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Preface to ”Finite-Time Thermodynamics”

Finite-time thermodynamics, as a field of theory as well as an application, was initiated 45 years

ago. As is often the case when new concepts crystalize, stray ideas about “what if” had appeared

earlier (e.g., Chambadal in 1957, Novikov in 1958, Curzon and Ahlborn in 1975, and Weinhold in

1975), but it was only in 1976 that a more comprehensive net of theory started to evolve. At the same

time, it became clear that the restriction of finite time, or in general finite resources, is pervasive for all

real processes. The “finite-time” idea spread to chemistry, physics, economics, engineering (under a

different name and with preciously few references to its origin), and, in more recent years, to biology.

It is now a solidly established field with an exceptionally wide range of applications.

In the present Special Issue of Entropy, we have collected 19 papers which provide a wide range

of current topics for which finite time is a crucial element, some very abstract, some very applied,

and some in unexpected directions. To wrap up the package, one paper provides a personal view

of the beginnings, and one paper is our look into the crystal ball for the future. A lot more FTT and

FTT-inspired research is on its way. Happy reading.

R. Stephen Berry, Peter Salamon, and Bjarne Andresen

Editors
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The first paper published as Finite-Time Thermodynamics is from 1977 [1]. It was preceded by
the 1975 article by Curzon and Ahlborn entitled “Efficiency of a Carnot engine at maximum power
output” [2]. But of course the climate for such a development had to be ripe. Below we each give our
personal recollections about how we got started on this endeavor. This is not intended solely as a
historical note, but also as a reminder to younger enthusiastic people that the road for new ideas that
disturb the traditional lines of thought often is bumpy, if not outright hostile. But there is light at the
end of the tunnel!

Shortly before the deadline, Steve Berry passed away. We have kept his recollections below exactly
as he originally wrote them, except for correcting a single dating. We dedicate this special Finite-Time
Thermodynamics issue to Prof. R. Stephen Berry for his vision, contributions, and perpetual assistance.

1. R. Stephen Berry

The topic—or field—of finite time thermodynamics has an interesting history. Its stimulus was a
far cry from a motivation to do basic science. Its real origins began when I moved to The University of
Chicago in 1964. I had thought I was prepared to adapt to the Chicago environment, but it turned out
otherwise. At that time, Chicago was a very smoky, dirty, even smelly city. Each morning, windowsills
had new layers of fine grit that had drifted in from the outside during the night. I found myself angry
that my new city could have such terrible air pollution. I was sufficiently troubled that I wrote a letter
to then-Mayor Richard Daley, which began, “Dear Mayor Daley, You live like a pig!” I went on to
say that I had heard that the City of Chicago did have some activity to address air pollution, but I
could see no sign of it. I received a reply with an invitation to visit the City’s Air Pollution Laboratory.
The visit left me with a sense that nothing substantive was happening to address the problem. I wrote
an article [3], “Perspectives on Polluted Air”, which pointed out the untoward consequences of severe
air pollution, such as the human death rate in incidents of high levels of air pollution. I also became
involved in some of the public anti-air pollution activities that were stirring at the time, activities that,
nationwide, led to a “tipping point” that resulted in a national transformation, with the passing in
1967 of the Federal Air Quality Act and then the Clean Air Act, and the creation of the Environmental
Protection Agency.

In that period of transformation, I came to believe that one necessary transformation to improve
air quality would be to use energy more efficiently than we had been doing. Much of the pollution
came from energy production and much from its end use. I was not alone by any means in my concern
with the problem [4]. I was sufficiently concerned that, with my student Peter Lehman, we wrote a
review article on the chemistry of air pollution [5]. But the “big step” for me came when Margaret Fels
and I did a detailed study to show a way to identify likely targets for improving efficiency of energy
use [6,7]. We chose the manufacture and disposal of automobiles as the subject and examined each
step, from recovery of ore in the ground to final disposal of a used-up hulk, determining the actual

Entropy 2020, 22, 908; doi:10.3390/e22080908 www.mdpi.com/journal/entropy
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energy and free energy at each step, and comparing those values with theoretical ideal thermodynamic
limits. Of course we supposed that where the differences were largest, would be the best opportunities
for improving the efficiency. This kind of approach was just beginning and has become what is now
called “life cycle analysis”.

We thought this was rather a ground-breaking approach and applied the method to other
systems, such as packaging, transporting and marketing consumer goods [8], and to polymers [9].
However, one person who had read the article said to me, “Why did you compare the actual energy
and free energy use with the ideal thermodynamic limits? After all, those limits are based on reversible,
infinitely slow processes. Who would wait for delivery of a car from a manufacturer who claimed to
make his cars reversibly?” That challenge turned out to be the trigger!

In 1975 we began exploring these questions: “Is it possible to create, construct and evaluate the
analogues of thermodynamic potentials for processes constrained to operate in finite times?” The first
venture, carried out with postdoctoral associates Abraham Nitzan and Bjarne Andresen and graduate
student Peter Salamon, made use of a model, a variant of the Carnot cycle in which the system moves
around in a series of stepwise small pressure changes, relaxing at a finite rate to each new pressure [2].
Thus the system goes around its cycle in a finite number of steps, relaxing to each new pressure in a
small, finite time. Very artificial, yes, but a model that lends itself to modeling a thermodynamic system
that evolves in finite time, the relaxation times following each sudden stepwise change in pressure.

Very soon after that initial venture, we moved forward in more substantive ways. Within months
of that first paper, we made what I feel was a major step, showing how one could create the analogues
of traditional thermodynamic potentials for systems constrained to carry out their cycles in fixed,
finite times [10], and then how to determine extremal values for finite-time processes [11]. That led
naturally to a general method for optimization [12]. A slight pause and a new flow of publications
began. When Mary Ondrechen joined the group, we began applying finite-time thermodynamics to
chemical processes [13,14].

Our investigations broadened at that time, first to relate our work to a geometric concept from
Frank Weinhold [15] and then to explicit optimization. First minimize entropy production [16] and
then to improving performance of piston engines by controlling the piston’s path in time [17]. We soon
pursued that direction for both Otto and Diesel cycles but never found a practical way to achieve those
optimal time paths.

At that time, finite-time thermodynamics had become a topic of investigation for enough people
that we began holding Summer Conferences. The first two were at the Aspen Center for Physics,
in 1981 and 1983. That second one was so popular that the participants didn’t want to skip a year.
However, the Aspen Physics Center’s schedule was already full so we couldn’t hold a meeting there
in 1984. Peter Salamon and I were discussing this problem when he said, ‘We both know Telluride;
why don’t we see if we can hold the meeting there?” I thought that was a brilliant idea, so we went
ahead with it and, in the summer of 1984, held the first Telluride scientific conference. It was at least as
popular as the Aspen meetings had been, and they have continued and stimulated many other kinds
of meetings in Telluride. They mostly fall in a general category of “molecular science” so they are
complementary, rather than competitive, with the Aspen Physics Center’s meetings.

So we can see how anger at an unpleasant, even dangerous environment can have amazing and
totally unexpected consequences.

“Acknowledgement—I would like to thank all the collaborators who have worked with me in creating,
developing and applying finite-time thermodynamics, perhaps most notably Peter Salamon and Bjarne
Andresen, with whom I am collaborating to create this volume.”

2. Peter Salamon

As a freshman graduate student looking for an advisor to work with, I was looking for one to
underwrite a project exploring the differential geometry of thermodynamics. When I approached Steve
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Berry, he responded with a question, “While you’re at it, can you put time in?” It was spring of 1973
and I had found my mentor.

The notion seemed intriguing. Having been raised in the deeply structuralist traditions prevailing
in mathematics departments in the 1970s, it seemed likely to me that understanding the mathematical
structure of thermodynamics would enable us to see how this structure might accommodate time. I had
studied the differential geometrical framework of classical mechanics and knew how time dependence
changes the symplectic structure on the manifold of configurations into a contact structure. I thought
there was a good chance of finding something similar for thermodynamics.

Steve however did not conceive of the “add time” dictum in terms of the mathematical structure it
would require. Rather he asked the much more physical question of what the constraint of a given time
implied for a thermodynamic process. He also pointed us toward heat engines and drafted Abraham
Nitzan who was doing a postdoc across town and Bjarne Andresen who joined in the summer of
1975. We learned of Curzon and Ahlborn’s result from one of the more encouraging early referees,
who rejected our work as legitimate new physics but suggested that we should consider it as physics
education. What Steve’s account of “How it began” did not mention about this nascent stage in the life
of the subject was the initial hostility to the idea of finite-time thermodynamics on the part of referees
and by extension the community. I feel this is an important historic detail for early career scientists to
take heart from. I know I would likely not have survived the onslaught of rejections without Steve’s
staunch support.

Due to our years of abuse at the hands of referees, the subject did not seem fully legitimate to me
until I could see the broader responses from the community. For this, the Aspen workshops in 1981
and 1983 were crucial. As I was driving home from the 1983 workshop, I came up with a proof of
the horse–carrot theorem [18] and wanted to organize a workshop in 1984 on the many directions the
result could lead. Alas, Steve told me Aspen was full. Bjarne was spending his sabbatical with me in
San Diego, and with his help we organized the first Telluride workshop.

3. Bjarne Andresen

In 1975 I came to Chicago to work with Steve, financed by a grant from the Danish Science
Foundation to study atomic collision theory, my previous specialty. Within a week, discussions
with Steve and Peter had gotten me hooked on the idea that developing a more realistic form of
thermodynamics than the standard reversible theory was a brilliant idea. After all, we had just had the
oil crisis of 1973 with oil rationing and car-free Sundays in Europe. That started a year of enthusiastic
search for consequences of adding that small detail of a finite time horizon for processes, “the cost of
haste”. At the end of the year I had to report to the Foundation that, sorry, I did not do anything of
what you paid me for but I started this new project instead. No comment whatsoever, just “Thank you
for the report”. I am sure that wouldn’t have worked today, but they did the right thing.

Our first four publications on Finite-Time Thermodynamics [1,10–12] carry the year 1977 even
though all the work was done during this first year. The problem, as Peter also mentions above,
was solid resistance from the established community. Extreme doubt at the first conference we
presented the ideas [12] could be interpreted positively as “inspirational”. But I had never imagined
the solid opposition we met from the editors of several major journals. Later I have observed that such
resistance to modifying established ideas is ubiquitous. The main point of telling youngsters about our
trials and tribulations is to help them understand exactly this human trait. What we did simply could
not be true because it was not within the standard teachings of thermodynamics. It took two years
of fighting referees and editors to get those initial papers out. Some colleagues were so adamant in
their efforts to eradicate these new thoughts that they wrote to editors of several journals trying to use
their standing to convince the editors to reject anything with the words finite-time thermodynamics
in the title outright, content unseen. However, that did not prevent some of those colleagues from
taking our general proofs, restricting their coverage, and then publishing them as their own original
discoveries, under a new name of course. At another incident in 1981, at a luncheon with a Nobel
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laureate, he characterized the finite-time results as “either useless or something that I have already
published”. It was not until Physics Today in 1984 ran a news article [19] on the finite-time concept that
recognition began. So, young scientists with all your bright and unorthodox ideas, beware. You have
an uphill battle ahead of you, but don’t give up.

During a subsequent stay in Chicago in 1977, we had started determining the process paths which
would yield the optimal performance. As an enthusiastic young man I had invited myself to the
General Motors Research Laboratories in Detroit, a short flight from Chicago, to offer them the great
news that the ordinary gasoline engine could be made 15% more fuel efficient and at the same time cut
the cooling requirement in half simply by moving the piston a little differently in each stroke [17]. I was
well received and a group of engine design engineers listened patiently to my presentation. At the end
the head of the department thanked me for coming over, but he did not want to get further into such a
scheme because, as he said, “people are happily buying our current cars, so why should we change
them”? This is just another version of the publication resistance to novel ideas mentioned above.

From the beginning we wanted to investigate the effects of requiring a finite time horizon for any
process as widely as possible. Some efforts resulted in completely general principles involving duration
dependent chemical potentials [10,20]. Others lead to the definition of a thermodynamic length [15,18]
which ties dissipation, and thus the finite time, to a geometric formulation. The new concepts have been
applied not just to thermodynamics but also to engineering [21], statistical mechanics [22], optimization
theory, [23] chemical reactions [24], quantum mechanics [25], biology [26], and economics [27], just to
mention some that we have been involved in ourselves. A major conceptual discovery, not related to
the dissipation itself, is that it is possible to accurately measure changes in free energies, i.e., equilibrium
properties of substances, through non-equilibrium measurements using, e.g., the Jarzynski equation [28]
and the Crooks theorem [29]. A book [30] and two review articles [31,32] have summarized the FTT
results so far.

It has been a pleasure to be along for this long and inspiring ride and I thank all the wonderful
people I have encountered along the way. Let this be an encouragement to all young people to believe
in their grand ideas and explore them in the face of opposition. Future paradigms must all pass
through a heresy stage.

Author Contributions: All the three authors contribute equally to the paper.

Funding: This research received no external funding.
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Abstract: Differential geometry offers a powerful framework for optimising and characterising
finite-time thermodynamic processes, both classical and quantum. Here, we start by a pedagogical
introduction to the notion of thermodynamic length. We review and connect different frameworks
where it emerges in the quantum regime: adiabatically driven closed systems, time-dependent
Lindblad master equations, and discrete processes. A geometric lower bound on entropy production
in finite-time is then presented, which represents a quantum generalisation of the original
classical bound. Following this, we review and develop some general principles for the optimisation
of thermodynamic processes in the linear-response regime. These include constant speed of control
variation according to the thermodynamic metric, absence of quantum coherence, and optimality
of small cycles around the point of maximal ratio between heat capacity and relaxation time for
Carnot engines.

Keywords: quantum thermodynamics; finite-time thermodynamics; thermodynamic length;
heat engines; cooling

1. Introduction

Quasistatic processes can be successfully characterised by a few simple and universal results:
work is given by the equilibrium free energy difference between the endpoints of a transformation,
the efficiency of a Carnot engine depends only on the temperatures of the thermal baths, and in
general all quantities of interest become state functions [1]. These results are extremely strong, but their
applicability to real life situations is hindered by the necessity of performing all protocols in infinite
time in order to ensure that the system remains in thermal equilibrium along the process. On the
other hand, finite-time thermodynamic processes can become incredibly complex and strongly depend
on the particular protocol and system. For this reason, universal results or simple characterisations
are rare. A remarkable exception are fluctuation theorems, which are universal results that apply
to arbitrary out-of-equilibrium processes under very mild assumptions [2]; however, they provide
a few constraints on the statistics, which are far from sufficient for a full characterisation of the
out-of-equilibrium process.

Noticeably, the middle ground between the two situations above, i.e., the case in which the
protocol is performed in long but finite time, can be characterised by few geometrical quantities.
The main ideas were introduced for classical systems in a series of seminal papers in the 80 s
by Weinhold and Andresen, Berry and Salamon, among others [3–14]. More recently, the field
saw a revival following a series of papers initiated by Crooks in 2007 [15–17], leading to several
applications in, e.g., molecular motors [18], small-scale information processing [19], nonequilibrium
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steady states [20,21], and many-body systems [22,23]. The same ideas have been generalised
to the quantum regime for unitary dynamics using linear response [24–28], and to open system
dynamics for Lindbladian systems [29,30]. Recent applications of thermodynamic geometry in
quantum systems can be found in quantum heat engines [31–34], equilibration processes [35,36],
phase transitions [37], quantum work and heat fluctuations [38–40], thermodynamic uncertainty
relations [41,42], and shortcuts to adiabaticity [43]; see also Ref. [44] for a recent perspective on
the subject.

The goal of this paper is two-fold: First, we aim to provide a pedagogic introduction to the
notion of (quantum) thermodynamic length. This is done in Section 2, where we explicitly connect
different frameworks where this concept can be derived: adiabatic linear response theory in closed
quantum systems [26–28], adiabatic Lindblad master equations [29,30], and discrete processes [7].
Additionally, in Section 3, we use the concept of thermodynamic length to lower bound the
dissipation in a finite-time process, generalising to quantum systems the so-called Horse–Carrot
theorem [6,7]. Notably, the bound is process-independent, being a function of the endpoints and
the (smallest) relaxation timescale. Thus, it can be seen as a geometric refinement of the second law of
thermodynamics. Second, in Section 4, we apply these ideas to the optimisation of thermodynamic
processes, with emphasis on heat engines in the low-dissipation regime [6,45–53]. Building upon
previous works, we show how general conclusions can be drawn with analytical tools for a class of
thermal machines, and a few principles of common application can be stated for optimal processes,
with some examples. Finally, these results are illustrated in detail for the paradigmatic case of a
finite-time Carnot engine with a driven two-level system as a working substance in Section 5.

2. Overview of Thermodynamic Length in Quantum Systems

Let us consider a system whose Hamiltonian Ht can be externally driven and which is weakly
coupled to a thermal bath. Without loss of generality, we will decompose the system Hamiltonian
as Ht = ∑i λi

tXi, where
{

λi
t
}

is a family of time dependent external parameters, and {Xi} are the
corresponding observables. Moreover, in the following we will assume summation over repeated
indexes. In this context the average work performed on the system is given by:

w =
∫

γ
dt Tr

[
Ḣtρt

]
=
∫

γ
dt λ̇i

t Tr [Xiρt] , (1)

where γ is the path in the parameters space, and ρt is the evolved system density matrix at time
t ∈ (0, τ). We know from equilibrium thermodynamics that if the process is infinitely slow the system
is always at equilibrium. Consequently, the work is given by the difference of free energy at the
endpoints of the transformation. Indeed, in this formalism we regain this result:

weq =
∫

γ
dt Tr

[
Ḣtπt

]
=
∫

γ
dt

d
dt

(
−β−1 logZt

)
= ΔF, (2)

where we used the notation Zt = Tr
[
e−βHt

]
for the partition function, we denote the thermal state

by πt := e−βHt /Zt, and we used the definition of the free energy Ft := −β−1 logZt, as well as
ΔF = Fτ − F0. Given this result, it is then natural to define the dissipated work as wdiss := (w − weq) =

(w − ΔF), in order to isolate the role of the dissipation arising from finite time effects.
A consequence of the second law is that wdiss ≥ 0 with equality only in the infinite time limit.

Moreover, if the dynamics is divisible (e.g., Markovian) the rate of dissipation is also positive definite,
and zero only in the infinite time limit [54]. This suggests that we can expand ẇdiss in terms of {λ̇i

t}
around the quasistatic limit (λ̇i

t ≡ 0), and obtain:

ẇdiss = λ̇i
t������∂i ẇdiss

∣∣
λ̇t≡0 + λ̇i

t

(
∂i∂j ẇdiss

∣∣
λ̇t≡0

)
λ̇

j
t +O

(
||λ̇||3

)
, (3)
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where the first derivative cancels since we are expanding around a minimum. For the same reason,
we know that the Hessian gi,j = β∂i∂j ẇ

diss
∣∣

˙̆t≡0

is positive definite. From these considerations we see

that the dissipated work can be written as:

wdiss =
1
β

∫
γ

dt λ̇i
t (gi,j)tλ̇

j
t, (4)

up to higher order corrections. Linear response theory tells us that the matrix gt depends smoothly on
the thermal state πt. Moreover, we can deduce that it is positive definite and symmetric, being the
Hessian of a function around its minimum. These are the defining properties of a metric. In fact,
we can interpret Equation (4) as the energy functional or the action of the curve γ with respect to the
metric g. This name comes from the formal analogy between Equation (4) and the action of a system of
free particles with mass tensor given by g.

This interpretation is particularly useful thanks to the following fact. If one defines the length of
γ as:

lγ =
∫

γ
dt
√

λ̇i
t (gi,j)tλ̇

j
t, (5)

we have the Cauchy–Schwarz like expression

βwdiss ≥ l2
γ/τ, (6)

which takes the name of “thermodynamic length inequality” [6]. Among the curves connecting
two endpoints,

{
λi

0
}

and
{

λi
τ

}
, we call γ geodesic if it minimises the distance between the two points

as measured by Equation (5). A geodesic is also characterised by the property that it keeps the product
λ̇i

t (gi,j)tλ̇
j
t constant along its path, implying that the Cauchy–Schwarz inequality in Equation (6)

is saturated if γ is a geodesic. Physically, this means that in order to design minimal dissipating
protocols in the slow driving regime, it is sufficient to solve a system of differential equations,
i.e., the geodesic equations:

λ̈i
t + Γi

j,k
∣∣
λt

λ̇
j
t λ̇k

t = 0, (7)

where Γ denotes the Christoffel symbols, which are given by:

Γi
j,k|λt =

1
2

gi,l
(

∂jgl,k + ∂kgj,l − ∂l gj,k

)
|λt . (8)

Here, gi,l is the inverse of the metric, and we use the shorthand notation ∂igj,k|λt ≡ (∂gj,k/∂λi)|λ=λt .
Moreover, the dissipative properties of a driven system can be directly inferred from the spectral
properties of gt alone. In particular, starting from very general considerations on the nature of the
metric tensor, this will allow us to give lower bounds on the rate of dissipation (Section 3) and to
conclude that the creation of coherence is always detrimental to the efficiency (Section 3).

Another strength of the formalism presented is that g can be explicitly computed in many
frameworks. For example, comparing Equations (1) and (2) it can be seen that the metric tensor can
be computed from the slow driving approximation of the expectation value of the observables {Xi}s.
This was explicitly carried out in the context of linear response of an adiabatically driven unitary
dynamics in [28] (see also [26,27]), leading to the expansion:

Tr [Xiρt] = Tr [Xiπt] + χad
t [Xi, Xj]λ̇

j
t +O

(
||λ̇||2

)
, (9)
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where χad
t is the adiabatic response function given by:

χad
t [A, B] = −i

∫ ∞

0
dν (ν Tr [[A(ν), B]πt]) . (10)

Here, we set h̄ = 1, and the Heisenberg picture A(s) is defined with respect to the frozen Hamiltonian
at time t, i.e., A(s) = eiHts Ae−iHts. Notice that the upper bound of the integral can be extended to
∞ thanks to the exponential decay of the correlation function Tr [[A(ν), B]πt]. Now, if we plug the
expansion just obtained in Equation (1) and we recall that the definition of the dissipated work is
wdiss := (w − weq), we have the expression:

wdiss =
1
β

∫
γ

dt λ̇i
t (β χad

t [Xi, Xj])λ̇
j
t, (11)

up to higher order in {λ̇i}. Comparing this equation with Equation (4), we see that in the context of
adiabatic linear response the metric tensor is given by gu

i,j =
β
2 (χ

ad
t [Xi, Xj] + χad

t [Xj, Xi]) (notice that

even if χad
t is not in general symmetric in its arguments it can always be symmetrised without affecting

the result, since the velocities {λ̇i
t} enter the integral in a symmetric way). This formalism was recently

used to geometrically characterise thermal machines close to Carnot efficiency [33].
Another relevant framework where a thermodynamic length can be derived is open quantum

systems [30] (see also [29]). In particular, consider the Lindbladian dynamics:

ρ̇t = Lt[ρt], (12)

with the property that each Lt has the real part of all the eigenvalues negative and that there exist a
unique instantaneous steady state πt. These two conditions ensure that the dynamics asymptotically
equilibrates irrespective of the initial conditions:

lim
ν→∞

eνLt ρ = πt. (13)

In this case, it is possible to expand the state in the slow driving limit as ρt ≈ πt + δρt [55], where δρt

can be expressed up to higher order corrections as [30]:

ρt = πt +L +
t [π̇t] +O(||λ̇||2), (14)

where L +
t is the Drazin inverse of the Lindbladian given by:

L +
t [A] =

∫ ∞

0
dν eνLt (πtTr [A]− A) . (15)

As it will be shown explicitly in the following, the eigenvalues of L +
t encode the information about the

thermalisation timescales. Moreover, we introduce the shorthand notation to indicate the derivative of
the state:

π̇t = −β λ̇i
t

∫ 1

0
dx π1−x

t X̄iπ
x
t = −β λ̇i

tJt[X̄i], (16)

where we denote by X̄i := Xi − Tr [Xiπt]. Hence, if we plug in this expansion into the expression of
the work, we obtain that the dissipation takes the form:

wdiss = − 1
β

∫
γ

dt λ̇i
t (β2 Tr

[
X̄iL

+
t Jt[X̄j]

]
)λ̇

j
t. (17)

Again, it should be noticed that the quadratic form qi,j = −β2 Tr
[
X̄iL

+
t Jt[X̄j]

]
is in general not

symmetric, so that in the definition of the metric we need to explicitly symmetrise the expression:

10
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gd
i,j := 1

2 (qi,j + qj,i). The matrix gd so defined can be then interpreted as the metric tensor for open
quantum systems [30].

It is interesting to notice that the metric gu obtained in the unitary setting can be cast in a form
resembling the dissipative one gd. In fact, explicitly carrying out the integral in the definition of the
adiabatic response function χad

t , we see that the metric can be recast in the form:

χad
t [Xi , Xj] = −i

∫ ∞

0
dν
(
ν Tr

[
[Xi(ν), Xj]πt

])
= − i

Zt

∫ ∞

0
dν
(

ν ei(εm−εn)ν
)
(e−βεm − e−βεn )(Xi)m,n(Xj)n,m (18)

= − 1
Zt

(e−βεm − e−βεn )

(εm − εn)2 (Xi)m,n(Xj)n,m = −iβ
∫ ∞

0
dν
∫ 1

0
dx Tr

[
π1−x

t eiHtνXi e−iHtνπx
t Xj

]
(19)

= −β Tr
[
Xi U+

t [Jt[Xj]]
]

, (20)

where we denoted by {εi} the eigenvalues of Ht, and we defined the operator:

U+
t [A] := −i

∫ ∞

0
dν TrB[e−iHtν AeiHtν]. (21)

We see that the role of L +
t is taken in this case by the map U+

t , so that the dissipation in the unitary
case is given in complete analogy to Equation (17).

One last example that one can consider is the case in which the Hamiltonian is changed in a
sequence of quenches, followed by a perfect thermalisation of the system [7]. The total duration of the
protocol is given by τ = Nτeq, where N is the number of quenches in which the protocol is realised
and τeq is a fixed equilibration time. When the number of steps is large the state at each time t = mτeq

(m = 0, . . . , N − 1) is approximately given by: ρm � πm − Δmπ, where Δmπ is the difference between
the thermal states at two subsequent steps Δmπ := πm+1 − πm. This term in the limit N � 1 is well
approximated by τeqπ̇t. We can interpret this contribution as an indication of how much the system
lags behind the thermal state. Proceeding as before, the dissipation can be rewritten up to first order in
1/N = τeq/τ as:

wdiss =
1

2β

∫
γ

dt λ̇i
t (τeqβ2 Tr

[
X̄iJt[X̄j]

]
)λ̇

j
t. (22)

The metric tensor gq
i,j can be directly identified with the trace inside the integral, since Jt is self-adjoint,

making the whole expression symmetric in (i, j). The metric so obtained can be rewritten as:
gq

i,j = τeq gBKM
i,j , where we implicitly defined gBKM

i,j = ∂2 lnZ/∂λi∂λj. This last quantity is known as
the Bogoliubov–Kubo–Mori (BKM) statistical distance, which encodes the geometry of the manifold of
Gibbs states and has been thoroughly studied in the literature [56–60]. Due to the formal similarity
between (22) and (17), it is insightful to study the relation between both metrics. In [30], it was shown
that in the particular case in which the observables of interest {Yα} are the left eigenoperators of the
Lindbladian, meaning that they evolve according to the equation:

d
dt

Tr [Yαρt] = τ−1
α (Tr [Yαπt]− Tr [Yαρt]) , (23)

where {τα} are the different timescales of the system, the expression of the metric for the Lindbladian
dynamics takes the simple form:

gd
α,β =

τα + τβ

2
gBKM

α,β , (24)

11



Entropy 2020, 22, 1076

in analogy with the classical result [17]. Since, at least for Lindbladians satisfying detailed balance, {Yα}
is a complete basis of operators, it is possible to rewrite in this case any observable Xi as Xi = ui,αYα.
That is, the Lindbladian metric for a general family of observables {Xi} is given by:

gd
i,j = ui,αuj,β

τα + τβ

2
gBKM

α,β . (25)

This shows that the role of L +
t is to encode the thermalisation timescales of the system, while the

main geometrical properties are contained in gBKM. Finally, it should be noticed that in the case of a
uniformly thermalising dynamics, i.e., τα = τeq ∀α, the thermodynamic metric is proportional to the
BKM one.

3. Bounding Dissipation with Thermodynamic Length

In a wider context, the BKM metric plays a role within quantum information geometry [61],
and can be interpreted as a form of quantum Fisher information [62]. Moreover, it belongs to the
family of contractive Riemann metrics over the manifold of normalised density operators �t = �t({λi

t}).
A theorem by Petz gives a general characterisation of length between neighbouring quantum states [63]:

d�2 = g
f
ijdλidλj =⇒ g

f
ij = Tr

[
∂�t

∂λi c f (R�t , L�t)
∂�t

∂λj

]
, (26)

where c f (x, y) = (y f (x/y))−1 and f (t) is a so-called Morozova–Cencov function which is operator
monotone, normalised such that f (1) = 1 and fulfils f (t) = t f (1/t). Furthermore L�, R� represent
the left and right multiplication operators defined according to L�[A] = �A and R�[A] = A�

respectively [63]. For each different metric we have a different notion of distance between density
matrices over a path γ:

� f (γ) :=
∫

γ
d� =

∫
γ

dt
√

g
f
ijλ̇

iλ̇j. (27)

For the particular choice f (x) = (x − 1)/ log x one obtains the BKM metric g
f
ij = gBKM

ij , namely

gBKM
ij =

∫ 1

0
dx Tr

[(
∂ log �t

∂λi

)
�x

t

(
∂ log �t

∂λj

)
�1−x

t

]
. (28)

Restricting to the manifold of thermal states �t = πt we indeed recover the thermodynamic metric
in (22). In general, any length of the form (27) is lower bounded by a geodesic path. Notably, analytical
expressions for the shortest curves on the density operator manifold for each choice of metric are not
known, aside from a couple of examples [64,65] excluding the BKM metric. However, for the BKM
statistical length a lower bound is known (Corollary 5.1 of [66]) which depends only on the boundary
conditions {λi

0} → {λi
τ}:

�BKM(γ) ≥ L(�0, �τ), (29)

where

L(ρ, σ) = 2 arccos(Tr
[√

ρ
√

σ
]
), (30)

is the quantum Hellinger angle. We stress that while this bound can always be saturated when
the initial and final states commute, transitions between non-commuting states cannot typically
saturate (29). Note that in the classical commutative regime, all monotone metrics (26) reduce to the
classical Fisher–Rao metric, and a unique geodesic length is singled out by the Hellinger angle between

12
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the initial and final probability distribution [65]. For a pair of discrete classical probability distributions
pn and qn, the Hellinger angle is given by

L(p, q) := 2 arccos
(
∑
n

√
pn qn

)
. (31)

The geodesic bound (29) has an immediate consequence for thermodynamics.
For step-equilibration processes, the work dissipation (22) is subsequently lower bounded
via the Cauchy–Schwartz inequality (6) combined with (29):

wdiss ≥
kBT
2N

L2(π0, πτ). (32)

One may interpret this as a geometric refinement to the second law of thermodynamics.
Clearly, the bound depends only on the angle between the initial and final equilibrium state rather than
the full path γ. For open systems undergoing Markovian dynamics, the corresponding dissipation (17)
can be bounded in a similar fashion. Consider first the eigendecomposition of the Lindbladian (23)
with associated relaxation timescales {τα}, which can be achieved for open systems satisfying
detailed balance. Denoting τmin as the shortest timescale along the curve γ and τ the total duration,
work dissipation is bounded by

wdiss ≥ kBT
(

τmin

τ

)
L2(π0, πτ). (33)

Note that, while (32) can always be saturated by following a geodesic, in general (33) is not tight
whenever more than one relaxation timescale is present. The bounds (32) and (33) represent quantum
generalisations of the so-called Horse–Carrot theorem in finite-time thermodynamics [6,7].

Considerations on Coherence Creation

Now we want to investigate the role of coherence in a a thermodynamic transformation whose
dissipation can be described by Equation (17), see also Refs. [39,67]. We start by rewriting the expression
for the dissipated work assuming full control on the system Hamiltonian

ẇdiss = −β Tr
[
ḢtL

+
t Jπt Ḣt

]
≡ 〈Ḣt, Ḣt〉t . (34)

For notation simplicity we omit the explicit time dependence in this section. We split Ḣ in its diagonal
and coherence parts, with respect the Hamiltonian basis of π ∝ e−βH , |i〉

Ḣ = Ḣ(d) + Ḣ(c) Ḣ(d) = ∑
i
|i〉 〈i| Ḣ |i〉 〈i| . (35)

Given that for any operator A we have Tr
[

A(d)A(c)
]
= 0, if we are able to prove that Jπ and L + do

not mix the diagonal and coherent subspaces, then we would have

〈Ḣ, Ḣ〉 = 〈Ḣ(d), Ḣ(d)〉+ 〈Ḣ(c), Ḣ(c)〉 . (36)

Now, this is always true for Jπ as

Jπ [|i〉 〈j|] =
∫ 1

0
dxπx |i〉 〈j|π1−x ∝ |i〉 〈j| (37)

meaning that if |i〉 〈j| is diagonal (i.e., i = j), it will stay diagonal, and vice versa (i.e., if i �= j).
Is the same true for L +? This question can be answered affirmatively, by noting that L + can be

written as an exponentiation of L (cf. (17)), and that any L satisfying detailed balance does not mix

13
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the diagonal and coherent subspaces [68]. More explicitly, standard Markovian thermal Lindbladians
(satisfying detailed balance [68,69]) take the form L [ρ] = −i[HLS, ρ] + ∑α γα AαρA†

α − 1
2{A†

α Aα, ρ},
the Aα being jump operators Aα = |iα〉 〈jα|, and HLS a general Lamb-Shift Hamiltonian [HLS, H] = 0.
This commutation property guarantees that the Hamiltonian term does not mix populations
with coherences, while for the dissipative part we note

Aα |i〉 〈j| A†
α −

1
2
{A†

α Aα, |i〉 〈j|} = |iα〉 〈iα| δjαiδjα j −
1
2
|i〉 〈j| (δjαi + δjα j) . (38)

From the expression above, it is easy to see that if i = j the result will be diagonal as well, while if i �= j
the result will be only made of coherences. Equation (36) is thus valid for standard Markovian master
equations and

wdiss = w(d)
diss + w(c)

diss (39)

where w(d)
diss is the term due to the modification of the spectrum of H, while w(c)

diss is due only to the

rotation of the basis. Given that both w(d)
diss and w(c)

diss are positive, this property immediately implies

that wdiss ≥ w(d)
diss, and hence we conclude that the creation of coherence is always detrimental when

operating a thermal machine in the low-dissipation regime, as we explain more in detail in Section 4.2,
and in agreement with recent results [42,67,70]. A similar separation of losses generated by diagonal
and coherent parts of the Hamiltonian variation is presented in [32].

4. Optimisation of Thermodynamic Processes in the Slow Driving Regime

In this section, we derive and review generic considerations on the optimisation of finite-time
thermal machines in the low-dissipation regime [6,14,31,46]. That is, when the irreversible entropy
production is proportional to the inverse time duration. This assumption can be taken as empiric if no
information on the system–bath interaction is given, or it can be justified and derived dynamically
using the tools examined in Section 2. Part of the results are in agreement with previous literature and
we aim here to collect them in a unified exposition that shows the generality and simplicity hidden in
earlier works.

More precisely, we consider a thermal machine made up of a working substance (or machine)
and several thermal baths at different temperatures. The level of control consists of n experimental
parameters of the machine that can be driven (typically Hamiltonian parameters), together with the
possibility to put the machine in contact with one of the thermal baths. The n control parameters are
parametrised as�λ(s) ≡ �λsτ with s ∈ (0, 1)—note that this notation decouples the duration τ of each
process from its shape�λ(s). We assume in very general terms that the low-dissipation condition holds
and it is described by an underlying thermodynamic metric, as presented in Section 2. That is, for an
isothermal transformation at temperature T = β−1, we rewrite Equation (4) as

ΔQ = T
(

ΔS − σ

τ

)
(40)

σ =
∫ 1

0
ds �λ′T(s)g�λ

�λ′(s) (41)

which follows from identifying wdiss = w − ΔF = TΔS − ΔQ = Tσ/τ and by recalling �λ(s) ≡ �λsτ ,
which has derivative�λ′ ≡ ∂

∂s
�λ = τ�̇λ. Notice that in most of what follows, the exact form of g�λ does

not significantly change the results. In this sense, most of the derivations are common to any system
that has first-order losses described by some quadratic form, as in linear response theory.
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We consider a machine performing M transformations close to equilibrium (in general with
different baths), each described by some heat exchange and some dissipation in the low-dissipation
regime, with an output

ΔWout =
M

∑
i

ΔQi =
M

∑
i=1

TiΔSi −
Tiσi
τi

. (42)

The output being a sum of heat exchanges is guaranteed when considering cycling machines, or when
the output of interest is the heat extraction from a subset of the sources. This framework thus includes
a variety of tasks: cooling, work extraction, Landauer erasure, Carnot cycles, and generalised Carnot
engines with multiple baths or finite size baths (see examples below). In any such a process, three
main features can be optimised, corresponding to different levels of control over the machine:

1. The speed of the trajectory: that is, the duration τ, which characterises the average speed of
the process, plus any rescaling of the instantaneous velocity along the trajectory. This can be
formalised as a change of coordinates �λ(s) → �λ(s(s)) with s smooth monotonous and s(0) =
0, s(1) = 1.

2. The path of the trajectory: i.e., the (ordered) set of points swept by �λ, for fixed �λ(0) and �λ(1).
This identifies a curve γ in Rn.

3. The extremal points of γ, or the “location” of the process in the control space.

In the following, we elaborate on the above features and show how to optimise them, which
can be done independently or sequentially. In particular, following the above order in Section 4.1
we optimize the time duration of each transformation τi and show a principle of constant dissipation
rate optimality; in Section 4.2 we discuss consequences of the considerations presented in Section 3
when the experimental control is such to allow variations of the curve γ defined by �λ(s); and in
Section 4.3 we discuss the cases in which a full optimisation can be carried out, so that all the degrees
of freedom listed above can be optimised.

4.1. Tuning the Speed: Optimality of Constant Dissipation Rate

Here, we suppose initially that the only control available on the machine (42) is the time tuning of
each step τi. We wish to maximise the power output P = ΔWout/ ∑j τj for a given loss, or equivalently
we fix the (maximum) amount of dissipated work,

∑
i

Tiσi
τi

≡ wdiss (43)

and maximize P. The power can be written as

P =
(∑i TiΔSi)− wdiss

∑j τj
, (44)

hence, maximising it is equivalent to minimising ∑j τj with the constraint (43). This can be stated as

Principle 1. Maximising the power at fixed dissipation is equivalent to minimising the dissipation at
given duration.

This remark is important as the main result of this subsection (the optimality of constant
thermodynamic speed, or dissipation rate) will thus be valid for all machines performing tasks that are
limited by the above trade-off. Examples are: maximising the power, minimising the dissipation
(or entropy production) with fixed total time, or hybrid figures of merit combinations, such as
maximising the power with a fixed amount of total loss. For a discussion of what machines maximise
their outputs when the irreversible entropy production is minimised see [71].
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The maximisation of (44) can be done differentiating w.r.t τi and using Lagrange multipliers,
or directly with a Cauchy–Schwarz inequality

wdiss ∑
i

τi =

(
∑

j

Tjσj

τj

)(
∑

i
τi

)
≥
(

∑
j

√
Tjσj

)2

(45)

which is saturated when all Tjσj/τ2
j are equal, that is

τj =

√
Tjσj(∑i

√
Tiσi)

wdiss
(46)

Pwdiss =
wdiss(∑i TiΔSi)− w2

diss
(∑j
√

Tjσj)2 . (47)

Notice that the fact that Tjσj/τ2
j is the same ∀j means that the rate of dissipation is constant

for each of the N steps of the protocol. In particular, when the dissipation is described by an
underlying thermodynamic metric (41), this implies the optimality of constant thermodynamic
velocity T�λ′T g�λ

�λ′ = const., which can be seen by dividing each transformation into infinitesimal
steps, i.e., expressing

TiΔSi −
Tiσi
τi

=
∫

γ(i)
TdS −

Td�λT g�λd�λ
dτ

(48)

and applying the above reasoning, which concludes that each of the infinitesimal
Td�λT g�λd�λ

dτ2 must
be equal. The “thermodynamic length inequality” inequality (6) ([6,72]) is indeed saturated when its
integrand is constant, and coincides with the continuous version of (45). These considerations can be
summed up saying that for the class of machines considered here

Principle 2. In optimal protocols, the speed of the control variation is constant (as measured from the underlying
thermodynamic metric), leading to a constant entropy production rate.

The optimality of constant entropy production rate was noted already in the first seminal
papers [73] in the context of endoreversible engines, and appeared in many works thereafter (for
an historical perspective, see also [74,75]). The above formulation manifests the universality of this
principle whenever a trade-off between output rate and losses is present in the regime where losses
are linear in the average speed of the process.

The power (46) can be further maximised choosing wdiss = 1
2 ∑i TiΔSi to obtain the durations

leading to the maximum power, in this case

Pmax =
(∑i TiΔSi)

2

4(∑j
√

σj)2 . (49)

At maximum power the losses thus correspond to half of the quasistatic output: this corresponds to
the “7th principle of control thermodynamics” pointed out by Salamon et al. in [74], whose general
validity was unknown: we can state it holds (at least) for all machines described by (42).

We give here an example of application of the time tuning optimisation just described.

Multi-Bath Carnot Engine

A generalised Carnot engine consists of a sequence of isotherms in contact with different thermal
baths, alternated with adiabats as in the standard Carnot cycle. The total work output can be expressed
as the sum of the heat exchanges due to cycling conditions, as in Equation (42), with ∑i ΔSi = 0. All the
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results described above apply and the maximum power obtainable by tuning the time durations of the
isotherms is thus as in Equation (49). Moreover, in Appendix A we further analyze this result assuming
that all the baths have the same spectral density ∝ ωα, described by the ohmicity α. Under this
hypothesis and the assumption that all the isotherms are small enough (see details in Appendix A),
we show how this can be translated in the maximum power being expressed by

Pmulti−Carnot
max =

(∑i TidSi)
2

4κ0T0

(
∑i(

Ti
T0
)

1−α
2 |dSi|

)2 (50)

where κ0 represents the local ratio between σ0 and (ΔS0)
2 at some reference temperature T0,

and satisfies κi/κj = (Ti/Tj)
−α. In the Appendix A, we show how in this case, the power is upper

bounded by the same power when it is obtained by the use of the highest and lowest temperature only,
which leads to the maximum power of a standard Carnot Engine (cf. Section 4.3 or [31])

Pmulti−Carnot
max ≤ PCarnot

max =
(ΔS)2

σh

(Th − Tc)2

4Th

(
1 + ( Tc

Th
)

1−α
2

)2 . (51)

4.2. Path Optimisation: Geodesics and Coherences

When the control over the working fluid allows not only to vary the speed of the transformation,
but includes possible modifications of the path γ of the trajectory�λ(s), the machine can be substantially
improved. The optimisation over γ is independent from the time tuning considered in the previous
section. It consists of finding the shortest path σ =

∫
γ
�λ′T g�λ

�λ′ between two fixed points for each
isotherm (41) considered in the cycle. Indeed, when the extremal points of a trajectory are fixed,
the quasistatic output is fixed and minimizing σ always improves both power and the efficiency.

More precisely, with the tools described in Section 2, each of the σi in Equation (42) will be
described as in (5) by some metric g(i) and some trajectory �λ(i), in the form σi =

∫
γ(i)�λ′T

(i)g
(i)
�λ
�λ′
(i) .

As mentioned earlier (see Section 2 or Section 4.1), by choosing the speed to be constant the above
expression can be minimised to the thermodynamic length of the path γ(i)

σi =

(∫
γ(i)

ds
√
�λ′T
(i)g

(i)
�λ
�λ′
(i)

)2

≡ l2
γ(i) . (52)

This quantity depends only on the path γ(i) of the trajectory and not on its parametrisation �λ(s),
but it can be further minimised by considering its minimum among all the possible paths linking the
extremal points, which then defines the geodesics distance between the extremal points

d�λ(0),�λ(1) = min
γ with extremals

{�λ(0),�λ(1)}

lγ (53)

These considerations can be stated as follows:

Principle 3. In optimal protocols, the driving minimises the entropy production, i.e., it follows a geodesic on
the thermodynamic manifold.

In the quantum case, as showed in Section 3, the irreversible entropy production can be split in
two independent parts, one due to the variation of the spectrum Ḣ(d)

t and one due to the rotation of

the eigenvectors Ḣ(c)
t of the Hamiltonian, i.e., Ḣt = Ḣ(d)

t + Ḣ(c)
t and

wdiss = w(d)
diss + w(c)

diss , (54)
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where w(X)
diss = −β

∫
dt Tr

[
Ḣ(X)

t L +
t Jπt Ḣ(X)

t

]
, with X = d, c. Now, notice that the quasistatic (lossless)

output of a thermal machine is given by the integral of the heat exchange, or the work exchange,
computed on the equilibrium state πt, for example

weq =
∫

dt Tr
[
πt Ḣt

]
=
∫

dt Tr
[
πt Ḣ(d)

t

]
, (55)

which shows how the work exchange only depends on the diagonal variation of H, that is the
spectrum variation. This easily follows from the fact that for thermal states at temperature T one
has ΔU = w + ΔQ = w + TΔS , where all the quantities depend uniquely on the spectrum of the
final and initial control H0, Hτ (which define as well the spectrum of π0, πτ). This means that given
the most general control Ht = Ut H(d)

t U†
t , where H(d)

t is diagonal in a time-independent basis, all the
lossless heat and work exchanges are the same for the protocol in which only the spectrum is varied,
H(d)

t . At the same time given w(c)
diss ≥ 0, losses are clearly reduced using H(d)

t . From this we learn that,
for standard Markovian dissipators,

Principle 4. Quantum coherences are not created in optimal protocols, i.e., non-commutativity [Ht, Ht′ ] �= 0
is avoided.

The effect of coherences inducing losses in the power was noted already in [67] in the context of
linear response theory of slowly driven engines with slowly driven temperature, and more recently
in [42]. A different approach to quantum dynamics, namely quantum jump trajectories, shows again
the detrimental effects of coherence creation [70]. Moreover, notice that if the degree of control on
the thermal machine allows to eliminate any coherence creation, using commutative controls all the
metrics defined in Equation (26) collapse into the classical one and the geodesics distance between
states is given by (31), and the bound (33) can be saturated.

We show here an example of application for a cooling process.

Cooling/Work Extraction

Suppose we are interested only in a subset of the heat currents that are part protocol, meaning
that relevant output is the heat extracted from one (or multiple) thermal sources, as in a generalised
refrigerator model. To fix the ideas for a single bath to be cooled the cooling rate is

Pcooling =
TcΔSc − Tcσc

τc

τex + τc
≡ TcΔSc − wdiss

τex + τc
(56)

where now τex is additional time spent on parts of the cycle that do not contribute to the cooling output.
The optimisation for fixed loss wdiss applies as from (46) leading to τc = Tcσc/wdiss , and a power

Pcooling
wdiss =

TcΔSc − wdiss

τex + Tcσcw−1
diss

, (57)

which clearly increases as σc is minimised. The overall maximum of the cooling rate becomes for a
suitable choice of wdiss

Pcooling
max = Tcσc

(√
ΔScτex/σc + 1 − 1

)2

τ2
ex

= Tc
ΔS2

c
4σc

− Tc
ΔS3

c
8σ2

c
τex +O(τ2

ex) . (58)

The above expressions are all decreasing in the value of σc, which is minimal when obtained
on the geodesics of the transformation, as from Equations (52) and (53). For example, let us
assume that the cooling consists of a single transformation from πx to πy, with no additional

time τex = 0, and full control on the Hamiltonian defining πx,y = e−Hx,y/Tc /Tr
[
e−Hx,y/Tc

]
.
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Then, the maximum cooling power is obtained for a coherence-free protocol [Hx, Hy] = 0 that leads
to σmin = 2τeq arccos(Tr

[√
πx

√
πy
]
) from (30), whereas the maximum cooling rate is obtained by

substituting it into (58). If the control does not allow for coherence-less transformations, or the
Lindbladian has several time-scales, upper bounds on the cooling rate can be obtained by the use
of (33).

4.3. Choosing the Location: Total Optimisation

After optimizing the time duration and trajectory of the transformations, the resulting optimal
output rates only depend on the end points of the transformations. The final maximisation of such
expressions is in general non-trivial. However, we note how the maximum power obtained in (51)
is proportional (ΔS)2 /σ, which is maximal when σ takes the geodesics value described above (53).
Thus, this last quantity

(ΔS)2

σ
=

(
S�λ(0) − S�λ(1)

)2

d2
�λ(0),�λ(1)

(59)

can be maximised by changing the extremal of the transformation. The same quantity appears as
the leading term for the cooling rate in (58). We find this to be a strikingly general feature of all
thermal machines whose dynamical information ultimately consists of just one simple isothermal
transformation close to equilibrium. This is clearly the case for a single heat extraction from a bath as
in (58), but it happens also, e.g., for Carnot engines, which, due to the trivial dynamics at the quenches,
have all relevant quantities which can be expressed solely in terms of the two isotherms. For example,
power and efficiency of a Carnot engine read:

PCarnot =
ΔS(Th − Tc)−

(
Tcσc

τc
+ Thσh

τh

)
τc + τh

, η =
Qh + Qc

Qh
= 1 −

Tc(ΔS + σc
τc
)

Th(ΔS − σh
τh
)

, (60)

where ΔS is the variation of entropy during the hot isotherm, and the irreversible entropy productions
are proportional to each other on optimal protocols σh/σc = (Tc/Th)

−α, according to the spectral
density of the baths [31,55] (cf. Appendix A). The two isotherms are thus symmetric, in the sense that by
construction they have an opposite entropy variation ΔSh = −ΔSc, and the trajectories follow the same
geodesics to link the endpoints [31,55]. After time optimisation on τc, τh in such a case it is clear from
dimensional analysis that the resulting power can only be proportional to (ΔS)2/σh (or equivalently
(ΔS)2/σc due to proportionality) multiplied by a function with the dimension of temperature.

In more detail, it has been shown recently [31] that is possible to express the maximum power
at any given efficiency η = (1 − δ)ηC = (1 − δ)(1 − Tc/Th) for a Carnot engine (see also [51,52]). We
report here for simplicity only on the case where α = 0, thus σc = σh = σ, as

PCarnot
δ =

(ΔS)2

4σ

(Th − Tc)2δ(1 − δ)

(1 − δ)Tc + δTh
(61)

The importance of the term (ΔS)2/σ was noted already in [49] as a natural unit of entropy over
time, defining the performance of thermal machines in the low-dissipation regime for any trade-off
between power and efficiency. The equivalent optimisation for a refrigerator has been conducted
in [76], where one has a cooling power and COP coefficient (this time ΔS is defined to be positive on
the cold isotherm)

PRefrigerator =
ΔSTc − Tcσc

τc

τc + τh
, ε =

Qc

|Qh| − Qc
=

Tc

(
ΔS − σc

τc

)
Th

(
ΔS + σh

τh

)
− Tc

(
ΔS − σc

τc

) , (62)
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which leads to a maximum cooling power at given COP (again we report it for flat spectral density
σc = σh, see [76] for generalisations) ε = (1 − δ)εC = (1 − δ)Tc/(Th − Tc)

PRefrigerator
δ =

(ΔS)2

4σ

Tc(Th − Tc)δ

Th − δTc
. (63)

Crucially, the maximisation of the (ΔS)2/σ term can always be obtained by the use of a
Cauchy–Schwarz inequality [31], that is noticing that

(
∫

dS)2∫
ds�λ′T g�λ

�λ′ =

(∫
ds�∂S�λ ·�λ′

)2

∫
ds�λ′T g�λ

�λ′ ≤
∫

ds�∂ST
�λ

g−1
�λ
�∂S�λ ≤ max

�λ

�∂ST
�λ

g−1
�λ
�∂S�λ ≡ max

�λ
C(�λ) (64)

The upper bound in (64) can be saturated by performing an infinitesimal cycles around the point where
C(�λ) is maximised. In the meaningful case in which the observables Xi decay with a well defined
timescale τeq, the dissipation is described by the Kubo-Mori metric (see Section 3), and C(�λ) is exactly
the heat capacity of the system divided by the equilibration time, leading to [31]:

(ΔS)2

σ
≤ max

G

C(G)

τeq
. (65)

Here, G = βH is the adimensional Hamiltonian, and the thermal state and the heat capacity can be
expressed as π = e−G/Tr

[
e−G] and C(G) = Tr

[
G2π

]
− Tr [Gπ]2. In other words,

Principle 5. In order to optimise the power-efficiency trade-off, perform the finite-time Carnot cycle around the
point where the ratio between heat capacity and relaxation time of the working medium is maximised.

This general principle is illustrated in the next section for a two-level Carnot engine.

5. Case Study: Finite-Time Qubit Carnot Engine

In what follows, we analyse the exactly solvable case of a heat engine where the engine consists
of a driven two-level system:

H(t) = E(t)σz. (66)

We consider a finite-time Carnot cycle where the working substance is sequentially connected with two
thermal baths at different temperatures (see details of the cycle in [31]), and focus on the low-dissipation
regime where the results of Section 4 naturally apply. We model the relaxation with any of the
two baths by an exponential decay to equilibrium with timescale τeq, Tr [Hρ̇] = τ−1

eq Tr [H(π − ρ)],
which corresponds to the so-called reset master equation. In this case, the thermodynamic metric is
given by the KMB metric.

Let us define g ≡ βE (with β being the inverse temperature of the bath the working substance
is connected to), and let gx and gy be the two endpoints of the isotherms, with gx > gy. Let us also
introduce the corresponding probabilities of the excited state:

px =
e−gx

1 + e−gx
,

py =
e−gy

1 + e−gy
, (67)

with px < py. Then, we easily obtain:

ΔS = −py ln py − (1 − py) ln(1 − py) + px ln px + (1 − px) ln(1 − px). (68)
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On the other hand, we can use (33) to lower bound the entropy production in the isothermal
processes as:

σ ≥ τeq

(
2 arccos

[√
px py +

√
(1 − px)(1 − py)

])2
. (69)

This bound can be saturated by following a geodesic, i.e., a protocol satisfying (7). Putting everything
together, we can upper bound the relevant figure of merit (ΔS)2/σ for the power-efficiency
optimisation as:

(ΔS)2

σ
≤ (−py ln py − (1 − py) ln(1 − py) + px ln px + (1 − px) ln(1 − px))2

τeq

(
2 arccos

[√px py +
√
(1 − px)(1 − py)

])2 . (70)

Importantly, this expression is protocol-independent and can be saturated. Indeed, the maximal power
of a finite-time Carnot engine (for a given efficiency η = (1 − δ)ηC) given a two-level system can then
be written as (see (61)):

maxγ PCarnot
δ =

1
4
(−py ln py − (1 − py) ln(1 − py) + px ln px + (1 − px) ln(1 − px))2

τeq

(
2 arccos

[√px py +
√
(1 − px)(1 − py)

])2
(Th − Tc)2δ(1 − δ)

(1 − δ)Tc + δTh
, (71)

where the maximisation is meant over all possible protocols in the slow driving regime. We show the
upper bound (70) as a function of gx in Figure 1 for various values of gy, including the optimal one,
gy ≈ 2.4. It can be seen that the maximum of (ΔS)2/σ over {gx, gy} is bounded by the maximum of
C/τeq, where C is the heat capacity,

C = g2 p(1 − p), (72)

where p is the excited state probability p = e−g/(1 + e−g). This is in full agreement with (65) and [77],
and is a particular illustration that the power of finite-time Carnot engines at any efficiency can be
bounded by substituting the maximum value of C/τeq to (ΔS)2/σ inside expression (61), as discussed
in detail in Ref. [31].

Figure 1. We plot the upper bound of (ΔS)2/σ, given in (70), as a function of gx for different values of
gy = {0.5, 1.5, 2.4}. The point where gx = gy ≈ 2.4 is the point where (ΔS)2/σ is maximised (this can
be easily checked numerically), which is also the point of maximum heat capacity C. The heat capacity
and its maximum are also plotted in dashed lines. We take τeq = 1.
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Summarising, here we have provided a tight upper bound on the relevant figure of merit
(ΔS)2/σ for power (and efficiency) of a finite-time Carnot engine, for the particular case of a two-level
driven system. We note that such optimisation for a low-dissipation Carnot cycle or an Otto cycle has
been performed in [77], while exact total optimisation for a two-level system performing an arbitrary
cycle was solved in Refs. [78,79], with both bosonic and fermionic baths. While our results apply in the
high efficiency or low-dissipation regime, their strength lies in its simplicity: indeed, Equation (70)
can be easily computed for larger working substances, and extensions to more complex relaxation
processes with multiple timescales can also be relatively straightforwardly built (see Equation (64)
and Ref. [31]). This contrasts with exact results in finite-time thermodynamics [78,80], which rely on
non-trivial optimisation procedures that can become quickly unfeasible as the size of the working
substance increases.

6. Conclusions and Outlook

While originally developed for macroscopic systems, the geometric approach to finite-time
thermodynamics is now finding renewed applications within the emerging fields of stochastic and
quantum thermodynamics. In this paper, we have highlighted its utility for minimising dissipation in
small scale systems operating close to equilibrium. We have derived lower bounds on thermodynamic
length that provide a geometric refinement to the second law of thermodynamics and allow one to
benchmark the attainable efficiency of quantum thermal machines. Alongside this, we summarised
a set of key principles needed to optimise finite-time quantum low-dissipation engines in terms of
efficiency and power, based on the computation of the thermodynamic metric tensor and length. Taken
together, these principles provide a straightforward method for determining optimal thermodynamic
processes. Indeed, we have seen that optimality is achieved by ensuring that the cycle follows a
geodesic in the parameter space at constant velocity, while minimising the generation of quantum
coherence and maximising the heat capacity relative to the relaxation time of the working system.

Interesting future directions for thermodynamic geometry in the quantum regime include the
extension beyond the slow driving regime [81], the minimisation and characterisation of work and
heat fluctuations [38–40,82], connections with strong coupling and speed-ups to isothermality [83],
application to cooling processes and relations with the third law of thermodynamics [84–86],
many-body systems and criticality [22,23,37].
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Appendix A. Optimality of Lowest-Highest Temperature Use in Multi-Bath Carnot Engines

A generalised, finite-time Carnot engine between multiple thermal sources can be described as in
Equation (42) (where the adiabatic steps between the isotherms are assumed to happen on a much
shorter timescale and thus neglected when compared to the τis),

ΔWout =
N

∑
i

ΔQi =
N

∑
i=1

TiΔSi −
Tiσi
τi

, (A1)

with ΔW ≥ 0 and where the index i runs over multiple thermal baths, possibly with infinitesimal steps,
including as a possibility the case in which the reservoirs have finite size and change temperature
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during the process (notice that in the case of finite size baths the total dissipation ∑i
Tiσi
τi

is the natural
measure of efficiency, as the total work extractable from the machine sources is finite and obtainable in
the quasistatic regime). All the results of Section 4.1 apply, and the maximum power obtainable after
tuning the τis can be written

Pmax =
(∑i TidSi)

2

4(∑j
√

Tjσj)2 . (A2)

To analyze further this result, we consider here the following property that holds for simple models
where all the baths have the same spectral density

σi = κ0

(
Ti
T0

)−α

dS2
i (A3)

where α represents the spectral density exponent of the baths (their ohmicity), T0 is a reference
temperature that can be chosen at will, and κ0 a constant that depends on the local thermal state.
This property holds if the steps of the transformation are performed “parallel” to each other and are
small enough for the state to be almost always the same. More precisely, baths with the same spectral
density satisfy the property

g(T1)
H1

=

(
T1

T2

)−α

g(T2)
H2

when
H1

T1
=

H2

T2
. (A4)

Here, g is the metric that defines the dissipation in terms of the variation of dG ≡ dH/T
(cf. Equation (17)), and the property H1/T1 = H2/T2 means that the thermal state is the same π1 = π2.
The absolute value of the variation of entropy is instead the same if dG1 = ±dG2, as in such a case

|dS1| = |Tr [dπ1G1] | = |Tr [dπ2G2] | = |dS2| . (A5)

Combining the above two equations, we obtain (A3). For more details see [55] or the supplementary
material of [31]. For such a case we obtain substituting (A3)

P̄ =
(∑i TidSi)

2

4κ0T0

(
∑i(

Ti
T0
)

1−α
2 |dSi|

)2 . (A6)

Moreover, for a cycle we have ∑i dSi = 0 and we can divide the N steps into those having dSk+ > 0
(which we will indicate with the index k+ and those having dSk− < 0 (with index k−). We have
thus ∑k+ dSk+ = −∑k− dSk− ≡ S . The power (A12) can then be expressed in terms of the “weights”
associated to each step for the positive and negative entropy variations. That is, we define

pk+ =
dSk+

S pk− = −dSk−

S (A7)

The vectors pk+ and pk− are normalised probability vectors and the power (A12) can be written as

4κ0T0P̄ =
(∑k+ Tk+ pk+ − ∑k− Tk− pk−)

2(
∑k+(

Tk+
T0

)
1−α

2 pk+ + ∑k−(
Tk−
T0

)
1−α

2 pk−
)2 =

(
�T+ · �p+ − �T− · �p−
�T′
+ · �p+ + �T′

− · �p−

)2

(A8)

where we defined 4 positive vectors �T+,�T−,�T′
+,�T′

− > 0. Being allowed to modify separately we
positive and negative weight (essentially by tuning the size of the entropy variations (A7)) it is possible
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to maximize the above quantity by noting that for any probability vector �p, positive vectors �B > 0,
vector �C, positive constant b > 0, and constant c, it holds

c + �C · �p
b + �B · �p

≤ max
i

c + Ci
b + Bi

(A9)

which is saturated by choosing pi = δiī, where ī is the index saturating the maximum of (A9).
Applying twice the above inequality to

√
4κ0T0P̄ of Equation (A8) we obtain

√
4κ0T0P̄ ≤ max

ij

T+ i − T− j

T′
+ i + T′

− j
. (A10)

Given that T′
± i = T±

1−α
2

i , we study the function

f (x, y) =
x − y

xβ + yβ
x ≥ y ≥ 0 (A11)

and find that it is always decreasing in y. Also, it increases always in x provided that β ≤ 1. We thus
conclude that for α ≥ −1 the maximisation on the right-hand side of (A10) is obtained by using the
highest and lowest temperature available, that we will call Th and Tc respectively. We thus find that

P̄ ≤ (Th − Tc)2

4κ0T0

(
( Th

T0
)

1−α
2 + ( Tc

T0
)

1−α
2

)2 (A12)

which is saturated when dSc = −dSh and all the rest are null. This shows that under the assumption of
equal spectral density the power is bounded by the power obtainable by using only the extremal baths.
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Abstract: Incorporating time into thermodynamics allows for addressing the tradeoff between
efficiency and power. A qubit engine serves as a toy model in order to study this tradeoff from
first principles, based on the quantum theory of open systems. We study the quantum origin of
irreversibility, originating from heat transport, quantum friction, and thermalization in the presence
of external driving. We construct various finite-time engine cycles that are based on the Otto
and Carnot templates. Our analysis highlights the role of coherence and the quantum origin of
entropy production.

Keywords: finite-time thermodynamics; quantum thermodynamics; quantum heat engine; carnot
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1. Introduction

The tradeoff between power and efficiency is well embedded in our everyday experience. It is
witnessed in the performance of any realistic engine or refrigerator, from the operation of large nuclear
plants, through the internal combustion engines of our automobiles, and all the way to microscopic
biological engines and the quantum regime. Despite the intuitive notion, a theoretical analysis is
quite involved, as it requires a theoretical construction that encompasses both thermodynamics and
transient dynamics.

The limiting case was first treated by Carnot, who linked an engine’s maximum attainable work
production to reversible thermodynamic transformations, thereby obtaining the thermodynamic
temperature scale and the universal optimal efficiency that only depends on the hot and cold bath
temperatures [1]. Unlike efficiency, power requires knowledge of the transient dynamics, which is
outside the realm of classical thermodynamics. Finite-time thermodynamics (FTT) was developed in
order to include the limitations the process duration places on the performance of an engine [2–6].
Originally, the pioneers of FTT incorporated empirical kinetic laws to introduce an intrinsic timescale
in the analysis of engine cycles [7,8]. Some results from these efforts are recapped in Section 2.1.
In this paper, we address the need for kinetic laws by following a different approach: building upon a
complete quantum description of the engine and baths.

However, such complete quantum description is not as straightforward as it sounds. Quantum
mechanics is a dynamical theory that can supply equations of motion for thermodynamic processes.
The well established portion of this theory has predominantly dealt with closed systems that conserve
entropy and, thus, cannot deal with dissipation phenomena at the heart of thermodynamic analyses.
This forces us to turn to open quantum systems, whose description from first principles relies on a
reduction from a closed composite system. The reduced description is achieved by tracing over the
degrees of freedom of the surroundings, interacting with our system of interest. This description does
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not conserve entropy and allows for the exploration of thermodynamic processes in the quantum
regime. Notably, the approach is based on the completely positive trace preserving (CPTP) dynamical
map [9] and the Markovian Gorini–Kossakowski–Lindblad–Sudarshan (GKLS) master equation [10,11].
A thermodynamically consistent dynamical framework [12] is obtained by a first principle derivation
based on weak interaction of an open system with a heat bath. The derivation is commonly termed the
‘Davies construction’ [13].

The quantum open system approach resulted in a number of surprises, initially reported as
claimed contradictions to the second law [14–19]. These include reported claims of breakdown of the
Carnot bound in such engines [20–22]. In turn, these results led to resolutions, explained by unexpected
work that is available from quantum resources, including coherence [23], squeezed bath [24],
entanglement [25], and information [26,27].

Another set of surprises came from attempts to use a naive GKLS formalism with a time-dependent
driving, which possibly violates the second law [28–31]. This led to the realization that the
inconsistency arises from the derivation of the reduced dynamics of the system. For periodic driving,
a thermodynamically consistent GKLS equation was derived in Ref. [32]. In the case of a general
(non-periodic) driving, only the adiabatic master equation was available [33]. This fact did not limit
the analysis of the Otto cycle model, which could be studied up to the limit of vanishing cycle times.
On the contrary, the analysis of the Carnot cycle model was limited to the linear response regime.
Only recently has a derivation of the GKLS master equation for rapid non-adiabatic driving become
available [34], and it is this discovery whose implications we explore in the present paper.

We adopt the dogma that thermodynamics and quantum mechanics address the same subject
matter, therefore have to be consistent [35]. In this framework, quantum mechanics provides the tools
for describing the dynamics, while the strict laws of thermodynamics must be obeyed. In addition,
recent progress in the theory of quantum speed limits can illuminate fundamental bounds on the
process timescale [36–41].

Engines have been an intrinsic part in the development of classical thermodynamics.
Their analysis still serves as an integral part of current research in finite-time and quantum
thermodynamics. These theories allow for describing engines more realistically including non-ideal
performance. Any practical engine operates in a non-ideal irreversible mode. Typically, there are four
sources of irreversible phenomena in engines:

1. Finite heat transport.
2. Friction.
3. Heat leaks.
4. Cost of switching contacts between subsystems.

Following the thermodynamic tradition of learning from example, we employ the most elementary
working medium, a spin one half system to explore a quantum version of finite-time thermodynamics.
A decade ago, such an example would have been criticized as a theoretician’s toy with no connection
to the world of real engines. The finite-time Otto type cycle, which our cars operate by, do not seem to
be related to a single spin quantum engine. Nevertheless, recent experimental progress has enabled a
realization of an Otto cycle engine constructed from a single spin of an atom in an ion trap [42], a single
qubit in an impurity electron spin [43], or a working medium of ultracold hyperfine structure of Cs in
a Rb bath [44].

The present paper begins by laying the quantum thermodynamic foundations for the qubit,
giving the quantum definitions for energy, entropy, and temperature, Section 2.2. We continue by
discussing sources of irreversibility: heat transport, Section 3, the quantum origin of friction, Section 4,
and thermalization processes which combine heat transport and external work, Section 5. The quantum
version of finite-time thermodynamics is studied by constructing two basic engine platforms: Carnot
and Otto. These models illuminate different aspects of the tradeoff between power and efficiency and
the role of coherence on the engines performance, Sections 6–8.
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2. Some Preliminaries

The unfortunate collision of the different usages of the word adiabatic in thermodynamics and
quantum mechanics have been sidestepped by using the term “unitary dynamics” for dynamics along
what thermodynamics would call an adiabat leaving the use of adiabatic for the quantum meaning.

2.1. Classical Engines Operating in Finite-Time

Classical textbook treatments of heat engines define various kinds of engine cycles. These cycles
are mostly four-stroke and consist of two unitary strokes and two open strokes in contact with a heat
bath—one hot and one cold. Finite-time thermodynamic analyses of these cycles has given us the
simplifying model of endoreversible processes—processes in which the participating systems are at
each instant in equilibrium states and all irreversibility resides in the interactions between such systems.
Endoreversible cycles play an important role by edging closer towards real cycles, being relatively
easy to analyze and providing checks along the way for more ambitious treatments. They also provide
an accurate picture of reality when the slow timescale is the interaction. The simplifying condition
of instantaneous lossless adiabatic jumps, made possible for quantum systems using shortcuts to
adiabaticity (cf. Section 4.3), is a hallmark simplifying feature that we inherit from these studies.

Additionally, important for these analyses is a much older result known as the Gouy—Stodola
theorem [45–48] which established a connection between dissipated work and entropy production, cf.

ΔAU = −T0ΔSU (1)

where the superscript U refers to the universe (all participating systems), S is the entropy, A is the
available work, and T0 is the temperature at which heat is freely available which means it carries no
available work. The environment temperature T0 is also used in the availability (also called exergy)
state function A = E − T0S , where E is the internal energy. As a consequence, Equation (1) is valid
with any constant temperature choice for T0. In engineering treatments it is always the atmospheric
temperature, but any temperature will do. In the physics literature T0 is almost always taken to be the
system’s temperature making A = F , where F is the Helmholtz free energy. Note that A = F can
hold at only one temperature.

For our purposes, the importance of Equation (1) arises from the fact that it shows that dissipation
can equivalently be measured in energetic or entropic terms, even when the system does not have a
temperature or when this temperature is changing during the process of interest.

2.2. Qubit Engine Model

The engine model is constructed from a hot and cold bath and a controllable two-level-system
shuttling between them. The Hamiltonian of the working medium, a qubit, is

Ĥ = ω(t)Ŝz + ε(t)Ŝx (2)

where Ŝj are the spin operators with the commutation relation of the SU(2) algebra [Ŝi, Ŝj] = ih̄εijkŜk,
see Appendix A. The time-dependent driving parameters ω(t) and ε(t), define a typical energy scale

h̄Ω(t) = h̄
√

ω2 + ε2 , (3)

where Ω is the Rabi frequency.
The state of the qubit working medium ρ̂ can be expanded while using any orthonormal set of

operators satisfying tr{Â†
i Âj} = δij. Choosing the polarizations Ŝj as basis operators, the state ρ̂ is

completely determined by the expectation value of the three polarizations

ρ̂ =
1
2

Î +
2
h̄2

(
〈Ŝx〉Ŝx + 〈Ŝy〉Ŝy + 〈Ŝz〉Ŝz

)
. (4)
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It elucidates the analysis to represent the polarization vector as a geometric object
�S = {〈Ŝx〉, 〈Ŝy〉, 〈Ŝz〉}T , which resides inside the Bloch sphere (see Figure 1 and Appendix A).
The polarization value is defined as

S̄ ≡ −|�S| = −
√
〈Ŝx〉2 + 〈Ŝy〉2 + 〈Ŝz〉2 . (5)

It is related to the purity of the state, where 0 ≥ S̄ ≥ −h̄/2 where |S̄| = h̄/2 for a pure state.
The sign convention of the polarization is motivated by the fact that we consider only positive
temperatures, see Equation (6). The polarization value is invariant under unitary transformations
that are generated by the SU(2) group, which represents rotations of the polarization vector. It is
related to the expectation value of the energy by E = 〈Ĥ〉 = h̄ΩS̄H , where S̄H is the projection of
the polarization vector on the direction representing the Hamiltonian. In thermal equilibrium at
temperature T, the polarization becomes

〈�S〉 = S̄H = S̄eq = − h̄
2

tanh
(

h̄Ω
2kBT

)
, (6)

where kB is the Boltzmann constant and T is the bath temperature.
The engines that are to be analyzed are discrete four stroke cycle models. Specifically, we will

compare the Carnot cycle with the Otto cycle. Both of the cycles are constructed from the following
sequence of strokes:

(A) 1 → 2 Hot bath thermalization.
(B) 2 → 3 Unitary expansion from hot to cold
(C) 3 → 4 Cold bath thermalization
(D) 4 → 1 Unitary compression from cold to hot

The two cycles differ by the nature of the thermalization strokes, 1 → 2 and 3 → 4. The reversible
Carnot cycle includes isothermal strokes during the thermalization processes, while the Otto cycle
utilizes isochores, see Figure 2. In the following study, we sometimes refer to the thermalization strokes
as open-strokes, alluding to the fact that the working medium constitutes an open quantum system
during these strokes.

Figure 1. The state of the system, Equation (4), is represented by the polarization vector S̄ in the
Bloch sphere (purple). Alternatively, the state can be represented in a rotated frame Equation (33),
defined by the set of coordinates 〈Ĥ〉, 〈L̂〉, 〈Ĉ〉 in Equation (32). These coordinates are rotated about
the 〈Ŝy〉 axis relative to the static direction. The projection of the polarization on the energy direction
S̄H , Equation (13), is shown in light red. The invariant of the free propagator 〈χ̂〉 in Equation (52) is
shown in red. The direction of 〈χ̂〉 is rotated around the 〈L̂〉 axis with respect to the 〈Ĥ〉 direction
(cf. Appendix A). The Bloch sphere representation can represent either the expectation values of the
operators or the operators themselves. The latter constitute orthogonal vectors in Liouville space.
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Figure 2. Carnot and Otto cycles: polarization S̄ as a function of frequency Ω is shown along the
hot (red) and cold (blue) isotherms. The four switching points between the strokes are indicated
by numbers 1–4. The various strokes are represented by lines. Carnot cycle: Hot isotherm
(Ω1, S̄1) → (Ω2, S̄2), unitary expansion (Ω2, S̄2) → (Ω3, S̄2), cold isotherm (Ω3, S̄2) → (Ω4, S̄1),
and unitary compression (Ω4, S̄1) → (Ω1, S̄1). The filled area in light green represents the work
output, while the area in light blue represents the heat that is absorbed by the cold bath. The sum of the
two areas equals the heat exchange with the hot bath. This implies a nice geometric representation of the
efficiency, as the ratio between the light green area and the combined area. Otto cycle embedded in the
Carnot cycle (orange area); hot isochore (Ω2, S̄1) → (Ω2, S̄2), unitary expansion (Ω2, S̄2) → (Ω4, S̄2),
cold isochore (Ω4, S̄2) → (Ω4, S̄1), and unitary compression (Ω4, S̄1) → (Ω2, S̄1). The short arrows
designate the thermalization isochores.

The four stroke cycles can be described by the corresponding cycle propagator Λcyc, which is a
product of individual stroke propagators:

Λcyc = Λc→hΛcΛh→cΛh (7)

These propagators are completely positive trace-preserving (CPTP) maps on the space of qubit states [9].
The properties of the engine are extracted from the fixed point of the cycle map, ρ f p, which represents
the limit cycle and satisfies Λcycρ̂ f p = ρ̂ f p [49]. The fixed point ρ̂ f p, along with the stroke propagators,
fully determine the qubit state throughout the fixed cycle. The existence of a single invariant of CPTP
map guarantees monotonic convergence to the fixed point [49,50]. The value of ρ̂ f p is associated with
a particular state of the limit cycle, from which all other states along the cycle can be calculated by
applying the propagators Λ. In turn, this allows for evaluating the thermodynamic variables, such as
work, heat, and entropy.

Two important quantities for the finite-time thermodynamic analysis of these cycles are the
von-Neumann and the energy entropies of the qubit

Sv.n ≡ −tr [ρ̂lnρ̂] = −
(

1
2
− S̄

h̄

)
log
(

1
2
− S̄

h̄

)
−
(

1
2
+

S̄
h̄

)
log
(

S̄
h̄
+

1
2

)
, (8)

and
SH = −pHlnpH − (1 − pH)ln (1 − pH) , (9)

where pH =
(

1
2 − S̄H

h̄

)
. Generally, we have SH ≥ Sv.n with equality when the state is diagonal in

the energy representation. At equilibrium, both entropies reduce to Sv.n
(
S̄eq
)
, where S̄eq is given
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in Equation (6). The difference between the energy entropy and the von-Neumann entropy is a
quantifier [51–54] of coherence. It is commonly known as the divergence [55]

D(ρ̂|ρ̂d) = tr{ρ̂ ln ρ̂ − ρ̂ ln ρ̂d} = SH − Sv.n , (10)

where ρ̂d is diagonal in the energy representation and defined in Equation (13). During the cycle’s
operation, the unitary strokes Λc→h and Λh→c maintain a constant von-Neumann entropy, while the
energy entropy may increase with the generation of coherence.

3. Frictionless Engines

A non-vanishing heat transport rate is a prime source of irreversibility. Such heat transfer occurs
when there exists a temperature gap on the interface between the engine and the baths. The influence
of a realistic heat transport on cycle performance was first addressed by the classical endoreversible
model [7]. Such a cycle assumes an empirical Newtonian heat transport law in order to describe the
heat rate. For the qubit engine, we can replace the empirical Newtonian heat transport law with a
quantum first principle derivation. The starting point is the composite Hamiltonian:

Ĥtot = Ĥ(t) + Ĥh/c + Ĥs−h/c , (11)

where Ĥh/c are the hot and cold bath Hamiltonians and Ĥs−h/c represent the system-bath interaction,
correspondingly. Reduced equations of motion for the system are obtained in the framework of
the theory of open quantum systems [56]. This theory constitutes a general setting from which the
dynamics can be derived from first principles, by employing a number of idealizations. The main
assumptions, which are included in the derivation, are weak system-bath coupling and a separation of
timescales between a fast bath and a sluggish system [13]. These assumptions are justified on the basis
of physical reasoning and the fact that the obtained dynamical equations are indisputably consistent
with the laws of thermodynamics [12,35].

To concentrate only on heat transport we can assume ε(t) = 0, therefore Ω(t) = ω(t), which
leads to

Ĥelem (t) = Ĥ (t)ε=0 = Ω(t)Ŝz = ω(t)Ŝz . (12)

We refer to Equation (12) as the elementary Hamiltonian. For such a case, the Hamiltonian satisfies
[Ĥelem(t), Ĥelem(t′)] = 0, which decouples the dynamics of the populations and the coherence.
This means that when the qubit is initialized in a diagonal state in the energy basis, the dynamics
that are generated by the elementary Hamiltonian remain on the energy shell and are equivalent to
frictionless solutions (cf. Section 4) of stochastic dynamics. For such instant, the analysis has common
features with quantum adiabatic dynamics [57]. The state of the system then becomes:

ρ̂d =
1
2

Î +
2

(h̄Ω)2 〈Ĥelem〉Ĥelem , (13)

which is diagonal in the energy representation, implying that [ρ̂d, Ĥelem] = 0, S̄ = −|〈Ŝz〉| and
Sv.n = SE. When the initial state exhibits quantum coherence, Equation (4), under these operating
conditions and after a sufficient time, any initial coherence decays to zero. We will refer to this model
as the elementary qubit engine.

In this framework, the reduced dissipative dynamics of the qubit is of the following structure [34]

d
dt

ρ̂ = − i
h̄
[Ĥelem(t), ρ̂] + LD(ρ̂) (14)

34



Entropy 2020, 22, 1255

where the dissipator LD has a Gorini–Kossakowski–Lindblad–Sudarshan form (GKLS) [10,11]

LD(ρ) =
4
h̄2

[
k↑(t)

(
Ŝ+ρ̂Ŝ− − 1

2
{Ŝ−Ŝ+, ρ̂}

)
+ k↓(t)

(
Ŝ−ρ̂Ŝ+ − 1

2
{Ŝ+Ŝ−, ρ̂}

)]
(15)

where Ŝ± = Ŝx ± iŜy and k↑ and k↓ obey instantaneous detailed balance:

k↑(t)
k↓(t)

= e−
h̄Ω(t)
kBT . (16)

The kinetic coefficients typically have a power dependence on Ω: k↓(t) ∝ Ω(t)n, where n ∈ R depends
on the spectral properties of the bath [56]. An alternative representation of the dynamics utilizes the
Heisenberg picture, in which the equations of motion are of the form

d
dt

X̂ =
i
h̄
[Ĥelem(t), X̂] + L∗

D(X̂) +
∂

∂t
X̂ ; (17)

where L∗
D(•) is the adjoint generator. The relation to thermodynamics is achieved by setting X̂ = Ĥ

and identifying the rate of change of the average energy as the quantum dynamical version of the first
law of thermodynamics [58,59]

d
dt

E = P + Q̇ , (18)

where: P = 〈 ∂
∂t Ĥ〉 is the power and Q̇ = 〈L∗

D(Ĥ)〉 is the heat flux. Power is associated with the
unitary part of the dynamics, for which the von-Neumann entropy remains constant, and heat flux
is identified as the average energy transfer that induces entropy change. For the elementary qubit
system, the power becomes

P = S̄H(t)
∂ω(t)

∂t
(19)

This result is analogous to the classical definition of power, where ∂ω/∂t takes the role of the
generalized force and the polarization is its conjugate variable. The expression for the heat flux reads

Q̇ = −Γ(t)
(
〈Ĥelem(t)〉 − 〈Ĥeq(Ω(t), T〉

)
, (20)

where Γ = k↑ + k↓. 〈Ĥeq (Ω (t) , T)〉 = Ω (t) S̄eq (Ω (t)) and S̄eq(Ω(t)) is the instantaneous attractor
(cf. Equation (56)), which is defined by the changing frequency Ω(t), Equation (6). As expected,
the heat flux is proportional to the deviation from equilibrium and the relaxation rate. Equation (20) is
identical to that one employed in [60], replacing Γ by τ−1

eq .
The equilibration of energy is accompanied by decay of coherence. The coherence dynamics are

obtained by substituting Ŝx or Ŝy for X̂ in Equation (17), leading to

d
dt

[
Ŝx

Ŝy

]
=

[
− 1

2 Γ (t) −Ω (t)
Ω (t) − 1

2 Γ (t)

] [
Ŝx

Ŝy

]
. (21)

This set of equations reflects the separation of the coherence dynamics from the population
dynamics [12]. It implies that any initial coherence will decay to zero once the limit cycle is
reached. This mode of operation is equivalent to stochastic thermodynamics where all thermodynamic
observables are obtained in terms of the populations of the energy levels [61–63].

3.1. Elementary Cycles

Utilizing the quantum description of heat transport, introduced above, we can assemble a
finite-time model of a heat engine. We construct a Carnot-type cycle and an Otto cycle whose working
fluids are governed by elementary Hamiltonians, Equation (12) and then compare their finite-time
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thermodynamic performance. We will compare the work produced per cycle −W and heat Qh/c,
which define the efficiency: η = −W

Qh
.

3.2. Elementary Carnot-Type Cycle

Consider a quantum version of a finite-time Carnot-type cycle thta is shown in Figure 3. When in
contact with the heat bath, the qubit of the endoreversible engine maintains a constant internal
temperature T′, generating a temperature gap with the bath. In this scenario, one can optimize the
power by varying the temperature gap [64]. The efficiency then shows a monotonic decrease with the
deviation from the ideal Carnot cycle: ηC ≥ η ≥ 0.

S

S

h

c

'c

'
h

 

1

2

4

3

Figure 3. Endoreversible Carnot cycle: Polarization S̄ as a function of frequency Ω. The hot and cold
isotherms are designated in red and blue, correspondingly. Blue frequencies designate the corners of the
reversible Carnot cycle and the small purple frequencies correspond to the corners of the endoreversible
cycle. The endoreversible frequencies depend on the cycle time; in the quasi-static limit they converge
to the frequencies of the reversible Carnot cycle. The finite-time engine follows internal hot 1 → 2
and cold 3 → 4 isotherms (light red and blue curved lines) with associated temperatures T′

h and T′
c,

allowing for finite heat transport. The area in green equals the total work output.

At the high temperature limit the performance is very similar to the Curzon-Ahlborn empirical
model [7,65] or low dissipation limit [66], where the heat conductance was modelled by the Newtonian
heat transfer law. In this limit, the efficiency at maximum power converges to

ηCA = 1 −
√

Tc

Th
, (22)

and the work per cycle becomes half the reversible work, Equation (26), WCA = 1
2WC. The optimal

power at high temperature can be approximated as [64]

PEndo
Carnot = ΓkB

(√
Th −

√
Tc

)2 2
h̄2

(
S̄2

2 − S̄2
1

) 1
ln(S̄2/S̄1)

. (23)

This expression is reminiscent of the ideal work at the high temperature limit Equation (27), with a
modified temperature gap. In this temperature regime, the optimum entropy production average rate
per cycle obtains a similar form

σu
cyc

τcyc
= Γ

(
Th − Tc√

TcTh

)
2
h̄2

(
S̄2

2 − S̄2
1

) 1
ln(S̄2/S̄1)

. (24)
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A similar structure to Equation (23) has been recently derived [67,68] based on a low dissipation limit.
The qubit Carnot-type cycle delivers finite power. In the limit of infinite cycle time, the cycle

operates reversibly to obtain the Carnot efficiency

ηC = 1 − Tc

Th
. (25)

The work per reversible cycle then becomes

WC = kBΔTΔSv.n , (26)

where ΔT = Th − Tc is temperature gap and ΔSv.n is the change of the qubit’s von-Neumann
entropy on the cold or hot isotherms. For the elementary cycles, the von-Neumann and energy
entropy SE coincide, as the state remains on the energy shell. Another important characteristic of
the engine is the compression ratio C = Ωmax/Ωmin, for the ideal Carnot engine CCarnot = Ω1/Ω3,
see Figure 3. The entropy of the qubit is bounded by ln2, giving a maximum possible work of
max (WC) = kB(Th − Tc)ln(2).

At the high temperature limit h̄Ω � kBT the energy entropy can be approximated as

Sv.n � −ln2 + 2
(

S̄
h̄

)2
and the work becomes

WC � kBΔT
2
h̄2 (S̄

2
2 − S̄2

1) . (27)

This typical dependence is a general feature of any entropy dependent variable. The characteristic
quadratic functionality of the polarization stems from the proximity to the maximum entropy point.

3.3. Elementary Otto Cycle

We consider an Otto cycle that is embedded within the same isotherms and frequency range of the
elementary Carnot cycle and it is limited by the polarizations S̄1 and S̄2, see Figure 4 [63]. For an engine
operation mode, the compression ratio of the Otto cycle is constrained by COtto = Ωc/Ωh ≤ CCarnot.
The engine’s work obtains the simple form

WOtto = ΔΩΔS̄ , (28)

where ΔΩ = Ωh − Ωc = Ω2 − Ω4 and ΔS = S̄2 − S̄1. It is represented geometrically by the confined
area between the frequencies and polarizations, colored as light green in Figure 4. Such an engine is
characterized by a constant efficiency

ηOtto = 1 − Ωc

Ωh
, (29)

which leads to ηOtto = 1 − S̄2Tc
S̄1Th

≤ ηC for the analyzed cycle. When S̄2 → S̄1, the cycle operation
becomes reversible and the Carnot bound is recovered ηOtto → ηC. This limiting case is the transition
point between the engine and refrigerator operation mode (COtto = CCarnot).

The heat that is dissipated during the cycle operation leads to a rise in entropy. The entropy
production per cycle obtains the form

σu
cyc =

1
kB

(
Ωh
Th

− Ωc

Tc

)
ΔS̄ . (30)

We obtain a linear dependence on the polarization difference, which contrasts with the endoreversible
result at high temperature, Equation (24), characterized by a quadratic difference dependence.
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We can compare between the geometric interpretation of the work output of the elementary Otto
and Carnot cycles, Equations (26) and (28) . In the Otto cycle work is represented by the area that is
enclosed by the cycle in the (Ω, S̄) plane, and in the (T,Sv.n) plane for the Carnot cycle, see description
in the caption of Figure 3.
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Figure 4. Otto cycle embedded within the Carnot cycle: Polarization S̄ as a function of frequency Ω.
The same extreme polarizations S̄1 and S̄2 are used. The area in light green is the work output. The area
in orange represents a finite-time Otto engine operating between S̄′

2 and S̄′
1. The compression ratio

COtto is reduced relative to CCarnot as Ω2 < Ω1 and Ω3 < Ω4.

3.4. Optimization of the Elementary Otto Cycle

A modification of the present cycle includes optimizing the work per cycle with respect to
the frequency Ω2. At the high temperature limit h̄Ω � kBT, this optimization procedure leads to

Wmax =
h̄2Ω2

4
kBTh

(
1 − ( Tc

Th
)2
)

with efficiency ηOtto = 1 − 2Tc
Th+Tc

. Such an optimization is equivalent to a
maximization of the area of a rectangular region embedded within the Carnot cycle.

Finite power is obtained when the working medium does not completely relax to thermal
equilibrium during the open strokes. Power optimization is carried out with respect to the
thermalization time. Surprisingly, the optimal cycle was found to be of the bang-bang type, with a
vanishing cycle time. The optimal power becomes [63]

PB.B
Otto =

1
4

ΓΔΩΔS̄ (31)

where Γh = Γc = Γ. This gives a simple relation to the maximum work POtto =
Γ
2WOtto, Equation (28).

Such an engine operates at the polarization S̄ = 1
2 (S̄2 + S̄1). We refer to cycles with vanishing cycle

times as sudden cycles. A generalization of Equation (31) for different relaxation rates Γ on the hot and
cold side can be found in [69]. A sudden type qubit refrigerator Otto cycle has also been investigated
with similar conclusions [70,71].

The optimal power of the endoreversible Carnot cycle Equation (23) can be compared with the
Otto cycle Equation (31) at the high temperature limit. The comparison shows that the optimal power
of the Otto cycle may exceed the power of an endoreversible Carnot cycle with the same polarization
and bath temperatures.

The counter intuitive result where the optimum power for the Otto cycle is obtained for vanishing
cycle time can be understood by noting that the largest temperature gaps between the qubit and the
reservoir is at the initial portion of each open stroke. Thus, the shorter the cycle time, the faster the heat
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transfer, yielding an endpoint optimum (zero cycle time) for maximum power. If we put a restriction on
the minimum time allocation of the unitary strokes, then the power becomes optimal for a finite cycle
time [63]. This was the original motivation for adding friction phenomenologically [72]. An important
outcome of the incorporation of phenomenological friction within the model is a minimum cycle time
for an engine operation. The phenomenological friction is taken to be inversely proportional to the
stroke time. Thus, rapid driving leads to enhanced friction, reducing the power. Below, a minimum
cycle time the output power vanishes and the cycle operates as an accelerator or a dissipator, converting
useful work to heat. In a dissipator, work is consumed (W > 0), while heat is dissipated to both the
hot and cold baths (Qh,Qc < 0). Using the efficiency definition, η ≡ −W/Qh, the “efficiency” exceeds
one. An accelerator operation mode includes positive work, accelerating the transfer of heat from the
hot to the cold bath (Qh > 0 and Qc < 0). This leads to negative values of η.

4. The Quantum Origin of Friction

Quantum friction is associated with the consumption of energy in the generation of coherence,
which thereafter dissipates to the bath. In a sense, coherence constitutes potential work [73], and the
process of coherence generation can be viewed as a temporary storage of energy in the coherence
degree(s) of freedom. When these modes decay, the associated potential work is lost. In terms of the
work consumption, the dissipation of coherence is equivalent to dissipation of work and amounts
to an additional cost. While such dissipation generally degrades the engines performance [51,74,75],
it also speeds it up.

As in classical engines, quantum friction emerges naturally under rapid external driving.
The driving generates coherence, which, in turn, leads to a higher work cost and friction, but a
higher speed of operation. Generation of coherence is closely related to non-adiabatic quantum
dynamics, which occurs whenever the system Hamiltonian does not self-commute at different times
[Ĥ(t), Ĥ(t′)] �= 0 [76].

We employ the quantum qubit model to study the influence of quantum friction on the cycle
performance. This model is simple enough to allow for an explicit solution and includes the sufficient
condition for observing quantum friction. That is, the qubit working medium does not self commute
if ε(t) and ω(t), in Equation (2), are not proportionate to each other. A natural time-dependent
framework to describe the dynamics of the working medium employs the set of time-dependent
quantum operators

Ĥ = ω(t)Ŝz + ε(t)Ŝx

L̂ = ε(t)Ŝz − ω(t)Ŝx

Ĉ = Ω(t)Ŝy .
(32)

This operator basis set �v = {Ĥ, L̂, Ĉ}T , completely defines the state of the working medium
(cf. Appendix A)

ρ̂ =
1
2

Î +
2

(h̄Ω)2

(
〈Ĥ〉Ĥ + 〈L̂〉L̂ + 〈Ĉ〉Ĉ

)
, (33)

which rotates with respect to the static polarization basis set Equation (4). The advantage of such
a representation is the straightforward thermodynamic interpretation, where the energy, E = 〈Ĥ〉,
and coherence

C =
1

h̄Ω

√
〈L̂〉2 + 〈Ĉ〉2 , (34)

have a simple geometric interpretation in the parameter space {Ĥ, L̂, Ĉ}. The coherence measure C can
be viewed as the distance of the state from a dephased state, diagonal in the energy representation.
C serves as a quantifier of coherence similar to the divergence introduced in Equation (10) [54].
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The cost of generating coherence can be evaluated by recalling two invariants of the unitary
dynamics: the Casimir and the Casimir companion [77]. For the SU(2) algebra in the �v basis,
the Casimir Companion obtains the simple form

X̄ =
1

(h̄Ω)2

(
〈Ĥ〉2 + 〈L̂〉2 + 〈Ĉ〉2

)
, (35)

and the Casimir is obtained by replacing the squares of expectation values by the expectation values of
the squares, i.e., 〈Ĥ〉2 → 〈Ĥ2〉, 〈L̂〉2 → 〈L̂2〉, and 〈Ĉ〉2 → 〈Ĉ2〉. One consequence of the invariance of
X̄ is the conservation of the polarization amplitude along a unitary (isolated) stroke. Thus, starting
from an initial equilibrium state with polarization S̄i, the Casimir companion throughout the stroke
becomes X̄ = S̄i and the initial energy is 〈Ĥ〉i = Ωi S̄i. This implies that the final energy of the unitary
stroke is of the form

〈Ĥ〉 f =

√(Ω f

Ωi

)2

〈Ĥi〉2 −
(

h̄Ω fC f

)2
≈

Ω f

Ωi
〈Ĥi〉 −

h̄2ΩiΩ f

2〈Ĥi〉
C2

f , (36)

where the RHS is obtained in the limit of small coherence. This relation allows identifying the quantum
adiabatic energy (first term on the RHS) corresponding to the optimal process, and an additional

coherence W f ric ≡ |W −Wideal | ≈
h̄2ΩiΩ f

2〈Ĥi〉
C2

f , which arises from the non-adiabatic dynamics. W f ric

equals the extra work that is required to generate coherence.
We will now demonstrate that rapid unitary strokes lead to generation of coherence. Employing

Equation (2), we can obtain the Heisenberg equation of motion for the unitary strokes:

1
Ω

d
dt

⎛⎜⎝ Ĥ(t)
L̂(t)
Ĉ(t)

⎞⎟⎠ =

⎛⎜⎝
⎛⎜⎝ 0 μ 0

−μ 0 1
0 −1 0

⎞⎟⎠+
Ω̇
Ω2 Î

⎞⎟⎠
⎛⎜⎝ Ĥ(t)

L̂(t)
Ĉ(t)

⎞⎟⎠ , (37)

where
μ =

ω̇ε − ωε̇

Ω3 (38)

is the adiabatic parameter.
Finite-time processes require μ �= 0, and, in the limit μ → 0, we recover the adiabatic solutions.

The exact relation between the stroke duration τuni and μ depends on the protocol. Generally, it can be
expressed as

μ =
K

τuni
(39)

where K =
(

dω
ds ε − ω dε

ds

)
/Ω3, with s = t/τuni. For constant ε, K simplifies to K = 1

ε (
ωi
Ωi

− ω f
Ω f

).
For protocols that keep μ = constant, Equation (37) can be integrated in order to obtain the

dynamical propagator Λuni. In general, a driven system’s propagator depends explicitly on two
reference times, tinitial and t f inal . We assume that tinitial = 0 and, therefore, index the propagator only in
terms of the final time. The propagator of the unitary stroke of a product form: Λuni (t) = U1 (t)U2 (t),
where U1 (t) is a scaling by the compression ratio

U1(t) = C Î =
Ω(t)
Ω(0)

Î (40)

and U2 (t) represents the dynamical map of the polarization. In the {Ĥ, L̂, Ĉ} operator basis

U2 (t) =
1
κ2

⎛⎜⎝ 1 + μ2c κμs μ(1 − c)
−κμs κ2c κs

μ(1 − c) −κs μ2 + c

⎞⎟⎠ , (41)
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where κ =
√

1 + μ2 and s = sin(κθ), c = cos(κθ) and θ(t) =
∫ t

0 Ω(t′)dt′.
Accelerating the driving increases μ, which, in turn, increases the coupling of the Hamiltonian Ĥ

and coherence related operators L̂ and Ĉ. Therefore, rapid driving transforms energy to coherence.
The constancy of the Casimir companion Equation (35) implies that, when the final state exhibits
coherence, the work extraction relative to the equivalent adiabatic procedure is degraded.

4.1. Slow Driving Regime

We can use Equation (41) to estimate the additional fraction of work during the unitary strokes
due to the finite-time operation. Assuming slow driving (μ � 1 or long stroke duration), we expand
U2 up to second order in the adiabatic parameter μ in order to obtain

W f ric

W ≈ μ2 . (42)

This expression relates the ratio of the additional work that is consumed due to friction, Equation (36),
and the total work W , to the adiabatic parameter. Hence, in the slow driving regime, speeding up
the stroke requires additional work. The corresponding work cost for coherence generation is in
accordance with the notion of geometric thermodynamic distance and the low dissipation limit [60,78].
When the dissipation becomes significant, the power loss can exceed the gain, which imposes a
minimum stroke duration for engine operation.

4.2. Sudden Limit

In the opposite driving regime, including a sudden modulation of the driving parameters,
the dynamical propagator is obtained by employing the sudden approximation [57]. The propagator
in the sudden limit, τuni → 0, is given by

Λsudd
i→ f =

Ω f

Ωi

⎛⎜⎝ cos(Φ) sin(Φ) 0
sin(Φ) − cos(Φ) 0

0 0 1

⎞⎟⎠ , (43)

where Φ = Φ f − Φi is the angle of rotation between the initial and final polarizations and
Φ = arccos(ω/Ω). In the sudden limit, the work becomes

W = 〈Ĥ (0)〉
(Ω f

Ωi
cos (Φ)− 1

)
, (44)

and the ratio between the frictional and total work is∣∣∣∣∣W f ric

W

∣∣∣∣∣ = 1 − cos (Φ)

| cos (Φ)−
(

Ωi/Ω f

)
|

. (45)

The frictional work dissipates during the open stroke (isotherm or isochore) that takes place after the
unitary stroke. For a compression protocol (Ω f > Ωi), the ratio can diverge, since the work may vanish

when cos (Φ) = Ωi/Ω f . In contrast, during an expansion process the ratio is bounded by
2Ω f

Ωi+Ω f
.

4.3. Shortcuts to Adiabaticity

The argument that fast dynamics on the adiabats generates coherence and leads to friction like
phenomena [51,76] has a loophole. The unitary dynamics on the adiabats is in principle reversible.
Because the dissipation of coherence, which seals the loss, does not take place until the thermalization
stroke that follows the adiabatic stroke, protocols that null the coherence at the end of the adiabat will
be frictionless.
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Examining Equation (41), we find that solutions for which cos(θ f ) = 1 are frictionless.
These solutions impose a quantization rule on μ:

μl =
1√(

2πl
Φ

)2
− 1

, l = 1, 2, ... (46)

where we used the identity θ = −Φ/μ (The identity is derived by substituting Equation (62) into the
expression for μ, rearranging the equation and integrating). The relation between μ and the stroke
duration leads to the minimum constant μ frictionless stroke duration

τuni(l = 1) = K

√(
2π

Φ

)2
− 1 . (47)

Adiabatic trajectories that begin and end with no coherence are frictionless (cf. Figure 5). In the limit
of small and constant ε we get τuni(l = 1) ∝ ε( 1

ω2
f
− 1

ω2
i
). These frictionless protocols are termed

shortcuts to adiabaticity (STA) [79,80]. At intermediate times coherence is generated that requires extra
work, but, if there is no dissipation in the drive, then this coherence is converted back by the working
medium, arriving at the final target with no coherence. The associated speedup [79,80] may come with
an accompanying cost if the control is prone to additional dissipation. Here, we consider the ideal case,
assuming no dissipation and view the temporary investment of energy as a catalytic process since
this energy can in principle be recouped [81]. An opposite viewpoint considers the average energy,
stored during the shortcut, as wasted work [82–85].

Can the protocol duration be shortened further while keeping the frequency between its initial and
final values? This is a problem in the framework of quantum control, a field which governs tasks related
to manipulation of quantum systems by external fields under defined restrictions. The present control
task is to transfer an initial thermal state ρ̂i =

1
Z e−Ĥi/kBT to a final thermal state ρ̂ f =

1
Z e−Ĥ f /kBT′

as
fast as possible on the unitary strokes of the cycle. Optimal control theory has been applied to address
this task [86], obtaining the minimum time solution, a so-called Fastest Effectively Adiabatic Transition
(FEAT) [87]. The task of minimizing the time can be reduced to minimize

∫
ŜzdŜx while following the

dynamics generated by Equation (2), which here gives

dŜz

dŜx
= −ω

ε
. (48)

For fixed ε and for ω in the range ωi < ω(t) < ω f , the geometric solution is to keep the curve as
close to the Ŝx axis as possible until the last moment to reach the final state, at which time the solution
switches to the steepest curve possible [86]. Thus, the solution is of the bang-bang type, switching from
the initial ω = ωi to the final ω = ω f to get the process started, keeping ω(t) = ω f for time 0 ≤ t < τ1,
switching back to ω(t) = ωi for a time τ1 ≤ t < τ1 + τ2, and finally switching to ω(τ1 + τ2) = ω f to
reach the final state. The resulting two line segment trajectory is shown in Figure 5. The coherence that
us generated during this protocol can be seen as the distance from the purple quarter-circle of zero
coherence. The total FEAT time reads

τuni(opt) = τ1 + τ2 =

(
1

2Ωi
+

1
2Ω f

)
arccos(ζ) (49)

where ζ =
ΩiΩ f (ε

2+ωiω f )−(ε2+ωiω f )
2

ε2(ωi−ω f )2 . While the FEAT time is much shorter than the time for a constant

μ protocol, τuni(opt) < τuni(l = 1), the FEAT solution does pay a significantly higher price in
intermediate coherence.

42



Entropy 2020, 22, 1255

Additional insight can be obtained by adding another control operator; a counter-diabatic
term [85,88] with the control function υ(t) to the Hamiltonian Equation (2)

ĤCA = υ(t)Ŝy . (50)

This term generates a rotation around the y axis in the z, x plane that can rotate the initial to the final
Hamiltonian in a rate depending on the frequency υ(t). If υ(0) = υ(t f ) = 0 energy is only stored
temporarily in the counter-diabatic drive, which classifies it as a catalyst.

The stroke duration τuni can be geometrically bound by the quantum speed limit [36–38,83].
The task is a rotation of the state by an angle Φ on the y axis. In the counter adiabatic case Equation (50)
the angle Φ is related to the action

∫
ν(t)dt, which can be related to the average stored energy

Ē [83]; therefore, τuni > Φh̄/Ē which becomes τuni < Φ/ν̄. In other STA protocols where the
Hamiltonian does not contain Ŝy, the control action of rotation is obtained by the commutator [Ŝz, Ŝx],
which generates coherence. A bound can be obtained from (49), τuni > Φh̄/ΔE = Φ/Ωmin, where
h̄Ωmin is the minimum energy gap.

Figure 5. Optimal frictionless trajectories for the unitary stroke displayed on the polarization axis of
〈Ŝx〉 and 〈Ŝz〉. The radius of the semicircle is equivalent to the initial polarization S̄i = S̄Hi , which is
on the energy axis. Because the unitary dynamics preserves the polarization and the chosen energy
direction is on the x, z plane, the semicircle shows all the possible states on the energy axis. Any interior
point possesses coherence. In orange is the optimal bang-bang protocol that is composed of two
segments the first with a slope of −ω f /ε and the second −ωi/ε. The blue arrow represents the
constant μ protocol.

To summarize, fast frictionless protocols for the unitary strokes are possible provided the
coherence is not transferred to the thermalization strokes. The price for acceleration of the stroke is the
generation of intermediate coherence that requires a temporary investment of power. If no restrictions
are imposed on the power invested, or analogously on the range of ω (t), the time period τuni can be
shrunk to zero. Another scheme to achieve a vanishing time period includes adding an unrestricted
counter-diabatic term, Equation (50), to the Hamiltonian [85]. For a more realistic description of the
storage device, restriction on the control are introduced. One possible restriction is to limit the averaged
stored energy. Another possibility is to restrict coherence. In principle, all of the temporary power
can be retrieved in the external controller when the drive is completely isolated. However, in practice,
this is an idealization, and any real storage device is sure to have some dissipation. Thus, one expects
some dissipation from the controller [89].
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5. Thermalization

Thermalization is the process of relaxing the system toward equilibrium with an external heat
reservoir, e.g., the hot or cold baths. The relaxation is mediated by the system-bath interaction term
Ĥs−h/c (Equation (11)), which generally depends on both the system and bath operators, as well as
the coupling strength g. The question arises, can we actively influence the thermalization process?
Three options for control are possible. The first, which we consider here, is to control the system
Hamiltonian [90,91], the second is to vary the coupling strength [92,93], and the third is controlling the
temperature of the bath.

5.1. Isochoric Thermalization

When compared to quantum Carnot-type cycles the analysis of the quantum Otto cycle is
simplified, since the thermalization strokes are carried out at constant frequency Ω. For this
reason, it is has been thoroughly studied, and originally constituted the main platform to investigate
thermodynamics at the quantum level [94,95].

By definition, during an isochore the Hamiltonian is static. Consequently, the only adjustable
control parameter of the thermalization is the contact time with the bath. This is equivalent to adjusting
the system bath coupling. The dynamics along the stroke is described by Equations (14) and (15)
with a constant Hamiltonian. These lead to transfer of energy and exponential decay of coherence,
Equation (21), until the system reaches equilibrium.

5.2. Isothermal Thermalization

Here, we concentrate on the finite-time thermalization strokes, which transfer heat to and from
the engine. Within the limits that are imposed by the isotherms of the working medium, we can find
various choices for cycles with finite power [96–98].

Thermalization can be controlled by the varyingHamiltonian, while the system is simultaneously
coupled to the bath. We now consider the general case, where the Hamiltonian does not commute with
itself at different times, [Ĥ(t), Ĥ(t′)] �= 0. A prerequisite for obtaining control is to derive a dynamical
description that is accurate and consistent with thermodynamics. Such a dynamical description has
been formulated in Ref. [34], where a Non-Adiabatic Master Equation (NAME) was developed that
incorporated the effect of the external driving.

Within this framework, we can address the issue of actively speeding up the thermalization.
Typically, the rate of approaching equilibrium is proportional to deviation of the state from the fixed
point of equilibrium. As we get closer to the target, the rate decreases. Broadly speaking, the strategy
of speeding up the thermalization is to first generate coherence that moves the system away from
the instantaneous attractor. Consequently, the relaxation is enhanced. At the final stage the system is
rotated, converting the coherence to energy to reach the desired thermal state. The speedup comes
with a price since, in contrast to the unitary strokes, during the open strokes we cannot separate the
unitary drive from the dissipative loss.

5.3. Shortcut to Equilibrium Protocols

Shortcut to equilibrium protocols (STE) are active control protocols, generating a rapid transition
between two equilibrium states with different Hamiltonians, while the system is coupled to a bath
of a fixed temperature. This control task requires modifying the system entropy, in contrast to the
common scheme of unitary control. The shortcut protocols fall within the framework of control of
open quantum systems. The rules of the game that we consider restrict the active control to only the
system Hamiltonian. The bath Hamiltonian is set and cannot be controlled, and the bath remains in a
thermal state due to its enormous size and negligible influence of the qubit.

In the presence of non-adiabatic driving, the external field dresses the system, which consequently
effectively modifies the system-bath interaction. As a result, the external driving enables indirect
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coherent control of the system’s dissipative dynamics. As previously stated, the control of the qubit
state during the isothermal strokes requires prior knowledge of the open system dynamics. In turn,
to describe the reduced dynamics of the open system, one first requires a closed form solution of the
driven isolated system. To be specific, the derivation of the Non-Adiabatic Master Equation (NAME)
requires, as an input, the free dynamics of the driven system [34]. The solution is non-trivial in the
presence of non-adiabatic driving, when the Hamiltonian does not commute with itself at different
times. For arbitrary driving, constructing an explicit solution of the dynamical propagator requires a
time-ordering procedure [57].

We have developed an algebraic procedure in order to circumvent the time-ordering problem by
employing a dynamical operator basis. This technique is closely related to the inertial theorem [99].
The theorem implies that, for a closed operator algebra, the dynamical propagator can be obtained for
a family of non-adiabatic protocols, characterized by a slow ‘acceleration’ of the drive. The associated
solutions and driving protocols are termed inertial solutions and protocols. These solutions are
conveniently expressed as linear combinations of the eigenoperators of the propagator.

For the qubit working medium, as represented by Equation (2), the inertial protocol is
characterized by a slowly varying adiabatic parameter, i.e., 1

Ω
dμ
dt � 1. Under this condition,

the dynamics approximately follows the inertial solution. This solution is conveniently expressed in
terms of the dynamics of the basis of operators �v (t) = {Ĥ, L̂, Ĉ}T Equation (32)

�v (t) =
Ω (t)
Ω (0)

P (μ (t)) e−i
∫ t

0 D(t′)Ω(t′)dt′P−1 (μ (t))�v (0) , (51)

where P is a 3 by 3 matrix that is dependent on the instantaneous adiabatic parameter
μ (t), see Appendix B, and D = diag (0, κ,−κ) with κ =

√
1 + μ2. The three operators

obtained from (h̄Ω (t))−1 P−1�v (t) are eigenoperators of the propagator. We introduce a
scaled version of these operators �g = {χ̂, σ̂, σ̂†}T , satisfying an eigenvalue type relation

σ̂H (t) = Û† (t) σ̂ (0) Û (t) = e−i
∫ t

0 dt′κ(t′)Ω(t′)σ̂ (0), where Û (t) is the propagator and superscript H
designates operators in the Heisenberg picture. The operator χ̂H (t) = χ̂ (0) is the inertial invariant,
i.e., the eigenoperator with a vanishing eigenvalue. Expressing the eigenoperators in terms of the
{Ĥ, L̂, Ĉ} basis, we obtain

χ̂ (t) =
√

2
κh̄Ω

(
Ĥ + μĈ

)
(52)

σ̂ (t) =
1

κh̄Ω
(
−μĤ − iκL̂ + Ĉ

)
,

where all of the parameters may be time-dependent. The eigenoperators in �g are orthonormal with
respect to the inner product in Liouville space,

(
Â, B̂

)
= tr{Â† B̂}, and satisfy the SU(2) commutation

relations of the form
[
σ̂, σ̂†] = −

√
2χ̂, [χ̂, σ̂] = −

√
2σ̂. Appendix A summarizes the relation between

the various basis sets of expansion operators�s = {Ŝx, Ŝy, Ŝz}T , �v = {Ĥ, L̂, Ĉ}T and �g = {χ̂, σ̂, σ̂†}, see
also Figure 1 for a geometric representation.

Combining the inertial solution, Equation (51), for the isolated system dynamics with the NAME
leads to a master equation for a broad range of driving protocols. The master equation is valid from
the first principles under the following conditions: (i) the bath dynamics are rapid relative to the
typical timescales of both the system and the driving, τs and τd, i.e., τb � τs, τd, where τb is the typical
timescale of the decay of correlations in the bath; (ii) the system-bath relaxation time τr is large relative
to the system and bath timescales, i.e., τr � τs, τb; and, (iii) the driving protocol satisfies the inertial
condition, 1

Ω
dμ
dt � 1. Condition (i) is associated with Markovian dynamics and (ii) corresponds to a

weak system-bath interaction, which is also known as the weak coupling limit [13,56].
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In the interaction picture relative to the system-bath bare Hamiltonian, the qubit’s open system
dynamics obtains the familiar GKLS form [91]

d
dt

ρ̃ = L̃ (t) [ρ̃] = k↓ (α (t))
(

σ̂ρ̃ (t) σ̂† − 1
2
{σ̂†σ̂, ρ̃ (t)}

)
+ k↑ (α (t))

(
σ̂† ρ̃ (t) σ̂ − 1

2
{σ̂σ̂†, ρ̃ (t)}

)
. (53)

Here, σ̂ and σ̂† designate operators at initial time and overscript tilde denotes operators in the
interaction picture. The kinetic coefficients of Equation (53) depend on the spectral features of the bath
and the effective time-dependent frequency α. This frequency serves as an effective generalized Rabi
frequency of the driven system

α (t) = κ (t)Ω (t) =
√

1 + μ(t)2 Ω (t) . (54)

In the quantum adiabatic regime, μ → 0 and α converges to the instantaneous Rabi frequency,
Ω (t). For μ > 0, the effective frequency α(t) > Ω (t). This is the outcome of an effective dressing of
the system by the driving. As a consequence of the rapid driving, the bath interacts with the dressed
system, which leads to deviations from the adiabatic dynamics. For the general case, there may be
multiple effective frequencies {α}. Their exact form depends on a particular system-bath interaction
and the defined spectral density [34,91].

For the present analysis, we assume a bosonic bath with an Ohmic spectral density.

The system-bath interaction is taken as Ĥsb = ig ∑k

√
2πωk

Vh̄

(
b̂k − b̂†

k

)
Ŝy, where b̂†

k and b̂k are the
creation and annihilation operators of the k’th bath oscillator, and ωk is the oscillator frequency.
The coupling strength is represented by g and V is the reservoir size. For a large reservoir in equilibrium,
the kinetic coefficients become

k↓ (α) =
g2α

h̄cκ
(1 + N (α)) (55)

k↑ (α) =
g2α

h̄cκ
N (α) .

where c is the speed of event propagation in the bath and N (α) = 1/ (exp (h̄α/kBT)− 1) is the
Bose–Einstein distribution, characterizing the correlations between bath modes at frequency α. It is
simple to verify that these kinetic coefficients satisfy detailed balance with respect to α, Equation (16).
This property is essential for a thermodynamically consistent dynamical description [12,35]. In the
adiabatic limit, the kinetic coefficients converge to adiabatic rates and the Lindbald jump operators to
the creation annihilation operators of the two-level system. As expected, Equation (53) then converges
to the adiabatic master equation [33].

The NAME of the driven qubit, Equation (53) propagates the qubit state in the direction of the
instantaneous attractor. The attractor is defined by the relation

L (t) [ρ̃i.a] = ρ̃i.a , (56)

where L̃ (t) is a superoperator that generates the dynamics in the interaction picture. For the qubit,
the attractor is in the direction of χ̂, mixing energy, and coherence. The attractor is rotated by the angle
ξ = arccos(1/

√
1 + μ2) from the energy axis. The attractor can be expressed in the Gibbs form:

ρ̃i.a (t) = Z−1e
− h̄αχ̂√

2kBT , (57)

where Z = tr
(

e−h̄αχ̂/
√

2kBT
)

is the partition function. In the presence of driving, the attractor varies
in time, and the system continuously aspires towards a changing target, but it does not manage
to reach it. Only at the initial and final times, is the driving stationary and the qubit reaches the
attractor. Remember that this analysis applies for the case when

[
Ĥ (t) , Ĥ (t′)

]
�= 0. When the
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Hamiltonian commutes with itself at different times, as in the elementary Hamiltonian Equation (12),
the instantaneous attractor becomes a Gibbs state with the instantaneous Hamiltonian Ĥ (t) and
temperature T. In the adiabatic limit, when μ → 0 Equations (52), (54) and (57) lead to the same result.

The qubit control is based on the master equation, Equation (53). Our present control target is to
speed up the thermalization while changing the qubit Hamiltonian. This step will be employed in the
open strokes of Carnot-type engines in Section 6. Specifically, we desire a control protocol that transfers
an initial Gibbs state, defined by Ω (0) = Ωi and temperature T, to a final Gibbs state of the same
temperature and final frequency Ω

(
t f

)
= Ω f . Moreover, we assume that the system at the initial and

final times is stationary with no external driving. The control agents are the parameters of the free
Hamiltonian ω (t) and ε (t). Notice that these parameters only indirectly effect the master equation.
To find a control, we opt to employ a reverse engineering approach, in which we propose a trajectory
for the qubit state that forms a solution to the master equation. In turn, this solution determines the
kinetic coefficients of the master equation, from which we can extract the direct control parameters.

Performing the analysis in the interaction representation relative to the bare system Hamiltonian
simplifies the control scheme. In this frame, the Lindblad jump operators, σ̂ and σ̂†, vary slowly with μ.

The control trajectory, which is a dynamical solution of Equation (53), is obtained by representing
the state ρ̃ in terms of the basis of eigenoperators �g of the free dynamics, Appendix A:

ρ̃ =
1
2

Î + cσσ̂ + cσ† σ̂† + cχχ̂ , (58)

where cr = tr (r̂ρ̃), with r = σ, σ†, χ, are time-dependent coefficients. Substituting Equation (58)
into (53) and utilizing the orthogonality of the eigenoperators leads to an equivalent representation of
the dynamics

d
dt

cχ = −
(
k↓ (t) + k↑ (t)

)
cχ − 1√

2

(
k↓ (t)− k↑ (t)

)
(59)

d
dt

cσ = −1
2
(
k↓ (t) + k↑ (t)

)
cσ . (60)

and similarly for cσ† . These equations completely determine the system dynamics and form the
template for coherent control. What is missing are the boundary conditions. The choice of the initial
and final Gibbs state along with the condition of stationarity at initial and final times imposes boundary
conditions on Equation (60).

We can simplify the problem by eliminating Equation (60). For the boundary conditions (and any
initial diagonal state in the energy representation), the coefficients cσ (0) = cσ† (0) = 0 and μ = 0.
These relations, together with Equation (60), imply that cσ and cσ† vanish at all times.

We can now focus on a single equation, Equation (59), with boundary conditions:

cχ (0) = − 1√
2
tanh

(
h̄Ω(0)
2kBT

)
, cχ

(
t f

)
= − 1√

2
tanh

(
h̄Ω(t f )

2kBT

)
, and μ (0) = μ

(
t f

)
= 0. In addition,

the initial and final states and Equation (59) imply that ċχ (0) = ċχ

(
t f

)
= 0.

To proceed, we determine the trajectory solution through the coefficient cχ. We choose the most
simple polynomial solution that is compatible with the boundary conditions. In this case, a third order
polynomial is sufficient. In terms of a dimensionless parameter s = t/t f , the solution reads

cχ (s) = cχ (0) + 3Δs2 − 2Δs3 , (61)

where Δ = cχ

(
t f

)
− cχ (0). Next, we substitute the solution Equation (61) into Equation (59) and

obtain the kinetic coefficients, from which we can extract α (t), Equation (55). These steps are achieved
while utilizing a common numerical solver.

The control function Ω (t) is now evaluated by solving the master equation Ω = α/κ for a set
of defined controlled parameters ω (t) and ε (t). In practice, the master equation depends on the
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generalized Rabi frequency Ω (t) and φ̇ (through μ); this means that we have an additional freedom in
the control parameters of the Hamiltonian.

We chose to parameterize the control parameters in terms of the time-dependent frequency Ω
and the phase φ:

ω (t) = Ω cos (φ) (62)

ε (t) = Ω sin (φ) .

In this parametrization, the adiabatic parameter becomes μ = −φ̇/Ω and the effective frequency can
then be expressed as

α =

√
1 + (φ̇/Ω)

2Ω . (63)

To set the angle φ, we study two protocols that differ by their boundary conditions. The first is a
quadratic function of time φ (t) = a

(
t − 2t2/3t f

)
, where is a a dimensionless free parameter taken to

be equal to the numerical value of 1/t2
f in the model units. This protocol leads to a final value for the

angle that scales with the duration time φ
(

t f

)
∝ t f . The second protocol starts at φ (0) = 0 and ends

at φ
(

t f

)
= π/2, where the direction of the final Hamiltonian is rotated by ninety degrees relative to

the initial Hamiltonian. Introducing a polynomial that complies with the boundary conditions leads
to φ (t) = πt2

(
3t f − 2t

)
/
(

6t3
f

)
. Both of the protocols satisfy the required condition of stationarity

at initial and final times: φ̇ (0) = φ̇
(

t f

)
= 0. Finally, solving Equation (63) for Ω (t) leads to the

control protocol.
Overall, the constructed shortcut to equilibration (STE) protocol rapidly modifies the system

entropy, transferring an initial thermal state with a Rabi frequency Ωi to a thermal state of a frequency
Ω f at the same temperature. In Ref. [91], a different STE protocol has been introduced, utilizing
a product state consisting of exponentials, see Appendix A. In contrast, here we choose a linear
combination of eigenoperators, Equation (58), which is the natural approach for a system that is
described by a compact algebra. This choice has the advantage of leading to a simpler analysis.

5.4. Thermodynamic Cost of Finite-Time Thermalization

Fast driving moves the system away from equilibrium, leading to enhanced dissipation.
The thermodynamic cost can be characterized by the entropy production rate

Σu ≡ − d
dt
D (ρ̂|ρ̂i.a) = −kBtr

(
L̃ [ρ̃] lnρ̃

)
+ kBtr

(
L̃ [ρ̃] lnρ̃i.a

)
= −kBtr

(
L̃ [ρ̃]

(
lnρ̃ +

h̄α√
2T

χ̂

))
. (64)

In the infinitely long time limit, the state ρ̃ converges to ρ̃i.a and the entropy production rate
vanishes. The entropy production in this limit has been studied recently [100] and is related to
fluctuation theorems.

During the shortcut to equilibrium protocols cσ,σ† = 0 and the state is completely characterized by
the expectation value cχ = tr (χ̂ρ̃), ρ̃ = 1

2 I + cχχ̂. Alternatively, this state can be represented in a Gibbs
form ρ̃ = Z−1e−βχ̂. The role of β motivates introducing an effective temperature of the qubit in the
interaction representation: T′ ≡ h̄α/

√
2kBβ. Such a form allows for a straightforward interpretation of

Equation (64); this is achieved by the following derivation. We begin by utilizing the Gibbs form of ρ̃

and insert Equation (57) into (64) to obtain

Σu
χ = kB

(
1
T′ −

1
T

)(
h̄α√
2kB

)
tr ( ˙̃ρχ) . (65)
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This relation can be interpreted as the product of a thermodynamic force ∝ −∇ 1
T and heat current in

units of the energy quanta h̄α. Next, we express ρ̃ in terms of β in order to obtain: ˙̃ρ = − (〈χ〉+ 1) β̇ρ̃,
with 〈χ̂〉 = − 1√

2
tanh

(
β√
2

)
, and

β̇ = tr
(

dρ̃

dt
ρ̃−1χ̂

)
= − 1√

2

[(
1 + e−

√
2β
)

k↓ −
(

1 + e
√

2β
)

k↑
]

. (66)

Substituting Equations (55), (66) into Equation (65) leads to the final expression

Σu
χ =

(
1
T′ −

1
T

)
(h̄α)

k↓ (α) 〈χ̂〉 (〈χ̂〉+ 1)
2
(
1 + eh̄α/kBT′) (

e−h̄α/kBT′ − e−h̄α/kBT
)

. (67)

As expected, we obtain a positive entropy production. The first and last terms in the brackets have
opposite signs while the expectation value of χ̂ satisfies −1 < 〈χ〉 < 0 for a positive temperature.
This leads to a symmetric dependence on the temperature gap ΔT = T − T′, i.e., the entropy production
only depends on the magnitude of the gap and it is independent of whether the working medium
effective temperature is hotter or colder relative to the bath temperature.

In the high temperature limit h̄α/kB � T, T′, the relation can be further simplified, leading to
entropy generation that scales as the square difference between inverse temperatures

Σu
χ ≈ −kBk↓〈χ〉

(
h̄α

2kB

)2 ( 1
T′ −

1
T

)2
. (68)

We next derive the entropy production rate for a general initial state that includes coherence,
following the inertial solution, Equation (60). We begin by expressing the qubit state as a maximum
entropy state ρ̃ = Z̄−1 exp

(
−
(

β̄χ̂ + γ̄xσ̂x + γ̄yσ̂y
))

, where σx = 1√
2

(
σ + σ†) and σy = i√

2
(σ − σ†) see

Appendix A for further details. The existence of such a form is guaranteed from the closure property
of the operator algebra and the Baker–Campbell–Hausdorff formula [101]. Defining the effective
thermodynamic forces Fl and effective “temperature”: Fχ = 1

Tχ
− 1

T , where Tχ = h̄α√
2kB β̄

, Fσx = kBγ̄x
h̄α

and Fσy =
kBγ̄y

h̄α leads to the entropy production rate:

Σu = ∑
l=χ,σx ,σy

FlJl , (69)

where Jl =
h̄α√

2
tr
(

˙̃ρl̂
)

. We can further simplify the fluxes Jl by utilizing the linearity of the trace and
the derivative operations and the dynamics of eigenoperators expectation values, as in Equation (60).
This leads to

Jχ = − h̄αΓ√
2
(〈χ̂〉 − 〈χ̂〉i.a) ; Jσx = − h̄αΓ

2
〈σ̂x〉 ; Jσy = − h̄αΓ

2
〈σ̂y〉 , (70)

with Γ = k↓ + k↑ and 〈χ̂〉i.a = − 1√
2

tanh
(

h̄α
2kBT

)
. The form of the entropy production rate resembles

the heat transfer entropy production law of classical non-equilibrium thermodynamics [102–104],
but with a nonlinear relation between flux and force. The difference between the effective inverse
temperature and bath temperature constitutes the thermodynamic forces, while Jl are the associated
thermodynamic fluxes. The expression obtain a similar form, however, a fundamental difference
between Equation (69) and the classical expression exists. In the classical expression the relations
between the thermodynamic fluxes and forces is strictly phenomenological. Commonly, only the first
order is considered and the fluxes are taken to be linear functions of the forces. For example, Fick’s
law for diffusion of matter relates the diffusion flux to the gradient in concentration, or Fourier’s
law for heat conduction relates the heat transport to the gradient of inverse temperature. In contrast,
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the framework of open quantum systems, which we currently employ, allows for deriving the relation
between thermodynamic fluxes and forces from a microscopic description.

In the high temperature limit when β̄ and γ̄ are small, we recover the linear response relation

between fluxes and forces: Jχ ≈ LFχ, Jσx ≈ LFσx and and Jσy ≈ LFσy , where L = Γ
kB

(
h̄α
2

)2
,

see Appendix A for further details. As a result, the entropy production rate in the linear response
region becomes

Σu = ∑
l

LF 2
l . (71)

It should be noted that the diagonal Onsager matrix is a consequence of the fact that, in the interaction
representation, the dynamics of the coherence are separated from χ. Once we rotate to the {Ĥ, L̂, Ĉ}
basis we will get symmetric coupling elements between energy and coherence in the Onsager matrix.
We stress that the current derivation, leading to the linear response result, is not based on the adiabatic
assumption of a perturbation with respect to the Gibbs state [78].

Overall, in the general case, we observe three independent forces and fluxes that are responsible
for entropy production, a heat flux, and two fluxes that are associated with loss of coherence.

6. Local Cycles

Closing the cycles requires concatenating the four strokes. We distinguish two families of cycles
that differ by the coherence operation: global or local. In local cycles, the coherence vanishes on
the four switching points between strokes. Global cycles, on the other hand, maintain coherence
throughout the cycle and it will be treated in Section 7.

6.1. Local Otto Cycle

Local cycles are obtained by employing shortcuts to adiabaticity (STA) on the adiabats [105,106].
The chosen protocols are characterized by a minimum unitary stroke time τuni(l = 1), which forces a
finite optimum thermalization time. As a result, maximum power is obtained for a total finite cycle
period [72], Figure 6 displays such a cycle.

Optimizing the thermalization period has been addressed in Ref. [63]. The main variable
influencing the power output is the polarization difference S̄′

2 − S̄′
1 (cf. Figure 4). Therefore, the gaps

|S2 − S′
2| and |S1 − S′

1| are optimized in order to achieve finite heat transport. The described procedure
leads to [63]

S̄′
2 − S̄′

1 = (S̄2 − S̄1)F(x, y) , (72)

where F(x, y) = (1−x)(1−y)
1−xy , with x = e−Γhτh and y = e−Γcτc . Here, τh and τc are the time allocation for

thermalization. In addition, optimizing for Γc = Γh leads to τh = τc. Optimizing for power under the
constraint of a finite-time allocation during the unitary strokes, τuni, leads to [107]:

x + Γτuni = sinh(x) (73)

For small x, Equation (73) can be solved to obtain τh = τc =
1
Γ (Γτuni/3)1/3. In this limit, the optimal

power of local Otto becomes

P L.O
Otto =

1
(Γτuni/3)1/3

1
4

ΓΔΩΔS̄ =
1

(Γτuni/3)1/3 P
B.B
Otto , (74)

which is smaller than the bang-bang power PB.B
Otto Equation (31).

The power of the local Otto cycle as a function of cycle time is shown in Figure 10 displaying the
typical maximum power. The efficiency of the engine ηL.O

Otto Equation (29) is independent of cycle period
(cf. Figure 9). In practice, such a cycle can be analyzed by means of stochastic thermodynamics [61],
since coherence has been eliminated from the analysis by employing shortcut protocols. A similar
result employing a different derivation can be found in [68].
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Figure 6. Frictionless shortcut (local) Otto cycle plotted in the {〈Ĥ〉, 〈L̂〉, 〈Ĉ〉} space. The hot isochore
1 → 2 is represented by red thick line, and the cold isochore 3 → 4 is shown in blue. The expansion
2 → 3 and compression 4 → 1 unitary strokes begin and end on the energy axis, as the qubit exhibits
no coherence between consecutive strokes. The fastest two solutions of shortcuts with constant μ are
shown. The single large loop (thick line) corresponds to the fastest solution with l = 1 in Equation (46),
which corresponds to τmin and the second solution includes two small loops, l = 2.

6.2. Local Carnot Cycle

A local Carnot cycle, also called the ‘Shortcut Carnot’ cycle, is constructed by combining
two shortcut to equilibrium protocols (open-strokes) and two shortcuts to adiabaticity protocols
(unitary strokes), see Figure 7. It is characterized by the same cycle parameters as the Carnot cycle,
while operating at finite speed, thus producing power. The increase in power does not come for free,
as rapid driving increases dissipation, leading to a reduction in efficiency. Thus, the common tradeoff
between efficiency and power is obtained from a first principle derivation, highlighting the quantum
origins of the empirical phenomena associated with friction.

The shortcut cycle is constructed by setting the bath temperatures Th and Tc, the minimum Rabi
frequency Ωmin = Ω3 and compression ratio C = Ω1/Ω3. The remainder of the cycle parameters are
then determined by the condition that the working medium is at equilibrium with the bath at the four
corners of the cycle, see Figure 8a. This condition implies the relations Ω4Th = Ω1Tc and Ω2Tc = Ω3Th;
cycle parameters are given in Table 1. In contrast to the ideal Carnot cycle, the strokes, including
exchange of energy with the bath, are denoted as open-expansion and open-compression. This change
in nomenclature highlights the fact that, during these strokes, the qubit constitutes an open quantum
system and at intermediate times along the strokes, the qubit is in a non-equilibrium state.

The adiabats (unitary strokes) are accelerated by employing shortcuts to adiabaticity (STA)
protocols, characterized by a constant adiabatic parameter μ, see Section 4.3. The dynamics of these
protocols are governed by the propagator Λuni = U1U2 given in Eqations (40) and (41). The shortcuts
to adiabaticity protocols are then achieved by setting the stroke duration τ such that U2 is proportional
to the identity. The net effect for an initial state with no coherence is a total scaling of the energy. This is
achieved for τ, satisfying κθ(τ) = 2πl, with l ∈ N Equation (41). In the following analysis, we choose
l = 1, Equation (47).
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Other STA protocols are possible; nevertheless, the specific choice of an STA protocol only slightly
affects the qualitative thermodynamic cycle performance. Different STA protocols lead to the same
state-to-state transformation, while generating different transient dynamics and having different
stroke durations. In principle, if the energy of the driving is not bounded, then one can achieve the
adiabats in vanishing time by utilizing the bang-bang protocols, Section 4.3. The net effect of different
stroke duration is therefore just an additional constant to the cycle time. Overall, the qualitative
thermodynamic performance is determined by the isothermal protocols. We present the description of
the chosen STA protocol for the sake of completeness.

Figure 7. Shortcut Carnot cycle: Polarization change during the four strokes. The two hemispheres
represent constant polarization for the two unitary strokes. The red part of the cycle trajectory is the hot
isotherm connecting the two constant polarization hemispheres. The blue section is the cold isotherm.
Green sections represent adiabats, where the the top curve corresponds to the expansion stroke and the
bottom curve to the compression.
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Figure 8. Shortcut Carnot cycle: Polarization as a function of the Rabi frequency for the four different
cycle duration’s: (a) τcyc = 192 (b) τcyc = 108 (c) τcyc = 9, units of (2π/Ωmin), with Ωmin = Ω3 m.u.
(model units h̄ = kB = c = 1). The hot and cold isotherms are represented by dashed red and blue lines
and the cycle points are denoted by numbers. Incoming (outgoing) arrows designate consumption
(extraction) of work or transfer of heat to (from) the qubit. For slow driving, the cycle lies close to the
reversible Carnot cycle, Panel (a). Increasing the driving speed leads to dissipation and deviations from
reversible operation, Panel (b). Eventually, below a the transition cycle time τtrans = 12.7 (2π/Ωmin),
the cycle transitions to a dissipator operation mode, Panel (c). Table 1 summarizes the cycle parameters.
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The acceleration of the open-strokes is obtained by employing STE protocols, which are described
in detail in Section 5.3. The speedup relies on non-adiabatic dynamics and the generation of coherence
at intermediate times. The STE protocols are engineered in order to incorporate both the unitary
effect, which leads to rise in coherence, and the dissipative interaction that induces decay of coherence.
These two contributions are combined to induce conversion of all the coherence of the working medium
to energy at the final stage of the protocol. When the driving is slow, only a small amount of coherence
is generated and the evolution is close to an isothermal process. The close proximity of the polarization
during the open-strokes is observed in Figure 8a (dashed lines).

Accelerating the driving generates larger coherence accompanied by a thermodynamic cost.
This link between coherence and thermodynamic cost follows from the properties of the dynamical
propagator at constant μ, Equation (41). During the open-strokes, the coupling to the bath leads to
the decay of coherence. This decay increases with the amount of coherence present. As a result, rapid
driving leads to enhanced dissipation, which reduces the cycle performance.

Figure 8 shows a visual representation of this phenomenon, which compares three Carnot-type
cycles with varying cycle times. The amount of extracted work during a single cycle is related to the
area enclosed by the S̄ (Ω) plot. As the cycle time decreases, the open-strokes deviate further from the
isotherms (Panel b), consuming more work and dissipating larger amounts of energy and coherence.
Figure 9 shows the entropy production rate on the open strokes for these cycles. At the beginning
and the end of the stroke, the entropy production rate Equation (64) is zero, since the protocol is
designed to reach equilibrium on the four corners of the cycle. The area under the lines is the total
entropy production. As expected, the entropy production increases for decreasing stroke duration.
Eventually, the cycle transitions to an accelerator operation mode, where work is consumed during
both open-strokes ( Figure 8c), which enhances the entropy production.

In the opposing limit of long cycle times, the dynamics are adiabatic and the efficiency
approaches the Carnot efficiency ηC, Figure 10. The improved efficiency is obtained on account
of a reduction in power, see Figure 11. Optimal power is obtained for relatively short cycle times
τcyc ≈ 24 (2π/Ωmin) for the Carnot type cycle and a shorter time of τcyc ≈ 11 (2π/Ωmin) for
the Otto cycle. Overall, the power of the shortcut Carnot cycle exceeds the local Otto cycle for
almost all cycle times. Figure 12 shows the typical efficiency-power tradeoff for the shortcut Carnot
cycle. The plot is compatible with the tradeoff bound in [108,109] (given by dashed purple and
green lines), applicable to the low dissipation case. Two bounds are presented, the first, given
by the expression: η

ηC
+ (1−ηC)(P/Pmax)

2
(

1+
√

1−(P/Pmax)
)
−ηC(P/Pmax)

≤ 1, corresponds for efficiencies past the

efficiency at maximum power (right bound—dashed green line), while the second line corresponds
2 (η/ηC) +

√
1 − (P/Pmax) ≥ 1 (left bound—dashed orange line). Notice that the value of the

normalized efficiency η/ηC for P/Pmax = 1 is different for the right and left bounds. This emerges
from the fact that the right bound depends explicitly on the Carnot efficiency, while the left bound
only depends on the normalized ratio.

Surprisingly, when comparing the two different protocols for the angle φ (see below Equation (63)),
the performance of the cycle is almost independent of the chosen protocol for φ. The primary difference
between the two cycles concerns the amount of coherence that are generated during the open-strokes.
As expected the protocol which includes a rotation of π/2 in φ exhibits much larger coherence along
the stroke. We expect that, for higher values of μ, protocols that are characterized by a rotation of
the Hamiltonian will generate more coherence. In turn, this will shift the point of transition from an
engine to an accelerator to larger cycle times.
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Figure 9. Entropy production rate for the open strokes of the shortcut Carnot cycle as a function of
normalized time for various cycle times. Panel (a): Open-compression (red) and open-expansion
(dashed blue) for a short cycle time τcyc = 9 (2π/Ωmin). Panel (b): Open-compression (dotted
green/dashed purple) and open-expansion (dashed orange/continuous pink) for a large cycle time
τcyc = 108 / 192 (2π/Ωmin). The three cycle times correspond to the cycles that are plotted in Figure 8.
Decreasing the cycle time increases the dissipation and results in a greater entropy production.
The compression strokes include cooling the qubit, which requires greater amounts of entropy
production relative to the open-expansion strokes for the same stroke times.
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Figure 10. Normalized efficiency as a function of the cycle time for a local Carnot cycle (thick red) and
local Otto cycle (blue dashed). In the local Carnot cycle long cycle times lead to close to reversible
dynamics, optimizing the efficiency towards the Carnot bound ηC. For short cycle times dissipation of
energy and coherence leads to a degradation of efficiency. Eventually, resulting in a transition from an
engine operation mode (η ≡ −W/Qh > 0) to an accelerator operation mode (η < 0). The two studied
protocols for the angle φ (t) (below Equation (63)) cannot be distinguished in this graph. In the local
Otto cycle, the efficiency ηOtto = 1 − Ωc/Ωh is independent of the cycle time.
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Figure 11. Power as a function of cycle time for a local Carnot cycle (red thick line) and local Otto
cycle (blued dashed line). Slow driving leads to a reduction in power P ≡ −W/τcyc. Moreover,
under rapid driving dissipation reduces the net extracted work, leading to an optimal power of
Pmax = 5.19 × 10−3 m.u. for τcyc ≈ 24 (2π/Ωmin) for the local Carnot and Pmax = 2.5 × 10−3 m.u. for
τcyc ≈ (2π/Ωmin) for the local Otto cycle.
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Figure 12. Power as a function of efficiency for the local Carnot cycle (red continuous line) and
upper bounds (dashed purple and green lines) [108]. The typical behavior is a manifestation of the
tradeoff between efficiency and power. The efficiency at maximum power ηmaxP ≈ 0.57 exceeds the
Curzon-–Ahlborn efficiency ηCA = 1 −

√
Tc/Th ≈ 0.3. This result is not surprising, as the operation

speed goes beyond the low dissipation regime [66].

7. Global Cycles

Closing globally coherent cycles requires more than just connecting the four strokes, since the
four corners of our cycle are no longer required to be Gibbs states. In general, we prescribe a periodic
driving protocol and the qubit is thereby driven to a limit cycle [76].

We will start by examining the Otto cycle which is easier to analyze. Figure 13 shows an example
of a global Otto cycle. During the unitary strokes of the Otto cycle, Λh→c and Λc→h, non-adiabatic
dynamics generates coherence, which carries the system away from the energy direction [74,110,111].
This coherence subsequently decays during the isochoric strokes. Note that, if STA protocols are used
on the unitary strokes, then no coherence ever dissipates, leading to no friction, and the discussion from
the frictionless treatment in Sections 3.3 and 3.4 applies. Because our goal is to understand the behavior,
including friction, we use constant μ protocols for the unitary strokes. These are only frictionless
for quantized stroke durations. We present results for the power and the efficiency as a function of
the cycle time. Because our STA protocols are only frictionless for quantized times, the behavior in
Figures 15 and 16 shows oscillations for cycle times smaller than τ(l = 1). Interestingly, except for
some wild oscillations for very small times, the power of the coherent Otto cycle is monotonically
decreasing in the cycle time, reaching its maximum for the sudden cycle in the limit of τ → 0 for small
Φ. Therefore, we begin with a closer look at this case.
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H

1
2
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3

Figure 13. Global Otto cycle with friction. Projection of the polarization on the energy axis as a function
of the generalized Rabi frequency. The coherence at the end of the adiabats dissipates during the
isochores. Because of the decay of this coherence, the polarization along the adiabats always exceeds
its initial value. In the presented cycle μ > μl=1.
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7.1. Global Otto Cycle and the Sudden Limit

We now analyze the influence of coherence in the sudden limit. In general, the working medium
Hamiltonian Ĥ (t), Equation (2), does not commute with itself at different times, generating substantial
coherence under rapid driving. As will be demonstrated, this coherence has a direct effect on the
thermodynamic performance and the cycle’s operation mode.

The sudden operation is characterized by only two types of strokes: unitaries and isochores.
When the Hamiltonian parameters are instantaneously varied, the working medium dynamics is
dominated by the unitary part (adiabats). Any finite coupling with the bath (weak in our analysis)
only negligibly affects the working medium state. During the isochores, the control parameters remain
constant and a small amount of heat transfer occurs. Note that the initial portion of an isochore has
the largest temperature difference between the bath and our qubit, so the sudden cycle only uses this
fastest heat exchange, explaining how the power can be maximum in the zero time limit.

As in the general case, the evolution of the working medium during the sudden Otto cycle is
constructed by combining the propagators of the adiabats Λsudd

i→ f , Equation (43), and the propagators for

the isochores Λiso
sudd. The propagator for the isochores are obtained by substituting the basis operators

{Ĥ, L̂, Ĉ, Î} into the Heisenberg form of the master equation, Equation (14), and expanding the solution
up to first order in the stroke time τ. This leads to

Λsudd
i =

⎡⎢⎢⎢⎣
1 − Γiτ 0 0 ΓiτΩi〈S̄eq (Ωi, Ti)〉

0 1 − Γiτ/2 −Ωiτ 0
0 Ωiτ 1 − Γiτ/2 0
0 0 0 1

⎤⎥⎥⎥⎦ , (75)

where i = h, c indicates the frequency of the hot and cold baths. In the studied sudden Otto cycle
Ωh/c = Ω2/4 and the kinetic rates are taken to be equal Γi = Γc = Γh. Concatenating the stroke
propagators in the suitable order generates the sudden cycle propagator

Λsudd
cyc = Λsudd

c→hΛsudd
c Λsudd

h→cΛsudd
h . (76)

Next, we solve for the invariant of the limit cycle Λsudd
cyc �v = �v, where the elements of �v give

the expectation values of the basis operators {Ĥ, L̂, Ĉ} at the beginning of the hot isochore. This
information is sufficient for determining the qubits state throughout the cycle and, in turn, allow
evaluating the thermodynamic quantities.

We find that in the sudden limit, the cycle’s performance is highly sensitive to the coherence
generation along the adiabats. The amount of accumulated coherence is determined by the relative
phase Φ, see Equation (43). For Φ = 2πk, k ∈ Z, the Hamiltonian commutes with itself at different
times and the state remains diagonal in the energy basis. In contrast, for intermediate values of Φ,
coherence builds up along the adiabats and dissipates during the isochores. The dissipation leads to a
reduction in power and efficiency. We find that, in the sudden limit, the extraction of power is only
obtained for small amounts of coherence. This regime corresponds to phase values close to Φ = 2πk,
see Figure 14a. It is important to note that the generated coherence on a unitary stroke is employed to
reduce the work against friction in the consecutive unitary stroke. Eliminating this coherence on the
isochores will transform the engine into a dissipator.

It is convenient to characterize the cycle performance in terms of the standard expression of
efficiency: η = −W/Qh. Under an engine operation mode, the efficiency remains within the range
0 ≤ η ≤ ηC. With increasing coherence generation (increasing Φ), the dissipated work exceeds the
extracted work, leading to a net positive work. In this operation regime work is consumed (W > 0),
while heat keeps flowing from the hot bath to the cold bath (Qh > 0,Qc < 0 ). Thus, η becomes
negative, see Figure 14b. When further increasing the coherence generation, the qubit starts dissipating
energy to both baths (Qc,Qh < 0); this implies that η changes its sign abruptly and becomes positive.
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The maximum coherence generation is achieved for Φ = πk, which corresponds to an equal magnitude
of the x and z components of the Hamiltonian (cf. Section 3.4).

Figure 14. (a) Normalized power and (b) efficiency as a function of the relative phase Φ. When the
phase values are near 2πk, k ∈ Z, only small amounts of coherence are generated and the cycle operates
as an engine (green lines), which produces a positive power output. Once the phase deviates from the
optimal values, the net work becomes positive and the cycle operates as an accelerator (orange lines,
W > 0, Qh > 0, Qc < 0), accelerating the flow from hot to cold. When the coherence generated during
the adiabats dissipates to both baths on the isochores, the cycle transitions to a dissipator η > 1 (red line,
Qc,Qh < 0, W > 0). The model parameters are: Tc = 5, Th = 10, Ωc = 6, Ωh = 8, Γhτh = Γcτc = 0.01,
where τh and τc are the stroke durations of the hot and cold isochores.

The isochores include off-diagonal terms (∝ Ωiτ), which couple the coherence operators L̂ and
Ĉ. This coupling originates from the unitary contribution to the open-system dynamics, (the unitary
term is of the form i

h̄
[
Ĥ, X̂

]
in the Heisenberg equation of motion for the operator X̂), and tends

to complicate the solution by coupling the dynamics of all three operators along a complete cycle.
In practice, we find that this coupling only slightly affects the results, improving the power by a
very small amount (∼10−2Pmax). This typical behavior justifies discarding the coupling terms when
evaluating the efficiency and power. Without these terms, their expressions in the sudden limit
(τcyc → 0) read

η =
(

8cΦΩhΩc

(
S̄c

eqΩh + S̄h
eqΩc

)
− ΩcΩh

(
ΩhS̄h

eq + ΩcS̄c
eq

)
(c2Φ + 7)

)
/G (77)

P =
Γ
(

8cΦ

(
S̄c

eqΩh + S̄h
eqΩc

)
−
(

ΩcS̄c
eq + ΩhS̄h

eq

)
(c2Φ + 7)

)
4 (c2Φ − 17)

, (78)

with G ≡ Ωh

(
8〈Sc

eq〉ΩcΩhcΦ − 〈Sh
eq〉ΩhΩc (c2Φ + 7)

)
and using the shorthand notation cx = cos (x)

and sx = sin (x). In the evaluation of the power, we assumed equal stroke durations on all strokes.

7.2. Global Carnot-Type Constant Adiabatic Parameter Cycle

By definition, our Carnot-type cycles are constrained to be in equilibrium at switching points
between two adjacent strokes. This requirement implies that coherence is only maintained “locally”
within the strokes and it defines what we mean by local coherence operation of our engines. In the
following analysis, we lift this restriction to study the properties of “global” coherence operation.

A globally coherent cycle is constructed from two open-strokes and two adiabats. For our
implementation, the value of μ is kept constant for the entire protocol. We study the performance of
the limit-cycle, which maintains coherence throughout the cycle. We reduce the compression ratio C
of the cycle while maintaining the same bath temperatures in order to produce power. Two globally
coherent Carnot cycles are studied, which differ by the inner frequencies of the cycle, Ω2 and Ω4.
The frequencies are chosen to fit an endoreversible Carnot cycle with a constant temperature gap, in the
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first cycle ΔTh = ΔTc = 1 m.u. and for the second cycle ΔTh = ΔTc = 2 m.u. Table 1 summarizes
the cycle parameters. These cycles maintain a non-vanishing heat flow in the desired direction on
the open-strokes.

The protocol choice of a constant adiabatic parameter allows for an additional degree of freedom
in the choice of the Hamiltonian controls ω (t) and ε (t). We choose to set them, as in Equation (62).
We then obtain a relation between the phase and Rabi frequency: Ω (t) = −φ̇/μ. For small φ̇,
the protocols can be very rapidly achieved while keeping μ small, thus still maintaining quantum
adiabatic evolution. However, in such regime a slow change in the phase implies that ω (t) and
ε (t) are nearly proportionate to one another, resulting in a Hamiltonian that commutes with itself at
different times. In order to study the influence of coherence on the thermodynamic performance, we
require a substantial change in phase. For this reason, we determine the driving protocols by setting
both initial and final Rabi frequencies, Ωi and Ω f and phases φi and φ f . In the quantitative analysis,
we choose Φ = φ f − φi = π/2, meaning that the Hamiltonian direction rotates from the z to the x axis
during the open-expansion stroke (−π/2 on the open-compression stroke).

Global coherence operation allows for coherence, generated in one stroke, to be converted to
energy and utilized during the adjacent strokes. Accelerating the driving enhances this phenomenon
by generating greater coherence, which eventually dominates the cycle’s performance. Using the
coherence measure C, Equation (34), we observe that, when C > 0.01, relative to a maximum value
of 0.5, strong interference takes place, which are manifested in oscillations in power and efficiency.
The coherence value should also be compared to the typical value of |S̄H |, which is of the order
≈0.1. Figure 15 presents the scaled efficiency for varying cycle times. In the slow driving regime,
coherence only degrades the extracted work and efficiency increases monotonically with the cycle
time. In contrast, for sufficiently fast driving, the efficiency oscillates rapidly due to interference. If the
generated coherence is utilized efficiently, the cycle extracts more work and the efficiency improves.
Moreover, optimal power is obtained in the fast driving regime, as in Figure 16.

On the other hand, if generation and consumption of coherence is not coordinated with the
stroke times (related to the cycle time), the dissipation increases, which decreases the efficiency.
Overall, the oscillations in efficiency constitute a signature of a quantum operation mode [75],
dominated by coherence.

Generally, the efficiency at long cycle durations surpasses the local optima seen at short cycle
times. This is a consequence of strong dissipation of coherence under rapid driving. Even when the
generation and consumption of coherence is fully coordinated with the stroke duration, a still greater
amount of coherence leads to greater dissipation on the open strokes and a reduction in efficiency.
Therefore, no quantum advantage is expected in this scenario.

The entropy production rate of these cycles is almost constant throughout the cycle, as in Figure 17.
This is a confirmation that the cycle is always far from the instantaneous attractor. Shorter cycle
periods lead to larger entropy production. The breakup of entropy production to an energy like term
Σχ = FχJχ and a coherent part Σσx/y = Fσx/yJσx/y , Section 5.4, show similar values for large μ, which
means that coherence dominates the cycle. For small μ (large cycle times), the entropy production is
dominated by Σχ, which can be attributed to irreversible heat transport.

In the asymptotic limit (large τcyc), the working medium remains in the linear response regime
during the open strokes. This regime is characterized by low dissipation and a typical 1/τcyc

scaling law of the dissipated energy. Similarly, one can introduce the dissipated power, defined as
Pdiss = P − |Wideal |/τcycle, where the ideal work Wideal is achieved in the large time limit. In the linear
response regime the dissipated power is expected to scale asymptotically as 1/τ2

cyc [112]. Under small
μ (slow driving), the globally coherent cycle exhibits such typical behavior, as showcased in the inset
of Figure 15.
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Figure 15. Normalized efficiency as a function of the cycle time for the Globally coherent Carnot
(continuous red and dashed purple) and Otto cycles (dotted blue). In the slow driving regime,
coherence only degrades the extracted work output and the efficiency. As the cycle time increases
less coherence is generated and the efficiency increases monotonically. In the rapid driving regime,
the cycle exhibits a quantum operation mode, where the cycle performance is dominated by coherence.
In this driving regime, when coherence generation and consumption is coordinated with the stroke
times, the cycle efficiently produces work. On the other hand, for stroke time leading to induced
dissipation of coherence, the work extraction declines and the cycle may transfer to a dissipator
operation mode (η < 0). This sensitivity to coherence leads to an oscillatory dependence for short cycle
times. The efficiency of the Carnot-global cycle exceeds the efficiency of the global Otto cycle at long
cycle times. This result stems from the reduced compression ratio of the global Otto cycle. This relative
performance reverses for short cycle times. In this driving regime, the global Otto maintains a close to
optimal efficiency where the Carnot cycle performance degrades and the cycle ceases to operate as an
engine. For the chosen cycle parameters, the Carnot efficiency obtains a value of ηC = 0.75. The two
Globally Carnot cycle differ by their Ω2 and Ω4 frequencies. As a result, the effective temperature gap
of the purple cycle is larger compared to the red cycle. When comparing to the power plot (Figure 16),
the cycle with lower efficiency exhibits a larger maximum power. The Globally coherent Carnot and
global Otto cycles parameters are summarized in Tables 1 and 2.
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Figure 16. Power as a function of the cycle time for the Globally coherent Carnot (continuous red
and dashed purple) and global Otto (dotted blue) cycles. The maximum power for the two Carnot
cycles are Pmax = 1.8 · 10−3 m.u. for the purple Pmax = 1.14 · 10−3 m.u. for the red, and for the
Otto Pmax = 1.8 · 10−3 m.u. Inset: Dissipated power Pdiss = P − |Wideal |/τcyc as a function of a
scaled 1/τ2

cyc. For large cycle times, the dissipated work scales as 1/τcyc and the dissipated power
as Pdiss ∝ 1/τ2

cyc. This result is in accordance with a linear response analysis. Cycle parameters are
presented in Table 1.
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Figure 17. Entropy production rate as a function of normalized time for the Globally coherent Carnot
cycle with |μ| = 0.3. The total entropy production rate for the open-expansion and open-compression
strokes are shown in thick red and blue lines, correspondingly. These are a sum of entropy production
due to the flux of 〈χ̂〉, FχJχ (dashed lines), and coherence-like terms FσxJσx +FσyJσy (dotted lines).
The various contributions are, as expected, positive. With decreasing μ the coherence-like terms
decrease and the term FχJχ is the dominant contribution to the entropy production. The breakup of
the entropy production in the {Ĥ, L̂, Ĉ} basis will show a similar pattern.

We can compare the performance of the Globally coherent Carnot and Otto cycle. Both cycles
maintain coherence throughout the cycle, where in the global Otto cycle coherence is generated
only during the unitary strokes. The turnover to an operation mode that is strongly influenced by
interference requires faster driving and larger value of coherence measure C > 0.1. As a result,
the coherent affected operation mode at shorter cycle time. This characteristic behavior can be
witnessed in Figure 15. The shorter cycle times allow for the global Otto cycle to posses comparable
maximum power with respect to the Globally coherent Carnot cycle with higher efficiency.

Table 1. Shortcut (local) and Globally coherent cycle parameters are given in the model units (m.u.),
satisfying h̄ = kB = c = 1. The parameters for the Globally Carnot cycle correspond to the continuous
red line in Figures 15 and 16, while the parameters in parentheses correspond to the purple dashed lines.

Parameters Local Carnot Globally Coherent Carnot Local Otto Globally Coherent Otto

Ω1 12 10 8 9
Ω2 8 9 (6.857) 8 9
Ω3 4 6 6 6 2

3
Ω4 6 6 2

3 (8.75) 6 6 2
3

Hot bath temperature Th = 10 Th = 10 Th = 10 Th = 10
Cold bath temperature Tc = 5 Tc = 5 Tc = 5 Tc = 5

Table 2. Stroke parameters are given in the model units (m.u.), satisfying h̄ = kB = c = 1.

Parameters Value

Coupling constant A ≡ g2/2h̄c 0.01
Integration step size 10−3

8. Quantum Signature: Constant Adiabatic Parameter Cycles Maintaining Global Coherence

A quantum signature is defined as a measurable quantity of the system which affirms non-classical
behavior [23,113]. In the present scenario, we search for thermodynamic properties that are
susceptible. Unlike classical features, quantum properties are sensitive to any measurement that
extracts information on the system state. This feature allows validating the quantum signature by
analyzing the affect of measurements on the cycle performance. Specifically, we compare the globally
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coherent Carnot cycle efficiency to the efficiency in the presence of weak quantum measurements of
energy in the instantaneous energy basis, which are performed on the unitary strokes.

The weak measurement back action effectively leads to a double commutator term
−kd

[
Ĥ,
[
Ĥ, X̂

]]
in the master equation for the system operator X̂ [114]. Such a term leads to pure

dephasing with a dephasing constant kd. We compare the effect of dephasing for different cycle
times for the global Carnot cycle. For a specific cycle time, the results shows a decrease in efficiency
for small dephasing constant kd, Figure 18. This regime corresponds to weak measurements that
only slightly influence the system dynamics and decrease the coherence. When the system is weakly
perturbed, the dephasing only increases the dissipation and, therefore, reduces the efficiency. Beyond a
critical value, stronger measurements (increasing the value of kd) lead to an opposite effect and
improve the efficiency. This result is related to the Zeno effect [115,116] and quantum lubrication [117],
as continuously measuring the qubit forces it to remain on the energy shell. In return, this leads to less
coherence generation and, therefore, reduced dissipation. The measurement backaction and the present
thermodynamic analysis, should be taken with certain care. Once the qubit state is being monitored,
it ceases to be an isolated system and the measurement may be accompanied by an additional heat
transfer [118,119]. In addition, the measurement itself requires resources of work and heat. In the limit
of projective measurement, the resources required become infinite [120]. The additional heat that arises
from the weak measurement and the resources required were not accounted for in the present analysis.
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Figure 18. Efficiency as a function of dephasing constant kd for varying cycle times for the globally
coherent Carnot cycle: Red-continuous τcyc = 102.5, blue dashed τcyc = 103, orange dotted τcyc = 105,
purple long dashed τcyc = 129, units of (2π/Ωmin).

As expected, the influence of the measurement reduces with increasing cycle times, see Figure 18.
Slower driving reduces the amount of coherence throughout the cycle, thus diminishing the affect of
dephasing on the thermodynamic performance. In the quantum adiabatic limit, the system remains on
the energy shell and the measurement does not disturb the system.

9. Discussion

9.1. What the Qubit Can and Cannot Do

The qubit QM model can generate expressions for thermodynamic quantities, based on
first-principle derivations under the paradigm of open quantum systems. It incorporates all of
the features that we expect from finite-time thermodynamics: tradeoff between efficiency and
power, irreversible process, finite heat transport, friction, and heat leaks. A major advantage of
the qubit model is its simplicity. Nevertheless, the model is able to elucidate the main issues of
finite-time-thermodynamics, but not all types of effects. It is important to stress what phenomena we
omitted from this paper, either since they deserve further study or because the model is restricted.
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The present qubit model by construction is limited in describing many body effects on engine
performance. For example, our model engines cannot include the entanglement in engines [121–123],
engines based on many body localization as a working fluid [124], collective and critical quantum
effects in engines [125–129], and synchronization [130].

In the introduction, we stated four possible sources of irreversibility; two sources that were
not included in the present analysis are heat leaks and switching losses. In any realistic engine,
there is always a residual system-bath coupling even during the unitary strokes [131]. As a result,
additional heat currents from the hot to the cold reservoir occur. Moreover, such an interaction causes
additional dephasing. These effects are not counted in our models. In addition, in all four stroke
cycles presented, we ignored the energetic cost of switching the coupling to the bath, g, on and
off [15,18,132,133]. Such switching occurs as the cycle transitions between unitary and open strokes.
If one chooses, in Equation (11), a system bath interaction that satisfies

[
Ĥs−h/c, Ĥs + Ĥh/c

]
= 0 the

energetic cost of switching the coupling on vanishes. If correlations between the system and bath
are generated, decoupling the system from the bath could result in an additional thermodynamic
cost [132,133]. The miniaturization of engines emphasizes the role of fluctuations. Fluctuations add
another twist to the tradeoff between power and efficiency [134–137]. It has recently been claimed
that the possibility of heat engines to have finite power output, operate close to Carnot efficiency,
and only exhibit small fluctuations is excluded [135]. For steady-state heat engines, driven by a
constant temperature difference between the two heat baths, it has been claimed that, out of these
three requirements, only two are compatible. The present qubit model could be a unique platform for
testing these ideas [69,138].

9.2. Further Considerations

There are infinitely many thermal cycles that can operate between given hot and cold baths,
and produce power. These cycles differ by the externally controlled protocols and the switching points
between the strokes. Optimization can be applied to the control protocols in order to enhance power
or to minimize entropy production.

In the present study, we only considered a restricted class of control strategies, and mostly
emphasized control strategies that optimize individual strokes. Such control and optimization relies
on the prior knowledge of the equations of motion of the working medium. The control of the qubit
is based on the full SU(2) algebra. This reflects the physical intuition that, in practice, the control
operators do not commute in general with the system Hamiltonian. As a result, [Ĥ(t), Ĥ(t′)] �= 0.

In the unitary strokes, we explored shortcuts to adiabaticity (STA) protocols, as in Section 4.3.
Without any restriction, employing STA protocols allows carrying out strokes with vanishing stroke
duration. Restricting the energy or the coherence stored within the controller leads to a minimum
stroke duration for frictionless operation. When analyzing the complete engine cycle, the time allocated
to the unitary strokes was found to have no qualitative effect on the cycle performance.

The thermalization process during the open-strokes can be controlled as well. In the study of the
Carnot-type cycles, we employed protocols that speedup the thermalization process, with the cost of
additional dissipated work and concomitant entropy production. The utilized protocols achieve the
target thermal state rapidly, but are by no means optimal. Thermalization strokes are a much newer
development and what features might make them optimal is not yet clear. For example, it is not at all
clear that our STE protocols, which cash in all of the coherence at the end of the stroke, are desirable.
Cashing in this coherence before the end of the stroke may not be helpful as conversion during the
following unitary stroke is easily handled. In fact, macroscopic optimizations of finite-time Carnot
cycles [8] would lead to maximum energy exchange for a given entropy change of the working fluid and
suggests that better use of the heat exchange time would be to utilize it fully by keeping the coherence
for conversion during the following unitary stroke. Our expectation for an optimal implementation
would be one that keeps the entropy production rate constant [139,140], and examining these rates in
Figure 17 shows that our constant μ protocol comes reasonably close.
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Besides serving as a comparison to Carnot-type cycles, our treatment of Otto cycles shows off
some interesting new features. The fact that both the power and the entropy production of the cycle are
proportionate to the change in polarization gives this cycle a unique character. In particular, it implies
that the point of maximum power is the point of maximum entropy production, i.e., the two objectives
are diametrically opposed for this engine. Some light can be shed on this situation by realizing that the
thermal losses are set by the temperature gap between the qubit and the bath at their highest values at
the beginning of the open strokes. After that, this gap decays, with the only control being the time
spent on the stroke. This forces the heat exchange and entropy production to be the largest at the
beginning of the stroke with rate decreasing with longer stroke duration.

This line of reasoning is also what led us to the closer examination of the sudden cycle for which
only the very initial segment of the open branches are used. By the above line of reasoning, this initial
segment is the fastest heat exchange. Using instantaneous counter-diabatic driving for the unitary
strokes leads to overall frictionless operation of the sort discussed in reference [63]. The interesting
feature of sudden cycles, without STAs for the unitary branches, is that instantaneous driving produces
significant coherence, which is actually very useful for the cycles’ performance. The unitary jumps
are reversible; hence, there is no cost to going forwards and backwards and at the end we get all the
invested work back [141]. The same coherence in the forward jump is used to power the backwards
jump. The only difference between a forward and backward jump and sudden engine operation is the
very brief stops in contact with the baths, during which some coherence decays. However, this cost
in coherence is not enough to kill all the power and the sudden cycles give an important example of
an engine in which coherence helps. This is contrary to conjectures in the literature that coherence is
always an undesirable in heat engine operation [78]. Our findings show that this conjecture, while
valid for slow operation, does not appear to be true of all types of operation; there exist valid benefits
of coherence [142].

Increasing the driving increases coherence generation. On the open branches, this coherence
results in rather significant frictional losses that quickly bring us to the turnover point where the
friction dominates the cycle performance and the engine no longer produces work. This turnover point
occurs in the Carnot cycle for much smaller values of the coherence than in the Otto cycle, presumably
because, in the Carnot cycle, the open branches generate additional coherence. It is also the reason
our graphs of the efficiency and the power for the Carnot cycle cannot reach lower cycle times,
cf. Figures 10, 11, 15 and 16. The smooth behavior of both the efficiency and power as a function of the
cycle time for local cycles gives way to oscillations at short times for global cycles (Figures 15 and 16).
Coherence by nature oscillates, and these oscillations result in effectively constructive and destructive
interference with the oscillation during the following stroke in our global cycles. Note that this feature
also shows up for the global Otto, but at much faster cycle times. In general, the global Otto cycle is less
sensitive to coherence (the coherence related operators and energy are on the same scale). While the
sensitivity to coherence depends on the temperature gap between the system and bath during the
open strokes; this lower sensitivity to coherence for the Otto cycle holds for any comparable gaps.

9.3. Comparing to the Harmonic Working Fluid

Engine models with the qubit and harmonic oscillator working medium have been the most
popular quantum systems in the study of quantum heat devices [63,95,107,143–149]. These models
share many common features, including the tradeoff between power and efficiency, and obtain the
Carnot bound in the limit of large cycle time. Moreover, in the limit of low temperatures, the harmonic
oscillator converges to the qubit model, and the thermodynamic performance should be equivalent.
Despite the similarities, there are qualitative differences in the thermodynamic performance. The major
differences between the two models can be traced to the dynamical algebra of the two, SU(2) and
the Heisenberg-Weyl group H3. The former algebra is compact, while the latter is non-compact.
A direct consequence is that the heat capacity of the harmonic oscillator increases with the temperature,
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saturating for high temperatures. In contrast, the capacity of the qubit reaches a maximum value and
then asymptotically decreases as T−2 in the high temperature regime.

The different algebra influences the dynamics as well. For example, for a constant adiabatic
parameter protocol (non-adiabatic driving), the effective frequency of the qubit increases, while in
the harmonic case the effective frequency decreases. In turn, the effective frequency determines the
relaxation rate towards the instantaneous attractor. In both models, this rate increases monotonically
with the effective frequency, and the relaxation rate will be influenced in an opposite manner.
In addition, the detailed balance condition is also modified, which means the internal temperature
of the qubit is reduced in the presence of non-adiabatic driving. When comparing the present global
cycle to an analogous harmonic cycle [75], we find that the qubit cycle has a greater sensitivity to
the presence of coherence (short cycle times). A possible explanation of this result is the shift to a
lower internal temperature and higher relaxation rate, which destroys the coherence and nulls the
extracted work.

In the operation of the engines, both working mediums allow for performing shortcut
protocols [106] on the unitary and open strokes. For frictionless and shortcut cycles, the harmonic Otto
cycle exhibits a maximum efficiency when optimizing the compression ratio, which corresponds to the
classical endoreversible result ηCA, Equation (22) [95,107]. This result is independent of the power of
the engine. In contrast, the qubit model reaches the Curzon–Ahlborn efficiency for an endoreversible
cycle in the high temperature limit, Section 3.2 [64].

9.4. High Temperature Limit

With the motto of learning from example, we can employ the qubit model to elucidate the
path from the quantum first principle derivation to the classical FTT results. The key is the high
temperature limit. This means that the polarization |S̄| is small and it can be used to expand the
thermodynamical expressions to first order. In the elementary Carnot-type cycle this expansion leads
to the Curzon–Ahlborn efficiency at maximum power ηCA, Equation (50), without relying on the linear
Newtonian heat transfer law or the low dissipation limit [67,68,78]. If we consider the cost of driving
(Section 5.4), we find that the entropy production rate Σu at the high temperature limit can be cast into
the template of the Onsager relations, Equation (71).

The qubit engine model operates in the low dissipation limit when the cycle period is very large.
We observe the expected limit (insert of Figure 16), as the dissipated power scales inversely with the
square of the cycle period Pdiss ∝ 1/τ2

cyc. This is generically true, as discussed in the next subsection.

9.5. Dissipation

The problem of operating a heat engine while trying to minimize dissipation has a simple general
answer: turn off the engine so nothing happens. This, of course, has a dissipation cost of zero; you
cannot do better. In order to get an interesting answer to the minimum entropy production question,
we have to require something to happen. For a heat engine, one natural choice is to carry entropy
ΔS from the hot bath at temperature Th to the cold bath at temperature Tc. Once such a constraint
is specified, the interesting optimizations for a finite-time heat engine range from minimum entropy
production to maximum power, with maximum efficiency as merely an intermediate point [8].

The low dissipation limit has been recently employed to bound the dissipation in a heat
engine while using the notion of thermodynamic distance [60,78,150]. This distance, defined on
thermodynamic states using the second derivative of the entropy, bounds the finite-time cost of driving
a system along a given trajectory in the linear response regime, i.e., the slow process limit. In fact
the minimum cost of driving a system with relaxation time τR along a path of length L in time τ is
τRL2/τ. Applied to our engine, when the qubit traces the cycle of length L, the dissipated power
for slow processes must be at least τRL2/τ2 as matching our observations, cf. Figure 12. How to
geometrically bound the dissipation in the context of our non-adiabatic master equation formalism for
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faster driving is not clear. A major difference is the coupling of energy and coherence. This issue is left
for future efforts.

9.6. Experimental Connections

Realization of engines with a working medium composed of an ensemble of spins is an expected
development, such as in an NMR experiment [151]. The surprise is the ability to operate an engine
with a single spin.

The experimental realization of single qubit engines and refrigerators is in the process of rapid
development. In part, this progress is part of a larger effort in developing quantum technology.
This breakthrough is due to the ability to cool the ambient environment to temperatures in the range,
or colder than, the qubit energy gap [152]. Moreover, the rapid progress in manipulations, designed for
quantum information processing, can be employed for the unitary strokes of quantum heat engines.
Recently, experimental realizations of four-stroke cycles were demonstrated [42–44] as well as a
two-stroke engine [153]. Another application for quantum engines is in quantum sensing and in
particular, thermometry. Suggestions that are based on the transition point between a quantum engine
cycle and a refrigerator have recently been proposed [154–157].

A more immediate goal is quantum refrigeration [152,158]. Because any quantum device
operates in ultracold temperatures, the drive for miniaturization will require an on-the-chip quantum
refrigerator replacing the cumbersome dilution refrigerators of today.

10. Conclusions

The qubit thermal engine has been a source of insight concerning finite-time thermodynamics for
30 years, with its origins dating back to a time when qubits were still two-level-systems. Among the
lessons from the model was the role of coherence in friction, like phenomena, in the unitary strokes.
Further analysis revealed that the generation of coherence occurs on the unitary strokes and is separated
from its dissipation, which occurs when the qubit is in contact with the thermal bath. This insight led
first to the notion of quantum friction and later to the exploration of shortcuts to adiabaticity (STA).
The analysis of the qubit engine generated a unifying overview of these finite-time thermodynamic
phenomena. We have tried to present such an overview alongside our new findings.

Our study explores a new chapter in the behavior of the qubit: the study of a driven isothermal
process. Recent progress in open system dynamics allowed for the treatment of thermalization
processes, driven processes with time dependent Hamiltonians in contact with a heat bath [34,91,99].
This allowed for the Carnot cycle to be analyzed for shorter times than the previous linear
response treatments.

This breakthrough was achieved by using a basis of eigenvectors of the instantaneous propagator
of the system dynamics in the interaction representation while exploiting the dynamical SU(2) algebra
of the qubit. The key to the breakthrough was the non-adiabatic master equation (NAME) [34] that
could correctly describe the dynamics of thermalization in a thermodynamically consistent way and
eliminate issues of time reordering [99]. In the qubit model, the instantaneous attractor is rotated from
the energy direction by an amount that depends on the speed of the driving and it reveals the details
of the coupling between energy and coherence.

In the present manuscript, we have analyzed local cycles where the coherence is required to
vanish at the switching points between strokes as well as global cycles where coherence is set only
by the driving protocols and it is carried from one stroke to the next. For local cycles we designed
and implemented an STE protocol that mimics an isotherm. For the global cycles we used only
constant adiabatic parameter μ trajectories. Both these types of cycles are analyzed and compared.
As a result, for the qubit engine we are now able to assess the role of coherence along the isothermal
strokes. The global cycles exhibit oscillations in their efficiency and power once we reach small cycle
times (fast driving). These oscillations are due to the oscillations in coherence and how the timing
of the switching between strokes happens to catch the coherence oscillation of the previous stroke.
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The Carnot-like cycles show enhanced sensitivity to coherence. This coherence can be reduced by weak
measurement of the energy causing pure dephasing. Dephasing is damaging for short cycles periods,
but it can be beneficial for intermediate cycle times. Another coherence related finding concerns the
global Otto cycle in the sudden limit near which the coherence of the engine acts as a useful flywheel.

Our analysis calculates the entropy production rate from first principles. Using inertial coordinates
for the qubit, we generally find that this entropy production naturally takes a flux-times-force form.
In the high temperature limit, we find a linear relation between these fluxes and forces and an associated
Onsager relation.

The present manuscript managed to compare the known behavior of local and global Otto and
Carnot-like cycles. That is a lot to compare. We tried to focus on the new emergent phenomena in a
coherent Carnot-type cycle. We found that, to discuss these phenomena, we needed a backdrop of
related results to compare to. The above attempted synthesis is the outcome.
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and Amikam Levy [34]. R.D. continued the development setting it on firm theoretical grounds with the inertial
theorem. Returning to the original objective, a shortcut to equilibration was developed [91]. The present study
incorporates a broad perspective as well as many new results on the role of coherence in entropy production in
the Carnot and Otto cycles. All authors have read and agreed to the published version of the manuscript.
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Abbreviations

The following abbreviations are used in this manuscript:

GKLS Gorini, Kossakowski, Linblad, Sudarshan; Master equation
CPTP Completely Positive Trace Preserving map
NAME Non-Adiabatic Master Equation
FEAT Fastest Effectively Adiabatic transition
STA Shortcut To Adiabticity
STE Shortcut To Equilibrium

Appendix A. Representations of the Qubit State

The qubit state can be described in many alternative ways. Each representation highlights a
certain aspect of the engine. We will now summarize the different approaches and the relation between
them. The basic construction relies on a set of orthogonal operators that form a closed Lie Algebra {Â}

[Âi, Âj] = ∑
k

Cij
k Âk (A1)

where Cij
k is the structure tensor of the algebra. The orthogonality relation:

tr{Â†
i Âj} = δij , (A2)
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where the identity Î is part of the set and all other operators are therefore traceless. Under these
conditions the state ρ̂ can be expanded as a linear combination of the set {Â}

ρ̂ =
1
N

Î + ∑
j

αj Âj , (A3)

where αj = 〈Âj〉 and N is the size of Hilbert space. An alternative formulation includes representing
the state in terms of a generalized Gibbs state [101]:

ρ̂ =
1
Z

exp

(
∑

j
λj Âj

)
. (A4)

The generalized Gibbs state is the maximum entropy state subject to the constrains of the
expectation value 〈Âj〉 = tr{ρ̂Âj}, this leads to a set of non linear equations which determines
the Lagrange multipliers λj. The forms (A3) and (A4) are unique once the expectation values 〈Âj〉
are known.

It is convenient to express the generalized Gibbs state as a product form [159]

ρ̂ =
1
Z ∏

k
exp(γj Âj) . (A5)

This form is not unique since it depends on the order of operators. Once the order is set the
coefficients {γj} are determined from the expectation values {〈Âj〉}.

Specifically, for the qubit we employ the SU(2) algebra and three sets of orthogonal bases. The
first basis set �s = {Ŝx, Ŝy, Ŝz}T represents the static polarization, where Ŝj are the spin operators
with the commutation relation of the SU(2) algebra [Ŝi, Ŝj] = ih̄εijkŜk and σ̂j. In terms of the Pauli
operators σ̂j they are expressed as Ŝj =

h̄
2 σ̂j. An arbitrary state is expressed as a linear combination

of these operators in Equation (4). A geometric interpretation uses this set as a Cartesian basis in 3D
Figure 1. A time-dependent rotation around the Ŝy axis leads, up to a scaling, to the dynamical basis
set �v (t) = {Ĥ, L̂, Ĉ}T , Equation (32). The SU(2) algebra in the polarization basis defines a rotation in
Liouville space

Ry(φ) = exp
(

i
h̄
[Ŝy, •]φ

)
= e

i
h̄ Ŝyφ • e−

i
h̄ Ŝyφ , (A6)

and the relation between the two basis sets

�v = Ω(t)Ry(φ(t))�s (A7)

where φ = arccos(ω/Ω). The explicit dependence of Ω(t) and φ(t) means that the dynamical basis
set �v is time-dependent.

In terms of the dynamical basis set, the linear form of the state Equation (33) is defined. Since the
Hamiltonian Ĥ is part of �v, it is natural to define the generalized Gibbs state

ρ̂ =
1
Z

exp
(
−(βĤ + λL̂ + γĈ)

)
(A8)

The standard Gibbs state is obtained when γ = λ = 0 then β = 2
h̄Ω tanh−1

(
2〈Ĥ〉
h̄Ω

)
.

The third basis set is obtained from the eigenoperators of the free propagator {χ̂, σ̂, σ̂†}T ,
Equation (52). In terms of this set the linear form of the state in the interaction representation is
given by Equation (58). In addition, the state can be expressed in a generalized Gibbs state form

ρ̃ = Z̄−1 exp
(
−
(

β̄χ̂ + γ̄σ̂ + γ̄∗σ̂†
))

. (A9)
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An equivalent product form has been previously been employed in Ref. [91]

ρ̃ = Z−1eγ̃σ̂eβ̃χ̂eγ̃∗σ̂†
, (A10)

where Z̃ ≡ Z̃ (t) = tr (ρ̃S (t)) is the partition function, with time-dependent parameters γ̃ (t) and β̃.
In Section 5.4 we modify the basis set �g = {χ̂, σ̂, σ̂†}T to a hemitian basis: �g′ = {χ̂, σ̂x, σ̂y}T where

σ̂x = 1√
2
(σ̂ + σ̂†) and σ̂y = i√

2
(σ̂ − σ̂†). The new representation allows relating the basis �v to �g by a

scaling and rotation around the L̂ axis (cf. Figure 1)

�g′ =
√

2
h̄Ω

RL(ξ)�v , (A11)

where ξ = arccos(1/
√

1 + μ2) and RL(ξ) = exp
(

i
h̄Ω [L̂, •]ξ

)
.

When studying the entropy production rate in Section 5.4 we take advantage of the form

ρ̃ = Z̄−1 exp
(
−
(

β̄χ̂ + γ̄xσ̂x + γ̄yσ̂y
))

. (A12)

The {β̄, γ̄x, γ̄y} time-dependent parameters are defined by the eigenoperators expectation values.
The relations are given by

〈χ̂〉int = f (r) β̄ ; 〈σ̂x〉int = f (r) γ̄x ; 〈σ̂y〉int = f (r) γ̄y , (A13)

where 〈•〉 = tr (•ρ̃), f (r) = − 1√
2r

tanh
(

r√
2

)
with r =

√
β̄2 + γ̄2

x + γ̄2
y. In the large temperature limit

f (r) ≈ − 1
2 , which leads to simple relations between the thermodynamic fluxes and forces in the

classical regime. Alternatively, the parameters can be expressed in terms of the expectation values

β̄ = s (k) 〈χ̂〉int ; γ̃x = s (k) 〈σ̂x〉int ; γ̃y = s (k) 〈σ̂y〉int , (A14)

where s (k) = log
(

1−
√

2k√
2k+1

)
/
(√

2k
)

with k =
√
〈σ̂x〉2

int + 〈σ̂y〉2
int + 〈χ̂〉2

int

Appendix B. Explicit Expressions

The transition matrix from the basis operators �v to the basis operators �g. The matrix appears in
the inertial solution of the qubit, Equation (51):

P =

⎡⎢⎣ 1 −μ −μ

0 iκ −iκ
μ 1 1

⎤⎥⎦ . (A15)

Table A1. Definitions and notations summary.

Parameters Description

{Ĥ, L̂, Ĉ} ; �v dynamical operator basis; associated vector in Liouville space
{Ŝx, Ŝy, Ŝz} ;�s polarization operator basis; vector in Liouville space
{χ̂, σ̂, σ̂†} ; �g eigenoperator basis; vector in Liouville space
{χ̂, σ̂x, σ̂y} ; �g′ eigenoperator basis; vector in Liouville space

XH Heisenberg picture
X̃ interaction picture

ω and ε control parameters
Ω generalized Rabi frequency
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Table A1. Cont.

Parameters Description

�S polarization vector
S̄ polarization

S̄H projection of the polarization vector on the energy axis
S̄eq thermal polarization
T bath temperature

{Λ} dynamical propagators
Sv.n von-Neumann entropy
SH energy entropy
σu

cyc entropy production per cycle
Σu entropy production rate
Γ decay rate

ηC and WC efficiency and work of the Carnot cycle
ηi, Wi, Pi and Qi efficiency, work, power and heat of the i’th cycle

μ adiabatic parameter
κ Inertial scaling factor
α effective frequency
C coherence

W f ric work to counter friction
φ arccos(ω/Ω)
Φ φa − φb
P transformation matrix between �v and �g
D eigenvalue matrix of the eigenoperators
Ti effective temperatures
Jy thermodynamic fluxes
Fy thermodynamic force
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Abstract: In this work we considered the quantum Otto cycle within an optimization framework.
The goal was maximizing the power for a heat engine or maximizing the cooling power for a
refrigerator. In the field of finite-time quantum thermodynamics it is common to consider frictionless
trajectories since these have been shown to maximize the work extraction during the adiabatic
processes. Furthermore, for frictionless cycles, the energy of the system decouples from the other
degrees of freedom, thereby simplifying the mathematical treatment. Instead, we considered general
limit cycles and we used analytical techniques to compute the derivative of the work production over
the whole cycle with respect to the time allocated for each of the adiabatic processes. By doing so,
we were able to directly show that the frictionless cycle maximizes the work production, implying
that the optimal power production must necessarily allow for some friction generation so that the
duration of the cycle is reduced.

Keywords: quantum thermodynamics; maximum power; shortcut to adiabaticity; quantum friction;
Otto cycle; quantum engine; quantum refrigerator

1. Introduction

Quantum models of heat engines and refrigerators have been investigated extensively, especially
because of the relevance of these models to the problem of cooling at extremely low temperatures,
i.e., near absolute zero. The most well-studied case is the quantum analog of the Otto cycle [1–4] for
which heat-exchange and work-exchange take place in different steps of the thermodynamic cycle,
although the Carnot cycle has been investigated as well [5,6].

We consider the typical optimization perspective assumed in the field of finite-time
thermodynamics: maximization of the average power extracted from a heat-engine [7–9] or the
average cooling power provided by a refrigerator [3,10].

In the seminal works by Berry [11] and by Rezek et al. [12] it has been shown that finite-time
cycles can be constructed such that quantum friction is entirely suppressed. This result is surprising
since intuition would suggest that frictionless operation could only be achieved in the quasi-static
regime, i.e., cycles of infinite duration. The attainability of frictionless finite-time quantum processes
has been experimentally confirmed by Deng et al. [13].

Salamon et al. [14] showed that these frictionless adiabatic trajectories maximize the work
exchanged with the system with respect to the compression/expansion time-law. This is due to the
suppression of quantum friction which would otherwise cause part of the exchanged energy to be
spent in increasing the coherence of the system. Similarly to other relevant studies, such as those by
Abah et al. [15,16], frictionless trajectories have been shown to be the optimal finite-time processes that
connect two different thermal states while guaranteeing maximal work extraction, i.e., equal to that
obtained in the quasi-static limit.

These analyses are often very insightful [1,17,18], due to the fact that the resulting cycles are
mathematically simpler to investigate, thereby admitting analytical computation of, e.g., power and
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efficiency. Frequently, cycles for which the power is optimized with the constraint of frictionless
adiabats are referred to as maximum-power cycles. The argument behind this statement is that the
maximum realizable work can be obtained in finite time, but there is a lower bound to the minimum
time required to achieve this effect. This observation would appear to suggest that the minimum-time
frictionless cycle has to correspond to maximum power.

However, as we argue in the present work, the frictionless cycles are not truly maximizing the
power with respect to the time allocated for the cycle. In fact, by relaxing the requirement of frictionless
adiabats it is possible to reduce the time allocation for the adiabatic processes, thereby improving
the power extraction, although the work extraction per cycle is slightly reduced as well. Evidence
for this argument has already been presented by employing numerical methods [19]. Moreover,
the experimental realization of a quantum engine demonstrated by Peterson et al. [2] also revealed
that maximal power production is obtained by a time allocation that is shorter than that of a
maximal-work cycle.

Here we consider general limit-cycle trajectories as functions of the time allocation for the adiabatic
processes. By employing analytical calculations, we explicitly show for the first time that the special
frictionless cycles provide maximum work extraction over the whole cycle. Since the average power
is the work divided by the total duration of the cycle, maximum-work cycles cannot simultaneously
be maximum-power cycles. It is convenient to allow for a small amount of friction production,
which slightly reduces the work extraction, in order to reduce the total duration of the cycle and
maximize the average power.

The case of a quantum heat engine based on harmonic oscillators is used here as a prototypical
system and is analyzed in detail. Subsequently, we consider generalization of the results to other
relevant cases. In particular, we also consider the case of maximum cooling power for a quantum
refrigerator based on harmonic oscillators. We also consider quantum heat engines and refrigerators
with different working fluids, namely, an ensemble of spin systems. All these other cases are shown to
be analogous to the harmonic heat engine in that frictionless cycles are not providing maximal power
with respect to the time allocation.

2. Framework

2.1. Notation and Units

In this paper, the calligraphic typeface (e.g., W) is used for scalar quantities, underlined uppercase
letters (e.g., X) are used for column vectors, underlined lowercase letters (e.g., w) are used for row
vectors and bold letters (e.g., U) are used for matrices.

Superscripts correspond to the row indexes and subscripts to the column indexes. For example
(AB)2

3 indicates the entry on the second row and third column of the product between the matrix
A and the matrix B. Operators are denoted with the ˆ symbol, as in X̂. Super-operators are linear
operators having operators as input and output arguments. The letter L in calligraphic font is used for
super-operators. For example, LH(X̂) denotes the super-operator LH applied to the operator X̂.

Moreover, in this work we assume that the mass m of the oscillators, the Boltzmann constant k
and the reduced Planck constant h̄ are all equal to 1.

2.2. Governing Equations

We briefly review here the mathematical formalism discussed in reference [12,19]. The working
fluid of the engine is an ensemble of identical quantum harmonic oscillators. The corresponding
Hamiltonian operator Ĥ is parameterized by the angular frequency ω and the mass m of each oscillator:

Ĥ(t) =
1

2m
P̂2 +

1
2

m(ω(t))2 Q̂2 (1)
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where Q̂ and P̂ are the position operator and momentum operator, respectively. In the Heisenberg
formalism, the time-evolution of a Hermitian operator X̂ is described by the following equation
of motion:

d
dt

X̂(t) = L∗
H(X̂(t)) + L∗

D(X̂(t)) +
∂

∂t
X̂(t), (2)

where L∗
H and L∗

D denote the unitary and non-unitary Liouville super-operators, respectively [1].
The unitary super-operator L∗

H describes the evolution of a closed system, whose Hamiltonian may be
explicitly time-dependent. The super-operator L∗

H is given by:

L∗
H(X̂(t)) =

i
h̄
[
Ĥ, X̂

]
(3)

For an open system [20,21], i.e., coupled to a thermal reservoir, it is necessary to include the additional
non-unitary super-operator L∗

D. For the harmonic oscillator, the non-unitary super-operator is given by:

L∗
D(X̂(t)) = k↓

(
â†X̂â − 1

2

{
â† â, X̂

})
+ k↑

(
âX̂â† − 1

2

{
ââ†, X̂

})
. (4)

where k↓ and k↑ are the transition rates, â = 2−1/2
(
(mω/h̄)1/2 Q̂ + i (1/(mωh̄))1/2 P̂

)
is the

annihilation operator, its Hermitian conjugate â† is the creation operator and the curly brackets
denote the anti-commutator between two operators.

The form assumed by Equation (2) depends on which Lie algebra of Hermitian operators has
been chosen [8,22]. In this work, we consider the set {Ĥ, L̂, Ĉ, 1̂}, where L̂ denotes the Lagrangian
operator, Ĉ = (ω/2)

(
Q̂P̂ + P̂Q̂

)
denotes the position-momentum correlation operator and 1̂ denotes

the identity operator. This set of operators, together with the Lie bracket consisting of taking the
commutator between two operators, forms a Lie algebra. It can be shown that the algebra is closed
with respect to the time-evolution described by Equation (2). Therefore, denoting by X the vector of
expectation values (〈Ĥ〉, 〈L̂〉, 〈Ĉ〉, 〈1̂〉)T , the linear equation of motion (2) is expressed as:

d
dt

X = AX (5)

The matrix A is obtained by plugging each of the operators {Ĥ, L̂, Ĉ, 1̂} in Equation (2) and applying
the commutation rules derived from the canonical commutation relation [Q̂, P̂] = ih̄.

During the adiabatic processes, i.e., when the ensemble of oscillators is decoupled from the
thermal reservoir, the matrix A is given by:

A = ω(t)

⎛⎜⎜⎜⎝
μ −μ 0 0
−μ μ −2 0
0 2 μ 0
0 0 0 0

⎞⎟⎟⎟⎠ (6)

where μ denotes the dimensionless non-adiabatic parameter; i.e., μ = ω̇/ω2. In this work the
parameter μ is assumed to be constant during each of the adiabatic processes, leading to the following
time-evolution law [1]:

ω(t) =
ω(0)

1 − μω(0)t
(7)

During the isochoric processes the frequency ω is constant, while heat is flowing between the
ensemble of oscillators and one of the thermal reservoirs. The matrix A for these steps of the cycle is
given by:
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A =

⎛⎜⎜⎜⎝
−Γ 0 0 +ΓHeq

0 −Γ −2ω 0
0 +2ω −Γ 0
0 0 0 0

⎞⎟⎟⎟⎠ (8)

where Γ = k↓ − k↑ denotes the heat conductance and Heq denotes the thermal equilibrium energy,
which is a function of the temperature T of the heat reservoir. By inspecting Equation (8), we notice
that the dynamic evolution of 〈L̂〉 and 〈Ĉ〉, which during the isochoric processes is decoupled from
the evolution of 〈Ĥ〉 and 〈1̂〉, corresponds to a rotation with frequency 2ω accompanied by a decrease
of the rotation amplitude. In the long-time limit the amplitude of the rotations approaches zero,
thereby leading to a zero-coherence state for which 〈L̂〉 = 〈Ĉ〉 = 0, and 〈Ĥ〉 = Heq.

The formal solution of Equation (5) is given by the following time-evolution equation:

X(t) = U(t)X(0) (9)

where U is called time-evolution matrix, and X(0) is the vector defining the initial state at t = 0.
We consider the quantum Otto cycle, which consists of four processes. It is customary to employ

the same terminology used for the classical Otto cycle. The rationale behind this analogy is that
when the frequency ω is larger, the oscillators composing the working fluid are more tightly confined,
which corresponds to a smaller available volume. Conversely, when the frequency is smaller the
oscillators are less tightly confined, corresponding to a larger volume. Therefore, the two steps
for which the frequency is held constant are called hot and cold isochoric processes, depending
on which of the two thermal reservoirs is contact with the working medium, i.e., the hot or cold
heat reservoir, respectively. In some works the term iso-frequency is used to refer to the isochoric
processes. Following the analogy with the classical Otto cycle, the step for which the frequency is
decreasing is called expansion adiabat, and the step for which the frequency is increasing is called
compression adiabat.

Each of the four processes of the cycle is assigned a time-evolution matrix. In particular, we denote
by UH , UHC, UC and UCH , the time-evolution matrices for the hot isochore, the expansion adiabat,
the cold isochore and the compression adiabat, respectively. The closed-form expression of each
of the time-evolution matrices has previously been derived [1,12]. Therefore, the time-evolution
matrix for one entire cycle, denoted simply by U, is given by the ordered composition of the four
individual matrices:

U = UCHUCUHCUH (10)

Analogous notation is also used for the time allocated for each of the four processes:

τ = τH + τHC + τC + τCH (11)

The temperatures for the hot and cold thermal reservoirs are denoted by TH and TC, respectively.
The frequencies for the hot and cold isochoric processes are denoted by ωH and ωC, respectively.

It is important to stress that Equation (11) must not be interpreted as a constraint. In fact,
the unconstrained optimization problem considered in this paper is the optimization of the average
power with respect to the four times allocated for the four processes composing the Otto cycle. In other
words, the total duration τ of the cycle is not predetermined. We are interested in the behavior of the
heat machine at steady state, also called limit cycle, for which the state of the system is the same at the
beginning and at the end of each cycle.

2.3. Frictionless Cycles

Among all the possible cyclic trajectories, we consider a special class, called frictionless cycles.
For the time-dependence described by Equation (7) (i.e., constant μ), these special trajectories can
be obtained by suitably selecting the times allocated for the adiabatic processes, i.e., τHC and τCH .
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The details can be found in reference [12,14]. In brief, the dynamic of sufficiently slow, i.e., μ < 2,
adiabatic processes describe an oscillation overlapping a slower drift of the frame of reference. If the
values of τHC and τCH are selected so that an integer number of such oscillations occurs, the process
maps a zero-coherence initial state, i.e., one for which 〈L̂〉 = 〈Ĉ〉 = 0, into another zero-coherence
final state with different energy. If this is true for both the adiabatic processes, the resulting limit-cycle
will maintain the property 〈L̂〉 = 〈Ĉ〉 = 0 for the whole duration of each of the isochoric processes.
The condition of having an integer number of oscillations limits the allowed values of adiabat times to
a countable set. These times will be denoted by τ∗

n , where n is a positive integer.
It is worth mentioning that the strategy of selecting these special cycles is sometimes called

shortcut to adiabaticity [16,23,24]. The reason is that the effect 〈L̂〉 = 〈Ĉ〉 = 0 can also be obtained in
the quasi-static limit: i.e., when τH , τHC, τC, τCH → +∞. The adiabatic theorem predicts that in the
quasi-static regime the occupation probability of each of the energy levels remains constant during the
adiabatic processes. Consequently, the amount of energy lost to quantum friction is zero. However,
it is somewhat surprising that the same effect can also be attained in finite-time by a suitable selection
of the adiabat times, hence the term shortcut to adiabaticity.

Besides properly selecting τHC and τCH with ω time-dependence characterized by constant μ,
frictionless adiabat processes can also be obtained by considering different protocols ω(t). Most notably,
a bang–bang type solution [14] leads to frictionless cycles with the additional advantage of minimizing
the time allocated for the adiabatic process. The minimum time bang–bang ω(t) evolution is composed
of five steps: an initial sudden transition to the final frequency; a wait of duration τ1; a sudden
transition back to the initial frequency; a wait of duration τ2; and finally, one more sudden transition
to the final frequency. The waiting periods τ1 and τ2 are determined by the initial and final frequencies.
The total duration of the adiabatic process is thus constrained to τ1 + τ2.

Figure 1 illustrates three different cycles by showing the time-evolution of the vector
(〈Ĥ〉, 〈L̂〉, 〈Ĉ〉)T , i.e., the first three components of the vector X introduced in Section 2.2. The cycle
shown in Figure 1a corresponds to constant μ adiabatic processes for which the allocated times are not
selected among the frictionless set {τ∗

n}. Figure 1b shows a constant μ frictionless cycle and Figure 1c
shows a minimum time bang–bang frictionless cycle. As can be noticed, for frictionless cycles the
condition 〈L̂〉 = 〈Ĉ〉 = 0 is satisfied for the whole duration of the isochoric processes.

The search for frictionless solutions can also be seen from a different perspective, closely related to
that of searching for the optimal control ω(t). In this framework, an additional driving Hamiltonian is
added to the original Hamiltonian [25] to counteract the non-adiabatic effects that are normally present
for a finite-time process. By doing so, the transitions between different eigenstates of the original
Hamiltonian can be entirely suppressed. For this reason, this strategy is often called transitionless
quantum driving [11,26].
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Figure 1. Three limit cycles corresponding to different adiabatic processes. For the cycles shown in
(a,b) the ω(t) time dependence is characterized by constant μ. For the case of (b) the adiabat time
allocations τHC and τCH are chosen among the frictionless set {τ∗

n }, while for the case of (a) they are
not. (c) A frictionless bang–bang cycle.
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3. Analytical Results

In this work we consider the following optimization problem: maximize the average power
extraction of the engine with respect to the four variables τH , τHC, τC and τCH , i.e., the time allocations
for each of the four processes.

As mentioned in the introduction, we will show that the trajectories leading to maximum average
power are not frictionless cycles. First, we will show in Section 3.1 that frictionless cycles are relative
maxima of the total work extracted during a cycle with respect to the times τHC and τCH allocated
during the adiabatic processes. Then in Section 3.2 we show that in order to maximize the average
power it is convenient to reduce the durations of the adiabat times, thereby allowing for some quantum
friction to be generated.

In Section 3.3 we show an analogous result for a quantum refrigerator, where the optimization
objective is the maximization of the average cooling power. Finally, in Section 3.4 we argue why
identical results are also applicable to heat engines and refrigeration having as working fluid an
ensemble of spin systems.

3.1. Maximum Work

We want to show that for a constant μ frictionless trajectory the total work Wtot extracted from
the system during one cycle is locally optimal with respect to the adiabat times:(

∂Wtot

∂τHC

)
τHC = τ∗

n
τCH = τ∗

m

=

(
∂Wtot

∂τCH

)
τHC = τ∗

n
τCH = τ∗

m

= 0 ∀n, m, τH , τC (12)

We start from the compression adiabat by showing that the derivative of Wtot with respect to τCH is
zero when the trajectory is frictionless. We will then argue that the derivation is completely analogous
for the expansion adiabat and τHC.

The amount of heat QH extracted during the hot isochore is a linear function of the initial state
vector X∞ of the limit cycle, and can thus be expressed as the scalar product between a row vector q

H
and X∞. The row vector q

H
does not depend on the initial state of the system, but only on the process

that the system undergoes during the hot isochoirc step. When q
H

is applied to the initial state vector,
the result is the amount of heat extracted during the hot isochore:

QH = q
H

X∞ = ∑
k
(UH)

1
k(X∞)k − (X∞)1 (13)

Denoting by 1 the identity matrix, the row vector q
H

is defined as:

(q
H
)k = (UH − 1)1

k (14)

Similarly, the amount of heat QC extracted during the cold isochore is obtained from the state vector
(UHCUHX∞) at the beginning of the cold isochore:

QC = q
C

X∞ = ∑
k
(UC)

1
k(UHCUHX∞)k − (UHCUHX∞)1 (15)

The row vector q
C

is defined as:

(q
C
)k = (UCUHCUH − UHCU)1

k (16)

At steady state the total work Wtot extracted from the system is equal to the total heat flowing into the
system, and is thus given by the sum of the two contributions:
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Wtot = wtotX∞ = q
H

X∞ + q
C

X∞ (17)

We can calculate the derivative of the work with respect to τCH as:

∂τCHWtot = (∂τCH wtot)X∞ + wtot(∂τCH X∞) (18)

As we can see from Equations (14) and (16), the total work vector wtot is independent of UCH , and its
derivative with respect to τCH is thus zero. The total work Wtot depends on τCH only through the limit
cycle initial vector X∞. In order for the work to be a stationary point with respect to τCH , the second
term on the right-hand side of Equation (18) must be zero:

∂τCHWtot = wtot(∂τCH X∞) = 0 (19)

For now we only need to assume that τHC = τ∗
n . It can be shown that the second and third

components of wtot are zero for such a trajectory; i.e., the work only depends on 〈Ĥ〉 and 〈1̂〉. Denoting
by � the non-zero matrix entries, we have:

τHC = τ∗
n ⇒ wtot =

(
� 0 0 �

)
(20)

Intuitively, it is not surprising that for a frictionless trajectory the work extraction does not depend on
〈L̂〉 or 〈Ĉ〉. In fact, the evolution during the icochoric processes decouples Ĥ from L̂ and Ĉ, and the
time τHC allocated for the expansion adiabat is picked in such a way that an integer number of
oscillations occurs and the state of the system returns to the same accumulated phase (i.e., iΩθ = nπ),
with Ĥ and L̂ rescaled by a factor ωC/ωH . During the first three steps of the cycle the Hamiltonian,
which determine the heat exchange, evolution is thus completely decoupled from L̂ and Ĉ, and this
explains why the work, when expressed as a functionn of the state of the system at the beginning of
the cycle, does not depend on 〈L̂〉 or 〈Ĉ〉.

The fourth component of ∂τCH X∞ is clearly zero since it corresponds to the expectation value
〈1̂〉 which is always equal to 1. Therefore, we only need to show that its first component is also zero.
It is convenient to start from the equation expressing the invariance, with respect to the whole cycle
evolution matrix U, of the limit cycle’s initial state X∞:

UX∞ = X∞ (21)

By taking the derivative with respect to τCH on both sides we get:

∂τCH (UX∞) = (∂τCH U)X∞ + U(∂τCH X∞) = (∂τCH X∞) (22)

Reordering, we get:
(U − 1)(∂τCH X∞) = −(∂τCH U)X∞ (23)

The τCH derivative of X∞ can thus be obtained by solving the linear system of equations expressed by
Equation (23). The derivative (∂τCH U) is obtained from (∂τCH UCH):

(∂τCH U) = (∂τCH UCH)UCUHCUH (24)

All the quantities appearing in Equation (23) can be easily evaluated for τCH = τ∗
m and τHC = τ∗

n ,
before solving the linear system for ∂τCH X∞. In fact, the operation of replacing the values of τCH and
τHC and that of solving the system are interchangeable, but the calculation is easier if the substitution is
performed before solving the system. In frictionless conditions we have the following matrix structure:
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U =

⎛⎜⎜⎜⎝
� 0 0 �

0 � � 0
0 � � 0
0 0 0 �

⎞⎟⎟⎟⎠ ; (∂τCH U) =

⎛⎜⎜⎜⎝
0 � � 0
� � � �

0 � � 0
0 0 0 0

⎞⎟⎟⎟⎠ ; X∞ =

⎛⎜⎜⎜⎝
�

0
0
1

⎞⎟⎟⎟⎠ (25)

The second and third components of X∞ are zero, and also the first and fourth components of the
first row of ∂τCH U are zero. This implies that the first component of the vector −(∂τCH U)X∞ on the
right-hand side of Equation (23) is zero:

− (∂τCH U)X∞ =
(

0 � 0 0
)T

(26)

Since the matrix (U − 1) decouples the first and fourth components, (i.e., Ĥ and 1̂), from the second
and third components, (i.e., L̂ and Ĉ), solving the linear system shows that indeed the first component
of ∂τCH X∞ is zero:

∂τCH X∞ =
(

0 � � 0
)T

(27)

Plugging Equations (20) and (27) into Equation (19) shows that:(
∂Wtot

∂τCH

)
τHC = τ∗

n
τCH = τ∗

m

= 0 ∀n, m, τH , τC (28)

The same result can be shown for the expansion adiabat by considering a cycle in which the four steps
are rearranged in such a way that the expansion adiabat is the last step (i.e., cold isochore, compression
adiabat, hot isochore, expansion adiabat).

As discussed in [1], the total work for the case of frictionless trajectories can be computed
analytically, and it assumes a particularly simple expression:

Wtot = −GW(TC, ωC, TH , ωH)F(τC, τH) (29)

where the function GW is entirely determine by the engine parameters

GW(TC, ωC, TH , ωH) =

(
ωH − ωC

eωH/TH − 1
− ωH − ωC

eωC/TC − 1

)
(30)

and the function F is determined by the isochore times and the heat conductance Γ

F(τC, τH) =
(eΓτH − 1)(eΓτC − 1)

eΓτC+ΓτH − 1
(31)

It is important to stress that the value of Wtot for frictionless cycles remains the same regardless of the
particular choice of ω(t) time dependence, i.e., constant μ or bang–bang process.

3.2. Maximum Power

It is now easy to show that the power cannot be optimal for frictionless trajectories. The average
power P tot is defined as the work Wtot extracted during a cycle divided by the duration τ of the cycle.
It is convenient to express P tot as the following product:

P tot = Wtot f (τCH) (32)

where the scaling function f (τCH) is given by:

f (τCH) =
1

τH + τHC + τC + τCH
(33)
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Since the derivative of f (τCH) is always negative, it is already apparent that the trajectories that are
locally optimal for Wtot cannot be optimal for P tot. From Equation (32), the derivative of P tot with
respect to τCH is given by:

∂τCHP tot = (∂τCHWtot)( f (τCH)) + (Wtot)(∂τCH f (τCH)) (34)

As shown in the previous section, the derivative ∂τCHWtot is zero when both the conditions τCH = τ∗
m

and τHC = τ∗
n are satisfied. Therefore, the derivative of the average power P tot with respect to τCH is

given by:
∂τCHP tot = (Wtot)(∂τCH f (τCH)) (35)

Since ∂τCH f (τCH) < 0 and Wtot > 0 the derivative is negative. It is thus convenient to reduce τCH
from τ∗

m and allow for some friction generation in order to reduce the total cycle time and increase the
average power P tot. These arguments are illustrated in Figure 2. Work and average power are plotted
as functions of the compression adiabat time. The expansion adiabat time is τHC = τ∗

1 , thereby leading
to a frictionless cycle when τCH ∈ {τ∗

n}. As can be seen from the graph, the work is maximized for these
choices, always leading to the value expressed by Equation (29). On the other hand, the maximum
power is obtained when τCH is slightly smaller than τ∗

1 . The results shown in Figure 2 correspond to
the following choice of parameters: ωC = 15, ωH = 30, TC = 100/3, TH = 125, Γ = 0.7.

So far it was implicitly assumed that around the point τCH = τ∗
n , τHC = τ∗

m the work extraction
Wtot is differentiable with respect to the time allocations τHC and τCH and that the derivative is
continuous around that point. By considering the definitions [1] of the time evolution matrices
{UH , UHC, UC, UCH}, it is easy to show that they are continuously differentiable functions of all
the parameters, including the time allocations. Therefore, the same property is satisfied by the row
vectors {wtot, q

H
, q

C
}, since these are defined from the evolution matrices (see Equations (14) and (16)).

The only possible source of discontinuity is thus the limit-cycle state vector X∞. The vector X∞
could indeed be not continuously differentiable since it is defined as the solution of the linear system
expressed by Equation (21). In other words, the calculation of X∞ involves a matrix inversion,
which can bring about a discontinuity. As discussed in reference [22], this happens in the presence of a
bifurcation. However, as shown in reference [19,22], a bifurcation never occurs in a neighborhood of a
frictionless cycle, thereby guaranteeing that Wtot is continuously differentiable around its maxima.
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Figure 2. Shift of the power optimal point with respect to τCH . The vertical grid lines correspond to
τCH = τ∗

n for n = 1, 2, 3. The expansion adiabat time is τHC = τ∗
1 . The isochore times are constant:

τH = τC = 1.24.
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3.3. Harmonic Refrigerator

We argue here that the same results apply to the optimization of the cooling power of a refrigerator.
The machine will behave as an engine or a refrigerator depending on the values of the compression

ratio ωH/ωC and the temperature ratio TH/TC. In particular, as long as ωH/ωC < TH/TC the machine
will act as a heat engine, whereas when ωH/ωC > TH/TC the machine behaves as a refrigerator.

The procedure of the previous section can be applied to a refrigerator by replacing the work vector
wtot with the cold heat vector q

C
. Since the plus sign means that energy is flowing into the system from

the cold heat reservoir, the objective is to maximize the cooling power (i.e., QC divided by the total
duration of a cycle). Using the same notation adopted in the previous section, we write:

Q̇C = QC f (τCH), with f (τCH) =
1

τH + τHC + τC + τCH
(36)

As in the previous case q
C

is independent of UCH and so ∂τCH q
C
= 0. Moreover, the second and

third components of q
C

are still zero, because of the same arguments presented in the previous section:
for a frictionless steady-state trajectory the heat transfer does not depend on the initial values of 〈L̂〉
or 〈Ĉ〉.

The limit cycle is calculated in the same way as for a heat engine. The derivative with respect
to τCH of the first component of X∞ is zero for a frictionless cycle. This property remains true
regardless of the choice of parameters (i.e., for ωH/ωC < TH/TC corresponding to a heat engine, or for
ωH/ωC > TH/TC corresponding to a refrigerator).

In conclusion, frictionless trajectories correspond to the locally optimal cold heat transfer with
respect to τCH and τHC, implying that they cannot also give the optimal cooling power Q̇C.

3.4. Spin System

The same results apply also to heat machines and engines having the spin system as the working
fluid. These systems have been extensively studied by Kosloff and Feldmann [27–29] .

It is still possible to select particular values of the time allocated during the adiabatic processes
in order to eliminate the correlation between the Hamiltonian Ĥ and the operators L̂ and Ĉ. In this
case the evolution matrices for the adiabats become diagonal. The operators are rescaled by factor that
depends on the initial and final frequencies. The first 3 × 3 matrix block of the evolution matrix UCH is
proportional to the identity matrix:

ŨCH =

(
(J2 + ω2

H)

(J2 + ω2
C)

)1/2

1̃ ≡ (ΩH/ΩC) 1̃ (37)

This similarity with the harmonic case already shows that for a frictionless steady-state cycle
the work and heat transfer vectors are independent of the values of 〈L̂〉 and 〈Ĉ〉. Moreover, the same
vectors wtot and q

C
are independent of τCH .

We thus only have to show that the derivative with respect to τCH of the first component (i.e., 〈Ĥ〉)
of the initial state is zero for a frictionless cycle. The same procedure employed in the previous section
can be used to show that this property holds also for the spin case.

4. Numerical Results

While the case of frictionless trajectories can be treated by employing analytical techniques,
the general case involves complicated mathematical expressions which cannot be manipulated
analytically for the purpose of obtaining the maximum power. Therefore, we resort to numerical
methods to compute the performance improvement with respect to the frictionless case. We denote by
P tot(τH , τHC, τC, τCH) the average power as a function of the time allocations for the four processes.
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In order to reduce the computation time, we consider a simplified case as an example: We assume
that the time allocated for the hot isochore is the same as the time allocated for the cold isochore, and it
will be denoted by τis.. Furthermore, we assume that the time allocated for the compression adiabat is
the same as the time allocated for the expansion adiabat, and it will be denoted by τad.. We performed
numerical optimization of the average power P tot as a function of these two parameters: τis. and τad..
Due to the analytical results presented in the previous sections, for the adiabats time we only consider
the interval [0, τ∗

1 ].
Figure 3a shows an example of work landscape as a functionn of the two parameters and Figure 3b

shows the corresponding power landscape. The optimal power among the frictionless trajectories with

constant μ will be denoted by Popt(∗)
tot :

Popt(∗)
tot = max

τis.

[
P tot(τis., τ∗

1 , τis., τ∗
1 )
]

(38)

In Figure 3a,b the point corresponding to Popt(∗)
tot is indicated by the white circle located on the

right border of the graph (i.e., τad. = τ∗
1 ).

The unconstrained optimal power is denoted by Popt
tot :

Popt
tot = max

τis.,τad.

[
P tot(τis., τad., τis., τad.)

]
(39)

The point corresponding to Popt
tot is indicated by the white diamond located in the left border of the

graph. In fact, for this choice of engine parameters the optimal power corresponds to a sudden-adiabats
cycle, despite the fact the the optimal work is given by the frictionless trajectory. It is interesting to
notice that, in contrast with Figure 2, the optimal power was not found in the vicinity of a frictionless
trajectory. While this result might be counter-intuitive, it highlights the fact that maximizing the power
and maximizing the work are indeed very different optimization problems. The results presented
in Figure 3 correspond to the following choice f engine parameters: ωC = 15, ωH = 16, TC = 100/3,
TH = 125, Γ = 0.7.
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Figure 3. The work and power landscape as functions of adiabat and isochore times are shown in (a,b),

respectively. The maximum power among frictionless cycles, Popt(∗)
tot , is indicated by the white circle.

This cycle is located on the right border of each graph corresponding to τad. = τ∗
1 . The unconstrained

maximum power cycle Popt
tot is indicated by the white diamond. For this case the unconstrained

optimum is located on the left border of each graph since it corresponds to a sudden-adiabats cycle.
Although the total work is significantly less than that of the frictionless cycle, the reduction of the cycle
duration is even higher, thereby resulting in higher average power.
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We now consider the dependence of Popt(∗)
tot and Popt

tot on the engine parameters,
i.e., the compression ratio ωH/ωC and the temperature ratio TH/TC, with Γ = 0.7. Since we are
interested in the relative power improvement, we compute the unconstrained maximum power
normalized by the maximum power among frictionless cycles with the same engine parameters, i.e.,

P̂ =
Popt

tot (ωH/ωC, TH/TC)

Popt(∗)
tot (ωH/ωC, TH/TC)

(40)

The result is shown in Figure 4a for the ω(t) time dependence corresponding to constant μ. The black
region on the bottom-right corner of the axis corresponds to the combinations of parameters for
which (ωH/ωC) > (TH/TC), i.e., leading to cooling cycles for which the working fluid behaves as
a refrigerator.

As can be noticed, the maximum improvement is obtained in the limit ωH → ωC and TH � TC.
The maximum improvement within the region shown in the figure is ≈ 21%, but an even greater
improvement can be obtained for higher values of TH/TC.

The results shown in Figure 4b are analogous to those shown in Figure 4a except that the ω(t) time
dependence is of the bang–bang type instead of constant μ. As explained in Section 2.3, the adiabat
times for the frictionless cycles are determined by the engine parameters ωH and ωC according to the
condition τad. = τ1 + τ2. However, the time allocation for the adiabatic processes can be reduced by
relaxing the frictionless requirement. There are many ways to do that. Ideally, one would apply the
methods of optimal control theory to ω(t) for each of the adiabatic processes in order to optimize
the average power over the whole cycle while satisfying the limit-cycle requirement expressed by
Equation (21). However, this calculation would be very complex and it would not be possible to
determine the solution of the optimal control problem by employing analytical methods. Therefore,
this analysis goes beyond the scope of this work. Instead, here we consider the simplified case for
which τ1 and τ2 are reduced by the same factor. As can be seen from Figure 4b this method leads to a
maximum improvement of ≈ 9% within the parameter region shown in the graph. As for Figure 4b,
the improvement would be even greater for higher values of TH/TC.
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Figure 4. Maximum power as a function of the engine parameters ωH/ωC and TH/TC. The power

Popt
tot of the unconstrained optimum is normalized by the maximum power Popt(∗)

tot among frictionless
cycles. The normalized power P̂ is expressed as a percentage. (a,b) Different ω(t) time dependence,
i.e., constant μ and bang–bang, respectively.

88



Entropy 2020, 22, 1060

5. Conclusions

We discussed the finite-time performance optimization of the quantum Otto cycle by considering
two different well-known models for the working fluid: an ensemble of harmonic oscillators and an
ensemble of spin systems. Moreover, we considered both the power optimization of the engine-cycle
and the cooling power optimization of the refrigeration-cycle.

The optimization variables are the time allocations of the four processes composing the
thermodynamic cycle. In contrast to the majority of studies within this field, we considered the
unconstrained optimization problem. This means that the two adiabatic processes were not frictionless:
we allowed for some friction generation in order to reduce the duration of the cycle and improve the
average power production.

We used analytical techniques to compute the derivative of the work production for a limit-cycle
trajectory with respect to the time allocation for the adiabatic processes. We explicitly show that for
a frictionless cycle the derivative is zero: the work is a relative maximum. This result immediately
implies that the power cannot be optimal for a frictionless cycle. In particular, the globally optimal
point must be searched in the region of the configuration space for which the time allocation for the
adiabatic processes is shorter than that of the minimum time frictionless process.

Numerical computations have been used to obtain the performance improvement with respect to
the constrained optimal power. Depending on the engine parameters, the improvement can be quite
significant. The next logical step would be to formulate this problem as a control problem and find the
frequency time-dependence leading to maximum power.
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Abstract: Nano-size machines are moving from only being topics of basic research to becoming
elements in the toolbox of engineers, and thus the issue of optimally controlling their work
cycles becomes important. Here, we investigate hydrogen atom-like systems as working fluids in
thermodynamic engines and their optimal control in minimizing entropy or excess heat production
in finite-time processes. The electronic properties of the hydrogen atom-like system are controlled by
a parameter κ reflecting changes in, e.g., the effective dielectric constant of the medium where the
system is embedded. Several thermodynamic cycles consisting of combinations of iso-κ, isothermal,
and adiabatic branches are studied, and a possible a-thermal cycle is discussed. Solving the optimal
control problem, we show that the minimal thermodynamic length criterion of optimality for
finite-time processes also applies to these cycles for general statistical mechanical systems that can be
controlled by a parameter κ, and we derive an appropriate metric in probability distribution space.
We show how the general formulas we have obtained for the thermodynamic length are simplified
for the case of the hydrogen atom-like system, and compute the optimal distribution of process times
for a two-state approximation of the hydrogen atom-like system.

Keywords: optimal control; thermodynamic cycles; finite-time thermodynamics; thermodynamic
length; hydrogen atom; nano-size engines; a-thermal cycle

1. Introduction

Optimal control of physical and chemical systems, and of the processes taking place in such
systems, has been a major goal since the beginning of scientific investigations [1,2]. Essentially any
application of scientific insights to practical problems has constituted such an effort in optimal control
of some kind—even if not formulated as a mathematical control problem—, with the objective ranging
from minimizing the difference of the values of characteristic parameters and quantities between the
ideal theory and the real experiment [3,4], to maximizing the amount or quality of the desired output
for given material and technical constraints. One can distinguish between those controls that are based
on practical limitations due to the availability of tools and materials or lack thereof, and those based on
the laws of physics.

Perhaps the classical examples of optimal control based on laws of physics have been the analyses
of thermodynamic cycles [5–7], where the famous formulas for maximal efficiencies of hypothetical
engines are sometimes given a status nearly equal to the fundamental laws of thermodynamics [6].
Such formulas have typically been derived under the assumption of infinite time available for each
step of the cycles, allowing us to move from equilibrium state to equilibrium state. About fifty years
ago, engineers and scientists began to question this assumption and re-formulated the optimal control
problem by demanding that the cycle should be performed in a given finite amount of time, leading to
the development of the field of finite-time thermodynamics [8–11].

A second aspect of optimal control based on the laws of physics is to reduce the engine under
consideration to the most elementary physical systems that are stripped of all weaknesses and
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complications which are associated with the macroscopic aspects of the experimental apparatus
employed in their realization, resulting in the creation and investigation of molecular machines [12].
Typically, this involves reducing the size of the system in the sense that we are dealing with a
macroscopic system as a (non-interacting) ensemble of elementary but microscopic systems. Of course,
in practice, isolating the individual elementary system often requires a very large experimental
apparatus, but for the purpose of the analysis of the physics and the optimal control of the system,
this counts as “environment” and “control tools”, whose optimality in themselves are usually irrelevant
to the issue of optimally controlling the (ensemble of) elementary system(s) as such. Many experiments
have been performed where single atoms or ions in vacuum [13–15] or single defects in solids [16,17]
have been studied and controlled in some fashion.

A third feature of achieving optimal control of systems on the level of physical laws is dealing
with the quantum nature of these elementary systems, which is forced upon us when reducing the
elementary systems to atomic dimensions. While the quantum aspects are unavoidable, one can
nevertheless often separate them from the issue of optimal control one investigates, especially if the
time resolution of the control is so large that many quantum aspects can be captured by, e.g., effective
decay rates.

From the point of view of a theorist, such a reduction to elementary physical systems is often a
desirable feature because it allows us to focus on the elementary system itself—which can, in many
cases, be analyzed analytically to a certain point—while assigning all other aspects to a generic
environment. Examples are the optimal control of harmonic oscillator systems, which have been
studied both on the classical and on the quantum mechanical level [18–26], spin systems [26–28],
particles in a box [26], and generic two-level systems [29].

In this study, we are going to analyze the basic concepts of optimal control at the example of
a hydrogen atom-like system, which we employ as an engine, or more specifically, the working
fluid of such an engine, to perform a thermodynamic cycle within finite time. On the technical
mathematical level, the electronic Hamiltonian possesses a very high degree of symmetry allowing at
least some analytical treatment. On the level of possible applications, there exist systems equivalent
to hydrogen-like atoms, e.g., excitons inside a solid [30], that can be controlled by modifying the
environment while the hydrogen atom-like system remains in its state. Controlling such a system
might allow us to construct nano-size engines inside solids. Alternatively, we can consider isolated
hydrogen atoms inside a cavity [31], where also the conditions can be controlled such that the hydrogen
atom becomes a modified hydrogen atom.

We will analyze the stages of the thermodynamic control cycle on the general level of probability
distributions, both for the ideal (infinite-time) cycle and the cycle at finite time, derive an optimality
criterion for minimal waste of work/minimal excess production of heat (dissipation)/minimal production
of entropy during finite-time processes for general statistical mechanical systems, and apply these
formulas to the example of the hydrogen atom-like system. Note that we are dealing with an “electronic”
states-based engine, not with a standard thermal atom movement-based engine as studied, e.g., in [13].

2. Background

2.1. Aspects of the Hydrogen Atom-Like System

Due to the high symmetry of the Coulomb potential, the electronic Schrödinger equation for the
hydrogen atom can be solved analytically, and we get for the energy eigenvalues

En = − α
n2 (1)

where α = me4

2�2 . The degeneracy of the n’th energy level is g(n) = n2. In principle, we need to add a
factor 2 for the spin degeneracy of the electron, but this factor is not relevant for this study and will be
dropped.
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If we consider hydrogen atom-like systems, the formula for the energy is modified by, e.g.,
changing the mass of the electron or quasi-particle m → m∗, i.e., α → α∗ = m∗

m α, by changing the
effective charge that generates the Coulomb field e→ q1

∗ and/or the effective charge of the quasi-particle

e → q2
∗, i.e., α → α∗ =

m(q2
∗)2(q1

∗)2

2�2 or by introducing a shielding dielectric constant ε � 1, such
that En = − αn2 , or combinations thereof. Quite generally, we note that these modifications can be
incorporated in a straightforward fashion by introducing a modification factor

κ =
m∗(q2

∗)2(q1
∗)2

me4ε2
, (2)

such that
En(κ) = −κ α

n2 = κEn(κ = 1). (3)

If we can apply external forces or fields to the system such that κ (i.e., m∗, q1,2
∗ and/or ε) can

be smoothly varied, then we can modify the energy levels in a controlled fashion. In that case,
the hydrogen atom-like system is used as the working fluid of an engine, where the changing of the
energy levels leads to a change in energy that may be extracted as work. A change of the statistical
occupation of the various energy levels at given temperature T is associated with the entropy content
and the heat exchanges of the system, and we can define work cycles in, e.g., (κ, T)-space. Examples
for individual legs (or branches) of such a cycle would be adiabatic or isothermal changes in κ from
some initial value κin to a final value κ f , and iso-κ changes in temperature where we keep κ constant
(see Figures 1–3 below).

 

Figure 1. Sketch of an iso-κ-isothermal cycle for a hydrogen atom-like system. Branches [1] → [2]
and [3] → [4] are iso-κ-legs and branches [2] → [3] and [4] → [1] are isothermal legs, respectively.
The four corners of the cycle are the points [1] =

(
κ[1], T[1]

)
= (κin, T1), [2] =

(
κ[2], T[2]

)
= (κin, T2),

[3] =
(
κ[3], T[3]

)
=

(
κ f , T2

)
and [4] =

(
κ[4], T[4]

)
=

(
κ f , T1

)
in the (κ, T) plane. Note that for given

κin, κ f > κin and T[1] = T1, there remains only one variable, e.g., T[2] = T2, we are free to choose;
all other variables are fixed by the choice of path types. All cycles for which T2 > T1 are feasible
iso-κ-isothermal cycles.
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Figure 2. Sketch of an iso-κ-adiabatic cycle for a hydrogen atom-like system. Branches [1]→ [2] and
[3] → [4] are iso-κ-legs and branches [2] → [3] and [4] → [1] are (special) adiabatic legs, respectively.
Note that the adiabatic legs run along straight lines through the origin. The four corners of the cycle are
the points [1] =

(
κ[1], T[1]

)
= (κin, T1), [2] =

(
κ[2], T[2]

)
= (κin, T2), [3] =

(
κ[3], T[3]

)
=

(
κ f , T3

)
,

and [4] =
(
κ[4], T[4]

)
=

(
κ f , T4

)
in the (κ, T) plane. Note that for given κin, κ f > κin, and T[1] = T1

there remains only one variable, e.g., T[2] = T2, we are free to choose; all other variables are fixed by
the choice of path types. All cycles for which T2 > T1 are feasible iso-κ-adiabatic cycles.

 
Figure 3. Sketch of an adiabatic-isothermal cycle for a hydrogen atom-like system. Branches [1]→ [2]
and [3] → [4] are (special) adiabatic legs and branches [2] → [3] and [4] → [1] are isothermal legs,
respectively. Note that the adiabatic legs run along straight lines through the origin. The four
corners of the cycle are the points [1] =

(
κ[1], T[1]

)
= (κin, T1), [2] =

(
κ[2], T[2]

)
= (κ2, T2),

[3] =
(
κ[3], T[3]

)
=

(
κ f , T2

)
, and [4] =

(
κ[4], T[4]

)
= (κ4, T1) in the (κ, T) plane. Note that for given

κin, κ f > κin and T[1] = T1, there remains only one variable, e.g., T[2] = T2, we are free to choose; all
other variables are fixed by the choice of path types. However, only cycles for which Tmax

2 > T2 > T1,
with Tmax

2 =
κ f
κin

T1, are feasible adiabatic-isothermal cycles for the hydrogen atom-like system.

In this context, one should note that, e.g., the dielectric constant ε = ε(p, T) depends on both
temperature and pressure, complicating the issue considerably; for small ranges of temperature
and pressure, ε(p, T) commonly changes with temperature and pressure in an approximately linear
fashion in a solid [32,33], i.e., ε(p, T) ≈ ε

(
pre f , Tre f

)
+ γT

(
pre f , Tre f

)(
T − Tre f

)
+ γp

(
pre f , Tre f

)(
p− pre f

)
.

Depending on the type of system, we may have γT
(
pre f , Tre f

)
> 0 and γp

(
pre f , Tre f

)
< 0, respectively [32],

or the opposite [33], or other combinations. Thus, e.g., we find that κ ∼ 1
ε2

increases with pressure and
decreases with temperature for CdF2 [32], and we could translate our analysis from using (κ, T) to
(p, T) as control variables, in principle.

94



Entropy 2020, 22, 1066

Of course, all energy levels of the hydrogen atom-like system will exhibit nonzero occupancy in
thermodynamic equilibrium in general—in principle, even including the continuous distribution of
energy levels associated with modified plane–wave states beyond the ionization energy (although
these will most likely be irrelevant due to the assumed localization or confinement of the electron).
However, for practical calculations, one can often simplify the system by considering, e.g., only the two
lowest energy levels E1 and E2. Frequently, such simplified models can yield some quantitative results
and help to better understand the qualitative behavior of the full system [34]. Finally, we note that
there are other ways to modify the electronic states of the hydrogen atom-like system, e.g., by breaking
the spherical symmetry of the Hamiltonian, such that Equations (1)–(3) no longer apply. Since the
corresponding changes in the eigenvalue spectrum of such a modified Hamiltonian are very specific to
the way we break the symmetry and need to be treated on a case-by-case basis, we are not going to
discuss such systems and only allow modifications of the hydrogen atom-like system that preserve the
spherical symmetry and the 1/r dependence of the Coulomb potential.

2.2. Thermodynamic Cycles for the Hydrogen Atom-Like System

In general, we can distinguish two ways to change the occupation of the energy levels: directly via
radiation with suitable frequencies corresponding to energy differences between specific energy levels,
and stochastically by contact to heat baths at various temperatures. However, in the case of a radiation
driven a-thermal cycle, we are not dealing with a system close to thermodynamic equilibrium, and the
classical thermodynamic optimal control might not be suitable. Thus, in this study, we focus on the
more familiar cycles involving interactions with heat reservoirs.

Regarding the notation, we write X( j) or Xj→ j+1 to indicate that the variable, parameter, or quantity
X belongs to leg ( j) which runs from corner [ j] to corner [ j + 1] of the four-leg cycle (corner [5] = corner
[1], of course). Furthermore, quantities associated with corner [ j] are referred to as X[ j]. This notation
is introduced to keep the labeling of legs and corners distinct from the one for quantities such as
the probability distribution

→
p i at step i along each branch when analyzing the effect of finite-time

processes. Finally, the subscripts {κ; T}, {κ; S}, and {S; T} indicate that the quantity is associated with an
iso-κ-isothermal, iso-κ-adiabatic, or adiabatic-isothermal cycle, respectively.

If we allow interaction with a heat bath, we need to consider an ensemble of identical isolated
localized hydrogen atom-like systems such that we can apply statistical mechanics to evaluate the
(equilibrium) probabilities of occupation of the individual energy levels. From a statistical point
of view, the microstates correspond to the eigenstates of the hydrogen-like atom. For concreteness,
we always define (without loss of generality) κin and κ f > κin to denote the smallest and largest value
of κ on the cycle, and T[1] = T1 as the lowest temperature in the cycle. Starting point of the cycle
is always

(
κ[1], T[1]

)
= (κin, T1). Together with the assignment of path types to the legs (adiabatic,

isothermal, iso-κ), there is only one additional temperature, which we can choose, e.g., T[2] = T2 or
T[4] = T4; all other temperatures and κ values of the cycle are then fixed. We always assume smooth
changes in both κ and T along the legs of the cycle, i.e., for example, the system is exposed to an infinite
number of heat baths with intermediary temperatures when changing T.

Note that we use the terms adiabatic and isentropic essentially interchangeably for thermodynamic
equilibrium paths, since we assume that the system is in thermodynamic equilibrium both at the
starting and at the end point of a leg. In the general case of such an adiabatic path, only the entropy
remains constant along the path. However, for some physical systems, such as the hydrogen atom-like
ones we are going to discuss, not only the entropy but also the equilibrium Boltzmann distribution
remains unchanged along an adiabatic path, and we call such paths “special adiabatic”.

For such a macroscopic system, Figures 1 and 2 show cycles combining two iso-κ legs with two
isothermal or adiabatic legs, respectively. We excite the ensemble of atoms via change in temperature
T[1] → T[2] = T2 > T1, while we keep κ at the value κin: κ[2] = κ[1] = κin. Next, we perform/extract
work while we increase κ from κ[2] = κin to κ[3] = κ f > κin. This can be done adiabatically,
thus involving a concomitant change in temperature during the process (T[2] → T[3] = T3 > T2),
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or isothermally keeping the temperature constant at T[2] → T[3] = T3 = T2. In leg 3, we de-excite
the atom ensemble via change in temperature T[3] → T[4] = T4 < T3, while we keep κ at the value
κ[3] = κ[4] = κ f , and finally, we decrease κ from κ[4] = κ f back to κ[1] = κin; again, this can
be done either adiabatically (T[4] → T[1] = T1 < T4) or isothermally at T[4] → T[1] = T1 = T4.
Note that for cycles containing two iso-κ branches, the only condition on T2 is T2 > T1. In the literature,
one sometimes calls the iso-κ-adiabatic cycle an Otto cycle, in analogy to the isochore-adiabatic cycle,
which is the underlying cycle of an Otto engine [7], and similarly, we could call the iso-κ-isothermal
cycle a Stirling cycle in analogy to the isochore-isothermal cycle belonging to the Stirling engine [7].

An alternative type of cycle shown in Figure 3 would include no legs with constant κ; instead,
we combine two adiabatic and two isothermal legs to the analogue of a Carnot cycle [7]. We adiabatically
increase κ from κ[1] = κin to κ[2] = κ2, κin < κ2 < κ f , appropriately changing the temperature
during the process (T[1] → T[2] = T2 > T1), followed by an isothermal leg where we increase κ from
κ[2] = κ2 to κ[3] = κ3 = κ f while keeping the temperature constant at T[2] → T[3] = T3 = T2.
Next, we adiabatically decrease κ from κ[3] = κ3 to κ[4] = κ4, κin < κ4 < κ f , while appropriately
changing the temperature (T[3] → T[4] = T4 < T3), and finally, we decrease κ from κ[4] = κ4 back to
κ[1] = κin while keeping the temperature constant T[4] → T[1] = T1 = T4.

Note that a feasible isothermal-adiabatic cycle usually will have an additional condition on T[2].
For the special adiabatic legs of a hydrogen atom-like system, feasibility requires that the temperature
at the second corner fulfills the condition

T1 < T2 < Tmax
2 , (4)

where
Tmax

2 =
κ f

κin
T1; (5)

otherwise, leg 3 would have a larger slope than leg 1, violating the condition that κin < κ2,κ4 < κ f .
When analyzing the work performed and the heat exchanged along the legs of the cycles, we do

not include the work done on the environment of the hydrogen atom-like system (e.g., the solid or the
cavity), which is needed to vary κ. Of course, we can take that into account, e.g., via replacing κ by
the pressure p as control variable if κ = κ(p) depends on pressure in a monotonic fashion, and then
compute the work needed to establish such a pressure inside the solid. However, the focus is on the
hydrogen-atom like system, and not on the whole solid or cavity where the system might be realized in
the experiment. Thus, we will stay with using κ as the control variable, and only consider the change
in the hydrogen atom-like system itself.

There are several general aspects that need to be considered regarding the equilibrium distributions,
relaxation, and entropy/excess heat production along the cycles. How close are the instantaneous
probability distributions over the states of the system to the (equilibrium) Boltzmann distributions at
the various temperatures along its iso-κ legs? Similarly, for branches where κ is changed, how does
the finite time available to vary κ affect our ability to keep the probability distribution close to the
appropriate Boltzmann distribution for isothermal processes, and how close can the adiabatic path in
(κ, T)-space which is realized in experiment, be to the ideal adiabatic path? All these questions directly
lead to the issue of relaxation to the appropriate Boltzmann distributions in finite time, for which we
can hope to derive general formulas as long as we can assume that the processes are slow enough for
the system to always remain close to thermodynamic equilibrium throughout the cycle.

2.3. Statistical Mechanics and Thermodynamics of Cycles

Regarding the statistical mechanics and thermodynamics of cycles, the starting point of our
analysis will be the first law of thermodynamics,

dE = δQ− δW (6)
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along a piece of path in thermodynamic space, which is equivalent to δW = δQ− dE. Here, dE > 0
means that the internal energy of the system is increased along the leg, and δQ > 0 means that heat is
added to the atom from the reservoir(s) the atom is in contact with along the path, thus increasing the
system’s internal energy. δW > 0 means that the system does work on the apparatus, radiation field or
the environment in general, along the leg, and reduces the system’s internal energy in the process.
To avoid confusion, we note that in the literature δW(> 0) is frequently defined in an alternative
fashion to refer to the amount of work done by the apparatus on the system increasing its internal
energy; as a consequence, one then would write the first law as dE = δQ + δW and δW = dE− δQ.

The connection to statistical mechanics appears via the information theoretic definition of
the entropy

S = −kB

∑NS

j = 1
pjln

(
pj

)
, (7)

where pj is the probability for the microstate j to be occupied, and the sum is over all NS microstates [5].
In equilibrium at given temperature T, these probabilities π j correspond to the equilibrium Boltzmann
probability distribution,

π j(T) =
exp

(
− Ej

kBT

)
Z(T)

(8)

for the case of the canonical ensemble, where the sum over states Z(T) =
∑NS

k = 1 exp
(
− Ek

kBT

)
serves as

the normalization of the probability distribution, and Ej is the energy of microstate j. Keep in mind
that the equilibrium distribution maximizes the entropy, for a given set of boundary conditions that
are, e.g., defining the ensemble.

If we consider the energy levels En(= Ẽn) of the states instead of the microstates themselves in the
formula of the entropy, then we need to include the degeneracies gn of the energies Ẽn. As far as the
equilibrium probabilities are concerned, we can assume that the probabilities of occupying two states
i and j with the same energy Ei = Ej = Ẽn are equal; for convenience, we define ρn = πi = π j,
and thus

π̃n = gnρn, (9)

is the equilibrium probability to find the system with energy Ẽn. In general, we can write the equilibrium
entropy as

S = −kB
∑NE

n = 1 gnρnln(ρn) = −kB
∑NE

n = 1 π̃nln(ρn) = −kB
∑NE

n = 1 π̃nln
(
π̃n
gn

)
=

−kB
∑NE

n = 1 π̃n[ln(π̃n) − ln(gn)],
(10)

where now the summation goes over the NE energy levels and π̃n are the equilibrium probabilities
to find the system in a state with energy Ẽn. Note that for non-degenerate states, i.e., gn = 1,
this expression reverts to the original microstate-based formula, and for the special case π̃n = 1 for
n = m while π̃n = 0 for n � m, we obtain the formula for the entropy in the microcanonical ensemble,
S = kBln(gm).

Finally, for those probability distributions where we deviate from the equilibrium distribution but
nevertheless can assume that the probabilities of being in a state with energy Ei = Ej = Ẽn

are the same, we can define rn = pi = pj, and thus p̃n = gnrn. Then, we get for the

entropy the expression S = −kB
∑NE

n = 1 gnrnln(rn) = −kB
∑NE

n = 1 p̃nln
(

p̃n
gn

)
and the normalization∑NE

n = 1 gnrn =
∑NE

n = 1 p̃n =
∑NS

j = 1 pj = 1. Note that this is a substantial restriction in the set
of allowed probability distributions; thus, unless this assumption is valid, we need to employ the
microstate formulation of the problem.
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As a shorthand notation, we can represent the probability distributions by vectors
→
p =

(
p1, . . . , pNS

)
, and expressions like

∑NS
j = 1 pjln

(
pj

)
can be written as

∑NS

j = 1
pjln

(
pj

)
=
→
p ·ln

(→
p
)
, (11)

where ln
(→

p
)
=

(
ln(p1), . . . , ln

(
pNS

))
. Similarly,

→
E =

(
E1, . . . , ENS

)
, and we can relate the equilibrium

probabilities of the Boltzmann distribution to the energies via

→
E = −kBTln

(→
π
)
+ C

(→
π
)→

1 = −kBTln
(→
π
)
− kBTln

(
g
(→
π
))→

1 , (12)

where g
(→
π
)

is a constant that can be related to an overall shift of the energy scale, and
→
1 = (1, . . . , 1) [35].

The expectation value of the energy is then given by∑NS

j = 1
pjEj =

→
E ·→p , (13)

or, for the case of the expectation value in equilibrium,
∑NS

j = 1 π jEj =
→
E ·→π. Note that some of these

energies will appear many times in this vector if the energy level is degenerate. Another example is the

expectation value of the square of the energy,
∑NS

j = 1 π j
(
Ej

)2
=
→
E2·→π, where

→
E2 =

(
(E1)

2, . . . ,
(
ENS

)2
)
.

If appropriate, we can replace the sums over the NS microstates by sums over the NE energies, i.e.,∑NS
j = 1 π jEj =

∑NE
j = 1 π̃ jẼ j =

→
Ẽ ·
→
π̃, where

→
π̃ =

(
π̃1, . . . , π̃NE

)
and

→
Ẽ =

(
Ẽ1, . . . , ẼNE

)
, or for the entropy

S = −kB
∑NE

n = 1 π̃nln(ρn) = −kB
→
π̃·ln

(→
ρ
)

where ln
(→
ρ
)
=

(
ln(ρ1), . . . , ln

(
ρNE

))
=

(
ln

(
π̃1
g1

)
, . . . , ln

(
π̃NE
gNE

))
.

In the case of the single atom-like system, the microstates correspond to the eigenfunctions of the
Hamiltonian of an electron (or a quasi-particle) in a (shielded) Coulomb potential. Note that we are not
considering the degeneracy due to the multiple copies of the atom-like system in the ensemble—the
ensemble is only introduced to allow us to visualize the occupation probabilities of the single atom-like
system with which we are dealing.

Since the energy is a state function, the change of its equilibrium expectation value

〈E〉 =
∑NS

j = 1
Ejπ j =

→
E ·→π (14)

along a leg ( j) of the path does not depend on the choice of path, i.e., the total change in energy can be
computed directly from taking the difference between the two states,

(ΔE) j→ j+1 = 〈E〉[ j+1] − 〈E〉[ j]. (15)

For the heat delivered/absorbed by the atom along a leg ( j) (parametrized by λ ∈
[
λ[ j],λ[ j+1]

]
), we can

use the formula

Q( j)
→
π

=
∫ S[ j+1]

S[ j] TdS = −kB
∫ λ[ j+1]

λ[ j]
T(λ) d

dλ

[→
π·ln

(→
π
)]

dλ = −kB
∫ λ[ j+1]

λ[ j]
T(λ)

[
ln

(→
π(λ)

)
+
→
1
]
·

d
→
π

dλ dλ= −kB
∫ →π [ j+1]

→
π
[ j] T

(→
π
)[

ln
(→
π
)
+
→
1
]
·d→π,

(16)

if we stay at the equilibrium distribution along the path, and an analogous expression in
→
p if we

deviate from the equilibrium distribution because of, e.g., finite-time effects:

Q( j)
→
p

=

∫ S[ j+1]

S[ j]
TdS = −kB

∫ λ[ j+1]

λ[ j]
T(λ)

[
ln

(→
p (λ)

)
+
→
1
]
·d
→
p

dλ
dλ. (17)
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Finally, the work performed by the atom can be computed via the first law by taking the difference
between δQ and dE along the path. Along the legs where κ is constant, both Q and ΔE will vary as they
are both functions of the probability distribution, which in turn evolves as the temperature changes.
To compute ΔE is no problem, but the expression for Q is nontrivial. We can switch coordinates to
follow the change in temperature instead of the change in entropy,

Qj→ j+1 =
∫ S[ j+1]

S[ j] TdS =
[
T[ j+1]S[ j+1] − T[ j]S[ j]

]
− ∫ T[ j+1]

T[ j] SdT =
[
T[ j+1]S[ j+1] − T[ j]S[ j]

]
+

kB
∫ T[ j+1]

T[ j]
→
π(T)·ln

(→
π(T)

)
dT,

(18)

However, we note that this way of writing Q( j) does not necessarily make the integral easier to perform
in general either, even though κ, and thus all the energy levels En(κ), are constant along these legs
of the cycle. However, since the work δW would usually be associated with changes in κ, we expect
that W = 0 along thermodynamic equilibrium paths with fixed κ, and therefore, Q = ΔE. Using
Equations (16) and (12), we find:

W( j) = Q( j) − (ΔE)( j) =
∫ S[ j+1]

S[ j] TdS− [〈E〉[ j+1] − 〈E〉[ j]]
= − ∫ →π(T[ j+1])

→
π(T[ j])

kBT[ln(
→
π) +

→
1 ]·d→π −→E(κin)·(→π(κin, T[ j+1]) −→π(κin, T[ j]))

= − ∫ →π(T[ j+1])
→
π(T[ j])

kBT[ln(
→
π) +

→
1 ]·d→π − ∫ →π(T[ j+1])

→
π(T[ j])

→
E(κin)·d→π

= − ∫ →π(T[ j+1])
→
π(T[ j])

{kBT[ln(
→
π) +

→
1 ] +

→
E(κin)}·d→π

= − ∫ →π(T[ j+1])
→
π(T[ j])

{kBT[ln(
→
π) +

→
1 ] − kBT

[
ln(
→
π) + ln(g(

→
π))

→
1
]
}·d→π

= − ∫ →π(T[ j+1])
→
π(T[ j])

{kBT[ln(
→
π) +

→
1 − ln(

→
π) − ln(g(

→
π))

→
1 ]}·d→π

= − ∫ →π(T[ j+1])
→
π(T[ j])

{kBT[1− ln(g(
→
π))]}→1 ·d→π = 0 ,

(19)

since
→
1 ·d→π = 0 along a thermodynamic equilibrium path because of probability conservation.

Note that we have not exploited the fact that we are dealing with a hydrogen atom-like system,
and thus this result is general for any statistical mechanical system along legs with κ = constant, even
for the most general case of many control parameters κ=̂

→
κ = (κa,κb, . . .).

If we consider the complete cycle, the changes in energy will sum to zero, and thus W = Q
over the whole cycle, i.e., the net heat added to the atom over the cycle must be converted into net
work done by the atom on the apparatus. The discussion in this subsection is standard procedure
from equilibrium thermodynamics [5,6], but has been included to establish the concepts and notation
needed for analyzing the thermodynamics of the cycles of statistical mechanical systems in finite time
in the next sections.

3. Optimal Control Criterion for Finite-Time Thermodynamic Cycles of General Statistical
Mechanical Systems

3.1. Finite-Time Optimal Control along a General Path in (κ, T) Space

If thermodynamic processes are performed in finite time, one usually encounters deviations in
the heat exchanged and work performed along the path from those values that one finds for the
ideal quasi-static processes for which infinite times are available, because the system cannot maintain
thermodynamic equilibrium over the whole cycle when the total time τ is finite. As a consequence, a net
amount of entropy is produced over the whole cycle or excess heat/work is found while the system tries
to move towards or stay close to the elusive thermal equilibrium along the path. Typically, one would
attempt to minimize this entropy or excess heat production, leading to the formulation of the minimum
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excess heat/work production optimal control problems discussed in finite-time thermodynamics. In this
study, we will focus on minimum entropy production and minimum excess heat production; other
possible optimal control objectives such as maximum power or maximum efficiency are not considered.
In the following, the subscript Q will indicate minimization of excess heat, while the subscript S
indicates minimization of entropy production.

In general, one would need to analyze each process in depth, in order to compute the excess
heat or excess work associated with the given physical situation. However, we can perform an
approximate analysis of the difference IQ = Q→

π
−Q→

p
between the heat Q→

π
we would obtain under

the assumption that along the path the system is everywhere in thermodynamic equilibrium, i.e.,
→
p i(Ti) =

→
πi(Ti), and the corresponding expression Q→

p
along the path for the real probability

distribution where
→
p i(Ti) �

→
πi(Ti), yet

→
p i(Ti) is nevertheless close to

→
πi(Ti) and just a bit "behind",

i.e., we can approximate
→
p i(Ti) as

→
p i(Ti) =

→
πi−1(Ti−1), (20)

For the remainder of this study, we will assume that Equation (20) is a suitable approximation; the
issue of incomplete relaxation to equilibrium of

→
p i(Ti) to

→
πi−1(Ti−1) is discussed in Refs. [35,36].

Using Equations (16) and (17) where λ now corresponds to time, we get

IQ = Q→
π
−Q→

p
= −kB

∫ τ
0 T(t)

{ .→
π·

[
ln

(→
π(t)

)
+
→
1
]
−

.→
p ·

[
ln

(→
p (t)

)
+
→
1
]}

dt ≈ −kB
∫ τ

0 T(t)
.→
π·{

ln
(→
π(t)

)
− ln

(→
p (t)

)}
dt ≈ kB

∫ τ
0 T(t)

.→
π·

{
d

d
→
π

ln
(→
π(t)

)
·
(→
π(t) −→p (t)

)}
dt ≈∑Nst

i = 1

(→
πi −→πi−1

)
·
{

kBTi↔
π i

}(→
πi −→p i

)
≈ ∑Nst

i = 1

(→
πi −→πi−1

)
·
{

kBTi↔
π i

}(→
πi −→πi−1

)
.

(21)

Here, Nst is the number of possible steps in (κ, T) space during the finite time τ assuming that each
temperature-plus-κ change requires a “relaxation-to-equilibrium” time of (Δt)st, i.e., τ = Nst(Δt)st.
In the above derivation, several approximations were applied. First, we have employed the fact that
→
p (t) essentially follows

→
π(t), and thus

.→
π =

.→
p to first order in

(→
π(t) −→p (t)

)
. Furthermore, we assumed

that
(→
π(t) −→p (t)

)
is very small, and thus we can make a Taylor expansion of ln

(→
p (t)

)
about

→
π(t).

Next, we assumed that we can make a large number of changes in (κ, T) along the path, such that we

can replace the integral by a sum over such discrete changes, resulting in
.→
πdt ≈

.→
π(Δt)st ≈

(→
πi −→πi−1

)
,

and finally we assumed that Equation (20) holds, i.e.,
→
p i ≈

→
πi−1.

Analogously, we can derive an expression for the entropy production over the path as

IS = −kB
∫ τ

0

{ .→
π·

[
ln

(→
π(t)

)
+
→
1
]
−

.→
p ·

[
ln

(→
p (t)

)
+
→
1
]}

dt

≈ ∑Nst
i = 1

(→
πi −→πi−1

)
·
{

kB↔
π i

}(→
πi −→πi−1

)
.

(22)

Looking at the expressions for the excess heat and the entropy production that are to be minimized,

we see that
↔
MQ =

{
kBTi↔
π i

}
and

↔
MS =

{
kB↔
π i

}
, repectively, are positive definite diagonal matrices that can

serve as metrics in the space of probability distributions with components

(
↔
MQ)kl =

⎧⎪⎪⎨⎪⎪⎩kBTi
↔
πi

⎫⎪⎪⎬⎪⎪⎭
kl

=
kBTi

πk(κi, Ti)
δkl and (

↔
MS)kl =

⎧⎪⎪⎨⎪⎪⎩ kB
↔
πi

⎫⎪⎪⎬⎪⎪⎭
kl

=
kB

πk(κi, Ti)
δkl, (23)

which allows us to define distances in thermodynamic space, and thus yield the corresponding
thermodynamic lengths of the path. Note that both the temperature Ti and

→
πi (which is a function
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of (κi, Ti)) depend on i, and thus the metrics
↔
MQ/S vary along the path. IQ/S is now minimized by

picking the stopping points along the path such that the thermodynamic lengths

(
ΔLQ

)
i
=

⎡⎢⎢⎢⎢⎢⎣(→πi −→πi−1
)⎧⎪⎪⎨⎪⎪⎩kBTi
↔
πi

⎫⎪⎪⎬⎪⎪⎭(→
πi −→πi−1

)⎤⎥⎥⎥⎥⎥⎦
1/2

or (ΔLS)i =

⎡⎢⎢⎢⎢⎢⎣(→πi −→πi−1
)⎧⎪⎪⎨⎪⎪⎩ kB
↔
πi

⎫⎪⎪⎬⎪⎪⎭(→
πi −→πi−1

)⎤⎥⎥⎥⎥⎥⎦
1/2

, (24)

respectively, of all Nst pieces of the path are equal. This follows from the Cauchy–Schwarz inequality

IQ/S =
∑Nst

i = 1

[(
ΔLQ/S

)
i

]2 ≥ 1
Nst

[∑Nst

i = 1

(
ΔLQ/S

)
i

]2
=

[(
ΔLQ/S

)
total

]2

Nst
, (25)

implying that equality holds only if the lengths of all individual pieces
(
ΔLQ/S

)
i

are equal,

(
ΔLQ/S

)
i
=

(
ΔLQ/S

)
total

Nst
. (26)

Note that this criterion of equal thermodynamic lengths of sub-pieces is equivalent to the constant
thermodynamic speed criterion [37] employed, e.g., in the context of optimization of global optimization
algorithms [38], where thermodynamic speed corresponds to thermodynamic distance per relaxation,
i.e., time is measured in units of relaxation-to-equilibrium times.

Since
↔
MQ =

{
kBTi↔
π i

}
is a diagonal matrix, we can rewrite each term in the sum as

(→
πi −→πi−1

)
·
⎧⎪⎪⎨⎪⎪⎩kBTi
↔
πi

⎫⎪⎪⎬⎪⎪⎭(→
πi −→πi−1

)
= kBTi

∑NS

k = 1

(dπi)k(dπi)k

(πi)k
, (27)

where d
→
πi =

(→
πi −→πi−1

)
= ((dπi)1, . . . (dπi)NS

) is the infinitesimal difference between the equilibrium

probability distributions at steps i− 1 and i. For the total length of the path along, e.g., leg ( j) with N( j)

steps, we thus get the expression

L( j)
Q =

∑N( j)

i = 1

√(→
πi −→πi−1

)
·
{

kBTi↔
π i

}(→
πi −→πi−1

)
=

∑N( j)

i = 1

√[
kBTi

∑NS
k = 1

(dπi)k(dπi)k
(πi)k

]
≈∣∣∣∣∣∣∫leg ( j)

√[
kBT(λ)

∑NS
k = 1

(dπ(λ))k(dπ(λ))k

(dλ)2(π(λ))k

]
dλ

∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∫leg ( j)

√
kBT(λ)

√[∑NS
k = 1

1
(π(λ))k

(
(dπ(λ))k

dλ

)2
]
dλ

∣∣∣∣∣∣∣,
(28)

where λ is the variable of integration along the branch ( j). Note that we have taken the absolute value

of the integral, since L( j)
Q ≥ 0 by definition, independent of whether λ increases or decreases along the

path. Analogously, we obtain for L( j)
S the expression

L( j)
S =

∣∣∣∣∣∣∣∣
∫

leg ( j)

√
kB

√⎡⎢⎢⎢⎢⎣∑NS

k = 1

1
(π(λ))k

(
(dπ(λ))k

dλ

)2⎤⎥⎥⎥⎥⎦dλ
∣∣∣∣∣∣∣∣. (29)

Of course, we must first choose the path in (κ, T)-space between the starting and end point of the
leg in such a way that its total length is minimal. For general statistical mechanical systems, where the
Hamiltonian is controlled not only by one single parameter κ but by a whole set of such parameters
→
κ = (κa,κb, . . .), this task is usually very complex. However, for the individual legs of the cycles for
the hydrogen atom-like system, this is trivial, as we have only one parameter which can be varied
(either just κwith fixed T for the isothermal leg, or both κ and T but in a synchronized fashion along the
adiabatic leg, or finally only T with fixed κ along the iso-κ leg), and thus the path itself is given, and we
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can only vary the location of the steps i along the path. One additional aspect needs to be addressed:
the optimization encompasses the whole cycle, and thus the available time τ needs to be distributed
over the four legs, i.e., we have τ = τ(1) + τ(2) + τ(3) + τ(4). In principle, this poses no difficulty as long
as the relaxation times per step are the same for all legs, Δt( j) = (Δt)T = (Δt)κ = (Δt)a, regardless
of whether we are dealing with an isothermal, iso-κ, or adiabatic leg: knowing the thermodynamic
lengths for the four legs L(1), L(2), L(3), and L(4), we use Lcycle = L(1) + L(2) + L(3) + L(4) and the
principle of constant thermodynamic speed [37] to assign the times as

τ( j) =
L( j)

Lcycle
τ. (30)

Once τ(i) is known, then the number of available steps along the leg is given by

N( j) =
τ( j)

Δt( j)
. (31)

However, if the relaxation times vary between the legs—or more generally, vary along the legs
as function of κ and T, i.e., (Δt)st = (Δt)st(κ, T)—, we need to be more circumspect. Assuming
that (Δt)st(κ, T) is known, in a first step, we would evaluate the average relaxation time along the
path, (Δt)av, which allows us to compute an estimate of the number of discrete steps along the path
Nst = τ/(Δt)av. With this information, we can use Equation (25) to compute the optimal length of

each sub-piece i, (ΔL)i = (ΔL)opt =
Lcycle
Nst

=
Lcycle
τ (Δt)av. By construction, the value of (ΔL)opt is

independent of the position (κi, Ti) of sub-piece i along the path. Since the relaxation time varies
with position i, we now need to assign each sub-piece i its own time τ(κi, Ti) = τi = (Δt)st(κi, Ti).
As long as the relaxation times do not vary much along the path, the sum of the assigned times∑Nst

i = 1 τi = τcycle will nearly equal the total available time τcycle ≈ τ, and the result is self-consistent.

Otherwise, we need to set up a feedback loop and re-compute Nst, via, e.g., N(k+1)
st = N(k)

st
τ

τ
(k)
cycle

, and

then assign τi, until self-consistency has been reached, i.e.,
∑N(k)

st
i = 1 τ

(k)
i = τ

(k)
cycle = τ. For further

discussions concerning the influence of varying relaxation times in step optimal control processes,
we refer to the literature [35,36].

Note that this derivation did not depend on the specific features of the hydrogen atom-like system.
Thus, the minimal thermodynamic length criterion of optimality we have derived is valid for general
statistical mechanical systems, whose Hamiltonian is controlled by a set of parameters

→
κ = (κa,κb, . . .).

In this context, we note that the metric
↔
MQ at each point i along the path is proportional to Ti, and thus

we expect that the branches ( j) (or parts thereof) that lie in a high temperature region, should exhibit

larger thermodynamic lengths L( j)
Q than those at lower temperatures since the formulas for those

lengths contain
√

Ti as factors in each term or integral.
We now turn to the three special cases of iso-κ, isothermal, and isentropic (adiabatic and special

adiabatic) paths.

3.2. Finite-Time Optimal Control along Isothermal Legs

For the legs with isothermal change in the parameter κ, Equation (21) yields for the excess heat

IQ;iso−T ≈ kBT
∑Nκ

i = 1

(→
πi −→πi−1

)
·
{

1↔
π i

}(→
πi −→πi−1

)
and similarly, Equation (22) for the entropy production

IS;iso−T ≈ kB
∑Nκ

i = 1

(→
πi −→πi−1

)
·
{

1↔
π i

}(→
πi −→πi−1

)
= IQ;iso−T/T, where Nκ is the number of changes in the

value of κ along the branch, which are feasible during the finite time τ assuming that each κ change
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takes at least a time of (Δt)κ, i.e., τ = Nκ(Δt)κ. Again, IQ/S is minimized by picking the stopping
points along the path such that the thermodynamic lengths

(
ΔLQ

)
i
=
√

kBT
[(→
πi −→πi−1

){
1↔
π i

}(→
πi −→πi−1

)]1/2
or (ΔLS)i =

√
kB

[(→
πi −→πi−1

){
1↔
π i

}(→
πi −→πi−1

)]1/2
, (32)

respectively, of all Nκ pieces of the path are equal,

(
ΔLQ/S

)
i
=

(
ΔLQ/S

)
total

Nκ
. (33)

We realize that the change in κ can be interpreted as the change in the Hamiltonian of the system.
Thus, the isothermal branch of the cycle for a system with only one control parameter κ represents a
special case of the general estimates of the difference between computational work and the free energy
(at constant temperature)—which is computed via various thermodynamic integration methods [39–41]
between two different Hamiltonians in finite time—, for which the optimal control problem has been
analyzed in earlier work [35]. In this earlier study, it had been found that as long as we can stay close
to the equilibrium distribution such that we can assume that the actual probability distribution

→
p i at

step i equals the equilibrium probability distribution
→
πi−1 at the previous step i − 1, the amount of

excess work along an isothermal leg is given by

Iiso−T = Wiso−T − ΔFiso−T =
∫ τ

0

.→
E
(→

p −→π
)
dt = kBT

∫ τ
0

.→
π·

{
1↔
π

}
·
(→
π −→p

)
dt ≈∑Nκ

i = 1

(→
πi −→πi−1

)
·
{

kBT
↔
π i

}(→
πi −→p i

)
≈ kBT

∑Nκ
i = 1

(→
πi −→πi−1

)
·
{

1↔
π i

}(→
πi −→πi−1

)
.

(34)

However, this is just the same expression as IQ;iso−T, which we have obtained for the excess heat along
an isothermal leg in (κ, T)-space, as one would have already expected from energy conservation.
Since the temperature is constant along the path, we can pull T as a factor in front of the summation
when computing the excess heat, and thus the thermodynamic length LQ of an isothermal leg ( j) is

proportional to
√

T( j). Nevertheless, since the matrix
{

1↔
π i

}
varies along the path, the computation of

the thermodynamic length is not trivial in general.
Equations (28) and (29) can be specialized to an isothermal path by replacing λ by κ,

and explicitly computing

∂πk
∂κ

= − 1
kBT
πk

[
∂Ek
∂κ
−

∑
j

∂Ej

∂κ
π j

]
= − 1

kBT
πk

⎡⎢⎢⎢⎢⎢⎢⎢⎣∂Ek
∂κ
−

→(
∂E
∂κ

)
·→π

⎤⎥⎥⎥⎥⎥⎥⎥⎦ (35)

and ∑NS
k = 1

1
(π(λ))k

(
(dπ(λ))k

dλ

)2
=

∑NS
k = 1

1
πk

(
− 1

kBTπk

[
∂Ek
∂κ −

→(
∂E
∂κ

)
·→π

])2

= 1
(kBT)2

∑NS
k = 1

⎛⎜⎜⎜⎜⎜⎜⎝πk

⎡⎢⎢⎢⎢⎢⎣∂Ek
∂κ −

→(
∂Ej
∂κ

)
·→π

⎤⎥⎥⎥⎥⎥⎦
2⎞⎟⎟⎟⎟⎟⎟⎠

= 1
(kBT)2

⎛⎜⎜⎜⎜⎜⎝→π· →(
∂E
∂κ

)2 −
( →(
∂E
∂κ

)
·→π

)2⎞⎟⎟⎟⎟⎟⎠ = 1
(kBT)2 Var→

π

(
∂E
∂κ

)
.

(36)

Plugging this into Equations (28) and (29), we obtain

L( j)
Q;iso−T =

∣∣∣∣∣∣∣∣ 1√
kBT

∫ κ[ j+1]

κ[ j]

√
Var→

π

(
∂E
∂κ

)
dκ

∣∣∣∣∣∣∣∣ and L( j)
S;iso−T =

∣∣∣∣∣∣∣∣ 1√
kBT2

∫ κ[ j+1]

κ[ j]

√
Var→

π

(
∂E
∂κ

)
dκ

∣∣∣∣∣∣∣∣, (37)
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respectively. Note that the term under the square root is the variance of ∂E∂κ with respect to the

equilibrium probability distribution
→
π(κ, T), Var→

π

(
∂E
∂κ

)
, as function of T and κ.

3.3. Finite-Time Optimal Control along Iso-κ Legs

Next, we turn to the case of changing temperature while keeping κ constant. Along those branches,
only the temperature varies, but we cannot directly profit from the fact that κ is constant when

computing the excess heat. Equations (21) and (22) yield IQ;iso−κ ≈ ∑NT
i = 1

(→
πi −→πi−1

)
·
{

kBTi↔
π i

}(→
πi −→πi−1

)
and IS;iso−κ ≈ ∑NT

i = 1

(→
πi −→πi−1

)
·
{

kB↔
π i

}(→
πi −→πi−1

)
, respectively, where NT is the number of changes in the

value of the temperature T along the branch, which are feasible during the finite time τ, assuming that
each temperature change takes at least a time of (Δt)T, i.e., τ = NT(Δt)T.

Again, we see that finding the optimal solution of distributing NT temperature changes over the
path corresponds to minimizing IQ/S, where the thermodynamic length of each piece i of the path is

(
ΔLQ

)
i
=

⎡⎢⎢⎢⎢⎢⎣(→πi −→πi−1
)⎧⎪⎪⎨⎪⎪⎩kBTi
↔
πi

⎫⎪⎪⎬⎪⎪⎭(→
πi −→πi−1

)⎤⎥⎥⎥⎥⎥⎦
1/2

or (ΔLS)i =

⎡⎢⎢⎢⎢⎢⎣(→πi −→πi−1
)⎧⎪⎪⎨⎪⎪⎩ kB
↔
πi

⎫⎪⎪⎬⎪⎪⎭(→
πi −→πi−1

)⎤⎥⎥⎥⎥⎥⎦
1/2

, (38)

respectively. To do so, we first minimize the thermodynamic length of the complete path,(
ΔLQ/S

)
total

=
∑NT

i = 1

(
ΔLQ/S

)
i
, and then pick the size of each step such that they all have the

same thermodynamic length (
ΔLQ/S

)
i
=

(
ΔLQ/S

)
total

NT
. (39)

Equations (28) and (29) can be specialized to an iso-κ path by replacing λ by T, switching variables
to β = 1

kBT and explicitly computing

∂πk
∂T

=
∂β

∂T
∂πk
∂β

= − 1
kBT2

(
−πk

[
Ek −

∑
j
Ejπ j

])
=

1
kBT2πk

[
Ek −

→
E ·→π

]
(40)

and ∑NS

k = 1

1
(π(λ))k

(
(dπ(λ))k

dλ

)2

=
1

(kBT2)2

(
→
π·

→
(E)2 −

(→
E ·→π

)2
)
=

1

(kBT2)2 Var→
π
(E), (41)

where Var→
π
(E) is the variance in energy E(κ) with respect to the probability distribution

→
π. Plugging

this into Equation (28), we obtain

L( j)
Q;iso−κ =

∣∣∣∣∣∣∣∫ T[ j+1]

T[ j]

√
kBT√
kBT2

√
Var→

π
(E)

kBT2 dT

∣∣∣∣∣∣∣ =

∣∣∣∣∣∫ T[ j+1]

T[ j]

√
C(κ,T)

T dT
∣∣∣∣∣ or L( j)

S;iso−κ

=

∣∣∣∣∣∫ T[ j+1]

T[ j]

√
C(κ,T)

T2 dT
∣∣∣∣∣,

(42)

respectively, where C(κ, T) = 1
kBT2 Var→

π
(E) is the specific heat at T and κ. Note that these expressions

are reminiscent of optimal control results for the minimal entropy/excess heat production for paths
where we change the temperature of a thermodynamic system in finite time [36,42]. Furthermore, for

iso-κ legs along which the specific heat is approximately constant, we find L( j)
Q;iso−κ ∼

(√
T[ j+1] −

√
T[ j]

)
.

3.4. Finite-Time Optimal Control for Adiabatic Legs

3.4.1. General Adiabatic Paths

Clearly, minimizing the excess heat along a general isentropic adiabatic path is just another
special case of the finite-time optimal control along general paths in (κ, T)-space. Thus, we find
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for the excess heat the expression IQ;iso−S ≈ ∑Na
i = 1

(→
πi −→πi−1

)
·
{

kBTi↔
π i

}(→
πi −→πi−1

)
and for the entropy

production IS;iso−S ≈ ∑Na
i = 1

(→
πi −→πi−1

)
·
{

kB↔
π i

}(→
πi −→πi−1

)
, where Na is the number of changes in the values

of (κ, T(κ)), or equivalently (κ(T), T) along the branch, which are feasible during the finite time τ
assuming that each change in (κ, T) requires at least a time of (Δt)a, i.e., τ = Na(Δt)a. We keep
in mind that any change in κ automatically determines a corresponding change in T such that the
thermodynamic equilibrium entropy after the move has not changed, or conversely, changing the
temperature enforces an appropriate change in κ.

Again, IQ/S is minimized by picking the stopping points along the path such that the
thermodynamic lengths

(
ΔLQ

)
i
=

⎡⎢⎢⎢⎢⎢⎣(→πi −→πi−1
)⎧⎪⎪⎨⎪⎪⎩kBTi
↔
πi

⎫⎪⎪⎬⎪⎪⎭(→
πi −→πi−1

)⎤⎥⎥⎥⎥⎥⎦
1/2

or (ΔLS)i =

⎡⎢⎢⎢⎢⎢⎣(→πi −→πi−1
)⎧⎪⎪⎨⎪⎪⎩ kB
↔
πi

⎫⎪⎪⎬⎪⎪⎭(→
πi −→πi−1

)⎤⎥⎥⎥⎥⎥⎦
1/2

, (43)

respectively, of all Na pieces of the path are equal:

(
ΔLQ/S

)
i
=

(
ΔLQ/S

)
total

Na
. (44)

However, for a general adiabatic path, no system independent simplification of
Equations (28) and (29) is possible, since both κ and T change along such a path and their relationship
T(κ) varies from system to system.

3.4.2. Special Adiabatic Paths

As mentioned above, there are physical systems where not only the equilibrium entropy but
also the equilibrium probability distribution of the occupancy of the microstates does not change
along an adiabatic isentropic path. For such special adiabatic paths, adiabaticity is equivalent to a
constant equilibrium probability distribution along the path, i.e.,

→
πi = constant. On the other hand, our

assumption that
→
p i is close to

→
πi implied that

→
p i can be approximated by

→
p i ≈

→
πi−1, and thus, to first

order in
(→
π(t) −→p (t)

)
, we find for a special adiabatic path,

IQ;iso−S = Q
iso−S;

→
π
−Q

iso−S;
→
p

= 0, (45)

i.e., along such a leg there is no excess heat being produced due to finite time effects. We can see this
also directly from the general expression for the thermodynamic length of the general adiabatic path:

(
ΔLQ

)
total

=
∑Na

i = 1(ΔL)i =
∑Na

i = 1

√(→
πi −→πi−1

)
·
{

kBTi↔
π i

}(→
πi −→πi−1

)
=∑Na

i = 1

√(→
πi −→πi

)
·
{

kBTi↔
π i

}(→
πi −→πi

)
= 0,

(46)

since
→
πi =

→
πi−1 along a special adiabatic path, and analogously (ΔLS)total = 0. Here, Na is the

number of steps along the special adiabatic path. As a consequence, the work performed by the system
on the apparatus equals the negative of the energy difference between the two end points of leg ( j),
Wj→ j+1 = −(ΔE) j→ j+1 = −

(
〈E〉[ j+1] − 〈E〉[ j]

)
, regardless of whether we were restricted to finite time

or not, and thus no excess work or heat is present, at least to first order under the assumptions we
have made. Even when including higher orders, the fact that

→
πi is constant along the whole path

together with
→
p i = 0 =

→
πi = 0 ensures that all higher order terms vanish because no relaxation of

→
p i to

→
πi is ever needed, thus also eliminating the issue of incomplete relaxation to equilibrium discussed in
refs. [35,36].
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The way finite-time considerations can enter the estimates along a special adiabatic branch must
therefore involve deviations of the control itself from the true adiabatic path. Note that we did not
consider such deviations from the target curve of the control parameters for the isothermal or the
iso-κ branches. Since, in general, any motion of the system along these two types of branches already
involves substantial changes in the equilibrium probability distribution,

→
πi �

→
πi−1, one usually assumes

that the additional effects related to being “off-target” can be ignored in the analysis, although the
issue of keeping the control parameters “on target” might be quite relevant in practical applications!

However, since
→
πi ≡ →πi−1 along the ideal special adiabatic path, deviations in the control

parameters now become the primary source of entropy or excess heat production; other possible
sources such as equilibrium fluctuations in the probability distribution

→
p i about

→
πi will not be

considered here. As we have no knowledge about the way the control would be established in practice
(i.e., in the experiment), we make the reasonable assumption that trying to stay as close as possible
to the ideal adiabatic values of the control requires us again to maximize the number of change
steps. This is analogous to how we proceeded earlier, where we assumed that the optimal solution of
minimizing excess heat or entropy production for the general adiabatic, the isothermal, and the iso-κ
branches would be found using the maximal number of steps feasible between the two endpoints of
the leg: if the optimal solution requires fewer than the maximally possible number of steps, then we
can just “throw away” the superfluous steps by assigning zero time to them and/or placing them at
one of the endpoints of the branch.

The maximal-number-of-steps assumption implies that we cannot perform an optimal control on
the sub-step level, i.e., the deviation associated with the movement from one point i− 1 with values
(κi−1, Ti−1) along the ideal adiabatic curve to the next point i with values (κi, Ti) can only involve one
“virtual stopping point” away from the curve “halfway” between the two curve points. In general,
there exist an infinite number of choices for such “halfway points”, but from the basic modeling
point of view, only two of them make sense, i.e., are consistent with our deviation analysis: (κi, Ti−1)

“below” the adiabatic curve or (κi−1, Ti) “above” the adiabatic curve for paths moving from low to
high temperatures; conversely, if we move from high to low temperatures, the (κi, Ti−1) points are
“above” and the (κi−1, Ti) “below” the adiabatic curve (see Figure 4 below). If we could be closer to the
curve than these points, then we would appear to have the ability to access temperatures and κ values
in-between those of the two consecutive points along the adiabatic curve, suggesting that we have not
yet maxed out the number of steps. Of course, this is only a plausibility argument and not a proof that
such closer points would not be possible, but for this analysis we will employ the two virtual points
given above since no further information about the actual functioning of the experimental apparatus is
available. In fact, we can interpret our choice of virtual points as providing a heuristic upper bound on
the entropy/excess heat production along the special adiabatic path; we essentially assume that we are
able to be perfectly on target in either κ or T, and the excess production is due to the adjustment in the

lagging parameter T or κ, respectively. In the following discussion, we only employ the metric
↔
MQ;

completely analogous results are obtained when using the metric
↔
MS.
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Figure 4. Sketch of an optimal setting of step points along a (special) adiabatic leg moving from
corner [3] to corner [4], where the excess heat associated with being “off-target” with respect to the
ideal adiabatic path is minimized. Note that the density of step points (κi, Ti) along the leg increases
with temperature, approximately in a square-root fashion. Red lines are the isothermal and blue lines
the iso-κ sub-pieces, respectively, which connect two points (κi−1, Ti−1) and (κi, Ti) along the perfect
adiabatic path via the virtual intermediary off-target points (κi−1, Ti).

We note that reaching the point i via either of the virtual points requires an isothermal step and an
iso-κ step. Since no sub-optimization along these steps is possible, we can directly write down the
excess heat associated with each half-step and sum them. For the virtual point (κi, Ti−1), we have for
the thermodynamic length to go from i− 1 to i:

(
ΔLQ

)
i
=

√√√√√√√ (→
π (κi, Ti−1) −→πi−1

)
·
{

kBTi−1↔
π(κi,Ti−1)

}(→
π (κi, Ti−1) −→πi−1

)
+(→

πi −→π(κi, Ti−1)
)
·
{

kBTi↔
π i

}(→
πi −→π(κi, Ti−1)

)
=

√√√√√√√ (→
π (κi, Ti−1) −→πi

)
·
{

kBTi−1↔
π(κi,Ti−1)

}(→
π (κi, Ti−1) −→πi

)
+(→

πi −→π(κi, Ti−1)
)
·
{

kBTi↔
π i

}(→
πi −→π(κi, Ti−1)

)
=

√(→
πi −→π(κi, Ti−1)

)
·
[{

kBTi↔
π i

}
+

{
kBTi−1↔
π(κi,Ti−1)

}](→
πi −→π(κi, Ti−1)

)
,

(47)

where
→
πi−1 =

→
π (κi−1, Ti−1) and

→
πi =

→
π (κi, Ti) are the two consecutive points on the adiabatic curve,

and we have used the fact that
→
πi =

→
πi−1.

Similarly, for the virtual point (κi−1, Ti), we have

(
ΔLQ

)
i
=

√√(→
πi −→π(κi−1, Ti)

)
·
⎡⎢⎢⎢⎢⎢⎣
⎧⎪⎪⎨⎪⎪⎩kBTi
↔
πi

⎫⎪⎪⎬⎪⎪⎭+

⎧⎪⎪⎨⎪⎪⎩ kBTi
↔
π(κi−1, Ti)

⎫⎪⎪⎬⎪⎪⎭
⎤⎥⎥⎥⎥⎥⎦(→πi −→π(κi−1, Ti)

)
. (48)

Since it is not clear which of the two virtual points would be more suitable, one might suggest
that a decent approximation for

(
ΔLQ

)
i

would be the average of the two thermodynamic lengths for
the two points:

(
ΔLQ

)
i
� 1

2

(√(→
πi −→π(κi, Ti−1)

)
·
[{

kBTi↔
π i

}
+

{
kBTi−1↔
π(κi,Ti−1)

}](→
πi −→π(κi, Ti−1)

)
+

√(→
πi −→π(κi−1, Ti)

)
·
[{

kBTi↔
π i

}
+

{
kBTi↔

π(κi−1,Ti)

}](→
πi −→π(κi−1, Ti)

))
.

(49)
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However, from the point of view of optimal control, this average is not very helpful; in particular,
the thermodynamic metric becomes a very complicated expression.

Instead it is more effective to systematically pick one of the two virtual points, e.g., (κi, Ti−1),
because this allows us to write the excess heat production due to deviations in the control from the
special adiabatic path as

IQ;iso−S =
∑Na

i = 1

(→
πi −→π(κi, Ti−1)

)
·
[{

kBTi↔
π i

}
+

{
kBTi−1↔
π(κi,Ti−1)

}](→
πi −→π(κi, Ti−1)

)
=

∑Na
i = 1

[(
ΔLQ

)
i

]2
, (50)

where each
(
ΔLQ

)
i

is the thermodynamic distance between the points i− 1 and i computed with the

metric
[{

kBTi↔
π i

}
+

{
kBTi−1↔
π(κi,Ti−1)

}]
, with the virtual intermediary point fixed as (κi, Ti−1).

We note that the probability distribution
→
π(κi, Ti−1) at the virtual point, which enters the expression

for
(
ΔLQ

)
i
, is completely determined from our information about the temperatures and κ-values of the

two consecutive points along the ideal special adiabatic path which are “connected” via the virtual
point. Thus, there is no internal degree of freedom left for the piece of path between the points i− 1
and i, which could be adjusted as part of the optimal control analysis. As a consequence, the choice of
the locations of the consecutive points along the special adiabatic path completely determines

(
ΔLQ

)
i
,

although in a slightly more involved fashion than for the isothermal and the iso-κ legs. This allows us
to conclude that choosing the step points (κi, Ti) such that the lengths of all the

(
ΔLQ

)
i

have the same
value, again yields the optimal solution for minimizing the excess heat.

While the general formula for the metric and thus the thermodynamic length of the path is more
complicated than for the isothermal or iso-κ legs, we note that the metric is still essentially proportional

to kBTi at step i. Furthermore, due to the leg being special adiabatic, the term
[{

kBTi↔
π i

}
+

{
kBTi−1↔
π(κi,Ti−1)

}]
does only weakly vary as function of the probability distribution

→
πi since the distribution is constant on

the path, and should only differ slightly from
→
πi along the virtual points. Thus, we can conclude that

the thermodynamic length of the virtual-point pieces between two points along the special adiabatic
path mostly depends on the temperature, with(

ΔLQ
)
i
∼ √

Ti. (51)

As a consequence, the optimal distribution of points will be related to the square root of the
temperature in the sense that the distance of step points along the leg (as function of temperature) will
monotonically decrease as 1/

√
Ti, leading to a higher density of step points at higher temperatures

(c.f. Figure 4).

4. Application to the Hydrogen Atom-Like System

Regarding the hydrogen atom-like system, we first note that κ and T enter the formulas for the
equilibrium probability distribution everywhere in the combination

A =
κ
T

, (52)

such that

πk(κ, T) = πk

(
κ
T

)
= e−(

κ
T )

Ek(1)
kB /

∑NS

j = 1
e−(

κ
T )

Ej(1)

kB = e−A
Ek(1)

kB /
∑NS

j = 1
e−A

Ej(1)

kB . (53)

In particular, this means that the ratio κT remains constant along the adiabatic legs of the cycle,
ensuring that

→
π does not change along this branch. Thus, the adiabatic branches for cycles involving

the hydrogen atom-like system belong into the special category where not only the entropy but the
whole equilibrium probability distribution is constant along the path. Note that in the cycle diagram
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(Figures 2 and 3), an adiabatic branch ( j) for the hydrogen atom-like system is always a straight line
(that can be continued through the origin) with slope 1

A( j) . Of course, the actual value of the ratio A

will be different for each adiabatic leg. For an adiabatic leg ( j), it follows that κ[ j+1]T[ j] = κ[ j]T[ j+1].
For the combination of iso-κ and adiabatic legs, we have κ[1] = κ[2] = κin and κ[3] = κ[4] = κ f ;
therefore, we get

κin
κ f

=
T[1]

T[4]
=

T[2]

T[3]
. (54)

Analogously, for the combination of adiabatic and isothermal legs, we have the two adiabatic
branches (legs 1 and 3) with A1→2 � A3→4, for which κ[1]T[2] = κ[2]T[1] and κ[4]T[3] = κ[3]T[4], and the
isothermal legs yield the conditions T[3] = T[2] and T[1] = T[4]. Thus, we have the relations

T[1]

T[2]
=
κ[1]

κ[2]
=
κ[4]

κ[3]
=
κin

κ[2]
=
κ[4]

κ f
. (55)

Regarding the expressions for the thermodynamic lengths of the various legs in this section,
we remark that the main effect of dealing with the hydrogen atom-like system is the special adiabaticity
of the isentropic paths, such that the contribution of the adiabatic paths to the excess heat or entropy
production can be set equal to zero unless we include the “off-target” contributions discussed in
Section 3.4.2. In addition, we can exploit Equation (3) to rewrite the specific heat as

C(κ, T) =

→
π·
→

(E)2−
(→
E ·→π

)2

kBT2 = κ2

→
π·

→
(E(1))2−

( →
E(1)·→π

)2

kBT2 = κ2Cκ(κ, T) = κ2

kBT2 Var→
π
(E(1)) =

A2

kB
Var→

π
(E(1)),

(56)

where both the variance Var→
π
(E(1)) =

→
π·

→
(E(1))2 −

( →
E(1)·→π

)2
= 1

κ2 Var→
π
(E) and the specific heat

C(κ, T) are functions of A =
(
κ
T

)
. Furthermore, we can rewrite Equation (35) as

∂πk
∂κ

= − 1
kBT
πk

[
Ek(1) −

∑
j
Ej(1)π j

]
= − 1

kBT
πk

[
Ek(1) −

→
E(1)·→π

]
, (57)

where πk is a function of
(
κ
T

)
, and thus Equation (36) becomes

1

(kBT)2

(
→
π·

→
E(1)2 −

( →
E(1)·→π

)2)
=

1
kB

Cκ(κ, T) =
1
κ2kB

C(κ, T) =
Var→

π
(E(1))

(kBT)2 . (58)

Note that the variance of ∂E∂κ in Equation (36) is now transformed into a variance of the energy
E(1) of the unmodified hydrogen atom.

For each cycle discussed below, we first write down a formula for the total work done by the atom
and the heat absorbed by the atom in the quasi-static approximation, where

→
p i =

→
πi everywhere

along the cycle, and subsequently, we provide formulas for the efficiency, and the optimality criterion
for the minimal excess heat production.

4.1. Iso-κ-Adiabatic Cycle

In the case of the iso-κ-adiabatic cycle where the legs 2 and 4 are adiabatic and do not contribute
to the heat production, we can focus on legs 1 and 3 when computing the heat exchange with the
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environment. Using Equations (18) and (19), we obtain therefore for the total heat exchange over the
full cycle:

Qcycle =
∫ S[2]

S[1] TdS +
∫ S[4]

S[3] TdS =
[
T[2]S[2] − T[1]S[1]

]
+ kB

∫ T[2]

T[1]
→
π(T,κin)·ln

(→
π(T,κin)

)
dT+[

T[4]S[4] − T[3]S[3]
]
+ kB

∫ T[4]

T[3]
→
π
(
T,κ f

)
·ln

(→
π
(
T,κ f

))
dT =

→
E(κin)·

(→
π
(
κinT[2]

)
−→π

(
κinT[1]

))
+
→
E
(
κ f

)
·
(→
π
(
κ f T[4]

)
−→π

(
κinT[3]

))
= Wcycle.

(59)

Since T[2] > T[1], T[4] < T[3], and furthermore, the equilibrium entropy at higher temperatures is
always larger than the one at lower temperatures, the term belonging to leg 1 transfers heat into the
system, while along leg 3, the system gives off heat.

Since the legs 2 and 4 represent adiabatic processes, we have, furthermore, S[2] = S[3] and
S[1] = S[4], and also T[3] =

κ f
κin

T[2] and T[4] =
κ f
κin

T[1]. Using Equation (18) and shifting variables
back and forth from T to T/κin and T/κ f , this implies that

Qcycle =
∫ S[2]

S[1] ,leg1 TdS +
∫ S[4]

S[3] ,leg3 TdS =
(
1− κ f

κin

)[
T[2]S[2] − T[1]S[1]

]
+ kBκin

∫ T[2]/κin

T[1]/κin

→
π(y)·ln

(→
π(y)

)
dy

+kBκ f
∫ T[4]/κ f

T[3]/κ f

→
π(y)·ln

(→
π(y)

)
dy =

(
1− κ f

κin

)[
T[2]S[2] − T[1]S[1]

]
−

(
κin − κ f

)
1
κin

∫ T[2]

T[1] S(T)dT =(
1− κ f

κin

) ∫ S[2]

S[1] ,leg1 TdS < 0,
(60)

since κ f > κin. This shows that the hydrogen atom-like system gives off heat to the environment, when
the cycle is run as described.

Of course, this equals the total work around the cycle, which needs to balance the total
heat by energy conservation. If we want to compute the expressions for the work along each
of the four legs—e.g., in order to talk about the efficiency of the hydrogen atom-like system as
working fluid in an engine, we need to add the contribution for the energy change. We then find:

W1→2 = W3→4 = 0, W2→3 = −→E
(
κ f

)
·→π

(
κ f , T[3]

)
+
→
E(κin)·→π

(
κin, T[2]

)
=

(→
E(κin) −

→
E
(
κ f

))
·→π(A2→3),

and W4→1 = −→E(κin)·→π
(
κin, T[1]

)
+
→
E
(
κ f

)
·→π

(
κ f , T[4]

)
=

(→
E
(
κ f

)
−→E(κin)

)
·→π(A4→1). This shows that

we reduce the internal energy of the hydrogen atom-like system by a certain amount along leg 2 and
raise it along leg 4 but by a much larger amount. Taking the sum, we obtain

W4→1 + W2→3 =
(→
E
(
κ f

)
−→E(κin)

)
·→π(A4→1) +

(→
E(κin) −

→
E
(
κ f

))
·→π(A2→3) =(→

E
(
κ f

)
−→E(κin)

)
·
(→
π(A4→1) −→π(A2→3)

)
=(

κ f − κin
)→
E(κ = 1)·

(→
π(A4→1) −→π(A2→3)

)
< 0,

(61)

since κ f > κin and
→
E(κ = 1)·→π(A4→1) <

→
E(κ = 1)·→π(A2→3) < 0 because A4→1 = κin

T[1] > A2→3 = κin
T[2] .

Thus, during this cycle, the apparatus performs net work on the system over the legs 2 and 4.
For the efficiency, a possible definition is to take the ratio between the net work along the legs

where κ is varied, and total heat added to/extracted from the system. With this definition, we find

η{κ;S} =
W4→1 + W2→3

Qcycle
=

Wcycle

Qcycle
= 1. (62)

Of course, one can define many other efficiencies, depending on the quantities and processes
of interest.
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Regarding the excess heat, we note that due to Equation (52), the adiabatic legs are special. We do
not include the effect of being “off-target” during the adiabatic legs, and thus we only consider the two
terms from the iso-κ legs 1 and 3:

IQ;total = IQ;1→2 + IQ;3→4 =
{∑NT

i = 1

(→
πi −→πi−1

)
·
{

kBTi↔
π i

}(→
πi −→πi−1

)}
leg1

+{∑NT
i = 1

(→
πi −→πi−1

)
·
{

kBTi↔
π i

}(→
πi −→πi−1

)}
leg3

.
(63)

Using Equations (42) and (56), we get for the whole cycle

LQ;cycle = L(1)
Q + L(3)

Q =

∣∣∣∣∣∣κin
∫ T[2]

T[1]

√
Cκ( κT )

T dT

∣∣∣∣∣∣+
∣∣∣∣∣∣κ f

∫ T[4]

T[3]

√
Cκ( κT )

T dT

∣∣∣∣∣∣
=

∣∣∣∣∣∣∣κin
∫ T[2]

T[1]

√
Var→

π
(E(1))

kBT3 dT

∣∣∣∣∣∣∣+
∣∣∣∣∣∣∣κ f

∫ T[4]

T[3]

√
Var→

π
(E(1))

kBT3 dT

∣∣∣∣∣∣∣.
(64)

Switching variables to A = κ
T for the integration, keeping in mind that Var→

π
(E(1)) is a function

of A = κ
T , and using A[2] = A[3] and A[4] = A[1] since legs (4) and (2) are adiabatic, we find

L(1)
Q =

∣∣∣∣∣∣∣∣√κin

∫ A[2]

A[1]

√
Var→

π
(E(1))
√

kBA
dA

∣∣∣∣∣∣∣∣ < L(3)
Q =

∣∣∣∣∣∣∣∣ √κ f

∫ A[2]

A[1]

√
Var→

π
(E(1))
√

kBA
dA

∣∣∣∣∣∣∣∣, (65)

since κ f > κin.
In the case of the adiabatic legs considered here, we do have the problem that, to first order,

the thermodynamic length vanishes as long as we are perfectly on target with the thermodynamic
controls. Thus, the formula for τ( j) yields zero time for the adiabatic legs of the path, which essentially
means we could jump directly from the end of the first leg (= beginning of the second leg) to the
beginning of the third leg (= end of the second leg), and analogously for the fourth branch. In practice,
this does not make too much sense, and we would want to employ the off-target formula derived
above, even though this requires additional information from experiment, or make assumptions about
the location of the virtual intermediary points discussed above. Alternatively, we can make heuristic
assumptions about the (hopefully short, i.e., τa  τ) minimal time τa = τ

(2)
Q = τ

(4)
Q needed to move

along the adiabatic leg without noticeable deviations from the ideal adiabatic curve in (κ, T) space and
subtract these times from the total available time τ, τiso−κ = τ− 2τa, before assigning τ(1)Q and τ(3)Q
according the principle of constant thermodynamic speed.

Since
L(3)Q

L(1)Q

=
√
κ f√
κin

, the optimal time allocation for the two legs must be

τ
(3)
Q

τ
(1)
Q

=
L(3)

Q

L(1)
Q

=

√
κ f√
κin

, (66)

and thus we obtain τ(1)Q = τiso−κ
√
κin√

κ f +
√
κin

and τ(3)Q = τiso−κ
√
κ f√

κ f +
√
κin

. We remark that when we

minimize the entropy production and thus use the metric
↔
MS, we find L(3)

S = L(1)
S and, after subtracting

τa = τ
(2)
S = τ

(4)
S from τ, we obtain τ(1)S = τ

(3)
S =

τiso−κ
2 .

Due to the sum over microstates for the heat capacity with nontrivial energy eigenvalues under the
square root and the nontrivial temperature dependence of

→
π(T,κ), no further analytical simplifications

appear to be possible. Thus, the allocation along the individual legs is an open question, but should
depend on the variance Var→

π
(E(1)) as function of

(
κ
T

)
.
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4.2. Iso-κ-Isothermal Cycle

For the iso-κ-isothermal cycle (T[3] = T[2] and T[4] = T[1]), we have a non-vanishing heat term
along all legs, where the integrals over temperature along the isothermal branches vanish, of course,

kB

∫ T[3]

T[2]

→
π(κ, T)·ln

(→
π(κ, T)

)
dT = kB

∫ T[1]

T[4]

→
π(κ, T)·ln

(→
π(κ, T)

)
dT = 0. (67)

Using the fact that along the iso-κ branches Q( j) = (ΔE)( j), we get for the total heat produced on
the cycle,

Qcycle =
→
E(κin)·

[→
π
(
κin, T[2]

)
−→π

(
κin, T[1]

)]
+

[
T[2]S[3]

(
κ f , T[2]

)
− T[2]S[2]

(
κin, T[2]

)]
+

→
E
(
κ f

)
·
[→
π
(
κ f , T[1]

)
−→π

(
κ f , T[2]

)]
+

[
T[1]S[1]

(
κin, T[1]

)
− T[1]S[4]

(
κ f , T[1]

)]
.

(68)

For the work along the legs, we find W1→2 = W3→4 = 0,

W2→3 =
[
T[2]S[3]

(
κ f , T[2]

)
− T[2]S[2]

(
κin, T[2]

)]
− →E

(
κ f

)
·→π

(
κ f , T[2]

)
+
→
E(κin)·→π

(
κin, T[2]

)
and

W4→1 =
[
T[1]S[1]

(
κin, T[1]

)
− T[1]S[4]

(
κ f , T[1]

)]
−→E(κin)·→π

(
κin, T[1]

)
+
→
E
(
κ f

)
·→π

(
κ f , T[1]

)
. The possible

net extracted work from the isothermal legs 2 and 4 is now:

W4→1 + W2→3 =
[
T[2]S[3]

(
κ f , T[2]

)
− T[2]S[2]

(
κin, T[2]

)
+ T[1]S[1]

(
κin, T[1]

)
− T[1]S[4]

(
κ f , T[1]

)]
+
→
E(1)·

{
κ f

[→
π
(
κ f , T[1]

)
−→π

(
κ f , T[2]

)]
− κin

[→
π
(
κin, T[1]

)
−→π

(
κin, T[2]

)]}
.

(69)

Now,
κ f

T[2] >
κin
T[2] and similarly

κ f

T[1] >
κin
T[1] , and thus the probability distribution

→
π
(
κ f , T[2]

)
is more

concentrated at low energies than
→
π
(
κin, T[2]

)
, leading to the conclusion that S

(
κ f , T[2]

)
< S

(
κin, T[2]

)
,

and analogously S
(
κ f , T[1]

)
< S

(
κin, T[1]

)
. Similarly,

→
E(1)·→π

(
κ f , T[1]

)
<
→
E(1)·→π

(
κ f , T[2]

)
and

→
E(1)·→π

(
κin, T[1]

)
<
→
E(1)·→π

(
κin, T[2]

)
. Since κ f > κin, the energy contribution to the work along

these legs should be negative, resulting in an overall negative work, i.e., the environment performs net
work on the hydrogen atom-like system.

Again, we compute the efficiency as

η{κ;T} =
W(2) + W(4)

Qcycle
=

Wcycle

Qcycle
= 1. (70)

Regarding the excess heat production, all four legs contribute in this case. Thus, we have

IQ;total = IQ;1→2 + IQ;2→3 + IQ;3→4 + IQ;4→1 =
{∑NT

i = 1

(→
πi −→πi−1

)
·
{

kBTi↔
π i

}(→
πi −→πi−1

)}
leg1

+

kBT2

{∑Nκ
i = 1

(→
πi −→πi−1

)
·
{

1↔
π i

}(→
πi −→πi−1

)}
leg2

+
{∑NT

i = 1

(→
πi −→πi−1

)
·
{

kBTi↔
π i

}(→
πi −→πi−1

)}
leg3

+

kBT1

{∑Nκ
i = 1

(→
πi −→πi−1

)
·
{

1↔
π i

}(→
πi −→πi−1

)}
leg4

.

(71)

112



Entropy 2020, 22, 1066

Note that NT and NK of the individual legs will be determined from the ratios τ( j)

(Δt)T,κ
, where we

again will assume that the relaxation times are constant. Employing Equations (37), (42) and (56)–(58),
the total thermodynamic length of the cycle is then

LQ;cycle = L(1)
Q + L(2)

Q + L(3)
Q + L(4)

Q =

∣∣∣∣∣∣∣κin
∫ T[2]

T[1]

√
Cκ(

κin
T )

T dT

∣∣∣∣∣∣∣+
∣∣∣∣∣√T[2]

∫ κ f
κin

√
Cκ

(
κ

T[2]

)
dκ

∣∣∣∣∣+∣∣∣∣∣∣∣∣κ f
∫ T[1]

T[2]

√
Cκ

( κ f
T

)
T dT

∣∣∣∣∣∣∣∣+
∣∣∣∣∣√T[1]

∫ κin
κ f

√
Cκ

(
κ

T[1]

)
dκ

∣∣∣∣∣ =

∣∣∣∣∣∣∣κin
∫ T[2]

T[1]

√
Var→

π
(E(1))

kBT3 dT

∣∣∣∣∣∣∣+∣∣∣∣∣∣∣√T[2]
∫ κ f
κin

√
Var→

π
(E(1))

kBT2 dκ

∣∣∣∣∣∣∣+
∣∣∣∣∣∣∣κ f

∫ T[2]

T[1]

√
Var→

π
(E(1))

kBT3 dT

∣∣∣∣∣∣∣+
∣∣∣∣∣∣∣√T[1]

∫ κ f
κin

√
Var→

π
(E(1))

kBT2 dκ

∣∣∣∣∣∣∣.
(72)

Keeping in mind that Var→
π
(E(1)) depends only on A, we switch variables in all integrals from T

and κ to A = κ
T , to obtain

L(1)
Q + L(2)

Q + L(3)
Q + L(4)

Q =

∣∣∣∣∣∣∣√κin
∫ A[2]

A[1]

√
Var→

π
(E(1))

kBA dA

∣∣∣∣∣∣∣+
∣∣∣∣∣∣∣√T[2]

∫ A[3]

A[2]

√
Var→

π
(E(1))

kB
dA

∣∣∣∣∣∣∣+∣∣∣∣∣∣∣√κ f
∫ A[4]

A[3]

√
Var→

π
(E(1))

kBA dA

∣∣∣∣∣∣∣+
∣∣∣∣∣∣∣√T[1]

∫ A[1]

A[4]

√
Var→

π
(E(1))

kB
dA

∣∣∣∣∣∣∣.
(73)

Note that since all legs contribute already to first order to the total thermodynamic length, the times
spent in each leg in the optimal case are proportional to the thermodynamic lengths of each leg,

τ
( j)
Q =

L( j)
Q

Lcycle
τ. Since the values of A at the corners are all different, no simple general estimate of assigning

times to the various legs appears possible. However, for the special case of (approximately) constant

variance Var→
π
(E(1)), we find L(1)

Q = κin

(
1√
T1
− 1√

T2

)√Var→
π
(E(1))

kB
, L(2)

Q =
(
κ f√
T2
− κin√

T2

)√Var→
π
(E(1))

kB
,

L(3) = κ f

(
1√
T1
− 1√

T2

)√Var→
π
(E(1))

kB
and L(4)

Q =
(
κ f√
T1
− κin√

T1

)√Var→
π
(E(1))

kB
. From this follows

LQ;cycle = 2

√
Var→

π
(E(1))

kB

(
κ f√
T1
− κin√

T2

)
= 2

√
Var→

π
(E(1))

kB

(√
T2κ f −

√
T1κin

)
√

T1T2
, (74)

and thus the optimal times for the four legs we obtain τ(1)Q = τ
2

[ √
T2κin−

√
T1κin√

T2κ f−
√

T1κin

]
, τ(2)Q = τ

2

[ √
T1κ f−

√
T1κin√

T2κ f−
√

T1κin

]
,

τ
(3)
Q = τ

2

[ √
T2κ f−

√
T1κ f√

T2κ f−
√

T1κin

]
and τ(4)Q = τ

2

[ √
T2κ f−

√
T2κin√

T2κ f−
√

T1κin

]
. Analogous results are obtained using the metric

↔
MS for the case of minimum entropy production. In particular, if we again assume an approximately

constant variance Var→
π
(E(1)), we obtain L(1)

S =
(
κin
T1
− κin

T2

)√Var→
π
(E(1))

kB
, L(2)

Q =
(κ f

T2
− κin

T2

)√Var→
π
(E(1))

kB
,

L(3) =
(κ f

T1
− κ f

T2

)√Var→
π
(E(1))

kB
and L(4)

Q =
(κ f

T1
− κin

T1

)√Var→
π
(E(1))

kB
. From this follows for the total

thermodynamic length of the path LS;cycle = 2

√
Var→

π
(E(1))

kB

(T2κ f−T1κin)
T1T2

, yielding the optimal time

assignments to the legs as τ(1)S = τ
2

[
T2κin−T1κin
T2κ f−T1κin

]
, τ(2)S = τ

2

[
T1κ f−T1κin
T2κ f−T1κin

]
, τ(3)S = τ

2

[
T2κ f−T1κ f
T2κ f−T1κin

]
and

τ
(4)
S = τ

2

[
T2κ f−T2κin
T2κ f−T1κin

]
.
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4.3. Isothermal-Adiabatic Cycle

In the case of the isothermal-adiabatic cycle where the legs 1 and 3 are adiabatic and do not
contribute to the heat exchange, we have from legs 2 and 4:

Qcycle =
∫ S[3]

S[2] TdS +
∫ S[1]

S[4] TdS =
[
T[3]S[3] − T[2]S[2]

]
+ kB

∫ T[3]

T[2]
→
π(T,κin)·ln

(→
π(T,κin)

)
dT+[

T[1]S[1] − T[4]S[4]
]
+ kB

∫ T[1]

T[4]
→
π
(
T,κ f

)
·ln

(→
π
(
T,κ f

))
dT = T[2]

[
S[3] − S[1]

]
+T[1]

[
S[1] − S[3]

]
=(

T[2] − T[1]
)[

S[3] − S[1]
]
= Wcycle.

(75)

Here, we have used the fact that the temperature does not change along legs 2 and 4, T[2] = T[3]

and T[1] = T[4], and that the entropy does not change along the adiabatic legs, i.e., S[1] = S[2] and
S[3] = S[4].

Since T[2] > T[1], and furthermore, for equal temperatures, the equilibrium entropy decreases
with κ, i.e., S[3] < S[2] = S[1], we have a rejection of heat over the cycle, i.e., the hydrogen atom-like
system converts work performed on it into heat transferred to the environment. Furthermore, the term
belonging to leg 2 absorbs heat in the system, while along leg 3, we are removing heat from the system.

For the work performed by the system along the four legs, we find

W1→2 = −
(→
E(κ2)·→π

(
κ2, T[2]

)
−→E(κin)

→
π
(
κin, T[1]

))
, W2→3 = T[2]

[
S[3]

(
κ f , T[2]

)
− S[2]

(
κ2, T[2]

)]
−[→

E
(
κ f

)
·→π

(
κ f , T[2]

)
−→E(κ2)·→π

(
κ2, T[2]

)]
, W3→4 = −

(→
E(κ4)·→π

(
κ4, T[1]

)
−→E

(
κ f

)→
π
(
κ f , T[2]

))
,

and W4→1 = T[1]
[
S[1]

(
κin, T[1]

)
− S[4]

(
κ4, T[1]

)]
−

[→
E(κin)·→π

(
κin, T[1]

)
−→E(κ4)·→π

(
κ4, T[1]

)]
. Taking the

sum along the two isothermal legs, we obtain

W4→1 + W2→3 = T[1]
[
S[1]

(
κin, T[1]

)
− S[4]

(
κ4, T[1]

)]
−

[→
E(κin)·→π

(
κin, T[1]

)
−→E(κ4)·→π

(
κ4, T[1]

)]
+T[2]

[
S[3]

(
κ f , T[2]

)
− S[2]

(
κ2, T[2]

)]
−

[→
E
(
κ f

)
·→π

(
κ f , T[2]

)
−→E(κ2)·→π

(
κ2, T[2]

)]
=

[
T[2] − T[1]

][
S[3] − S[1]

]
−

(
1− T1

T2

)
κ f
→
E(κ = 1)·

{→
π(A3→4) − κin

κ f

(T2
T1

)→
π(A1→2)

}
,

(76)

where we have used S[1] = S[2], S[3] = S[4], A1→2 = κin
T[1] = κ2

T[2] , and A3→4 =
κ f

T[2] = κ4
T[1] . We note

that
→
E(1)·→π(A3→4) <

→
E(1)·→π(A1→2) < 0 and thus

− κ f

(
1− T1

T2

)→
E(κ = 1)·

{
→
π(A3→4) − κin

κ f

(
T2

T1

)
→
π(A1→2)

}
> 0 (77)

as long as κin
κ f

(T2
T1

)
< 1; note that this is exactly the feasibility condition for the special adiabatic-isothermal

cycle, Equation (5). Furthermore, S[3] < S[1] and thus
[
T[2] − T[1]

][
S[3] − S[1]

]
< 0, suggesting that the

net work for these two legs is likely to be negative, i.e., the apparatus does work on the atom and
increases its internal energy in the process.

For the “efficiency”, we again compute the ratio between the net work along the isothermal legs
and the total heat exchanged

ηisothermal
{S;T} =

W4→1 + W2→3

Qcycle
= 1−

−κ f
(
1− T1

T2

)→
E(κ = 1)·

{→
π(A3→4) − κin

κ f

(T2
T1

)→
π(A1→2)

}
(
T[2] − T[1]

)[
S[1] − S[3]

] < 1. (78)
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Alternatively, we could use the two adiabatic legs to extract/perform work, i.e.,

W1→2 + W3→4 = −
(→
E(κ4)·→π

(
κ4, T[1]

)
−→E

(
κ f

)→
π
(
κ f , T[2]

))
−
(→
E(κ2)·→π

(
κ2, T[2]

)
−→E(κin)

→
π
(
κin, T[1]

))
=

(
1− T1

T2

)
κ f
→
E(κ = 1)·

{→
π(A3→4) − κin

κ f

(T2
T1

)→
π(A1→2)

}
;

(79)

in that case, we get for the efficiency

ηadiabatic
{S;T} =

W1→2 + W3→4

Qcycle
=

(
1− T1

T2

)
κ f
→
E(κ = 1)·

{→
π(A3→4) − κin

κ f

(T2
T1

)→
π(A1→2)

}
(
T[2] − T[1]

)[
S[3] − S[1]

] . (80)

Clearly, ηisothermal
{ad;T} + ηadiabatic

{ad;T} = 1, since Wcycle = Qcycle.
Regarding minimizing the excess heat, we do not include the effect of being “off-target” during

the adiabatic legs, and thus we only have the two terms from the isothermal legs 2 and 4:

IQ;total = IQ;2→3 + IQ;4→1 =
{∑NT

i = 1

(→
πi −→πi−1

)
·
{

kBTi↔
π i

}(→
πi −→πi−1

)}
leg2

+{∑NT
i = 1

(→
πi −→πi−1

)
·
{

kBTi↔
π i

}(→
πi −→πi−1

)}
leg4

.
(81)

We can use Equations (37) and (58) to write an expression for the thermodynamic length of
the cycle:

LQ;cycle = L(2)
Q + L(4)

Q =

∣∣∣∣∣√T[2]
∫ κ f

κ[2]
1
κ

√
C
(
κ

T[2]

)
dκ

∣∣∣∣∣+ ∣∣∣∣∣√T[1]
∫ κin

κ[4]
1
κ

√
C
(
κ

T[1]

)
dκ

∣∣∣∣∣ =∣∣∣∣∣∣∣√T[2]
∫ κ f

κ[2]

√
Var→

π
(E(1))

kBT2 dκ

∣∣∣∣∣∣∣+
∣∣∣∣∣∣∣√T[1]

∫ κin

κ[4]

√
Var→

π
(E(1))

kBT2 dκ

∣∣∣∣∣∣∣.
(82)

We note that for the hydrogen atom-like system, the integrand in the thermodynamic length
integrals of the isothermal legs is the square root of the heat capacity, just as in the case of the iso-κ legs.
We again switch to integration over A = κ

T , and find for the thermodynamic lengths

L(2)
Q =

∣∣∣∣∣∣∣∣
√

T[2]
∫ A[3]

A[2]

√
Var→

π
(E(1))

kB
dA

∣∣∣∣∣∣∣∣ > L(4)
Q =

∣∣∣∣∣∣∣∣
√

T[1]
∫ A[1]

A[4]

√
Var→

π
(E(1))

kB
dA

∣∣∣∣∣∣∣∣, (83)

since
√

T[2] >
√

T[1], A[2] = A[1], and A[4] = A[3] along the special adiabatic legs, and Var→
π
(E(1))

depends only on A.
As far as distributing the available time over the four legs, we again have to face the problem of

the adiabatic legs being of zero thermodynamic length as long as we can keep the controls on target
along these legs. We assume a short (i.e., τa  τ) time τa = τ

(1)
Q = τ

(3)
Q needed to move along the

adiabatic leg without noticeable deviations from the ideal adiabatic curve in (κ, T) space and subtract
these times from the total available time τ, τiso−T = τ− 2τa, before assigning τ(2)Q and τ(4)Q according
the principle of constant thermodynamic speed. Assuming constant relaxation times, we determine
the optimal times using the ratio of the thermodynamic lengths,

τ
(2)
Q

τ
(4)
Q

=
L(2)

Q

L(4)
Q

=

√
T[2]
√

T[1]
, (84)
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to be τ(2)Q = τiso−T

√
T[2]√

T[2]+
√

T[1]
and τ(4)Q = τiso−T

√
T[1]√

T[2]+
√

T[1]
. Analogously, when minimizing the

entropy production instead of the excess heat, we obtain L(2)
S = L(4)

S , and thus with τa = τ
(1)
S = τ

(3)
S ,

the optimal time assignment to the two legs is τ(2)S = τ
(4)
S = τiso−T

2 .
Again, due to the sum over microstates with nontrivial energy eigenvalues under the square root,

further analytical calculations require additional simplifications; in particular, the optimal placement
of the steps along each of the isothermal paths remains open but is expected to vary according to the
specific heat.

5. Approximation of the Hydrogen Atom-Like System as a Two-Level System

5.1. Preliminaries

In many cases of statistical mechanical systems, one can find analytical solutions for a problem,
if we can restrict ourselves to a two-state model; perhaps the most straightforward example for our
purposes is the spin 1/2 system [27,28]. This is also the case here, since we can employ the probability π1

of one of the two states as the integration variable, π = π1. Probability conservation then determines
the occupation probability of the second state asπ2 = 1−π1 = 1−π, thus eliminating the complicated
sum over the microstates. This was demonstrated in [35], where the thermodynamic length was
computed for a paramagnet in a magnetic field for an isothermal path along which the energy of
the paramagnet was changed by varying the magnetic field in finite time. In this fashion, one could
compute the thermodynamic length and subsequently assign the steps by the equal thermodynamic
length criterion, thus solving the optimal control problem.

However, the situation is more complex in the case of the cycle of the hydrogen atom-like system,
because along the iso-κ legs the temperature varies, adding a nontrivial function T(π) to the integrand
for the case of minimizing the excess heat. On the other hand, the approximation of any statistical
mechanical system by a two-state system actually leads to many generic properties associated with the
thermodynamic cycles of the two-state system, i.e., many of the results obtained below do not depend
on the specific property in Equation (3), Ẽn(κ) = κẼn(1), of the hydrogen atom-like system.

If we take two energy levels, n1 and n2 with n1 < n2 and thus
En1(κ) = Ẽn1(κ) = κẼn1(1) < En2(κ) = Ẽn2(κ) = κẼn2(1), with degeneracies g(n1) = (n1)

2 and
g(n2) = (n2)

2, respectively—recall: we ignore the spin degeneracy of the electron in this study—,
then we obtain the following expressions, for given (κ, T): For the probabilities, we have

π̃(n1) = g(n1)ρ(n1) = π =

g(n1)exp
(
−Ẽn1 (κ)

kBT

)
g(n1)exp

(
−Ẽn1 (κ)

kBT

)
+ g(n2)exp

(
−Ẽn2 (κ)

kBT

) (85)

and

π̃(n2) = g(n2)ρ(n2) = 1−π =

g(n2)exp
(
−Ẽn2 (κ)

kBT

)
g(n1)exp

(
−Ẽn1 (κ)

kBT

)
+ g(n2)exp

(
−Ẽn2 (κ)

kBT

) . (86)

For the equilibrium entropy, we have the expression

S(π) = −kB

[
πln

(
π

g(n1)

)
+ (1−π)ln

(
1−π

g(n2)

)]
=

−kB[π(ln(π) − ln(g(n1))) + (1−π)(ln(1−π) − ln(g(n2)))] =

kBln(Z(κ, T)) −π(κ, T)BkB
T ;

(87)
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and for the temperature,

T(π) =
B

ln
[(

g(n2)

g(n1)

)(
π

1−π
)] . (88)

Here, B = −
(
Ẽn1(κ) − Ẽn2(κ)

)
/kB > 0, for a generic two-state system; specifically for the hydrogen

atom-like system, we have B = κB0/kB with B0 = −
(
Ẽn1(1) − Ẽn2(1)

)
= α

(
1

(n1)
2 − 1

(n2)
2

)
> 0. Note

that
(

g(n2)

g(n1)

)(
π

1−π
)
≥ 1, with equality only possible in the infinite temperature limit whenπ =

g(n1)

g(n1)+g(n2)
.

With this, we get for the expectation value of the energy

〈E〉(κ, T) = Ẽn2(κ) + π(κ, T)
(
Ẽn1(κ) − Ẽn2(κ)

)
= κ

[
Ẽn2(1) −π

(
κ
T

)
B0

]
, (89)

where the second equality holds for the hydrogen atom-like system. For the derivative of the entropy
with respect to π, we find

dS
dπ = −kB[ln(π) − ln(g(n1)) − ln(1−π) + ln(g(n2)) + 1− 1] = −kBln

((
g(n2)

g(n1)

)(
π

1−π
))

= −kB
B
T < 0 (90)

for all temperatures. From this follows that for all valid values of π, g(n1)

g(n1)+g(n2)
≤ π ≤ 1, we have a

one-to-one correspondence between the entropy S and the occupation probability of the low energy
state π. As a consequence, every adiabatic path for any two-state system is automatically special
adiabatic, because S = constant along the path implies π = constant, too.

5.2. Thermodynamic Cycles

With the formulas derived above, we can compute some of the expressions given in the previous
section for the work and heat transfer along the legs of the cycles explicitly, such as, e.g.,

Q( j) =

∫ S[ j+1]

S[ j]
TdS =

∫ π f

πin

T(π)
dS
dπ

dπ =

∫ π f

πin

T(π)
(
−B(π)kB

T(π)

)
dπ = −B0

∫ π f

πin

κ(π)dπ, (91)

where the last equality only holds for the hydrogen atom-like system. Here, πin = π[ j] andπ f = π[ j+1]

are the values of π at the beginning and at the end of the leg ( j). If we are considering an iso-κ
branch, then we have κ(π) = κ( j) = constant, and thus B(π) = B( j) = constant, from which
follows Q( j) = −kBB( j)

(
π f −πin

)
. Furthermore, if in addition the temperature increases along the

leg, then π(T) will decrease, 〈E〉
(
κ( j), T

)
will increase, and thus Q( j) > 0. We note that along such a

branch, we also have (ΔE)( j) = 〈E〉
(
κ( j), T[ j+1]

)
− 〈E〉

(
κ( j), T[ j]

)
= −kBB( j)

(
π f −πin

)
, and thus for any

two-state system, we have Q( j) = (ΔE)( j) and W( j) = 0 along the iso-κ branches. This is a special
case of the earlier general result, Equation (19).

For the adiabatic path ( j), we recall that these paths are special for any two-state system,
i.e., π = constant, and thus the heat term yields Q( j) = − ∫ π f

πin
kBB(π)dπ = 0 since π f = πin. Finally,

for an isothermal leg, we have

Q( j) = −kBT( j)
[(
π f ln

(
π f

g(n1)

)
+

(
1−π f

)
ln

(
1−π f

g(n2)

))
−

(
πinln

(
πin

g(n1)

)
+ (1−πin)ln

(
1−πin
g(n2)

))]
= kBT( j)ln

[
Z(κ[ j+1]/T( j))

Z(κ[ j]/T( j))

]
+ B0

[
πinκ

[ j] −π fκ
[ j+1]

]
,

(92)

where the last equality holds for the hydrogen atom-like system.
In the following, we are not going to re-compute for the two-state hydrogen atom-like system

all the general work and heat-related expressions derived in Section 4. We only note that for the
cycles with iso-κ legs, we find again that η{κ;T} = 1 and η{κ;S} = 1, which are the same results as
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we had obtained for the complete hydrogen atom-like system, Equations (62) and (70). Thus, for the
two-state system, the net work performed by the “atom” along the isothermal or adiabatic legs equals
the net heat added to the system over the whole cycle because Q( j) = (ΔE)( j) along the iso-κ legs.

Finally, for the adiabatic-isothermal path, we find ηadiabatic
{S;T} = {1 + Y}−1 and ηisothermal

{S;T} =
{
1 + 1

Y

}−1
,

where Y =
kB(T1−T2)ln

⎡⎢⎢⎢⎢⎣ Z(κin/T1)

Z(κ f /T2)

⎤⎥⎥⎥⎥⎦
κ f

(
1− T1

T2

){
Ẽn2 (1)

[
1−

(
κin/T1
κ f /T2

)]
−B0

[
π(κ f /T2)−

(
κin/T1
κ f /T2

)
π(κin/T1)

]} .

Instead, we will focus on the optimal control problem of minimizing the excess heat production
instead. Applying the general formulas in Equations (23) and (24), we observe that the expression for
the square length of an infinitesimal distance in probability space yields in terms of π:

(
dLQ

)2
= kBT(π)

(
dπ
−dπ

)⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(

g(n1)
π

)
g(n1)

(g(n1))
2 0

0
(

g(n2)
1−π

)
g(n2)

(g(n2))
2

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
(

dπ
−dπ

)
= kBT(π)

[
(dπ)2

](
1
π +

1
1−π

)
. (93)

The metric for the energy levels is a compactified (2× 2) version of the true (g(n1) + g(n2)) ×
(g(n1) + g(n2)) microstate metric

{
1↔
π

}
kl

= δkl
1
r1

= δkl
g(n1)
π for k = 1, . . . , g(n1) and{

1↔
π

}
kl

= δkl
1
r2

= δkl
g(n2)
1−π for k = g(n1) + 1, . . . , g(n1) + g(n2). Similarly,

(
dπ
−dπ

)
is a

compactified version of the (g(n1) + g(n2))-dimensional microstate probability difference vector

(dρ1, . . . , dρ1,−dρ2, . . . ,−dρ2) =
(

dπ
g(n1)

, . . . , dπ
g(n1)

, −dπ
g(n2)

, . . . , −dπ
g(n2)

)
. As mentioned earlier, we assume

that the microstates with the same energy exhibit the same occupation probability, and that we do
not have “mixing” among the states for the same energy, i.e., all g(n1) states with energy “gain” the
same amount of probability dρ1 = dπ

g(n1)
, and similarly, all states with energy “lose” the same amount

of probability.
Taking this into account, we find for the infinitesimal element of thermodynamic length:

dLQ =
√

kBT(π)

√
1
π
+

1
1−π |dπ| = ±

√
kBT(π)
π(1−π)dπ, (94)

where the (+)-sign is employed if π increases along the path (dπ > 0) and the (−)-sign is employed
if π decreases along the path (dπ < 0). We note that Equations (93) and (94) apply to any two-state
system and are not restricted to hydrogen atom-like systems. As mentioned above, the adiabatic pieces
of the cycle are special for a two-state system, and thus there is no excess heat production to first order
since π is constant along these legs, and thus |dπ| = 0; alternatively, we can note that the initial and
final values of π, πin, and π f , respectively, for an adiabatic path are the same, π f = πin, and thus

± ∫ π f
πin

√
kBT(π)√
π(1−π)dπ = ± ∫ πin

πin

√
kBT(π)√
π(1−π)dπ = 0. However, we should introduce a phenomenological time

τa required for the external controls to follow the ideal path along an adiabatic leg.
For the isothermal pieces of the cycle, we can compute the corresponding thermodynamic lengths

LQ analytically, since

±
∫ π f

πin

dπ√
π(1−π)

= ±
(
arcsin(1− 2πin) − arcsin

(
1− 2π f

))
. (95)
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Assuming constant relaxation times (Δt)T along the path, the optimal assignment of time follows

automatically; along the optimal path with optimal times τ(2) and τ(4), and thus N(2) = τ(2)

(Δt)T
and

N(4) = τ(4)

(Δt)T
given, we find

π
(2)
i =

1
2

[
1− sin

(
arcsin

(
1− 2π(2)in

)
−

[
arcsin

(
1− 2π(2)in

)
− arcsin

(
1− 2π(2)f

)] i
N(2)

)]
(96)

along leg 2, and

π
(4)
i = 1

2

[
1− sin

(
arcsin

(
1− 2π(4)f

)
−

[
arcsin

(
1− 2π(4)f

)
− arcsin

(
1− 2π(4)in

)]
N(4)−i
N(4)

)]
= 1

2

[
1− sin

(
arcsin

(
1− 2π(4)in

)
+

[
arcsin

(
1− 2π(4)f

)
− arcsin

(
1− 2π(4)in

)]
i

N(4)

)] (97)

along leg 4. Note that we have employed the (+)-sign in the integral for leg 2 since π(2)f > π
(2)
in ,

and similarly the (−)-sign for leg 4 since π(4)in > π
(4)
f .

However, for the iso-κ leg, we need to compute the integral

(±)
∫ π f

πin

√
BkBdπ√

(π(1−π))ln
[(

g(n2)

g(n1)

)(
π

1−π
)] = (±)√κ

∫ π f

πin

√
B0dπ√

(π(1−π))ln
[(

g(n2)

g(n1)

)(
π

1−π
)] , (98)

which is not straightforward even for constant B. Here, the (+)-sign refers to legs with increasing π (i.e.,
leg 3) and the (−)-sign to legs with decreasing π (i.e., leg 1), and we have used Equation (88) to replace
T(π). Thus, any cycle containing an iso-κ leg does not allow us to compute the actual distribution of
steps along the leg once the optimal time assignment to the legs has been performed. Note that the√
κ dependence of the thermodynamic length of an iso-κ branch is specific to the hydrogen atom-like

system and is not a property of a general two-state system.
Nevertheless, we note that for an iso-κ-adiabatic cycle, π[2] = π[3] and π[1] = π[4] because

of the special adiabaticity of legs (2) and (4), where we assume as usual that we need the time τa

to proceed along an adiabatic leg without generating excess heat such that the available time is

τiso−κ = τ− 2τa. Then we determine the optimal assignment of times as τ(1)Q = τiso−κ
√
κin√

κin+
√
κ f

and

τ
(3)
Q = τiso−κ

√
κ f√

κin+
√
κ f

, according to the ratio of the optimal times,
τ
(3)
Q

τ
(1)
Q

=
L(3)Q

L(1)Q

=
√
κ f√
κin

; we had found

the same result for the general hydrogen atom-like system in Equation (66). In contrast to this result,
for the iso-κ-isothermal cycle, the relative sizes of the four legs are unknown, and thus we cannot
assign optimal times to the four legs of this cycle, even though we have an analytical expression for the
thermodynamic lengths of the two isothermal legs.

Among the three cycles we have considered, only the isothermal-adiabatic one can be completely
solved analytically when minimizing excess heat, yielding L(1)

Q = L(3)
Q = 0 and

L(2)
Q =

√
kBT[2]

(
arcsin

(
1− 2π[2]

)
− arcsin

(
1− 2π[3]

))
(99)

and

L(4)
Q =

√
kBT[1]

(
arcsin

(
1− 2π[1]

)
− arcsin

(
1− 2π[4]

))
. (100)

Due to the special adiabaticity of legs 1 and 3, we have π[1] = π[2] and π[3] = π[4], and thus

L(4)
Q =

√
kBT[1]

(
arcsin

(
1− 2π[2]

)
− arcsin

(
1− 2π[3]

))
=

√
T[1]

T[2]
L(2)

Q . (101)
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Subtracting the time needed for the adiabatic legs, we can split the remaining time τiso−T = τ− 2τa

over the legs 2 and 4, i.e.,

τ
(2)
Q = τiso−T

L(2)
Q

Lcycle
= τiso−T

√
T[2]

√
T[1] +

√
T[2]

(102)

and

τ
(4)
Q = τiso−T

L(4)
Q

Lcycle
= τiso−T

√
T[1]

√
T[1] +

√
T[2]

. (103)

The ratio of the two assigned times is the same as that which we had found in Equation (84),

τ
(2)
Q

τ
(4)
Q

=
L(2)

Q

L(4)
Q

=

√
T[2]

T[1]
, (104)

i.e., we need to spend more time in the high-temperature leg than in the low-temperature leg when
minimizing the excess heat of the system. The assignment of the step points along each leg now follows
directly from Equations (96) and (97).

We note that we did not need to employ the special properties of the hydrogen atom-like system to
derive the finite-time thermodynamics results in Equations (95)–(97) and (99)–(104). Thus, the optimal
ratio of assigned times

√
T[2]/T[1] is the optimality criterion for the adiabatic-isothermal cycle of any

two-state system. This agrees with the analysis of a spin 1/2 two-state system in finite time where the
power along the cycle was maximized [28], and is reminiscent of similar general results obtained in the
analysis of Carnot cycles in finite time [10].

The above analysis was performed using the metric
↔
MQ in the optimality criterion for minimizing

excess heat/work. If we employ the metric
↔
MS appropriate for minimizing entropy production,

we note that we now have dLS =
√

kB

√
1
π +

1
1−π |dπ| = ±

√
kB

π(1−π)dπ. Thus, for every leg ( j),

we can use Equation (95) to compute the thermodynamic length L( j)
S , regardless of whether we are

dealing with an adiabatic, isothermal, or iso-κ leg. As a consequence, all three cycles considered
can be solved analytically. For the Carnot-like cycle, we obtain an assignment of equal times to
the isothermal legs, τ(2)S = τ

(4)
S , like we had obtained for the full hydrogen atom; this assignment

is again analogous to results obtained for minimal entropy production in the spin 1/2 two-state
model [28], as one would have expected from the universal aspects of two-level systems. For the
Otto-like cycle, we also find equal time assignments for the iso-κ legs, τ(1)S = τ

(3)
S , as we did

already for the full hydrogen atom. Finally, for the Stirling-like cycle, the total thermodynamic
length is LS;cycle = 2

[
arcsin

(
1− 2π[2]

)
− arcsin

(
1− 2π[4]

)]
, and thus the optimal time assignment

to the four legs is τ(1)S = τ
2
[arcsin(1−2π[2])−arcsin(1−2π[1])]
[arcsin(1−2π[2])−arcsin(1−2π[4])]

, τ(2)S = τ
2
[arcsin(1−2π[2])−arcsin(1−2π[3])]
[arcsin(1−2π[2])−arcsin(1−2π[4])]

,

τ
(3)
S = τ

2
[arcsin(1−2π[3])−arcsin(1−2π[4])]
[arcsin(1−2π[2])−arcsin(1−2π[4])]

and τ(4)S = τ
2
[arcsin(1−2π[1])−arcsin(1−2π[4])]
[arcsin(1−2π[2])−arcsin(1−2π[4])]

. Since we have

analytical expressions for the thermodynamic length for every leg, it is straightforward to also assign
the times along the legs for all three cycles, analogous to Equations (96) and (97).

6. Summary and Discussion

In the previous sections, we have presented three thermodynamic cycles for a hydrogen atom-like
system in (κ, T) space, where κ allows us to control the electronic energy levels of the system:
iso-κ-isothermal, iso-κ-adiabatic, and adiabatic-isothermal. We have written down expressions for heat
and work along the legs of these cycles and derived conditions that yield optimal ways to run through
the cycles in finite time such that the entropy production or the excess heat production is minimal.
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In particular, we found that the optimal allocation of time—in units of relaxation-to-equilibrium
times—including the allocation of discrete steps along the cycle, should take place in such a way that
a) the path in (κ, T) space, for given corners ([1], [2], [3], [4]) and prescribed types of branches, should
be chosen such that the total thermodynamic length of the cycle is a minimum, b) the time allocated
to each leg of the cycle should be proportional to the thermodynamic length of each leg separately,
and c) the discrete steps along each leg should be spaced in such a way that the thermodynamic
lengths between all pairs of consecutive points along the branch are identical. We showed that the

thermodynamic length could be evaluated using an appropriate metric,
↔
MQ =

{
kBTi↔
π i

}
or
↔
MS =

{
kB↔
π i

}
,

in probability distribution space, which was obtained as part of the optimal control analysis.
We note that condition a) is trivial for the cycles chosen in the present study, since each leg is

completely determined by the assignment of its end points and the type of path, i.e., whether it is iso-κ,
isothermal, or adiabatic. If there were several control parameters κa,b,... that influence the change in
the energy levels of the system, then step a) would be a major part of the optimal control problem of
minimizing entropy or excess heat production, of course.

Furthermore, we discussed the minimization of excess heat along special adiabatic branches,
which by construction equals zero due to the condition that the equilibrium probability distribution
is constant along such a special adiabatic path, and thus never an imbalance between actual and
equilibrium distribution can build up; for example, by construction, all two-state statistical mechanical
systems constitute examples where adiabatic paths are special. Thus, only our inability in practice to
keep the control parameters on-target while moving along a special adiabatic path generates deviations
from the equilibrium occupation of the microstates of the system, which are the main source of excess
heat or entropy production. We derived approximate expressions for the thermodynamic length of
generic off-target paths that still remain close to the ideal adiabatic path.

We note that the issue of on-target path control arises for every leg of any cycle, but that one usually
ignores these contributions to the entropy or excess heat production. The reason for discounting them
is twofold; for one, they tend to be overwhelmed by the effects of having only finite time available to
run through the legs of the cycle. Perhaps more important is the fact that an analysis would require
information about the apparatus employed to move the system in the (κ, T) space, which is specific to
each experiment, and thus usually not within the purview of the theoretical study.

Related finite-time analyses have been performed for thermodynamic engines in the past by
assuming, e.g., a generic heat leakage or (inefficient) heat conduction during the processes of the cycle,
which are described by phenomenological laws [43–45]. However, this leakage was not connected to
the issue of being “on-target” vs. “off-target”; instead, the thermodynamic controls were assumed to
be perfect, and the inefficiencies associated with, e.g., friction or heat conduction were considered part
of the working of the engine.

These optimality criteria and the associated thermodynamic metrics are very general and apply
to essentially all statistical mechanical systems, as long as the energy levels can be controlled by a
generic parameter κ or set of parameters

→
κ = (κa,κb, . . .). Thus, there are connections to other

general results [35,46–50]. For example, the excess heat we consider corresponds to the excess work
investigated by Sivak and Crooks [47], and thus Equations (28) and (29) for the thermodynamic lengths
LQ/S correspond to the generalized thermodynamic length they define via the time-integrated force

covariance matrix [47]. Furthermore, the relationship
↔
MQ = T

↔
MS for statistical mechanical systems

observed in this study corresponds to the conformal equivalence of the energy and entropy metric
demonstrated by Salamon and co-workers for thermodynamic equilibrium systems [50]. This also

shows that the excess heat metric
↔
MQ measures the dissipation or loss of availability when proceeding

along the path in finite time, as had been shown earlier in the context of optimally measuring free
energy differences in statistical mechanical systems [35] and computing thermodynamic lengths within
computer simulations [46].
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Specific to the hydrogen atom-like system is the observation that En(κ) = κEn(κ = 1) for all
energy levels n. From this follow certain simplifications, such as the fact that κ and T appear only in the
combination A = κ

T in the equilibrium probability distribution
→
π, and therefore all adiabatic paths in

(κ, T) space are special and lie on straight lines that contain the origin (κ = 0, T = 0). In particular,
we observed that for the isothermal-adiabatic cycle the time allocation to the two isothermal branches
should be proportional to the square roots of the temperatures associated with these branches when
minimizing the excess heat production. Similarly, for the iso-κ-adiabatic cycle, the time allocation for
the two iso-κ branches should be proportional to the square roots of the κ values associated with these
branches. In contrast, when minimizing the entropy production of the cycles that contain two adiabatic
branches, the optimal times assigned to the two isothermal or iso-κ-legs should be equal. Here, we note
that the results obtained in Section 4 would be applicable to any system whose energy spectrum scales
with the control parameter κ according to Equation (3), such as, e.g., a quantum harmonic oscillator if
one modifies only the basic frequency, ω0 → κω0, or a spin system with NL energy levels in a magnetic
field as long as we only change the strength of the applied magnetic field, B0 → κB0. For an analysis of
the influence of the eigenvalue spectrum of a system on the finite-time performance, we refer to [51].

For the case of the hydrogen atom-like system, we have also considered a two-state approximation,
which allows us to perform further analytical evaluations of the optimal control conditions.
When minimizing excess heat, we can analytically solve the isothermal-adiabatic cycle, while for
minimal entropy production, all three cycles can now be solved analytically. These results are quite
general and hold for any two-state system, as can be seen from the agreement with results obtained
from, e.g., a spin-1/2 system [28]. Furthermore, the result for the Carnot cycle is reminiscent to the
outcome of some finite time optimal control calculations for heat engines, working between two
reservoirs [10], and agrees with corresponding results for the spin 1/2 system [28].

However, thermal interactions with the environment affect all energy levels, making the two-state
approximation of the hydrogen atom somewhat artificial. On the other hand, enforcing transitions
via narrow band radiation allows us to focus on single pairs of energy levels, thus providing a more
realistic example of a two-state system at the price of dealing with an a-thermal cycle.

A possible four-leg cycle for the two-state version of a single hydrogen atom-like system (i.e., only
two of the electronic energy levels n1 and n2 > n1 participate in the process) without contact to a
heat bath is shown in Figure 5 for the case n1 = 1 and n2 = 2. No temperature is involved,
and the cycle runs as follows, where we take as starting point the atom in the state n1 with energy
E[1] = En1(κin) for κ[1] = κin. In leg 1, we excite the atom from n = n1 to n = n2 via irradiation at
frequency νin (hνin = E[2] − E[1] = En2(κin) − En1(κin)), while we keep κ at the value κin, κ[2] = κin.
Next, we increase κ to κ[3] = κ f , while keeping the atom in the excited state n = n2, i.e., E[3] = En2

(
κ f

)
.

This is followed by the reverse operations, i.e., we de-excite the atom back to n = n1 via irradiation
at frequency ν f (hν f = E[3] − E[4] = En2

(
κ f

)
− En1

(
κ f

)
), while keeping κ at the value κ f , κ[4] = κ f ,

followed by the decrease of κ to κ = κin, while keeping the atom in the state n = n1, thus closing
the cycle.

Note that legs 2 and 4 would be the analogues to adiabatic branches in the thermal cycle.
There, we perform or extract work on the system by changing the energy content of the hydrogen
atom-like system from En2(κin) to En2

(
κ f

)
and from En1

(
κ f

)
to En1(κin), respectively. The total amount

of work (done by the atom) associated with these two legs would be

W = −ΔE = −
[
En2

(
κ f

)
− En2(κin)

]
−

[
En1(κin) − En1

(
κ f

)]
=(

κin − κ f
)
[En2(κ = 1) − En1(κ = 1)] = α

(
1

(n1)
2 − 1

(n2)
2

)(
κin − κ f

)
< 0,

(105)

since κ f > κin and n2 > n1. Thus, our external apparatus, which changes κ, performs a net amount of
work on the atom along these two legs.
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Figure 5. Sketch of an a-thermal iso-κ-“adiabatic” cycle for a two-state system comprising the
ground state and the first excited state of the hydrogen-like atom. Branches [1]→ [2] and [3]→ [4]
are iso-κ-legs and branches [2] → [3] and [4] → [1] are “adiabatic” legs, respectively. Note that
the adiabatic legs run along straight lines that pass through the origin and through the point
(κ, E) = (1,−α) for the adiabatic leg in the ground state, and through the origin and through
the point (κ, E) = (1,−α/4) for the adiabatic leg in the first excited state, respectively. The four
corners of the cycle are the points [1] =

(
κ[1], E[1]

)
= (κin, E1), [2] =

(
κ[2], E[2]

)
= (κin, E2),

[3] =
(
κ[3], E[3]

)
=

(
κ f , E3

)
, and [4] =

(
κ[4], E[4]

)
=

(
κ f , E4

)
in the (κ, E) plane. Note that

E[1] = κinE1(κ = 1), E[2] = κinE2(κ = 1), E[3] = κ f E2(κ = 1), and E[4] = κ f E1(κ = 1).

Concerning legs 1 and 3, which would be the analogues to the heating and cooling branches of a
typical thermodynamic cycle, it is not obvious how to account for the equivalent of heat transferred
from and to the heat reservoir at different temperatures, and thus make a connection to thermodynamic
cycles. If the radiation fields had a black-body frequency distribution, the formulas of radiation
thermodynamics would apply [52–54], but this would weaken the desired approximation of the system
through only two energy levels. What we can consider is a “reservoir” of photons with frequencies νin
and ν f , which the hydrogen atom-like system is in contact with during the excitation and de-excitation
processes in legs 1 and 3, respectively. However, such a radiation field that consists of narrow frequency
bands does not act as a standard thermal heat source as far as the hydrogen atom-like system is
concerned. Instead, we treat the radiation field as part of the external apparatus for the purpose of this
discussion, analogous to the pressure we might apply to the material to change the properties of the
excitons representing the hydrogen atom-like system. As a consequence, the net work done by the
radiation field on the atom equals

hνin − hν f = [En2(κin) − En1(κin)] −
[
En2

(
κ f

)
− En1

(
κ f

)]
=

(
κin − κ f

)
[En2(1) − En1(1)] < 0, (106)

i.e., the energy of the radiation field shows a net increase along legs 1 and 3 by the same amount as the
atom gained in energy when we applied work along legs 2 and 4.

We can thus visualize the two-state approximation of our hydrogen atom-like system as an
“engine” that acts as a “frequency conversion pump” while keeping the number of photons conserved.
A possible co-efficient of performance would be

ηconv =
W(1) + W(3)

W(2) + W(4)
= 1, (107)

i.e., the a-thermal cycle of the single controllable hydrogen atom-like system represents a perfect energy
conversion apparatus from photons with one frequency to photons with another frequency. We note
that this perfect restriction of the hydrogen atom-like system to a two-state system would also work if
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the modification of the Hamiltonian breaks the symmetry of the Coulomb field, as might be the case by
exposing the hydrogen atom to an anisotropic external electric field inside a cavity.

Of course, in practice, this a-thermal cycle will encounter finite-time losses, too. The sources of
possible finite-time losses have to be identified in an analysis of the quantum processes involved when
changing the Hamiltonian and exciting/de-exciting the electrons between the two levels, including
the degree of coherence maintained in the system along each leg. An analysis of these issues would
go beyond the purview of this study, however. Possible approaches on how to analyze these issues
can be found in some of the cited references dealing explicitly with the quantum aspects of heat
engines [18–29,48,49,51].

A final question is whether there are experimental systems where the thermodynamic or a-thermal
cycles discussed in this study might be realized. The most straightforward suggestion would be to take
an individual hydrogen atom inside a cavity whose shape can be changed, such that the energy levels
can be modified in some way [31]. This system should allow an a-thermal cycle, but the momentum
transfer during absorption would start injecting kinetic energy, which would re-appear as a source of
heat to the system. In the case of a thermodynamic cycle, where we were to expose the atom to a heat
reservoir over a sufficiently large temperature range for exciting the hydrogen atom(s) to a noticeable
degree, the system’s translational degrees of freedom would quickly establish thermal movement with
all that implies, possibly overwhelming the thermodynamic quantities of interest in the electronic
two-state system. However, since the experimental control of the hydrogen atom as a thermal engine
based on the translational degrees of freedom has been quite successful already [13], a quasi-a-thermal
or a thermodynamic engine based on the occupation of the electronic states and on the modification of
their energy levels should be feasible.

An alternative would be an excitonic defect in a solid, since this is usually more localized
(but still mobile, in principle) and thus probably less susceptible to the kinetic thermal contributions.
Furthermore, the reference value of κ, κin, should be rather small, and thus small changes in temperature
would already lead to noticeable changes in the occupation probabilities of the excitonic states. On the
other hand, as mentioned earlier, varying κ in a solid can be nontrivial, since the quantities entering κ
will depend on both pressure—which would be a suitable control variable—and temperature. As a
consequence, in a (p, T) space representation, the iso-κ branches would involve closely coordinated
changes both in pressure and temperature. Additionally, an a-thermal cycle might be difficult to
achieve, due to the strong thermal coupling of the exciton to the rest of the solid. Nevertheless,
it appears that a variety of systems exist which might serve as substrates for the realization of an
electronic states-based engine with a single hydrogen atom-like system as the working fluid.
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Abstract: The stability of endoreversible heat engines has been extensively studied in the literature.
In this paper, an alternative dynamic equations system was obtained by using restitution forces that
bring the system back to the stationary state. The departing point is the assumption that the system
has a stationary fixed point, along with a Taylor expansion in the first order of the input/output heat
fluxes, without further specifications regarding the properties of the working fluid or the heat device
specifications. Specific cases of the Newton and the phenomenological heat transfer laws in a Carnot-like
heat engine model were analyzed. It was shown that the evolution of the trajectories toward the
stationary state have relevant consequences on the performance of the system. A major role was played
by the symmetries/asymmetries of the conductance ratio σhc of the heat transfer law associated with the
input/output heat exchanges. Accordingly, three main behaviors were observed: (1) For small σhc values,
the thermodynamic trajectories evolved near the endoreversible limit, improving the efficiency and
power output values with a decrease in entropy generation; (2) for large σhc values, the thermodynamic
trajectories evolved either near the Pareto front or near the endoreversible limit, and in both cases,
they improved the efficiency and power values with a decrease in entropy generation; (3) for the
symmetric case (σhc = 1), the trajectories evolved either with increasing entropy generation tending
toward the Pareto front or with a decrease in entropy generation tending toward the endoreversible
limit. Moreover, it was shown that the total entropy generation can define a time scale for both the
operation cycle time and the relaxation characteristic time.

Keywords: multiobjective optimization; Pareto front; stability; maximum power regime; entropy behavior

1. Introduction

The optimization of energy converters has never been as relevant as it is now. Energy production
requirements, efficient use of heat sources, and heat waste reduction are continually pushing
technological edges. Linked to this degree of specialization are the control and stability of operation
regimes yielding a desirable stable production, despite the possible variations of external or internal
conditions. In many cases, this requires the fine-tuning of control parameters with intrinsic energetic
costs. In this regard, there are some hints as to the possibility of seizing the stability of heat
engine operation regimes to enhance their performance by relaxing the control over the operation
parameters [1–3]. Studies regarding the weakly dissipative limit [4] thus far have pointed out the
special role played by the endoreversible model [5,6]. These studies consider that after the system
experiences a perturbation in its operation variables, the trajectories that lead the system back to its
steady state tend to evolve toward the endoreversible limit. This limit has been proven to be associated
with thermodynamic states, with the best compromise between maximum efficiency, maximum power
output, and minimum entropy production as given by the Pareto front of the system. Although the
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equivalence of the low dissipation model (based on entropy generation) and the endoreversible model
(based on specific heat transfer laws) has been established for several heat transfer laws [7–9], it is not
obvious that the endoreversible behavior appears interconnected to the stability of the low dissipation
model. A natural concern is to look for this very same behavior in the context of endoreversible
heat engines.

On the other side, the stability of heat engines is not a novel topic. Especially in the realm of
finite-time thermodynamics, endoreversible and irreversible models have, in their assets, a good number
of works in this regard. From the pioneering work of Santillan et al. [10], a number of studies have
analyzed the local and global stability of a variety of operation regimes [11–18], including economic
factors [19], and have extended the analysis to heat pumps, refrigerators, and generalized heat
engines [17,20–27].

The validation and applicability of the endoreversible hypothesis has been widely analyzed
and discussed in the specialized literature [28–31], and although it constitutes an idealization of an
irreversible device, recent studies on molecular dynamics simulation [32] have validated its predictions
for a finite-time Carnot cycle of a weakly interacting gas (considered as a nearly ideal gas) and
considering the local equilibrium for a Maxwell–Boltzmann distribution with a spatially uniform
temperature and a spatially varying local center-of-mass velocity. In particular, these results also
point to the validity of the paradigmatic Curzon–Ahlborn efficiency at maximum power [33,34].
These molecular dynamics simulations of a two-dimensional Carnot engine allowed to investigate
not only the optimization of power output, but also some other figures of merit involving entropy
production as the ecological figure of merit [32]. This reinforces the validity of the Carnot-like
endoreversible model, where the quasistatic conditions linked to endoreversibility rely on the
thermalization due to the internal dynamic speed. Lastly, a recent work reported some new conceptual
insights (simulation and reconstruction) on the endoreversibility hypothesis [35] by considering that
subsystems are out of equilibrium, i.e., including internal irreversibilities: First, by means of the contact
temperature of the heat flows and the non-equilibrium molar entropy for material flows. This new
feature is beyond the traditional endoreversible thermodynamics, which considers internal subsystems
as reversible, i.e., without internal entropy production. Second, the mentioned work [35] goes beyond
the use of paradigmatic, simple models and thus sheds light on the modeling characteristics of
endoreversible systems in relation to real running heat engines.

Despite the extensive literature, the possibility of inducing optimization from stability in
finite-time thermodynamics has not been studied. This is one of the goals of the present paper,
which is focused on irreversible Carnot-like heat engine models with linear and inverse heat transfer
laws, as two representative examples, assuming that the maximum power state behaves as a steady
state. The kind of perturbations assumed in this analysis are from external sources or variations in
the external control, such as those stemming from variations in the velocity of a piston. A benefit of
this study is that, unlike the low-dissipation scheme, based on entropy production, the finite-time
thermodynamics scheme allows a more straightforward analysis of its consequences on the working
fluid and design of the heat engine, as it accounts for explicit heat transfer laws.

This paper is structured as follows: In Section 2, an overview of the endoreversible model is
presented, along with some results on the maximum power regime for both the Newton and the
phenomenological heat transfer laws. In Section 3, a multiobjective optimization is realized and the
Pareto front is faced with endoreversible behavior. In Section 4, the stability dynamics are obtained
from basic assumptions and the operation and relaxation times are compared in order to achieve a
useful stability. In Section 5, the relaxation trajectories are analyzed in the space of the control variables
as in the energetic space composed by power output, efficiency, and entropy generation. Finally some
concluding remarks are presented.
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2. A Quick Look at the Endoreversible Model

The most basic endoreversible model consists on a baseline Carnot cycle whose working fluid
operates with effective temperatures Thw and Tcw (isotherms of the Carnot cycle), irreversibly connected
to two external reservoirs at temperature Th and Tc (Th > Thw > Tcw > Tc), as depicted in Figure 1.

C P

Qh

Qc

Th

Tc

Thw

Tcw

Figure 1. Schematic representation of an endoreversible heat engine. The working fluid realizes a
Carnot cycle operating between the isothermal processes at effective temperatures Thw and Tcw < Thw.
The working fluid is irreversibly coupled to external reservoirs at temperatures Th and Tc < Th.

The endoreversible scheme requires knowledge of the heat transfer laws to model the heat fluxes
between the external reservoirs and the working fluid. In a somewhat general case of heat transfer
laws, Qh and Qc are expressed as:

Qh = σhcσc

(
Tk

h − Tk
hw

)
sgn (k) th > 0, (1)

Qc = σc

(
Tk

c − Tk
cw

)
sgn (k) tc < 0, (2)

where k �= 0 is the exponent of the heat transfer law (k = 1 refers to the known Newton law, k = −1 is
known as the phenomenological law, k = 4 is the Stefan–Boltzmann law, and so on); σc and σh are the
thermal conductances with units of J·K−k/s, here considered as constant since only small fluctuations
around the operation regime are addressed. The function sgn (k) is defined as:

sgn (k) =

{
1 i f k > 0
−1 i f k < 0

,

which is introduced for consistency with the convention that the heat flux entering the working fluid is
positive and that the outgoing heat is negative; th and tc are the times at which the working fluid is in
contact with the external heat reservoirs Th and Tc, respectively. In Equation (1), the σhc ≡ σh/σc ratio
is introduced, which is an important ingredient to obtain the upper and lower bounds of the efficiency
of a given operation regime. The endoreversible hypothesis states that the entropy generation in the
inner part of the engine is zero. Mathematically, this means that:

Qh
Thw

+
Qc

Tcw
= 0, (3)

and from this constraint, the ratio of the operation time is given as:

tc

th
=

Tk
h − Tk

hw

Tk
cw − τkTk

h

Tcw

Thw
σhc, (4)
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where τ ≡ Tc/Th. With the endoreversible hypothesis constraining tc, in Equations (3) and (4),
the efficiency η, power output P, and total entropy generation S become functions of {Th, Tc, Thw,
Tcw, σhc, th, σc}. By using Equations (1) and (2), the explicit equations of these key thermodynamic
magnitudes are the following:

η = 1 + Qc
Qh

= 1 − Tcw
Thw

, k = {1,−1}

P = Qh+Qc
tc+th

=

⎧⎪⎨⎪⎩
σcσhc(Tcw−Thw)(Th−Thw)(Tcw−τTh)sgn(k)

TcwThw(σhc−1)+Th(τThw−σhcTcw)
k = 1

σcσhc(Tcw−Thw)(Th−Thw)(Tcw−τTh)sgn(k)
Th(T2

hw(Tcw−τTh)+T2
cw(Th−Thw)τσhc)

k = −1
,

S = −Qh
Th

− Qc
Tc

=

⎧⎪⎨⎪⎩
thσcσhc(Th−Thw)(Tcw−τThw)sgn(k)

ThThwτ k = 1

thσcσhc(Th−Thw)(τThw−Tcw)sgn(k)
T2

h T2
hwτ

k = −1
.

(5)

As can be seen in the definition of the power output, instantaneous adiabatic processes were
considered. In order to deal with non-instantaneous adiabatics, a more detailed analysis of the
working fluid and the geometry of the device needs to be made (for example, see [36]). In some works,
these features have been analyzed by showing their influence in the power output and efficiency,
but under certain circumstances, such as the large compression ratios in a piston, these times produce
small effects on η and P, remaining compatible with the quasistatic nature of the internal process.

Notice that only S is proportional to th. As is shown later in Section 4 (see Equation (15)),
the relaxation times are also proportional to this partial time; thus, a relationship between relaxation
time and total entropy generation can be found. By fixing the value of S, a time scale for stability
can be established. Besides this time scale (establishing the speed of the restitution dynamics), it is
possible to analyze the energetic consequences of stability independently of th if one works with
entropy production per cycle time, defined as Ṡ ≡ S/(tc + th) = S/th(1 + tc/th), taking advantage of
the constraint on the total operation time through Equation (4).

The maximum power (MP) regime is specified by the temperatures T∗
cw resulting from the

constraint ∂P/∂Tcw = 0 and T∗
hw under the condition ∂P/∂Thw = 0. The resulting values are given by:

T∗
hw =

Th(
√

τ+
√

σhc)
1+

√
σhc

k = 1, (6)

T∗
cw =

Th(τ+
√

σhcτ)
1+

√
σhc

k = 1, (7)

T∗
hw =

2Thτ(1+
√

σhc)
1+τ+2τ

√
σhc

k = −1, (8)

T∗
cw =

2Thτ(1+
√

σhc)
2+

√
σhc(1+τ)

k = −1. (9)

From the optimal T∗
cw values, parametrization of P, η, and Ṡ can be made (see dashed curve in

Figure 2). The obtained parametric curve exhibits a parabolic-like behavior, where the values of η

vary from 0 to ηC ≡ 1 − τ, the Carnot efficiency (both limits corresponding to a zero power output),
and with a single maximum in P. This is what is known in the literature as an endoreversible behavior,
a kind of signature of the model. Some relevant features regarding the efficiency at maximum power
from these endoreversible models with k = 1 and k = −1 are pointed out:

• The Newton case (k = 1) gives an efficiency at maximum power, ηMP = ηCAN ≡ 1 − √
τ,

the well-known Curzon–Ahlborn–Novikov (CAN) efficiency, which does not depend on the σhc
ratio and appears in a large variety of contexts linked to the maximization of power output, work,
and kinetic energy [37].

• The k = −1 case, frequently called the phenomenological law, referring to the natural results
arising in the linear irreversible thermodynamics framework. It allows to obtain the same limits of
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efficiency as in the low-dissipation model, where the self-optimization property has been studied.
In this case (k = −1), ηMP is σhc-dependent, bounded by ηMP ∈

(
ηC
2 , ηC

2−ηC

)
, according to whether

σhc varies from 0 to ∞ [7].

Figure 2. Parabolic behavior of the η, P, and Ṡ curve typical of the endoreversible model for (a) the
k = 1 case and (b) the k = −1 case. The values Th = 500 K, σhc = 1, and τ = 0.4 weer fixed. Additionally,
σc was chosen (for representation/comparison purposes) in such a way that the maximum power (MP)
was 70 W in both cases, so that η, P, and Ṡ ranged in similar intervals.

3. The Relevant Region for Optimization: The Pareto Front

Before exploring stability dynamics, it is convenient to introduce a multiobjective optimization of
the model. When looking for the best compromise among a variety of objective functions, the result is
the so-called Pareto front (in the space of energetic functions) and the corresponding Pareto optimal
set (in the space of operation variables).

To this end, a sorting algorithm is used by applying the concept of dominance [38]: A vector
v = (v1, . . . , vn) dominates another one w = (w1, . . . , wn) if, and only if, vi ≥ wi ∀ i ∈ {1, . . . , n} (if one
is looking for a maximum, ≤ for a minimum) and there is at least one j, such that vj > wj, if one is
interested in those vectors that are not dominated by any other. In other words, vectors that have
the best value at least in one objective function. In this case, such a vector is formed by η, P, and Ṡ.
The algorithm introduced here is a modification of the one introduced in [1–3], as follows:

1. In the phase space (Thw, Tcw), the region of physical relevance is defined (Th ≥ Thw ≥ Tcw ≥ Tc).
2. A random set of points in the phase space is obtained and the thermodynamic functions are

evaluated (energetic space).
3. A set of non-dominated points in the energetic space is obtained, giving a provisional Pareto front.
4. From the corresponding Pareto optimal set (phase space), a convex region is defined and extended

in order to cover a larger region for searching new points in the Pareto front. Details on the
definition of the extended region are given below.

5. From the new region, a new set of random points is proposed and a new set of non-dominated
points in the energetic space is obtained.

In the present analysis, and in order to ensure convergence in the results, Kullback–Leibler (KL)
divergence was introduced as a measure of the relative entropy DKL [39]. DKL was calculated between
the probability distribution of the efficiencies of the Pareto front in the ith and the i − 1th iterations.
As the probability distribution of η converges to the true Pareto front distribution, the entropy of the
distribution converges as well. In such a case, the relative entropy DKL tends toward zero. The radius
to extend the search region in the phase space decreases with the DKL value. When this relative entropy
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is very small, there is no information gain in iterating more times; then, the search for new points in
the Pareto optimal set stops. As mentioned before, DKL provides a measure of statistical convergence
by indicating how distant two distributions are. If DKL = 0, then the information stemming from both
distributions is the same. This is a relevant issue to demonstrate that the obtained trend is not due to
the lack of additional iterations.

To obtain DKL, the range of possible values of η, each iteration was divided into
√

N (rounded to
the upper next integer [40], with N being the number of random points added to the search in each
iteration) equal intervals (or bins). In this way, the same partition was used to compute the discrete
probability distributions, ρk (for the k iteration). DKL was calculated by comparing ρk−1 with ρk. DKL,k
is given by:

DKL,k(ρk−1‖ρk) = −∑
i

ρk−1,i log
(

ρk,i

ρk−1,i

)
, (10)

allowing to determine how much information is gained by narrowing the search. In Figure 2, the Pareto
front is depicted (green points), along with the endoreversible curve for η, P, and Ṡ (dashed line),
obtained from the parametric elimination of Thw (Tcw is constant for the fixed values of the σhc, σc,
τ, and Th parameters; see Equations (7) and (9)). Notice that even when the endoreversible curve
depends on a first constraint (Tcw satisfies ∂P/∂Tcw = 0), the Pareto front has nothing to do with.
Nonetheless, the Pareto front lies over the endoreversible curve, covering the regions from maximum
power to maximum efficiency and minimum entropy production. This is consistent with the literature,
where the mentioned part of the curve has been denoted as the relevant region for optimization.
For optimization purposes, additional figures of merit as compromise functions between these three
(such as the Ecological function [41] or the Omega function [42]) will not provide further information
to the Pareto front. After all of these considerations, analysis of stability dynamics can be made.

4. Stability Dynamics and Relaxation Times

One goal of this analysis was to recover the previous results obtained in the low-dissipation
scheme (with no direct connection to working fluid particularities) and to lay the groundwork
for a more direct connection with the properties of the working fluid and design parameters.
The perturbations we were interested in involved only those of an external nature. The temperature
of the external reservoirs remained constant, as well as the conductances of the heat transfer laws
(lastly depending on temperature) for only small variations in the operation regime. To illustrate these
points, consider a 2-D piston describing a Carnot cycle. The velocity of the piston will determine
the effective temperatures of the isotherms of the particles inside the piston (see [32]). The external
control (and its energetic cost) needs to remain constant as the velocity of the piston is not accounted
for in the thermodynamic description of the gas inside of it. However, fluctuations in this velocity,
as well as possible cyclic variability, will lead to variations in the effective temperatures Thw and Tcw.
Then, a compromise between the energetic cost of the control and the thermodynamic consequences
due to stability is of interest.

A simple approach to tackle this problem is the following: Since the operation regime is entirely
defined by Thw and Tcw, the dynamics involving only these two variables are to be addressed.
Fluctuations in these temperatures will affect the heat exchanged between the working fluid and
the external reservoirs, Qh and Qc. From a Taylor expansion in the first order, Qh and Qc near the MP
state can be written in matrix form as:(

Qh − Q∗
h

Qc − Q∗
c

)
=

⎛⎝ ∂Qh
∂Thw

∣∣∣
∗

∂Qh
∂Tcw

∣∣∣
∗

∂Qc
∂Thw

∣∣∣
∗

∂Qc
∂Tcw

∣∣∣
∗

⎞⎠ ·
(

Thw − T∗
hw

Tcw − T∗
cw

)
=

(
α 0

β γ

)
·
(

Thw − T∗
hw

Tcw − T∗
cw

)
(11)

⇒
(

Thw − T∗
hw

Tcw − T∗
cw

)
= −

⎛⎝ 1
α 0

− β
αγ

1
γ

⎞⎠ ·
(

Q∗
h − Qh

Q∗
c − Qc

)
, (12)
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where α, β, and γ are the elements of the Jacobian matrix evaluated in the MP state (denoted by ∗).
It is noted again that this analysis assumes that the MP state is a steady stationary state. Within the
first order scheme [43], the simplest relationship for an autonomous system for the two variables Thw
and Tcw is: (

Ṫhw

Ṫcw

)
= −

(
A 0

0 B

)
·
(

Thw − T∗
hw

Tcw − T∗
cw

)
, (13)

which is a good approximation near a stable point. The coefficients A and B determine the restitution
strength (with units of s−1). The bigger they are, the faster the system will return to the steady state.
By substituting Equation (12) into Equation (13), with the resulting dynamics:

(
Ṫhw

Ṫcw

)
=

⎛⎝ A
α 0

− Bβ
αγ

B
γ

⎞⎠ ·
(

Q∗
h − Qh

Q∗
c − Qc

)
. (14)

The magnitudes of the relaxation times t1 = −1/λ1 and t2 = −1/λ2 are obtained from the
eigenvalues, λ1,2, of the square matrix in the right-hand side of Equation (14). For the cases k = 1 and
k = −1, they are:

t1 =

⎧⎪⎪⎨⎪⎪⎩
thσcσhc

A k = 1

thσcσhc(1+τ+2τ
√

σhc)
4AT2

h τ2(1+
√

σhc)
2 k = −1,

t2 =

⎧⎪⎪⎨⎪⎪⎩
thσcσhc(1−√

τ)
B(

√
σhc+

√
τ)

k = 1

thσcσhc(1+τ+2τ
√

σhc)(1−τ)

4BT2
h τ2(1+

√
σhc)

2 k = −1.

(15)

Due to the units of the two matrices, a K/J unit factor should be accounted for in the final expression
on the right-hand side of Equations (15), providing the correct units for the relaxation times (in s).
As mentioned before, A and B provide the strength of the restitution dynamics, i.e., if they have large
values, then the relaxation times are short. Notice that both the relaxation times and the total entropy
generation are proportional to the contact time th; then, S can be used to define a characteristic time
scale for relaxation. Since there are no reasons to provide a preferred relaxation in the heat exchange
Qc or Qh, it can be assumed that t1 = t2 (this requirement can be tuned according to the specific
conditions of a heat device at hand). Additionally, when looking for stability of a cyclic process, it is
desirable that the stability is achieved in times shorter than those of the operation time; that is:

t1 + t2 = 2t1 ≤ th + tc = th

(
1 +

tc

th

)
. (16)

From this constraint and Equation (4), the relaxation times are bounded by:

t1 = t2 ≤

⎧⎪⎨⎪⎩
th
2
(
1 +

√
σhc
)

k = 1

th(1+
√

σhc)(1+τ
√

σhc)
2+

√
σhc(1+τ)

k = −1,
(17)

where the equality corresponds to the case where tc + th = t1 + t2. From now on, equality is assumed.
Then, the resulting dynamics (Equation (14)) for k = 1 are:
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Ṫhw = − 2σcσhc(Thw(1+
√

σhc)−Th(
√

σhc+
√

τ))

(1+
√

σhc)
2 ,

Ṫcw = − 2σcσhcTh
√

τ
1+

√
σhc

(
Thw(1+

√
σhc)

Th

(√
σhc+

√
τ
) + Tcw

Th
√

τ

(
Th

Thw
− 1
)
− 1−τ+2(

√
σhc+

√
τ)

(1+
√

σhc)(1+
√

τ)

)
,

(18)

and for k = −1,

Ṫhw = − 4σcσhc
Thw

·
( Thw

Th
( 1+τ

2τ +
√

σhc)−1−√
σhc

)
(1+

√
σhc( 1+τ

2 ))

(1+
√

σhc)
2
(1+τ

√
σhc)

,

Ṫcw = − 4σcσhc
Thw

·
τThw

Th
( 1+τ

2τ +
√

σhc)
2−(1+

√
σhc)

(
1+τ

√
σhc+

Tcw
Th
(1+

√
σhc( 1+τ

2 ))
)
+ Tcw

Thw
(1+

√
σhc)(1+τ

√
σhc)

(1+
√

σhc)
2
(1+τ

√
σhc)

.

(19)

From these dynamic equations, it is possible to calculate a relaxation velocity, v =
√

Ṫ2
hw + Ṫ2

cw
(in K/s), which indicates how fast the system is evolving toward the steady state. In Figure 3,
iso-velocity contours are depicted for the k = {1,−1} cases. Two trajectories are represented to provide
an idea of how fast the system can return to the MP state. In both cases, the operation time is indicated,
along with the time of evolution of each curve. As can be seen, 1 or 2 s are enough to drive the system
close to the stationary state; meanwhile, the cycle time is approximately 300 s. Another feature in
Figure 3 is that far from the steady state, the system evolves faster. Different marks at equal time
intervals are placed over the trajectories, and in every case, the system travels a longer distance in
the first interval. In both cases, the Tcw direction is slower. It can be confirmed that the depicted
trajectories evolve more quickly in the horizontal direction, while the final approach is mostly in the
vertical direction. Notice also that the k = −1 case has the fastest dynamics.

250 300 350 400 450
200

220

240

260

280

300

320

340

Thw[K]

T
cw
[K]

42

168

294

420

546

672

798

924

200 250 300 350 400 450 500
200

220

240

260

280

300

320

340

Thw[K]

T
cw
[K]

K

s

K

s

th + tc = 316 s
th = 158 s
t1 + t2 = 316 s
c = 4.15
hc = 1
k = 1

th + tc = 286 s
th = 173.5 s
t1 + t2 = 286 s
c = 4.36× 105
hc = 1
k = -1

t=1st=2s MP

MP

a) b)

70

350

630

910

1190

1470

1750

Figure 3. Isocontours of the relaxation velocity for (a) the k = 1 case and (b) the k = −1 case.
The values Th = 500 K, σhc = 1, and τ = 0.4 were fixed. As in Figure 2, σc and th were chosen
(for representation/comparison purposes) in such a way that the MP was 70 W and the entropy at MP
was 70 J/K in both cases. By fixing S at MP conditions, a time scale for th was established, and therefore,
a scale for the relaxation time. The qualitative behavior for the other values of S was similar to the one
presented here.

5. Thermodynamics of the Relaxation Trajectories

From the analysis of the evolution of trajectories toward the steady state, it is not obvious which
energetic implications arise. To address this issue, the dynamic equations were numerically solved.
Several trajectories with a starting point within a radius of 30 K (in the Thw–Tcw space) from the MP
state were analyzed. Then, these trajectories were mapped into the energetic space (η, P, and Ṡ).
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As it can be checked in Equations (4), (17) and (18), the conductance ratio σhc plays a key role
both in the dynamic equations and in the energetic properties of the system. In this regard, it is noted
that the limits σhc → {0, ∞} are not physical from a dynamic point of view. For both the k = {−1, 1}
cases, the limit σhc → 0 leads to null power output P, entropy S (Equation (5)), and also null restitution
strengths (see Equation (18)), i.e., {P, S, A, B} → 0; thus, there is no power output and there are no
restitution forces. In comparison, the limit σhc → ∞ leads to {S, A, B} → ∞; thus, there is an infinite
entropy generation and infinite restitution forces. For this reason, in the present analysis, the more
realistic cases σhc = {10−6, 1, 106} were considered.

In Figure 4, the four rows display the trajectories obtained from numerically solving the dynamics
in Equation (18) for the k = 1 case. The first row displays the trajectories in the Thw and Tcw space,
while the next rows show, respectively, the mapping of the same trajectories over the η–P, Ṡ–P,
and Ṡ–η spaces. The three columns are for the abovementioned representative conductance values:
(a) σhc = 10−6, (b) σhc = 1, and (c) σhc = 106. In the first row, according to the initial state in each
trajectory, a clock hour analogy was used; in this way, the purple line corresponds to 12 o’clock and
red line to 3 o’clock. The Pareto optimal set is displayed (green points), together with some iso-velocity
contours. The white curve indicates the position of the MP state as σhc varies from 0 to ∞. All of these
points produce the same efficiency at MP given by η∗ = ηCAN . For the rest of the rows, the Pareto
front and the endoreversible curve are presented as well. Note also that in the three configurations
(columns), the total operation time is the same, but the tc/th (and σc) ratio varies, as can be seen in the
legend in each case. This figure reveals several key features:

(a) For a small σhc (left column), only trajectories between 9 and 3 o’clock are present in the Thc–Tcw

space (denoted in colors ranging from red to blue). Most of the observed trajectories (especially those
with darker colors) evolve to the stable state near the endoreversible curve in such a way that the
power and efficiency progressively increase their values, while entropy production decreases (see rows
2–4 in the first column). In other words, the relaxation process mainly drives the system toward a
thermodynamic steady state, thereby enhancing the thermodynamic performance of the engine (η and
P increase and Ṡ decreases).

(b) For σhc = 1 (second column), the trajectories arriving at the stable point from all directions are
clearly observed. Those in darker colors (from 9 to 3 o’clock) evolve, as in the above case, but closer
to the endoreversible curve, showing an increase in power and efficiency and a decrease in entropy
generation. In contrast, the trajectories denoted in colors ranging from orange to green (between 3
and 7 o’clock) evolve to the steady state near the Pareto front, with an increase in power output
but a decrease in efficiency and higher entropy production. Note also in this configuration how the
relaxation is well balanced between the trajectories approaching the endoreversible limit on the Pareto
front side and to the other side. However, the curves near the Pareto front are longer, meaning that
random perturbations tend to favor a locus directed toward the Pareto front.

(c) For a large σhc (last column), the trajectories evolve directly toward the endoreversible curve
first. In this part of the trajectory, η, P, and Ṡ are enhanced simultaneously. Later on, the system
evolves to the steady state, either through the endoreversible limit or the Pareto front.

(d) Although the sizes of the perturbations in the Thw–Tcw space are the same, the case with the
small σhc allows larger variations of power output, while the case where σhc = 1 exhibits the smallest
fluctuations in the η–Ṡ plane.

(e) The relaxation times (Equation (17)) are directly proportional to th, and from the expressions
of P, η, and S (see Equation (5)), only entropy generation depends on th. Thus, the characteristic time
scale of the relaxation is linked to the entropy scale of the system, a feature that connects the stability
with the thermodynamics of the system. In this entropy–control point of view, the dynamics for the
small values of σhc in the left column apply to greater th values and, as a consequence, when the contact
time of the heat engine with the cold reservoir is small. On the contrary, the dynamics for the large
values of σhc in the right column apply to smaller th values, i.e., when the contact time of the heat
engine with the cold reservoir is large.
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S W K S W K S W K

S W K S W K S W K

Thw[K]

Tcw[K]

th + tc = 316.23 s
th = 315.91 s
c = 1.04 × 10-6W /K

Thw[K] Thw[K]

P[W]

P[W]

th + tc = 316.23 s
th = 158.11 s
c = 4.15W /K

th + tc = 316.23 s
th = 0.32 s
c = 1.04 × 106W /K

(a) (b) (c)

Figure 4. Trajectories in the Thw–Tcw space and the mapping over the η–P, Ṡ–P, and Ṡ–η spaces for
k = 1. (a) the σhc = 10−6 case; (b) the σhc = 1 case; (c) the σhc = 106 case. The values Th = 500 K and
τ = 0.4 were fixed. As in Figure 2, σc and th were chosen (for representation/comparison purposes) in
such a way that the MP was 70 W and the entropy at MP was 70 J/K in both cases.

In Figure 5, the corresponding configurations for k = −1 are depicted. Notice that the behavior of the
trajectories is almost the same as that in the k = 1 case, but here, the maximum power stationary state is
linked to different efficiencies as σhc increases from 0 to ∞. In particular, when σhc → 0, the efficiency at
maximum power is η∗ = 1−τ

2 = ηc
2 ; when σhc → 1, η∗ = 2(1−τ)

3+τ = 2ηC
4−ηC

; when σhc → ∞, η∗ = 1−τ
1+τ = ηC

2−ηC
.

The dynamics for different σhc are no longer linked to equal operation times tc + th. Another difference is
that the relaxation times are noticeably smaller and, therefore, the restitution forces are stronger. Additionally,
as σhc decreases (η∗ also decreases), the same temperature perturbations lead to the farthest starting points
in the energetic planes. In this way, the case of tlarge σhc (with a high efficiency) is the one with the smallest
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drops in η, P, and Ṡ (with shorter trajectories). This suggests that the system becomes more stable as the
efficiency in the steady state increases.

S W K S W K S W K

S W K S W K S W K

S

Thw[K]

Tcw[K]

th + tc = 200.12 s
th = 199.98 s
c = 1.56 × 1011W ·K

Thw[K] Thw[K]

P[W]

P[W]

th + tc = 285.71 s
th = 173.47 s
c = 4.36 × 105W ·K

th + tc = 499.25 s
th = 0.87 s
c = 6.24 × 104W ·K

(a) (b) (c)

Figure 5. Trajectories in the Thw–Tcw space and mapping over the η–P, Ṡ–P, and Ṡ–η spaces for k = −1.
In column (a) the σhc = 10−6 case; (b) the σhc = 1 case; (c) the σhc = 106 case. The values Th = 500 K
and τ = 0.4 were fixed. As in Figure 2, σc and th were chosen (for representation/comparison purposes)
in such a way that the MP was 70 W and the entropy at MP was 70 J/K in both cases.

6. Concluding Remarks

It was shown that the Pareto front, which represents the best compromise among power
output, efficiency, and entropy generation is related to endoreversible behavior, obtained herein
by analyzing the Newton and phenomenological heat transfer laws in the context of Carnot-like
models. These findings corroborate those obtained in the low-dissipation scheme.
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A set of dynamic equations were found based only on the assumption that the endoreversible
heat engine has a stationary state and from a Taylor expansion of the input/output heat fluxes in the
first order. A relationship between relaxation times and total operation time was obtained. It was
shown that the trajectories that lead the system back to the stationary state require much shorter times
than the cycle time, allowing the system to work under continuous cyclic operation.

Mapping of the relaxation trajectories into the energetic space allowed for an analysis of the
performance consequences of stability. The degree of symmetry of the conductance ratio in the
input/output heat exchange is the main valuable factor for stability dynamics. For small σhc values,
the thermodynamic trajectories improve the efficiency and power values with a decrease in entropy
generation, evolving near the endoreversible behavior. For larger σhc values, the first part of the
thermodynamic trajectories improve the efficiency and power values with a decrease in entropy
generation, evolving toward the endoreversible behavior and the Pareto front. In between these two
situations, i.e., for equal conductance values, (σhc = 1) trajectories with decreasing efficiencies and
increasing entropy generation can be found, with a preference for evolving near the Pareto front.

In summation, the stability of the irreversible Carnot-like heat engine exhibits two interesting
behaviors in which the fluctuations around the stationary state (due to external perturbations) would
likely maintain the system in an optimum state, or produce self-optimization induced by the stability.
A biased control of the operation parameters could result in an economic saving, as energy is needed
for the fine-tuning of parameter control. Finally, in this work the thermodynamic functions that were
selected as the most relevant for this heat engine model were η, P, and Ṡ. It is very likely that by
analyzing different stationary states, such as those predicted by the compromise Ecological [41] or
Omega [42] operation performances, the role of the Pareto front would be more evident, as occurred in
the case of the low-dissipation heat engine and refrigerator [1,2].

Another valuable remark is that the total entropy generation defines a time scale for both
the operation and relaxation times. Finally, this analysis laid down the grounds to analyze heat
devices dependent on working fluid properties, where the endoreversible hypothesis plays a relevant
role. Especially when the thermalization mechanisms are fast enough compared to the cycle time in
agreement with local equilibrium. This allows to incorporate, in a straightforward way, stochastic-type
perturbations into the analysis through additive noise in Equation (14).
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1. Introduction

Thermodynamics of computing has a peculiar history. Many years, scientists have searched for
the minimum energy needed to perform an elementary computing step. It was Landauer [1–4] who
demonstrated in the period 1960–1990 that, in principle, computing can be performed without energy
consumption, provided the computing process applies exclusively logically reversible computing steps.
As long as information is not destroyed and computing is performed infinitely slowly, no work has to be
supplied to the computer. Only erasure of information requires energy input. It is remarkable that we
had to wait until the period 2012–2018 to have experimental confirmation [5–8] of Landauer’s principle.

Basic thermodynamics, i.e., the Carnot theory, describes thermal engines acting infinitely slowly.
In 1975, Curzon and Ahlborn [9] presented a thermodynamical model for an engine working at
non-zero speed: the endoreversible engine. It consists of a reversible core, performing the actual
conversion (of heat into work) and two irreversible channels for the heat transport. The approach
turned out to be very fruitful: not only processes in engineering, but also in physics, chemistry,
economics, etc. can successfully profit from endoreversible modelling, especially when processes
happen at non-zero speed and thus tasks are performed in a finite time [10,11].

The present paper is an attempt to apply the endoreversible scheme to the Landauer principle,
thus to thermodynamically describe computing at a non-zero speed.

2. Logic Gates

Any computer is built from basic building blocks, called gates. In a conventional electronic
computer, such building block is e.g., a not gate, an or gate, a nor gate, an and gate, a nand gate,
etc. Such gate has both a short input (denoted with subscript 1) and a short output (denoted with
subscript 2). As an example, Table 1a defines the and gate, by means of its truth table. We see an input
word A1B1 and the corresponding output word A2. If the input word is given, the table suffices to
read what the output ‘will be’. If, however, the value of the output word is given, this information
is not sufficient to recover what the input word ‘has been’. Indeed, output A2 = 0 can equally well
be the result of either A1B1 = 00 or A1B1 = 01, or A1B1 = 10. For this reason, we say that the gate is
logically irreversible. In contrast, the not gate is logically reversible, as can be verified from its truth
table in Table 1b. Indeed, knowledge of A1 suffices to know A2, but also: knowledge of A2 suffices to
know A1.

Entropy 2020, 22, 660; doi:10.3390/e22060660 www.mdpi.com/journal/entropy
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Table 1. Truth tables of two conventional logic gates: (a) the and gate and (b) the not gate.

(a)
A1 B1 A2
0 0 0
0 1 0
1 0 0
1 1 1

(b)
A1 A2
0 1
1 0

We not only can distinguish logically irreversible gates from logically reversible gates. We also
can quantify how strongly a gate is irreversible. For this purpose, we apply Shannon’s entropy:

S = −k ∑ qi log(qi) ,

where k is Boltzmann’s constant and qi is the probability that a word ABC... (either an input word
A1B1C1... or an output word A2B2C2...) has a particular value. As an example, we examine Table 1a
in detail. Let (q00)1 be the probability that input word A1B1 equals 00, let (q01)1 be the probability
that A1B1 equals 01, let (q10)1 be the probability that it equals 10, and let (q11)1 be the probability that
it equals 11. We, of course, assume 0 ≤ (qi)1 ≤ 1 for all i, as well as ∑(qi)1 = 1. Let (q0)2 be the
probability that output word A2 equals 0 and let (q1)2 be the probability that A2 equals 1. Inspection
of Table 1a reveals that

(q0)2 = (q00)1 + (q01)1 + (q10)1

(q1)2 = (q11)1 .

Automatically, we have 0 ≤ (qi)2 ≤ 1 for both i, as well as ∑(qi)2 = 1. We now compare the
entropies of input and output:

S1 = −k ∑(qi)1 log ((qi)1)

S2 = −k ∑(qi)2 log ((qi)2) .

We find that these two quantities are not necessarily equal. For example, if the inputs 00, 01, 10,
and 11 are equally probable, i.e., if

(q00)1 = (q01)1 = (q10)1 = (q11)1 = 1/4 ,

then we have
(q0)2 = 3/4 and (q1)2 = 1/4 ,

such that

S1 = 2 k log(2) = 2 b

S2 =

[
2 − 3 log(3)

4 log(2)

]
k log(2) ≈ 0.811 b ,

where b = k log(2) is called ‘one bit of information’. Thus, evolving from input to output is
accompanied by a loss of entropy S1 − S2 of about 1.189 bits. A similar examination of Table 1b
leads to S1 = S2 = 1 b. Thus, both input and output contain one bit of information. There is no change
in entropy: S1 − S2 = 0.
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A reversible computer is a computer exclusively built from reversible logic gates [12,13].
As among the conventional logic gates, only the not gate is logically reversible, we need to introduce
unconventional reversible gates, in order to be able to build a general-purpose reversible computer.
Table 2 shows two examples: the controlled not gate (a.k.a. the Feynman gate) and the controlled
controlled not gate (a.k.a. the Toffoli gate). The truth table of the controlled not gate has the
following properties:

(q00)2 = (q00)1

(q01)2 = (q01)1

(q10)2 = (q11)1

(q11)2 = (q10)1 ,

such that ∑ (qi)2 log((qi)2) = ∑ (qi)1 log((qi)1) and thus S2 = S1. This result is true whatever the
values of the input probabilities (q00)1, (q01)1, (q10)1, and (q11)1, thus not only if these four numbers
all are equal to 1/4. The reason of this property is clear: the output words A2B2 of Table 2a are
merely a permutation of the input words A1B1. Analogously, in Table 2b, the output words A2B2C2

form a permutation of the input words A1B1C1. Therefore, the controlled controlled not gate also
satisfies S2 = S1 and hence is logically reversible.

Table 2. Truth tables of two reversible logic gates: (a) the controlled not gate and (b) the controlled
controlled not gate.

(a)

A1 B1 A2 B2
0 0 0 0
0 1 0 1
1 0 1 1
1 1 1 0

(b)
A1 B1 C1 A2 B2 C2
0 0 0 0 0 0
0 0 1 0 0 1
0 1 0 0 1 0
0 1 1 0 1 1
1 0 0 1 0 0
1 0 1 1 0 1
1 1 0 1 1 1
1 1 1 1 1 0

Figure 1 shows a c-MOS (i.e., complementary metal–oxide–semiconductor) implementation of
these two reversible gates in a silicon chip.

The reader may easily verify that, in general, we are allowed to summarize as follows:

• if the logic gate is logically reversible, then entropy is neither increased nor decreased;
• if the logic gate is logically irreversible, then entropy is decreased.

Of course, in the framework of the second law, any entropy decrease sounds highly suspicious.
The next section will demonstrate that fortunately there is no need to worry.
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A1 B1 A1 B1 C1

A2 B2 A2 B2 C2

(a) (b)

Figure 1. Silicon c-MOS inplementation of two reversible logic gates: (a) the controlled not gate and
(b) the controlled controlled not gate.

3. Macroentropy and Microentropy

Let the phase space of a system be divided into N parts. Let pm be the probability that the system
finds itself in part # m of the phase space. Then, the entropy of the system is

σ = − k
N

∑
m=1

pm log(pm) . (1)

Figure 2a shows an example with N = 15.
We now assume that the division of phase space happens in two steps. First, we divide it into

M large parts (with M � N), called macroparts. Then, we divide each macropart into microparts:
macropart # 1 into n1 microparts, macropart # 2 into n2 microparts, ..., and macropart # M into nM
microparts:

n1 + n2 + ... + nM = N .

We denote by pi,j the probability that the system is in microcell # j of macrocell # i. Let qi be the
probability that the system finds itself in macropart # i:

qi =
ni

∑
j=1

pi,j .

Figure 2b shows an example with N = 15 and M = 4 (n1 = 4, n2 = 5, n3 = 3, and n4 = 3);
Figure 2c shows an example with N = 15 and M = 2 (n1 = 12 and n2 = 3).

Let σ be the entropy of the system consisting of the M macrocells. We have

σ = − k
M

∑
i=1

ni

∑
j=1

pi,j log(pi,j) . (2)
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One can easily check that this expression can be written as

σ = − k
M

∑
i=1

qi log(qi)− k
M

∑
i=1

qi

ni

∑
j=1

pi,j

qi
log
( pi,j

qi

)
. (3)

The former contribution to the rhs of Equation (3) is called the macroentropy S, whereas the
latter contribution is called the microentropy s. We identify the macroentropy with the information
entropy of Section 2. We associate the microentropy with the heat Q, i.e., with the energy exchange
which would occur, if the microentropy enters or leaves the system at temperature T, according to the
Gibbs formula

s =
Q
T

.

Hence:
σ = S +

Q
T

.

This decomposition can be expressed in several ways:

total entropy = macroentropy + microentropy

= Shannon entropy + Gibbs entropy

= information entropy + heat entropy .
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Figure 2. A same phase space divided into three different numbers M of macrocells: (a) M = 1;
(b) M = 4; and (c) M = 2.

We now assume that the probabilities of being in a particular microcell is the same in the three
cases of Figure 2. For example, p6 of Figure 2a equals both p2,2 of Figure 2b and p1,6 of Figure 2c. Then,
Equations (1) and (2) tell us that the entropy σ is the same in the three cases:

σa = σb = σc .

Assuming all probabilities pi,j are non-zero, it is clear that the macroentropies satisfy

0 = Sa < Sc < Sb .
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Therefore, the microentropies satisfy

σ = sa > sc > sb .

In particular, the inequality Sc < Sb corresponds with the inequality S2 < S1 in Section 2 for
the and gate in Table 1a. Indeed: Figure 2b corresponds with the left part of the truth table, whereas
Figure 2c corresponds with the right part of the table. The decrease of macroentropy (S2 < S1) thus is
compensated by the increase of microentropy (s2 > s1), leading to σ2 = σ1, thus saving the second law:
σ2 ≥ σ1.

4. Reversible Engine

Figure 3a is the classical model of the Carnot engine, consisting of

• a heat reservoir at temperature T1, providing a heat Q1,
• a heat reservoir at temperature T2, absorbing a heat Q2, and
• a reversible convertor, generating the work E.

For our purpose, we provide each reservoir with a second parameter, i.e., the macroentropy S.
See Figure 3b.

T2

�
Q2

��
��

	
E

�Q1

T1

(a)

T2 , S2

�
Q2

��
��

	 E

�Q1

T1 , S1

(b)

Figure 3. Core engines: (a) basic model and (b) extended model.

We write the two fundamental theorems of reversible thermodynamics:

• conservation of energy: the total energy leaving the convertor is zero:

−Q1 + E + Q2 = 0 ;

• conservation of entropy: the total entropy leaving the convertor is zero:

−
(

Q1

T1
+ S1

)
+ 0 +

(
Q2

T2
+ S2

)
= 0 .

Eliminating the variable Q2 from the above two equations yields

E =

(
1 − T2

T1

)
Q1 + (S2 − S1) T2 . (4)

We can distinguish two special cases (Figure 4):
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• If S2 = S1, then we obtain from Equation (4) that

E =

(
1 − T2

T1

)
Q1 ,

known as Carnot’s law.
• If T2 = T1 (say T), then we obtain from (4) that

E = (S2 − S1) T ,

known as Landauer’s law.

T2

�

��
��

	
E

�

T1

(a)

S2

�

��
��

	
E

�

S1

(b)

Figure 4. Core engines: (a) the Carnot engine and (b) the Landauer engine.

We thus retrieve, besides Carnot’s formula, the priciple of Landauer: if no information is erased
(S2 = S1), then no work E is involved; if information is erased (S2 < S1), then a negative work E is
produced, meaning that we have to supply a positive work −E.

We note that, in Figure 4a, the arrows indicate the sence of positive Q1 (heat leaving the upper
heat reservoir) and positive Q2 (heat entering the lower heat reservoir). Analogously, in Figure 4b,
the arrows indicate the sence of positive S1 (macroentropy leaving the upper memory register) and S2

(macroentropy entering the lower memory register). In order to actually perform the computation in
the positive direction, an external driving force is necessary. The next section introduces this ‘arrow
of computation’.

5. Reversible Engine Revisited

Information is carried by particles. Therefore, we have to complement the reservoirs of Figure 3b
with a third parameter, i.e., the chemical potential μ of the particles. See Figure 5. Besides a heat flow Q,
a reservoir also provides (or absorbs) a matter flow N.

In conventional electronic computers, the particles are electrons and holes within silicon and
copper. There, the particle flow N is (up to a constant) equal to the electric current I:

N = I/q ,

where q is the elementary charge. The chemical potential μ is (up to a constant) equal to the voltage V:

μ = qV .

In the present model, we maintain the quantities N and μ, in order not to exclude unconventional
computing, e.g., computation by means of ions, photons, Majorana fermions, ... or even good old
abacus beads.
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Figure 5. Core engine.

We write the three fundamental theorems of reversible thermodynamics:

• conservation of matter: the total amount of matter leaving the convertor is zero:

−N1 + 0 + N2 = 0 ;

• conservation of energy: the total energy leaving the convertor is zero:

−(Q1 + μ1N1) + E + (Q2 + μ2N2) = 0 ;

• conservation of entropy: the total entropy leaving the convertor is zero:

−
(

Q1

T1
+ S1

)
+ 0 +

(
Q2

T2
+ S2

)
= 0 .

The first equation leads to N2 = N1, which we simply denote by N. Eliminating the variable Q2

from the remaining two equations yields the output work:

E =

(
1 − T2

T1

)
Q1 + (μ1 − μ2) N + (S2 − S1) T2 .

We can distinguish three special cases (Figure 6):

• If μ2 = μ1 and S2 = S1, then we obtain

E =

(
1 − T2

T1

)
Q1 ,

i.e., Carnot’s law.
• If T2 = T1 and S2 = S1, then we obtain

E = (μ1 − μ2) N ,

known as Gibb’s law.
• If T2 = T1 (say T) and μ2 = μ1, then we obtain

E = (S2 − S1) T ,

i.e., Landauer’s principle.
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Figure 6. Core engines: (a) the Carnot engine, (b) the Gibbs engine, and (c) the Landauer engine.

6. Irreversible Transport

Figure 7a represents a transport channel between two reservoirs. The upper reservoir has
parameter values T′, μ′, and S′; the lower reservoir has parameter values T′′, μ′′, and S′′. We assume
that the computer hardware is at a uniform temperature. Hence, T′′ = T′ (say T). Furthermore, we
assume that S′′ = S′ (say S). This means, e.g., that noise does not cause random bit errors during the
transport of the information. Thus, reservoirs only differ by μ′ and μ′′. See Figure 7b.
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Figure 7. Irreversible transport: (a) general model and (b) simplified model.

The particle drift N is caused by the difference of the two potentials μ′ and μ′′. The law governing
the current is not necessarily linear. Hence, we have

N =
1
R

[ f (μ′)− f (μ′′) ] ,

where f (μ) is an appropriate (monotonically increasing) function of μ and R (called resistance) is
a constant depending primarily on the material properties and geometry of the particle channel.
Many different functions f are applicable in different circumstances. For example, in classical c-MOS
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technology, an electron or hole diffusion process in silicon [14,15] can successfully be modeled by
the function

f (μ) = exp
( μ

kT

)
,

such that

N =
1
R

[
exp

(
μ′

kT

)
− exp

(
μ′′

kT

) ]
.

Below, however, for sake of mathematical transparency, we will apply

f (μ) = μ ,

such that we have a linear transport equation, i.e., Ohm’s law:

N =
1
R

(μ′ − μ′′) .

7. Endoreversible Engine

Figure 8 shows an endoreversible computer gate. It consists of

• a core part with reversible gate and
• two transport channels: one for providing the input information and one for draining the output

information.

The core is modeled according to Section 5; the two transport channels are modeled according
to Section 6. In Figure 8a, the two outermost reservoirs (i.e., the input and output data registers)
have fixed boundary conditions: T1, μ1, S1 and T2, μ2, S2, respectively. The inner parameters T3, μ3,
S3, T4, μ4, and S4 are variables. In accordance with Section 6, we choose T3 and S3 equal to T1 and
S1, respectively, as well as T4 and S4 equal to T2 and S2, respectively. Finally, we assume the whole
engine is isothermal, such that T2 = T1. This results in Figure 8b. We thus only hold back as variable
parameters the chemical potentials μ3 and μ4.

According to Section 5, we have, for the core of the endoreversible engine:

E = (μ3 − μ4)N + (S2 − S1)T . (5)

According to Section 6, the two transport laws are

N =
1

R1
(μ1 − μ3) (6)

N =
1

R2
(μ4 − μ2) . (7)

We remind that, in the present model, the intensive quantities T, μ1, S1, μ2, and S2 have given
values, whereas the quantities μ3 and μ4 have variable values. We eliminate the two parameters μ3

and μ4 from the three Equations (5)–(7). We thus obtain

E(N) = (μ − RN) N + T(S2 − S1) ,

where μ = μ1 − μ2 and R = R1 + R2. The total energy dissipated in the endoreversible engine is

F = Nμ1 − E − Nμ2 .

We thus find
F(N) = RN2 + T(S1 − S2) . (8)
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The former term on the rhs of Equation (8) consists of the energy R1N2 dissipated in resistor R1

and the energy R2N2 dissipated in resistor R2; the latter term is the energy dissipated in the information
loss in the core of the engine.
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Figure 8. Endoreversible engine: (a) general model and (b) simplified model.

If N = 0, then we dissipate a minimum of energy Fmin = F(0) = T(S1 − S2). Unfortunately,
N = 0 corresponds with an engine computing infinitely slowly (just like a heat engine produces
power with a maximum, i.e., Carnot, efficiency when driven infinitely slowly). For reasons of speed,
a computer is usually operated in so-called short-circuit mode: N = Nsc = μ/R. This operation
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corresponds with a short circuit between the two inner reservoirs of Figure 8: μ3 = μ4. Under such
condition, we have

F = Fsc = F(Nsc) = F
( μ

R

)
=

1
R

μ2 + T(S1 − S2)

= RN2
sc + T(S1 − S2)

= μNsc + T(S1 − S2) . (9)

For the sake of energy savings, we aim at low Fsc. As Nsc is large for sake of speed, we thus need
both small R and small μ.

8. Discussion

Figure 8b acts as our thermodynamical model of classical (i.e., non-quantum) computing. It is
equally applicable to a single elementary logic gate as it is to a complete supercomputer. In the use
of the model, we distinguish two cases: logically irreversible computation and logically reversible
computation:

8.1. Conventional Computing

In conventional computers, information is erased during the computational process: S1 − S2 > 0.
The computation happens in one direction: from reservoir # 1 to reservoir # 2. In other words: N > 0
and thus μ1 > μ2.

During several decades, classical MOS technology succeeded in minimizing both parameters R
and μ. Indeed, according to Moore’s law, we have known a continuous (exponential) shrinking of
computer components. As a consequence, energy consumption per computational step diminished
accordingly. In spite of this, the former term in (9) is still several orders of magnitude larger than the
latter contribution. For a single computational step with e.g., a nand gate, in a 10 nanometer c-MOS
technology, run with a power-supply voltage of 0.6 volt and operating at room temperature (i.e., at
about 300 K), the dissipation in the resistor R is of the order of one attojoule (i.e., 10−18 J), whereas the
dissipation T(S1 − S2) is of order one zeptojoule (i.e., 10−21 J) only (corresponding with an entropy
production of 3 zJ/K and 0.003 zJ/K, respectively). An attojoule may sound as an irrelevant miniscule
amount of energy. However, because of present-day computer speeds (i.e., clock rates of about 3 GHz)
and computation parallelism, it is responsible for the approximately 50 W dissipation in a single silicon
chip (CPU or central processing unit) and hence for the megawatt power consumption in today’s data
centres. Further improvement of technology could lead to less energy dissipation. However, breaking
the Landauer barrier will be impossible without radically changing computation architecture, i.e.,
without switching from logically irreversible computing to reversible computing.

8.2. Reversible Computing

In reversible computers, no information is erased: S1 − S2 = 0. The computation can happen
in either direction: either from reservoir # 1 to reservoir # 2 or from reservoir # 2 to reservoir # 1.
The former operation is activated by choosing μ1 > μ2 (and hence N > 0); the latter operation is
activated by choosing μ2 > μ1 (and hence N < 0). For example, the circuits in Figure 1 indeed can be
operated from top to bottom as well as from bottom to top, depending on the applied voltages.

Because the contribution T(S1 − S2) to the dissipated energy F is absent from (8), we can, in the
limit, make F as small as we like, by letting N go to zero, either from the positive side or from the
negative side. This reminds us of the fundamental law: things only can happen without dissipation if
they happen infinitely slowly.
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9. Conclusions

Endoreversible schemes have proven to be very useful in many branches of science: both in
thermodynamics and in many disciplines far beyond. In the present paper, we have applied it to
informatics and computing. The simple model presented brings together Carnot’s law, Landauer’s
principle, Ohm’s law, and even Moore’s law.
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Abstract: The Stirling engine is one of the most promising devices for the recovery of waste heat.
Its power output can be optimized by several means, in particular by an optimized piston motion.
Here, we investigate its potential performance improvements in the presence of dissipative processes.
In order to ensure the possibility of a technical implementation and the simplicity of the optimization,
we restrict the possible piston movements to a parametrized class of smooth piston motions. In this
theoretical study the engine model is based on endoreversible thermodynamics, which allows us
to incorporate non-equilibrium heat and mass transfer as well as the friction of the piston motion.
The regenerator of the Stirling engine is modeled as ideal. An investigation of the impact of the
individual loss mechanisms on the resulting optimized motion is carried out for a wide range of
parameter values. We find that an optimization within our restricted piston motion class leads to a
power gain of about 50% on average.

Keywords: piston motion optimization; endoreversible thermodynamics; stirling engine;
irreversibility; power; efficiency; optimization

1. Introduction

In the 1970s, finite-time thermodynamics evolved in Steve Berry’s group as an extension to
traditional thermodynamics [1]. The aim of this extension was to describe dissipative heat engines
operating in finite time or with finite rates as opposed to the reversible description. Finite-time
thermodynamics focuses on irreversibilities within the system in question and incorporates them
into the analysis. The goal was not so much to capture every little bit of dissipation occurring,
the goal was to incorporate the most dominant dissipation contributions in order to get performance
features—like efficiencies—much closer to the observed ones than the reversible treatment would give.
New concepts [2–5] were developed and then applied not only to heat engines, but also to chemical
processes [6]. Already this early work emphasized the importance of process optimization [7].
Later the field widened and different aspects of finite-time thermodynamics were studied such
as its usage for power or efficiency optimization [8–10], the influence of different descriptions
of irreversibilities [11–15] and the analysis of a broad range of thermodynamic systems [16–19].
Of particular interest are efficiency considerations. From the seminal work of Curzon and
Ahlborn [20], to recent publications concerning non-linear irreversible systems [21–24], stochastic
fluctuations [25–27], thermoelectric generators [28], biological processes [29] or general realizability
domains [30] a multitude of investigations were carried out.

One of the central question in finite-time thermodynamics is: how large is the minimum necessary
dissipation to perform a certain process in a specific time? This question can be treated by optimizing
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that process—often using control theory—with respect to a certain performance goal, for instance
maximizing the power output or minimizing the entropy production. In particular for heat engines a
power optimization can be performed by improving the piston motion. Such piston trajectories have
been studied for engines with Otto [31–33], Diesel [34–37], and Miller cycles [38] as well as the special
paths needed for light-driven engines [39–44].

In this work we will use finite-time thermodynamics methods to study the performance features
for Stirling engines. Stirling engines are considered to be good candidates for the use of waste
heat, which occurs in many technical applications and which is often dumped into the environment
without use. In such situations it is not so much the saved fuel—which comes more or less for
free—it is the economical choice of an appropriate engine size (and the connected capital costs)
which requires knowledge about performance features and in particular of the power output of the
engines. Investigations into such performance features for Stirling engines and their optimization
have already been conducted, see for instance [45–50], where especially the piston motion has been
considered [51–53].

Here, our goal is to analyze in particular the power output of a Stirling engine in alpha
configuration, for which the piston motion is characterized by two independently acting pistons.
We determine possible performance improvements for ideal regeneration by varying its piston
movement. Finding its performance optima by using the classical approach based on control theory
would be a formidable task. Here, we take a simpler route, based on a parameter optimization of
the piston motion with especially chosen smooth functions from the AS class of functions introduced
below. The advantage of our approach is the simplicity of its technical implementation and a much
reduced numerical effort. This turned out to be very favorable in treating the wide range of cases
needed in the application which started this investigation: the recovery of waste heat from machine
tools. We note that our method will provide lower bounds for the gain achievable by a control theory
based optimization. Our investigation will be based on an endoreversible model incorporating the
essential losses due to friction of the moving pistons and the resistances in the heat transport in and
out of the engine, as well as the impact of the non-vanishing flow resistance in moving the working
fluid through the regenerator.

2. Piston Motion Optimization

The standard harmonic piston motion used in Stirling engine modeling is given by

V(t) = Vdead + ΔV(1 + sin(2πt/t0))/2, (1)

where Vdead and ΔV are the dead volume and the displacement, respectively, and where t0 is the
period of the motion, which is here chosen to be t0 = 1 s. In our analysis we want to capture the effects
of two important variations of this standard piston motion. One is a variation in the piston speed
as it travels from its minimum displacement to its maximum displacement and back. The other is a
variation of the time a working volume is above its average value Vdead + ΔV/2 compared to the time
it spends at volumes below its average value. Both variations influence the different loss mechanisms
in subtle ways, where the influence of the piston speed on the piston velocity dependent friction loss is
most obvious.

Of course the class of piston motions we consider must be periodic, moreover we will consider
only motions for which all time derivatives of the piston position exist and are continuous. Making
use of the fact that the cross sectional area of the cylinder is constant we directly specify the cylinder
volume rather than the piston position. As a result of these considerations we will use the following
newly developed piston motion:

V(t) = Vdead + ΔV f (t/t0; σ, δ), (2)
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where the function f (x; σ, δ) and the dimensionless parameters σ and δ are explained in more detail
below. The function f (x; σ, δ) is a composition of two functions f1 and f2

f (x; σ, δ) = f1( f2(x; δ); σ), (3)

where f1 and f2 are given by

f1(y; σ) = (sin(2πy + σ sin(4πy)) + 1) /2 (4)

and

f2(x; δ) = x + δ(1 − cos(2πx)), (5)

respectively.
Below we will refer to this class of piston motions as “adjustable sinusoidal” and will label the

corresponding items by “AS”. Once the piston motion has been optimized by an appropriate choice
of parameters we will call it “optimized sinusoidal” and will label the corresponding items “OS”.
Note that the standard harmonic motion belongs to the class of adjustable sinusoidal motions and
can be regained by the choice σ = δ = 0. We will label items corresponding to this motion “STD”.
The advantageous feature that the STD case belongs to the AS class of motions allows for an easy
comparison and a continuous transition from the STD case to the OS case.

The influence of the parameters σ and δ on the piston motion is demonstrated in the following
figures. Figure 1 shows the changes induced by a variation of σ.

Figure 1. Piston volume V over time t for the standard harmonic motion (STD), and the “adjustable
sinusoidal” motion (AS) with δ = 0 and different values for σ. Negative values for σ decrease
the maximum piston velocity resulting in shorter times spent at the extreme values of the volume,
while positive values for σ lead to the opposite effect.

As can be seen, an increasing σ leads to a faster piston speed (corresponding to steeper slopes
of V(t)) during the compression and expansion phases, while the speed close to the minimum and
maximum position is considerably reduced such that the volume stays close to its extreme values
for an extended fraction of the overall time period. The figure also shows the effects of negative
σ. Here, the rest times of the piston at its extreme positions are reduced compared to the standard
harmonic motion. This property of the AS motion class is important as it is well known from earlier
work on power optimization by motion control [34] that sometimes it is beneficial to let the piston rest
for a while at a extreme position.

The effects caused by variations of the parameter δ are shown in Figure 2, where the AS motion is
displayed for δ = −0.05 and δ = 0.05. It is apparent that the fraction of time spend above the mean
displacement can be extended considerably by setting δ to negative values, and can be shortened by
setting δ to positive values.
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Figure 2. Piston volume V over time t for the standard harmonic motion (STD), and the “adjustable
sinusoidal” motion (AS) with σ = 0 and different values for δ. Negative values for δ extend the fraction
of time with a volume larger than the mean volume. Positive values lead to the opposite effect.

The above discussed features of the AS motion can be observed within certain limits
of the parameters σ and δ, which have been determined by a systematic search of
the parameter space. Hence, we will use the following restrictions on these parameters:
−0.13 < σ < 0.6 and −0.08 < δ < 0.08. Beyond these limits the desirable features decline.

While the above discussion described the dynamics of one of the two pistons of the considered
Stirling engine, we will now turn to the overall combined dynamics of both pistons. In the subsequent
analysis of the potential power improvements through optimized piston dynamics we will use

V1(t) = Vdead + ΔV f (t/t0; σ1, δ1), (6)

V2(t) = Vdead + ΔV f (t/t0 + Δt/t0; σ2, δ2), (7)

where we have introduced the additional parameter Δt. This parameter induces a time shift between
the two piston motions. In the standard case of harmonic dynamics this parameter is set by the
usual phase shift of −π/2 which translates into a Δt = −0.25 t0. In summary, we will use the five
dimensionless parameters σ1, δ1, σ2, δ2, and Δt/t0 in our optimization.

3. Endoreversible Stirling Engine

The Stirling engine model used here is based on endoreversible thermodynamics. While a brief
description of its concepts is given below, a more extensive description can be found in these two
reviews [54,55]. After early work [56–58] the approach became more formalized and is now used in a
variety of applications as for instance dealing with chemical reactions [59–63], engines of different
kinds [64–67] and in particular with efficiencies of energy transformation devices [68–73].

In the subsequent subsections the endoreversible modeling of the alpha Stirling engine is shown.

3.1. Endoreversible Modeling

The main aspect of endoreversible modeling is the description of a system as well as the processes
occurring in it by specifying its subsystems and the reversible or irreversible interactions between those.
The subsystems are divided into (in)finite reservoirs with state variables, and engines, which serve
for energy conversion. Finite reservoirs are typically described by their energy Ei as a function of its
extensities, where i denotes the i-th subsystem. For each extensity Xα

i a corresponding intensity Yα
i can

be calculated by

Yα
i =

∂Ei(Xα
i )

∂Xα
i

. (8)

Here, the superscript α specifies the corresponding extensity, e. g. the intensity YS is the
temperature T, which is the corresponding intensity to the extensity entropy S. The change in energy
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of the subsystem can thus be expressed as the sum of changes in extensities times the corresponding
intensities of the subsystem:

dEi = ∑
α

Yα
i dXα

i . (9)

According to this relation, each flux of extensity Jα
i carries an accompanying flux of energy

Iα
i = Yα

i Jα
i . (10)

Infinite reservoirs, on the other hand, are only described by their intensities, which stay constant
and do not change when extensity or energy is transferred to or from them.

The second type of endoreversible subsystems are engines, which transfer energy from one
carrying extensity to another. Unlike reservoirs, they are not intended to store extensities. Hence,
extensities and energy are balanced over all incoming and outgoing fluxes:

0 = ∑
k

Jα
i,k for all α and (11)

0 = ∑
k,α

Iα
i,k, (12)

where k serves to differentiate the contact points of subsystem i, at which the Iα
i,k and Jα

i,k of the various
interactions enter the subsystem. Typically, k consecutively numbers the contact points of a subsystem,
or denotes the linked subsystem. The latter might be favorable when there are only interactions
connecting no more than two subsystems—as it is the case in this paper.

The fluxes themselves are defined by either the requirement of equal intensities of two subsystems
Yα

i = Yα
j or by transport laws for the transferred extensity or energy. While in the first case the fluxes

can technically become infinite in order to instantaneously equalize the intensities, in the latter case
often phenomenological relationships are used resulting in finite rates. Of course, energy conservation
applies to all interactions. In addition, the other extensities must be balanced, with the exception of
entropy, since interactions can be irreversible and therefore generate entropy.

Often it is not necessary to describe the energy carrying extensity of an interaction. Instead a
power flux is used describing only the rate of transferred energy or work.

3.2. Stirling Engine

Using the described aspects of endoreversible modeling, we build the Stirling engine model as
shown in Figure 3. The subsystems shown as circles are engines representing the regenerator R and the
transmission units T1 and T2. The latter are converting the volume work flux of the stroke into some
form of power we do not need to specify here. The regenerator is connected to an entropy reservoir SR
and a work reservoir WR. It is also connected to the reservoirs representing the gas in the hot cylinder 1
and the cold cylinder 2 of the Stirling engine, respectively. Those in turn are thermally coupled to a
hot heat bath H and a cold heat bath C. The remaining reservoirs are work reservoirs collecting the
net power WT from the volumetric processes and the frictional power loss WF of the transmission
units, as well as volume reservoirs representing the environment E. All reservoirs and interactions are
explained in more detail below.
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Figure 3. Endoreversible model of the Stirling engine with reservoirs (rectangles), endoreversible
engines (circles) and reversible (straight lines) and irreversible (wavy lines) interactions. On the left
side the hot cylinder 1 is located with its interactions to the hot heat bath H and a transmission unit T1
while on the right side the cold cylinder 2 is displayed with corresponding interactions and the cold
heat bath C. Both are connected by the regenerator R in the middle which interacts with an entropy and
work reservoir, SR and WR, respectively. Further reservoirs are work reservoirs WT and WF collecting
the net power and friction losses, respectively, from the energy converting engines T1 and T2 as well as
volume reservoirs E representing the environment.

3.3. The Working Fluid

The working fluid in cylinder 1 and 2 is described by the equation of state for an ideal gas:

pV = nRT, (13)

where p, V, n and T are the pressure, volume, mole number and temperature, respectively, and R is the
gas constant. The caloric equation of state is given by

U = ĉVnRT, (14)

where U is the internal energy and ĉV is the dimensionless specific heat capacity at constant volume.
Here, this is chosen to be ĉV = 5/2 as usual for di-atomic gases.

Endoreversible modelling of reservoirs gets particularly simple, if one uses the extensities to
describe its state, which in our case are the entropy S, the volume V and the mole number n of the
fluid. We start from the fluid’s entropy

S = nR
(

ĉV ln
T
T0

+ ln
V
V0

− ln
n
n0

)
+ n

S0
n0

, (15)

with T0, V0 and n0 being the reference temperature, volume and mole number, respectively, for the
reference entropy S0(T0, V0, n0). By solving Equation (15) for the temperature T we obtain

T(S, V, n) =

(
V0TĉV

0
n0

n
V

exp
(

S
nR

− S0
n0R

)) 1
ĉV

. (16)
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Now, the internal energy U can be expressed in terms of the extensities S, V and n:

U = ĉVnRT(S, V, n) = ĉVnR

(
V0TĉV

0
n0

n
V

exp
(

S
nR

− S0
n0R

)) 1
ĉV

. (17)

This equation is also called the principle equation of state [74]. According to Equation (8) the
pressure p and the chemical potential μ of the fluid can then be derived from the principle equation
of state:

p(S, V, n) = −
(

∂U
∂V

)
S,n

=
nR
V

T(S, V, n), (18)

μ(S, V, n) =
(

∂U
∂n

)
S,V

=

(
ĉV R + R − S

n

)
T(S, V, n). (19)

For a given working fluid databases typically provide the standard molar entropy Sm,0(p0, T0) at
reference pressure and reference temperature. In this case, using Equation (13) and Sm,0 = S0/n0 the
temperature can also be expressed as

T(S, V, n) =

(
RT1+ĉV

0
p0

n
V

exp
(

S
nR

− Sm,0

R

)) 1
ĉV

. (20)

3.4. Heat Transfer and Power Losses

The heat transfer between the hot heat bath H and the gas reservoir 1 as well as between the gas
reservoir 2 and the cold heat bath C is assumed to be Newtonian. Thus, the heat flows IS

1,H and IS
2,C

from the hot and cold heat baths are proportional to the temperature differences between the gas
reservoirs and the hot and cold heat baths with temperature TH and TC, respectively:

IS
1,H = κ(TH − T1), (21)

IS
2,C = κ(TC − T2), (22)

where κ is the heat transfer coefficient, which for simplicity is here chosen to be equal for the hot and
cold side. The resulting entropy fluxes into or out of the reservoirs are

JS
1,H = IS

1,H/T1, (23)

JS
2,C = IS

2,C/T2. (24)

The hot and cold heat baths are modeled as infinite reservoirs so that their temperature remains
constant at TH and TC, respectively, regardless of the incoming entropy flux.

In order to capture the mechanical friction due to the piston motion, we make the often used
assumption of a power loss Pf proportional to the piston velocity squared. Again, since the cross
sectional area of the cylinder is constant, this loss can be expressed using the volume change of
reservoir i = 1, 2:

Pf,i = βV̇2
i , (25)

where β is the mechanical friction coefficient [32]. This power loss is transferred to the work
reservoir WF for bookkeeping purposes, from which it is then dissipated to heat and dumped into the
environment. The resulting power connected to changes of the volume of reservoir i is then given by

Pi = piV̇i − Pf,i (26)
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according to the energy balance equations of the transmission units and is flowing to or from the work
reservoir WT.

3.5. Ideal Regenerator and Mass Transfer

The regenerator of the Stirling engine is designed to cool and heat the gas flowing back and
forth between the cylinders. A real regenerator acts like a short-term heat storage, which during one
cycle alternately absorbs energy and then releases it again. Here, we consider an ideal regenerator.
We define it in a way such that no irreversibilities occur in the process of regeneration by requiring
that the flowing gas leaves or enters the regenerator with the temperature and pressure of the cylinder
it flows to or comes from. In addition, the ideal regenerator does not contain any gas itself.

Such an ideal regenerator can be modeled as an engine. The incoming particle flux is passed
on directly to the other gas reservoir. The chemical potential and temperature of the incoming and
outgoing particle fluxes as well as the associated entropy fluxes are equal to those of the adjacent
reservoirs. Hence, these interactions are reversible. We assume a mass transport that is proportional to
the difference of the pressures within the two cylinders. Hence, using a mass transfer coefficient α the
particle flux through the regenerator is given as

Jn
1,R = α(p2 − p1) = −Jn

2,R. (27)

The corresponding entropy fluxes entering or leaving the reservoirs 1 and 2 are then given by

JS
1,R = Sm,1 Jn

1,R, (28)

JS
2,R = Sm,2 Jn

2,R, (29)

respectively, where Sm,i = Si/ni is the molar entropy of the subsystem i. We point out that such
coupled fluxes can be combined to a multi-extensity flux [75].

Since these two entropy fluxes generally are not equal, a third entropy flux is needed to maintain
entropy balance within the ideal regenerator. This third entropy flux JS

SR,R reversibly flows into the
entropy reservoir SR

JS
SR,R = −JS

1,R − JS
2,R. (30)

We set the temperature TR = TC, as the cold heat bath is considered to be the environment
from which entropy or energy can be taken or dumped into at no cost. Likewise, to fulfill energy
conservation within the regenerator, an additional energy flux is needed:

PR = T1 JS
1,R + μ1 Jn

1,R + T2 JS
2,R + μ2 Jn

2,R + TC JS
SR,R. (31)

This necessary or excess energy for the ideal regeneration process is accounted for in the work
reservoir WR and will enter the overall power output. Finally we note, that kinetic energy and
mechanical inertia of the gas and mass leakages have been neglected.

3.6. The Dynamics

From the balance equations for the extensities derived above and the transport laws we obtain a
coupled system of differential equations to be integrated

ṅ1 = α(p2 − p1), ṅ2 = α(p1 − p2), (32)

Ṡ1 = κ(TH − T1)/T1 + Sm,1ṅ1, Ṡ2 = κ(TC − T2)/T2 + Sm,2ṅ2, (33)

V1 = V1(t; σ1, δ1), V2 = V2(t + Δt; σ2, δ2), (34)
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where all the intensities can be expressed in terms of the extensities. For given parameters σ1, δ1, σ2, δ2
and Δt, the above equations are integrated until the system has reached a steady cyclic operation.
Resetting the time we obtain the resulting useful work output per cycle

Wout =
∫ t0

0
PR + P1 + P2 dt. (35)

The overall friction losses can be calculated by

Pf = Pf,1 + Pf,2. (36)

If Wout is positive, the Stirling engine provides an average power output

P = Wout/t0. (37)

Otherwise, energy must be supplied to the engine to maintain its operation.
Finally we define the efficiency of the Stirling engine as ratio of the total work output over the

integrated heat flux from the hot reservoir for one cycle

η =
Wout
Qin

=
Wout∫ t0

0 IS
1,H dt

=
Wout∫ t0

0 κ(TH − T1)dt
. (38)

Based on these quantities we now turn to the optimized operation of the Stirling engine.

4. Results

Our aim was to determine the potential gains in the average power output which could be
achieved by an optimized piston motion as compared to the standard motion. To achieve that
aim we optimized the parameters σ1, δ1, σ2, δ2 and Δt of the AS motion numerically based on a
Nelder–Mead approach [76]. In general we found that the power output was not very sensitive with
respect to the motion control parameters in the sense that one got large power variations for small
parameter changes.

We presented the results for the piston motion optimized with regard to the average power output
(OS) and compared them to those of the standard harmonic piston motion (STD). The results were
obtained for model parameters representing a somewhat typical Stirling engine in the few kW range.
The temperatures TH = 400 K and TC = 300 K reflected the application area of waste heat usage,
while the dead volume Vdead = 1 L and the displacement ΔV = 10 L, leading to a typical value of 0.1
for their ratio. The amount of working fluid was n = 1 mol, which with the volumes chosen led to a
moderate pressure engine. The above engine parameters were kept fixed at their values in the entire
results section.

There are three further parameters, for which we investigated their influence on the engine
performance in more detail. These were the friction coefficient β determining losses due to mechanical
friction, the heat transfer coefficient κ determining losses due to finite heat conduction, and the mass
transfer coefficient α which determines the mass flow rate through the regenerator.

We started our analysis by investigating a case in which the power limiting impacts of these
three parameters are negligible. In particular the minimum value for the friction coefficient was set
to zero, and the values for κ and α were chosen such that their further increase would no longer lead
to a sizable power increase: β0 = 0 Js/m6, α0 = 100 mol/(s bar), κ0 = 105 W/K. With these choices
the temperature of the working fluid was always very close to the temperature of the connected heat
bath and the pressures in the two cylinders were nearly equal. This minimum value for the friction
coefficient and the maximum values for κ and α are referred to as “base values”, and the results
obtained for these values are referred to as the “base case”.
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4.1. Optimized Piston Motion: The Base Case

First, we present the results for the base case. The power output for the OS motion is 962 W and
for the STD motion 608 W. Thus, the power output for the OS motion turned out to be about 50 %
larger than that for the STD motion. The corresponding dynamics of the state variables are shown in
Figures 4–8.

In Figure 4 the volumes of the two cylinders are shown as a function of time.

[ ]

[]

Figure 4. Resulting cylinder volumes V1 and V2 over time t for the optimized sinusoidal (OS) motion
with base case parameters. For comparison the STD motion is plotted with dashed lines.

The optimal volume dynamics showed a number of interesting and surprising features. It is
apparent that both volumes varied more like a trapezoid wave than a harmonic wave, leading to a
faster transition between the minimal and maximum volumes. Moreover, the extrema were slightly
shifted with respect to those of the STD motion. It turned out that the time shift ΔtOS = −0.255t0
differed only little from its STD value ΔtSTD = −0.25t0. The values of δ1,OS = 0.0217 and δ2,OS = 0.036
were positive indicating a preference for smaller volumes for both cylinders, while the relatively large
positive values σ1,OS = 0.573 and σ2,OS = 0.565 reflected the tendency to the square wave behavior.
All four parameters differed considerably from the STD case.

The optimized piston motion led to the entropy and mole number dynamics as shown in Figures 5
and 6, respectively. Both figures showed a high degree of similarity, which in part is due to the
entropy being roughly proportional to the mole number. Small differences between them were visible
around t = 0.6 s which indicates that the specific entropy changed there.

[ ]

[/]

Figure 5. Entropies S1 and S2 of the hot and cold cylinder, respectively, over time t for the OS motion
with base case parameters. For comparison those for the STD motion are plotted with dashed lines.
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[ ]

[]

Figure 6. Mole numbers n1 and n2 of the hot and cold cylinder, respectively, over time t for the
OS motion with base case parameters. For comparison those for the STD motion are plotted with
dashed lines.

For the further discussion it is helpful to consider the dynamics of the intensities temperature
and pressure in the two cylinders. The temperatures of the working fluid in both cylinders were
very close to the bath temperatures due to our choice of the base value for the heat conduction.
In Figure 7 we show the difference between the cylinder temperature and the corresponding heat bath
temperature for both cylinders. One sees that T1 and T2 showed rich dynamics as a consequence of the
heat exchange, the volume changes, and the mass transfer through the regenerator. One interesting
feature is that during one cycle the cylinder temperature was sometimes largerand sometimes smaller
than the corresponding bath temperature. Thus heat entered and returns from each cylinder in
relation to its bath. Another feature was the larger variations of the OS temperatures compared to
the STD case. The strongly increased power output compared to the STD case required a larger heat
supply from the hot bath (and implicitly a larger heat delivery to the cold bath) and therefore larger
temperature differences.

-
-
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[] ----

Figure 7. Temperatures T1 and T2 of the hot and cold cylinder, respectively, over time t for the OS
and STD motions with base case parameters. Note that the difference to the corresponding heat bath
temperature is shown. The temperatures for the OS motion feature a much stronger variation than
for the STD case. The rich dynamical structure is due to the interaction of the volume changes in
both cylinders.

The pressure dynamics is displayed in Figure 8. Here, the dominating feature was the absence of
any noticeable pressure difference between the cylinders during the whole cycle. Again, this feature
was caused by our choice of the mass transport coefficient α, allowing a sufficiently large mass flow
through the regenerator to almost instantaneously equilibrate the pressures of both sides. This common
pressure, which was now a global pressure in the whole Stirling engine, showed a much higher peak
for the OS motion than for the STD motion. This peak occurred around t = 0.6 s, where both volumes
reach their minimal values (see Figure 4).
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Figure 8. Pressures p1 and p2 of the hot and cold cylinder, respectively, over time t for the OS motion
with base case parameters. For comparison those for the STD motion are plotted with dashed lines.
The curves for p1 and p2 lie on top of each other, for better visibility the p1 curves have been moved up
by 0.2 bar.

Based on the common pressure p = p1 ≈ p2 the infinitesimal total volume work done by both
pistons can be expressed as dW = p dVtot with the total volume Vtot = V1 +V2. Then the gain in power
output can easily be understood by looking at the p-Vtot-plot, which is displayed in Figure 9.

[ ]

[]

Figure 9. Pressure p = p1 ≈ p2 over total volume Vtot = V1 + V2 for both the OS and STD motion in
base case. The OS motion leads to lower volumes and higher pressures resulting in a higher usable
work output.

We first noticed that the total volume traversed a larger range for the OS motion than for the
STD motion. Especially for small Vtot this automatically led to much higher pressure values for
the given heat bath temperatures. This opened the route to exhaust the work potentially gainable
from the considered cycle by reaching into the “corners” of the ideal Stirling cycle with its constant
volume branches.

After establishing the base case we then turned to the investigation of the possible power gains by
an optimized piston motion in dependence of the loss terms present. We varied the three coefficients
one by one to capture the regions of interest for the power output: The minimum value of β and the
maximum values of κ and α were chosen to be the base values and the maximum value of β and
the minimum values of κ and α were set by a vanishing power output. When varying one of the
parameters, the base values were used for the other parameters.

4.2. Optimized Piston Motion: Friction

First, we looked at achievable power gains for different friction losses. To that end we varied the
friction coefficient β between zero and about 7 × 105 Js/m6, for which all the power produced was
dissipated by the friction losses.

Indeed the optimized piston motion led to an increase in the average power output compared to
the standard motion, as shown in Figure 10. On average the gain in power output was about 50 %, even
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though the piston motion was only optimized within the AS class considered. While for small friction
the power gain was maximal it declined towards larger values of the friction coefficient. Astonishingly
it kept a constant power gain from about β = 4 × 105 Js/m6 down to vanishing power, which means
that there was strong increase in relative performance.

[ / ]

[]

Figure 10. Average power output P over varied friction coefficient β for both OS and STD motion.
The friction coefficient has been increased from zero until no positive average power output
was reached.

In Figure 11 we show the efficiencies corresponding to the power optimized motion and the
standard motion.

[ / ]
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Figure 11. Efficiency η over varied friction coefficient β for both OS and STD motion.

It is interesting to note that for vanishing friction losses the efficiencies both started at about 0.25
which corresponded to the Carnot efficiency for the given heat bath temperatures. Moreover the OS
efficiency was initially lower than the STD efficiency while the power output was higher by more
than 50 %. This means that the large increase in power needed disproportionately more heat input
than the STD case, which for a waste heat application was not so crucial.

4.3. Optimized Piston Motion: Heat Conduction

The second dissipative process present in the Stirling engine is the finite heat conduction. While for
high heat conduction the temperatures in the working volumes were close to the temperatures of the
associated heat baths, this was different for a low heat conduction. The heat transfer coefficient κ was
varied between its base value and nearly zero.

As can be seen in Figure 12, the average power output at high heat conduction for the OS motion
reached values of about 150 % of that of the STD motion. With κ getting smaller the OS power output
decreased faster than the STD power output. When κ reached values about 4 kW/K the decay in
OS power became stronger, but it stayed always above the STD one. For even smaller heat transfer
coefficients the power output decreased towards zero. A similar behavior can be observed for the
standard motion, however with a considerably smaller power output. While for the OS motion the
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average power output became negative for κ close to zero, this happened for the standard motion
already at κ values around 200 W/K.

[ / ]

[]

Figure 12. Average power output P over varied heat transfer coefficient κ for both OS and STD motion.
The OS motion reaches average power output values of around 150 % compared to the STD motion as
well as positive values of P with κ close to zero.

The efficiency is shown in Figure 13 as a function of the heat transfer coefficient. It is apparent
that the efficiency was mostly higher for the standard motion than for the OS motion. However at
smaller values of κ it dropped below that for the OS motion. It stayed close to the Carnot value 0.25
over most of the considered κ range and dropped off around the values where the power output also
decreased. This led to a crossing point of the STD and OS graphs in Figure 13 which was not present
in Figure 12. There the STD graph was always below the OS graph and thus the decline of the power
output for the STD case to zero at larger values of κ did not necessitate such a crossing.
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Figure 13. Efficiency η over varied heat transfer coefficient κ for both OS and STD motion. For higher
values of κ the efficiency of the OS motion is slightly lower than that of the STD motion. For lower κ

the OS motion leads to better efficiency values.

4.4. Optimized Piston Motion: Mass Transport

The third non-equilibrium process in our model is the mass transport between working volumes
1 and 2. This transport was assumed to be proportional to the pressure difference, with the
proportionality constant being the mass transport coefficient α. However, even though it was a
non-equilibrium transport, it described a reversible exchange of working fluid between the working
volumes 1 and 2 through the regenerator. This is due to the regenerator being modeled as ideal which
corresponded to a fully reversible operation.

In Figure 14 the average power output is shown as a function of the mass transport coefficient α

for the range between zero and 10 mol/(s bar). For large values the power output saturated, while
for smaller values the power output slowly decreased. Around 1.5 mol/(s bar) it started to fall off
towards zero. Initially for large enough values of α the gain in the power output of the OS motion
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compared to that of the standard motion was more than 50 %. The gain increased towards smaller α

and became infinite in the range where the OS power output was positive while the STD power output
was negative.

[ /( )]

[]

Figure 14. Average power output P over varied mass transfer coefficient α for both OS and STD motion.
The OS motion leads to an increase in P of more than 50 % and to lower feasible values of α compared
to the STD motion.

In Figure 15 the efficiency is shown as a function of the mass transport coefficient α. This figure
shows efficiencies very close to the Carnot efficiency ηC = 0.25, which is due to the reversible modeling
of the regenerator. For very small α the finite—but large—heat transfer coefficient κ led to negative
power output, for which we set the efficiency to zero. The surprising feature here was the steep decline
of efficiency once it left the Carnot value level.

[ /( )]
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Figure 15. Efficiency η over varied mass transfer coefficient α for both OS and STD motion. Despite the
equally high efficiency values above α > 0.8 mol/(s bar), the OS motion maintains such high values
for much lower mass transfer coefficients than the STD motion.

5. Conclusions

In this paper we investigated possible performance improvements for an endoreversible Stirling
engine through an optimized piston motion. The motion of the two pistons of the Stirling engine
was limited to the smooth adjustable sinusoidal (AS) motion which is controlled by five parameters.
The underlying endoreversible model that was build for the Stirling engine takes into account friction
losses, irreversible heat transfers as well as the impact of a finite gas flow through the regenerator.
The regenerator itself was assumed to be ideal.

For comparison a “base case” was defined without friction losses and where heat and mass
transfer coefficients have been chosen such that their further increase would no longer lead to a
sizable increase in power output. Already in this case, the piston motion optimization shows that
the average power output can be increased by about 50 %. These surprising gains could be achieved
by the fact that the optimized piston motion resulted in higher temporal pressure variations within
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the system. This brought the process closer to the ideal Stirling cycle as is well illustrated in the
pressure-volume diagram.

In all cases considered, there was an astonishing gain in average power output. This effect is
especially pronounced in cases with “unfavorable” coefficients, that means high friction or low heat
and mass transfer coefficients. This extends to conditions, where the Stirling engine with standard
piston motion can no longer be profitably operated, but where it can still be operated with good
performance using an optimized sinusoidal (OS) piston motion.

The efficiency of the Stirling engine with optimized piston motion was larger or smaller,
depending on each case, compared to the standard motion. This is a consequence of the optimization
being done with the objective to maximize the average power rather than the efficiency.

The fact that we have used an ideal regenerator has a large impact on the system behavior as
well as the optimization of the piston motion. This work was carried out to show the potential gains
in power output that can be achieved by optimizing the piston motion. While the results indicate a
considerable performance increase for the investigated model with an ideal regenerator, real engines
will have non-ideal regeneration. Our future work will therefore focus on a modified endoreversible
Stirling engine with a non-ideal regenerator.
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Abstract: Based on the theoretical model of a heated ideal working fluid in the cylinder, the optimal
motion path of the piston in this system, for the maximum work output, is re-studied by establishing
the changed Lagrangian function and applying the elimination method when the initial internal
energy, initial volume, finial volume and the process time are given and generalized radiative heat
transfer law between the working fluid and heat bath is considered. The analytical solutions of the
intermediate Euler-Lagrange arc with square, cubic and radiative heat transfer laws are taken as
examples and obtained. The optimal motion path of the piston with cubic heat transfer law, which
is obtained by applying the elimination method, is compared with that obtained by applying the
Taylor formula expansion method through numerical example. The comparing result shows that the
accuracy of the result which is obtained by applying the elimination method is not affected by the
length of time of the expansion process of the working fluid, so this result is more universal.

Keywords: generalized radiative heat transfer law; optimal motion path; maximum work output;
elimination method; finite time thermodynamics

1. Introduction

Finding the optimal configurations of thermodynamic processes and systems under different
given optimal objectives is one of the most active research directions of the finite time thermodynamics
(FTT) theory [1–10]. For the system of a heated ideal working fluid (WF) in the cylinder, Refs. [11,12]
studied the optimal motion path (MP) of the piston under the maximum work output. In this system,
the WF was assumed to be ideal gas and the heat transfer law (HTL) between the WF and heat bath was
Newton’s HTL. Refs. [13–16] used the optimization results obtained in Refs. [11,12] to study the optimal
MPs of the piston under the maximum power output [13] and the maximum work output [14] when
the power input was given, as well as the optimal operation processes of internal [15] and external [16]
combustion engines. In practical process, HTL is not always Newton’s HTL and also obeys other laws,
and HTLs will affect the optimal configurations of thermodynamic processes and systems. Ref. [17]
studied the optimal MP of the piston of a heated ideal WF in the cylinder with linear phenomenological
HTL and obtained the analytical solution. Refs. [18,19] used the optimization results obtained in
Ref. [17] to optimize the operation processes of internal [18] and external [19] combustion engines with
linear phenomenological HTL. Refs. [20–22] studied the optimal MPs of the piston of a heated ideal
WF in the cylinder under generalized radiative [20], Dulong–Petit [21] and convective-radiative [22]
HTLs, respectively, and obtained the first-order approximate analytical solutions by using the Taylor
formula expansion method. Refs. [20–22] applied the Taylor formula expansion method to simplify a
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complex differential equation to a linear equation, obtained the equation set of the system, and solved
the problem that the analytical solution could not be obtained for the too complex differential equation.
The results obtained in Refs. [20–22] have certain theoretical guiding significance. However, the Taylor
formula expansion method has its own limitation, and the approximate analytical solution obtained
by using the first order Taylor formula expansion method also has limitation. The Taylor formula
expansion method is only suitable for the expansion process in which the total process time is very
short (for example, the expansion time in Refs. [20–22]). Considering time-dependent heat conductance,
Chen et al. [23,24] also studied the optimal MPs of the piston of a heated ideal WF in the cylinder
under Newton’s [23] and generalized radiative [24] HTLs, respectively. Chen et al. [25] studied the
optimal MPs of the piston of a heated ideal WF in the cylinder under generalized convective HTL.

In this paper, on the basis of Refs. [11,12,17,20–22], using the elimination method to eliminate
the variable V(t) by applying optimal control theory (OCT), the optimal MP of the piston of a heated
ideal WF in the cylinder is studied by using the single variable E(t) when the HTL between the WF
and heat bath is generalized radiative HTL. The analytical solutions of intermediate arc, with square,
cubic and radiative HTLs, will be taken as examples in this paper. Numerical examples of the optimal
MP of the piston for cases of cubic HTL, which is obtained by using the elimination method, will
be provided in this paper, and will be compared with those obtained by using the Taylor formula
expansion method. The research on the effect of HTL on the optimal MP of a heated ideal WF in the
cylinder can enrich FTT.

2. Modeling

Figure 1 shows the model diagram of a cylinder with a moveable piston. In this system, assuming
there is 1 mol ideal WF contained in the cylinder, the rate of heat flow f (t) pumped into the cylinder is
given, and the HTL between the WF and heat bath is generalized radiative HTL. q ∝ Δ(Tn) is the heat
flow rate through the cylinder wall. K is the heat conductance, Tex and T are the temperatures of the
heat bath and WF, respectively, n is the power exponent and Sign(n) is a symbolic function: if n > 0,
then Sign(n) = 1, and if n < 0, then Sign(n) = −1. Furthermore, both the inertia impacts of the WF
and the piston, and the friction loss of the piston are all ignored.

Figure 1. Model diagram of the cylinder with a moveable piston.

In this system, the first law of thermodynamics can be written as

f (t) − .
E(t) − .

W(t) − Sign(n)[Tn(t) − Tex
n]K = 0 (1)

where W(t) is the work, E is the internal energy, the dot above the variable represents the rate of change
of this variable with time.
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When the WF in the cylinder is heated, the WF will expand, and the work W produced during
this process in the time interval (0, tm) is

W =

∫ tm

0
p(t)

.
V(t)dt (2)

where V and p are the volume and pressure of the WF, respectively. As demonstrated by Ref. [12],
the irreversible efficiency η of the process can be written as

η = W/
{
RTex ln[Vm/V(0)] + Ep

}
(3)

where RTex ln[Vm/V(0)] is the maximum work produced by the WF expanding from V(0) to Vm under
constant temperature Tex, and Ep =

∫ tm

0 f (t)dt is the total energy added to the WF.

3. Optimal Solutions

The general solution is provided first, and three special cases are then provided.

3.1. General Solution

As the WF is an ideal gas, the equations E = CVT and pV = RT can also be used, where R is
the gas constant, and CV is molar specific heat at constant volume. One can have p = ER/VCV by
combining the above two equations. Substituting it into Equation (2) yields

W =

∫ tm

0

ER
CV

.
V(t)
V(t)

dt (4)

Combining Equations (1) and (4) yields

W =

∫ tm

0
F(t)dt−

∫ tm

0

[
.
E(t) +

Sign(n)K
CVn En(t)

]
dt (5)

where F(t) = f (t) + Sign(n)KTex
n.

As demonstrated by Ref. [20], the optimization problem is

maximize W =

∫ tm

0

.
V(t)E(t)R

V(t)CV
dt (6)

The constraint condition is Equation (1).
For the above problem, the changed Lagrangian function is established [20]

L =

.
V(t)E(t)R

V(t)CV
+ λ(t)

⎧⎪⎪⎨⎪⎪⎩ .
E(t) − F(t) +

.
V(t)E(t)R

V(t)CV
+ Sign(n)

[
E(t)
CV

]n

K

⎫⎪⎪⎬⎪⎪⎭ (7)

The Lagrange multiplier λ(t) in Equation (7) is a function of time.
Solving the Euler-Lagrange (E− L) equation for the problem of Equation (7) gives [20]

.
E =

E
.
F(t)

(n− 1)K( E
CV

)
n
Sign(n) + F(t)(n + 1)

(8)
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When n = 2, 3 and 4, if the expansion process time is short (for example tm = 0.05 s), the first-order
approximate analytical solution for Equation (8) can be obtained by applying Taylor formula expansion
method [20], and the first-order approximate analytical solution is

E(t) = E′(0) +
.
E
′
(0)t + O(t)

≈ E′(0) + E
.
F(t)

(n+1)F(t)+Sign(n)(n−1)( E
CV

)
n

K
t

(9)

In this paper, the elimination method introduced in Appendix B of Ref. [12] is adopted to obtain
an analytical solution about the E − L arc. Using the OCT to eliminate the variable V(t), the above
optimization problem becomes a one-variable problem, and the optimal MP of the piston can be
obtained by the single variable E(t).

Since the MP only depends on the term
∫ tm

0

[ .
E(t) + Sign(n)K

CVn En(t)
]
dt of Equation (5), the optimization

problem can be changed to the problem

minimize
∫ tm

0

[
E(t) +

Sign(n)K
CVn En(t)

]
dt (10)

When Equation (1) is divided by E(t), one can have

F(t) −K[E(t)/CV ]
nSign(n) − .

E(t)
E(t)

=

.
V(t)R

V(t)CV
(11)

Since the values of V(0) and Vm are assumed to be given, the constraint of the equivalent optimization
problem can be obtained by integrating Equation (11) over time

∫ tm

0
F(t)−K[E(t)/CV ]

nSign(n)− .
E(t)

E(t) dt

= (R/CV) ln[Vm/V(0)] = constant
(12)

To minimize Equation (10) under the constraint of Equation (12), the modified Lagrangian function
is formed as:

L =
.
E(t) +

Sign(n)K
CVn En(t) +

λ
E

{
F(t) −K[E(t)/CV ]

nSign(n) − .
E(t)

}
(13)

whereλ is the constant Lagrange multiplier. The problem has become the one-variable optimization problem.
The E− L equation for Equation (13) is

0 = Cn
VE2(

∂L
∂E
− d

dt
∂L

∂
.
E
) = nKEn+1 − Sign(n)(n− 1)λKEn − λCn

VF (14)

Since Lagrange multiplier λ is a constant, it can be obtained by substituting initial values of E(0) and
F(0) into Equation (14)

λ =
nKEn+1(0)

Sign(n)(n− 1)KEn(0) + CVnF(0)
(15)

Substituting λ from Equation (15) into Equation (14) yields

En+1(t) − En(t) KEn+1(0)(n−1)Sign(n)
KEn(0)(n−1)Sign(n)+F(0)CVn

−F(t) En+1(0)CV
n

KEn(0)(n−1)Sign(n)+F(0)CVn = 0
(16)
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Solving Equation (16), the analytical solution of E(t) can be obtained. Substituting the analytical
solution of E(t) into Equation (1) and integrating, the analytical solution of V(t) can be written as

V(t) =
[

E
E(0)

]Cv
R

exp

⎡⎢⎢⎢⎢⎢⎣CV

R

∫ t

0

F− Sign(n)K( E
CV

)
n

E
dt

⎤⎥⎥⎥⎥⎥⎦V(0) (17)

The optimal process that is determined by Equations (16) and (17) is named E− L arc.
As the same with the results obtained in Ref. [12], one can also conclude that the optimal MP of

the piston when the work output is the maximum consists of three segments; this problem is called the
linkage problem of OCT. The solution for this problem consists of following three segments: an initial
adiabatic process, a middle E− L arc, and a final adiabatic process.

Two items of f (t) and K[Tn(t) − Tn
ex] are all equal to zero in the adiabatic process; integrating

Equation (1), one can obtain
E(V) = (V/Vi)

−R/CV E(Vi) (18)

For the initial adiabatic process, assuming the initial values of E(0) and V(0) are given, E′(0) and
V′(0) are the final values of internal energy and volume, respectively. The motion equations of the
three segments are as follows.

Segment (1) is the adiabatic process of the WF expanding form V(0) to V′(0) at t = 0. For this
process, one has

E′(0) = E(0)[V(0)/V′(0)]R/CV (19)

Segment (2) is the E− L arc between t = 0 and t = tm. In this segment, the WF expands from the
initial state [V′(0) and E′(0)] at t = 0 to t = tm. For different HTLs, i.e., n equals to different values,
the shapes of E−L arc and the corresponding solution methods are all different. When n = −1, 1, 2 and 3,
solving Equation (16), the analytical solutions of E(t) can be obtained, and corresponding E− L arcs
can also be obtained. When n equals to other values, the analytical solutions cannot be obtained by
Equation (16), and numerical algorithm must be used to obtain the numerical solutions.

Segment (3) is the adiabatic process of WF expanding to final volume Vm at tm. For this process,
one can use

Em = [V(tm)/Vm]
R/CV E(tm) (20)

where E(tm) and V(tm) can be solved by Equations (16) and (17) at time tm.
When E(0), V(0) and Vm are given, the above linkage problem becomes the one-dimensional

optimization problem of expansion work W and E′(0), i.e., solving the optimal final state [E′(0), V′(0)]
of initial adiabatic expansion to obtain the maximum expansion work W.

Combining Equations (1) and (4), one can obtain

W =

∫ tm

0
F(t)dt + E′(0) − Em − Sign(n)K

CVn

∫ tm

0
En(t)dt (21)

The maximum expansion work W is a function of the variable E′(0), and solving the equation
dW/dE′(0) = 0, the optimal value of E′(0) can be obtained. Substituting W from Equation (21) into
the differential equation dW/dE′(0) = 0 yields

dEm

dE′(0) +
d
[
Sign(n)K

∫ tm

0 (E/CV)
ndt

]
dE′(0) = 0 (22)

The analytical solutions of the E− L arc obtained in this paper for n = 1 and n = −1 are the same
as those of obtained in Refs. [12,17], and the corresponding numerical examples have been also given
in Ref. [20]. Herein, other three cases are provided.
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3.2. Case of n = 2

Substituting n = 2 into Equation (16) yields

E3(t) − KE′3(0)
KE′2(0) + CV2F(0)

E2(t) − CV
2E′3(0)

KE′2(0) + CV2F(0)
F(t) = 0 (23)

There are three roots of Equation (23), and the acceptable one is as following

E(t) =
2A1K+2 3√2A1

2K2/B 1 +
3√4B1

6
(24)

where

A1 =
E′3(0)

KE′2(0) + CV2F(0)
(25)

B1 =
[
27A1CV

2F(t) + 2A1
3K3 + 3

√
3
√

27A1
2C4

VF2(t) + 4A1
4CV2K3F(t)

]1/3
(26)

Substituting Equation (24) into Equation (17) yields

V(t) = V′(0)
[

E
E′(0)

]−Cv/R

exp

⎧⎪⎪⎨⎪⎪⎩ 1
CVR

∫ t

0

C2
VF−KE2

E
dt

⎫⎪⎪⎬⎪⎪⎭ (27)

The E− L arc in stage (2) is determined by Equations (24)–(27).
Substituting n = 2 into Equation (5) yields

W =

∫ tm

0
F(t)dt + E(0) − Em − K

CV2

∫ tm

0
E2(t)dt (28)

Substituting t = tm into Equations (24) and (27) yields

E(tm) =
2A1K+2 3√2A1

2K2/B′1 +
3√4B′1

6
(29)

V(tm) = V′(0)
[

E(tm)

E′(0)

]−Cv/R

exp

⎧⎪⎪⎨⎪⎪⎩ 1
CVR

∫ tm

0

C2
VF−KE2

E
dt

⎫⎪⎪⎬⎪⎪⎭ (30)

where

B′1 =
[
27A1CV

2F(tm) + 2A1
3K3 + 3

√
3
√

27A1
2C4

VF2(tm) + 4A1
4CV2K3F(tm)

]1/3
(31)

Combining Equations (19), (20), (29) and (30) yields

Em = E(0)
(

Vm

V(0)

)−R/Cv
⎧⎪⎪⎨⎪⎪⎩exp

⎡⎢⎢⎢⎢⎣ 1
CVR

∫ tm

0

C2
VF−KE2

E
dt

⎤⎥⎥⎥⎥⎦
⎫⎪⎪⎬⎪⎪⎭

R/CV

(32)

Taking the derivation of Equation (28) with respect to E′(0) and setting it equal to zero, the optimal
value of E′(0) should satisfy the following equation

dEm

dE′(0)
+

K
CV2

d
∫ tm

0 E2(t)dt

dE′(0)
= 0 (33)
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3.3. Case of n = 3

Substituting n = 3 into Equation (16) yields

E4(t) − 2KE′4(0)
2KE′3(0) + CV3F(0)

E3(t) − CV
3E′4(0)

2KE′3(0) + CV3F(0)
F(t) = 0 (34)

There are four roots of Equation (34), and the acceptable one is as following

E(t) = 1
2

[
A2

2
K2 − 2A2C3

VF(t)

(3B2/4)1/3 +
(

2B2
9

)1/3
]1/2

+ A2K
2 + 1

2

[
2A2

2K2 +
2A2C3

VF(t)

(3B2/4)1/3 −
(

2B2
9

)1/3

+
2A3

2K3[
A2

2K2−2A2C3
VF(t)/(3B2/4)1/3+(2B2/9)1/3

]1/2

⎤⎥⎥⎥⎥⎦1/2 (35)

where

A2 =
E′4(0)

2KE′3(0) + CV3F(0)
(36)

B2 = −9A3
2C3

VK2F(t) +
√

3
√

16A3
2C9

VF3(t) + 27A6
2C6

VK4F2(t) (37)

Substituting Equation (35) into Equation (17) yields

V(t) =
[

E′(0)
E

]CV/R

exp

⎧⎪⎪⎨⎪⎪⎩ 1
C2

VR

∫ t

0

FC3
V − E3K

E
dt

⎫⎪⎪⎬⎪⎪⎭V′(0) (38)

The E− L arc in stage (2) is determined by Equations (35)–(38).
Substituting n = 3 into Equation (5) yields

W =

∫ tm

0
F(t)dt + E(0) − Em − (K/CV

3)

∫ tm

0
E3(t)dt (39)

Substituting t = tm into Equations (35) and (38) yields

E(tm) =
1
2

⎡⎢⎢⎢⎢⎣A2
2K2 − 2A2C3

VF(t)(
3B′

2
/4

)1/3 +
(

2B′
2

9

)1/3
⎤⎥⎥⎥⎥⎦1/2

+ A2K
2 +

1
2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
2A2

2K2 +
2A2C3

VF(t)(
3B′

2
/4

)1/3 −
(

2B′
2

9

)1/3
+

2A3
2K3[

A2
2K2−2A2C3

VF(t)/
(
3B′

2
/4

)1/3
+

(
2B′

2
/9

)1/3
]1/2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
1/2

(40)

V(tm) = V′(0)
[

E(tm)

E′(0)

]CV
R

exp

⎧⎪⎪⎨⎪⎪⎩ 1
C2

VR

∫ tm

0

C3
VF−KE3

E
dt

⎫⎪⎪⎬⎪⎪⎭ (41)

where
B′

2
= −9A3

2C3
VK2F(tm) +

√
3
√

16A3
2C9

VF3(tm) + 27A6
2C6

VK4F2(tm) (42)

Combining Equations (19), (20), (40) and (41) yields

Em = E(0)
(

Vm

V(0)

)−R/Cv
⎧⎪⎪⎨⎪⎪⎩exp

⎡⎢⎢⎢⎢⎣ 1
C2

VR

∫ tm

0

C3
VF−KE3

E
dt

⎤⎥⎥⎥⎥⎦
⎫⎪⎪⎬⎪⎪⎭

R/CV

(43)
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Taking the derivation of Equation (39) with respect to E′(0), and setting it equal to zero, the optimal
value of E′(0), should satisfy the following equation

dEm

dE′(0) +
K

CV3

d
∫ tm

0 E3(t)dt

dE′(0) = 0 (44)

3.4. Case of n = 4

Substituting n = 4 into Equation (16) yields

E5(t) − 3KE′5(0)
3KE′4(0) + CV4F(0)

E4(t) − CV
4E′5(0)

3KE′4(0) + CV4F(0)
F(t) = 0 (45)

The analytical solution of E(t), with respect to F(t) and E′(0), cannot be obtained because
Equation (45) cannot be solved directly. As a result, the method used for cases of n = 1, n = −1,
n = 2 and n = 3 cannot be adopted for case of n = 4. Such an optimization problem can only be
solved numerically.

Substituting n = 4 into Equation (5) yields

W =

∫ tm

0
F(t)dt + E(0) − Em − K

CV4

∫ tm

0
E4(t)dt (46)

4. Numerical Example

In this section, only the numerical examples when n = 3 are taken as examples and provided.
In this case, V(0) = 1 × 10−3 m3, CV = 1.5R, E(0) = 3780 J, Tex = 300 K, Vm = 8 × 10−3 m3 and

f (t) = 4200te−t W are selected. Tables 1 and 2 list the values of the state variables obtained by using
the elimination method with variable K for cases of tm = 2 s and tm = 0.05 s. Table 3 lists the values of
the state variables obtained by using the Taylor formula expansion method with variable K for case of
tm = 0.05 s. Figures 2 and 3 show the optimal E and V versus t in the E− L arc obtained by using the
elimination method for the case of tm = 2 s. Figure 4 shows the optimal E versus t in the E − L arc
obtained, respectively, by using the elimination and Taylor formula expansion methods for the case of
tm = 0.05 s. Figure 5 shows the optimal V versus t in the E− L arc obtained, respectively, by using the
elimination and Taylor formula expansion methods for case of tm = 0.05 s.

The error percentage of internal energy between results obtained by using the elimination method
and those obtained by using the Taylor formula expansion method for case of n = 3 is approximately
1.92%, and that of volume is approximately 2.54%.

Table 1. Parameters versus K obtained by using the elimination method for case of n = 3 when tm = 2 s.

K (W/K3) 7× 10−5 8× 10−5 9× 10−5

V′(0)
(
10−3m3

)
1.341 1.316 1.295

E′(0)(J) 3108.480 3147.350 3181.910
V(tm)

(
10−3m3

)
4.9940 5.205 5.388

E(tm)(J) 3412.680 3419.810 3428.710
Em(J) 2492.780 2567.670 2634.600
W(J) 4630.820 4661.790 4690.000
η 0.603 0.607 0.611
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Table 2. Parameters versus K obtained by using the elimination method for case of n = 3 when
tm = 0.05 s.

K (W/K3) 7× 10−5 8× 10−5 9× 10−5

V′(0)
(
10−3m3

)
2.226 2.221 2.216

E′(0)(J) 2217.500 2220.850 2224.2000
V(tm)

(
10−3m3

)
2.2677 2.288 2.306

E(tm)(J) 2268.590 2265.820 2264.350
Em(J) 978.929 983.553 988.173
W(J) 2880.230 2886.190 2892.120
η 0.555 0.556 0.557

Table 3. Parameters versus K obtained by using the method of Taylor series expansion for case of n = 3
when tm = 0.05 s.

K (W/K3) 7× 10−5 8× 10−5 9× 10−5

V′(0)
(
10−3m3

)
2.280 2.282 2.284

E′(0)(J) 2181.93 2181.100 2179.820
V(tm)

(
10−3m3

)
2.326 2.355 2.382

E(tm)(J) 2237.070 2229.330 2222.680
Em(J) 981.919 986.471 991.195
W(J) 2896.100 2904.8000 2913.4000
η 0.558 0.560 0.561

Figure 2. Optimal E versus t obtained by using the elimination method for case of n = 3 when tm = 2 s.

Figure 3. Optimal V versus t obtained by using the elimination method for case of n = 3 when tm = 2 s.
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Figure 4. Optimal E versus t obtained by using the elimination and Taylor series expansion methods
for case of n = 3 when tm = 0.05 s.

Figure 5. Optimal V versus t obtained by using the elimination and Taylor series expansion methods
for case of n = 3 when tm = 0.05.

5. Conclusions

Based on the Refs. [11,12,17,20–22], using the elimination method to eliminate the variable V(t)
by applying OCT, the optimal MP of the piston of a heated ideal WF in the cylinder is studied by
the single variable E(t) when the HTL between the WF and heat bath is generalized radiative HTL.
The general solution and those for three special cases of n = 2, n = 3 and n = 4 are provided.

Numerical examples obtained by using the elimination method for the optimal MP when n = 3
are provided in this paper, and compared with those obtained by using the Taylor formula expansion
method. The expansion process time tm has great influences not only on the values of initial E′(0) and
V′(0), but also on the optimal MP of the piston. Finally, it can be found that the optimal MPs obtained
by using the elimination method are similar to those obtained by using the Taylor formula expansion
method when the expansion process time is very short.

The model utilized herein includes only heat transfer loss, without considering friction and the
inertia of the piston. Therefore, it is an endoreversible model as those discussed in Refs. [26–37]. It can be
extended by adding some other dissipations, such as those discussed by Mozurkewich and Berry [38,39]
and Hoffmann et al. [40]. Using the elimination method, a more accurate semi-analytical solution is
obtained for the optimal MP of the piston in general. The work in this paper can enrich FTT theory.
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Nomenclature

Cv Molar heat capacity, J/(mol·K)
E Internal energy, J
f Rate of heated, W
K Heat conductance, W/Kn

L Modified Lagrangian, W
n Heat transfer power exponent
p Pressure, Pa
q Heat flow rate through the cylinder wall, W
R Gas constant, J/(mol·K)
Sign(n) Sign function
T Temperature, K
t Time, s
V Volume, m3

W Work output, J
Greek symbols
η Efficiency
λ Lagrange multiplier
Subscripts
ex External heat bath
m Final state of expansion process
0 Ambient or reference
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Abstract: Dissimilar flows can be compared by exploiting the fact that all flux densities divided by
their conjugate volume densities form velocity fields, which have been described as generalized
winds. These winds are an extension of the classical notion of wind in fluids which puts these distinct
processes on a common footing, leading to thermodynamical implications. This paper extends this
notion from fluids to radiative transfer in the context of a classical two-stream atmosphere, leading to
such velocities for radiative energy and entropy. These are shown in this paper to exhibit properties
for radiation previously only thought of in terms of fluids, such as the matching of velocity fields
where entropy production stops.

Keywords: entropy production; radiative energy transfer; radiative entropy transfer; two-stream
grey atmosphere; energy flux density; entropy flux density; generalized winds

1. Introduction

We understand wind as a phenomenon in a gas or plasma where an impulsive load is delivered
by the anisotropic distribution of individual particle velocities realized in the form of a vector field
stemming from the collective behaviour of gas particles. Currents in liquids might also be termed
“winds” in a general sense. The mechanical wind velocity field can similarly be thought of as the
mass flux, ρv, divided by the volume density of mass ρ. A mechanical wind vector field is the central
product of fluid mechanics, typically extracted via the Navier–Stokes equations. Its solutions form a
vector field of velocities with a classical rest frame.

The wind velocity can also be seen as implying a rest frame without wind. In that rest frame,
the fluid is at rest and local thermodynamic conditions can then be considered. However, out of full
thermodynamic equilibrium, that frame does not truly represent a state of rest. There are still currents
of other thermodynamical and dynamical physical properties passing though that frame, like energy
and momentum to mention a few. These velocity fields also represent frames. An observer riding with
the classical wind is not at rest in these other frames.

These fluxes each have different units and as such are difficult to compare, unless one observes
that each flux density, G, and its associated volume density, φ, induces a velocity vector field of its
own, vφ = G/φ. S. Sieniutycz [1,2] observed that all such vector fields must become identical
in thermodynamic equilibrium. He used this insight to explore covariant fluid dynamics and
thermodynamics. Each of these fluxes inducing its own vector field, implies a distinct rest frame.
When all of these vector fields are the same, there is one reference an observer could ride in where all
currents stop. The term “generalized wind” was later coined to describe these vector fields [3]. When a
single “generalized wind” velocity exists for all currents there exists a frame where no process occurs.
The one-frame condition for all winds becomes a necessary condition for thermodynamic equilibrium.
This implies that the entropy production rate must vanish when all generalized wind frames agree.

Fluid dynamics are normally considered distinct from radiative transfer. However, they both
can be traced to a common structure in momentum space, wherein the total time derivative of the
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mean occupation number n(r(t), p(t), t) leads to the primary transport equations for both fluids and
radiative transfer. The outcomes through their respective moment equations are very different however.
The classical Navier–Stokes equations can be seen as providing rest frames, while radiative transfer
concerns photons with no rest frame. Generalized winds must exist for photons too in radiative
transfer. There is an energy velocity, ve = F/u stemming from the energy flux density, F, and the
volume radiation energy density, u. There is also an entropy velocity, vs = H/sr, arising from the
entropy flux density, H, and the entropy volume density, sr. This paper addresses whether these
generalized winds for radiation follow the prescription that velocity fields must agree when entropy
production is zero and not elsewhere.

The static plane parallel grey atmosphere was instrumental in the development of the theory
of integral equations in the first half of the twentieth century by Hopf, Milne, Schwarzschild and
others and of course essential to astrophysics. In this regard, this is a classical subject, but the notion
of generalized winds has not been considered. This paper explores the extent to which ve and vs

follow the necessary conditions on the entropy production rate in a classical plane parallel, two-stream
atmosphere, while considering the notion of rest frames for generalized winds. This paper shows that
the thermodynamical expectations for radiation generalized winds hold within the limitations of the
simplified classical radiative transfer problem.

2. Preliminaries

This section has two goals. It lays down the radiative transfer framework for those unfamiliar
with the subject, and it introduces radiative entropy transfer for those already familiar with radiative
transfer of energy. We proceed in a parallel manner between energy and entropy in order to highlight
the close parallels intuitively. This representation is used where possible throughout our paper.

2.1. Energy and Entropy Radiation: The Specific Intensities, Fluxes and Volume Densities

We proceed from the mean occupation number, but expressed in terms of a time-varying number
flux density per unit volume and unit solid angle defined in terms of position, frequency and direction:
n(r(t), ν, m̂, t) [4]. It is straightforward to connect this primary statistical mechanical object to the
specific intensity (also called radiance) which is energy flux density per unit solid angle and frequency,
and similarly for entropy. Thus, the frequency dependent specific intensity for photon energy, Iν,
and the same for entropy, Jν, are,

Iν =
2hν3

c2 n ; Jν ≡ 2kBν2

c2 [(1 + n) ln(1 + n)− n ln n]. (1)

The factor of 2 in each indicates unpolarised radiation. The entropy expression comes directly from
counting Bosons [4].

Moment integrals, in m̂, over all solid angles and frequencies provide well-known integrals for
volume densities and flux densities for both energy and entropy, respectively,

u =
1
c

∫
Iν dΩdν ; sr =

1
c

∫
Jν dΩdν (2)

where c is the speed of light.
Accordingly, vector energy flux density (F) and entropy flux density (H) represent first moments,

F =
∫

Iνm̂ dΩdν ; H =
∫

Jνm̂ dΩdν (3)

where F and H are presented as the first order moment of the corresponding energy and entropy
density function. Note that (2) represents the zeroth order moment of their respective density function.
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2.2. Radiative Energy and Entropy Transfer Equations

The equation of radiative energy and entropy transfer can simply be written in the following
differential form:

1
c

∂Iν

∂t
+ m̂ · ∇Iν = −κν Iν + jν ;

1
c

∂Jν

∂t
+ m̂ · ∇Jν = −κν Jν + iν (4)

These are easily deduced by differentiating the mean occupation number in time and then applying (1).
The right sides are general if jν and iν are left unspecified. Kirchhoff’s law is easily generalized to
include entropy too by considering entropy transfer in (4) and considering the equilibrium case when
derivatives vanish leaving,

jν = κνBν ; iν = κνLν (5)

where in thermodynamic equilibrium, Iν = Bν, the Planck function intensity, and Jν = Lν, the intensity
of the equilibrium entropy distribution corresponding to the Planck function. That latter can be easily
determined through (1).

Classical radiative transfer due to Kirchhoff [5] holds that the equilibrium value for iν holds out
of equilibrium too. One may make a similar claim for entropy, jν. Both assumptions fail in the small ν

limit on account of stimulated emission, but hold very well generally simultaneously [6].
Now, integrating (4) over the entire range of frequencies and solid angles and using (2) and (3),

one obtains

∂u
∂t

+∇ · F = ε ;
∂sr

∂t
+∇ · H = ξ (6)

where ε and ξ present the source strengths for energy and entropy radiation, respectively.
In the latter case, if radiative absorption and emission are the only irreversible processes, as it is

in classical radiative transfer, then ξ is the entropy production rate and ξ > 0 according to the second
law of thermodynamics. Energy radiation under similar conditions is in radiative equilibrium, i.e.,
ε = 0 or ∇ · F = 0 under steady conditions.

2.3. Classical Grey RT in Plane Parallel Geometry under Steady State Conditions

For simplicity, we proceed with a classical steady state grey atmosphere [5,7]. In keeping with
the classical picture, we employ a plane parallel geometry. Then, (4) and (5) are reduced to the
following form,

μ
dIν

dz
= −κν Iν + κνBν ; μ

dJν

dz
= −κν Jν + κνLν (7)

where μ is the direction cosine from the spherical geometry of the moment integrals, arising from m̂ · k̂,
where k̂ is the upward direction vector in the atmosphere. Recall that the plane parallel geometry has
only one meaningful dimension. On symmetry grounds we find that F = F k̂, and H = H k̂. Thus,

F =
∫

Iν μ dΩ dν ; H =
∫

Jν μ dΩ dν (8)

The grey approximation means that the volume absorption coefficient, κν, has no dependence on
frequency ν. Thus, κν ⇒ κ. We introduce the optical depth in the classical way to employ a coordinate
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system natural to the physical process in radiative transfer. τ = 0 is the top of the atmosphere and it
increases with decreasing altitude, z.

dτ = −κdz (9)

Returning to (7), with these conditions and definitions, we find the classical result for energy and
a close analogue for entropy,

μ
dI
dτ

= I − B ; μ
dJ
dτ

= J − L. (10)

Here, I and J are the frequency integrated specific intensity for energy and entropy, respectively. B and
L can be found by integrating Bν and Lν over all frequencies. These too are well known [4],

B =
∫ ∞

0
Bνdν =

σ

π
T4 ; L =

∫ ∞

0
Lνdν =

4
3

σ

π
T3 (11)

where σ is the Stefan–Boltzmann constant. One can relate B and L in the following way,

4
3

( σ

π

) 1
4 B

3
4 = L (12)

2.4. Moment Equations and Radiative Equilibrium

Integrating (10) over all solid angles, one obtains

dF
dτ

= cu − 4πB ;
dH
dτ

= csr − 4πL (13)

We write the radiation energy pressure per volume, P, and entropy pressure analogue, R, in as
the second moment of respective intensities,

P =
1
c

∫
Iμ2dΩ ; R =

1
c

∫
Jμ2dΩ (14)

Multiplying (10) by μ, integrating over solid angle, then using the definitions (14) yields,

dP
dτ

=
1
c

F ;
dR
dτ

=
1
c

H (15)

Radiative equilibrium requires, ε = 0 ⇒ dF
dτ = 0. It breaks the parallelism between energy

and entropy radiation as dH
dτ = ξ > 0 by the second law of thermodynamics. The energy equations

significantly simplify in radiative equilibrium. That is exemplified by (13), which becomes

u =
4πB

c
(16)

2.5. Classical Two Stream Atmosphere with Entropy Radiation

Further progress is made with the classical two-stream assumptions. When moments are taken,
instead of assuming that the intensities vary with μ we assume that they are independent of μ,
except that intensities only differ between the upper and lower hemispheres (e.g., [7]). The problem
becomes a complex computational problem without this assumption, which will be explored in future
work. We may use this approximation here to eliminate P and R from (15). First we find

u =
2π

c
(I+ + I−) ; sr =

2π

c
(J+ + J−) (17)
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F = π(I+ − I−) ; H = π(J+ − J−) (18)

P =
2π

3c
(I+ + I−) ; R =

2π

3c
(J+ + J−) (19)

where the upward intensities of I and J are denoted by I+ and J+, respectively, while the downward
ones are denoted by I− and J−, respectively.

An interesting outcome emerges in passing, as we know radiation pressure volume density is
one-third of energy volume density in thermodynamic equilibrium. This emerges for our two-stream
atmosphere too, as well as, intriguingly, for entropy,

P =
u
3

; R =
sr

3
. (20)

Differentiating (20) with respect to τ then using (15) yields

du
dτ

=
3
c

F ;
dsr

dτ
=

3
c

H (21)

Differentiating (13) w.r.t. τ and using (21) gives,

d2F
dτ2 − 3F = −4π

dB
dτ

;
d2H
dτ2 − 3H = −4π

dL
dτ

(22)

Differentiating the latter part of (21) w.r.t. τ, and substituting the corresponding part
from (13) yields,

d2sr

dτ2 − 3sr = −12π

c
L (23)

In radiative equilibrium (22) yields,

dB
dτ

=
3

4π
F ⇒ B =

3
4π

Fτ + B(0) (24)

At τ = 0, I− = 0; thus, (16) through (18) require F
2π = B(0) or

B =
F

2π

(
3
2

τ + 1
)

(25)

and substituting into (12) gives,

L =
4
3

( σ

π

)1/4
(

F
2π

)3/4 [3
2

τ + 1
]3/4

(26)

As τ increases, the radiation state approaches thermodynamic equilibrium. The field approaches
isotropy and the energy intensity approaches the ambient black body function, B. We see this by
using (25) and by breaking up (16) through (18) to find I+ and I− as following

I+ = B

(
3
2 τ + 2
3
2 τ + 1

)
; I− = B

(
3
2 τ

3
2 τ + 1

)
(27)
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As τ increases both intensities become the same and approach the integrated Planck function.
This is a key observation because it implies that we must require that J+ → J− → L in the large

τ limit. Similarly H → 0 and csr → 4πL and their derivatives above (see (13) and (21)) vanish in
that limit.

3. Generalized Winds

A vector velocity field is associated with a vector flux density and a scalar volume density.
This vector field is defined as a generalized wind, which is simply the ratio of a flux density with
its corresponding volume density. Thus, radiative energy velocity (ve) and entropy velocity (vs) are
given by,

ve =
F

u
; vs =

H

sr
(28)

Simplifying using (27), we find

ve =
F
u
=

c
3τ + 2

(29)

Solving for vs is more complicated. From above (see the latter part of (13) and (21) each) we have
the coupled system as follows,

(
H′

cs′r

)
=

(
0 1
3 0

)(
H
csr

)
− 4πL

(
1
0

)
(30)

where H′ and s′r denote derivatives of H and sr w.r.t. τ, respectively.
After diagonalization of the above, (30) gives

(
z′1
z′2

)
=

(√
3 0

0 −
√

3

)(
z1

z2

)
− 4πL

(
1
1

)
(31)

where z1 = (H + csr√
3
) and z2 = (H − csr√

3
). z′1 and z′2 denote derivatives of z1 and z2 w.r.t. τ, respectively.

Now, solving (31) for z1 and z2 yields,

(
z1

z2

)
=

(
−4π

∫ τ
0 Le−

√
3(t−τ)dt + z1(0)e

√
3τ

−4π
∫ τ

0 Le
√

3(t−τ)dt + z2(0)e−
√

3τ

)
(32)

In the above equation, there are two conditions that define z1(0) and z2(0). The first condition is
that at the top of the atmosphere J− = 0. Using the two stream definitions above (see Section 2.5) this
implies that H(0) = csr(0)/2. Thus, it follows

(
z1

z2

)
=

⎛⎝−4π
∫ τ

0 Le−
√

3(t−τ)dt + H(0)(1 + 2√
3
)e

√
3τ

−4π
∫ τ

0 Le
√

3(t−τ)dt + H(0)(1 − 2√
3
)e−

√
3τ

⎞⎠ (33)

The other physical condition on the atmosphere is that thermodynamic equilibrium must be
approached asymptotically with optical depth. This is realized by an asymptotic approach to zero of
dH
dτ and dsr

dτ with increasing τ. That implies, using z1, that z′1 → 0, as τ grows. Thus,
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H(0) ∼ 4π

1 + 2√
3

∫ τ

0
Le−

√
3tdt ⇒ H(0) =

4π

1 + 2√
3

∫ ∞

0
Le−

√
3tdt (34)

This means that the entropy flux at the top of the atmosphere is the sum of the entropy emissions
from the whole atmosphere.

Finally, we obtain

vs =
c√
3

z1 + z2

z1 − z2
=

c√
3

{−χ(τ) + χ(∞)}e
√

3τ + {−ψ(τ) + χ(∞)
√

3−2√
3+2

}e−
√

3τ

{−χ(τ) + χ(∞)}e
√

3τ − {−ψ(τ) + χ(∞)
√

3−2√
3+2

}e−
√

3τ
(35)

where χ(τ) =
∫ τ

0

[ 3
2 t + 1

]3/4 e−
√

3tdt and ψ(τ) =
∫ τ

0

[ 3
2 t + 1

]3/4 e
√

3tdt arriving at the curious fact that
both vs and ve are functions of τ only. Thus, Figure 1 is unchanged no matter what atmosphere it
represents: planetary atmosphere or star!

Figure 1. Energy speed (ve) and entropy speed (vs) as a function of optical depth (τ). Both of these are
evaluated in the units of speed of light (c).

The speeds of the generalized winds are plotted in Figure 1 using (29) and (35). The top of
the atmosphere (i.e., up) is at the left (τ = 0) and the atmosphere’s interior (i.e., down) is off to the
right—truncated at τ = 4 in Figure 1 for convenience. This configuration of coordinates is the standard
in radiative transfer.

In Figure 1 we see that both ve and vs increase with altitude. This might be interpreted as the result
of a net force if we were considering bodies with mass. No such mechanical thinking is appropriate
here. The very general picture of equilibrium presented in the introduction does not require such
mechanics to be in play.

Off of the right side of the figure, the velocities are both asymptotically approaching zero as
densities increase while F is a constant and H is decreasing to zero. Thermodynamic conditions
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approach equilibrium in that limit too, agreeing with expectations that ve → vs in that limit. Thus,
we expect that the blue and red curves will grow apart with decreasing optical depth. This will continue
until the influences of the top of the atmosphere are encountered. Classically this is expected to occur
at optical depth 1 or so. Indeed, this appears to be so in Figure 1 where ve − vs begins to decrease with
decreasing optical depth near τ = 1. The top of the atmosphere τ = 0 is where irreversible absorption
and re-emission stops in the absence of any absorbing material, and so we expect that ve = vs.

It is remarkable that this result is independent of the particulars of any atmosphere. That is,
these functions hold for a two-stream approximation for any star or planet. The special case of a finite
optical depth only requires an energy and entropy flux to be supplied at the largest τ.

4. Conclusions

This paper provided a quick introduction to classical radiative transfer while appending a new
parallel development for radiative entropy transfer. This allowed us to address the classical plane
parallel, two-stream, grey atmosphere in a new way. That geometry is applicable to both stellar
and planetary atmospheres. With this foundation we were able to turn to the thermodynamics
question; in particular, the proposition that all generalized wind vector fields must become identical in
thermodynamic equilibrium, or at least in the absence of irreversible processes.

The results within the two-stream assumption strongly suggest that this concept holds for
radiation too, extending it beyond its origins in fluid mechanics. The entropy production in this
paper does indeed stop at the top of the atmosphere where its generalized winds become the same.
Similarly, in the infinite optical depth limit, where equilibrium is approached, the velocities become
the same too.

There are however a number of questions. Some need to be addressed in a full, non-two-stream
treatment. Some are simpler than others. One of these is the significance of the speed c/2 at the top
of the atmosphere. Is this top speed the same value in the full non-two-stream treatment? Another
question concerns where the largest separation in the functions vs and ve occurs at τ ≈ 1. Is there a
maximum in the entropy production rate there? The functions vs and ve are invariant across stellar
and planetary atmospheres. Is this true for a full non-two-stream treatment too?

A convenience in thinking about congruent vector fields is the existence of a rest frame that one
can imagine travelling with the flow on. While this is easily imagined with vector fields of nearly
zero magnitude in the deep interior of the atmosphere, there clearly is a problem at the top of the
atmosphere. There is no rest frame there, because there is no radiation coming down to be blue shifted
there and the rest of the radiation is red shifted, even that coming from the sides because of time
dilation. Photons have no rest frame, but radiation flows can have one. Is there a transition between a
rest-frame flow and a more streaming-like flow without one? At what τ would the transition occur?
Is it connected with optical depth 1? Is the existence of a rest frame necessary to the concept?

Additionally, we have not even considered the role of scattering which has rich complications as
well. These are all interesting questions that our forthcoming work will address.
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Abstract: Any observation, and hence concept, is limited by the time and length scale of the observer and
his instruments. Originally, we lived on a timescale of minutes and a length scale of meters, give or take
an order of magnitude or two. Therefore, we devloped laboratory sized concepts, like volume, pressure,
and temperature of continuous media. The past 150 years we managed to observe on the molecular
scale and similarly nanoseconds timescale, leading to atomic physics that requires new concepts. In this
paper, we are moving in the opposite direction, to extremely large time and length scales. We call this
regime “slow time”. Here, we explore which laboratory concepts still apply in slow time and which new
ones may emerge. E.g., we find that temperature no longer exists and that a new component of entropy
emerges from long time averaging of other quantities. Just as finite-time thermodynamics developed
from the small additional constraint of a finite process duration, here we add a small new condition,
the very long timescale that results in a loss of temporal resolution, and again look for new structure.

Keywords: very long timescales; slow time; ideal gas law; new and modified variables

1. Introduction

Any observer perceives effects and structure only within a limited time window within which it is
able to achieve time resolution and thus establishing ‘before and after’ and causality. At shorter times,
we cannot resolve that, at longer times we do not observe any change. We have always experienced
laboratory/human scales directly. In more recent times, through inference and some observations, we have
extended our time window to shorter timescales, to molecular behavior. This means moving downward
by a factor of about 12 or more orders of magnitude. In the slow-time project, we are trying to look the
other way, to very long timescales by similarly roughly 12 or more orders of magnitude, in order to search
for structures that are invisible on the timescales we experience routinely.

Statistical mechanical modelling of e.g., spin glasses has taken a first step in that direction and
found new phenomena, called glassy dynamics, e.g., polynomial time evolution, memory, and recurrence,
but still within the laboratory scale universe of variables. An excellent review may be found in [1]
and references therein. These phenomena often extend over several decades of time and they involve
logarithmic laws, but eventually the usual exponential decay toward equilibrium sets in. These behaviors
all involve metastability, i.e., they appear stable for long periods of time. They are also found outside
thermodynamics, e.g., describing the decline in extinction rates and scale invariance in the fossil record
and the magnetic creep-rate of type-II superconductors [2,3]. In the present study, we go many orders of
magnitude beyond those studies and seek possibly new concepts and variables. Does thermodynamics as
we know it exist at those time and corresponding length scales?

Entropy 2020, 22, 1090; doi:10.3390/e22101090 www.mdpi.com/journal/entropy
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Our approach is an extension of standard thermodynamics into a new realm very much like finite-time
thermodynamics (FTT) was at its conception. FTT added one small condition, a limit on the duration of
the process considered. Similarly, slow-time thermodynamics adds the extrapolation to very long times
where laboratory dynamics disappears into fluctuations—not the usual equilibrium limit.

The traditional thermodynamic limit in which the system is assumed in equilibrium at uniform
intensive parameters (e.g., temperature) throughout no longer exists. The laboratory variables fluctuate
faster than what is observable in slow time, and position has similarly been coarsegrained. The system
never reaches even quasi-equilibrium in our usual variables. However, perhaps some other variables do?

The aim is to treat directly the effects of long timescales on physics or chemistry as time resolution is
lost. The distinct regimes of physics, such as the atomic and laboratory regimes, are familiar. There is a clear
hierarchy which has the distinctive property that each regime can “ignore” underlying ones, even though
they must be in fundamental agreement. That property is known as closure [4], following the terminology
arising from the historical problem of turbulence. Closure emerges through a process that induces new
relationships between existing or modified quantities in some limit, yielding a system of equations that
can be solved without reference to the underlying regime.

The central question the slow-time approach asks is whether a new regime or new regimes emerge on
long timescales and since equilibration expands at a certain rate, correspondingly coarsened space scales.
Loosely speaking that question puts an observer in a situation not unlike trying to view the laboratory
regime from atomic or kinetic scales. From the standpoint of such scales, the laboratory regime induces
new physical variables such as temperature, while burying specific dynamical variables in the loss of
resolution whereby entropy emerges.

Our first experiments consisted of flowing water, in this case the Niagara River just below the falls.
The left picture of Figure 1 has a 1/2 s exposure. The right picture is exactly the same but with a strong
filter allowing a 50 s exposure. The unsteady flow disappears in favor of smooth streamlines turning
to the right and vivid standing and bow waves previously invisible in the “noise” of local fluctuations.
We see similar “tranquil” situations in slow-time pictures of trees in the wind and of busy traffic in Figure
2. These pictures illustrate the presence of structure appropriate to different timescales.

Figure 1. Two images of the same Niagara Falls downstream flow. The left image is an exposure of 1/2 sec,
while the right hand image is exposed for 50 sec. Note the flow features visible in the right hand image
(stream lines, bow waves, standing waves, vortices, etc.) that are not clearly visible or simply invisible in
the left image due to the “noise” of local fluctuations.
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Figure 2. A busy intersection with lots of students, cars, trucks, and busses moving about. The left frame
is a normal picture taken at 1/100 sec, the right frame is exposed for 10 min. No moving objects are seen
anymore, except for a few very faint shadows. The multiple cars in the left turning lane sit waiting for
green, leading to multiple images of running lights in that position. The red-yellow-green traffic lights are
all lit at the same time, on average.

2. The Slow-Time Probability Density Function

In our first exploration of a fluctuating system at long times [5], we let temperature and flow velocity
fluctuate in a simple homogenous system to produce probability density functions (PDF’s) appropriate for
long timescales. It identified key features of PDF’s that must arise without consideration of the small-scale
local equilibrium systems per se.

The standard thermal Gaussian molecular velocity distribution that is centered around u is

pu(v) =
( m

2kT

)1/2 1√
π

e−
m

2kT (v−u)2
, (1)

where m is the particle mass, k the Boltzmann constant, and T the standard temperature. Fluctuating the
rest velocity u (wind) about zero with a given variance σu results in a new Gaussian distribution [5],

pθ(v) =
( m

2kθ

)1/2 1√
π

e−
m

2kθ v2
(2)

but with a modified temperature θ,

θ = T +
σ2

um
k

(3)

that embeds the fluctuations of the wind velocity u in the form of its variance. In other words, the wind
has been thermalized. However the particle velocity v has not been. v persists as a valid quantity on long
timescales. Similar quantities that carry over to slow time are particle number, energy, and under certain
conditions volume. The fluctuations in wind velocity have become thermalized just like the molecular
velocities are on the laboratory timescale, a sort of mega Brownian motion. Because the expression (2) is
still a standard thermal Gaussian distribution, just with a new temperature variable in the exponent, θ is
indeed a real temperature for its regime, not some sort of “noise temperature”. The wind has simply been
thermalized. Fluctuating wind on the laboratory scale is no different from fluctuating molecular velocities
on the atomic scale. We could, of course, equally well have fluctuated the reference velocity u around a
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non-zero value; that would not have changed the conclusions above. A realistic wind fluctuation in our
daily weather is σu ∼ 5 m/s, which makes the correction term σ2

um/k ∼ 0.1 K, a change that is negligible
under normal conditions. θ is not a generalization of temperature, it is an emerging feature of long-time
fluctuations of wind and will, therefore, in all places replace the laboratory scale temperature T.

Fluctuating temperature, on the other hand, is more delicate, because it does not only appear in
the exponent of the molecular velocity distribution (1), but also in the prefactor. That leads to the very
interesting normalized functional form [5]

puT(v) =
∫ ∞

−∞
pu pξdξ =

w3ψ0√
π(v2 + w2)3/2 e−

w2ψ2
0v2

v2+w2 , (4)

valid for wψ0 � 2. In this equation, v is the particle velocity and ψ(θ) is the precision of the Gaussian
velocity distribution (1), which is itself fluctuating around the central value

ψ0 ≡ ψ(θ)

∣∣∣∣
θ=θ0

=
√

m/2kθ0 (5)

according to the Gaussian distribution

pξ =
w√
π

e−w2ξ2
(6)

where ξ is the fluctuating part of ψ, ψ = ψ0 + ξ and with θ defined in (3). Thus, w is the Gaussian precision
of the fluctuations in ψ with units of velocity. For mathematical convenience, we work with the Gaussian
precision instead of the standard deviation. For standard deviation σ the precision ψ = 1/σ. Thus a larger
precision means a tighter distribution. We could, of course, have chosen another type of fluctuation for
ψ than the Gaussian (6) as long as it approaches zero at large argument values sufficiently rapidly to be
normalizable. The results would have been qualitatively the same, the mathematics just more complicated.

puT(v), Equation (4), is a very interesting function in that it is a conventional Gaussian for large w
(i.e., very narrow fluctuation of ψ), but becomes a power function for small w. That means that (4) is not a
proper thermal distribution, in other words, the concept of temperature does not extend to long timescales
where also the precision of the velocity distribution fluctuates. Besides formally being the precision of
the precision of the v fluctuations, w is the transition velocity above which the effects of temperature
fluctuations become unthermalizable due to the heavy tails. Figure 3 showing the function Φ = puT/pu,
i.e., the PDF for fluctuating temperature (4) as compared to the Gaussian PDF for fluctuating wind (1),
illustrates this. As long as v � w, the value is 1, but, outside that range, considerable deviations appear.
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Figure 3. The function Φ = puT/pu relating the PDF for fluctuating velocity as well as temperature for four
different precisions of precisions w to the PDF with an exact precision of temperature. The two distributions
are identical, i.e., Φ = 1, for v � w.

So far, we have been considering a one-dimensional system which fluctuated as a whole. Especially
for very long time and spatial scales we need to be more realistic and allow for local fluctuations around
local equilibria. Such local equilibria are widespread in physics from the smallest to the largest scales.
Those systems do not even need to be in steady state. We define this situation as fluctuating local equilibrium
(FLE). It implies the existence of fluctuating scalar and vector fields throughout the system, each local
pocket will fluctuate by itself. We use these properties to determine a slow-time relationship between
moments in an FLE system that does not employ usual variables in the laboratory regime valid for finite w
in order to arrive at a long timescale equation for an ideal gas in an FLE system. In addition, we assume
spatial isotropy for mathematical convenience.

3. The Slow Time Ideal Gas Law

Because the physical world is not continuous to the extreme but eventually discrete, all moments
of puT(v) (4) are convergent for sufficiently large w. Let Mn{g(v)} ≡

∫
D vng(v) dv be the nth moment of

g(v). Subsequently, M0{puT(v)} = 1, and M1{puT(v)} = 0 while the second moments add up to the
energy E involving all components of v,

E =
mN

2 ∑
i
M2{puT(vi)} =

mN
2 ∑

i
M2{pu(vi)}+

mN
2 ∑

i
M2{puT(vi)− pu(vi)}, (7)

where N is the number of particles in the entire FLE system and the summations over i are the three
dimensions of physical space, x, y, z. For some suitable function f (w, v∗), this may be written as

E =
3
2

Nkθ + N f (w, v∗). (8)

The first term is the standard energy expression for the thermal distribution (1), i.e., the first term on the
right hand side of (7), while f (w, v∗) represents the second right hand term. Those are the effects due to the
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thermal fluctuations that depend on their precision of precision w and a parameter v∗ indicating the largest
velocity for which a continuous PDF is physically meaningful. I.e., realistically, no particle in the system
has a velocity v > v∗ even though the continuous PDF does have a tiny but non-vanishing value all the
way to infinity. This observation of discreteness in Nature allows us to truncate the normalization v integral
of puT(v) from ∞ to v∗ and thus ensure normalization of the PDF (4) in all situations. The properties of
f (w, v∗) require w and v∗ to be fully determined in terms of the specific structures in play.

The correspondence principle for the FLE systems requires that the energy equation reduces to the
classical equation E = 3

2 NkT in the absence of fluctuations. Clearly, θ → T in that case, but we must
also have limw→∞ f (w, v∗) = 0. This follows if limw→∞ puT(v) = pu. To ensure these results, we must
either ignore v∗ or require w � v∗. This allows for us to introduce an expansion at infinity of the form
f (w, v∗) = w−2h + O(w−4), or

E =
3
2

Nkθ + Nw−2h + O(w−4), (9)

where h is a constant to be determined. We do not at present know this slow-time behavior and, thus,
must expect h �= 0. Its value will depend on specifics unavailable to us a priori with our laboratory scale
knowledge, but it is, in principle, something measurable with appropriate instruments from the [deleted
the extra ‘the’] slow-time regime.

Discarding higher order terms in (9),

E =
3
2

Nkθ + Nw−2h (10)

becomes the slow-time version of the ideal gas law, where θ, w, and h are the natural slow-time
regime variables.

4. Discussion and Conclusions

To summarize, the slow-time temperature θ reduces to T in the no fluctuation limit, but the classical
temperature T itself no longer exists. The transition velocity, w, the statistical precision of fluctuations
in the temperature variable, ψ, (5), represents the transition from Gaussian to heavy tail (polynomial)
behavior. h is the residual at infinity of the correction term in the slow-time ideal gas law (10).

Hoping to define an appropriate slow-time temperature, distinct from θ, analogously to the laboratory
regime requires that we have a definite entropy of the FLE in order to be able to calculate a derivative that
is analogous to ∂E/∂S. However, there is no fundamental reason to carry over the notion of intensities that
are generated from partial derivatives of a function of extensities. Like classical temperature, this analogy
may prove to be unsuitable for the slow time regime.

Entropy does not exist at the atomic scale, since all motion in principle can be monitored and, thus,
is represented as kinetic energy. On the laboratory scale that small random motion is coarse grained away
(blurred), but its average effect remains in the form of entropy. In slow time, an analogous effect turns
randomly variable winds into a temperature contribution to the new thermalized wind temperature θ.

However, h (9) is different, because it describes the large-scale behavior of the system. The integral h
should have a measurable value, but that value is not knowable from classical theoretical principles on
the laboratory scale. We still lack an expression that is analogous to S = −k ∑i pi ln pi. The Maxwellian
has unsuitable tail behavior to address this matter. The new term in the slow-time ideal gas law (10), h,
captures features that are invisible on shorter timescales, e.g., the laboratory scale. In principle, h is a new
observable of the slow-time regime. We call it epitropy.
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Similar slow-time behavior, not seen on shorter timescales, may be found in simple numerical
simulations. Consider the Rösler equations,

ẋ = −y − z (11)

ẏ = x + Ay (12)

ż = xz − Cz + B. (13)

They describe a chaotic three-dimensional system, where the long-time behavior cannot be observed
through a short calculation. Figure 4 shows the XY projection of a long-time calculation (107 steps) with the
parameters A = B = 0.2 and C = 5.981 (left) and C = 5.982 (right). We can make two observations from
these pictures: (i) the many trajectories have a clear large-scale structure with bands of dense population
(yellow) and bands of minimal population (brown) very clearly separated although adjacent. Neither
the equations nor a few individual trajectories indicate such a behavior. (ii) The tiny difference in the C
parameter, from 5.981 to 5.982, dramatically changes the picture. This is slow-time behavior, not seen on
cursory plots.

XY projection

-15 -10 -5 0 5 10 15
X

-15

-10

-5

0

5

10

15

Y

C=5.981

XY projection

-15 -10 -5 0 5 10 15
X

-15

-10

-5

0

5

10

15

Y

C=5.982

Figure 4. XY-projections of a 107 step iteration of the Rösler equations with the parameters A = B = 0.2
and C = 5.981 (left) and C = 5.982 (right). We see that: (i) the many trajectories have a clear large-scale
structure with bands of dense population (yellow) and bands of minimal population (brown) very clearly
separated although adjacent. (ii) The tiny difference in the C parameter, from 5.981 to 5.982, dramatically
changes the picture.

A strange attractor gives some insight into the slow-time picture. Figure 4 shows two instances of the
attractor with slightly different parameter settings. Someone computing the trajectory over short time
sees trajectories and not densities. Outside of a bifurcation point, they will not detect any qualitative
differences in the attractor in the two cases, but, after long time integrations, one notices shifts in the
densities of trajectories that only become visible and understandable in the coarsegraining that is implied
by densities. One might connect density distributions in space with the system parameters to gain
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a qualitative understanding of long-time behaviors without revealing any obvious differences to the
short-time trajectories. The long-time behaviors are invisible on the short timescales.

Finite-time thermodynamics added the seemingly small additional constraint that the process in
question proceed during a finite time. However, it had a profound effect and led to concepts, like maximum
power, minimum entropy production, time dependent potentials, optimal paths, and a lot more and spread
to a much wider range of applications than usually called thermodynamic. In this paper, we use the
same approach by adding a small new condition, a very long timescale, and again look for new structure.
We do not claim to have built a full new theory of slow time, only defined some new concepts, and found
surprising observations for particular functional dependencies, like the Gaussian fluctuations laws (6).
Other explicit PDF’s would have resulted in somewhat different behavior, but the new effects, like a
modified temperature (3), a non-Gaussian long-time behavior (4), and the appearance of epitropy (9)
would not have been affected. So far, we have only scratched the surface, there is much more to come.
The derivation of an "ideal gas law" and a new contribution (epitropy) to the entropy in slow-time
are encouraging.
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Abstract: The connection between endoreversible models of Finite-Time Thermodynamics and the
corresponding real running irreversible processes is investigated by introducing two concepts which
complement each other: Simulation and Reconstruction. In that context, the importance of particular
machine diagrams for Simulation and (reconstruction) parameter diagrams for Reconstruction is
emphasized. Additionally, the treatment of internal irreversibilities through the use of contact
quantities like the contact temperature is introduced into the Finite-Time Thermodynamics description
of thermal processes.
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1. Introduction

“Finite-Time Thermodynamics” (FTT) is a field in nonequilibrium thermodynamics that evolved
over the past 45 years and that has, and still does, attract a lot of interest. Its central theme is that
finishing a thermodynamic task in a finite amount of time is different from doing it with an infinite
time horizon. If only limited time is available for a cyclic process to convert heat into work with
a macroscopic heat engine, then one usually has to pay a “price” in form of a reduced efficiency.
Finite-Time Thermodynamics set out to quantify that price.

This theme has been investigated in a vast variety of paradigmatic examples. If one wants
to stress the fact that nonequilibrium processes will have performance features different from an
equilibrium description, then one has to make that point for the present with the help of simple
examples and not with the complexity of a real running heat engine like, for instance, a jet turbine.
Such a simple paradigmatic example is the Curzon–Ahlborn efficiency [1] for a maximum power
heat-to-work conversion:

ηCA = 1 −
√

TL
TH

, (1)

where TL and TH are, respectively, the temperatures of the low- and high-temperature heat baths a
Carnot engine is operating between under the restriction that the heat flows to and from the engine are
limited by a finite heat conduction. The idea in that example is not to predict the efficiencies of real
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running power stations for a quantitative analysis, but to show that the Curzon–Ahlborn efficiency is
a much better predictor for observed efficiencies than the Carnot efficiency,

ηCarnot = 1 − TL
TH

. (2)

Later, it became clear that already earlier Novikov [2] and others [3] had used an even simpler model
by considering only one heat flow to be restricted by a limited heat conductance, while the the other
flow is reversible. Nonetheless, the Curzon–Ahlborn efficiency also applies to these models.

Finite-Time Thermodynamics evolved over the years and different aspects of nonequilibrium
processes were analyzed. Early work started in Steve Berry’s group [4–7], and later the field evolved
into different directions, for a review see in [8]. While originally the focus was on macroscopic heat
engines and their optimization [9–12], lately also quantum engines have attracted interest [13–15].
Again, the goal is to find performance extrema of heat to power conversion [16,17], but also
generalizations of the classical availability concept to the quantum level have been considered [18,19].

Finite-Time Thermodynamics as a field is open for different methods, but always with goal to
capture the impact of “haste” in performing a thermodynamic process. This is for instance apparent
in the work on finite-time potentials [5] or, more recently, on the implementation of finite-time concepts
in the realm of biological processes [20]. When it comes to quantifying the necessary irreversibility
with its performance losses due to “haste”, Endoreversible Thermodynamics [21–27] has shown its
great potential as a modeling tool. Its basic concept is to describe a system undergoing nonequilibrium
processes as consisting of reservoirs, engines, and reactors, which are modeled as reversible systems,
such that the usual thermodynamic equilibrium relations apply. All dissipation is confined to the
interactions between those systems, which capture the nonequilibrium transport of energy and
other thermodynamic extensities. Usually these are characterized by transport equations for the
irreversible processes, which contain characteristic and often fixed parameters like a heat conduction
or a flow viscosity. Endoreversible Thermodynamics has been used, for instance, in the treatment of
heat-to-power conversion [28–33], in the context of chemical processes [34,35], in thermo-economic
applications, [36,37] and in the thermodynamics of computing [38].

In this paper two advancements beyond FTT are presented: The first one goes beyond the
limitations of Endoreversible Thermodynamics, following from the assumption of endoreversibility
for the subsystems in question. While Endoreversible Thermodynamics uses the fact that it treats
subsystems as reversible without internal entropy production, here it is demonstrated that the use of
nonequilibrium quantities like contact temperature for heat flows or nonequilibrium molar entropies
for material flows allows to include internal irreversibilities for describing nonequilibrium states
appropriately. The second advancement is to go beyond the use of paradigmatic but simple models.
It thus sheds light on the modeling character of endoreversible systems in relation to real running
heat engines. To elucidate the different perspectives taken—on the one hand, starting from a model
and, on the other hand, starting from the performance of real running heat engine—the concepts of
simulation and reconstruction are introduced. For the presentation of both advancements, two simple
and well-known cyclic 2-reservoir heat-to-power model processes are chosen.

The paper is organized as follows. After this introduction, the nonequilibrium time rate of
discrete (Schottky) systems is repeated for elucidation of the sequel and for defining a nonequilibrium
temperature—the contact temperature—in the third section. The contact temperature is essential
for describing real running (irreversible) cyclic 2-reservoir heat-to-power processes in the fourth
section. Because contact and reservoir temperatures are used side by side, two different entropy
productions appear which are connected by a function of the net heat flows and the contact and
reservoir (baths) temperatures—the non-reversibility. In the fifth section, a process class is introduced by
which the tools of simulation and modeling are defined. These are then applied to two historical basic
endoreversible models of FTT: the reversible Carnot process with heat leak and the Curzon–Ahlborn
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model, both subjected to a simulation of a real running process and conversely subjected to a
reconstruction of a model of an engine.

2. Entropy Time Rate of Discrete Systems

2.1. Equilibrium

A discrete system (also named Schottky system [39]) G∗ in equilibrium is considered which is
presupposed to be a reservoir. This implies that the relaxation times of the system are arbitrarily
high and that G∗ can be described as being always in equilibrium. Consequently, G∗ is subjected to
thermostatics whose validity is presupposed. The “time rate” of entropy of the reservoir is

•
S ∗ =

1
T∗

•
Q ∗ + s∗· •

n ∗e, (3)

and the differentials of thermostatics are written as derivatives

d⊕ ≡
•
⊕ (4)

because of adapting the formalism to nonequilibrium in the sequel (more details in [40]). The entropy
flux in (3) is a factorized decomposition into the reciprocal thermostatic temperature T∗ of G∗ and the
heat exchange through its surface ∂G∗. Moreover, the components of the external material exchange

•
n ∗e

are in reference to G∗. The molar entropies of the components in G∗ are s∗. An entropy production does
not appear in (3), because G∗ is an equilibrium system and consequently described by thermostatics.

2.2. Non-Equilibrium, 2nd Law and Compound Systems

The time rate of entropy of a system G in nonequilibrium has the form (more details in [40])

•
S =

1
Θ

•
Q +s· •

n e + Σ. (5)

Here,
•
Q and

•
n e are the heat exchange and the external material exchange through the surface ∂G of

G. The thermostatic temperature T∗ in (3) as well as the equilibrium molar entropies s∗ have to be
replaced by nonequilibrium quantities, contact temperature, Θ and nonequilibrium molar entropies s,
which are defined in the sequel. The entropy production Σ is independent of the exchange quantities
•
Q and

•
n e, and consequently, Σ is the time rate of entropy in isolated systems (

•
Q≡ 0 and

•
n e ≡ 0).

According to the Second Law, the entropy production is not negative [41–43] (a statement which is
in such a way not valid in Stochastic Thermodynamics [44]),

Σ ≥ 0. (6)

A comparison of (5) with (3) shows that the entropy production Σ∗ ≡ 0 vanishes identically in
equilibrium systems.

Now, a nonequilibrium system G is considered which is embedded into an equilibrium reservoir
G∗ having a joint surface ∂G ≡ ∂G∗, which means a compound system G ∪ G∗ is considered whose
sub-systems have mutual exchanges of heat and material. Usually, G∗ is denoted as the system’s
controlling environment. The joint surface represents the partition between the two subsystems.
Especially, inert partitions are considered which are defined as follows. An inert partition does not
absorb or emit heat, power, and material [45], as described by the following equations [46,47],

•
Q = −

•
Q ∗, W = A· •

a = A∗· •
a = −W∗,

•
n e = − •

n ∗e. (7)
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Here, the ∗-quantities belong to the system’s controlling environment G∗. The work done on the
system is performed by the environment using its generalized forces A∗ and orientated at the work
variables of the system (which do not appear according to (3) and (4)). The permeability of ∂G to heat,
power, and material is described by (7). The time rate of entropy of the compound system is set by an

Axiom: The partial entropies of sub-systems are additive.

The entropy of the isolated total system G∗ ∪ G is according to this axiom and (7)1,3 (a subscript i of an
equation reference refers to the ith (in)equalitiy or ith element in the referenced equation; here, (7)1,3

refers to the first and last equation in (7))

•
S tot :=

•
S +

•
S ∗ =

1
Θ

•
Q +s· •

n e +
1

T∗
•
Q ∗ + s∗· •

n ∗e + Σ =

=
( 1

Θ
− 1

T∗

) •
Q +(s − s∗)· •

n e + Σ ≥ 0. (8)

The inequality sign is due to the isolation of the compound system and the definition of entropy
production. The inequality (8)3 allows to define the contact temperature Θ and the nonequilibrium
molar entropies s in Section 3. Now, another property of the time rate of nonequilibrium entropy (5)
is considered.

2.3. Non-Equilibrium Entropy as a State Function

For defining the time rate of nonequilibrium entropy, a state space Z for G is needed,

•
S (Z(t)) =

∂S
∂Z

·
•
Z (t), Z ∈ Z . (9)

Such a nonequilibrium state space is spanned by the equilibrium variables internal energy U, the work
variables a and the mol numbers n of the system, supplemented by the nonequilibrium variables
contact temperature Θ and the internal variables ξ [48,49]

Z = (a, n, U, Θ, ξ) ∈ Z . (10)

The choice of such a state space is possible, because in nonequilibrium U and Θ are independent
variables, and the entropy production depends on the time rates of the nonequilibrium variables

Σ(
•
Θ,

•
ξ) [50].
The time rate of the nonequilibrium entropy has to be in accordance with the equilibrium entropy.

This fact is enforced by the embedding theorem: the nonequilibrium entropy rate integrated along an
irreversible process T starting and ending in equilibrium states—Aeq and Beq—has the same value as
the difference of the equilibrium entropies between the initial and final states of T ,

T
∫ Beq

Aeq

•
S (Z(t))dt = S(Beq)− S(Aeq). (11)

Beyond the embedding theorem, an other property is necessary for establishing a nonequilibrium
entropy to be a state function on Z : adiabatical uniqueness defined as follows [45].

Definition 1. A Schottky system is called adiabatically unique, if, for each arbitrary but fixed nonequilibrium
state B, after isolation of the system the relaxation process ends always in the same final equilibrium state,
independently of how the process into B was performed.
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Considering a cyclic process in Z , taking into account (6) and that S(Z) is a state function on Z ,
(5) results in ∮ •

S dt = 0 =
∮ ( 1

Θ

•
Q +s· •

n e
)

dt +
∮

Σdt ≥
∮ ( 1

Θ

•
Q +s· •

n e
)

dt. (12)

Consequently, the entropy production of a cyclic process becomes according to (12)2 and (6)∮
Σdt = −

∮ ( 1
Θ

•
Q +s· •

n e
)

dt ≥ 0. (13)

The definitions of the contact temperature Θ and the nonequilibrium molar entropy s which appear
in (8)2 and in the Clausius-like inequality (13) are given in the next section.

3. Contact Temperature and Neq-Molar Entropy

Up to now, Θ and s are placeholders in the dissipation inequality (8)2 for the unknown contact
quantities, whereas Σ, the internal entropy production of the system according to (5), is represented by

(1/Θ− 1/T∗)
•
Q and (s− s∗)· •

n e is the entropy production of the heat and material exchanges between
the subsystems of the compound system. If the system is a reversible one (Σ = 0), these exchanges
have to be compatible with the dissipation inequality (8)2. Because heat and material exchanges are
independent of each other, the following inequalities( 1

Θ
− 1

T∗

) •
Q ≥ 0 (s − s∗)· •

n e ≥ 0 (14)

are demanded for defining the placeholders Θ and s which are ascribed to the subsystem G (the
system) of the compound system G∗ ∪ G.

For defining these place holders, the following proposition [51] for a vector quantity is used:

X · f (X) ≥ 0 (for all X ∧ f continuous at X = 0) =⇒ f (0) = 0. (15)

Without any restriction of generality, the left hand brackets in (14) can be presupposed as being
continuous, if the right hand factors vanish. These factors vanish, if suitable equilibrium environments
G∗ are chosen for contacting

G∗
� −→

•
Q� = 0, G∗

j0 −→ •
n e

j0 = 0, j = 1, 2, ..., N components. (16)

G∗
� and G∗

j0 are equipped with equal temperatures T∗
� and T∗

0 which is the same for all G∗
j0. Consequently,

according to the proposition (15) contact quantities can be defined, a temperature Θ and N molar
entropies s, which belong to the special chosen environments G∗

� and G∗
j0:

•
Q� = 0 ⇐⇒ Θ = T∗

�,
•
n e

0 = 0 ⇐⇒ s = s∗0. (17)

Here, (17)2 holds true for each chemical component. The T∗
� and s∗0 are known and belong to the

special equilibrium environments (16) which generate the vanishing RHS factors of (14). According to
(17)1, the following definition is made [52–54]

Definition 2. The system’s contact temperature Θ is that thermostatic temperature T∗
� of the system’s

equilibrium environment for which the net heat exchange
•
Q� between the system and this environment through

an inert partition vanishes by change of sign.
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Inserting the defining inequalities (14) into the expression (12)3 for cyclic processes results in

0 ≥
∮ ( 1

Θ

•
Q +s· •

n e
)

dt ≥
∮ ( 1

T∗
•
Q +s∗· •

n e
)

dt, (18)

representing a proof and an extension of Clausius inequality: the thermostatic temperature
T∗ and the molar entropies s∗ of the controlling equilibrium reservoirs which enforce the cyclic
process are replaced by nonequilibrium quantities of the system, the contact temperature Θ, and the
nonequilibrium molar entropies s. Because the inequalities (6) and (14) change into equalities in
equilibrium, the entropy rate in equilibrium is (3)

•
S eq =

1
T∗

•
Q +s∗· •

n e, (19)

which is a state function (or a total differential) on the equilibrium sub-space [55]

Zeq = (a, n, U, Θ(a, n, U), ξ(a, n, U)) ∈ Z eq ⊂ Z . (20)

Even if the entropy production is added to the equilibrium entropy rate

•
S eq + Σ =

1
T∗

•
Q +s∗· •

n e + Σ �=
•
S, (21)

a comparison with (5) demonstrates that this expression is different from the nonequilibrium entropy
rate. Consequently, it is not a state function because of the reservoir quantities T∗ and s∗ which do not
belong to the system.

The utility of the contact quantities from a conceptual point of view is obvious. Their usage
acknowledges the fact that real systems exchanging heat and work are not in equilibrium, and thus
the assumption of endoreversibility is thus certainly not correct in the strict sense. From a practical
point of view, the difference between a nonequilibrium contact temperature and an equilibrium
temperature as a proxy in an overall description of thermodynamic systems depends very much on
the “nonequilibrium” nature of the situation in question: In some cases the usage of an equilibrium
proxy might be possible without much loss of accuracy, in other cases, for instance, when the local
temperature field at the inert partition is highly nonuniform or if the assumption of local equilibrium
no longer applies, the errors might be considerable. If in particular cases the contact temperature can
be obtained in terms of the variables of a nonequilibrium state space, then also from a practical point
of view their utility is even larger.

The short sketch of nonequilibrium thermodynamics given here uses explicitly the time and
therefore includes Finite-Time Thermodynamics, which deals with irreversible cyclic processes in
Schottky systems which are considered in the next sections.

4. Cyclic 2-Reservoir Processes

4.1. First Law

We consider two heat reservoirs (H and L) of different thermostatic (equilibrium) temperatures
TH > TL. A real, cyclic, irreversible 2-reservoir process of a Schottky system is running between

these two reservoirs exchanging the heat flows
•
QH (t) > 0 and

•
QL (t) < 0 with H and L, respectively.

No mass and no work exchange appear between the reservoirs and the system undergoing the cyclic
process. The heat flows depend on the contact temperature and of that of the reservoir

•
QH (t) = UH(ΘH , TH),

•
QL (t) = UL(ΘL, TL), (22)
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representing constitutive heat conduction properties which are not specialized here, because
constitutive properties are out of scope in this section. Consequently, also the material which performs
the considered cyclic process is not specified: the theoretical concept of cyclic 2-reservoir processes,
developed here, includes arbitrary cyclic processes of arbitrary materials. Because the non-negative
definiteness of the entropy production is presupposed in the sequel, items concerning Stochastic
Thermodynamics are out of scope.

The net heat exchanges per cycle of the cycle time τ > 0 are ([QH]=Nm/cycle, [τ]=s/cycle)

QH :=
∫ τ

0

•
QH (t)dt =

∮ •
QH dt, QL :=

∫ τ

0

•
QL (t)dt =

∮ •
QL dt. (23)

Throughout the paper we will consider heat-to-work conversion processes, which are characterized
by a non-positive work W ≤ 0, i.e., the system delivers work per cycle to the environment.
Therefore, the First Law for heat-to-power processes writes

QH + QL + W = 0, W ≤ 0, =⇒ QH ≥ −QL > 0. (24)

The well-known thermodynamic diagram of a 2-reservoir cyclic heat-to-power process is shown in
Figure 1.

��
�	�

�

�

TH

TL

QH

QL

W

Figure 1. Schematic sketch of a 2-reservoir cyclic heat-to-power process. The arrows indicate the flow
direction of energy (heat or work) in this particular heat-to-power process. Using the standard physics
convention of heat and work entering a system being positive, one has QH > 0, QL < 0, and W < 0.

4.2. Contact and Reservoir Temperatures

In order to establish a relation between the contact temperature and the reservoir temperatures
below, we introduce the cycle mean values of these contact temperatures, which are defined by

1
Θ+

:=
1

QH

∮ •
QH
ΘH

dt > 0,
1

Θ− :=
1

QL

∮ •
QL
ΘL

dt > 0. (25)

The Θ+ and Θ− are the mean values of the contact temperatures of the system generated by the cyclic
process which is controlled by the constant reservoir temperatures TH and TL. Starting with (14)1,
we obtain two inequalities valid for the reservoirs H and L

∮ •
QH
ΘH

dt ≥
∮ •

QH
TH

dt −→ 1
Θ+

QH ≥ 1
TH

QH −→ Θ+ ≤ TH , (26)

∮ •
QL
ΘL

dt ≥
∮ •

QL
TL

dt −→ 1
Θ− QL ≥ 1

TL
QL −→ Θ− ≥ TL. (27)

The contact temperatures Θ+ and Θ− belong in contrast to the reservoir temperatures TH and TL to the
irreversibly running system. Because Θ+ and Θ− are “closer to the system” than TH and TL, results are
expected which are more realistic than those obtained by using the reservoir temperatures.
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4.3. Entropy Production and Efficiency

According to (13), the entropy production per cycle Ω appearing in a closed (
•
n e ≡ 0) 2-reservoir

system of controlling reservoirs H and L of constant thermostatic temperatures is by use of (13)1

and (14)1 ([Ω]=Nm/(K cycle))

0 ≤ Ω :=
∮

Σdt = −
∮ 1

Θ

•
Q dt ≤ −

∮ 1
T∗

•
Q dt = −QH

TH
− QL

TL
. (28)

This inequality represents the special form of Clausius’ inequality for 2-reservoir systems [56].
Using (28)3, the entropy production per cycle becomes by use of (25)

0 ≤ Ω = −
∮ 1

Θ

•
Q dt = − 1

Θ+

∮ •
QH dt − 1

Θ−

∮ •
QL dt = −QH

Θ+
− QL

Θ− . (29)

The second equality is due to the mean value theorem establishing the mean values of the system’s
contact temperatures averaged over the cyclic process as already done in (26) and (27). In contrast to
Clausius’ inequality (28) which represents an estimation of the entropy production, (29) is an equation
for it.

From (29)4 it follows by taking (24) into account that

− QL
Θ− ≥ QH

Θ+
−→ QH + W

Θ− ≥ QH
Θ+

−→ QH

( 1
Θ− − 1

Θ+

)
≥ −W

Θ− ≥ 0, (30)

that together with (26) and (27) results in

TL ≤ Θ− ≤ Θ+ ≤ TH . (31)

The efficiency of the 2-reservoir process is defined by the work per cycle and the heat input [57]

0 ≤ η :=
−W
QH

=
QH + QL

QH
= 1 +

QL
QH

≤ 1 − Θ−

Θ+
≤ 1 − TL

TH
(32)

and is transformed by taking (24)1, (30)1 and (31) into account. Consequently, two upper limits of
the efficiency are obtained, one formulated with the contact temperatures, the other one with the
reservoir temperatures.

4.4. Heat Exchange Coefficient, Non-Reversibility, and Power

From (32)5,6 follows the heat exchange coefficient α

1 ≤ α := −QH
QL

≤ Θ+

Θ− ≤ TH
TL

−→ QH = −αQL. (33)

These inequalities demonstrate that each work producing thermodynamic cyclic process belongs to a
heat exchanging coefficient which is located in the angle between α = 1 and α = αmax in Figure 2.
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α = αmax

Figure 2. Different values of the heat exchanging coefficient α characterizing different work producing
thermodynamic cyclic processes which all are located between α = 1 and α = αmax > 1.

By taking (33)2 into account, the efficiency (32)4 results in

0 ≤ η(α) = 1 − 1
α

≤ 1 − 1
αmax

=: ηmax. (34)

The entropy production per cycle (29)4 becomes by taking (28)4 and (33)2 into account

0 ≤ Ω = −QH
Θ+

− QL
Θ− =: −Λ

(QH
TH

+
QL
TL

)
= −Λ

QH
TL

( TL
TH

− 1
α

)
, 0 < Λ ≤ 1. (35)

The parameter Λ is called the non-reversibility. Its range is generated by the inequality (28)4. It is defined
by (35)3 and makes possible to replace the mean process values of the contact temperature, Θ+ and Θ−,
(quantities which are difficult to determine experimentally) by one parameter Λ(α, Θ+, Θ−, TH , TL)

according to (35) which is limited by (35)5 and which describes the correction, if the contact
temperatures are replaced by the reservoir temperatures. As shown Appendix A.1, the non-reversibility
is

Λ(α, Θ+, Θ−, TH , TL) =
(αΘ− − Θ+)THTL
(αTL − TH)Θ+Θ− . (36)

From (35) follows by use of (34)2 and (32)2

TL
Ω
Λ

= −QH

( TL
TH

− 1 + 1 − 1
α

)
= QH

(
1 − TL

TH

)
− QHη = QH

(
1 − TL

TH

)
+ W. (37)

Here, Ω/Λ ≥ Ω is the reservoir-related entropy production (28)5, which exceeds the regular entropy
production (29)4. Consequently, the work per cycle which is done on the system’s environment is
according to (37),

0 ≤ −W = QH

(
1 − TL

TH

)
− TL

Ω
Λ

≤ QH

(
1 − TL

TH

)
− TLΩ. (38)

The somewhat strange fact that two different entropy productions occur (namely, Ω and Ω/Λ)
is due to the side by side use of contact and reservoir temperatures, whereas the entropy production
is based on the time rate of entropy necessarily formulated with the contact temperature, the work
belongs to the greater reservoir-related entropy production according to (38). Another shape of (35)3,2

or (38)1 is
QH
TH

+
QL
TL

= −Ω
Λ

≤ 0,
QH
Θ+

+
QL
Θ− = −Ω ≤ 0. (39)

The power per cycle becomes by use of the cycle time τ and of (32)1

P :=
−W

τ
= QH

η

τ
≥ 0. (40)
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Inserting (34)2 and (33)6, the power per cycle results according to (34)2 in

P =
QH
τ

(
1 − 1

α

)
=

QL
τ

(1 − α) =
QL
τ

η

η − 1
. (41)

From (38)2 and (40)2 follows

P =
P
η

(
1 − TL

TH

)
− TL

τ

Ω
Λ

=⇒
( 1

η
(1 − TL

TH
)− 1

)
P =

TL
τ

Ω
Λ

, (42)

resulting in (
1 − TL

TH
− η
)

P =
TL
τ

Ω
Λ

η =⇒ η ≤ 1 − TL
TH

, (43)

a relation which come again into consideration, if reversible processes are taken into account (53).

4.5. Reversible “Processes”

Because endoreversible models are considered in the sequel, reversible processes have to be
defined, and the thermodynamic relations of Sectons 4.1–4.4 are translated for reversible processes.
These “processes” are defined by vanishing entropy production

Ωrev ≡ 0. (44)

From (39) and (44)1 follows Clausius’ equality

Qrev
H

TH
+

Qrev
L

TL
= 0 =

Qrev
H

Θ+
rev

+
Qrev

L
Θ−

rev
, (45)

by use of (31) and (24)4 resulting in

0 ≥ Qrev
H

( 1
TH

− 1
Θ+

rev

)
= Qrev

L

( 1
Θ−

rev
− 1

TL

)
≥ 0. (46)

Consequently,
Θ+

rev = TH , Θ−
rev = TL (47)

follows, that means, the difference between contact and reservoir temperatures vanishes for reversible
processes, and from (36) and (47) follows for the non-reversibility

Λrev = 1. (48)

Starting with (32)2 written down for reversible processes, (38)2 results by use of (34)2 in

Qrev
H ηrev = −Wrev = Qrev

H

(
1 − TL

TH

)
=⇒ ηrev = 1 − TL

TH
=⇒ αrev =

TH
TL

. (49)

Taking (49)3 into account, (38) becomes

0 ≤ −W = QHηrev − TL
Ω
Λ

≤ QHηrev − TLΩ, (50)

that results in two statetments: (i) the reversible work is maximal

Ω .
= 0 =⇒ −Wmax = QH

(
1 − TL

TH

)
= −Wrev (51)

216



Entropy 2020, 22, 997

and (ii) the reservoir-related entropy production is maximal, if the work vanishes

W .
= 0 =⇒

(Ω
Λ

)
max

= QH

( 1
TL

− 1
TH

)
. (52)

and finally, the power (43) becomes

(ηrev − η)P =
TL
τ

Ω
Λ

η ≥ 0 =⇒ η ≤ ηmax = ηrev. (53)

The expressions for the entropy production, power and efficiency, which are derived here, will be
needed in the next sections for simulating real cyclic 2-reservoir processes by endoreversible models.

4.6. Maximal Power and Cycle Time: The Machine Diagrams

Considering a special engine, its “fuel consumption” QH and its “heat loss” QL depend on the
cycle time [58]

QH = Ψ(ζ), QL = Ξ(ζ), ζ ≡ (TH , TL, τ) (54)

relations which are called machine diagrams and which characterize the considered engine.
Consequently, the machine diagrams tranfer the cycle time to the thermodynamic quantities which are
discussed in Section 4

α(ζ) = −Ψ(ζ)

Ξ(ζ)
, η(ζ) = 1 +

Ξ(ζ)
Ψ(ζ)

, P(ζ) =
1
τ

(
Ψ(ζ) + Ξ(ζ)

)
, (55)

Ω(ζ) = −Λ(ϑ)
(Ψ(ζ)

TH
+

Ξ(ζ)
TL

)
, Λ(ϑ) = χ(ζ, Θ+, Θ−). (56)

Taking a reversible process into account, (54) becomes

Qrev
H = Ψ(ζrev), Qrev

L = Ξ(ζrev), ζrev ≡ (TH , TL, ∞) (57)

Taking the machine diagrams (54) into consideration, the relation (55)2 of the efficiency depends
on the cycle time. If the solubility of (55)2 for the cycle time is presupposed,

τ = Π(TH , TL, η), (58)

the power (40)2 results in

0 ≤ P
QH

=
η

τ(η)
, =⇒

( P
QH

)∣∣∣
η=0

= 0,
( P

QH

)∣∣∣
η=ηrev

= 0 (59)

Now the question arises: Is there any efficiency η∗ for which the power per fuel consumption is
maximal? According to (59), the answer depends on the cycle time τ(η):

d
dη

( P
QH

)
=

τ(η)− η(dτ/dη)

τ2(η)
.
= 0. (60)

There is a local maximum of P/QH with respect to the efficiency, because the equation

η∗
(dτ

dη

)∣∣∣
η∗

= τ(η∗), =⇒
(d ln τ

dη

)∣∣∣
η∗

=
1

η∗ (61)

has a solution η∗ due to P/QH ≡| 0 and (59)3,4.
The local maximum of another quantity, P/(Ω/Λ), with respect to the efficiency is found out

in the Appendix A.2. These two examples demonstrate that the machine diagrams determine for
what efficiency the power is maximal. According to the machine diagrams (54), the power (55)3
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depends on the cycle time. That is the reason why the machine diagrams have to be taken into account.
If other quotients like P/QH , P/QL, or P/(Ω/Λ), in which the power is measured relative to QH , etc.,
are optimized, then the maxima of these quotients belong to different efficiencies.

4.7. Universality

The cyclic 2-reservoir heat-to-power processes considered in the above section are universal in
the following sense.

• The cyclic process between the two heat reservoirs is arbitrary: it may be a Carnot, Otto, Diesel,
Brayton, or another cyclic reversible or irreversible process.

• The working material which perform this cyclic process under control of the two heat reservoirs
is arbitrary: it may be a perfect or real gas, a fluid, a liquid crystal, or radiation in classical or
quantumtheoretical description, the only restriction is that the chosen substance allows such a
cyclic 2-reservoir process.

Consequently, the general concepts developed above in Section 4 can be applied to the items
considered below. The simulation of an irreversible cyclic 2-reservoir heat-to-power process by
different endoreversible models which do not represent real processes because of their reversible
parts. To explain what simulation means, two well-known examples are again considered for
remembrance [58]: the reversible Carnot process with heat leak in Section 6.1 and the Curzon–Ahlborn
model in Section 6.2.

5. Simulation and Modeling

5.1. Process Class

All real cyclic 2-reservoir processes can be described by the reservoir temperatures, by the cycle
mean values of the contact temperatures (25), by the heat exchanges (23), and by the cycle time.
Instead of the contact temperatures, one can use for our purpose the non-reversibility Λ. Consequently,
a 6-dimensional manifold, the process class is introduced:

z := (TH , TL, Λ, QH , QL, τ) ∈ M6. (62)

The physical meaning of the parameters spanning this manifold induces some restrictions: TH > TL >

0, τ > 0, QH ≥ −QL > 0 satisfying (33)2, 0 < Λ ≤ 1, according to (35)5, depending on the reservoir
and contact temperatures and on the heat exchanges according to (36).

For arbitrary, but fixed allowed values of the quantities (TH , TL, Λ, QH , QL, τ), we call z a process
class and M6 the set of all process classes. According to its definition, the process class contains all
processes having the same values for z, not implying that the process mean values of the contact
temperatures are equal: Consider two processes, I and I I, of the same process class

ΛI =
(αΘ−

I − Θ+
I )THTL

(αTL − TH)Θ+
I Θ−

I
= ΛI I =

(αΘ−
I I − Θ+

I I)THTL

(αTL − TH)Θ+
I IΘ

−
I I

, (63)

resulting in
αΘ−

I − Θ+
I

Θ+
I Θ−

I
=

αΘ−
I I − Θ+

I I
Θ+

I IΘ
−
I I

−→ Θ±
I may be different from Θ±

I I . (64)

Introducing the process class, we concern ourselves no longer with the particular time dependence of
the heat flows during the cyclic process, but we group together all processes having the same values of
z forming the process class. All processes of a process class are equivalent to each other.
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5.2. Simulating Processes

Now, we want to simulate a real irreversible cyclic 2-reservoir heat-to-power process which is
contained in the process class (62). That means, we have to replace the original irreversible cyclic
process by a special other one. Of course this replacement is not unique: there are many other processes
simulating the original one. “Simulating” means that the process replacing the original one has the
same z as the original process: Simulating processes SP and original process OP belong to the same
process class z [58]

zOP = zI
SP = zI I

SP = zI I I
SP = ...... (65)

Whereas the original process is a real running one, a simulating process may also be a real running
one, but also reversible “processes” (not real running) are allowed. Because the simulating process
is in the same process class (62) as the original one, it cannot be distinguished from the original
process by elements of z. These simulating processes can be modeled differently. Here, we are using
endoreversible models, but other modeling for generating simulating processes is possible.

5.3. Process Family and Machine Diagrams

The heat exchanges QH and QL of a real running cyclic engine between the fixed controlling heat
reservoirs of the temperatures TH and TL depend on the cycle time τ. Consequently, the process family
of such an engine is described by a family of subsets of the process class

Z(τ) :=
(

TH , TL, Λ(τ), QH(τ), QL(τ), τ
)

(66)

with the cycle time as a family parameter. The Z(τ) which characterize the engine are denoted as
machine diagrams. These machine diagrams group together process classes by making its variables
dependent of each other. The process class depicts the variables of a 2-reservoir system, whereas the
process family describes the constitutive properties of the considered engine.

5.4. Endoreversible Models

For simulating processes of an engine, endoreversible models are here used because they can be
of nearly arbitrary complexity [25,26]. In this paper, a reversible Carnot “process” combined with
an irreversible transport process like the Fourier or the Newton heat conduction, which simulate
the entropy production of the original process, is chosen as an endoreversible model. Consequently,
two steps appear in the simulation procedure: the reversibility condition related to the Carnot process
and irreversibility conditions related to the entropy production. These two steps will be reflected in
two corresponding types of simulation parameters: The first and second simulation parameters.

In the next section, we will consider endoreversible systems, and we will show how to construct
special simulation parameters which determine the simulating process.

6. Simulation by Special Endoreversible Models

Explaining the concept of simulation [58] in more detail, two well-known endoreversible models
are chosen: the reversible Carnot process with a Fourier heat leak and the Curzon–Ahlborn model
with Newton heat conduction. We make this choice because these two models have accompanied the
historical development of Finite-Time Thermodynamics (FTT): they are chosen because everyone is
familiar with them, helping to understand what simulation means.
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6.1. Reversible Carnot “Process” with Fourier Heat Leak

The model structure of the reversible Carnot process with heat leak [59] is shown in Figure 3.
The reservoir-related entropy production per cycle (28)5 of the original process can be identically
transformed into

Ω
Λ

= −QH − ΔQ
TH

− QL + ΔQ
TL

+ ΔQ
(

1
TL

− 1
TH

)
. (67)

Because the heat leak can only be described by taking place between the heat reservoirs, the expression
(35)3 which contains the reservoir temperatures and the non-reversibility is chosen instead of (35)2

which is defined by using the mean values of the contact temperatures. The introduced heat leak per
cycle ΔQ is according to (67) arbitrary without influencing the process class z (62).

For constructing a particular endoreversible model, we choose ΔQ in such a way, that the sum of
the first two terms on the right-hand side of (67) become zero, thus representing a Clausius’ equality
describing a reversible process

− QH − ΔQ
TH

− QL + ΔQ
TL

.
= 0. (68)

This reversibility condition represents a reversible process having the heat exchanges QH − ΔQ and
QL + ΔQ between the system and the two controlling reservoirs of the temperatures TH and TL,
respectively (see Figure 3). The reversible work

− Wrev = (QH − ΔQ) + (QL + ΔQ) = −W (69)

is equal to that of the original process. According to (68), the reservoir-related entropy production per
cycle (67) of the original process results in


�
�

ΔQ

−ΔQ
��
�	�

�

�

TH

TL

QH − ΔQ

QL + ΔQ

Wrev

Figure 3. Model structure of the reversible Carnot engine with heat leak ΔQ. The black dot symbolizes
that part of the endoreversible model through which the heat leak flows. From the perspective of the
endoreversible model (black dot + white circle), the same total heat exchanges (ΔQ + QH − ΔQ and
−ΔQ + QL + ΔQ) as in the simulated process class occur: QH and QL.

Ω
Λ

= ΔQ
(

1
TL

− 1
TH

)
≥ 0 =⇒ ΔQ ≥ 0. (70)

The reversibility condition (68) determines the heat leak ΔQ which is connected to the entropy
production. From (70) follows with (49)3

Ω
Λ

THTL
TH(1 − TL/TH)

= ΔQ =
ΩTL
Ληrev

. (71)

The heat leak ΔQ is called a first simulation parameter. The endoreversible model of a real 2-reservoir
process class is determined by specializing this first simulation parameter which is given by the
reversibility condition (68) resulting in (71).
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Now a second simulation parameter λhl is introduced by a “constitutive equation” for the heat leak
per cycle

ΔQ =: λhlτ

(
1

TL
− 1

TH

)
= λhlτ

ηrev

TL
=⇒ λhl ≥ 0. (72)

This equation looks like a Fourier heat conduction ansatz, but it is not, because (72) determines the
“heat conductivity” λhl which of course is in general not a constant, but a function of QL, α, and τ

according to (72), (71) and (56)1. From (72) follows with (71)

λhl(ζ) =
1
τ

Ω(ζ)

Λ

( TL
ηrev

)2
, (73)

and (72)1 inserted into (70) results in

Ω(ζ)

Λ
= λhl(ζ)τ

(
1

TL
− 1

TH

)2
≥ 0, ζ = (TH , TL, τ) (74)

according to (54). The equations (73) and (74) demonstrate that the cycle time dependence of the “heat
conductivity” induced by the machine diagrams has to be taken into account.

For given temperatures of the heat reservoirs, the simulation parameter λhl depends via the
reservoir-related entropy production per cycle on the cycle time. If λhl would be set constant,

Ω
τΛ

.
= const. =⇒ − 1

τ

(Ψ(ζ)

TH
+

Ξ(ζ)
TL

)
= const. (75)

follows according to (73) and (56). However, then for arbitrary machine diagrams, (75)2 is in general
not satisfied because its LHS depends on the cycle time. Only very special machine diagrams would
make the LHS constant. Consequently, the reversible Carnot process with Fourier heat leak and an as
CONSTANT chosen “heat conduction coefficient” λhl does not represent a simulation of a general real
running irreversible engine and is thus not suited for a general simulation task.

In the reversible case we obtain according to (44)1 from (71), that there is no heat leak

ΔQrev = 0. (76)

From (73) it follows that

λhlτ

(
ηrev

TL

)2
=

Ω
Λ

= −QH
TH

− QL
TL

. (77)

As shown in the Appendix A.3, we obtain from (77) the power

P = λhl 1
TH

(αrev − 1)2

αrev − α
(α − 1). (78)

In summary, the original 2-reservoir process is simulated by an endoreversible model consisting
of the reversible part described by (68) (the right-hand part in Figure 3), and of an irreversible heat
conducting part, the heat leak (the left-hand part in Figure 3), described by (71)2. The endoreversible
model undergoes the same “process” as the original one: the original process is simulated by an
endoreversible model.

Another example of endoreversible modeling is considered in the next section.

6.2. Curzon–Ahlborn Model

Now the original 2-reservoir process class (62), shown in Figure 1, is simulated by using another
endoreversible model, the Curzon–Ahlborn model [1] with two internal temperatures TiH and TiL,
TH > TiH > TiL > TL (see Figure 4). Because the situation is as in Figure 1 represented, we can use the
results of Section 4.
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Figure 4. Model structure of the Curzon–Ahlborn model.

The entropy production (35)3 is now identically transformed into

Ω = Λ
(
− QH

TH
− QL

TL

)
= −Λ

(QH
TiH

+
QL
TiL

)
+ ΛQH

(
1

TiH
− 1

TH

)
+ ΛQL

(
1

TiL
− 1

TL

)
, (79)

by introducing TiH and TiL as two first simulation parameters. The reversibility condition of the reversible
part of the endoreversible Novikov process is chosen as

QH
TiH

+
QL
TiL

.
= 0 =⇒ α =

TiH
TiL

, η = 1 − TiL
TiH

, (80)

that means, one of the first simulation parameters can be freely chosen. From (79) it follows that by
use of (41)2, the reservoir-related entropy production is

Ω
Λ

= QH

(
1

TiH
− 1

TH

)
+ QL

(
1

TiL
− 1

TL

)
=

QL
TH

(α − αrev) =
−W
TH

(α − αrev)

1 − α
. (81)

It is evident that the reservoir-related entropy production does not depend on the two first simulation
parameters because α and W are determined by the original process according to (33)2 and (24)1.

Two second simulation parameters λH and λL are introduced generating “constitutive equations”
in the same fashion as in (72) which represent definitions of λH and λL

QH =: λHτ(TH − TiH), QL =: λLτ(TL − TiL), λH , λL > 0, (82)

and the reservoir-related entropy production (81)2 results in

Ω
Λ

=
λL
TH

τ(TL − TiL)(α − αrev). (83)

Because the LHS of (83) is independent of TiL according to (81)3, λL depends on TiL. A simple (and
boring) calculation in the Appendix A.4 (A17) results in

Ω
Λ

= τ
λLλH

λL + λH

(αrev

α
− 1
)(

1 − α

αrev

)
. (84)

Starting with (32)2 and (82)1, a simple, but well known [58] (also boring) calculation presented in
Appendix A.5 (A21) results in

P = λH(TH − TiH)η =
λLλH

λL + λH
TH

ηrev − η

1 − η
η. (85)
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This expression is of course different from (78) due to the different models for the original process,
although the values of the power in (78) and (85) are equal to that of the original process of the engine
in (40)2.

From (82) it follows that

λHτ =
QH

TH − TiH
, λLτ =

QL
TL − TiL

, (86)

A short calculation results in

λLλH
λL + λH

= τ−1 QHQL
QL(TH − TiH) + QH(TL − TiL)

= τ−1 QH
TH − TiH − α(TL − TiL)

=

= τ−1 QH
TH − αTL

(87)

demonstrating that in general

λLλH
λL + λH

= F (QH , α, TH , TL, τ) �= const. (88)

The heat exchange coefficient (33)2 becomes with (82) and (80)2

− QH
QL

= α = −λH
λL

(TH − TiH)

(TL − TiL)
=

TiH
TiL

, (89)

resulting in

λL =
TiL(TH − TiH)

TiH(TiL − TL)
λH =

TH − αTiL
α(TiL − TL)

λH . (90)

According to (80), one of the first simulation parameters can be chosen freely. With respect to the
machine diagrams (54) and (55)1, TiL is not determined by the original process

TiH(ζ) = α(ζ)TiL, ζ ≡ (TH , TL, τ), (91)

and (86) results in

λH(ζ; TiL) =
1
τ

Ψ(ζ)

TH − α(ζ)TiL
, λL(ζ; TiL) =

1
τ

Ξ(ζ)
TL − TiL

. (92)

Consequently, λH and λL are as TiL not determined by the original process of the engine.
However, because F in (88) does not depend on TiL, the reservoir-related entropy production (84) and
the power (85) are determined by the original process.

Up to here, the problem was as follows. How can the original process described in Section 4 be
simulated by use of an endoreversible model? In the next section, the question is inverted: Given an
endoreversible model, what real running process can belong to it?

7. Reconstruction, Parameter and Model Diagrams

During the 45 years since the Curzon–Ahlborn paper [2], a huge number of endoreversible models
have been considered. Many of these models were simple ones considering continuously running or
cyclic processes and analyzed basic features like power production or efficiencies of heat-to-power
conversions. Most of those can be considered as paradigmatic examples not directly connected to
any real existing heat-to-power engine. Nonetheless, the question arises, whether there exists a
connection between these numerous not running endoreversible models and real running processes.
More precisely, is it possible to generate an endoreversible model such that it can approximate a real
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running engine? This question is now shortly discussed for the example of the Curzon–Ahlborn model
(CAM) described in Section 6.2.

For distinguishing all quantities X of the endoreversible model (CAM) from those of a real
running engine, they are denoted by X+. The reconstruction procedure starts always with the choice
of the endoreversible model; here, the CAM and its thermodynamic relations which are described
in Section 6.2. The simulation parameters which are determined by simulation can now be chosen
freely and are denoted as reconstruction parameters for characterizing their free choice in contrast to the
simulation parameters.

In the endoreversible CAM we have two first reconstruction parameters, T+
iH and T+

iL , and two
second reconstruction parameters, λ+

H and λ+
L . These are not independent of each other, because of the

reversibility condition (80)1
Q+

H
T+

iH
+

Q+
L

T+
iL

= 0 (93)

where, according to (82), the heat exchanges Q+
H and Q+

L depend on the second reconstruction parameters
λ+

H and λ+
L as well as on the first reconstruction parameters T+

iH and T+
iL .

Q+
H = λ+

Hτ+(TH − TiH), Q+
L = λ+

L τ+(TL − TiL), λ+
H , λ+

L > 0. (94)

The first and second reconstruction parameters are fixed as functions of the cycle time τ+ through the
choice of their parameter diagrams

TiH = TiH(τ
+), TiL = TiL(τ

+), (95)

λ+
H = λ+

H(τ
+), λ+

L = λ+
L (τ

+), (96)

which have to respect the usual positivity requirements for temperatures and heat conductances as
well as the reversibility condition (80). With that choice also the heat exchange coefficient and internal
efficiency can be determined

α+ =
T+

iH
T+

iL
= −Q+

H
Q+

L
, η+ = 1 − T+

iL
T+

iH
. (97)

as well as the power and the reservoir-related entropy production

P+ = λ+
H(TH − TiH)η

+ =
λ+

L λ+
H

λ+
L + λ+

H
TH

ηrev − η+

1 − η+
η+, (98)

(Ω
Λ

)+
= τ+ λ+

L λ+
H

λ+
L + λ+

H

(α+rev
α+

− 1
)(

1 − α+

αrev

)
. (99)

From here the endoreversible analog to the machine diagrams, the model diagrams, are generated

Q+
H(τ

+) = λ+
H(τ

+)τ+(TH − α+T+
iL(τ

+)), Q+
L (τ

+) = λ+
L (τ

+)τ+(TL − T+
iL(τ

+)), (100)

which can be compared with the machine diagrams of an engine.
Consequently, the quality of an endoreversible model for describing an engine can be tested by

a comparison of the model diagrams with the corresponding machine diagrams. With the choice
of simple parameter diagrams—like constant heat conductances—it is apparent, that the model
diagrams will not model given machine diagrams exactly, but they may serve as a more or less good
approximation. Then, an approximation procedure can be established: changing the reconstruction
parameters and the parameter diagrams of the endoreversible model in such a way that the resulting
model diagrams are approaching the given machine diagrams of the engine. If the parameter diagrams
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are chosen in such a way that model diagrams and machine diagrams are identical, the reconstruction
annuls the simulation.

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Simulation:
engine + machine diagrams −→

−→ endoreversible model + simulation parameter diagrams
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Reconstruction:
endoreversible model + reconstruction parameter diagrams −→

−→ model diagrams + model of engine
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Simulation and reconstruction have different starting points. For simulation, the process family of an
engine with its machine diagrams is given, whereas for reconstruction, the reconstruction parameter
diagrams together with the structure of the considered endoreversible model are at the beginning.

Diagrams which introduce the cycle time to the thermodynamic quantities are necessary in
both cases: in simulation these are the machine diagrams, whereas in reconstruction a cycle time is
introduced by the parameter diagrams. It are the parameter and the resulting model diagrams which
generate the utility of endoreversible models by reconstructing them to models of an engine.

8. Simulation, Modeling, Reconstruction, and FTT

As already pointed out in the introduction, the original goal of Finite-Time Thermodynamics was
to capture the influence of “haste” on the performance of thermodynamic processes and in particular
on heat-to-power conversion. The observed efficiencies differ widely from the well-known Carnot
efficiency, and thus better estimates were desired. Moreover, the knowledge on realistic performance
measures allows to ask whether existing processes can be optimized by minimizing the dissipation
necessary to reach a target output.

If a particular heat engine performing a cyclic 2-reservoir process is considered, then by the
choice of an operating point the process class (62) is fixed. To find out whether that is a good or bad
operating point one needs other processes [58] with which a comparison with the original process
can be performed. Such processes can be taken either from the machine diagrams of a real engine,
or from the model diagrams induced by reconstruction parameter diagrams of an (endoreversible)
model. While the first point of view puts its focus on the simulation of the process and can thus be
used to optimize the particular heat engine under consideration, the second view puts its focus on
the modeling of the process and its reconstruction, thus allowing for simple calculations and for insight
into (more) realistic efficiencies for instance at maximum power.

The first point of view—simulating the processes of real engines by an endoreversible
model—becomes particularly important, when such a model becomes part of a larger endoreversible
description. Using simulations enlarges the tool box of Endoreversible Thermodynamics and allows
to include irreversible engines with given machine diagrams into the description [60]. Using the
appropriate complexity, the interesting entropy production sources can be quantitatively mapped into
the description. Based on the resulting features, the design and optimization of the entire system
can then be performed. Such building blocks have for instance been used to model a full hydraulic
recuperation system for trucks [61]. In that sense Endoreversible Thermodynamics has left the level
treating only simple but paradigmatic cases; it can now also be used as an engineering design tool.

The second point of view is particularly useful if one searches for paradigmatic models
with which important insights can be gained. It turned out that the efficiencies calculated at
maximum power for the Curzon–Ahlborn model are independent of the values of the used heat
conductances. The differences between the efficiencies obtained for different types of heat conduction
(Newton, Fourier etc.) immediately show that the results depend very much on the chosen model.
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Recently the search for such paradigmatic models have led to the study of Novikov models with
fluctuating heat bath. The results again are paradigmatic in sense of a certain universality with respect
to stochastic features of the fluctuations [62–64].

Endoreversible Thermodynamics has also shown its usefullness in describing systems in a
relatively coarse fashion to analyze for instance the optimization potential for a given real process.
As an example we mention the optimization of the piston motion in cyclic heat engines, which has been
investigated for engines with Otto [65–67], Diesel [68–71], and Miller cycles [72], as well as the special
paths needed for light-driven engines [73–78]. For instance, in [32] this approach has been used to get a
good guess of the potential power output gains for an alpha-type Stirling engine by using an optimized
control of the piston motion. Based on a special class of piston motions, the power-optimized motion
showed a power output gain of about 50% and more over a large parameter range. As long as the goal
is to establish whether gains of 10% as in the Diesel case [68] or 50% as in this case are possible, the
simple model with fixed transport coefficients, which can be varied during the analysis, suffices thus
providing a fast and effective solution approach.

Finally, if the performance of a real heat-to-power thermodynamic device should be analyzed,
simple endoreversible heat engine models with one or two fixed model parameters will not capture the
important features due to their oversimplified structure. In order to reach the level of an engineering
description, the complexity of the model structure can be increased. It is one of the great advantages of
endoreversible modeling, that it allows to adjust the level of complexity to the desired level of accuracy
by providing more reconstruction parameters. After having introduced the endoreversibility condition,
and following the philosophy of FFT, the most important dissipative loss terms of the engine are
modeled and then supplemented by model elements for further dissipative loss terms of less and less
importance until the appropriate modeling level is reached. Together with its reconstruction parameter
diagrams, the endoreversible model can then be checked against experimental data.

9. Test

engine means always a real running engine with its → machine diagrams.

process without addendum means a real running irreversible process. The other “processes” need an
addendum: → reversible or → endoreversible.

reversible means vanishing → entropy production.

endoreversible model is a system of → reversible parts which interact irreversibly with each
other, thus generating → entropy production. → “Processes” in such a system are called
endoreversible. It is characzerized by a chosen structure and parameters (→ simulation parameters or
→ reconstruction parameters).

set of process classes is the manifold M6 spanned by the independent data of all cyclic 2-reservoir
processes (TH , TL, Λ, QH , QL, τ).

process class z = (TH , TL, Λ, QH , QL, τ) is a member of the → set of all process classes M6. It includes
all → processes (reversible or irreversible, real running or endoreversible) with the same z.

non-reversibility Λ, 0 < Λ ≤ 1, is a function of (TH , TL, QH , QL, τ) and of the cycle mean values
of the contact temperature (Θ+, Θ−). The non-reversibility distinguishes between different →
entropy productions

process family is given by → machine diagrams or by → model diagrams. It includes all → process
classes belonging to the same → engine or → endoreversible model.

machine diagrams determine Λ(τ), QH(τ), and QL(τ) as functions of the cycle time τ. The sub-set
(TH , TL, Λ(τ), QH(τ), QL(τ), τ) of the → set of all process classes represents a → process family with
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the cycle time τ as a family parameter.

entropy production appears twofold: entropy production with respect to the cycle mean values of the
contact temperature of the considered system, and entropy production with respect to the reservoir
temperatures of the controlling heat bathes. These two kinds of entropy production are connected by
the → non-reversibility.

simulation parameters characterize an → endoreversible model and performing a → simulation,
their functional dependence on τ, → the simulation parameter diagram, is determined by the →
machine diagram

simulation is the procedure of generating an → endoreversible model including the choice of
appropriate → simulation parameter diagrams (for the → simulation parameters), such that the
resulting model diagram belongs to the same → process family as a given → engine.

simulation parameter diagrams determine the τ-dependence of the → simulation parameters.

reconstruction is the procedure of starting with an → endoreversible model including chosen →
reconstruction parameter diagrams (for the → reconstruction parameters) and then generating a →
model diagram. Consequently, reconstruction is the reciprocal procedure to simulation.

reconstruction parameters correspond to the → simulation parameters by change of name.
The difference between them: The values of the → simulation parameters are determined by the
→ simulation parameter diagrams, which in turn are determined by the → machine diagrams of the
→ engine, whereas the values of the reconstruction parameters can be chosen.

model parameters are → simulation or → reconstruction parameters.

reconstruction parameter diagrams determine the τ-dependence of the → reconstruction parameters.
The reconstruction parameter diagrams can be chosen freely. Inserted into the thermodynamic relations
of the chosen → endoreversible model, they generate the → model diagrams.

model diagrams are generated for a given → endoreversible model from its chosen → parameter
diagrams. The model diagrams include the same variables as the → machine diagrams, but they differ
from each other: → machine diagrams belong to an → engine, whereas parameter diagrams generated
by → reconstruction belong to an → endoreversible model. Because model diagrams and → machine
diagrams have the same range, they can be compared, that means, the quality of an → endoreversible
model for describing an → engine can be tested by a comparison of the model diagrams with the
corresponding → machine diagrams.

10. Summary

The paper starts with the basic facts of nonequilibrium thermodynamics of discrete systems:
time rate of entropy of compound systems and cyclic processes are considered and the contact
temperature is introduced enforcing the nonequilibrium entropy to be a state function and generating
a Clausius-like inequality describing the 2nd law. Using these items, irreversible and reversible cyclic
2-heat-reservoir heat-to-power processes are discussed elucidating the difference beween contact
and reservoir temperatures. This difference generates two different entropy productions, a contact
temperature orientated and a reservoir-related one. This difference is described by a contact and
reservoir temperature dependent function, called non-reversibility. The definitions of efficiency and
heat exchange coefficient are not affected by the difference beween contact and reservoir temperatures,
but their values differ because of different heat exchanges due to different contact and reservoir
temperatures. To bring the cycle time to the thermodynamical quantities, machine diagrams have
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to be introduced. At the end of this section, the universality of the considered cyclic 2-reservoir
heat-to-power processes is emphasized.

Then the concepts of endoreversible modeling, simulation and reconstruction are introduced:

• Endoreversible modeling means: Creating a model structure of reversible systems which interact
by irreversible exchange processes supplemented with model parameters.

• Simulation means: Generating an endoreversible model in such a way, that the external exchanges
are identical with those of an irreversible real running process.

• Reconstruction means: Generating model diagams from a given endoreversible model structure
and chosen (cycle time dependent) reconstruction parameter diagrams (e.g., for testing the chosen
endoreversible model by comparison with machine diagrams).

For elucidation, two very well-known endoreversible models are examplarily considered:
the reversible Carnot process with Fourier heat leak as a first model parameter and a corresponding
heat conductance as a second model parameter, and the Curzon–Ahlborn model, i.e., a reversible
Carnot process with Newton heat conduction containing two internal temperatures as first model
parameters and two heat conductances as second model parameters.

In the case of simulation, the model parameters—now called simulation parameters—depend on
the machine diagrams of the real running engine which is simulated: for instance, for the first model
the heat leak and the corresponding heat conductance are proportional to the reservoir-related entropy
production, which follows from the machine diagrams.

In the case of reconstruction, the model parameters—now called reconstruction
parameters—are chosen as functions of the cycle time by specifying the reconstruction parameter
diagrams. These in connection with the endoreversible model structure provide the external heat
exchanges in the form of the model diagrams. For instance, for the Curzon–Ahlborn model, the heat
conductances are set constant and the intermediate temperatures are optimized for power output.

From a historical point of view, in the literature usually the reconstruction route has been
taken, so that the connection between chosen endoreversible models and corresponding real running
processes needs more elucidation which is the aim of this paper.
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Appendix A

Appendix A.1. Non-Reversibility

From (35)3 follows

QH

( Λ
TH

− 1
Θ+

)
= QL

( 1
Θ− − Λ

TL

)
−→ α

( 1
Θ+

− Λ
TH

)
=

1
Θ− − Λ

TL
(A1)

by use of (33)2. This results in

Λ
( 1

TL
− α

TH

)
=

1
Θ− − α

Θ+
−→ Λ =

(αΘ− − Θ+)THTL
(αTL − TH)Θ+Θ− . (A2)
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Appendix A.2. Maximal Power (General)

From (53) follows

0 ≤ P
Ω/Λ

=
TL

τ(η)

η

(ηrev − η)
, =⇒

( P
Ω/Λ

)∣∣∣
η=0

= 0,
( P

Ω/Λ

)∣∣∣
η=ηrev

= 0, (A3)

if
lim

η→ηrev
[τ(η)(ηrev − η)] → ∞ (A4)

is presupposed. From (A3)2 follows

d
dη

( P
Ω/Λ

)
= TL

τ(ηrev − η)− η[(dτ/dη)(ηrev − η)− τ]

[τ(ηrev − η)]2
.
= 0, (A5)

resulting in

τηrev =
dτ

dη
η(ηrev − η) =⇒ d ln τ

dη
=

ηrev

η(ηrev − η)
. (A6)

An η∗ is sought for satisfying (A6)2

d
dη

ln τ(η)
∣∣∣
η∗

=
ηrev

η∗(ηrev − η∗)
�= 1

η∗ , (A7)

determining the cycle time τ(η∗) and the efficiency η∗ for which P/(Ω/Λ) is maximal. A comparison
with (61)2 demonstrates that P/(QH) and P/(Ω/Λ) are maximal for different efficiencies.

Appendix A.3. Power (Carnot Process with Fourier Heat Leak)

Starting with (77)

λhlτ

(
ηrev

TL

)2
= −QH

TH
− QL

TL
, (A8)

resulting by use of (49)3 in

λhlτ
TH
QL

(
ηrev

TL

)2
= −QH

QL
− TH

TL
= α − αrev = λhlτ

TH
QL

1
T2

H

(
TH
TL

− 1
)2

. (A9)

Using (41)2, this results in
QL
τ

=
P

1 − α
= λhl 1

TH

(αrev − 1)2

α − αrev
(A10)

which is identical with (78).

Appendix A.4. Reservoir-Related Entropy Production

Starting with (33)2 and (82),

α = −QH
QL

=
λH(TH − TiH)

λL(TiL − TL)
=

λH(TH − αTiL)

λL(TiL − TL)
, (A11)

λL(TiL − TL) = λH(TH/α − TiL), (A12)

TiL(λL + λH) = λHTH/α + λLTL, (A13)

TiL =
λHTH/α + λLTL

λL + λH
. (A14)
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Consequently, the reservoir-related entropy production (83) becomes

Ω
Λ

=
λL
TH

τ(TL − TiL)(α − αrev) =
λL
TH

τ
(

TL −
λHTH/α + λLTL

λL + λH

)
(α − αrev). (A15)

Inserting (49)4, this results in

Ω
Λ

=
λL
αrev

τ
(

1 − λHαrev/α + λL
λL + λH

)
(α − αrev) =

λL
αrev

τ
(λH(1 − αrev/α)

λL + λH

)
(α − αrev) = (A16)

= τ
λLλH

λL + λH

(
1 − αrev

α

)( α

αrev
− 1
)

. (A17)

Appendix A.5. Work (Curzon–Ahlborn Model, Newton Heat Conduction)

Starting with (85), the work becomes, by the use of (A14), (80)2, and (49)4,

−W = λHτ(TH − TiH)η = λHτ
(

TH − λHTH + αλLTL
λL + λH

)
η = (A18)

= λHτTH

(
1 − λH + αλL/αrev

λL + λH

)
η. (A19)

Taking (34)2 into account, the work becomes

−W = λHτTH

(λL − αλL(1 − ηrev)

λL + λH

)
η = λLλHτTH

(1 − (1 − ηrev)/(1 − η)

λL + λH

)
η = (A20)

= τ
λLλH

λL + λH
TH

(
1 − 1 − ηrev

1 − η

)
η = τ

λLλH
λL + λH

TH
ηrev − η

1 − η
η, (A21)

resulting in (85).
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1. Introduction

Averaging plays a very important role in optimization problems applied to engineering. Here are
a few examples:

1. Assume that there is a bound on the source flow gs and this constraint lowers the possible optimal
value of the production. If we introduce some buffer (container) in such a way that the source flow
is its feed, we can raise the possible value of the feed flow to the actual process without violating
this constraint. Actual values of the feed flow will oscillate between values that are greater than
and less than gs. Only the mean value of the feed flow will be bounded in this case. Using this
approach we can replace the strict constraint on gs by the averaged one. If we use such a buffer to
store the product flow, we can maximize not this flow itself, but its mean value (Figure 1).

Source Buffer Process Buffer Product

Figure 1. Flowsheet of a simple process with averaging of both source and product flows.

Let us assume that the relationship between production rate g and consumption q has the form
presented at Figure 2.
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0 q1

g1

q

g

Figure 2. Relationship between production and consumption. Effect of averaging.

With the help of buffers this relationship could be improved on interval from 0 to q1. The process
must operate with consumption q1 during some fraction of time and with zero consumption
during the remaining time. Relationship between average production and average consumption
is represented by dashed slope line at Figure 2. This is the way pumps of water towers operate.

2. Controls often can have only discrete values. For example, the light switch can be either on or off.
None of these discrete values satisfy the constraints of the original problem. If there are devices
that smooth out any oscillations of control variables, the optimal mode can correspond to the
switching strategy that maintains given average values of flows. This kind of switching is the
basis of electronic light dampers.

3. In a heat engine the working fluid periodically makes contacts with the hot and cold sources,
and the properties of these contacts must be chosen such that the average properties of the
working fluid satisfy the constraints of the optimum cycle problem.

Averaged problems arise in finite-time thermodynamics for two main reasons:

1. Many processes are periodic and their constraints must be satisfied on average per cycle.
2. Interactions of thermodynamic systems are characterized by values of extensive variables X

(volume, amount of substance, internal energy, entropy), and flows of mass and energy emerging
in these interactions depend on intensive variables y (temperature, pressure, molar fraction).
The rate of change of extensive variables depend on a flow, and of course on y. This means that
the governing equations for thermodynamic interactions have the form:

dX
dt

= F(y) (1)

The right hand side of (1) does not contain X and this means that the increase in extensive
variables during some given amount of time depends only on the mean value of F. It does not
depend on the order in which intensive variables have different values, if the mean value of F
remains constant. Equations such as (1) are called Lyapunov-type. They allow us to formulate the
problem of optimal control for thermodynamic systems in averaged form.

Below we will consider some of these problems. The last section contains applications of methods
developed in the paper to finite-time thermodynamics.

We consider dynamical systems characterized by a finite number of variables.
By a steady-state mode of a system we mean a mode such that, for every variable yν(t) characterizing

the system, there exists a period Tν such that the average value of yν(t) over this period is constant in
time. Formally, this can be written as [1]

1
Tν

t∫
t−Tν

yν(τ)dτ = yν. (2)

Clearly, static modes, under which yν(t) are constant for all ν, satisfy this definition.
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Another, more general, subclass of steady-state modes is formed by modes for which there exists
a period T that is a multiple of all periods Tν. Such modes are called cyclic ones.

There are also steady modes for which there does not exist a common period T for all variables
yν(t). This corresponds to the case where the ratio of at least two periods Tν and Tμ is irrational.
Such modes are called quasi-cyclic steady-state modes.

If the system is affected by external factors represented by stationary random processes and the
mean values of the variables characterizing the system tend to some limits as the period T of averaging
increases, then the steady mode is said to be stochastic.

A switch to a non-static steady-state mode may be caused either by the absence of a static mode
admitted by the operating conditions of the system or by the fact that the efficiency of the system in a
static mode is lower than in other modes.

Consider some examples.

1. The human organism in a steady mode in the absence of external perturbations is characterized by
a constant temperature, a constant composition of arterial blood, etc. However, some factors such
as the blood pressure and the lung volume periodically change. This is related to the ”structure“
of the respiration and circulation organs.

2. A system consisting of a pump connected with a tank (e.g., a water tower) and consumers operates
so that, even if the liquid consumption G is constant, the pump is sometimes completely switched
off (and the liquid does not flow into the tank) and is sometimes switched on and operates
with delivery higher than G, with the average delivery being G. If the dependence of the pump
delivery g on the power expenditure S is described by a strictly convex function, then the average
pump delivery is higher than that in the static mode at the same average power expenditure.

In the rest of the paper, we mainly consider cyclic steady-state modes, among which two
limit classes are distinguished. The first class includes modes in which each of the periods
Tν significantly exceeds the time of relaxation processes in the system. Moreover, each of the static
steady states is assumed to be stable. In this case, we can neglect the dynamics of the system and
assume that under variation of the mode variables, the state variables change in accordance with
the static characteristics. Such modes are said to be quasi-static.

The second class is formed by sliding steady-state modes, in which all or some of the control
variables vary with frequency so high that, due to the inertia of the object, the state variables
remain virtually constant, and their values depend only on the averaged influence of the
control variables.

Although static modes are a special case of cyclic modes, below by cyclic modes we mean modes
under which at least one variable of the process changes periodically in time. A cyclic mode is
said to be efficient if the passage to this mode improves the efficiency of the process in comparison
with the static mode.

3. Cyclic modes are typical of systems with no admissible static modes. Often a system has no static
modes if the set V of admissible values of variables is non-convex; e.g., this set may include only
discrete values. This is so, for example, in a heat engine in which a working fluid contacts a heat
source whose temperature can take only two values, T+ (a hot source) and T− (a cold source),
and the average power over a cycle is required to be maximal under certain constraints.

Cyclic processes may be organized not only in time; variables may also depend on a spatial
coordinate. In this case, the parameters of the system are constant in each section of the apparatus and
vary periodically from section to section.

When passing from a static mode to a cyclic mode, one needs to replace the objective function by
its mean value over the cycle and to replace all or some constraints imposed at each moment of time
by averaged constraints. Thus, this passage involves an operation of averaging. Before passing to a
cyclic mode, one must answer the following questions:
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1. Does there exist a cyclic mode satisfying the constraints of the problem?
2. Is the transition from the optimal static mode to the cyclic mode efficient?
3. What is the gain in the optimality criterion from this passage?
4. What are the optimal forms of variation of the control and state variables, optimality conditions,

computational algorithms?

It is desirable to answer questions 1—3 without solving problem 4, which is rather difficult in
most cases.

Usually the problem of choosing an optimal static mode of an apparatus reduces to the problem
of finding the extremal value of the objective function under certain equality and inequality constraints
on the variables, i.e., to a non-linear programming problem. The transition to cyclic modes extends the
set of possible solutions and, depending on a particular setting, leads either to an averaged non-linear
programming problem or to a variational control problem. If the problem has an optimal static mode,
then we refer to this problem as the initial problem.

In the rest of the paper we consider various methods for constructing problems with larger sets
of admissible solutions as compared with the initial problem; we show that there are relationships
between such extended problems, which allows one to estimate solutions and values of some of them
by solving others.

2. Averaged Optimization Problems and Their Optimality Conditions

In this section, we consider various methods for introducing averaging into a non-linear
programming (NLP) problem and obtain optimality conditions for averaged problems. To obtain these
conditions, we use a trick based on reducing any averaged problem to a canonical form and deriving
necessary optimality conditions for a particular problem from those for a general problem.

2.1. Averaging of Functions Included in the Formulation of an Optimization Problem

Consider an initial NLP problem [2] in the form

f0(x) → max
/

fi(x) = 0, i = 1, m, x ∈ Vx. (3)

On the set Vx , we define a probability measure p(x) such that∫
Vx

p(x)dx = 1, p(x) ≥ 0. (4)

The average value of the function f (x) on the interval [0, τ] can be calculated as follows:

f (x) =
1
τ

τ∫
0

f (x(t))dt =
∫
Vx

f (x)p(x)dx. (5)

Let us assume that x varies with time or one solves the problem (3) and maximizes the mean value of
f0, but not the value of this function itself. If functions fi vanish on average, then we will arrive at a
problem of the form

f0(x) → max
/

fi(x) = 0, i = 1, m. (6)

A sought solution of problem (6) is a measure p(x) on Vx rather than a vector x. The variable x
is called a randomized one, and p(x) is called a generalized solution. Following A.D. Ioffe and V.M.
Tikhomirov [3], we call the value of the objective functional at the optimal solution as the value of
a problem.

2.2. Convex Hulls—Carathéodory’s Theorem

The notion of convexity is very important for optimization problems.
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1. The convex hull of a set V is the minimum convex set CoV such that V ⊂ CoV.
2. The set of points lying on or below the graph of a function is called its hypograph. The convex

hull Co f of a function f is the upper boundary of the convex hull of its hypograph.
3. Alternatively, the convex hull of a function f is the minimum convex function defined on

the convex hull of the domain of f . For every x̃ from the domain of f the following holds:
Co f (x̃) ≥ f (x̃).

Carathéodory’s theorem is the most important theorem of convex analysis and geometry. It states
that coordinates of every point of the convex hull of the set V ⊂ Rn could be calculated as the weighted
arithmetic mean of some points of V and the maximum necessary number of these points is no more
than n + 1. The beautiful exposition of this theorem is given in [4].

2.3. Optimal Distribution in An Averaged NLP Problem

Let us take some x0 ∈ Vx. If p(x) = δ(x − x0), then problem (6) coincides with the initial problem.
If the set of admissible solutions of a problem includes the set of admissible solution of the initial NLP
problem and the optimality criteria in both problems coincide on the set of admissible solutions of the
NLP problem, then the former problem is called an extension of the NLP problem.

First, consider the special form of problem (6) with fi(x) = xi:

f0(x) → max
/

xi = 0, i = 1, n. (7)

The value of the problem (7) is equal to the ordinate of the convex hull of the function f0(x) on the
set Vx at the point x = 0. According to Carathéodory’s theorem, constructing any ordinate of the
convex hull of a function of n variables requires averaging at most n + 1 ordinates of the function
f0(x); therefore, we can rewrite problem (7) in the form

n

∑
ν=0

γν f0(xν) → max

/
∑
ν=0

γνxν
i = 0, i = 1, n, γν ≥ 0,

n

∑
ν=0

γν = 1. (8)

Let us return to problem (6) and try to reduce it to simple calculation. We need to calculate the ordinate
of a convex hull of the given function. Please note that problem (6) can be solved in two stages. At the
first stage, we find the maximum of the function f0(x) subject to the constraint f (x) = C, where C
takes all values for which the level surface f (x) = C intersects Vx. The problem

f0(x) → max
/

fi(x) = C, i = 1, m, x ∈ Vx (9)

is a non-linear programming problem. Solving (9), we obtain a set of conditionally optimal solutions
x∗(C) and the corresponding values of the reachability function f ∗0 (C) = f0(x∗(C)) of the non-linear
programming problem.

The following assertion holds: The optimal distribution p∗(x) in problem (6) is concentrated at the
points x∗(C). In other words, one needs to average only over conditionally optimal values of f0.

2.4. Necessary Conditions of Optimality—Kuhn-Tucker Theorem

The Kuhn-Tucker theorem generalizes Lagrange multipliers method to problems with inequality
constraints:

f0(x) → max
x

/
fi(x) = 0, ϕj(x) ≥ 0, i = 1, k, j = k + 1, m, (10)

where all functions are smooth.
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The theorem states that there is nonzero vector of Lagrange multipliers with components λi, μj ≤ 0 such
that Lagrange function

L = λ0 f0(x) + ∑
i

λi fi(x) + ∑
j

μj ϕj(x) = R(λ, x) + ∑
j

μj ϕj(x) (11)

is stationary on the optimal solution of the problem (10). The multiplier λ0 could equal to zero or one. In the
former case the solution is called degenerate.

It follows from this theorem that when ϕj(x) = xj we have inequality ∂R
∂xj

≤ 0 for the optimal
solution. More detailed explanation could be found in [5].

2.5. Reduction to an Ordinary NLP Problem

The above considerations allow us to formulate the second stage in solving problem (6). This stage
is the maximization of the average value of the function f ∗0 (C) with the constraint that the vector C
has zero mean, i.e.,

f ∗0 (C) → max
/

Ci = 0, i = 1, m, Ci ∈ VC. (12)

This problem is similar to the problem (7). Its value, and hence the value of problem (6), is equal to the
ordinate of the convex hull of the reachability function f ∗0 (C) at C = 0:

sup
x∈D

f0(x) = sup f ∗0 (C)

/
C = 0, C ∈ VC. (13)

Since the vector C is m-dimensional, the number of base points Cν in problem (9) is at most m + 1.
Thus, the distribution p(C) in problem (9) can be sought in the form

p(C) =
m

∑
ν=0

γνδ(C − Cnu). (14)

Since each of the base values Cν corresponds to a conditionally optimal solution x∗(Cν), the optimal
distribution p(x) is also concentrated at no more than m + 1 points:

p(x) =
m

∑
ν=0

γνδ(x − xν). (15)

Substituting the distribution (15) into the expressions for f0(x) and fi(x), we reduce problem (6) to
the form

I =
m
∑

ν=0
γν f0(xν) → max

/
m
∑

ν=0
γν fi(xν) = 0,

i = 1, m, xν ∈ Vx, γν ≥ 0,
m
∑

ν=0
γnu = 1.

(16)

Thus, we have reduced the problem to an ordinary NLP problem whose variables are the base values
xν of the vector x and the weight factors γν.

2.6. Relationship between Averaged NLP Problem and the Lagrangian Function of the NLP Problem
without Averaging

The Lagrangian function

R =
m
∑

ν=0
γν f0(xν) +

m
∑

i=1
λi

m
∑

ν=0
γν fi(xν) + Λ

(
1 −

m
∑

ν=0
γν

)
=

=
m
∑

ν=0
γν

[
f0(xν) +

m
∑

i=1
λi fi(xν)− Λ

]
+ Λ

(17)
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of problem (16) is related to the Lagrangian function

R = f0(x) +
m

∑
i=1

λi fi(x) (18)

of the initial NLP problem by

R =
m

∑
ν=0

γν(R(xν, λ)− Λ) + Λ. (19)

Since ∑
ν

γν = 1, the Lagrangian function of the averaged problem equals the average value of the

Lagrangian function of the initial problem over all base values xν. Some of the weight factors γν may
vanish; then the number of base points is less than m + 1.

Let us find conditions that must hold for those xν that have non-zero weights in (19). For this
purpose, we apply the Kuhn–Tucker theorem and write the optimality conditions for problem (16)
with respect to the variables γν:

∂R
∂γν

δγν ≤ 0. (20)

Since γν are bounded only from below (γν ≥ 0), it follows that δγν ≥ 0; therefore,

∂R
∂γν

= R(xν)− Λ ≤ 0, (21)

or R(xν) ≥ Λ. If γ∗
ν > 0, then δγν may be of any sign, and so inequality (21) transforms into the equality

R(xν) = Λ. (22)

Thus, for all xν involved in the averaged problem with non-zero weights, the Lagrangian function R of the initial
non-linear programming problem attains an absolute maximum. Of course, this maximum is the same for
all xν.

The requirements that the function R must take the same value at all points xν∗ and that this value
must be maximum give equations for the variables to be found. Thus, applying Kuhn–Tucker theorem
the problem (6), we obtain the vector of Lagrange multipliers λ for which the function R attains an
absolute maximum with respect to the variables xν ∈ Vx and γν ∈ Vγ at an element of the set D of
admissible solutions to problem (6), and these multipliers λ satisfy the condition

R(λ∗, γ∗
ν , xν∗) = inf

λ∈Vλ

sup
γν ,xν

R(λ, γν, xν) = inf
λ∈Vλ

sup
x∈Vx

R(λ, x). (23)

Thus, when the attainability function f ∗0 (C) coincides with its convex hull at C = 0, the transition
to the averaged problem is not efficient (the values of the NLP problem and problem (6) coincide).
By virtue of (23), we can look for the value of the averaged problem in the form inf

λ∈Vλ

sup
x∈Vx

R(λ, x). If the

extended problem is inefficient, then we say that it is equivalent to the initial problem.
In the general case, the dimension of the vector of unknown variables and the computational

complexity of problem (6) are much greater than those for the NLP problem. However, in many cases,
we are interested not in the solution but in the value of the averaged problem, which shows the gain
obtained by transition to the averaged setting. Some methods for estimating the value of problem (6)
from above and below were proposed in [6].

2.7. Other Forms of Averaged Extensions of the NLP Problem

Problem (6) is not the only possible extension of the NLP problem by averaging. The optimality
criteria, relations, and constraints in real-life problems often include the mean values of variables
x rather than the variables themselves. For example, the performance of a distillation column
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is characterized by the mean not current composition of output flows, because these flows are
accumulated in some containers or apparatuses at the exit of the column (or attached to the column).
Below, we describe several possible modifications of the averaged extension [7].

1. Problem of maximizing a function of the mean value of the argument. When D is the set of admissible
solutions of the initial NLP problem, i.e., D is defined by the condition f (x) = 0, and x is the
mean value of the vector x on the set D, we have:

f0(x) → sup
/

p(x) = 0 ∀x /∈ D. (24)

Since the set of values x satisfying this condition is the convex hull of D, problem (24) is equivalent
to the NLP problem on the convex hull of D:

f0(x) → sup
/

x ∈ Co D. (25)

2. Problem of maximizing the mean value of a function under constraints imposed on the mean value of
the argument:

f0(x) → sup
/

fi(x) = 0, i = 1, m (26)

or, in more detail,

∫
Vx

f0(x)p(x)dx → sup
p(x)

/
fi

⎛⎝∫
Vx

x · p(x)dx

⎞⎠ = 0, i = 1, m. (27)

3. Problem of maximizing a function of the mean value of x under averaged constraints:

f0(x) → sup
/

fi(x) = 0, i = 1, m. (28)

Each of the above problems is an extension of the non-linear programming problem, and the
solutions of these problems are distributions p(x).

Averaged problems with two types of variables. An NLP problem can be extended only with respect
to some components of the solution rather than with respect to the whole solution. In practice,
this situation occurs when the problem is solved repeatedly and some components (we denote them
by x) can vary from one solution to another, while the remaining components must be chosen only
once and then fixed. We denote the latter group of variables by y. For example, x may be the operating
conditions of the process (such as flow, pressure, temperature, etc.) and y may be the design parameters
of an apparatus.

If we denote
f (y, x)

x
=
∫
Cx

f (y, x)p(x)dx, (29)

a problem in which averaging is performed over only part of variables has the form

f0(y, x)
x → sup

/
fi(y, x)

x
= 0, i = 1, m. (30)

One need to find the vector y and distribution p(x) in (30).
For each fixed y, this problem coincides with the usual setting of problem (6). If we separate the

randomized variables x ∈ Er and the deterministic variables y ∈ Es in the Lagrangian function R of
the initial NLP problem, then we can write optimality conditions with respect to x by analogy with
problem (6) in the form (see (23))

R(λ, γ∗
ν , y, xν∗) = sup

x∈Vx

R(λ, y, x), ν = 0, m. (31)
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In this case, if we denote the admissible set of (30) as Dx(y)
x
, for each y ∈ Vy, there exist λ(y) such that

inf
λ

sup
x∈Vx

R(λ, y, x) = sup
x∈Dx(y)

x
f0(y, x). (32)

The Lagrangian function attains an absolute maximum at the base values of x.
At the same time, for a fixed function p(x), problem (30) becomes a usual non-linear programming

problem with respect to the variables y. The Kuhn–Tucker conditions hold for this problem,
which include in this case the complementary slackness conditions as well as the requirement that the
function R(λ, γν, y, xν) be stationary with respect to y, which in turn, leads to the equations

∂

∂yj

[
m

∑
ν=0

γνR(λ, y, xν)

]
= 0, j = 1, s. (33)

where R is the Lagrangian function for the NP problem.
Averaged problems with two types of variables are in a sense close to optimal control problems,

and optimality conditions for such problems are close to the Pontryagin maximum principle.

2.8. The Algorithm for Obtaining Optimality Conditions in Averaged Problems

By an averaged problem of static optimization we mean any NLP problem in which either functions
or variables are averaged with respect to all or part of the variables.

As shown above, the settings of averaged problems are very diverse. The reason for this is
that a problem may contain both the mean values of functions and functions of the mean values of
variables. Moreover, averaging may involve only part of the variables. Under these conditions, it is
inexpedient to study each possible setting of an averaged problem. It is significantly more convenient
to obtain optimality conditions for some canonical form of an averaged problem and apply them to
each particular problem after having reduced the latter to this canonical form [8].

Before obtaining optimality conditions, we must answer the following two questions:

1. Is the optimal distribution, which is one of the components of the solution of an averaged problem,
always concentrated at finitely many base points?

2. If the answer to the previous question is ”yes,“ then what is the limit number of these points?

The necessary optimality conditions given below yield an affirmative answer to the first question
and allow one to determine the limit number of base points.

Let y denote the vector of deterministic variables, and let x be the vector of randomized variables.
For the former, we must find an optimal value, and for the latter, an optimal measure. The canonical
form of the averaged problem is

F0( f (x, y), y, x) → max (34)

under the constraints
Fν( f (x, y), ϕ(x, y), x) = 0, ν = 1, r,
Fν( f (x, y), ϕ(x, y), x) ≥ 0, ν = r + 1, m.

(35)

Here the bar over the symbol of a function denotes averaging over the set Vx of randomized variables
x, which is assumed to be compact.

Suppose that the vector x has dimension k and the vector function f has dimension n. The function
F is assumed to be continuously differentiable with respect to all its variables, and f and ϕ are
continuous in x and continuously differentiable in y.

In [8], one of the authors (A.T.) proved that the optimal measure p∗(x) on the set of randomized
variables is concentrated at no more than L + 1 base points, where L = n + k. Thus,

p∗(x) =
L

∑
l=0

γlδ(x − xl), γl ≥ 0,
L

∑
l=0

γl = 1. (36)

243



Entropy 2020, 22, 912

Therefore, for the optimal solution, we have

f ∗(x, y) =
L

∑
l=0

γl f (xl , y), x =
L

∑
l=0

γl xl , (37)

and constraints (35) take the form

Fν( f , ϕ(xl , y), x) = 0, ν = 1, r,
Fν( f , ϕ(xl , y), x) ≥ 0, ν = r + 1, m.

(38)

for all values of xl .
These expressions turn problem (34), (35) into an ordinary NLP problem with respect to γl , y and

xl . The Kuhn–Tucker conditions reduce to the following: the Lagrangian function

R = F0( f , y, x) +
m

∑
ν=1

λνFν( f , ϕ(xl , y), x) (39)

of this problem is stationary with respect to xl and y and is unimprovable with respect to γl (we assume
the solution is non-degenerate, so λ0 = 1). To write down the optimality conditions, we introduce the
notation

aj =
∂R
∂ f j

, βi =
∂R
∂xi

, rμl =
∂R
∂ϕμ

(xl , y). (40)

Using this notation, we can write the condition that R is unimprovable with respect to γl as follows:
the expression

C(x) = ∑
j

aj f j(x, y∗) + ∑
i

βixi (41)

attains its maximum with respect to x ∈ Vx at the points xl , so that

xl∗ = arg max
x

C(x), l = 1, L; (42)

the condition that R is stationary with respect to y has the form

∇y

[
∑

j
aj f j(x, y) + F0( f , x, y) + ∑

μ,l
rμl ϕμ(xl , y)

]
= 0. (43)

The maximality of C(x), together with equations (42), constraints (35), and the complementary
slackness conditions

m

∑
ν=r+1

λνFν( f
∗
, ϕ∗, x∗) = 0, λν ≥ 0, ν = r + 1, m (44)

allows one to find a solution γ∗
l , y∗, xl .

When formulating a specific averaged problem, one

1. writes the conditions of the problem in the canonical form (34), (35);
2. separates the randomized and deterministic variables;
3. calculates the total number L of averagings, which is equal to the sum of the dimensions of the

vector of randomized variables and of the vector of functions to be averaged;
4. constructs the functions R and C and substitutes them into expressions (42)–(44).

For example, in problem (26), we have

F0 = f0(x), Fν = fν(x), ν = 1, m. (45)
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The number L equals k, and

R = λ0 f0(x) +
m

∑
ν=1

λν fν(x). (46)

In (42), we have a0 = λ0 = 1, aν = 0 for ν > 0 and

βi =
m

∑
ν=1

λν

(
∂ f (x)

∂xi

)
x

, i = 1, k. (47)

At the base points xl , the number of which does not exceed k + 1, the expression

C(x) = f0(x) +
k

∑
i=1

xi

m

∑
ν=1

λν

(
∂ f (x)

∂xi

)
x∗

(48)

attains its maximum, and conditions (35) hold, which have the form

fν

(
k

∑
l=0

γl xl

)
= 0, ν = 1, m. (49)

3. Non-Stationary Problems of Averaged Optimization

Consider an extremal problem of the form

f 0 =
1
τ

τ∫
0

f0(J(t), u(t))dt → max
u

(50)

subject to the constraints

f ν =
1
τ

τ∫
0

fν(J(t), u(t))dt = 0, ν = 1, n, (51)

where the functions fν : Rk1 × Rk2 → R, ν = 0, n, are continuous in J and u, u ∈ Vu ⊂ Rk1 is a
measurable function, the set Vu is compact, and J(t) ∈ VJ ⊂ Rk2 is a given measurable function of
time. With J(t) we can associate a probability measure (distribution) p(J). If J(t) takes a value Jk

on a part of the interval (0, τ) of relative length αk, then p(J) contains a term of the form αkδ(J − Jk).
The length of the interval (0, τ) may tend to infinity, and J(t) may be a stationary random process with
distribution p(J).

The distribution p(J) can be written in the form

p(J) = p(J) + ∑
k

αkδ(J − Jk). (52)

For problem (50), (51), let ατ be the length of the part of (0, τ) on which J(t) takes one of the constant
values Jk; we have α = ∑

k
αk. We refer to ατ as the total constancy interval of J(t). The remaining part

(1 − α)τ is called the interval of variation of the parameter J.

Theorem 1. Let u∗(t) be an optimal solution; then there exists a non-zero vector λ = {λ0, . . . , λn} with
λ0 ∈ {0, 1} such that

• on the interval of variation of the parameter J(t)

u∗(J, λ) = arg max
u∈Vu

n

∑
ν=0

λν fν(J, u); (53)
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• on the total constancy interval of J(t), the optimal solution switches between at most n + 1 base values uj ,
and each of these values satisfies the condition

uj = arg max
u∈Vu

∑
k

αk

n

∑
ν=0

λν fν(Jk, u), j = 0, n; (54)

• the portions γj of the constancy interval ατ on which u∗(t) takes the respective values uj satisfy
the conditions ∫

VJ

p(J) fν(J, u∗(J))dJ +
n
∑

j=0
γj ∑

k
αk fν(Jk, uj) = 0, ν = 1, n,

n
∑

j=0
γj = 1, γj ≥ 0;

(55)

• the vector of multipliers λν, ν = 1, n, is determined by the conditions

λ∗ = arg min
λ

⎡⎢⎣∫
VJ

p(J)
n

∑
ν=0

λν fν(J, u∗(J, λ))dJ +
n

∑
j=0

γj

n

∑
ν=0

λν ∑
k

αk fν(Jk, uj(λ))

⎤⎥⎦ . (56)

Thus, on the constancy intervals, the optimal solution of a problem with non-stationary parameters
coincides with the solution of an averaged mathematical programming problem, and on the interval of
variation of the parameter, it varies as the solution of a problem with integral constraints. This theorem
was proved in [9].

Example 1. Consider the problem of maximizing the average power p of a heat engine in which the working
fluid contacts a source of variable temperature T0(t). This problem has the form

p =
1
τ

τ∫
0

q(T0(t), T(t))dt → max
T

(57)

subject to the constraint

σ =
1
τ

τ∫
0

q(T0(t), T(t))
T(t)

dt = 0. (58)

Here T(t) is the temperature of the working substance, q is the heat flux from the source to the working fluid,
and σ is the mean rate of variation of the entropy of the working substance. A substantiation of the setting (56),
(57) can be found in [10–12]. The optimality conditions (53) imply the following relation for the interval of
variation of T0(t):

1
T2

q(T0, T)
∂q(T0, T)/∂T

− 1
T

= const . (59)

In particular, for the Newtonian law q(T0, T) = β(T0 − T) of heating, (59) implies

T∗(T0) = m
√

T0, (60)

where m is the constant equal to the mean value of the square root of the source temperature.
For example, suppose that T0(t) has a uniform distribution (for a regular function T0(t), this means

that the source temperature depends linearly on time) and T02 and T01 are the maximal and minimal
source temperatures, respectively. Then

T∗(T0) =
2(T3/2

02 − T3/2
01 )

3(T02 − T01)

√
T0. (61)
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The maximum power is given by

pmax = β

[
T02 + T01

2
− 4

9
(T3/2

02 − T3/2
01 )

T02 − T01

]
. (62)

Thus, a heat engine with one source may have non-zero power if the variance of the source temperature
is positive.

For some laws q(T0, T), the optimal temperature T∗(t) may switch between two base values on
intervals of constancy of the parameter T0.

4. Estimation of the Performance of Cyclic Modes

Suppose that the dynamics of a system is characterized by the differential equations

ẋν = fν(x, u, a), ν = 1, m, (63)

whose right-hand sides do not explicitly depend on t. Here, as in the preceding sections, x denotes
the state variables, u are the control ones, and a denotes parameters to be optimized. As a rule,
boundary conditions are not fixed for equations (63), but the state variables are required to vary
periodically:

xν(τ) = xν(0) ⇒
τ∫

0

fν(x, u, a)dt = 0, ν = 1, m. (64)

The performance averaged over the cycle plays the role of the optimality criterion for such a cyclic
process and can be written in the form

I =
1
τ

τ∫
0

f0(x, u, a)dt → max . (65)

The duration τ of each cycle is one of the components of the vector a; in the general case, it is not fixed.
The parameters and controls are subject to constraints a ∈ Va and u ∈ Vu; in addition to the integral
constraints (64), which follow from the periodicity of the process, the problem usually contains integral
constraints determined by given mean rates of consumption of some resources (resource constraints):

Jj =

τ∫
0

ϕj(x, u, a)dt = 0, j ∈ 1, r. (66)

It is assumed that each of the functions determining the problem is continuous in all its variables and
is continuously differentiable with respect to x and a.

Optimality conditions. Optimality conditions for problem (63)–(66) can be obtained by using
the maximum principle [6]. Namely, if an optimal solution x∗, a∗, u∗ exists and is non-degenerate,
then there exist a non-zero vector λ and a differentiable vector function ψ(t) such that the function

R =
1
τ

f0 + ∑
ν

[ψ̇νxν + (ψν + λν) fν] + ∑
j

λj ϕj. (67)

is stationary with respect to x and attains a maximum with respect to u, and the integral S of this
function is locally unimprovable with respect to a. Thus,

∂R
∂xi

= 0 ⇒ ψ̇i = − ∂

∂xi

{
1
τ

f0 + ∑
ν

(ψν + λν) fν + ∑
j

λj ϕj

}
. (68)
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Since the values xν(τ) and xν(0) are not fixed, it follows that ψν(τ) and ψν(0) vanish. Introducing the
notation ψ̃ν = ψν + λν and taking into account the equality ˙̃ψν = ψ̇ν, we can rewrite condition (68) in
the form

˙̃ψi = − ∂

∂xi

{
1
τ

f0 + ∑
ν

ψν fν + ∑
j

λj ϕj

}
= − ∂

∂xi
H. (69)

For these equations, since ψ(0) and ψ(τ) vanish, the costate variables satisfy the periodicity conditions

ψ̃ν(0) = ψ̃ν(τ) ⇒
∫ τ

0

∂H
∂xν

dt = 0, ν = 1, m. (70)

The conditions of maximality of R with respect to u have the form

u∗(t) = arg max
u∈Vu

{
f0

τ
+ ∑

ν

ψ̃ν fν + ∑
j

λj ϕj

}
. (71)

Finally, the optimality conditions with respect to each component ak of the vector a, including the
duration τ of the cycle, yield the inequalities

∂S
∂ak

δak ≤ 0, k = 1, 2, . . . (72)

Here δa is the cone of variations of the vector a that are admissible with respect to the inclusion a ∈ Va.
Please note that the phase trajectory corresponding to an optimal cyclic process has no

self-intersections [13].

5. Estimation of the Efficiency of Transition to a Cyclic Process

5.1. Conditions of Equivalence and Efficiency of a Cyclic Extension

The optimal cyclic mode problem (63)–(66) (we refer to it as Problem C) is an extension of
a non-linear programming problem. Indeed, imposing the additional constraints x = const and
u = const on the solution of this problem, we obtain the following optimal static mode problem
(Problem S):

IS = f0(x, u, a) → max
/

fν(x, u, a) = 0, ϕj(x, u, a) = 0
u ∈ Vu, a ∈ Va, ν = 1, m, j = 1, 2.

(73)

Since the set of admissible solutions of problem (63)–(66) is larger than that of Problem S, it follows that

I∗S ≤ I∗C. (74)

where I∗C denotes the value of the optimal cyclic mode problem.
One of the problems in designing cyclic processes consists of distinguishing a class of problems

for which inequality (74) turns into an equality, i.e., the cyclic extension is equivalent to the static
problem. An important role in solving this problem is played by the Lagrangian function of Problem S,

RS = f0(x, u, a) + ∑
ν

λν fν(x, u, a) + ∑
j

ξ j ϕj(x, u, a) (75)

To determine whether a cyclic process is equivalent to a static one or efficient without solving
problem (63)–(66), we form averaged problems, which are in turn extensions for Problem S or C
or for both. Comparing the values of these problems with I∗C , we find conditions for the equivalence
of a cyclic extension.
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1. An upper bound for I∗C and sufficient conditions for the equivalence of a cyclic extension. Let us enlarge
the set of admissible solutions of Problem C by removing the differential equations (63). We obtain
Problem S, which we call an estimating problem:

IS̄ = f0(x, u, a)
x,u → max

/
fν(x, u, a)

x,u
= 0, ϕj(x, u, a)

x,u
= 0

ν = 1, m, u ∈ Vu, a ∈ Va, j = 1, r.
(76)

Clearly,
I∗S̄ ≥ I∗C, (77)

and Problem S is an averaged extension of Problem S with the variables x and u and the parameters
a. The roles of the variables x and u in the conditions of Problem S are similar, and we unite these
variables and denote them by y = (x, u). In shorthand notation, this problem has the form

IS̄ = f0(y, a)
y → max / fν(y, a)

y
= 0, ϕj(y, a)

y
= 0, ν = 1, m, j = 1, r. (78)

The value of problem (78) as an extension of the optimal static mode problem can be expressed in
terms of the function RS as

I∗S̄ = inf
λ,ξ

sup
y

RS (y, a∗, λ, ξ) . (79)

For determining the vector of parameters, we have the condition[
∂

∂a
RS(y, a, λ, ξ)

y
]

a=a∗
= 0. (80)

If a∗ lies inside Va, then condition (80) reduces to the condition of stationarity of RS with respect
to a.

If the value I∗5 given by (79) equals I∗S (i.e., Problem S has a unique base solution), then inequalities
(74) and (77) imply I∗C = I∗S ; i.e., the static mode cannot be improved by passing to a cyclic mode.
If I∗�S > I∗S , then the difference ΔS between these values gives an upper bound for the possible gain
from the passage to a cyclic mode.

2. A lower bound for I∗C. Quasi-static and sliding modes. Consider the case when x(t) and u(t) vary
so that the time derivatives of x(t) can be neglected. Then the relations between x and u are
given, as in the static case, by f (x(t), u(t), a) = 0 for all t. The corresponding modes are said to be
quasi-static. The problem of an optimal choice of x(t) and u(t) under the quasi-static conditions
(Problem QS) has the form

IQS =
1
τ

∫ τ

0
f0(x, u, a)dt → max / f (x, u, a) = 0,

∫ τ

0
ϕ(x, u, a)dt = 0, u ∈ Vu, a ∈ Va.

or, in shorthand notation,

IQS = f0(y, a)
y → max /ϕ(y, a)

y
= 0, y ∈ Vy, a ∈ Va. (81)

Here y = (x, u), and the set Vy is determined by the conditions u ∈ Vu, a ∈ Va, and f (x, u, a) = 0.

Since any solution of Problem QS is admissible for Problem C, it follows that

I∗QS ≤ I∗C. (82)
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At the same time, the value I∗QS of Problem QS, being the value of an averaged problem, is given
by the expression

I∗QS = inf
ξ

{
sup

y
[ f0 (y, a∗) + ξϕ (y, a∗)]

/
f (y, a∗) = 0, u ∈ Vu

}
. (83)

Here a∗ is the optimal value of a subject to the constraint

∂

∂a

[
f0(y, a)

y
+
(

ξ, ϕ(y, a)
y)

+
r

∑
i=0

λi f
(

yi, a
)]

a∗
δa ≤ 0. (84)

in which δa is the set of variations allowed by the inclusion a ∈ Va.

We choose the Lagrange multipliers λi in (84) so that f (yi, a) = 0 for any base value yi of the
vector y. The number of base values of y is determined by the dimension r of the vector function
ϕ; thus, the problem takes the form

f̄0 =
r

∑
i=0

γi f0

(
yi, a
)

, ϕ̄ =
r

∑
i=0

γi ϕ
(

yi, a
)

,
r

∑
i=0

γi = 1, γi ≥ 0. (85)

Consider the case when the control vector in the steady state of the system changes with a
frequency so high that the state vector x remains virtually constant. Such a mode is called a sliding
steady mode. The optimization problem for such a mode is formulated as

ISL = f0(b, u)u → sup / f (b, u)
u
= 0, u ∈ Vu, ϕ(b, u)

u
= 0, b ∈ Vb. (86)

This problem is known as Problem SL. In (86), b denotes the vector formed by x and a. This mode
is the limit case of the cyclic mode, so we have

I∗SL ≤ I∗C.

Problem (86) is an averaged extension of Problem S with two types of variables; its value is
given by

I∗SL = min
λ,ξ

max
u

R (u, b∗, λ, ξ) = min
λ,ξ

max
u∈Vu

[ f0 (u, b∗) + λ f (u, b∗) + ξϕ (u, b∗)] , (87)

where b∗ satisfies the condition
∂

∂b
R (u, b∗, λ, ξ)

u
δb ≤ 0. (88)

The number of base values of the vector function u in Problem SL is at most m + r + 1.

A necessary condition for the efficiency of the transition to a cyclic mode can be stated in terms of
I∗QS and I∗SL. Consider the quantity

IK = max
[

I∗QS, I∗SL

]
.

If IK is greater than I∗S , then the passage to a cyclic mode is efficient, and the difference

ΔK = IK − I∗S

provides a lower bound for the efficiency.
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5.2. The Frequency Criterion for the Efficiency of the Passage to a Cyclic Mode

Suppose that an optimal static mode x0, u0 in Problem S is known. As above, it is required to
determine whether the cyclic extension of Problem S is efficient. In [14], a frequency criterion for the
efficiency of a cyclic mode was proposed. This criterion is based on the analysis of the increment in the
optimality criterion I as compared to its maximal static value I0 for small harmonic oscillations of the
control about u0.

Let λ0 and μ0 be the values of Lagrange multipliers λ and μ corresponding to the optimal static
mode in the Lagrangian function

R = f0(x, u) + ∑
i

λi fi(x, u) + ∑
j

μj ϕj(x, u)

for Problem S.
In a neighborhood of the optimal static mode and the corresponding Lagrange multipliers,

we calculate the first and second derivatives of the functions that determine the problem with respect
to x and u (if x and u are vectors, then these derivatives are matrices):

A =
∂ f
∂x

, B =
∂ f
∂u

, P =
∂2R
∂x2 , Q =

∂2R
∂x∂u

, H =
∂2R
∂u2 , K =

∂ϕ

∂x
, M =

∂ϕ

∂u
.

In a neighbourhood of the optimal static mode, the increment of the functional I under small variations
δx(t) and δu(t) is given by

ΔI =
1

2T

∫ T

0

(
δx′Pδx + δx′Qδu + δu′Q′δx + δu′Hδu

)
dt.

The transition to a cyclic mode is efficient if there is a variation δu such that the quantity ΔI is positive
under the linearized constraints (63), i.e.,

δẋ = Aδx + Bδu, δx(T) = δx(0). (89)

To get rid of these constraints, we consider only harmonic variations, i.e., those of the form

δu(t) =
∞

∑
ν=−∞

uνeiν 2π
T t.

Applying the Fourier transform to the linear differential constraints (89), we obtain

δx(iω) = δu(iω)
B

iωE − A
= δu(iω)W(iω).

Here E is the identity matrix (E = 1 for scalar x). It is assumed that the matrix A has no eigenvalues
with zero real part; otherwise, small deviations δu(t) may correspond to large deviations δx(t), and the
linearization may be incorrect.

Let us express the quantity ΔI by Parseval’s identity in the frequency domain, replacing δx(iω)

by its expression in terms of δu. The increment in the criterion under harmonic oscillations of the
control with frequencies that are multiples of 2π/T takes the form

ΔI =
1
2

∫ ∞

−∞
δu′(−iω)A(ω)δu(iω)dω.

Here A(ω) is defined by the matrices P, Q, and H and the relation between δu and δx; it is easy to
show that

A(ω) = W ′(−iω)PW(iω) + Q′W(iω) + W ′(−iω)Q + H,
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where the prime denotes transposition.
For the scalar problem, we have

A(ω) = P|W(iω)|2 + 2Q Re W(iω) + H

If the matrix A(ω) for some ω is such that the integrand in the expression for ΔI is positive for at least
one vector δu, then the static mode can be improved and the passage to a cyclic mode is efficient.

For the scalar problem, we have

ΔI =
1
2

∫ ∞

−∞
|δu(iω)|2 A(ω)dω,

and the static mode improves if A(ω) is positive for some ω.

5.3. Lyapunov Problems

For an important class of problems, the inequality (77) turns into an equality. In these problems,
the functions f0, f , and ϕ in relations (63)–(66) depend only on u and a, so that

ẋ = f (u, a) (90)

Such equations are called Lyapunov-type equations, and the corresponding problems are known
as Lyapunov problems. If we discard equations (63), which have the form (90), in Problem C,
thereby transitioning to Problem S, then we can find its solution u∗(t) , a∗. Substituting this solution
into equation (90), we determine an optimal trajectory. Clearly, in this problem, I∗S̄ = I∗C, u∗(t)
takes at most m + r + 1 base values, and the function x∗(t) is a polygonal line with at most m + r
(internal) vertices.

Problems that include, in addition to Lyapunov-type equations, equations of the form

ẋν = fν(u, a)Fν (xν)

can also be reduced to Lyapunov problems. Indeed, such equations can be reduced to the form (90) by
the change

yν (xν) =
∫ dxν

Fν (xν)
, (91)

so that ẏν = fν(u, a). The optimal solution yν(t) is piecewise linear, and xν(t) can be found from (91)
by solving the equation

dxν

Fν (xν)
= yν(t)dt.

6. Average Optimization in Finite-Time Thermodynamics

The field of finite-time thermodynamics is one of the most important examples of application of
averaged optimization techniques. The reasons for this are the following:

1. Problems of optimal thermodynamic cycles.

There are a very important kind of thermodynamic systems — intermediary ones. These systems
contact different subsystems (reservoirs) alternately while producing power and thus lowering the
irreversibility arising from a continuous contact of the above-mentioned subsystems. The main
example here is the heat engine, where the working fluid contacts two sources of different
temperature.

One of the most essential problems in finite-time thermodynamics is the problem of maximum
average power of heat engines, when the average rate of the heat flow from the hot source is given.
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Similar problems arise also in absorption-desorption systems, where the working fluid contacts
with the multi-component mixture and picks one component out from one source, releasing it at
another one.

In reverse cycles, the working fluid obtains the energy from the exterior system. Upon contact
with the source that loses energy or matter in the regular cycle, the working fluid enriches it with
the corresponding resource.

In all of these problems, the working fluid restores its state at the beginning of every cycle.
One needs to average all of the variables determining the process.

2. Relations between intensive and extensive variables are Lyapunov-type equations.
Thermodynamic variables are divided into two classes: intensive (temperature, pressure,
chemical potential, . . . ) and extensive (volume, internal energy, entropy, amount of substance, . . . )
ones. Flow rates of transport processes between subsystems depend only on intensive variables.
This value determines in turn the rate of change of extensive variables. This means that equations
determining the change of state of the thermodynamic system have the form [10–12]:

dZj

dt
= Fj(ui, uj). (92)

Here i and j are indices of the contacting subsystems, u is the vector of intensive variables, Z is the
vector of extensive variables. Equations of this type are called Lyapunov-type equations earlier in
this paper. The right hand side of these equations does not depend on Z, and the increase of Z is
determined by the average value of the function F. As we have shown above, one can obtain the
limiting capabilities of systems characterized by Lyapunov-type equations using techniques of
the averaged optimization.

7. Example: Averaged Optimization of a Heat Engine

7.1. Maximum Average Power Output

We will assume that there is a heat engine with constant temperature of sources T+ and
T− [15]. If we denote the temperature of the source contacting with the working fluid at the moment
as Tn and the temperature of the working fluid itself as T, we will obtain that the average output per
cycle is

p = q(Tn, T). (93)

Now we can formulate the averaged optimization problem, given that the average entropy generation
within the working fluid per cycle is zero:

q(Tn, T) → max
T

,
/ (

q(Tn ,T)
T

)
= 0,

Tn = (T+; T−), T > 0.
(94)

This is the problem in the form (6). Using the algorithm described earlier (see (42)–(44)) we find the
number of base points is two. This means that the Lagrange function

R = q(Tn, T) + λ
q(Tn, T)

T
= q(Tn, T)

(
1 +

λ

T

)
(95)

has two maxima, so
T1 = arg max

T
q(T+, T)

(
1 + λ

T

)
,

T2 = arg max
T

q(T−, T)
(

1 + λ
T

)
.

(96)
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Both maxima are global and therefore they must be equal [16]. It means that the Lagrange multiplier is
the solution of

q(T+, T1)

(
1 +

λ

T1

)
= q(T+, T2)

(
1 +

λ

T2

)
. (97)

When the heat transfer law is linear

q(T+, T) = α+(T+ − T), q(T−, T) = α−(T− − T), (98)

solution of equations (94)–(96) with notation α = α+α−
(
√

α++
√

α−)
2 leads to

pmax = α
(√

T+ −
√

T−
)2

. (99)

The relationship between entropy generation and heat flows is shown at Figure 3. It is clear from
this picture that the point of maximum power output lies on the convex hull of original output curves,
so it is attainable only when averaged control is used.

qhqc

σh

σc

pmax

σ2

σ1

Figure 3. Relationship between entropy generation and heat flows and its convex hull. Here qh and
qc are heat exchange rates upon contact with the hot and cold reservoirs, respectively, and σh, σc are
the corresponding entropy generation rates. The optimal solution is attained when σc = σ1, σh = σ2,
q1 = qc(σ1), q2 = qh(σ2) and pmax = q1 + q2.

7.2. Maximum Efficiency

When the power output p0 is given, the problem of maximum efficiency is equivalent to the
problem of minimum entropy generation within the system. Using again that the average entropy
generation within the working fluid is zero for a cyclic process, we obtain the problem:

− σ =

(
q(Tn, T)

Tn

)
→ max

T
,
/ q(Tn, T) = p0,(

q(Tn ,T)
T

)
= 0,

Tn = (T+; T−), T > 0.

(100)

One may notice that this problem allows three base points in general, because there are three averaging
operations in (100). This is the case when the entropy generation as a function of q(T+, T) is not convex.
We will not consider this case here, because this function is convex for most of heat transfer laws.
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Another possibility corresponds to two base points. In this case, we have the following equations
for T1 and T2:

T1 = arg max
T

[
q(T+, T)

(
1

T+ + λ + μ
T

)
− λp0

]
,

T2 = arg max
T

[
q(T−, T)

(
1

T− + λ + μ
T

)
− λp0

]
.

(101)

These maxima must be equal, which leads to:

q(T+, T)
(

1
T+

+ λ +
μ

T

)
= q(T−, T)

(
1

T−
+ λ +

μ

T

)
. (102)

The averaged constraints must also be satisfied:

γq(T+, T1) + (1 − γ)q(T−, T2) = p0,
γ

q(T+ ,T1)
T1

+ (1 − γ) q(T− ,T2)
T2

= 0.
(103)

Equations (101)–(103) allow one to find values of T1, T2, λ, μ and γ.
For the linear heat transfer law we have the following value of maximum efficiency:

ηmax(p) =
1
2

(
p

αT+
+ ηc

)
±
√

1
4

(
p

αT+
+ ηc

)2
− p

αT+
. (104)

When p → 0, the value of (104) approaches ηc (Carnot efficiency) and when p = pmax (99), we have

ηmax(pmax) = 1 −
√

T−
T+

= 1 −
√

1 − ηc, (105)

which is the well-known result of Novikov [17], Chambadal [18], Curzon and Ahlborn [19]. Important
results for other types of heat transfer laws and different processes are presented in [20–22].

8. Results

We obtained the general necessary conditions of optimality for averaged optimization problems.
These conditions can be written down using the algorithmic procedure given in the paper, which allows
one to use them for problems of any structure. We showed how these techniques can be applied to the
problems of finite-time thermodynamics leading to new results in the field.
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Abstract: The thermodynamic Ricci curvature scalar R has been applied in a number of contexts,
mostly for systems characterized by 2D thermodynamic geometries. Calculations of R in
thermodynamic geometries of dimension three or greater have been very few, especially in the
fluid regime. In this paper, we calculate R for two examples involving binary fluid mixtures:
a binary mixture of a van der Waals (vdW) fluid with only repulsive interactions, and a binary
vdW mixture with attractive interactions added. In both of these examples, we evaluate R for full 3D
thermodynamic geometries. Our finding is that basic physical patterns found for R in the pure fluid
are reproduced to a large extent for the binary fluid.

Keywords: information geometry of thermodynamics; thermodynamic curvature; critical
phenomena; binary fluids; van der Waals equation

1. Introduction

The thermodynamic Ricci curvature scalar R has yielded a number of interesting results in the
study of fluids [1]. However, to this point, the great majority of the calculations of R have been made
for pure fluids. Much less examined has been R for binary fluids. Pure fluids offer many research
topics in a relatively simple thermodynamic geometric scenario. One element of this simplicity is that
pure fluids may be represented by a two-dimensional (2D) thermodynamic Riemannian geometry,
where just the scalar R gives the full curvature picture.

The dimension of the thermodynamic phase space grows by one for each added fluid component,
and, as the dimension grows, the curvature rapidly becomes more complicated. For example,
the binary fluid corresponds to a three-dimensional (3D) phase space, where there are six independent
components of the full Riemannian curvature tensor [2]. Which of these components do we focus
on for physical interpretation? In this paper, our results suggest that the curvature scalar R remains
the fundamental physical quantity. (We offer no rigorous proof, but we do note that classical general
relativity, based on four-dimensional Riemannian geometry, may be expressed as a variational principle
based on the Hilbert action, with R as the Lagrangian [2]. This variational principle is certainly not in
play in this paper, but we do hope that this significance for R translates to the thermodynamic scenario
as well).

We calculate R for two thermodynamic examples represented by a 3D thermodynamic geometry:
(1) a binary van der Waals (vdW) fluid with just repulsive interactions, and (2) a binary vdW fluid
with attractive interactions added. To add conceptual structure to our presentation, we discuss to what
extent the 3D results for R follow the same physical principles as the 2D ones. As we show, there is a
great deal of correspondence. (Scenarios with a thermodynamic geometric dimension greater than two
have also been considered for black hole thermodynamics; see Sahay for a brief review [3]. This theme
is beyond the scope of this paper.)

Entropy 2020, 22, 1208; doi:10.3390/e22111208 www.mdpi.com/journal/entropy
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A few cases have been worked out for R for the full 3D thermodynamic geometry. Ruppeiner and
Davis [4] worked out R for the multicomponent ideal gas, with an arbitrary number of components.
Kaviani and Dalafi-Rezaie [5] worked out R for the paramagnetic ideal gas, where, in addition to
the temperature and the density, there is an external organizing magnetic field. Erdem [6] worked
out R for the antiferromagnetic Ising model with a temperature and two ordering fields, with special
attention to the critical phenomena near the Neel point.

One may also approach 3D thermodynamic geometries by working out R over 2D slices of the
full 3D thermodynamic geometry. This has physical relevance if, for example, one of the independent
variables is irrelevant to a phase transition. Ginoza [7] considered the binary fluid mixture in generality,
and calculated R 2D along surfaces of constant T. Jaramillo-Gutiérrez et al. [8] calculated a constrained
R 2D by fixing the sum of the mole numbers. These authors made several comments about how
their constrained R relates to that of the pure fluid. Generally, the calculation is simplified in 2D, but,
in an age of powerful mathematics software, considerations of simplicity should maybe no longer be
so much of a driving force.

2. Expectations for 3D Outcomes for R

For guidance as to what 3D thermodynamic geometry might tell us, let us pose some questions
motivated by findings in the pure fluid [9–12]: (a) In the ideal gas limit, is |R| either zero or small?
“Small” means |R|ρ < 1, with ρ the number density. In this event, the volume measured by |R| is less
than the average volume occupied by a single particle, and we are under the low |R| limit [10,11].
Thermodynamics is challenged at such a size scale, and a precise physical interpretation for R is harder
to come by (though researchers do try if the opportunity arises). (b) As a critical point is approached,
does |R| diverge in proportion to the correlation volume ξ3? (c) Near a critical point, is the sign of R
negative? A negative sign is consistent with effectively attractive interactions. (d) Are the values of R
in two coexisting phases equal to each other near a critical point? (e) Are there interesting regimes of
positive R? A positive sign is consistent with effectively repulsive interactions. (f) Does the binary
repulsive fluid have instances of anomalous negative R, such as is present for the hard-sphere pure
fluid [13]?

We find considerable physical correspondence between R for the pure fluid and for the
binary fluid.

3. Thermodynamic Geometry of a Binary Fluid

For a binary fluid, the Helmholtz free energy per volume may be written in terms of its appropriate
coordinates [4,14],

f = f (T, ρ1, ρ2), (1)

where T is the temperature, and ρ1 = n1/V and ρ2 = n2/V are the molar densities of the two
components 1 and 2. Here, n1 and n2 are the mole numbers of the components, and V is the volume.

The thermodynamic entropy metric originates from the thermodynamic fluctuation theory [1,15].
Consider a finite open subsystem AV , with fixed volume V, of an infinite closed thermodynamic fluid
system A; see Figure 1. The thermodynamic state (T, ρ1, ρ2) of AV , fluctuates in time about the state of
A. The Gaussian fluctuation probability density is proportional to

exp
[
−V

2
(Δ�)2

]
, (2)

where the entropy metric is [1]

(Δ�)2 =
1

kBT

(
∂s
∂T

)
(ΔT)2 +

1
kBT

2

∑
i,j=1

(
∂μi
∂ρj

)
ΔρiΔρj. (3)
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Here, the entropy per volume of AV is

s = − ∂ f
∂T

, (4)

and the chemical potentials of the two fluid components are

μi =
∂ f
∂ρi

. (5)

ΔT, Δρ1, and Δρ2 are the differences in the temperature and density coordinates of AV and A.
In addition, kB is Boltzmann’s constant. The thermodynamic metric is employed here in fluctuation
theory. It has also been used in finite time thermodynamics [16] as a measure of dissipation.

V

Figure 1. A standard structure in thermodynamic fluctuation theory, a single open subsystem AV , with
fixed volume V, of an infinite closed environment A.

Let us emphasize a point not always appreciated in the metric geometry of thermodynamic
fluctuations. A major project in this geometry is to calculate the thermodynamic curvature R.
We want R to tell us something about the intrinsic properties of the material comprising the system
A. This goal naturally requires the use of an open subsystem AV , so as to leave particles free to
move in or out of AV , unimpeded by any surrounding artificial wall or membrane. Such a physical
constraint would change the value of R in a way involving more than just the properties of the particles;
this should be avoided. As emphasized by Callen [14], fluid thermodynamics requires us to set one of
the thermodynamic variables aside as the fixed subsystem scale. For an open system, this scale is the
volume V. We recommend that authors always work with open subsystems for calculating R.

In the coordinates (T, ρ1, ρ2), the metric tensor g is composed of five nonzero elements, which can
be read off from Equation (3):

g =
1

kBT

⎛⎜⎜⎜⎝
− ∂2 f

∂T2 0 0

0 ∂2 f
∂ρ2

1

∂2 f
∂ρ1∂ρ2

0 ∂2 f
∂ρ2∂ρ1

∂2 f
∂ρ2

2

⎞⎟⎟⎟⎠ . (6)

The fourth-rank curvature tensor has elements [2]

Rα
βγδ = Γα

βγ,δ − Γα
βδ,γ + Γμ

βγΓα
δμ − Γμ

βδΓα
γμ, (7)

where the Greek indices range from 1, 2, 3, and denote the coordinates (T, ρ1, ρ2), respectively.
The Christoffel symbols are defined as

Γα
βγ =

1
2

gαμ(gμγ,β + gμβ,γ − gβγ,μ), (8)
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where gαβ denotes the elements of the inverse of the metric g with elements gαβ. We use the comma
notation (e.g., , β) to denote the partial derivative with respect to some specific coordinate. Repeated
indices are summed over. The second-rank Ricci tensor is given by

Rαβ = Rμ
αμβ, (9)

and the Ricci curvature scalar is
R = gμνRμν. (10)

It is straightforward to show that R has units of volume per particle for the binary fluid, the same
units as for the pure fluid. These units alone label R as a measure of some sort of size scale within
the system. The definition of the Riemannian curvature tensor is ambiguous with respect to a sign,
and we use the sign convention of Weinberg [17], where the two spheres have negative R.

4. Thermodynamic Stability

Fluctuations must satisfy thermodynamic stability, requiring maximum entropy of A in
equilibrium. This is obtained if the line element in Equation (3) is positive definite for all fluctuations.
A necessary and sufficient condition for thermodynamic stability is that the metric coefficients in
Equation (6) satisfy the three following conditions [1,18]:

g11 > 0, (11)

g11 g12

g21 g22
> 0, (12)

and

g11 g12 g13

g21 g22 g23

g31 g32 g33

> 0. (13)

We tested frequently for stability.

5. Helmholtz Free Energy for Binary van der Waals

We take the Helmholtz free energy per mole for binary vdW from Konynenburg and Scott [19]:

Am = e(T)−R T log
(

Vm − b
Vm0

)
+R T [(1 − x) log(1 − x) + x log(x)]− a

Vm
,

(14)

where

e(T) = −3
2
R T ln

(
T
T0

)
+ ε (15)

is the purely thermal part of the ideal gas contribution, R is the universal gas constant,
Vm = V/(n1 + n2) is the molar volume, Vm0, T0, and ε are constants that do not appear in R, and x is
the concentration

x =
n2

n1 + n2
. (16)

The quantities a and b are functions of x reflecting the purely attractive and repulsive parts of the
interparticle interactions, respectively:

a(x) = (1 − x)2a11 + 2x(1 − x) a12 + x2a22, (17)
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and
b(x) = (1 − x) b11 + x b22, (18)

with a11, a12, a22, b11, and b22 as the five independent vdW coefficients.
The full (extensive) Helmholtz free energy is

A(T, n1, n2, V) = (n1 + n2)Am, (19)

and the Helmholtz free energy per volume is

f (T, ρ1, ρ2) =
A(T, n1, n2, V)

V
. (20)

For the pure fluid, vdW simplifies by using scaled units [15]. For binary vdW, scaling cannot be
done in a natural way. One possibility is to scale in terms of the van der Waals coefficients of one of
the fluid components [19], but this seems somewhat artificial. In this paper, we avoid scaled units,
and simply adopt real units when needed.

6. Repulsive Binary van der Waals

First consider the case with only repulsive interactions, with zero a coefficients, b11 = b1,
and b22 = b2. By Equation (20), we have

f (T, ρ1, ρ2) = −kBT(ρ1 + ρ2) log
[

1 − b1ρ1 − b2ρ2

Vm0

]
+ kBTρ1 log (ρ1)

+ kBTρ2 log (ρ2)−
3
2

kBT(ρ1 + ρ2) log
(

T
T0

)
+ ε(ρ1 + ρ2),

(21)

where we send R → kB to convert ρ1 and ρ2 to units of particles per volume.
By using Equation (21), and the process described in Section 3, we find:

R =
1

2 (ρ1 + ρ2)

[
1 − 2b2ρ1 − 2b1ρ2 − 4b1ρ1 − 4b2ρ2 + 5b2

1ρ1ρ2

+5b2
2ρ1ρ2 + 5b2

1ρ2
1 + 5b2

2ρ2
2

]
.

(22)

Note, R for repulsive vdW has no dependence on T, nor does it depend on the constants in
Equation (21), other than the b’s.

Since R has units of volume per particle, R × (ρ1 + ρ2) is dimensionless. Setting b1 = b2 = b yields

R × (ρ1 + ρ2) =
1
2
[1 − b (ρ1 + ρ2)] [1 − 5b (ρ1 + ρ2)] . (23)

If b → 0, this expression agrees with Ruppeiner and Davis [4] for the binary ideal gas with the thermal
contribution in Equation (15). R × (ρ1 + ρ2) is shown as a contour graph in Figure 2.

With only the b coefficients nonzero, we would naively expect R > 0, consistent with repulsive
interactions. Cases with R < 0 clearly occur, mirroring the situation in the pure fluid where,
for example, the gas of hard-spheres has negative R [13]. Such anomalous results might be dismissed
as aberrations since we are below the low |R| limit. However, it is interesting that the negative sign
persists from the pure fluid into the binary fluid. This consistency contributes to the need for a more
nuanced interpretation for the sign of R.
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Figure 2. The contour graph of R × (ρ1 + ρ2). On approaching the bold red line from below,
the pressure P → +∞. Above the line P is negative. The physical regime is below the line, where R has
both positive and negative values, with a minimum of R × (ρ1 + ρ2) = −0.4. In the physical regime,
values of R × (ρ1 + ρ2) are all less than the low |R| limit. The value at the origin is 1/2.

7. Attractive Binary van der Waals

Now turn on the attractive interactions in binary vdW. In this scenario, Konynenburg and
Scott [19] classified nine distinct possibilities, depending on the values of the vdW a and b coefficients.
We consider here only an instance of their Type I possibility, with a single curve of critical points
continuously connecting the critical points of the pure fluid components x = 0 and x = 1. Our example
has vdW coefficients a11 = 0.002, a22 = 0.005, a12 = 0.004, and b11 = b22 = 0.00002. (In MKS units,
the units of the a’s are Joules meters3/mole2, and the units of the b’s are meters3/mole. These vdW
coefficients produce critical points very roughly in the zone of normal fluid Helium.)

To structure the discussion, note that if T is high, the attraction between the particles has little
effect, and we expect no phase transitions. Now consider lowering T slowly, with the particle numbers
and the volume held fixed. We might move along such an isochore in a laboratory PVT experiment;
see Figure 3. As T decreases, attractive interatomic interactions become more effective, and the binary
fluid could eventually break into two phases.

T

Figure 3. The binary fluid inside a closed container fixing the number of particles and the volume.
As the temperature is lowered, the kinetic energy decreases, and the fluid generally breaks into two
phases at some temperature. The phases have different x’s.

These phase transitions have associated second-order curves of critical points [19]. For Type 1,
every x has a single critical point with critical coordinates T = Tc, P = Pc, and Vm = Vmc. In their
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Appendix A, Konynenburg and Scott [19] describe an explicit procedure x → (Tc, Pc, Vmc) for locating
these critical points.

The critical curve is shown in Figure 4. The det(g) switches signs upon crossing this critical
curve, with the thermodynamics stable above the curve and unstable below it, according to
Equations (11)–(13). R diverges to negative infinity on the critical curve.

(d)

Figure 4. The critical parameters (Tc, Pc, Vmc) as functions of x (a–c). On crossing the critical curve,
det(g) switches sign, as shown in (d), with g = det(g) calculated along critical isochores (x, T, Vmc).
The thermodynamics is thus stable above the critical curve and unstable below it. R diverges to
negative infinity on the critical curve.

The theoretical expectations on approaching the critical curve are well-known. A general physical
argument was given by Widom [20] in the context of the hyperscaling critical exponent relation

d ν = 2 − α, (24)

where d is the spatial dimension (d = 3 here), α is the heat capacity critical exponent (α = 0 here),
and ν is the correlation length critical exponent. On approaching the critical curve from above along a
critical isochore with fixed x, fixed Vm = Vmc, and decreasing T, the correlation length is expected to
diverge according to:

ξd ∝
(

T − Tc

Tc

)α−2
. (25)

A key finding in previous research is that |R| ∝ ξd near a critical point [1,21–23], (The constant of
proportionality between R and ξ3 calculated for both fluid and magnetic systems in distinct spatial
dimensions appears to be −1/2: − 1

2 R = ξd; see [23] for a brief review.) and so we expect

|R| ∝
(

T − Tc

Tc

)−2
(26)

along a critical isochore.
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An interesting contrast to binary vdW is offered by pure fluid vdW, where R is computed with
2D thermodynamic geometry. It was shown [1] that the asymptotic divergence of R for the pure vdW
fluid, with the thermal ideal gas contribution as in Equation (15), along the critical isochore is

R = −b
(

T − Tc

Tc

)−2
, (27)

independent of the vdW constant a. Here, b = b11 if x = 0 and b = b22 if x = 1.
Physically, ξ3 should be the same for a binary fluid in the limits x → 0 or x → 1 as for

the corresponding pure fluids. Since R in the critical region is a measure of ξ3, we might then
physically expect the limiting R 3D’s to be at least approximately equal to the corresponding R 2D’s.
Remarkably, this limiting correspondence holds very well, even though the 2D and 3D formulas for R
are quite different.

We computed R along four critical isochores in 3D thermodynamic geometry, x = 0.2, 0.4, 0.6,
and 0.8. Results near the critical point are shown in Figure 5. The four curves clearly overlap each other
very closely, and show very little dependence on x. The asymptotic R is always negative, in accordance
with expectations for effectively attractive interactions. The critical curves have asymptotic power
law divergences, in accordance with Equation (26). The critical exponents of the four curves are all
within better than 0.3% of the expected value 2, with the power law fits done over the full range of the
data shown in Figure 5. Erdem [6] got similar 3D power law behavior in the Ising antiferromagnet.
Note as well that the smallest values of |R| in Figure 5 are about 4 nm3/atom, so values near the
particle level are on the asymptotic power law line. Such a large span of the critical regime was seen
also in magnetic systems [23].

Figure 5. −R computed with the R 3D formula versus the reduced temperature for four critical
isochores in the critical region. Points all fall nearly on the same straight line with slope −2. The values
of R are all negative. Additionally shown is −R computed with the R 2D formula for the two pure
fluids x = 0 and 1 along the critical isochores. Somewhat remarkably, these points also fall on the
common line.

Additionally shown in Figure 5 is −R for the pure fluids x = 0 and 1 calculated with the 2D
thermodynamic geometry. Asymptotically, we expect these curves to obey Equation (27), and we
found that they do. The R 2D curves are in excellent agreement with the corresponding R 3D curves.

Next, we consider letting the binary fluid expand into the binary ideal gas state, which has the
dimensionless quantity [4]

R × (ρ1 + ρ2) =
1
2

. (28)
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We approached the binary ideal gas limit for four fixed values of x by starting at (Tc, Vmc) for each
x, and increasing Vm at constant T = Tc. Results of this expansion are shown in Figure 6. Clearly,
for each x, R × (ρ1 + ρ2) → 1/2, in accord with Equation (28).

ρ
ρ

Figure 6. The approach to the ideal gas limit. For each fixed x, we proceed at constant T = Tc by
increasing Vm, starting from Vmc. This leads to the ideal gas where we expect R × (ρ1 + ρ2) = 1/2.

8. Conclusions

We have made a start in calculating the full three-dimensional thermodynamic Ricci curvature
scalar R in an interacting binary fluid system. Our main finding is that the physical interpretation of R
for the pure fluid extends very naturally to the binary fluid. The emerging physical picture for the
thermodynamic R is thus quite robust. We calculated R for two scenarios involving the van der Waals
model for the binary fluid. The first had exclusively repulsive interactions, and the second added
attractive interactions, and critical phenomena.

Let us place our results in the context of the expectations in Section 2. (a) In the binary ideal
gas limit, we expect R × (ρ1 + ρ2) = 1/2 from an earlier exact calculation. Figure 6 clearly shows
this known limit. This limit is also shown at the origin of Figure 2. Both these figures (in the ideal
gas limit) have |R| smaller than the low |R| limit, and so the results here are not as strong as those
in the critical regime, where |R| is much larger. (b) Near critical points, |R| was found to diverge
with the expected critical exponent of 2, as shown in Figure 5. In the limits as the binary fluid goes
to the pure fluid, we found excellent concordance with the pure fluid results calculated with the 2D
thermodynamic geometry. These critical point results are the strongest that we present in this paper.
(c) Near critical points, R was found to be negative, as shown in Figure 5. This negative sign is expected
when interactions are effectively attractive. (d) Evaluating R along coexistence curves was beyond the
scope of our paper. (e) Our regimes of positive R were all more or less expected, with values all under
the low |R| limit. A more systematic search of the thermodynamic phase space for more interesting
cases (above the low |R| limit) was beyond the scope of our paper. (f) We found that the repulsive
vdW was negative at large densities, in accord with the anomaly found by Brańka et al., for the hard
sphere [13]; see Figure 2. That this anomaly translates from the 2D to the 3D thermodynamic geometry
is interesting.
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13. Brańka, A.C.; Pieprzyk, S.; Heyes, D.M. Thermodynamic curvature of soft-sphere fluids and solids.

Phys. Rev. E 2018, 97, 022119. [CrossRef] [PubMed]
14. Callen, H.B. Thermodynamics and an Introduction to Thermostatistics; John Wiley & Sons: New York, NY, USA, 1985.
15. Landau, L.D.; Lifshitz, E.M. Statistical Physics; Elsevier: New York, NY, USA, 1980.
16. Andresen, B.; Salamon, P.; Berry, R.S. Thermodynamics in finite time. Phys. Today 1984, 37, 62. [CrossRef]
17. Weinberg, S. Gravitation and Cosmology; Wiley: New York, NY, USA, 1972.
18. Eves, H. Elementary Matrix Theory; Dover: New York, NY, USA, 1966.
19. van Konynenburg, P.; Scott, R. Critical lines and phase equilibria in binary van der Waals mixtures.

Philos. Trans. Math. Phys. Sci. 1980, 298, 495.
20. Widom, B. The critical point and scaling theory. Physica 1974, 73, 107. [CrossRef]
21. Ruppeiner, G. Thermodynamics: A Riemannian geometric model. Phys. Rev. A 1979, 20, 1608. [CrossRef]
22. Johnston, D.A.; Janke, W.; Kenna, R. Information geometry, one, two, three (and four). Acta Phys. Pol. B 2003,

34, 4923.
23. Ruppeiner, G.; Bellucci, S. Thermodynamic curvature for a two-parameter spin model with frustration.

Phys. Rev. E 2015, 91, 012116. [CrossRef] [PubMed]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

266



entropy

Article

Thermoelectric Efficiency of Silicon–Germanium
Alloys in Finite-Time Thermodynamics

Patrizia Rogolino 1 and Vito Antonio Cimmelli 2,*

1 Department of Mathematical and Computer Sciences, Physical Sciences and Earth Sciences,
University of Messina, Viale F. Stagno d’Alcontres, 31, 98166 Messina, Italy; progolino@unime.it

2 Department of Mathematics, Computer Science and Economics, University of Basilicata,
Viale dell’Ateneo Lucano, 10, 85100 Potenza, Italy

* Correspondence: vito.cimmelli@unibas.it; Tel.: +39-0971205885

Received: 30 July 2020; Accepted: 29 September 2020; Published: 2 October 2020

Abstract: We analyze the efficiency in terms of a thermoelectric system of a one-dimensional
Silicon–Germanium alloy. The dependency of thermal conductivity on the stoichiometry is pointed
out, and the best fit of the experimental data is determined by a nonlinear regression method
(NLRM). The thermoelectric efficiency of that system as function of the composition and of the
effective temperature gradient is calculated as well. For three different temperatures (T = 300 K,
T = 400 K, T = 500 K), we determine the values of composition and thermal conductivity corresponding
to the optimal thermoelectric energy conversion. The relationship of our approach with Finite-Time
Thermodynamics is pointed out.

Keywords: finite-time thermodynamics; Silicon–Germanium alloys; minimum of thermal conductivity;
efficiency of thermoelectric systems; minimal energy dissipation

1. Introduction

In recent years, Silicon–Germanium (SiGe) alloys have become very important in technology,
since some of their properties such as, for example, their efficiency in energy conversion, may be
improved by adjusting their stoichiometry. Indeed, alloys of the type SicGe1−c, where c ∈ [0, 1] is a
stoichiometric parameter which varies along a direction z in the system, are widely used in energy
production and management [1–6]. The thermoelectric efficiency is defined as ηel =

Pel
Q̇tot

, with Pel

the obtained electric power and Q̇tot the heat per unitary time entering the system, [7–9]. It can
be proven that ηel is an increasing function of the material function ZT, where T is the absolute
temperature while the figure-of-merit Z is given by Z = ε2σe

λ , where ε is the Seebeck coefficient, σe the
electrical conductivity, and λ is the thermal conductivity of the material [9]. Then in the literature
one can find several methods to enhance Z [10–12]. One of the most successful strategies is the use of
nonlinear nanomaterials [13–15], namely nanomaterials in which some nonlinear transport equations
hold. Indeed, for those materials an external control of the flux of heat carriers is possible, leading to
a reduction of the thermal conductivity, and hence to an increment of Z [16–19]. The efficiency of a
homogeneous thermoelectric system has been calculated in [20,21], wherein some strategies to enhance
its performance have been pointed out. The thermoelectric efficiency of a nanosystem of variable
composition has been studied in several papers by the present authors [22–24]. In particular, in [23],
we have obtained the analytical representation of the thermal conductivity of a nanowire as function
of its composition c, as the sum of two exponentials, each depending on 3 parameters, whose value
was determined by the experimental data through NLRM.

On the other hand, in several cases the constituents of thermoelectric energy generators can have
macroscopic dimension, so that the thermoelectric efficiency of graded systems at macroscale needs to

Entropy 2020, 22, 1116; doi:10.3390/e22101116 www.mdpi.com/journal/entropy
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be investigated as well. In such a framework, the possibility of application of the nonlinear model used
in [22–24] needs to be tested, since at macroscopic scale nonlinear effects are less evident. Thus, in this
paper we explore the possible extension of the model at macroscopic scale, by considering a SiGe
graded wire, of length L = 3 mm. We investigate the dependence of its performance as thermoelectric
energy generator as function of the composition and of the effective temperature gradient applied to its
boundaries, and determine the conditions under which such an efficiency is maximum. Our conclusion
will be that the model still leads to previsions which are physically sound and acceptable for the system
at hand, although they differ from those obtained in [23].

Moreover, as additional result of the present research, going a step further with respect to [23],
we also improve the constitutive equation of the thermal conductivity, which now depends by only
4 parameters instead of the 6 parameters used in [23]. Such an improvement is not easy, as it could
appear at a first look, because a reduction of the number of free parameters in general increases the
numerical error which affects the fit, and the new fit can be used in the applications only if the error on
it is kept at an acceptable level. In Section 2 we discuss this problem and show that our fit reproduces
accurately the experimental data.

Then, we calculate the heat conductivity at T = 300 K, T = 400 K, and T = 500 K, corresponding
to the experimental data at our disposal, and prove that for each temperature there is only one value
of c in the interval [0, 1] which minimizes the local rate of entropy production, i.e., which corresponds
to the optimal efficiency of the thermoelectric energy production.

The article has the following structure.
In Section 2, we apply a NLRM to obtain the best fit of the curve which represents the thermal

conductivity of a wire of length L = 3 mm as function of its composition c.
In Section 3, we first give a sketch of the nonlinear model we are facing with, and calculate

the form of the local rate of entropy produced along the thermoelectric process. Then, under the
assumption that the optimal efficiency is achieved in correspondence of a minimum of the local rate of
entropy produced, we determine the theoretical expressions of c which minimize such a rate.

In Section 4, we calculate the effective values of c given by the theoretical expressions found in
Section 3 and discuss this result taking into account the characteristic properties of nanosystems.

Finally, in Section 5, we interpret the present approach within the frame of Finite-Time
Thermodynamics [25–27]. In particular, we show that our assumption of minimum entropy production
can be considered a consequence of a global variational principle which is suitable for application in
Finite-Time Thermodynamics.

2. Constitutive Equation of Thermal Conductivity

In this section, by using MATHLAB (http://www.mathlab.mtu.edu/mediawiki/index.php/Ma
in_Page), we apply a NLRM [28,29] to determine the best fit of the experimental data for the heat
conductivity of a SicGe1−c wire of length L = 3 mm as function of its composition parameter c ∈ [0, 1].

In Ref. [23], starting from the experimental data in [30–32], such a procedure led us to the
following constitutive equation

λ(c) = A′eB′c2+D′c + E′eF′c2+G′c (1)

with A′, B′, D′, E′, F′ and G′ as material parameters, determined by a NLRM. The constitutive
Equation (1) led us to a very good accordance with the experimental data [23].

In the present paper, we go a step further, starting from the observation that since we have pure
Ge for c = 0, and pure Si for c = 1, for Equation (1) the following constraints on A′, B′, D′, E′, F′ and
G′ must be satisfied for any value of the temperature T

λ(0) = A′ + E′ = λGe λ(1) = A′eB′+D′
+ E′eF′+G′

= λSi (2)
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where λGe and λSi are the thermal conductivity of pure Ge and pure Si, respectively. As a consequence,
only 4 independent parameters are necessary, once the experimental values of λGe and λSi at
a fixed temperature are known. To obtain a manageable 4-parameters representation is not an
easy task, because, in general, the smaller the number of free parameters in the fitting function,
the higher the numerical error affecting the fit. In the present paper, we determine a new fit,
with 4 independent parameters only, which is reliable and introduces a small error. For the new
4-parameters representation, the analysis of the data in [30–32] suggests us to look for a best-fit curve
of the form

λ(c) = f (A, B, D, E)eAc2+Bc + g(A, B, D, E)eDc2+Ec (3)

where A, B, D, E, are the unknown parameters to be determined by NLRM and f (A, B, D, E) and
g(A, B, D, E) are suitable parameters-dependent coefficients. Finally, the conditions λ(0) = λGe and
λ(1) = λSi give the following expressions of the functions f (A, B, D, E) and g(A, B, D, E)

f (A, B, D, E) =
λSi − λGe eD+E

eA+B − eD+E , g(A, B, D, E) =
−λSi + λGe eD+E

eA+B − eD+E

Thus, our fitting curve can be obtained once the parameters A, B, D, and E are determined.
In order to calculate them, first we estimate some initial values for parameter entering Equation (3).
Then, in the set of the possible couples (c, λ(c)), i.e., in the strip {[0, 1]× [0, ∞]} ⊂ R2, we generate the
curve determined by the estimated values of the parameters, and adapt them in such a way that the
Euclidean distance in R2 between the fitting curve and the experimental points is as small as possible.
Let’s notice that the total error affecting the fit, i.e., the sum of the squared distances between the
experimental points and the fitting curve, is of the same order of magnitude for all the temperatures
considered here.

The values of A, B, D, E at T = 300 K, T = 400 K and T = 500 K are shown in Table 1 for
L = 3 mm. The values of the heat-conduction parameter for bulk systems of pure Si and pure Ge
at T = 300 K, T = 400 K and T = 500 K, are shown in Table 2. The plots in Figures 1–3 show the
measured and theoretical values of λ(c) expressed by Equation (3), at T = 300 K, T = 400 K and
T = 500 K, for L = 3 mm. By comparing the pink and black curves in Figures 1–3 we argue that fitting
curve reproduces accurately the experimental data. It is evident from the figure the presence of two
narrow zones, close to the extremes of the interval [0, 1], in which λ varies steeply, while it remains
almost constant in the other points of the interval. The variation of λ with c is more evident in the
subintervals [0, 0.1] and [0.9, 1] because a small quantity of impurities is capable of enhancing the
phonon scattering, and, as a consequence, to reduce very much heat conductivity with respect to the
one of the pure system.

Table 1. Values of A, B, D, E in Equation (3) for a SicGe1−c wire of length L = 3 mm.

Temperature A B D E

T = 300 K 4.8706 −3.76 109.452 −108.953

T = 400 K 91.804 −91.351 4.416 −3.3127

T = 500 K 4.0667 −2.9717 80.4998 −80.0781

Table 2. Thermal conductivity in (W m−1 K−1) corresponding to the mentioned compositions at
T = 300 K, T = 400 K and T = 500 K, for a SicGe1−c wire of length L = 3 mm.

Temperature λSi λGe

T = 300 K 149.95 77.95

T = 400 K 113.54 59.42

T = 500 K 92.01 48.08

269



Entropy 2020, 22, 1116

Figure 1. Plots of the calculated vs. measured values of thermal conductivity of a SicGe1−c wire of
length L = 3 mm as function of c, at temperature T = 300 K.

Figure 2. Plots of the calculated vs. measured values of thermal conductivity of a SicGe1−c wire of
length L = 3 mm as function of c, at temperature T = 400 K.
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Figure 3. Plots of the calculated vs. measured values of thermal conductivity of a SicGe1−c wire of
length L = 3 mm as function of c, at temperature T = 500 K.

3. Best Efficiency in Thermoelectric Energy Conversion

The system analyzed here is a graded SicGe1−c wire of length L crossed by an electric current
i, on which acts an electric field E. The right-hand side (z = L), is kept at the hot temperature Th,
while the left-hand side, (z = 0), is kept at the cold temperature Tc. Since the material composition
changes with position, at right-hand side (z = L) we have only Silicon while at left-hand side, (z = 0)
we have only Germanium. Then, the system is similar to a junction of different materials at the ends
of which is applied a difference of temperature Th − Tc. As is well known, such a type of junction is
capable of generating a difference of electric potential at its ends, and this phenomenon is the classical
thermoelectric effect [16,17]. As a consequence of the generation of this difference of potential, there are
an electric current i flowing uniformly inside the system from left to right, and an electric field E acting
on the system. The difference of temperature at the ends of the wire is generated by given amount of
heat per unit time Q̇tot which enters uniformly into the hot side of the element.

The model is represented by:

• The local energy balance [21]

ρ
du
dt

+∇ · q = E · i (4)

where ρ is the mass density, u the specific internal energy and q the heat flux;
• the constitutive equation for the heat flux

q = −∇q · l − λ (1 − b)∇T + Πi (5)

where l denotes a characteristic-length vector, proportional to the heat flux q, b is a dimensionless
quantity smaller than 1 and depending on q2, and Π is the Peltier coefficient [9,17];

• the constitutive equation for the electric current

i = −σeε∇T + σeE (6)
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Here the Peltier and Seebeck coefficients Π and ε, as well as the electric conductivity
σe, are supposed to be constant. It is worth noticing that for the nonlinear heat conductor
presented here the classical second Kelvin relationship Π = εT, which holds in Linear Irreversible
Thermodynamics [9,17], in general, is no longer true (see [21] for a detailed discussion of this point).
In our analysis we assume also that the thermal conductivity λ(c, T) can be approximated with its
expression at the hottest side, namely λ(c, Th).

From the physical point of view, the previous hypotheses mean that we restrict our investigation
to rigid conductors whose thermal and electric functions have small variations with respect
to temperature, and the variation of λ with the composition is preeminent in influencing the
thermoelectric behavior. Of course, this is not the most general case, and the present investigation
must be considered only as a first step toward a complete analysis of the thermoelectric behavior of
composition graded materials.

From the mathematical point of view, as it will be shown below, the previous hypotheses lead
to a problem of determination of the points of minimum of a function of two independent variables.
In such a case, some conditions ensuring that such minima always exist can be determined. On the
other hand, if the material functions would depend on the temperature too, the same problem should
be considered for a function of three independent variables, as in Ref. [24]. In such a case, it is much
more difficult to determine the conditions which ensure the existence of minima. Moreover, more data
on the dependence of the material functions on temperature are necessary. Indeed, currently we are
considering such a problem, and the results will be included in a forthcoming article.

Under the conditions discussed above, if we further assume that both q and E depend only on
the position on the longitudinal axis z, and that q and i are parallel, by some lengthy calculations we
obtain that the local rate of energy dissipated along a thermoelectric process is [23]

E =
i2

σe
+ i[ε Th − (Π − E l)]∇T + λ(1 − b)(∇T)2 (7)

where E, and l denote the mean values of |E|, and |l| on the interval [0, L], respectively. In what
follows we restrict ourselves to steady-state situations, which are usual for thermoelectric converters,
and exploit Equation (7) in order to determine the situation in which the efficiency as thermoelectric
energy converter of the system under consideration is maximum. Indeed, our main assumption is that
the optimal efficiency is achieved in correspondence of a minimum of the rate of energy dissipated.
Such a hypothesis lies on the observation that the efficiency is reduced by dissipative effects induced
by the heat and electric transport. In Section 4 we will discuss it within the framework of Finite-Time
Thermodynamics [25–27].

Equation (7) provides an expression of the local rate of energy dissipated, depending on the
temperature gradient and on Th and c through the thermal conductivity λ(Th, c). Thus, if Th is fixed
at one of the constant values T = 300 K, T = 400 K and T = 500 K, function E depends only on the
gradient of temperature, and on the composition c. Furthermore, the hypothesis that the temperature

gradient is parallel to z allows the further approximation ∇T =
dT
dz

� Th − Tc

L
. Then, Equation (7)

rewrites as follows

E (c, x) =
i2

σe
+ i[ε Th − (Π − E l)]x2 + λ(c)(1 − b)x4 (8)

where

x ≡
√

Th − Tc

L
(9)

In the following we look for the possible minima of function E (c, x). It is easily proved that those
points, which will be denoted by (cs, xs), are the stationary points cs of λ(c), and the values

xs =

√
−i [ε Th − (Π − E l)]

4 λs(1 − b)
(10)
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with λs ≡ λ(cs). They exist if the inequality

i [ε Th − (Π − E l)] < 0 (11)

holds. The relationship (11) can be considered as a unilateral constraint on the physical parameters
which characterize the model.

By the analysis of the Hessian matrix of the function E (c, x), it follows that the condition that
must be fulfilled for the existence of a minimum for it is that the thermal conductivity has a minimum
in cs, and that the further constraint

2i[ε Th − (Π − E l)] + 12λsx2
s (1 − b) > 0 (12)

is satisfied. Although the first addendum in the left-hand side of Equation(12) is negative because of
the constraint (11), the second one is positive, and hence the inequalities (11) and (12) can be satisfied
contemporarily. Thus, the points of minimum for E (c, x) exist. From now on we denote by (copt, xopt)

such points.

4. Results

In this section, we discuss the properties of the minima (copt, xopt) of E (c, x), calculated by using
MATHEMATICA (https://www.wolfram.com/mathematica/).

At T = 300 K, E (c, x) attains a minimum at c = 0.385989. In this point λ=7.51235 Wm−1K−1.
At T = 400 K, E (c, x) attains a minimum at c = 0.375079. In this point λ = 7.48291 Wm−1K−1.
At T = 500 K, E (c, x) attains a minimum at c = 0.36537. In this point λ = 7.42273 Wm−1K−1.
The previous results are summarized in Table 3, wherein λopt ≡ λ(copt).

Table 3. Values of λopt (in W m−1 K−1) for the compositions copt at T = 300 K, T = 400 K and
T = 500 K, for L = 3 mm.

Temperature (K) copt λopt (in W m−1 K−1)

T = 300 0.385989 7.51235

T = 400 0.375079 7.48291

T = 500 0.36537 7.42273

Let us now compare the present results with those obtained in [23]. In both cases, there are
no local minima of λ in the zones where λ is more steep, namely the optimal efficiency takes place
in the zone where λ is almost constant. The values of copt are a little bit smaller (from 0.36 to 0.38)
with respect to the values found in [23] (from 0.44 to 0.41). However, in both cases we got three
points of minimum very close each other, which correspond to small differences in λ. Meantime,
the values of λopt obtained here for a wire of length L = 3 mm are almost an order of magnitude
higher with respect to those obtained in [23] for L = 100 nm, and comparable with (but smaller
than) those obtained for L = 30 nm. It is worth noting that in [23] we obtained a marked difference
between the values of λopt for L = 30 nm and those for L = 100 nm. It can be considered a size effect,
i.e., a strong dependency of the material properties on the dimension of the system. This is just what
we observed in [23], since for L = 30 nm we obtained λopt of the order of magnitude of 30 W m−1

K−1, while for L = 100 nm we obtained λopt of the order of magnitude of 0.4 W m−1 K−1. Size effects
are very frequent in heat conduction in nanosystems, and manifest themselves when the physical
dimension of the heat conductor becomes comparable with, or smaller than, the mean free path of the
heat carriers [16,17]. These effects disappear at macroscopic length-scale. To verify such a property
in our case, the dependency of λopt on the size of the system at macroscopic scale deserves further
investigation. For such a study we need new experimental data, for length smaller and higher than
3 mm. Currently we are not aware of such data, but we are looking for them in the literature.
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5. Relation with Finite-Time Thermodynamics

The early studies on the efficiency of thermodynamic engines were based on the concept of
Carnot cycle, which means a quasi-static, i.e., reversible, thermodynamic cycle constituted by two
isothermal and two adiabatic arcs in the state space, in which a thermodynamic system adsorbs,
at constant temperature, a quantity of heat QH by a hottest source at temperature TH and gives,
at constant temperature, a quantity of heat QC to a cold reservoir at temperature TC. Along the
cycle, the system produces a net amount of work W = QH − QC. The efficiency of this cycle is
η ≡ W/QH = (QH − QC)/QH = 1 − QC/QH . Carnot was the first to prove that such efficiency takes
the form ηC = 1 − TC/TH . Since a quasi-static transformation requires an infinite time, the Carnot
efficiency ηC is not suitable to describe the efficiency of real processes, which take over in a finite time.
For those processes it is more useful to calculate the efficiency as the ratio η = Pex/Q̇tot, where Pex is the
extracted work per unitary time and Q̇tot is the heat supplied to the system per unitary time. A simple
model of system operating in finite time is provided by the Curzon-Ahlborn endoreversible engine [33].
For that system the efficiency at maximum power, i.e., when the system extracts the maximum power,
can be proved to be ηCA = 1 − √

TC/TH , so that ηCA < ηC. Thus, for real processes, the central
question is to investigate how much the efficiency deteriorates when the cycle is operated in a finite
time. This is the task of Finite-Time Thermodynamics, a modern nonequilibrium theory, which has
been developed in the last four decades by Andresen, Salamon, Stephen Berry et al. [25–27,34].

Classical thermoelectricity can be considered to lay within the frame of Finite-Time
Thermodynamics for the following reasons:

• The definition of the thermoelectric efficiency as ηel = Pel/Q̇tot (see Section 1) does not require
quasi-static transformations along an infinite time. Indeed, if one remains in the frame of linear
thermodynamics, i.e., with linear constitutive equations for heat flux and electrical current, it can
be proved that the maximum efficiency is [9]

ηmax = ηC
1 − 1/ξ

1 + 1/ξ
(13)

wherein ξ ≡
√

ZT + 1. Hence, ηmax < ηC , in accordance with the tenets of Finite-
Time Thermodynamics.

• In the situation considered in the present investigation, two time scales appear: the scale of
the electric effects, and that of the thermal ones. Indeed, according to the general tenets of
Extended Irreversible Thermodynamics, the constitutive Equations (5) and (6) can be obtained by
the following balance laws for the heat flux and for the electric-charge flux, namely the electric
current i [16,17]:

τqq̇ + q = −∇q · l − λ (1 − b)∇T + Πi (14)

τi i̇ + i = −σeε∇T + σeE (15)

where τq is the relaxation time of the heat flux and τi the relaxation time of the electric current.
On the other hand, at the macroscopic length-scale electric phenomena are faster of the thermal
ones, so that the electric relaxation time is much shorter that the thermal one. Thus, the condition
τi << τq allows the regarding of the thermal evolution as a finite-time process with respect to the
electric one.

Equation (13) implies that the higher ξ, the higher ηmax, so that several researches in recent
decades focused on the methods to enhance ξ, i.e., to enhance ZT. However, this is not an easy task.
For instance, still remaining in a linear theory, it can be easily proved that for the wire considered
here, Q̇tot = λ(Th − Tc)/L + Πi [21], so that for fixed Th − Tc and i, a reduction of Q̇tot can be realized,
from the technical point of view, only by a reduction of λ, i.e., by an increment of Z = ε2σe/λ,
producing so an enhancement of the efficiency. However, a reduction of λ is connected with an
increment of the phonon scattering inside the thermoelectric solid [16,17], and this produces dissipation
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which, in turn, reduces Pel. Thus, numerator and denominator cannot be controlled independently in
the expression of ηel . On the other hand, to optimize only one of them is not sufficient to obtain the
best efficiency, as argued by Hoffmann in [34], where it is shown by a meaningful example that the
maximum power does not correspond to the minimum dissipation, and hence to the best efficiency.

In the present investigation we propose a new procedure in the realm of Irreversible
Thermodynamics (Classical and Extended) which is capable of overcoming the difficulties mentioned
above, since it does not focus on the power output but on the energy dissipated along the thermoelectric
process. We proceed as follows. We disregard all the losses related to the production of Q̇tot and
to the management of the generated difference of electrical potential, and we focus only on the
thermodynamic process inside the thermoelectric wire. As illustrated in Section 3, it consists of the
generation of an electric potential after that an amount of heat per unit time Q̇tot entered uniformly
inside the system. Such a heat flow produces dissipation by Joule effect, which, in any point z of
the system and at any time t, is given by the rate of energy dissipated E (c(z), x(z, t)) calculated
in Equation (8). Please note that since we suppose the absence of any mechanical friction, the sole
dissipation of energy is due to the Joule effect. Then, we argue that the smaller the energy dissipated
by Joule effect, the higher the efficiency in the process of thermoelectric energy conversion. It is worth
remarking that E (c(z), x(z, t)) is a local quantity, so that our hypothesis of minimum energy dissipated
is local.

At this point one may wonder if our point of view can follow by a global variational principle
which holds for a wider class of thermoelectric systems. To investigate such a possibility, let’s consider
a thermoelectric system, and let Σ its state space, spanned by a set of n thermodynamic variables
X1, . . . , Xn. Moreover, let A ≡ (X1A, . . . , XnA) and B ≡ (X1B, . . . , XnB) denote two generic points of
Σ. The following statement can be expected to hold.

Principle of Minimum Energy Dissipated

Let S a thermoelectric system undergoing a thermodynamic process of conversion of a given amount of
heat per unit time into an electric-power output, and let such a process represented by a regular curve between
two fixed thermodynamic states A and B of the system. Then, among all the possible processes represented by a
curve of extremes A and B in Σ, the most efficient one is the process in which the total energy dissipated by Joule
effect achieves a minimum.

If a thermoelectric process is represented by a regular curve γ in the state space, the total energy
dissipated is given by

Etot =
∫

γ
E (c, x)dl (16)

where dl denotes the infinitesimal arc-length of γ.
The Principle of minimum energy dissipated states that the most efficient thermoelectric process

is the one in which Etot is minimum.
For the one-dimensional system considered here, the previous principle implies that the best

efficiency is obtained when the local energy dissipated per unit time (i.e., the local power dissipated)
E (c, x) is minimum. To prove that, we first observe that at the constant temperature Th, the constitutive
Equations (5) and (6) depend only on the composition c and on the temperature gradient ∇T, which we
have approximated by the effective gradient x. Thus, the sole thermodynamic variables are the couple
(c, x). Moreover, we are considering the steady-state situation, in which a process of thermoelectric
energy conversion takes place with the system in a constant state. In such a case the different curves
reduce to different points of Σ, and among them, we are looking for the state for which the energy
dissipated is minimum. In such a situation the total energy dissipated in any point is given by

Etot =
∫ L

0

∫ τ

0
Ē (z, t))dzdt (17)
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where τ is the duration of the thermodynamic process, and the superposed bar means that
E (c(z), x(z, t)) was explicated as function of z and t.

On the other hand, being Ē (z, t)) a positive quantity, the right-hand side of Equation (17) is
minimum if, and only if, the integrand function is minimum in any point of the domain of integration,
or, equivalently, if, and only if, E (c, x) is evaluated in the state (copt, xopt) found in Sections 3 and 4.

In the technical applications the previous result allows the determination a priori of the part of
the conductor where the energy conversion is optimal by modulating the dependence of c on z.

This proves that for the system considered in the present investigation, the global and local forms
of the principle are equivalent. Of course, this is a very particular case, and it is important to underline
that the previous conclusions are no longer true for different systems and in non-stationary situations.
In future research, we plan to extend such investigation to more general systems, for instance,
to deformable graded continua, in order to verify the possible extensions of the Principle of minimum
energy dissipated.

It is important to note the different physical dimensions of E and Etot: the first one is a power
density, measured in Jm−1s−1, the second one is the total energy dissipated along the process, which is
measured in J. We observe that the local form of our principle requires that the power density E (c, x)
takes a minimum, the global form, instead, requires that the total energy Etot takes a minimum.

Remark 1. The results above are in accordance with Gyarmati approach to Irreversible Thermodynamics.
According to this approach, the fundamental laws of the thermodynamics of dissipative processes can be resumed
into a very general variational principle, formulated by Gyarmati both in local and global forms [35]. Such a
principle allows several particular formulations, and it is very useful in optimization problems, as those which
are typical of Finite-Time Thermodynamics. For a general analysis of the principle we refer the reader to the
paper [36]. The investigation of a possible formulation of the general tenets of Finite-Time Thermodynamics
in view of the Gyarmati variational principle for dissipative processes constitutes a very interesting field of
investigation, which, however, is beyond the scope of the present article.

It is worth noticing that the Principle of minimum energy dissipated is only one of the possible
criteria for the optimization of the performance of finite-time heat engines. For instance, some authors
proposed the maximization of the power output, some others the maximization of the ratio between

the power output and the heat adsorbed, i.e., the quantity η =
Pout

Q̇tot
, and others the minimization of the

entropy production (see [25] for a discussion of this topic). Each of those approaches presents vantages
and disadvantages. For instance, the power maximization aims at designing highly performant
heat engines, the maximization of the η aims at obtaining good performance with acceptable costs
in energy, the minimization of entropy production, or, equivalently, of energy dissipated, aims at
preserving the natural resources. Regarding this aspect, in the literature one can also find an ecological
criterion which requires maximization of the difference between the power output and the energy
dissipated [37]. Such a criterion seems to be a good compromise between power enhancement and
acceptable entropy production.

The analysis of the efficiency of thermoelectric graded systems in view of the different criteria
illustrated above offers interesting perspectives for future research.

At the very end, we underline again that the previous analysis regards only the process of
thermoelectric energy conversion inside the wire, while the dissipation inside the surrounding is
neglected. Of course, this working hypothesis is only an approximation since, in general, is not easy to
separate the entropy production of the surrounding from that of the heat conductor. Hence, a complete
analysis of thermoelectric energy conversion should take into account the dissipation due to the
production of Q̇tot and that due to the transport and management of the obtained difference of electric
potential. However, such a study is outside the scopes of the present research, and is more pertinent
to the field of Engineering. The previous considerations serve only to explain why the problem
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investigated here, especially the procedure carried out in Sections 2 and 3, can be considered to be
typical of Finite-Time Thermodynamics.
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Abstract: Based on the theory of finite-time thermodynamics (FTT), the effects of three design
parameters, that is, inlet temperature, inlet pressure, and inlet total mole flow rate, of a tubular
plug-flow sulfuric acid decomposition reactor on the total entropy generation rate (EGR) and SO2 yield
are analyzed firstly. One can find that when the three design parameters are taken as optimization
variables, the minimum total EGR and the maximum SO2 yield of the reference reactor restrict each
other, i.e., the two different performance objectives cannot achieve the corresponding extremum
values at the same time. Then, the second-generation non-dominated solution sequencing genetic
algorithm (NSGA-II) is further used to pursue the minimum total EGR and the maximum SO2 yield
of the reference reactor by taking the three parameters as optimization design variables. After the
multi-objective optimization, the reference reactor can be Pareto improved, and the total EGR can
be reduced by 9% and the SO2 yield can be increased by 14% compared to those of the reference
reactor. The obtained results could provide certain theoretical guidance for the optimal design of
actual sulfuric acid decomposition reactors.

Keywords: finite-time thermodynamics; sulfuric acid decomposition; tubular plug-flow reactor;
entropy generation rate; SO2 yield; multi-objective optimization

1. Introduction

At present, the Hybrid-Sulphur (H-S) thermochemical cycle and the Sulphur-Iodine (S-I)
thermochemical cycle are considered to be the two most promising recycling methods in the preparation
of hydrogen from water by thermochemical cycles [1], and the schematic diagram of S-I thermochemical
cycle is shown in Figure 1. Both the H-S and the S-I cycles contain the sulfuric acid decomposition
process. Therefore, it is important and necessary to improve the performance of the sulfuric acid
decomposition process.

The S-I thermochemical cycle consists of three main chemical reactions: (1) the endothermic
decomposition of hydrogen iodide in gas phase; (2) the spontaneous absorption of sulfur dioxide in
liquid phase; (3) the sulfuric acid decomposition reaction. The corresponding reaction equations are
given as follows:

H2SO4
800K→ SO3 + H2O (I)

SO3
1100K→ SO2 +

1
2

O2 (II)

Entropy 2020, 22, 1065; doi:10.3390/e22101065 www.mdpi.com/journal/entropy
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Figure 1. The schematic diagram of S-I thermochemical cycle.

Reaction type (I) is the spontaneous decomposition of H2SO4 into SO3 and H2O at 400–500 ◦C.
Reaction type (II) is the reaction of SO3 over 750 ◦C to produce SO2 and O2 under the action of a
catalyst. In this process, a great deal of heat is consumed, which is also the main energy consumption
process in the S-I and H-S thermochemical cycles.

In the aspect of thermodynamic analysis and optimization of sulfuric acid decomposition, Van der
ham et al. [1] assumed that the reaction mixture satisfies the ideal gas equation of state, established the
physical model of sulfuric acid decomposition reaction, and analyzed the minimization of entropy
generation rate (EGR) of a sulfuric acid decomposition reactor by using the optimal control theory.
Kuchi et al. [2] carried out a numerical simulation of a high-temperature shell and tube heat exchanger
and decomposer, investigated the fluid flow, heat transfer, and chemical reaction processes in the
decomposer by using the porous media method, and established a two-dimensional axisymmetric
tubular plug-flow reactor model. Ponyavin et al. [3] studied the sulfuric acid decomposer process in a
high-temperature ceramic heat exchanger and established a three-dimensional calculation model of
the reactor. Van der ham et al. [4] further compared two methods to improve the efficiency of sulfuric
acid decomposition reactor and proposed two design schemes to improve the efficiency of the reactor.
On the basis of Ref. [1], Wang et al. [5,6] optimized the decomposition of sulfuric acid in the tubular
plug-flow reactor with the goal of maximum yield [5], further analyzed the influences of the design
parameters of the reactor on the SO2 yield and specific EGRs [6], and obtained the optimal parameters
corresponding to the minimum specific EGRs.

Many scholars have optimized other types of thermochemical reaction processes by using the
theory and method of finite-time thermodynamics (FTT) [7–22]. For example, Wang et al. [23]
investigated the isotherm chemical reaction A⇔B⇔C and obtained the best concentration configuration
of the reaction. Johannessen and Kjelstrup [24] studied the EGR minimization of sulfur dioxide oxidation
process. The second-generation non-dominated solution sequencing genetic algorithm (NSGA-II) has
been widely used in multi-objective optimization of various engineering problems [25–30].

On the basis of Refs. [1,5,6], this paper will further analyze the effects of reactant inlet temperature,
pressure, and total molar flow rate on total EGR and SO2 yield, and perform the multi-objective
optimization of the process by using the NSGA-II algorithm by applying FTT.

2. Modeling of the Sulfuric Acid Decomposition Process

A reference reactor used in the performance analysis and optimization as well as the kinetics and
thermodynamics models will be introduced in this section.

2.1. Reference Reactor

The model of a tubular plug-flow reactor for sulfuric acid decomposition is shown in Figure 2.
It is assumed that the temperature (Tw) of the outer wall of tubular plug-flow reactor does not change
with time and its distribution is linear along the axial direction of the reactor. The distribution follows
Tw = 975 + 148z/L (K). The reaction mixture in the reactor is regarded as an ideal gas and only flows
along the axial direction of the reactor. The radial concentration gradient and temperature gradient of
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the reaction mixture in the reactor are ignored without both radial diffusion and back-mixing. The total
molar flow rate and velocity of the reaction mixture at the cross-section of the reactor are as follows:

Ftot =
∑

i

Fi (1)

v =
Ftot

Ac

R T
P× 105 (2)

where Fi is the molar flow rate of reaction component i, i.e., H2SO4, SO3, H2O, SO2 and O2; Ac is the
radial cross section area of the reactor, and R is the universal gas constant.

 

Figure 2. Schematic of tubular plug-flow reactor.

The data of catalyst selection, reactor structure, and thermodynamic parameters of the reaction
mixture are determined according to Ref. [1], as listed in Table 1.

Table 1. Parameters of the reference reactor.

Parameter Symbol Value

Overall heat transfer
coefficient/J/

(
K·m2·s

) U 170

Dynamic viscosity/kg/(m·s) η 4 × 10−5

Catalyst bed porosity ε 0.45

Catalyst pellet density/kg/m3 ρp 4200

Catalyst pellet diameter/m Dp 0.003

Inner diameter of reactor/m D 0.030

Length of reactor/m L 3.090

Inlet temperature/K Tin 800

Inlet pressure/bar Pin 7.1

Inlet total molar flow rate Ftot,in 0.034

Molar fraction of inlet H2SO4 FH2SO4,in 0.094

Molar fraction of inlet SO3 FSO3,in 0.425

Molar fraction of inlet H2O FH2O,in 0.481

Molar fraction of inlet SO2 FSO2,in 0.000

Molar fraction of inlet O2 FO2,in 0.000

2.2. Models of Kinetics and Thermodynamics

The fluid flow, heat transfer, and chemical reaction of the reaction mixture in a tubular plug-flow
reactor follow momentum, energy, and mass conservation equations, respectively, which are given by:

dP
dz

= −
⎡⎢⎢⎢⎢⎣150η

D2
p

(1− ε)2

ε3 +
1.75ρinvin

Dp

1− ε
ε3

⎤⎥⎥⎥⎥⎦v (3)
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dT
dz

=
πDJq + Acρp

∑
j

[
rm, j(−ΔrHj)

]∑
i (FiCp,i)

(4)

dFH2SO4

dz
= −Acρprm,1 (5)

dFH2O

dz
= Acρprm,1 (6)

dFSO3

dz
= Acρp(rm,1 − rm,2) (7)

dFSO2

dz
= Acρprm,2 (8)

dFO2

dz
=

1
2

Acρprm,2 (9)

where ρin and vin are the density and flow velocity of the reaction mixture on the entrance section,
respectively; subscript j = 1, 2 represents the reaction types (I) and (II); rm, j is the reaction rate of mass
per unit catalyst, and they are rm,1 = r1/ρp and rm,2 = r2; Cp,i and ΔrHj are the component molar
constant-pressure heat capacity and the reaction enthalpy of the reaction type j, and their expressions
are given in the Appendix A.

The heat transfer from the heat source outside the tube to the reaction mixture inside the tube
follows Newtonian heat transfer law:

Jq = U(Tw − T) (10)

For different reaction conditions and mechanisms, the driving force in the kinetic equation could
be written as different mathematical forms, and the corresponding coefficients in the kinetic equation
should be determined by experiments and also be different for different choices of the driving force.
According to Ref. [1], the condition that the chemical reaction occurred at the vicinity of the equilibrium
is assumed to be satisfied, and all components are assumed to have stoichiometric reaction order, so the
chemical reaction rates of reaction types (I) and (II) are as follows:

r1 = k1

(
PH2SO4 −

PH2OPSO3

K1

)
(11)

r2 = k2

⎛⎜⎜⎜⎜⎝PSO3 −
PSO2

√
PO2

K2

⎞⎟⎟⎟⎟⎠ (12)

where k1 and k2 are the reaction rate constants of reaction types (I) and (II), according to Ref. [1],

k1 = 10−3mol(SO3)/(Pa·m3·s), k2 = 4.7× 10−3 exp( −99·103
RT ) mol(SO3)/(Pa·kg·s); P represents the partial

pressure of the corresponding component; Kj = exp
(

ΔrG
◦
T, j

−RT

)
is the equilibrium constant of the

chemical reaction type j; ΔrG
◦
T, j is the standard Gibbs free enthalpy of the reaction type j, and the

expression is given in the Appendix A. The driving force in the kinetic Equation (12) is written as
r2 = k2

(
PSO3 − PSO2

√
PO2 /K2

)
, and effects of the different forms of the driving force on the optimization

results will be considered in another paper in the future.
The SO2 yield of the tubular plug-flow reactor is as follows:

ΔFSO2 = FSO2,out − FSO2,in (13)
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The local EGR of the tubular plug-flow reactor is as follows:

σtot = σht + σf + σcr

= πDJq
(

1
T − 1

Tw

)
+ Acv

[
− 1

T

(
dP
dz

)]
+ Acρb

∑
j

rm, j

(
−ΔrGj

T

)
(14)

where subscripts ht, f, and cr represent the local EGRs of heat transfer, fluid flow, and chemical
reaction, respectively.

The total EGR is obtained by integrating the local EGR, i.e.,

Σtot =

∫ L

0
σtotdz (15)

3. Parameter Analyses of Sulfuric Acid Decomposition Reactor

By changing the inlet parameters of the reference reactor, including the inlet temperature Tin,
pressure Pin and the total molar flow rate Ftot,in, the total EGR and the SO2 yield of the reference reactor
are analyzed, and the influences of the initial inlet conditions on the two performance objectives can be
obtained. The variation ranges of the initial inlet parameters are: 750 K ≤ Tin ≤ 900 K, 4 MPa ≤ Pin ≤
9.5 MPa, and 0.0027 mol/s ≤ Ftot,in ≤ 0.1 mol/s.

Figure 3 shows the effects of the temperature Tin of the reaction mixture on the total EGR and the
SO2 yield. It can be seen that the total EGR decreases nonlinearly with the increase of the temperature
Tin, and the decreasing trend is fast firstly and then slow; when the temperature Tin increases from
750 ◦C to 900 ◦C, the total EGR decreases from 0.331 W/K to 0.189 W/K, i.e., decreases by 43%. The main
reason is that with the temperature Tin of the reaction mixture increases, the heat transfer temperature
difference between the reaction mixture and the external heat source decreases, which reduces the
local EGR of heat transfer and the total EGR. The SO2 yield increases very slowly with the increase
of the temperature Tin, and when the temperature Tin increases from 750 ◦C to 900 ◦C, the SO2 yield
increases by only 0.4%. It can be seen that the total EGR can be reduced by increasing the temperature
Tin of the reaction mixture, i.e., the irreversibility of the sulfuric acid decomposition process could be
reduced by increasing the Tin of the reaction mixture. However, it is not significant to increase the SO2

yield by increasing the temperature Tin of the reaction mixture.
Figure 4 shows the effects of the pressure Pin of the reaction mixture on the total EGR and the SO2

yield. It can be seen that the curve of the total EGR is concave and parabolic-like with the increase of the
pressure Pin, and the minimum value is 0.224 W/K when the pressure Pin is about 0.85 MPa. The SO2

yield decreases linearly with the increase of the pressure Pin. When the pressure Pin increases from
0.4 MPa to 1 MPa, the SO2 yield decreases from 0.0118 mol/s to 0.0105 mol/s, i.e., decreases by 11.02%.

Figure 5 shows the effects of the molar flow rate Ftot,in of the reaction mixture on the total EGR
and the SO2 yield. It can be seen that the total EGR and the SO2 yield increase with the increase of
the molar flow rate Ftot,in, and the minimum total EGR and the maximum SO2 yield are mutually
restricted. When the molar flow rate Ftot,in increases from 0.027 mol/s to 0.10 mol/s, the total EGR and
the SO2 yield increases by 4.8 times and 1.8 times, respectively.
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Figure 3. The effects of Tin on the total EGR and the SO2 yield.
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Figure 4. Effects of Pin on the total EGR and the SO2 yield.
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Figure 5. Effects of Ftot,in on the total EGR and the SO2 yield.
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4. Multi-Objective Optimization and Result Analyses

From the analyses in Section 3, when the three inlet parameters are chosen as optimization
variables, and the minimum total EGR and the maximum SO2 yield are taken as optimization
objectives, respectively, there is no optimal solution to achieve the extremum values of the total EGR
and SO2 yield at the same time. Therefore, how to select the appropriate initial inlet conditions to
achieve the relative optimal total EGR and SO2 yield is very important. The NSGA-II algorithm is
one of the excellent algorithms to solve multi-objective optimization problems, and can give a series
of non-inferior solutions (solutions that cannot be optimized for arbitrary objectives without making
other objectives worse) of multi-objective problems. The corresponding improvement process is called
Pareto improvement, the corresponding set of non-inferior solutions is called the Pareto-optimal
solution set, and the corresponding objective function solution is called the Pareto-optimal front.

Figure 6 shows the flow chart of the NSGA-II algorithm. In this section, all of the Tin, Pin and
Ftot,in are taken as the optimization variables to minimize the total EGR and maximize the SO2 yield.
The optimization intervals of the variables are consistent with the previous single-variable analysis.

Figure 6. Basic flow chart of NSGA-II algorithm.

Figure 7 is Pareto optimal frontier of a reference reactor based on the objective of minimizing
total EGR and maximizing SO2 yield, where points A and B represent the solution of the maximum
SO2 yield and the minimum total EGR, respectively. At point A, the weighting coefficient of SO2

yield in multi-objective optimization is 1, and the weighting coefficient of total EGR is 0, it is also
the solution of maximizing the SO2 yield. Similarly, point B is the solution of minimizing the total
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EGR. From Figure 7, it can be seen that the minimum total EGR and the maximum SO2 yield are
mutually constrained, and they cannot achieve the extremum values at the same time. Only the relative
optimal solutions of the two objectives under different weighting coefficients can be found, that is,
the non-inferior solution. One can select the appropriate optimal solution from the Pareto-optimal
solution set according to different needs to meet the different demands of decision-making purposes.
Commonly used multi-objective decision-making methods are Shannon, LINMAP, and TOPSIS, but in
the actual decision-making process, decision-making is usually based on actual engineering experience
and personal preferences of decision-makers, there is no universal way to make decisions.

Figure 7. Pareto optimal frontiers of reference reactor.

In this paper, in order to facilitate the comparison with the reference reactor, a suitable
multi-objective decision point (point C) is selected for comparison. Because the solution of the
minimum specific EGRs is the solution of the total EGR and the yield under a certain ratio, the decision
point of the minimum specific EGR must be on the Pareto-optimal front, which can be used as an
important basis to verify the accuracy of the NSGA-II algorithm results.

Figure 8 is the bar chart of the target value of the reference reactor under optimization and
non-optimization. Table 2 lists the results of each optimization target condition. It can be seen that
compared with the reference reactor, the SO2 yield of the reactor with the maximum yield increases by
118%, but the total EGR increases by 222%; the total EGR of the minimum EGR reactor decreases by
40%, and the corresponding SO2 yield also decreased by 22%; the total EGR and the SO2 yield of the
reactor with the minimum specific EGR decrease by 38% and 16%, respectively. From Figure 7, it can be
easily concluded that the reference reactor is not located at the Pareto optimal frontier, so the reference
reactor can be optimized by Pareto improvement. A non-inferior solution (point C) is obtained by the
multi-objective optimization method, in which the total EGR of the reactor decreases by 9% and the
SO2 yield of the reactor increases by 14% compared to the reference reactor. Also, from Figure 7, it can
be seen that a series of non-inferior solutions located at the upper left of the decision point (point E) of
the reactor have good properties of reducing the total EGR and increasing the SO2 yield.

Figures 9–11 show the distribution of the Tin, Pin and Ftot,in in Pareto-optimal fronts, and the
black and white dots in the figures represent the total EGR and the SO2 yield, respectively, which exist
in pairs. As seen from Figures 9 and 10, the Tin and Pin of the reaction mixture in Pareto-optimal
fronts are mainly distributed in high-temperature (892–896 K) and high-pressure (9.0–9.2 bar) area,
so increasing the Tin and Pin of the reaction mixture is an important means for Pareto improvement.
Figure 11 shows that the Ftot,in of the reaction mixture in Pareto-optimal fronts distributes uniformly in
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its optimal range, which indicates that adjusting the Ftot,in of the reaction mixture in Pareto-optimal
fronts is an important means to reconcile the contradiction between the minimum total EGR and the
maximum SO2 yield.

Σ
Σ

⋅

Δ

Δ
⋅

Figure 8. Comparison of total EGR and the yield of optimized objectives.

Table 2. Calculation results of each target.

Reactor Inlet Parameters EGR SO2 Yield

Temperature
Tin(K)

Pressure
Pin(1×105Pa)

Molar Rate
Ftot,in(mol·s−1)

Σtot/W·K−1 ΔFSO2 /mol·s−1

Reference
reactor 800 7.10 0.034 0.2316 —— 0.01100 ——

Maximum yield 896 8.97 0.010 0.7450 ↑ 222% 0.02395 ↑ 118%

Minimum EGR 893 8.69 0.027 0.1388 ↓ 40% 0.00862 ↓ 22%

Specific EGR 900 8.62 0.030 0.1446 ↓ 38% 0.00930 ↓ 16%

Multi-objective
optimization 894 9.18 0.041 0.2111 ↓ 9% 0.01256 ↑ 14%

Σ
Δ

T

Σ
⋅

Δ
⋅

Figure 9. Distribution of inlet temperature in Pareto-optimal fronts.
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Figure 10. Distribution of inlet pressure in Pareto-optimal fronts.
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Figure 11. Distribution of total inlet molar flow rate in Pareto-optimal fronts.

5. Conclusions

In this paper, the effects of reaction mixture inlet parameters on the total EGR and SO2 yield
of the tubular plug-flow sulfuric acid decomposition reactor are analyzed, and the multi-objective
optimization for the two performance objectives are carried out by using FTT. The results show that:

(1) When the Tin increases from 750 ◦C to 900 ◦C, the total EGR decreases by 43% and the SO2 yield
increases by 0.4%. When the Pin increases from 0.4 MPa to 1 MPa, the curve of the total EGR
versus the Pin is a concave parabolic-like, the minimum value of the total EGR is 0.224 W/K when
the Pin equals to 0.85 MPa, and the corresponding SO2 yield decreases by 11%. When the Ftot,in

increases from 0.027mol/s to 0.10mol/s, the total EGR and the SO2 yield increase by 4.8 times and
1.8 times, respectively.

(2) The reference reactor can be Pareto improvement, one of the non-inferior solutions can reduce the
total EGR by 9% and increase the SO2 yield by 14% compared to those of the reference reactor.

(3) FTT is a powerful theoretical tool for the performance analysis and optimization of tubular
plug-flow sulfuric acid decomposition reactor. The NSGA-II algorithm is an effective mathematical
tool for the multi-objective optimization of tubular plug-flow sulfuric acid decomposition reactor.
The Pareto-optimal fronts obtained in this paper has a certain theoretical guiding significance for
the optimal designs of the actual sulfuric acid decomposition reactors.
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Nomenclature

A area m2

CP molar constant-pressure heat capacity, KJ/(mol·K)

Dp catalyst pellet diameter, m
F molar flow rate, mol/s
Jq heat flux density, W/m2

K equilibrium constant
L length, m
P pressure, bar
R universal gas constant, J/(mol·K)

r reaction rate, mol/(kg·s)
T temperature, K
v flow velocity, m/s
z length, m
Greek letters

ε catalyst bed porosity
η dynamic viscosity, kg/(m·s)
κ rate constant of chemical reaction
νi the stoichiometric number of reaction component i
ρ density, kg·m−3

σ local EGR, J/K
Σ total
ΔrG Gibbs free energy change of chemical reaction, J
ΔrH enthalpy change of chemical reaction, J
Subscripts

c cross section of tubular plug-flow reactor
cr chemical reaction
f fluid flow
ht heat transfer
i component
in inlet
j reaction types (I) and (II)
out outlet
p catalyst pellet
q quantity of heat
r reaction
tot total
w wall of tubular plug-flow reactor
Abbreviations

EGR entropy generation rate
FTT finite-time thermodynamics
H-S hybrid-Sulphur thermochemical cycle
NSGA-II second generation non-dominated solution sequencing genetic algorithm
S-I sulphur-Iodine thermochemical cycle
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Appendix A

According to the Refs. [31], the component molar constant-pressure heat capacity, molar enthalpy and molar
Gibbs energy can be calculated by the following formula:

C
◦
p,i = Ai + Bi

T
1000

+ Ci

( T
1000

)2
+ Di

( T
1000

)3
+ Ei

(1000
T

)2
(A1)

H
◦
T,i = Ai

T
1000

+
Bi
2

( T
1000

)2
+

Ci
3

( T
1000

)3
+

Di
4

( T
1000

)4
− Ei

(1000
T

)
+ Fi (A2)

S
◦
T,i = AiIn

( T
1000

)
+ Bi

T
1000

+
Ci
2

( T
1000

)2
+

Di
3

( T
1000

)3
− Ei

2

(1000
T

)2
+ Gi (A3)

ΔrH
◦
T =

∑
i

viH
◦
T,i (A4)

ΔrS
◦
T =

∑
i

viS
◦
T,i (A5)

ΔrG
◦
T = ΔrH

◦
T − TΔrS

◦
T (A6)

where Ai∼Gi are the thermodynamic coefficients of the formula, which are listed in Table A1; vi is the stoichiometric
number of reaction component i.

Table A1. Thermodynamic coefficients.

Gas MW,i/kg·mol−1 Ai Bi Ci Di Ei Fi Gi Tmin/K Tmax/K

SO2 6.40× 10−2 21.430 74.351 −57.752 16.355 0.087 −305.769 254.887 298 1200
O2 3.20× 10−2 29.659 6.137 −1.187 0.096 −0.220 −9.861 237.948 298 6000

SO3 8.01× 10−2 24.025 119.461 −94.387 26.926 −0.118 −407.853 253.51 298 1200
H2O 1.80× 10−2 30.092 6.833 6.793 −2.534 0.082 −250.881 223.397 500 1700

H2SO4 9.81× 10−2 47.289 190.331 −148.123 43.868 −0.740 −758.953 301.296 298 1200
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Abstract: Here, I discuss entropy and its use as a tool in fields of biology such as bioenergetics, ecology,
and evolutionary biology. Statistical entropy concepts including Shannon’s diversity, configurational
entropy, and informational entropy are discussed in connection to their use in describing the diversity,
heterogeneity, and spatial patterning of biological systems. The use of entropy as a measure of
biological complexity is also discussed, and I explore the extension of thermodynamic entropy
principles to open, nonequilibrium systems operating in finite time. I conclude with suggestions
for use of caliber, a metric similar to entropy but for time-dependent trajectories rather than static
distributions, and propose the complementary notion of path information.
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1. Introduction

Entropy principles have been used to describe biological patterns and processes at a range of
scales [1]. Perhaps the most well-known use of entropy in biology stems from the use of Shannon’s
entropy (H) [2] to describe the diversity of an ecological community. Entropy has also been used
in ecology to describe spatial patterning [3] and interconnectedness of organisms in systems [4].
In evolutionary biology, entropy principles have been used to describe the irreversible change
of systems through time [5] and to quantify the organization and complexity of populations and
communities [6,7]. Other uses include quantifying the thermal efficiency of organismal metabolism [8,9]
and creating orientors for in silico models [10,11]. Herein, I review the general uses and misuses of
entropy methods in biology and discuss other, more process-focused methods such as caliber and
path information.

2. Uses of Entropy in Biology

In classical thermodynamics, entropy (S) is an extensive state variable (i.e., a state variable
that changes proportionally as the size of the system changes, and is thus additive for subsystems,)
which describes the relationship between the heat flow (δQ) and the temperature (T) of a system.
Mathematically denoted, the relationship is dS = δQ/T. This formalism of entropy and Clausius’s
statement of the second law of thermodynamics led to the interpretation of entropy as a measure
of unavailability (i.e., entropy as a measure of the energy dispersed as heat, which cannot perform
work at a given temperature). It is also this formalism which has allowed for entropy production as a
measure of spontaneity, unidirectionality, and dissipation. This formalism has proven particularly
useful in biology for measuring the energy dissipation and thermodynamic efficiency in biological
systems including cells, organisms, and ecosystems [8,9,12,13].

The direct relationship of entropy to temperature and heat allows for the precise calculations of
entropy production in systems via calorimetry and spectroscopy. These methods have proven
quite valuable as a means to collect data on energetics and entropy production in biological
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systems, and improvements in resolution and accuracy in both technologies continue to advance
bioenergetics research.

2.1. Statistical Entropy

The thermodynamic entropy function proposed by Clausius was extended to the field of statistical
mechanics by Boltzmann with the introduction of statistical entropy [14]. In Boltzmann’s formalism,
entropy is a measure of the number of possible microscopic states (or microstates) of a system in
thermodynamic equilibrium, consistent with its macroscopic thermodynamic properties (or macrostate).
Thus, the popular expression of entropy as S = kBlnΩ, where Ω is the number of microstates consistent
with the equilibrium macrostate and kB is a constant, which serves to keep entropy in the units of heat
capacity (i.e., Joules·Kelvin−1). Gibbs extended Boltzmann’s analysis of a single multiparticle system
to the analysis of an ensemble of infinitely many copies of the same system, demonstrating that the
entropy of a system is related to the probability of being in a given microstate during the system’s
fluctuations (pi), and resulting in the well-known Gibbs entropy equation:

S = −kB

∑
i

pi ln pi (1)

It is notable that the Gibbs entropy less the Boltzmann constant is identical to the Shannon entropy
(H) where

H = −
n∑

i=1

pi log pi (2)

As the Gibbs entropy approaches the Clausius entropy in the thermodynamic limit, this interesting
link between Shannon’s entropy and thermodynamic entropy has often led to misinterpretations
of the second law of thermodynamics in biological systems (e.g., the postulation of macroscopic
second laws acting at the scale of organisms and ecosystems). However, it is this same link that
has made possible the idea of information engines (e.g., [15,16]) and has allowed for use of entropy
concepts in many systems far removed from the heat engine (e.g., chemical systems, electrical systems,
biological systems).

In biology, perhaps the most well-known application of entropy is the use of Shannon’s entropy
as a measure of diversity [17,18]. More precisely, the Shannon entropy of a biological community
describes the distribution of individuals (these could be individual biomolecules, genes, cells, organism,
or populations) into distinct states (these states could be different types of molecules, types of cells,
species of organism, etc.). The Shannon entropy normalized by the richness (i.e., the number of states)
yields another diversity metric known as evenness [19–21], which is typically interpreted as a measure
of how similar the abundances of different states are.

Beyond allowing for the calculation of diversity, entropy concepts have also been quite useful
as a metric to quantify the organization, complexity, and order of biological systems. Often,
this is accomplished by comparing the entropy of the system to the system’s maximum entropy
(i.e., the entropy of the system without the informational constraints of history) to estimate its departure
from maximum homogeneity and randomness [7]. By extending entropy-based biodiversity and
complexity measures into spatially explicit landscapes, the field of landscape ecology has made
particular use of entropy methods to describe spatial and topological patterning at different scales.
Recent advances in the field have made use of more generalized statistical entropy formulations such
as Renyi’s entropy [22] and generalized Boltzmann entropy for landscape mosaics and landscape
gradients [23,24]. See Entropy Special Issue: Entropy in Landscape Ecology for other uses of entropy in
this field [25].

2.2. Information

In the post-Shannon age, information (I) has been conceptualized as a form of negative
entropy—that is to say that entropy is the information missing about a system, which would
allow that same system to do work at a given temperature. To state it more explicitly, I = −S.
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This relationship has allowed for many interesting applications of entropy methods to the informational
content of biological systems (e.g., informational content in a single biomolecule, a genome,
a metagenome). Several biologists have applied these information theoretic approaches to model
ecological and evolutionary systems. Of particular note are the infodynamic formalisms proposed
by JeffWicken [26–28], Stanley Salthe [29–31], and Robert Ulanowicz’s concept of ascendency for the
development and succession of ecological systems [32].

3. Abuse of Entropy in Biology

3.1. Entropy and Order

Despite the numerous uses of entropy concepts in biology, there has also been some confusion
concerning entropy and its applications in the life sciences. One such issue is the interpretation of
entropy as the disorder of a system. While entropy has often been taught in college chemistry and
physics classes as synonymous with disorder, this is not actually the case. In fact, in many systems,
order increases as a direct result of increasing entropy (e.g., [7]). This is because both order and disorder
are functions of entropy [33]. The mathematical relationship between entropy (S) and disorder (D) is
D = S/Smax. This leads to the complementary notion of order (O), where O = 1− S/Smax, where Smax

is the maximum entropy (i.e., the entropy the system would have if it were free of informational
constraints). The misinterpretation of entropy as disorder has led some authors to assert that the
increase in biological order observed through time in many systems is a violation of the second law of
thermodynamics, which is simply wrong. This relationship between entropy and maximum entropy
has been useful in the areas of complexity science and autopoiesis (the study of systems capable of
maintaining and reproducing themselves) [34,35]. It should be noted that the relationship of entropy to
notions of order, organization, and complexity all transform the extensivity of entropy into an intensive
quantity by normalizing to some other variable. This emphasizes that these metrics, although derived
from entropy, are not synonymous with entropy itself.

3.2. Entropy-Driven Systems

Another abuse of entropy in biology is the claim that biological systems are driven by entropy
(or entropy production). This notion may have begun with Schrödinger’s statement that life feeds off
negative entropy [36]. However, just because entropy increases in spontaneous processes does not
mean that entropy (or its production) is the ultimate thermodynamic driving force. In fact, only in the
case of isolated systems does entropy alone determine the direction of thermodynamic equilibrium.
For non-isolated systems such as biological systems, where there are flows of matter, energy, and
entropy into and out of the systems, the movement of the system toward equilibrium is determined
by both the maximization of entropy and the minimization of free energy. Only in isolated systems
where internal energy (U) is held constant will entropy reach its maximum [37]. In the thermodynamic
limit where systems undergo isentropic change (i.e., they change without production of entropy),
equilibrium is only determined by the minimization of free energy. Thus, it is seen that non-isolated
systems are driven by free energy flux or, more precisely, exergy flux. (Note: For those not familiar with
exergy, it is the work that could be extracted in a process that reversibly brings a system to equilibrium
with the environment. At constant environmental temperature and pressure, exergy change is equal to
the change in free energy.) It is noted that biological systems increase the global entropy and dissipation
by using free energy to create local entropy minima (i.e., building up local information and order).
However, this increase in universal entropy (ΔSU) is not the driving force in biological processes but is
merely a requisite of the system operating in finite time. Thus, for biological systems, just as for heat
engines, the entropy production is simply a byproduct due to dissipative processes such as friction and
turbulence, which should be minimized insofar as the constraints of finite time and resources allow.
Consequently, it is seen that biological systems are not selected to maximize dissipation and entropy
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production, as is often claimed (e.g., [38]), but rather to minimize these quantities to perform work to
ultimately survive and reproduce.

3.3. Mischaracterization of Biological Systems

Much of the confusion concerning the entropy-driven nature of biological systems stems from the
mischaracterization of biological systems as isolated or closed systems (i.e., a system with no exchange
of matter and/or energy). However, biological systems are not closed systems; rather, they are open
to the exchange of both matter and energy. This means that they can create and maintain localized
decreases in entropy by using exogenous sources of free energy and matter. It is by maintaining their
localized entropy at lower levels than the surrounding environment that biological systems are able to
build up information and order. This highlights the fact that biological systems must dissipate entropy
into the surrounding environment to build up local order. Incorporating the role of the environment
into thermodynamic studies emphasizes the ecological nature (i.e., the interconnectedness of multiple
systems and subsystems to each other and to their physical surroundings) of biological systems and
allows for a more complete systems view of biology.

Similar to the mischaracterization of biological systems as closed systems is the mischaracterization
of biological systems as being at equilibrium. Almost by definition, living systems are not at equilibrium.
Of course, some degrees of freedom may be at or near equilibrium; however, many degrees of
freedom are actually quite far from thermodynamic equilibrium. The formalization of nonequilibrium
approaches to open thermodynamic systems has allowed for better use of entropy principles in
biology [39–42]. However, thermodynamic entropy (e.g., Clausius, Gibbs, and Boltzmann) is undefined
in nonequilibrium states, as there is no well-defined temperature. This can be overcome with the use
of von Neumann entropy, an extension of classical entropy to quantum mechanics. The von Neumann
entropy can be calculated for any quantum state, equilibrium or otherwise, as S = −tr(ρ lnρ), where ρ
is the density matrix describing the quantum state and tr is the trace of this matrix. Although von
Neumann’s formulation allows for the calculation of nonequilibrium entropy, it is still a state function.
Thus, one can only infer the change in entropy in a system by comparing the difference in entropy
between states. This serves to highlight that thermodynamics is not really dynamics at all; rather, it is a
form of comparative statics (i.e., comparing the difference between states). However, many biologists
are not interested in merely comparing states, but instead aim to understand the underlying dynamics
of biological processes.

4. Caliber

To begin to shift biological thermodynamics from a state-focused form of comparative statics
to process-focused dynamics, I propose the use of caliber concepts and methodologies. Caliber (C),
also known as path entropy (a notion similar to Feynman’s path integral formulation [43]), is a
thermodynamic quantity that defines the distribution of flows over pathways in dynamical processes.
Mathematically, this amounts to an entropy-like equation: C = −∑

i pilnpi, where the pis here are
the relative populations of flow paths [44]. This is contrary to the formulation of entropy where the
pis are relative populations of states, whereas for caliber the probabilities represent the distributions
of dynamical trajectories between states. Thus, caliber is to dynamics as entropy is to comparative
statics. Another way to say this is that while entropy provides a state-focused, equilibrium approach
to problems, caliber provides a process-focused, nonequilibrium approach. As biological systems are
inherently nonequilibrium dynamical systems, caliber provides a function, which may be better suited
to accurately describe the processes occurring in cells, organisms, populations and ecosystems.

Maximum caliber approaches have been used to accurately predict dynamical distribution
functions that characterize the relative probabilities of different microtrajectories, including so-called
“bad actors” that contribute net motion in the direction opposite to the macroflux predicted by the second
law of thermodynamics [45]. Furthermore, caliber approaches have been shown to be particularly
useful in systems with a small number of individuals, where maximum caliber methods have been
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used to successfully model autoactivation in single-gene circuits [46]. Caliber approaches have also
been shown to work well in systems involving feedback mechanisms, such as the feedback produced
by the changing fitness landscape topologies arising from ecological interactions in evolutionary
systems [47]. In addition to being a more informative and accurate method for predicting trajectories in
changing biological systems, maximum caliber methodologies are also more parsimonious than other
methods involving master equations and mass action laws, as maximum caliber requires fewer model
assumptions and parameters. Thus, generalizable stochastic models utilizing caliber may be the best
approach to model biological processes, such as evolution and succession, based on thermodynamic
principles. For more on caliber methods and their use in biology, see the review by Ghosh et al. [48]

5. Discussion

5.1. Connecting Caliber to Other Thermodynamic Quantities

Despite the seeming advantages of caliber approaches over entropy to describe nonequilibrium
dynamical systems, there are still some advantages of using entropy for certain problems. One of
the major advantages to entropy methods is the strong fundamental connection between entropy
and other thermodynamic metrics such as heat, free energy, work, and efficiency. The relationship
between these metrics and caliber is less well-defined in the existing literature and offers an area rich
for further research.

5.2. Informed Pathways

The link between information and entropy demonstrates that local decreases in entropy essentially
amount to local increases in information. These local accumulations of information represent constraints
on specific degrees of freedom which allow for control of a system as it relaxes toward equilibrium.
As the approach to equilibrium is inherently a dynamical process, I propose a complementary notion to
caliber which I call path information. Path information serves to quantify the informational constraints,
which limit the possible flow paths, and ultimately allow a system to extract work from flows of free
energy through these informed pathways.

This is precisely how many biological systems function: they use free energy to locally decrease
entropy (i.e., create informational constraints on the flow of free energy through the system) in order
to perform work. In the case of organisms, these informational constraints include the information
encoded in DNA sequences and complex biochemical modifications (e.g., methylation, ubiquitination,
phosphorylation). At the biochemical level, these informed pathways can be seen in the form of
enzymes and molecular motors which carefully control biochemical processes. It should be noted
here that the flow of free energy through informed pathways to do work does not necessarily lead to
entropy production; instead, it is the thermalization of free energy which causes entropy production.
This highlights a major difference between the biological mechanism of energy use and many other
technologies, such as the heat engine. Rather than converting chemical energy—“food”—to heat and
then using that heat to do work as it flows to a cooler subsystem, biological pathways extract work in a
nonthermal manner by carefully choregraphing molecular motions to better maximize their efficiency.
The buildup of path information is what allows biology to extract work from flows of free energy in
this manner and ultimately what determines the thermodynamic efficiency of biological processes.
This emphasizes the fact that the efficiency of living systems—that is, the degree to which they can
approach the thermodynamic limits—is a matter of engineering-informed energy flux pathways, not a
matter of the available free energy quantity or quality.

The formulation of path information, much like entropy and caliber, has the potential to
be used in both a physical, thermodynamic sense and in a macroscopic, descriptive manner.
For example, path information can be used to define the relative flows of molecules through specific
biochemical pathways and quantify how this relates to metabolic efficiency. At the macroscopic
scale, path information could be useful to describe dynamical processes such as organismal migration,
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epidemiological spread of pathogens, evolutionary gene flow, and trophic cascades. Other areas where
path information formulations may prove particularly useful include hydrology, hydrodynamics,
aerodynamics, and economics.

5.3. Ergodicity

Many authors have asserted that biological systems are ergodic (e.g., [49–51]). A system is ergodic
if its dynamics sample phase space such that, in the long run, time averages over a single trajectory
and ensemble averages over many independent trajectories yield the same result. Thus, it follows
that in ergodic systems all accessible microstates are equiprobable over a long period of time and that
long-term behaviors are essentially independent of initial conditions. However, this is most certainly
not a characteristic of biological systems, which typically have strong signatures of history and initial
conditions [52]. Furthermore, one cannot exchange space and time averages in biological systems.
For one illustrative example at the microscopic scale, consider a circular, unidirectional process such
as A→B→C→A in steady state. Many biochemical processes are exactly of this circular type—e.g.,
the buildup and breakdown of glycogen. Since this cycling of glycogen costs ATP for every cycle,
there is no energetic equiprobability among the states, even though their numbers (concentrations)
may remain constant. Thus, these systems are not an equilibrium ensemble and are not ergodic.
This becomes even more blatantly obvious at the macroscale where ecological and evolutionary
systems typically evolve to different forms over long time periods. Take, for example, the death
of an organism. Once the organism has died, there is no chance of it spontaneously returning to
the previous state of being alive. It should be noted here that, despite the claim of some authors,
death is not synonymous with reaching equilibrium; although the organism’s metabolism has stopped,
the macromolecules contained in the biomass still have a relatively high energetic potential and will
continue to be oxidized to lower and lower energetic states before being recycled and assimilated
into new forms. Throughout all the stages of life, death, and decomposition, there is extraordinarily
little chance of spontaneously returning to the previous phase space. The non-ergodicity of biological
systems is even more conspicuous in the process of mass death, or extinction, in which whole groups of
organisms are lost, and although similar organisms may eventually evolve, the return to the previous
biological phase space is nearly infinitesimal (especially without energetic inputs). Therefore, it is
noted that biological systems are strongly constrained by history and the arrow of time, which by
definition makes them non-ergodic.

Some subset of ecological and evolutionary systems may explore only a small portion of their phase
space over relatively short timescales, and in this sense may have local ergodic periods characterized
by macroscopic stationary states. However, over long timescales, these systems typically evolve
to search a new, small area of phase space. Thus, it is seen that biological systems at all scales are
largely non-ergodic.

6. Conclusions

The applications of thermodynamics to biological systems have been largely focused on state
functions (e.g., entropy). However, this approach does not allow for the observation of process
dynamics that occur in biological systems. Thus, the dynamics are only inferred from comparative
statics. To move forward, the field needs to shift from a state-based science to a process-based discipline.
This will necessitate the explicit incorporation of time and rate dependency, which will require the
integration of other branches of physics such as statistical mechanics and kinetics. Furthermore,
the type of biological data collected will need to explicitly include time as a variable. Although some
authors approach biological systems as ergodic [49–51], allowing for the exchange of space averages
for time averages or vice versa, living systems are not actually ergodic. This means that temporally
resolved data is needed to address path dependency and process functions. Utilizing nonequilibrium,
process-focused metrics such as caliber and path information will allow better modeling of biological
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processes and will give biologists a more complete and realistic understanding of the dynamics of
living systems.
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Abstract: A description and examination of the potential for calorimetry for use in exploring the
entropy flows in biological and or reacting systems is presented. A calorimeter operation background
is provided, and two case studies are investigated using a transient numerical simulation. The first
case describes a single cell calorimeter containing a single phase material excited by heat generation
source function such as joule heating. The second case is a reacting system. The basic observation
parameter, the temperature, cannot be used to separate the entropy property changes and the rate of
entropy production in the second case. The calculated transient response can be further analyzed
to determine the equilibrium constant once the reaction equation and stoichiometric constants are
specified which allows entropy property changes and the rate of entropy production to be determined.
In a biological community, the equivalent of the reaction equation and a definition of an equilibrium
constant are not available for all systems. The results for the two cases illustrate that using calorimetry
measurements to identify the entropy flows in biological community activities requires further work
to establish a framework similar to that chemical reacting systems that are based on an equilibrium
type parameter.

Keywords: calorimetry; entropy flow; entropy production; biological communities; reacting systems

1. Introduction

Calorimetry is utilized to measure the thermodynamic properties such as enthalpy,
entropy, and Gibbs free energy in biological and chemical reacting systems. While the
energy/heat released during these processes is important, the entropic changes which
reflect the irreversibility and efficiencies are equally important in the understanding of them.
Calculating the heat released from one single microbe has confused biologists for centuries.
Most marine microbe studies measure the heat dissipation on a community level since the
isolation of individual types of microorganisms is not required. In a drop (one millimeter)
of seawater, there are approximately 0.5 million microbes and 10 million viruses. To
describe the distribution of individual bacteria is time-consuming and biased in their
culture practice. Djamali et al. [1] estimated that the heat release per marine bacteria is 50 nJ
after concentrating the population by filtration and backwashing. Roach et al. [2] collected
the rate of heat-released data by a TAM III calorimetry from various microbe groups and
found it to be approximately 25 J/s per gram of seawater from an aquarium system. Precise
thermodynamic data is demanded since the measurement of microbe activities is on a
nanotechnology scale, much smaller than observed in pharmaceutical reactions [3,4]. The
output from the commercial calorimeters is usually reported as power, μW, or often using
units of μcal·s−1 or μJ·s−1 as a function of time [3] and converting to energy units, J. The
observed output is the change in the power used to control the sample and reference
cell maintaining the same temperature. Maintaining two cells in a calorimeter at the
same temperature is intended to have the same heat exchange rate between them and the
surrounding bath in order to observe energy released by the biological process. The issue
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is how to determine the entropy changes in biological processes and the entropy flows that
occur in these devices.

The Gibbs free energy is considered an important parameter to understanding the
thermodynamic information on living organisms and the driving force for chemical pro-
cesses of metabolism activities. The change in Gibbs free energy can be estimated for
known entropy of the biomass or with Roel’s correlation [5]. However, current calorimetric
studies have not developed a way to directly measure the Gibbs free energy from microbial
experiments, nor to measure the entropy change in the reactions occurring in the com-
munity [5–7]. The Gibbs energy dissipation is related to entropy production exporting
from the cell into the environment. The change in entropy includes entropy flow, which
is caused by the exchange of entropy in the system with its surroundings; an entropy
property change, the entropy exchange between different states of the system and is related
to the mass, heat specific, temperature, and pressure. The entropy production is related to
the irreversibility of the process [8]. Having an understanding of the entropy flows and
the Gibbs free energy change as a biological community interacts with its surroundings
provides a more in-depth knowledge of the efficiency of these systems and the tradeoff
between switching to maximum power (energy rate) modes vs. energy efficiency modes.

The actual spontaneous processes in biological systems are irreversible and will have
an entropy production that adds to the observed heat dissipation in calorimetric measure-
ments. There is a tradeoff between the efficiency of biological processes and the processes
rate, with the maximum rate of operation accompanying a 50% loss of the yield [9]. The
biological processes are driven by the flow of exergy through the informed pathways rather
than the production of entropy. The concept of dissipative biological structure describes
these living systems from microorganisms to ecosystems by the dynamics of a far-from-
equilibrium system [9]. In contrast, the calorimeter measurements are closed systems after
introducing nutrients or competing phages or viruses to the sample. In both cases, it is
desired to have measurements that would lead to identifying the entropy property changes
and entropy production parameters.

This paper aims to examine what the calorimetric measurements provide and to
introduce potential novel methods that determine the equilibrium constant from calorime-
try measurement and use it with the second law of thermodynamics to relate it to the
Gibbs free energy change. We demonstrate that calorimetric experiments by themselves
do not provide the information to isolate the entropy production term, the irreversibility,
in the observed reaction. In the case of the pharmaceutical industry, calorimetry plays an
important role but the additional analysis which includes an assumption of the reaction
type is required to obtain the necessary entropy information. While this step is part of
the commercial calorimetry package, its use toward identifying the irreversibility and
potential of a drug–protein interaction is clearly understood in this process. In terms of
biological processes, the role of calorimetry is increasing. as is the thermodynamic and
entropic interpretation of these processes. The manuscript identifies the missing steps in
linking calorimetry and other known means related to growth rate formulations, degree of
reduction or reactions that would allow this experiment tool to provide entropic informa-
tion.The paper focuses on describing the thermodynamic and heat transfer physics in the
calorimeter device and their relationship with observed energy transfer and entropy flows.
These relationships are fundamental and apply to the different time scales seen in drug
discovery processes and biological systems. The method of thermodynamic properties
measured from the isothermal titration calorimeter will be discussed and extended to a
single injection type of experiment, which is related to that biological sample. In the follow-
ing section, the calorimeter background with two cases will be provided to illustrate how
entropy production and entropy properties become convoluted during the measurements.
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2. Calorimetry

2.1. Background

Two different configurations of a calorimeter that could be used to measure the
energy released by microbes, phages, and virus, their interactions, or drug-related chemical
reactions are shown in Figure 1.

Figure 1. Schematic sketches of two calorimeter configurations used in determining the energy
released from biological/reacting systems. (A) is a two-cell configuration where both cells are usually
maintained at a uniform temperature and the difference between the power of the reference and
sample cell is recorded. (B) is a single cell configuration where the temperature is monitored during
the biological reaction as a function of time.

In Figure 1A, a typical isothermal titration calorimeter (ITC) or two cell configuration
that has been involved in the previously cited papers [3] is illustrated. This configuration is
usually operated at a constant temperature and in biological situations is not operated in
a titration mode [2,10], but the operating principle is similar to that described below. In
this device the two cells, reference and sample cells, are similarly constructed so that the
heat transfer between them and the surroundings can be considered to be the same if they
are maintained at the same temperature using electric heaters. The heaters are controlled
by varying the power to them to maintain the same temperature in each cell where the
respective cell temperatures are measured by either thermopiles or other accurate devices.

The rate of energy released by the observed reaction in the sample cell; for example,
a microbe community with a food source, will cause the temperature of the sample cell
to change unless the power to it is adjusted to maintain a constant temperature. The
observed variable in these measurements is the difference between the reference and sample
power, ΔP, which is stated to be equal to the rate of energy released during this process.
The rate of energy released ultimately is transferred as heat to the surrounding large
thermal reservoir. The energy released associated with the process under the assumption
of constant temperature in each cell and that the cells are similarly constructed lead to a
simple relationship, Equation (1).

ΔP = Observed Change In Power = PREF − PSAM =
.
EREL (1)

where PREF and PSAM are the power to the reference and sample cell, respectively.
.
EREL

equals the rate of energy released by the reactions occurring in the sample cell. The energy
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balance on the sample cell provides additional insights into these assumptions and the
mechanisms that occur during the reaction, Equation (2).

PSAM +
.
EREL =

dUSAM
dt

+ qL,s (2)

In Equation (2) USAM is the internal energy change in the materials in the sample cell,
t is time and qL,s is the rate of heat transfer between the sample cell and the surrounding
bath. While in most of these devices, there is an injection to the test sample to add food
or duplicate injections requiring a transient form of the energy balance to simulate the
process. It should be noted that the rate of change of the internal energy depends on the
temperature change in the sample, as well as the changes in its mass. In these calorimeters
the temperatures of the reference and sample cells are controlled to be equal and set to a
constant value. For these conditions, the derivative of the internal energy term will be zero;
if the mass of the sample cell remains constant during the measurement, at steady state
conditions, or when a balance of the interacting group of various species is reached, the
transient term on the RHS of Equation (2) will approach zero. Assuming that the working
fluid in the device is an incompressible material yields Equation (5). The time dependence
of the mass in the sample cell is related to the mass flow rate of the injection, Equation (3)
and the expanded form of the internal energy, Equation (4) is included in the transient
energy balance, Equation (5), to emphasize the above assumptions.

msam =
.

minjt (3)

USAM = msamcs(TS − TR) (4)

PSAM +
.
EREL =

d(msamcs(TS − TR))

dt
+ qL,s (5)

In Equation (4), mSAM and cs equal the mass of material and the specific heat of the
material in the sample cell, Ts is the temperature of the sample cell at any time and TR
is the reference temperature for the internal energy. The mass of material, msam, in a
typical titration experiment is related to the injection rate, concentration, and injecting
time.

.
minj is the injection of the syringe in Equation (4). A similar energy balance can

be written for the reference cell where there is no rate of energy released term. Since the
temperature of both cells is controlled to be equal in the theory of two-cells ITC and they
are geometrically similar, the heat loss from both cells will be the same at any time. The
internal energy balance in the reference cell is constant as its mass does not vary with
time. Since the temperature of each cell is controlled to a constant value, the temperature
time derivatives are also zero. The implications of these assumptions will be discussed
later. Combining these energy balances of sample and reference cell under these conditions
yields the following relationship:

.
EREL = cs(TS − TR)

d(msam)

dt
+ (PREF − PSAM) (6)

The derivative term in Equation (6) was left to illustrate that even if the temperatures
are controlled to be equal and constant, a part of the internal energy change will remain if
the mass changes. Equation (2) assumes that the preceding condition is satisfied. If it is not,
then the result summarized in Equation (2) is not valid.

Commercial ITC/sample and reference cell calorimeters are designed and manufac-
tured to satisfy these conditions for chemical reaction processes. When these calorimeters
are used to measure the rate of energy release from the microbe community, as in [1,2,10],
the effects of injecting fluids at a different temperature need to be taken into account.
As that of the cells, the effects include the changes in mass from gas exchange with the
surroundings, separating the growth of the microbes, significant changes in the metabolic
rate based on the community dynamics and potential interactions between the microbes
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and phages or viruses. If sufficient time is taken one can reach a near steady state condition,
which avoids the initial injection region and the growth of the community phases. In
standard ITC practice, the power difference which equals the energy release is integrated
over the time of reaction to obtain the thermodynamic property of the enthalpy of reaction,
ΔH, and is usually expressed per number of microbes or mole of injectant. In the case of the
microbial community, this change in power is related to energy released by the microbes
and has also been reported [1,2,10]. The heat transfer rate from each cell in these types of
measurements is not usually reported, although the difference in the power between the
reference and sample as a function of time is as reported in [2].

To understand what is measured by the change in power, the single-cell calorimeter as
shown in Figure 1B is analyzed and it is essentially one of the cells from the ITC/ sample
and reference cell device. In this case, the energy released,

.
EREL, is determined from

the observed temperature response, the heat input, Psam, if any, and the heat transfer
characteristics of the cell, qL,s. A calibration relation is required to determine these heat
transfer characteristics. The energy balance on this device is similar to that of Equation (2)
and can be solved for energy released,

.
EREL. The integration of the energy release term over

the time of the process can be used to determine the enthalpy of reaction as stated above.

.
EREL =

dU
dt

+ qL,s − Psam (7)

If the energy released by the community or the enthalpy of reaction was the only
variable of interest and not the entropy flows in the system, the above experimental
protocols would be sufficient [1,2]. In this case, the internal energy of the community is
assumed to be a function of the temperature and mass of the fluid containing the microbes
and other biological materials. Additional experiments to determine these parameters
can be easily designed. The heat transfer from the cell is described in Equation (8) by
the temperature difference between it and the surroundings and the overall heat transfer
coefficient, (uHTA).

qL,s = (uHT A)(T − T∞) (8)

What is not obvious in both Equations (2) and (7) is that the heat transfer from the
cell also would transport any irreversibility associated with the processes being observed
which are convoluted with the heat flowrate from the sample cell. The details of this
process are discussed in Section 2.1. The steady-state results stated in Equation (1) do not
provide information on the irreversibility directly when a reaction is occurring and only
the energy leaving the sample cell can be used to determine the rate of entropy flow from
the sample cell. Other means are needed to provide information on the irreversibility or
process efficiencies. For example, in (ITC) experiments, one performs the experiments
sequentially to observe the reaction as the concentrations change in a prescribed manner
in order to develop a relationship between the extents of the reaction and to determine
the reaction’s equilibrium constant, kD. The equilibrium constant allows the introduction
of second law parameters such as the Gibbs free energy change of the reaction, which
then allows the entropy of the system during the reaction to be determined. A second law
analysis of the calorimeter is then used to calculate the entropy production rate, which
is related to the irreversibility of the reaction (Section 2.3). Procedures and hypotheses
concerning the relationships for energy stored in growth, growth rate, and generation times
would need to be applied to possibly formulate entropy statements for these processes,
similar to that carried out in the ITC analysis [10].

2.2. Case 1: Spatially Uniform System Heating without Reaction

Consider a simple system such as the single-cell, Figure 1B, that corresponds to an
incompressible material, water, that is excited using microwave heating. This problem,
while simple, provides the base solution to illustrate the determination of the rate of
energy released, entropy flow, entropy property changes and the rate of entropy production
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from a calorimeter device. Assume that the single cell is a closed system, there is no
expansion work nor mass exchange with the surroundings. A steady-state heat source, qg
that represents the microwave or Joule heating per volume is active in the closed system, qg,
and there is heat exchange, qL,s with the surroundings through convection (Equation (9)).
The internal energy, u, is determined from the equation of state for the material in the
cell. A is the surface area for heat transfer of the closed system of the test cell and the
temperature of the surroundings is T∞. The energy balance is developed as in Equation (5).

PSAM + qg V =
d(msamcsT)

dt
+ qL,s (9)

The initial conditions for this problem are:

Time = t = 0 T(0) = T∞ (10)

For t � 0,
.

qg = constant = 106 W/m3 (11)

The material in the single-cell system is water with constant properties of specific
heat, cS = 4180 kJ/(kg K), thermal conductivity = 0.6 W/(m K), and density of 997 kg/m3.
PSAM is set to zero in this simulation. The volume of the liquid is fixed at 80 μL and the
(uHTA) product is 0.0356 W/K. The value of the power into the cell is zero in this exper-
iment. Equation (9) was solved numerically using the code developed by Modaresifar
and Kowalski [11] for reactingmixtures in microchambers, which simulates an injection
experiment and analyzes its thermal process in a microscale calorimeter. This is a straight-
forward problem that is easily solved. This code was found to spatially converge to an
accurate solution with three nodes for this small volume and uniform heat generation
rate. It predicts the temperature time response, as shown in Figure 2, until the steady
state is reached, approximately tf = 130 s. In Figure 2 the temperatures of the three spatial
nodes are shown. They are not distinguishable from one another, which confirms that the
numerical simulation satisfies the uniformly spatial assumption. Tests at a higher number
of nodes, providing more precise resolution in the simulation, confirm that the solution
has converged.

Figure 2. The temperature response of the single sample cell as a function of time for a pure material,
water, exposed to a uniform heat generation rate.

This case provides a baseline solution of what is measured in a calorimetric type of
device and allows one to investigate the entropy flow from the sample cell, the rate of
change of the entropy property of the material within it, and the rate of entropy production
for this process involving a single material phase with known properties. To illustrate the
above statement, one must view Figure 2 not as an end result of a simulation, but as the
observed variable in the calorimetric device. As described in the background section, what
one observes in the calorimeter is either the temperature response or the result of a small
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change in temperature that alters the power into the cell. For this discussion, Figure 2
is not the outcome, but the starting point to determine the heat generation term, qg, in
Equation (9). This calculation is accomplished by integrating Equation (9) with respect to
time under the assumption that qg is constant. In this step, note that one is specifying the
function form of the internal heat generation, a constant, that is occurring in the sample,
i.e., a mechanism. The integrated form of Equation (9) is:∫ t f

0
qg(V)dt = qg

(
Vt f

)
= (msamcs)

[
T
(

t f

)
− T(0)

]
+
∫ t f

0
qL,Sdt (12)

The heat generation term, the LHS of Equation (12), is usually the primary measure-
ment sought, since it can be related to the energy released by the microbe community or a
chemical reaction. Further analysis is performed to determine the irreversibility associated
with this heating process, using relationships with the entropy flow.

The heat loss, qL,s, in Equation (12) is the heat transfer rate and is summarized in
Figure 3 as a function of time using Equation (10). As expected, the heat transfer rate starts
at zero and increases to its steady value. The difference between the heat transfer rate and
the rate of energy released from the heat generation term is the internal energy storage rate,
the first term on the RHS of Equation (12).

Figure 3. Instantaneous heat transfer rate as a function of time for the sample cell. The results shown
are based on the known value of the heat transfer coefficient, (uHTA) product, and the observed
temperature from Figure 2 as if it were a calorimeter experiment.

The flow of entropy from the sample cell is determined from the calculated heat
flow and the temperature of the sample cell. This relationship is summarized in Figure 4.
The rate of entropy flow out of the sample cell can be determined from the calorimetric
measurements of the temperature and heat transfer information, as demonstrated below.
The entropy flow out follows the behavior of the heat transfer rate as expected.

Sout = rate o f entropy f low out =
qL,s

T
(13)

Figure 4. Summary of the rate of entropy flow out of the sample cell as a function of time.
The calculations are based on temperatures and heat losses which would be determined from
calorimetric measurements.
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The entropy property change is determined by the temperature, as observed in
Figure 2, and the Gibbs equation. Water at moderate temperatures and pressures is used in
this simulation and is treated as an incompressible material

dSprop

dt
= msamcs

dT
T

+
P
T

dv = msamcs
dT
T

(14)

The rate of entropy property changes at each observed time, Figure 5. This simulation
case can be determined because one is using a pure material with a known equation of state.
The temperature terms can be calculated for this case from the calorimetric observations.
One feature of Figure 5 is the rapid increase in the rate of entropy property changes at the
start of the process and then a steady decline until it reaches zero. During this response, the
rate of entropy flow from the sample cell is increasing to its steady-state value, Figure 4.

Figure 5. Summary of the rate of entropy property changes within the sample cell as a function of
time. The calculations are based on temperatures and heat losses which would be determined from
calorimetric measurements.

The preceding calculations and graphs illustrate the different entropy components that
are obtained from calorimetric measurements. The entropy balance is used to determine the
rate of entropy production, which is related to the irreversibility observed for the constant
heating process in this case.

.
σ =

dSprop

dt
+

d
dt

.
Sout (15)

The rate of entropy production as a function of time is determined from the previously
calculated values using Equation (15) and is summarized in Figure 6. One interesting
feature is that the rate of entropy production increases rapidly and then slightly decreases,
reaching a near-constant value, similar to that of the entropy flow out of the system.

For the heat generation process in this case, the rate of entropy production has a direct
link to the irreversibility of this process. If this were a microbe community with a constant
energy release rate, the results in Figure 6 would be a measure of the irreversibility and
possibly would be related to the efficiency with which the community is using its resources.
Such a case of near-constant energy release rates has been reported for E. coli during the
stationary phase [10].

The above case is simplistic and a direct application of thermodynamics to a calori-
metric type device. The results are expected and are presented here to establish; 1. what
information could be obtained from a calorimetric type device and, 2. an approach to pro-
vide a baseline measure of the irreversibility. It neglects the complications of inter species
competition for food sources, different phases such as exponential growth or declining, as
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well as changes in the immediate surroundings that one species may cause. These com-
plications go directly to the assumption that the property relationships for calculating the
entropy property solely on the observed temperature in an active community are possible.
Without these key relationships, other means are needed to describe the interactions. Some
of these complications are introduced in the second case, that of a sample cell containing a
reacting mixture or interacting group of various species.

Figure 6. The rate of entropy production within the sample cell as a function of time. The
calculations are based on temperatures and heat losses which would be determined from
calorimetric measurements.

2.3. Case 2: Spatially Uniform System with Reaction Limited by an Equilibrium Constant

Case 2 considers the same sample cell as shown in Figure 1B and that was discussed
in detail for case 1 for the constant heat generation case. In case 2, the sample cell is
initially filled with two reacting solutions, where these solutions could reflect chemical
reactions or two interacting species; for example, E. coli and phages or ligands. From
an experimental viewpoint, the same observed property, the temperature, is measured.
The reacting solutions will normally be low concentrations of the reacting species in a
buffer or low concentrations of microbes in water that contains a food source. From a
calorimetric viewpoint, the key rates of energy exchanges are the rate of change in internal
energy of the buffer/water and the rate of heat transfer from the sample cell. The driving
thermodynamic potential is the reaction that will be characterized in terms of reaction
equation, equilibrium constant, growth rate constant, degree of reduction, or equivalent,
and the rate of reaction. The reacting compound case will be used as a starting point
to illustrate these relationships and what information we can obtain from a calorimeter
experiment. The role of the equilibrium constant on the resulting energy release rate
is similar to the biological interaction restrictions that determine how fast and to what
extent two biological species react with one another. This reaction constraint has direct
implications on the flow of entropy and entropy production in these systems. Consider
a concentration of compound [X], which reacts with a concentration of [Y], where both
are in the same buffer of [B] and produce a concentration [XY], the product. A similar
development can be found in [3]

[X] + [Y] + [B]
yields→ [XY] + [B] + [XF] + [YF] (16)

The reaction summarized in Equation (16) is constrained by the equilibrium constant,
kB and the products are as shown in Equation (17), which assumes a complete reaction.

kB =
[XY]
[X][Y]

(17)
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The correct form of Equation (16) that includes the equilibrium composition of the
products is:

[X]1 + [Y]1 + [B]
yields→ [XY]2 + [X]2 + [Y]2 + [B] (18)

The energy and entropy balances for the described reaction can be written using
absolute thermodynamic properties and are simar to that of Equations (8), (9) and (13). The
transient energy balance, Equation (8), with PSAM = 0 is:

qg2 =
d(msamcs(T))

dt
+ qL2 (19)

where
qL2 = (uHT A)(T − T∞) (20)

In this experiment, the compound [X] is injected into the sample cell that contains
a fixed amount of [Y] = [YTOT]. During this injection, the rate of reaction is considered
to be very fast and the rate of energy released per volume, qg2, is not a constant and is
determined from the equilibrium constant kB and the enthalpy of reaction per mol of the
injected compound, ΔH. The rate of energy release between two specified times is:

Qg2 = Energy released per volume between ti+1 and ti = ([XY]i+1−[XY]i)ΔH (21)

Differentiating Equation (21) with respect to time determines the rate of energy re-
leased per volume:

qg2 =
d[XY]

dt
ΔH (22)

To determine the derivative in Equation (22), the equilibrium constant, Equation (17),
is used to obtain a quadratic expression for the product [XY] by combining it with the
species/mass balance of the species:

[X]i = [X]TOT − [XY]i (23)

[Y]i = [Y]TOT − [XY]i (24)

[X]TOT = [X]i−1 +
.

Xinjt (25)

where the molar rate of injection is
.

Xinj and t is the time from the start of the injection. The
resulting relationship is

d[XY]
dt

=
1
2

⎧⎨⎩1 −

[(
YTOT +

.
Xinjt + 1

kB

)
− 2YTOT

]
[(

YTOT +
.

Xinjt + 1
kB

)
− 4YTOT

.
Xinjt

]
⎫⎬⎭ (26)

It is observed from Equation (26) that the energy release rate for the reacting compound
example is time dependent, unlike that in case 1. Equations (26) and (22) are used to
determine the rate of energy release during the injection of compound [X] into the chamber
filled with compound [Y]. The initial concentration of compound [Y], YTOT, is known at
the start and the injection rate of compound [X] is held constant. Unlike case 1, the rate
of energy added to the chamber is not constant but is a function of time that starts at a
maximum value and then decreases to zero, or a constant value as the number of reaction
sites or available food goes towards zero, Figure 7.

The shape of this curve reflects the trends discussed in [3], which is shown inverted
since it is measuring the change in power in the two-cell calorimeter. Numerically solving
Equation (19) using the energy release rate given by Equation (22) predicts the temperature
response shown in Figure 8. The temperature response corresponds to the observed
property in the single-cell calorimeter.
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Figure 7. Comparison of the constant energy release rate of case 1 to the time dependent energy
release rate of case 2, the reacting compound example. The orange line is the constant energy release
of case 1. The blue monotonically decreasing line is for case 2.

Figure 8. Predicted temperature vs. time response for the reacting calorimeter cell. This response
corresponds to the observed parameter of the calorimeter experiment.

The results in Figure 8 are expected: a rise in temperature to the maximum value due
to the thermal capacitance of the system, while the rate of energy release is greater than the
heat transfer rate. Once the heat transfer rate overcomes the rate of energy, the temperature
decreases in the system. The system returns to the temperature of the surroundings at
the end of the process as expected. In terms of determining the entropy flows in this case,
the observed temperature is shown in Figure 8: the heat transfer characteristics of the cell,
and the thermodynamic properties of the buffer and each reactant are needed. Due to the
reaction between the reactants, the absolute entropy for the products is unknown for a test
case and, unlike case 1, the case of a single, non-reacting material, there are no equations
of state to determine the entropy property change from the calorimeter experiment. What
can be determined is the entropy flow from the chamber, since the rate of heat flow is
determined in the simulation, Equation (21) (Figure 9).
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Figure 9. Predicted heat flow rate vs. time response for the reacting calorimeter cell. This parameter
is calculated using the predicted temperature response and the heat transfer characteristics of the test
cell as determined from a calibration test.

Since the temperature at the system boundary is known as a function of time the rate
of entropy flow from the cell can be calculated by Equation (27) and is summarized in
Figure 10.

.
Sout = rate o f entropy f low out =

qg2

T
(27)

Figure 10. Predicted entropy flow rate out vs. time response for the reacting calorimeter cell. This
parameter is calculated using the predicted temperature response and heat transfer rate.

From the entropy balance on the test cell:

.
σ =

dSprop

dt
+

.
Sout (28)

where
dSprop

dt
= ΔS

◦
f orm+ΔSprop + ΔSreactants (29)

The rate of entropy flow out of the system can be determined from the observed
experimental parameters. In this case, the rate of change in the entropy property cannot
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be determined, unless this is a known reaction and the absolute entropy values of the
reactants and products are known, Equations (28) and (29). This is not usually the case
when testing reacting compounds in a calorimeter because that is the purpose of the
experiments. As a result, the only statement that can be made is the calculated value of the
confusing parameters of the rate of entropy property change and the entropy production
rate. This calculation does not allow the irreversibility of the reaction or interactions,

.
σ, in

the biological communities to be determined for possible use in better understanding the
dynamics of the community, the efficient use of food sources or evolutionary trends.

In 1999, Battley [12] developed an empirical statistic model to calculate the standard
molar entropy ΔS

◦
f orm with accuracy at 2%. However, the method to calculate the informa-

tion of ΔS
◦
f orm from the experiment is still limited. The Gibbs free energy is defined as the

maximum amount of non-expansion work in a thermodynamic system and is related to
enthalpy, temperature, and entropy. The definition equation can be written as Equation (29)
at thermodynamic standard states for the absolute entropy property changes [8].

In the case of drug and protein reactions, there is an additional procedural step that
can be used to determine the equilibrium constant, which can then be related to the change
in the Gibbs energy from which the rate of entropy property change can be calculated.
This step is best illustrated from the ITC version of the calorimeter, in which a series of
titrations are performed and the energy released at each step is determined as a function
of the mole fraction of the product [3]. This leads to a graph that is similar to that of
Figure 8 for the reacting case and the slope of the curve equals the equilibrium constant,
kB. The thermodynamics of the equilibrium composition KB is related to the change in the
Gibbs energy.

ΔG = −RTln
[

1
k B

]
= ΔG

◦
=ΔH

◦
f − TΔS

◦
(30)

For the case of the single injection experiment described in this section, a similar curve
as that developed in the ITC experiment can be determined by calculating the energy
release rate within a finite time interval from the observed temperature–time response and
the energy balance. The determined value of kB would then be used in Equation (30) to
determine the change in the Gibbs Energy and the change in the absolute entropy property
change. These results, together with Equation (26), would allow one to isolate the rate of
entropy productions and measure the irreversibility of the reaction.

While the above procedure applies to a reacting system, it does not directly relate to the
activities of biological microorganisms due to the lack of a clear definition of what would be
the corresponding equilibrium constant. A similar parameter to the equilibrium constant
for monotypic microorganisms interacting with their surroundings using a calorimeter-
based measurement needs to be defined in order to separate the entropy property changes
from the entropy production changes. Using probabilistic methods as described by [7] to
identify a constant that characterizes the energy releasing interactions is one approach and
is beyond the scope of this paper. From the comparison of case 1 and 2, it is demonstrated
that the calorimeter measurement can identify the combined values of the entropy property
changes and entropy production, but without further analysis or observed information, it
cannot separate these parameters.

3. Discussion: What Is Measured

The two case examples and the calorimetry background provided illustrate that the
parameter measured in these experiments is the heat flow from the test cell and it is related
to the energy released by the reaction, the biological community activities, or the heat
generation source. The energy flow from the cell can be further divided into the amount
due to the irreversibility in the system, i.e., the entropy production term, and the amount
due to the reaction. Procedures as described for the ITC type measurement that allow a
parameter such as the equilibrium constant to be determined and then related to the entropy
property change exist in the drug discovery or chemical reaction fields. As shown in case 2,
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the dynamics of the reaction in biological fields need to be developed for calorimetry to be
used to isolate the entropy flows in the community.

From the perspective of biochemistry, analysis of biomass-based on the empirical
formula of various microorganisms is instructive to understand the microbe’s thermody-
namic properties [12–15]. A method of the degree of reduction from elemental analysis
using electron concepts estimitates the enthalpy of combustion of the biomass [14] and
biosynthetic efficiency [15]. Through the oxidation reaction of the dry microorganism
biomass equation, the enthalpy of formation can be determined [7]. In a living system, it
is impossible to concisely express all the intermediate reactions within a microbe or the
community. However, it is practicable to describe the typical microbe growth from an
initial substance state to a final state comprised of the microorganism and other products
by a growth-process equation [16,17]. When monitoring the heat exchange in a microbe
growth experiment by an ITC calorimeter, the thermal power can be written as an expo-
nential equation with the growth rate constant in the log growth phase [10]. Assuming
there are only monotypic microbes and glucose injected into the sample cell, the growth-
process equation can be written to represent the exponential phase in a traditional growth
curve. To calculate the equilibrium constant, the concentration and mass of microorganisms
are necessary. Makarieva et al. [18,19] developed a comprehensive database including
the endogenous (non-growth) and growth metabolic rate of microorganisms and their
corresponding microorganism mass involving 3006 species from all kingdoms. With an
acknowledged mass of microorganisms, metabolic rate, enthalpy of biomass formation
and the growth-process equation in a closed system, an energy balance can be constructed
to estimate the equilibrium constant. Similarly, the equilibrium constant in the stationary
phase can be determined by introducing the oxidation reaction of biomass representing
the death of microbes. For more complicated cases, for example, the lysogeny by virus
infection and symbiosis in biological evolution, statistical models are developed to predict
the thermodynamic properties. [20,21]

An interesting observation is presented in a paper by Djamali et al. [1] in their
Figures 4, 5 and 7, where the transient response of the observed heat flow from the test
cell is plotted as a function of time. The observations in this paper are reported using the
long-term, greater than approximately 10 h, which is constant heat flow with respect to
time. The analysis approach described in case 2 for the single-cell injection experiment to
determine an equilibrium constant-like parameter would fail when using this long-term
data because of its uniform heat flow. What would be of more interest to determine the
entropy flows from the calorimetry measurements are the early time data, in which the
dynamics of the biological community are changing.

4. Conclusions

A background on the operation of calorimeters is provided and two case studies are
investigated using a numerical simulation. The first case describes a single cell calorimeter
containing a single-phase material excited by heat generation source function such as joule
heating. In this case, the equations of state can be used to determine the energy released
in the cell, as well as the entropy flows: entropy property changes, entropy flow to the
surroundings and the rate of entropy production. In the second case, a reacting system,
the numerical simulation of the calorimeter experiment provides the energy released and
the entropy flow to the surroundings. The basic observation parameter, the temperature,
cannot be used to separate the entropy property changes and the rate of entropy produc-
tion. In the chemical reacting system, the data can be further analyzed to determine the
equilibrium constant once the reaction equation and stoichiometric constants are specified.
The equilibrium constant is then used to identify the entropy property changes and the
entropy balance is used to determine the rate of entropy production. In biological condi-
tions, the equivalent of the reaction equation and a definition of an equilibrium constant
is not available for all systems. While an empirical relationship for the absolute entropy
property change has been reported, it is not clear if it would apply to all systems being
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investigated. To use calorimetry measurements to identify the entropy flows in biological
community activities, further work must be carried out to establish a framework similar to
that of chemical reacting systems that are based on an equilibrium type parameter.
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Abstract: The “conservatively perturbed equilibrium” (CPE) technique for a complex chemical system
is computationally analyzed in a batch reactor considering different linear mechanisms with three
and four species. Contrary to traditional chemical relaxation procedures, in CPE experiments only
some initial concentrations are modified; other conditions, including the total amount of chemical
elements and temperature are kept unchanged. Generally, for “unperturbed” species with initial
concentrations equal to their corresponding equilibrium concentrations, unavoidable extreme values
are observed during relaxation to the equilibrium. If the unperturbed species is involved in one step
only, this extremum is a momentary equilibrium of the step; if the unperturbed species is involved in
more reactions, the extremum is not a momentary equilibrium. The acyclic mechanism with four
species may exhibit two extrema and an inflection point, which corresponds to an extremum of the
rate of the species change. These facts provide essential information about the detailed mechanism of
the complex reaction.

Keywords: conservatively perturbed equilibrium; extreme value; momentary equilibrium

1. Introduction

A new kinetic technique, Conservatively Perturbed Equilibrium (CPE), was analyzed theoretically
in previous studies [1,2]. It is formulated within a new paradigm of chemical kinetics, the so-called
“Joint Kinetics”, which was developed during the last decade (see the papers [3–8] and the most recent
review [9]). In a batch reactor, in the CPE experiment, the total amounts of chemical elements and the
temperature are maintained constant. Then, the CPE procedure is performed as follows:

1. The equilibrium concentration values of all species are determined.
2. Some of the species, at least two, are chosen to have their concentration perturbed from the

equilibrium value.
3. At least one species is not chosen, with its concentration value being kept at the equilibrium value.
4. The perturbations mentioned in point 2 are required to satisfy all conservation laws applicable to

the system reactions.
5. The evolutions of all species concentrations are observed as they tend towards equilibrium.

It should be stressed that within the CPE procedure, different from the traditional relaxation
method, finite perturbations are used, not the small ones. Additionally, the CPE approach is not limited
by the linear cases, only by possibilities to meet the balance requirements.

It was shown [1,2] that in such CPE experiments, the concentration of any unperturbed species
first evolves away from its initial value, which equals the equilibrium value, and then back to this

Entropy 2020, 22, 1160; doi:10.3390/e22101160 www.mdpi.com/journal/entropy
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value as time tends to infinity, via an unavoidable first extreme value (maximum or minimum),
possibly followed by other extreme values. These extreme concentration values and the times of their
occurrences present essential information:

(a) on the detailed mechanism
(b) on the values of the kinetic parameters
(c) on the possibility of new regimes with an improved yield and selectivity.

The physico-chemical foundations of the CPE technique are the uniqueness and stability of the
chemical equilibrium composition, which are basic properties of complex reactions occurring in a
closed chemical system. These properties were first qualitatively proven by Zeldovich in 1938 [10,11];
from 1960 onwards, many researchers studied these problems and presented rigorous proofs of the
uniqueness and stability of the equilibrium composition, such as Shapiro and Shapley [12], Aris [13,14],
Horn and Jackson [15], Vol’pert and Khudyaev [16,17], Gorban [18], and Gorban and Yablonsky [19,20].
An essential trait of the equilibrium of reversible complex reactions is that it is actually a detailed
equilibrium—i.e., for every step considered separately, the rate of the forward reaction equals the rate
of the corresponding reverse reaction. Reviews of these results are available in the books [21,22] and in
the paper [23].

The developed CPE approach is not limited to the networks of only unimolecular, linear reactions
which are utilized as examples in the present work. In recent experiments (B. Peng [24]), the CPE
technique was experimentally verified in a batch reactor for a nonlinear complex esterification reaction:

Alcohol + Acid � Ester + Ester,

in which ethanol and benzyl alcohol react with acetic acid, producing two different esters and water.
Three possible CPE cases (acetic acid and water unperturbed; ethanol and ethyl acetate unperturbed;
benzyl alcohol and benzyl acetate unperturbed) were systematically investigated. For the unperturbed
species, the unavoidable extreme values were experimentally observed during the relaxation towards
equilibrium. These extreme values were larger than the equilibrium concentration. Generally, the CPE
technique accompanied by unavoidable extrema may lead to processes limited by thermodynamic
equilibrium achieving a yield higher than the equilibrium. This is probably highly important for some
industrial processes—for example, processes of the pharmaceutical industry.

In the 1950s and 1960s, fundamental progress in the analysis of chemical relaxations was achieved by
Manfred Eigen (Nobel Price 1967 [25]). An excellent review of results of chemical relaxation studies of the
1950–1970s is presented in Bernasconi’s monograph [26]. Typically, in the transient regimes described
by Bernasconi, the “perturbed” system goes to the different final composition—i.e., the perturbations
of temperature or pressure change the final chemical state. Contrary to classical chemical relaxation
procedures, in our CPE approach only some initial concentrations are modified—the “perturbed” ones.
Other characteristics, such as the total amounts of chemical elements and the temperature or any other
factors that could interfere with the final composition, are kept unchanged to ensure the system returns to
the same equilibrium. In the CPE approach, the transient kinetic dependence of unperturbed substances
exhibit unavoidable extremum, which are fingerprints of the CPE technique.

1.1. Previous Study Review

In the paper [1], the CPE phenomenon was studied computationally and analytically using the
two-step linear mechanism as an example

A
k1

+

�
k1
−

B
k2

+

�
k2
−

C

It exhibits the following properties:
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Unavoidability of the concentration extremum of unperturbed species: this fact is independent on
the linearity or nonlinearity of the model studied (see Figure 1).

 

 

Figure 1. Concentration profiles of A, B and C, for δ = 0.5. (a) A maximum of A; k1
+ = 1.75, k1

− = 3.00,
k2
+ = 1.50, k2

− = 0.50 s−1. (b) A minimum of B; k1
+ = 1.50, k1

− = 0.10, k2
+ = 10.0, k2

− = 6.50 s−1.

1.2. Achieving Momentary Equilibrium (ME) at Some Extrema

Preliminarily, the concept of the “equilibrium” must be explained in more detail with some of
its modifications. Typically, the equilibrium is understood as the final state of the non-steady-state
chemical reaction which occurs in the closed chemical system.

The “equilibrium of the single step” means that the rate of the forward reaction of this step equals
the rate of the corresponding reverse reaction. Consequently, the net rate of this step equals zero,
and the equilibrium chemical composition is governed by the equilibrium constant. The “detailed
equilibrium” means that every chemical step of the complex chemical reaction at the final state is under
equilibrium conditions. As the momentary equilibrium of some reaction, we define such temporal
behavior when the rate of some step at that moment equals zero.

At the ME point of a linear step, the quotient of the step (i.e., the ratio of the product concentration
to reactant concentration) equals the equilibrium constant. However, the absolute values of the
concentrations are not equal to the corresponding concentrations at the final detailed equilibrium.

For systems of linear reactions, this holds for so-called end species, which participate only in a
single reaction. For example, in the mechanism

A� B� C
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momentary equilibrium occurs at any extremum of species A and C. In the mechanism

A� B� C
��
D

momentary equilibrium holds at any extremum of the species A, C and D. For species that participate
in several-step reactions the concentration maximum is not a momentary equilibrium.

The time at which the CPE extremum occurs is independent of the perturbation; in the
linear mechanism

A� B� C

these extrema occur at a time that is independent of the magnitude of the perturbation.
The goal of this paper is to study further the dynamic properties of CPE experiments, formulating

new questions and new problems, in linear models with three and four species, focusing on the
following topics:

1. What is the influence of the mechanism structure on the CPE properties?
2. Which differences exist between noncyclic reactions and cyclic ones? Or four cycles with a

diagonal step?
3. What is the influence of the strategy of perturbation—i.e., the distribution of perturbed and

unperturbed species, their vicinity and interconnectivity within the mechanism?
4. Is it possible to observe more complex dynamic behavior, such as the evolution of events, two

extrema, overshooting the equilibrium value, etc.?

2. Materials and Methods

For this study, computational simulations were performed using MATLAB, with ode45 and
ode15s as time integration methods for systems of ordinary differential equations that model systems
of reactions in batch reactors.

3. Results

As mentioned in the introduction, we distinguish two groups of species, “perturbed” and
“un-perturbed”. In correspondence with the CPE experiment, the initial concentrations of these species
were chosen as equal to the equilibrium concentration (“unperturbed species”) or different from the
equilibrium ones (“perturbed” species).

Since the perturbation of a single species cannot be conservative (maintaining the same total
amount of each element), and at least one species must remain unperturbed, the number of perturbed
species allowed in a CPE experiment ranges from 2 to N-1, where N is the total number of species
participating in a mechanism. The number of degrees of freedom of the perturbation equals the number
of perturbed species minus the number of independent conservation laws—see [1].

For a linear three-species (N = 3) mechanism, the number of perturbed species is 2, of unperturbed
is 3−2 = 1, and there are 2−1 = 1 degrees of freedom. For linear four-species (N = 4) mechanisms, the
number of perturbed species can be two or three, but in this study, all perturbations will involve only
two species, so that there are 4−2 = 2 unperturbed species and still 2−1 = 1 degrees of freedom.

Additionally, for the purpose of future analysis, it is important to distinguish the subset of
special unperturbed species that have only unperturbed neighbors, thus being “shielded” from the
perturbation. However, among all species, there must be at least one “neighboring pair” of perturbed
and unperturbed species; otherwise, the perturbation would have no effect on the unperturbed species.
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3.1. Analysis of Perturbed Species in a Three-Species Acyclic Mechanism (Two-Step Mechanism)

A
k1

+

�
k1
−

B
k2

+

�
k2
−

C

The previous work [1] discussed the transient behavior of the unperturbed species only in two-step
mechanisms. As a continuation of that analysis, we now consider the perturbed species. A series of
simulation experiments with different kinetic constants was performed, from which two experiments
were selected as examples—see Table 1.

Table 1. Two-step mechanism, Simulation Experiments 1 and 2.

Experiment Settings Experiment #1 Experiment #2

Kinetic Parameters (s−1):
k1
+ = 5, k1

− = 4
k2
+ = 12, k2

− = 6
k1
+ = 16, k1

− = 4
k2
+ = 12, k2

− = 6
Perturbed species: A, B A, B
Unperturbed species: C C

The transient trajectories of the three species in the two experiments are plotted in Figure 2.

 
(a) (b) 

 
(c) (d) 

Figure 2. Two-step mechanism, (a,b) simulation experiment #1, (c,d) simulation experiment #2. (a)
Species A Conversion, (b) Species B Conversion; (c) Species A Conversion; (d) Species B Conversion.

New Findings—Perturbed Species May Experience Either Monotone Relaxation or Behavior with one
Extremum Peak

Changing the kinetic constants may modify the extremum behavior for the perturbed species. In
this case, species A and B both exhibit monotone relaxation when k1

+ is chosen in a small range. As
the forward kinetic constant becomes larger, species B shows transition to more complex behavior. Its
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transient regime will come to contain one peak (extremum). Additionally, the concentration of B will
overshoot its equilibrium value (in the graphs, this is where conversion = 0).

The concentration extremum indicates the rate of change of the corresponding species when the
timepoint is zero. Since this behavior occurs on species B, which is participating in two reactions
simultaneously, this extremum is not a momentary equilibrium. It was discovered in a series of
computational simulations for this mechanism that when the kinetic constant is above some value, a
concentration extremum for species B will become available.

3.2. Three-Species Cyclic Mechanism

The three-species cyclic mechanism (see Figure 3 and Table 2) presents an additional connectivity
from species A to species C. The kinetic constants must satisfy the following Onsager condition: the

ratio of the third pair of kinetic constants,
k+3
k−3

, which is also the thermodynamic equilibrium constant

of the third reaction K3, must satisfy the condition
k+1
k−1
· k+2

k−2
=

k+3
k−3

.

Mechanism: 

Figure 3. Triangular (three-species cyclic) mechanism.

Table 2. Three-species cyclic conservatively perturbed equilibrium (CPE) example.

Experiment Settings Value

Kinetic Parameters (s−1):
k1
+ = 16 k1

− = 4
k2
+ = 12 k2

− = 6
k3
+ = 8 k3

− = 1
Perturbed species: A, B

Unperturbed species: C

Experiments were performed as described in Table 2 and plotted in Figure 4, setting the same
first two pairs of reaction parameters as in Experiment 2 above, and in adding the third reaction with
kinetic constants satisfying the Onsager condition.

Figure 4. Conversion of the unperturbed species C vs. time. The perturbation consists in changing
species (A) from 0 to 0.36 and species (B) from 0.92 down to 0.56.
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3.2.1. New Findings on the Three-Species Cyclic Mechanism—The Extremum Time for the Cyclic
Mechanism Has the Same Analytical Expression as for the Acyclic

Since a three-species mechanism has three eigenvalues, one of which is 0, and the discrepancy from
equilibrium of an unperturbed substance is zero both at times zero and infinity, it must be proportional
to the difference eλpt − eλmt. Therefore, the extremum time, when its derivative with respect to time
vanishes, is given by

texe =
log

(
λp/λm

)
λm − λp

,

which is the same as those in the acyclic mechanism case. This is because there are only two nonzero
eigenvalues in any linear three-species system, and since there are two boundary conditions at t = 0
and as t approaches infinity, the linear combinations of exponentials are fixed up to a factor for the
unperturbed species.

3.2.2. The Cyclic Mechanism’s Extremum Time is Shorter than that of the Acyclic Mechanism

The cyclic and acyclic exhibit similar properties, however, the major difference between them is
the extremum time caused by the reaction between A and C. As mentioned before, the cycle must

satisfy the Onsager relation
k+1
k−1
· k+2

k−2
=

k+3
k−3

, otherwise, there are possibilities of complex eigenvalues. To

compare the cyclic and the acyclic mechanisms, a simulation is performed fixing k1
+ = 0.16 s−1, k1

− =
0.04 s−1, k2

+ = 0.12 s−1, k2
− = 0.06 s−1, and selecting the value of k3

+, which in turn determines the
value of k3

− from the thermodynamic condition. The comparison results are illustrated in Figure 5.

 
(a) (b) 

Figure 5. (a) Conversion of unperturbed species with large k3
+. (b) Conversion of unperturbed species

with small k3
+.

The plot on the left is when we have a large k3
+ and the plot on the right is when have a small k3

+.
We observe that with a larger k3

+, the extremum time becomes smaller and the extremum concentration
gets closer to the equilibrium concentration. With a smaller k3

+, the trajectories of a cyclic mechanism
become closer to that of an acyclic mechanism with the same k1

+, k1
−, k2

+, and k2
− values. Intuitively,

we can consider the reaction between species A and species C as a shortcut, so that a small k3
+ will

keep the reaction going similar to an acyclic, but a large k3
+ will allow the reaction to reach equilibrium

faster through this shortcut. Mathematically, the reaction between species A and species C changes the
zero entries on the upper right and lower left corner of the kinetic matrix to k3

+ and k3
−, as can be seen

from the matrix form of the kinetic model:

d
dt

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
[A]

[B]
[C]

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ =
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
−k+

1 − k−3 k−1 k+
3

k+
1 −k−1 − k+

2 k−2
k−3 k+

2 −k+
3 − k−2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
[A]

[B]
[C]

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
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A detailed proof of the faster evolution in a three-species cyclic mechanism is given in Appendix A.
There is No momentary equilibrium due to no single-step species.
All three species are involved in two steps, which means that they cannot exhibit a momentary

equilibrium in any of the steps. Nevertheless, for this three-species cyclic mechanism the concentration
extremum will occur for unperturbed species during the transient regimes, and some special cases
such as unitary kinetic parameters would generate special results. This feature will be explored in a
future paper with focus on CPE for reaction systems with special parameters.

3.3. Four-Species Acyclic Mechanism

The results of this case are summarized in Figures 6 and 7 and Table 3.

Mechanism: 

Figure 6. Four-species acyclic mechanism.

 
(a) (b) 

Figure 7. Four-species acyclic mechanism, species B and C unperturbed, (a) conversion of unperturbed
species B, (b) conversion of unperturbed species C.

Table 3. A four-species acyclic example.

Experimental Settings Value

Kinetic parameters (s−1):
k1
+ = 2 k1

− = 1
k2
+ = 3 k2

− = 1
k3
+ = 1 k3

− = 1
Perturbed species: A, D
Unperturbed species: B, C

3.3.1. New Findings—Possibility of Two Extrema and an Inflection Point

Unperturbed species can exhibit two concentration extrema during CPE, a maximum and a
minimum, located before and after the point of crossing the equilibrium value in the transient regime.
Which extremum occurs first depends on the sign of the perturbations. The times at which the extrema
are reached are not dependent upon initial conditions. An inflection point occurs between them, where
the second derivative becomes zero for the unperturbed species concentration; the physical meaning is
a maximum or minimum of the rate of the substance.

This mechanism leads to six different cases of perturbation when choosing two unperturbed
species among four. The simulation settings for all the six combinations are listed in Tables 4 and 5, and
two representative cases are plotted in Figure 8. In these experiments, all simulations are performed
under the same parameters; only the choice of perturbed species varies.
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Table 4. Experiment settings of CPE for a four-species acyclic mechanism.

Experimental Settings Values

Kinetic parameters (s−1):
k1
+ = 2 k1

− = 1
k2
+ = 3 k2

− = 1
k3
+ = 1 k3

− = 1

Table 5. Cases and results of CPE for a four-species acyclic mechanism.

Experiment Perturbed Species Unperturbed Species Behavior

1 A, B C, D 2 extrema of [C], 1 of [D]
2 A, C B, D 1 extremum of [B], 1 of [D]
3 A, D B, C 2 extrema of [C], 1 of [B]
4 B, C A, D 1 extremum of [A], 1 of [D]
5 B, D A, C 1 extremum of [A], 1 of [C]
6 C, D A, B 1 extremum of [A], 1 of [B]

 
(a) (b) 

 
(c) (d) 

Figure 8. (a,b) Experiment 2, (a) Concentration of the unperturbed species B, and (b) concentration
of the unperturbed species D. (c,d) Experiment 3, (c) Concentration of the unperturbed species B, (d)
concentration of the unperturbed species C.

3.3.2. The Initial Rate is Zero for Unperturbed Species that are Connected only with Other
Unperturbed Species

In the cases where species A and B are perturbed (i.e., C, D unperturbed), the initial slope of the
trajectory of species D is 0 (rate of reaction is 0). The same phenomenon is also observed in species A
when C and D are perturbed (A and B unperturbed). See Figure 9.
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(a) (b) 

Figure 9. (a) Species C and D are unperturbed in experiment #1. (b) Species A and B are unperturbed
in experiment #6.

In these cases, when the unperturbed species is not connected directly with perturbed species, the
initial momentary equilibrium established between the unperturbed species produces a zero initial
rate for the species, making the species appear “shielded” by the other species. Nevertheless, this
momentary equilibrium will immediately be broken as the other species participate in reactions with
perturbed species. The first derivatives of concentrations (i.e., reaction rates) in experiment #1 are
plotted in Figure 10. When an initial rate is zero, the extremum rate is unavoidable since the final rate
is zero as well. Consequently, an inflexion point of transient concentration is unavoidable.

Figure 10. Four-species acyclic reaction, species C and D unperturbed, first derivative. Species D has
initial rate equal to 0.

3.3.3. Evolution of Events: Change of the Number of Extrema due to Change in Kinetic
Parameter Values

In Experiment #3, species C has two extrema and one inflection point under the given kinetic
parameter set. Varying a kinetic parameter such as k1

+ will lead to a change in the number of extrema,
as is plotted in Figure 11.

This shows that a threshold located between k1
+ = 1.5 and k1

+ = 1.6 acts as bifurcation point
where switching from the one-extremum to the two-extrema case. This passage from one case to
the other may be helpful to identify the source of complexity in this linear dynamic system. Similar
bifurcations are discovered for parameters k1

−, k2
+ and k3

−. These questions will motivate future
studies of the evolution of events in CPE experiments.
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Figure 11. Conversion of species C when changing k1
+. A passage from one extremum to two extrema

behavior is observed.

3.4. Four-Species Cyclic Mechanism

The mechanism is shown in Figure 12. The parameter values used for the simulations are listed in
Table 6, along with the choices of perturbed species. Example time evolutions are plotted in Figure 13.

Mechanism: 

Figure 12. Four-Species Cyclic Mechanism.

Table 6. Kinetic specs of four-species cyclic mechanism.

Experiment Settings Value

Kinetic parameters (s−1):

k1
+ = 2 k1

− = 1
k2
+ = 3 k2

− = 1
k3
+ = 1 k3

− = 1
k4
+ = 1 k4

− = 6
Perturbed species: A, D
Unperturbed species: B, C

 
(a) 

 
(b) 

Figure 13. Four-species cyclic mechanism, BC unperturbed, (a) conversion of unperturbed species B,
(b) conversion of unperturbed species C.
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3.4.1. New Findings—Similarity with Four-Species Acyclic Mechanism: Occurrence of Two Extrema
and an Inflection Point

Since the four-species acyclic mechanism is a limit of four-species cyclic mechanisms, it is not
surprising to find that the four-species cyclic CPE shares similarity in transient behavior for unperturbed
species. Unperturbed species can also exhibit two extrema and one inflection point, as well as crossing
their equilibrium concentration during the transient regime. The additional connectivity did not overly
modify the complexity of the system behavior.

3.4.2. Zero Initial Rate Behavior for Unperturbed Species Does not Occur

The four-species cyclic mechanism no longer has “end” species participating in only one step; the
example plots of rates in Figure 14 illustrates a case where species C and D are unperturbed.

 
(a) 

(b) 

Figure 14. (a) Species C and D are unperturbed in the four-species cyclic mechanism experiment. (b)
plot of first derivatives (rates). Zero initial rate does not occur.

3.5. Four-Species Cyclic Mechanism with Additional Diagonal Connectivity

To investigate further the effect of the mechanism on the behavior of CPE trajectories, we consider
systems that are square but connected diagonally, such as the mechanism shown in Figure 15. It is
made of two triangles joined into a square, which means that it must satisfy three Onsager relationships:
k+1
k−1
· k+2

k−2
· k+3

k−3
=

k+4
k−4

,
k+1
k−1
· k+2

k−2
=

k+5
k−5

, and
k+5
k−5
· k+3

k−3
=

k+4
k−4

, of which only two are independent.

Mechanism: 

Figure 15. Four-species cyclic mechanism with diagonal connectivity.

An interesting question could be asked regarding the effect of k+
5 (and k−5 ) on the trajectories. In

Figure 16, we see that a system with a larger k+
5 will behave more akin to a triangular mechanism (or

two triangular mechanisms) while a system with a smaller k+
5 will behave more akin to a square. In

particular, when k+
5 is large, the two extrema become only one.
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(a) (b) 

Figure 16. (a) Small diagonal kinetic constant k+5 , (b) large diagonal kinetic constant k+5 .

4. Discussion

4.1. Comparing Structural Differences: Number of Species in Mechanism

Four-species mechanisms, in comparison with three-species mechanisms, demonstrate additional
complex behavior (i.e., two extrema in concentration instead of one, and an inflexion point in
concentration, which is an extremum in rate). Although the mechanisms in the current studies are all
linear systems, a series of observable transient complexities can still be interesting to show further
detailed information on the mechanism.

4.2. Evolution of Events: Effects of Kinetic Parameters on Complexity

Some complex behaviors only occur in parameter subdomains. Finding the boundary point
between a lower and higher complexity (e.g., transition from one extremum to two) remains challenging
because it entails the analysis of linear combinations of exponentials, which becomes complicated
beyond three-species mechanisms. Overall, the importance of effects determined by kinetic parameters
will be an important aspect in further studies of CPE experiments.

5. Conclusions and Future Applications of CPE

The conservatively perturbed equilibrium technique was studied for a given set of chemical
mechanisms, featuring acyclic and cyclic mechanisms involving three or four species. Additional
structures with different connectivities were also analyzed. The CPE approach allowed to find a link
between the type of mechanism and properties of the system relaxation, contributing to decoding the
behavior of dynamical systems and relating the observed phenomena to the underlying complexities.

When an unperturbed species is not connected directly with perturbed species, the initial rate is
zero, and a rate extremum is unavoidable, which is an inflexion point of transient concentration.

Future applications of CPE could be in catalysis, in simulating isotope exchange reactions, or even
more widely, in analyzing large biological systems.
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Appendix A

Analysis of the three-species cyclic mechanism: we want to show that with the addition of
k+

3

(
and k−3 which is dependent on k+

3

)
, the less negative eigenvalue of the cycle transition matrix is

more negative than that of the acyclic transition matrix.
First, we can obtain the expression of the nonzero eigenvalues of the cyclic case:

λp · λm = k+
1 k+

2 + k+
1 k+

3 + k+
2 k+

3 + k+
1 k−2 + k+

3 k−1 + k+
2 k−3 + k−1 k−2 + k−1 k−3 + k−2 k−3

λp, λm = −1
2

⎛⎜⎜⎜⎜⎜⎝k+
1 + k−1 + k+

2 + k−2 + k+
3 + k−3 ±

√(
k+

1 + k−1 + k+
2 + k−2 + k+

3 + k−3
)2 − 4

(
λp · λm

)⎞⎟⎟⎟⎟⎟⎠
Let A = k+

1 + k−1 + k+
2 + k−2 , C = k−1 k−2 + k+

1 k−2 +k+
1 k+

2 , then

λp · λm = C + k1 k3 + k2 k3 + k3 k−1 + k2 k−3 + k−1 k−3 + k−2 k−3

Only terms related to k+
3 and k−3 are left in the expression, and, from the previous results regarding

the expression for the three-species acyclic mechanism, its two nonzero eigenvalues are

λp, λm = −1
2
(A±

√
A2 − 4C)

Since k−3 can be expressed as K · k+
3 , where K is a constant composed of only k+

1 , k−1 , k+
2 , k−2 , we

can observe that the expression can be simplified as

λp, λm = −1
2
(A + Bk+

3 ±
√(

A + Bk+
3

)2 − 4
(
C + Dk+

3

)
)

where the A, B, C, D are constants that only consist of k+
1 , k−1 , k+

2 , k−2 , and are fixed in the comparison
between acyclic and cyclic mechanisms.

We can now consider only the expression A + Bx −
√
(A + Bx)2 − 4(C + Dx) for the less

negative eigenvalue.
Observe that

lim
x→0

A + Bx−
√
(A + Bx)2 − 4(C + Dx) = A−

√
A2 − 4C

The right-hand side of the equation is exactly the expression for the three species linear case. So,
as k+

3 and k−3 converge to 0, the cyclic mechanism becomes the acyclic, which makes physical sense
as well.

To show that the less negative eigenvalue of the cyclic transition matrix is more negative than that
of the acyclic transition matrix, we need to show that

A + Bx−
√
(A + Bx)2 − 4(C + Dx) > A−

√
A2 − 4C for all x > 0

First, since the eigenvalues of chemical systems are real,

(A + Bx)2 − 4(C + Dx) > 0

The minimum of the left hand side is − (2AB−4D)2−4B2(A2−4C)
4B2 from the quadratic formula.

Thus − (2AB−4D)2−4B2(A2−4C)
4B2 > 0, we simplify to get ABD− B2C−D2 > 0.
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Secondly, we show that

A + Bx−
√
(A + Bx)2 − 4(C + Dx) > A−

√
A2 − 4C

⇔ Bx +
√

A2 − 4C >
√
(A + Bx)2 − 4(C + Dx)

Square both sides:

⇔ (Bx)2 + (A2 − 4C) + 2Bx
√

A2 − 4C > (A + Bx)2 − 4(C + Dx)

⇔ (Bx)2 + (A2 − 4C) + 2Bx
√

A2 − 4C > (A + Bx)2 − 4(C + Dx)

⇔ Bx
√

A2 − 4C > ABx− 2Dx

Square both sides:

⇔ Bx2
(
A2 − 4C

)
> (ABx)2 + 4(Dx)2 − 4ABDx2

⇔ −4CBx2 > 4D2x2 − 4ABDx2

⇔ −CB > D2 −ABD

References

1. Yablonsky, G.S.; Branco, P.D.; Marin, G.B.; Constales, D. Conservatively Perturbed Equilibrium (CPE) in
Chemical Kinetics. Chem. Eng. Sci. 2019, 196, 384–390. [CrossRef]

2. Yablonsky, G.S.; Branco, P.D.; Marin, G.B.; Constales, D. New Invariant Expressions in Chemical Kinetics.
Entropy 2020, 22, 373. [CrossRef]

3. Yablonsky, G.S.; Constales, D.; Marin, G.B. Equilibrium relationships for non-equilibrium chemical
dependencies. Chem. Eng. Sci. 2011, 66, 111–114. [CrossRef]

4. Yablonsky, G.S.; Gorban, A.N.; Constales, D.; Galvita, V.; Marin, G.B. Reciprocal Relations Between Kinetic
Curves. Europhys. Lett. 2011, 93, 20004–20007. [CrossRef]

5. Yablonsky, G.S.; Constales, D.; Marin, G.B. New Types of Complexity in Chemical Kinetics: Intersections,
Coincidences and Special Symmetric Relationships. Adv. Chem. Phys. 2014, 157, 69–73.

6. Branco Pinto, D.; Yablonsky, G.S.; Marin, G.B.; Constales, D. New Patterns in Steady-State Chemical Kinetics:
Intersections, Coincidences, Map of Events (Two-Step Mechanism). Entropy 2015, 17, 6783–6800. [CrossRef]

7. Hankins, M.J.; Yablonsky, G.S.; Kiss, I.Z. Dual kinetic curves in reversible electrochemical systems. PLoS
ONE 2017, 12, e0173786. [CrossRef] [PubMed]

8. Peng, B.; Yablonsky, G.S.; Constales, D.; Marin, G.B.; Muhler, M. Experimental confirmation of a new
invariant for a non-linear chemical reaction. Chem. Eng. Sci. 2018, 191, 262–267. [CrossRef]

9. Yablonsky, G.S.; Constales, D.; Marin, G.B. Joint kinetics: A new paradigm for chemical kinetics and chemical
engineering. Curr. Opin. Chem. Eng. 2020, 29, 83–88. [CrossRef]

10. Zeldovich, Y.B. Proof of the uniqueness of the solution of mass-action law equations. Zh. Fiz. Khim. 1938, 11,
685–687. (In Russian)

11. Zeldovich, Y.B. Selected Works of Yakov Borisovich Zeldovich; Volume I: Chemical and Hydrodynanics, Chapter
“Proof of the Uniqueness of the Solution of the Equations of the Law of Mass Action”; Princeton University
Press: Princeton, NJ, USA, 2014; pp. 144–147.

12. Shapiro, N.Z.; Shapley, L.S. Mass action laws and the Gibbs free energy function. J. Soc. Ind. Appl. Math.
1965, 13, 353–375. [CrossRef]

13. Aris, R. Prolegomena to the rational analysis of systems of chemical reactions. Arch. Ration. Mech. Anal.
1965, 19, 81–99. [CrossRef]

14. Aris, R. Prolegomena to the rational analysis of systems of chemical reactions II. Some addenda. Arch. Ration.
Mech. Anal. 1968, 27, 356–364. [CrossRef]

15. Horn, F.; Jackson, R. General mass action kinetics. Arch. Ration. Mech. Anal. 1972, 47, 81–116. [CrossRef]
16. Vol’pert, A.I. Differential equations on graphs. Math. USSR Sbornik. 1972, 17, 571–582. [CrossRef]
17. Vol’pert, A.I.; Khudyaev, S.I. Analysis in Classes of Discontinuous Functions and Equations of Mathematical

Physics; Martinus Nijhoff: Dordrecht, The Netherland, 1985; 704p.

331



Entropy 2020, 22, 1160

18. Gorban, A.N. On the problem of boundary equilibrium points. React. Kinet. Catal. Lett. 1980, 15, 315–319.
19. Gorban, A.N.; Mirkes, E.M.; Yablonsky, G.S. Thermodynamics in the limit of irreversible reactions. Phys. A

Stat. Mech. Its Appl. 2013, 392, 1318–1335. [CrossRef]
20. Gorban, A.N.; Yablonsky, G.S. Extended detailed balance for systems with irreversible reactions. Chem. Eng.

Sci. 2011, 63, 5388–5399. [CrossRef]
21. Yablonskii, G.S.; Bykov, V.I.; Gorban, A.N.; Elokhin, V.I. Kinetic Models of Catalytic Reactions.

In Comprehensive Chemical Kinetics; Compton, R.G., Ed.; Elsevier: Amsterdam, The Netherlands, 1991;
Volume 32, 396p.

22. Marin, G.B.; Yablonsky, G.S.; Constales, D. Kinetics of Chemical Reactions: Decoding Complexity, 2nd ed.; John
Wiley–VCH: Weinheim, Germany, 2019; p. 13.

23. Gorban, A.N.; Yablonsky, G.S. Three Waves of Chemical Dynamics. Math. Model. Nat. Phenom. 2015, 10, 1–5.
[CrossRef]

24. Peng, B.; Zhu, X.; Constales, D.; Yablonsky, G.S. Experimental verification of conservatively perturbed
equilibrium for a complex non-linear chemical reaction. Chem. Eng. Sci. 2020, 229, 116008. [CrossRef]

25. Eigen, M. Nobel Prize Lecture, “Immeasurably Fast Reactions”. 11 December 1967. Available online:
https://www.nobelprize.org/uploads/2018/06/eigen-lecture.pdf (accessed on 28 September 2020).

26. Bernasconi, C.F. Relaxation Kinetics; Academic Press: Cambridge, MA, USA, 1976; 288p.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

332



entropy

Article

Finite-Time Thermodynamics in Economics

Anatoly Tsirlin 1,* and Larisa Gagarina 2

1 Ailamazyan Program Systems Institute of Russian Academy of Sciences, 152120 Rostov, Russia
2 Institute of Systems and Program Engineering and Information Technologies, National Research University

of Electronic Technology, 124482 Zelenograd, Russia; gagar@bk.ru
* Correspondence: tsirlin@sarc.botik.ru

Received: 15 July 2020; Accepted: 12 August 2020; Published: 13 August 2020

Abstract: In this paper, we consider optimal trading processes in economic systems. The analysis is
based on accounting for irreversibility factors using the wealth function concept. The existence of
the welfare function is proved, the concept of capital dissipation is introduced as a measure of the
irreversibility of processes in the microeconomic system, and the economic balances are recorded,
including capital dissipation. Problems in the form of kinetic equations leading to given conditions
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1. Introduction

Systems that include a large number individually unobservable and uncontrollable elements
which interact with each other are called macrosystems. The behavior of a component in such a system
can be stochastic and yet the behavior of the system on a macro level, when averaged processes
are observed, is deterministic. Thermodynamic systems of various nature with a large number of
molecules interacting with each other on a micro level are a classical example of a macrosystem.

When contact is established between inhomogeneous macrosystems the processes of stochastic
interaction occur. In thermodynamics these are, e.g., heat exchange, diffusion, and chemical
transformation processes. It is not possible to return the system, when stochastic interaction process
occurred, into its initial state without changing the system’s environment. This irreversibility of
spontaneous processes of stochastic interactions is the key feature of macrosystems.

Microeconomics studies interaction of economic agents (EAs). An EA is a group of individual
agents whose averaged characteristics determine the EAs’ characteristics. Sometimes we will use
an analogy between microeconomics and thermodynamics and refer to the economic system (ES),
where all economic agents are subsystems. The interaction between EAs leads to exchange of resources
between them and consumption and/or production of these resources by them. In the course of these
interactions each agent strives to increase its utility by choosing which kind of resource to exchange
with which other kind of resource and in which quantity. Economic systems can be isolated from the
environment. In this case all the exchange takes place inside the system. Economic systems can be open.
Then, exchange of all or some of the resources can also occur between the system and its environment.

The processes of stochastic interactions in economics are irreversible as they are in any
macrosystem. However, they are quite different from irreversible processes in thermodynamics
chiefly because each subsystem chooses to participate in an exchange if that does not lead to a “loss”.
Nevertheless, it is also possible to define an economic measure of irreversibility that attains maximum
for an isolated system in equilibrium (like entropy in thermodynamics). It is also possible to define a
non-negative function in economics similar to entropy production in thermodynamics and to formulate
economic balances that include this function.
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In the case when the duration of the processes is limited or the average intensity of the flows is
fixed in the economy, the situation is very similar to finite-time thermodynamics (FTT).

In this paper a macrosystem approach to economic systems modeling is described. A number of
economic problems that are similar to classical thermodynamic problems are solved.

2. Major Types of Economic Agents and Their Characteristics

The state of an economic agent is described by the vector of its stocks (amount of holdings)
of resources N = N1, N2, . . . , Nk and capital (cash) M. We assume that capital is measured by all
economic agents using a single common unit (e.g., gold or an international currency). N and M
are extensive variables, that is, when homogeneous economic systems merge/split, the values of
these variables change in the same proportion. An economic system is also described by a vector
of intensive variables—the estimates of how valuable these resources are for it given by the prices
p = (p1, ..., pk) and the estimate of how valuable capital is for this system p0. When economic systems
merge, these variables equalize. The new estimate pi for the resource i (its internal equilibrium price) is
equal to the minimal price, in units of capital, for which the economic agent is prepared to sell resource i and the
maximal price at which it is prepared to buy it.

When an economic agent is offering to buy and sell resources, it is described by its supply and
demand functions. The demand function shows the quantity of the i-th resource it is prepared to
purchase for the price ci. The higher this price is, the lower, as a rule, is this demand. Finally, at some
price ci = pi the economic agent stops buying. This is similar to the dependence of the heat flux on the
temperature of the source and the working fluid in a heat engine. If ci > pi, then it is prepared to sell
the i-th resource, and the higher ci is the larger quantity it is prepared to sell.

The unit of pi is the unit of M divided by unit of Ni. These estimates are related to amounts of
resources and capital of an economic agent in the same way intensive variable in thermodynamics are
related to extensive ones. The units of ci and pi are the same, but ci could be set manually by some
intermediary agent. The estimate p0 is the value of capital in units of some basic currency, for example,
gold. More detailed discussion of the relationship between estimate of some resource and capital is
given below.

In many cases demand and supply functions relate the price not to the quantity but to the flow of
resource, ni(pi, ci). The function ni(pi, ci) determines the kinetics of resource exchange. If we define
positive flow directed toward the economic agent then

sign ni(ci, pi) = sign (pi − ci)

ni(ci, pi) = 0 when ci = pi and
∂ni
∂ci

< 0.
(1)

The dimension of the vector c is the unit of capital divided by the unit of resource.
We define three types of economic agents.

1. Economic agents whose resource estimates pi depend on the agent’s state (on its stocks of resources
and capital). Usually, but not always, when the stock of a resource is decreasing its estimate is
decreasing too, and when capital is increasing then the estimate is increasing. The economic agent
can also exchange capital M with the environment. Here, the minimal price of selling (maximal
price of buying) is the economic agent’s estimate of capital. We denote it as p0(N, M). We shall
call such systems economic systems with finite capacity.

2. Economic agents with estimates pi independent of stocks of the resource are similar to thermodynamic
systems with infinite capacity (reservoirs). We shall call them economic reservoirs. Economic
markets where prices do not depend on the rate of trading are examples of economic reservoirs.
The amount of resource that is sold/purchased here is so small in comparison with its stock that
in practice it does not effect its estimate.
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In the general case, a market’s demand/supply function n(c, p) depends on the prices of selling
(buying) and on the estimates, and it obeys the conditions (1) for resource exchange kinetics.
Such a market is called monopolistic. In the limit when for each flow n the difference between the
price and estimate is infinitesimal (prices for any rate of flow n are equal to the market estimates),
then the market is called a market with perfect competition. If this market is a reservoir then its
prices do not depend on the demand but change over time under the influence of the external
system factors.

3. Intermediaries (firms) are active economic agents which set the price or rate of resource selling
(buying) independently of its stock in such a way that they extract maximum amount of capital.
They are similar to a heat engine working fluid in thermodynamics. They can contact with a
number of economic agents simultaneously setting different prices and flows for each of them.
The intermediary’s prices and its function that describes when to establish/break contact with an
economic agent are controls.

A firm can be a manufacturing firm which buys resources (raw materials, labor, or equipment)
and sells its production, which is determined by its production function [1] and the price it sets.
We denote the price for the i-th resource set by a firm as ci.

2.1. Wealth Function and Capital Dissipation

Existence of a wealth function and its properties. During an exchange an economic agent sells and
buys resources which alters its stocks of resources and capital. Let us introduce the function U by
the differential

dU = dM + ∑
i

pidNi. (2)

We shall call it capitalization of an economic agent because its variation takes into account changes
of capital M as well as changes of illiquid capital (stocks) F = ∑i pi Ni. During equilibrium exchange
when prices of selling/buying are infinitesimally close to the estimates pi, U does not change, dU = 0,
as dM = −∑i pidNi. Such a process is reversible, because the economic agent can buy the same
amount of resource as it sold using the capital from the selling and return to the original state without
changing anything in its environment.

Suppose equilibrium exchange takes place between a firm and an economic agent when one
resource is exchanged for another. Exchange is carried out reversibly and therefore the initial and the
final states of the economic agent in the space with coordinates Ni coincide. If a firm can extract any
capital as a result of this process, then it would be possible to extract an unlimited amount of capital
using just one economic agent and not cause any changes in the environment. As this is not possible,
it follows that for p0 = const. ∮

∑
i

pi(N, M) dNi = 0. (3)

From this condition it follows that a function Z(N, p0) exists such that its partial derivatives w.r.t.
Ni are equal to pi and its differential has the form,

dZ = ∑
i

pi dNi +
∂Z
∂p0

dp0. (4)

The condition (2) can be rewritten in the following form,

dU = dM + dZ − ∂Z
∂p0

dp0 = d(M + Z)− ∂Z
∂p0

dp0. (5)
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After denoting M + Z = Y and − ∂Z
∂p0

= γ we get

dU = dY + γ dp0. (6)

Thus, this differential is a Pfaffian form with two variables which always has an integrating multiplier.
A Pfaffian form is a differential form of degree one, that is, the sum of the products of functions of

some variables and the differentials of these variables,

dK =
n

∑
i=1

Fi(x) dxi. (7)

If n = 2 and the functions Fi are differentiable, then it is always possible to a find multiplier r(x)

such that dS = r(x)dK is a complete differential, that is, S depends on x and
∮

dS = 0. We denote this

multiplier for our system p0(N, M).
Thus, we proved that there exists a function of state variables (extensive variables), S(N, M), such that

its differential has the form

dS = p0(N, M)dU = p0(N, M)

[
dM + ∑

i
pi(N, M)dNi

]
. (8)

In a reversible cycle of resource exchange (that is, when the prices of resources coincide with their
estimates) the function S does not change, ∮

dS = 0. (9)

In cyclic processes the amounts of resources and capital are the same both for initial and final
state. The condition (9) is satisfied if the price of some resource and its estimate are equal at each point
of the cycle, so resource’s flows are negligible.

The resource estimates can be expressed in terms of the function S as

p0 =
∂S
∂M

, pi =
∂S
∂Ni

/ ∂S
∂M

, i = 1, 2, ... (10)

Here, the capital estimate p0 > 0 for all economic agents, but pi could be negative if the resource
requires reprocessing or storage costs.

S(N, M) is called the wealth function. The above-described proof of its existence is derived as the
consequence of the impossibility to profit indefinitely from trading with one economic agent is an
exact copy of the proof of the existence of entropy in thermodynamics. It was obtained by Rozonoer in
Appendix of [2]. More general proof is given in [3].

In microeconomics the preferences of an economic agent are often described by its indifference
curves (surfaces). Each such curve singles out the set of equally preferred states. If stocks of all
resources of an economic agent except one remain constant and this one stock (which could be
capital, the basic resource) is increased, then its state is transferred to the higher indifference curve.
The existence of S was proven in [4] using the Ville axiom [5], which uses the notion of preferred
states of an economic agent: it is not possible to find a sequence of states X1, X2, ..., Xm in the state space
X = (N, M) such that Xi is preferred to Xi−1 for i = 2, . . . , m, and the initial and final states coincide
X1 = Xm.

During resource exchange between economic agents the voluntary condition, that the wealth
functions Sν of any participant cannot decrease, must be met (the only exception is exchange associated
with charity). The voluntary condition precludes direct exchange of one resource unless its estimates
for contacting agents are different. Such exchange becomes possible only if there is an intermediary.

336



Entropy 2020, 22, 891

If the wealth function is measured in units of local currency, then p0 > 0 characterizes the value of
foreign currency for an agent. Its unit is [unit of local currency/unit of foreign currency]. For currency
exchange the estimate p0 plays the same role as the estimate p for resource exchange.

The description of economic systems becomes similar to thermodynamic equations if we formally
introduce an “economic temperature” as

T =
1
p0

(11)

as was done in [2,3].
When the properties of an economic agent do not change but its “scale” changes, its stocks of

resources and capital are changed proportionally. It is natural to assume that the wealth function
changes in the same way here, that is, that it is an extensive function just like N and M are. In this case,
S is a uniform function of first degree and its derivatives on N and M are uniform functions of zero
degree. From Euler’s Theorem it follows that it can be written as

S(N, M) = p0(M, N)

(
∑

i
pi(M, N)Ni + M

)
. (12)

The dependence p(N, M) can be found from experimental data.
If the existence of the wealth function S is postulated, then the estimates may be determined by

solving the extremal problem

S(N, M) → max
/(

∑
i

pi Ni + M

)
= V, (13)

where V is fixed. In this case, the solution of the problem (13) and the values of p and p0 are linked via

pi(N, M) =
∂S
∂Ni

/ ∂S
∂M

. (14)

It is assumed that function S is continuously differentiable and strictly concave.
Therefore, the solution of the problem (13) exists and is unique and each pi decreases when Ni increases.
Thus, an economic agent is similar to a finite capacity subsystem in thermodynamics. For an economic
reservoir resource and capital estimates are constant and S is linear.

Despite the similarity of the welfare function to thermodynamic entropy, there are differences
between them. In the general case the wealth function is not additive, and the sum of wealth functions
for the subsystems is not equal to the wealth function of the entire system. Furthermore, the units
of the wealth functions for different subsystems could be different. Unlike the wealth function,
the capitalization, the capital, and invested capital have the same unit and are additive.

2.2. Differential Links between Estimates—Economic Analogue of the Gibbs–Duhem Relation

Let us write the differential of S

dS = p0

(
dM +

n

∑
i=1

pidNi

)
= p0dU. (15)

From (15) we get

dM =
dS
p0

−
n

∑
i=1

pidNi. (16)

From (12) it follows that

M =
S
p0

−
n

∑
i=1

pi Ni (17)
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dM =
dS
p0

+ S d
(

1
p0

)
−

n

∑
i=1

(pidNi + Nidpi). (18)

The comparison of (18) and (16) yields the relation between capital estimate and resource estimate,

S d
(

1
p0

)
−

n

∑
i=1

Nidpi = 0. (19)

Similarly, comparison of the differential of S found using (12) with the expression (15) yields

Mdp0 +
n

∑
i=1

Nid(p0 pi) = 0. (20)

The conditions (19) and (20) follow from the existence of the homogeneous function S. They are
economic analogues of the Gibbs–Duhem equation in thermodynamics. One of their consequences
when the state of the system is changed in such a way that the resource estimates are constant is that
the capital estimate is also constant.

As the matrix of second derivatives for a twice differentiable function is symmetric,
the sensitivity of the resource and capital estimates with respect to stock variations are linked by
the following equations,

∂(p0 pi)

∂Nj
=

∂(p0 pj)

∂Ni
=

∂2S
∂Ni∂Nj

(21)

∂p0

∂Nj
=

∂(p0 pj)

∂M
=

∂2S
∂M∂Nj

. (22)

It is easy to show using (21) and (22) that

∂pi
∂Nj

+ pi
∂pj

∂M
=

∂pj

∂Ni
+ pj

∂pi
∂M

, i, j = 1, ..., n. (23)

The Equations (21) and (22) are economic analogs of the Maxwell relations.

2.3. Capital Dissipation

Let us again consider the cyclic process of interaction between one economic agent and one
intermediary. We now require that the average rate of exchange is fixed. Then, the intermediary has
to increase the price above the estimate pi when it is buying and decrease it below estimates when
selling. The economic agent’s capitalization here increases because

ΔU =
∮

∑(pi(N, M)− ci) dNi > 0, (24)

and the intermediary suffers losses of ΔU in comparison with the reversible process.
The change of capitalization is positive, as p0(N, M) > 0.
The rate of the intermediary’s losses due to irreversibility is non-negative,

σ(t) = ∑
i

ni(pi, ci)(pi − ci) ≥ 0. (25)

We shall call it the capital dissipation due to resource exchange irreversibility. It can be interpreted
as trading costs.

The condition (24) of capitalization is non-decreasing (and therefore wealth is non-decreasing)
during an economic exchange is analogy to the Clausius integral. The law that during a contact
between two economic agents where a resource is transferred from the agent with lower estimate to
the agent with higher estimate and that the net invested capital is not decreasing (Δ(F1 + F2) ≥ 0)
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is the analogue of of the second law of thermodynamics. It allows us to construct an irreversible
microeconomic theory similar to finite-time thermodynamics.

2.4. The Second Law of Microeconomics

The resource conservation laws in microeconomics are analogs of conservation of mass and energy
in thermodynamics.

Let us consider the economic analogue of the other fundamental law of thermodynamics,
the Second Law. Clausius’ statement of the Second Law is “Heat cannot of itself pass from a colder to a hotter
body without some other change, connected herewith, occurring at the same time.” Leontovich’s formulation
is “It is not possible to build a device which would produce positive work only by cooling one body without any
other effects.”

In microeconomics these formulations correspond to the following statements. (i) The flux of a
scalar resource cannot flow from an economic agent with a higher estimate to an economic agent with a lower
estimate without other changes taking place. (ii) It is not possible to produce profit by carrying out exchange
with one economic agent without any other changes.

Planck’s statement says “The entropy of an isolated thermodynamic system during an irreversible process
can only increase and its exergy can only decrease. The equilibrium state of such a system has maximum entropy
subject to imposed constraints.”

Similarly, resource exchange processes in isolated microeconomic systems occur in such a direction that the
net capitalization of the economic agents increases and attains a maximum subject to constraints imposed on the
system, including the voluntary principle. At the same time, the potential ability to extract profit (profitability)
decreases and attains a minimum under the same conditions.

As the net amount of capital in an isolated system is constant (dM = 0), the maximum of
capitalization corresponds to maximum of invested capital.

Table 1 shows major analogies between thermodynamic and economic systems. The following
notations are used in Table 1. T− and T are temperatures of the reservoir and contacting system,
respectively; p− is resource estimate on the perfect competition market; c is the resource price set by
an intermediary; N is the stock of resources; U is internal energy; and q and n are the flows of heat and
resource, respectively.

Table 1. Analogies between thermodynamic and economic systems.

Thermodynamic System Economic System

Name Notation Name Notation

Temperature of a system
with finite capacity

T The reciprocal of
capital estimate for EA

1/p0

Reservoir (irreversible
heat exchange)

q = α(T − T−) Monopolistic market n = α(p − p−)

Mass N Resource stock N

Finite-capacity system,
chemical potential

μ(N) Economic agent,
resource estimate

p(N)

Temperature of the
working fluid for heat
engine

T(t) Intermediary, price c(t)

Free energy A Capital M

Internal energy E Capitalization U
Entropy S Wealth function S

Entropy production σ Capital dissipation σ

339



Entropy 2020, 22, 891

3. Economic Balances and Capital Dissipation

3.1. Open Systems

Consider an open economic system that exchanges resources and capital with an environment.
The subscript i denotes the i-th resource and j denotes j-th subsystem. We assume that external flows
entering the system are positive and leaving are negative. These flows can be divided into two group.
First there are flows caused and effected by external factors. The flows from the second group depend
on the prices set by external sellers and buyers and on the estimates of resources in the corresponding
subsystem. Similarly to thermodynamics, we shall call the former flows convective and denote them
by subscript k and the latter diffusive and denote them by subscript d. Note that a subsystem can
produce some resources by using others.

The balance for the i-th resource is

Ṅi = ∑
j

(
nk

ij(t) + nd
ij(pj, cj) + Wj(pj)αij

)
, i = 1, 2, . . . (26)

The sum here is over all subsystems, Wj(pj) is the production rate in the j-th subsystem, and the
coefficients αij > 0 if the i-th resource is produced in the j-th subsystem and αij < 0 if it is consumed
there. The α’s determine the rate at which the i-th resource is produced (consumed); cj is the price
vector for the exchange between the j-th subsystem and its environment.

The balance on capital is

Ṁ = ∑
j

(
mk

j (t)− ∑
i

cijnd
ij(pj, cj)

)
. (27)

The balance on the invested capital is

U̇ = Ṁ + Ḟ = Ṁ + ∑
i,j

pij(Nj, Mj)(nk
ij + nd

ij(pj, cj)) + σ, (28)

where the capital dissipation σ is

σ =
1
2 ∑

j
∑
ν

njν(pj, pν)(pj − pν) + ∑
j

Wj(pj)Aj. (29)

Here pj and pν are vectors of resource estimates for the j-th and ν-th subsystems with the
components pij and piν. Correspondingly, Aj = ∑i αij pi and njν = −nνj is the vector-function of flow
of resources.

The dissipation of capital, similar to the production of entropy in thermodynamics, is calculated
as the product of the flow and the driving force, and it is always non-negative. It makes sense of capital
losses associated with the creation of a flow of a given intensity. If Δpjν = pj − pν is small and the
kinetic function njν is differentiable, then σ is a positive-definite quadratic form.

Just as in the theory of FTT, in economics problems arise about the choice of exchange process
parameters when we desire that a given average intensity of exchange flows with a minimum average
capital dissipation.

The balance on capitalization is (28) with the capital dissipation σ defined by (29). Here, the first
term is due to resource-exchange variation in the amount of illiquid capital and the second is due
to production. For profitable production, the dependencies Wi(pi) are such that Wi(pi)∑j pijαij =

Wi(pi)Ai(pi, αi) are non-negative. pj and pν are vectors of resource estimates for contacting subsystems
with components pji and pνi, and njν = −nνj.

In a stationary regime the rhs of Equations (26)–(28) are equal to zero. In a cyclic regime when

N(0) = N(τ), M(0) = M(τ), U(0) = U(τ), (30)
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the integrals of the rhs of these equations are equal zero.

3.2. Isolated Systems

Consider an isolated economic system with no external flows entering or leaving it. Then,
the balance Equations (26)–(28) take the form

Ṅi = ∑
j

Wj(pj)αij, Ni(0) = ∑
j

Nij(0) (31)

Ṁ = ∑
i

Ṁi = 0 (32)

Ḟ = ∑
j

Ḟj = σ ≥ 0. (33)

In equilibrium the invested capital is maximal and the flows nij and Wj(pj) are equal to zero.
The distribution of capital M between the subsystems in equilibrium depends on the kinetics of
resource exchange.

For each j-th subsystem of an isolated system

Ṅji = ∑
ν

nνji(pj, pν) + Wj(pj)αij (34)

Ṁj = ∑
ν,i

ñνji(pj, cjν)cjνi, i, j = 1, . . . , n. (35)

Here, cjν is the vector of intermediate prices with components cjνi, which are to be found from the
condition of flow continuity,

ñνji(pj, cjν) = −ñjνi(cjν, pj) = nνji(pj, pν). (36)

Thus, the price vector, and therefore the rhs of equation (35), depends on the forms of kinetic
functions of supply and demand, ñνj. After expressing cjν from (36) and its substitution into ñjν and
ñνj both these functions turn out to be equal to the kinetic function njν(pj, pν) that was used in (29)
and (34).

The equilibrium distribution of capital M is determined by the resource exchange kinetics, and M
depends on equilibrium stocks N as they obey the condition

pj(M, N) = pν(M, N) = λ, ∀j, ν. (37)

In some cases the object of interest is the set Q of the values of M that can be attained from the
given initial state for different demand–supply functions ñ(p, c).

For each j-th subsystem the minimal capital increase ΔMj = Mj − Mj0 is achieved when the
exchange with all the other subsystems is carried out using cj arbitrarily close to pj, that is, reversibly.

Therefore, Mmin
j can be found from the condition Sj(Mj, Nj) = Sj(Mj0, Nj0).

A maximal Mmax
j corresponds to such an exchange for which it is possible to construct a range

Mmin
j ≤ Mj ≤ Mmax

j in the space of Mj. The intersection of this range with the plane

∑
j

Mj = ∑
j

Mj0 (38)

singles out the set Q of all feasible equilibrium distributions of capital.
As σ(p) > 0, the illiquid capital in the flows entering a non-homogeneous open system is always higher

than in the flows leaving the system.
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This condition σ(p1, p2) ≥ 0 jointly with the balances (26)–(28) determine the boundary of the
realizability area of irreversible process for an economic systems. The conditions imposed on the
rates of various flows allow us to find the minimal capital dissipation, σmin > 0, achievable for these
conditions. This reduces realizability area as the inequality σ ≥ 0 is less restrictive than σ ≥ σmin.
This is analogous to the result that the realizability area for a heat engine in FTT is more restricted than
if comparison is only made with an equilibrium system.

As the net amount of capital in an isolated system is constant (dM = 0), the maximum of
capitalization corresponds to the maximum of invested capital.

As an example, we will calculate the capital dissipation σ for exchange between two economic
agents with linear kinetics

n1(p1, c) = a1(p1 − c), (39)

n2(p2, c) = a2(p2 − c). (40)

From the condition −n1 = n2 = n we get for c(p1, p2)

a1(p1 − c) + a2(p2 − c) = 0 (41)

or
c =

a1 p1 + a2 p2

a1 + a2
(42)

n(p1, p2) = −n1(p1, c(p1, p2)) = a(p2 − p1), (43)

where
a =

a1a2

a1 + a2
. (44)

The dissipation is then

σ(p1, p2) = (p2 − p1)a(p2 − p1) = a(p2 − p1)
2 =

n2(p1, p2)

a
. (45)

3.3. Maximum Profit Flow

A classical thermodynamic problem is finding the maximum power of a heat engine that receives
heat from a source with temperature T+ and gives part of it to a source with temperature T−, taking into
account the irreversibility of heat transfer (see in [6]). The economic analog of this is the problem of
finding the maximum profit flow of a company buying an item on the market with an estimate p1 and
selling it on the market with rating p2 > p1.

The company must choose the optimal purchase and sales prices c1 and c2. Let the resource
flow be

n = k1(c1 − p1) = k2(p2 − c2). (46)

Then, after the optimal selection of purchase and sales prices, we get the maximum profit flow

m∗ =
(p2 − p1)

2

2A
, A =

(
1/k1 + 1/k2

)
, (47)

the optimal purchase sale flow

n∗ =
p2 − p1

2A
, (48)

and the corresponding optimal prices

c∗1 = p1 +
n∗

K1
, c∗2 = p2 −

n∗

K2
. (49)
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4. Resource Exchange in Isolated Systems

In isolated economic systems the combined capital does not change (∑j dMj = 0). Correspondingly,
in isolated thermodynamic systems the total energy does not change. Meanwhile, the wealth function and
capitalization of each subsystem increase during any resource exchange. This occurs due to increase of
combined illiquid capital F, whose differential is

dF = ∑
j

∑
i

pji(Nj, Mj)dNji. (50)

We will demonstrate later in this paper that when a resource is exchanged for capital (sold) in an
isolated system, the combined capitalization of the system,

dU ≥ 0 ⇒ dF ≥ 0 (51)

increases. Equality here corresponds to reversible exchange. When one resource is exchanged into
another without any exchange of capital (barter) and thus the capital distribution between subsystems
is fixed, we have

dF > 0. (52)

Therefore, barter is always irreversible (like heat exchange and diffusion processes
in thermodynamics).

Resource/Capital Exchange in Economic Systems with Different Configurations

Selling. Suppose the system consists of two economic agents. At t = 0 the first economic agent
has capital M0 and the second holds resource N0. At t = 0 the estimates obey p1 > p2, otherwise the
trade would be blocked by the voluntary principle.

In equilibrium the balances
M1 + M2 = M0 (53)

N1 + N2 = N0 (54)

and the equality of estimates
p1(N1, M1) = p2(N2, M2) = p (55)

hold. The increase in capitalization of each of economic agents depends on what price is used during
exchange. This price must obey the inequality

p1 ≥ c ≥ p2, (56)

otherwise the voluntarity principle would be violated (as the price would be lower than the
estimate when resource is sold to economic agent and higher when it is bough from him).

It is clear that
dM1

dN1
=

dM2

dN2
= −c, dN2 = −dN1, (57)

M1(0) = M0, M2(N0) = 0, N2(N0) = 0. (58)

For given c(N1) the conditions (57) allow us to express M1, M2, N2 in terms of N1. The change in
capitalization can then be calculated as

ΔU1 =

N1∫
0

(p1(N)− c(N))dN (59)
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ΔU2 =

N1∫
0

(c(N)− p2(N))dN. (60)

For the whole system

ΔU = ΔU1 + ΔU2 =

N1∫
0

(p1(N)− p2(N))dN. (61)

Because M1, M2 and N2 are expressed in terms of N1 and c(N1) in (57), p1, p2 in (59)–(61) depend
not only on N1.

The conditions (53)–(56) do not fully determine the state of equilibrium. They include three
equations for four variables, (M1, M2, N1, N2). When N1 → N1, the price c tends to p. If c = p2,
then ΔU2 = 0, and the increase of the system’s capitalization is ΔU = ΔU1. It can be found from
Equation (61). If c = p1 then ΔU = ΔU2. The equilibrium states are different in these two cases.

The special case is when c = const and equal to the equilibrium estimate p. This the case of an
auction. Here, the price is set in such a way that the amount of bough and sold resource are equal.
In this case the condition

M2 = (N0 − N2)p (62)

must be added to the conditions (53)–(55) to determine the final state.
It is not possible to transfer the system from one equilibrium state achieved by choosing some price

c, which obeys inequalities (56), into another equilibrium state without reducing its capitalization and
wealth function of one of its economic agents. Therefore, the set of equilibrium states is Pareto-optimal
(i.e., consists of a set of compromises).

Suppose that the wealth functions have the same dimension. Let us find the state for which the
sum S1(N1, M1) + S2(N2, M2) attains its maximum subject to constraints (53) and (54). The stationarity
conditions of the Lagrange function on the state variables,

L =
2

∑
i=1

Si(Ni, Mi) + λ1(N1 + N2) + λ2(M1 + M2) (63)

leads to the equations
∂Si

∂Ni
= λ1,

∂Si

∂Mi
= λ2, i = 1, 2. (64)

As
∂Si

∂Mi
= pi0(Ni, Mi) (65)

and
∂Si

∂Ni
= pi0(Ni, Mi)pi(Ni, Mi), (66)

it follows that in equilibrium, which corresponds to the maximum of the wealth function, both resource
estimates pi (see (55)) and the capital estimates pi0 are the same for all subsystems. The latter condition
makes the set (53)–(55) complete.

If resource estimates do not depend on the capital M, then capitalization U depends on M and N,
and dU is a total differential. In this case, it is possible to construct level curves of the function U(N, M)

on the plane with coordinates M1, N1 and origin O1. Along these lines, dU1 = 0 and
dM1

dN1
= −p1(N1).

As the estimate increases when N1 increases, the slope of these lines decreases and the curves are
convex. The capital M1 ≤ M0. The initial state of the economic agent corresponds to the point M0 on
the abscissa.
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Similarly, let us draw the level curves for the capital M2 and resource N2 of the second economic
agent (the origin here is O2, the positive direction of the resource N2 axis is down, and the capital M2

axis is to the left). This figure is called an Edgeworth diagram (see Figure 1). The points where level
curves of U1 and U2 touch obey the conditions of equilibria (55). The set of such points makes the set
of equilibrium. The initial state of any system corresponds to the right lower corner of Edgeworth
diagram and any of its points obey balances (53) and (54).

Figure 1. The Edgeworth diagram shows the possibilities of resource exchange in a closed system
consisting of two economic agents. The dashed and solid lines show the level lines of the welfare
functions of the first and second economic agents, respectively, and the arrows from the origin of the
coordinate system in the upper right corner show the directions of growth of resource reserves and
capital of each of them. The touch points of the level lines form an equilibrium curve. The section of
this curve, highlighted by the bold line, is reachable from the initial state 0, as upon transition to this
section the welfare functions of both economic agents increase. The point Q where the vector �0Q is
perpendicular to the bold line corresponds to barter exchange.

However, not all points on the equilibrium curve can be reached without violation of the voluntary
condition. Points that can be reached are singled out by the inequality (56). They guarantee that no
agent ends up with a lower capitalization. The reachable piece of the equilibrium curve Θ is denoted
by the bold line in Figure 1. The point on it which corresponds to auction trading is given by the
intersection of this curve with the straight line drawn from the initial state of the system orthogonally
to Θ.
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Consider exchange through the auction between n economic agents on m kinds of resources
occurs. The conditions of equilibrium are

pj
i(Ni

) = λj,
i = 1, ..., n
j = 1, ..., m.

(67)

We again denote

ΔNij = Nij − Nij(0),
j = 1, ..., m
i = 1, ..., n.

(68)

The balances on resources
n

∑
j=1

ΔNij = 0, j = 1, ..., m (69)

and capital

ΔMj = −
m

∑
i=1

λiΔNij, j = 1, ..., n (70)

need to be added to the conditions of equilibrium (67). The conditions (67)–(70) allow us to find states
of all contacting economic agents and the increment of the system wealth function,

ΔS =
n

∑
j=1

(Sj(Mj, Nj)− Sj(0)). (71)

It is always positive.
For the Cobb–Douglas wealth function,

S = Mγ0
m

∏
i=1

Nγi
i , γi ≥ 0,

m

∑
i=0

γi = 1, (72)

pi =
∂S/∂Ni
∂S/∂M

=
γi M
γ0Ni

, i = 1, ..., m (73)

the conditions, derived above, take the form

Nij =
γij

λi

Mj

γ0j
, i = 1, ..., n, j = 1, ..., m, (74)

Mj = U0j −
m

∑
i=1

λiΔNij, (75)

λi =

n
∑

j=1
Mj

γij

γ0j
n
∑

j=1
Nij(0)

, (76)

where U0j = Mj(0) + ∑m
i=1 λi Nij(0) is the capitalization of the j-th economic agent with respect to the

equilibrium prices.
Exchange with reservoir. As a reservoir’s estimates p0 are constant, the lines U = const in

Figure 1 are straight. Maximal increase of an economic agent’s ΔU corresponds to the exchange using
prices p0. Then in equilibrium the capital M and resource stocks N obey the conditions

pi(M, N) = p0
i , i = 1, ..., m, (77)

M − M0 =
m

∑
i=1

p0
i (Ni0 − Ni), (78)
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M ≥ 0, Ni ≥ 0, i = 1, ..., m. (79)

M0 and N0 are the initial values of M and N. If condition (79) holds, then the conditions (77)
and (78) determine the equilibrium state of the system. Otherwise, some of the variables are set to zero
which reduces the number of conditions ((77) and (78)) to be used to find the rest of the variables.

Let us calculate the economic agent’s capitalization for m = 1.

ΔU =

N∫
N0

dU
dN

dN =

N∫
N0

(
∂U
∂M

dM
dN

+
∂U
∂N

)
dN. (80)

As
dM
dN

= −p0,
∂U
∂N

= p(M, N), M = M0 − p0(N − N0) (81)

we find

ΔU =

N∫
N0

[p(M0 − p0(N − N0), N)− p0]dN. (82)

If p ≥ p0 then dN ≥ 0. Otherwise dN ≤ 0 and ΔU is non-negative.
Next, we show that the increase of the economic agent’s wealth function is maximal when market

prices are used during the exchange. Indeed,

S(N, M) = S

(
N1, ..., Nm, M(0)−

m

∑
i=1

p0
i (Ni − Ni(0))

)
→ max

N
. (83)

The conditions of maximum S(N),

∂S
∂Ni

=
∂S
∂M

∂M
∂Ni

+
∂S
∂Ni

= p0(pi − p0
i ) = 0, i = 1, ..., m (84)

coincide with the conditions of equilibrium (77). Thus, the wealth function attains maximum at
equilibrium.

Let us specify these equations for the particular case when the economic agent’s wealth function
has the Cobb–Douglas form (72). Then, the conditions of equilibrium (77) become the set of
linear equations

Nici

(
1 +

γ0

γi

)
+

m

∑
ν=1,ν �=i

cνNν = U0 = M(0) +
m

∑
ν=1

cνNν(0), i = 1, ..., m. (85)

Here, U0 is capitalization of the economic agent in its initial state using market prices. The solution
of Equation (85) becomes

M = U0γ0, Ni = U0
γi
ci

, i = 1, ..., m. (86)

The value of the wealth function in equilibrium with the market here is

S = S(N) = U0γ
γ0
0

m

∏
i=1

(
γi
ci

)γi

. (87)

Example 1. Suppose
S = (M, N1, N2) = M1/3 N1/2

1 N1/6
2 . (88)
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The initial stocks of resources and prices are

M(0) = 1, N1(0) = 2, N2(0) = 3, c1 = 10, c2 = 20. (89)

The conditions of equilibrium and balance on capital take the form

M
N1

=
20
3

,
M
N2

= 40, (90)

M = 1 − 10(N1 − 2)− 20(N2 − 3). (91)

From conditions (86) and (87) we obtain

U0 = 81, N1 = 81/20 = 4.05, N2 = 81/120 = 0.675, M = 27. (92)

S = M1/3 N1
1/2 N2

1/6
= 5.65, S(0) = 1.69. (93)

The increase of the economic agent’s wealth function ΔS = S(N)− S(0) = 3.96.
For m > 1

ΔU =
m

∑
ν=1

Nν∫
N0ν

[pν(M(N), N)− p0
ν]dNν, (94)

where

M(N) = M0 +
m

∑
ν=1

p0
ν(N0ν − Nν). (95)

Barter. The condition that exchange is done voluntarily means that exchange of one kind of
resource is possible only if this resource’s estimates by the contacting subsystems have opposite signs.
For example, production waste may have negative estimate for one subsystem and positive for the
other which can process this waste into useful products. If all estimates have the same sign, then the
exchange can only occur if not less than two kinds of resources are exchanged and when there is a
counterflow of either capital or another kind of resource (barter). Here, any state for which the vector
of resource estimates p for all subsystems are equal, and these resources cannot be used for exchange
that would increase the wealth function of the ν-th subsystem,

Sν = p0ν

(
Mν +

n

∑
i=1

pi Niν

)
= p0νUν (96)

and further they would not reduce the wealth functions of other contacting subsystems, turn out to
be equilibrium. Thus, in economics, unlike in thermodynamics, all Pareto-optimal states turn out
to be in equilibrium. One of these states corresponds to an exchange via auction. Prices here are
determined by the conditions of non-accumulation of resources during re-selling. At the end of the
resource exchange, the capitalization Uν of each subsystem ν based on equilibrium estimates is equal
to the initial capitalization. This determines the distribution of capital.

If the functions Sν have the same dimensionality (which is not always the case), then it is possible
to find that state on the Pareto set which maximizes the combined wealth function. This means
that none of the subsystems would benefit more from a transition to new new equilibrium state
than the others would loose. As we demonstrated above, this state corresponds to equality of the
capital estimates,

p0ν = p0, ν = 1, ..., m, (97)

which, jointly with conditions of equilibrium and conditions of non-accumulation, determine the
distributions of all resources.
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Consider a system that includes two economic agents that both have two types of resources and
no capital. In the initial state the resource stocks and their estimates are given by

N0
1 = (N0

11, N0
12), N0

2 = (N0
21, N0

22), p0
1ν(N0

ν ), p0
2ν(N0

2 ), ν = 1, 2. (98)

The estimates here either do not depend on capital or the distribution of capital M is fixed.
If the initial stocks have such values that the solution of the conditions of equilibrium,

p11(N1) = p21(N2), (99)

p12(N1) = p22(N2), (100)

N1 + N21 = N0
11 + N0

21, N12 + N22 = N0
12 + N0

22, (101)

are positive, then these conditions completely determine the state of the system.
In the general case of barter exchange in which n economic agents take part, each of which holds

m kinds of resources, the conditions of equilibrium take the form

n

∑
i=1

Niν =
n

∑
i=1

N0
iν = N0

ν , ν = 1, ..., m, (102)

piν(Ni, Mi) = λν, i = 1, ..., n, ν = 1, ..., m. (103)

For the non-degenerate case of convex (with respect to Ni) functions piν(N), the conditions (102)
and (103) determine the equilibrium distribution of resources for fixed capital Mi.

For isolated economic systems the following statement holds.
For each distribution of initial capital M between subsystems, resources are distributed in such a way that

the net sum of invested capital attains its maximum conditional on the constraints imposed on the system:

F(M) = ∑
i

∑
ν

piν(Ni, Mi)Ni → max
Ni

(104)

subject to conditions (102). This maximum is

F∗(M) = ∑
ν

λν(M)N0
ν . (105)

In its turn the distribution of capital M between subsystems obeys the conditions of capital
balance, inequalities that follow from the voluntary nature of exchange. It also depends on the form of
the kinetic functions.

5. Stationary State of an Open Economic System

Exchange between markets. Suppose the system consists of two markets. They exchange a
vector of resources N whose estimates on the first and second market correspondingly are p1 and p2.
From the economic balances it follows that capital dissipation here is

σ = ∑
i

ni(p1, p2)(p2i − p1i). (106)

For flows proportional to the price difference, ni = ai12(p2i − p1i), analogous to simple flows in
thermodynamics, we get

σ = ∑
i

ai12(p2i − p1i)
2. (107)

Stationary open system. A stationary regime in an open economic system where there is no
convective flows is possible only if it includes at least two economic reservoirs. We denote flows
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between the ν-th and j-th subsystems as nνj(pν, pj). For each ν-th economic agent, the vector balances
of resources take the following form,

∑
j

nνj + nd
ν + Wναν = 0, (108)

where j is the subscript denoting the j-th subsystem. In accordance with (29) capital dissipation becomes

σ =
1
2 ∑

ν,j
nνj(pν, pj)(pν − pj) + ∑

ν

ne
ν(pν, cν)(pν − cν) + ∑

ν

Wναν pν. (109)

In particular, if the system is near equilibrium and flows are proportional to the estimate
differences, and the rates of production Wνjαν are constant, then the dissipation takes the following
form, similar to exchange between markets,

σ =
1
2 ∑

ν,j,i
aνji(pνi − pji)

2 + ∑
i,ν

pνiWνiανi + ∑
ν

aνi(pνi − cνi)
2. (110)

Here, ν, j are subsystem subscripts and i is the resource subscript.

6. Principle of Minimal Capital Dissipation

The factor that causes resource exchange flows to occur (the ”driving force”) is the difference
between the resource estimates in two contacting subsystems or between the price and the estimate
(for definiteness we will consider the latter). Near equilibrium this difference is small and flows can be
assumed to depend linearly on the difference of price and estimate.

The driving force of resource exchange here is Δ = p − c. We assume that the flow directed to the
economic agent is positive, then

ni =
n

∑
ν=1

aνiΔν =
n

∑
ν=1

aνi(pν − cν), i = 1, ..., n. (111)

We shall call the matrix A with the elements aiν the matrix of kinetic coefficients of the economic
agent. It determines exchange kinetics between the economic agent and its environment.

The resource exchange flow causes a counter flow of capital such that

dM
dt

= −
n

∑
i=1

cini. (112)

The rate of change of the wealth function is

dS
dt

=
∂S

∂N0

dN0

dt
+

n

∑
i=1

∂S
∂Ni

gi = −p0

n

∑
i=1

cigi ++p0

n

∑
i=1

pigi =

= p0

n

∑
i=1

(pi − ci)gi = p0ΔT AΔ.
(113)

Here, Δ is the vector of driving forces.
As capital estimate p0 > 0 and since resource exchange is voluntary and therefore wealth function

cannot decrease during an exchange, it follows that the matrix A is positive definite. Let us show that
it is also symmetrical.

Indeed, if we extract Δ from (111), then for any infinitesimal time interval the expression (113)
takes the form

dS
p0

= dNT BdN, (114)
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where dN is the column vector of increments of stocks of resources and B = A−1. The elements biν of
this matrix are

biν =
∂2( S

p0
)

∂Ni∂Nν
= bνi, i, ν = 1, ..., n. (115)

Thus, B is positive definite and symmetric. Therefore, for small deviations from equilibrium,
the inverse of the B matrix of supply and demand, A = B−1 is symmetric and positive definite.
Further, the following reciprocity conditions hold. The influence of the difference between the price
and estimate of the ν-th resource on the flow of the i-th resource is the same as the influence of the
difference of the price and estimate of the i-th resource on the flow of the ν-th resource.

After taking into account the symmetry of the kinetic coefficient matrix, the conditions of
minimum σ (see (110)) with respect to pνi (ν = 1, ..., k) for each economic agent lead to the equations
such that

∑
j

aνji(pνi − pji) + Wνiανi + aνi(pνi − cνi) = 0 ∀i, ν. (116)

For linear flows this coincides with resource balance equations for each of the subsystems (108).
As a consequence, the following statement is true. Resources and capital are distributed in equilibrium in
an open economic system with near linear laws of resource exchange in such a way that capital dissipation σ is
minimal. This is the analogue of the Prigogine principle in irreversible thermodynamics [7].

7. Conclusions

We have shown above that the mathematical descriptions of processes occurring between
thermodynamic systems and between economic systems have much in common. The concept
of irreversibility of economic transport phenomena is introduced, and the problem of minimum
irreversibility for a limited duration, or a given average intensity, of economic processes similar to
FTT are considered. These analogies are treated in a large number of studies (see [8–11] a.o.). As so
may concepts are similar, here we rather emphasize the main difference between thermodynamic and
economic systems.

In thermodynamics any consequences of energy or mass transport between the subsystems of
an isolated system are accompanied by an increase in the total entropy. However, the entropy of one
subsystem can decrease while the entropy of another one increases by at least the same amount.

In economics not only the total welfare function grows under similar conditions, but also
the welfare function of each of the subsystems according to the condition of voluntarity.
Moreover, each flow of resource transport is accompanied by a counter flow of capital transport.

Equations of thermodynamic balances correspond in economics to balance equations for capital,
for each kind of resources, and for welfare. The role of dissipation is played by the growth rate of the
welfare function (it is non-negative). The constraints must be accompanied by the requirements of
non-negativity for the growth rate of the welfare function for each subsystem.
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Finite-time thermodynamics was created 45 years ago as a slight modification of
classical thermodynamics, by adding the constraint that the process in question goes to
completion within a finite length of time. It was started using very simple models of real
processes and has since then evolved into many new areas as clearly evidenced by the
20 quite diverse papers of this Special Issue “Finite-Time Thermodynamics” [1–20]. The
philosophy has remained the same: add a time constraint for the processes involved and
optimize for your desired quantity (power, efficiency, profit, population, whatever). But the
types of processes considered and the accuracy of the modeling have expanded immensely
from the original simple Curzon-Ahlborn engine.

While much work is still needed optimizing concrete and very important processes
and machines in our daily lives, we would here like to raise our gaze to more distant
horizons. Where could the field go next to expand our insight and modeling abilities?

Some of the most promising directions we are imagining are beyond what is tradi-
tionally considered thermodynamics. One direction which contains many astonishing
concepts, and which has already been underway for many years, is quantum finite-time
thermodynamics. Not only will one encounter the ‘usual’ quantum effects, some very
untraditional ones also appear. Quantum resources like coherence and entanglement carry
available work. It follows that Carnot engines working between heat reservoirs containing
such “hidden” resources can appear to violate Carnot’s bound [21]. Similarly, systems with
bounded upper energy levels can exhibit negative temperatures. Such systems can turn a
heat input into pure work without further flows. Recent “shortcuts to equilibrium” [22]
can take a system from one equilibrium state to another equilibrium state within a short
period of time as opposed to a usual adiabatic transformation which in principle would
require an infinite length of time. In other words, we can generate reversible transforma-
tions in lossy systems taking place in a finite time by appropriate controls. As quantum
computing using q-bits develop, such quantum finite-time thermodynamic considerations in
lossy environments and related optimal solutions for design of the physical equipment will
become very important to gain the full potential of quantum computing.

One area of particular concern in connection with quantum systems is that they are
governed by Hamiltonian dynamics and thus in principle are lossless. By contrast, finite-
time thermodynamics always involves losses. Its goal is to minimize these losses and
calculate the optimal paths using available controls, not just natural free flows. Thus
what we need to develop is a general thermodynamic description of open quantum systems,
i.e., including the lossy interaction with external reservoirs [23,24]. The Lindblad superop-
erator has been extensively used for this purpose, but is it general enough for quantum
computing, and how can we control the rate of transfers, the core component of finite-time
thermodynamics, in the loss minimization optimization?

Quantum thermodynamics typically involves translating thermodynamics many or-
ders of magnitude down from the human scale to the atomic scale where many concepts are
different (e.g., temperature and pressure). What happens in the opposite direction, moving
many orders of magnitude up from the human scale to the galactic scale? A scale typically
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involves both a spatial and a temporal dimension, often connected by the speed of light.
The issue here is that any measurement can be split into 3 regions of accessibility. If we are
talking about timescales, there will be a central region which we can observe properly. At
times shorter than that, our instruments cannot tell events apart and thus establish “before”
and “after” and causality. Processes on timescales longer than our window of observability
are not detected since we see no change. Exploring this ‘slow-time thermodynamics’ we have
just scratched the surface [25] in an attempt to find out which thermodynamic concepts
survive (e.g., mass), which ones either disappear or take on a new appearance (e.g., tem-
perature and entropy), and which new ones may emerge. Entropy production, which is
a crucial quantity for rate processes, surely will acquire new components from processes
which we on human time and space scales can follow in detail but which on the grander
scale become impossible to tell apart and thus appear statistical. Wind is such an example.
This is a wide open field, not least identifying rate processes, their entropy production rates,
and how possibly to control them.

Another virgin territory of finite-time thermodynamics may be found within biol-
ogy, ranging from the chemical processes of sub-components of single cells (e.g., energy
transfer processes in mitochondria) to ecological competition (e.g., corals vs. algae) to
evolution. Many attempts have been made at using entropies in comparing the evolution
and thus competition of species, ranging from the well established Shannon and Kullback-
Leibler forms to home-cooked expressions. While the questions attacked are indeed of
great importance for our understanding of biological systems, there is a serious need for a
precise thermodynamic formulation of the basic interactions and objectives of the biological system
components before one can hope for reliable dynamic (finite-time) conclusions. Attempts
have been made to model evolutionary steps as phase transitions in the spin glass de-
scription of aging. Both are strongly out-of-equilibrium processes with memory and are
conceptually similar.

After many years of dormancy, methods based on thermodynamic geometry have recently
started bearing fruit. The connection between thermodynamic length and dissipation
has been used to bound the operation of quantum heat engines for adiabatically driven
closed systems [2]. Thermodynamic curvature measures interaction strength, and its use
led to better equations of state and shed light on black hole thermodynamics [26]. We
anticipate that these are just the beginning and there is much more insights to come from
thermodynamic geometry.

Thermodynamics-like theories can be used in any area where optimizing behavior is
central to the ruling paradigm. These include the disciplines of economics and biology.
Optimizing behavior can infuse finite-time thermodynamic ideas and reasoning into such
disciplines and leads to carry-over concepts such as dissipation in capital markets [17].
In economics, models assuming optimizing behavior abound with producer optimizing
production, consumer optimizing utility, and government optimizing total welfare. These
optimization problems give ample opportunity for mapping thermodynamic models into
the situation along the lines of mapping mechanics problems into electronic circuits. Much
of Georgescu-Roegen’s classic work [27] exploits such mappings. But while it is clear that
optimizing behavior is involved, such behaviors in economics and biology stem from the
phenomena for which the actual objective function, operating on a given timescale in a
given situation, is usually controversial. We expect finite-time thermodynamics to be a
future guide to such efforts as a template and as a source of readily adapted models with
large palettes of objective functions and associated optimizing behaviors.

Unlike biological or economic systems, computer systems have clear objective func-
tions purely by engineering design. How to achieve optimizing behavior is the main
issue here and simulated annealing has been its workhorse example [28]. Optimal cooling
depends on the heat capacity and relaxation time of a fictitious physical system that is
naturally associated with the optimization problem. Finding similar finite-time thermo-
dynamics based data mining techniques to extract the most information with the least work
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from a database is likely to be a fertile area. This connection to information engines has
made great strides [29] and is poised for more.

Standard predictions for the future of engineering involve designing for sustainability
and easy recycling. But surely the dominant design theme of the next few decades is design-
ing for product intelligence. Since intelligent behavior entails solving some optimization
problem under given constraints, our above stated criteria for thermodynamics-like models
are fulfilled. Finite time is certainly one of these constraints, so we expect finite-time
thermodynamics-like models to play an important role. Since we are approaching the
“technological singularity” [30], this may even be the most important development that can
benefit from finite-time thermodynamics-like models.
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