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equilibrium open system. The equation of motion, that is a quantum master equation, in
such a system can be described using the quantum density operator ρ(t) as follows [10–12],

∂ρI(t)
∂t

= − i
h̄

[
HI

int + HI
exc, ρI(t)

]
+ L(nr)ρI(t) + L(r)ρI(t), (1)

where the superscript I for each operator represents the interaction picture, and the hopping
energy transfer and the coherent excitation are expressed as Hint and Hexc, respectively.
The square brackets represent the commutation relation, and L(r) and L(nr) mean the
Lindblad-type radiative and the non-radiative dissipations. The following devotes ex-
planation of each component in (1), where the superscript I for the interaction picture is
omitted to avoid the complexity of the subscript and superscript expressions. In defining
the operators that are used in this research, the basis states are assumed to be a one or
zero dressed photon. This means an assumption of the weak excitation limit. In the future,
the many-body interaction of the dressed photon, i.e., the nonlinear problem, should be
considered, and it will be reported somewhere.

Figure 1. Schematic illustration of a dressed-photon system that consists of plural arbitrarily arranged
nodes and models a taper structure of an optical fiber probe and a nanomatter. It is not necessary
to distinguish between the taper and the nanomatter, as it is regarded as just a collection of nodes.
In this system, the dressed photon is coherently excited from the upper part of the taper structure,
and transfers via the hopping conduction among nodes with the coupling strength according to the
distance. Some dressed photon dissipates out of the system as the free photon, and some returns to
the input side non-radiatively.

2.1.1. Dressed-Photon Excitation by External Field

The external excitation of the dressed photon is assumed to be given coherently from
the upper part in a taper structure in Figure 1. When the creation and annihilation operators
a†

i and ai of the dressed photon at a node i are predetermined, the excitation is expressed as

Hexc = ∑
i∈edge

h̄A(ai + a†
i ), (2)

where h̄A denotes the strength of the excitation that is related to the amplitude of the
external input field. The form of (2) is inspired by the theoretical description of the
conventional electric dipole excitation.
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2.1.2. Inter-Node Energy Transfer

The hopping energy transfer means mathematically an exchange of the dressed photon
between two different nodes, which is given by the following equation,

Hint = ∑
i �=j

h̄V(|ri − rj|)(a†
i aj + aia†

j ), (3)

where the coupling strength h̄V(r) is assumed to have a finite interaction range for express-
ing the localization nature of the dressed photon. Readers with knowledge of quantum
theory may pay attention to a positive sign of the interaction Hamiltonian in comparison
with some known models of material systems, such as the Bose–Hubbard model and the
tight-binding model [13]. The interaction Hamiltonian is based on the theoretical derivation
of the transition probability of the electronic excitation between two nanomatters in our
published reports [14–16], where the transition probability was obtained by assuming that
the constraint of the energy and momentum conservation lows can be overcome. According
to the detailed explanation in [17], the coupling strength h̄V(r) with a finite interaction
distance and a positive sign is derived as the form so-called Yukawa potential,

V(r) =
V0e−meffr

r
, (4)

where V0 and meff are an appropriate constant and an effective mass which determines the in-
teraction range, respectively. The Yukawa function often appears to give a screening effect in
a many-body interaction system. In the case of the dressed-photon energy transfer, degrees
of freedom of an environment leads to the equivalent effect to the many-body interaction.

2.1.3. Radiative Dissipation

The Lindblad-type radiative dissipation in (1), which shows the emission of the free
photon into an external space, is given as the following equation,

L(r)ρ(t) =
γ(r)

2 ∑
i,j

(
2aiρ(t)a†

j −
{

a†
i aj, ρ(t)

})
, (5)

where γ(r) represents the relaxation constant via the free photon in an external space, and
the curly brackets are the notation of the anti-commutation relation. It is worth noting
the summation of nodes labeled by the indices i and j. The relaxation involves both
allowed and forbidden transitions of the free photon depending the symmetry of the
spatial distribution of the total dressed photon excitation.

2.1.4. Non-Radiative Dissipation

As shown in Figure 1, the dressed photon is simultaneously excited and dissipated
from the input side of a nanomatter system because it is an open system. Since the actual
system of interest should be regarded as a microscopic part of an infinite system, it is
difficult to accurately model the whole picture of the matter structure that is continuously
connected from microscopic to the macroscopic systems. In our formulation, the Lindblad-
type non-radiative dissipation is assumed for simply realizing a non-equilibrium open
system. This assumption is approximately inadequate, but deep physical consideration in
this topic is beyond the scope of this paper. It is expected a theoretical model will be built
that accurately incorporates the macroscopic system hidden in the background. There are
several studies for connecting a microscopic system with a macroscopic one [18,19].

Here, the non-radiative dissipation, i.e., the third term in (1), is given qualitatively as
a similar manner in (5) as

L(nr)ρ(t) =
γ(nr)

2 ∑
i,j∈edge

(
2aiρ(t)a†

j −
{

a†
i aj, ρ(t)

})
, (6)
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where γ(nr) is the non-radiative relaxation constant of the local dressed photon that is
obviously faster than the radiative one. This is almost the same as (5), but the region with
the dissipation is limited to a part of a taper structure.

2.2. Spatial Mode Expansion

In this subsection, the basis states for expressing the spatial distribution of the
dressed photon are discussed using the quantum master equation formulated in Section 2.1.
So far, the basis states of the dressed photon are set as the dressed photon exists or
not at local nodes in a nanomatter system as an implicit understanding. In Figure 2,
a steady-state solution in the case of a two-dimensional taper structure is calculated
and mapped with the color gradation that represents the occupancy probability of the
dressed photon. Figure 2a–c denote the snapshots of the temporal evolution at the time
steps, t = 5, 50, and 5000, respectively. The simulation parameters used in these cal-
culations are written in the caption in Figure 2, and are commonly used in the fol-
lowing calculations. At each time step, the spatial distribution of the dressed photon
reflects the weight coefficient ci of the basis states in a quantum superposition state
|φ〉 = c0|0, · · · , 0〉 + c1|1, 0, · · · , 0〉 + c2|0, 1, 0, · · · , 0〉 + · · · + cN |0, · · · , 0, 1〉, where, for
example, |0, 1, 0, · · · , 0〉 represents a state in which the dressed photon exists at the node
labeled as the position 2. The temporal evolution can be interpreted as follows; in the
early stage, the dressed photon runs down as the ballistic conduction at a part of the taper
slopes, and then is reflected at a boundary of the taper tip, i.e., a spatial singular point of
the system, leading to a steady state. Finally, it is found that the dressed photon makes
spatial localization near around the tip, similar to a standing wave. In addition, there are
locations inside the taper where the occupancy probability of the dressed photon is highly
established quasi-periodically. The spatial distribution is, of course, determined depending
on the shape of a matter system, such as the size of the taper structure and the steepness of
the taper slopes. It also depends on the coupling strength h̄V(r).
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Figure 2. Temporal snapshot of the occupancy probability for the dressed photon at the time steps
(a) t = 5, (b) 50, and (c) 5000. In this calculation, the parameters are set as h̄A = 1, h̄V0 = 27.2,
meff = 0.1, γ(r) = 0.01, and γ(nr) = 10, and the matter system is assumed as a two-dimensional
taper structure which is expressed by the 47 nodes. The dressed photon initially transfers on the
taper slopes, and converges into a steady state with the spatial localization similar to a generation of
standing wave caused by a system asymmetry.

As mentioned in the Introduction, the dressed photon should be controlled in a
nanomatter system, and observed via the free photon radiated from the system. In the
following, a way to extract the characteristics of the spatial distribution of the dressed
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photon is discussed from a viewpoint of the basis transformation. Although the Fourier
transformation and/or the Bloch’s theorem, which are based on translational symmetry,
are used in the cases of the conventional optics and solid-state physics to catch the clear
description of a wave nature, they cannot be applied for the description of the dressed pho-
ton because of the spatial singularity of the matter boundary and the impurity. Therefore,
focusing on the fact that this system converges to a non-equilibrium steady state, the basis
transformation which diagonalizes the steady state is proposed. According to the obtained
basis states, there is no energy transfer between such basis states at a steady state, and the
dressed photon dynamics can be separable depending on the spatial distribution of the
basis states which strongly reflects a geometrical nature of a nanomatter.

From the steady-state solution (Figure 2c), the matrix U that diagonalizes the quan-
tum density matrix can be determined numerically and uniquely. As a result of this
transformation, (1) is rewritten as

∂ρst(t)
∂t

= − i
h̄
[Hint,st + Hexc,st, ρst(t)] + L(nr)

st ρst(t) + L(r)
st ρst(t), (7)

Ost ≡ U−1OU, (8)

L(nr,r)
st ρst ≡ γ(nr,r)

2

(
2astρst(t)a†

st +
{

a†
stast, ρst(t)

})
, (9)

where the subscript “st” means the operators after the basis transformation as the quantum
density matrix being diagonalized, and O is an arbitrary operator. To decompose the
individual row of the matrix U is intuitive because the elements of a certain row are
constructed from the weight coefficients of the linear combination of the basis states in the
local-node description, and it is sorted in descending order of the occupancy probability.
The basis states can be visualized as shown in Figure 3.

n=1 n=2 n=3 n=4 n=5

n=6 n=7 n=8 n=9 n=10

n=11 n=12 n=13 n=14 n=15

n=16 n=17 n=18 n=19 n=20

n=21 n=22 n=23 n=24 n=25

n=26 n=27 n=28 n=29 n=30

Figure 3. Color map images of the basis states reconstructed from the transformation matrix U in (8).
Since the state n = 27 corresponds to the coherent excitation, there is no meaning in the state over
n = 27, and almost of those are excluded from visualization.
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From the perspective of the spatial distribution, there are several characteristic basis
states. The state of n = 27 in Figure 3 apparently corresponds to the excitation due to
the external field at an input interface, and thus, the states in the region labeled n > 27
are no longer excited in this system, and most of these are excluded from the drawing.
The states n = 14, 16, and 24 have quasi-periodic spatial structures that resemble standing
waves in a waveguide. In the states of n = 8 and 12, the dressed photon occupies the taper
slopes. Several basis states of n ≤ 9 show localization of the dressed photon at a taper tip;
therefore, it is predicted that these states couple strongly with each other.

The dynamics of the quantum density matrix for the transformed basis states (Figure 3)
can be recalculated numerically. In Figure 4, the density matrix elements are depicted as
the color map images, where the time steps are similarly set as t = 5, 50, and 5000, and the
colors represent absolute values of the density matrix elements. In an early stage of a
time evolution, the occupancy probability (diagonal elements) concentrates in the basis
states with a localization nature (n ≤ 7), and the off-diagonal elements which represent
the transition probability between the different basis states also change actively. After
some time, the central area of the color map becomes active, in which there are a few
characteristic basis states with high occupancy probability. In the final stage, the system
goes to the steady state that consists only of the diagonal matrix elements. The following
two points from this basis transformation approach are noticeable. One is that the basis
states labeled by n > 27 are not excited and negligible, and this contributes to decrease
the numerical calculation volume and the calculation time. The other is that there are
components growing slowly and unidirectionally without exchange of energies among the
other basis states. These are reminiscent of the dissipation process for the free photon.

(a) (b) (c)
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0.10

0.20

0.29

0.39

Figure 4. Color map images of the quantum density matrices at the time steps of (a) t = 5, (b) 50,
and (c) 5000, respectively. The occupancy probability and the transition matrices of the dressed
photon are represented as the diagonal and off-diagonal matrix elements, respectively. All simulation
parameters are the same in Figure 2. Meanwhile, in the early state, the dressed photon concentrates
in the states with a localization nature and goes and returns aggressively among themselves; the
basis states with the intermediate spatial size show slightly calm movement, which is reminiscent of
the radiative dissipation to the external field of the free photon.

3. Renormalization of Quasi-Static Basis States

In the previous section, novel basis states inspired by a non-equilibrium steady state
are proposed to capture the spatial property that distinguishes the dressed-photon dy-
namics, and the temporal evolution of the dressed photon is visualized numerically in a
space of the quantum density matrix. This seems to suggest the distinction between the
matter-like and the free photon-like properties of the dressed photon. Based on this insight,
this section is devoted to discussing a way to focus the principal modes of the dressed
photon with a localization nature.

First, let us pay attention to the coupling strength between the unitary transformed
basis states that can be observed in the interaction Hamiltonian, Hint,st. The interaction
Hamiltonian before and after the basis transformation is visualized as the color map im-
ages in Figure 5. In the case before the transformation, a quasi-periodic structure appears
depending on the lattice structure of the nodes as illustrated in Figure 1. The unitary
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transformation drastically changes the appearance, which is shown in Figure 5b. The effec-
tive transition among the basis states restricts in the several basis states, and many basis
states stay in their own modes that are described as the diagonal matrix elements, which
represent the energy shift in the system dynamics. In the following, the projection operator
method is applied to extract the principal basis states with a localization nature of the
dressed photon, and to eliminate the basis states with the weak contribution.

(a) 0

0.09

0.19

0.28

0.37

0.46

(b)
0.1

0.4

0.9

1.3

1.8

2.1

Figure 5. Color map images of matrix elements of the interaction Hamiltonian Hint, which is given
in (3). (a) The matrix before the unitary transformation has a quasi-periodic structure reflected by
the range-dependent coupling strength among a certain node and nearly arranged ones, and all
matrix elements in the diagonal part are zero. (b) The matrix after the unitary transformation shows
characteristic structure. There are two distinct areas divided at n = 27, which corresponds to the
mode of the dressed-photon excitation. In the base n ≤ 27, the diagonal matrix elements have large
values, i.e., staying in their own modes, and it is found that several basis states dominantly contribute
to the dressed-photon dynamics via off-diagonal matrix elements.

3.1. Projection Operator Method

The projection operator method is a mathematical technique that divides the entire
system into a target space (P) and a complementary space (Q), and inserts the influence of
the complementary space into the target space [14,20]. A state vector of the entire system
|ψst〉 is divided into the two sub-spaces using the projection operators,

|ψP
st〉 = P|ψst〉, (10a)

|ψQ
st 〉 = Q|ψst〉, (10b)

where the projection operators P and Q satisfy the following relations,

P + Q = 1, (11a)

P2 = P, (11b)

Q2 = Q. (11c)

Using the Schrödinger equation,

Hexc,st|ψst〉 = ΔE|ψst〉, (12)

the state vector in the Q-space can be expressed as the sum of the contributions from the
state vector in the P-space, i.e.,

|ψQ
st 〉 =

∞

∑
n=1

(
ΔE−1QHint,st

)n
|ψP

st〉 ≈ ΔE−1QHint,st|ψP
st〉. (13)

In (12), ΔE corresponds to the energy shift of the basis states unitary transformed from
the basis states expressed by the local nodes. It should be noted that the contribution
of the radiative and non-radiative dissipations, and the excitation of the dressed photon
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are ignored in (12) and (13) because the dissipation and the excitation originate from the
interaction with the external field, but it is qualitatively negligible by assuming that only
the hopping conduction of the dressed photon contributes to the transition between the P
and the Q-spaces. In the last part of (13), the first-order perturbation is applied by assuming
that the basis states in the Q-space weakly affect the P-space dynamics.

3.2. Modified Quantum Master Equation

Applying the approximate expression given in Section 3.1, the equation of motion for
the quantum density operator can be transformed in the P-space representation, where the
influence of the Q-space is renormalized into the original interaction Hamiltonian, and
the creation and annihilation operators in the dissipation terms. Omitting the redundant
mathematical transformations, the quantum master equation is modified as follows,

∂ρst(t)
∂t

≈ ∂ρP
st(t)
∂t

= − i
h̄
[HP′

int,st + HP
ext,st, ρP

st(t)] + L(nr)′
st ρP

st(t) + L(r)′
st ρP

st(t), (14)

where the quantum density matrix operator in the P-space is ρP
st(t) = Pρst(t)P, and the

modified interaction Hamiltonian reads

HP′
int,st ≡ PHint,stP + ∑

m∈Q

PHint,st|φQ
m〉〈φQ

m |Hint,stP

〈φQ
m |Hint,st|φQ

m〉
. (15)

In (15), the operator Q is rewritten by the intermediate states |φQ
m〉 for clear understanding,

i.e.,
Q = ∑

m∈Q
|φQ

m〉〈φQ
m |, (16)

where the summation is applied to the artificially selected basis states in the Q-space.
(15) means that the interaction Hamiltonian with the coherent dynamics is corrected by the
transition between the basis states in the Q- and the P-spaces.

The dissipation terms in (5) and (6) are similarly rewritten as the following form,

L(r,nr)′

st ρP
st(t) =

γ(r,nr)

2 ∑
i,j

(
2aP′

i ρP
sta

P′†
j −

{
aP′†

i aP′
j , ρP

st(t)
})

, (17)

where

aP′
i ≡ PaiP + ∑

m∈Q

Pai|φQ
m〉〈φQ

m |Hint,stP

〈φQ
m |Hint,st|φQ

m〉
. (18)

Ideally, the contribution of the dissipation should be renormalized into the relaxation
constants γ(r,nr), and the creation and annihilation operators should be left as the original
form of the basis states transformed by a non-equilibrium steady state. However, (17) is
only an approximate expression for the operators, since the theoretical formulation has
not been completed in this stage. This is a problem to be solved in the future. In (18),
the second term means that there are dissipation processes with the energy flow from the
P-space to the Q-space.

3.3. Numerical Demonstration of Renormalization

Using the above formulation, the concrete temporal evolution of the quantum den-
sity matrix is calculated numerically, and the validity of the approximation is evaluated.
Figure 6 shows the steady-state solution for the three steps of the coarse graining, which are
the original result without approximation, the result simply removing the basis states over
n = 27, and the result after renormalization using (14)–(17). Prior to the renormalization,
the Q-space components are selected as n = 17, 19, 20, 22, and 23, by referring the correction
term of Hint,st/〈φQ

m |Hint,st|φQ
m〉, that weakly couple to the basis state for the excitation. De-

spite reducing the number of the basis states, the obtained steady-state solutions are almost
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the same in all three cases, and the calculation time has been significantly reduced. In the
case of Figure 6, the number of the basis states for obtaining the calculation results has been
reduced by less than half against no coarse graining, and thus the number of the differential
equations to be solved is 22% less. To confirm the validity of this approach, the spatial
distribution of the occupancy probability of the dressed photon is reconstructed from the
quantum density matrix by applying renormalization or not, that is shown in Figure 7.
Both color map images of the occupancy probability before and after renormalization are
in good agreement with each other.

(a) (b) (c)
0.10

0.20

0.29

0.39

Figure 6. Color map images of steady-state solutions for the quantum density matrix in the cases of (a)
no eliminating the extra basis states, eliminating the states of n > 27, and additional renormalization
of the states n = 17, 19, 20, 22, and 23. The number of the matrix elements decreases from (a–c) as
472, 272, and 222. In all three cases, the steady-state solutions converge to only diagonal elements,
and the occupancy probability can be reproduced after coarse graining using renormalization of the
quasi-static basis states.
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Figure 7. Steady-state solutions of occupancy probability for the dressed photon are mapped in the
geometrical structure of taper that are calculated using (a) the original basis states defined by nodes,
and (b) reconstructed from the basis coarse-grained by eliminating extra base and renormalization.
The renormalization condition is the same as that in Figure 6.

So far, a method to distinguish the heavy and the light components of the dressed
photon has been proposed using the original basis transformation, and the numerical
demonstration shows the potential for reducing the amount of computation. As a similar
approach, a method where a macroscopic system is expressed with a small number of
basis states using the basis states that are predetermined by the steady-state solutions in a
small space step by step has been already published [18,19]. These papers report a large
reduction in the amount of the quantum calculation. This method is very similar to our
approach, in which basis transformation and renormalization are used for reducing the
number of the principal basis states. Meanwhile, our main purpose in this research is to
observe and control a behavior of the dressed photon localized in a nanometer space. This
point will be considered in the next section.

4. Discussion on Control of Dressed Photon Distribution

This section discusses the physical meaning for renormalizing particular basis states.
In Section 3.3, from the characteristics of the basis states defined by a steady-state solution,

98



Symmetry 2021, 13, 1768

the basis states with the weak contribution can be converted to dissipative component
in the system by applying the renormalization method in the first-order perturbation
approximation. Such a situation is equivalent to a free photon reservoir. According to the
intuitive image, the dressed photon can be regarded as stripping off the mass caused by
the interaction with the environment and changes into the massless free photon, where the
dressed-photon basis states staying in a nanomatter system are responsible for the stripped
mass via renormalization.

On the other hand, it is interesting to consider how to affect the spatial distribution
characteristics of the dressed photon that stays inside a nanomatter system. As an example,
let us consider extracting a certain principal basis state with the strong localization of the
dressed photon into the Q-space. When the localization basis state is selected as n = 7 in
Figure 3, where the dressed photon energy concentrates at a tip position, is assigned in
the Q-space, the quantum density matrix is calculated in the same manner as explained
in the previous section, where the approximation of the weak coupling has been already
exceeded. Figure 8a is the numerical result of the simulation, and the quantum density
matrix cannot converge on the diagonal matrix elements. If the strict quantitativeness is
neglected, this corresponds to change of a steady-state solution, i.e., the spatial distribution
of the dressed photon can be modified by extracting artificially the principal localization
basis state. In Figure 8b, the steady-state solutions are shown as a color map image in
the taper geometry reconstructed from Figure 8a. One can observe that the localization of
the dressed photon at a tip position disappears after such renormalization. It should be
noted that this result represents the characteristic behavior of dressed-photon mediated
phenomena. Removing the dressed photon out of a nanomatter system for an experimental
observation makes another new internal state of the spatial distribution of the dressed
photon in the system. For controlling and optimizing dressed-photon mediated phenomena,
the renormalization of the basis states of interest, that is proposed in this paper, will be an
extremely important concept.

(a) ( b8 ( 08 ( 68 ( 48 8 48 68 08 b8

( 48
8

48

68

08

b8

2 )xn -

m
)xn-

)z-
8

8.864

Figure 8. Numerical calculation result of the quantum density matrix when the basis state of n = 7
is additionally extracted as the Q-space. (a) Color map image of a steady-state solution for the
density matrix elements, and (b) reconstructed color map image on the geometrical structure of taper.
The extraction of the state actively contributing to the localization drastically changes convergence
property of the quantum density matrix as well as spatial distribution of the dressed photon in
a nanomatter.

5. Conclusions

In this paper, a phenomenological model that regards the dressed photon as a particle
localized at a certain node in a collection of nodes representing nanomatter has been
proposed, and its spatio-temporal dynamics has been formulated using the quantum
density operator. This system includes the radiative and non-radiative dissipation processes
that are given by the Lindblad-type dissipation based on the first-order Born–Markov
approximation, and the external excitation, and thus, the system dynamics converges to a
non-equilibrium steady state. For such a model, a mechanism for extracting a part of the
dressed-photon energy to the external field, which corresponds to observation instruments,
has been considered to access the localized state of the dressed photon, and to explain
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interesting experimental facts mediated by the dressed photon. Specifically, the methods to
describe the dressed photon by characteristic basis states inspired by a non-equilibrium
steady state as well as to separate the basis states into the target and the complementary
spaces have been proposed and formulated using the projection operators. Contribution of
the complementary space is renormalized in the target space by means of the lowest-order
perturbation approximation. These theoretical and numerical approaches are a pioneering
study that elucidates the principle of continuously connecting the dressed photon to the
free photon. In this research, the process in which the bound or massive dressed photon
dissociates its mass and is converted to the free photon has been interpreted by considering
the energy transfer among the basis states with different spatial characteristics.

In the last part of this paper, a concept for accessing the principal basis states in a
nanomatter system has been discussed using the same manner of renormalization. This is a
qualitative proposal, but an important finding that the external manipulation of the dressed
photon associated with the concept of renormalization.

The basis transformations using a predetermined steady state are inconsistent for the
purpose of simulating the dressed-photon dynamics in an unknown system. However,
in the experimental systems in which the dressed photon is mediated, the structural
changes of the nanomatter always appears, such as an optimal rearrangement of atoms.
Therefore, our approach to focus on changes from the steady states seems to be effective
for explaining the experimental facts. In that sense, our proposed method is worth enough
aiming at solving a dressed-photon optimization problem.

In the present research stage, the theoretical formulation is somewhat insufficient to
explain the experimental facts quantitatively, but this paper has provided a meaningful
consideration as a challenge by stepping into the essence of the underlying physical
mechanism of the dressed photon and an off-shell science. It is expected to lead to a detailed
understanding of dressed-photon physics and industrial applications in the near future.
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13. Greiner, M.; Mandel, O.; Esslinger, T.; Hănsch, T.W.; Bloch, I. Quantum phase transition from a superfluid to a Mott insulator in a

gas of ultracold atoms. Nature 2002, 415, 39–44. [CrossRef] [PubMed]
14. Kobayashi, K.; Sangu, S.; Ito, H.; Ohtsu, M. Near-field optical potential for a neutral atom. Phys. Rev. A 2000, 63, 013806.

[CrossRef]
15. Sangu, S.; Kobayashi, K.; Shojiguchi, A.; Ohtsu, M. Logic and functional operations using a near-field optically coupled

quantum-dot system. Phys. Rev. B 2004, 69, 115334. [CrossRef]
16. Knoester, J.; Mukamel, S. Nonlinear optics using the multipolar Hamiltonian: The Bloch-Maxwell equation and local fields.

Phys. Rev. A 1989, 39, 1899–1914. [CrossRef] [PubMed]
17. Sangu, S.; Kobayashi, K.; Shojiguchi, A.; Kawazoe, T.; Ohtsu, M. Theory and principles of operation of nanophotonic functional

devices. In Progress in Nano-Electro-Optics Photonics V; Ohtsu, M., Ed.; Springer: Berlin/Heidelberg, Germany, 2006; pp. 1–62.
18. Finazzi, S.; Boité, A.L.; Storme, F.; Baksic, A.; Ciuti, C. Corner space renormalization method for driven-dissipative 2D correlated

systems. Phys. Rev. Lett. 2015, 115, 080604. [CrossRef] [PubMed]
19. Donatella, K.; Denis, Z.; Boité, A.L.; Ciuti, C. Continuous-time dynamics and error scaling of noisy highly-entangling quantum

circuits. arXiv 2021, arXiv:2102.04265.
20. Breuer, H.-P. Non-Markovian quantum dynamics and the method of correlated projection super-operators. In Theoretical

Foundations of Quantum Information Processing and Communication: Selected Topics; Brüning, E., Petruccione, F., Eds.; Springer:
Berlin/Heidelberg, Germany, 2010; pp. 125–139.

101





symmetryS S

Article

Relation between Quantum Walks with Tails and Quantum
Walks with Sinks on Finite Graphs

Norio Konno 1, Etsuo Segawa 2,* and Martin Štefaňák 3
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Abstract: We connect the Grover walk with sinks to the Grover walk with tails. The survival
probability of the Grover walk with sinks in the long time limit is characterized by the centered
generalized eigenspace of the Grover walk with tails. The centered eigenspace of the Grover walk is
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1. Introduction

A simple random walker on a finite and connected graph starting from any vertex
hits an arbitrary vertex in a finite time. This fact implies that, if we consider a subset of
the vertices of this graph as sinks, where the random walker is absorbed, then the survival
probability of the random walk in the long time limit converges to zero. However, for
quantum walks (QW) [1], the situation is more complicated and the survival probability
depends in general on the graph, coin operator, and the initial state of the walk. For
a two-state quantum walk on a finite line with sinks on both ends and a non-trivial
coin, the survival probability is also zero, as shown by the studies of the corresponding
absorption problem [2–5]. However, for a three-state quantum walk with the Grover
coin [6], the survival probability on a finite line is non-vanishing [7] due to the existence
of trapped states. These are the eigenstates of the unitary evolution operator which do
not have a support on the sinks. Trapped states crucially affect the efficiency of quantum
transport [8] and lead to counter-intuitive effects, e.g., the transport efficiency can be
improved by increasing the distance between the initial vertex and the sink [9,10]. We
find a similar phenomena to this quantum walk model in the experiment on the energy
transfer of the dressed photon [11] through the nanoparticles distributed in a finite three-
dimensional grid [12]. The output signal intensity increases when the depth direction is
larger. Although, when the depth is deeper, a lot of “detours" newly appear to reach to the
position of the output from the classical point of view, the output signal intensity of the
dressed photon becomes stronger. The existence of trapped states also results in infinite
hitting times [13,14].

In this paper, we analyze such counter-intuitive phenomena for the Grover walk on a
general connected graph using spectral analysis. The Grover walk is an induced quantum
walk of the random walk from the viewpoint of the spectral mapping theorem [15].

To this end, first, we connect the Grover walk with sinks to the Grover walk with
tails. The tails are the semi-infinite paths attached to a finite and connected graph. We
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call the set of vertices connecting to the tails the boundary. The Grover walk with tail
was introduced by [16,17] in terms of the scattering theory. If we set some appropriate
bounded initial state so that the support is included in the tail, the existence of the fixed
point of the dynamical system induced by the Grover walk with tails is shown, and the
stable generalized eigenspace Hs, in which the dynamical system lives, is orthogonal to the
centered generalized eigenspace Hc [18] at every time step [19]. The centered generalized
eigenspace is generated by the generalized eigenvectors of the principal submatrix of the
time evolution operator of the Grover walk with respect to the internal graph, and all the
corresponding absolute values of the eigenvalues are 1. This eigenstate is equivalent to the
attractor space [8] of the Grover walk with sink. Indeed, we show that the stationary state
of the Grover walk with sink is attracted to this centered generalized eigenstate. Secondly,
we characterize this centered generalized eigenspace using the persistent eigenspace of the
underlying random walk whose supports have no overlaps to the boundary, also using the
concept of “flow” from graph theory. From this result, we see that the existence of the per-
sistent eigenspace of the underlying random walk significantly influences the asymptotic
behavior of the corresponding Grover walk, although it has little effect on the asymptotic
behavior of the random walk itself. Moreover, we clarify that the graph structure which
constructs the symmetric or anti-symmetric flow satisfying the Kirchhoff’s law contributes
to the non-zero survival probability of the Grover walk, as suggested in [8,15].

This paper is organized as follows. In Section 2, we prepare the notations of graphs
and give the definition of the Grover walk and the boundary operators which are related
to the chain. In Section 3, we give the definition of the Grover walk on a graph with sinks.
In Section 4, a necessary and sufficient condition for the surviving of the Grover walk is
described. In Section 5, we give an example. Section 6 is devoted to the relation between the
Grover walk with sink and the Grover walk with tail. In Section 7, we partially characterize
the centered generalized eigenspace using the concept of flow from graph theory.

2. Preliminary

2.1. Graph Notation

Let G = (V, A) be a connected and symmetric digraph such that an arc a ∈ A if and
only if its inverse arc a ∈ A. The origin and terminal vertices of a ∈ A are denoted by
o(a) ∈ V and t(a) ∈ V, respectively. Assume that G has no multiple arcs. If t(a) = o(a),
we call such an arc a the self-loop. In this paper, we regard a = a for any self-loops. We
denote Aσ as the set of all self-loops. The degree of v ∈ V is defined by

deg(v) = |{a ∈ A | t(a) = v}|.

The support edge of a ∈ A \ Aσ is denoted by |a| with |a| = |a|. The set of (non-directed)
edges is

E = {|a| | a ∈ A \ Aσ}.

A walk in G is a sequence of arcs such that p = (a0, a1, . . . , ar−1) with t(aj) = o(aj+1)
for any j = 0, . . . , r− 2, which may have the same arcs in p. The cycle in G is a subgraph of G
which is isomorphic to a sequence of arcs (a0, a1, . . . , ar−1) (r ≥ 3) satisfying t(aj) = o(aj+1)
with aj �= aj+1 for any j = 0, . . . , r − 1, where the subscript is the modulus of r. We identify
(ak, ak+1, . . . , ak+r−1) with (a0, a1, . . . , ar−1) for k ∈ Z. The spanning tree of G is a connected
subtree of G covering all vertices of G. A fundamental cycle induced by the spanning tree is
the cycle in G generated by recovering an arc which is outside of the spanning tree to the
spanning tree. There are two choices of orientations for each support of the fundamental
cycle, but we choose only one of them as the representative. Fixing a spanning tree, we
denote the set of fundamental cycles by Γ. Then, the cardinality of Γ is |E| − |V|+ 1 =: b1.
We call b1 the first Betti number.
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2.2. Definition of the Grover Walk

Let Ω be a discrete set. The vector space whose standard basis is labeled by each
element of Ω is denoted by CΩ. The standard basis is denoted by δ

(Ω)
ω (ω ∈ Ω), i.e.,

δ
(Ω)
ω (ω′) =

{
1 : ω = ω′,
0 : otherwise.

Throughout this paper, the inner product is standard, i.e.,

〈ψ, φ〉Ω = ∑
ω∈Ω

ψ̄(ω)φ(ω),

for any ψ, φ ∈ CΩ, and the norm is defined by

||ψ||Ω =
√
〈ψ, ψ〉Ω.

For any ψ ∈ CΩ, the support of ψ is defined by

supp(ψ) := {ω ∈ Ω | ψ(ω) �= 0}.

For subspaces M, N ⊂ CΩ, the relation

CΩ = M ⊕ N,

means that M and N are complementary spaces in CΩ, i.e., for any f ∈ CΩ, g ∈ M and
h ∈ N are uniquely determined such that f = g + h, which means, if u′ + u′′ = 0 for some
u′ ∈ Ω′ and u′′ ∈ Ω′′, then u′ and u′′ must be u′ = u′′ = 0. Note that 〈g, h〉Ω �= 0 in general,
i.e., M and N are not necessarily orthogonal subspaces. Especially in this paper, we treat
an operator which is a submatrix of a unitary operator, and we are not ensured that it is a
normal operator. The vector space describing the whole system of the Grover walk is CA.
The time evolution operator of the Grover walk on G is defined by

(UGψ)(a) = −ψ(a) +
2

deg(o(a)) ∑
t(b)=o(a)

ψ(b)

for any ψ ∈ CA and a ∈ A. Note that, since UG is a unitary operator on CA, UG preserves
the �2 norm, i.e., ||UGψ||2A = ||ψ||2A. Let ψn ∈ CA be the nth iteration of the Grover walk
ψn = UGψn−1 (n ≥ 1) with the initial state ψ0. Then, the probability distribution at time n,
μn : V → [0, 1], can be defined by

μn(v) = ∑
t(a)=v

|ψn(a)|2

if the norm of the initial state is unity. Our interest is the asymptotic behavior of the
sequence of probabilities μn and also of amplitudes ψn on the graph comparing with the
behavior of the corresponding random walk.

2.3. Boundary Operators

Let G = (V, A) be the original graph. The set of sinks is denoted by Vs ⊂ V. The
subgraph of G; G0 = (V0, A0), is defined by

V0 = V \ Vs, A0 = {a ∈ A | t(a), o(a) /∈ Vs}.
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The set of self-loops in G0 is denoted by A0,σ ⊂ A0 (see Figure 1). The set of the
fundamental cycles in G0 is denoted by Γ hereafter. The set of boundary vertices of G0 is
defined by

δG0 = {o(a) | a ∈ A, o(a) ∈ V \ Vs, t(a) ∈ Vs}.

This means that δG0 consists of the origins of arcs flowing into the sinks. Under the
above settings of graphs, let us now prepare some notations to show our main theorem.

Figure 1. The setting of graphs: The original graph G is depicted in the left corner. The sinks Vs are
the white vertices. The subgraph G0 of G is the black colored graph in the center. The set of boundary
vertices δV is {2, 4}. The semi-infinite graph G̃ is constructed by connecting the infinite length path
to each boundary vertex of G0.

Definition 1. Let deg(u) be the degree of u in the original graph G. Let G0 = (V0, A0) be the
subgraph as above. Then, the boundary operators d1 : CA0 → CV0 and ∂2 : CΓ → CA0 are
denoted by

(d1ψ)(v) =
1√

deg(v) ∑
t(a)=v

ψ(a), (∂2Ψ)(a) = ∑
a∈A(c)⊂A0

Ψ(c),

respectively, for any ψ ∈ CA, Ψ ∈ CΓ and v ∈ V0, a ∈ A0. Here, A(c) is the set of arcs of c ∈ Γ.

The boundary operator d1 has the following matrix representation

(d1)u,a =

{
1/
√

deg(u) : t(a) = u,
0 : otherwise,

while the boundary operator ∂2 has the following matrix representation

(∂2)a,c =

{
1 : a ∈ A(c),
0 : otherwise.

Note that deg(u) is the degree of G; thus, if u ∈ δG0, then deg(u) is greater than the
degree in G0. The adjoint operators of d1 and ∂2 are defined by

〈 f , d1ψ〉V0 = 〈d∗1 f , ψ〉A0 , 〈ψ, ∂2Ψ〉A0 = 〈∂∗2ψ, Ψ〉Γ

which imply
(d∗1 f )(a) = f (t(a)), (∂∗2ψ)(c) = ∑

a∈A(c)
ψ(a).
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Let S : CA0 → CA0 be a unitary operator defined by (Sψ)(a) = ψ(a). We prove that
the composition of d1(I − S) ◦ ∂2 is identically equal to zero as follows.

Lemma 1. Let d1 and ∂2 be the above. Then, we have

d1(I − S)∂2 = 0.

Proof. For any c ∈ Γ, let δ
(Γ)
c ∈ CΓ be the delta function, i.e.,

δ
(Γ)
c (c′) =

{
1 : c = c′,
0 : c �= c′.

Then, it is enough to see that d1(I − S)∂2δ
(Γ)
c = 0 for any c ∈ Γ. Indeed, we find

d1(I − S)∂2δ
(Γ)
c = d1( ∑

a∈A(c)
δ
(A)
a − ∑

a∈A(c)
δ
(A)
a )

= ∑
a∈A(c)

1√
deg(t(a))

δ
(V)
t(a) − ∑

a∈A(c)

1√
deg(t(a))

δ
(V)
t(a)

= 0,

which is the desired conclusion.

Let us set the function ξ
(+)
c induced by c ∈ Γ by

ξ
(+)
c := (I − S)∂2δ

(Γ)
c .

In other words, supp(ξ(+)
c ) = A(c) ∪ A(c̄) and

(ξ
(+)
c )(a) =

⎧⎪⎨⎪⎩
1 : a ∈ A(c),
−1 : a ∈ A(c),
0 : otherwise.

The function ξ
(+)
c represents the fundamental cycle c. Let us introduce χS : CA → CA0 by

(χSφ)(a) = φ(a)

for all a ∈ A0. The adjoint χ∗
S : CA0 → CA is described by

(χ∗
S f )(a) =

{
f (a) : a ∈ A0,
0 : otherwise.

A matrix representation of χS is expressed as follows:

χS ∼= [ IA0 | 0 ],

which is a |A0| × |A| matrix. The function ξ
(+)
c satisfies the following properties:

Proposition 1. For any fundamental cycle c in G0 ⊂ G, we have χ∗
Sξ

(+)
c ∈ ker(1−UG).
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Proof. The following direct computation gives the consequence:

(UGχ∗
Sξ

(+)
c )(a) = −(χ∗

Sξ
(+)
c )(a) +

2
deg(o(a)) ∑

t(b)=o(a)
(χ∗

Sξ
(+)
c )(b)

= (χ∗
Sξ

(+)
c )(a) +

2√
deg(o(a))

(d1χ∗
Sξ

(+)
c )(o(a))

= (χ∗
Sξ

(+)
c )(a).

Here, the first equality derives from the definition of UG. In the second equality, since
supp(ξ(+)

c ) ⊂ A0 ⊂ A and the summation of RHS in the first equality is essentially the
same as the one over A0, we can apply the definition of d1 to this. We use Lemma 1 in the
last equality.

We set K ⊂ CA0 by

K = span{χSξ
(+)
c | c ∈ Γ ⊂ G0}. (1)

The self-adjoint operator
T := (χSd1)S(χSd1)

∗

on CA0 is similar to the transition probability operator P′ with the Dirichlet boundary
condition on δV0; i.e.,

P′ = D−1/2TD1/2,

where (D f ) = deg(u) f (u). Here, the matrix representation of P′ is described by

(P′)u,v := 〈δ(V0)
u , P′δ(V0)

v 〉V0 =

{
1/deg(u) : if u and v are connected,
0 : otherwise,

for any u, v ∈ V0. If T f = x f and Tg = yg (x �= y), then we find the orthogonality such that

〈(1− ei arccos xS)d∗1 f , (1− e−i arccos yS)d∗1 g〉 = 0,

〈(1− ei arccos xS)d∗1 f , (1− ei arccos yS)d∗1 g〉 = 0,

〈(1− ei arccos xS)d∗1 f , (1− e−i arccos yS)d∗1 g〉 = 0.

Then, we set T ⊂ CA0 by

T =
⊕
|λ|=1

{(1− λS)d∗1 f | f ∈ ker((λ + λ−1)/2− T), supp( f ) ⊂ V0 \ δV0}. (2)

This is the subspace of CA0 lifted up from the eigenfunctions in CV0 of the Dirichlet
cut random walk T by (1 − λS)d∗1 f . It is shown that Spec(E) ⊂ D, where D is the unit disc
{z ∈ C | |z| ≤ 1} in Proposition 3, and T = ⊕|λ|=1, λ �=±1 ker(λ − E), where E := χSUGχ∗

S
in Lemma 3.

3. Definition of the Grover Walk on Graphs with Sinks

Let G = (V, A) be a finite and connected graph with sinks Vs = {v1, . . . , vq} ⊂ V.
We consider the subgraph G0 = (V0, A0) as defined in Section 2.3. Assume that G0 is
connected. For simplicity, in this paper, we consider the initial state of the Grover walk φ0
that satisfies the condition supp(φ0) ⊂ A0. (If we consider general initial state φ′0 such that
supp(φ′0) ∩ (A \ A0) �= ∅, replacing φ′0 into φ0 = φ′1, we can reproduce the QW with this
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initial state after n ≥ 1 by our setting.) The time evolution of the Grover walk with sinks Vs
with such an initial state φ0 is defined by

φn(a) =

{
(UGφn−1)(a) : t(a) ∈ V \ Vs,
0 : t(a) ∈ Vs,

(3)

This means that a quantum walker at a sink falls into a pit trap. We are interested in
the survival probability of the Grover walk defined by

γ := lim
n→∞ ∑

a∈A
|φn(a)|2.

It is the probability that the quantum walker remains in the graph without falling
into the sinks forever. Considering the corresponding isotropic random walk with sinks
such that

pn(v) =

{
(Ppn−1)(v) : v ∈ V \ Vs,
0 : v ∈ Vs,

we find that its survival probability is zero,

γRW := lim
n→∞ ∑

v∈V
pn(v) = 0,

because the first hitting time of a random walk to an arbitrary vertex for a finite graph is
finite. On the other hand, in the case of the Grover walk, the survival probability becomes
positive, up to the initial state. In this paper, we clarify a necessary and sufficient condition
for γ > 0.

4. Main Theorem

We consider the case study on G0 by

Case A: A0,σ = ∅ and G0 is a bipartite graph;

Case B: A0,σ = ∅ and G0 is a non-bipartite graph;

Case C: A0,σ �= ∅ and G0 \ A0,σ is a bipartite graph;

Case D: A0,σ �= ∅ and G0 \ A0,σ is a non-bipartite graph.

For a subspace H ⊂ CA0 , the projection operator onto H is denoted by ΠH. Then, we
obtain the following theorem.

Theorem 1. Let φn be the nth iteration of the Grover walk on G = (V, A) with sinks. Let the
survival probability at time n be defined by

γn = ∑
a∈A

|(φn)|2.

The subspaces A,B, C,D of CA0 are defined in (7),..., (10), respectively. Then, we have

1. limn→∞ γn = γ exists.
2. The survival probability γ is expressed by

γ = ||ΠT χSφ0||2 + ||ΠKχSφ0||2 +

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
||ΠAχSφ0||2 : Case A
||ΠBχSφ0||2 : Case B
||ΠCχSφ0||2 : Case C
||ΠDχSφ0||2 : Case D

Proof. Part 1 of Theorem 1 is obtained by the consequences of Proposition 3 and Part 2
derives from Propositions 5 and 6.
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From this theorem, we obtain useful sufficient conditions for non-zero survival proba-
bility as follows.

Corollary 1. Assume G0 is a finite and connected graph. If G0 is not a tree or G0 has more than
two self-loops, then γ > 0.

Remark 1. The eigenspaces A,B, C,D correspond to the p-attractors defined in [8].

5. Example

Let us consider a simple example in Figure 1. G0 = (V0, A0) with V0 = {1, 2, 3, 4} and
A0 = {a1, a2, a3, a4, a1, a2, a3, a4, b1, b2}, where a1 has the origin 1 and the terminus 2; a2 has
the origin 2 and the terminus 3; a3 has the origin 1 and the terminus 4; a4 has the origin 1
and the terminus 1; and b1 and b2 are the self loops on 1 and 3, respectively.

This graph fits into Case C. Thus, let q be the closed walk by q = (a1, a2, a3, a4) and q′

be the walk between two selfloops by (b1, a1, a2, b2). Then, ξ
(+)
q , and the functions defined

by (6) and Definition 2 are given by

ξ
(+)
q = (δa1 + δa2 + δa3 + δa4)− (δa1 + δa2 + δa3 + δa4 , )

ξ
(−)
q = (δa1 + δa1)− (δa2 + δa2) + (δa3 + δa3)− (δa4 + δa4),

ηb1−b2 = δb1 − (δa1 + δa1) + (δa2 + δa2)− δb2 .

The matrix representation of the self adjoint operator T is expressed by

T =
1
3

⎡⎢⎢⎣
1 1 0 1
1 0 1 0
0 1 1 1
1 0 1 0

⎤⎥⎥⎦.

The eigenvector of T which has no overlaps to δV0 = {2, 4} is easily obtained by

f = [1, 0, −1, 0]&

which satisfies T f = (1/3) f . Here, the symbol “&" is the transpose. The eigenfunctions
lifted up to CA from f is

(ϕ±)(a) = f (t(a))− λ± f (o(a))

by (2), where

λ± =
1
3
(1± i

√
8) = e±iθ , θ = arccos

1
3

.

Then, we have

ϕ±(a1) = −λ±, ϕ±(a2) = −1, ϕ±(a3) = λ±, ϕ±(a4) = 1,

ϕ±(ā1) = 1, ϕ±(ā2) = λ±, ϕ±(ā3) = −1, ϕ±(ā4) = −λ±,

ϕ±(b1) = 1− λ±, ϕ±(b2) = −1 + λ±.

It holds that Eϕ± = λ±ϕ±. We obtain

T = Cϕ+ ⊕Cϕ−,

K = Cξ
(+)
(a1,a2,a3,a4)

,

C = Cξ
(−)
(a1,a2,a3,a4)

⊕Cηb1−b2 .
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After the Gram–Schmidt procedure to C, we have

C = Cξ
(−)
(a1,a2,a3,a4)

⊕C(ηb1−b2 + η′b1−b2
).

Here, we denote

η′b1−b2
= δb1 − (δa4 + δa4) + (δa3 + δa3)− δb2

(see Figure 2). We express the functions ϕ±, ξ
(+)
(a1,a2,a3,a4)

, ηb1−b2 , η′b1−b2
, ηb1−b2 + η′b1−b2

by
weighted sub-digraphs of G0. Then, the time evolution of the asymptotic dynamics of this
quantum walk is described by

Un ∼ 1
8
|ξ(+)

(a1,a2,a3,a4)
〉〈ξ(+)

(a1,a2,a3,a4)
|

+ (−1)n
(

1
8
|ξ(−)

(a1,a2,a3,a4)
〉〈ξ(−)

(a1,a2,a3,a4)
|+ 1

16
|ηb1−b2 + η′b1−b2

〉〈ηb1−b2 + η′b1−b2
|
)

+ einθ 3
32
|ϕ+〉〈ϕ+|+ e−inθ 3

32
|ϕ−〉〈ϕ−|. (4)

Figure 2. The centered eigenspace of the example: The centered eigenspace to which Grover
walk with sinks asymptotically belongs in this example is T ⊕K ⊕ C. Each weighted sub-digraph
represents a function in CA0 ; the complex value at each arc is the returned value of the function. Each
eigenspace, T , K, and C, is spanned by the functions represented by these weighted sub-digraphs.

Finally, for example, if the initial state is ϕ0 = δb1 , then the survival probability can be
computed by

γ = ||ΠT ϕ0||2 + ||ΠKϕ0||2 + ||ΠCϕ0||2

=
1
16
|〈ηb1−b2 + η′b1−b2

, ϕ0〉|2 +
3

32
|〈ϕ+, ϕ0〉|2 +

3
32
|〈ϕ−, ϕ0〉|2

=
1
16
|2|2 + 3

32
|1− λ+|2 +

3
32
|1− λ−|2

= 1/2.

111



Symmetry 2021, 13, 1169

The second equality derives from the fact that the orthonormalized eigenvectors in
the centered generalized eigenspace which have an overlap with the self-loop b1 are given
by (1/4)(ηb1−b2 + η′b1−b2

) and
√

3/32 ϕ±.

6. Relation between Grover Walk with Sinks and Grover Walk with Tails

6.1. Grover Walk on Graphs with Tails

Let G = (V, A) be a finite and connected graph with the set of sinks Vs ⊂ V. We
introduce the infinite graph G̃ = (Ṽ, Ã) by adding the semi-infinite paths to each vertex of
δV = {v1, . . . , vr}, that is,

Ṽ = (V \ Vs) ∪ (∪r
j=1V(Pj)),

Ã = ∪r
j=1 A(Pj) ∪ (A \ {a ∈ A | t(a) ∈ Vs or o(a) ∈ Vs}).

Here, Pis are the semi-infinite paths named the tail whose origin vertex is identified
with vi (i = 1, . . . , r) (see Figure 1). Recall that G0 = (V0, A0) is the subgraph of G
eliminating the sinks Vs. Recall also that χS : CA → CA0 is

(χSφ)(a) = φ(a)

for all a ∈ A0. In the same way, we newly introduce χT : CÃ → CA0 by

(χTφ)(a) = φ(a)

for all a ∈ A0. The adjoint χ∗
T : CA0 → CÃ is

(χ∗
T f )(a) =

{
f (a) : a ∈ A0,
0 : otherwise.

The only difference between χS and χT is the domain. A matrix representation of χT is

χT ∼= [ IA0 | 0 ]

which is a |A0| × ∞ matrix because |Ã \ A0| = ∞. The following theorem was
proven by [19].

Theorem 2 ([19]). Let G̃ = (Ṽ, Ã) be the graph with infinite tails {Pj}r
j=1 induced by G0 and its

boundaries δV0. Assume the initial state ψ0 is

ψ0(a) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
α1 : a ∈ A(P1), dist(o(a), v1) > dist(t(a), v1),
...
αr : a ∈ A(Pr), dist(o(a), vr) > dist(t(a), vr),
0 : otherwise.

Then, limn→∞ ψn(a) =: ψ∞(a) exists and ψ∞(a) is expressed by

ψ∞(a) =
α1 + · · ·+ αr

r
+ j(a).

Here, j(·) is the electric current flow on the electric circuit assigned the resistance value 1 at
each edge, that is, j(·) satisfies the following properties:

d1 j = 0, j(a) = −j(a) (Kirchhoff′s current law)

∂∗2 j = 0 (Kirchhoff′s voltage law)
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with the boundary conditions

j(ei) = αi −
α1 + · · ·+ αr

r
(5)

for any ei (i = 1, . . . , r) such that t(ei) = vj and o(ei) ∈ V(Pi).

Remark 2. The stationary state ψ∞ satisfies the equation

ψ∞(a) = (UG̃ψ∞)(a)

for any a ∈ A and ψ∞ ∈ �∞, however ||ψ∞||Ã = ∞.

Remark 3. The function ξ
(+)
c = (1− S)∂2δ

(Γ)
c also satisfies

χ∗
Tξ

(+)
c (a) = (UG̃χ∗

Tξ
(+)
c )(a)

and Kirchhoff’s current and voltage laws if the internal graph G0 is not a tree, while it does not
satisfy the boundary condition (5) because the support of this function χ∗

Tξ
(+)
c has no overlaps to

the tails but is included in the fundamental cycle c in the internal graph G0.

6.2. Relation between Grover Walk with Sinks and Grover Walk with Tails

Let us consider the Grover walk on G with sinks Vs and with the initial state ψ
(S)
0 ∈ CA.

We describe UG as the time evolution operator of Grover walk on G. The nth iteration of
this walk following (3) is denoted by ψ

(S)
n . Let us also consider the Grover walk on G̃ with

the tails and with the “same” initial state

ψ
(T)
0 (a) =

{
ψ
(S)
0 (a) : a ∈ A0,

0 : otherwise.

Note that the initial state ψ
(S)
0 is different from the one in the setting of Theorem 2.

Putting the time evolution operator on G̃ by UG̃, we denote the nth iteration of this walk

by ψ
(T)
n = UG̃ψ

(T)
n−1. Then, we obtain a simple but important relation between QW with

sinks and QW with tails.

Lemma 2. Let the setting of the QW with sinks and QW with tails be as the above. Then, for any
time step n, we have

χSψ
(S)
n = χTψ

(T)
n .

Proof. The initial state of χSψ
(S)
0 coincides with χTψ

(T)
0 because of the setting. Note

that χ∗
J χJ is the projection operator onto CA0 while χJχ

∗
J is the identity operator on CA0

(J ∈ {S, T}). Since ψ
(S)
n (a) = 0 for any a ∈ Vs, we have

(1− χ∗
SχS)ψ

(S)
n = 0

for any n ∈ N. Then, putting χSψ
(S)
n =: φ

(S)
n and χSUGχ∗

S =: E, we have

φ
(S)
n = χSψ

(S)
n = χSUGψ

(S)
n−1

= χSUG(χ
∗
SχS + (1− χ∗

SχS))ψ
(S)
n−1

= Eφ
(S)
n−1 + (χSUG(1− χ∗

SχS))ψ
(S)
n−1

= Eφ
(S)
n−1.
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It is easy to see that E = χSUGχ∗
S = χTUG̃χ∗

T . Since the support of the initial state is
included in the internal graph, the inflow never comes into the internal graph from the tail
for any time n, which implies

(χTUG̃(1− χ∗
TχT))ψ

(T)
n = 0.

It holds that E = χSŨχ∗
S = χTUG̃χ∗

T . Then, putting φ
(T)
n := χTψ

(T)
n , in the same way

as ψ
(S)
n , we have

φ
(T)
n = χTUG̃(χ

∗
TχT + (1− χ∗

TχT))ψ
(T)
n−1

= Eφ
(T)
n−1.

Therefore, χSψ
(S)
n and χTψ

(T)
n follow the same recurrence and have the same initial

state which means χSψ
(S)
n = χTψ

(T)
n for any n ∈ N.

Corollary 2. Let the initial state for the Grover walk with sinks be φ0 with supp(φ0) ⊂ A0. The
survival probability γ can be expressed by

γ = ||φ0||2A −
∞

∑
n=0

τn,

where τn is the outflow of the QW with tails from the internal graph G0, i.e.,

τn = ∑
o(a)∈δV, t(a)/∈A0

|(UG̃χ∗
Tφ

(T)
n−1)(a)|2

Remark 4. The time evolution for φ
(T)
n is given by

φ
(T)
n = Eφ

(T)
n−1 + ρ,

where ρ = χTUG̃ψ
(T)
0 . In this case, the inflow is ρ = 0. On the other hand, in the setting of

Theorem 2, ρ is given by a nonzero constant vector.

Let us now consider a QW with tails with a general initial state Ψ0 ∈ CÃ on G̃. We
denote ν = χTΨ0 and ρ = χTUG̃(1− χ∗χ)Ψ0. We summarize the relation between a QW
with sinks and a QW for the setting of Theorem 2 in Table 1 from the viewpoint of a QW
with tails.

Table 1. Relatiion beteween QWs with tails and sinks.

ρ ν State in G0

QW with tails in the setting of Theorem 2 [19] �= 0 = 0 ∈ Hs (for any n)
QW with sinks = 0 �= 0 ∈ Hc (asymptotically)

7. Centered Generalized Eigenspace of E for the Grover Walk Case

7.1. The Stationary States from the Viewpoint of the Centered Generalized Eigenspace

From the above discussion, we see the importance of the spectral decomposition

E = χSUGχ∗
S = χTUG̃χ∗

T ,
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to obtain both limit behaviors. The operator E is no longer a unitary operator, and, more-
over, it is not ensured that it is diagonalizable. The centered generalized eigenspace of E is
defined by

Hc := {ψ ∈ CA0 | ∃ m ≥ 1 and ∃ |λ| = 1 such that (Em − λ)ψ = 0}

Let Hs be defined by
CA0 = Hc ⊕Hs.

Here, “⊕" means Hc and Hs are complementary spaces, that is, if uc + uv = 0 for
some uc ∈ Hc and uv ∈ Hs, then uc and uv must be uc = uv = 0. Note that, since E is not a
normal operator on a vector space Hc ⊕Hs, it seems that in general 〈uc, uv〉 �= 0 for u ∈ Hc
and Hs ∈ N. However, we can see some important properties of the spectrum of E in the
following proposition.

Proposition 2 ([19]).

1. For any λ ∈ Spec(E), it holds that |λ| ≤ 1, i.e.,

Hs = {ψ | ∃ m ∈ N, ∃ |λ| < 1, (U − λ)mψ) = 0}.

2. Let Pc be the projection operator on Hc along with Hs; that is, PcE = EPc and P2
c = Pc.

Then, Pc is the orthogonal projection onto Hc, i.e., Pc = P∗
c .

3. The operator E acts as a unitary operator on Hc, that is, Hc = ⊕|λ|=1 ker(λ − E) and
UGχ∗

S ϕ = λχ∗
S ϕ for any ϕ ∈ ker(λ − E) with |λ| = 1.

We call Hc and Hs the centered eingenspace and the stable eigenspace [18], respectively.

Corollary 3. For any ψ ∈ Hs and φ ∈ Hc, it holds that 〈ψ, φ〉 = 0.

Now, let us see the stationary states from the viewpoint of the orthogonal decomposition
of Hc ⊕Hs.

Proposition 3.

1. The state χTψn in Theorem 2 belongs to Hs for any time step n ∈ N.
2. The state of QW with sinks, χSφn, asymptotically belongs to Hc in the long time limit n.

Proof. The inflow ρ = χ∗Uψ0 is orthogonal to Hc by a direct consequence of Lemma 3.5
in [19], which implies Enρ ∈ Hs for any n ∈ N by Proposition 2. Since the stationary state
of Part 1 is described by the limit of the following recurrence

χTψn = EχTψn−1 + ρ, χTψ0 = 0,

we obtain the conclusion of Part 1. On the other hand, let us consider the proof of Part 2 in
the following. The time evolution in G0 obeys χSφn = EχSφn−1. The overlap of χSφn to
the space Hs decreases more quickly than polynomial times because all the absolute values
of the generalized eigenvalues of Hs are strictly less than 1 (see Proposition 4 for more
detailed order of the convergence). Then, only the contribution of the centered eigenspace,
whose eigenvalues lie on the unit circle in the complex plain, remains in the long time
limit.

Let W = PcE = EPc = PcEPc be the operator restricted to the centered eigenspace Hc.
Then, we have

lim
n→∞

|χSφn(a)−WnχSφ0(a)| = 0

for any a ∈ A0 uniformly by Proposition 3. This means that, in the long time limit, the time
evolution is reduced to W, which is a unitary operator on Hc.
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Proposition 4. The survival probability is re-expressed by

γ = ||PcχSφ0||2.

The convergence speed ( f (n) = O(g(n)) means limn→∞ | f (n)/g(n)| < ∞ if the limit
exists) is estimated by O(nκrn

max), where κ = dimHs, rmax = max{|λ| ; λ ∈ Spec(E), |λ| <
1}.

Proof. Putting E(1− Pc) = W ′, we have

W + W ′ = E, WW ′ = 0,

by Proposition 2 (2). Note that the operator En is similar to⊕
λ∈Spec(E)

Jn(λ; kλ)

with some natural numbers kλs. Here, J(λ; k) is the k-dimensional matrix by

J(λ; k) =

⎡⎢⎢⎢⎢⎢⎢⎣

λ 1
λ 1

. . . . . .
. . . 1

λ

⎤⎥⎥⎥⎥⎥⎥⎦.

We obtain that the survival probability at each time n is described by

γn = ||UGχ∗
SEn−1χSφ0||2

= ||UGχ∗
S(W

n−1 + W ′n−1
)χSφ0||2

= ||(Wn−1 + W ′n−1
)χSφ0||2

= ||Wn−1χSφ0||2 + ||W ′n−1
χSφ0||2.

In the third equality, we use the fact that UG is unitary; the last equality follows from
Corollary 3. The second term decreases to zero by Proposition 2 (2) with the convergence
speed at least O(nκrn

max) because the Jordan matrix J(λ; k) can be estimated by J(λ; k)n =
O(nk|λ|n). Hence, we find for γn

γn = ||Wn−1χSφ0||2 + O(nκrn
max) (n >> 1)

= ||Wn−1PcχSφ0||2 + O(nκrn
max)

= ||PcχSφ0||2 + O(nκrn
max),

where in the second equality we use that W = WPc and the last equality follows from
Proposition 2 (3).

Therefore, the characterization of Hc is important to obtain the asymptotic behavior
of φn.

7.2. Characterization of Centered Generalized Eigenspace by Graph Notations

The centered generalized eigenspace of E can be rewritten by using the boundary
operator d1 and the self-adjoint operator T = d1Sd∗1 as follows.

Lemma 3 ([19]). Assume λ ∈ Spec(E) with |λ| = 1. Then, we have

1. λ = ±1 if and only if ker(λ − E) = ker(−λ − S) ∩ ker d1.
2. λ �= ±1 if and only if supp(g) ⊂ V0 \ δV0 for any g ∈ ker((λ + λ−1)/2− T) �= 0.
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In the following, we consider the characterization of ker(±1− E) using some walks on
graph G0 up to the situations of the graph (Cases (A)–(D)). First, we prepare the following
notations. For each support edge e ∈ E0, there are two arcs a and a such that |a| = |a|.
Let us choose one of the arcs from each e ∈ E0 and denote A+ as the set of selected arcs.
Then, |A+| = |E0| and a ∈ A+ if and only if a /∈ A+ holds. We set Arep = A0,σ ∪ A+. Let
us introduce the map ι : CA0 → CArep defined by (ιψ)(a) = ψ(a) for any ψ ∈ CA0 and
a ∈ Arep.

Let us define the boundary operator ∂+ : CArep → CV0 by

(∂+ϕ)(u) = ∑
t(a)=u in A+

ϕ(a)− ∑
o(a)=u in A+

ϕ(a)

for any ϕ ∈ CArep and u ∈ V0. On the other hand, let us also define the boundary operator
∂− : CArep → CV0 by

(∂−ϕ)(u) =

⎧⎪⎨⎪⎩
∑

t(a)=u
ϕ(a) + ∑

o(a)=u
ϕ(a) : u has no selfloop,

∑
t(a)=u

ϕ(a) + ∑
o(a)=u

ϕ(a)− ϕ(as) : u has a selfloop as,

for any ϕ ∈ CArep and u ∈ V0. We obtain the following lemma.

Lemma 4. Let G0 = (V0, A0) be a graph with self-loops. We set E0 as the set of support edges of
A0 \ A0,σ such that E0 = {|a| | a ∈ A0 \ A0,σ}. Then, we have

dim[ker(1− E)] = |E0| − |V0|+ 1,

dim[ker(1 + E)] =

⎧⎪⎨⎪⎩
|E0| − |V0|+ 1 : Case A,
|E0| − |V0| : Case B,
|E0| − |V0|+ |A0,σ| : Cases C and D,

Proof. Note that, if ψ ∈ ker(1 + S), then ψ(a) = −ψ(a) for any a ∈ A+, and, if ψ ∈ ker(d),
then ∑t(a)=u ψ(a) = 0 for any u ∈ V0. We remark that, since (Sψ)(as) = ψ(as) for any
as ∈ A0,σ, we have ψ(as) = 0 if ψ ∈ ker(1 + S). Therefore, if ψ ∈ ker(1 + S) ∩ ker(d), then

∑
t(a)=u in A+

(ιψ)(a)− ∑
o(a)=u in A+

(ιψ)(a) = (∂+ιψ)(u) = 0

holds. Then, ker(1 + S) ∩ ker d is isomorphic to {ϕ ∈ ker ∂+ | supp(ϕ) ⊂ A+}. Let us

consider ker ∂+. By the definition of ∂+, we have ∂+δ
(Arep)
a = 0 for any a ∈ As. Hence, we

should eliminate the subspace of ker ∂+ induced by the self-loops. The dimension of this
subspace is |A0,σ|. The adjoint operator ∂∗+ : CV0 → CA+ of ∂+ is described by

(∂∗+ f )(a) = f (t(a))− f (o(a)),

for any f ∈ CV0 and a ∈ Arep. If ∂∗+ f = 0 holds, then f (t(a)) = f (o(a)) for any
a ∈ A+. This means f (u) = c for any u ∈ V0 with some non-zero constant c. Thus,
dim ker(∂∗+) = 1. Therefore, the fundamental theorem of linear algebra (for a linear map
g : X → Y, dim ker g = dim X − dim Y + dim ker g∗) implies

dim ker(1 + S) ∩ ker d = dim ker(∂+)− |A0,σ|
= (|Arep| − |V0|+ 1)− |A0,σ|
= |E0| − |V0|+ 1.
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Next, let us consider dim(ker(1 − S) ∩ ker d1). Note that, if ψ ∈ ker(1 − S), then
ψ(a) = ψ(a). Assume that ψ ∈ ker(1− S) ∩ ker(d1); then,

∑
t(a)=u

(ιψ)(a) = 0 for any u ∈ V0,

which is equivalent to
∂−ιψ = 0.

The adjoint of ∂− is described by

(∂∗− f )(a) =

{
f (t(a)) + f (o(a)) : a ∈ A+,
f (t(a)) : a ∈ A0,σ.

Let us consider f ∈ ker(∂∗−) in the cases for both A0,σ = ∅ and A0,σ �= ∅.
A0,σ = ∅ case:
If G0 is a bipartite graph, then we can decompose the vertex set V into X ∪Y, where

every edge connects a vertex in X to one in Y. Then, f (x) = k for any x ∈ X and f (y) = −k
for any y ∈ Y with some nonzero constant k. Hence, dim ker(∂∗) = 1 if A0,σ = ∅ and G0
is bipartite. On the other hand, if G0 is non-bipartite, then there must exist an odd length
fundamental cycle c = (a0, a1, . . . , a2m). We have that

f (o(a1)) = − f (o(a2)) = f (o(a3)) = · · · = − f (o(a2r)) = f (o(a0)) = − f (o(a1)).

Then, f (u) = 0 for any u ∈ V(c). Since G0 is connected, the value 0 is inherited to the
other vertices by f (t(a)) = − f (o(a)). After all, we have f = 0, which implies ker(∂∗−) = 0
if A0,σ = ∅ and G0 is non-bipartite.

A0,σ �= ∅ case: Since (∂∗− f )(a) = f (t(a)) = 0 if a ∈ A0,σ, then f takes the value 0 at
the other vertices since f (t(a)) = − f (o(a)) for any a ∈ A+, which implies ker(∂∗+) = 0 if
A0,σ �= ∅.

After all, by the fundamental theorem of the linear algebra,

dim ker ∂− = |Arep| − |V0|+
{

1 : As = ∅, G0 is bipartite.
0 : otherwise.

Noting that |Arep| = |E0|+ |A0,σ|, we obtain the desired conclusion.

In the following, let us find linearly independent eigenfunctions of ker(±1− E) using
some concepts from graph theory. A walk p in G0 is a sequence p = (a0, a1, . . . , ar) of arcs
with t(aj) = o(aj+1) (j = 0, 1, . . . , r − 1), which may contain repeated arcs as defined in
Section 2.1. We set {a0, a1, . . . , ar} =: A(p), and similarly A(p) = {a0, . . . , ar} as multi sets.

We describe ξ̃
(±)
p : {a0, . . . , ar} ∪ {a0, . . . , ar} → {±1} by

ξ̃
(+)
p (a) =

{
1 : a ∈ A(p),
−1 : a ∈ A(p),

ξ̃
(−)
p (a) =

{
1 : |a| ∈ {|aj| | j is even},
−1 : |a| ∈ {|aj| | j is odd}.

Then, we set the functions ξ
(±)
p ∈ CA by

ξ
(±)
p (a) =

{
∑b: a=b ξ̃

(±)
p (b) : a ∈ A(p) ∪ A(p),

0 : otherwise.
(6)

Now, we are ready to show the following proposition for ker(1− E).
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Proposition 5. Let ξ
(+)
c be defined as (6). Then, we have

ker(1− E) = span{ξ
(+)
c | c ∈ Γ}.

Proof. By the definition of ξ
(+)
c , we have ξ

(+)
c ∈ ker d1 ∩ ker(1− S), which implies ξ

(+)
c ∈

ker(1 − E) by Lemma 3. We show the linear independence of {ξ
(+)
c }c∈Γ. Let us set

Γ = {c1, . . . , cr} and ξ j := ξ
(+)
cj (j = 1, . . . , r) induced by the spanning tree T ⊂ G.

Assume that
β1ξ1 + · · ·+ βrξr = 0.

Put ar ∈ A0(cr) ∩ (A0 \ A(T)). From the definition of the fundamental cycle, we have

β1ξ1(ar) + · · ·+ βrξr(ar) = βr = 0.

In the same way, let ar−1 ∈ A(cr−1) ∩ (A0 \ A(T)); then,

β1ξ1(ar) + · · ·+ βr−1ξr−1(ar−1) = βr−1 = 0.

Then, using it recursively, we obtain β1 = · · · = βr = 0, which means ξ js are
linearly independent.

Then, dim(K) = |Γ| = |E0| − |V0|+ 1. By Lemma 4, we reach the conclusion.

Define Γo, Γe ⊂ Γ as the set of odd and even length fundamental cycles. In the
following, to obtain a characterization of ker(1 + E) = ker(1− S) ∩ ker(d1), we construct
the function ηx,y ∈ ker(1− S)∩ ker(d1), which is determined by x, y ∈ A0,σ ∪ Γo. The main

idea to construct such a function is as follows. By the definition of ξ
(−)
q for any walk q,

ξ
(−)
q ∈ ker(1− S). This is equivalent to assigning the symbols “+” and “−” alternatively

to each edge along the walk q. If the walk c is an even length cycle, then a symbol on each
edge of c is different from the ones on the neighbor’s edges; this means

∑
t(a)=u

ξ
(−)
c (a) = 0,

for every u. Then, ξ
(−)
c ∈ ker(d1) ∩ ker(1 − S) holds. On the other hand, if the walk

c = (b1, . . . , br) is an odd length cycle, then a “frustration” appears at u := o(b1); i.e.,

∑
t(a)=u

ξ
(−)
c (a) = 2.

There are two ways to vanish this frustration: the first is to make a cancellation by
another frustration induced by another odd cycle c′ and the second is to push the frustration
to a self-loop. That is the reason the domains of x and y are A0,σ ∪ Γo. We give more precise
explanations of the constructions as follows. See also Figure 3.
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Figure 3. Construction of eigenfunction ηx,y ∈ CA0 : Each graph with signs ± represents the
function ηx,y. The support of ηx,y is included in the arcs of each graphs. The signs are the return
values of this function at each arcs. The return values of the inverse arcs are the same as the original
arcs. The signs are assigned alternatively along the red colored walks. At each time where the walk
runs through an arc, we take the sum of the signs; e.g., in the case for x ∈ A0,σ, y ∈ Γo, the walk runs
through the self-loop twice, and then the return value at the self-loops of the function is 1 + 1 = 2.

Definition 2. Construction of ηx,y ∈ CA0 :

The function ηx,y is described by ξ
(−)
q induced by a walk depending on the indexes of x, y.

In this paper, we consider four cases of the domains of x and y: (1) x ∈ Γo, y ∈ Γo; (2) x ∈ Aσ,
y ∈ Aσ; (3) x ∈ Aσ, y ∈ Γo; and (4) x ∈ Γo, y ∈ Aσ.

1. x ∈ Γo, y ∈ Γo case:
If G0 is a bipartite graph, let us fix an odd length fundamental cycle c∗ = (a0, . . . , ar−1) ∈ Γo
and pick up another c ∈ Γo = (b0, . . . , bs−1). We set the following walk q and define the
function on CA0 ; ξ

(−)
q =: aac∗−c, induced by c∗, c ∈ Γo:

(a) c0 ∩ c �= ∅ case: We set q as the shortest closed walk starting from a vertex
u0 ∈ V(c0) ∩ V(c) and visiting all the vertices of V(c0) and V(c); that is, q =
(ai, . . . , ai+r, bj, . . . , bs+j). Here, o(ai) = o(bj) = u0 and the suffices are modulus of
r and s.

(b) c0 ∩ c = ∅ case: Let us fix the shortest path between c0 and c by p = (p1, . . . , pt).
Denoting the vertex in V(c∗) connecting to p by u0 ∈ V(c∗), we set q by the
shortest closed walk q starting from u∗ and visiting all the vertices; that is, q =
(ai, . . . , ar+i, p0 . . . , pt, bj . . . , bs+j, p̄t . . . , p̄1), where o(ai) = t(ar+i) = o(p1) =
u0, t(pt) = o(bj) = t(bs+j).

Note that, by the definition of the fundamental cycle, the intersection c0 ∩ c is a path in Case
(1). Since G0 is connected, there is a path connecting c∗ to c and we fix such a path for every
pair of (c∗, c) in Case (2).

2. x ∈ Aσ and y ∈ Aσ case:
If the number of self-loops |Aσ| ≥ 2, let us fix a self-loop a∗ from Aσ and a path between a∗
to each a ∈ Aσ \ {a∗}. Let us denote the path between a∗ and a by p = (p1, . . . , pt). Then,
we set the walk from a∗ to a by q = (a∗, p1, . . . , pt, a) and ξ

(−)
q =: ηa∗−a.

3. x ∈ Aσ and y ∈ Γo case:
If |Aσ| ≥ 1 and G \ Aσ is a non-bipartite graph, let us fix a self-loop a∗ and pick up an
odd cycle c = (b1, . . . , bt) ∈ Γo; if the self-loop o(a∗) ∈ V(c), we set the walk starting
from a∗ visiting all the vertices V(c) and returning back to a∗ by q = (a∗, b1, . . . , bt, a∗);
and, for o(a∗) /∈ V(c), let us fix a path p = (p1, . . . , pt) between o(a∗) and o(b1) and set
the walk starting from a∗ visiting all the vertices V(p) ∪ V(c) and returning back to a∗;
q = (a∗, p1, . . . , pt, b0 . . . , bt, p̄t, . . . , p̄1, a∗). Then, we set ξ

(−)
q =: ηa∗ ,c.
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4. x ∈ Γo and y ∈ Aσ case:
Let us fix an odd length fundamental cycle c∗ ∈ Γo = (b1, . . . , bs−1) and pick up a self-loop
a ∈ Aσ. Let us set a short length path p between o(a) and o(b1). Then, we consider the same
walk q as in Case (3) and set ξ

(−)
q =: ηc∗ ,a.

By the construction, we have ηx,y ∈ ker(1 − S) ∩ ker(d1). Using the function ηx,y, we
obtain the following characterization of ker(−1− E).

Proposition 6. Let ξ
(−)
c be defined by (6) and ηx,y be the above. Let us fix a∗ ∈ Aσ and c∗ ∈ Γo.

Then, we have

ker(1 + E) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
span{ξ

(−)
c | c ∈ Γ} : Case (A),

span{ξ
(−)
c | c ∈ Γe} ⊕ span{ηc∗−c | c ∈ Γo \ {c∗}} : Case (B),

span{ξ
(−)
c | c ∈ Γ} ⊕ span{ηa∗−a | a ∈ A0,σ \ {a∗}} : Case (C),

span{ξ
(−)
c | c ∈ Γe} ⊕ span{ηa∗−y | y ∈ Γo ∪ (A0,σ \ {a∗})} : Case (D).

Proof. We put

A := span{ξ
(−)
c | c ∈ Γ}, (7)

B := span{ξ
(−)
c | c ∈ Γe} ⊕ span{ηc∗−c | c ∈ Γo \ {c∗}}, (8)

C := span{ξ
(−)
c | c ∈ Γ} ⊕ span{ηa∗−a | a ∈ A0,σ \ {a∗}}, (9)

D := span{ξ
(−)
c | c ∈ Γe} ⊕ span{ηa∗−y | y ∈ Γo ∪ (A0,σ \ {a∗})} (10)

(see also Figure 4). From the construction of ηx,y and ξ
(−)
c , the linear independence is

immediately obtained. Let us check the dimensions for each case.

In Case (A),
dim(A) = |Γ| = |E0| − |V0|+ 1.

In Case (B),
dim(B) = |Γe|+ (|Γo| − 1) = |E0| − |V0|.

In Case (C),

dim(C) = |Γ|+ (|A0,σ| − 1) = |E0| − |V0|+ |A0,σ|.
In Case (D),

dim(D) = |Γe|+ (|Γo| − 1) + (|A0,σ| − 1) = |E0| − |V0|+ |A0,σ|.
By Lemma 4, we reach the conclusion.

Remark 5. “M ⊕ N" in Proposition 6 means that M and N are just complementary spaces; the
orthogonality is not ensured in general.

Remark 6. If |Γo| = 1 in Case (B), we have B = span{ξ
(−)
c | c ∈ Γe}. If |A0,σ| = 1 in Case (C),

we have C = span{ξ
(−)
c | c ∈ Γ}.

Remark 7. The subspace D can be re-expressed by

D = span{ξ
(−)
c | c ∈ Γe} ⊕ span{ηc∗−y | y ∈ (Γo \ {c∗}) ∪ A0,σ}.
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Figure 4. Eigenspaces (A–D): This figure shows examples of four graphs for Cases (A)–(D) and their
induced eigenspaces of the Grover walk (A–D). The figures at the right corner are the fundamental
cycles for each case. The weighted graphs represent bases of each eigenspace. The weights are the
return values at each arcs of the bases, where every base takes the value 0 at the dashed arcs.

8. Conclusions

We investigated the Grover walk on a finite graph G with sinks using its connection
with the walk on the graph G0 with tails. It was shown that the centered generalized
eigenspace of the Grover walk with tails corresponds to the attractor space of the Grover
walk with sinks, i.e., it contains all trapped states which do not contribute to the transport
of the quantum walker into the sink. Consequently, the attractor space of the Grover
walk with sinks can be characterized using the persistent eigenspace of the underlying
random walk whose supports have no overlaps to the boundary and the concept of “flow”
from graph theory. In particular, we constructed linearly independent basis vectors of the
attractor space using the properties of fundamental cycles of G0. The attractor space can
be divided into subspaces T and K, corresponding to the eigenvalues λ �= ±1 and λ = 1,
respectively, and an additional subspace which belongs to the eigenvalue λ = −1. While
the basis of T and K can be constructed using the same procedure for all finite connected
graphs G0, for the last subspace, we provided a construction based on case separation,
depending on if the graph is bipartite or not and if it involves self-loops.

The use of fundamental cycles allowed us to considerably expand the results pre-
viously found in the literature, which are often limited to planar graphs. The derived
construction of the attractor space enables better understanding of the quantum transport
models on graphs. In addition, our results reveal that the attractor space can contain
subspaces of eigenvalues different from λ = ±1. In such a case, the evolution of the Grover
walk with sink will have more complex asymptotic cycle. In fact, the example presented
in Section 5 exhibits an infinite asymptotic cycle, since the phase θ of the eigenvalues
λ± �= ±1 is not a rational multiple of π. This feature is missing, e.g., in the Grover walk on
dynamically percolated graphs with sinks, where the evolution converges to a steady state.
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Abstract: We consider the discrete-time quantum walk whose local dynamics is denoted by a
common unitary matrix C at the perturbed region {0, 1, . . . , M − 1} and free at the other positions.
We obtain the stationary state with a bounded initial state. The initial state is set so that the perturbed
region receives the inflow ωn at time n (|ω| = 1). From this expression, we compute the scattering
on the surface of −1 and M and also compute the quantity how quantum walker accumulates in the
perturbed region; namely, the energy of the quantum walk, in the long time limit. The frequency of
the initial state of the influence to the energy is symmetric on the unit circle in the complex plain. We
find a discontinuity of the energy with respect to the frequency of the inflow.

Keywords: quantum walk; scattering theory; energy

1. Introduction

There is no doubt that a study on scattering theory is one of the most interesting
topics of the Schrödinger equation. Recently, it has been revealed that the scatterings of
some fundamental stationary Schrödinger equations on the real line with not only delta
potentials [1–3] but also continuous potential [4] can be recovered by discrete-time quantum
walks. These induced quantum walks are given by the following setting: the non-trivial
quantum coins are assigned to some vertices in a finite region on the one-dimensional lattice
as the impurities and the free-quantum coins are assigned at the other vertices. The initial
state is given so that a quantum walker inflows into the perturbed region at every time
step. It is shown that the scattering matrix of the quantum walk on the one-dimensional
lattice can be explicitly described by using a path counting in [5] and this path counting
method can be described by a discrete analogue of the Feynmann path integral [4]. There
are some studies for the scattering theory of quantum walks under slightly general settings
and related topics [6–12].

Such a setting is the special setting of [13,14] in that the regions where a quantum
walker moves freely coincide with tails in [13,14], and the perturbed region can be regarded
as a finite and connected graph in [13,14]. The properties of not only the scattering on
the surface of the internal graph but also the stationary state in the internal graph for the
Szegedy walk are characterized by [15] with a constant inflow from the tails.

Symmetry 2021, 13, 1134. https://doi.org/10.3390/sym13071134 https://www.mdpi.com/journal/symmetry125



Symmetry 2021, 13, 1134

By [14], this quantum walk converges to a stationary state. Therefore, let �ϕ(·):
Z → C2 be the stationary state of the quantum walk on Z. The perturbed region is
ΓM := {0, 1, . . . , M − 1} and we assign the quantum coin

C =

[
a b
c d

]
to each vertex in ΓM. The inflow into the perturbed region at time n is expressed by ωn

(|ω| = 1). In this paper, we compute (1) the scattering on the surface of the perturbed
region ΓM in the one-dimensional lattice; (2) the energy of the quantum walk. Here, the
energy of quantum walk is defined by

EM(ω) =
M−1

∑
x=0

||�ϕ(x)||2C2 .

This is the quantity that quantum walkers accumulate to the perturbed region ΓM in the
long time limit. We obtain a necessary and sufficient condition for the perfect transmitting,
and also obtain the energy. As a consequence of our result on the energy, we observe a
discontinuity of the energy with respect to the frequency of the inflow. Moreover, our
result implies that the condition for θ(ω) ∈ N is equivalent to the condition for the perfect
transmitting. Then, we obtain that the situation of the perfect transmitting not only releases
quantum walker to the opposite outside but also accumulates quantum walkers in the
perturbed region. Note that since this quantum walk can be converted to a quantum walk
with absorption walls, the problem is reduced to analysis on a finite matrix EM, which is
obtained by picking up from the total unitary time evolution operator with respect to the
perturbed region ΓM. See [16] for a precise spectral results on EM.

This paper is organized as follows. In Section 2, we explain the setting of this model
and give some related works. In Section 3, an explicit expression for the stationary state
is computed using the Chebyshev polynomials. From this expression, we obtain the
transmitting and reflecting rates and a necessary and sufficient condition for the perfect
transmitting. We also give the energy in the perturbed region. In Section 4, we estimate the
asymptotics of the energy to see the discontinuity with respect to the incident inflow.

2. The Setting of our Quantum Walk

The total Hilbert space is denoted by H := �2(Z;C2) ∼= �2(A). Here A is the set of arcs
of one-dimensional lattice whose elements are labeled by {(x; R), (x; L) | x ∈ Z}, where
(x; R) and (x; L) represents the arcs “from x − 1 to x“, and “from x + 1 to x”, respectively.
We assign a 2× 2 unitary matrix to each x ∈ Z so-called local quantum coin

Cx =

[
ax bx
cx dx

]
.

Putting |L〉 := [1, 0]&, |R〉 := [0, 1]& and 〈L| = [1, 0], 〈R| = [0, 1], we define the following
matrix valued weights associated with the motion from x to left and right by

Px = |L〉〈L|Cx, Qx = |R〉〈R|Cx,

respectively. Then, the time evolution operator on �2(Z;C2) is described by

(Uψ)(x) = Px+1ψ(x + 1) + Qx−1ψ(x − 1)

for any ψ ∈ �2(Z;C2). Its equivalent expression on �2(A) is described by

(U′φ)(x; L) = ax+1φ(x + 1; L) + bx+1φ(x + 1; R),

(U′φ)(x; R) = cx−1φ(x − 1; L) + dx−1φ(x − 1; R) (1)
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for any ψ ∈ �2(A). We call ax and dx the transmitting amplitudes, and bx and cx the
reflection amplitudes at x, respectively. If we put ax = dx = 1 and bx = cx =

√
−1 = i,

then the primitive form of QW in [17] is reproduced. Remark that U and U′ are unitarily
equivalent such that letting η : �2(Z;C2) → �2(A) be

(ηψ)(x; R) = 〈R|ψ〉, (ηψ)(x; L) = 〈L|ψ〉

then we have U = η−1U′η. The free quantum walk is the quantum walk where all local
quantum coins are described by the identity matrix, i.e.,

(U0ψ)(x) =
[

1 0
0 0

]
ψ(x + 1) +

[
0 0
0 1

]
ψ(x − 1).

Then, the walker runs through one-dimensional lattices without any reflections in the
free case.

In this paper, we set “impurities” on

ΓM := {0, 1, . . . , M − 1}

in the free quantum walk on one-dimensional lattice; that is,

Cx =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

[
a b
c d

]
: x ∈ ΓM,

I2 : x /∈ ΓM.

(2)

We consider the initial state Ψ0 as follows.

Ψ0(x) =

{
eiξx|R〉 : x ≤ 0;
0 : otherwise,

where ξ ∈ R/2πZ. Note that this initial state belongs to no longer �2 category. The region
ΓM is obtained a time dependent inflow e−iξn from the negative outside. On the other
hand, if a quantum walker goes out side of ΓM, it never come back again to ΓM. We can
regard such a quantum walker as an outflow from ΓM. Roughly speaking, in the long
time limit, the inflow and outflow are balanced and obtain the stationary state with some
modification. Indeed, the following statement holds.

Proposition 1 ([14]).

1. This quantum walk converges to a stationary state in the following meaning:

∃ lim
n→∞

ei(n+1)ξ Ψn(x) =: Φ∞(x).

2. This stationary state is a generalized eigenfunction satisfying

UΦ∞ = e−iξΦ∞.

Relation to an absorption problem

Let the reflection amplitude at time n be γ̃n(z) := 〈L|Φn(−1)〉 with z = eiξ . We can
see that γ̃n(z) is rewritten by using U′ as follows:

z−1γ̃n+1(z) = 〈δ(−1;L), U′δ(0;R)〉+ 〈δ(−1;L), U′2δ(0;R)〉z
+ 〈δ(−1;L), U′3δ(0;R)〉z2 + · · ·+ 〈δ(−1;L), U′n+1

δ(0;R)〉zn
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The first term is the amplitude that the inflow at time n cannot penetrate into ΓM; the m-th
term is the amplitude that the inflow at time n − (m − 1) penetrates into ΓM and escapes
ΓM from 0 side at time n. Therefore, each term corresponds to the “absorption” amplitude
to −1 with the absorption walls −1 and M with the initial state δ(0;R). Then

Remark 1. The reflection amplitude 〈L|Φ∞(−1)〉 = limn→∞ γ̃n(z) coincides with the generating
function of the absorption amplitude to −1 with respect to time n while the transmitting amplitude
〈R|Φ∞(M)〉 = limn→∞ τ̃n(z) coincides with the generating function of the absorption amplitude
to M with respect to time n.

Put γn := |〈δ(−1;L), U′nδ(0;R)〉|2 and τn := |〈δ(M;R), U′nδ(0;R)〉|2 which are the absorp-
tion/ first hitting probabilities at positions −1 and M, respectively, starting from (0 : R).
From the above observation, for example, we can express the m-th moments of the absorp-
tion/hitting times to −1 and M as follows:

∑
n≥1

nmγn =
∫ 2π

0
〈L|Φ∞(−1)〉

(
−i

∂

∂ξ

)m
〈L|Φ∞(−1)〉 dξ

2π
, (3)

∑
n≥1

nmτn =
∫ 2π

0
〈R|Φ∞(M)〉

(
−i

∂

∂ξ

)m
〈R|Φ∞(M)〉 dξ

2π
. (4)

Relation to Scattering of quantum walk

The stationary state Φ∞ is a generalized eigenfunction of U in �∞(Z;C2). The scatter-
ing matrix naturally appears in Φ∞ (see [5]). In the time independent scattering theory, the
inflow can be considered as the incident “plane wave“, and the impurity causes the scat-
tered wave by transmissions and reflections. Thus, we can see the transmission coefficient
and the reflection coefficient in Φ∞(x) for x ∈ Z \ ΓM. For studies of a general theory of
scattering, we also mention the recent work by Tiedra de Aldecoa [12].

3. Computation of Stationary State

3.1. Preliminary

Recall that |L〉 and |R〉 represent the standard basis of C2; that is, |L〉 = [1, 0]& and
R〉 = [0, 1]&. Let χ : �2(Z;C2) → �2(ΓM;C2) be a boundary operator such that (χψ)(a) =
ψ(a) for any a ∈ {(x; R), (x; L) | x ∈ ΓM}. Here, the adjoint χ∗ : �2(ΓM;C2) → �2(Z;C2) is
described by

(χ∗ϕ)(a) =

{
ϕ(a) : a ∈ {(x; R), (x; L) | x ∈ ΓM},
0 : otherwise.

We put the principal submatrix of U with respect to the impurities by EM := χUχ∗. The
matrix form of EM with the computational basis χδ0|L〉, χδ0|R〉, . . . , χδM−1|L〉, χδM−1|R〉
is expressed by the following 2M × 2M matrix:

EM =

⎡⎢⎢⎢⎢⎢⎢⎣

0 P
Q 0 P

Q 0
. . .

. . . . . . P
Q 0

⎤⎥⎥⎥⎥⎥⎥⎦ (5)

We express the ((x; J), (x′; J′)) element of EM by

(EM)(x;J),(x′ ;J′) :=
〈

χδx|J〉, EMχδx′ |J′〉
〉
C2M

.
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Putting ψn := χΨn, we have

ψn+1 = χU(χ∗χ + (1− χ∗χ))Ψn

= EMψn + χU(1− χ∗χ)Ψn

= EMψn + e−i(n+1)ξ χδ0|R〉.

Then, putting φn := ei(n+1)ξ ψn, we have

e−iξ φn+1 = EMφn + χδ0|R〉. (6)

From [14], ϕ := ∃ limn→∞ φn. Then, the stationary state restricted to ΓM satisfies

(e−iξ − EM)φ∞ = χδ0|R〉. (7)

About the uniqueness of this solution is ensured by the following Lemma since it includes
the existence of the inverse of (e−iξ − EM).

Lemma 1. Let EM be the above with a �= 0.† Then σ(EM) ⊂ {λ ∈ C | |λ| < 1}.

Proof. Let ψ ∈ �2(ΓM,C2) be an eigenvector of eigenvalue λ ∈ σ(EM). Then

|λ|2||ψ||2 = ||EMψ||2 = 〈Uχ∗ψ, χ∗χUχ∗ψ〉 ≤ 〈Uχ∗ψ, Uχ∗ψ〉 = ||χ∗ψ||2 = ||ψ||2. (8)

Here, for the inequality, we used the fact that χ∗χ is the projection operator onto

span{δx|L〉, δx|R〉 | x ∈ ΓM} ⊂ �2(Z;C2)

while for the final equality, we used the fact that χχ∗ is the identity operator on �2(ΓM;C2).
If the equality in (8) holds, then χ∗χUχ∗ψ = Uχ∗ψ holds. Then, we have the eigenequation
Uχ∗ψ = λχ∗ψ by taking χ∗ to both sides of the original eigenequation χUχ∗ψ = λψ.
However, there are no eigenvectors having finite supports in a position independent
quantum walk on Z with a �= 0 since its spectrum is described by only a continuous
spectrum in general. Thus, |λ|2 < 1.

Now, let us solve this Equation (7). The matrix representation of EM with the permu-
tation of the labeling such that (x; R) ↔ (x; L) for any x ∈ ΓM to (5) is

EM ∼=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0
0 0 b a
d c 0 0 0 0
0 0 0 0 b a

d c
. . . . . .

0 0
. . . . . . 0 0

b a
d c 0 0
0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
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Then, the Equation (7) is expressed by

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

z 0 0 0
0 z −b −a
−d −c z 0

0 z −b −a
−d −c z 0

. . . . . .

0 z −b −a
−d −c z 0

0 z

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ϕ(0; R)
ϕ(0; L)
ϕ(1; R)
ϕ(1; L)

...

...
ϕ(M − 2; R)
ϕ(M − 2; L)
ϕ(M − 1; R)
ϕ(M − 1; L)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
0
0
0
...
...
0
0
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Here, we changed the way of blockwise of EM and we put z = e−iξ . Putting

Az :=
[

0 z
−d −c

]
, Bz :=

[−b −a
z 0

]
,

we have [
z 0

]
�ϕ(0) = 1, Az�ϕ(0) + Bz�ϕ(1) = 0, Az�ϕ(1) + Bz�ϕ(2) = 0, . . .

. . . , Az�ϕ(M − 2) + Bz�ϕ(M − 1) = 0,
[
0 z

]
�ϕ(M − 1) = 0, (9)

where �ϕ(x) = [ϕ(x; R), ϕ(x; L)]& for any x ∈ ΓM. The inverse matrix of Bz exists since
z �= 0. Then, we have

�ϕ(1) = T�ϕ(0), �ϕ(2) = T2�ϕ(0), . . . , �ϕ(M − 1) = TM−1�ϕ(0), (10)

where

T = −B−1
z Az =

1
az

[
Δ|a|2 −Δab̄
−Δāb z2 + Δ|b|2

]
.

Here Δ = det(P + Q) = det
[

a b
c d

]
. For the boundaries, there exists κ such that

�ϕ(0) =
[
z−1 κ

]
,
[
0 z

]
�ϕ(M − 1) = 0. (11)

By (10) and (11), κ satisfies 〈[
0
1

]
, TM−1

[
z−1

κ

]〉
= 0 (12)

which is equivalent to

κ = − z−1(TM−1)2,1

(TM−1)2,2
.

Now, the problem is reduced to considering the n-th power of T because the eigen-
vector is expressed by �ϕ(n) = Tn�ϕ(0). Since T is a just 2 × 2 matrix, we can prepare the
following lemma.

Lemma 2. Let A be a 2-dimensional matrix denoted by

A =

[
α β
γ δ

]
.
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1. (α − δ)2 + 4βγ = 0 and A �= εI for some ε case. Let λ = (α + δ)/2. Then

An =

[
λn + α−δ

2 nλn−1 βnλn−1

γnλn−1 λn − α−δ
2 nλn−1

]

2. Otherwise. Let ζn := (det(A)1/2)n−1Un−1(
tr(A)

2 det(A)1/2 ) for n ≥ 1. Then

An =

[
ζn+1 − δζn βζn

γζn ζn+1 − αζn

]
,

where Un(·) is the n-th Chebyshev polynomial of the second kind.

Remark 2. The condition “(α− δ)2 + 4βγ = 0 and A �= εI” is equivalent to the non-diagonalizability
of A.

Remark 3. For A = T case, the condition of 1. is reduced to

ω := Δ−1/2z ∈ {ε1|a|+ ε2i|b| | ε1, ε2 ∈ {±1}} =: ∂B.

Remark 4. For A = T case, the variable of the Chebyshev polynomial in 2. is reduced to

tr(T)/(2 det(T)1/2) = (ω + ω−1)/(2|a|).

Moreover, if ω = eik, the Chebyshev polynomial is described by U−1(·) = 0,

Un(cos k/|a|) = λn+1
+ − λn+1

−
λ+ − λ−

(n ≥ 0).

Here, λ± in RHS are the roots of the quadratic equation

λ2 − 2 cos k
|a| λ + 1 = 0

with |λ−| ≤ |λ+|.

3.2. Transmitting and Reflecting Rates

Let us divide the unit circle in the complex plain as follows:

Bin = {eik | | cos k| < |a|}, ∂B = {eik | | cos k| = |a|}, Bout = {eik | | cos k| > |a|}. (13)

By the unitarity of
[

a b
c d

]
and using the Chebyshev recursion; Un+1(x) = 2xUn(x) −

Un−1(x), we insert (1) and (2) in Lemma 2 into (10), and we have an explicit expression for
the stationary state as follows.

Theorem 1. Let the stationary state restricted to ΓM = {0, 1, . . . , M − 1} be φ∞ and �ϕ(n) :=
[φ∞(n; R) φ∞(n; L)]&. Then we have

�ϕ(n) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

z−1(αΔ−1/2)−n

ωζ ′M−|a|ζ ′M−1

[
ωζ ′M−n − |a|ζ ′M−n−1

αbζ ′M−n−1

]
: ω /∈ ∂B

Δ−1/2λn

εR |a|+iεI M|b|

[
εRα(εR|a|+ iεI |b|(M − n))

b(M − n − 1)

]
: ω ∈ ∂B

(14)
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for n = 0, 1, . . . , M − 1, where α = a/|a| and ζ ′m = Um−1(
ω+ω−1

2|a| ) (m ≥ 0), λ = sgn(εR)α
−1

Δ1/2. Here εR = sgn(Re(ω)) and εI = sgn(Im(ω))

Since the transmitting and reflecting rates are computed by

T(ω) =

∣∣∣∣〈[1
0

]
, �ϕ(M − 1)

〉
× d
∣∣∣∣2,

R(ω) =

∣∣∣∣〈[0
1

]
, �ϕ(0)

〉
× a +

〈[
1
0

]
, �ϕ(0)

〉
× b
∣∣∣∣2,

we obtain explicit expressions for them as follows.

Corollary 1. Assume abcd �= 0. For any ω ∈ R/(2πZ), we have

T(ω) =
|a|2

|a|2 + |b|2ζ ′2M
(15)

R(ω) =
|b|2ζ ′2M

|a|2 + |b|2ζ ′2M
(16)

Note that the unitarity of the time evolution can be confirmed by T + R = 1. By
Corollary 1, we can find a necessary and sufficient conditions for the perfect transmitting;
that is , T = 1.

Corollary 2. Assume abcd �= 0. Let ω = eik with some real value k. Then the perfect transmitting
happens if and only if

arccos
(

cos k
|a|

)
∈
{

�

M
π | � ∈ {0,±1, . . . ,±(M − 1)}

}
.

On the other hand, the perfect reflection never occurs.

Remark that if ω /∈ Bin, then the perfect transmitting never happens.

3.3. Energy in the Perturbed Region

Taking the square modulus to �ϕ(n) in Theorem 1, the relative probability at position
n ∈ ΓM = {0, . . . , M − 1} can be computed as follows.

Proposition 2. Assume abcd �= 0. Then, the relative probability is described by

||�ϕ(n)||2 =

⎧⎪⎪⎨⎪⎪⎩
1

|a|2+|b|2ζ ′2M

(
|a|2 + |b|2ζ ′2M−n−1 + |b|2ζ ′2M−n

)
: ω /∈ ∂B

1
|a|2+M2|b|2

{
|a|2 + |b|2(M − n)2 + |b|2(M − n − 1)2} : ω ∈ ∂B

(17)

Proof. Let us consider the case for ω /∈ ∂B. Using the property of the Chebyshev polyno-
mial, we have ζ ′m+1ζ ′m−1 = ζ ′2m − 1 and (ω + ω−1)/|a| · ζ ′m = ζ ′m+1 + ζ ′m−1. It holds that

(ω + ω−1)ζ ′mζ ′m−1 = |a|(ζ ′m+1 + ζ ′m−1)ζ
′
m−1

= |a|(ζ ′2m + ζ ′2m−1 − 1).
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Since ζ ′m ∈ R, we have

q(m) := |ωζ ′m − |a|ζ ′m−1|2 = ζ ′2m + |a|2ζ ′2m−1 − |a|2(ω + ω−1)ζ ′mζ ′m−1

= |b|2ζ ′2m + |a|2,

Then, we have

||�ϕ(n)||2 =
1

q(M)
(q(M − n) + |b|2ζ ′2M−n−1)

=
|b|2ζ ′2M−n + |a|2 + |b|2ζ ′2M−n−1

|b|2ζ ′2M + |a|2
.

Then, we can see how much quantum walkers accumulate in the perturbed region
ΓM = {0, . . . , M − 1} by

EM(ω) =:
M−1

∑
n=0

||�ϕ(n)||2.

We call it the energy of quantum walk. The dependency of the energy on ω is symmetric
on the unit circle in the complex plain.

Corollary 3. Let EM(ω) be the above and assume abcd �= 0. Then we have

EM(ω) =
1

|a|2 + |b|2ζ ′2M

{
M|a|2 + |b|2

(λ+ − λ−)2

(
ζ ′2M+1 − ζ ′2M−1 − 4M

)}
(18)

In particular, EM(·) is continuous at every ω∗ ∈ ∂B and

EM(ω∗) =
1
3

M
|a|2 + |b|2M2

(
3|a|2 + |b|2 + 2|b|2M2

)
.

Proof. Using the properties of the Chebyshev polynomial for example, U2
n −Un+1Un−1 = 1,

Tn = (Un −Un−2)/2, we have

(λm−1
+ + λm−1

− )ζ ′M = 2Tm−1Um−1 = ζ ′2m − ζ ′2m−1 + 1.

Then, we have

m−1

∑
n=0

ζ ′n
2
=

m−1

∑
n=0

(
λm
+ − λm

−
λ+ − λ−

)2

=
1

(λ+ − λ−)2

{
(λm−1

+ + λm−1
− )ζ ′m − 2m

}
=

1
(λ+ − λ−)2 (ζ

′2
m − ζ ′2m−1 − 2m + 1) (19)

Then, we have

M−1

∑
n=0

||�ϕ(n)||2 =
1

|a|2 + |b|2ζ ′2M

(
M|a|2 + |b|2

M−1

∑
n=0

ζ ′2M−n−1 + ζ ′2M−n

)

=
1

|a|2 + |b|2ζ ′2M

{
M|a|2 + |b|2

(λ+ − λ−)2

(
ζ ′2M+1 − ζ ′2M−1 − 4M

)}
Here, we used (19) in the last equality.
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If ω ∈ ∂B, then by directly computation taking summation of (17) over n ∈ ΓM =
{0, 1, . . . , M − 1}, we obtain the conclusion. Let us see EM(·) is continuous at ∂B. We put
x := (1/|a|) cos k and ζ ′m(x) := ζ ′m. Remark that ω → ω∗ implies |x| → 1. In the following,
we consider x → 1 case. The Taylor expansion of ζ ′m(x) around x = 1 is

ζ ′m(1− ε) = m − m
3
(m2 − 1)ε + O(ε2).

The reason for obtaining the expansion until ε1 order is

ζ ′2M+1 − ζ ′2M−1 − 4M = O(ε2).

around x = 1. Note that (λ+ − λ−)2 = 4(x2 − 1). Then

(λ+ − λ−)2 = −8ε + O(ε)

around x = 1. Then inserting all of them into (18), we obtain

lim
ω→ω∗

EM(ω) =
M

|a|2 + |b|2M2

(
|a|2 + |b|2

3
+

2|b|2
3

M2
)

.

4. Asymptotics of Energy

If ω ∈ ∂B, then by Corollary 3, it is immediately obtained that

lim
M→∞

EM(ω)

M
=

2
3

. (20)

Let us consider the case of ω ∈ Bin ∪ Bout as follows. Note that

λ± =

{
sgn(cos k)e±θ : ω ∈ Bout,
e±iθ : ω ∈ Bin,

where (1/|a|) cos k = cosh θ (ω ∈ Bout), while (1/|a|) cos k = cos θ (ω ∈ Bin) such that
sin θ > 0 and sinh θ > 0. To observe the asymptotics of EM(ω) for ω /∈ ∂B, we rewrite
EM(ω) as follows:

EM(ω) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1

|a|2 sinh2 θ+|b|2 sinh2 Mθ

{
(−|b|2 + |a|2 sinh2 θ)M + |b|2

4
sinh 2Mθ sinh 2θ

sinh2 θ

}
: ω ∈ Bout

1
|a|2 sin2 θ+|b|2 sin2 Mθ

{
(|b|2 + |a|2 sin2 θ)M − |b|2

4
sin 2Mθ sin 2θ

sin2 θ

}
: ω ∈ Bin

(21)

From now on, let us consider the asymptotics of EM(ω) for large M. We summarize
our results on the asymptotics of EM(ω) in Table 1. In the following, we regard EM(ω)
as a function of θ, M; that is E(M, θ) because θ can be expressed by ω and consider the
asymptotics for large M.

4.1. ω ∈ Bout

Let us see that

lim
M→∞

EM(ω) =
cosh θ

sinh θ
=

∣∣∣ cos k
a

∣∣∣√∣∣∣ cos k
a

∣∣∣2 − 1

. (22)
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Note that sinh Mθ ∼ eMθ/2 ( M. Then by (21), we have

EM(ω) ∼ 1
|b|2e2Mθ

× |b|2
4

e2Mθ sinh 2θ

sinh2 θ
=

cosh θ

sinh θ
.

By (22), if ω → ω∗ ∈ ∂B, then EM(ω) ∼ 1/θ → ∞. To connect it to the limit for the case of
ω∗ ∈ ∂B described by (20) continuously, we consider M → ∞ and θ → 0 simultaneously,
so that Mθ ∼ θ∗ ∈ (0, ∞). Let us see that

EM(ω) ∼ 1
sinh2 θ∗

(
−1 +

sinh 2θ∗
2θ∗

)
M (23)

Noting that sinh mθ = sinh mθ∗ �= 0, for m = 1, 2 and sinh θ ∼ θ∗/M, we have

EM(ω) ∼ 1
|b2| sinh2 θ∗

{
−|b|2M +

|b|2
4

sinh 2θ∗ × (2θ∗/M)

(θ∗/M)2

}
=

1
sinh2 θ∗

(
−1 +

sinh 2θ∗
2θ∗

)
M

Therefore, if we design the parameter θ∗ so that

2
3
=

1
sinh2 θ∗

(
−1 +

sinh 2θ∗
2θ∗

)
, (24)

then the energy of Bout continuously closes to that of ∂B in the sufficient large system
size M.

4.2. ω ∈ Bin

In this paper, since we determine θ satisfying sin θ > 0, we set θ ∈ (0, π). Remark that
EM(ω−1) = EM(ω) for any ω ∈ Bin because eiθ is invariant under this deformation.

By (21), if sin θ ) sin Mθ ) 1, we have

EM(ω) ∼
(

|a|2 sin2 θ + |b|2
|a|2 sin2 θ + |b2| sin2 Mθ

)
M, (25)

for sufficiently large M, which implies that

M � EM(ω) �
(

1 +
|b|2

|a|2 sin2 θ

)
M (26)

if θ /∈ {0, π} is fixed. Then, we conclude that EM(ω) = O(M) if θ /∈ Zπ is fixed for
ω ∈ Bin. On the other hand, if we design θ so that the condition of the perfect transmitting
is satisfied; θ = π�/M, |�| ∈ {1, . . . , M − 1} (see Corollary 1) and choose � which is very
close to 0 or M, then | sin θ| * 1. Note that if | sin θ| → 0, which means ω → ω∗ ∈ ∂B,
then the coefficient of the upper bound in (26) diverges.

Then, from now on, let us consider the following three cases having a magnitude
relation between θ and M;

(i) 1 * M * 1/ sin θ; (ii) M ) 1/ sin θ; (iii) 1/ sin θ * M.

1. Case (i): 1 * M * 1/ sin θ
Let us start to evaluate RHS of (21). Since

sin 2Mθ sin 2θ

4 sin2 θ
∼ M

{
1− 1

3
(1 + 2M2)θ

}
,

135



Symmetry 2021, 13, 1134

the “{ }“ part in RHS of (21) can be evaluated by 2|b|2M3θ2/3. The denominator
of (21) is evaluated by 1/(|b|2M2θ2). Combining them, we have

EM(ω) ∼ 2M
3

(27)

This is consistent with (20).
2. Case (ii): M ) 1/| sin θ|

Under this condition, the parameter θ lives around 0 or π if M is large. Since we
consider θ ∈ (0, π), we can evaluate sin θ by sin θ ∼ θ, or sin θ ∼ (π − θ) for large M.
We define θ′ = θ if 0 < θ < π/2 and θ′ = π − θ if π/2 ≤ θ < π. Because M sin θ ) 1
by the assumption, we have Mθ′ ) 1. Therefore, we put Mθ′ = θ∗ + ε with θ∗ ) 1
and |ε| * 1. Then up to the value θ∗, let us see

EM(ω) ∼

⎧⎪⎪⎨⎪⎪⎩
1

sin2 θ∗

(
1− sin 2θ∗

2θ∗

)
M : θ∗ /∈ Zπ,

|b|2
|a|2θ2∗

M3 : θ∗ ∈ Zπ and εM * 1
M
ε2 : θ∗ ∈ Zπ and εM ( 1

(28)

Note that if θ∗ /∈ Zπ, then sin θ = sin θ′ ∼ θ∗/M and sin2 Mθ = sin2 Mθ′ ∼ sin2 θ∗ �=
0, sin 2Mθ = sin 2Mθ′ ∼ sin 2θ∗ and so on. Inserting them into (21), we have

EM(ω) ∼ 1
|a|2θ2∗/M2 + |b|2 sin2 θ∗

{
(|a|2θ2

∗/M2 + |b|2)M − |b|2
4

sin 2θ∗ · 2θ∗/M
θ2∗/M2

}
∼ 1

sin2 θ∗

(
1− sin 2θ∗

2θ∗

)
M

On the other hand, if θ∗ ∈ Zπ, since sin θ ∼ θ∗/M and sin Mθ∗ ∼ ε, by (21), we have

EM(ω) ∼ 1
|a|2θ2 + |b|2ε2

{
|b|2M − |b|2

4
2ε · 2θ∗/M
(θ∗/M)2

}
∼ |b|2M

|a|2θ′2 + |b|2ε2

∼

⎧⎨⎩
|b|2
|a|2θ2∗

M3 : ε * θ∗/M

M/ε2 : ε ( θ∗/M

3. Case (iii): 1/| sin θ| * M
The “{ }” part in (21) is estimated by (|b|2 + |a|2 sin2 θ)M because Mθ ( 1. Then,
we have

EM(ω) ∼
(

|a|2 sin2 θ + |b|2
|a|2 sin2 θ + |b2| sin2 Mθ

)
M, (29)

for sufficiently large M which is the same as (25). Let us consider the following
case study:

(a) max{| sin θ|, | sin Mθ|} ) 1; (b) | sin θ|, | sin Mθ| * 1.

(a) Let us see EM(ω) = O(M) in this case. If sin θ ) sin θM ) 1, then the
coefficient of M in (29) is a finite value, then we have (26). On the other hand,
if each of sin θ or sin Mθ * 1, then (29) implies

EM(ω) ∼

⎧⎨⎩
1

sin2 Mθ
M : sin θ * sin Mθ ) 1

(1 + |b|2
|a|2 sin2 θ

)M : sin Mθ * sin θ ) 1
(30)
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(b) Since | sin Mθ| * 1, we evaluate | sin Mθ| by

| sin Mθ| ∼ min{|Mθ|, |π − Mθ|, . . . , |Mπ − Mθ|} =: δ.

Then, there exists a natural number m such that |θ − mπ/M| = δ/M. Note
that | sin θ| is also sufficiently small. Then, the natural number m must be
m/M * 1 if 0 < θ < π/2 and (M − m)/M * 1 if π/2 ≤ θ < π. Putting
m′ := min{m, M − m}, we have

| sin θ| ∼ |m
′

M
π ± δ

M
| ∼ δ

M
.

Therefore, | sin θ| * | sin Mθ| * 1 holds. Then, (29) implies

EM(ω) ∼ M
δ2 .

We summarize the above statements in the following theorem by setting θ = O(1/M),
ε = 1/Mα as a special but natural design of the parameters.

Theorem 2. Let us set ω ∈ Bin so that

θ = θ(M) =

(
xπ +

1
Mα

)
1
M

with the parameters x ∈ (0, M) ⊂ R and α ≥ 0. If x → 0 or x → M with fixed M, then
EM(ω) = O(M). On the other hand, if we take M → ∞ and fix x′ = min{x, M − x} ) 1, then
we have

EM(ω) =

⎧⎪⎨⎪⎩
O(M3) : x′ is natural number and α ≥ 1,
O(M1+2α) : x′ is natural number and 0 ≤ α < 1,
O(M) : otherwise.

Table 1. Asymptotics of the energy of EM(ω): cos θ = (ω + ω−1)/(2|a|), Mθ = θ∗ + ε.

1 � M � 1/θ 1 � M � 1/θ 1/θ � M

ω ∈ ∂B - - O(M)

ω ∈ Bout O(M)

{
O(θ−1) : 1/θ ( 1
O(1) : 1/θ ) 1

ω ∈ Bin O(M)

⎧⎪⎨⎪⎩
O(M3/θ∗2) : θ∗ ∈ Zπ, εM * 1
O(Mε−2) : θ∗ ∈ Zπ, εM ( 1
O(M) : θ∗ /∈ Zπ

5. Conclusions

We considered the quantum walk on the line with the perturbed region {0, 1, . . . , M};
that is, an non-trivial quantum coin is assigned at the perturbed region and the free
quantum coin is assigned at the other region. We set an �∞ initial state so that free quantum
walkers are inputted at each time step to the perturbed region. A closed form of the
stationary state of this dynamical system was obtained and we computed the energy of the
quantum walk in the perturbed region. This energy represents how quantum walker feels
“comfortable“ in the perturbed region. We showed that the “feeling” of quantum walk
depends on the frequency of the initial state. We can divide the region of the frequency into
three parts to classify the asymptotics of the energy for large M; Bin, Bout, δB. The region
Bin coincides with the continuous spectrum of the quantum walk with M → ∞ [5]. We
showed that quantum walkers prefer to the initial state whose frequency corresponds to the
continuous spectrum in the infinite system. More precisely, the energy of the quantum walk
in the perturbed region is estimated by O(1) if θ ∈ Bout, while one is estimated by O(M) if
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θ ∈ δB and almost all pseudo momentum θ gives O(M)-energy, but some momentum gives
O(M3) if θ ∈ Bin (Theorem 2). Such an initial state exactly exists but it is quite rare from
the view point of the Lebesgue measure. The most comfortable initial state for quantum
walkers has the frequency whose pseudo momentum θ lives in some neighborhood of the
boundary ∂B and accomplishes the perfect transmitting. If the momentum of the initial
state exceeds the boundary ∂B from the internal region Bin, then the energy is immediately
reduced to O(1). It suggests that the control of the frequency of the initial state to give
the maximal energy in the perturbed region is quite sensitive from the view point of
an implementation.

The spectrum of the boundary ∂B for M → ∞ produces the two singular points
of the density function of the Konno limit distribution and is characterized by the Airy
functions. In [16], details of the spectrum behavior around ∂B is discussed. Indeed, a kind
of “speciality“ also appears as the non-diagonalizability of T when θ ∈ ∂B in our work
(Lemma 2). Note that the infinite system does not have any edges, which means every node
is “impurity”, while our quantum walker feels the edges of the impurities; nodes 0 and
M. Therefore, to see the effect of such a finiteness on the behavior of the quantum walker
comparing with the infinite system, computing how a quantum walker is distributed in
the perturbed region is interesting which may be possible from the explicit expression
of the stationary state in Theorem 1. Moreover, to consider the escaping time from the
perturbed region seems to be useful to estimate the finesse as the interferometer motivated
by quantum walk and it would be possible to extract some information from (3) and (4).
This remains one of the interesting problems for the future.
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Abstract: Maze-solving by natural phenomena is a symbolic result of the autonomous optimization
induced by a natural system. We present a method for finding the shortest path on a maze consisting
of a bipartite graph using a discrete-time quantum walk, which is a toy model of many kinds of
quantum systems. By evolving the amplitude distribution according to the quantum walk on a kind
of network with sinks, which is the exit of the amplitude, the amplitude distribution remains eternally
on the paths between two self-loops indicating the start and the goal of the maze. We performed a
numerical analysis of some simple cases and found that the shortest paths were detected by the chain
of the maximum trapped densities in most cases of bipartite graphs. The counterintuitive dependence
of the convergence steps on the size of the structure of the network was observed in some cases,
implying that the asymmetry of the network accelerates or decelerates the convergence process. The
relation between the amplitude remaining and distance of the path is also discussed briefly.

Keywords: discrete-time quantum walk; scattering quantum random walk; Grover walk; pathfinding;
network

1. Introduction

Maze-solving methods are important because they have practical applications and
provide insight into the invisible intelligence that underlies them. Maze-solving problems
can be regarded as a subset of the shortest path problem [1], which is a practical problem in
daily life. To solve the maze problem, a maze can be expressed as a network and then solved
by an algorithm, such as the depth-first search or the breadth-first search algorithm [2].
There are also maze-solving methods that exploit natural phenomena.

Such methods have been studied experimentally using the Belousov–Zhabotinsky re-
action mixtures [3], amoeboid organisms [4], gas discharge [5], and photons in a waveguide
array [6]. In these experiments, the result of maze-solving has a symbolic aspect in that
it represents the autonomous optimization of the natural system. In this way, the pursuit
and modeling of the optimization process in maze solving by a natural phenomenon, can
provide a path to a deeper understanding of that phenomenon.

The quantum walk model, which has been studied as a quantum counterpart of
random walk, has been applied to describe various transportation phenomena in nature [7].
It was first studied as the time-evolution of probability distribution, mainly on a one-
dimensional network. In the discrete-time quantum walk (DTQW) model, each node has
a state vector of complex amplitudes whose dimension corresponds to the number of
neighboring nodes. Each evolution is composed of a coin operation and a shift operation;
after multiplying the unitary matrix (coin operation), the complex amplitude is transferred
into an element of the state vector of a neighboring node (shift operation). By considering
time-dependent or site-dependent unitary matrices, the quantum walk can express many
kinds of transport dynamics.

Symmetry 2021, 13, 2263. https://doi.org/10.3390/sym13122263 https://www.mdpi.com/journal/symmetry141
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The study of quantum walks was extended to arbitrarily connected networks from
an early stage [8] because the quantum search on graphs by quantum walks was pro-
posed [9–11] as an alternative to Grover’s search algorithm [12]. When dealing with
discrete-time quantum walks on an arbitrarily connected network, the concept of scattering
quantum walks (SQWs) can simplify the model [13].

In an SQW, the state vectors are placed on the edges rather than the nodes. The
dimension of each state vector is two: this corresponds to the two directions of an edge
between two nodes. Moreover, each node has a scattering matrix that corresponds to the
unitary matrix in the coin operation. The time evolution is composed of an intrusion in
the node, the multiplication of the scattering matrix, and an escape from the node. The
dynamics of an SQW are equivalent to those of a DTQW except for the location of the
state vectors.

Recently, the concepts of consecutive injection and corresponding emission into and
from the system were incorporated into quantum walks on arbitrarily connected net-
works [14,15]. For quantum walks on a network with entrances and/or exits, the steady-
state [14], trapped-state [15], analogy to an electrical circuit [16], and relationship to the
dressed photon phenomenon [17] have been discussed. In particular, the emergence of a
trapped state between two self-loops on a network with an exit sink [15] directly motivated
the present study, which applies this concept to maze-solving.

Maze-solving using quantum walks has been studied by Hillery, Koch, and Reitzner
on an N-tree maze [18] and a chain of stars [19,20]. Their works are the extension of their
studies on quantum search and finding structural anomalies in networks [21–27]. They
characterized the start and goal nodes in the maze by reflection with phase inversion,
which can be regarded as a pair of structural anomalies.

In this paper, we numerically examine a maze-solving method that uses a quantum
walk on a network. The presented method is an application of the emergence of a trapped
eigenstate on a network with sinks, and it provides an alternative to previously reported
methods [18–20]. Although the mathematical foundation of this method was given by
Konno, Segawa, and Štefaňák [28], the results presented here are non-trivial because
the interaction among multiple trapped eigenstates and the initial condition is generally
difficult to characterize as of now.

We show the effectiveness of the method for some examples of the maze with and
without cycles and also show the undesirable cases for which this method does not work.
The dependence of the number of steps for convergence (convergence steps) on the size
of the network structure was also investigated and found to be counterintuitive in certain
cases. We also make a tentative discussion about the amount of amplitude remaining on a
path and its relative amount among the multiple paths from the numerical results.

2. Model and Method

In this study, the maze is composed of nodes and edges that connect pairs of nodes.
The number of nodes is finite, but pairs of nodes can be connected arbitrarily without limit.
The distance between two nodes is given by the smallest number of edges connecting them.
Therefore, only distances expressed in positive integers are considered. The start and goal
can be placed at any node in the network, even at nodes that are not dead ends. To run
the quantum walk, scattering matrices and state vectors are placed on nodes and edges,
respectively, as in previous studies on SQWs [13].

The state vectors consist of two complex amplitudes, which express the two directions
of the quantum walkers on the edges. As in quantum mechanics, the density of the walkers
on an edge is given by the square of the complex amplitude. At each evolution of time,
the vector of the incoming component is multiplied by the scattering matrix, generating
the vector of the outgoing component. The scattering matrix of the d-dimensional unitary
matrix is placed at each node, where d is the number of edges connected to that node.
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Specifically, we use the scattering matrix of the Grover walk, which, in concrete form, is
given by ⎛⎜⎜⎜⎜⎜⎝
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...
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⎞⎟⎟⎟⎟⎟⎠, (1)

where ai is the incoming complex amplitude from the i-th edge, and bi is the outgoing
complex amplitude to the i-th edge. An example with d = 3 is given in Figure 1a.

To implement maze-solving, two self-loops and a sink are introduced, and the con-
ceptual diagram is shown in Figure 1b. Self-loops are the same as edges except that they
are only attached to a single node. As a result, a self-loop has a one-dimensional state
vector, where the outgoing amplitude from the node becomes the next incoming amplitude
without being modified. For this method, one self-loop is attached to the start node, and the
other is attached to the goal node to which a sink node is also attached. The sink node
has only one edge, which is connected to the goal node, and its scattering matrix is a zero
matrix. The sink serves as the exit from the network for complex amplitudes.

0

(a)

1

d = 3

0

2
1

d
�

2

d
2

d

(b)

Start

Self 

loop
Maze

Goal

Self 

loop

Sink

Figure 1. Conceptual schematics of the numerical model. (a) Example of the time-evolution for a
node with three edges injected with the amplitude 1 from one edge. (b) Setup of the start and goal
with self-loops and a sink. The colors of the start (yellow), the goal (green), and the sink (blue) are
unified in all the examples given later.

The initial amplitude “1” is placed at the self-loop of the start node. To discover the
correct path, the initial amplitude should be placed on the path between the start and goal,
and it should be kept at a distance from the sink node. In this method, placing the localized
amplitude at the self-loop of the start node is the best initial condition for solving the maze
correctly without requiring any prior knowledge of the structure of the maze. Finally, note
that all the amplitudes in the system are denoted by the real numbers even though the
quantum walks are defined using complex amplitudes.

Maze solving was studied for simple structures only because of the large amount of
computational time involved by the current code (by the current code on our standard
personal computer, the calculation of 105 steps took several hours because of unoptimized
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function–call overhead). For the maze without a cycle, a tree-like structure and a single line
with branches were investigated. For the maze with a cycle, independent multiple paths
and a ladder-like structure were investigated.

Two undesirable cases, namely, a maze with odd cycles and a maze showing eternal
vibration are also investigated. For each kind of structure, the dependence of convergence
steps on the size of the structure was investigated. The convergence was judged by
the stability of the second decimal place for all the amplitudes in the network, and the
convergence steps were expressed with an accuracy of one (or two) significant digits.

For discussion regarding the amount of amplitude remaining, about five digits after
the decimal point were considered. The numerical error estimated from the squared sum
of the amplitudes was of nearly the same order as the double-precision real number error
computed using code written in Python. The source code is available in the repository [29].

3. Results

3.1. Tree-like Structure

We first examine maze-solving for the tree-like structures. This structure has no cycles,
and there is only one path from the start to the goal. Figure 2a–c show the results of
the amplitude distribution and the number of steps after convergence for the tree-like
structures of 2N leaves for N = 1, 2, and 3. From the results, we observed that only the
shortest path emerges as a chain of the eternally remaining densities, whereas the densities
on the dead ends vanish during the evolution. The number of convergence steps seems
to increase by digits according to the increase of N in these cases. The case of N = 4 was
also examined. However, the distribution did not converge even after 106 steps that took
three days.

Figure 2d shows the time profiles of the densities on selected edges, where the label
0–3, for example, denotes the edge between nodes 0 and 3. The densities fluctuate strongly
at first and then converge to zero or to positive values. The speed of convergence varies
according to the position of the edge; the greater the distance to the sink node is, the slower
the speed of convergence.

To consider the influence of the extra branching at dead ends on the convergence
steps, the cases of decreased and increased extra branching based on Figure 2c were
examined. For the case with decreased branching as shown in Figure 2e, the convergence
steps decreased, which was an intuitive result. However, the decrease in convergence
steps was more for the case with increased extra branching as shown in Figure 2f. This
counterintuitive dependence is difficult to explain for the present. However, it can be
suggested that the extent of asymmetry in the network accelerated the convergence.

For the cases of Figure 2c,e,f, the absolute values of the converged amplitudes on the
correct paths, including self-loops, were all 0.08. That value seems to have been determined
by the distance between the start and the goal nodes for the case of the network without
cycles. Table 1 lists the relation between the distance between the start and the goal and
the absolute value of the amplitude remaining on an edge for each case. Edges indicates
the number of edges on a path including self-loops. (Edges = 2 × Distance + 2).

A rational expression approximating the amount of amplitude was attached for each
case. For these cases, the amplitudes can be expressed by the inverse of the number of
edges included in the path. Namely, the sum of amplitudes along the path is “1.0” for all
the cases. However, note that the “1.0” does not indicate all the amplitudes injected into
the system because that is not the square sum of the amplitudes.
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Figure 2. The results of maze-solving for the tree-like structure with 2N leaves. (a) Amplitude
distribution and the number of steps after convergence for N = 1. (b) Amplitude distribution and the
number of steps after convergence for N = 2. (c) Amplitude distribution and the number of steps
after convergence for N = 3. (d) Time profiles of the densities on selected edges for N = 3. The inset
focuses on the vibrational behavior of each profile. (e) Amplitude distribution and the number of
steps after convergence for the case where the branches were eliminated from the dead ends in (c).
(f) Amplitude distribution and the number of steps after convergence for the case where the branches
were added to the dead ends in (c).

Table 1. The relation between the distance and remaining amplitude for Figure 2 (The distance
between the start and goal on the correct path, the number of edges in the path, the amplitude
remaining on an edge on the path, and an approximate rational expression of the amplitude).

Figure Distance Edges Amplitude Rational Expression

Figure 2a 1 4 0.25000 1/4
Figure 2b 3 8 0.12500 1/8
Figure 2c 5 12 0.08333 1/12
Figure 2e 5 12 0.08333 1/12
Figure 2f 5 12 0.08333 1/12
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3.2. A Line with Branches

To investigate the dependence of the convergence steps on the placement of the
branches, the maze-solving for various patterns of a line with shallow dead ends was
examined. Figure 3a shows the result for a simple line constructed based on the correct
path of Figure 2c. The number of convergence steps decreased by two orders of magnitude
from the case shown in Figure 2c. Figure 3b shows the result for a line with four shallow
dead-ends. Nearly the same result as Figure 2e was obtained, as the difference between
them was only the length of the dead ends.
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Figure 3. The results of maze-solving for a line with various placements of shallow dead ends.
(a) Amplitude distribution and the number of steps after convergence for a single line of five edges.
(b) Amplitude distribution and the number of steps after convergence for a line with four shallow
dead ends. (c) The structures and the numbers of steps of convergence for a line with a single shallow
dead-end at four positions. (d) The structures and the numbers of steps of convergence for a line with
two shallow dead-ends at three patterns. (e) The structures and the numbers of steps of convergence
for a line with three shallow dead-ends at four patterns.

Figure 3c–e shows the results for patterns of placement of one to three dead ends,
respectively. The distribution of the amplitudes is omitted, but ±0.08, which is the same
as Figure 2c,e,f, is on the correct path, and 0.00 is on the dead-end edges in all cases. The
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convergence steps varied not only by the number of dead ends but also by the positions. As
the trend shows, the convergence steps became larger with increasing dead ends; however,
exceptions were observed depending on the positions of the dead ends. The convergence
steps became larger for the case where dead ends were attached closed to the goal node.
This seems counterintuitive considering the quick convergence near the sink, which was
observed in Figure 2d.

The number of convergence steps for the case of Figure 3e was much larger than
for Figure 3b or Figure 2c. For these cases, the asymmetry significantly decelerated the
convergence speed, which is in contrast to the acceleration due to asymmetry observed in
Figure 2e,f. A maze without cycles can be solved by this method; however, the dependence
of the convergence steps on the network structure is difficult to predict intuitively.

3.3. Independent Multiple Paths

Next, we examined maze-solving on multiple independent paths of different lengths.
This structure includes cycles, which makes maze-solving difficult even in classical schemes.
Figure 4a–c,e,f shows the numerical results for the networks with M paths, where the length
of the Mth path is 2M. After convergence, in all the examples shown here, the densities
remain on all the paths between the start and the goal; however, the maximum densities
are only observed on the shortest path, while smaller densities are observed farther from
the shortest path. By regarding the path of the maximum densities as the correct path,
the maze-solving was successful for these examples.

Figure 4d shows the time profiles of the edges on each path. The speed of convergence
was higher than in the case of other structures of a similar scale. The reason for this
is unclear, but a lack of branching on the paths may be responsible for the high speed.
Among the three paths, the speeds of convergence did not differ significantly, and they did
not depend on the distance from the sink unlike in the tree-like structure. In general, the
convergence steps increased by the addition of other paths. However, a counter-intuitive
decrease of the convergence steps was observed in Figure 4e,f.

The absolute values of amplitudes, after convergence, decrease as the length of the
path becomes longer; however, they are not constant for the length of paths because a
slight decrease was observed by additional paths. Table 2 lists the relation between the
distances of paths and amplitude remaining on an edge. For Figure 4a, the amplitude is the
inverse of the number of edges included in the path, which is the same as given in Table 1.
However, the rule looks broken in the case of multiple paths.

Table 2. The relation between the distance and remaining amplitude for Figure 4 (The waypoint
of a path, the distance between the start and goal on the path, the number of edges in the path,
the amplitude remaining on an edge on the path, and an approximate rational expression of the
amplitude. Only the relative ratios are shown for Figure 4f because an appropriate rational number
was not found).

Figure Waypoint Distance Edges Amplitude Rational Expression

Figure 4a Node 1 2 6 0.16667 1/6
Figure 4b Node 2 2 6 0.14286 2/14

Node 3 4 10 0.07143 1/14
Figure 4c Node 4 2 6 0.13043 3/23

Node 5 4 10 0.06522 (3/2) × (1/23)
Node 6 6 14 0.04348 1/23

Figure 4e Node 7 2 6 0.01245 6/49
Node 8 4 10 0.06122 (3/2) × (2/49)
Node 9 6 14 0.04082 2/49

Node 10 8 18 0.03061 (3/4) × (2/49)
Figure 4f Node 11 2 6 0.11673 5 × (F)

Node 12 4 10 0.05837 (5/2) × (F)
Node 13 6 14 0.03891 (5/3) × (F)
Node 14 8 18 0.02918 (5/4) × (F)
Node 15 10 22 0.02335 (F)
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Figure 4. The results of maze-solving for the structures with multiple independent M paths from
the start to the goal. The length of Mth path is 2M. (a) Amplitude distribution and the number
of steps after convergence for M = 1. (b) Amplitude distribution and the number of steps after
convergence for M = 2. (c) Amplitude distribution and the number of steps after convergence for
M = 3. (d) Time profiles of the densities on selected edges for M = 3. (e) Amplitude distribution and
the number of steps after convergence for M = 4. (f) Amplitude distribution and the number of steps
after convergence for M = 5.

Most of the amplitudes were assigned rational expressions; however, the rule deter-
mining the absolute value (or a positive integer of the denominator) is not clear. However,
the relative amounts of amplitudes among paths in each case were found to be in inverse
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proportion to the distance between the start and goal exactly for these cases. The relative
amounts of amplitude were determined not by the number of edges but by the distances.

3.4. Ladder-like Structure

As in other small examples of mazes with cycles, the ladder-like structures with
L paths were examined. The difference from the previous subsection is that the edges
are shared among the different paths. Figure 5a,b,d shows the results of L = 1, 3, and 4,
respectively. For the cases shown here, the shortest paths are indicated by the chain of
maximum densities, while smaller densities are observed farther from the shortest path,
meaning that the maze-solving was successful. The absolute values of amplitude after
convergence seem to correspond to the distance of each path by considering Figure 5b,d.
However, this is not the case in Figure 5a.

For the cases of L = 2 and 5, undesirable eternal vibrations were observed and maze-
solving could not work, which will be discussed in a later subsection. For the case of L = 6,
the convergence was difficult to realize owing to the limitation of the computational times.
However, it was not an eternal vibration judging from the actual calculations.

Figure 5c shows the time profiles of the edges in each path of Figure 5b. For the three
paths, the speeds of convergence did not differ significantly, and they did not depend
on the distance from the sink unlike what was observed in the tree-like structure. The
convergence is faster than for the tree-like structure but slower than for the independent
multiple paths. The number of convergence steps in Figure 5d is smaller than that in
Figure 5b, exhibiting the difficulty faced in predicting the convergence speed from the
structure of the maze.

Table 3 lists the relation between the distances of paths and amplitude remaining
on an edge in Figure 5. The amplitudes can be expressed by rational numbers; however,
the meanings of the denominator numbers are not clear as in Figure 4. The absolute values
of the amplitudes in Figure 5 are generally smaller than those of the same scale case in
Figure 4.

The ratio among the paths seems to have meaning; however, the reason has not
been determined except for the relation between the longest and second-longest paths.
The relative ratio of the longest path and the second-longest path is thought to be in inverse
proportion to the ratio of the length of the non-shared part of each path. This hypothesis is
complemented in the next subsection.

Table 3. The relation between the distance and remaining amplitude for Figure 5 (The waypoint of a
path, the distance between the start and goal on the path, the number of edges in the path, the ampli-
tude remaining on an edge on the path, and an approximate rational expression of the amplitude).

Figure Waypoint Distance Edges Amplitude Rational Expression

Figure 5a Node 2 4 10 0.10000 1/10
Figure 5b Node 4 4 10 0.0735 5/68

Node 5 6 (= 4 + 2) 14 0.0294 2/68
Node 6 8 (= 4 + 4) 18 0.0147 1/68

Figure 5d Node 5 4 10 0.07303 13/178
Node 6 6 14 0.02809 5/178
Node 7 8 (= 6 + 2) 18 0.01124 2/178
Node 8 10 (= 6 + 4) 22 0.00562 1/178
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Figure 5. The results of maze-solving for the ladder-like structures with L paths from the start to the
goal. (a) Amplitude distribution and the number of steps after convergence for L = 1. (b) Amplitude
distribution and the number of steps after convergence for L = 3. (c) Time profiles of the densities on
selected edges for L = 3. (d) Amplitude distribution and the number of steps after convergence for
L = 4.

3.5. Small Maze

To demonstrate slightly complicated cases, solutions of small mazes by the method
are presented. The maze includes some dead ends and two paths to the goal as shown in
Figure 6a. As in the other related cases shown above, the maximum density remains on the
shortest path, and the densities of the dead-end paths vanish. The maze-solving worked
correctly for a small maze with both dead-ends and cycles.

Figure 6b shows the time profiles of the densities on selected edges. The convergence
speeds were not so different from each other, as in the case of ladder-like structures.

The result of another maze that is slightly modified from Figure 6a is shown in
Figure 6c. The convergence step was 22,000 for this example; however, a drastic increase of
convergence steps was often observed by another slight modification of the structure. It
might be in rare cases that the complex maze could be solved in a permissible computa-
tional time.

Table 4 lists the relations between the distances of paths and amplitude remaining
on an edge in Figure 6. The hypothesis that the relative ratio of the longest path and the
second-longest path is in inverse proportion to the ratio of the distances of the non-shared
part of each path was also confirmed for these cases.
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Figure 6. The results of maze-solving for small mazes with dead ends and two paths to the goal.
(a) Amplitude distribution and the number of steps after convergence for a maze. (b) Time profiles
of the densities on selected edges for (a). (c) Amplitude distribution and the number of steps after
convergence for a slightly modified maze.

Table 4. The relation between the distance and remaining amplitude for Figure 6 (The waypoint of a
path, the distance between the start and goal on the path, the amplitude remaining on an edge on the
path, and an approximate rational expression of the amplitude).

Figure Waypoint Distance Amplitude Rational Expression

Figure 6a Node 18 9 + 3 0.0263 1/38
Node 19 9 + 5 0.0158 (3/5) × (1/38)

Figure 6c Node 13 7 + 5 0.027 1/37
Node 14 7 + 7 0.019 (5/7) × (1/37)

3.6. Undesirable Cases 1: Odd Cycle

Here, we show some examples of undesirable cases where maze-solving did not work.
First, this method cannot be applicable for a maze that includes odd cycles. Figure 7a
shows a network with a single odd cycle whose length is 5. The cycle that consists of nodes
1, 2, 5, 6, and 3 is the odd cycle. When the amplitude distribution converged, the absolute
value of the amplitude between the exit of the cycle and the goal (edges between nodes
4 and 5) became small. The correct path was not indicated by the maximum densities,
meaning that the maze-solving went wrong.
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Figure 7. The results of the attempt of maze-solving for a network that includes an odd-cycle.
(a) Amplitude distribution and the number of steps after convergence for a network with one odd
cycle. (b) Amplitude distribution and the number of steps after convergence for of a network with
two sequential odd cycles. The amplitude distribution that is nearly converged but not completely is
shown because of the limitation of the computational time.

Figure 7b shows an attempt of solving for the network with two sequential odd-cycles.
The effects of the two odd-cycles were not canceled out, and only a small amplitude reached
the goal. The solving method presented cannot apply to the network with odd-cycles.

3.7. Undesirable Cases 2: Eternal Vibration

Even though the odd cycle was not involved in the network, undesirable eternal
vibration was observed in some cases. Figure 8a shows the network of the ladder-like
structure for L = 2, which is exhibiting eternal vibration. In this case, only the edges
between nodes 5 and 6, were stabilized. The amplitudes of other edges, from the start to
the cycle, exhibit a constant vibration pattern eternally. Figure 8b shows the time profiles of
the densities of some edges. The constant amplitude vibrations seem to continue eternally
and not converge. The inset shows the details of the vibrational behavior. The same
patterns are seen to be repeating. The eternal vibration was observed only for the ladder-
like structure of L = 2 and 5.

We found that the eternal vibration was suppressed by the addition of an extra dead
end. Figure 8c shows the network in which one dead-end is attached to Figure 8a. The am-
plitude distribution converged, and the shortest path was indicated by the maximum
densities. Figure 8d shows the time profile of the density for some selected edges in
Figure 8c. The reason for the stabilization is unclear at present; however, a small perturba-
tion of the network may have a significant influence on the behavior of quantum walks.
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Figure 8. The results of the attempts of maze-solving for a structure where the eternal vibration was
observed. (a) Amplitude distribution after 20,000 steps for the ladder-like structure of L = 2. (b) Time
profiles of the densities on selected edges in (a). The inset shows the vibrational behavior in detail.
(c) Amplitude distribution and the number of steps after convergence for the network in (a) where a
dead-end is attached. (d) Time profiles of the densities on selected edges in (c).

4. Discussion

In applying the proposed method to mazes without odd cycles, we verified that the
paths between the start and goal emerge as trapped states of the quantum walk, and the
density on the shortest path was maximized autonomously. As the network without odd
cycles is regarded as a bipartite graph, we concluded that the method can be applied to
the bipartite graph except for the case where the eternal vibration emerges. The condition
for the occurrence of the eternal vibration is not clear as of now as only a few examples
were considered.

The key features of the proposed method are the self-loops at the start and the goal
and the sink node attached to the goal. In previous studies, the start and goal were marked
by reflection with phase inversion placed at the dead ends [18–20]. The correct path was
then judged by the transient profile of the probabilities. Our method partially improves
upon past works by incorporating self-loops, which can be placed anywhere in the maze,
and by determining the correct path according to the eternally remaining densities.

We now consider the remaining densities on the correct path in terms of knowledge
that has been proven mathematically. The eigenstate of the time evolution operator of the
quantum walk with sinks was constructed on the path between two-self loops [28]. This
eigenstate is called the trapped state, and it is not absorbed by the sink. In the Grover walk,
the eigenstates are constructed between two self-loops and also around the cycles [28].
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To generate a trapped state, the initial amplitude should be placed on the edge that
is to be included in the trapped state. This was the reason why the initial amplitude was
placed on the self-loop of the start node. If the initial amplitude is placed randomly at the
edge, the trapped state on the correct path does not always emerge because the initial edge
may not be included on the path between the start and the goal. Even if the initial state is
on the correct path, a trapped state may also emerge in the cyclic structure that includes
the initial edge. In this case, the shortest path may not have the maximum density. When
placing the initial amplitude on a self-loop, the initial edge is not included in any cyclic
structure in the network, and only the paths between the start and the goal emerge.

The role of the sink should also be considered. The dynamics of this type of Grover
walk can be separated into an electric current component that propagates rapidly, and a
random-walk component that propagates slowly [16]. The emergence of the trapped
state results from the electric current component; hence, to observe the trapped state,
the random-walk component must be eliminated by the sink.

Even without the mathematical knowledge above, the amplitude distribution after
convergence can be interpreted by the simple rules observed in the numerical results.
The key rule for determining amplitude distribution is that the sum of incoming/outgoing
amplitudes to/from a node must be zero, separately. This rule is mathematically and
numerically exact at all the nodes in the examples that converged. Figure 9a shows an
example of amplitude distribution around a node on the correct path in the maze.

As the sum of incoming and outgoing amplitudes should be zero separately, ampli-
tudes of plus and minus emerge alternately on the line. Figure 9b shows an example of an
amplitude distribution around a dead-end node. As only one amplitude is incoming to the
dead-end node, that should be zero to make the sum of the incoming amplitude zero. This
is why the amplitudes vanish on the path to the dead-end.

Figure 9c shows an example of amplitude distribution around a self-loop. In this case,
the amplitude on the self-loop acts as both incoming and outgoing amplitudes to keep the
sum zero for both. This is the reason why the signs of the amplitudes are the same on the
edges connected to the node involving the self-loop. These facts fit all the nodes included
in the numerical results after convergence.

The sum rule above can be used to also explain the amplitude distribution around
the even cycle and odd cycle. Figure 9d shows an example of the amplitude distribution
around an even cycle. When the large positive amplitude enters the cycle, two small
negative amplitudes are generated at the first branching node. Both amplitudes move on
the cycle by changing the sign alternately and meet again on the join node. If the cycle
is an even cycle, two small negative amplitudes make a large positive amplitude to the
outside of the cycle to keep the sum rule. For the case of an odd cycle (Figure 9e), two
amplitudes meet at the join node with different signs. To maintain the sum rule, only the
smaller amplitude, which is nearly zero, generates the output. This is the reason why the
maze, including the odd cycle, cannot be solved by this method.

The maze-solving speed of this method is clearly considerably slower than that of
other known algorithms. Although the examples were limited, the convergence steps
were difficult to predict by intuition in observing the structure of the network. At present,
the intuitive unified parameter that connects the network structure and convergence speed
has not been determined mathematically. Further analysis, considering some other aspect,
such as the symmetry of the graph, may be required.

The general reason that the maximum densities emerge on the shortest path remains
unclear at present; however, some tentative rules were observed numerically. In many
cases, the absolute values of amplitude that remained could be approximated to a rational
number composed of integers. When there is only one path to the goal, the absolute values
of amplitudes on an edge become the inverse number of the number of edges included
in the path. This is observed in Figures 2, 3, 4a and 5a. The preserved amount is not the
square of the amplitude but the absolute value of amplitude. It is the same as the sum rule
discussed above.
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When there are multiple paths to the goal and they do not share edges mutually,
the ratio of the absolute values of amplitudes is in inverse proportion to the ratio of the
distance of the paths. This is observed in Figure 4b–f. When there are two paths to the
goal and they share some edges, the ratio of the absolute values of amplitudes is in inverse
proportion to the ratio of the distance of the non-shared part of the paths. This is observed
in Figure 6a,c. When there are more than two paths to the goal and they share some edges,
the dependence of the relative amount of amplitudes on the distance is unclear; however,
certain rules clearly exist. This was seen in Figure 5b,d.

To apply the method presented for actual problems of the shortest path finding,
the lengths of all the paths should be expressed by positive integers. The odd-loops must
not be included; however, the odd-loops would be eliminated by a slight modification of
the distance in the process of discretization of the network. The eternal vibration is still the
obstacle of the path-finding problem. This should be analyzed more both mathematically
and numerically. Additionally, this method cannot involve the negative distance that is
considered in some classical algorithms.

Studying this maze-solving method may not appear to be of much use from the view-
point of computational algorithms; however, it may help to understand the mechanisms of
autonomous features that can be observed in a natural system because the quantum walk
is a toy model that can be applied to the energy transportation in quantum fields, such as
dressed photon phenomena [30].

While the emergence of the shortest path or some other optimized structure in a
natural phenomenon may seem mysterious at first glance, they may have an analogy in
maze-solving using the quantum walks. Moreover, the implicit existence of the sink node
may play an important role in such systems.
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Figure 9. Schematic for the interpretation of the amplitude distribution after convergence based on
the sum rule on each node. (a) An example of distribution around a node on the correct path in the
maze. The sums of incoming amplitudes (red arrows) and outgoing amplitudes (blue arrows) should
be zero, respectively. (b) An example of distribution around a node at a dead-end. To make the sums
of incoming/outgoing amplitudes zero, respectively, no amplitude should enter the dead-end. (c) An
example of distribution around a node with a self-loop. Amplitude on the self-loop acts as both
incoming and outgoing amplitudes. (d) An example of distribution around an even-cycle. (e) An
example of distribution around an odd-cycle.
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Abstract: We evaluate a coupled oscillator solver by applying it to square lattice (N × N) Ising spin
problems for N values up to 50. The Ising problems are converted to a classical coupled oscillator
model that includes both positive (ferromagnetic-like) and negative (antiferromagnetic-like) coupling
between neighboring oscillators (i.e., they are reduced to eigenmode problems). A map of the
oscillation amplitudes of lower-frequency eigenmodes enables us to visualize oscillator clusters
with a low frustration density (unfrustrated clusters). We found that frustration tends to localize
at the boundary between unfrustrated clusters due to the symmetric and asymmetric nature of the
eigenmodes. This allows us to reduce frustration simply by flipping the sign of the amplitude of
oscillators around which frustrated couplings are highly localized. For problems with N = 20 to 50,
the best solutions with an accuracy of 96% (with respect to the exact ground state) can be obtained by
simply checking the lowest ~N/2 candidate eigenmodes.

Keywords: combinatorial optimization; Ising spin glass; coupled oscillator; eigenmode; clustering

1. Introduction

The spin glass model originates from condensed matter physics, where it was applied
to physical systems in which magnetic atoms are randomly distributed in a non-magnetic
host and induce ferromagnetic and antiferromagnetic interactions between neighboring
magnetic moments. The physical system is mathematically modeled by a weighted graph
where each vertex corresponds to a spin and each edge represents the interaction between
spins with positive and negative signs [1,2]. In the Ising spin model, the spin is a binary
variable that takes the value ± 1 [3,4]. The Ising problem is to find a binary spin config-
uration that minimizes the total energy function (the number of frustrated edges) for a
given set of edges. A variety of combinatorial optimization problems, such as sequencing
and ordering problems, resource allocation problems, and clustering problems [5,6], can be
mapped to the Ising problem [7].

To solve the Ising problem using a brute force combination approach, we need to
check 2n possibilities, where n is the total number of spins. The branch and bound method,
which based on a tree search algorithm, is commonly used to find the exact ground state
without an exhaustive search [8]. However, this method still requires a lot of CPU time and
memory and is only applicable to instances with a small number of spins. The potential
applications of the Ising model to optimization problems have motivated the development
of heuristic algorithms for finding high-quality solutions for instances with a large number
of spins [9,10]. Although heuristic algorithms generally do not guarantee an optimal
solution, they can yield good time-to-solution in practice.

Simulated annealing (SA), one of the most common heuristic algorithms, mimics
the physical process of annealing, where a material is slowly cooled to obtain the lowest
energy state [11–13]. Its algorithm is based on Monte Carlo simulation. Starting with
an initial spin configuration, a new candidate configuration is selected in each iteration
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of the simulation. If the total energy decreases for the new candidate, that candidate is
accepted and the iterative process continues. Otherwise, it is accepted with a probability
given by the Boltzmann factor, which decreases with temperature. This random acceptance
allows the algorithm to escape local minima. The system eventually cools into the global
minimum in the spin configuration space.

The growth of data size in Ising problems has spurred interest in physical hardware
systems that directly minimize the energy function [14–21]. Such systems are called Ising
machines. An example of an Ising machine is the quantum annealing machine from
D-Wave Systems, which was implemented using superconducting qubits [22,23]. The
machine operates at a cryogenic temperature. The connectivity between qubits is limited
to rather simple structures. Quantum adiabatic optimization inspired a new heuristic
algorithm for the Ising problem, called simulated bifurcation, which simulates adiabatic
evolution of classical nonlinear oscillators that exhibit bifurcation [24,25].

We recently developed a heuristic algorithm for the Ising problem in which the Ising
spin system is replaced by a coupled oscillator system, which is possible owing to the
equivalence of their equations of motion [26]. We obtained exact ground states for problems
with a small number of spins by simply calculating the lowest mode of the coupled oscilla-
tors (i.e., the lowest eigenvalue and eigenvector of the matrix representing the equations
of motion). We also developed an error correction algorithm that modifies the coupling
strength depending on the amplitude of individual oscillators. This heuristic algorithm
is a kind of annealing process since the energy landscape in the dipole configuration
space is optimized in such a way that the correct configuration is equivalent to the lowest
eigenmode. Based on this concept, we proposed an Ising machine composed of plasmon
particles with dipole–dipole interaction, whose strength can be modified by a phase-change
material inserted between neighboring particles [27].

In the present paper, we reconsider the coupled oscillator solver (COS) described
above from the following viewpoints: (1) the lowest mode of the coupled oscillators may
not always provide a minimally frustrated spin configuration (exact ground state) for large-
sized Ising problems; and (2) it is desirable to replace the time-consuming error correction
algorithm with a better algorithm inspired by an analysis of good candidate solutions
(i.e., the lowest eigenmodes). We apply the COS to two-dimensional N × N oscillators
for N values of up to 50. A map of the oscillation amplitudes (eigenvector components)
of lower-frequency eigenmodes enables us to visualize unfrustrated clusters. We found
that frustration tends to localize at the boundary between clusters due to the symmetric
and asymmetric nature of the eigenmodes. This allows us to reduce frustration simply by
flipping the sign of the amplitude of highly frustrated oscillators.

2. Coupled Oscillator Solver Applied to Ising Spin Problems

Here, we consider a square lattice (N × N) Ising spin glass problem without an
external magnetic field. The spin configuration that minimizes the Ising energy is given by

EIsing = −
N×N

∑
i=1

N×N

∑
j=1

Jijsisj (1)

where si denotes the ith spin with a value of 1 or −1, and Jij is the coupling coefficient
between the ith and jth spins having both positive (+J; ferromagnetic coupling) and negative
(−J; antiferromagnetic coupling) values. In this study, only four nearest neighbor couplings
are taken into account. For a given spin configuration, when Jijsisj > 0, the coupling Jij is
satisfied, otherwise it is frustrated. Minimizing the Ising energy is equivalent to maximizing
the number of satisfied couplings.

We start with an instance of 10 × 10 (N = 10) spins with 200 couplings. Problems were
generated by randomly assigning ferromagnetic and antiferromagnetic couplings with a
number ratio of 1:1. Figure 1a shows the distribution of frustrated couplings (bold lines)
for the exact ground state provided by a public domain [28], where an algorithm in [29] is
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used. In this algorithm, the original graph underlying the Ising problem is transformed
into a dual graph, and minimum weight perfect matching is calculated. For the backward
transformation, the matching leads to an Eulerian subgraph, the weight of which is also
minimized. Owing to the one-to-one correspondence between the Eulerian subgraphs
(cycles) and cuts in the original graph, the optimum Eulerian subgraphs provide the exact
ground state for the Ising problem. The red circles and blue diamonds represent up-spin
and down-spin states, respectively. The number of satisfied couplings of the exact ground
state was found to be nE = 166.

Figure 1. Instance of square lattice (10 × 10) Ising spin problem solved by the COS. (a) Spin
configuration of the exact ground state. The red circles and blue diamonds represent up-spin and
down-spin states, respectively. Frustrated couplings are indicated by bold lines. (b) Mapping of
oscillation amplitude un,m for the lowest four eigenmodes k = 1 to 4. The circles and diamonds
respectively represent positive and negative signs of un,m. Frustrated couplings are indicated by
bold lines. (c) Plot of the number of satisfied couplings nCO as a function of eigenmode number k.
(d–f) Results for another instance.

To solve the problem, we converted it to a classical coupled oscillator model by re-
placing the ferromagnetic and antiferromagnetic couplings with positive and negative
couplings, respectively, between neighboring oscillators, as illustrated in Figure 2a. A
normal attractive spring connecting neighboring masses gives rise to a positive interac-
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tion, and the masses tend to move in the same direction at lower frequency. A negative
interaction is implemented by a repulsive spring (which does not exist in reality) to allow
the masses to move in opposite directions. Due to the mathematical similarity between
the inter-spin and inter-oscillator interactions, we anticipate that the sign of the oscillator
amplitude for the lowest mode is the same or close to the spin configuration for the exact
ground state for the original Ising problem.

Figure 2. (a) Coupled oscillator model that includes both positive (ferromagnetic-like) and negative
(antiferromagnetic-like) coupling. (b) Definition of the superscripts and subscripts associated with γ.

The equation of motion for the masses on the square lattice is given by

..
xn,m = α2(γT

n,mxn−1,m + γL
n,mxn,m−1 + γT

n+1,mxn+1,m + γL
n,m+1xn,m+1) (2)

where xn,m is the displacement of a mass at the (n, m) lattice site and α is the square root
of the spring constant divided by the mass, which represents the strength of the coupling
between neighboring oscillators. Here, γn,m is +1 for positive interaction and −1 for
negative interaction, and “T” and “L” indicate the transverse and longitudinal directions,
respectively. The definition of the superscripts and subscripts associated with γ is given
in Figure 2b. The eigenmodes of the collective motion of oscillators can be calculated by
substituting xn,m = un,m exp(−iωt) into Equation (2) to obtain

ω2un,m = α2(γT
n,mun−1,m + γL

n,mun,m−1 + γT
n+1,mun+1,m + γL

n,m+1un,m+1) (3)

By assuming a periodic boundary condition for γn,m, Equation (3) for the N × N
system can be reduced to the problem of calculating the eigenvalue (frequency) ω and
eigenvector (amplitude) un,m for N2 elements. Figure 1b shows a map of the oscillation
amplitude un,m of the lowest four eigenmodes (eigenmode number k = 1 to 4) for the
original Ising problem. The circles and diamonds respectively represent positive and
negative signs of un,m. The distribution of un,m is not localized; it covers the entire system.
If two neighboring oscillators connected by positive (negative) coupling move in opposite
directions (the same direction), they are considered to be frustrated, analogous to the Ising
spin model. Frustrated couplings are indicated by bold lines in Figure 1b. For instance, the
two oscillators enclosed by the dotted ellipse in Figure 1b move in opposite directions, as
indicated by un,m < 0 for the upper oscillator and un,m > 0 for the lower oscillator. Since the
coupling is positive, which is evident by the frustrated coupling (connected by the bold
line) of the two corresponding spins with opposite signs shown in Figure 1a, the oscillators
are also frustrated for the eigenmode with k = 1. A lower frequency (eigenmode number)
typically yields a smaller number of frustrated couplings (but not strictly, as demonstrated
in Figure 1c).
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The number of satisfied couplings nCO as a function of eigenmode number k is plotted
in Figure 1c. nCO is maximized at the second lowest mode (k = 2) and tends to decrease with
k. The maximum nCO (nCO

max) is 164, which corresponds to 98.7% of nE (=166). Figure 1d–f
show the results for another instance of the system. Also in this case, the distribution of the
amplitude un,m is delocalized. nCO is a maximum at k = 3, for which nCO

max is 166 or 97.6%
of nE (=170). Table 1 summarizes the values of k that maximize nCO and nCO

max/nE for
nine different instances. For all cases, nCO is a maximum at k ≤ 3 and nCO

max/nE is larger
than 94.1%.

Table 1. Values of k required to maximize nCO and nCO
max/nE for nine instances of problem with N = 10.

Sample# 1 2 3 4 5 6 7 8 9

k 1 2 2 1 1 2 1 1 3

nCO
max/nE (%) 94.2 95.3 98.8 96.4 96.6 96.5 96.4 98.8 97.6

3. Eigenmode Mapping to Visualize Frustration Localization

Next, we increase the problem size to 20 × 20 (N = 20). The distribution of frustrated
couplings for the exact ground state is shown in Figure 3a. The problem was converted
to the coupled oscillator model and the eigenvalues and eigenvectors were calculated.
Figure 3b shows a map of the oscillation amplitude and frustrated couplings for eigenmode
numbers of k = 1 to 5. Figure 3d,e show the results for another instance. In contrast to the
smaller problem with N = 10, the collective oscillation is spatially localized and clusters
form depending on k. It is reasonable that the distribution of the signs of un,m in each
cluster is in complete agreement with that of the spin configuration in the exact ground
state. The formation of such unfrustrated clusters can specify the region where frustration
occurs with high probability since the oscillator system lowers the eigenfrequency by
reducing the amplitude of the oscillators around which frustrated couplings are localized.
In particular, for lower eigenmodes, the unfrustrated clusters tend to extend as widely as
possible, making frustrated couplings as localized as possible at the boundary between
unfrustrated clusters. In Figure 3b, there are many oscillators around which three of the
four couplings are frustrated. For these oscillators, the number of frustrated couplings can
be reduced from three to one by flipping the sign of the amplitude. Figure 3c shows nCO

before and after the flipping process as a function of k, demonstrating the effectiveness of
flipping in reducing frustration. nCO

max is obtained for k = 4 after flipping and nCO
max/nE

reaches 97.7%. For the other problem (Figure 3f), nCO
max/nE is a maximum (97.6%) at k = 3.

Table 2 shows the results for nine instances, including the value of k required to
maximize nCO and nCO

max/nE before and after flipping, to evaluate the effectiveness of
flipping. For all cases, nCO is a maximum at k ≤ 8 and nCO

max/nE after flipping is larger
than 96.7%. The eigenmode calculation is useful for visualizing unfrustrated clusters to find
a fairly good solution, in which frustrated couplings are strongly localized around specific
oscillators. The solution is effectively improved by flipping the sign of the amplitude to
reduce frustration. It should be mentioned that it is relatively less probable for the lowest
eigenmode (k = 1) to provide the highest nCO

max/nE. This might be due to the fact that
the amplitude distribution has more nodes between unfrustrated clusters for a few higher
eigenmodes and the frustration is more localized in the vicinity of the nodes. To summarize,
what the COS does before flipping is to find the eigenmode consisting of clusters without
nodes (locally symmetric), and simultaneously localizing nodes at the cluster boundaries
(globally asymmetric).
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Figure 3. Instance of square lattice (20 × 20) Ising spin problem solved by the COS. (a) Spin configuration of the exact
ground state. The red circles and blue diamonds represent up-spin and down-spin states, respectively. Frustrated couplings
are indicated by bold lines. (b) Mapping of oscillation amplitude un,m for the lowest five eigenmodes k = 1 to 5. The
circles and diamonds respectively represent positive and negative signs of un,m. Frustrated couplings are indicated by
bold lines. (c) Plot of the number of satisfied couplings nCO before and after flipping as a function of eigenmode number k.
(d–f) Results for another instance.

Table 2. Values of k required to maximize nCO and nCO
max/nE before and after flipping for nine instances of problem with

N = 20.

Sample# 1 2 3 4 5 6 7 8 9

k 2 6 8 5 6 4 2 8 3

nCO
max/nE

before flipping (%)
94.7 96.2 96.2 95.0 95.3 95.6 94.7 95.3 95.5

nCO
max/nE

after flipping (%)
96.7 97.9 97.4 97.4 97.6 97.7 96.7 97.1 97.6

4. Application to Larger Problems and Benchmark

To demonstrate the performance of the algorithm, we applied it to larger problems.
Tables 3 and 4 summarizes the value of k required to maximize nCO and nCO

max/nE before
and after flipping for nine instances of problems with N = 30 and 40, respectively. It is
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confirmed that lower eigenmodes provide good candidates and that the flipping process
effectively improves the candidates. For N = 30, nCO is a maximum at k ≤ 9 and nCO

max/nE

after flipping is larger than 96.6%. For N = 40, nCO is a maximum at k ≤ 13 and nCO
max/nE

after flipping is larger than 96.7%. Overall, for N = 10 to 40, the best solution can be found
by checking the lowest ~N/2 candidates.

Table 3. Values of k required to maximize nCO and nCO
max/nE before and after flipping for nine instances of problem with

N = 30.

Sample# 1 2 3 4 5 6 7 8 9

k 7 2 2 7 9 2 5 2 6

nCO
max/nE

before flipping (%)
95.9 94.9 95.3 95.4 95.8 95.1 95.7 95.4 95.2

nCO
max/nE

after flipping (%)
97.2 96.6 97.4 97.6 97.1 97.1 97.5 97.3 96.9

Table 4. Values of k required to maximize nCO and nCO
max/nE before and after flipping for nine instances of problem with

N = 40.

Sample# 1 2 3 4 5 6 7 8 9

k 7 1 13 6 1 10 10 4 10

nCO
max/nE

before flipping (%)
95.0 94.9 95.4 94.8 95.0 95.6 94.8 94.9 94.9

nCO
max/nE

after flipping (%)
97.1 97.3 97.3 97.6 97.2 97.5 97.3 96.7 97.1

As a benchmark study, the computation time is compared between the COS and a
standard SA algorithm for ten instances of problems with N = 50. All trials were performed
on a MacBook Pro with a 2.6-GHz Intel® Core i7 processor (6 cores) and 16 GB of RAM.
The COS generated nCO

max in 2.74 s, including the time required for the flipping process.
Figure 4 shows the evolution of the number of satisfied couplings with iteration number in
SA for a given problem. nCO

max and nE are also indicated. After 27 iterations, SA provides
a better solution than that provided by the COS. The computation time required to reach
nCO

max (27 iterations) was 8.63 s. Table 5 compares the computation time required to reach
nCO

max between the COS and SA for ten instances. Assuming that an nCO
max/nE value of

97% is satisfactory, the COS is three times faster than SA in generating the solution.

Table 5. nCO
max/nE and computation time required to reach nCO

max with the COS (TCO) and SA (TSA).

Sample# 1 2 3 4 5 6 7 8 9 10

k 15 12 13 4 25 19 2 5 21 7

nCO
max/nE (%) 97.2 97.5 97.0 97.0 96.8 97.5 96.9 97.0 97.4 97.3

TCO 2.74 2.71 2.74 2.73 2.75 2.74 2.73 2.73 2.76 2.74

TSA 8.89 9.50 7.60 8.20 8.21 8.40 7.37 7.65 8.83 8.60
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Figure 4. Evolution of the number of satisfied couplings with iteration number in SA for a
given problem.

5. Conclusions

We evaluated the COS for Ising spin problems based on eigenmode characterization.
After a square lattice (N × N) Ising problem was converted to a coupled oscillator model
that includes positive and negative coupling, the equation of motion, which was reduced
to an eigenmode problem, was solved. For smaller problems (N = 10), the oscillation
amplitude (eigenvector) was delocalized (i.e., it covered the entire oscillator lattice) and a
fairly good solution was obtained. For larger problems, the oscillation became localized,
forming oscillator clusters with low frustration density (unfrustrated clusters). From a
map of unfrustrated clusters for lower eigenmodes, we found that frustration tends to
localize at the boundary between clusters. Frustration localization, where three of the
four couplings are frustrated, is useful for reducing frustration by flipping the sign of the
amplitude. Localization and the flipping method were applied to problems with N = 40.
Good solutions with an accuracy of 97.2% in average (with respect to the exact ground
state) were obtained simply by checking the lowest 13 (≤N/2) candidate eigenmodes. A
benchmark study demonstrated that the computation time required to reach a fairly good
solution (nCO

max) for the COS is three times shorter than that for SA.
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