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Preface to “Modeling and Simulation of Metallurgical

Processes in Ironmaking and Steelmaking”

This Special Issue focuses on the modeling and simulation of ironmaking and steelmaking

processes, providing a selection of peer-reviewed papers on topical research questions. The idea

for co-editing a Special Issue was borne out of the bilateral collaborations between RWTH Aachen

University, Kyushu University and the University of Oulu, which have included both experimental

and modeling aspects.

The manuscript submission was opened amidst the COVID-19 pandemic in August 2020 and

closed in March 2022 with still no end to the pandemic in sight. For this reason, all aspects of the

Special Issue had to be organized without meeting in person and face-to-face marketing of the Special

Issue was limited. Nevertheless, we managed to receive good visibility for our Special Issue and

were thus able to attract a fair number of manuscript submissions for peer review. Eventually, a total

of 14 manuscripts were accepted for publication based on positive recommendations from external

subject matter experts. These papers and an accompanying editorial were published from 2021 to

2022 in volumes 11 and 12 of Metals and are reprinted in this Special Issue.

We are grateful to both the peer reviewers and authors, without whom this Special Issue could

not have materialized. Mr. Toliver Guo from MDPI is acknowledged for taking care of all the

practicalities related to the publication of the Special Issue both in digital and printed form. Finally,

we hope that the Special Issue will make interesting reading and give our readers new ideas and tools

for driving scientific and practical progress in the iron and steel industry.

Thomas Echterhof, Ko-Ichiro Ohno, and Ville-Valtteri Visuri

Editors
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1. Introduction and Scope

The UN’s 2030 Sustainable Development Goals, the Paris Agreement, and the Euro-
pean Green Deal, among other goals, all aim to improve the sustainability of industrial
production and reduce CO2 emissions. The European Union, for example, aims to reach
carbon neutrality and a circular economy by 2050. This goal cannot be achieved without
a significant reduction in the CO2 emissions created by the steel industry. To reach this
goal, further process optimizations regarding energy and resource efficiency, as well as the
development of new processes or process routes, are needed.

The parameters necessary for the analysis and optimization of the existing and new
metallurgical processes in ironmaking and steelmaking often cannot be measured directly
because of the harsh conditions inside the furnaces and metallurgical vessels. Typically, the
direct information sources in ironmaking and steelmaking are off-gas analysis and spot
measurements, which suffer from the delay associated with the analysis of the sample. Due
to the harsh environment, opportunities to determine the flow conditions in the vessels by
measurements are even more limited. While new methods for the direct and continuous
measurement of some of these parameters are under development, for many processes, they
are currently unavailable. Furthermore, plant trials that would be necessary to evaluate the
impact of different optimization strategies may be impossible because of the prohibitive
cost or safety concerns.

Modelling and simulation have established themselves as an invaluable source of
information regarding otherwise unknown process parameters, and as an alternative to
plant trials with a lower associated cost, risk, and duration. Models are also applicable for
model-based control of metallurgical processes.

This Special Issue aimed to cover recent advances in the modelling and simulation
of unit processes in ironmaking and steelmaking. To this end, fourteen articles have
been published in the present Special Issue of Metals. The articles give voice to a total of
67 authors, representing affiliations from ten countries (Figure 1a) with the majority of
contributions originating from universities (Figure 1b). The subjects include reviews on
the fundamentals of modelling and simulation of metallurgical processes, as well as the
fields of iron reduction/ironmaking, steelmaking via the primary and secondary route, and
continuous casting.

Metals 2022, 12, 1185. https://doi.org/10.3390/met12071185 https://www.mdpi.com/journal/metals1
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(a) 

(b) 

Figure 1. Authors of the contributions of the Special Issue: (a) by country of affiliation; (b) by
affiliation type.
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2. Contributions

The fundamentals of modelling and simulation are covered by several articles. Wang et al. [1]
review the application of turbulence modelling in metallurgical applications. The article
focuses on the validation of models by experiments and the applicability of models to
industrial cases. Bubble-induced turbulence, supersonic jet transport, and electromagnetic
suppression of turbulence are three specific flow problems discussed in the article. Haas
et al. [2] present “A Review of Bubble Dynamics in Liquid Metals”. The article presents
a detailed discussion of the state of knowledge of bubble dynamics in liquid metals,
measurement methods, and bubble formation mechanism at nozzles and purging plugs,
and discusses modelling uncertainties using the steel ladle as an example. It is concluded
that, while a lot of valuable information has been extracted from both aqueous and liquid
metal systems, there are still plenty of uncertainties regarding the behaviour of bubbles
in liquid steel. The uncertainties highlighted in the paper include the effect of impurities
present in steel, the interaction of gas bubbles in bubble swarms, and the deformation of
bubbles due to injectors or walls.

Three articles explore the reduction processes in ironmaking. Quatravaux et al. [3]
investigated the Midrex NGTM process and adapted a blast furnace operating diagram
to describe the direct reduction of iron oxide in the Midrex shaft furnace. The authors
employed the developed graphical tool for a sensitivity study of the reduction in the shaft
furnace. Wang et al. [4] present a combination of numerical and experimental investigations
of the charging of carbon composite briquettes in a blast furnace. The authors studied the
replacement of ore by the carbon composite briquettes and report on carbon conversion,
coke rate, blast furnace operation, and productivity, etc. Liu et al. [5] studied the reduction
process within a pre-reduction rotary kiln employing numerical simulation methods. The
numerical model was validated based on measurement data and then used to investigate
process details such as temperature gradients or the progress of the reduction process
within the rotary kiln.

The field of steelmaking is covered by eight articles. The first two are more related to
the primary steelmaking route, including the blast furnace and basic oxygen furnace while
the following five concern steelmaking in the electric arc furnace (EAF). The final article
addresses the overarching topic of steelmaking slags. Linnestad et al. [6] report on the
development of a process model describing the Composition Adjustment by Sealed argon
bubbling with Oxygen Blowing (CAS-OB) process. In this study, a simplified mathematical
model for the heat-up stage of the CAS-OB process was coupled with adaptive estima-
tion of state variables using a Kalman filter. The authors present the model’s capabilities,
as well as model results from the prediction of a data series with more than 1000 heats
based on the model implementation at two CAS-OB stations at SSAB Europe Oy in Raahe,
Finland. The predicted temperature profiles are displayed for the operator to assist in
their decision-making, thus helping to reduce the number of rejected heats. Gao et al. [7]
investigated the melting of scrap in hot metal and determined mass transfer coefficients
during scrap melting based on laboratory-scale experiments. Subsequently, the authors
determined the influence of the variables molten pool stirring rate, bath temperature, and
scrap type on the mass transfer coefficient. Tomažič et al. [8] studied the optimization of
the energy consumption in an EAF employing data-driven modelling approaches. The
models were developed and validated based on industrial data from an EAF steel plant
and were used to determine the optimal duration of the transformer profile during melt-
ing to reduce energy consumption, thereby increasing EAF efficiency. Jawahery et al. [9]
present a first-principles-based process model of the EAF steelmaking designed for online
real-time optimization of the process. The model focuses on the integration of auxiliary
process data to predict energy efficiency and heat transfer limitations in the EAF. The model
was validated using steel temperature and weight measurements achieving reasonable
agreement. Al Nasser et al. [10] developed a simplified arc impingement model to study
the direct-current electric arc in computational fluid dynamics simulations. The model was
used to investigate the influence of the factors arc gap, the density of the gas and total elec-
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tric current on the behaviour of the arc, and the overall process, including arc impingement
depth, velocity magnitude, and arc stability. Reimann et al. [11] investigated statistical
modelling approaches based on operational data from five industrial-size EAFs for the
prediction of the electric energy demand. Results of the modelling approaches applied
to the different industrial EAFs are presented, compared and differences are discussed.
Schubert et al. [12] describe the development of a fast modelling approach that was subse-
quently used to simulate and predict the scrap preheating of a continuously charged EAF.
Modelling applications, assumptions, possible enhancements, and limitations, as well as
initial simulation results, are presented and discussed. Finally, Safavi Nick et al. [13] studied
the modelling and simulation of slag heat recovery to design an optimized heat recovery
system. The simulation focused on the heat exchanger and fluid medium used to transfer
the heat. This study is a good example of how modern computational fluid dynamics
(CFD)-based simulation tools can be used as a design tool for heat recovery processes.

The final field – covered by one article – is continuous casting. Guthrie and Isac [14]
present a historical review of casting methods used for sheet steel production. The re-
view shows the development from conventional continuous casting to thin-slab casting
as well as different concepts of direct strip casting, and discusses the pros and cons of
current methods.

3. Conclusions and Outlook

A variety of connected topics have been compiled in the present Special Issue of
Metals, providing an overview of recent developments in different aspects of modelling and
simulation of metallurgical processes in ironmaking and steelmaking. Despite being a long-
term research interest, modelling and simulation could become even more important with
the upcoming transformation to carbon-neutral ironmaking and steelmaking processes.

As Guest Editors of this Special Issue, we are very pleased with the contributions
received and hope that the presented articles will be useful to researchers and operators of
metallurgical plants working to optimize plant operation. We would like to thank all the
authors for their contributions, as well as all reviewers for their efforts in maintaining the
high quality of published papers. We would also like to give special thanks to all staff at
the Metals Editorial Office, especially to Toliver Guo, Assistant Editor, who managed and
facilitated the publication process of this Special Issue.

Conflicts of Interest: The authors declare no conflict of interest.
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Abstract: This paper focusses on three main numerical methods, i.e., the Reynolds-Averaged Navier-
Stokes (RANS), Large Eddy Simulation (LES), and Direct Numerical Simulation (DNS) methods.
The formulation and variation of different RANS methods are evaluated. The advantage and dis-
advantage of RANS models to characterize turbulent flows are discussed. The progress of LES
with different subgrid scale models is presented. Special attention is paid to the inflow boundary
condition for LES modelling. Application and limitation of the DNS model are described. Dif-
ferent experimental techniques for model validation are given. The consistency between physical
experimentation/modelling and industrial cases is discussed. An emphasis is placed on the model
validation through physical experimentation. Subsequently, the application of a turbulence model
for three specific flow problems commonly encountered in metallurgical process, i.e., bubble-induced
turbulence, supersonic jet transport, and electromagnetic suppression of turbulence, is discussed.
Some future perspectives for the simulation of turbulent flow are formulated.

Keywords: turbulence modelling; RANS/LES/DNS; inflow condition; model validation; model
application

1. Introduction

Since turbulence plays a significant role in flow transport phenomena, consider-
able efforts have been devoted to understanding flow turbulence in both engineering
and academic communities [1–4]. Nevertheless, turbulence is still not fully understood
due to its complexities in nature, e.g., instantaneous and intermittency characteristics,
strong nonlinearity, and a wide range of temporal and spatial scales [4,5].

Turbulent flow can be numerically resolved with different levels of accuracy. Many nu-
merical approaches for solving turbulence have been proposed, such as the Reynolds-
Averaged Navier–Stokes (RANS) [6–11], the Large Eddy Simulation (LES) [12–14], and Di-
rect Numerical Simulation (DNS) approaches [15]. Among these numerical methods, the
RANS approach, specifically the Eddy Viscosity Model (EVM), is widely used for calcu-
lating turbulent flows thanks to its relatively high accuracy in predicting the mean flow
features and its more limited computational demands. However, this approach suffers from
several weaknesses, e.g., compromised accuracy and uncertainties due to assumptions
in the model construction and insufficient incorporation of the fluid physics. In the LES
approach, the whole eddy range is separated into two parts, namely, the large-scale eddy
and subgrid-scale (SGS) eddy. The former can be directly resolved, while the latter is
computed using the SGS model. As the computing power rapidly increases, this approach
is extensively used to study turbulence physics and to resolve low-to-medium Reynolds
number flows. In order to obtain meaningful results, additional attention is paid to inflow
boundary conditions and mesh density for LES modelling. Compared to the RANS and
LES, the DNS approach is the most accurate numerical method because it directly resolves

Metals 2021, 11, 1297. https://doi.org/10.3390/met11081297 https://www.mdpi.com/journal/metals7



Metals 2021, 11, 1297

all the turbulent eddies without using any models. However, DNS requires extensive com-
putational demands to solve turbulent engineering flows, which is difficult to be satisfied
by the current computing power. In addition, the large amount of data generated by DNS
should be carefully analyzed.

Due to the uncertainties of the RANS method, many model variants have been pro-
posed to solve specific turbulent flows [6–10], which can easily confuse the users of Com-
putational Fluids Dynamics (CFD) codes to choose an appropriate one for their own cases.
A comprehensive and well-organized description of the model formulation and devel-
opment is very helpful in judging the applicability of different models, although there
are some works with respect to model description [1,3]. Apart from SGS models of the
LES method, the inflow boundary condition is an indispensable part of the simulation.
Considering a diversity of methods generating inflow information [16,17], an elaborate
analysis and discussion on the methods is necessary and conducive for the LES model
user. In order to clearly understand the potential of the DNS method, the capabilities
and current limitations of DNS method need to be clarified. In addition to the numerical
solutions for turbulent flows, model validation is needed to warrant the accuracy of the
simulation. Depending on different studies, different physical experimentations assisted
with measuring techniques are performed to validate the numerical model. There are a
number of studies focusing on the fundamentals of different measuring techniques, data in-
terpretation, and applications of the techniques [18,19]. However, the consistency between
physical experimentation/modelling and industrial applications needs to be discussed.
The limitations and development of the measuring techniques are critical for obtaining
reliable data and should be reviewed.

In this work, we review the formulation and development of three main numerical
approaches (i.e., the RANS, LES, and DNS) for turbulence modelling. The advantages and
disadvantages of the approaches are systematically discussed. Different methods of the
inflow boundary condition are described for LES modelling. For the purpose of validating
numerical models, different physical experimentation methods are presented. The consis-
tency between the physical modelling and industrial applications is discussed. Limitations
and progress of the experimental validation techniques are shown. Three turbulence-
related flow problems commonly encountered in metallurgical fields (i.e., bubble-induced
turbulence (BIT), supersonic jet transport, and electromagnetic damping of turbulence) are
discussed to demonstrate how to customize a conventional turbulence model for solving a
specific flow problem. Finally, perspectives for modelling turbulent flows are proposed.
With this review, we intend to help the current and potential CFD users to understand the
modelling techniques for turbulence flows better and to expand the insight into the physics
of turbulence.

2. Turbulence Simulation Approaches

2.1. RANS

In the RANS approach, instantaneous solution variables in the governing equations
are decomposed into the mean and fluctuating components, as expressed in Equation (1).

f = f + f ′ (1)

Substituting this variable expression into the instantaneous continuity and Navier-
Stokes (N-S) equations yields the ensemble- or time-averaged forms for single-phase
Newtonian flow, as shown in Equations (2) and (3). Henceforth, repeated-suffix summation
convention is used in the formulae.

∂ρ

∂t
+

∂

∂xi
(ρui) = 0 (2)

∂

∂t
(ρui) +

∂

∂xj

(
ρuiuj

)
= − ∂p

∂xi
+

∂

∂xj

(
μ

∂ui
∂xj

− ρu′
iu

′
j

)
(3)
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The fluctuating quantities are included in the Reynolds stress tensor (−ρu′
iu

′
j) with

six components. In order to close the equation set, the Reynolds stress tensor needs
to be appropriately solved. One of the solutions for this closure problem employs the
Boussinesq assumption [20], which relates the Reynolds stresses to the mean velocity
gradients. The advantage of the Boussinesq assumption is the relatively low computational
cost due to its simplicity. This works well for the engineering flows, which are dominated
by only one turbulent shear stress such as the jet flow, wall boundary layer flow, and mixing
layers flow. However, this approach is insensitive to the streamline curvature, rotation and
body forces, and it exhibits a poor performance in the flows with a strong anisotropy or
stress transport effect [21,22]. It also has difficulty in predicting transitional flows.

It is worth noting that the turbulent viscosity used in solving the Reynolds stress
terms is a function of the space and flow features, rather than a physical parameter such as
the fluid viscosity, which is dependent on the molecular structure of the fluid. Obviously,
the turbulent viscosity needs to be solved before computing the Reynolds stress terms.
In this paper, two-equation models, which include two additional transport equations,
are reviewed. Usually the turbulence kinetic energy (k) is adopted as one equation and the
turbulent kinetic energy dissipation rate (ε) or the specific dissipation rate (ω) as another
one. The modified versions of the ε/ω model will also be presented here. Due to length
restrictions, the zero- and one-equation models are not included in the article, but they may
be found elsewhere [23–25].

2.1.1. The k-ε Model

The standard k-ε (SKE) model was originally proposed by Launder and Spalding [6].
The model has been widely applied for resolving turbulent flows without a severe pressure
gradient or strong swirling effect (e.g., plane jet, mixing layer, and boundary layer flows)
because of its relatively high robustness, low computational cost, and reasonable accuracy.
Equations (4) and (5) show the general form of k and ε. By solving these two transport
equations, the turbulent viscosity can be calculated as expressed in Equation (6).

∂

∂t
(ρk) +

∂

∂xi
(ρkui) =

∂

∂xj

[(
μ +

μt

σk

)
∂k
∂xj

]
− ρu′

iu
′
j
∂ui
∂xj

− ρε + Sk (4)

∂

∂t
(ρε) +

∂

∂xi
(ρεui) =

∂

∂xj

[(
μ +

μt

σε

)
∂ε

∂xj

]
− C1ε

ε

k
ρu′

iu
′
j
∂ui
∂xj

− C2ερ
ε2

k
+ Sε (5)

μt = Cμρ
k2

ε
(6)

The terms from left to right in Equations (6) and (7) are the respective local time
derivative, convection, diffusion, production, sink, and source terms. The SKE model is
derived from a fully turbulent flow with high Reynolds numbers. The viscous effect is
ignored in the model. However, this cannot be applied in the vicinity of the wall, where the
viscous force dominates the flow characteristics. In order to deal with this problem, either
a wall function is adopted with the SKE model, or a low Reynolds number model is used.
The former confuses the users’ judgement whether the weakness of this method lies in
the basic SKE model itself or in the wall function. The latter requires additional functions
to modify the standard transport equations. With respect to the low Reynolds number
models [26–32], an example proposed by Lam and Bremhorst (LB model) [31] is presented
in Equations (7) and (8).

∂

∂t
(ρk) +

∂

∂xi
(ρkui) =

∂

∂xj

[(
μ +

μt

σk

)
∂k
∂xj

]
+ μt

(
∂ui
∂xj

+
∂uj

∂xi

)
∂ui
∂xj

− ρε (7)

∂

∂t
(ρε) +

∂

∂xi
(ρεui) =

∂

∂xj

[(
μ +

μt

σε

)
∂ε

∂xj

]
+ C1ε f1

ε

k
μt

(
∂ui
∂xj

+
∂uj

∂xi

)
∂ui
∂xj

− C2ε f2ρ
ε2

k
(8)
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where:

μt = Cμ fμρ
k2

ε
(9)

Compared with the SKE model, different formulations of functions f1, f2 and fμ are
developed in the LB model to describe the near-wall behavior better. It has been confirmed
that the function fμ has a predominant influence on the model performance, and functions
f1, f2 play a secondary role in the performance [11].

There are also other modified versions of the SKE model, amongst which the widely
used Renormalization Group (RNG) k-ε model [7] and the Realizable k-ε (RKE) model [8] are
introduced in the following section. The main differences between the RNG k-ε model and
the SKE model are the modifications of the turbulent viscosity and ε sink term. A differential
equation is analytically derived for effective viscosity μe f f to account for the low Reynolds
number effect. This feature can improve the predictive ability of the RNG k-ε model for low
Reynolds number flows or near-wall flows. Additionally, a new ε destruction term is used
to account for the rapid strain by modifying the constant of this term. The RKE model is
modified mainly with regard to the turbulent viscosity and the ε equation. By defining a
variable Cμ [8,33,34] instead of a constant value in turbulent viscosity formulation, the RKE
model satisfies the realizability constraints, i.e., positive values for the normal stresses and
the Schwartz inequality for the shear stresses. In order to increase the robustness of the
model, a new ε equation is employed based on a dynamic equation for fluctuating vorticity.
The new ε equation describes turbulent vortex stretching and turbulent dissipation more
appropriately compared to the ε equation in the SKE model. With the modified ε equation,
the well-known round-jet anomaly that is a poor prediction of the spreading rate of
round/axisymmetric jet may be solved [8].

2.1.2. The k-ω Model

The k-ω model is widely used for turbulence modelling [35]. Different versions of
this model have been developed in the last decades [9,10,36–40]. In this paper, the most
well-known k-ω model proposed by Wilcox [9] is reviewed. The transport equations of this
model are presented in Equations (10) and (11), where the calculation of β1 refers to the
work of Wilcox [9].

∂

∂t
(ρk) +

∂

∂xi
(ρkui) =

∂

∂xj

[(
μ +

μt

σk

)
∂k
∂xj

]
− ρu′

iu
′
j
∂ui
∂xj

− ρβ∗kω + Sk (10)

∂

∂t
(ρω) +

∂

∂xi
(ρωui) =

∂

∂xj

[(
μ +

μt

σω

)
∂ω

∂xj

]
− α

ω

k
ρu′

iu
′
j
∂ui
∂xj

− ρβ1ω2 + Sω (11)

Unlike the k-ε model, the k-ω model can be integrated through the viscous sublayer
without any damping function to account for the low Reynolds number effect with high
numerical stability. Therefore, it is well applied in aerodynamic flows [10,35]. However,
the k-ω model is highly sensitive to the empirical value of ω at the free edge of the turbulent
shear layer, which can lead to a large prediction error. In order to solve this problem, a
modified model was proposed with combination of the original k-ω model and the SKE
model by adding a blending function [10]. This new model is termed the Baseline k-ω
model, which applies the original k-ω model in the near-wall region and switches to the
SKE model in the outer region. The Baseline k-ω model has a similar performance to the
original k-ω model in boundary layer flows, but the former one avoids the strong freestream
dependence. However, both k-ω models fail to predict the onset and amount of separation
in adverse pressure gradient flows. Based on the Baseline k-ω model, further modification
to eddy viscosity is proposed to account for the transport effects of the principal turbulent
shear stress, leading to a significant improvement in predicting the adverse pressure
gradient flows [10]. However, the introduced blending function depends on empiricism
(e.g., the distance to wall), limiting its application to flows in complex geometries.
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2.1.3. Advanced Eddy Viscosity Model

All the aforementioned methods belong to the category of the Eddy Viscosity Model
(EVM). Some other advanced EVMs were developed [41–45]. In order to account for the
strong anisotropy in the near-wall region, Durbin [41] adopted a new turbulent viscosity
term defined in Equation (12), which is considered to be more appropriate than that
defined in Equation (6) in a near-wall region. A separate transport equation for a wall-
normal turbulent stress υ2 was proposed and solved with the aid of the elliptic relaxation
concept. This model is termed the υ2-f model, where f represents the elliptic relaxation
function. Subsequently, several modified versions were proposed with respect to the
velocity scale [44], the characteristic length [42], the function f [45], and the variable
υ2 [43]. This model category performs well for pressure-induced separating flow, buoyancy
impairing turbulent flow, and backstep flow [44–46].

μt = Cμρυ2τ (12)

where:

τ = max

(
k
ε

, Cτ

(
μ

ρε

)0.5
)

(13)

In addition to the modified versions of the linear EVM, the idea of non-linear EVM has
been substantially used [47–53]. Even though these modified models demonstrated certain
improvements over linear EVMs in predicting flows with a strong streamline curvature
or turbulent stresses in the near-wall sublayer, they are still inferior to the more advanced
model, e.g., the RSM model as seen in Section 2.1.4.

2.1.4. Reynolds Stress Model

In order to overcome the limitations of the EVM, Second-Moment Closure (SMC)
models abandoning the Boussinesq assumption have been developed. The SMC model
directly solves the transport equation for each of the Reynolds stress terms. Since the
SMC approach considers the effects of streamline curvature, rotation, and rapid change of
strain rate in a more rigorous manner, it is long expected to replace the currently widely
applied two-equation models. The SMC model class consists of the Algebraic Stress Model
(ASM) and the Differential Stress Model (DSM). ASM is derived from differential stress
transport equations by invoking the weak-equilibrium assumption [54–56]. It ignores the
transport terms of the anisotropy by assuming that the transport of the Reynolds stress is
proportional to that of turbulent kinetic energy [57,58]. In general, the ASM is considered
an intermediate tool between the LEVM and the DSM. Due to the space limitation, only the
DSM is presented in this paper. A symbolic representation of the stress transport equation
is expressed in Equation (14). In addition, a scale-determining equation, i.e., the ε equation,
is needed to complete the DSM.

Lij + Cij = DT,ij + DL,ij + Pij + Gij + φij + εij + sij (14)

The terms from left to right represent the local time derivative of Reynolds stress,
convection, turbulent diffusion, molecular diffusion, stress production, buoyancy produc-
tion, pressure strain, dissipation and source, respectively. The sij term is user-defined for a
specific stress transport source. If there is no source, this term becomes zero. It is required
to model DT,ij, Gij, φij and εij to close the equation, while it is not necessary to model Lij,
Cij, DL,ij and Pij.

The DT,ij term includes the velocity transport and the pressure transport. The velocity
triple moments can be measured, whereas the pressure transport is intractable. Usually,
the pressure transport is considered to be negligible [59]. Therefore, the model is mainly
designed for the velocity triple moments. The most popular model is the generalized
gradient-diffusion model proposed by Daly and Harlow (DH) [60]. The DH model has a
symmetry problem in the indices, leading to dependence on the coordinate frame. Sub-
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sequently, some variants of this model were developed by Hanjalic and Launder [61],
Shir [62], Mellor and Herring [63]. More complex models were also put forward by Nagano
and Tagawa [64] and Magnaudet [65]. Due to uncertainties in the modelling equations, the
complex models may not necessarily outperform the simplified models. Given more com-
puting resources consumed by the complex models and a poor convergence, application of
these models in engineering has been doubted [3,66].

Compared to the εij and Gij terms, it is necessary to pay extra attention to model
φij. Usually, the φij term is decomposed into three parts, namely, the slow pressure-
strain term φij,1, rapid pressure-strain term φij,2, and wall-reflection term φij,w. Not all
of the models introduced below include the third term. Rotta [67] proposed a linear
model for φij,1, which considers that φij,1 is proportional to the stress anisotropy tensor.
However, this linear model is unable to satisfy the realizability constraints. A general
quadratic model [68] is proposed to solve this problem. Linear [61,69–71] and nonlinear
models [72–74] were proposed to model the φij,2 term. Even though the nonlinear model
is considered to be theoretically advanced, the complexity of the formulation prohibits
its application for engineering computation. The turbulence anisotropy is enhanced due
to the damping effect of the normal stress by the wall. This damping affects both the
pressure-strain terms. In order to account for the damping effect, a commonly used
model [62,75] is presented to model the wall-reflection term φij,w. However, this model
involves a variable, i.e., the normal distance to the wall. This is believed to be a major
weakness. For purpose of overcoming this weakness, the elliptic relaxation concept and
elliptic-blending method were proposed to account for the near-wall inhomogeneity, which
is described in Section 2.1.3, and more information on that can be found in [76,77].

The DSM is the most elaborate model in the RANS approach, which has an indis-
putable superiority over the rudimentary two-equation models in predicting complex flows,
e.g., highly swirling and rotating flow, separating flow, and secondary flow. However,
its application is limited by (1) a high degree of uncertainty in modelling the high-order
correlation terms (e.g., pressure-strain and dissipative correlation) due to an insufficient
knowledge of physics; (2) a high demand for computational resource (approximately
50–150% more computing time than a two-equation EVM [21]). Fortunately, due to the
use of more advanced models (e.g., the DNS), the accuracy and robustness of the DSM
have been improved. A rapid development in computer science (e.g., parallel processing
and improved performance) satisfies the high computational need for the use of DSM
model. The DSM has received more attention recently because of the failure of the EVM in
predicting complex turbulent flows.

2.2. LES Approach
2.2.1. Formulation and Subgrid-Scale Model

Turbulent flow features a wide range of eddy scales from the Kolmogorov length
scale to the size comparable to the characteristic length of the mean flow. The large eddies
contain most of the turbulent energy and are mainly responsible for the momentum and
energy transfer. They are strongly affected by boundary conditions. The small eddies
tend to be more isotropic and homogeneous, and their dissipation process is linked to
fluid viscosity. For this reason, it is very difficult for the RANS approach to model all the
eddies in a single model. The LES approach separates the large eddies from the small ones
by employing a spatial filtering method [78] for the instantaneous governing equations.
After that, the large eddies are directly resolved by the filtered equation, and the small
ones (i.e., the Subgrid-Scale (SGS) eddies) are modelled by the SGS model. The filtered
variable (donated by an overbar) is defined by Equation (15). The resulting continuity and
momentum equations are expressed in Equations (16) and (17), showing similar forms but
a different physical meaning for those in the RANS approach.

f (x) =
∫

D
f
(
x′
)
G
(

x, x′; Δ
)
dx′ (15)
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∂ρ

∂t
+

∂

∂xj
(ρui) = 0 (16)

∂

∂t
(ρui) +

∂

∂xj

(
ρuiuj

)
= − ∂p

∂xi
+

∂σij

∂xj
− ∂τij

∂xj
(17)

where σij refers to the stress tensor due to molecular viscosity, and τij represents the SGS
stress term. Most of current SGS models adopt the Boussinesq assumption (termed the
Eddy-Viscosity model), which relates the SGS stress to the large-scale strain-rate tensor,
as shown in Equation (18). Based on the definition of the eddy viscosity, various SGS
models [12–14,79,80] have been proposed. Smagorinsky [12] developed the first SGS model
by assuming a local energy equilibrium between the large scale and the subgrid scale. The
eddy viscosity in this model is defined in Equation (20). This model becomes very popular
to date due to its simplicity, numerical robustness, and stability. However, it has several
drawbacks: (1) the model constant varies with different flows; (2) the model cannot predict
the inverse energy transfer (i.e., backscatter) due to its purely dissipative nature; (3) the
model has difficulty in reproducing the correct mean quantities (e.g., SGS dissipation)
as the grid scale approaches the integral scale; (4) the model does not yield a zero eddy
viscosity in near-wall regions.

τij − 1
3

τkkδij = −2μtSij (18)

where:

Sij =
1
2

(
∂ui
∂xj

+
∂uj

∂xi

)
(19)

μt = ρ(CsΔ)2∣∣S∣∣ (20)

In Equation (20), where: ∣∣S∣∣ = √
2SijSij (21)

Δ = (ΔxΔyΔz)1/3 (22)

where Δ represents the local grid scale. In order to solve the model constant problem, a
Dynamic Smagorinsky–Lilly (DSL) model was proposed [13,14], where the model constant
is dynamically calculated by using the resolved eddies with the scale size between the
grid filter and test filter. The main advantage of this model is that it is not necessary
to prescribe and/or tune the model constant. However, the DSL model is subjected
to a numerical instability and a variable model constant. Germano [13] proposed an
averaging method to overcome this weakness. A good performance was achieved in a
channel flow simulation [81]. Another variant of Smagorinsky–Lilly model is the Dynamic
Kinetic Energy (DKE) model [82–84]. Unlike the algebraic form in Smagorinsky–Lilly
and DSL models, the DKE model solves an additional transport equation for the SGS
turbulent kinetic energy instead of adopting the local equilibrium assumption. This
model can better account for the energy transfer from the large-scale eddy at the cost
of computational expenses. Some other variants of the Smagorinsky–Lilly model were
formulated to solve the low Reynolds number effect in the near-wall region, one of which
was based on the square of the velocity gradient tensor named the Wall-Adapting Local
Eddy-viscosity (WALE) model [79]. Compared to the original Smagorinsky–Lilly model,
the WALE model can produce a zero eddy viscosity in the vicinity of the wall or in a
pure shear flow. Hence, this model does not need a damping function. In addition to the
WALE model, a hybrid model [85] was proposed by combining the Smagorinsky–Lilly
model with a damping function [86] to improve the predictive capability for wall-bounded
flows. This hybrid model demonstrated a good performance in plane channel flow with
different Reynolds numbers. However, this model involves a variable, i.e., the wall normal
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distance. The determination of this wall normal distance requires an empirical approach
for specific flow.

In the framework of the eddy-viscosity SGS model, there are several alternatives to
the Smagorinsky-type SGS model, such as Vreman’s model [87], the QR model [88,89],
the σ-model [90], and the S3PQR model [91]. Compared to the Smagorinsky-type SGS
model, Vreman’s model can predict zero eddy viscosity in near-wall regions or in transi-
tional flows without explicit filtering, averaging or clipping procedures. However, it was
found that the model coefficient in Vreman’s model is far from universal. To solve this
problem, two procedures were proposed to dynamically determine the model coefficient,
i.e., the one based on the global equilibrium between the subgrid-scale dissipation and the
viscous dissipation [92,93] and the other one based on the Germano identity [94]. It was
reported that the latter is better suited for transient flows [94]. The QR model, which is a
minimum-dissipation eddy-viscosity model, gives the minimum eddy dissipation required
to dissipate the energy of sub-filter scales. The advantages of this model lie in appropriately
switching off for laminar and transitional flows, the low computational complexity, and
consistency with the exact sub-filter tensor on isotropic grids. The disadvantage of this
model is the insufficient eddy dissipation, which can be corrected by increasing the model
constant. Moreover, the QR model requires an approximation of the filter width to be con-
sistent with the exact sub-filter tensor on anisotropic grids. It was noted that the accuracy
of the model result for anisotropic grids is highly dependent on the used filter width ap-
proximation. By modifying the Poincaré inequality used in the QR model, the dependence
can be removed, leading to the construction of an anisotropic minimum-dissipation model
that generalizes the desirable properties of the QR model to anisotropic grids [95]. For the
purpose of meeting a set of properties based on the practical/physical considerations, the
σ-model based on the singular values of the velocity gradient tensor was developed [90].
Owing to its unique properties, ease of implementation, and low computational cost, the σ-
model is considered to be suitable for complex flow configurations. Subsequently, through
comparison between static and dynamic σ-models, it was found that the local dynamic
procedure is not suited for the σ-model, and a global dynamic procedure is suggested [96].
Trias et al. [91] built a general framework for LES eddy-viscosity models, which is based on
the 5D phase space of invariants. By imposing appropriate restrictions in this space, a new
eddy-viscosity model, i.e., the S3PQR model, was developed. In addition to meeting a set
of desirable properties such as positiveness, locality, Galilean invariance, proper near-wall
behavior, and automatic switch-off for laminar, 2D and axisymmetric flows, this new model
is well-conditioned and has a low computational cost, with no intrinsic limitations for
statistically inhomogeneous flows. Despite of all the merits of this model, special attention
should be given to the calculation of the characteristic length scale and the determination
of the model constant before engineering applications.

Alternatives to the eddy-viscosity SGS model are the similarity model [97–100], the ve-
locity estimation model [101,102], the Approximate Deconvolution model (ADM) [103–105],
and the regularization model [106–108]. The similarity model class adopts the idea that
an accurate approximation for a SGS model can be reconstructed from the information
contained in the resolved field. Therefore, the similarity models [97–100] approximate
the SGS stress tensor by a stress tensor calculated from the resolved scales. Due to this
nature, the similarity model can naturally account for the inverse energy transfer (i.e.,
backscatter). This is different from the eddy viscosity model, which only considers the
global SGS dissipation (i.e., the net energy flux from the resolved scales to the subgrid
scales). It is worth mentioning that, due to the importance of accurate prediction of the
inverse energy transfer, a dynamic two-component SGS model was proposed to include
the non-local and local interactions between the resolved scales and subgrid scales [100].
The model correctly predicted the breakdown of the net transfer into forward and inverse
contributions in a priori tests. In some cases, however, the similarity model underestimated
the SGS dissipation. An extra dissipative term was added to solve this issue. This new
model formulated is also referred to as the mixed model. Furthermore, the similarity model
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and the mixed model need additional computational resources due to the implementa-
tion of the second filtering. Special attention should be paid to choose an appropriate
filter type and size. Following the same idea, Domaradzki et al. [101] improved the SGS
stress approximation by replacing the unknown unfiltered variables by approximately
deconvolved filtered variables. Subsequently, this SGS model based on the estimation of
the unfiltered velocity, which was originally formulated in spectral space, was extended
to the physical space [102]. It was found that both versions of this velocity estimation
model perform better than or are comparable to classical eddy viscosity models for most
physical quantities. This model can account for backscatter without any adverse effects on
the numerical stability. Several questions for improving the model need to be addressed,
such as the modelling of nonequilibrium and high Reynolds number turbulence in three
Cartesian directions. Stolz et al. [103–105] proposed a formulation of the ADM for LES, in
which an approximation of the unfiltered solution is obtained from the filtered solution
by a series expansion involving repeated filtering. Given a good approximation of the
unfiltered solution at a time instant, the nonlinear flux terms of the filtered N-S equations
can be computed directly, avoiding the explicit computation of the SGS closures. The effect
of the non–represented scales is modelled by a relaxation regularization involving a second
filtering and a dynamically estimated relaxation parameter. The ADM is evaluated for
incompressible wall-bounded flow [104] and compressible flows [103,105]. The results
showed that the ADM can have a significant improvement over the standard and dynamic
Smagorinsky models, while at less computational cost compared with that of the dynamic
models or the velocity estimation model. The high-Reynolds-number supersonic flow [109]
and transitional flow [110] were investigated by the ADM. Agreement was observed be-
tween the ADM and experiments or DNS. For the former flow, a rescaling and recycling
method was used to have a better control on the desired inflow data. Recently, the ADM
was extended for a two-phase flow simulation [111]. By comparing the macroscopic flow
characteristics, the ADM showed a better performance than the conventional LES model.
However, further investigations should be performed on the relaxation term model for a
two-phase simulation and microscopic characteristics of the dispersed phase in a 3D simula-
tion. Another important class of the SGS model is the regularization model, which combines
a regularization principle with an explicit filter and its inversion. The regularization model
includes many versions, such as the Leray model [106], the Leray-α model [107,112], the
Clark-α model [108], the Navier–Stokes-α (NS-α) model [113], etc. For the last one, sev-
eral variants are proposed, including the NS-α deconvolution model [114–117] and the
reduced order NS-α model [118,119]. It was found that the NS-α deconvolution model can
significantly improve the prediction accuracy by carefully choosing the filtering radius and
by correctly selecting the approximate deconvolution order [117]. Given the difficulties in
efficient and stable simulation of the NS-α model for incompressible flows on coarse grids,
the reduced order NS-α model is introduced by using deconvolution as an approximation
to the filter inverse, reducing the fourth-order NS-α formulation to a second-order model.
In spite of the success of the reduced order NS-α model, future work needs to be conducted
on locally and dynamically choosing α and numerical testing on different benchmark flows,
to name but a few. In addition, comparative studies have been performed between different
regularization models [120–122], in which the capability of the regularization model has
been demonstrated for a specific flow.

The LES is considered a compromise between the RANS and the DNS. It is more
accurate than the RANS and it needs less computational resources than the DNS. However,
the LES model has not reached the maturity stage as a numerical tool for the design or
the parametric study of complex engineering flows, due to not only a high computational
requirement, but also many unresolved issues such as ill-defined boundary conditions,
wall-resolved flow, turbulent flow with chemical reactions, and compressible flow. Nev-
ertheless, the LES model has been successfully applied in transitional flow [123–126],
separated flow [127,128], and bubbly flow [129,130]. Figure 1 shows the calculation results
in a separated boundary layer transition on a flat plate with a semi-circular leading edge of
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radius of 5 mm under elevated free-stream turbulence. A periodic boundary condition was
adopted in the spanwise direction. Free-slip and no-slip conditions were used at lateral
boundaries and the plate surface, respectively. The simulation agrees well with experimen-
tal data on mean and fluctuating streamwise velocities for an Enhanced-Turbulence-Level
(ETL) case, demonstrating a good performance of the LES model for the transitional flow.
Figure 2 shows a comparison between a modified k-ε model and the LES model in a bubbly
flow. Compared with the experimental data, the LES model is superior in predicting
the turbulence.

 

Figure 1. Cont.
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Figure 1. (a) Mean streamwise velocity, (b) rms streamwise velocity at different streamwise stations (ETL-case) (LES: solid
lines, experimental data: symbols, x/l: normalized streamwise, y/l: wall-normal direction, U/U0: normalized mean
streamwise velocity, u’/U0: normalized rms streamwise velocity) [126].

 

Figure 2. Comparison of model predictions with experimental data for (a) axial and (b) lateral liquid velocity fluctuations at
a height of 0.25 m in a square cross-sectioned bubble column with a superficial gas velocity of 4.9 × 10−3 m/s [129].

2.2.2. Inlet Boundary Condition

The fluid behavior in the domain is largely determined by the inflow condition [131].
The treatment of the inflow condition is of significant importance for LES modelling. Cur-
rently, there are two main categories for generating the inflow data, namely, precursor sim-
ulation and a synthetic method. The former involves a separate simulation, where the
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periodic boundary condition or the recycling method can be used. The flow data are stored
at each time step in this simulation and then introduced to the inlet boundary for modelling
the flow of interest. The main advantage of this method is to obtain more realistic inflow
conditions, which represent the required flow characteristics (e.g., velocity profile, turbu-
lence intensity, shear stress, power spectrum, and turbulent structures). The inlet boundary,
however, needs to be placed in an equilibrium region for scaling arguments in the precursor
simulation, which may even not exist in some flows. This method may lead to a spurious
periodicity for the time series [132]. In addition, running a separate simulation requires
high computational costs especially for a high-Reynolds number flow. This restrains its
application to complex engineering flows. The limitation can be reduced by an internal
mapping method. This method integrates the precursor simulation into the main domain,
mapping the data downstream of the inlet back to the inlet boundary [133,134].

The synthetic method as an alternative to the precursor simulation is expected to
construct the inflow conditions for practical flows. The simplest way is to impose a
white-noise random component on the inlet velocity. The magnitude of this random
component is determined by the turbulent intensity. Since the turbulence-like component
is rapidly dissipated due to the lack of spatial and temporal correlation, this white-noise
method is inappropriate to generate the inflow data [135]. In order to impose realistic
inflow data on the inlet boundary, other advanced synthetic methods have been developed.
These advanced methods consist of the Fourier technique [136,137], principal orthogonal
decomposition (POD) method [138,139], digital filtering technique [140,141], and synthetic
eddy method (SEM) [142–144]. Several comparative studies have been performed on
different synthetic methods [143–146]. Jarrin et al. [143] used the SEM in the hybrid
RANS/LES simulations for turbulent flows from simple channel and square duct flows to
the flow over an airfoil trailing edge. Compared to other synthetic methods (i.e., Batten’s
method (Fourier method) [136] and random method), the SEM can substantially reduce
the inlet section, leading to a large decrease in the CPU time. Figure 3 shows a better
performance of the SEM in the inlet velocity vector compared to that of the others. The SEM
realistically reproduced the magnitude and length scale of the fluctuations. The fluctuations
in the Batten’s model decorrelated in space in the near-wall region due to the decomposition
in Fourier’s mode. Recently, Skillen et al. [144] improved the SEM of Jarrin et al. (Original
SEM) [142] with respect to the normalization algorithm and the eddy placement. The former
leads to an improvement over the original SEM model. The latter saves a cost of around
1–2 orders of magnitude. Figures 4 and 5 show the turbulent shear stresses and skin-friction
coefficients from the original SEM [142], the improved SEM of Skillen et al. [144], and the
precursor LES of Kaltenbach et al. [147]. In comparison with the original SEM, the improved
SEM shows a better agreement with the precursor LES results both for the turbulent shear
stress and the skin-friction coefficient. Although there is a rapid development of synthetic
methods, the available synthetic methods are limited to construct the inflow condition with
all required turbulence characteristics mentioned above. Further development is needed.
It is unnecessary to claim which method is the best; however, the most appropriate method
can be selected by considering the accuracy and the computational cost.
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Figure 3. Velocity vectors of the LES inlet condition for hybrid simulation of channel flow: (a) precursor LES, (b) SEM,
(c) Batten’s method, (d) random method (y/δ: normalized y distance, z/δ: normalized z distance, δ: initial boundary layer
thickness) [143].

 

Figure 4. Profiles of turbulent shear stress (the number at the top of the figure indicates profile locations (the distance from
the start of the incline, normalized by the initial boundary layer thickness)) [144].

 

Figure 5. Wall shear stress for the inclined wall (Cf : wall shear stress, x/δ: normalized distance from
the start of the incline) [144].
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2.3. DNS Approach

The DNS model numerically solves the three-dimensional, time-dependent N-S equa-
tions without using a turbulence model. The DNS method captures all the turbulence
scales present in the given flow by directly using a very fine mesh and very small time
step. The application of the DNS approach is hindered by the requirement of extremely
high computational resource. It has been estimated that the number of grid points is
proportional to Re9/4 in a DNS case [148]. Since the eddy scale in the near-wall region is
much smaller than that in the outer domain, a refinement of the mesh is needed in the
near-wall region to fully resolve the turbulence, which further increases the number of
grid points. Given the large computational domain, complex geometry, and high Reynolds
number in practical engineering, the application of DNS approach is currently impossible
for most practical flows. However, with the continuous development of parallel computing
technique [149], hybrid CPU + GPU computing architecture [150,151], and advanced nu-
merical algorithm [152], a remarkably high computing performance has been reached for
DNS. Meanwhile, new challenges have arisen regarding the high-performance computing.
Discussion on this point is excluded due to the limited space in this work; however, readers
can be directed to relevant work for more information [153,154].

To demonstrate how DNS resolves flow turbulence, an example case is presented for
bubble-induced turbulence (BIT), which is one of the important research topics in gas–
liquid flow. In the study by Feng et al. [155], a precursor DNS simulation was performed on
a homogeneous single-phase turbulent flow. The results of this precursor simulation were
used as the inflow condition to calculate the turbulent field around a fully resolved bubble.
Figure 6a,b shows the mesh used in the BIT study and the turbulent eddy generated on the
highly deformable bubble surface. The results showed that the bubble created new vortices
in the wake region, leading to turbulence enhancement. The magnitude of the turbulence
enhancement increased with the liquid turbulent intensity and the relative velocity [155].
Apart from the direct study of turbulence, DNS plays an indispensable role in evaluating
and developing turbulence models [156–161] and in providing complementary information
for experimental study [162–164].

 

Figure 6. (a) Mesh used in the BIT study, (b) turbulent eddy generated on the highly deformable
bubble surface (Q-criterion with a value of 100) [155].

3. Model Validation Technique

In order to guarantee the fidelity of the established model, model validation is a
must before practical simulation. This can be done numerically or experimentally. In the
numerical way, an advanced approach such as the DNS can be used to verify a less
advanced model such as the RANS. The merit of this validation technique is to reproduce
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the real conditions of the practical flow, leading to more comprehensive and realistic results.
Since the DNS is not fully ready for the simulation of complex engineering flows due to the
computing power problem, this technique is less popular compared to the experimental
technique. Table 1 lists several commonly used experimental techniques. Depending on
the purpose, different experimental methods are employed for the validation, such as
an optical fiber probe to measure solid phase holdup and solid velocity in a gas–solid
system [165], LDA (Laser-Doppler Anemometry) and PIV (Particle Imaging Velocimetry)
to measure phase velocity in a single- or two-phase system [166,167], an electroresistivity
probe to monitor mixing behavior in metallurgical processes (converter and ladle) [168,169],
and video recording to capture cavity shape and dimension (converter) [170].

Table 1. Experimental validation techniques.

System Study Object Measuring Technique and Refs.

Gas-solid

Solid velocity and holdup
Gas velocity and holdup, bubble

size Granular temperature
Mass flux and heat flux

Optical fiber probe
[165,166,171–176]
LDA [165,166,177]

PIV + DIA [164,167,178–180]
PIV + DIA + Infrared [181–183]

Gas-liquid Phase velocity
Turbulence quantities

LDA [169,184–188]
PIV [189–193]

Gas-liquid
Gas-liquid-liquid Mixing time Electroresistivity probe

[169,170,194–196]
Gas-liquid

Gas-liquid-liquid Cavity dimension Video recording [170,197–201]

Note: DIA: Digital Image Analysis.

Experimental validation is very useful for understanding model development and
turbulence physics, while it also suffers from many limitations. Improvement is needed to
represent more realistic situations. In the metallurgical field, it is very difficult to measure
flow velocity and flow pattern due to the aggressive and complex operating environment
(e.g., high temperature, opaque vessel, and multiphase coexistence). Physical modelling
experimentation is adopted based on the similarity principle to obtain flow information.
This validation method, however, has several shortcomings: (1) A full-scale physical
model is prohibitive to set up in laboratory study due to the difficulty in building a large
industry-scale vessel, and the difficulty in mimicking the industrial operational conditions.
In general, a scaled-down low temperature physical model is usually employed. This can
only reproduce part of the flow dynamics since not all of necessary flow dimensionless
numbers can be simultaneously satisfied [202]; (2) Most physical modelling experiments
are conducted at room temperature, at which it is impossible to study the heat transfer
and melt solidification behavior. In addition, the effect of temperature on the gas phase
is not considered in such experiments; (3) The reliability of physical modelling depends
on a selection of materials used in the simulation of the real system, resulting in an
additional experimental error. For instance, water is frequently used to mimic liquid
steel because the kinematic viscosity of water is very close to that of the liquid steel at
1600 ◦C. Other properties of water, however, such as the density and surface tension,
are very different from liquid steel, making the similarity criteria difficult to be entirely
fulfilled. Compared to water, low melting point alloys, such as Bi-Sn and Ga-In-Sn alloys,
have a closer resemblance to the physical properties of liquid steel [203,204]. The Bi-Sn
alloy system can be operated in a temperature range of 200–400 ◦C, compared to the
GaInSn alloy system at room temperature. The effect of temperature on liquid viscosity
can be investigated. Due to similar electrical conductivity between the low-melting point
alloy and liquid steel, the alloy can be used to model the electromagnetic stirring or
breaking in the continuous casting process. With the aid of measuring techniques such as
Ultrasound Doppler Velocimetry (UDV) [205] and Contactless Inductive Flow Tomography
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(CIFT) [206,207], a significant progress has been achieved with this physical modelling for
simulating the real flow behavior in the continuous casting process.

There are other errors induced by the measurement techniques. For PIV and LDA mea-
surement, a correct phase discrimination can reduce errors, improving the measurement
quality. Different phase discrimination methods have been proposed. Kulick et al. [208]
exploited the large difference in the amplitude of the Doppler burst pedestals obtained
from the solid particle and the tracer and then took the ratio of the Doppler signal ampli-
tude to the pedestal amplitude as the discriminator. Regarding the PIV technique, Kiger
and Pan employed a two-dimensional median filter to correctly identify and separate
the dispersed particles from the two-phase image [209]. Khalitov and Longmire [210]
adopted a two-parameter (size and brightness) algorithm to separate the tracer from the
solid phase. This algorithm has been proved to be applicable in gas–solid and liquid–liquid
systems [210,211]. In addition, the Turbulence Kinetic Energy (TKE) dissipation rate is very
difficult to be measured by the PIV or LDA technique since it strongly depends on the
spatial resolution [212]. Tanaka and Eaton [213] performed High-Resolution PIV (HR-PIV)
measurements with a spatial resolution smaller than the Kolmogorov scale ηk. A modified
method was used for the phase identification algorithm to eliminate the common error in
the HR-PIV measurement. It was concluded that the measurement error of the TKE dissi-
pation rate can be reduced to a few percent if a proper spatial resolution is employed (in
the range of ηk/10 to ηk/2). The HR-PIV is also used to measure the carrier-phase velocity
and turbulence structures near the particle surface [214,215]. The attenuations of the TKE
and its dissipation rate were experimentally obtained, leading to a reasonable prediction of
the macroscopic turbulence modification. Even though the HR-PIV technique works well
for diluted flow, further development of the HR-PIV technique is needed for investigating
the dense flow or the flow region with a high volume fraction of the dispersed phase. By
using the HR-PIV technique, Wang et al. [130,216] found a large deviation of the velocity
magnitude in the bubbly zone of a top-submerged gas injection flow. This deviation was
partly attributed to the less reliable HR-PIV experimental data caused by the refraction
of gas bubbles. For brevity’s sake, other techniques, for instance, the measurement of the
pressure drop and fluctuation and holdup of solid phase are excluded from this work.
Interested readers can find relevant studies elsewhere [217,218].

4. Applications

Most of the flows involved in industrial production are turbulent. Therefore, the
choice of a proper turbulence model used to accurately represent the flow characteristics
is essential to CFD applications. In order to draw attention to this point, the applications
of turbulence models in solving three commonly encountered turbulence-related flow
issues are discussed. It is necessary to mention that this work aims to demonstrate how
to customize a conventional turbulence model for a specific flow problem instead of
comprehensively reviewing the single phase or multiphase phase flow characteristics.

4.1. Bubble-Induced Turbulence (BIT)

In an engineering bubbly flow such as the flow in a bubble column or the flow in
a metallurgical ladle, the BIT has to be taken into consideration to fully reproduce the
flow characteristics. There are two common methods to account for the BIT: (1) the Effec-
tive Viscosity Modified Method (EVMM), where BIT is added in the effective viscosity
term [191,219]; (2) the Transport Equation Modified Method (TEMM), where BIT is mod-
elled with a source term in the turbulent transport equation [220–225]. Both methods
can be used with the RANS-based approach (k-ε/ω/SST (Shear-Stress Transport) [224]
and RSM, [226–228]) termed RANS-BIT, and LES approach, termed LES-BIT [129,191,229].
Many RANS-BIT comparative studies were performed on the EVMM and TEMM [224,225].
The results showed that the EVMM is not suitable for the turbulence prediction since it
depends on an algebraic model (e.g., the model of Sato et al. [219]). LES-BIT studies were
performed with the EVMM, and it was observed that including the BIT slightly changed the
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numerical results [129,191]. Since different experimental validations suggest different for-
mulations of the source term, no universal formulation of the source term has been found.
Compared to the k-ε/ω/SST-based BIT modelling, the RSM-based BIT modelling [225,228]
considers the effect of the anisotropic property of turbulence. This improves the overall
model performance in simulating both the void fraction distribution and turbulent kinetic
energy. This model is more suitable for modelling the complex multiphase flow with promi-
nent anisotropy. Nevertheless, it introduces more unknown parameters, making this model
less readily applicable. Reliable experiments with individual Reynolds stress measurement
are needed for the model validation. Niceno et al. [229] compared the EVMM and TEMM
of the LES-based approach and concluded that both methods predict the turbulent kinetic
energy well qualitatively, but the TEMM is superior for the quantitative prediction.

Recently, the DNS study became available for bubbly flows; several DNS
studies [161,230,231] on disperse bubbly channel flows were performed, and the obtained
TKE budgets were used to account for the BIT. With the aid of the DNS data, Ma et al. de-
veloped a model for the BIT and incorporated it as a source/sink term in the k-ω SST model
transport equation. This model was adopted by Liao et al. to evaluate its performance
on bubbly flows in containers and vertical pipes [232]. The results showed improvements
regarding the radial gas volume fraction and velocity profile in high-volume fraction cases
were achieved. Later, Ma et al. [231] extended the BIT model to a second moment level.
During the development of this full SMC for BIT in the Euler-Euler framework, particular
attention was given to the treatment of the pressure-strain term for bubbly flows and the
form of the interfacial term to account for BIT. For the latter, an effective BIT source term
was proposed, which largely simplified the modelling work. To understand the anisotropic
behavior of the bubbly flow, an anisotropy-invariant analysis was conducted, based on
which the BIT closure was improved. This new SMC with the proposed BIT model was
compared with the experimental data of Akbar et al. [233]. A good agreement was achieved
in predicting the gas void fraction, phase streamwise velocity, and liquid phase Reynolds
stresses (see Figure 7). As the computational power increases rapidly, the DNS study will
play a more important role in uncovering the turbulence physics of bubbly flows. Therefore,
more DNS data are expected.

Figure 7. Comparison between the model of Ma et al. [231] and the experimental data of
Akbar et al. [233]: (a) gas void fraction, (b) streamwise velocities of the liquid and gas phases,
(c) Reynolds normal stresses of the liquid phase, (d) Reynolds shear stress of the liquid phase.

4.2. Supersonic Jet Transport

Supersonic gas jets are applied in Basic Oxygen Furnace (BOF) steelmaking pro-
cesses [234,235]. Due to its vital role in the refining efficiency [236] and the service lifetime
of the furnace lining [237], it is imperative to understand the behavior of the supersonic
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jet flow. During supersonic jet transport, it interacts with the surrounding medium to
produce a turbulent mixing region, as shown in Figure 8. An accurate prediction of the
growth rate of the mixing region is a challenge in modelling the jet transport. The standard
k-ε turbulence model suffers from a typical weakness, i.e., an overestimated growth rate
of the turbulent mixing region around the supersonic gas jet [238]. This leads to a large
error in predicting the volume of cavity formed by the gas jet impinging on the liquid
surface [239]. Several modifications have been proposed to solve this problem [240–242].
Sarkar et al. [240] considered that the compressible dissipation term should be included
to account for the effect of the compressibility on the supersonic jet flow. Based on the
asymptotic analysis and DNS data, an algebraic model was proposed for the compressible
dissipation by using the turbulent Mach number. Subsequently, Sarkar [241] found that
the reduced turbulence generation is the main cause of preventing the turbulent mixing
layer from the growth rather than the effect of the dilatation term (pressure dilatation
and compressible dissipation) on the growth. A gradient Mach number was induced to
describe the inhibiting effect of compressibility on the turbulence growth rate. Heinz [242]
used the gradient Mach number to evaluate the effect of compressibility on the turbu-
lence distribution. An expression of the model constant Cμ as a function of the gradient
Mach number was obtained. However, the k-ε turbulence model with the compressibility
correction failed to predict the supersonic jet flow with a temperature gradient, such as
the potential flow core length and the cavity shape and dimension [243]. This is because
the temperature gradient between the gas jet and the ambient is ignored by the original
turbulence model. To sensitize the turbulence model with temperature fluctuation, ef-
forts [244–246] have been made to modify the turbulent viscosity term or turbulent heat
flux term. Abdol-Hamid et al. [247] corrected the turbulent viscosity term with the tem-
perature gradient for the case of a hot gas jet entering into low temperature ambient. The
results of modelling agreed well with experimental data for subsonic and supersonic jet
flows. However, this model did not give reasonable results for the BOF supersonic jet
flow [243], under which a room temperature gas jet enters into a high temperature ambient
(see Figure 9a). Alam et al. [243] modified Abdol-Hamid’s model for the gas jet of BOF.
The predicted distributions of axial velocity and dynamic pressure along the central axis of
the jet closely agreed with the experimental data (see Figure 9b,c). It is worth mentioning
that the data compared in Figure 9 were extracted along the central axis of the jet (see
the dashed line in Figure 8). Wang et al. [248] adopted the model of Alam et al. to study
the multiple supersonic oxygen jets in the BOF process, where a better prediction of the
shape of cavity caused by the gas jet impinging on the liquid surface was achieved. To
fit the empirical data available for a cold jet to hot environment [249], Lebon et al. [250]
derived another expression of Cμ as a function of the enthalpy ratio of ambient gas to
gas jet. It was found that the modified model is adequate to model a compressible jet
to hot environment. In addition to the two-equation turbulence model, the LES model
with the compressibility and temperature corrections is also widely used to study the jet
noises [251]. Wang et al. [252] and Bodony et al. [253] critically reviewed the roles of the
SGS model and inflow boundary condition in predicting jet noise. The open issues and
future directions were also included in the papers. Therefore, the LES model for jet noise
prediction is excluded from this article to avoid repetition.
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Figure 8. Illustration of the supersonic jet transport.

 

Figure 9. (a) and (b) Axial velocity distribution, (c) dynamic pressure distribution along the central
axis of the jet (x: distance along the central axis, de: nozzle diameter) [243].

4.3. Electromagnetic Suppression of Turbulence

A static magnetic field has been commonly used to stabilize the turbulent flow in
the continuous casting process, aiming to improve the product quality. The application
of the magnetic field not only suppresses the mean flow, but also dampens the flow
turbulence. For the former, including the electromagnetic force/Lorentz force in the
momentum equations, as reported by many studies [254–258], solves the suppression of
the mean flow. The latter, also called Joule dissipation, can be resolved by adding the
electromagnetic damping effect in a conventional turbulence model. In order to tailor
the turbulence model towards magnetohydrodynamic (MHD) flows, many fundamental
investigations have been performed [259–263]. Ji and Gardner [259] modified a standard
low Re k-ε model [27] to account for the Joule dissipation. Additional source/sink terms
were added in the k and ε equations, as well as a damping factor for turbulent viscosity. Both
the new terms and the damping factor contain an exponential expression e−CN, where C
is an empirical constant determined from experimental data, and N is the interaction
parameter defined as the ratio of the time scale of large eddies (L/U) to the characteristic
magnetic braking time (ρ⁄σB2). This interaction parameter represents the strength of
turbulence damping due to the magnetic field. However, as reported by Kenjereš and
Hanjalić [260], the use of the time scale of large eddies makes the model dependent
on the bulk flow properties, restricting the model to homogeneous magnetic fields and
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simple geometries. Replacing the bulk time scale with the local turbulent time scale
(k/ε) can overcome the above-mentioned deficiency. As noted in the work of Ji and
Gardner [259], the modified turbulence model failed to accurately predict the turbulent
kinetic energy when the strength of the magnetic field increased. This is because the
model is formulated based on the assumption of isotropic turbulence, while MHD flows
exhibit strong anisotropy caused by the damping of turbulent fluctuations nonparallel
to the magnetic field. The anisotropy of the Joule dissipation has to be considered in
the turbulence model. Widlund et al. [261] proposed a scalar dimensionality anisotropy
parameter carrying the information with regard to the magnitude and anisotropy of the
Joule dissipation tensor. A scalar transport equation for the anisotropy parameter was also
proposed. With this scalar transport equation, it is easy to extend a conventional turbulence
model towards MHD engineering applications. It should be noted that the scalar transport
equation is based on phenomenological reasoning, and special attention should be paid
to the hydrodynamic part of the proposed equation. Miao et al. [264] coupled the scalar
transport equation with the RANS SST k-ω turbulence model [10] to solve the MHD flow
in a continuous casting mold. The Joule dissipation was taken into account by adding
source/sink terms in the k and ω equations, and the anisotropic behavior of the Joule
dissipation was represented by the anisotropy parameter contained in the source/sink
terms. The computational domain of the continuous casting mold is shown in Figure 10,
and the measured region and data extraction line for liquid metal (low melting point alloy
Ga68In20Sn12) velocity are depicted in the figure. The averaged velocities obtained from
the three-equation turbulence model (i.e., k-ω-anisotropy parameter) qualitatively and
quantitatively agreed with the experimental data (see Figures 11 and 12). The turbulence
models described above are modified in the framework of the RANS approach. Due to
the time-averaging treatment in the RANS approach, the change of turbulence structure
and transient flow behavior are difficult to be captured by the RANS-based turbulence
model. Given that engineering flows are usually very complex and have a high Re number,
the RANS-based turbulence models are still considered practical candidates for solving
MHD flows.

Figure 10. The computational domain of the continuous casting mold and the measured region and
data extraction line (figure adapted from [264]).
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Figure 11. The time-averaged horizontal velocity in the midplane parallel to the mold wide face with electrically con-
ducting mold walls, B0 = 310 mT (within the dotted lines): (a) experimental results, (b) numerical results from the SST
k-ω model + Joule dissipation, (c) numerical results from the conventional SST k-ω model [264] (The measured region
in Figure 10).

Figure 12. The time-averaged vertical velocity along a vertical line in the midplane at x = 0.045 m
(B0 = 310 mT with electrically conducting mold) [264] (The data extraction line in Figure 10).

In addition to the RANS-based turbulence model, the LES model, which is able
to capture turbulence structures, has been modified or developed to solve the MHD
turbulent flow. Shimomura [262] incorporated the magnetic damping effect in the form of
a locally determined damping factor for SGS eddy viscosity. Compared with the original
Smagorinsky model [12], the new model showed better performance in both turbulent and
laminar states. The new model also successfully predicted the anisotropic laminarization
caused by the applied magnetic field, for which the RANS-based model is incompetent.
Kobayashi [263] developed a new SGS model based on the coherent structure extracted by
the second invariant of a velocity gradient tensor in grid scale flow field. Compared with the
conventional Smagorinsky model [12], the new SGS model does not need an explicit wall-
damping function or change the model parameter depending on the flow. Compared with
the dynamic Smagorinsky model [13], the new SGS model is numerically stable due to the
fact that the model parameter is always positive. Considering the advantages of the new
SGS model, Singh et al. [265,266] used it for the MHD turbulent flow in a continuous caster.
The numerical results closely matched the measured data. Although the LES models can
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capture transient flow behavior and turbulent structures, the computational cost required
is much higher than that of the RANS-based turbulence model. With the fast increase in
computing power, more LES simulations are expected for engineering flows in the near
future. The DNS studies for MHD flows as presented by Chaudhary et al. [267,268] are
also necessary since important information regarding turbulent quantities can be obtained
for formulating the RANS or LES model. In addition, detailed experiment data, especially
the turbulent quantities, are expected for validating numerical simulation of MHD flow.

5. Conclusions

Three main turbulence approaches (i.e., the RANS, LES, and DNS) have been reviewed
in this paper. The formulations and variations of the RANS approach have been described,
evaluated, and discussed. The eddy viscosity models still remain the most widely used
methods for calculating simple engineering flows. The DSM overcomes the limitations of
the eddy viscosity model and can be used to predict complex anisotropic flows. However,
since a high degree of uncertainty is introduced in the DSM, special attention should be
paid to its application. Although the LES is not completely ready for the calculation of
high Re number engineering flow in the current stage, it can be used for the studies on
fundamental turbulence physics and the low Re number flow in simple geometry. The LES
is highly recommended to quantify the turbulent quantities and transient flow behavior.
Since the inflow conditions are very important for LES modelling, a further improvement
of the method is needed. With the improvement of the model formulation and accurate
specification of inlet boundary conditions, the LES shows great potential to realistically
solve complex turbulent flows. Due to the high computing power needed, the DNS is often
adopted to understand the turbulence physics and to evaluate less advanced turbulence
models, rather than being applied for a real case study. It contributes to the develop-
ment of the turbulence model. Depending on the actual situation, the corresponding
experimental validation should be adopted to ensure the fidelity of the used turbulence
model before a formal simulation. To demonstrate the application of turbulence modelling,
the conventional turbulence models have been customized to resolve three important
turbulence-related flow issues, namely, BIT, supersonic jet transport, and electromagnetic
damping. Success has been achieved by the customized turbulence model. The general
outlook for turbulent flow simulation is listed as follows:

1. Due to insufficient knowledge of the turbulence physics, there is a high degree
of uncertainty in modelling the higher-order correlations in a DSM simulation. It
is necessary to perform fundamental studies on turbulence physics, and the DNS
is an important method for those studies. Besides, advanced numerical schemes
are expected to minimize the diffusive errors when solving the non-linear higher-
order correlations.

2. An inflow condition method, which can generate the required realistic turbulence char-
acteristics at a reasonable computational cost, is needed for an accurate LES simulation.

3. It is of significant importance to experimentally obtain accurate turbulence data such
as the Reynolds stress term, turbulence kinetic energy, and its dissipation rate, espe-
cially for a densely dispersed flow. Advanced non-intrusive experimental techniques
are needed to measure the flow field information and phase distribution. The obtained
data can be used, for instance, to develop a reliable model considering the effect of
the dispersed phase.

4. The BIT is important for the turbulent flow. Due to a small size of the bubble, the
induced turbulence is characterized with small spatial and temporal scales. An
approach (experimental technique and/or numerical simulation) is required to obtain
insight into the induced turbulence.

5. Comprehensive and realistic modelling is indispensable for engineering applications,
such as the inclusion of bubble coalescence and breakage, the consideration of temper-
ature and pressure affecting the bubble behavior, the involvement of compressibility
and the temperature gradient in supersonic jet flow, and the turbulence damping
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caused by magnetic fields. The mechanisms of turbulence modulation with respect to
these aspects remain open for fundamental investigation.
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Nomenclature

B Magnetic field intensity, T.
f , f , f ′ Instantaneous, ensemble/time-averaged, and fluctuating variable, respectively.
g Gravitational acceleration, m/s2.
k Turbulent kinetic energy, m2/s2.
L Characteristic length scale, m.
p, p′ Pressure, pressure fluctuation, Pa.
PrtRek, RetSij Mean rate of strain tensor, s−1.
Sk, Sε, Sω Source term in k, ε, and ω equation, respectively.

u, u, u′ Instantaneous, mean (large scale), and fluctuating (subgrid scale) velocity,
respectively, m/s.

U Bulk velocity, m/s.
Greek Symbols

δij Kronecker delta.
ε Turbulent energy dissipation rate, m2/s3.
μ Dynamic viscosity, Pa·s.
μe f f Effective viscosity, Pa·s.
μt Turbulent viscosity, Pa·s.
ρ Density, kg/m3.
σ Electrical conductivity, S/m.
ω Specific dissipation rate
Subscripts

i, j, k Coordinate direction indices.
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Abstract: Gas bubbles are of major importance in most metallurgical processes. They promote
chemical reactions, homogenize the melt, or float inclusions. Thus, their dynamics are of crucial
interest for the optimization of metallurgical processes. In this work, the state of knowledge of
bubble dynamics at the bubble scale in liquid metals is reviewed. Measurement methods, with
emphasis on liquid metals, are presented, and difficulties and shortcomings are analyzed. The bubble
formation mechanism at nozzles and purging plugs is discussed. The uncertainty regarding the
prediction of the bubble size distribution in real processes is demonstrated using the example of the
steel casting ladle. Finally, the state of knowledge on bubble deformation and interfacial forces is
summarized and the scalability of existing correlations to liquid metals is critically discussed. It is
shown that the dynamics of bubbles, especially in liquid metals, are far from understood. While the
drag force can be predicted reasonably well, there are large uncertainties regarding the bubble size
distribution, deformation, and lift force. In particular, the influence of contaminants, which cannot
yet be quantified in real processes, complicates the discussion and the comparability of experimental
measurements. Further open questions are discussed and possible solutions are proposed.

Keywords: liquid metals; bubble generation; bubble size distribution; porous plugs; bubble deformation;
drag force; lift force

1. Introduction

Gas injection and stirring is an integral part of most metallurgical processes. In
some cases, the gas even determines metallurgical tasks. Examples are the removal of
hydrogen in the degassing of aluminum or the removal of non-metallic inclusions from
steel in the ladle or tundish. Thus, metallurgical bubble column reactors are of major
importance for the process industry. Their main advantages are a simple construction, low
maintenance costs, good mass, and heat transfer [1] and applicability in case mechanic
stirring is prohibited by high temperature or reactive flows.

During the buoyancy-driven rise of bubbles, momentum is exchanged between the
fluid and bubbles, which promotes a stirring effect. Characteristic of bubbles are their
non-rigid phase boundaries. Thus, bubbles react to pressure gradients with a deformation.
This leads to fascinating phenomena such as shape and path oscillation. These were already
described by Leonardo DaVinci, which is why it is sometimes referred to as Leonardo’s
paradox [2]. On the other hand, this additional degree of freedom also leads to a very high
complexity of the interaction between bubbles and fluid. Therefore, despite many years
of extensive research, a comprehensive description of all phenomena is not yet possible.
However, fundamental understanding of the bubble properties, shapes, rising velocities,
or interfacial forces is crucial for the understanding, modelling, and optimization of bubble
column reactors [3]. In metallurgy, the optimization of processes is often carried out using
computational fluid dynamics (CFD). However, gaps in the knowledge of the behavior of
gas bubbles in metals lead to considerable model uncertainties.

Bubble reactors are a multi-scale problem. It can be roughly divided into four different
scales, though not all phenomena can be sharply assigned to one scale. On the microscale,
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the mass and heat transfer between fluid and bubble takes place. The bubble scale deter-
mines the formation mechanism of bubbles, bubble deformation, and interfacial forces.
The swarm scale deals with the interaction of bubbles, as well as the characterization of the
bubble column. At the macro or reactor scale, the stirring effect generated by the bubbles
is considered. In order to limit the length of this paper, this review focuses on the bubble
scale, largely omitting the other scales.

Different dimensionless numbers are used to describe bubble dynamics or bubble
generation. The most important dimensionless numbers are the Reynolds number (Re),
Eötvös number (Eo), Morton number (Mo), Weber number (We), and Froude number (Fr):

Re = Inertial force
Viscous force = uCLCρl

μl

Eo =
Buoyancy force

Surface tension force =
g(ρl−ρb)L

2
C

σ

Mo =
gμ4

l (ρl−ρb)

ρ2
l σ

3

We = Inertial force
Surface tension force =

ρlu2
CLC
σ

Fr = Inertial force
Gravity force =

u2
C

gLC

(1)

where uC and LC are the characteristic velocity and length, respectively. For this, different
values are employed, though for bubbly flows, the bubble size, expressed as the diameter
of a sphere with the same volume and the relative velocity between bubble and liquid, is
commonly utilized. If other quantities are used, this is explicitly mentioned in the text.

In the following, different analytical methods and measurement techniques are dis-
cussed, and specific advantages, disadvantages, and restrictions are analyzed. Afterwards,
different bubble scale phenomena are discussed. This review covers the bubble formation
mechanism at nozzles and purging plugs, bubble deformation, and finally the interfacial
forces between bubbles and fluid. Due to the small number of studies in liquid metals,
conclusions drawn from aqueous systems are summarized first. In the second step, their
transferability to liquid metals is discussed. This allows guidelines to be derived as to
which models should currently be used for CFD, and the model uncertainty can be ana-
lyzed in more detail. Finally, open questions are identified and possible solution strategies
are proposed.

2. Measurement Methods

Fundamental knowledge about the dynamics of bubbles can be achieved theoretically
by analytical approximations, by experimental measurements, or by means of direct nu-
merical simulation (DNS). The advantages and drawbacks of the different approaches are
outlined briefly below.

2.1. Theoretical Investigations

Theoretical work is based on the analytical solution of the flow equations with certain
boundary conditions at the phase boundary. However, this is only possible for special cases
where certain simplifications can be made. Usually this is the assumption of spherical bub-
bles and inviscid (Re→∞) or creeping flows (Re→0). Due to these limitations, theoretical
work is usually of limited use for industrial applications. However, these theoretical results
serve as benchmarks for numerical models, the foundation for semi-empirical models, or
reveal functional relationships.

2.2. Experimental Measurements

In experimental measurements, bubble characteristics are measured directly or indi-
rectly and phenomenological conclusions can be drawn. However, there are numerous
difficulties with measurements. First, the experimental boundary conditions are almost
impossible to control. In some cases, influencing factors are unknown or cannot be de-
termined. One example is the influence of contamination. It has been known for a long
time that contamination has a significant influence on the bubble deformation, the rising
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velocity, and the lateral movement of the bubbles. Therefore, distilled water or deionized
water has often been used for measurements. However, some studies [4,5] show that with
these apparently pure systems, the influence of contamination can still be significant. In
liquid metals, contamination by oxidation can hardly be avoided. Another example is the
influence of injection, which often affects the bubble shape or movement some distance
above the injector. As these effects cannot be fully quantified yet, this results in a large
measurement uncertainty and similar studies are often not directly comparable. This
applies in particular to liquid metals where the experimental setups are usually very small.

For the actual measurements, different methods can be found in the literature, which
can be categorized into intrusive and non-intrusive methods. Intrusive methods, such
as conductivity probes or fiber optic probes, interact to some extent with the flow and
are usually restricted to single or few bubbles. Thus, the results may be biased by the
applied measurement technique. On the other hand, intrusive methods can be applied in a
broader range of setups and with different liquids. Non-intrusive methods do not affect
the flow but have more constrains regarding their applicability. Amongst the non-intrusive
methods, imaging methods, either based on a multi-stage image processing [6–10] or on
machine learning [11,12], are the most frequently used for non-opaque systems because
multiple objects can be observed simultaneously and the equipment is comparably cheap
and flexible.

A major difficulty is that a large number of different phenomena must be considered
for a comprehensive analysis of rising gas bubbles. These takes place on different temporal
and spatial scales and require different measurement techniques:

Bubble path and velocity: For a statistically significant path, recordings on a decimeter
or better a meter scale are necessary. The frame rate should be at least 200 frames per
second (FPS), whereas the internal memory of high-speed cameras limits the duration
of the recording. To reconstruct the three-dimensional rise, which can be zigzagging or
spiraling, at least two cameras are required.

Bubble shape: In order to analyze the bubble oscillation, recording must be made in the
millimeter range with high frame rates. The inaccuracy of the reconstruction of the three-
dimensional shape of non-spherical bubbles from two-dimensional projections depends
strongly on the number of cameras. Fu and Liu [13] showed that the bubble volume error
of a single bubble is about 25% for a one-camera system and decreases to about 10% for a
two-camera system.

Velocity distribution of the fluid: For a comprehensive understanding, not only the
bubble but also the flow field around the bubble must be measured. For this purpose,
the fluid must be seeded with some tracer, which in turn is likely to influence the flow.
Moreover, the wake can stretch from a millimeter to a few centimeters.

Bubble swarms: A particular challenge for postprocessing are bubble swarms with
high void fractions. Bubbles may overlap on the two-dimensional projection and are
visible as a cluster of bubbles. Their segmentation is usually achieved by multi-staged
image processing techniques [6–10] or machine learning [11,12]. The accuracy of the
different approaches are discussed in [14]. However, no generally applicable workflow
was proposed yet. Thus, experimental measurements are often restricted to relative dilute
bubble swarms.

A simultaneous investigation of all phenomena is therefore only possible with many
cameras, additional equipment, and a sophisticated triggering and could not be real-
ized so far. Different approaches for non-opaque systems are discussed by Bröder and
Sommerfeld [7].

In liquid metals, where the fluid is opaque and high temperatures and corrosivity
prevent most measurement techniques, measurements are particularly cumbersome. Most
early studies employed indirect measurement methods, for example by analyzing the pres-
sure fluctuation [15,16] or the noise [17,18] when a bubble was released or by measuring the
time between the generation of the bubble and the breaking of the bath surface [19]. How-
ever, these measurements are characterized by a high measurement uncertainty and only
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allow a macroscopic analysis of most phenomena. Furthermore, their applicability is lim-
ited to a few bubbles or low gas flow rates. Therefore, subsequent studies (e.g., [16,20,21])
used resistivity measurements. However, this technique also has disadvantages. First, the
method is intrusive and provides only local information [22]. Second, the sensors have a
short lifetime, especially at high temperatures [21]. Third, it is difficult to establish the func-
tional relationship between the measured chord (or pierced) length and the actual bubble
size [23]. On the other hand, this method enables the investigation of significantly higher
flow rates. In addition, multi-needle sensors, like those developed by Iguchi et al. [24],
allow a reconstruction of the bubble shape. X-ray measurements (e.g., [25–27]) are non-
intrusive and allow an image-based analysis like described above. However, given the
high absorption of the liquid metals, measurements are restricted to quasi two-dimensional
experiments where the setup’s thickness is not more than 12 mm [27]. Neutron radiography
(e.g., [28,29]) employs a similar technique but allows thicker experimental setups up to
25 mm [30]. On the other hand, the resulting images are noisier and have less contrast
than X-ray images, making subsequent image processing more difficult. Sarma et al. [29]
showed that neutron radiography is capable of measuring the motion of tracers in the fluid,
which would allow simultaneous measurements of fluid velocity and bubble velocity. This
method, called NeuPIV, could provide interesting insights into bubble dynamics in liquid
metals in the future. Other non-intrusive measurement techniques are ultrasound Doppler
velocimetry (e.g., [31,32]) and inductive methods (e.g., [33,34]). However, they can only be
used to measure the bubble velocity and the evaluation of the measurement signals can
be very difficult with a higher number of bubbles. A problem with many measurement
techniques is that sensors must be placed in close vicinity of the experimental setup, which
prevents high temperature measurements. Therefore, measurements are often limited to
Galinstan (GaInSn) or Mercury (Hg), as it is already liquid at room temperature.

Due to the described measurement difficulties in liquid metal, the majority of studies
have been performed in aqueous systems. However, even for these systems, a comprehen-
sive understanding of the complex bubble–fluid interaction by experimental measurements
alone is almost impossible.

2.3. Direct Numerical Simulation

Due to the constant increase in the computing capacity of modern high-performance
clusters, the possibility of an analysis by means of DNS is opening up. Here the phase
boundary between fluid and gas bubble is directly modelled by means of a suitable in-
terface tracking method. Thus, many phenomena can be analyzed far better than with
experimental measurements, as quantities are directly accessible. Furthermore, the fluid
properties can be easily varied, so that fluids can be examined, which cannot by experi-
ments. However, DNS is a mathematical model that is affected by modelling and numerical
errors. In particular, the interface tracking method and the treatment of surface tension
are still being continuously developed. Therefore, existing results from DNS calculations
must be critically examined for the influence of these models. They are therefore largely
omitted in this review. Furthermore, the analysis is still limited by the computing capacity.
According to Kolmogorov’s length scales, the number of necessary cells increases with
Re9/4. This implies that computations are limited to relatively small computational areas
with low turbulence (low Re) and only a few bubbles.

3. Bubble Formation Mechanisms

In most metallurgical processes, gas bubbles are generated by single nozzles (e.g.,
regular nozzles, open lances, Laval nozzles, impellers) or purging plugs. Gas bubbles
generated by metallurgical reactions may be assigned to the micro scale and are omitted
in this review. The bubble size distribution is an important parameter of the metallurgi-
cal process. It directly affects the removal efficiency of non-metallic inclusions [35] and
degassing reactions [36] and can influence the fluid flow [37,38]. Generally, small bubbles
and a narrow size distribution are desirable. In addition, the bubble size distribution
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is an important boundary condition of numerical models. Despite that importance, the
bubble size distribution in actual processes is still largely unknown and comprehensive
theoretical models have not been derived yet. A straightforward approach would be to
assume bubbles in the model as well as in the melt in pressure equilibrium. A scaling of
the bubble size from a physical model (M) to the real process (R) could then be maintained
by [39]:

db,R= db,M

√
σR(ρl − ρb)M
σM(ρl − ρb)R

(2)

However, this approach implies that the bubble size is independent of the injector,
which contradicts most experimental results for relevant flow rates.

Since the generation of gas bubbles by injectors plays an important role in a variety
of processes, there is a great deal of research on the generation of gas bubbles in water
or aqueous systems. These were discussed in the review by Kulkarni and Joshi [40]. The
majority of these studies deal with the generation of gas bubbles at nozzles. Studies on
the generation of gas bubbles on porous plugs or slot plugs are scarce. Very few studies,
summarized in Table 1, investigated the generation of gas bubbles in molten metals, since
measurements are cumbersome. These studies have common ground in the fact that
they investigate the generation of bubbles at single nozzles. To the best of the author’s
knowledge, there are no studies on the generation of gas bubbles at purging plugs in
liquid metals.

3.1. Bubble Generation at Single Nozzles

Before discussing the results in liquid metals, some important observations and corre-
lations from water models are introduced, as these are often used to check the scalability of
water experiment correlations to liquid metals or serve as foundation for correlations for
liquid metals.

In an early and widely recognized study, Leibson et al. [41] correlated the bubble
size with the orifice Reynolds number. They found two regimes. At laminar flow con-
ditions, the bubble size increases with increasing orifice Reynolds number Reor, where
the nozzle diameter and the exit velocity are the characteristic scales, and depend on the
orifice inner diameter dni. In contrast to that, at turbulent outflow conditions, the bubble
size is considerably smaller and almost independent of the Reynolds number and the
orifice diameter.

db= 0.029d0.5
ni Re0.33

or Reor < 2100db,32= 0.0071Re−0.05
or Reor > 10000 (3)

However, all comparisons with measurements in liquid metals [17,42] showed poor
agreement with Equation (3), so that it can be concluded that a scaling by the Reynolds
number alone is insufficient.

Numerous studies on the generation of gas bubbles at nozzles have shown that a
distinction can be made between the constant volume regime and the constant frequency
regime [40]. In the former, an increase of the flow rate leads to an increase in bubble
frequency, but the bubble size remains constant. In that regime, the bubble size is given by
Tate’s law [43]:

db =

(
6σdni

ρlg

)1/3
(4)

With a further increase beyond a critical flow rate, the bubble detachment frequency
remains constant but the bubble size increases. For that regime, Davidson and Amick [44]
derived a correlation for intermediate gas Qg flow rates up to 250 cm3/s:

db= 0.0054
(

107Qgd0.5
ni

)0.289
(5)
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Mersmann [45] derived a correlation which covers both regimes:

db= 0.01·
⎡
⎣3·106σdni

ρlg
+

((
3·106σdni

ρlg

)2

+K
106Qgdni

g

)0.5
⎤
⎦

0.33

(6)

where K is an empirical constant.
Investigations on gas bubble generation in liquid metals, as well as their boundary

conditions and the most important results, are summarized in Table 1. Hg [15,20,42],
silver (Ag) [15], iron (Fe) [18,46], copper (Cu), lead (Pb), tin (Sn) [17], Wood’s metal [47],
Li17Pb83 [16], GaInSn [22], or aluminum (Al) [48] were investigated. Thus, a broad range
of physical properties is covered.

The earliest studies used indirect measurement methods. Here, either the pressure
pulse in the gas supply was measured, which results from the rupture of the gas bub-
ble [15,16], or the resulting vibration [17,18]. The bubble volume was calculated from the
detachment frequency and the flow rate. Due to this indirect measurement technique,
however, the gas flow rate was limited to rather small values, so that the rupture signals of
individual gas bubbles could be distinguished.

Sano and Mori [15] compared the bubble size in liquid silver and mercury with
theoretical correlations (Equations (4)–(6)) derived in aqueous systems. They reported good
agreement between their measurements and theory. However, they pointed out that there
is a difference in the wettability of the injector. Therefore, the inner diameter of the injector
dni in Equations (4)–(6) has to be replaced by the outer diameter dno in non-wetting systems.
Irons and Guthrie [18] made similar observations, but found less satisfying agreement with
the correlation of Davidson and Amick (Equation (5)) or Mersmann (Equation (6)). This
was attributed to the fact that the experimental setup, in particular the chamber volume of
the injector, differed between the experiments, which had a large influence on the resulting
bubble size. Interestingly, both measurements confirm the observations from the water
experiments that the bubble size becomes independent of the fluid’s material properties
for sufficiently large flow rates. Thus, this observation seems to be valid for systems with
significantly higher surface tensions and density differences like molten metals. Based on
the correlation of Mersmann (Equation (6)), Mori et al. [46] derived a first correlation of
the bubble size in liquid metals (note that this correlation was first published in 1977 in
Japanese by Sano and Mori and is therefore often called Sano and Mori equation):

db= 0.01·
[(

106 6σ·dno

ρlg

)2
+0.0242

(
107Qgd0.5

no

)1.734
]1/6

(7)

Note that this correlation was originally derived using cm and dyn. The use of SI
units can lead to deviations of the order of ±5%. This equation was derived for liquid
iron and validated with values from previous measurements for Hg, Ag, and H2O. It
should be noted, however, that this correlation was derived for very small flow rates
Qg ≤ 70 cm3/s. This is primarily due to the indirect measurement technique. This
has the additional disadvantage that no conclusions can be drawn whether the bubbles
disintegrate during injection or on their rising path. Therefore, subsequent studies used
resistivity measurements.

The validity of Equation (7) has been critically reviewed in several subsequent studies,
where different results were found. Mori et al. [20] found good agreement, even for
higher flow rates. Irons and Guthrie [18] found larger gas bubbles than predicted by
Equation (7), but this was attributed to differences in chamber volume, as mentioned
above. A similar result was found by Iguchi et al. [21]. The reasons for that can only be
speculated, since some details describing the experimental setup are not given in their
paper. Tschuchiya et al. [16] also found different values. Zhang et al. [49] compared the
values of Equation (7) with measured values of bubbles generated with a porous plug
in a water model. For that, the diameter in Equation (7) was replaced by the pore size.

44



Metals 2021, 11, 664

However, poor agreement was found. The gas bubbles generated by the porous plug were
significantly smaller than predicted by Equation (7).

Moreover, there are also studies that contradict the observation that the initial bubble
size is independent of the fluid properties. Tsuchiya et al. [16] argues that the fitting
parameters of Equation (7) depend on the fluid properties and the nozzle orientation.
However, it should be noted that the number of measurements was so small that these
parameters might be overfitted. Andreini et al. [17] found relatively poor agreement with
water model correlations, in particular with Equation (3). They argued that the bubble size
should not be scaled with the orifice Reynolds number but with the orifice Froude and
Weber number, where the characteristic length and velocity are the nozzle diameter and
the exit velocity of the gas. They fitted their data to:

db = dniFr0.224
or We−0.109

or (8)

However, Irons and Guthrie [18] point out that the poor agreement with the water
model correlations may also be due to different nozzles. Unfortunately, these parameters
are not given in [14], so this cannot be further verified. Iguchi et al. [26] measured the
bubble size by X-ray imaging. The results of their study suggest that the bubble size
depends not only on gas flow rate but also on gas and fluid properties. However, the latter
point is contradicted by the measurements of Xie et al. [47].

Resistivity measurements for higher flow rates suggest that the detachment bubble
size can be reasonably predicted by Equation (5) [42]. However, the actual bubble size
is strongly determined by bubble breakup and coalescence [42,47]. Therefore, Sano and
Mori [42] correlated the actual bubble size with a proportional factor that takes into account
bubble breakup and coalescence and fitted their data to:

db,32= 0.00091
(

106 σ

ρl

)0.5
(

200 Qg

πd2
ni

)0.44

(9)

It should be noted that this correlation was derived for the Sauter mean diameter.
However, as shown in Figure 1, the deviation is small in case the bubble distortion is small.

Figure 1. Arithmetic mean and Sauter mean diameter as a function of bubble aspect ratio.

Xie et al. [47] investigated bubble swarms in Wood’s metal and reported that the
bubble size distribution followed a log-normal distribution. For the mean bubble diameter,
they correlated:

db= 0.000146
[

104 Qg

z + H0

]0.1

(10)
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where H0 is the distance between the nozzle and the mathematical origin of the plume in
m (correlation given in [47]).

In their study, no significant influence of the gas properties or the nozzle size was
found. Using a similar experimental setup, Iguchi et al. [50] confirmed the applicability of
Equation (10). However, a major criticism of Equation (10) is that it was only derived for
one fluid and certainly overfits this system. Fluid property dependent bubble coalescence
or breakup, which was found to be important, cannot be considered. Thus, Equation (10) is
unlikely to generalize to other fluids.

The studies carried out so far on the formation of gas bubbles in liquid metals show
that the theory established for water models for the formation at single nozzles at low gas
flow rates also applies to liquid metals as long as the different wettability of the nozzles is
considered. At very low flow rates, bubbles of identical size are formed, depending on the
fluid properties and the injector. At slightly higher flow rates, however, the bubble size
depends primarily on the flow rate and not on the injector or the fluid properties. Because
of the difficult measurement conditions, especially at high flow rates, this observation
refers to very low flow rates, and for more relevant high flow rates there are very few
measurements [42,47]. At these high flow rates, the bubble size distribution seems to be
largely dominated by bubble coalescence and breakup. However, there are too few studies
in this area to evaluate whether existing models are applicable to liquid metals. Although
both studies derived an empirical equation to determine the bubble size, it can be assumed
that these correlations significantly overfit the measured data and that their scaling to other
fluid systems or to higher flow rates is not valid. At very high flow rates, single nozzles
go into jetting mode and the bubble size distribution results from breakup of the jet and
sometimes subsequent coalescence [51].

Table 1. Studies on bubble generation in liquid metals (Pres Pul = indirect pressure pulse method, Ac = indirect acoustic
method, Res = Electric resistivity, dno = Outer diameter of the nozzle, dni = Inner diameter of the nozzle, BSD = Bubble
size distribution).

Ref. Year Method Nozzle [cm] Flowrate [cm3/s] Fluid Result

Sano & Mori [15] 1976 Pres Pul dno: 0.22–0.82
dni: 0.1–0.3 0.0167–70 Hg/Ag

Correlations from water can be used in
case the O.D. instead of the I.D is used

(non-wettability)

Andreini et al. [17] 1977 Ac dni: 0.015–0.1 Cu/Pb/Sn
Bubble size depend on We and Fr, not on

Re. Water model correlations cannot
be used

Irons & Guthrie [18] 1978 Ac dno: 0.64–5.1,
dni: 0.16–0.64 0.5–1000 Fe

Use of O.D because of non-wettability,
BSD becomes independent of fluid

properties at higher flow rates

Mori et al. [46] 1979 Pres. Pul dno: 0.32–0.68
dni: 0.12–0.33 0.1–36 Fe

Empirical Equation (7) for various
liquids. At high flow rates, BSD becomes

independent of the fluid

Sano & Mori [42] 1980 Res dno: 0.4–1.0
dni: 0.2–0.6 50–1330 Hg

Good agreement with water model
correlation, BSD is independent of fluid

properties, empirical correlation
Equation (9)

Mori et al. [20] 1982 Res dni: 0.1–0.4 0.05–4500 Hg Good agreement with Equation (6) at
higher flow rates

Xie et al. [47] 1992 Res dni: 0.2–0.5 100–1200 Woods
BSD follows log-normal distribution,
BSD becomes independent of nozzle,

BSD is result of breakup

Tsuchiya et al. [16] 1993 Pres Pul dno: 0.2–0.64
dni: 0.1–0.4 0.5–10

H20/Hg
CH3OH
Li17Pb83

Fitting parameters of Equation (7)
depend on nozzle orientation and fluid

properties

Iguchi et al. [21] 1995 Res dno: 0.6
dni: 0.1 50–100 Fe Larger bubbles than predicted by

Equation (7)

Iguchi et al. [26] 1995 X-ray dno: 0.13–0.45
dni: 0.09–0.19 20–413 Fe

At high flow rates, BSD depend on I.D,
not O.D. BSD depends on fluid and gas

properties

Iguchi et al. [50] 1997 Res dni = 0.005 60 Woods Confirmed Equation (10)

Gnyloskurenko &
Nakamura [48] 2003 X-ray dno: 0.2–1

dni: 0.1–0.4 0.43–12 Al Non-wettability of the nozzle increases
bubble size

46



Metals 2021, 11, 664

3.2. Bubble Generation from Porous Plugs

So far, bubble formation in liquid metals at single nozzles has been discussed. How-
ever, transferring conclusions or even correlations to industrial vessels in which purging
plugs are employed is difficult. It is known from water model experiments that from single
nozzles and purging plugs, completely different bubble size distributions are generated,
especially at high purging rates. Therefore, bubble formation by purging plugs is discussed
in the following. The results presented are all based on observations in aqueous systems
or theoretical considerations. Thus, the difficulty of scaling those results to other material
systems arises. To the best of the authors’ knowledge, measurements in liquid metals that
could verify the scalability of existing models are not available.

Early studies [52] observed that at low flow rates, more pores become activated with
increasing flow rate while the bubble size remains approximately constant. When all pores
are activated, a high void fraction occurs in the direct vicinity of the porous plug. At
a certain flow rate, the bubbles start to coagulate to form larger bubbles. A descriptive
model for low flow rates was developed by Loimer et al. [53]. Here, a wetted sieve tray is
considered first and the theory is then modified to represent the more complex case of a
wetted and later a non-wetted porous plug. The model assumes a chamber below the sieve
tray in which a certain isostatic pressure prevails, which is dependent on the gas flow rate.
As soon as this pressure exceeds the capillary pressure in one of the orifices of the sieve
tray, the first orifice gets activated and gas flows through it. If the volume flow is sufficient
to lower the pressure in the chamber, the volume flow stops and the pressure increases
again. If the volume flow is not sufficient to lower the pressure, successive orifices are
activated. In mathematical terms, the minimum flow rate is given by:

Qmin= 2π

√
σr3

or

ρg
(11)

The number of activated orifices is given by:

n =
Qg

Qmin
(12)

For a porous plug, the assumption of an isostatic pressure cannot be made. Instead, it is
assumed that the pressure around an activated pore decreases with 1/R [53]. Furthermore,
the capillary pressure in a pore is different from those in a simple orifice. With these
considerations, Equation (11) becomes:

Qmin =
4πσκ
μg

(13)

where κ is the permeability of the porous plug. For non-wetted porous plugs, the bubble
formation mechanism is different as shown in Figure 2. Bubbles can migrate vertically over
the porous plug [54] and coagulate on the plug surface already [55], which results in the
release of larger bubbles. Equation (13) has to be extended by a factor ymax/ror, where ymax
is the maximum radius of the contact line, which depends on the wetting angle θ. The
contact line is the place at which the plug, the bubble, and the liquid are in three-phase
contact. The relation between ymax and θ is summarized in [53].

47



Metals 2021, 11, 664

Figure 2. Bubble generation from a wetted (a) and non-wetted (b) sieve tray (Reproduced from [53], with permission from
Elsevier, 2021).

Applying their theories to some typical plugs, Loimer et al. [53] concluded that, similar
to the bubble formation at single nozzles, the bubbles at porous plugs are first formed in a
quasi-steady regime at which the bubble size is given by Tate’s law (Equation (4)). In case
the superficial velocity, that is to say the quotient of flow rate and active plug area, exceeds
a critical value, the bubble size starts to increase with the flow rate.

However, a rather mediocre agreement between experiments and theory was found.
This was explained by the anisotopic permeability of the medium, which can cause pressure
gradients in the chamber and in the porous material, respectively. Nevertheless, this model
provides a descriptive idea of bubble formation at low flow rates. For higher flow rates,
however, bubble coalescence in the vicinity of the porous plug gains importance. According
to the theory of Koide et al. [56], all bubbles are formed with a similar size. However, in the
vicinity of the plug, the void fraction is high and increases with the flow rate. At the same
time, bubble velocity is low since bubbles have not reached their terminal rising velocity.
This promotes coalescence of bubbles, which becomes more significant with increasing
flow rates.

Since different physical mechanisms are dominant, it is useful to divide the bubble
formation into different regimes depending on the gas flow rate. A first distinction [57]
divided bubble formation into four different regimes: Quiescent column of discrete bubbles,
pulsating column, onset of coalescence, and ‘blanketing’ at which the entire plug is covered
by bubbles and coalescence is dominant. Images of the different regimes are shown
in Figure 3.

The transition between the regimes was attributed to the superficial gas velocity. The
transition from the quiescent to the pulsating column regime was found at 16 cm/s [57],
15 cm/s [59], or 14 cm/s [58]. The onset of coalescence was found between 30 and
38 cm/s [57], above 25 cm/s [59], or 40 cm/s [58]. ‘Blanketing’ was found above 67 cm/s [57].
Furthermore, it was shown that the superficial velocities at which transitions take place de-
pend on the pore size, while the ambient pressure or the plug diameter had little effect [60].
For comparison, the superficial gas velocity in liquid steel during soft bubbling is approxi-
mately 90 cm/s. However, these studies investigated the same fluid system. Therefore, the
transferability of these results to other fluids should be made rather critical. Furthermore,
the differences between the various results, especially for the onset of coalescence, suggest
that other factors besides the superficial gas velocity need to be considered.
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Figure 3. Modes of gas dispersion in porous plug injection: (a) Quiescent column of discrete bubbles, (b) onset of coalescence,
and (c) blanketing (Reproduced from [58], with permission from Springer, 2021).

In more recent investigations, the subdivision into the homogeneous and heteroge-
neous bubble regime became established. The homogeneous regime is characterized by a
‘non-coalescence induced’ [3], approximately gaussian bubble size distribution [61] and an
approximately linear dependence of the void fraction on the superficial gas velocity. In
contrast, the heterogeneous regime is characterized by a ‘coalescence-induced’ [3] bubble
size distribution, which follows a log-normal distribution [61]. The void fraction no longer
follows a linear dependence of the superficial gas velocity.

The transition between the homogeneous and heterogeneous regime has been studied
by Kazakis et al. [61] and Mohagheghian et al. [62]. In addition, the influence of numer-
ous parameters on the transition between these regimes was discussed in the review by
Besagni et al. [3]. It was found that the transition is independent of the type of gas [3,52,56].
A smaller average pore size of the porous plug seems to favor the heterogenous regime,
thus shifting the transition to lower superficial velocities [61]. A reduction of the porous
plug diameter increases the local void fraction whereby the transition maintains at lower
flow rates [61]. Higher fluid flow velocity in the vicinity of the plug destabilize the homoge-
neous regime and the transition takes place at lower superficial gas velocities [3]. Smaller
bubbles seem to stabilize the homogeneous regime [63].

The viscosity of the fluid does not seem to have an influence [61], whereas Mo-
hagheghian et al. [62] reported an influence in high viscosity systems as the rising velocity
of bubbles decreases, which increases the likelihood of coalescence. A higher surface
tension is advantageous for coalescence, thus it destabilizes the homogenous regime [61].

Higher fluid temperature or higher pressure reduce the coalescence and favor breakup.
Thus, the transition takes place at increased superficial gas velocities [3].

The composition of the fluid, in particular organic or inorganic contaminants or
the addition of acids, is of great importance. Those suppress coalescence so that the
homogeneous regime is stabilized, causing the transition to be shifted to higher superficial
gas velocities [3,56].

An empirical equation to determine the transition superficial gas velocity was pro-
vided by Kazakis et al. [61] based on the Froude and Bond (equivalent to the Eötvös
number) number. However, according to this correlation, the transition is mainly influ-
enced by the ratio of porous plug to column diameter. In the experiments, that ratio was in
the order of 0.1, which is much smaller than in most metallurgical processes. For example,
it is 0.03 in the ladle. Nonetheless, the transition superficial velocity was typically reported
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in an order of a few cm/s while it is about 90 cm/s in a ladle. Therefore, it seems reasonable
to assume that the bubble column in the ladle is in the heterogenous regime. Similar
considerations can be made for most metallurgical processes. However, it should be noted
that the influencing factors described above were derived for aqueous systems with much
lower pressure, temperature, surface tension, and density.

The bubble size and its dependence on different parameters also depend on the regime
of the bubble column. For very small flow rates, the bubble size remains constant and only
depends on the plug’s parameters [53]. An empirical correlation was proposed by Koide
et al. [64] for pure and fully contaminated systems:

db = ŷ·
(

dpoσ

ρlg

)1/3

(14)

where ŷ is an empirical fitting parameter, ranging from equivalent to 1.47 for pure to 1.61
for fully contaminated systems, which is similar to Tate’s law (Equation (4)). Similar results
were reported by Miyahara and Tanaka [65].

For slightly higher flow rates, which still belong to the homogeneous regime, the
bubble size increases proportionally to the flow rate. An empirical correlation for the whole
homogenous regime was derived by Mohagheghian et al. [62]:

db,32= dpo·6.4
(

Fr1.8
b We1.7

b Re0.7
b

)−0.132
(15)

where the characteristic length and velocity of the dimensionless groups are the bubble
size db,32 and the superficial gas velocity usg. In the heterogeneous regime, there are
inconsistent results, but most studies found that the bubble size increases with increasing
flow rate. In this regime, the bubble size is mainly determined by coalescence and breakup,
which is influenced by many different parameters [3]. For the heterogenous regime,
Mohagheghian et al. [62] argued that the Ohnesorg number, Oh, is a function of the Morton
and the Capillary number, Ca:

Oh = Viscous force√
Inertial force · Surface tension force

= μl√
ρlσdb

Ca = Viscous force
Surface tension force =

μlusg
σ

(16)

They derived:

db,32= 0.2477
μ2

l
ρlσ

(
gusgμ

5
l

ρlσ
4

)−0.4

(17)

For intermediate flow rates (up to 10 cm/s), Koide et al. [64] derived for organic liquids:

db= 0.0729·
(

106·dpoσ

ρlg

)1/3
(
ρlgd2

po

σ

)0.345⎛⎝ Frpl√
Wepl

⎞
⎠

0.132(
ρlgd2

po
σ )

−0.139

(18)

For pure liquids, slightly different fitting parameters were found [64]:

db= 0.0703·
(

106·dpoσ

ρlg

)1/3
(
ρlgd2

po

σ

)0.364⎛⎝ Frpl√
Wepl

⎞
⎠

0.133(
ρlgd2

po
σ )

−0.14

(19)

where Wepl is the plug Weber number (u2
sgdpoρl/ε2σ) and Frpl is the plug Froude number

(u2
sg/ε2gdpo). Another correlation for intermediately contaminated systems was proposed

as well. However, since the influence of contaminations in liquid metals have not been
studied yet, it is not given here.
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The discussion of bubble generation on porous plugs shows that bubble formation
at very low flow rates follows similar mechanisms as at single nozzles. However, the
situation is somewhat more complex, since different bubble formation sites have to be
considered. At higher flow rates, the bubble formation mechanism is quite different from
single nozzles. Thus, it can be concluded that correlations for single nozzles at high flow
rates cannot be applied to porous plugs. In addition, the literature review shows that
a variety of parameters influence the bubble size distribution. However, to apply the
correlations, a distinction must be made between different regimes. Due to the relatively
small number of studies and the high number of influencing parameters, a comprehensive
understanding of the bubble size distribution is not available, especially at higher gas
flow rates. This is partly due to the difficulty of bubble size distribution measurements
at high void fractions. Furthermore, all observations so far have been set up in aqueous
systems; in those, the density and surface tension especially can only be varied to a small
extent. Therefore, a simple transfer of those correlations to predict the bubble size in liquid
metals has to be questioned critically. In addition, all correlations have been established for
wettable purging plugs. However, Wang et al. [55] showed that non-wettability promotes
coalescence directly at the plug surface, thus releasing larger bubbles. However, it is not
clear whether this effect is also relevant for larger gas flow rates.

3.3. Bubble Generation from Slot Plugs

Slot plugs or hybrid plugs are sometimes used instead of porous plugs. However,
there are only very few studies on the formation of bubbles at wetted [66–69] and non-
wetted [70,71] slots.

Bubbles form at slots at a finite number of bubble sites. At each of these sites, gas
bubbles are formed with a mechanism similar to that of single nozzles. Again, different
regimes can be distinguished depending on the gas rate as shown in Figure 4. At low
gas flow rates, the number of bubble formation sites increases with increasing gas rate
(regime I). As the gas flow rate continues to increase, the number of bubble formation
sites becomes so large that they touch each other and coagulate to form a larger bubble
formation site (regime II). The number of gas bubble formation sites decreases with flow
rate in this regime. At very high flow rates, a linear gas blanket forms (regime III) [70].
Harris et al. [69] showed that the transition between regime I and II depends on the slot
Froude number.

Figure 4. Regimes of bubble formation at a slot nozzle (Adapted from [70], with permission from Elsevier, 2021).

In regime I, Okumura et al. [71] reported that the number of active bubble formation
sites on non-wetted slots depends on the shape of the slot, but not on the slot width.

51



Metals 2021, 11, 664

In contrast to that, Li et al. [67] reported a slot width dependency for wetted slots and
correlated Equation (20) for the distance between active formation sites:

λsl= 17.2wsl

(
ρl
ρg

)0.16

We−0.25
sl (20)

where Wesl is the slot Weber number (u2
sgwslρl/σ).

As with porous plugs and single nozzles, wettability plays a major role. At wettable
slots, significantly more bubble formation sites are formed, especially at low flow rates
(about factor 5 [71]), and smaller bubbles are formed. At higher flow rates, the influence of
wettability decreases significantly. In regime II, the distance between active formation sites
on a non-wetted slot can be approximated by [71]:

λsl= 6.5wslWe0.466
sl (21)

In regime I, the bubble size does not depend on the gas rate but is given by Tate’s law
(Equation (4)). For a combination of regime I and II, a high agreement with the empirical
correlation of Mori et al. [46] (Equation (7)) was found, assuming that the total flow rate is
evenly distributed among the individual bubble formation sites and that they behave like
single nozzles [71]. However, given the small number of studies, the transferability of this
conclusion to other fluid properties cannot be verified.

3.4. Bubble Size in a Steel Casting Ladle

In the previous sections, the bubble formation mechanisms at individual nozzles,
porous plugs, and slot plugs were described, and existing correlations were analyzed. The
applicability of those correlations to industrial processes will be discussed in the following
using the example of a steel casting ladle during the process stage of soft bubbling.

Commonly, purging plugs are used in ladle. However, different purging rates are
used in different process stages. According to Trummer et al. [72], porous plugs are
advantageous for soft bubbling and produce many small bubbles. At high flow rates,
however, their wear is very high. Slot plugs are disadvantageous for soft bubbling as they
produce much larger bubbles and low flow rates are difficult to control. However, they
show significantly less wear for high flow rates. Therefore, there are also hybrid plugs,
which have both a porous plug and a slot part.

In Table 2, the various correlations derived are summarized and the bubble size
extrapolated to an industrial ladle are given. As shown, a wide range of mean bubble
sizes is predicted, ranging from less than 1 mm up to 100 mm. This generally reveals
that the extrapolation of existing correlations to another injection system or another fluid
system is highly unreliable. In most numerical models, the bubble size, extrapolated from
correlations for individual nozzles, is used as a boundary condition. However, it appears
that those correlations probably overestimate the bubble size compared to porous plugs.
The most likely scenario is that the bubble size distribution is determined partly by the
injector and partly by coalescence and breakup. For example, Polli et al. [73] showed that
an influence of the injector is even present in a considerable height above the injector itself,
even if coalescence and breakup are the predominant effect. This is because coalescence
and breakup are dynamic processes that require some time to reach an equilibrium state.
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Table 2. Bubble size correlations and their corresponding value in soft bubbling in a 185 t ladle (Qg = 200Nl/min,
T = 1600 ◦C, HFill = 3.23 m, Dpl = 0.1 m).

System Ref. Equation db,ladle

Analytical [39] db,R= db,M

√
σR(ρl−ρb)M
σM(ρl−ρb)R

8.5 mm

Single Nozzles

[47] db= 0.000146
[
104 Qg

z+H0

]0.1 15.8 mm

[15] db= 0.01·
[(

106· 6σ·dno
ρlg

)2
+0.0242

(
107Qgd0.5

no

)1.734
]1/6

31.2 mm

[42] db,32= 0.00091
(

106 σ
ρl

)0.5( 200Qg

πd2
ni

)0.44 96.8 mm

Porous Plugs
(heterogenous regime)

[64]
db= 0.0703·

(
106· dpoσ

ρlg

)1/3
(

ρlgd2
po

σ

)0.364(
Frpl√
Wepl

)0.133(
ρlgd2

po
σ

)
−0.14

13.5 mm

[62] db,32= 0.2477 μ2
l

ρlσ

(
gusgμ

5
l

ρlσ
4

)−0.4
0.65 mm

Slot plug [71]
λsl= 6.5wslWe0.466

sl

db= 0.01·
[(

106· 6σ·dno
ρlg

)2
+0.0242

(
107Qgd0.5

no

)1.734
]1/6 13.2 mm

A promising method to numerically determine the real bubble size distribution in the
steel ladle is population balance models (PBM). Here, additional transport equations are
solved for the particle density of different particle sizes:

∂n(Vi, x, t)
∂t

+∇(u(Vi, x, t)·n(Vi, x, t))= Sbr+Sco (22)

For breakup, there are four different mechanisms that have to be considered: Turbulent
fluctuation and collision, viscous shear stress, shearing-off, and phase boundary instability.
These mechanisms differ in the number and size of the resulting daughter bubbles. That is,
whether a bubble disintegrates into two bubbles of approximately the same size or two
or more bubbles of different sizes. Different models for the breakup probability as well as
the daughter bubble size are discussed in the review by Liao and Lucas [74]. This review
show that a complete understanding of the breakup phenomenon, even for much-studied
aqueous systems, is still lacking. Break up in liquid metals has so far only been investigated
by Keplinger et al. [75] using X-ray in a GaInSn melt. It was shown that breakup is mainly
caused by the interaction with the preceding bubble, either by the turbulence of their wake
or by collision of the two bubbles. However, the X-ray measurement technique does not
allow direct measurement of the mean flow not to speak of turbulent structures like wakes.
Therefore, the effect cannot be quantified further. For small void fractions, breakup due
to viscous shear stress is also relevant. In the investigations in the GaInSn melt, the onset
of the effect was found at slightly higher Reynolds numbers than in water. However, the
derived conditions seem to be a necessary, rather than a sufficient, condition. In contrast to
aqueous systems, breakup results in two bubbles of different sizes.

The coalescence rate is primarily determined by the collision frequency of the bubbles.
Collision is evoked by turbulent fluctuations or velocity gradients in the fluid, different
bubble velocities, bubble capture in eddies, or bubble wake interaction. However, not all
collisions lead to coalescence. Therefore, there is also the concept of coalescence efficiency,
which specifies how likely coalescence is in the event of a collision. Existing models for
the collision frequency as well as for coalescence efficiency are discussed in the review
by Liao and Lucas [76]. Again, there is only one study for liquid metals by Keplinger
et al. [75]. In an investigation of collision in a GaInSn melt, good qualitative agreement
with the phenomena observed in aqueous systems was reported. Bubble collision seems to
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be primarily caused by wake capture of the trailing bubble. However, it is important to note
that a bubble chain was studied, which favors this effect. For the coalescence efficiency, a
strong dependence on the turbulence in the vicinity of the bubbles was suspected. However,
this effect cannot be quantified due to the limited measurability. These results show that
PBMs have a potential for deriving the actual bubble size in the ladle. However, there is
a high degree of uncertainty due to incomplete knowledge of the governing phenomena.
In particular, it is critical that the differences between aqueous systems and liquid metals
cannot yet be quantified.

Another difficulty is that hybrid purging plugs are often used in the industry i.e., two
different bubble formation mechanisms have to be considered. However, it is not possible
to evaluate when and to what extent the different mechanisms are active in the real process,
since no studies are available apart from the water model study by Trummer et al. [72].
Sahai and Guthrie [77] argue that a precise knowledge of the bubble size is not essential,
since it can be assumed that the bubbles are large enough to be of a cap shape where
the drag coefficient cd can be assumed to be 8/3. However, this reasoning is based on
extrapolation of correlations for single nozzles, so the bubble size is probably overestimated
by the authors. For the most probable range, the bubbles are mostly ellipsoids, so the drag
coefficient cannot be assumed to be constant as discussed in the subsequent sections.

4. Bubble Deformation

In contrast to solid particles, droplet and bubble’s phase boundary may deform due to
local pressure gradients. This leads to a complex interaction between the phase boundary
and the surrounding flow. Bubble deformation influences the interfacial forces and heat
and mass transfer, and vice versa. For the drag force, the deformation is usually considered
implicitly in the drag coefficient though some exceptions exists (e.g., [78,79]). For the
modelling of the lift force, the bubble shape has to be considered explicitly by the modified
Eötvös number as discussed below.

An overview on different bubble shapes is provided in Figure 5. For small bubbles, the
surface tension dominates, and the bubbles are of spherical shape (a). For medium-sized
bubbles, the surface tension, viscous friction, and the inertia of the surrounding fluid are
relevant for the bubble’s shape. If there is a relative velocity between bubble and fluid, the
flow stops at the front stagnation point and the pressure increases towards the inside of
the bubble. The surrounding streamlines bend to form a curve around the bubble. Due
to the incompressibility of the fluid, an acceleration along the streamline must therefore
take place, which reduces the local pressure. This effect results in the formation of an
ellipsoidal bubble (b). At even higher relative velocities, cap or mushroom bubbles (c) are
formed, which are caused by vortices in the wake behind the bubble [80]. Subsequently, the
discussion is limited to spherical and ellipsoidal bubbles, largely omitting cap bubbles since
the influence of deformation on the interfacial forces is assumed to be less pronounced for
that case.

Figure 5. Bubble shapes: (a) Spherical, (b) ellipsoidal, (c) mushroom.

The deformation of ellipsoidal bubbles is usually described by either the eccentricity E
or the shape factor ϕ given by Equation (23). In the stationary shape, oscillation is usually
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not considered, except for some measurements that concentrate on the interaction between
wake, shape, and path oscillation.

Eccentricity E =
dmin

dmax
Shape factor ϕ =

deq

dmax
= E1/3 (23)

where the equivalent diameter, deq, is defined as the diameter of a sphere with the same
volume as the distorted bubble. A simplified analytical solution for inviscid flows was
derived by Moore [78] by balancing the normal stresses caused by dynamic pressure and
surface tension at the stagnation points and on the equatorial plane. This analysis yields:

E =
1

1+ 9
64 We + O(We2)

(24)

The third term (O notification) indicates that this theory losses validity for higher
Weber numbers, that is to say for stronger deviation from the spherical shape. Thus, this
theory is only applicable for the limited range of slightly distorted ellipsoid bubbles in
pure liquids. Therefore, dimensionless numbers describing the system are derived and
coefficients for different f-functions (hypothesis) are established by fitting experimental
datasets. Wellek et al. [81] discussed that a droplet’s shape depends on eight parameters:
Density and viscosity of the gas and the surrounding fluid, the volume equivalent bubble
diameter, surface tension, gravity, and the relative bubble velocity in steady state. By
dimensional analysis, they derived five dimensionless numbers:

E = f

⎛
⎝dequ2ρl

σ
,

dequρl

μl
,

(
ρl − ρg

)
gd2

eq

σ
,

u2

gdeq
,
μl
μg

⎞
⎠ = f(We, Re, Eo, Fr, Nμr) (25)

Haberman and Morton (1953) found the same parameters for bubbles, though they
derived the drag coefficient cD, the bubble Reynolds number, the Morton number, the
Reynolds number inside the bubble, and the density ratio as dimensionless groups. If the
density and viscosity of the gas is considered to be negligible, the number of dimensionless
groups can be further reduced to three. Nowadays the bubble Reynolds number, Eötvös
number, and Morton number are commonly used, although some correlations have been
derived for the Weber number.

Grace et al. (original publication in French, found in [82]) presented the bubble shape
as a function of these three dimensional groups in a diagram (Figure 6), often named
the Grace diagram. This allows a qualitative estimate of the bubble shape. It can be
seen that the deformation increases with increasing Eötvös and Reynolds number and
decreasing Morton number. Furthermore, some shapes may only be present in certain
Morton number ranges, although it should be mentioned that the boundaries are less
strict in reality than shown in the diagram. Using neutron radiography in lead bismuth
(log10(Mo)~−13), Mishima et al. [28] found a good qualitative agreement between the
predicted and observed bubble shapes.

Quantitative estimates are obtained by regression analysis of experimental data, mostly
from experiments with single bubbles. Different f-functions exists. Wellek et al. [81] proposed:

1
E
= 1 + α0

ntot

∏
i=1

θ
αi
i (26)

where θ is a dimensionless group and α are the regression coefficients. A more complex
f-function was proposed by Aoyama et al. [83]:

1
E
=

[
1 + α0

ntot

∏
i=1

θ
αi
i

]αexp

(27)
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Equation (26) might miss some higher-order correlations between the dimensionless
groups while Equation (27) has a stronger tendency to overfit the experimental data.

Using Equation (26), Wellek et al. [81] correlated:

E =
1

1 + 0.163Eo0.757 (28)

Equation (28) was originally derived for liquid droplets, but it is now widely accepted
that it also applies to contaminated bubbles [84]. For super purified fluids, Sanada et al. [5]
used the same approach but correlated:

E =
1

1 + 6.5Eo1.925 (29)

This shows that the deformation is significantly reduced by contaminants. How-
ever, it should be mentioned that the measurements of Sanada et al. [5] were limited to
small bubbles.

Correlations that only consider the Eötvös number have a limited ability to generalize.
For instance, Wellek et al. [81] showed that Equation (28) is only applicable in a limited
range of Morton numbers and is inaccurate for high viscous systems. They proposed
that, instead, a correlation with the Weber number, similar to the analytical solution of the
Moore (Equation (24)), should be used to cover a broader range of fluid properties. Similar
results were found by Besagni and Deen [84]. Furthermore, the Eötvös number does not
capture all dynamic effects of the hydrodynamic system, as shown in different studies. For
example, Tomiyama et al. [85] observed an influence of the bubble release mechanism on
the deformation, which cannot be captured by the Eötvös number. On the other hand, the
Eötvös number is independent of the relative velocity, which makes it easily applicable in
bubble swarms.

Tadaki and Maeda (1961, original publication in Japanese, found in [82]) experimen-
tally found a dependency on the Reynolds and Morton number, which was later termed
the Tadaki number Ta:

Ta = ReMo0.23 (30)

For bubble deformation, expressed by the shape factor ϕ, they derived:

ϕ = E
1
3 =

1 Ta < 2 (spherical)
1.14Ta−0.176 2 < Ta < 6 (ellipsoid)
1.36Ta−0.28 6 < Ta < 16.5 (ellipsoid)

0.62 16.5 < Ta (spherical cap)

(31)

Fan and Tsuchiya [80] compared this correlation with literature data for purified liquids
and determined that it is applicable for contaminated fluids. They generalized an existing
correlation by Vakhrushev and Efremov [86] to be used for pure and contaminated liquids:

1
E
=

1 Ta ≤ Ta1
{c1 + c2tanh[c3(c4 − log(Ta)]}m Ta1 ≤ Ta ≤ Ta2

(h/b)cap Ta2 ≤ Ta
(32)

The fitting parameters of this correlation are summarized in Table 3.

Table 3. Parameters for Equation (32) from Vakhrushev and Efremov [86] and Fan and Tsuchiya [80].

System m (h/b)cap Ta1 Ta2 c1 c2 c3 c4

3Dcontaminated 3 0.24 1 40 0.81 0.2 2.0 0.8

3Dpure 3 0.24 0.3 20 0.81 0.2 1.8 0.4
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Aoyama et al. [87] used a more complex f-function given in Equation (27) and found a
correlation that takes the bubble Reynolds and Eötvös numbers into account.

E =
1[

1 + 0.016Eo1.12Re
]0.388 (33)

All correlations presented up to this point have common ground in the fact that they
are based on measurements of single bubbles in stagnant liquids. However, it is likely
that bubble deformation is affected by the presence of other bubbles in a bubble swarm.
This subject was investigated by Ziegenhein and Lucas [88] using data from six different
experimental setups with pure water. The dataset included experiments with single bubbles
in linear shear flows and different bubble columns. Because not all instantaneous local
quantities could be measured simultaneously, averaged values for the turbulence, dynamic
pressure, and bulk flow field were used. Their measurements showed that deformation is
largely independent of the flow rate, i.e., void fraction and fluid flow. The deformation
found in single bubble experiments were less pronounced than in bubble swarms, but
the difference is generally small. For smaller Eötvös numbers, this difference is more
pronounced than for larger Eötvös numbers. A comparison with existing correlations
showed that none of them reflect the data well over the whole range of values. For small
Eötvös numbers, there is a good agreement with measurements in super purified liquids
by Sanada et al. (Equation (29)) [5]. For larger Eötvös numbers, however, this correlation
clearly overestimates the deformation. Compared with Tadaki number correlations, there
is good agreement with the correlation of Fan and Tsuchiya (Equation (32) and Table 3 up
to Ta < 3. Beyond that, significantly less deformation was found. From these results, the
authors concluded that for a final evaluation of bubble deformation in swarms, the local
flow conditions would have to be considered, which is currently not possible. For larger
bubbles, however, there are very similar tendencies as in experiments with single bubbles.

Figure 6. Grace diagram to approximate the bubble shape as a function of the Eötvös, Reynolds, and
Morton number (original in French, reproduced from [88], with permission from Elsevier, 2021).

57



Metals 2021, 11, 664

Besagni and Deen [84] evaluated a large dataset of measurements in pure and contami-
nated systems for single bubbles and swarms, ranging from −10.8 < log10(Mo) < 2.3, which
was collected by different researchers. Using Equation (27) as f-function, they correlated:

E =
1[

1 + 0.4Eo1.19Re1.05
]0.07 ≈ 1

[1 + 0.45EoRe]0.08 (34)

In addition, they compared existing correlations with their data and showed than
none of them could predict the eccentricity very well in a wide range of conditions. This
result indicates that a comprehensive prediction of the bubble deformation is still difficult.
Though a large number of correlations have been proposed, none seems to be applicable
for all experimental conditions. There are different reasons for that. First, the dimension-
less numbers are on different scales. While Morton numbers are usually very small, the
Reynolds number is usually some order of magnitudes larger. Feature scaling should be
applied before fitting an f-function to avoid any scale effects. More importantly, all measure-
ments suffer from a systematic bias by contaminants. Measurements by Sanada et al. [5]
showed that even smallest amounts of organic substances, which cannot be avoided ex-
perimentally, have significant influence of the bubble rising behavior and its deformation.
Since the purity of the investigated systems is usually provided qualitatively, the bias of
contamination results in different measurement uncertainties. Finally, one has to bear in
mind that the approximation of a symmetric ellipsoid becomes rather inaccurate for larger
bubbles, particular in low Morton number systems and that shape oscillation is usually
neglected. Thus, the experimental data, in particular for larger bubbles, scatter significantly.
Even more difficult is the extrapolation of existing correlations to liquid metals. Iguchi
et al. [24] developed a multi-needle resistivity probe to reconstruct the shape of gas bubbles.
A cap or mushroom shape was found for approximately 25 mm bubbles in Wood’s metal.
A correlation was found between the averaged bubble Reynolds number (mean bubble size
and velocity as characteristic length and velocity, respectively) and the modified Weber
number (multiplied by the density ratio) [23]. However, the measurements were made just
above the injector, so that a strong influence of the initial deformation due to the tearing off
of the bubble can be assumed. There are very few studies investigating the deformation
of gas bubbles in liquid metals quantitatively [22,26,27,31]. These studies are all based on
X-ray measurements, which can be used to visualize the bubble. However, the deformation
is only explicitly stated by Richter et al. [31] and Keplinger et al. [27]. For the other studies,
the deformation must be roughly estimated from the published images. A comparison of
the presented correlation with the measured values in liquid steel and GaInSn is shown in
Figure 7. The bubble Reynolds number and Weber number were estimated for this purpose
with the drag coefficient according to Dijkhuizen et al. [89] (Equation (45)). The physical
properties employed for this estimate are listed in Table 4.

Table 4. Physical properties of the investigated liquid metals.

Fluid Density [kg/m3]
Viscosity
[Ns/m2]

Surface Tension
[N/m]

log10 (Mo)

GaInSn 6330 0.00234 0.585 −12.6

Steel 6900 0.00506 1.5 −12.6

Mercury 13,550 0.00155 0.487 −13.4

Silver 9510 0.00389 0.92 −12.5
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Figure 7. Bubble deformation in a steel melt (a) and GaInSn (b).

It can be seen that most correlations significantly overestimate the deformation. How-
ever, there is good agreement with the model of Wellek et al. [81]. This is surprising,
since this model is only valid for contaminated bubbles in aqueous systems. It is not clear
whether the lower deformation can be explained by the presence of contaminants or by the
significantly higher surface tension of the liquid metals. A general problem of the used
X-ray measurements is, however, that only the contour of the bubble is visible. Thus, it is
difficult to distinguish between ellipsoids and spherical cap bubbles [24]. In addition, the
high absorption of the liquid metals conditions that very narrow experimental setups have
to be used. It is therefore quite possible that the proximity to the wall has an influence on
the deformation. Numerically, the deformation of argon bubbles in steel was qualitatively
investigated by Xu et al. [90] and Wang et al. [91]. Both use the volume of fluid surface
tracking method. They reported that bubbles are spherical after injection but become
wobbly (db ≤ 7 mm) or ellipsoidal cap shaped (db > 7 mm), depending on their size and
their Eötvös and Reynolds numbers. However, when evaluating these results, it should be
noted that no turbulence model was used in both studies, but the mesh resolution used is
too coarse for a real DNS. Therefore, the models can be classified as implicit large eddy
turbulence model (LES) without a subgrid model, which underestimates the draining effect
of the small-scale eddies on the energy cascade. Therefore, it is likely that the resolved
turbulence is overestimated in both studies, which certainly has some influence on the
bubble shape.

5. Interfacial Force Closure

According to the second Newtonian axiom, the acceleration of bubbles and thus their
motion can be described by the sum of all forces acting on them. For bubbles, the buoyancy,
the drag, the lift, and the virtual mass force are decisive. Thus, the velocity of a bubble is
governed by:

∂ub
∂t

=
1

mb
∑i Fi= gVb(ρl − ρb) + FD + FL + FVM (35)

Subsequently, the different forces, shown in Figure 8, are discussed, and existing
correlations are critically analyzed with regard to their application to liquid metals.
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Figure 8. Forces on a bubble.

5.1. Drag Force

The drag force determines the bubble’s rising velocity and contributes the main part
of the momentum transfer from bubbles to liquid. It arises through a relative velocity
between the bubble and the continuous phase. It comprises two phenomena, a viscous
friction force and a force caused by a pressure gradient along the bubble surface in the
direction of movement. The local pressure gradient is the result of the bubble wake and is
therefore more pronounced in the case of high bubble Reynolds numbers. The drag force is
determined by:

FD =
1
2

cDρl
πd2

b
4

(ub − ul)
2 (36)

Equation (34) indicates, that the drag force is directly proportional to the dimensionless
drag coefficient cD, which depends on bubble properties and the flow conditions. The effect
of bubble deformation is usually lumped into cD as well. By dimensionless analysis, it can
be shown that the drag coefficient depend on the bubble Reynolds number, the Eötvös
number, and the Morton number [82].

Analytically, Levich (in [92]) derived inviscid flows, for which the influence of viscous
friction can be neglected:

cD =
48
Re

(37)

For creeping flows, for which the pressure contribution by the wake is negligible,
Hadamard (in [82]) derived:

cD =
16
Re

(38)

Mei and Klausner [93] proposed an analytical approximation for spherical bubbles at
arbitrary Reynolds numbers, which fits Equations (37) and (38) asymptotically.

cD =
16
Re

[
1+

(
8

Re
+

1
2

(
1 + 3.315Re−0.5

))−1
]

(39)

These analytical solutions are often used as benchmark for experimental or numerical
approximations of cD. However, they are not applicable for most industrial processes, since
the bubbles are usually deformed and the fluid system is contaminated to some extent,
which increase the real drag coefficient.

The second and most common approach to derive cD are experimental measurements.
Usually, the rise of single bubbles in stagnant (ul = 0), mostly aqueous liquids, is studied.
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After the bubble reaches its terminal rising velocity, the drag force is in equilibrium with
the buoyancy force. The drag coefficient is then given by:

cD =
4
3
(ρl − ρb)dbg

ρlu2
b

(40)

A large number of correlations based on this approach can be found in the literature.
These are listed for example by Clift et al. [82] or Pang and Wei [94]. Here, only some
correlations, which were found in close agreement with validation data in CFD studies,
are repeated.

By reviewing existing correlations, Tomiyama et al. [95] derived three correlations in
dependence on the degree of contamination of the system. For pure liquids, they derived:

cD= max
[

min
[

16
Re

(
1 + 0.15Re0.687

)
,

48
Re

]
,

8
3

Eo
Eo + 4

]
(41)

This correlation is often employed in numerical models. For example, Frank et al. [96]
showed that this correlation has the best accordance with experimental validation data.
Bröder and Sommerfeld [7] proved its validity by experimental measurements in (dilute)
bubble swarms.

An entirely different approach to correlate the drag coefficient was proposed by
Bozzano and Dente [79]. Because the bubble deformation and the wake structure are
correlated, they argued that the drag may be described by the bubble deformation, which
is usually implicitly considered:

cD= f
(

a
Req

)2
(42)

where f is a friction factor given by:

f =
48
Re

(
1 + 12Mo0.33

1 + 36Mo0.33

)
+0.9

Eo1.5

1.4
(

1 + 30Mo0.167
)
+ Eo1.5

(43)

The second term on the right hand side is a deformation factor given by:

DEF =

(
2a
deq

)2 ∼=
10

(
1 + 1.3Mo0.167

)
+3.1Eo

10
(

1 + 1.3Mo0.167
)
+Eo

(44)

However, experimental measurements have the disadvantage that it is very difficult
to control all boundary conditions exactly. In particular, contaminants have a significant
influence on the rising velocity as discussed in detail below.

A correlation for cD, based on a DNS, was proposed by Dijkhuizen et al. [89]:

cD =

√
cD(Re)2+cD(Eo)2 (45)

where cD(Re) is the analytical solution by Mei and Klausner (Equation (39)) and cD(Eo) is
given by:

cD(Eo) =
4Eo

Eo + 9.5
(46)

A comparison of the different drag correlations independent of the Eötvös number
and the bubble equivalent diameter is provided in Figure 9. The physical properties of
the liquid metals employed for this comparison are listed in Table 4. It can be seen that
Equation (45) predicts higher rising velocities and lower drag coefficients, respectively,
compared to Equations (41) and (42), indicating that the experimental correlations might
be influenced by contaminants.
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Those correlations show that the drag force at low Reynolds numbers is governed by
the Reynolds number, but at sufficiently high Reynolds numbers, it is determined by the
Eötvös number. Though some correlations explicitly include the Morton number [79,97],
most studies agree that the Reynolds, Eötvös, and Morton numbers depend on one another
when considering the drag force [95]. Thus, the system is fully described by the Reynolds
and Eötvös number. However, it should be noted that almost all measurements were
performed in aqueous systems where the density difference between fluid and bubble and
the surface tension can be varied only to a small extent. Due to measurement difficulties
in liquid metals, data from this fluid systems are very scarce. Usually, bubble chains
were investigated, which has the disadvantage that the assumption of a stagnant fluid
cannot be made. Thus, the bubble rising velocity is different from the relative velocity
and a drag coefficient cannot be derived. There are only a few exceptions such as the
measurements by Davenport [19], Mori et al. [98], Zhang et al. [99], and Wang et al. [32].
Davenport [19] performed measurements in mercury at room temperature and in liquid
silver at 1000 ◦C. Bubbles were generated by a rotating cup. This cup initially pointed
downwards, so that gas flowing in was collected in it. When the cup was turned, the
collected gas rose as a single bubble. The rising velocity was derived by dividing the rising
path by the time between bubble release and bubble’s breaking through the bath surface.
Mori et al. [98] measured the rising velocity by electric conductivity probes. Zhang et al. [99]
and Wang et al. [32] both employed ultrasonic doppler velocimetry. A comparison between
the different drag correlations described above and the measurements is provided in
Figure 9. For mercury (Figure 9a), the measured rising velocities of small bubbles are
slightly lower than predicted, but generally agree very well with the correlations. For
larger bubbles, the experimental values lie between the predicted values by Tomiyama
et al. [95] (Equation (41)) and Bozzano and Dente [79] (Equation (42)) and the numerical
correlation by Dijkhuizen et al. [89] (Equation (45)). A possible explanation might be a
slight contamination of the used mercury or the measurement uncertainty. Unfortunately,
information about the purity of the mercury is neither provided by Davenport [19] nor
by Mori et al. [98]. For intermediate Eötvös numbers, the measurements are in better
accordance with the experimentally derived correlations, while for higher Eötvös numbers,
they fit the numerically derived correlation better.

For liquid silver (Figure 9b), two measurement methods were used by Davenport [19],
depending on whether the bubble’s acceleration phase was taken into account or not. With
the latter method (marked with an x), about 15% higher rising velocities were derived. This
leads to an excellent agreement with the Dijkhuizen et al. [89] (Equation (45)) correlation.
Again, no remark on the purity of the liquid silver was given. In GaInSn (Figure 9c), where
measurements were made at relatively small Eötvös numbers, both authors found slightly
lower rising velocities than predicted for pure systems. This could be an indication that
contaminants influence the rising velocities.
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Figure 9. Comparison of drag models with measured bubble rising velocities in mercury (a), silver (b), and GaInSn
(c) [19,32,98,99].

In addition, the bubble rising velocity of single bubbles in liquid steel was investi-
gated numerically [90,91]. A comparison of the results with the correlations is shown in
Figure 10. As with the experimental measurements, there is fairly good agreement with the
correlations. However, no distinct tendency to which correlation fits better can be derived.
As with the bubble deformation, however, it should be noted that the resolution of the
numerical grid used was too coarse for a real DNS.
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Figure 10. Comparison of drag models with numerically computed bubble rising velocities in
steel [90,91].

Nevertheless, the comparison can be seen as an indication that the correlations derived
from aqueous systems can be extrapolated to liquid metals. For small Eötvös numbers,
there is a small uncertainty due to the influence of contaminants. For larger Eötvös numbers,
the correlations are based on relatively few data, so there may be another uncertainty due
to extrapolation of the correlations. For a final conclusion regarding which correlation
should be used for molten metals, no conclusion can be drawn by now since the verification
dataset is too small and its measurement uncertainty is too high. The same applies for the
influence of contaminants in liquid metals.

5.1.1. Influence of Contaminants

Contaminants cause a reduction of the drag force due to the Marangoni effect or by a
demobilization of the phase boundary. Because the viscosity of the fluid in the bubble is
typically much smaller than that of the surrounding fluid, the boundary condition at the
uncontaminated bubbles is typically a zero-shear-stress condition (Figure 11a). However,
in contaminated systems, contaminants attached at the front of the bubble slide along the
surface and accumulate at the bubble’s rear (Figure 11b). This leads to gradients in surface
tension along the bubble surface, causing a tangential shear force [100]. At sufficiently
high contamination, complete demobilization of the bubble’s surface occurs, and its flow
condition changes from a no-shear to a no-slip condition (Figure 11c). This causes the
bubbles to behave approximately like rigid particles.
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Figure 11. Schematic overview of the effect of contaminants at (a) pure, (b) slightly contaminated, and (c) fully contaminated
systems (Γ* = dimensionless contaminant concentration).

Although this effect has been known for a long time, it is still not fully understood
and can only be roughly quantified. A frequently employed approximation was derived by
Tomiyama et al. [95]. Amongst a correlation for pure systems (Equation (41)), they derived
correlations for slightly contaminated (Equation (47)) and fully contaminated (e.g., tap
water) (Equation (48)) systems.

cD= max
[

min
[

24
Re

(
1 + 0.15Re0.687

)
,

72
Re

]
,

8
3

Eo
Eo + 4

]
(47)

cD= max
[

24
Re

(
1 + 0.15Re0.687

)
,

8
3

Eo
Eo + 4

]
(48)

The different rising velocities derived from the three correlations are shown in Figure 12.
It can be seen that, according to Tomiyama et al. [95], the contamination is only relevant for
small bubbles.

Figure 12. Bubble rising velocity of air in water in dependency of the degree of contamination of
the fluid.
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However, a comparison with the correlation by Dijkhuizen et al. [89] (Equation (45))
suggest that the measurement for all three correlations are influenced by contaminants and
that the rising velocity of larger bubbles is influenced as well. Indeed, the correlation for
pure systems was derived from measurements in distilled water, which is far from being
pure. Therefore, the question of whether contamination is important for all bubble sizes
cannot yet be answered. Some authors argue that for large Eötvös and Weber numbers,
surface tension no longer plays a role for cD and thus contaminants also no longer have an
influence on the rising velocity. However, contaminants not only affect the flow boundary
condition at the bubble surface, but also the deformation and vortex shedding. Therefore,
Tasoglu et al. [101] found that contaminants are relevant for a broad range of Eötvös
numbers, but the effect is much more pronounced for smaller bubbles. A problem here is
that DNS studies usually investigate very small Reynolds number flows and large Morton
numbers, since the computational costs increases with Re9/4. Experimental studies, on
the other hand, face the problem that it is practically impossible to generate completely
uncontaminated systems. Therefore, sound studies on the effect of contaminates for
large bubbles at relevant Reynolds numbers are largely lacking. A further critique of the
Tomiyama et al. [95] approach is that for most engineering applications, there is no a priori
definition of the degree of contamination of the system.

There are numerous attempts to quantify the range of intermediate contamination
more precisely. The results are summarized by the reviews of Cuenot et al. [102] and Takagi
and Matsumoto [100]. For low contaminant concentrations, Zhang and Finch [103] showed
that bubbles may rise a few meters until they reach their terminal velocity. In that case, the
effect is governed by the Hatta number, Ha, which is the ratio of adsorption velocity to the
bubble rising velocity:

Ha =
kc∞db

|ud − ul| (49)

Furthermore, the strength of the effect not only depends on the concentration of the
contaminants, but also on the type of contaminants [104]. Thus, it was suggested that the
effect should be quantified by the Langmuir number, La, which is defined as the ratio
between the adsorption and desorption rate:

La =
c∞

β
(50)

The drag coefficient as a function of the Langmuir number is shown in Figure 13. It
can be seen that the Langmuir number not only influences the viscous share of the drag
force, but also the pressure share. It should be noted though that the results shown in
Figure 13 were derived for low Re numbers. Thus, it is not clear whether the dependency
of the pressure share on the Langmuir number can be extrapolated to higher Re numbers
where the flow is mainly governed by inertia effects.

However, the relationships described above are still the subject of molecular dynamics
research. They can hardly be used in engineering science, since information on concentra-
tions and absorption and desorption kinetics is generally not available. This is particularly
true for liquid metal systems. Therefore, it is not possible to determine whether contami-
nants, for example alloying elements, trace elements, or non-metallic inclusions, have an
influence on bubble behavior in metallurgical processes.
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Figure 13. Drag coefficient as a function of the Langmuir number (adapted from [105] with permission
from AIP publishing, 2021).

5.1.2. Influence of Surrounding Bubbles

The studies and correlations presented so far all dealt with single bubbles in stagnant
liquids. However, some authors, summarized by Simonnet et al. [106], showed that
these correlations are no longer valid when the bubble is surrounded by other bubbles.
A similar effect for the sedimentation of solid particles was found by Richardson and
Zaki [107]. In particular, they found a correlation between the sedimentation velocity of
single particles, the sedimentation velocity of particles in suspensions, and the suspension
density (equivalent to the void fraction in bubbly flows):

urel, swarm = urel, single

(
1 − αglob

)n
(51)

where the exponent n was coined Richardson and Zaki exponent by Simonnet et al. [106].
Because the particle velocity and the drag force are correlated, the effect of particle swarms
on the drag force can be taken into account by multiplying a correction factor to the drag
coefficient of single particles:

cD,swarm = cD,single·f(α, . . .) (52)

Most early studies on bubble swarms used Equation (52) and fitted the Richardson
and Zaki exponent to their experimental data [106]. However, in bubble swarms, the
situation is more complex since the possible degree of freedom for bubbles is greater than
those of solid particles. Thus, Lockett and Kirkpatrick [108] added an additional factor that
takes into account bubble deformation.

These correlations used a global void fraction. However, Garnier et al. [109] argued
that the change of drag is caused by local, not global, phenomena. Experimentally, the local
void fraction was determined by the quotient of time in which a bubble was detected in
the measurement probe and the total measurement time [110].

A correlation based on the local void fraction was established by Simonnet et al. [106]:

f(α) = (1 − αloc)

[
(1 − αloc)

m +

(
4.8

αloc
1 − αloc

)m]− 2
m

(53)
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where m is a smoothing parameter, estimated with a value of 25 by experimental data.
Simonnet et al. [106] observed that the increase of the drag coefficient with increasing
void fraction, which was reported by all previous studies, is only valid for small bubbles
(db ≤ 7 mm). For larger bubbles, the drag increases up to a critical void fraction of approxi-
mately 15% and decreases afterwards. Thus, Equation (53) is only valid for an air–water
system, where bubble diameters are between 5 and 10 mm, with the restriction that for void
fractions above 15%, the bubble diameter has to be larger than 7 mm. Simonnet et al. [106]
assumed that the increase is caused by a hindrance effect by surrounding bubbles while the
decrease might be explained by the aspiration in the bubble wakes of preceding bubbles.

Roghair et al. [111] investigated the effect of surrounding gas bubbles on the drag
coefficient by DNS. In contrast to previous studies, they found a linear relationship with
the void fraction as well as a dependence on the Eötvös number:

f(α) = (1 − αloc)

(
1+

(
18
Eo

)
α

)
(54)

Equation (54) was established for 1 ≤ Eo ≤ 5 and local void fractions up to 45%.
However, due to the larger bubble size and density gradients, the Eötvös range is much
larger in molten metals.

The reasons for the differences in the derived functional relationship can only be
speculated. For example, Roghair et al. [111] suggested the influence of contaminants in
experimental measurements as a possible explanation. In addition, an accurate comparison
is difficult because some researchers used the global void fraction, while others used the
local void fraction, and there is no direct connection between the two.

A fundamental problem is that, with the exception of the numerical study by
Roghair et al. [111], the effect has only been studied for water–air systems. Roghair
et al. [111] observed that the Morton number does not seem to have any effect. It should be
noted, though, that in their study, it was only slightly varied.

Using numerical methods, different results were found. While Grienberger and
Hofmann [112] did not find any significant improvement by including the swarm effect,
Simonnet et al. [113] found that the transition between homogeneous and heterogeneous
regimes was significantly better reproduced when the swarm effect was included with
Equation (53). Lau et al. [114] found a significantly improved agreement between validation
experiments and numerical results regarding fluid velocity and turbulence quantities when
the swarm effect was taken into account by Equation (54). However, one difficulty is the
determination of the local void fraction when using the Lagrangian particle tracking model.
In the study of Simonnet et al. [113], it was assumed that bubbles are small compared to the
numerical grid. Therefore, the local void fraction could be estimated as the concentration
of bubbles in each cell. However, the grid spacing Δx was 10 mm while the bubble size
db was 8.5 mm. Thus, this assumption seems to be oversimplified. Lau et al. [114] used a
mapping technique to determine the local void fraction. However, within this approach,
the result were dependent on the size of the mapping window, n. For sizes n > db, however,
this effect became negligible.

5.2. Lift Force

In bubble column reactors, a lateral spreading of the bubble column can be observed.
This behavior cannot be explained by the drag force alone. Instead, this phenomenon is
attributed to the lift force, causing a lateral motion of the bubbles. Though other formula-
tions for the lift force exists, the most frequently used form nowadays is the shear-induced
lift model proposed by Zun [115]:

FL= cL
πd3

b
6

ρl(ub − ul) × (∇× ul) (55)
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where cL is the lift coefficient. The first analytical solution for the lift coefficient was
derived by Saffman [116] for rotating, solid spheres in creeping flows (Re→0) and infinite
shear rates, which could later be extended numerically by McLaughlin [117] to arbitrary
shear rates:

cL =
1.37J(Re, Sr)√

Re·Sr
(56)

where J is a function of the bubble Reynolds number and the dimensionless shear rate Sr:

J(Re, Sr) =
2.255(

1 + 0.2 Re
Sr

)3/2 for Re << 1 (57)

Sr =
ωdb

|ub − ul| (58)

Legendre and Magnaudet [118] showed, based on a first attempt by Mei and Klaus-
ner [119], that the lift coefficient for uncontaminated, spherical bubbles is 4/9 of those for
solid spheres:

cL =
6J(Re, Sr)
π2

√
Re·Sr

(59)

For inviscid flows (Re→∞), Auton [120] showed analytically that the lift coefficient
for spherical particles or bubbles is 0.5.

The first correlation for arbitrary Reynolds numbers, approaching both solutions
asymptotically, was numerically derived by Legendre and Magnaudet [121]:

cL =

√(
6J(Re, Sr)
π2

√
Re·Sr

)2
+

(
1Re + 16
2Re + 29

)2
for Sr << 1 (60)

As shown in Figure 14, the correlation predicts that the lift coefficient is determined by
the dimensionless shear rate for low Reynolds numbers and approaches 0.5. Furthermore,
the correlation predicts an independence of the shear rate for intermediate and high
Reynolds numbers. In addition, all lift coefficients are positive.

Figure 14. Lift coefficient of a spherical bubble in dependence of the dimensionless shear rate (Sr)
and the Reynolds number (Re) according to the model of Legendre and Magnaudet [121].
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However, Legendre and Magnaudet [121] already pointed out that real conditions,
that is to say ellipsoid bubbles with inner circulation in turbulent flows with arbitrary shear
rates, are far more complex. Indeed, the theoretical model was not able to describe all
phenomena observed in experiments. Experimentally, lift coefficients between 0.25 and 0.3
have been found for small bubbles in air–water systems [115,122], which is about half the
value proposed by Equation (60). More importantly, Zun [115] reported that in a pipe flow,
larger bubbles move towards the pipe center while smaller bubbles migrate to the walls.
This indicates a change of sign of the lift coefficient, which depends on the bubble diameter.
For air–water systems, Liu [123] could determine the change of sign for equivalent bubble
diameters of about 5 mm in a pipe. Naciri (in [124], original in French) analytically showed
that this effect is not solely caused by bubble deformation. Instead, the reason for the sign
change is that the lift force, similar to the drag force, composes two different effects. By
reviewing existing experimental data, Serizawa und Kataoka [125] came to the conclusion
that the lateral motion is caused by unsteady asymmetries in the bubble wake and a
shear flow around the bubble. This theory was later confirmed in a simplified numerical
simulation by Tomiyama et al. [126] and experimentally by Brücker [127]. Hibiki and
Ishii [124] speculated that the bubble orientation in the shear flow, the wake structure
modification, and the bubble shape may cause the sign change. This was proved by
Adoua et al. [128], who refined the theory by numerically showing that the change of
sign is caused by the generation of counter rotating streamwise vorticity at the bubble
surface and its complex interaction with the shear flow. Experimental evidence for that was
provided by Aoyama et al. [129], which found that the sign change and the onset of path
instabilities, which is also linked to the generation of vorticities, follow similar patterns.

However, in mathematical models of industrial scale, the flow field in the close vicinity
of the bubble practically cannot be resolved. Instead, semi-empirical models are used for
the macroscopic description of the bubble behavior. Therefore, the cause of the lift force
plays only a minor role outside of fundamental research. Tomiyama et al. [85] suggested
that the superimposed effect of shear and wake have similar mathematical forms and can
be jointly incorporated into the lift coefficient cL so that Equation (55), which was originally
derived for shear-induced lift forced only, can be employed to describe both effects.

A systematic experimental investigation on cL was carried out in Tomiyama’s much-
acclaimed work [85]. A rotating belt was used to induce a laminar shear flow in dis-
tilled water–glycerol mixtures of different viscosities. In this shear flow, the rise of bub-
bles with different diameters was analyzed in the ranges of −5.5 ≤ log10(Mo) ≤ −2.8,
1.39 ≤ Eo ≤ 5.75, and 0 ≤ ω ≤ 8.3 s−1. Measurement in systems with lower viscosity were
not feasible, because the rotating belt requires a sufficient viscosity to induce a linear shear
flow. The measurements yield the following empirical correlation:

cL =

{
min [0.288tanh (0.121Re; f(Eod)] Eod ≤ 4
0.00105Eo3

d − 0.0159Eo2
d − 0.0204Eod + 0.474 4 < Eod ≤ 10.7

(61)

where Eod is the modified Eötvös number, using the major axis of deformed bubbles as
characteristic length:

Eod =
g(ρl − ρb)d

2
max

σ
(62)

Later, Frank et al. [96] added:

cL = −0.27 Eod > 10 (63)

to ensure that the lift coefficient cL is a monotonic function of the modified Eötvös number.
However, it is questionable whether it is physically justified to extrapolate the correla-
tion for very large bubbles, because the bubble size has a significant influence on the
wake structure.
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In the experiments, a Reynolds number dependency of the lift coefficient could only
be found for very small bubbles. For larger bubbles, a dependence on the modified
Eötvös number was found, but the shear rate had practically no influence on the lift co-
efficient. It should be noted that log10(Mo) for water at room temperature is about −10.6.
Nonetheless, though the study was conducted for higher viscous systems
(−5.5 ≤ log10(Mo) ≤ −2.8), a very good agreement with the experimental measurements in
air–water systems [115,122,123] and Equation (61) was found. Because of that, the authors
concluded that their correlation can be extrapolated to air–water systems.

The correlation of Tomiyama et al. [85] has become popular. It has been used in many
industrial scales in CFD models [130] to date and is the most widespread lift coefficient
model nowadays. However, it should be kept in mind that it is purely empirical and was
derived in a limited range of fluid properties. Extrapolation from this range can be error
prone. For example, numerical investigations by Bothe et al. [131] found slightly lower cL
values and a limit of 0.5 for small Eötvös numbers. For a range of −10.8 < log10(Mo) < −1.8,
0 < Eod < 20, 0 < Eo < 12, 0 < Re < 1500, Dijkhuizen et al. [132] found, via numerical
simulation, that Equation (61) is only applicable in the range that the measurements actually
took place. They showed that for systems of higher viscosity or for very small Reynolds
numbers (Re < 10 and E < 0.95), the predicted values can vary quite significantly from the
simulated ones. For the latter case of small Reynolds numbers, Dijkhuizen et al. [132] found
good agreement with the correlation of Legende and Magnaudet [121] (Equation (60))
rather than the plateau proposed by Tomiyama et al. [85]. On the other hand, they found
that Equation (60) overestimates cL significantly in case the bubble shape deviates from a
sphere. Based on their results, Dijkhuizen et al. [132] proposed:

cL= min(

√(
6J(Re, Sr)
π2

√
Re·Sr

)2
+

(
1Re + 16
2Re + 29

)2
, 0.5 − 0.11Eod + 0.002Eo2

d) (64)

Experimentally, the measurement range was expanded (1.9 × 10−2 < Re < 1.2 × 102,
−6.6 ≤ log10(Mo) ≤−3.2, 2.2 × 10−2 < Eo < 5.0, 3.4 × 10−2 < Sr < 3.5) by Aoyama et al. [129]
using a similar rotating belt system as Tomiyama et al. [85]. Similar to Dijkhuizen et al. [132],
it was found that Equation (61) is only applicable in a limited range. Moreover, it was
found that none of the tested dimensionless numbers (Re, Eo, We, Eod, Ca) alone can be
used to correlate an accurate equation for the lift coefficient. The most promising attempts
in this direction were made with the Reynolds and modified Eötvös numbers, though for
both approaches, the Morton number has to be taken into account, too.

The first systematic measurements for air–water systems was achieved by
Ziegenhein et al. [133] in a different experimental setup. Instead of inducing the linear
shear by a rotating belt, which limits the measurement range to highly viscous systems,
the shear was generated by a bubble column. An additional advantage of this system is
that no moving parts are used, which allows a better control of the contamination level of
the system. On the other hand, the bubbles introduce some turbulence [134] that makes
the evaluation more challenging. Their measurements showed that the modified Eötvös
number is a better choice than the Reynolds number for correlating cL for a broader range of
Morton numbers. In addition, it was found that the instantaneous lift force can vary quite
significantly in water systems. Combining their results with those of Aoyama et al. [129]
suggests that there is always a sign change and a linear behavior of cL around the sign
change, as shown in Figure 15. However, the modified Eötvös number at which the sign
change occurs as well as the slope of the linearity around the sign change depend on
the Morton number. The sign change occurs at smaller modified Eötvös numbers with a
decreasing Morton number. However, this trend reverses at a Morton number not exactly
known yet. In addition, it was found that cL asymptotically approaches an upper and a
lower limit for high and low modified Eötvös numbers, respectively. These limits again
seem to depend on the Morton number, too.
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Figure 15. Experimental lift coefficients as a function of the modified Eötvös number (adapted
from [133], with permission from Elsevier, 2021).

In the study by Ziegenhein et al. [133] on an air–water system, an asymptotical behav-
ior was found for smaller modified Eötvös numbers than predicted by Tomiyama et al. [85].
Moreover, a higher asymptotic limit was found. For the lower limit, it can be assumed that
cL is increasing in case of very small Re numbers. However, these small Reynolds numbers
could not be produced in an air–water system. For the investigated air–water system,
Ziegenhein et al. [133] correlated, via second-order polynomial regression, their results:

cL = 0.5 − 0.1Eod + 0.002Eo2
d, 1.2 < Eod < 10.5 (65)

which is quite close to Equation (64).
The range of the most important studies is given in Figure 16. There is a clear gap

of experimental studies in the range of −10.5 < log10(Mo) < −6.6 and −10.5 > log10(Mo),
which should be complemented to make correlations more applicable to a wider range. For
Morton numbers corresponding to the range of liquid metals, studies are missing.

Figure 16. Important studies on the lift coefficient and their measurements range.
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The correlations for deformed bubbles described so far were purely empirical. To
compensate for this disadvantage, Hibiki and Ishii [124] used the experimental data from
Tomiyama et al. [85] to extend the correlation of Legendre and Magnaudet [121] by an
additional amplitude factor. The aim of this ambitious attempt was to couple the change
of the lift coefficient with the different ranges of the drag coefficient, thus giving the lift
coefficient a more physical background:

cL =
(

2 − exp(0.136Eo1.11)
)√(

6J(Re, Sr)
π2

√
Re·Sr

)2
+

(
1Re + 16
2Re + 29

)2
(66)

However, Dijkhuizen et al. [132] showed that Equation (66) is unable to predict cL
accurately for a wider range of physical properties.

Influence of Contamination

The influence of contaminants and solid particles on the lift force has not been in-
cluded to the discussion of the lift coefficient in the previous paragraph. However, it
is known that their impact can be quite significant. In the above-discussed studies, the
authors used purified water to minimize this effect. However, the pureness of this liquids
varied and contamination sources, like moving parts in the rotating belt setup used by
Tomiyama et al. [85], Dijkhuizen et al. [132], and Aoyama et al. [129], cause some level
of uncertainty. As described in the subsequent section, this uncertainty complicates the
comparability of the experimental studies, but may also explain some discrepancy of
their results.

Ogasawara [135] experimentally observed that the tendency of small bubbles to cluster
in the vicinity of the wall was reduced in case surfactants were added. Dijkhuizen et al. [132]
used the rotating belt setup with tab water–glycerin mixtures to validate their numerical
results. Here, they measured significantly lower lift coefficients for larger bubbles, but
larger lift coefficients for smaller bubbles than predicted by the numerical results. In
addition, they observed a shear flow dependency, which was not found numerically for
pure liquids.

Influencing mechanisms of contaminations on the lift were also studied via numerical
simulation. Fukuta et al. [105] found that the lift coefficient for a contaminated spherical
bubble (Re = 100, Sr = 0.2) is significantly reduced and can become negative. To quantify
the surfactant effects, they used the Langmuir number. As shown in Figure 17, it was found
that in pure liquids, the total lift force (cL) on small bubbles is mainly driven by pressure
components (cLP), while increasing surfactant levels decrease its impact until it disappears
entirely, so that the small negative lift force is due to viscous stress (cLV). Overall, the effect
of surfactants was attributed to the Marangoni effect.

Hayashi and Tomiyama [136] expanded the range to larger bubbles, larger Langmuir
numbers, and larger Hatta numbers (2 < Re < 70, 0.6 < Eo < 5, −6 < log10(Mo) < −4,
0 < Sr < 1, 1.38 ≤ La ≤ 13.8, 0 < Ha < 41). Similarly, they found that the lift coefficient
decreases with increasing Langmuir number. The main effect, however, depends on
the Hatta number. In case of large Hatta numbers, which means that the absorption of
contaminants is much faster than the bubble rising, the decrease of the lift coefficient is
attributed to a decrease of the effective surface tension by:

σ(Γ)= σ0

[
1+

RgTΓmax

σ0
ln(1− Γ

Γmax
)

]
(67)
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Figure 17. Effect of the Langmuir number on the lift coefficient (cL) and its pressure (cLP) and
viscosity (cVL) components (adapted from [105] with permission from AIP publishing, 2021).

In that case, the Marangoni effect is negligible. The lift coefficient can be correlated
with the modified Eötvös number, employing the effective surface tension. In case of
smaller Hatta numbers, the Marangoni effect gains importance. They also found an effect
of the shear rate, which they attributed to a slight flow induced inclination of the bubble
for contaminated bubbles.

Rastello et al. [137] investigated the impact on hydrophobic tracer particles, that attach
to the bubble, on the lift coefficient in a rotating flow in a cylinder (D = 100mm). They
observed that clean bubbles have an unseparated wake while the wake of contaminated
bubbles separates. In addition, the tracer induces a surface spinning, which results in a
Magnus effect. In fact, fully contaminated bubbles rotated like solid particles. Thus, cL
increases due to this additional contribution of the Magnus effect, which itself depends
on the shear rate. In contrast, Hessenkemper et al. [138] found no influence of tracer
particles in a linear shear flow. Until further research has been conducted, one can only
speculate about this discrepancy. Reasons can either be that the dimensionless shear rates
investigated by Rastello were quite high (Sr > 0.2), the flow was rotating, the number
of tracers attached to the bubble in the experiment by Hessenkemper et al. [138] were
too small, or the tracer sizes were different and therefore the surface tension interaction
of the particles with the bubbles was significantly different. Hessenkemper et al. [138]
investigates the influence of inorganic surfactants. In contrast to organic surfactance, it was
found that they increase the lift coefficient.

These studies reveal that the impact of surfactants and solid particles is far from
being understood. It is likely that the different effects superimpose on each other, which
complicates analysis further. In addition, the number of studies and their range is too
limited to derive a comprehensive theory or a quantification of the effects to a wider range
of physical conditions. Furthermore, there is currently no link between the described
phenomena and measurable variables, so that a quantitative estimation of some of the
mentioned influences in experimental measurements would be possible. On the other
hand, the influence of contaminations might explain the good agreement with macroscale
CFD models employing the Tomiyama correlation (Equation (61)) and measurements in
water models. Because usually these models are filled with tab water and sometimes tracer
particles are added, it might be that the extrapolation error is coincidentally mitigated by the
contamination effect. This would also explain the discrepancy between early measurements
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of the lift coefficient in tap water [115,122] and more recent measurement in deionized
water [133].

Unfortunately, measurements in liquid metals are lacking entirely. Because there is
no comprehensive understanding of the lift force in pure liquids yet, the extrapolation of
existing correlations to very low Morton number systems, like liquid metals, suffers from
a very high degree of uncertainty. The study by Aoyama et al. [129] suggests that both
the asymptotic limits of the lift coefficient for large and small bubbles, as well as the sign
change and the slope around it, depend on the Morton number. In liquid metals, the Eötvös
number is usually significantly larger than in the systems investigated. Therefore, existing
correlations would predict negative lift coefficients even for small, approximately spherical
bubbles. However, this contradicts its physical justification and is therefore very unlikely.
For larger, presumably ellipsoidal bubbles, large negative values for cL would be predicted,
which is likely to lead to unphysical behavior and stability problems in numerical models.
Therefore, in particular, the negative asymptotical limit of cL for large bubble in liquid
metals is of great interest. The discussion is further complicated by the large uncertainty
of the prediction of the bubble’s deformation analyzed above, which is necessary for the
calculation of the modified Eötvös number.

Another problem arises from the high surface tension of liquid metals. All experimen-
tal studies were made in systems with very low surface tension. The only evidence that
the surface tension effect is entirely captured in the Morton number and modified Eötvös
number was provided numerically by Bothe et al. [131], varying the surface tension from
0.1 to 0.8 N/m for pure liquids. However, in their study, systems with a significantly larger
Morton number were investigated. Whether this relationship applies for higher surface
tensions or if it can be reproduced experimentally cannot be predicted with the current
knowledge. Even more difficult is the impact of surfactants and solid particles. It can
be assumed that alloying elements and non-metallic inclusions affect the lift coefficient.
However, it is likely that the strength of these effects is different from those observed in
aqueous solutions because of the much higher surface tension. Finally, the lift coefficient
may even change on the rising path of the bubbles due to the adherence of inclusions.
Therefore, it is currently not possible to make reliable estimates about the lift force in
metallurgical processes.

5.3. Virtual Mass Force

When a bubble rises through a liquid, some of the surrounding liquid is carried by the
bubble. The virtual mass force is the force arising from the acceleration of the surrounding
fluid. Since it virtually increases the mass of the bubble, it is called virtual mass force. It is
given by [92]:

FVM = cVMρlVb

(
dul
dt

− dub
dt

)
(68)

The virtual mass force limits the bubble acceleration. Thus, it is important to stabilize
numerical calculations [139]. Like the drag force and the lift force, the virtual mass force is
proportional to a coefficient cVM, by which all influences on the force are represented. If
cVM is too small, the bubble acceleration may become too large, which can cause numerical
instability depending on the solution process and settings. If cVM is too large, the accel-
eration phase becomes unphysically long and smaller oscillations in the bubble’s rising
path may be suppressed. For a spherical bubble in stagnant liquids, an analytical value
of cVM = 0.5 was derived [140]. This value is also used in almost all numerical studies.
There are only a small number of quantitative studies on the exact value of cVM in real flow
conditions. These suggest that the value of cVM also depends on the void fraction [141,142]
and the bubble deformation ([143] found in [144]). However, if acceleration effects are not
significant in the flow, then the virtual mass force is not important for the flow either. This
applies, for example, to bubble reactors [142]. Therefore, the exact knowledge of cVM plays
a minor role in this type of flow.
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6. Discussion

Despite numerous studies and many years of research, the dynamics of gas bubbles
are not yet fully understood. This applies in particular to liquid metals, where even experi-
ments to verify existing correlations are difficult, if possible at all, and place the highest
demands on measurement techniques. In this review, the transferability of correlations
from more accessible systems to liquid metals was analyzed. In this concluding discus-
sion, the results are briefly summarized and approaches to resolve existing uncertainties
are proposed.

The same formation regimes as in water models had been observed on single nozzles
in liquid metals. However, the mechanisms differ with respect to wettability of the nozzle.
For higher, more industrially relevant flow rates, this effect seems to decrease in relevance.
Instead, the bubble size distribution is mainly determined by coalescence and especially
breakup. The bubble formation mechanism is different at purging plugs than at single
nozzles and presumably other bubble size distributions are generated. However, coales-
cence, rather than breakup, has a decisive role here. Extrapolating observations made in
aqueous systems, it can be assumed that the bubble column in most processes is in the
heterogeneous regime and the bubble size distribution follows a log-normal distribution.
However, a verification of this assumption in liquid metals is difficult because relatively
large experimental setups are needed, which exceed the limits of most available measure-
ment techniques today. The only exception so far are resistivity probes, which are intrusive
and consequently introduce a bias into the measurements. Therefore, the real bubble size
distribution in industrial plants can only be predicted with considerable uncertainty, as
the example of a ladle shows. For specific applications, such as the ladle, resistivity probe
measurements in the real process can provide a reasonable estimate of the bubble size
distribution. However, these measurements will be associated with difficulties such as the
measurement bias and the short lifetime of the sensors at high temperatures [21]. More
importantly, the bubble size distribution depends on local flow conditions and the type of
gas injection, so that results of such measurements can hardly be generalized. Therefore, to
predict the bubble size distribution in different processes, it is essential to develop a more
detailed understanding of the coalescence and breakup mechanisms. This will be a major
experimental challenge even in aqueous systems, since the instantaneous flow field and
the behavior of bubbles have to be measured simultaneously in three dimensions. In liquid
metals, this is currently not possible, although there is a first approach to simultaneously
measure the flow and bubbles in two dimensions [29]. Studies in liquid metals like those
by Keplinger et al. [22,75] can be used to critically discuss the scalability of mechanisms in-
vestigated in aqueous models, even though the physical restrictions of imaging techniques
in liquid metals allow for a significantly lower degree of detail. Due to the difficulty of
the experiments, DNS could be a useful alternative to develop fundamental knowledge of
coalescence and breakup mechanisms. Nevertheless, this requires further development
of phase boundary modeling, and these calculations will be highly computationally ex-
pensive. Once the coalescence and breakup mechanisms are sufficiently understood, these
fundamental insights can be transferred to the reactor scale using PBMs. Since the first ex-
periments in liquid metals suggest that turbulence effects are inherently important, at least
an LES approach should be chosen. For a precise validation of such PBMs, however, exact
experimental benchmark cases are necessary. For these benchmark cases it is important
that all boundary conditions are reported in detail and the measurement uncertainty can
be quantified [14].

A comparison of different bubble deformation models and experimental measure-
ments in liquid metals revealed that these models, derived for aqueous systems, signifi-
cantly overestimate the deformation. The best agreement was found with the model of
Wellek et al. [81] for contaminated systems. This result can be interpreted in different
ways. First, the less pronounced deformation could indicate that the examined liquid metal
systems were contaminated, since, for example, they were partially oxidized. Another
explanation is that the deformation has a dependence on the fluid properties that is not yet
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fully understood. Indeed, there are few measurements on systems with Morton numbers
smaller than water, which approximately correspond to the values of liquid metals. A
final assessment of which explanation applies cannot be made due to the small number
of experimental studies. Experiments with high-purity metals in an inert gas atmosphere
could provide new insights here.

Besides the influence of contaminants, other factors can introduce an uncertainty to
the measurement of bubble deformation. These can partly explain the distinct differences
of existing models and should be taken into account in the design and evaluation of future
measurements of bubble deformation in liquid metals. Especially in shallow experimental
setups, there may be an influence of the injector. When the bubble is released from the
injector, a strong deformation occurs, which is subsequently damped. If the measuring
point is too close to the injector, the results may be biased. This can be a particular problem
for measurements in liquid metals, where the measurement volumes are often quite small.
Therefore, a sufficient filling height must be ensured and an influence of the injector
should be examined, for example by using different injectors. Other problems arise from
the physical restrictions of imaging techniques such as X-ray or neutron radiography
measurements. An influence of the walls on the deformation may arise due to the small
thickness of the measurement volume. Furthermore, this limits the measurements to
relatively small bubbles, so extrapolation of deformation models to larger bubbles will
remain a problem. Finally, it should be considered that a measurement uncertainty arises
from the reconstruction of the three-dimensional bubble shape by a single two-dimensional
projection [13]. On the other hand, the alternative usage of multi-needle resistivity probes
has the drawback of being intrusive.

Even though the number of experimental measurements is too small for a conclusive
assessment, the drag force seems to be predictable employing existing correlations. The
frequently used correlation according to Tomiyama et al. [95] generally provides reasonable
accordance with measurements in liquid metals. For smaller bubbles, there is some uncer-
tainty due to the influence of contaminants. [19] Additionally, the influence of surrounding
bubbles in a bubble swarm on the drag coefficient in liquid metals cannot be quantified yet.
Nevertheless, employing existing measurement methods, it should be possible to further
refine the knowledge of the drag force in liquid metals. For this purpose, bubble swarms as
well as single bubbles of different size should be examined. One challenge is the generation
of single large bubbles, which is difficult to control by nozzles. For this purpose, a rotating
cup as proposed by Davenport [19] might be used.

For the lift force there is no comprehensive understanding even for aqueous systems.
For liquid metals, experimental data are lacking entirely. From a numerical point of
view, it seems reasonable to define an asymptotic limit for negative values similar to
Frank et al. [96], to prevent numerical instability. However, these values are currently
highly uncertain for liquid metal systems and there is probably a dependency of the lift
force on the Morton number, which is not yet quantifiable. Experimentally, it will be very
difficult to determine the lift coefficient for liquid metals since an exactly defined shear
flow must be generated, which is difficult to control in liquid metal systems. A possible
solution might be a bubble column induced shear flow proposed by Ziegenhein et al. [133].
This shear flow could be quantified by NeuPIV [29], simultaneously measuring the rising
path of a single bubble. On the other hand, given that the experimental setup has to the
thin to employ neutron radiography, the influence of the walls might prevent a defined
shear flow.

When considering metallurgical reactors, the virtual mass force seems mostly impor-
tant for numerical stability and has little effect on the flow. The currently most frequently
used value of 0.5 for the virtual mass coefficient seems to be sufficiently accurate in almost
all cases.

A fundamental problem in the scaling of all described phenomena is that the dynamics
of bubbles are strongly influenced by contaminants. However, with the current state of
knowledge, it is not possible to conclusively assess whether contaminants are relevant in
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industrial processes, too. It can even be assumed that the influence changes during the
process. It can be speculated whether contaminants have an influence on the conductivity
of the melt and can therefore be quantified. However, this remains speculative at the
present state of knowledge. Moreover, it is unknown whether contaminants have the
same effect in liquid metals as in aqueous systems. Fundamental research in the field of
molecular dynamics could provide new insights into this topic.

In summary, the behavior of gas bubbles in liquid metals is still far from being fully
understood. This leads to a considerable uncertainty of numerical models of metallurgical
reactors involving bubble flows. However, some direct measurement techniques have
been developed in recent years that allow a more detailed analysis of different phenomena.
Using these methods, further measurements should be carried out to reduce the lack of
experimental data in liquid metals. With more experimental data, especially for value
ranges and phenomena that have not yet been sufficiently analyzed, the discussion of the
scalability of existing models can be significantly improved. This could help to reduce
many of the remaining knowledge gaps in the future.
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Abbreviations

List of Symbols (Equations have been adjusted to SI Units).

Symbol Description

cD Drag coefficient
c1–4 Fitting parameter
cL Lift coefficient
cVM Virtual mass coefficient
c∞ Far-field concentration of contaminants, mol/m3

db Arithmetic mean equivalent bubble diameter, m
db,32 Bubble Sauter mean diameter, m
deq Equivalent bubble diameter, m
dmax Length of bubble major axis, m
dmin Length of bubble minor axis, m
dni Orifice inner diameter, m
dno Orifice outer diameter, m
dpo Pore diameter
E Bubble eccentricity
Eo Eötvös number
Eod Modified Eötvös number
Fr Froude number
Fi Force i on bubble, N
FD Drag force, N
FL Lift force, N
FVM Virtual mass force, N
f Friction factor in Bozzano drag model
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Symbol Description

g Gravity, 9.81 m/s2

H0 Distance between nozzle and the mathematical origin of the nozzle, m
HFill Filling height, m
K Empirical constant in Mersmann correlation
k Adsorption rate, m3/mol·s
Lc Characteristic length, m
Mo Morton number
m Fitting parameter
mB Bubble mass, kg
n Number of activated orifices
Qg Gas flow rate in m3/s
Qmin Minimum gas flow rate at which an orifice gets activated, m3/s
Rg Universal gas constant, 8.3145 J/mol·K
Re Reynolds number
ror Orifice radius, m
Sr Dimensionless shear rate
Sbr Breakup rate
Sc Coalescence rate
T Temperature, K
Ta Tadaki number
uc Characteristic velocity, m/s
usg Superficial gas velocity
ub Bubble velocity, m/s
ul Liquid velocity, m/s
Vb Bubble volume, m3

We Weber number
wsl Slot width, m
ŷ Fitting parameter
z Height, m
α Global void fraction
αi Fitting parameter
αloc Local void fraction
β Desorption rate, mol/m3

Γ Contaminant concentration, mol/m2

ε Porosity of a porous plate
θ Fitting parameter
κ Permeability of a porous plug
λsl Distance between active bubble formation sites on slot nozzles, m
μg Gas viscosity, Ns/m2

μl Liquid viscosity, Ns/m2

ρb Bubble density, kg/m3

ρl Liquid density, kg/m3

σ Surface tension, N/m
ϕ Shape factor
ω Shear rate, 1/s
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Abstract: The blast-furnace operating diagram proposed by Rist was revised to direct reduction and
was specifically applied to the Midrex NGTM process. The use of this graphical tool in the study
of an industrial process highlighted the staggered nature of the reduction in the shaft furnace
with, in particular, the existence of a prereduction zone in the upper part where metallization is
thermodynamically impossible. A sensitivity study also showed the impact of the in situ reforming
rate on the ability of the gas to completely reduce iron oxides. Finally, we graphically defined
the minimum quality required for the top gas to produce direct-reduced iron.

Keywords: direct reduction; Midrex; HYL; Rist diagram

1. Introduction

The production of direct-deduced Iron (DRI) is the main alternative route to blast
furnace ironmaking. Over the last decade, this route has become increasingly popular and
counts from 1.5% in the 1980s to more than 6% of the overall reduced-iron production
nowadays [1,2]. The most widespread direct-reduction (DR) technology is the vertical shaft
reactor fabricating reducing gas from natural gas (i.e., Midrex NGTM and HYL processes).
ArcelorMittal operates an installed capacity of 13 Mt/year including nine Midrex NGTM

modules and four HYL reactors.
Experimental and mathematical modeling of DR processes is important in terms of

energy efficiency and productivity. Therefore, the development and application of tools to
study the chemical reactions along the reduction shaft are necessary for the understanding
and optimization of the process [3–5].

In this respect, it is interesting to draw a parallel with the blast furnace, an older process
on which technical and scientific investigations are not comparable to the direct reduction
processes. Numerous studies during the 1960s led to a more complete understanding of
the blast furnace and a profound change in its operating point.

As such, Rist and Meyson have developed in the early 1960s a graphical tool to describe
the operating point of the blast furnace [6–9]. The graphical approach also existed more
widely in chemical engineering to describe the operating conditions of many industrial
processes. The graphical tool they have developed allows to describe more specifically
the ideal operating point of the blast furnace. It takes into account the thermal equilibria and
some critical chemical equilibria, which limit the heat and material exchanges, respectively,
in this process.

This graphical tool is based on the work of Kitaiev and Michard and, in particular,
on the mathematical modeling of the blast furnace proposed by Michard [7]. The blast
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furnace is considered as a counter-current gas–solids reactor, and it behaves as an oxygen
exchanger in the iron oxide reduction reaction.

The graphical representation of the blast furnace was particularly relevant from an edu-
cational point of view. Moreover, through the evaluation of material and heat balances within
the blast furnace, the diagram has been used for years both to describe the operating point of
a blast furnace and to establish prospective operating points for optimization [7,10–13].

The more-recently developed Midrex NGTM and Tenova HYL processes have strong
similarities with the blast furnace. The reduction shaft furnace can also be thought of as an
oxygen exchanger in a counter-current gas–solids reactor configuration.

Rist proposed in 1992 an original graphic description of the Midrex NGTM process [14],
combining a diagram for the reformer with that of the shaft furnace. Nevertheless, it is
an idealized and simplified description, with an educational vocation, which cannot be
directly exploited to describe the real operations. For example, natural-gas injections
downstream of the reformer are not taken into account for a fair description of the gas
mass balance in the reduction zone. Moreover, in situ methane cracking or carburization of
iron bearing materials are not taken into account.

It may therefore be interesting to adapt the original diagram proposed by Rist and
Meysson for the blast furnace to this process, in order to identify the industrial operating
point and study the prospects of such a graphical tool.

The adaptation of the Rist diagram to the Midrex NGTM process, and to direct reduc-
tion processes in general, requires overcoming two difficulties:

• The gas composition is more complex than in the blast furnace. Particular attention
will be paid to considering the hydrocarbons, including methane.

• The carburization phenomena in DRI will impact the operating line of the diagram.

This article reviews the formalism of the Rist approach in order to provide a compre-
hensive description of the Midrex NGTM reduction shaft, compatible with the Rist diagram
and applicable to direct-reduction processes. The approach developed on a Midrex NGTM

flowsheet is easily transferable to the HYL III process.

2. Modeling

2.1. Description of the Midrex Process

The Midrex NGTM process is one of the most-spread technologies in the steel industry
for the production of direct-reduced iron (DRI). The main differences with the conventional
reduction route (blast furnace) are the use of natural gas as a reducing agent and as a heat
source, allowing an almost complete reduction of iron oxides at a lower temperature (below
1000 ◦C) without any melting phenomenon. The process itself is based on the coupling
of three main components, a heat recovery device, a reformer, and a shaft furnace, for an
optimized use of the natural-gas consumption for the production of DRI. Figure 1 shows
the operating principle of the Midrex NGTM process.

Moreover, the compositions of the inlet and outlet gases measured in the Midrex
shaft at the Gilmore plant [3] are presented as an illustration in Table 1. The reducing
gas corresponds to the mixing of the bustle gas (B) with the natural gas injected into
the transition zone.

Table 1. Compositions of inlet and outlet gases of the Midrex shaft in Gilmore plant. [3]

Gas Composition (% mol) H2 CO H2O CO2 CH4 + N2

Reducing gas 52.90 30.0 4.7 4.8 8.1
Top gas (T) 37.0 18.9 21.2 14.3 8.6
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Figure 1. Operating principle of the Midrex NGTM process.

The operating point of the process is summarized in the following overview:

• The shaft furnace is a vertical gas–solid countercurrent reactor with a downward
flow of iron oxides and an upward flow of a hot reducing gas. The iron pellets,
consisting mainly of hematite (%Fe2O3 > 95%), are then both reduced and carburized.
The direct-reduced iron (DRI) leaving the shaft achieves a high rate of metallization
(92–96% iron metal, with residual iron oxides being Wustite) and a moderate level of
carburization (2–2.5% carbon in the total mass).

• The preparation of the reducing gas follows several steps. First, a fraction of the recy-
cled top gas, named the process gas (P), is mixed with injected natural gas. The cor-
responding mixture, called the feed gas, is preheated in the recovery heat device
and then injected into the reformer. Cracking occurs between CH4, CO2, and H2O
in the tubes of the reformer. The resulting reformed gas (R) is mainly composed of
CO, CO2, H2, and H2O, with a low rate of remaining CH4 (few %).

• The reformed gas (R) is mixed with additional natural gas and pure oxygen and
injected in the shaft furnace at a temperature around 950 ◦C. Additional natural gas is
also injected in the shaft, in the bottom area, inside the loop of the cooling gas and
in the transition zone with the bustle gas.

2.2. Description of the Local Mass Balance in the Shaft Furnace

In the frame of a counter-current gas–solid reaction, for steady-state conditions without
any diffusion phenomena, the local balance law can be written in the following way:

∂ci
∂t

=
#»∇ · #»

φ
gas
i +

#»∇ · #»
φ s

i = 0 (1)

where ci is the local molar concentration of atom i.
#»
φ

gas
i and

#»
φ s

i are the local gaseous and
solid molar fluxes in the shaft furnace, respectively. It can be applied to calculate any mass
balance of O, H, C, and Fe.

We adopt the following formalism to describe the counter-current gas–solid reduction,
as shown in Figure 2.
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Figure 2. Formalization of the counter-current configuration of the reduction zone in the shaft furnace.

Each local mass balance equation is simplified according to this formalism:

#»∇ · #»
φ

gas
i =

dφ
gas
i

dz
,

#»∇ · #»
φ s

i = −dφs
i

dz
(2)

Finally, Equations (1) and (2) lead to :

dφ
gas
i

dz
=

dφs
i

dz
(3)

The molar gaseous flux of the atom i is calculated with the following relation:

φ
gas
i =

Qgas
v

Vm
× ∑

molecule j
aj · nj

i (4)

where Qgas
v is the volumetric gas flow rate, Vm the molar volume of the gas, aj the volumetric

fraction of the molecule j in the gas, and nj
i the number of atoms i in the molecule j.

φs
i , the solid molar flux of the atom i, provided by the iron bearing material, is obtained

using Equation (5), according to the mass flow rate Qs
m of the burden, the mass fraction ws

i ,
and the molar mass Mi.

φs
i = Qs

m × ws
i

Mi
(5)

2.3. Presentation of the Operating Diagram

The operating diagram represents on the x-axis and y-axis the gas and burden oxida-
tion degrees denoted by Xgas and y, respectively, and defined by the following relations:

Xgas =
φ

gas
O + 1

2 φ
gas
H

φ
gas
C + 1

2 φ
gas
H

(6)

y =
φs

O + 1
2 φs

H
φs

Fe
(7)
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In a counter-current configuration, according to a complete oxygen transfer from ox-
ides to the gas all along the reduction path, the burden and gas oxidation degree variations
are correlated. μ represents the specific consumption as the stoichiometric ratio between
gas and solid, according the following relation:

μ =
φ

gas
C + 1

2 φ
gas
H

φs
Fe

(8)

Rist also introduces a coupling with the Chaudron diagram. As a reminder, Chaudron
has established the equilibrium conditions between the CO-CO2 and H2-H2O gas mixtures
and the various iron oxides, as a function of temperature. The diagram represents the ther-
modynamic equilibria gas–Wustite and gas–Magnetite as a function of xgas on the abscissa,
a derived definition of the gas oxidation degree, and temperature on the ordinate, with:

xgas = Xgas − 1 =
φ

gas
O − φ

gas
C

φ
gas
C + 1

2 φ
gas
H

(9)

Rist plots the points W and M for these equilibria. Abscissae are provided by
the Chaudron diagram, and ordinates correspond to the oxidation degrees of these oxides
(yW = 1.056 and yM = 1.33), as shown in Figure 3. He thus delimits the shape of a thermo-
dynamic boundary excluding thermodynamically impossible situations, when the gas is
not sufficiently reducing: the forbidden zone.

In the blast furnace, it has been shown that the main thermodynamic constraint is
located in the reserve zone, halfway up the shaft, where coke gasification is preponderant,
for a temperature around 950–1000 ◦C. Rist defines the ideal blast furnace operation when
thermal and thermodynamic equilibria are reached in this reserve zone and the iron oxides
are reduced to pure Wustite. Here, the operating line passes through the W-point, as shown
in Figure 3.

Rist also establishes the existence of an invariant point P about which the operating
line rotates when the operating point of the blast furnace is changed. This point is plotted
on the basis of the heat balance calculated in the blast furnace elaboration zone below the re-
serve zone. The details of these calculations are described in [7], but this section does not
apply to the Midrex NGTM process. Therefore, it is not developed further in this document.

2.4. Application to the Description of the Shaft Furnace in the Midrex NGTM Process

To use the Rist diagram in the Midrex NGTM process, we need to consider the following
phenomena that do not occur in the blast furnace:

• The more complex composition of the reducing gas, including the presence of hydro-
carbons,

• the in situ reforming of hydrocarbons in the shaft furnace,
• the phenomena of carburization of DRI by gas, through the Boudouard and Beggs

reactions.

We consider the following two situations, with an increasing degree of complexity.
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Figure 3. An illustration of the Rist diagram applied for the blast furnace, coupled with thermody-
namics constraints from the Chaudron diagram.

2.4.1. Simplified Case: No Carburization Phenomena

In a simplified case, the carbon remains in a gaseous state, and the chemical reactor is con-
sidered to be an oxygen exchanger, similar to Rist’s approach for the blast furnace. Therefore,
the changes in oxidation states x and y are calculated from the following relationships:

dx0

dz
=

dX0

dz
=

1
φ

g
C + 1

2 φ
g
H

∂φ
g
O

∂z
(10)

dy
dz

=
1

φs
Fe

∂φs
O

∂z
(11)

According to the local oxygen mass balance Equation (3), we deduced the simplified
specific consumption:

μ0 =
dy

dX0 =
φ

g
C + 1

2 φ
g
H

φs
Fe

(12)

In the shaft furnace of the Midrex NGTM process, the reducing gas is composed of CO,
CO2, H2, H2O, N2, and hydrocarbons denoted CmHn. The degree of oxidation of the gas
and the specific consumption can then be deduced from these relationships:

x0 =
%CO2 + %H2O − ∑ m %Cm Hn

ηCH
(13)

μ0 =
Qg

v · ηCH
Vm

· MFe

QDRI
m · %FeDRI (14)
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where:

ηCH =%CO + %CO2 + %H2 + %H2O

+ ∑
(

m +
n
2

)
%Cm Hn

(15)

2.4.2. Real Case: Carburization Is Taken into Account

We assumed that the carburization phenomena occur below the reduction zone
in the shaft furnace. Therefore, the efficient carbon content of the reducing gas should
exclude the carbon deposited on DRI:

φ
g
C = φinlet

C − φs
C (16)

We can thus complete the definition of specific consumption and oxidation degrees,
on the basis of the simplified forms defined above.

The corresponding new specific consumption is deduced from Equations (14) and (16):

μ =
φ

g
C + 1

2 φ
g
H

φs
Fe

= μ0 − φs
C

φs
Fe

(17)

We defined μcarb as the decrease in specific fuel consumption due to carburization:

μcarb =
MFe
MC

(
%C
%Fe

)
DRI

(18)

We then introduced the correction factor rμ to be applied to the specific consumption
to take into account its decrease due to carburization:

rμ =
μ0 − μcarb

μ0
= 1 − 1

μ0

MFe
MC

(
%C
%Fe

)
DRI

(19)

Finally, the generalized specific consumption, considering carburization, was calcu-
lated from the following relationship:

μ = μ0 · rμ (20)

By similar reasoning, the degree of oxidation was calculated from the correction
coefficient rμ:

X =
X0

rμ
(21)

We finally deduced:

x =
x0 + 1 − rμ

rμ
(22)

2.5. Plotting of the Thermodynamic Forbidden Zone

As previously explained, the Chaudron diagram determines the gas–solid equilibrium
states between the different types of iron oxides and a reducing gas composed of H2, H2O,
CO, and CO2. The abscissa, denoted xChaudron, was calculated from the reactive component
of the gas, according to the following relationship:

xChaudron =
%CO2 + %H2O

%CO + %CO2 + %H2 + %H2O
(23)

Contrary to the situation encountered for the blast furnace, the xChaudron abscissa is not
directly transferable from the Chaudron diagram to the Rist diagram. Consequently, we
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applied the following transformation to trace the critical points W and M in this generalized
formalism, according to Equations (13) and (23):

xRist = (1 − α) · xChaudron − α (24)

α =
∑

(
m + n

2
)

%Cm Hn

ηCH
(25)

3. Results and Discussion

3.1. Graphical Description of a Direct-Reduction Shaft Working Point in
ArcelorMittal Contrecoeur

We studied the operating point of Midrex NGTM Module 2 in the ArcelorMittal
Contrecoeur plant obtained in April 2016 using the Rist operating diagram, following
the methodology developed in the previous section.

To describe this operating point, we assumed that in situ methane reforming was local-
ized in the metallization zone. This assumption is widely accepted, although not measured,
because this reaction is favored both by the local temperatures and by the presence of iron,
which acts as a catalyst [4,5]. Therefore, a constant methane rate was assumed throughout
the reduction zone, equal to that of the top gas. The CH4 content at points W and M was
finally equal to that of the top gas, and their corresponding coefficient α can be calculated
with Equation (25).

Figure 4 shows the operating line for this operating point, as well as the forbidden
zone calculated for a gas-Wustite and gas-Magnetite equilibrium at a temperature of 800 ◦C,
in agreement with in-situ measurements provided by Takenaka and Kimura [15].

Figure 4. Operating diagram for Midrex NGTM module 2 in ArcelorMittal Contrecoeur plant on
April 2016, assuming 100% in situ reforming in the metallization zone.
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Point C represents the bottom of the reduction zone, assumed to be localized above
DRI carburization. Point T corresponds to the top gas zone. Point W defines the critical
value of the gas oxidation degree xM above which the Wustite cannot be reduced to ferrous
metal. In this diagram, we considered, on both sides of point W, the metallization zone
and the prereduction zone.

The figure shows a distance between the operating line and point W. Rist defines this
distance as the deviation from ideality ω, here equal to 0.109 (Figure 4). It corresponds to
the difference between the average oxidation state of the iron bearing material and that of
the pure Wustite at the time of metallization start-up.

In this case, the average oxidation degree of iron oxides was 1.165 (yM + ω), when
metallization was initiated. In 2015, in the framework of experimental laboratory tests on
the reduction of pellets in a steady-state counter-current configuration, under conditions
as close as possible to the industrial reactor, we showed that the reduction of Hematite to
Magnetite was almost complete when Wustite appeared, at point M [16]. Therefore, in the
present situation, it is reasonable to assume that there was no residual Hematite at the time
of metallization start-up. The degree of oxidation of iron oxides therefore corresponds to
a mixture of 40% Magnetite and 60% Wustite (1.165 ≈ 0.4 × 1.33 + 0.6 × 1.056).

The reduction of iron oxides follows successive and staggered reactions, which is
inherent to the counter-current configuration. We emphasize that this staggered effect is
less pronounced here than in the blast furnace where metallization starts when sinter is
mainly prereduced into Wustite.

3.2. Influence of In Situ Reforming

To show the impact of in situ reforming on the operating point of the shaft furnace,
we now assume that methane cracking occurs in the prereduction zone and not in the met-
allization zone. This obviously contradicts what is commonly accepted, for the reasons
detailed above. According to this hypothesis, the methane content taken into account for
plotting the forbidden zone corresponds to that of the reducing gas injected in the lower
part (mixture of the bustle gas with the natural gas injected in the transition zone and
in the cooling zone).

A higher methane content changes the value of the α coefficient, calculated with
relation (25), used to transpose the coordinates of the Chaudron diagram to the operating
diagram. The increase in the coefficient α induces a decrease in the values xW and xM. As a
result, the forbidden zone is shifted to the left. On the other hand, the operational line
remains unchanged.

Figure 5 depicts this hypothetical operating point that would obey these assumptions.
It shows that the deviation to ideality ω is negative this time, because the operating line
crosses the forbidden zone. This situation, which is thermodynamically impossible, proves
that in situ reforming cannot take place in the prereduction zone.

3.3. Definition of the Ideal Working Point

In the situation previously described in Figure 5, the most direct way to restore
metallization is to increase specific consumption, either by increasing gas flow rates or
simply by decreasing DRI production.

Figure 6 shows the change in the process working point required to generate met-
allization in the shaft. This is an optimized (or ideal) configuration where we rotated
the operating line around the point C so that it passes through the point W.
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Figure 5. Operating diagram for Midrex NGTM module 2 in ArcelorMittal Contrecoeur plant on
April 2016, assuming 100% in situ reforming in the prereduction zone.

Figure 6. Operating diagram for an ideal configuration.
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We thus defined a maximum oxidation degree for the top gas, denoted xideal
T , necessary for

metallization to occur. This graphical description highlights a direct link between the efficiency
of in situ reforming and the minimal required top gas quality (or degree of oxidation).

Finally, we must also point out that this ideal working point may not be achievable,
as we did not consider the limits related to the heat balance in the metallization zone. In
the situations described above, we assumed that metallization occurs at 800 ◦C. However,
the energy required to heat the ferrous material and the metallization was provided by
the sensible heat of the reducing gas, which has a maximum acceptable temperature
of about 950 ◦C in the bustle zone to avoid DRI clustering. The only way to provide
sufficient energy is therefore to inject a minimum flow of gas, which implies the existence
of a minimum critical specific consumption. This condition will be particularly severe for
higher levels of H2 where the metallization is more endothermic than with CO.

4. Conclusions

We presented the adaptation of the operating diagram proposed by Rist, a graphical
tool describing the operating point of the blast furnace, to direct reduction.

To achieve this, we generalized the initial approach by taking into account the presence
of hydrocarbons in the reducing gas, the cracking phenomena in the shaft furnace, and
the carburization of the DRI.

The diagram was thus redefined for direct reduction, also integrating the information
provided by the Chaudron diagram concerning the thermodynamic equilibria between
iron oxides and the reducing gas.

We used this diagram to describe the operating point of the Midrex NGTM module
n◦2 of the ArcelorMittal Contrecoeur plant. We thus highlighted the staggered character of
the reduction within the shaft furnace, distinguishing between a prereduction zone and
a metallization zone. Similar to the blast furnace, the beginning of the metallization is
the critical point of reduction from a thermodynamic point of view.

We studied the impact of in situ reforming on the process limits to ensure metallization,
which allowed us to define the minimum top gas quality required to meet this condition.
This graphical tool can be built with basic information, such as solid and gas chemical
compositions and flows. It can allow us to estimate the plant performance by calculating
the distance between the operating point and thermodynamic limits in order to minimize
the gas/solid ratio. Such a minimal ratio should lead to a lower natural gas consumption.

This graphical tool can be used to optimize the operating point of the direct-reduction
shaft furnace or to define prospective operating points (e.g., coupling with other processes—
hydrogen reduction). It is also an interesting pedagogical tool to understand the reduction
zone of the shaft as a counter-current gas–solid reactor.
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Abbreviations

The following abbreviations are used in this manuscript:

Greek letters

μ specific consumption
#»
φ molar flux (mol·m−3·s−1)
Latin letters

aj volumetric fraction of the molecule j in a mix gas
ci local molar concentration of the atomic element i (mol·m−3)
nj

i number of atoms i in the molecule j
Qm mass flow rate (kg·s−1)
Qv volumetric flow rate (m3·s−1)
Vm molar volume of the gas (m3·mol−1)
w mass fraction
xgas gas oxidation degree (derived definition)
Xgas gas oxidation degree (original definition)
y burden oxidation degree
superscript

gas related to gaseous element
s related to solid element (iron bearing material)
subscript

i atomic element (C, H, O, or Fe)
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Abstract: In the present research, charging carbon composite briquettes (CCB) in a blast furnace
(BF) was investigated. The CCB used contained 29.70 wt.% Fe3O4, 39.70 wt.%, FeO, 1.57 wt.% iron,
8.73 wt.% gangue, and 20.30 wt.% carbon. Its reaction kinetics in BF was examined by nonisothermal
tests and modeled. Thereafter, the influence of replacing 10% ore with CCB on BF performance was
studied by numerical simulations. Results showed that the CCB reaction behavior in BF could be
modeled using the previously proposed model under ags = 1900 m2·m−3. Numerical simulations
on a BF with a production of 6250 t hot metal per day (tHM/day) showed that replacing 10% ore
with CCB efficiently improved the BF operation for coke saving. In the CCB charging operation,
the CCB reached a full iron-oxide reduction above the cohesive zone (CZ) and a carbon conversion
of 85%. By charging CCB, the thermal state in the BF upper part was significantly changed while
it was not influenced in the BF lower part; the ore reduction was retarded before the temperature
reached 1073 K and was prompted after and the local gas utilization tends to increase above the CZ.
By the CCB reduction above the CZ, BF top gas temperature was decreased by 8 K, the BF top gas
utilization was increased by 1.3%, the BF productivity was decreased by 17 tHM/day, the coke rate
was decreased by 52.2 kg/tHM, and ore rate was decreased by 101 kg/tHM. Considering the energy
consumption of sintering and coking, charging the CCB could have a significant energy-saving and
CO2-emission-reducing effect for BF iron making.

Keywords: carbon composite briquette; blast furnace ironmaking; reaction kinetics; numerical
simulation; coke saving

1. Introduction

The development of the economy and society is increasing the demand and produc-
tion of iron and steel. In 2019, crude steel production in China reached 996.3 million tons,
representing 53.3% of global crude steel production [1,2]. The blast furnace ironmaking-
basic oxygen furnace steelmaking (BF-BOF) route is the main route for the production,
producing approximately 70% of the total crude steel [3]. Nowadays, the iron and steel
industry is facing pressures of energy-saving and CO2 emission reduction [4,5]. As the
BF sector (including coking and sintering) is responsible for approximately 80% of the
total energy consumption and generating most CO2 emissions in the BF-BOF route [6],
low-carbon technologies in BF ironmaking have attracted increasing attention from schol-
ars worldwide [7,8].

Charging carbon composite briquettes (CCB) is considered to be a promising technol-
ogy to improve BF efficiency [9,10]. The CCB refers to carbonaceous materials mixed with
iron-bearing materials into agglomerates. Using CCB as a partial charge in BF offers the
following benefits of (1) less coking and sintering [11–13], (2) utilization of low-grade iron
ores or carbon materials [14–16], (3) the process is completed faster than that with pellets
or sinter [17,18], and (4) energy consumption tends to decrease [19]. Several methods
of preparation of CCB for BF have been proposed, including hot briquetting using the
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thermal plasticity of coal [20], and cold briquetting using cement as a binder [21,22], cold
briquetting using coking tar as a binder [23]. The authors of the current study previously
proposed to prepare CCB using cold briquetting followed by heat treatment [24,25]. By
this method, various noncoking coals and iron-rich metallurgical dust could be used as
raw materials, which could significantly reduce the CCB cost. The behavior of a single
CCB prepared using this method under simulated BF conditions and in actual BF have
been elucidated and the results showed that the CCB reaction in BF includes five stages:
reduction by BF gas, partial self-reduction with reduction by BF gas, full self-reduction
partial self-reduction with gasification by BF gas and gasification by BF gas [25]. However,
to improve BF efficiency, it is more important to understand the influence of charging CCB
on BF performance.

The BF ironmaking is a complex process with high temperature, high pressure, and
hazardous environment, so conditions of lab-scale experiments could not fully simulate the
actual BF in-furnace state and thus results may be unreliable. Nowadays, novel processes
involved in BF ironmaking are usually investigated by numerical simulations. Using
numerical simulations, investigators can gain very detailed information to examine the
feasibility, understand the mechanisms, and optimize operation conditions towards the
envisaged BF processes [26–29]. Simulations on BF operations with CCB charging have
been conducted by Chu et al. [30] and Yu et al. [31]. However, in their studies, the reaction
model of CCB was significantly simplified and could not reflect the real behavior in BF,
which may lead to some misunderstanding in interpreting the influence of CCB charging
on BF performance.

In this research, the reaction behavior of CCB under BF conditions was experimentally
studied and modeled. Thereafter, BF operation with replacing 10% ore by CCB was
investigated by numerical simulations.

2. Experimental

2.1. CCB Sample

The CCB sample used in the present research was the same as that in reference [25].
It was prepared by cold briquetting followed by heat treatment. The raw materials for
preparing the CCB sample were hematite fines, quartz fines, and coal fines. The quartz
fines were employed as an additive. The hematite fines and the quartz fines were the
chemical reagents. The coal fines were provided by the BF PCI (pulverized coal injection)
sector. The hematite fines, quartz fines, and coal fines were thoroughly mixed under a
mass ratio of hematite:quartz:coal = 67:3:30. After the addition of 10.0% distilled water,
2.0% organic binder, the briquettes were made by pressing these moistened fines using a
die under a pressure of 15 MPa. The briquettes were dried in the air followed by drying at
423 K and were then hardened by heat treatment. The heat treatment was carried out under
an N2 atmosphere. The thermal route was the following. The furnace was heated from
room temperature to 1073 K at a rate of 5 K/min. After holding for 10 min, the furnace was
cooled naturally. The prepared CCB is cylindrical with diameter and height of 14 mm. Its
mass is 4.7 g. Its mineralogical composition is listed in Table 1.

Table 1. Mineralogical composition of CCB: (wt %).

Carbon Fe3O4 FeO Metallic Iron Gangue

20.30 29.70 39.70 1.57 8.73

2.2. Non-Isothermal Reaction Tests

The experimental setup is detailed elsewhere [25]. The following is an outline. The
setup mainly consists of a gas supply system, and a temperature-controlled furnace with an
accuracy of ±2 K, and a computer for data acquisition. The furnace was heated using super-
canthal (MoSi2) elements, producing a 50-mm hot zone in the reaction tube (Diameter:
55 mm). The sample holder was made of a heat-resistant alloy (Fe-Cr-Al) wire. In each test,
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the furnace was heated up to 1073 K and stabilized for 30 min under N2 atmosphere. A
single CCB was loaded at a time. After being preheated for 5 min in the upper part of the
tube, the sample was lowered into the constant- temperature zone. The furnace was then
heated up under a predetermined heating rate and the gas flow was switched from N2 to a
CO-CO2-N2 mixture (CO:CO2:N2 = 4:1:5 (volume)). The mass loss of CCB was recorded via
a computer. In the test, the total gas flow rate was maintained at 3000 cm3·min−1 (standard
temperature and pressure). The test was completed after the temperature reached 1373 K.
Pre-experimental results showed that, after heat hardening, volatiles and organic binder
could be completely removed from the CCB, so its mass loss fraction at time t (f m) was
calculated by Equation (1).

fm= (m − mb)/(mC,0 + mO,0) (1)

where, m is the mass of CCB at time t, (g); mb is the initial mass of CCB, (g); mC,0 and mO,0
are the initial mass of carbon and iron-oxide oxygen in CCB, (g), and they are determined
according to Table 1 and the initial mass of CCB.

3. Model Development

3.1. Description of BF Operation with CCB Charging

Size of the BF for numerical simulations is given by Tang et al. [32], and its normal
operation data is given in Table 2. In the present investigation, two cases (case A and case B)
were simulated and compared. Case A was the BF operation under normal conditions and
considered as the base case. Case B was with CCB charging. In case B, 10% (mass) ore was
replaced with CCB. In CCB charging of case B, the CCB is assumed to be fully mixed with
the ore (sinter, pellet, and lump ore).

Table 2. BF operation data.

Variable Value

Productivity (tHM·day−1) 6250
Blast temperature (K) 1523

Blast rate (Nm3·min−1) 4800
Oxygen enrichment (mol%) 4.0
Top absolute pressure (Pa) 2.8 × 105

PC injection rate (kg·tHM−1) 180
Ore rate (kg·tHM−1) 1680

Coke rate (kg·tHM−1) 335
Batch weight of ore (ton) 76

Batch weight of coke (ton) 15
Solid inlet temperature (K) 300

Ore particle property
Composition: TFe: 55.8 wt.%, FeO: 6.8 wt.%, CaO: 4.60, SiO2:
4.97 wt.%, Al2O3: 2.19 wt.%, TiO2: 2.0 wt.% Porosity: 0.35;
Bulk density: 1750 kg/m3; Average particle size: 20 mm.

Coke particle property
Composition: Fixed Carbon: 90 wt.%, and Ash: 10 wt.%;
Porosity: 0.50; Bulk density: 500 kg/m3; Average particle

size: 40 mm.

PC property Composition: C: 80.0 wt.%, H: 4.0 wt.%, O: 3.5 wt.%, N:
2.0 wt.%, and S: 0.32 wt.%; H2O: 4.0 wt.%, and Ash: 7.0 wt.%.

Liquid phase (molten iron and
slag) property

[%C]: 4.0 wt.%, Temperature: 1753 K, Average heat capacity:
1000 J/kg, and Slag rate: approximately 400 kg/tHM

tHM: ton hot metal, PC: pulverized coal.

3.2. BF Model

The present model is based on a total BF model developed by current authors [32].
The validity of the total BF model was confirmed by the comparison of the simulation
results with the averaged industrial data. In the present model, the reaction kinetics of CCB
is modeled and is incorporated into the total BF model. The model is two-dimensional,
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axisymmetric, and steady. In the model, the gas-phase behavior and solid-phase behavior
in BF are represented by the conservation of mass, momentum, energy, and species. The
computation grid is shown in Figure 1. It is a two-dimensional structure grid, including
780 cells. The computational zone is based on 12 degrees in the circumferential direction.
The positions of cohesive zone (CZ), deadman, raceway (RW) are predefined. The porosity
of CZ, dripping zone (DZ), and deadman are fixed at 0.15, 0.30, and 0.15, respectively. The
Equations involved in the model are listed in Table 3. Equations (1)–(3) in Table 3 are CO
gaseous reduction of ore, Equations (4) and (5) in Table 3 are coke solution-loss reaction
and combustion. Equations (6)–(9) are CCB Equations. Equations (10)–(12) in Table 3 are
the melting of the ore. Equations (12)–(15) in Table 3 are the melting of CCB. the melting
CCB is assumed to be similar to that of the ore. Rates of Equations (6)–(9) and (16) in
Table 3 are given in the following sections, Reaction heats of all Equations and rates of
Equations (1)–(5), (10)–(15) in Table 3 are given elsewhere [32].

Figure 1. Mesh placement for numerical simulation.

Table 3. Equations involved in BF model.

Reaction
Reaction Rate

(kmol·m−3s−1)
Explanation

1 3Fe2O3 (ore, s) + CO(g) = 2Fe3O4(ore, s) + CO2(g) R1 stepwise reduction of ore (sinter,
pellet and lump ore) by CO2 Fe3O4 (ore, s) + CO(g)=3 FeO(ore, s) + CO2(g) R2

3 FeO (ore, s) + CO(g) = Fe(ore, s) + CO2(g) R3
4 C (coke) + CO2 (g) = 2CO (g) R4 coke solution-loss reaction
5 C (coke) + 1/2O2 (g) = CO (g) R5 coke combustion
6 3Fe2O3 (CCB, s) + CO (g) = 2Fe3O4 (CCB, s) + CO2 (g) R6

CCB reactions
7 Fe3O4(CCB, s) + CO(g) = 3FeO(CCB, s) + CO2(g) R7
8 FeO (CCB, s) + CO (g) = Fe (CCB, s) + CO2 (g) R8
9 C (CCB) + CO2 (g) = 2CO (g) R9

10 Fe (ore,s) = Fe (l) R10
melting reactions of ore11 FeO (ore,s) = FeO (l) R11

12 Gangue (ore,s) = Slag (l) R12
13 Fe (CCB,s) = Fe (l) R13

melting reactions of CCB14 FeO (CCB,s) = FeO (l) R14
15 Gangue (CCB,s) = Slag (l) R15
16 FeO (l) + C (s) = Fe (l) + CO (g) R16 direct reduction of molten FeO
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Behaviors of other phases (molten iron, molten slag, and PC fines) are treated using
simplified methods. The PC particles are gasified in the raceway zone reaching a burnout
rate of more than 90% within 20 ms. Therefore, the combustion products of the blast and
the PC through Equation (5) form the inlet condition for the gas phase in the model. The
liquid phase includes the molten iron and the molten slag. Droplets of the molten iron and
the molten slag are generated in the cohesive zone with an initial temperature equivalent
to the local solid temperature. After generation, they flow down through the dripping
zone, acquiring heated by the gas phase and the coke bed and reaching the final tapping
temperature in the hearth. On their flowing path, these droplets undergo coalescing,
splitting, or flying a short distance with the strong bosh gas, so it is difficult to give precise
mathematical descriptions upon the gas-liquid and solid-liquid heat exchanges. In the
BF bosh, heat is mainly generated by the combustion of oxygen with coke and PC in the
raceway and the gas phase has the highest temperature. As the gas flows upward, the heat
is transferred from the gas to the coke bed, and to the liquid droplets; simultaneously, the
heat is also transferred from the coke bed to the liquid droplets. This analysis shows that
the required heat for the liquid phase could be simplified as an energy source of the gas
phase. The temperature of the hearth is considered to be 1753 K, therefore, the overall heat
loss rate (Ql) from the gas-solid system to the liquid phase is Equation (2), Assuming that
the heat loss rate is uniformly distributed in the DZ, an enthalpy source Equation (3) is
added to energy Equation of the gas phase in the DZ.

Ql =
CZ

∑
i
(MFe(R10 + R13)+MFeO(R11 + R14) + MGangue(R12 + R15))CplVcell(1753 − TS) (2)

Egl = Ql/
DZ

∑
i

Vcell (3)

Molten FeO in the slag droplets is reduced fast in the DZ through Equation (9). In the
view of the mass balance of molten FeO in CZ and DZ, the rate of Equation (16) in Table 3
is described using Equation (4), in which, Equation (16) is assumed to uniformly proceed
in the DZ.

R16 =
CZ

∑
i
((R7 + R14)Vcell)/

DZ

∑
i

Vcell (4)

The above method of treating the behavior of the liquid phase was demonstrated to
be helpful for the model to reach a high convergence of the model.

The gas flow is considered to be the flow through the porous bed. The gas phase
consists of CO, CO2, O2, and N2, and is considered to be an ideal gas. The general governing
Equation of the gas phase is Equation (5), in which, the superficial gas velocity is adopted.
Terms to represent φ, Γφ and Sφ in Equation (5) are listed in Table 4.

div
(
ρg

⇀
Ugφ

)
= div

(
Γφgradφ

)
+ Sφ (5)

Table 4. Dependent variables and sources in Equation (5).

Equation φ Sφ

Mass 1 MO
3
∑

i=1
Ri + MO

8
∑

i=6
Ri + MC(R4 + R9) + MCR5 + MCOR16

Momentum
⇀
Ug −∇Pg −

⇀
F gs

Energy Hg 0.5
9
∑

i=1
Ri,(−ΔHi)− Egs − Egl + Eadd

Species

yO2 MO2 (−0.5R5)
yCO MCO(−R1 − R2 − R3 + 2R4 + R5 − R6 − R7 − R8 + 2R9 + R16)
yCO2 MCO2 (R1 + R2 + R3 − R4 + R6 + R7 + R8 − R9)
yN2 0
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A non-slip wall condition for the gas velocity and an impermeable condition for
the gas species are defined on the BF wall. The heat loss of gas phase on the BF wall is
calculated by 5.0 (Tg-353) [33]. The PC particles are assumed to be gasified completely
in the raceway. Therefore, the combustion products of the blast with the PC through
Equation (5) in Table 3 form the inlet conditions for the gas phase. At the gas outlet, a
fully-developed gas flow is assumed.

The solid flow is treated as a viscous flow. The CCB is treated as one component of
the solid phase. As a consequence, the solid phase consists of coke, ore, and CCB. Each
component has its physical properties. Above the CZ, the overall physical properties of
the solid phase are calculated by averaging the physical properties of the components
based on their volume fractions. Regarding the chemical species, even the same species
in CCB and in ore/coke are treated separately because it undergoes different reaction
schemes. The general governing Equation of the solid phase is Equation (6), in which,
the solid bulk density and the solid physical velocity are adopted. Terms to represent ϕ,
Γϕ, and Sϕ in Equation (6) are listed in Table 5. In actual BF, the iron-bearing burden is
transformed to molten iron and slag, and the coke is completely consumed by combustion,
carbon-solution loss reaction, carburization, and other equations. However, the present
BF model is developed based on the gas-solid two-phase flow. Therefore, the present BF
model needs a solid outlet. For ensuring a stable solid flow, the consumption of coke is not
included in Table 5.

div
(
ρs

⇀
VS ϕ

)
= div

(
Γϕgradϕ

)
+ Sϕ (6)

Table 5. Dependent variables and sources in Equation (6).

Equation ϕ Γϕ Sϕ

Continuity 1 0 −
(

MO
3
∑

i=1
Ri + MO

8
∑

i=6
Ri

)
− (MCR9)− MFe(R10 + R13)− MFeO(R11 + R14)

−Mgangue(R12 + R15)

Momentum
⇀
Vs μs,eff

−∇Ps

Energy Hs λs,eff/Cps
0.5

9
∑

i=1
(Ri, (−ΔHi)) +

16
∑

i=10
(Ri, (−ΔHi)) + Egs

Species

yCoke,C 0 0

yore,Fe2O3 0 MFe2O3 (−3R1)

yore,Fe3O4 0 MFe3O4 (2R1 − R2)

yore,FeO 0 MFeO(R2 − R3 − R11)

yore,Fe 0 MFe(R3 − R10)

yCCB,C 0 MC(−R9)

y CCB,Fe2O3 0 MFe3O4 (−3R6)

yCCB,Fe3O4 0 MFe2O3 (2R6 − R7)

yCCB,FeO 0 MFeO(R7 − R8 − R14)

yCCB,Fe 0 MFe(R8 − R13)

yCCB,gangue 0 Mgangue(−R15)

A fluid-slip boundary is applied for the solid velocity on the BF wall. Heat loss of
the solid phase on the BF wall is not considered. Inlet conditions of the solid phase are
established according to BF operation conditions. At the solid outlet, the solid phase
reaches a fully-developed flow. As, in actual BF operation, coke is completely consumed in
BF, the enthalpy loss owing to the solid flow at the solid outlet is compensated by adding a
source (Eadd) on the gas enthalpy Equation in RW, which is expressed by Equation (7).

Eadd = (mC,cokeTs,outCps)/
RW

∑
i

Vcell (7)
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3.3. CCB Model

The CCB model developed by Tang et al. [34] was used in this research. The following
is a brief introduction of the CCB model. The shape of CCB is nearly spherical, so the
model is one-dimensional in a radial direction. The model is developed based on mass
conservation of gas species, mass conservation of solid species, and mass transfer between
CCB and environment. The gas species include CO, CO2, and N2, and the solid species
are the components in the CCB. The Equations in the CCB model are listed in Table 6.
Equations (1)–(3) in Table 6 are the gaseous reductions of iron particles, and Equation (4) in
Table 6 is the carbon solution-loss reaction of carbon particles.

Table 6. Equations in CCB model.

No Reaction Reaction Rate/(mol·m−3·s−1)

1 3Fe2O3(fine, s) + CO(g) = 2Fe3O4(fine, s) + CO2(g)
ri =

(PCO−PCO2 /Ki)/(8.314T)
(Ki/(ki(1+Ki))

(1 − fi)
2/3

)
ags, (i = 1,2,3),

k1 = exp(−1.445 − 6038/T), K1 = exp(7.255 + 3720/T)
k2 = 1.70 exp(2.515 − 4811/T), K2 = exp(5.289 − 4711/T)
k3 = exp(0.805 − 7385/T), K3 = exp(−2.946 + 2744.63/T)

2 Fe3O4(fine, s) + CO(g) = 3FeO(fine, s) + CO2(g)

3 FeO(fine, s) + CO(g) = Fe(fine, s) + CO2(g)

4 C(fine,s) + CO2(g) = 2CO(g) r4 = ρC,0k4(1− f4)
2/3(PCO2 /1.01 × 105)/MC,

k4 = 1400 exp(−138000/RT)

The mass conservation of the gas species in the CCB gives Equations (8) and (9).

∂(αPco2)

∂t
=

1
r2

∂

∂r

(
r2DCO2−N2,eff

∂Pco2

∂r

)
+ RT(R1 + R2 + R3 − R4) (8)

∂(αPco)

∂t
=

1
r2

∂

∂r

(
r2DCO−N2,eff

∂Pco

∂r

)
+ RT(2R4 − R1 − R2 − R3) (9)

where, α = 0.5, Deff,CO−N2 = DCO−N2 α2/
√

3 , and Deff,CO2−N2 = DCO2−N2 α2/
√

3 .
For Equations (8) and (9), the boundary conditions are Equations (10)–(12).

r = 0 :
∂PCO

∂r
= 0,

∂PCO2

∂r
= 0 (10)

r = d/2 : Deff,CO−N2

∂PCO

∂r
=

(
DCO−N2

(
2.0 + 0.6Re1/2Sc1/3

CO−N2

)
/d

)
(PCO − PCO,e) (11)

r = d/2 : Deff, CO2−N2

∂PCO2

∂r
=

(
DCO2−N2

(
2.0 + 0.6Re1/2Sc1/3

CO2−N2

)
/d

)(
PCO2 − PCO2,e

)
(12)

where, Re = ug,eρg,ed/μg,e , ScCO−N2 = μg,e/
(
ρg,eDCO−N2

)
, and ScCO2−N2

= μg,e/
(
ρg,eDCO2−N2

)
.

For Equations (8)–(9), the initial conditions are provided by Equation (13).

t= 0, r ∈ (0, d/2) : PCO = PCO,e , PCO2 = PCO2,e (13)

The mass conservation of the solid species in the CCB gives Equation (14).

∂ρj/∂t = Sj (14)

where j = Fe2O3, Fe3O4, FeO, Fe, and C; SFe2O3 = 0.003MFe2O3(−r1), SFe3O4 = 0.001MFe3O4

(2r1 − r2), SFeO = 0.001MFeO(3r2 − r3), SFe = 0.001MFeR3, and SC = −0.001MCr4.
The initial condition for Equation (14) is provided by Equation (15).

t = 0, r ∈ (0, d/2) :ρj = ρj,0 (15)
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3.4. Solution Strategy

The simulations were performed using the following strategy. Firstly, the rates of the
CCB Equations (6)–(9) in Table 3 were initialized. The BF model Equations (5) and (6) were
solved numerically solved using PHOENICS [35] and an in-house developed code. After
the BF model reached a primary convergence, the Lagrangian method was used to adjust
these reaction rates in all cells. These adjustments continued until the BF model reached
the final convergence.

The Lagrangian method to adjust the rates of Equations (6)–(9) in Table 3 is illustrated
in Figure 2 and detailed elsewhere [34]. For a given cell, the solid-phase streamline through
the cell is determined after the BF model reaches a primary convergence Figure 2a. The
CCB reaction behavior along the streamline is calculated using the above CCB model.

The descending time of the CCB to reach the cell center is calculated by
∫ s

0

(
1/

∣∣∣∣→Vs

∣∣∣∣
)

ds,

where, s is the distance from the cell center to the burden surface, (m). The boundary
conditions of the CCB model are determined by the corresponding BF variables along the
streamline. Thus, the radial distributions of r1, r2, r3, and r4 of Equations (1)–(4) Table 6
in CCB reaching the cell center are obtained. It is considered that the CCB reaching the
cell center is representative of all briquettes in the cell Figure 2b. Therefore, the rates of
Equations (6)–(9) in Table 3 in the cell are Equation (16).

Rj = 0.001αCCBNCCB4π
∫ d/2

0
rir2dr (16)

where, i = 1, 2, 3, and 4 of the Equations in Table 5 for j = 6, 7, 8, and 9 of the Equations in
Table 3, respectively; αCCB is the volume fraction of CCB in the solid burden, (-); and NCCB
is the number density of CCB, (1/m3).

Figure 2. Illustration of Lagrangian method in model: (a) solid-flow stream line in BF (blast furnace),
and (b) illustration of CCB in solid burden.

In addition to the examination of the convergence of gas and solid flow fields, the
mass balance of the removable element O and of the element Fe are examined and the
convergence criteria are Equations (17) and (18).∣∣mO − ∑ MO(R1 + R2 + R3 + R6 + R7 + R8)Vcell

∣∣/mO< 0.01 (17)
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∣∣mFe − ∑ MFe(R10 + R11 + R13 + R14 + R16)VCell
∣∣/mFe< 0.01 (18)

where, mO is the mass supply rate of the element O in the solid phase at the solid inlet, and
mFe is the mass supply rate of element Fe in the solid phase at the solid inlet.

Detailed gas and solid inlet conditions of cases A and B are shown in Table 7. The
results of case A are kept as reference values for case B. In case B, the coke supply rate is
determined by trial and error, and the convergence criteria for the mass balance of element
C in the coke is Equation (19).∣∣mC,coke − ∑ MC(R4 + R5 + R9 + R16)Vcell − mFe[%C]/(1 .0 − [%C])− mC,other

∣∣/mC,coke< 0.01 (19)

where, mC,coke and mFe are the mass supply rates of element C in the coke, and element Fe in
the solid burden, respectively; [%C] is the carbon content in molten iron; and mC,other is the
rate of carbon consumed by other Equations (e.g., silica and manganese oxide reductions),
which is determined by case A.

Table 7. Gas and solid inlet conditions of cases A and B (1/30 BF volume).

Condition Variable Case A Case B

Solid inlet conditions

Ore supply rate (kg/s) 4.05 3.64
CCB supply rate (kg/s) 0 0.41
Coke supply rate (kg/s) 0.81 -

Solid temperature (K) 300

Gas inlet
conditions

Gas supply rate (kg/s) 3.88
Gas composition (mass fraction, -) CO: 20, O2:13, N2:67

Gas temperature (K) 2350

4. Results and Discussion

4.1. Determination of Parameter in CCB Model

In this case, ags in the reaction rates of Equations (1)–(3) in Table 6 was difficult to
determine owing to the sintering of iron-oxide particles [25]. Different from CCB reduction
in some direct reduction processes (e.g., rotary hearth furnace), CCB in BF undergoes slow
heating. During the heating, its self-reduction and Equations with BF gas proceed. Under
the BF environment, changes in CCB volume and porosity become obvious with the increase
of temperature [34,36]. Therefore, compared to the isothermal tests, the nonisothermal
tests under simulated BF environment are more suitable to determine the CCB model
parameters. The value of ags was determined by trial and error. The experimental data
points for fitting are shown in Figure 3a. They were selected at time intervals of 300 s
on the curve of 2 K·min−1, 120 s on the curve of 5 K·min−1, and 60 s on the curve of
10 K·min−1. Five values of ags (1000 m2·m−3, 1300 m2·m−3, 1600 m2·m−3, 1900 m2·m−3,
and 2200 m2·m−3) were examined. the fitness of each value was evaluated by MSE, which
is expressed by Equation (20).

MSE =

(
NP

∑
i

(
vsim − vexp

)2
)

/NP (20)

where, vsim is model-predicted value, vexp is experimental value, and NP is the total number
of data points in Figure 3a.

The fitting results showed that, under ags = 1000 m2·m−3, MSE = 0.064;
under ags = 1300 m2·m−3, MSE = 0.058; under ags = 1600 m2·m−3, MSE = 0.055; un-
der ags = 1900 m2·m−3, MSE = 0.054, and under ags = 2200 m2·m−3, MSE = 0.055. Thus,
it was considered that ags = 1900 m2·m−3 was optimal. Measured mass-loss curves and
optimal model-predicted ones are plotted in Figure 3b. It could be seen in Figure 3b that
the model predictions agree well with the experimental measurements.

105



Metals 2021, 11, 1669

Figure 3. Determination of CCB model parameter of ags: (a) experimental data points for fitting, and (b) comparison
between model prediction curve and experimental curve under different heating rates.

4.2. CCB Behavior in BF

The simulation results of CCB behavior in case B are shown in Figure 4. Figure 4a
shows that the CCB iron oxide starts reduction at approximately 673 K, and it reaches a full
reduction at approximately 1123 K, reflecting that the CCB reducibility is high. Figure 4b
shows that the CCB carbon starts gasification at approximately 923 K. Above the CZ, its
overall conversion is 85%, indicating that 15% of the CCB carbon would enter the BF lower
part. In the present investigation, the influence of the ungasified CCB carbon in the BF
lower part was not considered as its behavior has not been distinctly disclosed so far [37].

Figure 4. Reaction behavior of CCB in case B: (a). profile of CCB iron-oxide reduction fraction,
(b). profile of CCB carbon conversion.

Figure 5 shows the behavior of a single CCB along a solid flowing path in the BF.
The path is near the BF mid-radius Figure 5a. From Figure 5b, it can be seen that, in the
temperature range from 923 K to 1123 K, self-reduction occurs in the CCB. However, the

106



Metals 2021, 11, 1669

CO potential (PCO/
(

PCO + PCO2

)
) in CCB becomes higher than that in BF gas after the

temperature reaches 1083 K.

Figure 5. Reaction behavior of a single CCB: (a) illustration of the mid-radius solid flowing path,
(b) changes of iron-oxide reduction fraction and carbon conversion in CCB along the path, and
(c) changes of CO potential in CCB along the path.

4.3. Influence on BF in-Furnace State

The influence of CCB charging on the BF thermal state is shown in Figures 6 and 7.
In Figure 6, compared to case A, lines 873 K and 1073 K move downward in case B.
These tendencies are also displayed in Figure 7. In CCB charging operation, the CCB
self-reduction is a strongly endothermic reaction and needs more heat than the ore gaseous
reduction or the coke gasification. The CCB self-reduction occurs in the temperature range
from 923 K to 1123 K Figure 5a, so the gas-solid heat transfer is enhanced there, and the
gas-solid heat transfer is weakened above, resulting in a considerable change of thermal
state in the BF upper part. After 1273 K, the CCB Equations are finished, so the influence
on the BF thermal state becomes negligible. It is observed that, in Figure 6, locations of line
1273 K in both cases are nearly the same, and the heights of CZ in both cases don’t show
a significant difference. Furthermore, in Figure 7, gas temperature profiles in both cases
exhibit similar patterns in the BF lower part.

The influence of charging CCB on gas and solid reaction behaviors is shown in
Figures 8–11. By charging CCB, the ore reduction is retarded in the BF upper part (e.g., in
Figure 8, in comparison to case A, the distance between lines 0.1 and 0.2 in case B increases).
This is mainly attributed to the delay of solid temperature increase. However, after the solid
temperature reaches 1073 K, the ore reduction is prompted (e.g., in Figure 8, comparing
cases A and B, lines of 0.2 and 0.9 are closer in case B, and, in the mid radius zone, the
distance between line 0.9 and CZ decreases in case B). This is attributed to the increase of
CO potential in BF gas by CCB (Figure 5a). As a result, charging CCB has a positive effect
on the overall ore reduction above CZ. Before the temperature reaches 1073 K, the CCB
reduces the CO potential in BF gas (Figure 5b), leading to a decrease of CO volume fraction.
After the temperature reaches 1073 K, the ore reduction is intensified by CCB, thus, CO
volume fraction above CZ tends to decrease by charging CCB (e.g., in Figure 9, compared
to case A, lines of 0.25 and 0.40 move downward in case B), and CO2 volume fraction above
CZ tends to increase (Figure 10). Accordingly, local gas utilization (PCO2 /

(
PCO + PCO2

)
)
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increases above CZ (e.g., in Figure 11, compared to case A, lines of 0.4 and 0.5 in case B
move downward).

Figure 6. Profiles of solid temperature in cases A and B.

Figure 7. Profiles of gas temperature in cases A and B.
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Figure 8. Profiles of ore reduction fraction in cases A and B.

Figure 9. Profiles of CO volume fraction in cases A and B.

4.4. Coke-Saving Analysis

Table 8 lists some operation indices for cases A and B. By replacing 10% ore with CCB,
the BF top gas temperature is decreased by 8 K, the BF top gas utilization is increased by 1.3%,
BF productivity is decreased by 17 tHM/day, and the coke rate is decreased by 52.2 kg/tHM
(this decrease is only with the consideration of gasification of CCB carbon above CZ).

The BF ironmaking process includes sintering, coking, and ironmaking. Replacing 10%
ore with CCB, the CCB rate is 179 kg/tHM and the ore rate is decreased to 1579 kg/tHM,
Therefore, in the CCB charging operation, 101 kg sinter and 52.2 kg could be saved to
produce one-ton hot metal. Considering the energy consumption of sintering and coking,

109



Metals 2021, 11, 1669

the CCB charging operation could have a significant energy-saving and CO2-emission-
reducing effect for BF ironmaking.

Figure 10. Profiles of CO2 volume fraction in cases A and B.

Figure 11. Profiles of local gas utilization in cases A and B.

Distributions of coke consumption in cases A and B are listed in Table 9. From Table 9,
it is known that in the total coke-rate reduction by charging CCB, 14.3 kg/tHM is from the
carbon solution loss reaction of coke, 38.4 kg/tHM from the direct reduction of molten FeO.
These findings indicate that charging CCB can suppress the coke solution-loss reaction and
significantly reduce the coke consumption in the direct reduction of molten FeO.
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Table 8. Simulation results of some BF indices.

Index Case A Case B

Productivity (tHM·day−1) 6250 6233
Top gas temperature (K) 463 455
Top gas utilization (%) 51.3 52.6

Fuel rate (kg·tHM−1) PC: 180 Coke:335, CCB carbon: 0

PC: 180.5, Coke:282.8,
CCB carbon gasified above CZ: 30

above
CZ:30.0

PC:180.5, and
CCB carbon gasified above CZ:30.0

Table 9. Distributions of coke consumption in cases A and B (kg/tHM).

Item Case A Case B

Combustion 175.0 175.5
Carbon solution loss in upper BF 56.8 42.5

Direct reduction of molten FeO in lower BF 49.2 10.8
Carburization of molten iron 45.0 45.0

Other reactions 9.0 9.0
Total 335.0 282.8

5. Conclusions

In this study, the CCB for BF application was prepared using cold briquetting followed
by heat treatment. The CCB contained 29.70 wt.% Fe3O4, 39.70 wt.% FeO, 1.57 wt.% Fe,
8.73 wt.% gangue, and 20.30 wt.% carbon. its reduction kinetics in BF conditions were
examined by nonisothermal tests and modeled. The BF operation with replacing 10% ore
with CCB was investigated by numerical simulations. Some conclusions were obtained.

1. The CCB reaction behavior in BF could be modeled using the previously proposed
model by the current authors. Under ags = 1900 m2·m−3, the agreement between
experimental measurements and model predictions was satisfying.

2. In the CCB charging operation, the CCB reached a full iron-oxide reduction and a
carbon conversion of 85% above CZ.

3. By charging CCB, the thermal state in the BF upper part was significantly changed;
however, the BF thermal state in the BF lower part was inconsiderably influenced.

4. By charging CCB, the ore reduction was retarded before the temperature reached 1073 K
and was prompted after; and the local gas utilization tended to increase above the CZ.

5. By the CCB reduction above the CZ, the BF top gas temperature was decreased by 8 K,
the BF top gas utilization was increased by 1.3%, the BF productivity was decreased
by 17 tHM/day, 101 kg sinter and 52.8 kg could be saved to produce one-ton hot
metal. Considering the energy consumption of sintering and coking, charging the
CCB could have a significant energy-saving and CO2-emission-reducing effect for BF
iron making.
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Nomenclature
ags specific surface of iron-oxide particles in CCB, (m2·m−3)
Cp heat capacity, (J·kg−1·K−1)
d diameter of CCB, (m)
D, Deff gas diffusivity, effective gas diffusivity, (m2·s−1)
E enthalpy source, (J·m−3·s−1))
f i reduction fraction or carbon conversion of reaction i in Table 5, (-)
H total enthalpy (J·kg−1)
ΔHi reaction heat of reaction i in Table 2, (J·kmol−1)
ki reaction rate constant of reaction i in Table 5, (m·s−1, kg·s−1atm−1)
Ki equilibrium constant of reaction i in Table 5, (-)
m mass supply/consumption rate of the given element, (kg·s−1)
M molar weight, (kg·kmol−1)
P pressure, (pa)
Pr Prandtl number, (-)
R gas constant, (8.314 J·mol−1·K−1)
Re Reynolds number, (-)
Ri chemical reaction rate of reaction i in Table 2, (kmol·m−3·s−1)
r radial direction, (m)
ri chemical reaction rate of reaction i in Table 5, (mol·m−3·s−1)
S source, units vary
Sc Schmidt number (-)
T temperature, (K)
t time, (s)
Vcell cell volume, (m3)
y mass fraction, (-)
Greek letter
α CCB porosity, (-)
φ, ϕ general dependent variable
Γ general difusion coeffcient
ρ density, (kg·m−3)
λ thermal conductivity, (W·m−1·K−1)
μ fluid viscosity, (kg·m−1·s−1)
Vector
⇀
Ug superficial gas velocity, (m·s−1)
⇀
Vs solid physical velocity, (m·s−1)
⇀
F gs gas flow resistance, (N·m−3)
Subscript
0 initial
CCB CCB variable
coke coke variable
ore ore variable
g gas variable
l liquid variable
s solid variable
e environment variable
species or element name variable of assigned species or element
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Abstract: The reduction process inside the ore pre-reduction rotary kiln involves a series of physico-
chemical reactions, and in-depth understanding of the reduction behavior is helpful to improve the
product quality and productivity. This paper reports a three-dimensional steady state mathematical
model based on computational fluid dynamics, which considers heat transfer, mass transfer and
chemical reactions inside the rotary kiln. A user-defined functions (UDFs) program in C language is
developed to define physical parameters and chemical reactions, and calculate the heat and mass
transfer between freeboard and bed regions. The model is validated by measurement data and is
then used to investigate the detailed information inside the rotary kiln. The results show that there
is a temperature gradient in the bed, which is maximal near the kiln tail and decreases gradually
as the reduction process progresses. The result also confirms that the reduction of FeO to Fe is
the limiting step of the whole reduction process because this reaction requires a higher reduction
potential. Furthermore, the influence of C/O mole ratio and fill degree are analyzed by comparing
the average bed temperature, reduction potential and metallization ratio.

Keywords: rotary kiln; reduction process; numerical simulation; pre-reduction

1. Introduction

As the most efficient technique, blast furnace ironmaking is currently the most widely
used ironmaking process. However, it has inherent defects, such as long process, high
dependence on coke, environmental pollution and so on. Additionally, with the depletion
of coking coal and the strict emission standards of various countries, developing an al-
ternative ironmaking process has always been a hot topic [1,2]. In recent decades, many
research institutions and steel companies have carried out research on smelting reduction
technology [3–6]. Among such research, a new smelting reduction process for iron ore pro-
cessing has been presented by China Iron and Steel Research Institute Group (CISRI) [7,8].
The core of the process consists of two reactors: one is the pre-reduction rotary kiln, and
the other one is the smelting reduction furnace. The main purpose of this process using a
reliable rotary kiln as a pre-reduction reactor is to use the thermal energy and chemical
energy of gas from the final reduction reactor to lighten the load of iron oxide reduction
in the smelting reduction process, further improving the energy utilization of the whole
system. Undoubtedly, the stable pre-reduction process is also the necessary guarantee for
the smelting reduction process. Therefore, it is necessary to study the characteristics of a
rotary kiln-based process on the reduction behavior of iron oxide.

Due to the enclosed process and the limitation of measuring equipment, it is difficult
to directly obtain the comprehensive information by measurement. To solve this problem,
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many researchers have suggested employing mathematical methods. For example, Kings-
ley et al. [9] established a one-dimensional model of mass and energy transfer based on the
FORTRAN program, and the obtained result provides a powerful approach for kiln opera-
tional optimization. However, due to the one-dimensional nature, the mass and energy
balance equations are solved for the solid and gas assuming only axial temperature varia-
tion, that is, the solid and gas phases are fully mixed in cross-section, which is obviously
far from the actual production. With the development of computational fluid dynamics
(CFD), the numerical simulation technique has been widely used to solve such problems. A
two-dimensional numerical simulation has been frequently used. Mujumdar et al. [10,11]
developed a comprehensive framework based on a two-dimensional model. They divided
the computational domain into two regions: freeboard region and bed region, and then con-
nected heat and mass transfer through a common interface. The model was able to predict
qualitative and quantitative information about the key parameters. Furthermore, a similar
approach was used by Gaurav et al. [12,13] to investigate the influence of input parameters
on the metallization ratio and temperature profile. Unfortunately, the two-dimensional
model only considers one axial section of the rotary kiln, which makes it difficult to reflect
the overall behavior of the rotary kiln. In order to be more relevant to practical production,
it is necessary to develop a more practical three-dimensional computational fluid dynamics
(CFD) model. Manju et al. [14] developed a three-dimensional numerical model of the pneu-
matic coal injection and combustion process using the Eulerian–Lagrangian approach. The
influence of operating parameters such as particle size distribution and wall temperature
on the distribution of injected particles was investigated. However, the reduction process
in the bed region was not included. In fact, the flame stability, combustion characteristics
and temperature distribution directly affect the reduction process and product quality, and
the release of gas from the bed region also affects the distribution of gas and temperature
in the freeboard region.

As mentioned above, this work proposed a strategy of a three-dimensional steady
state mathematical model with the Eulerian method to investigate the characteristics inside
the rotary kiln. This model involved mass, momentum and heat transfers, as well as
combustion and reduction reactions both in the freeboard and bed regions. The simulation
results show detailed information from inside the rotary kiln, such as the temperature
field, variation of gas and solid phase species. Additionally, the effects of key operational
parameters on the average bed temperature, reduction potential and metallization ratio are
discussed. These findings are helpful to control and optimize the reduction process in the
pre-reduction rotary kiln.

2. Model Description

2.1. Description of the Process and Assumption

The schematic diagram of the pre-reduction rotary kiln is shown in Figure 1. The
kiln is 48 m long, with a 2.3 m internal diameter and is inclined by 2 degrees. In order to
obtain the appropriate temperature profile, the air supply was staged, and five blowers
were placed around the kiln at equal spacing to inject air. The raw materials were charged
from the kiln tail in a predetermined ratio and heated by the hot flue gas flowing in reverse
direction. The iron oxide was gradually reduced to metallic iron, and then the products of
kiln were hot-charged into the smelting reduction furnace.

Figure 1. Schematic diagram of the pre-reduction rotary kiln.
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The reduction process in the rotary kiln is complicated, including mass transfer,
heat transfer, various chemical reactions and so on. Hence, it is necessary to make
some simplifications for developing a mathematical model. In this study, the rotary
kiln is divided into two separate regions: freeboard region and bed region, as shown in
Figure 2. It is assumed that only gas phase exists in the freeboard region, and both gas
and solid phases exist in the bed region. The two regions are coupled through a common
boundary, and mass transfer and heat exchange occur between freeboard region and bed
region via this boundary.

 

Figure 2. Heat and mass transfer between freeboard region and bed region.

2.2. Governing Equations

In this work, the rotary kiln model is a 3D steady-state model. Both gas and solid
phases are treated as interpenetrating continua phases using the Eulerian method. The
governing equations of mass, momentum, energy and species transport for the gas phase
and solid phase can be written as follows:

∇(εp · ρp · φ ·⇀v p) = ∇(εp · Γφ · ∇(φ)) + Sφ (1)

where the diffusive coefficient (Γφ), variable (φ) and source term (Sφ) change with different
kinds of governing equations, as summarized in Table 1.

Table 1. Variables in Equation (1).

Phase Eq. φ Γφ Sφ

Gas

Mass 1 0 Sφ,g

Momentum
→
v g 0 εg(−∇P + ρg · →g ) +

→
F gs

Energy Hg λg/CP,g hgs As(Tg − Ts) + Mo ·
n
∑

n=1
(Rn · ΔHT

n )

Species i Yi,g ρg Di ∑
k

Ri,k Mi

Solid

Mass 1 0 Sφ,s

Momentum
→
v s 0 εs(−∇P + ρs · →g )−

→
F gs

Energy Hs λs,eff/CP,s hgs As(Ts − Tg)− Mo ·
n
∑

n=1
(Rn · ΔHT

n )

Species j Yj,s ρsDj ∑
k

Rj,k Mj
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2.3. Reaction Kinetics Model
2.3.1. Coal Devolatilization

In the coal devolatilization process, it is considered that coal forms volatile matter and
char in the gas phase and solid phase, respectively [15]. This process consists of two steps
and can be described as follows:

Coal = ψ1Char + Volatile matter (2)

Volatile matter = ψ2CO + ψ3CO2 + ψ4H2 + ψ5H2O + ψ6CH4 + ψ7N2 (3)

The ψ is the mass fraction of pyrolysis products, which is determined by the coal
proximate and elemental analysis [16]. Moreover, the release of individual gas species from
volatile matter is assumed to be a self-degradation [17], and the first-order reaction model
developed by Donskoi was used [18]:

Rvi = kvi,0 exp(−Eva,i

RT
)

Wvi
Mvi

(4)

2.3.2. Homogeneous Reaction

In this model, the solid–solid reactions are neglected because they only take place
at the contact surface of particles. For gas–gas reactions, gases’ combustion and water–
gas shift reactions are mainly considered. In the complex turbulent reacting flow, the
reaction rate is usually controlled by chemical reaction kinetics and turbulent mixing rate.
Therefore, the finite rate/eddy-dissipation model was adopted to describe the influence of
turbulence–chemistry interaction on the reaction process [19]. This model computes both
the Arrhenius rate and the mixing rate, and the smaller is favored. The kinetic parameters
of homogenous reactions are shown in Table 2. The reaction rates can be calculated by the
following equations:

∧
Ri,r = (v′′

i,r − v′ i,r)

⎛
⎝k f ,r

Nr

∏
j=1

[
Cj.r

]η′ j,r − kb,r

Nr

∏
j=1

[
Cj,r

]η′′ j,r
⎞
⎠ (5)

Ri,r = min

{
v′ i,r Mw,i Aρ

ε

k
min

R

(
YR

v′R,r Mw,R

)
, v′ i,r Mw,i AB

ε

k
∑ pYp

∑ N
j vn

j,r Mw,j

}
(6)

Table 2. Kinetic parameters of homogenous reactions [20,21].

Reaction Ar (s−1) Ea (J/kmol) βr Reaction Order

2CO + O2 = 2CO2 2.2 × 1012 1.7 × 108 0 [CO][O2]
2H2 + O2 = 2H2O 6.8 × 1015 1.67 × 108 −1 [H2]0.25[O2]1.5

CO + H2O = CO2 + H2 2.75 × 109 8.4 × 107 0 [CO][H2O]

2.3.3. Heterogeneous Reaction

For gas–solid reactions, the main reactions are the carbon gasification (by CO2 and
H2O) and the reduction of iron oxides (by CO and H2). Since the pellet is made of very
fine particles, the time scale for the reactions at high temperature is much shorter than the
time scale for diffusion in the pores. Therefore, it can reasonably be assumed that pores
will not contribute significantly to the reaction rate, that is, the gas–solid reactions are
limited to the reaction interface. The shrinking core model developed by Sun and Lu was
used to describe the heterogeneous reaction process [22,23]. This model takes into account
the effects of heat and mass transfer on the reaction rate. The kinetic parameters of these
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heterogeneous reactions are shown in Table 3. The reaction rates can be calculated by the
following equations:

RCO
i = S f ,ini4πr2

i (1 − fi)
2
3 ki,o exp(−Ea,i

RT
)(Cco − Cco2

Ke,i
) (7)

RH2
i = S f ,ini4πr2

i (1 − fi)
2
3 ki,0 exp(−Ea,i

RT
)(CH2 −

CH2O

Ke,i
) (8)

RCO2
c = S f ,cnc4πr2

c (1 − fc)
2
3 kc,0 exp(−Ea,c

RT
)(Cco2 −

C2
co

Ke,c
) (9)

RH2O
c = S f ,cnc4πr2

c (1 − fc)
2
3 kc,0 exp(−Ea,c

RT
)(CH2O − CH2 · CCO

Ke,c
) (10)

Table 3. Kinetic parameters of heterogeneous reactions [24].

Reactions ki,0 (m·s−1) Ea (J/mol) Ke Rate Expressions

C + CO2 = 2CO 1.87 × 108 221,800 exp (−20,765.92/T + 32.8) Equation (9)
C + H2O = CO + H2 6.05 × 105 172,700 exp (−16,142.19/T + 28.16) Equation (10)

3Fe2O3 + CO = 2Fe3O4 + CO2 2700 113,859 exp (5815.5/T + 5.5076) Equation (7)
3Fe2O3 + H2 = 2Fe3O4 + H2O 160 92,000 exp (2065/T + 8.102) Equation (8)

Fe3O4 + CO = 3FeO + CO2 23 71,100 exp (−4685.22/T + 5.19) Equation (7)
Fe3O4 + H2 = 3FeO + H2O 30 63,600 exp (−1857.51 + 1.01) Equation (8)

FeO + CO = Fe + CO2 17 69,454 exp (2376.46/T−2.82) Equation (7)
FeO + H2 = Fe + H2O 30 63,600 exp (−1857.51/T + 1.01) Equation (8)

2.4. Turbulence Model

The standard k-ε model was adopted to simulate the gas phase turbulence in the
freeboard region. For the bed region, the details of the movement of solids in the radial
direction and variation of bed height are ignored, and solids are regarded as pseudo-
homogeneous fluids. The flow velocity of solid particles in the axial direction is very small,
and the turbulence has little effect on the reduction process. Hence, the bed region is
assumed to be a laminar zone. The standard k-ε model is a two-equation turbulence model
based on the transport equation of turbulence kinetic energy (k) and its dissipation rate (ε).
The expression is as follows [25,26]:

∂(ρk)
∂t

+∇(ρkv) = ∇
[(

μ +
μt

σk

)
· ∇k

]
+ Ck − ρε (11)

∂(ρε)

∂t
+∇(ρεv) = ∇

[(
μ +

μt

σε

)
· ∇ε

]
+

ε

k
(Cε1CK − Cε2ρε) (12)

where Cε1 = 1.44, Cε2 = 1.92, Cμ = 0.09, σk = 1.0, σε = 1.3.

2.5. Radiation Model

In this work, the discrete ordinates (DO) radiation model was used to calculate the
radiation flux. The DO model is suitable for solving radiation problem in the entire range
of optical thicknesses, especially for the problem of local heat source. The model solves the
radiative transfer equation (RTE) for a finite number of discrete solid angles, each associated
with a vector direction fixed in the global Cartesian system [27], and the equation can be
written as follows:

∇(I(
→
r ,

→
s )

→
s ) + (a + σs)I(

→
r ,

→
s ) = an2 σT4

π
+

σs

4π

∫ 4π

0
I(

→
r ,

→
s′ )Φ(

→
s ,

→
s′ )dΩ (13)
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where a is the absorption coefficient of gas phase. Here, the weighted-sum-of-gray-gases
model (WSGGM) is used to specify the variable absorption coefficient [28].

2.6. Heat Transfer in the Bed Region

As shown in Figure 2, the heat transfer mechanisms of the top and bottom surfaces
of the bed are different. The top surface of the bed is heated mainly by convection and
radiation from the gas and radiation from the inner exposed wall. The heat flux of top
surface can be defined as [29,30]:

qtop = hgb(Tg − Tb) + egXbg(Eg − Jb) + (1 − eg)Xbw(Jew − Jb) (14)

hgb = 0.46λgRe0.535Re0.104
ω η−0.341

s /De (15)

The bottom surface of the bed receives heat from conduction, convection and radiation
from the covered wall. Tscheng and Watkinson [30] have reported the combined heat
transmission coefficient between bottom surface and covered wall, and the heat flux is
given by:

qbottom = hwb(Tw − Tb) (16)

hwb =
11.6λs

Rθ
(

ωR2θ

αs
)

0.3

(17)

Moreover, the rotation speed of the pre-reduction rotary kiln is very low at 0.6 rpm,
and the active layer makes up a very small portion of the bed region. Hence, it is reasonable
to treat the heat transfer process of the bed in the rotary kiln approximately according
to the heat transfer process of the plug flow region, which is a common method and has
been widely used [31–33]. The expression of effective thermal conductivity in the bed is as
follows [33]:

λs,e f f =
εs

1
λs

+ 1
4σedpT3

+ 4εgσedpT3 (18)

2.7. Numerical Method and Boundary Condition

Figure 3 shows the geometric model of the rotary kiln. To simplify the model and
improve the grid quality, the elbows are simplified with cylinders as air inlets, which has
no effect on the simulation results. Figure 4 presents the computational grid of the rotary
kiln created using ICEM CFD, containing 4,118,224 hexahedral cells in all regions. The
CFD software FLUENT was used for the simulation process. The segregated independent
and 3D steady solver was adopted. The governing equations were discretized with second
order upwind scheme using the control volume method and solved by SIMPLE arithmetic,
and the simulation process was considered as convergence when the residuals are less than
1 × 10−5. Furthermore, the mass transfer and heat exchange on the interface were defined
as mass source and energy sink, and the UDF program in C language was developed and
linked to FLUENT to calculate the energy absorbed by bed surface and gas escaping from
the bed surface.

Figure 3. Simplified geometric model of the rotary kiln.
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Figure 4. Computation mesh.

The boundary condition of the rotary kiln for numerical simulation is shown in
Figure 3. The boundary conditions of fuel-inlet, air-inlet and raw material-inlet are “mass-
flow-inlet”. The boundary conditions of gas-outlet and product-outlet are “pressure-outlet”.
The mass flow rate and temperature of fuel gas are 0.468 kg/s and 1473 K, respectively. The
mass flow rate and temperature of raw material are 2.833 kg/s and 300 K, respectively. The
mass flow rate and temperature of combustion air are 0.443 kg/s and 300 K, respectively.
The particle size was set to 13 mm. The chemical composition of fuel gas and raw material
are listed in Tables 4 and 5. In addition, the shear condition at the kiln wall is the no-slip
condition, and heat transfer coefficient for convection and radiation from kiln wall to
environment was calculated by [34]:

hc
we =

0.11ka

Dsh
((0.5Re2

ω + Gr)Pra)
0.35

(19)

hr
we = σe

T4
sh − T4

a

Tsh − Ta
(20)

Table 4. Chemical composition of fuel gas.

Species CO CO2 H2 H2O N2

Mole fraction 56.7 20.0 14.3 4.8 4.2

Table 5. Chemical composition of raw material.

Species Fe2O3 FeO Al2O3 SiO2 CaO MgO TiO2 C Vol Ash

Mass fraction 38.6 24.6 2.6 3.5 1.1 2.7 5.0 15.3 4.7 1.9

3. Results and Discussion

3.1. Model Validation

The comparison between the computational and measured results is listed in
Table 6, mainly composed of gas composition and temperature of exhaust gas at the
kiln tail, metallization rate (MR) of the reduced product outlet and relative error. The
metallization rate (MR) and relative error are given by Equations (19) and (20). As shown
in Table 6, the simulation results are in good agreement with the measured value. The max-
imum relative error between measured and calculated results is 10.8%. Generally speaking,
the model in this work is reasonably reliable for predicting the inner characteristics of the
rotary kiln.

MR =
wFe

wFe +
56
72 × wFeO + 112

160 × wFe2O3 +
168
232 × wFe3O4

(21)

Relative Error =
|Measured value − Simulated value|

Measured value
(22)
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Table 6. Comparison between measured and simulated results.

Parameters Measured Simulated Relative Error

CO(%) 19.4 20.2 4.3%
CO2(%) 24.2 22.9 5.1%
H2(%) 8.1 9.0 10.8%

H2O(%) 15.2 14.9 1.6%
T(K) 1023 1002 2.1%

Metal(%) 70.0 72.4 3.4%

3.2. Basic Analysis
3.2.1. Temperature Distribution

Figure 5 displays the temperature distribution of the gas phase along the axial section
of the pre-reduction rotary kiln. The high temperature zones near the flames due to
combustion reactions of H2 and CO are visible, and the maximum temperature at the
edge of flames is about 2200 K. Moreover, the combustion-supporting air enters the rotary
kiln through five different nozzles to form five combustion regions, which is beneficial
to reasonably controlling the axial temperature distribution and preventing local high
temperature zones near the bed surface.

 

Figure 5. Temperature distribution of the gas phase along the axial section.

Figure 6 shows the temperature distribution of the solid phase within the bed cross-
section at different positions. “L” represents the distance from the cross-section to the kiln
tail. As expected, the temperature of the cross-section within the bed is not uniform, and
there is a temperature gradient in the radial direction. The temperature of the bed surface
and bottom is higher than that of the core. To better describe the evolution of tempera-
ture, the temperature of the cross-section along the axis of the rotary kiln is illustrated in
Figure 7. Tave, Tmax, Tmin and ΔT represent the average temperature, the maximum tem-
perature, the minimum temperature, and the difference between maximum temperature
and minimum temperature of the cross-section, respectively. After the raw materials are
charged into the kiln at ambient temperature, the raw materials near the outer region are
heated rapidly, while the heating rate of raw materials near the core region is relatively
slow, and the temperature gradient at the kiln tail is larger than others. As the raw materials
move toward the kiln head, the temperature gradient gradually decreases and changes
gently after moving to the middle part of the kiln. This is mainly because the heating
rate is restrained by carbon gasification reactions (by CO2 and H2O), which are strongly
endothermic reactions.

 

Figure 6. Temperature distribution of the solid phase within the bed cross-section.
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Figure 7. Temperature distribution of the cross-section along the axis of the rotary kiln.

3.2.2. Distribution of Gas Composition

The detailed information of the main gas species’ distribution (O2, CO, H2, CO2, H2O)
in the rotary kiln is obtained by calculation. Figure 8 shows the contour of the gas phase
in mass fraction along the axial section. To maintain the reducing atmosphere in the kiln,
the air supply is insufficient. It can be seen that there is almost no O2 in the kiln except
near the nozzles, which is beneficial to reducing the risk of re-oxidization of the metalized
Fe. At the combustion reaction zones, a portion of CO and H2 are consumed rapidly.
The concentrations of CO and H2 gradually decrease in the direction of gas flow; on the
contrary, the concentrations of H2O and CO2 gradually increase.

Figure 9 shows the average mole fraction of gas species (CO, H2, CO2, H2O) in the bed
region as a function of distance from the kiln tail, which are the intermediate gases for the
reduction of iron oxides by carbon. It is observed that the concentrations of gas species (CO,
H2, CO2, H2O) increase linearly near the inlet of raw materials. This is mainly attributed to
the rapid release of volatile matter. After that, the volatile mater is gradually exhausted
and the concentrations of H2 and H2O gradually decrease. When the materials move to the
middle of the rotary kiln, there is almost no H2 and H2O in the system. On the contrary,
with the increase of material temperature, the rate of carbon gasification is accelerated.
When the generation rate of CO exceeds its consumption rate, the concentration of CO
keeps increasing. Moreover, the variation in concentration of CO2 is different from that
of CO. The increase of CO2 concentration in the early stage of reduction process may be
attributed to the generation of volatile matter and reduction of iron oxide by CO, while the
decrease of CO2 concentration in the later stage of the reduction process is attributed to the
rapid consumption of carbon gasification.

3.2.3. Variation of Iron Oxides

Figure 10 presents the average mass fraction of solid species (Fe, FeO, Fe2O3, Fe3O4)
in the bed region as a function of distance from the rotary kiln tail. When the material
temperature is higher than 570 ◦C, the reduction process of Fe2O3 to Fe includes three steps:
Fe2O3→Fe3O4→FeO→Fe. The reduction of Fe2O3 to Fe3O4 occurs rapidly, which is due to
the low reduction potential required for this reaction. It can be seen that this reaction has
been completed when the material reaches the middle of kiln. Since the reduction rate of
Fe2O3 to Fe3O4 is faster than that of Fe3O4 to FeO, the concentration of Fe3O4 increases
first and then decreases. Once Fe3O4 is completely reduced to FeO, only the reduction
of FeO to Fe remains, and then the concentration of FeO decreases gradually. Obviously,
the reduction of FeO to Fe is the rate limiting step of the reduction process because this
reaction requires a higher reduction potential. In addition, there is almost no H2 in the
system after the materials reach the middle of the rotary kiln (Figure 9), and the reduction
reaction of iron mainly occurs in the second half of the rotary kiln. Therefore, it can be
considered that H2 makes little contribution to the reduction of FeO to Fe, and CO is the
major reducing agent for this reduction reaction.
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3.3. Influences of C/O Ratio

The C/O mole ratio is an important parameter in industrial production. To investigate
the effect of C/O mole ratio on reduction process, the C/O mole ratio is set to 0.8, 1.0, 1.2
and 1.4, respectively, and the fill degree of the rotary kiln is kept at 11.6%. Figure 11 shows
the variation of average bed temperature along the axial section with different C/O mole
ratios. It is clear that the trends of average bed temperature for different C/O mole ratios
are similar, and the heating rate is first fast and then slow. The fast heating rate in the early
stage is mainly due to the large temperature gradient between the bed and surrounding
environment. Moreover, the reductions of Fe2O3 and Fe3O4 are the main reactions in this
stage, thus the amount of heat consumption by reactions is small. Besides, the average bed
temperatures change very little between different C/O mole ratios, which indicates that
the effect of the C/O mole ratio on the average bed temperature is negligible.

 
Figure 8. Composition distributions of the gas phase along the axial section.

0 10 20 30 40 50
0

20

40

60

80

100

M
ol

e 
fr

ac
tio

n 
(%

)

Distance from kiln tail (m)

 CO
 CO2

 H2

 H2O

 
Figure 9. Average mole fraction of gas composition in the bed region along the axial section.
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Figure 10. Average mass fraction of solid composition in the bed region along the axial section.
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Figure 11. Average bed temperature along the axial section for different C/O mole ratios.

The reduction potential is defined by Equation (23), which is an important index
with which to evaluate the reduction ability of intermediate reducing gas. Figure 12
shows the variation of reduction potential along the axial section with different C/O mole
ratios. As shown in Figure 12, comparing the four simulation cases at the same position,
the reduction potential increases significantly with the increase of C/O mole ratio. In
general, the reduction potential is determined by the gas composition, and the higher
reduction potential represents the higher concentration of reducing gas. Clearly, the carbon
concentration in the bed increases with the increase of C/O mole ratio. This is helpful to
accelerate the carbon gasification reactions, leading to an increase in the concentration of
reducing gas.

Reduction Potential =
ϕCO + ϕH2

ϕCO + ϕH2 + ϕCO2 + ϕH2O
(23)

Figure 13 shows the variation of metallization rate along the axial section with different
C/O mole ratios. It can be observed that the decrease of C/O mole ratio is unfavorable
to the production of metallic iron. This can be explained by the obtained results from
Figures 11 and 12. Both the average bed temperature and reduction potential are very
important for the reduction process. Although the C/O mole ratio has little effect on the
average bed temperature, it has a strong effect on the reduction potential. At the same bed
temperature, the higher reduction potential of reducing gas leads to a stronger reduction
ability, which promotes the reduction of FeO to Fe.

125



Metals 2021, 11, 1180

0 10 20 30 40 50
0.0

0.2

0.4

0.6

0.8

1.0

R
ed

uc
tio

n 
po

te
nt

ia
l (

-)

Distance from kiln tail (m)

 C/O 0.8
 C/O 1.0
 C/O 1.2
 C/O 1.4

Figure 12. Reduction potential along the axial section for different C/O mole ratios.
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Figure 13. Metallization rate along the axial section for different C/O mole ratio.

3.4. Influences of Fill Degree

In the previous discussion, the fill degree of the rotary kiln is fixed. This section
examines the influence of fill degree on the reduction process in the rotary kiln, and the fill
degree is set to 11.6%, 16.6%, 21.6% and 26.6%, respectively. Figure 14 shows the variation
of average bed temperature along the axial section for different fill degrees. It appears that
the fill degree has a strong effect on the average bed temperature. As expected, the higher
fill degree lengthens the path of heat transfer throughout the bed, which leads to lower
bed temperature.
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Figure 14. Average bed temperature along the axial section for different fill degrees.
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Figure 15 shows the variation of reduction potential along the axial section for different
fill degrees. It is found that the reduction potential decreases with the increase of fill degree.
The curves are mainly composed of three parts. In the first part, the reduction potential
rapidly increases due to the release of volatile matter. With the increase of fill degree, the
bed temperature decreases correspondingly, which weakens the release rate of volatile
matter and prolongs the residence time in the first part. The second part is a period with a
very slow rising rate, and the reduction potential remains nearly constant in this part. This
implies that the supply of reducing gas just meets the requirement of reduction reactions.
Similarly, the increase of the fill degree also extends the residence time of the second part.
With the increases of bed temperature, the carbon gasification reactions become significant,
and the reduction potential rises again, which marks the beginning of the third part and
lasts until the product is discharged from the kiln head.
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Figure 15. Reduction potential along the axial section for different fill degree.

Figure 16 shows the variation of metallization rate along the axial section for different
fill degrees. It can be seen that there is almost no metallic iron in the bed at the early stage,
and then the metallization rate gradually increases as the reduction reaction progresses.
A lower metallization rate is found in the case of higher fill degree at the same position.
When the fill degree increases to 26.6%, the final metallization rate is only 26.3%. This is
because higher fill degree leads to lower bed temperature and lower reduction potential,
which is unfavorable to the reduction reactions. Therefore, in order to ensure product
quality, the fill degree should not be too high in practical production.
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Figure 16. Metallization rate along the axial section for different fill degrees.
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4. Conclusions

In the present work, the reduction process in a pre-reduction rotary kiln is studied by
the computational fluid dynamic approach. Based on the simulation results, the following
conclusions can be drawn:

(1) A temperature gradient (ΔT) was found in the bed, which is maximal near the kiln
tail and decreases gradually as the reduction process progresses.

(2) The reductions of Fe2O3 to Fe3O4 and Fe3O4 to FeO are always fast, and the
reduction of FeO to Fe is the limiting step of the whole reduction process because this
reaction requires a higher reduction potential. H2 makes little contribution to the reduction
of FeO to Fe, and CO is the major reducing agent for this reduction reaction.

(3) The reduction potential curves can be divided into three parts. The curves increase
rapidly in the first part and then remain nearly constant in the second part. In the third
part, the curves increase again until the products are discharged from the kiln head.

(4) The C/O mole ratio has little effect on the average bed temperature but has a strong
effect on the reduction potential. The higher reduction potential promoted the reduction
process.

(5) With the increase of fill degree, both average bed temperature and reduction
potential decrease. When the fill degree increases to 26.6%, the final metallization rate is
only 26.3%.
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Nomenclature

As Area (m2) R Molar gas constant (J/mol·K)
Cp Specific heat capacity (J/kg·K) Ri Rate of reaction i (mol/m3·s)
Di Mass diffusion coefficient (m2/s) Re Reynolds number (-)
Dsh Diameter of kiln (m) Sφ,p Source term for phase p (kg/m3·s)
Ea,i Activation energy of reaction i (J/kg·mol) T Temperature (K)
Fgs Drag force (N/m2) vp Velocity of phase p (m/s)
Gr Grashof number (-) Yi Mole fraction of species i (-)
Hp Enthalpy of phase p (J/mol) Greek Symbols

ΔHi Enthalpy of reaction i (J/mol) αs Thermal diffusivity (m2/s)
h Heat transfer coefficient (W/m2·K) εp Volume fraction of phase p (-)
J Radiation intensity (W/m2) θ Central angel (rad)
k Turbulence kinetic energy (J) λp Thermal conductivity (W/m·K)
Ke,i Equilibrium constant of reaction i (-) ρp Density of phase p (kg/m3)
Mi Molecular weight of species i (kg/mol) σ Stefan-Boltzmann constant (W/m2·K4)
P Pressure (Pa) Subscripts

Pr Prandtl number (-) g Gas phase
q Heat flux (J/m2·s) s Solid phase
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Abstract: A model-based system for real-time monitoring and operational support has been devel-
oped for the Composition Adjustment by Sealed argon-bubbling with Oxygen Blowing (CAS-OB)
process. The model of the system is based on a previously developed dynamic model using first prin-
ciples, i.e., mass and energy balances, reaction kinetics, and thermodynamics. Adaptive estimation of
state variables has been implemented using a Kalman filter to ensure that the model is able to correct
for deviations between measured and calculated temperatures in real-time operation. The estimation
technique reduces the standard deviation of the predicted end temperature from 19.5 °C to 5.5 °C in
a data series with more than 1000 heats. The system also includes an endpoint optimisation, which
calculates the amount of scrap or oxygen to be added to achieve the target temperature at the end of
the heat. The model has been implemented in the Cybernetica® CENIT™ framework. The overall
model can be regarded as a hybrid digital twin, where a first principles model is adapted in real time
using process measurements. The system also includes user interfaces for operators where process
predictions can be followed, and suggested optimised inputs are presented. The system has been
deployed at two refining stations at SSAB Europe OY in Raahe, Finland. The optimized suggestions
for oxygen and scrap are presented to the operators in the graphical user interface. A projected
temperature profile is calculated into the near future using the planned operational procedure as
well as the projected temperature profile using optimised inputs. Both profiles are displayed in the
user interface. Based on these trajectories, the operator can decide on whether to follow the nominal
trajectory, or the recommendation from the optimisation This will help the operators make better
decisions, which in turn reduces the number of rejected heats in the CAS-OB process.

Keywords: real-time model; estimation; model predictive control; steel refining

1. Introduction

Composition Adjustment by Sealed argon-bubbling with Oxygen Blowing (CAS-OB) is
a secondary steelmaking process step used for alloying and temperature control. The CAS-
OB-process was developed by Nippon Steel Corporation to improve on existing refining
and alloying stations. The CAS-OB process provides a buffer station in the secondary
steelmaking area where chemical composition and steel temperature can be adjusted as
well as homogenized in a controlled manner.

The main component of the CAS-OB design is a refractory lined ladle with a porous
plug for gas bubbling in the bottom. The operation of the process is accomplished through
the use of three items: (1) a refractory bell on top of the ladle, which can be used to contain
an inert atmosphere of argon or the chemical reaction between oxygen and aluminium,
(2) supply of argon gas, and (3) a water-cooled oxygen lance. These functional items form
the heart of the process (Figure 1).
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Figure 1. Illustration of the CAS-OB process.

Molten steel from a primary steelmaking process (Basic Oxygen Furnace, BOF) is
initially poured into a ladle. The ladle consists of a steel casing with a refractory brick layer
on the inside. The refractory layer provides insulation and is resistant to the corrosive
environment of the steel bath, having a high temperature of around 1600 °C. During
treatment, steel components will react with added oxygen to form a slag phase. Additions
in form of oxides will also dissolve into the slag phase. Typical slag components are
FeO, SiO2, MgO, Al2O3, and CaO. In the CAS-OB-process, the slag phase takes part
in the reactions and protects the molten steel from the atmosphere and works as an
insulating layer.

The CAS-OB process is designed to create an inert atmosphere above the steel to allow
the addition of alloys without contact with atmospheric oxygen or an oxide slag. This
is accomplished by first creating a slag free area (known as an eye) at the surface of the
molten steel by the introduction of argon into the steel through a porous plug at the bottom
of the ladle. Argon bubbles reaching the surface of the steel push aside the slag layer on
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top of the ladle, creating a slag free area. The amount of argon flow required to produce
the required size of eye on top of the ladle varies with the condition of the porous plug, the
depth of slag on top of the ladle, and the fluidity of the slag. Once the eye is created, the
refractory bell can be lowered into the slag free area.

The bell provides a protected environment for adding alloying materials, where the
steel surface is open, but still protected from contact with the surrounding atmosphere.
This also ensures that the amount of absorbed nitrogen can be kept at a low level. The
argon bubbling also provides stirring for homogenizing temperature and composition of
the steel [1–4].

2. Materials and Methods

The numerical model used for describing the dynamic behaviour of the CAS-OB
process is based on previous work by Rotevatn et al. [5] and Järvinen [2]. In recent
years, CAS-OB model updates have have been reported by Sulasalmi et al. [6], Visuri
et al. [7], and Kärnä et al. [8]. The latter have done a comprehensive work on utilizing
computational fluid dynamics (CFD) calculations to develop an improved model of the
CAS-OB. Industrial trials using a pyrometer were also made and measurements applied for
validation of temperature development in the model. The model developed in this work
consists of a set of ordinary differential equations describing the mass and energy balance
of the process, including component balances, main reactions, and thermodynamics. The
approach in this work is to provide a model that is as simple as possible to describe the
main process dynamics, focusing primarily on temperature development, in order to obtain
fast enough real-time calculation for optimization of the industrial process. The model used
in this work is the same as the one presented in Rotevatn et al. [5], but with the addition of
a stirring-dependent heat transfer coefficient for the convective heat transfer between the
metal and the ladle wall. In addition, considerable work has been done in preparing the
model for online signals, process measurements, and material and product analyses.

2.1. Control Volumes and State-Space Variables

The model is formulated as a continuous state space model, which also contains an
integrator providing a time discrete state vector. The model has control volumes where the
masses of each species and the temperature are calculated for each time step. These control
volumes include liquid steel in the bulk of the vessel, free surface on the top of the metal
inside the bell, and the slag phase at the top of the metal. The model also includes states
describing the temperature distribution through the refractories in the ladle and the bell.

2.1.1. Liquid Steel Phases

The liquid steel is divided into two control volumes, (1) the main bulk volume of the
treatment ladle and (2) the free surface. The modeled metal components are the same as
for the two control volumes: Al, Si, Mn, Fe, C, P, S, Nb, V, Ni, Ti, B, Ca, N, Cr, Cu, and Mo.
For each of the metal components, a time dynamic component balance is calculated, based
on material flows and reaction rates. The main control volume in the model comprises the
main bulk of the metal in the ladle, typically about 90% of the total mass, whereas the rest,
typically 10%, is assumed to be part of the free surface control volume.

There is an exchange of mass between the main bulk control volume and the free
surface. The amount of exchange is varying with degree of bubbling in the process.
Higher volumes of stirring gas will increase the flow of material exchange between the two
control volumes.

Material additions as well as the oxygen blowing are assumed to enter the free surface
control volume. Added materials are heated up from ambient temperature to the free
surface temperature and are assumed to melt instantly into the free surface. The energy
required is taken from the free surface control volume. For numerical stability and accuracy,
this assumption means that the additions should not be too large compared to the mass
and available energy in the free surface control volume. If larger and energy demanding
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material additions are applied, the model dimensions, calculation intervals, or equation
solver should be adjusted accordingly. Both the free surface and the main bulk are assumed
to be liquid at all times during a treatment batch.

2.1.2. Slag Phase

The slag phase is floating on top of the hot metal. The slag is assumed to be in contact
with the hot metal and chemical components in the slag will interact with the metal through
interface reactions between hot metal and slag. In the model, it is assumed here that there
is no contact between the free surface control volume and slag. The following chemical
components are assumed present in the slag phase: Al2O3, SiO2, MnO, FeO, MgO, TiO2,
P2O5, CaO. The slag is assumed to be liquid at all times during a batch treatment.

2.1.3. Gas Phase

In the model, it is assumed that there is no gas phase inside the liquid hot metal. This
is a simplification that has been done to save computation time. The aim of this model is to
be able to track the main dynamics of the process during a treatment. The gas dynamics
of bubbles inside the hot metal is in this respect considered to be much faster than the
component balances and the temperature. The bubbling gas is argon which is inert to
reactions. In the cases where oxygen heating is applied, the oxygen is assumed to react
instantly with metal components forming oxides that are subsequently reacting further,
where the slag–metal equilibrium will decide the reaction potentials.

2.1.4. Ladle

The ladle refractory is modeled as a number of equally thick shells from the inside
in contact with the hot metal to the outside in contact with the steel casing, which in turn
is in contact with the surrounding air. The number of refractory shell is configurable but
typically a value of five shells is applied. This means that there are in total six control
volumes describing the temperature profile of the ladle refractory and steel shell. The ladle
only has equations describing the heat evolution. No chemical reactions or mass balance
equations are included. Refractory wear can be modeled by adjusting refractory thickness
between heats. Consumed refractory is not assumed to influence slag composition in
single heats.

2.1.5. Bell

Similarly, as for the ladle, the bell is divided into refractory shells and steel casing.
Typically, six control volumes are applied. On the inside of the bell, the refractory is in
contact with the gas phase and also exposed to radiation from the free surface. Through
the shells and to the steel casing, heat is transferred by conduction. From the steel casing,
heat is lost to the surrounding air by convection, as well as radiation.

2.2. Chemical Reactions
2.2.1. Dissolution of Added Material

Added metallic material, such as aluminium, is assumed to melt instantaneously into
the free surface control volume:

Al(s) −→ Al( f ) (R1a)

Dissolution of other metallic additions is modeled similarly.
Added oxides are assumed to melt instantaneously into the slag phase:

CaO(s) −→ (CaO) (R1b)

Dissolution of other non-metallic additions are modeled similarly.
Instantaneous dissolution of additions is a simplification and approximation. The

additions are assumed to be small in sizing and amounts for the dissolution to be fast, such
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that the introduced temporary error in mass and energy balance will be negligible with
respect to the required accuracy for the industrial application of the model.

Solid phase from added materials is denoted (s), chemical components in the free
surface volume, a liquid phase, is denoted (f ), gas phase is denoted (g), while liquid hot
metal is denoted by underline, and liquid slag phase by parentheses.

2.2.2. Free Surface Reactions

Furthermore, the metallic components including dissolved carbon are assumed to
react with added oxygen. All free surface reactions involving oxygen are assumed to
be irreversible:

2Al( f ) + 1.5O2(g) −→ (Al2O3) (R2)

Si( f ) + O2(g) −→ (SiO2) (R3)

2Mn( f ) + O2(g) −→ 2(MnO) (R4)

2Fe( f ) + O2(g) −→ 2(FeO) (R5)

2C( f ) + O2(g) −→ 2CO(g) (R6)

All of these reactions are assumed to be irreversible reactions, driven far to the right.
The reaction rates are calculated based on the activities of the reacting species and calculated
thermochemical equilibrium. The available oxygen is distributed according to an oxygen
yield factor and individual reaction rates. The oxygen available to take part in reactions are
given by θO2,yieldFO2,in, where FO2,in is the molar flow of oxygen from the lance. The oxygen
yield factor, θO2,yield, should be a number between 0 and 1.

As an example, the nominal reaction rate for (R2) is given by:

R
′
2 = kr(a2

Ala
1.5
O2

− aAl2O3

K2
) (1)

where K2 is the thermochemical equilibrium constant.
The total reaction rate of (R2)–(R6) is limited by the available oxygen:

θO2,yieldFO2,in =
6

∑
j=2

Rj (2)

which leads to the following actual reaction rates:

Ri = θO2,yieldFO2,in
R

′
i

∑6
j=2 R′

j
, i = 2 − 6 (3)

With these reaction rates, the reactions will compete for the oxygen based on thermo-
chemical terms, yet only consuming the available oxygen.

2.2.3. Slag-Metal Interface Reactions

On the interface between slag and free surface equilibrium reactions are assumed to
take place:

1.5(SiO2) + 2Al( f ) −→ Al2O3 + 1.5Si( f ) (R7)

3(MnO) + 2Al( f ) −→ (Al2O3) + 3Mn( f ) (R8)

3(FeO) + 2Al( f ) −→ (Al2O3) + 3Fe( f ) (R9)

2(FeO) + Si( f ) −→ (SiO2) + 2Fe( f ) (R10)

(FeO) + Mn( f ) −→ (MnO) + Fe( f ) (R11)

2(MnO) + Si( f ) −→ (SiO2) + 2Mn( f ) (R12)
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2.3. Heat Transfer

The refractory layer of the bell typically has a radial temperature gradient, where heat
conduction transports heat from the hot inside to the cooler outside of the bell. Heat is
transferred by heat convection from the gas phase inside the bell to the inside of the bell.
Radiation takes place between the hot free surface area and the inside of the bell. From
the steel cap to the surrounding air, heat is transferred by convection, as well as a term for
radiation losses to the surroundings.

Similarly, in the ladle refractory, heat transfer is assumed to take place by convection
from the hot metal to the inner refractory layer. Heat is further transferred by conduction
through the refractories to the steel cap. From the steel cap, heat is lost by radiation to the
surroundings, as well as through heat convection to the air.

The varying heat convection from the hot metal to the inner refractory layer due to
flow conditions in the hot metal and free surface control volumes inside the ladle has a
substantial impact on the energy balance. The internal exchange of mass between the free
surface and the bulk hot metal is influenced strongly by stirring gas and oxygen blowing.

Heat is also transferred by convection between slag and hot metal, and between free
surface and hot metal. The free surface and hot metal are also mixed by the stirring, which
provides a substantial exchange of heat and mass between the two control volumes.

2.4. Mass and Energy Balances

A list of symbols used in the mathematical description and equations is provided
in Abbreviation.

2.4.1. Free Surface

The added aluminium is assumed to melt as soon as it enters the free surface control
volume. Reactions are consuming aluminium in this control volume, and stirring will mix
the materials between hot metal and the free surface:

dmAl f

dt
= −MAl(R2 + R7 + R8 + R9) + wAl,L− f + wAl,in (4)

where wAl,in is the sum of the representative aluminium part of metallic additions. wAl,L− f
is the net mass of aluminium being exchanged between the liquid hot metal and the free
surface control volumes due to mixing.

dmSi f

dt
= MSi(−R3 + R7 − R10 − R12) + wSi,L− f + wSi,in (5)

where wSi,in is the sum of the representative silicon part of metallic additions. wSi,L− f is the
net mass of aluminium being exchanged between the liquid hot metal and the free surface
control volumes due to mixing.

In general, for all components in the free surface, we can write:

dmi f

dt
= Mi(∑

j
siRj) + wi,L− f + wi,in (6)

where ∑j siRj is the net sum of reactions where component i takes part, weighted by the
stoichiometric factor for the component.

The mixing is assumed to preserve the total mass, so the amount of liquid going
into the free surface from the hot metal is the same as the amount going from the free
surface into the hot metal. Therefore, the net flow for each component will be given by the
chemical composition difference between the two control volumes and the composition in
each control volume:

wi,L− f = (ci,L − ci, f )wL− f (7)
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where i = Al, Si, Mn, Fe, C, P, S, Nb, V, Ni, Ti, B, Ca, N, Cr, Cu, Mo are the components in
the free surface and hot metal.

2.4.2. Liquid Steel

The energy balance for the liquid main bulk results in the following differential
equation describing the temperature:

mLCpL
dTL
dt

=wAr,inCpAr(Tin,Ar − TL) + QL− f − Q f−L

− αLS f (TL − Tf )− αLiSLi(TL − TLi)− αLSLs(TL − Ts)
(8)

where
Q f−L = Cp f w f−L (9)

QL− f = CpLwL− f (10)

The terms αLS f (TL − Tf ), αLiSLi(TL − TLi), and αLSLs(TL − Ts) are describing heat
convection between the phases main bulk, free surface, inner ladle and slag, determined by
the temperature difference between the neighbouring phases, the interface areas Sj and the
heat transfer coefficients αj. The flows w f−L = wL− f are assumed equal.

2.4.3. Gas Phase

The gas phase is defined primarily to account for CO-gas produced in the process.
The component balance is given as:

dmCO
dt

= mCO,produced − mCO,exiting (11)

mCO,produced = MCOR6 (12)

where MCO is the molar mass of CO(g) and R6 is the molar rate of reaction.

mCO,exiting =
mCO
τG

(13)

where τG is a time constant for the gas dynamics.
The gas temperature is calculated as an algebraic relation:

TG =
Tf (wArCpAr + R6MCOCpCO) + wO2,outCpO2 Tenv + αBiSBiTBi

wAr,inCpAr + wO2,outCpO2 + R6MCOCpCO + αBiSBi + αGS
(14)

where wAr,in is the mass flow of argon being purged from the bottom of the ladle.
The reason for simplifying the gas temperature calculation is to avoid unnecessary

complex equations that would cause stiffness to system and slow down the calcula-
tion speed.

2.4.4. Model Summary

The model consists of 61 ordinary differential equations describing the chemistry and
temperature of the CAS-OB process. A total of 222 parameters and constants describe
physical properties of materials, geometrical data of the system, etc. In the industrial
implementation, there are 50 input variables, providing information on added materials,
gas bubbling and oxygen blowing. Forty-three measurements are implemented, including
slag and metal analysis and temperatures. Many of the measurements are not available
during online operation, but data are often available after end of treatment. The logged
data can be used for offline validation and improvements of the process model.

2.5. Recursive Parameter and State Estimation

In the CAS-OB process, there are considerable uncertainties related to the initial
conditions before heat. The hot metal arriving from the BOF process has an end of BOF
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treatment temperature measurement. Occasionally, additional materials are added to adjust
composition after BOF treatment and before CAS-OB treatment. Waiting time between
the processes may vary. Refractory wear and net heat loss may vary between vessels. The
initial ladle temperature is also unknown. These factors introduce uncertainties to the
initial temperature of the CAS-OB process. To mitigate this issue, recursive estimation of
ladle state in general and specifically ladle temperature has been introduced.

Estimation is implemented using an augmented and extended Kalman filter [9,10].
The metal temperature is typically measured three times during the treatment: once in
the beginning of the heat, once midway through the heat, and once towards the end of
the heat.

2.6. Real-Time Optimization

Real-time optimization is implemented using the nonlinear model predictive control
schema similar to the method described by Maciejowski [11]. Two applications are imple-
mented: (1) a monitoring application calculating the predicted result of the heat based on
current and planned inputs. (2) an optimizing application where the desired end-point
temperature and the delivery time to the subsequent continuous caster is specified. Based
on this specification, the application optimizes the inputs of scrap metal addition and oxy-
gen blowing such that the targets are met. The suggested optimized inputs are presented
to the operator through the user interface.

The real-time optimization is repeated every five seconds, and new predictions and
optimized inputs are calculated.

Figure 2. Real-time application configuration at SSAB.

3. Results

The monitoring and control application has been installed on two CAS-OB refining
stations at SSAB Europe OY’s Raahe plant with a configuration as illustrated in Figure 2.
The application has been running in real-time operation since 2019 and validation of the
results taken place over time by process engineers and recently also by process operators.
Process data have been logged over the last two years, and the model agreement with
process data studied based on a large set of data from this period.
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3.1. Model Agreement with Process Data

An early version of the model was presented by Rotevatn [5] where model validation
was also a part of the work. The model was in reasonable agreement with most of the
chemical elements in the metal and slag. Not surprisingly, when studying the validation
results, the slag components in general had the largest deviation. This is natural as the mass
of slag is smaller and even moderate variations in metal components to be refined may
have a larger impact on the resulting slag composition. Industrially, getting a representative
sample of slag for analysis can also be more challenging.

The main use of this application has been in temperature control. The application
optimizes the use scrap metal additions and the use of additional oxygen for reheating.
Therefore, the main focus in this work has been on validation of the metal temperature. In
Figure 3, a histogram of the prediction error of the end temperature is shown for a total of
1031 heats collected over a period of one month. The wider distribution curve in dark blue
color shows the histogram for the prediction error for the end temperature using ballistic
simulation. This corresponds to the nominal model accuracy. The standard deviation is
19.5 ◦C and a bias of 3.1 ◦C. The required specification for the application to give added
value to the operation is approximately 10 ◦C.

Figure 3. Histogram showing improvement of prediction errors by estimation on the final tempera-
ture estimates in the heat.

3.2. Recursive Estimation

In Figure 3, the effect of estimation on the final temperature is also illustrated. When
applying the implemented Kalman-filtering, the standard deviation of prediction errors
is reduced to 5.5 ◦C with a bias of 2.2 ◦C. The result is now well within the required
specifications for the process improvements.

Figure 4 shows how the Kalman-filtering is adjusting the temperature estimates. In
particular, the first measurement is very important since the initial temperature of the
CAS-OB ladle is uncertain. After being adjusted by the first temperature measurement,
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the model is able to follow the remaining course of the process with high accuracy. This
includes the following process events such as material additions and reheating by oxygen.

Figure 4. Temperature evolution and estimation improvement during the course of the heat.

3.3. Industrial Use and Application

The user interface has been developed in cooperation between SSAB Europe OY’s
engineers and operators, providing a suggestion for operators to reheat or add cooling
scrap to meet the accurate target window of time and temperature for the so-called hook
time. The hook time is the time when the refining ladle should be “hooked up” for transport
to the casting station. Typically, the end of heat temperature from the CAS-OB station
should be a few degrees higher than the specified temperature for casting to obtain optimal
steel quality.

In the user interface (Figure 5), the vertical line represents the present time, and data to
the left are historical values, while future model predictions are shown to the right. There
are two predicted temperature curves; the dark line represents the prediction if the heat
continues with the current plan for the heat. The light green curve shows the predicted
temperature if the recommended optimized input is applied. The orange line shows that
the target temperature has been specified for the hook time. In the historical data to the left,
temperature measurements can also be seen as light blue crosses, while the target point for
the previous heat is shown as an orange cross. The recommended amount and timing of
oxygen reheating, aluminium and scrap metal additions are presented for the operators.
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Figure 5. User interface for temperature control.

4. Conclusions

A monitoring and control application for temperature control of the CAS-OB sec-
ondary steelmaking process has been developed and tested industrially during the Morse
project. The application is based on a first-principles model of the process, which provides
a good problem structure. Since the model, provided with available input data, is not
accurate enough for online use, an estimator is provided in the form of a Kalman filter.
The estimator utilizes the available measurements to adjust the model in real time. The
overall model may be regarded as a hybrid digital twin, utilizing the best of two worlds;
the structure of first principles and the flexibility of a data driven approach. This hybrid
twin is combined with a nonlinear model predictive control algorithm which is applied
to optimize amount and timing of process inputs. The optimized inputs are presented to
process operators along with the currently used heating profile, thus providing an operator
support system for process control.
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Abbreviations

The following abbreviations are used in this manuscript:

BOF Basic Oxygen Furnace
CAS-OB Composition Adjustment by Sealed

argon-bubbling with Oxygen Blowing
CFD Computational Fluid Dynamics
MPC Model Predictive Control
NMPC Nonlinear Model Predictive Control

Symbol Description Unit
mi Mass of component i kg
ci Concentration of component i mass fraction
Mi Specific molar mass of component i kg/kmol
wi Mass flow of component i kg/s
Rj Reaction rate of reaction j kmol/s
Tk Temperature of control volume k K
Qk−l Heat transfer between control volumes k and l W
Cpi Heat capacity of component or control volume J/(kg K)
Sk Surface area of k m2

αk Heat transfer coefficient for k W/(m2 K)

Subscript notation
f Free surface control volume
L Liquid control volume
Li Inner section of Ladle control volume
Bi Inner section of Bell control volume
s Slag control volume
f –L From Free surface to Liquid control volumes
L–f From Liquid to Free surface control volumes
in Material addition
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Abstract: Mass transfer is a critical scrap melting step. Herein, mass transfer coefficients (k) during
scrap melting were calculated using laboratory-scale experiments. Correlation analysis and the
entropy weight method were used to determine the effect of variables on k. The evaluation model
under natural and forced convection was established. It was consistent with the experimental results.
Under forced convection, at 1573 and 1673 K, when the rotation speed was increased from 141 to
423 r/min, k increased from 7.50 × 10−5 to 1.54 × 10−4 m/s and from 8.42 × 10−5 to 1.72 × 10−4 m/s,
respectively. Furthermore, as the bath temperature was increased from 1573 to 1723 K, the k value
of a stationary specimen increased from 3.14 × 10−5 to 5.31 × 10−5 m/s, respectively. Correlation
analysis and the entropy weight method indicated that the effects of variables on k decreased as
follows: molten pool stirring rate > bath temperature > scrap type. Moreover, the explicit functional
relationships between k and the factors affecting k under natural and forced convection conditions
were established, and the results were consistent with the experimental data. Our results can be used
to determine the quantitative relationships between k and the factors affecting k.

Keywords: evaluation model; quantitative relationship; scrap melting; mass transfer coefficient;
steelmaking process

1. Introduction

Scrap melting during the steelmaking process is the result of coupling heat and mass
transfer. The evaluation of mass transfer, a critical scrap melting step, under different
conditions is conducive to analyzing the melting process and optimizing the melting
parameters [1,2].

Many recent studies have analyzed the changes in mass transfer coefficient (k) during
scrap melting. Yang et al. [3] melted Φ20–50 mm steel bars in a 250 kg induction furnace in
a bath temperature (T) range of 1573–1873 K and reported that the k values at 1573 and
1673 K were 6.3 × 10−5 and 6.4 × 10−5 m/s, respectively. Kosaka and Minowa [4] reported
that the k value of a Φ10 mm steel bar subjected to a rotation speed of 200 r/min increased
from 1.06 × 10−5 to 1.53 × 10−5 m/s as T was increased from 1573 to 1673 K, respectively.
Isobe et al. [5] performed a scrap melting experiment using a 5 t converter. Upon increasing
the stirring energy density of the molten pool from 3500 and 12,000 W/t, k increased from
8.3 × 10−5 to 19.4 × 10−5 m/s. Wei et al. [6] performed scrap melting experiments at
T = 1673 K. The carbon content of the hot metal and the bottom-blowing flow rate ranged
between 2.1 and 4.03 wt% and 3 and 7 L/min, respectively, and the calculated k values
ranged between 8.0 × 10−5 and 10.0 × 10−5 m/s. In addition, the empirical formulas
derived using the analogy method were used to analyze mass transfer [7,8]. Dimensionless
correlations have been proposed for scrap melting under natural and forced convection
conditions [4,9–12]. Wright [9], Kim and Pehlke [10], and Mineo and Susumu [11] calculated
the dimensionless correlations during scrap melting under natural convection conditions.
Conversely, Li [7], Don [8], Kim and Pehlke [10], and Mineo and Susumu [11] obtained
the dimensionless correlations of the Colburn J-factor and Reynolds number (Re) under
forced convection conditions for Re > 100. However, the aforementioned correlations
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were empirical and presented limitations and constraints. To date, the changes in k values
during scrap melting have not been systematically analyzed. Therefore, an evaluation
model should be established.

To evaluate the quantitative effects of several factors on k, the k values under different
scrap melting conditions were calculated using laboratory-scale experiments. Correlation
analysis and the entropy weight method were used to evaluate k during scrap melting.
Furthermore, we established a theoretical model for determining k under natural and
forced convection conditions. We anticipate that the model will serve as a theoretical
foundation for online predicting and evaluating the scrap melting step of the steelmaking
process.

2. Experimental Determination of Mass Transfer Coefficient

2.1. Experimental Set-Up and Description

A vertical tube furnace (BCMT-1973K, China) was used for the experiments. Ap-
proximately 1 kg of pig iron for steelmaking was melted in a 65 mm × 70 mm × 100 mm
(I.D. × O.D. × H) alumina crucible to ensure that the bath depth reached 50 mm (Figure 1).
For the tests involving rotating specimens, the rotational speeds were 141, 282, and
423 r/min. The cylinder was rotated after immersion into the hot metal. The material
composition is summarized in Table 1.

Figure 1. Schematic of experimental apparatus.

Before each experiment, the scrap cylinders were polished to ensure that their weights
and diameters were identical. Argon gas was injected into the furnace to prevent oxidation
of the hot metal. When the bath temperature was stabilized at the predetermined value,
the scrap cylinders were immersed in the hot metal to a depth of approximately 30 mm
without preheating and were held in the metal bath for different durations.

After removing them from the hot metal bath, the scrap cylinders were quenched in
water. The quenched cylinders, especially the lower sections, contained frozen nodules,
which transferred from the hot metal bath to the cylinders. Each specimen was cleaned to
obtain a flat surface and subsequently weighed, and the final total length and diameters
at the top, center, and bottom of the scrap cylinders were measured. Additionally, melt
samples were collected before and after each test to determine their carbon concentrations
using a carbon-sulfur analyzer (EMIA-920V2, Horiba, kyoto, Japan).
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Table 1. Material composition (mass%).

C Si P Mn S

Q235 low-carbon steel rod 0.168 0.110 0.041 0.391 0.0227
Q235 low-carbon steel plate 0.182 0.17~0.37 ≤0.030 0.35–0.65 0.0011

45# steel rod 0.491 0.27 0.035 0.65 0.035
QT500-7 Ductile iron rod 3.69 1.653 0.0077 0.0825 0.0125

Iron/carbon bath 4.61 0.42 0.17 0.33 0.04

2.2. Calculation of Mass Transfer Coefficient

During scrap melting, the melting point of scrap is higher than bath temperature (T)
owing to the low carbon content of scrap. The large carbon concentration gradient between
the low-carbon scrap and the high-carbon molten pool promotes carbon mass transfer
from the molten pool to the scrap surface. As the surface carbon content of scrap increases,
the melting point of the scrap decreases. Therefore, carbon mass transfer is a critical step
during scrap melting. Determining the k values under different conditions can provide a
theoretical basis for improving melting efficiency. In previous studies, k (m/s) has been
calculated using the melting rate (v; m/s), as follows [4,10–12]:

v = −(
dr
dt
) = kln(1+

Cb − CL
CL − Cs

) (1)

where Cb and Cs are the carbon contents of the hot metal and scrap, respectively (wt%),
and CL is the carbon concentration in the liquid pool at the solid–liquid interface (wt%).

In previous studies, the melting point of scrap was assumed to be the liquidus tem-
perature. The equilibrium temperature was calculated using the heat balance between the
high-temperature molten pool and solid scrap. The CL value was determined via linear
approximation using the Fe–Fe3C phase diagram [4,11–14]. The CL values corresponding
to the T values of 1573, 1623, 1673, and 1723 K were 2.972, 2.448, 1.87, and 1.293 wt%,
respectively.

The v values under different conditions were substituted in Equation (1) to calculate
the corresponding k values [15]. The effect of molten pool stirring on k was analyzed, and
the results are presented in Figure 2a. The k values associated with rotating stationary
scrap rods were larger than those associated with a stationary scrap rod and increased with
increasing rotating speed. The k values increased by approximately 1.1 times when the
rotating speed increased from 141 to 423 r/min. At T = 1573 K, k increased from 7.50 × 10−5

to 1.54 × 10−4 m/s when the rotation speed was increased from 141 to 423 r/min. The
corresponding k values at T = 1673 K were 8.42 × 10−5 and 1.72 × 10−4 m/s, respectively.
The effect of the rotation speed on k was the largest for the same T and amount of added
scrap (Figure 2b, area enclosed by the red dotted line). Therefore, melting pool stirring
played a major role in carbon mass transfer. This was ascribed to the great agitation caused
by the high rotation speed promoting the convective mass transfer of carbon from the
molten iron pool to the surface of the solid scrap [16,17].

The effect of T on k was also analyzed, and the results are presented in Figure 2a
(area enclosed by the pink dashed line). For the stationary specimen, as T was increased
from 1573 to 1773 K, k increased from 3.14 × 10−5 to 5.31 × 10−5 m/s, respectively. This
was attributed to the high T value under natural convection conditions creating a large
temperature gradient between the hot metal and the scrap and subsequently generating a
large thermal driving force [16,17]. Therefore, heat exchange between the hot metal and
solid scrap was promoted to enhance carbon diffusion.

The effect of scrap size on k was analyzed, and the results are illustrated in Figure 2b
(areas enclosed by the black and green dashed lines). Under the same T and molten pool
stirring conditions, k decreased from 3.14 × 10−5 to 1.97 × 10−5 m/s upon increasing
the scrap size from Φ10 to Φ15 mm, respectively, and increased from 3.14 × 10−5 to
3.799 × 10−5 m/s upon increasing the carbon content of scrap from 0.1675 to 0.49 wt%,
respectively.
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Figure 2. (a) Temperature dependence of the mass transfer coefficient under different experimental conditions (b) Magnified
area of the graph in (a).

The effect of the scrap specific surface area (Ssp) on k was analyzed, and the results
are presented in Figure 2b (area enclosed by the blue dashed line). Under the same T and
molten pool stirring conditions, k increased from 1.19 × 10−5 to 5.99 × 10−5 m/s upon
increasing Ssp from 52.7 to 121.23 m2/t, respectively.

Using the aforementioned analysis results, we concluded that the rotation speed
affected k the most, followed by T, Ssp, and Cs. Therefore, the effect of each factor on k
decreased as follows: molten pool stirring rate > bath temperature > scrap type. These
results were consistent with those of the subsequent theoretical evaluation model.

3. Qualitative Evaluation of Factors Affecting Mass Transfer Coefficient

3.1. Correlation Analysis of the Factors Affecting Mass Transfer Coefficient

The factors affecting k were used as explanatory (independent) variables, and k was
used as the explained (dependent) variable. For the steelmaking process, the effects of
top/bottom-blowing causing agitation in the molten pool during conventional steelmaking
can be converted into mixing power. In this study, the relation between the imposed
rotational speed and the speed induced in the metal bath has been explained as follows:
firstly, the work generated by the rotation of the scrap rod can be determined using the
formula for the rigid-body moment of inertia. The rotating speed was used to calculate the
mixing power, as follows:

J =
1
2

msr2 ; E =
1
2

Jω2 (2)

where E is the work owing to rotation (W), J is the moment of inertia (kg·m2), and r is the
radius of the scrap metal rod (m). Furthermore, ω is the angular velocity (rad/s), which
can be calculated as follows: ω = 2πn, where n is the rotating speed in the experiment (r/s),
and ms is the total mass of hot metal (1 kg in this study). The stirring energy per unit mass
of molten steel (ε; W/t) can be expressed as follows:

ε = E/m (3)

where m is the total mass of the hot metal (t).
According to the above equations, the rotating speeds used in the previous experiment,

that is, 141, 282, and 423 r/min, were converted into stirring powers of 0.0249, 0.0997, and
0.2243 W/t, respectively. The raw data from the previous experiments performed by the
authors are summarized in Table 2.
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Table 2. Raw data of the evaluation model.

Serial
Number

Bath
Temperature

Stirring Energy
Density

Specific
Surface Area

Carbon
Content

Mass Transfer
Coefficient

- K W/t m2/t wt% ×10−4 m/s

1 1573 0 56.03 0.168 0.314
2 1623 0 56.03 0.168 0.333
3 1673 0 56.03 0.168 0.501
4 1723 0 56.03 0.168 0.531
5 1573 0.0249 56.03 0.168 0.750
6 1573 0.0997 56.03 0.168 1.097
7 1573 0.2243 56.03 0.168 1.540
8 1673 0.0249 56.03 0.168 0.842
9 1673 0.0997 56.03 0.168 1.159

10 1673 0.2243 56.03 0.168 1.720
11 1573 0 56.03 0.491 0.379
12 1573 0 52.7 0.180 0.131
13 1573 0 95.02 0.180 0.452
14 1573 0 121.2 0.180 0.569
15 1573 0 85.87 0.180 0.375

Correlation analysis is used to test the significance of the relationship between two
variables. The Pearson’s correlation coefficient (r) can be expressed as follows:

r =
Sxy

SxSy
, Sxy =

∑n
i=1(x i − x)(y i − y)

n − 1
, Sx =

√
∑ (x i − x)2

n − 1
, and Sy =

√
∑(y i − y)2

n − 1
(4)

where Sxy is the sample covariance, Sx and Sy are the sample standard deviations of x and
y, respectively, N is the number of samples, and x, y are the average values of x and y,
respectively. Positive and negative correlations are indicated by r > 0 and r < 0, respectively.
The magnitude of the absolute value indicates the strength of the correlation; that is, the
larger the absolute value, the stronger the correlation.

Correlation analysis of the original data was performed using the Statistical Product
and Service Solutions software to ensure that the independent variables were correlated
with the evaluation variables, and the results are presented in Table 3.

Table 3. Correlation analysis results.

Bath
Temperature

Stirring Energy
Density

Scrap Specific
Surface Area

Scrap Carbon
Content

Mass transfer
coefficient 0.533 0.960 0.362 0.016

The analyzed factors (ε, T, Ssp, and Cs) were positively correlated to k (Table 3). The r-
value of ε and k was the largest, followed by that of T and k. According to previous studies,
the mass transfer of carbon from the hot metal pool to the scrap surface was the limiting
step of the melting process. Stirring promoted mass transfer and convective heat transfer in
the bath. The melting rate increased with increasing stirring rate [2,3,9,16,17]. Liu et al. [18]
analyzed the effects of different bottom-blowing systems on ice melting and concluded
that the stirring effect of the bottom-blowing on the molten pool accelerated the mass
transfer of carbon from the hot metal to the scrap surface. Furthermore, the convective heat
transfer between the molten pool and scrap was enhanced to promote scrap melting. The
aforementioned results were consistent with those of our correlation analysis. Therefore,
the qualitative results of the correlation analysis provided a direction for further exploration
of the quantitative relationship between the melting process parameters and several factors.

3.2. Qualitative Evaluation of Mass Transfer Coefficient Using the Entropy Weight Method

It is beneficial to promote the scrap to melt to determine the degree of influence of
each factor on the mass transfer coefficient [19]. The entropy weight method, an objective
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assignment method, can utilize the information provided by the data to determine the
objective weights and to remove the subjective influence. It is more advantageous in
comparison with other subjective assignment methods. The main steps of the entropy
weight method are as follows [20–22]:

The evaluation matrix composed of m evaluation schemes and n indicators is defined
as X =

(
xij

)
m×n , i = 1, 2, . . . , m; j = 1, 2, . . . , n. The index standardization method is

defined in Equation (5):

Pij= xij/
m

∑
i=1

xij (5)

where Pij is the standardized index data. This indicates the proportion of the i-th scheme
under the j-th indicator in this index. The incommensurability among indicators is ef-
fectively eliminated through standardization. The entropy of each evaluation index is
expressed as Equation (6):

Ej= (
m

∑
i=1

PijlnPij)/lnm (6)

In particular, Pijln Pij = 0 when Pij = 0. ωj is the weight of each indicator which can be
expressed as Equation (7):

⎧⎪⎪⎨
⎪⎪⎩

ωj= (1 − E j)/
n
∑

j=1
(1 − E j)

n
∑

j=1
ωj= 1

(7)

ri is defined as the comprehensive evaluation score of the i-th system. As shown in
Equation (8), it is obtained using the linear weighted comprehensive evaluation formula.

ri =
n

∑
j=1

pijωj (8)

Finally, the influence of each factor on scrap melting is determined by comparing the
comprehensive scores. As shown in Table 4, the comprehensive evaluation scores of r1–r15
can be obtained using Equations (5)–(8).

Table 4. Comprehensive evaluation scores.

Influencing Factors Factors Serial Number Value Rank

Bath temperature Bath temperature

r1 0.0453

0.0453 2
r2 0.0359
r3 0.0541
r4 0.0573

Stirring of the molten
pool Rotating speed

r5 0.1279

0.1279 1

r6 0.1184
r7 0.1663
r8 0.0909
r9 0.1251
r10 0.1857

Scrap type

Carbon content r11 0.0411

0.0411 3Scrap specific
surface area

r12 0.0141
r13 0.0488
r14 0.0614
r15 0.0405

The comprehensive evaluation scores of the affecting factors were ranked as follows:
molten pool stirring > bath temperature > scrap type (Table 4). Therefore, the molten
pool kinetics affected scrap melting the most, followed by the thermodynamics of the
molten pool and scrap selection. Consequently, the following suggestions were evaluated
in this study. The dynamics and thermodynamics of the molten pool can be improved
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to accelerate scrap melting and promote the steelmaking process. Similar processes are
used in conventional steelmaking to promote scrap melting. Top/bottom-blowing was
used to improve the kinetic conditions. Procedures such as injecting pulverized coal or
top-blowing oxygen were implemented to accelerate the exothermic reaction of carbon and
oxygen. T was increased to improve the thermodynamic conditions.

4. Quantitative Evaluation of Mass Transfer Coefficient Using Explicit Functions

4.1. Explicit Function under Natural Convection Conditions

The schematic diagram of cylindrical scrap melting is presented in Figure 3.

Figure 3. Schematic diagram of cylindrical scrap melting.

For a stationary specimen, the flow of liquid conformed to natural convection condi-
tions. According to the dimensionless correlations of mass transfer under natural convec-
tion conditions (Sh = A(GrSc)B) [23], k can be calculated as follows:

k = A(
gΔρ

μ
)BL3B−1 (D C)

1−B (9)

where A and B are constants obtained by fitting the experimental results. g is the gravita-
tional acceleration in m/s2. Δρ is the density difference in kg/m3. μ is the hydrodynamic
viscosity in N·s/m2. L, the specific length of the scrap, is the immersion depth of the
cylindrical scrap under stationary conditions. And DC is the diffusion coefficient in m2/s.

According to previous studies [7,8,13,23–26], DC is a function of the temperature and
carbon concentration. For example, Shukla et al. [13] indicated that DC can be calculated as
follows: DC = 10−4 × exp(−(12,100/T + 2.568) + (1320/T − 0.554) × Cb). Therefore, DC
can be expressed as DC = f (T,Cb), where T is the diffusion temperature (K), which is equal
to the bath temperature. DC increased upon increasing T and Cb.

Ssp for a cylindrical scrap specimen can be calculated as follows:

Ssp =
2
ρs
(

1
L
+

1
R0

) (10)

Therefore, by combining Equations (9)–(11), k can be expressed as follows:

k = A(
gΔρ

¯
)B(

Sspρs

2
− 1

R0
)

1−3B
(DC)

1−B (11)

Equation (11) gives an explicit relationship between k, T, Cs, and Ssp under natural con-
vection conditions, providing a basis for quantitative discussion. Under the experimental
conditions in this study, A = 0.144 and B = 0.325 [15].
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4.2. Explicit Function under Forced Convection Conditions

The dimensionless correlation of k under forced convection conditions is the Chilton–
Colburn analogy: (JD =

(
k
U

)
(Sc)0.644= AReB) [8]. Therefore, k can be expressed as follows:

k = A(π)B+1(
ρb
μ
)

B+0.644
(D0e−

Q
RT )

0.644
L2B+1nB+1 (12)

Under forced convection conditions, Ssp can be expressed as follows:

Ssp =
2(L + 2h)

Lhρs
(13)

where h is the height of the cylindrical scrap (m) and L is the average diameter of the
cylindrical scrap (L = 2R0)

In addition, Equation (14) was derived from the relationship between ε and the rotation
speed.

n =
2( m

ms
ε)1/2

πL
(14)

Combining Equations (12)–(14), k can be expressed as follows:

k = A(2)B+1(
ρb
μ
)

B+0.644
(D 0e−

Q
RT )

0.644
(

4h
Ssphρs−2

)
B
(

m
ms

ε)
B+1

2 (15)

Equation (15) gives an explicit relationship between k, T, ε, Cs, and Ssp under forced
convection conditions, providing a basis for quantitative discussion. Under the experimen-
tal conditions in this study, A = 0.133 and B = −0.356 [15].

4.3. Validation of Explicit Functions under Natural and Forced Convection Conditions

The dependence of k on T under natural convection conditions is illustrated in Figure 4.
The k values determined using the evaluation model were consistent with the experimental
values; k increased with increasing T, confirming the accuracy of the explicit function under
natural convection conditions.

Figure 4. Validation of explicit function under natural convection conditions.
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The dependence of k on ε under forced convection conditions is illustrated in Figure 5.
The k values determined using the evaluation model were consistent with the experimental
values; k increased with increasing ε, confirming the accuracy of the explicit function under
forced convection conditions.

Figure 5. Validation of the explicit function under forced convection conditions.

5. Conclusions

The k values under different scrap melting conditions were obtained by laboratory-
scale experiments. At T of 1573 and 1673 K, when the rotation speed was increased from
141 to 423 r/min, k increased from 7.50 × 10−5 to 1.54 × 10−4 m/s and from 8.42 × 10−5 to
1.72 × 10−4 m/s, respectively. For the stationary specimen, k increased from 3.14 × 10−5 to
5.31 × 10−5 m/s as T was increased from 1573 to 1723 K, respectively, from 3.14 × 10−5

to 3.799 × 10−5 m/s when Cs increased from 0.1675 to 0.49 wt%, respectively, and from
1.19 × 10−5 to 5.99 × 10−5 m/s when Ssp increased from 52.7 to 121.23 m2/t, respectively.

The effects of various factors on k were evaluated using correlation analysis. The
stirring energy density had the greatest correlation with the mass transfer coefficient,
followed by the bath temperature.

The results of the entropy weight method indicated that the effects of each factor on k
decreased as follows: molten pool stirring rate > bath temperature > scrap type.

The explicit functions between k and the factors affecting k under natural and forced
convection conditions were described as follows: under natural convection,

k = A(
gΔρ

μ
)B(

Sspρs

2
− 1

R0
)

1−3B
(DC)

1−B

Under forced convection, the explicit function was as follows:

k = A(2)B+1(
ρb
μ
)

B+0.644
(D 0e−

Q
RT )

0.644
(

4h
Ssphρs−2

)
B
(

m
ms

ε)
B+1

2
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Abstract: In the steel industry, the optimization of production processes has become increasingly
important in recent years. Large amounts of historical data and various machine learning methods
can be used to reduce energy consumption and increase overall time efficiency. Using data from
more than two thousand electric arc furnace (EAF) batches produced in SIJ Acroni steelworks, the
consumption of electrical energy during melting was analysed. Information on the consumed energy
in each step of the electric arc process is essential to increase the efficiency of the EAF. In the paper, four
different modelling approaches for predicting electrical energy consumption during EAF operation
are presented: linear regression, k-NN modelling, evolving and conventional fuzzy modelling. In
the learning phase, from a set of more than ten regressors, only those that have the greatest impact
on energy consumption were selected. The obtained models that can accurately predict the energy
consumption are used to determine the optimal duration of the transformer profile during melting.
The models can predict the optimal energy consumption by selecting pre-processed training data,
where the main steps are to find and remove outlier batches with the highest energy consumption
and identify the influencing variables that contribute most to the increased energy consumption.
It should be emphasised that the electrical energy consumption was too high in most batches only
because the melting time was unnecessarily prolonged. Using the proposed models, EAF operators
can obtain information on the estimated energy consumption before batch processing depending
on the scrap weight in each basket and the added additives, as well as information on the optimal
melting time for a given EAF batch. All models were validated and compared using 30% of all data,
with the fuzzy model in particular providing accurate prediction results. It is expected that the use
of the developed models will lead to a reduction in energy consumption as well as an increase in
EAF efficiency.

Keywords: electric arc furnace; energy consumption; profile optimization; modelling; machine
learning; steelmaking; regression; fuzzy modelling; evolving modelling

1. Introduction

Current market demands for steel quality, price and production times require the
introduction of several technological innovations in electric arc furnace (EAF) steelmaking.
Electric Arc Furnaces (EAF) are improving very rapidly. Twenty years ago, the performance
of today’s EAFs would have seemed impossible. Thanks to an impressive number of
innovations, the melting time in the most efficient furnaces (with a capacity of 100–130 t)
has been reduced to 30–40 min. Electrical energy consumption was decreased by 1.8 times,
from 630 to 340 kWh/t and hourly productivity increased by six times, from 40 to 240 t/h.
The share of electrical energy in total energy consumption per melt fell to 50%. Electrode
consumption was reduced by about six times [1,2]. It can be assumed that such performance
should be normal for most steelworks in the near future.

In modern furnaces, the fundamental processes are melting the solid scrap and heating
the liquid bath. The productivity of today’s furnaces therefore depends mainly on these
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high-energy processes. To set these processes in motion, heat must be obtained from electri-
cal or chemical energy and then passed to the regions of the solid charge or liquid bath [3,4].
The heating technology, furnace designs and other EAF equipment are evolving very fast.
Every year, new technical solutions are offered and widely advertised. Steelmakers are
struggling to find their way through the flood of innovations. According to the latest trends,
modern steelworks should meet four essential requirements in the following way:

• By producing different types of steel in the desired quality, the specified process
requirements are met.

• By reducing the manufacturing costs, the specified economic requirements are met,
which means that the profitability and competitiveness of the products can
be increased.

• By limiting excessive pollution, which is regulated by government regulations, the spec-
ified environmental requirements are met.

• By limiting physically and mentally demanding work that is unacceptable for the
population of a given country above a certain level of social development, the specified
health and safety requirements are met.

The total costs of the EAF can be divided into the cost of scrap and ferroalloys, which
account for about 70%, and the so-called operating costs, which account for the remaining
30% of the total cost. The operating costs can be further divided into the costs of electrical
energy, fuel and electrodes, which account for about 40% of the operating costs [1,5,6].
The total costs can be reduced in the following ways:

• By reducing the consumption of loaded materials, refractory materials, energy sources,
etc. per ton of product;

• By speeding up and increasing production and thus reducing the costs of maintenance,
personnel and other specific production costs;

• By finding cheaper input materials and energy sources.

Over the last fifty years, the main objective of EAF development has been to increase
productivity. During this period, almost all innovations introduced were dedicated to
this problem. Apart from the cost of scrap, productivity represents a crucial factor on
which the overall steelmaking economy depends to a large extent [7]. When productivity
increases, labour and maintenance costs usually decrease, as do the costs of electrodes,
energy sources, refractory materials, electrical energy and other operating costs [8,9].
The proposed EAF innovations, in addition to their positive contributions, also bring some
drawbacks. For example, the use of oxygen-gas burners and the introduction of carbon
injection for slag foaming enable a drastic reduction in electrical energy consumption, but,
on the other hand, increase carbon dioxide emissions [5,6]. Due to environmental protection,
the use of biomass (and biofuel produced from renewable biomass) as a renewable energy
source in the electric arc furnace is also becoming increasingly important [10,11].

The electrical energy consumption can be controlled by the electrical mode, which
is determined by the programme for changing the electrical parameters (current, voltage,
arc power, etc.) of the EAF’s circuit during the melting process. These parameters can be
changed over a wide range due to the special design of the furnace transformer. The control
of the transformer voltage levels during the melting process (“on-load”) can be done either
manually by the operator or fully automatically. The biggest challenge in EAF operation,
i.e., determining the optimum melting programmes, times and batch quantities, is thus still
left to the operator and his experience. Since the control of the melting process is based
on indirect measurements (e.g., arc stability, energy consumption, power-on time, etc.)
and not on the actual conditions in the EAF (e.g., bath temperature, melting stage, bath
composition), EAF operation is suboptimal (lower raw material and energy efficiency, lower
steel quality and increased CO2 emissions), which consequently means higher operating
costs [2,11,12].

With extensive use of oxygen and carbon during the melting process, chemical heat
plays a major role in reducing electrical energy consumption and increasing EAF productiv-
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ity as the bath absorbs a large amount of chemical heat, which is released during oxidation
of carbon, iron and its alloys such as Mn, Si, etc [2,6].

Higher oxygen consumption usually occurs during bath blowing, as it depends on
the use of carbon powder, which is added into the bath at the same time as oxygen.
The impressive results achieved by the additional oxygen consumption cannot be achieved
without the carbon injection. The latter reduces the iron oxides and thus prevents an
undesirable reduction in yield. Otherwise, the amount of oxidised iron increases drastically
the more oxygen is blown into the bath. In addition, the injected carbon leads to the release
of CO and CO2, which causes the slag to foam. Immersing the arc in foamy slag provides a
large increase in efficiency in the use of electrical energy [2,13].

This study addresses the optimization of electric arc furnace (EAF) to increase its
efficiency and thus reduce electrical energy consumption. This can be achieved by defining
optimal control profiles for the EAF, i.e., transformer power, oxygen balancing, and carbon
addition [13,14]. The optimization is based on a data-driven approach where different
models (from linear models to evolving fuzzy models) [15–17] and statistical analyses [12]
have been performed. The models can be run online in parallel with the actual EAF process
and help the operator to control the EAF. Many authors have shown through simulations
that optimised operating profiles allow significant reductions in production times and
operating costs [2,13,18,19].

Advanced technological solutions such as post-combustion, off-gas [20] and slag [21]
heat recovery, oxygen lancing [22], gas burners [23], bottom stirring, adjustable alternating
current transmission systems and high-power transformers [24], have reduced energy
consumption. Nevertheless, additional process improvements can be made in EAF through
heat recovery systems [25], various additives [5,26] and optimal control with operating
profiles [2].

The melting profiles are usually selected in advance by the operator based on the
maximum energy input. The predefined profiles have the disadvantage that they do not
take into account the variations in EAF conditions. Therefore, adaptive control of the
EAF (via oxygen and carbon input) is required to achieve suitable conditions and also
slag properties. The latter enables to protect the water-cooled panels and walls, reduce
energy consumption and contribute to the correct steel composition [2]. Due to the lack
of measurements, the operator has limited insight into the EAF process. Consequently,
the predefined timed inputs (charging, oxygen lancing and carbon injection) may differ
from the optimal times that ensure higher EAF efficiency. Many authors [2,13,18] have
conducted studies to investigate EAF efficiency through optimised control. However, very
few of them have considered the optimisation of energy sources over the entire tap-to-tap
interval. The reason for this could be insufficiently defined optimisation objectives and
rough EAF models that are not accurate enough to be used in the optimisation procedure.

The aim of this study is to find key influential factors from which energy consumption
in EAF is estimated using the proposed predictive models. These can be used in a simulator
to improve the EAF process in such a way that less electrical energy is consumed and the
production of a certain type of steel is possible in a shorter time than with the existing pro-
cess. The total energy (electrical and chemical) consumed in the EAF process is distributed
between the three products (steel, slag and off-gas) and the various losses. Only the energy
that is delivered to the steel bath can be considered as useful energy.

The paper is organised as follows: Section 2 describes, first, the dataset used and
the preprocessing steps applied on it; second, the procedure for selecting the key input
variables; and, third, four different modelling approaches (based on machine learning
and fuzzy methods) for predicting the electrical energy consumption of EAF. Section 3
discusses the experimental results, comparing all the developed models. A discussion and
concluding remarks are given in Sections 4 and 5.
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2. Materials and Methods

This section presents the methods needed to build models for predicting electrical
energy consumption. These models will be used as part of the operator advisory system
to assist the operator in managing the EAF. This prevents the operator from frequently
selecting suboptimal settings in the semi-automatic furnace control mode that result in
lower steel yield and quality and higher energy and material consumption.

2.1. Data Description and Pre-Processing

The operation of the EAF is monitored by measuring all variables and parameters that
could affect energy consumption and overall efficiency. All parameters and variables are
stored and organised separately for each batch. Some of the measurements are recorded
event-based at specific times, while others are recorded continuously. All important
variables from the charging and melting phases are listed in Table 1. The charging recipe
is determined by the scrap weight in each basket and the hotheel at the beginning. These
data are aggregated for all baskets used. In the melting phase, there are several parameters
that affect the total energy consumption and the overall efficiency of the process. The most
important criterion and the focus of this article is the electrical energy consumption per
total weight of scrap (kWh/t), which is presented in this article as a percentage of the
maximum electrical energy consumption per total weight of scrap.

Table 1. List of input variables at the charging and melting phase of the EAF process.

Charging Melting

Description Unit Description Unit

Total scrap weight [kg] Melting time [s]
Hotheel start [kg] Delays [s]
Scrap weight in basket 1 [kg] Temperature [°C]
Scrap weight in basket 2 [kg] Total oxygen

[
Nm3]

Scrap weight in basket 3 [kg] Total carbon [kg]
Type of charged scrap Hotheel end [kg]

Slag weight [kg]

In the development of the electrical energy consumption prediction models, the first
required step is the preprocessing and filtering of data (removal of a part of the data). Since
the data are stored in different databases and with different sampling times during the
operation of the EAF, it is necessary to resample and synchronise the data before starting
the analysis phase. Since historical data from completed batches are often incomplete,
these batches must be removed from the modelling process during filtering. The data
cleaning procedure to eliminate all corrupted data should also be applied to efficiently
identify and remove outliers (e.g., unusually long tap-to-tap time spans, i.e., more than four
hours, extremely high power consumption, etc.). The steps of data pre-processing cannot
be performed completely automatically, since in some special cases the knowledge and
experience of the staff (especially the EAF operator) must also be taken into the account.
Each batch may consist of two, three, or four baskets of raw material. Since in the available
database the melting process was most frequently performed with three baskets, only these
batches were used in all further analyses. After filtering the data, the first, the second,
and the third baskets have an average capacities of 46 t, 36 t, and 18 t, respectively. Each
individual charge takes about three minutes. The melting of the scrap after charging with
the first, second, and third baskets takes about 17 min, 11 min, and 20 min on average,
and the average delay per batch is 13 min.

2.2. Selection of the Key Input Variables

The operation of the EAF is a subject to several factors that affect the final product
quality and energy consumption. Deviations from potentially optimal performance can
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be influenced by all parameters and settings during the charging and melting phases.
Therefore, the most influential independent variables must be identified from historical
data, as this information is necessary for the development of the models for energy con-
sumption prediction. In the study of Glavan et al. [27], it has been shown that the input
variable selection (IVS) approach can efficiently find the most important input variables
from a big database for modelling and prediction purposes. The IVS approach is based
on the analysis of historical data and combines a data mining approach with various se-
lection criteria [28]. The selection of input variables has a great impact on the prediction
performance, the effectiveness of the model and the better understanding of the system.
Therefore, the IVS represents an important step for model identification. The authors in [27]
tested and compared different methods from the literature for variable selection. They also
evaluated each method to find out the most suitable methods for model-based prediction
problems. Finally, the authors selected the following methods as the most effective: partial
correlation measure (Pcorr) [29], partial mutual information (PMI), linear-in-the-parameters
(LIP) [30], non-negative Garrote (NNGarr) [31], variable importance in projection (PLS
VIP) [32], distance correlation (dCorr) [33], and least absolute shrinkage and selection
operator (LASSO) [34]. All of these methods, briefly discussed in [27], were used in this
study. The influential factors from all methods were averaged to determine the order of the
most influential variables. In the following, all the machine learning methods that were
used to obtain the predictive models for estimation of the electrical energy consumption
are briefly described.

2.3. Machine Learning Methods
2.3.1. Linear Regression

The linear model has been a mainstay of statistics for the past 30 years and remains
one of the most important tools [35,36]. Linear regression is a linear approach for modelling
the relationship between a scalar response and one or more explanatory variables (also
known as dependent and independent variables). In linear regression, the relationships
are modelled using linear predictor functions, whose unknown model parameters are
estimated from the data. Such models are called linear models. Using linear regression,
the single output of the model ŷj can be determined in the following way:

ŷj = β̂0 +
p

∑
i=1

xi β̂i, (1)

where xT
j = [x1, x2, . . . , xp]j is a regression vector (where j = 1, . . . , m; m is the total number

of test samples and p is the total number of independent variables) and β̂T = [β̂1, β̂2, . . . , β̂p]

is the vector of linear coefficients. The term β̂0 is the intercept, which in machine learning
is also called the bias [35]. It is often convenient to include the constant variable 1 in the
vector xj and include β̂0 in the vector of coefficients β̂, and then write the linear model in
vector form as an inner product:

ŷj = xT
j β̂. (2)

There are many different methods of fitting the linear model to a set of training data.
By far the most popular is the least squares method. In this approach, the coefficients β are
chosen to minimise the residual sum of squares:

RSS(β) =
n

∑
i=1

(yi − xT
i β)2, (3)

where n is the total number of training samples. RSS(β) is a quadratic function of the
parameters, and hence its minimum always exists but may not be unique. The solution is
most easily characterised in matrix notation:

RSS(β) = (y − Xβ)T(y − Xβ), (4)
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where X is an n × p matrix with each row an input vector xT
i , and y is an n-vector of the

outputs in the training set. Differentiating w.r.t. β the normal equations can be written
as follows:

XT(y − Xβ) = 0. (5)

If XTX is non-singular, then the unique solution is given by:

β̂ = (XTX)−1XTy, (6)

and the fitted value at the i-th input xi is ŷi = xT
i β̂.

2.3.2. K-Nearest Neighbour Method

K-nearest neighbours (k-NN) algorithms [37,38] are non-parametric supervised ma-
chine learning algorithms commonly used in the field of pattern recognition. The k-NN
algorithms can be used for both classification and regression. In both cases, the input to the
algorithm consists of the labelled training dataset:

D = {(xi, yi)} for i = 1, . . . , n, (7)

where n is the number of samples in the dataset, xi is the regression vector and yi is the
class label or a continuous output variable. To make a prediction (class label or continuous
target variable), the k-NN algorithms find the k nearest neighbours of a query point x̂j and
compute the class label (i.e., classification) or continuous target variable (i.e., regression)
based on the k nearest (most “similar”) points. Since the prediction is based on a comparison
of a query point with data points (regression vectors) in the training dataset, k-NN is also
categorised as an instance-based (or “memory-based”) method.

In k-NN regression, the output prediction is based on the labels of the k nearest
neighbours. The output value ŷ is usually the average of the values of k nearest neighbours:

ŷj =
1
k

k

∑
i=1

yi. (8)

For both classification and regression, a distance-weighted k-NN algorithm [38] can
also be used, which assigns weights to the contributions of the neighbours, so that the
closer neighbours contribute more to the average than the more distant ones. For example,
a common weighting scheme is to assign a weight of wi = 1/di to each neighbour, where
di is the distance to the i-th nearest neighbour.

ŷj =
∑k

i=1 wiyi

∑k
i=1 wi

. (9)

The best choice of k depends upon the data. In general, larger values of k reduce the
effects of noise on classification but make the boundaries between classes less clear. A good
k can be selected by various heuristic techniques. By changing the value of k, the complexity
of a k-NN model is affected. In practise, a good trade-off must be found between high bias
(the model is not complex enough to fit the data well when k is too large) and high variance
(the model fits the training data too closely when k is too small).

For k-NN algorithms, many distance metrics or measures can be used to select k
nearest neighbours. There is no “best” distance measure, and the choice is highly context-
or problem-dependent. For continuous features, the most common distance metric is the
Euclidean distance. Another popular choice is the Manhattan distance, which puts less
emphasis on the differences between “distant” feature vectors or outliers than the Euclidean
distance. The Mahalanobis distance would be another good choice for a distance metric,
as it takes into account the variance of the different feature vectors as well as the covariance
among them.

158



Metals 2022, 12, 816

One of the main advantages of k-NN is that it is relatively easy to implement and
interpret. Moreover, with its approach to approximate complex global functions locally,
it can be a powerful predictive “model”. Another advantage is that k-NN has some
strong consistency results. As the amount of data approaches infinity, the two-class k-NN
algorithm is guaranteed to yield an error rate no worse than twice the Bayes error rate
(the minimum achievable error rate given the distribution of the data). The drawback is
that k-NN is very sensitive to the curse of dimensionality [38] and is expensive to compute
with an O(n) prediction step. Therefore, various data structures have been developed to
improve the computational performance of k-NN in prediction. In particular, the idea is
to identify the k nearest neighbours more intelligently. Instead of matching each training
sample in the training set to a given query point vector, various approaches have been
developed to partition the search space as efficiently as possible and reduce the number of
distance evaluations actually performed. Data structures such as KD-trees and Ball-trees
are often used for this purpose, as they can make k-NN substantially more efficient.

2.4. Takagi–Sugeno Fuzzy Modeling

Fuzzy logic was developed in 1965 as an extension of the classical (Boolean) logic.
The classical logic assigns to a variable or a statement the value of 1 for “true” or the
value of 0 for “false”, fuzzy logic allows the value assignment at an interval between
[0, 1]. The reason for this can be found in the observation of the way of human thinking
when deciding on the very approximate estimates of various facts that they present to
themselves in the form of rules. To address such a concept, a mechanism for recording
knowledge based on rules in the form of approximate reasoning based on fuzzy logic has
been introduced. First, some basic concepts of fuzzy logic and approximative reasoning,
which are necessary for the understanding of fuzzy models, are introduced. Fuzzy logic
records relationships, knowledge and decisions in the form of rules. For conjunction of the
linguistic statements, the conjunction operator (t-norm) “min” is used. The combination
of the affiliation of all linguistic expressions determines degree of rule fulfillment or rule
firing strength because it expresses how well the premise matches the given values of
input variables. For the entire fuzzy system, only fulfillment degrees greater than zero
are important. It must be guaranteed that the rules complete the entire possible input
space to avoid situations where no rule gets activated for certain input values. In the
case of non-explicit local affiliation functions, this problem does not exist because all rules
are always fulfilled, although with very small values. After the degree of fulfillment of
an individual rule is calculated, the contributions of individual consequent parts have
to be determined and assembled to obtain the output of the fuzzy system. This is called
accumulation. Usually, the output of the fuzzy system is a fuzzy set that needs to be
transformed into a sharp form for further work. This is called the process of defuzzification.
Of course, this is not necessary if a sharp value is chosen for the consequent part, or if the
result is used for qualitative estimations. In general, three basic types of fuzzy systems exist,
i.e., a linguistic or Mamdani, a special fuzzy system or a singleton, and a Takagi–Sugeno
Fuzzy System. In our case, the focus is on the Takagi–Sugeno (TS) Fuzzy approach, which
provides excellent interpretability and the best fuzzy modelling results [39]. The first step
of fuzzy modelling is the fuzzification, where the degree of membership for all linguistic
statements μij(xj) (i = 1, . . . , M and j = 1, . . . , p) is calculated, where M is the number of
fuzzy system rules and p is the number of inputs xj. The TS fuzzy rule Ri can be written
as follows:

Ri : IF x1 = Ai1 AND . . . AND xp = Aip THEN y = fi(x1, x2, . . . , xp) (10)

where Aij represents a fuzzy set for the variable xj and y is the output. By aggregation, the
individual linguistic statements into the level of activation of the rule (with respect to the
operators between them) are composed. The output of the TS fuzzy model is defined as:
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ŷ =

M
∑

i=1
fi(x) μi(x)

M
∑

i=1
μi(x)

(11)

where x is the input vector and fi(x) = wi0 +wi1x1 +wi2x2 + . . .+wipxp is linear regression
function. If the fuzzy model is written in a conjunctive form and min function is used for
the t-norm, then the degree of fulfillment of the rule is:

μi(x) = min(μij(xj)) . (12)

In this study, Gaussian membership functions were used:

μij(xj) = exp

(
−1

2
(xj − cij)

2

σ2
ij

)
, (13)

where σ2
ij is variance and cij is expected value of the Gaussian function (belonging to Aij

fuzzy set).
In fuzzy models, the nonlinear parameters in the premise (i.e., the parameters in the

causal part of the rule that define the membership functions, their positions and widths) and
the linear parameters (wip) in the consequent part of the rules can be optimized. The latter
can be easily estimated using the least squares method. The parameters in the causal part
of the rule correspond to the parameters on a hidden layer of neural networks and are non-
linear. The optimization of the rule structure is a combination problem that can be solved
by a selection of linear subsets or by a nonlinear global optimization, for example, by an
optimization with a genetic algorithm (GA) or a particle swarm optimization (PSO) [40].

2.5. Evolving the Cloud-Based Prediction Model

Due to the refinement of the technological process of melting in the EAF, the data
collected from the new batches are increasingly different and the consequently developed
models are predicting electrical energy consumption worse and worse. The evolving
modelling approach is appropriate for the purpose of constantly updating models also
during the process of melting. In this paper, an online evolving fuzzy identification method
(based on data clouds) [41], which represents an upgrade according to the Takagi–Sugeno
fuzzy modelling, is used. By upgrade means the ability to evolve the structure of the model
online and to adapt the parameters of each local model during the process.

In evolving modelling, the structure of the fuzzy model is identified online using the
evolving mechanisms, i.e., principles for adding and removing fuzzy rules. The rule-based
form of i-th rule is defined as:

Ri : IF (x f (k) ∼ Xi) THEN yi(k) = fi(x f (k)) (14)

where x f (k) =
[
u1(k), u2(k) . . . , up(k)

]
represents the input (regression) vector, Xi stands

for the i-th data-cloud, yi(k) represents the output of that fuzzy rule, and fi(x f (k)) repre-
sents an arbitrary function. In our case, the NARX model is used and therefore the output
function is defined as:

fi(k) = θT
i ψ(k) (15)

where ψ(k) =
[

x f (k), 1
]T

stands for the extended regressor and θT
i is vector of local

parameters of i-th fuzzy rule, which are calculated using the recursive Weighted Least
Squares method (rWLS) as presented in [41]. The final value of the output is calculated
as follows:

y(k) =
c

∑
i=1

βiθ
T
i ψk (16)
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where c is the number of data-clouds (fuzzy rules), and βi stands for normalized relative
density, which is defined as relation between the current data sample x f (k) and the i-th
fuzzy rule Xi. Normalized relative density is calculated as follows:

βi(k) =
γi(k)

c
∑

j=1
γj(k)

, i = 1, . . . , c (17)

where γi(k) stands for the local density of the data x f (k) and is calculated as:

γi(k) =
1

1 + ‖x f (k)− μi(k)‖2 + σi(k)− ‖μi(k)‖2 (18)

In Equation (18), μi(k) and σi(k) denote mean value vector and mean-square length
of the data vector from i-th cloud, respectively. Please refer to [41] for more details about
the whole evolving algorithm including the evolving mechanisms of adding and removing
(data-clouds) fuzzy rules.

3. Results

The data used within the methods for key input variables selection and for the val-
idation of the developed models were collected from the actual EAF in the SIJ Acroni
company. From the collected database, 577 different batches were selected with the filtering.
In the stage of predictive models development, the whole dataset was divided into training
(404 batches) and testing (173 batches) subsets (70% of the data for training and 30% for
testing). For each batch, 13 input variables were recorded, which are listed in Table 1.
For each batch, the loading recipe (marked from 1 to 12) and melting program (marked
from 1 to 15) are also selected according to the required properties of the steel produced.

3.1. Results of the Selection of Key Input Variables

Using the methods presented in Section 2.2 (Pcorr, PMI, LIP, NNGarr, PLS VIP,
and LASSO), the most influential variables for predictive models were found. Since the re-
sults vary widely from one method to another, average influential factors were calculated to
be more generally usable regardless of modelling method. Figure 1 shows the sorted results
of finding the most influential variables considering all data in the database. The boxes in
the figure show the average values, the median values and the intervals within the 25th
and 75th percentiles.

Figure 1. The average influential factors for all independent input variables.
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Table 2 shows the average values for each influential factor. According to the obtained
results, it is reasonable to include the following variables in further consideration: total
scrap weight, scrap weight in individual baskets, total carbon, average temperature during
melting, tapping temperature and total oxygen. The significance of the individual input
variables can also be partially inferred from Figure 2, where linear models describe the
relationships between the various input variables and the total electrical energy consump-
tion (as a percentage of the maximum value (kWh/t)). In determining the most influential
variables, the dispersion or data distribution plays a major role. Figure 2 shows one of the
most influential variables and one of the least influential variables in each case. The simul-
taneous use of multiple independent variables to predict electrical energy consumption
can change the influential factor of a single variable (due to the interconnectedness of the
variables). Therefore, it is difficult to conclude from Figure 2 why total scrap weight is more
important than the total carbon variable.

Figure 2. Linear models of electrical energy consumption (as a percentage of the maximum value)
as a function of total scrap weight (top left), total oxygen (top right), total carbon (bottom left),
and tapping temperature (bottom right), respectively.

Table 2. The average influential factors for all independent input variables.

Variable Influential Factor

Total scrap weight 0.8571
Scrap weight in basket 1 0.7679
Total carbon 0.6429
Scrap weight in basket 2 0.5714
Scrap weight in basket 3 0.5357
Mean temperature 0.5179
Tapping temperature 0.4286
Total oxygen 0.1786

When modelling electrical energy consumption, reducing the dimensionality of the
input space is also very important; otherwise, the (fuzzy) model structure may become
too complex and the large number of model parameters may be difficult to determine.
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If the modelling method also includes an optimization phase of the model parameters,
the modelling process can become very slow and inefficient. On the other hand, considering
only a limited number of the most influential variables can lead to worse prediction results
as some of the information is lost. Therefore, different variations of combined input
variables were also considered. Using the methods presented in Section 2.2, the following
combined input variables (Figure 3) were selected as the most influential: the quotient of
tapping temperature and total scrap weight, the quotient of mean temperature and scrap
weight in the first two baskets, chemical energy (calculated from total carbon and total
oxygen as proposed in [42]), the quotient of total oxygen and total carbon, scrap weight
in the third basket. The average influential factors for all combined input variables are
listed in Table 3. Figure 4 shows that the use of only one combined input variable does
not drastically improve the prediction of electrical energy consumption, but as mentioned
earlier, the main advantage of selecting the most influential variables is shown only when
all input variables are used together in the exact combination.

Figure 3. The average influential factors for the five most influential combined input variables.

Figure 4. Linear models of electrical energy consumption as a function of the quotient of tapping
temperature and total scrap weight (left) and the quotient of total oxygen and total carbon (right).

Table 3. The average influential factors for the five most influential combined input variables.

Variable Influential Factor

Tapping temperature/total scrap weight 0.9143
Mean temperature/scrap weight in baskets 1 and 2 0.6000
Chemical energy 0.5143
Total oxygen/total carbon 0.5143
Scrap weight in baskets 3 0.4571
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3.2. Analysis of Models for Energy Consumption Prediction

This subsection presents the comparative results of predicting electrical energy con-
sumption with the static models explained in Section 2. Each model is used to predict the
total electrical energy consumption of the current batch as a function of the key input vari-
ables listed in Table 3. All models are compared using the root–mean–square error (RMSE),
which is a measure of the differences between the values (electrical energy consumption in
percentages) predicted by a model ŷi and the observed values yi:

RMSE =

√
1
m

m

∑
i=1

(ŷi − yi)2, (19)

where m is the number of all test batches.
Figure 5 shows the results of predicting electrical energy consumption with the k-

NN model (left) and the linear regression model (right) compared to the electrical energy
consumption measurements. In the figure, the line shows the ideal (completely accurate)
prediction of electrical energy consumption according to the test samples. The k-NN
model was constructed to consider Mahalanobis distance and the six nearest neighbours.
The output of the k-NN model is calculated according to Equation (9), which means
that the nearer neighbour has more influence on the output than the farther neighbour.
Compared to the prediction results of the k-NN model, the linear regression model achieves
slightly better results (see Table 4) in terms of R2 (coefficient of determination) and RMSE,
although this model is simpler.

Figure 5. Prediction of electrical energy consumption with the k-NN model (left) and the linear
regression model (right) compared to measurements of electrical energy consumption.

Artificial intelligence algorithms, i.e., evolving and fuzzy modelling approaches pro-
posed in this work, achieve better prediction results than machine learning methods (k-NN
and linear regression), as expected. Figure 6 shows the results of predicting electrical
energy consumption with the evolving model (left) and the fuzzy model (right) compared
to the electrical energy consumption measurements. When looking at Figures 5 and 6, it is
difficult to decide which model is the best because the differences are quite small. Therefore,
all RMSE and R2 results for each method are presented in Table 4. From the table, it can be
concluded that the best results were obtained with the conventional fuzzy method and the
evolving method proposed in this paper. In the conventional fuzzy modelling, the PSO
optimization method was used to determine the optimal structure (number, distribution
and width of Gaussian membership functions) of the fuzzy logic system that gives the best
prediction results.
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Figure 6. Prediction of electrical energy consumption with the evolving model (left) and fuzzy model
(right) compared to measurements of electrical energy consumption.

Table 4. Comparison of RMSE results for the prediction models.

Method RMSE (%) R2

k-NN method 3.177 0.443
Linear regression 3.171 0.445
Evolving model 3.118 0.464
Fuzzy model 2.910 0.533

All the developed models can also be compared with the calculation of the cumulative
distribution functions, which are shown in Figure 7. From this graph, for example, it is easy
to see that 90% of all errors are less than 5% (of the maximum electrical energy consumption)
when the k-NN model is used. Thus, a steeper curve represents a better model.

Figure 7. Cumulative distribution functions for the electrical energy prediction errors.

The comparison between the results considering all input variables and only the most
influential variables (selected variables) shows that reducing the independent variables
can improve the fitting results by at least 20% according to the RMSE of linear regression.
The effect of reducing the input space is even more evident when evolving or a fuzzy
modelling approach is used, since in these cases model complexity translates into more
challenging optimization conditions due to the large number of input variables. The larger
number of optimization parameters slows down the training process and may lead to
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suboptimal results. Fuzzy membership functions may not be optimally defined and dis-
tributed, and consequently the model may be over-fitted to the training dataset. However,
over-fitted models fail quickly when applied to new batches that differ slightly from those
in the past.

The prediction results of all developed models can be drastically improved (by at
least 20% according to the RMSE of linear regression) if melting time is also used as an
independent input variable. Although up to 80% of authors of all published papers dealing
with the EAF energy consumption prediction have used melting time as an input variable to
achieve better results, this approach is completely incorrect as the melting time is not known
in advance. If melting time was known in advance, advanced models would actually be
unnecessary because the melting time is almost entirely proportional to electrical energy
consumption (see Figure 8). In Figure 8, two different linear models are shown according
to the maximum transformer tap level (in the profile), which is either seven or eight for
all melting programmes. The linear models show that the melting programmes with the
maximum transformer tap level eight have a slightly higher energy consumption than the
melting programmes with the maximum transformer tap level seven, but the slope is almost
the same in both cases. The obtained models, shown in Figure 8, are used to predict the
melting time from the electrical energy consumption prediction (obtained with the fuzzy
model). This information is essential for the EAF operator as he can try different scenarios
in the simulator and determine the optimal time to complete the batch. This is one of the
possible ways to partially reduce the electrical energy consumption without intervening in
the EAF itself because until now, in most cases, electrical energy consumption was only too
high due to an unnecessary prolongation of the melting time. This is because it is difficult
for the operator to determine exactly when the material is completely melted.

Figure 8. Electrical energy consumption as a function of melting time for two different maximum
transformer tap levels in the profile.

4. Discussion

Technological processes in the steel industry have improved greatly in recent decades.
Further optimization of the processes is possible by introducing digital tools that advise
operators on setting parameters and help control production (also in terms of equipment
maintenance). In this study, the focus is on the optimization of electrical energy consump-
tion through the analysis of existing historical data and the construction of prediction mod-
els. The latter allows the operator to perform preliminary simulations through an advisory
tool that determines the electrical energy consumption according to the selected conditions.
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The operator can thus test the optimal values for the materials added, the amount of carbon
and oxygen added, the melting temperature and, above all, the final melting time. From all
of the influential variables, total melting time is the one that total energy consumption
depends the most on it but should not be considered as an input variable, which is a
common mistake. Although the transformer profiles (in historical data) that define the
EAF electrical parameters (current, voltage, arc power) have two different final values for
the power levels in the existing melting programs (7 and 8), these values have an almost
negligible impact on the final consumption compared to the final melting time (which is
also defined with the transformer profiles). The developed models can predict the electrical
energy consumption quite accurately since the error is less than 5% (of the maximum
energy consumption) for 90% of all errors. Converting the electrical energy consumption to
the final melting time is also very straightforward since consumption and melting time are
proportional to each other. The choice of input variables is critical to developing applicable
models, especially when a large number of variables are available. Without algorithms to
analyze influential factors, the types of charged materials would certainly be chosen as
input variables, as well as the amount of slag or delays during the process. As the results
show, the total mass has the greatest influence on the prediction of energy consumption,
although the consumption is normalized with respect to the total mass (in kWh/t). When
determining the key variables, their simultaneous consideration is crucial because the influ-
ential factors are distributed differently than when only one input variable is considered at
a time. For successful model construction, it is also critical to eliminate bad measurements
(outlier filtering) that occur in batches with many interruptions and extended melting time
due to faults at the EAF. Poor measurements are also possible due to incorrectly recorded
charged materials (quantities and types), but not all such anomalies in the measurements
can be detected. All the developed models are comparable with each other in terms of
the prediction error (RMSE) and the coefficient of determination R2, which means that, if
the combined variables are chosen appropriately, the linear methods also work effectively.
Each of the methods has its advantages and disadvantages. For example, the evolving
method, although it does not give the best results, may be best suited for online updating
of models during the process itself, which may improve the prediction for the current
batch. The conventional fuzzy method is computationally the most demanding because it
involves a PSO optimization, but it provides the best prediction results. On the other hand,
linear regression is the simplest since it does not require parameter adjustments, while the
k-NN method is the fastest since it does not require a training phase.

5. Conclusions

This paper presents the results of a study in which preprocessed historical data from
the real EAF process were used to identify the influential variables that have the greatest
impact on electrical energy consumption during melting. The results show that the root
mean square error in predicting electrical energy consumption can be reduced by at least
20% with proper selection of the influential variables. Four different prediction models
were constructed from the filtered data, using linear regression, k-NN, evolving, and fuzzy
modelling methods. When comparing the errors in the prediction of electrical energy
consumption, the fuzzy model was found to be the most accurate, as the root mean square
error has the lowest value and the coefficient of determination has the highest value.
The developed models will be used within the advisory tool, which will help the EAF
operator to adjust the parameters correctly during the melting process and, in this way,
improve the efficiency of the EAF.
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Abstract: A dynamic, first-principles process model for a steelmaking electric arc furnace has been
developed. The model is an integrated part of an application designed for optimization during
operation of the furnace. Special care has been taken to ensure that the non-linear model is robust and
accurate enough for real-time optimization. The model is formulated in terms of state variables and
ordinary differential equations and is adapted to process data using recursive parameter estimation.
Compared to other models available in the literature, a focus of this model is to integrate auxiliary
process data in order to best predict energy efficiency and heat transfer limitations in the furnace.
Model predictions are in reasonable agreement with steel temperature and weight measurements.
Simulations indicate that industrial deployment of Model Predictive Control applications derived
from this process model can result in electrical energy consumption savings of 1–2%.

Keywords: electric arc furnace; mathematical modeling; model predictive control

1. Introduction

Electrical arc furnaces (EAF) perform a primary steelmaking process that converts
recycled steel scrap into liquid steel, which can be refined further in downstream processes.
The EAF is a refractory-lined vessel that is filled with steel scrap at the start of each new
heat. Through holes in the vessel roof, graphite electrodes (a single electrode in DC furnaces
and and three electrodes in AC furnaces) are lowered and used to conduct a high-voltage
electric arc that supplies electrical energy to melt the scrap metal. Gas burners are mounted
along the outer vessel sidewalls. During the course of a heat, the burners can operate in two
different modes: (1) by providing pure oxygen for refining, or (2) by providing a mixture
of oxygen and either liquefied natural gas (LNG) or propane to burn for extra heating. The
burners are typically operated in fuel combustion mode during the early process stages,
while refining takes place towards the end of the heat. The use of gas burners has been
shown to decrease batch time and reduce electrical power consumption. To protect the
vessel and furnace equipment from sustaining damage due to radiation from the electric
arc and heated metal, cooling water heat exchange panels are mounted along the upper
parts of the vessel’s sidewalls and the roof [1].

A heat is typically run as either a one-, two- or three-basket heat. This means the
vessel is charged with scrap metal one, two or three times during a heat, with the first
basket always being charged before the electric arc and gas burners are turned on. The
baskets can vary significantly, both in size and in the type of scrap being charged. Carbon
and additional slag-forming materials are also added to the furnace in order to achieve the
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desired slag-phase composition and foaming. At the end of each heat, the slag phase and
liquid steel are tapped separately from the furnace, and a new heat is ready to begin [1].

Numerous mathematical models have been proposed for predicting the course of the
EAF process. Recently, Hay et al. [2] presented a comprehensive review of mathematical
models proposed to date. They concluded that while there are still several development
areas, modern models can predict the main dynamic changes in distribution of species and
energy with reasonable accuracy. Furthermore, it was suggested that fundamental models
are now sufficiently fast to be used for model predictive control (MPC).

Some relevant studies [3–7] on the application of MPC for the EAF process are summa-
rized in the following sentences. The model by Bekker et al. [3] is intended for controlling
the offgas system and manipulates two variables (fan force and slip-gap) to adjust three
outputs: the relative furnace pressure, offgas temperature and offgas CO mass fraction.
Of these three variables, the relative furnace pressure was regulated, while the offgas
temperature and offgas CO mass fraction were only limited. Extending the model by
Bekker et al. [3], Oosthuizen et al. [4] presented a slag foaming model and introduced the
rate of direct reduced iron (DRI) addition as an additional manipulated input variable.
Later, Oosthuizen et al. [5] proposed a related MPC algorithm based on economic objec-
tives. The MPC proposed by MacRosty and Swartz is formulated in terms of an economic
performance objective. More specifically, the model adjusts the arc power, oxygen flow
from the burner, natural gas flow from the burner, oxygen injection, carbon injection, and
mass of the second charge to minimize the total costs of the EAF process. Shyamal [7]
proposed a shrinking horizon MPC algorithm, which was coupled with multi-rate moving
horizon estimation (MHE) for real-time model calibration. The model was directed at
real-time energy management and employed time-varying electricity prices for decision
making. Shyamal [7] also proposed a real-time dynamic advisory system, which was based
on multi-tiered optimization of the estimated states from MHE. It is worth noting that the
MPC algorithm employed by Oosthuizen et al. [4,5] is linear, while those employed by
Bekker et al. [3], MacRosty and Swartz [6] and Shyamal [7] are non-linear.

A model comprising monitoring and prediction of thermal and metallurgical heat
state evolution in the EAF has been developed by BFI [8–10]. This dynamic EAF process
model uses event driven and cyclically measured process data to calculate the temperature,
weights and analyses of the steel and slag phases in the furnace. The model considers these
phases without spatial resolution and uses ordinary differential equations in time and
algebraic equations to describe the process state. The same model kernel can be used to
monitor the current heat state from actual process data and to predict its further evolution
based on related practice data for the remaining treatment steps. In order to monitor the
thermal process state, the BFI model calculates the current energy content of the melt
based on a cyclically evaluated overall energy balance. The energy into the balance is the
sum of the electrical energy supplied and the chemical energy released by reactions. The
energy leaving the balance takes into account the losses to cooling water, offgas, radiation
and convection. The bath temperature is obtained from the difference of the current
energy content and the energy requirement for meltdown, which is in turn calculated from
the reference enthalpies (i.e., specific enthalpies at reference temperature) of the charged
materials (scrap and slag formers), where the hot heel is also taken into account.

The monitoring of the metallurgical process state in the BFI model comprises the cyclic
calculation of the weight and the composition for the metal bath and the slag phase. For
this purpose, the input by the charged materials as well the effects of the different oxidation
and reduction reactions (decarburization, dephosphorization and slagging/reduction of
metallic elements) are considered. The latter are based on appropriate first-order differential
equations where the reaction rate of an element or oxide is given by its content in steel or
slag multiplied by the oxygen or reduction agent input rate and an adapted oxidation or
reduction efficiency, respectively.

The aim of this work was to formulate a new dynamic model of an EAF that could be
used to optimize the electric power profile and electric arc operation. For that purpose, it
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goes a step beyond the mentioned state-of-the art approaches and uses a more detailed
modelling of different control volumes with liquid and solid phases. The model in this
work is non-linear, allowing for the representation of complex interrelated phenomena,
including estimation of the visibility of the electric arc and arc efficiency for melting and
heating. The MPC application of the proposed model uses a finite receding horizon, where
the duration of the heat is not specified, but the predictions horizon becomes shorter as the
process nears the completion criteria. To validate the viability of the new approach, the
model and related MPC were tested for an industrial scale EAF in stainless steel-making.
While Visuri et al. [11] presented some preliminary results, extensive results along with
accompanying interpretation and explanation are discussed in this article.

2. Materials and Methods

The process model developed for the EAF is based on physical modeling principles
such as mass and energy balances. When creating a process model, it is essential that the
model can provide the necessary information for solving the problem at hand without
becoming computationally cumbersome. In this case, the model is designed to be used as
a basis for real-time optimization. Hence, the focus of the modeling efforts is to ensure
that the model is fast enough to be recalculated multiple times in each time sample. The
model is developed as a continuous-time model that is integrated over selected time steps
using the forward Euler method for numerical integration. The numerical smoothness of
the model has been emphasized for two reasons: (1) so that computationally fast explicit
integration schemes can be applied without losing accuracy, and (2) so that optimization
problems formulated with model output can be more easily designed to be convex [12].
Further, a Kalman filter (KF) has been designed to ensure that the process model follows
the efficiency of the real process. Measurement outputs are calculated by the model and
compared with process measurements. The residuals between the model predictions
and real measurements are fed into the KF, which updates state variables and selected
parameters for estimation [13].

2.1. Control Volumes and State-Space Variables

Figure 1 shows the process state variables that are included in the model. Energy
supplied by three electrodes is used to directly heat the contents of the inner solid and
liquid masses. As a result, the inner control volume has the highest temperatures in the
model and is therefore colored in red, with bordering masses (the outer control volume,
gas) colored in orange gradients. The temperatures, total masses and masses of individual
components in the solid and liquid phases of the inner and outer steel control volumes are
modeled. The temperature, total masses and individual component masses of the solid
and liquid slag phases are also modeled. The component masses are enumerated in Table 1.
The environment is modeled by including dynamic states for the temperatures of the roof,
side panels and gas that fills the space not occupied by steel in the furnace. The roof
and side panels are both in contact with cooling water streams for which the temperature
measurement is recorded. Calculation of the cooling water temperature variation as
predicted by the model allows for real-time comparison to process measurements. The
temperature of the process offgas is recorded downstream in a duct that extracts fumes
from the furnace. The offgas temperature in the duct is modeled accordingly and also
compared to real-time data.

In order to maintain the model’s focus on the energy balance, the modeled slag masses
exchange heat and mass only with the steel and not with the furnace environment. This
assumption reduces the model complexity and allows the parameter estimation discussed
in Section 2.5 to more directly impact the states of interest, namely the solid and liquid steel.
Heat transfer between steel and the slag masses is then tuned to indirectly account for the
interactions of slag with the environment. Slag properties are taken from Jiao et al. [14],
and properties for the furnace materials are taken from Fruehan [1].
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Figure 1. State variables in the EAF process model. Twater
roof , Twater

vessel and Toffgas can be compared to
real-time process data.

Table 1. Modeled components in the steel and slag phases.

Dissolved
Component

Phase(s) Reactive with O2 in Model?
Equilibrium

Reaction in Model?

Fe Liquid, Solid Yes Yes

C Liquid, Solid Yes Yes

Cr Liquid, Solid Yes Yes

Si Liquid, Solid Yes Yes

Al Liquid, Solid Yes Yes

Mn Liquid, Solid No Yes

FeO Slag No Yes

SiO2 Slag No Yes

Cr2O3 Slag No Yes

Al2O3 Slag No Yes

MnO Slag No Yes

Because the focus of this model is to achieve a dynamic energy balance rather than
a detailed mass balance, not all components recorded in process data are included in the
model. The components listed in Table 1 represent the components whose non-oxide
element represent more than 2% of charged mass and whose reactions have the potential
to significantly affect the energy balance.

2.2. Chemical Reactions

Gas burners supply flows of LNG and oxygen that react to release energy:

{CH4}+ 2{O2} → 2{H2O}+ {CO2}. (1)
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Oxygen that is not fully consumed by the reaction with LNG, for example during the
refining phase, can react with CO gas and components in the liquid steel to form liquid
slag components and gases:

{CO}+ 1
2
{O2} → {CO2}

Fe +
1
2
{O2} → (FeO)

[C] +
1
2
{O2} → {CO}

[C] + {O2} → {CO2}
[Si] + {O2} → (SiO2)

2[Cr] +
3
2
{O2} → (Cr2O3)

2[Al] +
3
2
{O2} → (Al2O3).

(2)

The oxygen for the reactions in Equation (Equation (2)) is divided between the CO
gas and the liquid steel components. Oxygen is allocated to the inner and outer liquid steel
proportionally based on their masses. Within each control volume, the oxygen consumption
in Equation (Equation (2)) is proportional to the mass fractions of Fe, C, Si, Cr and Al.

The model’s explicit treatment of oxygen consumption by reactions in (Equation (2))
does not account for the activity coefficients of the different components. However, ther-
modynamic equilibrium is enforced by the inclusion of reversible reactions between the
liquid steel and slag phases. Including these equilibrium reactions in the model achieves
component mass fraction ratios that are consistent with the equilibrium constants given
in Appendix A.2, which have been adapted from Turkdogan [15]. The following steel–
slag equilibrium reactions take place, where both the forward and backward reactions
are modeled:

(FeO) + [C] ↔ Fe + {CO}
(FeO) + [Mn] ↔ Fe + (MnO)

(MnO) + [C] ↔ [Mn] + {CO}
2(FeO) + [Si] ↔ 2Fe + (SiO2)

2(MnO) + [Si] ↔ 2[Mn] + (SiO2)

3(FeO) + 2[Cr] ↔ 3Fe + (Cr2O3)

3(SiO2) + 4[Al] ↔ 3[Si] + 2(Al2O3).

(3)

Equations (1)–(3) form a pared down version of the reactions modeled by
Logar et al. [16], with the exception of the reactions involving Al and Al2O3.

The energy released and consumed by the reactions in Equations (1)–(3) is distributed
between different masses in the furnace model. Energy released by Equation (1) is
split between the steel and the gas, where the efficiency of LNG burning to heat steel
changes during the process as described by Logar et al. [17]. All of the energy released
by Equations (2) and (3) heats the steel. The steel-heating reaction energy is first divided
between the inner and outer steel proportionally based on their volumes, as defined by
the dimensions given in Appendix A.4. The model distributes the total reaction energy to
the entire furnace contents because distributing energy based on the control volume of the
reactants produces physically unreasonable results. For example, using all of the reaction
energy to heat the inner steel when only the inner steel contains liquid phase reactants
leads to excessively high temperatures and unreasonable temperature gradients. Within
each control volume, the reaction energy is divided between the solid and liquid phases
proportionally based on mass.
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2.3. Heat Transfer

Heat transfer in the model is simplified such that all energy supplied to and lost by
the furnace contents is exchanged exclusively with the steel masses. The heating of other
furnace contents, namely slag, is then accounted for indirectly by tuning the heat transfer
between the steel and slag masses. Heat transfer between some masses are modeled
linearly, while others are accounted for only by radiation.

Convection and conduction between select masses in the furnace are modeled as linear
heat transfer:

Qij = kij Aij
(
Ti − Tj

)
. (4)

In Equation (4), the amount of heat flowing from mass i to mass j is proportional to
the temperature difference

(
Ti − Tj

)
, heat transfer coefficient kij and area for heat transfer

Aij. A comprehensive list of all masses involved in linear heat transfer along with the
corresponding coefficients and areas is available in Table 2.

Table 2. Prefactors for linear heat transfer between different masses in the furnace. The subscript letters (s, l, c, b, r, v, g)
refer to (solid steel, liquid steel, solid slag, liquid slag, roof, vessel, gas), respectively. An empty table entry indicates that
linear heat transfer between the two masses is omitted from the model.

Inner Solid Outer Solid Inner Liquid Outer Liquid Solid Slag Liquid Slag Roof Vessel Gas

Inner Solid - kss Across
ss ksl Ainner

sl ksl Across
sl kcs Ainner

cs kbs Ainner
bs - - ksg Ainner

bs

Outer Solid kss Across
ss - ksl Across

ls ksl Aouter
sl kcs Aouter

cs kbs Aouter
bs - - ksg Aouter

bs

Inner Liquid ksl Ainner
sl ksl Across

ls - kll Across
ll kcl Ainner

cl kbl Ainner
bl - - klg Ainner

bl

Outer Liquid ksl Across
sl ksl Aouter

sl kll Across
ll - kcl Aouter

cl kbl Aouter
bl - - klg Aouter

bl

Solid Slag kcs Ainner
cs kcs Aouter

cs kcl Ainner
cl kcl Aouter

cl - - - - -

Liquid Slag kbs Ainner
bs kbs Aouter

bs kbl Ainner
bl kbl Aouter

bl - - - - -

Roof - - - - - - - - kgr Ar

Vessel - - - - - - - - kgv Av

Gas ksg Ainner
bs ksg Aouter

bs klg Ainner
bl klg Aouter

bl - - kgr Ar kgv Av -

To model the area for heat transfer between solid and liquid phases within each steel
control volume, the scrap metal is assumed to linearly transition from being a single slab at
the beginning of the process (solid mass fraction xsolid ≈ 1) to small solid particles at the
end of the process (solid mass fraction xsolid ≈ 0) in a manner that resembles the melting
phenomenon described by González et al. [18]. This transition is modeled as:

rmax
particle =

(
3msolid
4ρsolidπ

)1/3

rparticle =
(

rmax
particle − rmin

particle

)
xsolid + rmin

particle.

(5)

Equation (5) means that the maximum particle size in either control volume is a
function of the instantaneous mass of solid msolid and the solid fraction, where msolid refers
either to the model states mouter

solid or minner
solid as depicted in Figure 1. The maximum particle

radius is first calculated by assuming the whole mass of the solid to be a single spherical
particle. This assumption is then corrected for by relating the actual particle radius size
to the solid mass fraction. When xsolid < 1, the mass of solid is assumed to be broken up,
leading to smaller particle radii. The radii of solid particles decrease until they reach the
model constant rmin

particle = 10 cm, at which point the particle’s mass is assumed to be purely
virtual. The area for solid–liquid heat transfer is then modeled as a function of both the
liquid mass fraction xliquid, the solid mass and rparticle:

Asl =
3xliquidmsolid

ρsolidrparticle
. (6)

176



Metals 2021, 11, 1587

The liquid fraction factor in Equation (6) accounts for the liquid coverage of the solid
particles: at small xliquid, the entire surface area of the solid particles may not be in contact
with liquid metal. Equation (6) is applied directly to calculate Ainner

sl and Aouter
sl . The area

for heat transfer between unlike phases in different control volumes is also calculated from
Equation (6), but the result is scaled by a factor of 3 to account for reduced mixing between
the control volumes and the substitution of terms depends on the specific combination of

phases being modeled (Across
sl =

xouter
liquidminner

solid

ρsolidrinner
particle

; Across
ls =

xinner
liquidmouter

solid

ρsolidrouter
particle

).

To model the area for heat transfer between like phases in different control volumes,
the total area separating the control volumes is first calculated and then scaled with the
appropriate phase fractions:

hinner =

minner
solid

ρsolid
+

minner
liquid

ρliquid

Ainner

houter =

mouter
solid

ρsolid
+

mouter
liquid

ρliquid

Aouter

Across = πdinner
hinner + houter

2
Across
(ss/ll) = xinner

(solid/liquid)x
outer
(solid/liquid)Across.

(7)

The inner and outer control volume areas and diameters are defined by the model
dimensions given in Appendix A.4.

The areas for heat transfer between steel and solid slag are calculated based on the
solid slag mass, the specific area of slag As given by Bekker et al. [19] and the appropriate
phase fractions:

A(inner/outer)
c = mc As

A(inner/outer)

Ainner + Aouter

A(inner/outer)
c(s/l) = x(inner/outer)

(solid/liquid)A(inner/outer)
c .

(8)

The areas for heat transfer between steel and liquid slag are calculated based on the
metal bath surface area because the liquid slag forms as a layer on top of the steel. These
areas are also applicable for the heat transfer between steel and the surrounding gas:

A(inner/outer)
b(s/l) = x(inner/outer)

(solid/liquid)A(inner/outer). (9)

Although the roof and side panel cooling water does not exchange heat directly with
the steel, the linear heat flux from the furnace to the cooling water must be calculated in
order to predict the outlet water temperature and compare to process data:

Q(r/v)w = k(r/v)w A(r/v)

(
T(r/v) − Tw

(r/v)

)
. (10)

Radiation between steel and the furnace surfaces is included in the model. Table 3
lists the equations for heat flux from the steel to the furnace roof and vessel Q(inner/outer)

(s/l)(r/v) .
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Table 3. Radiative heat transfer between different masses in the furnace. The subscript letters (s, l, b,
r, v) refer to (solid steel, liquid steel, liquid slag, roof, vessel), respectively.

Roof Vessel

Inner Solid
σSB Ainner

bs VFinner
r(

εsTinner
s

4 − εrTr
4
) σSB Ainner

bs VFinner
v(

εsTinner
s

4 − εrTv
4
)

Outer Solid
σSB Aouter

bs VFouter
r(

εsTouter
s

4 − εrTr
4
) σSB Aouter

bs VFouter
v(

εsTouter
s

4 − εrTv
4
)

Inner Liquid
σSB Ainner

bl VFinner
r(

εlTinner
l

4 − εrTr
4
) σSB Ainner

bl VFinner
v(

εlTinner
l

4 − εrTv
4
)

Outer Liquid
σSB Aouter

bl VFouter
r(

εlTouter
l

4 − εrTr
4
) σSB Aouter

bl VFouter
v(

εlTouter
l

4 − εrTv
4
)

σSB is the Stefan–Boltzmann constant. The view factors VFinner
v and VFouter

v are calcu-
lated based on equations for disks (inner steel) and annular rings (outer steel) embedded
in the base of a cylinder to the cylinder column (vessel) [20]. Because no radiative heat
transfer from steel to gas or between steel phases is included in the model, the roof is
the only other surface that absorbs steel radiation, and the view factors between the steel
control volumes and the roof are solved for (VFinner

r = 1 − VFinner
v ; VFouter

r = 1 − VFouter
v ).

Radiative heat transfer from the roof to the furnace vessel is given by:

Qrv = σSB ArVFr
v

(
εrTr

4 − εvTv
4
)

. (11)

The view factor VFr
v in Equation (11) is calculated based on an equation for the base

of a cylinder (roof) to the cylinder column (vessel) [20].

2.4. Solid–Liquid Phase Change

Melting and freezing are a mass transfer mechanism between the solid and liquid
phases in the inner steel, outer steel and slag. Melting is assumed to take place gradually
as the solid temperature increases in a range centered around a defined melting/liquidus
temperature Tm. Similarly, freezing takes place as the liquid temperature decreases in the
same range. When both solid and liquid temperatures are within this range, melting and
freezing take place simultaneously with temperature-dependent rates.

The melting and freezing mechanisms are illustrated in Figure 2. During the melting
process, the solid temperature increases above the lower boundary for the phase change
region. Liquid mass begins to accumulate and the liquid temperature changes quickly from
its original virtual value. Eventually, the solid mass disappears, and additional energy
inputs heats the liquid phase. Analogously, the liquid temperature decreases below the
upper boundary for the phase change region to start the freezing process. Solid mass
accumulates and the solid temperature changes quickly from its original virtual value.
Eventually, the liquid mass disappears, and the solid mass continues to cool.

The rates of melting and freezing are given by:

rmelt = kphasems
max(0, (Tsolid + dTm)− Tm)

2dTm

rfreeze = kphaseml

max
(

0, Tm −
(

Tliquid − dTm

))
2dTm

.

(12)

The heat of fusion determines the amount of energy exchanged between the two phases:

Qmelt = ΔHfusionrmelt

Qfreeze = −ΔHfusionrfreeze.
(13)

178



Metals 2021, 11, 1587

The terms for the heat of melting and freezing of each phase contribute to the energy
balance equations found in Equation (A21).

Figure 2. Illustration of (left) melting and (right) freezing. Tm indicates the steel melting temperature
and dTm is a constant used for calculating the rates of melting and freezing.

2.5. Arc Efficiency

A novel model for electrical energy efficiency based on arc visibility has been imple-
mented. Observations from process data and literature indicate that arc efficiency, defined
as the percentage of supplied electrical energy that heats steel, changes during the course
of a heat [21]. While visibility of the arc is just one of many factors that affects arc effi-
ciency [21], a description of arc coverage is a natural extension of the dynamic model states
and can provide valuable insight into the current and future states of the process.

Figure 3 denotes the dimensions used by the arc efficiency model. Depending on the
electrode height and the heights of the scrap (solid), liquid and slag phases, the electric arc
length larc can be completely covered or partially exposed. The length of the electric arc larc
is a constant while the position of the arc in the furnace is determined by the height of the
electrode helectrode, which changes during the boredown and melting stages of the process.
The heights of the phases and the total bath are given by:

h(solid/liquid/slag) =
m(solid/liquid/slag)

Afurnaceρ(solid/liquid/slag)

hbath = hscrap + hliquid + hslag.
(14)

The visibility of the arc can then be written:

visarc = max
(

min
(

helectrode − hbath
larc

, 1
)

, 0
)

. (15)

The arc visibility is zero when the full length of the arc is below the cumulative height
of the bath components (scrap hscrap, liquid hliquid and slag hslag). The visibility is combined
with additional model parameters in order to write the model for arc energy losses that
includes estimation parameter kloss, which can be used to tune the model to better follow
individual heats:

xloss
arc = kloss

(
visarc + kloss

basket

)
. (16)

Using process data to calculate the electrode height helectrode is challenging because
the electrodes are consumed during the process, causing the length of the electrodes to
vary from heat to heat. Instead of using process data to determine to electrode position, the
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electrode height is modeled with an equation that captures typical boredown behavior as
a function of the total instantaneous solid and liquid mass and the total electrical energy
supplied to the furnace kWh:

helectrode = exp(−kWh/kWhbasket) +
msolid + mliquid

Afurnaceρliquid
. (17)

The density of slag ρslag is modeled as a function of the overall liquid fraction, consis-
tent with the observation that foaminess increases as meltdown progresses [22]:

ρslag = 120 + 1380 exp(−xl/xbasket). (18)

Equations (16)–(18) each include a term with the subscript basket. These terms are
model-fitting constants that are fit for the cases of one-, two- and three-basket heats.

Figure 3. Variable and static dimensions used to calculate arc visibility for the arc efficiency model.

3. Results and Discussion

3.1. Model Behavior

Figure 4 shows typical model meltdown behavior. Heats typically result in the pro-
duction of approximately 140 tonnes of liquid steel. The inner solid mass is heated directly
by the electric arc and always begins to melt first, while the outer solid mass begins to
melt before the inner solid is completely liquefied. The melting process is interrupted by
pauses in process operation and the addition of the second basket, at which point all mass
solidifies before continuing to be heated and re-melted. Each time a new heat begins, the
furnace is emptied (solid steel, liquid steel, slag and component masses are reset to initial
states, along with all temperatures except for the furnace roof and vessel).

The process begins when the power and gas burners are turned on. The electrodes are
located in the center of the furnace and supply power to the most closely situated charged
material. The arc power is therefore used to heat the inner steel control volume as described
in Appendix A.1. As a result, the inner solid temperature rises much faster than the outer
solid temperature. Heat transfer limitations described in Section 2.3 govern the rate at
which arc energy is dissipated from the inner to the outer control volume. The furnace
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surroundings are heated by energy losses from the burners and arc as well as by heat
transfer from the steel. Eventually, the inner solid becomes hot enough to melt and an inner
liquid mass begins to appear. At this point in the process, additional planned baskets will
usually be added, cooling the furnace contents. Time delays in adding baskets also cause
the furnace contents to cool undesirably. Power continues to be supplied to the furnace,
and the outer solid finally begins to melt before the inner solid has fully disappeared.

Figure 4. Steel meltdown dynamics and change in (A) solid mass and (B) liquid mass during five
consecutive two-basket heats.

Figure 5 shows model agreement with process data from 250 heats for liquid steel
temperature and weight after tapping. The model does not account for a hot heel, which can
vary from heat to heat and may explain some of the observed scatter in weight agreement.
The hot heel discrepancy may also affect the scatter in temperature agreement. Both the
weight and temperature agreement are within reasonable expectations for model behavior
and measurement accuracy.

Figure 5. Agreement of model predictions with process measurements from 250 heats for (A) liquid
steel temperature and (B) liquid steel weight after tapping. Model biases for temperature and weight
are negligible while residual standard deviations reflect scatter.
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3.2. Recursive Estimation of Arc Efficiency

In order for MPC to be effective, the underlying model describing the process needs to
be able to accurately predict the behavior of the optimization targets as the heat progresses.
For the purpose of optimization for energy savings, the model not only has to follow the
present efficiency, but must also be able to predict the future efficiency with sufficient
accuracy. The goal of developing the arc energy loss model described in Section 2.5 is
therefore to accurately predict efficiency at upcoming stages in the meltdown process such
that the power profile can be optimized accordingly. Arc power can be adjusted down and
up during low and high efficiency periods, respectively, in order to minimize energy losses
to the environment.

The arc efficiency model includes basket-dependent constants as described in
Section 2.5. In order to fit the constants kloss

basket, kWhbasket and xbasket, a precursor study
using process data was performed in which the percentage of arc power loss to the furnace
roof and vessel (xloss

arc in Equation (16)) was recursively estimated with a KF [13]. The
average result of this study for one-, two- and three- basket heats is shown in Figure 6,
where a higher arc energy loss proportion corresponds to a lower arc efficiency. The
discernible features denoted in Figure 6 allow us to propose a physical explanation that
we can later use to model arc efficiency. These features are most apparent for one-basket
heats, as multiple-basket heat results are impacted by the variable proportions of electric
energy added per basket. High arc losses at the beginning of the heats are explained by arc
exposure during boredown. As boredown continues, the arc is covered by scrap and the
loss proportion decreases until the scrap begins to melt and re-exposes the arc. The arc is,
however, only temporarily exposed, as the appearance of a liquid steel phase is followed
quickly by a liquid slag phase, and the reactions between liquid steel and slag components
lead to a larger, foamier slag phase. This foamy slag phase provides the arc with coverage
as the heat nears completion.

Efficiency model constants kloss
basket, kWhbasket and xbasket are fit to best reproduce the

average data for one-, two- and three-basket heats presented in Figure 6. The arc efficiency
model effectively reproduces the one- and two-basket heat data, but performs less well
when compared to the three-basket heat data. The discrepancy between the model and the
three-basket heat data could be due to poor statistics, as far fewer three-basket heats were
recorded in the data series.

While the basket-dependent parameters do enable the model to capture average
process behavior, there still exists a variable degree of energy losses between heats with the
same number of baskets. These differences between heats could be due to many factors
not currently accounted for by the efficiency model, including variable density of baskets,
electrode tip wear and hot heel. The strategy employed for addressing this variation is
to include scaling parameter kloss in the model for arc efficiency given by Equation (16).
Unlike the efficiency model constants, which are tuned for all heats with the same number
of planned charged baskets, the kloss term in Equation (16) is a designated parameter for
recursive estimation. Variations in efficiency from heat to heat are to be expected and
can be followed using a KF [13]. Figure 7 shows an example of the impact of recursive
estimation on the same five consecutive two-basket heats plotted in Figure 4. The ballistic
simulation uses a kloss value that best matches the average for all heats with the same
number of baskets. The ballistic simulation follows the trend in cooling water process data
well, but is prone to sometimes overpredicting heat losses and the resulting cooling water
outlet temperature. Recursive estimation of kloss fares better: after overcoming initial errors
that come from reinitializing the heat, the estimation results match both the trend and level
of cooling water temperature data.
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Figure 6. Comparison of arc efficiency estimation and model for (A) one-basket heats, (B) two-basket
heats and (C) three-basket heats. The x-axis is the normalized progress of each heat as measured
by the percentage of total electric energy added to the furnace. Low %kWhinput-results are not
meaningful as the efficiency estimation requires several samples to change from the initial guess
factor of 0.02.

Figure 7. Example of arc loss coefficient kloss estimation during five consecutive two-basket heats. (left) A constant kloss

produces model results that follow the cooling water dynamics but sometimes overpredict the outlet temperature. (right)
Estimation of kloss produces more accurate model results.
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3.3. Industrial Use and Application

Model predictive control (MPC) is an advanced method of process control that deter-
mines a sequence of process inputs that optimizes a predicted process output at specified
time points in the future [23]. Online MPC routines re-evaluate the current process state at
each successive sampling time, allowing the optimization to adapt to process disturbances.
The process control scheme referred to in this work can be more specifically described as
Non-linear model predictive control (NMPC) because the predicted response to proposed
inputs are calculated based on a non-linear process model.

MPC simulations were performed based on logged plant data from 250 heats with
the CyberneticaTM Cenit software. The goal of these MPC simulations is to optimize the
electrical power input in order to increase the overall efficiency of the arc power. In order
to adapt the process data for the MPC study, the basket contents and schedule of charges
are preserved according to logged data without the exact schedule being preemptively
revealed to the MPC. Logged power input is overwritten by the closed-loop simulation.
Because the operation of the gas burners should be in sync with the accumulated electrical
energy added to the furnace, logged LNG and oxygen flows are replaced with the gas
burner recipe used in plant operation. Logged time delays and pauses in electrical power
supply are preserved in the MPC simulations.

In the CyberneticaTM Cenit implementation of MPC, the optimization takes the form
of minimizing an objective function. Because the EAF is operated as a batch process, the
process outputs that contribute to the objective function are evaluated at the end of the
batch (the time at which the model predicts the furnace contents are fully melted). The
MPC algorithm seeks to simultaneously minimize the total batch time and maximize the
efficiency of the electric arc based on the objective function J:

J =
1
2

ΔUT S ΔU + RT(Z − Zmax). (19)

The optimization criteria J is a scalar calculated from the sum of the right-hand side
terms in Equation (19). U represents manipulated variable (MV) process inputs and ΔU
is the vector of changes to manipulated inputs proposed by the optimization. Changes
to MVs are weighted by the penalties contained by the diagonal of matrix S. Z is vector
of control variables (CV) calculated by the model, and Zmax is a vector of soft maximum
constraints for each CV. The violation of each constraint is weighted linearly by vector R,
and the term is only evaluated for the largest constraint violation in the prediction horizon.

For the EAF optimization simulations, the elements of the U-vector are:

• U1−15 or MV1−15: Shift from the nominal power profile during optimization interval
(i = 1 to 15) (MW).

The MPC optimizes deviation U from a nominal power profile in order to propose a
more efficient power profile solution. The MV in this optimization problem is therefore
change to power input rather than the power input itself. The prediction horizon is
divided into 15 intervals, each of which is shifted by a separate Ui. The nominal power
profile is given by plant recipes for one-, two- and three-basket heats. The elements of the
Z-vector are:

1. Z1 or CV1: Batch time (seconds)
2. Z2 or CV2: Energy losses from the electric arc (kWh).

The elements of Zmax are in this case set to zero in order to direct the optimization to
minimize both of the CVs.

Because the arc efficiency changes as the solid scrap melts down and a slag phase
forms, as discussed in Section 3.2, adjusting the power levels over the course of the heat
can lead to a more optimal power profile. Figure 8 shows an illustration of power profile
optimization. The MPC scheme uses a finite receding horizon, meaning that the as the
heat proceeds the output power profile will have shorter remaining duration. The criteria
for ending the output power is the model prediction of full meltdown of the solid mass
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in the furnace. The example batches following the nominal and optimized input power
trajectories are predicted to end at different times, and the optimized trajectory is projected
to incur fewer energy losses directly from the arc to the environment.

Figure 8. An illustration of MPC optimization for batch time and electric arc efficiency. Historical MV
and model CV predictions are shown as solid black lines. Within the prediction horizon, optimized
MV (MPC output) and CV are shown in orange, while nominal MV and the resulting CV are shown
in blue.

Figure 9 shows the energy savings predicted by the MPC simulations for one-, two-
and three-basket heats. The average predicted savings are:

• One-basket heats: 15.75 kWh/tonne per heat (2315 kWh per heat, based on an average
charged weight of 147 tonne);

• Two-basket heats: 13.32 kWh/tonne per heat (1945 kWh per heat, based on an average
charged weight of 146 tonne);

• Three-basket heats: 6.78 kWh/tonne per heat (983 kWh per heat, based on an average
charged weight of 145 tonne).

Figure 9. Change in specific energy consumption (SEC) due to MPC for (A) one-basket heats, (B) two-basket heats and
(C) three-basket heats. ΔSEC is calculated by subtracting the logged SEC up to the point where the model predicts steel
meltdown from the MPC simulation result.
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These results only account for the process energy savings up to the point when the
model predicts that all the scrap metal has melted. This means that if the model predicts
that the logged power profiles continue to heat the furnace after all the scrap metal is
liquefied, which happens frequently, the additional energy savings beyond the point of
full meltdown are neglected. While the model predicts that accounting for turning off
the furnace earlier can cut down energy usage per heat by up to 15 kWh/tonne, these
additional savings are not included in the average predicted savings listed above or in the
data shown in Figures 9 and 10. The purpose of this savings criteria is to evaluate the MPC
scheme’s potential for efficiency improvements independently from the model’s accuracy
of end-point prediction.

Figure 10. Logged specific energy consumption (SEC) up to the point of melting vs. change in SEC due to MPC for
(A) one-basket heats, (B) two-basket heats and (C) three-basket heats. ΔSEC is calculated as described in Figure 9.

While the MPC simulations predict the largest energy savings for one-basket heats, the
overall findings for one-, two- and three-basket heats are similar. Within these subgroups,
the electrical energy savings are not uniform for all heats: Figure 10 shows that the MPC
savings (ΔSEC) are correlated with the magnitude of the logged specific electrical energy
consumption (SEC). As SEC approaches approximate threshold values of 400 kWh/tonne
(one-basket heats) and 390 kWh/tonne (two- and three-basket heats) ΔSEC steadily de-
creases, potentially indicating that the MPC is not able to save significant amounts of
energy beyond a given lower bound.

The decreased energy demand for melting the furnace contents while following MPC
recommendations raises the question of whether the the optimized power profile signif-
icantly affects the endpoint state of the liquid steel. The process and model dynamics
are such that fully melting the scrap metal within the time frame of a standard batch
requires heating the liquid steel well above the melting temperature. In practice, temper-
ature measurements are made only after tapping, making a temperature target difficult
to verify, and the assumption that typical meltdown temperatures are high enough for
downstream processing has been shown to be sufficient. Because the optimization scheme
uses a meltdown criteria rather than an explicit temperature target, the energy-saving
recommendations could conceivably result in lower temperatures that are not optimal for
further processing and refining of the steel. To investigate this question, model predictions
of liquid steel temperatures from optimized and logged power profile simulations are
examined and compiled in Table 4. Two process data-derived temperatures are presented:
TMelt

Log is the liquid steel temperature at the moment the model predicts the steel is melted,

while TFull
Log is the liquid steel temperature when the logged power is shut off. Because the

MPC simulations shut off power once all the steel has melted, TMelt
Log is the most appropriate

quantity for comparison to TMPC.
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Table 4. Temperature of fully-liquefied steel prior to tapping as predicted by the model when follow-
ing logged process data and MPC simulations. Both means and standard deviations are presented.

TFull
Log TMelt

Log TMPC

1-Basket 1688.5 ◦C ± 27.8 ◦C 1684.5 ◦C ± 27.9 ◦C 1693.0 ◦C ± 13.0 ◦C

2-Basket 1693.3 ◦C ± 21.6 ◦C 1687.6 ◦C ± 23.4 ◦C 1703.7 ◦C ± 17.1 ◦C

3-Basket 1717.9 ◦C ± 2.1 ◦C 1717.2 ◦C ± 2.2 ◦C 1702.5 ◦C ± 0.9 ◦C

The results presented in Table 4 show that, at the point of meltdown, the liquid steel
actually reaches higher temperatures in the MPC simulations than in the simulations with
logged data. These results point to an interesting finding: according to the model, the
optimized power profile leads not only to lower process energy demand due to reduced
heating of the environment directly by the electric arc, but also to more efficient heating of
the steel by the energy that is able to be absorbed. MPC meltdown temperatures are also
higher than predicted temperatures at the point of logged power shut off, indicating that
following the optimized profile should not cause the liquid steel to be too cold at tapping
such as to cause problems for downstream plant processes.

4. Conclusions

The EAF is a challenging process to model and optimize from a precision point of
view: there are significant uncertainties associated with materials and electrodes that can
be difficult to resolve using an automated approach. This work aimed at formulating a
first-principles mathematical model in terms of ordinary differential equations for the state
variables of the EAF that can be adapted to process data using recursive parameter esti-
mation. The resulting model described in this article is of manageable size yet sufficiently
detailed and adaptable to be useful for process optimization.

An MPC-based optimization application based on this model has been running online
using data for a 140 tonne EAF furnace since August 2020, demonstrating that the model
is fast enough for industrial deployment. The predicted metal temperatures and weights
were found to be in reasonably good agreement with the measured values. Results indicate
that MPC-based process operation leads to both a reduction in total energy usage as well
as more efficient dissipation and heating of the steel by the consumed energy.

While several MPC studies for EAF processes have been reported in the literature [3,6],
this study is, to the best of the authors’ knowledge, the first where the efficiency of the
power input and electric arc has been the target for MPC optimization. The framework
for optimizing power input with MPC opens up the possibility of incorporating a more
complex model of the electrical power in order to achieve more effective and sensitive
optimization of arc efficiency [21]. Additional optimization scenarios can be considered in
further work: an economic optimization of burner vs. electrical power can be implemented
using the same framework, and new data and dynamic states can be added to the model
in order to optimize for operational costs such as equipment life cycle and electrode
consumption [24].
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Abbreviations

The following abbreviations are used in this manuscript:

EAF Electric Arc Furnace
MPC Model Predictive Control
NMPC Non-linear Model Predictive Control
SEC Specific Energy Consumption
KF Kalman Filter
LNG Liquefied Natural Gas
VF View Factor
CV Controlled Variable
MV Manipulated Variable
DRI Direct Reduced Iron

Nomenclature

The nomenclature for constants and variables used in the main text and appendices of this manuscript
are listed:

Aij Area for heat transfer between mass i and mass j m2

di Diameter of i m
d
dt Derivative operator
εj Radiation emissivity of surface j
Fi Molar rate of change of component i mol

s
Cp, i Heat capacity of i J

kg K
hk Height of mass k m
Hi Enthalpy of component i J

kg
kij Heat transfer coefficient between type i and type j W

m2K
mj

i Mass of component i in phase j kg
Mi Molar mass of component i g

mol
Qij Heat flowing from mass i to mass j W
Pk Power from source k MW
pi Pressure of phase i Pa
ri Reaction rate of reaction i kg

s
rparticle Radius of particle m
ρi Density of i kg

m3

σSB Stefan-Boltzmann constant for radiation 5.670374 × 10−8 W
m2K4

t Time s
Tj Temperature of phase j K

vi
Stoichiometric coefficient of component i in a chemical
reaction

Vk Volume of mass k m3
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Wi Mass rate of change of component i kg
s

xj
i Mass fraction of component i in phase j

xj Area fraction of control volume j
subscript: b Liquid slag
subscript: c Solid slag
subscript: g Gas
subscript: l Liquid steel
subscript: r Roof
subscript: s Solid steel
subscript: v Vessel

Appendix A. Extended Model Details

Appendix A.1. Electrical and Chemical Power

The power input supplied by the electric arc Parc is a logged process input. The arc
power is partitioned between several model masses:

Pgas
arc = xgas

arc Parc

Ploss
arc = xloss

arc Parc

Psteel
arc =

(
1 − xgas

arc − xloss
arc

)
Parc

(A1)

The calculation and estimation of xloss
arc is described in Section 2.5, while xgas

arc is a model
constant for the fraction of arc power used to heat the gas phase. Ploss

arc is used to heat two
pieces of furnace equipment: the furnace vessel and roof. The further partitioning of Ploss

arc
is determined by model constant xloss

v :

Pvessel
arc = xloss

vesselP
loss
arc

Proof
arc =

(
1 − xloss

vessel

)
Ploss

arc
(A2)

The molar LNG flow rate into the furnace FLNG is given by conversion from logged
gas flow rates according to standard temperature and pressure (STP; T = 0 ◦C, p = 100 kPa).
The molar flow rate of oxygen FO2 is similarly calculated by conversion from logged
standard flow rates. Given that enough oxygen is present, the LNG is assumed to combust
completely, allowing us to write an expression for the LNG power PLNG:

PLNG =
(

1.0 × 10−3
)

min
(

FLNG,
FO2

2

)
MLNGHLNG (A3)

MLNG and HLNG refer to the the molar mass and enthalpy of combustion for the
specified composition of LNG. PLNG heats both the steel and gas phases, with the gas phase
being heated to a greater extend as meltdown progresses:

xgas
LNG = 0.25

(
tanh

(
5xoverall

liquid − 2.5
)
+ 2

)
Pgas

LNG = xgas
LNGPLNG

Psteel
LNG =

(
1 − xgas

LNG

)
PLNG

(A4)

Oxygen consumption by the combustion of LNG can be calculated:

FLNG
O2

= 2 × min
(

FLNG,
FO2

2

)
(A5)
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Any oxygen not consumed by LNG combustion remains available for further chemical
reactions. Oxygen not consumed by LNG can be used for combustion with CO:

FCO
O2

= min
(

FO2 − FLNG
O2

,
kCOnCO

2

)
(A6)

nCO denotes the accumulated moles of CO from refining reactions present in the
furnace and kCO refers to a model limiting rate constant for the CO combustion reaction.
The power released by CO combustion is given:

pCO = FCO
O2

HCO (A7)

HCO refers to the enthalpy of combustion for CO. The amount of oxygen available for
refining reactions can be calculated based on the mass of liquid steel species:

minner
refine =

inner

∑
i = Fe, C, Si, Cr

minner
i, liquid

mouter
refine =

outer

∑
i = Fe, C, Si, Cr

mouter
i, liquid

Frefine
O2

= max
(

FO2 − FLNG
O2

− FCO
O2

, 0
)

(A8)

mi, liquid denotes the mass of species i within a given control volume and krefine refers
to a model limiting rate constant of refining for the liquid steel components. Frefine

O2
is

partitioned to the inner and outer control volumes and used for the reactions described in
Appendix A.2:

Frefine, inner
O2

=
minner

refine

minner
refine + mouter

refine
Frefine

O2

Frefine, outer
O2

=
mouter

refine

minner
refine + mouter

refine
Frefine

O2

(A9)

The power from all refining reactions is calculated from the sum of reactions described
in Appendix A.2:

Prefine = ∑
roxygen

(
F

roxygen
O2, inner + F

roxygen
O2, outer

)
H

roxygen
O2

+ ∑
requilibrium

(
F

requilibrium
XO, inner + F

requilibrium
XO, outer

)
H

requilibrium
XO (A10)

HO2 refers to the enthalpy of each refining reaction involving oxygen and HXO refers
to the enthalpy of each steel-slag equilibrium reaction per mol of XO, where XO is the oxide
species listed for each reaction in Tables A3 and A4.

The total chemical power to the steel is given:

Pchemical = Psteel
LNG + Prefine + PCO (A11)

The total steel-heating power is partitioned between the inner and outer control
volumes, with all of Psteel

arc being used to heat the inner steel:

Pinner = xinner

(
Psteel

LNG + Prefine + PCO

)
+ Psteel

arc

Pouter = xouter

(
Psteel

LNG + Prefine + PCO

) (A12)

xinner and xouter are the area fractions of the inner and outer control volumes, respec-
tively, as calculated from the model dimensions given in Appendix A.4. The total power to
the gas phase is given:

Pgas = Pgas
LNG + Pgas

arc (A13)
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Appendix A.2. Reaction Kinetics

The rates of oxygen consumption by the different reactions listed in Equation (2)
depend on the species mass fractions. The rates of consumption and production of the other
species involved can be calculated from the oxygen consumption rate. The consumption
and production rates of different species are given in Table A1 and hold for both the inner
and outer control volumes, where the steel mass fractions and oxygen available for refining
can vary.

Table A1. Oxygen consumption and species rate of change for each steel reaction with oxygen. F
denotes molar rates of change, v denotes stoichiometric coefficients and x denotes mass fractions.

Reaction O2 Consumption Rate Species i Rate of Change

Fe + 1
2{O2} → (FeO) FFe→FeO

O2
= xsteel

Fe Frefine
O2 FFe→FeO

i =
vFe→FeO

i
vFe→FeO

O2

FFe→FeO
O2

[C] + 1
2{O2} → {CO} FC→CO

O2
= 1

2 xsteel
C Frefine

O2 FC→CO
i =

vC→CO
i

vC→CO
O2

FC→CO
O2

[C] + {O2} → {CO2} FC→CO2
O2

= 1
2 xsteel

C Frefine
O2 FC→CO2

i =
vC→CO2

i

vC→CO2
O2

FC→CO2
O2

[Si] + {O2} → (SiO2) FSi→SiO2
O2

= xsteel
Si Frefine

O2 FSi→SiO2
i =

vSi→SiO2
i

vSi→SiO2
O2

FSi→SiO2
O2

2[Cr] + 3
2{O2} → (Cr2O3) FCr→Cr2O3

O2
= xsteel

Cr Frefine
O2 FCr→Cr2O3

i =
vCr→Cr2O3

i

vCr→Cr2O3
O2

FCr→Cr2O3
O2

2[Al] + 3
2{O2} → (Al2O3) FAl→Al2O3

O2
= xsteel

Al Frefine
O2 FAl→Al2O3

i =
vAl→Al2O3

i

vAl→Al2O3
O2

FAl→Al2O3
O2

The equilibrium reaction constants keq and dependence on species i mass fractions

xsteel
i and xslag

i are adapted from Turkdogan [15] and are given in Tables A2–A4. The rates
of change of different species are given in Table A5 and hold for both the inner and outer
control volumes, where the steel mass fractions and temperatures can vary.

The reference states for all species and the equilibrium constants in Table A2 are the
standard state of 25 ◦C and 1 atm.

Table A2. Equilibrium constants for reactions. Tl denotes liquid phase temperatures.

Reaction Equilibrium Constant

(FeO) + [C] ↔ Fe + {CO} log10

(
KFeO↔CO

eq

)
= −5730

1
2

(
Tsteel

l +Tslag
l

)
+273.15

+ 5.096

(FeO) + [Mn] ↔ Fe + (MnO) log10

(
KFeO↔MnO

eq

)
= 2

(MnO) + [C] ↔ [Mn] + {CO} log10

(
KMnO↔CO

eq

)
= −13182

1
2

(
Tsteel

l +Tslag
l

)
+273.15

+ 8.574

2(FeO) + [Si] ↔ 2Fe + (SiO2) log10

(
KFeO↔SiO2

eq

)
= 1510

1
2

(
Tsteel

l +Tslag
l

)
+273.15

+ 1.72

2(MnO) + [Si] ↔ 2[Mn] + (SiO2) log10

(
KMnO↔SiO2

eq

)
= 1510

1
2

(
Tsteel

l +Tslag
l

)
+273.15

+ 1.27

3(FeO) + 2[Cr] ↔ 3Fe + (Cr2O3) log10

(
KFeO↔Cr2O3

eq

)
= 0.3

3(SiO2) + 4[Al] ↔ 3[Si] + 2(Al2O3) log10

(
KSiO2↔Al2O3

eq

)
= 17065

1
2

(
Tsteel

l +Tslag
l

)
+273.15

− 14.465
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Table A3. Forward reaction rates for equilibrium reactions. x denotes mass fractions and kf refers to
kinetic model constants for each reaction.

Reaction Forward Reaction Rate Units

(FeO) + [C] ↔ Fe + (CO) FFeO↔CO
f =

(
0.11 · 104)KFeO↔CO

f xslag
FeOxsteel

C
mol FeO

s

(FeO) + [Mn] ↔ Fe + (MnO) FFeO↔MnO
f = 104 · KFeO↔MnO

f xslag
FeOxsteel

Mn
mol FeO

s

(MnO) + [C] ↔ [Mn] + {CO} FMnO↔CO
f =

(
0.017 · 104)KMnO↔CO

f xslag
MnOxsteel

C
mol MnO

s

2(FeO) + [Si] ↔ 2Fe + (SiO2) FFeO↔SiO2
f =

(
2 · 104)KFeO↔SiO2

f

(
xslag

FeO

)2
xsteel

Si
mol FeO

s

2(MnO) + [Si] ↔ 2[Mn] + (SiO2) FMnO↔SiO2
f =

(
2 · 104)KMnO↔SiO2

f

(
xslag

MnO

)2
xsteel

Si
mol MnO

s

3(FeO) + 2[Cr] ↔ 3Fe + (Cr2O3) FFeO↔Cr2O3
f =

(
3 · 104)KFeO↔Cr2O3

f xslag
FeOxsteel

Cr
mol FeO

s

3(SiO2) + 4[Al] ↔ 3[Si] + 2(Al2O3) FSiO2↔Al2O3
f =

(
1.5 · 104)KSiO2↔Al2O3

f xslag
SiO2

xsteel
Al

mol SiO2
s

Table A4. Backward reaction rates for equilibrium reactions. x denotes mass fractions, kf refers
to kinetic model constants for each reaction, pCO is the partial pressure of CO and M denotes
molar masses.

Reaction Backward Reaction Rate Units

(FeO) + [C] ↔ Fe + {CO} FFeO↔CO
b =

KFeO↔CO
f

KFeO↔CO
eq

pCO
mol Fe (FeO)

s

(FeO) + [Mn] ↔ Fe + (MnO) FFeO↔MnO
b = 102 · KFeO↔MnO

f
KFeO↔MnO

eq
xslag

MnO
mol Fe (FeO)

s

(MnO) + [C] ↔ [Mn] + {CO} FMnO↔CO
b = 102 · KMnO↔CO

f
KMnO↔CO

eq
pCOxsteel

Mn
mol Mn (MnO)

s

2(FeO) + [Si] ↔ 2Fe + (SiO2) FFeO↔SiO2
b =

(
2 · 102) K

FeO↔SiO2
f

K
FeO↔SiO2
eq

xslag
SiO2

mol Fe (FeO)
s

2(MnO) + [Si] ↔ 2[Mn] + (SiO2) FMnO↔SiO2
b =

(
2 · 104) K

MnO↔SiO2
f

K
MnO↔SiO2
eq

(
xsteel

Mn
)2xslag

SiO2

mol Mn (MnO)
s

3(FeO) + 2[Cr] ↔ 3Fe + (Cr2O3) FFeO↔SiO2
b =

(
6·102 ·MCr

MCr2O3

)
K

FeO↔Cr2O3
f

K
FeO↔Cr2O3
eq

xslag
Cr2O3

mol Fe (FeO)
s

3(SiO2) + 4[Al] ↔ 3[Si] + 2(Al2O3) FSiO2↔Al2O3
b =

(
1.5 · 104) K

SiO2↔Al2O3
f

K
SiO2↔Al2O3
eq

xsteel
Si xslag

Al2O3

mol Si (SiO2)
s

Table A5. Species rates of change for each steel–slag equilibrium reaction.

Reaction Species i Rate of Change

(FeO) + [C] ↔ Fe + {CO} FFeO↔CO
i =

vFeO↔CO
i

vFeO↔CO
FeO

(
FFeO↔CO

f − FFeO↔CO
b

)
(FeO) + [Mn] ↔ Fe + (MnO) FFeO↔MnO

i =
vFeO↔MnO

i
vFeO↔MnO

FeO

(
FFeO↔MnO

f − FFeO↔MnO
b

)
(MnO) + [C] ↔ [Mn] + {CO} FMnO↔CO

i =
vMnO↔CO

i
vMnO↔CO

MnO

(
FMnO↔CO

f − FMnO↔CO
b

)
2(FeO) + [Si] ↔ 2Fe + (SiO2) FFeO↔SiO2

i =
vFeO↔SiO2

i

vFeO↔SiO2
FeO

(
FFeO↔SiO2

f − FFeO↔SiO2
b

)
2(MnO) + [Si] ↔ 2[Mn] + (SiO2) FMnO↔SiO2

i =
vMnO↔SiO2

i

vMnO↔SiO2
MnO

(
FMnO↔SiO2

f − FMnO↔SiO2
b

)
3(FeO) + 2[Cr] ↔ 3Fe + (Cr2O3) FFeO↔Cr2O3

i =
vFeO↔Cr2

i

vFeO↔Cr2
FeO O3

(
FFeO↔Cr2O3

f − FFeO↔Cr2O3
b

)

The molar rates of change due to reactions Fi

(
mol

s

)
can be combined with the molar

mass of each component Mi
( g

mol
)

to calculate the total mass rates of change of all dynamic

state components Wi

(
kg
s

)
:
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Wi =
(

1.0 × 10−3
)

Mi

(
∑

oxygen
Foxygen

i + ∑
equilibrium

Fequilibrium
i

)
(A14)

Appendix A.3. Overall Heat and Mass Balances

Many of the heat and mass balances refer to the area fractions xinner and xouter:

xinner =

(
rinner

rfurnace

)2

xouter = 1 − xinner

(A15)

Depending on the sub- and super-scripts, x(inner/outer)
(solid/liquid) refers to the solid (s) or liquid

(l) mass fractions in the inner or outer control volume. Similarly, x(inner/outer)
i, (solid/liquid)

In the following overall steel mass balances, uscrap refers to scrap metal input to
the furnace.

dminner
solid

dt
= xinneruscrap − rinner

melt + rinner
freeze

dmouter
solid

dt
= xouteruscrap − router

melt + rinner
freeze

dminner
liquid

dt
= rinner

melt − rinner
freeze + ∑

i, steel
Winner

i, steel

dmouter
liquid

dt
= router

melt − router
freeze + ∑

i, steel
Wouter

i, steel

(A16)

In the following overall slag mass balances, uslag refers to slag input to the furnace.

dmslag
solid

dt
= uslag − rslag

melt + rslag
freeze

dmslag
liquid

dt
= rslag

melt − rslag
freeze + ∑

i, slag

(
Winner

i, slag + Wouter
i, slag

) (A17)

The species i fraction of the charged scrap xscrap
i enters the scrap component balances:

dminner
i, solid

dt
= xinneruscrapxscrap

i − rinner
melt xinner

i, solid + rinner
freezexinner

i, liquid

dmouter
i, solid

dt
= xouteruscrapxscrap

i − router
melt xouter

i, solid + router
freezexouter

i, liquid

dminner
i, liquid

dt
= rinner

melt xinner
i, solid − rinner

freezexinner
i, liquid + ∑

i, steel
Winner

i, steel

dmouter
i, liquid

dt
= router

melt xouter
i, solid − router

freezexouter
i, liquid + ∑

i, steel
Wouter

i, steel

(A18)

The species i fraction of the charged slag xslag
i enters the slag component balances:

dmslag
i, solid

dt
= uslagxslag

i − rslag
meltx

slag
i, solid + rslag

freezexslag
i, liquid

dmslag
i, liquid

dt
= rslag

meltx
slag
i, solid − rslag

freezexslag
i, liquid + ∑

islag

Wislag

(A19)
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The mol balance of CO gas is given:

dnCO

dt
= ∑

equilibrium
Fequilibrium

CO − 2FCO
O2

(A20)

The temperature balances of steel phases:

dTinner
solid
dt

=

xinner
solid Pinner − Qinner-inner

solid–liquid − Qinner-outer
solid–solid − Qinner-outer

solid–liquid − Qinner
solid-roof − Qinner

solid-vessel − Qinner
solid-gas

− Qinner-slag
solid–solid − Qinner-slag

solid–liquid + Qinner
freeze − Qinner

melt − Cp,solidxinneruscrap
(
Tinner

solid − Tambient
)

Cp, solidminner
solid

dTouter
solid
dt

=

xouter
solid Pouter − Qouter-outer

solid–liquid + Qinner-outer
solid–solid − Qinner-outer

liquid–solid − Qouter
solid-roof − Qouter

solid-vessel − Qouter
solid-gas

− Qouter-slag
solid–solid − Qouter-slag

solid–liquid + Qouter
freeze − Qouter

melt − Cp,solidxouteruscrap
(
Touter

solid − Tambient
)

Cp, solidmouter
solid

dTinner
liquid

dt
=

xinner
liquidPinner + Qinner-inner

solid–liquid − Qinner-outer
liquid–solid − Qinner-outer

liquid–liquid − Qinner
liquid-roof − Qinner

liquid-vessel − Qinner
liquid-gas

− Qinner-slag
liquid–solid − Qinner-slag

liquid–liquid + Qinner
freeze − Qinner

melt

Cp, liquidminner
liquid

dTouter
liquid

dt
=

xouter
liquidPouter + Qouter-outer

solid–liquid + Qinner-outer
solid–liquid + Qinner-outer

liquid–liquid − Qouter
liquid-roof − Qouter

liquid-vessel − Qouter
liquid-gas

− Qouter-slag
liquid–solid − Qouter-slag

liquid–liquid + Qouter
freeze − Qouter

melt

Cp, liquidmouter
liquid

(A21)

The temperature balances of slag phases:

dTslag
solid
dt

=

Qinner-slag
solid–solid + Qouter-slag

solid–solid + Qinner-slag
liquid–solid + Qouter-slag

liquid–solid

+ Qslag
freeze − Qslag

melt − Cp, slaguslag

(
Tslag

solid − Tambient

)
Cp, slagmslag

solid

dTslag
liquid

dt
=

Qinner-slag
solid–liquid + Qouter-slag

solid–liquid + Qinner-slag
liquid–liquid + Qouter-slag

liquid–liquid

+ Qslag
freeze − Qslag

melt

Cp, slagmslag
liquid

(A22)

The temperature balances of gas phases:

dTgas

dt
=

Pgas + Qinner
solid-gas + Qouter

solid-gas + Qinner
liquid-gas + Qouter

liquid-gas − Qgas-roof − Qgas-vessel

− FLNGCp, LNG
(
Tgas − Tambient

)− FO2 Cp, O2

(
Tgas − Tambient

)
Cp, gasngas

dToffgas

dt
=

FoffgasCp, gas

(
Tgas − Toffgas

)
+ 0.05FairCp, air

(
Tambient − Toffgas

)
2Cp, gasngas

(A23)

ngas is calculated from the ideal gas law using standard temperature and pressure
(STP) conditions (T = 0 ◦C, p = 100 kPa) and the furnace volume given by the dimensions in
Appendix A.4. Cp, gas is calculated from the LNG and oxygen flow rates and heat capacities:

Cp, gas =
FLNGCp, LNG + FO2 Cp, O2

FLNG + FO2

(A24)

The temperature balances of furnace equipment:
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dTroof
dt

=

Proof
arc + Qinner

solid-roof + Qouter
solid-roof + Qinner

liquid-roof + Qouter
liquid-roof

+ Qgas-roof − Qroof-water − Qroof-vessel

Cp, roofmroof

dTvessel
dt

=

Pvessel
arc + Qinner

solid-vessel + Qouter
solid-vessel + Qinner

liquid-vessel + Qouter
liquid-vessel

+ Qgas-vessel − Qvessel-water + Qroof-vessel

Cp, vesselmvessel

(A25)

Appendix A.4. Model Constants and Dimensions

Table A6. Model constants and dimensions. An empty entry in the Units column indicates a unitless quantity.

Constant Description Value Units

dfurnace Furnace diameter 8.1 m

dinner Inner control volume diameter 4.65 m

hfurnace Furnace height 5.2 m

hpanel Cooling water panel height 2.89 m

Cp, solid Heat capacity of solid steel 39 J
mol K

Cp, liquid Heat capacity of liquid steel 46 J
mol K

Cp, slag Heat capacity of slag 50 J
mol K

ρsolid Density of solid steel 2000 kg
m3

ρliquid Density of liquid steel 7000 kg
m3

kphase Phase change constant 0.005 1
s

kCO Limiting constant for CO combustion 0.25 1
s

xgas
arc Fraction of arc power used to heat gas 0.05

xloss
vessel Fraction of arc losses used to heat vessel 0.3

kss Heat transfer coefficient: solid steel–solid steel 400 W
m2K

ksl Heat transfer coefficient: solid steel–liquid steel 12,000 W
m2K

kll Heat transfer coefficient: liquid steel–liquid steel 60,000 W
m2K

kcs Heat transfer coefficient: solid slag–solid steel 2000 W
m2K

kcl Heat transfer coefficient: solid slag–liquid steel 2000 W
m2K

kbs Heat transfer coefficient: liquid slag–solid steel 5 W
m2K

kbl Heat transfer coefficient: liquid slag–liquid steel 5 W
m2K

ksg Heat transfer coefficient: solid steel–gas 20 W
m2K

klg Heat transfer coefficient: liquid steel–gas 10 W
m2K

kgr Heat transfer coefficient: gas–roof 25 W
m2K

kgv Heat transfer coefficient: gas–vessel 25 W
m2K

krw Heat transfer coefficient: roof–water 300 W
m2K

kvw Heat transfer coefficient: vessel–water 300 W
m2K

εs Emissivity of solid steel 0.4

εl Emissivity of liquid steel 0.6

εr Emissivity of furnace roof 0.7

εv Emissivity of side panels 0.5
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Abstract: A 2D axisymmetric two-phase model was developed to study the effect of an arc impinge-
ment on the liquid metal inside an electric arc furnace. In addition to the arc flow dynamics, the model
covered the heat transfer and magneto hydrodynamics of the arc and the liquid metal. Through a
parametric study, three different parameters were considered to predict the most important factors
affecting the arc and overall behaviour of the process: the arc gap, the density of the gas, and the total
electric current. Understanding the effect of these parameters can show the key factors altering the arc
dynamics. The study showed that the total applied current was the most important parameter that
influenced the impingement depth and mixing of the liquid metal. The depth of the impingement
and strength of the mixing of the liquid bath were directly proportional to the current applied in
the furnace. The initial arc gap distance was found to be crucial for sustaining a continuous and
stable arc. The value of the gas density was very important for the velocity profile; however, it had
no significant effect on the impingement depth. This showed that a constant density could be used
instead of a varying gas density with temperature to increase the computational efficiency. The study
assessed the effects of the aforementioned factors on the arc impingement depth, velocity magnitude,
and arc stability. The conclusions acquired and challenges are also presented.

Keywords: direct current; electric arc furnace; arc impingement; arc gap; gas density; electric arc;
magneto hydrodynamics; computational fluid dynamics

1. Introduction

The first use of an electric arc furnace (EAF) was in the 19th century. Although a
direct current (DC) in an EAF was first used in the late 1800s, the major development
and industrial use was focused on alternating current (AC) furnaces. This was driven by
the better efficiency and power transmission of AC power. In the past three decades, the
DC-EAF has again been highly utilised in the metallurgical industry through a variety of
applications such as steel scrap melting and smelting processes [1]. The shift toward DC
furnaces is because they are now believed to have a better power efficiency, less electrode
consumption, and a lower level of noise. DC arcs are also more stable by nature compared
with AC arcs. As a result of the increasing demand for DC arc furnaces in industry, further
improvements in their design and a better understanding of the method of operations are
required. A typical configuration of the DC-EAF entails a large liquid metal bath cylinder
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with refractory walls covered by a conical roof cooled by water. The cathode electrode
is mounted on the top of the metal scrap bath separated by the arc gap. A flat anode of
graphite is situated directly under the metal bath in direct contact, as shown in Figure 1.

 

Figure 1. Electric arc furnace schematic.

The arc propagates in this gap providing the thermal and mechanical drive for
the furnace.

The arc converts the electric energy supplied by the circuit into thermal and mechanical
energy. This arises due to the electrical breakdown of gas as a result of a high potential
difference in the arc gap. At high temperatures (5000–7000 K), thermal dissociation is
accomplished rendering neutral molecules of gas into conductive ions and electrons [2].
The gas is transformed into thermal plasma that is electrically conductive. The current
flows through the arc interacting with its magnetic field. This interaction results in the
Lorentz force acting radially inwards along the arc, constricting the arc diameter. At the
cathode spot, the Lorentz force acts in an inclined direction toward the cathode spot thus
sucking the gas inside, as shown in Figure 1. A powerful jet is created; it is restrained near
the cathode spot and then expands gradually as it propagates downwards. Experimental
measurements [3] predicted that the speed of the gas inside the jet can reach the orders of
km/s. This is capable of creating a thrust that disturbs and penetrates through the surface
of the slag and liquid metal, creating a cavity and causing significant splashing that alters
the nature and behaviour of the arc. As the electric current flows through the gas arc gap,
a high amount of thermal energy is released due to resistive heating that prevents the
extinction of the arc as simultaneous heat is released through radiation and convection
into the metal bath. This ensures the delivery of the high thermal energy into the metal
avoiding any undesired solidification. The impingement also creates a mechanical drive to
recirculate and stir the liquid metal.

Historically, the development of arc furnace technology was purely experimental
(trial and error). The first mathematical studies were performed on the arc region by
Ushio et al. [4] and Szekely et al. [2]. In their work, they represented the thermal and
electromagnetic fields through solving the arc region by turbulent Navier–Stokes equations
for flow. Alexis et al. [5] developed a mathematical model that predicted the fluid flow
and electromagnetic field in addition to the thermal field effect on the liquid metal bath.
Although these studies focused on the arc thermal and electromagnetic fields in detail,
the major drawback was the lack of momentum coupling with the liquid metal bath. The
effect of the electromagnetic fields on the liquid metal bath was covered Szekely et al. [3]
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where the thermal effect of the arc on the metal bath without an electromagnetic force
was studied. Ramírez et al. [6] performed a simulation to analyse the heat transfer from
the arc and electromagnetic effects on the flow inside the fluid bath. The mixing due to
the electro-vortex flow drastically affected the distribution of heat from the arc and the
durability of the refractories. Kazak [7] studied the effect of the Lorentz force and thermal
stresses on the walls of the furnace.

Reynolds [8] analysed the effect of the arc impingement on the liquid bath in a multi-
phase simulation considering the arc as a gas jet and neglecting the electromagnetic nature
and forces. Klementyeva et al. [9] conducted experimental measurements to examine the
effect of the arc on the free surface of the liquid metal. A study conducted by Reynolds [10]
simulated a lab scale arc impinging the liquid bath of two immiscible phases for different
values of the current and arc gap. Adib et al. [11] studied the effect of a high-speed air jet
impinging the liquid surface using a VOF formulation and measured the interface defor-
mation and cavity depth. Most of the works reported in the literature have studied one
aspect of the DC-EAF but very few of them have introduced the full coupling of the plasma
arc and liquid metal interaction. This may be due to the limitation in the computational
power and the complexity of the realisation of the arc–liquid interaction.

This paper introduces a study of a multiphase arc simulation. The thermal and elec-
tromagnetic fields of the arc are predicted through solving the momentum and induction
equations. The liquid metal bath is fully considered with its thermal and electrical proper-
ties. This two-way coupling of the arc and free surface of the liquid enable us to capture the
arc impingement and the thermal and electromagnetic effect on both the arc and molten
metal in a DC-EAF on an industrial scale. The paper relies on several data and parameters
from the literature, which was necessary to build upon—instead of spending effort in
exploring—what had already been previously achieved. This paper introduces several
new advancements to boost the arc modelling especially coupled with liquid bath beneath.
Previous studies have mostly focused on the simulation of a single-phase electric arc with
a solid surface of a metal bath. A few studies have included the consideration of a liquid
metal bath, such as the heat transfer effect, but there has only been one with full coupling
and an interaction between the arc and the liquid bath [10] with much smaller current
values. This paper assesses the effect of the gas density value and how this assumption
helps to reduce the required computational power to achieve the same real-time simulation
without greatly affecting the accuracy. The study also aims to explore the major parameters
that affect the impingement depth and size.

2. Modelling

The physical arrangement considered in this study covered the micro-environment
around the arc rather than the whole furnace geometry for the sake of practical reasons.
The configuration consisted of a 2D axisymmetric geometry covering a part of the electrode,
the arc gap, and the liquid metal bath. A two-phase flow situation was considered: the
gas phase and the liquid metal. The slag layer was not considered. The setup is shown in
Figure 2, manifesting the uniform mesh generated for the domain. The numbers in Figure 2
from 1 to 6 indicate the boundary conditions: (1) cathode spot; (2) electrode side; (3) gas top
boundary; (4) domain side; (5) metal bath bottom (anode); and (6) the axis of symmetry.

2.1. Governing Equations

The flow was considered to be multiphase where the two fluids were the gas and
the liquid metal. The Volume of Fluid (VoF) multiphase model was adopted to simulate
the flow in the domain. The continuity, momentum, energy, and induction equations
were solved.
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Figure 2. Geometry of the domain: R = 0.8, H = 1 m. The electrode length was 0.04 and the radius
was 0.008; the arc gap (G) was 0.25, and the metal bath depth was initially 0.71 m.

The case was simulated using ANSYS FLUENT® version 14.5 [12]. The equations
are described below. The electromagnetic variables were calculated through coupling
user-defined functions (UDFs) with fluent solvers.

Continuity:
∂ρ

∂t
+∇

(
ρ
→
U

)
= 0 (1)

Here, ρ is the density and U is the velocity vector field.
Momentum:

∂

(
ρ
→
U

)
∂t

+∇ ·
(

ρ
→
U

→
U

)
= −∇p +∇ ·

(
μ∇→

U
)
+ ρg + F +

1
μ0

(
→
J ×→

B) (2)
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where p, μ, g, F, μ0, J, and B stand for the pressure, viscosity, gravitational acceleration,
external forces, vacuum permeability, current density, and magnetic field, respectively.

Enthalpy:

∂

∂t
(ρcpT) +∇·(ρcp

→
UT) = ∇·(k∇T) + Jheat + Radloss (3)

where cp is the specific heat, T is the temperature, and K is the thermal conductivity. Jheat is

the joule heating ‖J2‖
σ , J is the current density, and σ is the electrical conductivity. Radlo. is

the radiation loss. The radiation heat loss was based on experimental measurements [12]
for air at 1 atm pressure.

Induction equation:

∂Bθ

∂t
+∇ · (→u Bθ) = ∇(

1
σμ0

∇Bθ) +
∂

∂r
(

1
σμ0r

)Bθ (4)

In order to simulate the arc and its interaction with the liquid bath, certain assumptions
were adopted due to the high complexities. The flow inside the arc was considered to
be always in a local thermal equilibrium. This enabled the use of electrical conductivity
solely dependent on the temperature. Electrical conductivity is very low (almost zero) at
an atmospheric temperature. It increased to a relatively low order of 1 S/m at a metal bath
temperature of 1800 K and increased to reach a high conductivity of 3000 S/m inside the
arc where the temperature exceeded 10,000 K [13]. The electrical conductivity of the liquid
metal was constant and significantly larger than 80,000 S/m. This created a huge gradient
at the interface especially away from the high temperature regions. A small volume fraction
of liquid metals can induce a large increase in electrical conductivity. To solve this sudden
increase numerically, a harmonic function was implemented:

σint =
σgσm

αgσg + (1 − αg)σm
(5)

where σ and α stand for the electrical conductivity and volume fraction, respectively, and g
denotes gas and m denotes metal.

Metal properties are assumed to be constant. Gas properties, except density, are
temperature-dependent [13]. The dependency of the density induces strong numerical
difficulties. This is why we considered the density to be constant and independent of
the temperature. This study aimed to predict the overall arc behaviour as a result of
an impingement rather than the exact detailed behaviour of the arc. To validate this
assumption, a parametric study on the density of the gas was carried out. The assumption
of a constant density led to a better stability of the simulation and thus the calculation of
the time step could be increased. Other properties, such as the specific heat and dynamic
viscosity of the gas, are temperature-dependent, based on Boulos [13]. The implementation
of a radiation model was added to the energy equation that considered the liquid metal
bulk and solid surfaces to be opaque while the liquid surface had a temperature of 1800 K.
The radiation inside the domain was calculated in each cell based on this assumption. The
properties of the liquid metal are shown in Table 1.

Table 1. Liquid metal properties.

Density Specific Heat
Thermal

Conductivity
Viscosity

Electrical
Conductivity

7000 kg/m3 800 J/kg 40 W/mK 0.006 Pa.s 800,000 S
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2.2. Simulation Settings

The top boundary of the domain was considered to be cooled by water, the surface
temperature was 500 K and the temperature of the water was 300 K. All other boundaries
were considered to be thermally adiabatic walls. The temperature of the cathode spot was
set to be constant at 4000 K [14] and the metal bath was considered to be initially in a liquid
phase with a uniform temperature of 1800 K. The total current was supplied at the top of
the electrode and the cathode spot had a constant current density of 4.4 × 107 A/m2 [15].
The cathode spot area was calculated by dividing the total current by the current density
and the electrode radius was set to be equal to the cathode spot for simplicity. No external
magnetic field was considered.

The initial temperature distribution inside the arc environment was based on the
thermal distribution of an arc with a 0.25 cm arc gap [6]. It is important to point out that the
arc gap defined the vertical distance between the cathode spot and the initial flat surface of
the conducting liquid. This was different from the actual arc length presented at the end
of this paper. The actual arc length was the length of the arc connecting the cathode spot
and the anode spot at the impinged liquid surface. Figure 3 shows the difference between
actual arc length and arc gap. The lower part was liquid metal at 1800 K. The boundary
conditions for the induction equation are presented in Table 2.

Figure 3. Electric arc during the impingement of the liquid metal: (1) actual arc length; (2) arc gap.

Table 2. Induction equation boundary conditions for the domain.

Boundary
Flow Boundary

Conditions
Thermal Boundary

Conditions
Induction Equation

Boundary Conditions

1. Electrode Bottom
→
U = 0 T = 4000 K ∂Bθ

∂z = 0

2. Electrode Side
→
U = 0 ∂T

∂r = 0 Bθ =
I0μ0r

2πRc2

3. Gas Top ∂Ur
∂z = 0, Uz = 0 T = 500 K Bθ =

I0μ0
2πr

4. Gas and Melt Side
→
U = 0 ∂T

∂r = 0 Bθ =
I0μ0
2πr

5. Metal Bath Bottom
(Anode)

→
U = 0 ∂T

∂z = 0 ∂Bθ
∂z = 0

6. Axis of Symmetry ∂Uz
∂r = 0, Ur = o ∂T

∂r = 0 Bθ = 0
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The equations were solved using the finite volume method. The simulations were
completed in a transient mode for a relatively significant real flow time to achieve the arc
impingement effects. As indicated, several simulations were performed to assess the effects
of the different parameters on the arc impingement and the stability of the arc. The main
variables covered in this study were the arc gap distance, the density of the plasma, and
the global current.

The mesh used in the study was a quadratic uniform mesh composed of 200,000 elements
over the domain. The cell face size was 2 mm. A mesh dependency test was performed to
ensure that the results were not dependent on the mesh size. A total of 4 different meshes
were tested with cell sides of 4 mm, 2.66 mm, 2 mm, and 1 mm, which resulted in mesh
sizes of 50,000, 125,000, 200,000, and 400,000, respectively. The maximum velocity of the
arc before hitting the liquid surface for the different mesh sizes is shown in Figure 4. The
depth of the first impingement wave was also plotted, which showed almost no difference
over the 4 meshes (Figure 5). This showed that for mesh sizes larger than 200,000 elements,
the results were not dependent on the mesh size.

Figure 4. Velocity magnitude as a function of the mesh size.

Figure 5. Impingement depth as a function of the mesh size.
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3. Results and Discussion

3.1. Reference Case

For an EAF, the arc gap is often set between 0.1 m and 0.5 m [16]; here, the arc gap of
choice was 0.25 m as the reference configuration (control case). For the total current, the
initial current was equal to 10 kA and the density was constant and equal to 1 kg/m3. The
time step was 10−5 s.

Figure 6 depicts the initial state of the domain. The jet emerging from the cathode spot
shows the initial current distribution inside the gas before diffusing into the flat surface
of the conducting liquid. The yellow contour shows the zoomed area shown in the arc
impingement simulation for the gap and density parametric study.

 
Figure 6. Simulation domain. The yellow frame shows the zoomed domain for a better visual depiction.

Once the arc jet reached the liquid surface, an impingement wave formed pushing
the liquid metal downwards and displacing it away from the jet path (Figure 7). Figure 7
illustrates the arc impingement for the reference model during different time snaps. The
left half shows the electric current lines (J is the current density) and the right half shows
the velocity magnitude of the gas (U is the velocity magnitude). The liquid metal is shown
in black. This applies for all the following figures that display the arc impingement. The
wave initially propagated vertically and then created a wide cavity. The arc jet pushed
the liquid metal droplets upwards, as shown in the 0.286 s image in Figure 7. The cavity
expanded and shrank continuously and a wave travelled along the surface. The splashing
of droplets appeared to be continuous and the droplets were transported far away from
the arc impingement location. A few of the droplets recirculated inside the arc region. The
motion of the arc was instantaneously compared with the aerodynamics and motions of
the liquid metal. The arc tended to choose the shortest distance in the gas to reach the
liquid metal (Figure 7, 0.8 s). When the shortest distance between the electrode and the
liquid metal was different from the original path position (near the axis) the arc deviated,
as shown in Figure 7, 0.8 s.
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Figure 7. Arc impingement arc gap of 2.5 × 10−1 m.

3.2. Effect of the Arc Gap

Apart from the reference case, two other arc gaps of 0.2 m and 0.3 m were also
considered. For the gap of 0.2 m, the splashing and impingement width was larger
compared with the arc impingement of the 0.25 m gap, as shown in Figure 8. The snaps of
the arc were not synchronised between the different cases due to different dynamics. The
different snaps in time enabled us to capture the impingement details for each case without
the same time constraint. The arc jet was trapped inside the liquid metal. A wave travelled
horizontally and it disturbed the surface more than the wave for the 0.25 m reference case.
Another important effect was when the liquid metal entered the arc domain. The Lorentz
force drifted the liquid metal upward toward the cathode (Figure 8, 0.358 s). This effect led
to more violent splashing afterward and a column of liquid metal was pushed downwards
with a high speed. A large cavity was created (Figure 8, 1.022 s). The initial impingement
depth was less than that in the initial arc gap. This could be related to the shape of the
impingement because the force was distributed horizontally due to a wider impingement.

When the arc gap increased to 0.3 m, the arc became less stable and more chaotic
movements were observed. The current and the thermal jet had to pass through a longer
distance, implying the development of more wavy instability along the arc. This effect was
observed initially but as time progressed the arc became more stable, as shown in Figure 9.
The impingement depth was similar to the depth of the case with the 0.25 m arc gap.
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Figure 8. Liquid metal impingement by an arc jet for a 2.0 × 10−1 m arc gap.

 
Figure 9. Liquid metal impingement by an arc jet for a 3.0 × 10−1 m gap distance.
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3.3. Effect of the Gas Density

It is important to note that with a density of unity, a significant drop in the velocity
of the gas inside the arc (u = 140 m/s) was noticed whereas the stated velocity in the
literatures is in the range of 103 m/s. To assess the sensitivity of the variation of the density
inside the arc due to a variation in the temperature and the importance of the value of the
density, two additional simulations were performed. The only variable changed was the
density of the gas, which was taken as 0.1 kg/m3 and 0.01 kg/m3.

The results showed that as the density lowered, the velocity of the plasma inside the
arc increased significantly. When the density of the gas was equal to 0.01 kg/m3, the speed
reached the speed range in the literature of 103 m/s. However, no effect on the overall
impingement depth of the arc on the liquid metal was noticed. Figures 10 and 11 show the
arc impingements for the different densities of the gas. Although the impingement depth
was not significantly changed by the change in the density of the gas, the rate of droplet
formation appeared to increase and droplets could reach a higher and further distance
despite their smaller diameter. This could be explained by observing the average velocity
profile for both cases. The average velocity was 450 m/s for the density of 0.1 kg/m3 and it
was equal to 1.4 × 103 m/s for the density of 0.01 kg/m3.

 
Figure 10. Liquid metal impingement by an arc jet for a gas density of 1.0 × 10−1 kg/m3.
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Figure 11. Liquid metal impingement by an arc jet for a gas density of 1 × 10−2 kg/m3.

3.4. Effect of the Applied Current Magnitude

In addition to the reference case, two Higher current values were considered. A higher
applied current led to a deeper arc impingement. Figure 12 shows the extended area shown
when a higher current was applied compared with the zoomed area shown in Figure 6.
The current values that were applied are 20 kA and 30 kA (Figures 13 and 14, respectively).
When a current of 20 kA was applied, a larger arc diameter was observed; this was related
to a larger cathode spot of ~12 mm compared with that of the reference case (10 kA) of
~8 mm. When the jet reached the surface, a very large cavity formed, compared with the
previous cases. The jet violently pushed the liquid metal in the horizontal and vertical
directions. After 0.272 s, the jet reached the bottom of the domain. As the time progressed,
the impingement depth was maintained and the droplet splashing reached the top and
side boundaries of the domain. Several waves also emerged on the surface and interacted
with the droplets falling back into the bath. For the case of 30 kA, similar results appeared
but with more powerful effects. Similarly, the arc radius was larger (cathode spot ~15 mm).
The cavity was larger than that obtained in the case of 20 kA; thus, much more liquid was
displaced. Once again, the jet easily exceeded a cavity depth of 0.71 m and reached the
bottom. Due to the powerful jet, several gas bubbles were entrained inside the liquid metal.
This led to a Rayleigh–Taylor instability. When these bubbles reached the surface, they
caused very violent splashing similar to small explosions due to the very high density
difference between the plasma and the liquid metal. The arc behaviour appeared to be very
complex although it mainly followed the shortest path to the liquid metal. There appeared
to be kink and sausage instabilities in the motion inside the plasma and the arc moved
in a helical path. These phenomena were observed through experimental measurements
by Reynolds [17].
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Figure 12. The zoomed domain is enlarged (yellow frame) due to a deeper arc impingement.

 

Figure 13. Liquid metal impingement by an arc jet for a total current of 2.0 × 101 kA.
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Figure 14. Liquid metal impingement by an arc jet for a total current of 3.0 × 101 kA.

The distance between the cathode and the arc attachment point with the conducting
liquid was denoted by the actual arc length after the impingement (Table 3). For the
reference case, the actual arc length was equal to 0.28 m. As expected, when the initial
arc gap decreased to 0.2 m the actual arc distance shrank to 0.22 m and for an arc gap of
0.3 m, the length increased to 0.3 m. When the applied current was increased to 20 kA,
the arc distance increased to 0.3 m and 0.31 m when the applied current was increased
to 30 kA. Similar to the arc impingement depth, the applied current was shown to be the
most important factor.

Table 3. Parametric arc impingement results.

Current
(kA)

Gap (m)
Gas Density

(kg/m3)
Max Arc Jet

Velocity (m/s)
Cavity

Depth (m)
Actual Arc
Length (m)

10 0.25 1 ≈200 0.5 0.28
10 0.2 1 ≈200 0.4 0.22
10 0.3 1 ≈200 0.5 0.3
10 0.25 0.1 ≈450 0.5 0.28
10 0.25 0.01 ≈1400 0.5 0.28
20 0.25 1 ≈200 ≥0.7 0.3
30 0.25 1 ≈200 ≥0.7 0.31
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3.5. Discussion of the Thermal Field inside the Arc

The temperature field is vital for the arc existence and propagation. The heat released
through joule heating from the arc was the main source of energy in Equation (3). A high
temperature ensured a high electrical conductivity for the current to flow. However, the
time of simulation was minimal compared with the overall EAF process. Even though
this period was enough to understand several important fluid and arc dynamics, it was
not significant enough to affect the thermal distribution inside the conducting liquid. A
detailed arc simulation was not convenient for studying the heat transfer inside the EAF.
Considering the arc as a fixed cylindrical channel with constant boundary conditions
including inlets and outlets for the gas and heat transfer on the circumferential area is more
efficient and less computationally demanding [18].

4. Conclusions

A 2D axisymmetric two-phase model was developed to study the arc impingement
inside an electric arc furnace. The obtained results attested that the proposed model
could predict arc impingement phenomena. The assumptions made in this model could
be justified as this model aimed to assess the effect of the arc jet on liquid metal and
understand how the impingement affected the behaviour and stability of the arc. The main
insights from this study are stated as follows.

The arc gap played an important role in the stability and the initial profile of the arc.
A small gap induced a powerful splashing and drifted the metal inside the arc region,
resulting in greater splashing as time progressed. For a larger gap, the stability of the
arc reached a critical level at which the arc was extinguished. The cavity depth was not
affected noticeably by the arc gap value.

The most important factor that linked the impingement depth to the mixing of the
liquid metal was found to be the total applied current. The increase of the current value
from 10 kA to 20 kA increased the penetration depth from ~0.5 m to >0.71 m (Table 3) and
reached the bottom boundary. Rayleigh instabilities were created due to the entrapment of
gas bubbles inside the liquid metal. These bubbles led to small explosions and powerful
splashing when they reached the liquid surface due to a high density difference.

The density of the plasma did not affect the level of the impingement depth but the
distribution of the droplets and their size were affected. When the density decreased,
the splashing rate increased qualitatively; this was due to a higher arc velocity. The ve-
locity increased as the density decreased. However, the rate of velocity change was not
linearly proportional to 1 over density. The rate validated the conservation of momentum
ρu2 = const. Moreover, the actual arc length (similar to the impingement depth) was not
affected by the density value, which again enforced the validity of the constant density
assumption. The obtained arc length reconfirmed that the applied current was the chief fac-
tor in the arc impingement. This explained the obtained results for the unvarying depth of
the impingement and validated the use of a constant density for less computational effort.

Two ideas that could improve the modelling in future are the consideration of the
compressibility of the plasma and the freedom of the cathode spot motion although these
adjustments impose more technical constraints and the need of a very high computational
power as a result of the necessity to drastically decrease the time step. A further step to take
the model forward is the development of a 3D model. This step could enhance our under-
standing of the arc behaviour, giving the arc freedom to be deflected and non-symmetrical.
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Abbreviations

Symbol Name Unit
ρ Density Kg/m3

U Velocity m/s
p Pressure N/m2

μ Kinetic viscosity m2/s
g Gravitational acceleration Nm2/kg2

t Time s
T Temperature K
cp Specific heat J/k·kg
K Thermal conductivity W/m·K
B Magnetic field T
J Current density A/m2

μ0 Vacuum permeability H/m
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Abstract: The electric arc furnace (EAF) represents the most important process route for recycling of
steel and the second most productive steelmaking process overall. Considering the large production
quantities, the EAF process is subject to continuous optimization, and even small improvements
can lead to a significant reduction in resource consumption and operating cost. A common way
to investigate the furnace operation is through the application of mathematical models. In this
study the applicability of three different statistical modeling approaches for prediction of the electric
energy demand is investigated by using more than 21,000 heats from five industrial-size EAFs.
In this context, particular consideration is given to the difference between linear and nonlinear
regression models. Detailed information on the treatment of the process data is provided and
the applied methods for regression are described in short, including information on the choice of
hyperparameters. Subsequently, the results of the models are compared. Gaussian process regression
(GPR) was found to yield the best overall accuracy; however, the benefit of applying nonlinear
models varied between the investigated furnaces. In this regard, possible reasons for the inconsistent
performance of the methods are discussed.

Keywords: electric arc furnace; energy demand; regression; artificial neural network; Gaussian
process regression; Köhle formula

1. Introduction

In 2019 the electric arc furnace (EAF) process accounted for approximately 28% of
the worldwide crude steel production with the total amount of produced steel reaching
an all-time high [1]. Within the European Union the percentage of steel produced in arc
furnaces presented as much as 41% of the total production [2]. Benefits of the EAF include
its high flexibility regarding raw material input and production volume, making it the
most common process for recycling of steel scrap. In view of the current climate targets,
the share of steel produced in the EAF is likely to increase while a further reduction of the
carbon footprint of the EAF process is pursued [3].

The electrical energy demand represents the most important contribution to EAF con-
version costs, besides electrode graphite. Combined with raw materials, the high electrical
energy demand accounts for more than 80% of the total operating cost of the EAF [4]. Con-
sidering the large production quantities, even small improvements to the specific electric
energy demand can generate significant cost savings and reduce the environmental impact
of the process. A common way to investigate improvements to operational strategies in the
EAF is the application of mathematical models. By employing such models, the effect of
proposed changes can be studied without affecting regular production, reducing cost, and
eliminating the risk connected with trial campaigns. Furthermore, models can be used to
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monitor production and detect changes in the process or the input material which could
otherwise only be noticed during quality assurance.

A task for which mathematical models are commonly used is estimation of the electric
energy demand by analysis of process data. The information gained can be utilized to
predict the energy demand of future heats or to identify key factors for overall reduction of
the energy demand. However, the flexibility of the EAF process can prove challenging for
modelling of the energy demand since the inputs vary over a wide range of materials with
variable composition. In addition, due to the nonlinear nature of the process, the impact of
individual variables cannot be easily determined.

In general, the applied models can be distinguished into empirical and analytic models.
The latter approach considers the furnace based on physical or thermodynamic principles.
As such, these models are usually associated with higher development cost, yet allow for
use outside of the range of their training data [5]. Extensive analytic process models of the
EAF have been published previously by Bekker [6] and Logar [7,8], as well as MacRosty
and Swartz [9]. A more comprehensive overview of the published process models is given
by Hay et al. [5]. Empirical models, on the other hand, rely on data from observation or
experiment. They are often termed “black boxes” as the underlying phenomena are not
considered, or are unknown [10]. These models are the focus of this work.

In the past several statistical models of the electric energy demand in the EAF have
been discussed, ranging from multiple linear regression (MLR) models to more complex
machine learning (ML) algorithms such as artificial neural networks (ANN) [4]. Simple
models often lack in accuracy or require detailed process knowledge in the preparation
of the data. ML algorithms yield better results; however, the models have a complex
structure and are difficult to comprehend. In addition, they require a larger set of data
for training of the model parameters. In this paper three types of regression models are
implemented in order to predict the electric energy demand of the EAF. The models are
used with extensive process data of five different arc furnaces and the results are compared
in order to determine the models best suited for application. In this regard, the effect of
data quality and treatment on the accuracy of the model results is investigated.

2. Materials and Methods

2.1. Modelling Approach

One of the first widely known empirical models for prediction of the electric energy
demand of EAFs was developed by Köhle et al. in the 1990s by statistical analysis of
average production values from 14 furnaces. The Köhle model was later improved and
extended to post-combustion and alternative ferrous material such as hot briquetted (HBI)
or direct reduced iron (DRI) using 5000 single heats from 5 different furnaces. An updated
formula for the specific electric energy demand (WR) published in 2005 is given in Table 1
and Equation (1) [11]. In contrast to later models, the coefficients are not only fitted by
linear regression, but in most cases also correspond to values found in thermodynamic
analysis of arc furnace process [12,13].

Table 1. Parameters of the Köhle formula.

Parameter Name Unit Parameter Name Unit

GA Tap weight t ts Power-on time min

GE Weight of ferrous material t tN Power-off time min

GDRI/HBI Weight of DRI t MG Specific burner gas m3/t

GSHR Weight of HBI t ML Specific lance oxygen m3/t

GHM Weight of hot metal t MN Specific post-combustion oxygen m3/t

GZ Weight of slag formers t NV Furnace specific factor -

TA Tapping temperature ◦C WV Energy losses kWh/t
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While the results given by the Köhle model are in good agreement with the average
electric energy demand of the furnaces, results from single heats can significantly differ, as
will be shown in the results section. The formula is, however, still used for benchmarking
of the operation of arc furnaces [14,15]. The Köhle model was also specified for an almost
100% DRI EAF operation at Mittal Steel Lázaro Cárdenas [16]. In order to predict the
energy demand of single heats more reliably, a number of models based on more complex
algorithms have been developed in the last decade [4,17–20]. In this study, three different
kinds of regression models will be utilized for prediction of the electric energy demand
of the EAF. However, proper adjustment of the applied models is a wide area of research
and description of all possible settings is beyond the scope of this paper. Therefore, in the
following the basics of the applied methods are described in short, and reasoning is given
concerning the choice of hyperparameters.

WR = 375 + 400
[

GE
GA

− 1
]
+ 80 GDRI/HBI

GA
− 50 GShr

GA
− 350 GHM

GA
+ 1000 GZ

GA

+0.3[TA − 1600] + tT2T − 8MG − 4.3ML − 2.8MN + NV
[
WV − WV

] (1)

For regression, the measured data is first standardized by subtracting the mean value
of every predictor and dividing by its standard deviation. Calculation of the so-called
z-score is shown in Equation (2). In using standardization variables with varying scales,
different units of measurement are brought to the same scale and can contribute equally
to the result. This might also increase training speed of the models. On the contrary,
standardization gives equal weight to data with comparatively small variance and may
thus excessively incorporate noise into the calculation. Furthermore, information on the
mean and standard deviation of the explanatory variable is lost.

zi =
xi − x

S
(2)

For optimization of the model parameters, the mean square error (MSE) between
the total demand of electric energy and the model prediction is minimized. Calculation
of the MSE is shown in Equation (3). The measured electrical energy demand is named
yi. The calculated value of the electrical energy demand is labeled fi with the number of
data points denoted as n. In other works [18,19], the specific electric energy demand per
ton of produced steel is used for analysis. In the context of this study, application of the
models for the prediction of future heats shall be investigated. The mass of tapped steel is,
however, unknown prior to tapping. Hence, tuning of the model parameters is performed
using the absolute demand of electric energy for this study.

MSE =
∑ ( fi − yi)

2

n
(3)

Although Köhle performs a nonlinear transformation on some variables, for exam-
ple by dividing by the mass of tapped steel, the base model remains a multiple linear
regression (MLR). Furthermore, Köhle did only use data available for all furnaces and
abstained from standardization of the data. MLR is one of the earliest and most basic
methods for supervised learning, which is mapping of input to an output based on a set
of training examples. In MLR, the predicted response is calculated by linear combination
of the explanatory variables as stated in Equation (4). In doing so, it is assumed that the
relationship between true response and explanatory variables is linear and explanatory
variables are not correlated. In the case of the arc furnace, both assumptions are, however,
violated. Thermal radiation is increasing with the fourth power of the melt’s temperature,
and energy loss through cooling of the furnace therefore increases at later stages of the pro-
cess when the melts temperature is higher, and the furnace walls are not shielded by scrap.
Other mechanisms such as slag foaming can further impact the overall energy demand
nonlinearly [21]. Nevertheless, due to their simplicity and low computational demand,
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MLRs are still commonly used. Within this work, MLR will be used as a benchmark for the
nonlinear model types.

fi = β0 + ∑ βixi (4)

Limitations of linear models, such as their inability to account for interactions between
the input variables, gave rise to the popularity of ANNs for estimation of the electric energy
demand of EAFs [17–19]. A network in which information only moves forward through
the layers without feedback is called feedforward network or multilayer perceptron. These
networks are the quintessential deep learning models [22]. The structure of a simple
feedforward network with only one hidden layer is displayed in Figure 1. At each neuron,
the values from the previous layer are multiplied with a set of weights and a bias is
added. The resulting value is transferred to the subsequent layer through application
of an activation function. In the past, tangens hyperbolicus or the logistic function were
frequently used as activation function. However, these sigmoid activation functions are
only strongly sensitive when the input is close to 0, for high or low values the function
quickly saturates, affecting gradient-based learning [22]. In modern applications of ANN’s,
linear units are often utilized. For prediction of the energy demand an exponential linear
unit with α = 1 was chosen. The output of this threshold operation is given by Equation (5)

f (x) =
{

x, x ≥ 0
α(exp(x)− 1), x < 0

(5)

. 

(a) (b) 

Figure 1. (a) structure of feedforward neural net featuring a single hidden layer; (b) calculation of the output of a neuron
and transfer function.

Within this work the neural network applied for estimation of the energy demand
contains 2 hidden layers featuring n and n/2 neurons respectively, where n is the number
of explanatory variables. During training of the model, the weights and biases of the ANN
are tuned by minimizing the loss function (MSE) and backpropagation of the error to each
neuron in each layer. For optimization, a stochastic gradient descend with momentum was
used with an initial learn rate of 0.01.

Another approach to supervised learning is through application of Gaussian processes.
A Gaussian Process is defined as a collection of random variables, every finite collection
of which have a multivariate normal distribution. It is a generalization of the Gaussian
distribution over functions with a continuous domain and is fully specified by a mean
m(x) and covariance function K(x, x′) as stated in Equation (6) [23]. In consequence, the
Gaussian process is a nonparametric model. Rather than calculating parameters such that

218



Metals 2021, 11, 1348

a given class of functions (e.g., linear functions) fits the data, the prior distribution contains
all functions defined by the chosen mean and covariance function.

f (x) ∼ GP
(
m(x), K

(
x, x′

))
(6)

By incorporating the observation from the training data, functions which do not pass
the data points (or do not closely pass in case of noisy data) are removed from the infinite
set, in order to form the posterior distribution. As a result, the posterior uncertainty in the
vicinity of the observations is reduced. This is also called conditioning of the Gaussian prior
distribution on the observations. In Figure 2a three samples from the prior distribution
are shown. The posterior distribution after observation of five data points is depicted in
Figure 2b. The underlying (unknown) function is a polynomial of the third degree. Making
a prediction using the Gaussian process ultimately amounts to drawing samples from its
posterior distribution.

 
(a) (b) 

Figure 2. (a) three samples of the prior distribution specified by the mean and covariance function; (b) posterior distribution
after observation of six data points.

That being said, the predictive performance of Gaussian processes depends exclu-
sively on the chosen kernel [24]. For prediction of the electric energy demand the Matérn
covariance function with v = 3/2 given in Equation (7) was chosen. In contrast to other
popular kernels, such as the infinitely differentiable squared exponential kernel displayed
in Equation (8) (Gaussian function), its shape is rather rough. However, strong smoothness
is argued to be unrealistic for modelling of physical processes [25].

kv=3/2(r) =

(
1 +

√
3r
l

)
exp

(
−
√

3r
l

)
(7)

kSE(r) = exp
(
− r2

2l2

)
(8)

The performance of the models on the validation data is evaluated using the adjusted
coefficient of determination

(
R2), as well as the mean absolute error (MAE), standard devi-

ation of the result (SD) and relative standard deviation (RSD). These values are calculated
as shown in Equations (9)–(12). The relative standard deviation (coefficient of variation) is
utilized in order to illustrate the extend of variability in relation to the average demand
of electric energy [26]. The mean values of the measured and calculated electric energy
demand is denoted as y and f , respectively. The coefficient of determination ranges from 0
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to 1 and is often used as an indicator for the goodness of the fit, with 1 meaning the results
perfectly match the measurements.

R2 = 1 − RSS
TSS

= 1 − ∑ ( fi − yi)
2

∑ (yi − y)2 (9)

MAE =
∑ [ fi − yi]

n
(10)

SD =

√√√√∑
(

fi − f
)2

n
(11)

RSD =
SD
y

(12)

2.2. Datasets of EAF Heats Used in This Study

For evaluation of the described models, process data of five electrical arc furnaces for
industrial steel production was used. In total, the data sets contain material consumption
and furnace operation data of roughly 21,000 heats. However, the investigated furnaces
differ considerably regarding their capacity and material input, as well as the measurements
taken during operation. The characteristics of the furnaces are summarized in Table 2.
With an average tap weight of about 80 t EAF-A has a notably smaller capacity than the
remaining furnaces. Likewise, the average tap-to-tap time of EAF-A is shorter. Furnace B,
C and D have similar capacities and tap-to-tap times. The highest specific electrical energy
demand is found for EAF-C. The different specific electric energy demand of the furnaces
can in part be attributed to the differences in the charged ferrous material. For both EAF-B
and EAF-C, the input material contains large quantities of DRI or HBI while the remaining
furnaces use scrap of varying quality.

Table 2. Specification and key performance indicators of the investigated electric arc furnaces.

Furnace EAF-A EAF-B EAF-C EAF-D EAF-E

Average tap weight [t] 81 153 142 142 123
Average tap-to-tap time [min] 45 62 69 61 57

Average specific electric energy demand
[kWh/t] 325 467 535 422 345

Ferrous Material Scrap DRI DRI/Scrap Mix Scrap Scrap
Number of overall heats 5220 1046 6139 8088 2341

Number of excluded heats 150 32 791 785 163
Percentage of removed heats 2.9 3.1 12.8 9.7 7.0

Not all documented heats can be used for evaluation of the electric energy demand.
In the first step data, treatment is performed on each set. The overall goal is the removal
of faulty or irregular data originating from erroneous data logging or irregular operation
such as trial heats, aborted heats, or equipment malfunctions. Including these heats would
otherwise have a negative impact on training of the models for regular heats, which are
the main subject of the investigation. Table 2 shows the total amount and the percentage
of excluded heats. In the following the applied decision rules for removal of data are
described.

When crucial data like electric energy demand or tap weight are missing, the applied
regression models cannot accurately predict the electrical energy demand, and therefore the
heats in question must be excluded from consideration. In addition, heats are excluded if
the measurements are unreasonable. This is, for example, the case if the tap weight exceeds
the maximum capacity of the furnace, or the recorded tap-to-tap time is lower than the
power on time of the heat. Significant outliers were also removed from the data sets. These
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include heats with an abnormal tap-to-tap time since they are likely to contain long power
off times as a result of production delays by unscheduled events or regular maintenance
stops. Likewise, heats are removed if the number of buckets differs from the rest of the
batches. Finally, heats are removed if their ratio between charged ferrous material and
tapped steel is below 0.75 or above 1.05, respectively. This is due to the mass of the hot heel
not being measured for most of the furnaces. In keeping part of the molten steel inside the
furnace after tapping, the melting rate of the subsequent heat can be increased. This results
in lower thermal losses and a lower overall energy demand [27]. Moreover, in DC furnaces
a hot heel is necessary for operation as it is covering the electrode in the bottom of the
vessel and closes the circuit. However, when the furnace is completely emptied the amount
of energy needed for initial melting of the hot heel is unaccounted for, while the energy
demand of the next heat is higher compared to regular heats. In consequence, these heats,
usually occurring before and after maintenance periods, are removed from consideration.
In total, between 3% and 13% of the heats were removed. EAF-C, EAF-D and EAF-E show
a notable larger percentage of the excluded data compared to EAF-A and EAF-B. This can
mostly be attributed to unusually long heats, i.e., frequent production interruptions (270
for EAF-C and 160 for EAF-E) and missing measurements or recorded data. For EAF-D 775
out of 785 removed heats are missing the mass of charged material and about 270 heats
from EAF-C are lacking temperature measurement from the molten steel.

Apart from the data quality and overall differences in the operation of the furnaces,
the amount of data recorded during operation also differs significantly. Table 3 shows
an overview of the available measurements. The electric energy demand, as well as the
mass of charged ferrous material, coal and slag formers are measured for all furnaces.
For the first three furnaces only a basic breakdown into scrap, DRI and alloying metals is
given while EAF-D and EAF-E have a detailed record of the charged scrap grades. The
exact chemical composition of the input materials is, however, unknown and is likely to
differ between plants and even between heats. Furthermore, the mass of charged slag
former in EAF-B and EAF-C is provided with an accuracy of 0.5 tons. This suggests that
the stated mass is estimated or measured with limited accuracy only. Although this was
the only obvious case it must be noted that all measurements are associated with a degree
of uncertainty since no information on the methods and accuracy of the measurements
was given.

Table 3. Overview of the available measurements at the investigated EAFs.

Furnace EAF-A EAF-B EAF-C EAF-D EAF-E

Electric energy demand [kWh] x x x x x
Mass of charged scrap grades [t] x x x x1 x1

Mass of slag formers [t] x x x x1 x1

Charged or injected Coal [t] x x x x x
Bath height [m] - - - - x

Oxygen consumption [m3] (x) (x) (x) x x
Natural gas consumption [m3] x2 - x x x

Power-on time [min] x x x x x
Tap-to-tap time [min] x x x x x

Sub-process times [min] x - - - x
Tap weight [t] x x x x x

Melt temperature [◦C] x x x x x
Mass of hot heel [t] - x - - x

Steel composition [kg/kg] - - - x (x)
Slag composition [kg/kg] - - - (x) -

(x): only limited information available; x1: detailed record of scrap grades; x2: chemical heat input provided in kWh.

During operation, the injected oxygen and carbon mass was measured along with
the consumption of natural gas. EAF-B is the only furnace without operation of natural
gas burners. Moreover, in the records from EAF-D and EAF-E, oxygen input is further
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separated into different applications within the furnace such as oxygen for burners, lances,
or post-combustion. In the remaining data sets oxygen input is separated only for the
purpose of post-combustion with all other flows combined into a single measurement.
Power-on time as well as tap-to-tap time are measured for all furnaces, yet only EAF-A
and EAF-E have a detailed breakdown of sub-process times such as charging, melting, and
tapping provided. Energy losses can vary considerably throughout the different stages of
the melting process. Therefore, by providing information on the length of the sub-processes
the quality of the prediction can be improved. Furthermore, the weight and temperature
of the tapped steel are available. Temperature measurement is carried out shortly before
tapping in order to ensure the target temperature was reached. The temperature and
mass of the tapped steel are directly related to the energy demand for melting. As stated
before, the mass of the hot heel which remains inside the vessel after tapping is however
only measured at two of the furnaces with the method and accuracy of the measurement
unknown. Lastly, at EAF-D the composition of both steel and slag is analyzed after each
heat, while EAF-E has steel composition measured in regular intervals for 98 heats in total.
As can be seen from the overview of furnace characteristics in Table 2 and measurements
in Table 3 a single regression model cannot be applied for all furnace without the need to
drastically reduce the data sets in order to form a common denominator. Even in doing so,
the measurements are performed with different precision and in the case of scrap grades
and slag formers classification is not necessarily uniform. In consequence the furnaces
must be considered separately, while the general design of the investigated models is
maintained.

For each furnace, heats are divided into a training and validation set. The training set
contains 70% of the data and is drawn at random. Subsequent validation is performed on
the remaining 30% of heats. All applied models are trained on the same data set. However,
since selection of the training data influences the model accuracy, training and validation
are performed on 5 separate training samples and the median results of the regressions
are discussed. Beyond that, process data can be divided into two groups: measurements
available before and only after the heat is finished. In the literature the entire dataset is
often used for modeling of the electric energy demand [11,17,20,28]. While those models
yield better results in terms of accuracy, they cannot be applied to predict the energy
demand of a future heat. Subsequently, the investigated regression models will be used on
the entire and limited dataset and the results of both approaches will be compared.

3. Results

At first the results of the Köhle formula were calculated for each EAF. In place of
the furnace-specific parameter NV, a bias was added to the results, such that the average
deviation for each furnace assumes the value of 0. The MAE, SD, and RSD for prediction of
the electric energy demand of single heats is presented in Table 4. The results show that
the accuracy of prediction significantly differs between the furnaces, with the best result
obtained for EAF-B. This is likely due to EAF-B only having DRI and hot metal charged.
Both input materials are represented in the Köhle formula while different scrap grades are
not considered, resulting in a large deviation of the calculated energy demand.

Table 4. Results of the Köhle formula on the investigated furnaces.

Model Performance EAF-A EAF-B EAF-C EAF-D EAF-E

MAE [kWh/t] 25.1 14.8 31.6 21.1 40.0
SD [kWh/t] 36.0 19.0 41.6 27.3 53.1

RSD [%] 11.1 4.1 7.8 6.5 15.4

Subsequently, the previously described regression models were applied to the process
data of the five EAFs. After parameter optimization on the training data was finished, the
regression models were used to estimate the electric energy demand of the heats within the
test set. The median results of the regression models on the entire dataset are summarized
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in Table 5. For the sake of comparability, the mean absolute error and standard deviation
are calculated using the specific electric energy demand rather than the absolute electric
energy demand. The coefficient of determination is calculated on the absolute electric
energy demand per heat. It can be seen from the table that the Gaussian process regression
shows the best overall accuracy with regards to the mean absolute and standard deviation
as well as the coefficient of determination, ranging from 0.651 to 0.941 for the investigated
furnaces. That being said, by applying a multiple linear regression the quality of prediction
can still be significantly improved compared to the results of the Köhle formula on single
heats.

Table 5. Median result of the applied regression algorithms on the entire data set for validation.

Furnace Model Performance Linear Regression ANN GPR

EAF-A

R2 0.842 0.847 0.859
MAE [kWh/t] 7.9 7.6 7.1

SD [kWh/t] 11.2 10.5 10.6
RSD [%] 3.4 3.2 3.3

EAF-B

R2 0.899 0.871 0.943
MAE [kWh/t] 11.7 12.7 8.3

SD [kWh/t] 15.4 16.4 11.1
RSD [%] 3.3 3.5 2.4

EAF-C

R2 0.881 0.923 0.941
MAE [kWh/t] 14.9 12.3 10.3

SD [kWh/t] 20.8 16.4 14.4
RSD [%] 3.9 3.1 2.7

EAF-D

R2 0.754 0.755 0.769
MAE [kWh/t] 9.9 9.9 9.6

SD [kWh/t] 12.8 12.8 12.4
RSD [%] 3.0 3.0 2.9

EAF-E

R2 0.519 0.587 0.651
MAE [kWh/t] 6.3 5.8 5.3

SD [kWh/t] 8.4 7.8 7.2
RSD [%] 2.4 2.3 2.1

By utilizing a Gaussian process regression for EAF-B and EAF-C the mean absolute
deviation, as well as the relative standard deviation of the results can be decreased by
approximately 30% when compared to the results of the linear regression. In contrast with
the remaining furnaces, the benefit of applying nonlinear models is notably lower, with
EAF-A and EAF-D hardly showing any differences between the investigated models. A
possible reason might be the use of DRI in both EAF-B and EAF-C instead of the various
scrap grades. Although a larger amount of energy is required for the melting of DRI [12],
the variance in chemical composition of the material is lower than that of the scrap mix.
The charged scrap can have various contaminants which affect the process and energy
requirement for melting. At the same time, at the remaining furnaces the number of heats
including individual scrap grades is significantly lower when compared to the number of
heats containing DRI at EAF-B and EAF-C. The smaller effective sample size could have
a negative impact on training of the ANN in particular. In Figure 3 the electric energy
demand of EAF-C is displayed in relation to the percentage of charged DRI and the number
of baskets. As can be seen in the diagram, a large number of samples is available for
each category. By applying an ANN or GPR, the nonlinear relationship between these
process parameters can be modelled and its large-scale effect on the electric energy demand
is estimated more accurately than by using a linear regression on the raw data. For the
remaining furnaces, the smaller sample size for the input of individual scrap grades and
higher variance within grades results in an equal level of accuracy across the model types,
even when considering possible nonlinear interaction.
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(a) (b) 

Figure 3. (a) Percentage of DRI charged in EAF-C with varying number of baskets; (b) Comparison of the estimated electric
energy demand for EAF-C and EAF-E.

Furthermore, although EAF-E exhibits the smallest coefficient of determination (imply-
ing a larger deviation between the model results and measurements) its mean absolute error
and standard deviation are in fact the smallest among the investigated furnaces. On aver-
age the regression models deviate from the true electric energy demand by 721 kWh/heat
for EAF-E and 1789 kWh/heat for EAF-C, i.e., 5.9 kWh/t for EAF-E and 12.6 kWh/t for
EAF-C. The difference in average tap weight displayed in Table 2 cannot explain the large
deviation. This is also shown in by the relative standard deviations for both furnaces. As
is stated in Equation (7), the coefficient of determination represents the ratio between the
deviation of the calculated electric energy demand from the average measured demand
and the measured deviation from its mean value. It is often interpreted as the proportion
of energy demand which is explained by the regression model [29]. As depicted in Figure 3
the electric energy demand of EAF-C spans between roughly 40 MWh and 100 MWh
per heat in contrast to the much narrower production parameters of EAF-E. As a result,
the calculated ratio is smaller for EAF-C, although the electric energy demand is more
accurately described for EAF-E.

In consequence, when discussing the accuracy of regression models for multiple
furnaces, the coefficient of determination on its own is not suited for evaluation. In
this context, the values for R2 given in the literature must also be examined critically as
the investigated furnaces most likely differ as well. The same applies to depictions of
normalized results. In this regard, in Figure 4 the normalized estimated energy demand of
EAF-C and EAF-E are compared. For EAF-E the model appears to predict the measurement
more accurately. However, in terms of absolute values, the residuals for EAF-C are on
average about twice that to the results of EAF-E as stated in Table 5.
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Figure 4. Comparison of normalized estimated electric energy demand of EAF-C and EAF-E.

Another problem arises from measurements being unavailable until the heat is fin-
ished. Naturally, this involves for example the tap weight and steel temperature as well as
the consumption of natural gas and oxygen. As mentioned before, training of the regression
models is therefore repeated for a reduced data set, containing only the mass of material
charged at the start of each heat. The aim is to evaluate the applicability of the regression
models for prediction of the electric energy demand of future heats. In Table 6 the results
of the applied regression algorithms on the limited data set are shown. In comparison to
the previous results in Table 5 a significant reduction in the quality of the model results
can be observed. Application of the GPR still yields the best overall results; nevertheless,
the mean absolute error calculated on the validation data is increased by up to 10 kWh/t.
The standard deviation rises on an equal scale. Similar to the previous case, the largest
difference between the models can be found for EAF-B and EAF-C. This suggests that the
difference in charged input materials is indeed responsible for the inconsistent performance
of the applied nonlinear regressions. On the other hand, the drastically reduced predic-
tion quality illustrates the information lost by removing the a-posteriori measurements.
Considering arc furnaces are usually operated on distinct power levels, power-on time
of the arc, for example, is closely correlated to the electric energy demand. Including the
power-on time therefore naturally increases the accuracy of the model. However, process
times might also be an indicator for the quality of the input material. Likewise, injection of
coal and consumption of natural gas are directly reducing the demand of electric energy
by supplying chemical energy. Yet excessive consumption of natural gas and coal can
also indicate poor operation, resulting in long tap-to-tap as well as power-on time and
ultimately a high electric energy demand. When predicting the energy demand of future
heats, these in-process measurements are, however, unavailable. The difference in the
quality of results is particularly high when a large number of different scrap types is used,
as can be seen from the results of EAF-A and EAF-D in Tables 5 and 6. Another reason for
the differences in the results is the use of natural gas, carbon, oxygen, and other additives,
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which can vary considerably between single heats, corresponding to irregularities in the
operation of the furnace or contaminants within the ferrous material.

Table 6. Median results for regression on the data available before finishing of the heat.

Furnace Model Performance Linear Regression ANN GPR

EAF-A

R2 0.185 0.183 0.227
MAE [kWh/t] 17.4 17.4 17

SD [kWh/t] 24.4 24.5 23.7
RSD [%] 7.5 7.5 7.3

EAF-B

R2 0.71 0.748 0.821
MAE [kWh/t] 20.3 17.0 13.4

SD [kWh/t] 24.7 23.0 19.4
RSD [%] 5.3 4.9 4.2

EAF-C

R2 0.742 0.755 0.853
MAE [kWh/t] 24.3 21.9 17.0

SD [kWh/t] 30.6 29.8 23.1
RSD [%] 5.7 5.6 4.3

EAF-D

R2 0.244 0.242 0.228
MAE [kWh/t] 17.3 17.3 17.2

SD [kWh/t] 22.5 22.5 22.7
RSD [%] 5.3 5.3 5.4

EAF-E

R2 0.245 0.299 0.360
MAE [kWh/t] 8.0 7.5 7.3

SD [kWh/t] 10.5 10.1 9.7
RSD [%] 3.0 2.9 2.8

On a side note, the correlation between the consumption of coal, natural gas, and
oxygen with the demand of electric energy in the EAF can result in positive parameter
values for these explanatory variables. Interpretation of the parameter values would imply
an increase in energy demand through the use of coal for example. However, a regression
model cannot provide direct information on causality, which has to be kept in mind when
interpreting the results [29]

In an attempt to utilize all available information, training of model parameter was
carried out using the entire data set, while applying only the limited data for validation
of the results on the test data. Missing values, such as consumption of natural gas and
oxygen, were replaced by mean values of previous heats. However, this approach yielded
very similar results as displayed in Table 6. In this regard, investigation of the consumption
of natural gas, carbon, oxygen, and other additives in relationship to the material input
and produced steel grade is required. By further classification of the heats, the variation of
process parameters within the subsets can possibly be limited and prediction accuracy on
future heats can be improved. In this context, an analysis of the quantity of contaminants
within single scrap types would be beneficial.

4. Discussion

Within this study, the applicability of three different approaches for regression were
examined in order to estimate the demand of electric energy in the operation of an electric
arc furnace. To this end, the examined methods were tested on process data containing
over 21,000 heats originating from five industrial-size EAFs.

Application of Gaussian process regression yielded the best overall results in terms of
prediction accuracy. In some cases, the mean error, as well as the standard deviation, could
be reduced by up to 30% compared to the linear regression. However, large differences were
found across the investigated furnaces. The quality of the measured data was identified as
one of the main reasons for the inconsistent behavior. This includes the categorization of
charged scrap grades and slag formers. In general, application of a wide range of materials
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resulted in a lower accuracy of the implemented models as opposed to the predominant use
of single grades with limited variance such as DRI. Even in utilizing non-linear methods,
during training the models are unable to appropriately tune the weights or parameters due
to, for example, various contaminants affecting the chemical composition. In consequence,
the benefit of applying nonlinear models over linear regression is heavily dependent on the
process parameters and measurement quality. In this regard, the crucial role of in-process
measurements on the model precision was highlighted. However, when predicting the
energy demand of future heats, this information cannot be used. Careful classification of
the charged scrap types and slag formers is therefore particularly important in order to
increase the model accuracy, and including further information on the properties of the
charged material is recommended, if possible.

Lastly, by comparison of the achieved results, it was shown that the often-reported
coefficient of determination is not sufficient for evaluation of a model’s predictive quality
since the metric is heavily influenced by the observed variation in the target values. The
same argument was given for evaluation of normalized results.
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Abstract: Improving the overall energy efficiency of processes is necessary to reduce costs, lower
the specific energy consumption and thereby reduce the direct or indirect emission of gases that
contribute to climate change. In many metallurgical processes, a large amount of energy is lost with
the off-gas. In metallurgical recycling processes, off-gas often can be used to preheat the to-be-recycled
metal scrap, leading to significantly higher energy efficiency. However, the application of preheating
has the disadvantage that it often requires more precise planning in the design and better control of
the process. In this paper, a simplified look at a continuously charged scrap preheating aggregate
for the widely used electric arc furnace (EAF) in the steel processing industry is used as illustration.
Continuous scrap charging in EAF-type furnaces in general has much higher demands on process
control and general process knowledge, which is why they are found only very rarely. General
issues and basic modeling approaches to mitigate such issues allowing a better process control
will be described. In particular, a fast, one-dimensional modeling approach for the determination
of the temperature distribution inside a constantly moving scrap bulk, with hot air (or exhaust
gases) flowing through it, will be described. Possible modeling applications, assumptions, possible
enhancements and limitations are shown. The first results indicate that this approach can be used as
a solid basis for the modeling of scrap bulks with thermally thin parts, consisting of materials with
similar thermodynamic material properties. Therefore, as a basis, this approach may help improve
the design and control of future or existing preheating devices in metal recycling processes.

Keywords: scrap preheating; electric arc furnace; continuous charging

1. Introduction

Making better use of waste energy, usually in the form of heat, is necessary to increase
the energy efficiency of nearly every process. A large amount of such waste heat, for exam-
ple, occurring in recycling metallurgical melting processes, is often lost within the off-gas.
Today, recycling processes are very important due to their overall better energy efficiency.
To give an example, the steel production from recycled materials saves about 1.5 tons of
CO2 per ton of steel, saving around 945 million tons of CO2 emissions per year [1], not to
mention the significant damages to the environment induced by primary iron ore or coal
mining. It is estimated that roughly 630 million tons of steel are produced from recycled
material every year, with increasing tendency [1]. The most relevant process for steel
recycling is the electric arc furnace process. Furthermore, with CO2-neutral primary iron
production processes such as direct reduced iron (DRI), the importance of the electric arc
furnace will continue to increase, as it is also required in this process chain. Therefore,
further improving its efficiency is very relevant to decrease the worldwide CO2 emissions;
it is also a good investment in the foreseeable future. In the EAF process, a large amount of
the supplied energy (approximately 30% [2]) is lost within the off-gas, whose temperature
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ranges between 750 and 1200 ◦C, depending on the process and point of measurement.
According to Nardin et al. [2], there are many strategies for making better use of the waste
energy especially in this kind of process. One strategy is clearly obvious, namely, to use the
energy of the off-gas for preheating of the charged material, which can be assigned under
direct heat recovery techniques. Thereby, the enthalpy of the charged material is increased,
and the heat required for melting the scrap inside the metal bath is reduced. So why is this
not the common practice by now? Of course, there are some drawbacks introduced by this
approach which only can be surpassed via good process control. For example, according to
Toulouevski and Zinorov [3], a maximum temperature between 1560 and 1580 ◦C must be
held inside the metal bath to prevent excessive refractory wear. This is only around 50 ◦C
above liquidus temperature. Furthermore, the heat transfer between molten metal and
scrap is limited due to the low convection speeds inside the melt. Since the scrap cannot be
homogeneously charged across the liquid bath and a continuous charging between the hot
spot inside the melt, between the electrodes, is difficult from a constructive point of view,
the temperature and mass flow rate of scrap that is charged must be strictly controlled.
Additionally, the off-gas has to undergo some post combustion process to remove CO
and lower NOx. A sensible approach is to split the off-gas between a scrap preheating
device and another off-gas channel and bring them back together later for post combustion.
Therefore, it is important that the mixed off-gas still has enough energy in combination
with some mixed-in air that post-combustion is still possible. At least, it should still have
enough energy, so that only little energy, for example, from a post combustion burner,
must be added. Otherwise, scrap preheating would not be very effective. In addition,
due to organic residues on the scrap, there are usually increased dioxin emissions when
preheating techniques are applied [4,5]. The dioxin amount in the off-gas can be reduced,
but to achieve this in a cost and energy efficient way, a relatively high temperature (above
850 ◦C) has to be maintained in the post-combustion chamber, followed by a quick cooling
step between 600 and 200 ◦C to avoid reformation of dioxins [6]. To keep the described
problems and the dynamic interactions between the individual problems under control,
a significantly improved process control is required. Here, different modeling techniques
can be used to better understand, plan and later better control those process interactions
between preheating, off-gas temperature and bath temperature.

There have been several publications of concepts, patents and other materials for
continuous preheating concepts in the recent years [7–10]. In the latest literature, CFD mod-
els and process models regarding the topic of scrap preheating can be found [11–15],
but they either lack a detailed description of the model, the simplification level is too high
(for example lacking a prediction of the temperature distribution in the bulk) or these
approaches are too computationally intensive to be used to build online control models.
Zhang and Oeters [16] described a similar modeling approach as in this paper, with the
additional modeling of some chemical reactions, but for a different application.

In this paper a basic, fast and also extensible 1D modeling approach for the preheating
of flown through bulk material is described. As an example, for relevant application,
a simplified view on a continuously charged EAF is presented. In particular, we refer to
the so-called ISMELT® technology, recently developed by Inteco Inc. (Bruck an der Mur,
Austria) [10], and use it as an illustrative example. In this paper, the modeling will focus on
the prediction of the scrap preheating and the cooling of the off-gas. In the future, the model
can be used to be coupled with more general EAF models, for example, as described by
Hay et al. [17] to predict the overall modified process behavior. Furthermore, thanks to its
simplicity and the implementation with the Julia programming language, with its powerful
dispatch model [18,19], it is extensible, fast, versatile and may help to further develop
suitable online control models.

Description of the Modeled Process

The illustrative process is shown in Figure 1. The scrap is charged into an inclined shaft
with some sort of transportation support and control mechanism, for example, a shaking
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floor, at the side of the EAF. The off-gas can be controlled to be distributed between the
shaft and the usual EAF off-gas exhaust. As already described, this is necessary, since
the two off-gas flows will be mixed again for post combustion of organic components
and purification.

Figure 1. EAF off-gas preheating principle.

Although it is called continuous scrap charging, the EAF process is inherently a batch
process with multiple process phases. A continuously charged EAF process should be
run in two phases [3]. First, the flat-bath melting phase, and second, the refining phase.
During the more or less continuous flat-bath melting phase, the scrap is continuously
charged into the residual melt remaining from the previous tapping. During the refining
phase, the charging of scrap is stopped and the slag layer above the hot melt is broken
up by the now activated oxygen lances, thus, a higher amount of thermal radiation from
the melt and electric arcs reaches the scrap in front of the shaft, and since charging is
stopped, the scrap bulk is standing still in the charging shaft. Therefore, there is a higher
risk that partial melting of scrap parts may occur. This could potentially block scrap
charging by clumping or damaging the charging mechanism. To evaluate the possibility of
such behavior, simplified modeling approaches for the two phases under the following
assumptions are used:

• Flat-bath melting phase model (phase 1): Here, a continuous scrap flow to the melt is
modeled. The off-gas temperature and flow rate is assumed to be constant.

• Refining phase (phase 2): No off-gas or scrap flow through the shaking floor tunnel,
heat transfer inside the scrap bulk is mainly driven by surface to surface (s2s) radiation
effects.

The flat-bath melting phase is assumed to last around 50 min, while the refining phase
is assumed to last around 5 min.

2. Materials and Modeling Approach

2.1. Materials
2.1.1. Scrap

The assumption about size distribution and material properties of scrap material has
great influence on the following investigations. Therefore, the scrap material is a main
interest for this study. There are different implications of the scrap material to the process.
The main influences of the scrap material to the process behavior are:

• Scrap composition (steel grades and alloying elements);
• Scrap contamination in terms of adherent organic materials;
• Distribution of the geometrical characteristics of the scrap speaking of the mean scrap

part thickness and the surface to volume ratio.
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All these unknowns can influence the scrap preheating temperature, the off-gas
composition or the pressure loss curve over the length of the preheating shaft. The pressure
loss over the length of the shaft is very important, because it must be compensated for
to define a controlled volume flow through the shaft. As there is no general information
about the consistency of the scrap available, which also may change from charge to charge,
some simplifying assumptions will be used for now. Once, it is assumed that the scrap steel
uniformly consists of steel 1.0035, with a high Fe amount of 99%, as given by the European
steel register [20]. The density is given with a constant value of 7850 kg/m3; the other
properties are shown in Figure 2.

 

Figure 2. Thermophysical properties of steel 1.0035.

Furthermore, it is assumed that the smallest pieces of scrap will have the most sig-
nificant influence on the pressure loss over the scrap itself. Therefore, three different
characteristic scrap sizes listed in Table 1 will be used for the further investigations.

Table 1. Different scrap classes.

Name Label Density in kg/m3 Dimensions
(Length × Width × Thickness) in m

Source

Turning chips S1 500 0.25 × 0.03 × 0.001 Measurements from CNC
scrap of our workshop

Rail crops scrap S2 1121 1.21 × 0.45 × 0.0127 Datasheet [21]

Plate Scrap S3 801 0.92 × 0.61 × 0.003175 Datasheet [21]

2.1.2. Off-Gas

As for the scrap, there will be some very significant simplifications used for the off-
gas. The composition will be assumed with a (constant) composition of 70 vol.-% N2,
10 vol.-CO2 and 20 vol.-% CO, as roughly approximated from the flat-bath melting phase
of comparable sized EAF processes. The temperature-dependent material properties were
calculated with Cantera [22] using the GRI-Mech 3.0 thermodynamic mechanism set [23].
The properties are shown in Figure 3.

232



Metals 2021, 11, 1280

Figure 3. Thermophysical properties of the off-gas (70 vol.-% N2, 10 vol.-% CO2 and 20 vol.-% CO).

2.2. Modeling Parameters

A crucial point for the model’s predictive power is the appropriate choice of different
model parameters, such as characteristic surface areas or characteristic lengths. These
parameters are roughly estimated within this work, as can be seen in Table 2, but could
also be more exactly defined using more detailed investigations or automated modeling
optimizing techniques, when combined with real operation data.

Table 2. Operating data for modeled scrap bulk shaft.

Property Value Unit

Input temperature scrap 25 ◦C
Mass flow scrap 38.6 kg/s
Mass flow off-gas (through scrap bulk) 6.64 kg/s
Floor length 8 m
Floor cross section area 2.9 × 3.2 m2

2.3. Modeling Approach

The model is essentially developed combining two or three one-dimensional energy
transports models, namely, over the fluid phase, over the solid bulk phase and optionally
over the individual scrap part’s thickness. The implementation itself is carried out using
the Julia programming language (ver. 1.6) [18], it can be accessed in the Supplementary File
S1. The model, furthermore, is derived using a fixed grid enthalpy-based, energy balance
modeling approach, including the capability to include temperature dependent material
properties of the off-gas and the scrap material.

Therefore, the shaking floor tunnel is virtually divided into separate cross section
layers (bulk layers), perpendicular to flow or scrap movement, as can be seen in Figure 4.
Each layer in this discretized bulk volume is then again divided into one off-gas cell and
1 to nj multiple scrap layer cells, which can be seen in Figure 5. These scrap layer cells,
if more than one is used, will model the heat conduction in an exemplary scrap piece of
the bulk at the position i. Considering the thickness of the scrap parts may be relevant
if they are thermally thick, which usually is the case if the Biot number Bi, Equation (1),
is greater than 0.1. Here, α is the heat transfer coefficient, lchar is the characteristic thickness
of the material and λs its thermal conductivity. Here, this approach also allows for some
optional approximation of the thermal distribution inside the scrap, under the assumption
that the scrap parts can be sufficiently characterized using one characteristic thickness

233



Metals 2021, 11, 1280

and a representative surface. Therefore, this approach may also be referred to as the
1D(–1D) model.

Bi =
α · lchar

λs
(1)

Following the notation in Figure 5, in the following text the cells in the ith direction
will be referred to as bulk layer cells and the cells in jth direction as scrap layer cells.
Each direction is discretized using homogeneous cell sizes.

 

Figure 4. Illustration of first discretization step.

 

Figure 5. Modeling scheme of the 1D(–1D) model.

In this model mass flow, convective, conductive and radiative heat transfer are ex-
pressed as incremental changes in the cell’s enthalpy, as isobaric process conditions can be
assumed for this case. For the solver implementation, a dT/dt formation is used, which is
spatially discretized, to transform the PDE system into an ODE system. The “DifferentialE-
quations.jl” solver package [24] will be used for the solution of the resulting ODE system.
For simplicity, the expressions will be written as change in enthalpy ΔH, which should
facilitate the reading of the equations.

For example, the change in enthalpy, during a defined timestep Δt of the off-gas (fluid
f ) in each cell i, ΔHi, f can be expressed due to the off-gas mass flow

.
m f using Equation (2).

cp is the true heat capacity.

ΔHi, f =
.

m f · Δt
∫ Tf ,i

Tf ,i−1

cp, f dT (2)
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In the same way, it is possible to account for the scrap movement; as for the numer-
ical approximation, it is sensible to use upwind approaches according to the movement
direction the evaluation direction is flipped for the scrap cells (see Equation (3)).

ΔHi,s =
.

ms · Δt
∫ Ts,i+1

Ts,i

cp,s dT (3)

Furthermore, the enthalpy change due to heat transfer between all the scrap cells can
be expressed within the i- and j-direction. The different heat transfer mechanisms are heat
conduction within the scrap parts, heat conduction within contact areas between the scrap
parts, convection between scrap and air and thermal radiation heat transport from the
furnace side to the scrap and between individual scrap parts.

2.3.1. Modeling Simplifications

The current implementation of the model comes in hand with some simplifying
assumptions; these assumptions are presented for better comprehensibility of the model:

• Scrap consisting of small flat stripes of metal with a characteristic thickness (which
should translate to the fact that they have only one direction where thermal conduction
will matter the most) and a representative surface area;

• All scrap parts are composed of the same material;
• Scrap pieces are shaped approximately equal and distributed evenly over the scrap bulk;
• The scrap bulk has uniform scrap thicknesses and constant surface to volume ratio;
• There is a uniform scrap movement in direction of the shaking floor;
• Neglection of gas radiation (the usual distance between different parts) is estimated to

be in between 1 and 15 cm, and the gray gas emissivity for the given gas composition
(over a temperature range from 300 K to 1500 K at 1 atm) varies between 0.01 and 0.08,
calculated according to Alberti et al. [25]; therefore, its influence will be neglected
for now);

• The emissivity of all surfaces (scrap and furnace walls) will be assumed to be 0.8;
• Assuming temperatures listed in Table 3 for modeling of scrap bulk incident radiation

for the refining phase (2);
• Neglecting dissipation and compressible pressure effects in the off-gas flow;
• Constant gas composition over whole process time;
• Constant heat transfer coefficient between scrap and off-gas over the length of the shaft;
• Symmetry assumption over the individual scrap part’s thicknesses;
• Neglecting the contact of scrap with the surrounding walls;
• No modeling of thermal conduction between the individual scrap parts in the bulk

(convective and/or radiative heating is assumed to dominate the heat distribution of
the scrap bulk);

• Homogeneous temperature and mass flow of the off-gas in each bulk layer cell.

2.3.2. Heat Conduction over Characteristic Scrap Thickness

First, the heat transfer through heat conduction in an individual (representative scrap
piece), as shown in the lower part of Figure 5, will be modeled. The heat conduction term
over the characteristic thickness of the scrap piece can be described using Equation (4).
Here, Δys is the thickness of each scrap cell (index s) in j-direction, Ay,s is the characteristic
cross section surface of a scrap piece, normal to the main heat conduction direction.

ΔHi,j,s = Δt · λy,s
(
Ti,j,s

)
Δys

· Ay,s ·
(
Ti,j+1,s + 2 Ti,j,s − Ti,j−1,s

)
(4)

2.3.3. Heat Conduction in the Off-Gas

Accordingly, the off-gas conduction in i direction can be modeled using Equation (5),
which may become relevant for very low off-gas flow rates. Δx f is the length of the fluid
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cells (index f ) in i-direction; in the current approach, the fluid and solid cells are overlaying
each other, and Δx f is equal to Δxs.

ΔHi,j, f = Δt ·
λx, f

(
Ti,j, f

)
Δx f

· A f ·
(

Ti+1, f + 2 Ti, f − Ti−1, f

)
(5)

However, it its more difficult to come up with a simple model for the conductive heat
transfer between the individual pieces and its resulting heat conduction contribution in
i direction over the scrap bulk.

2.3.4. Convective Heat Exchange between Scrap and Off-Gas

The energy transfer between the off-gas (fluid) and scrap (solid) models is realized
using Equation (6). To also model the heat transfer in the case of no off-gas flow, a minimum
value of α f s of 10 W/(m2 K) should be used. Using Equation (6), the change in the solid
cell enthalpy through convective heat transfer is calculated as the product of heat transfer
coefficient α f s the scrap surface A f s and the difference between scrap Ts and fluid (off-gas)
Tf temperature.

δQi, f s = Δt · α f s · A f s ·
(

Ti, f − Ti,1,s

)
(6)

Here, the interfacial scrap surface A f s can be related to a hypothetical inter-facial area
density SA : Vb, which represents the ratio of scrap surface m2 to scrap volume in m3 in the
bulk, and A f s = SA : Vb · Vf s, SA : Vb can be calculated using the dimensions (distribution)
of the scrap pieces, the summed overlapping contact area of the scrap pieces in m2 per m3

and the density of the scrap bulk itself.

2.3.5. Balancing

The modeling of the radiation phenomena onto δQrad,i, f ront and inside δQrad,i,cross the
scrap bulk is described in a separate section below.

Based on the summed balance of the different heat Q and enthalpy H changes, gen-
erally termed ΔH, the new temperature of each cell can be calculated, using the inverse
function T(H) of the enthalpy curve H(T) of the given material, resulting in Equation (7).
Here, H(t) is the specific enthalpy of a cell at time t and mi,(j) is the mass of the cell.

Tt+Δt = T

(
H(t) + ∑ ΔH

mi,(j)

)
(7)

2.3.6. Radiation Modeling—Bulk Incident Radiation

During the flat-bath melting phase (phase 1), it will be assumed that the off-gas is
very dusty and gas radiation dominates, so Equation (8) is used to calculate the radiative
heat transfer from the EAF environment to the front of the scrap bulk. Here, As, f ront is the
surface of the inclined front (Figure 6), with 16.4 m2 and εs is the emissivity of the scrap.
This equation is then completed by introducing Equation (14), which takes the possible
radiation transmittance of the first layer(s) into account.

.
Qi,rad,EAF = σ · εs · As, f ront ·

(
T4

i − T4
∞, EAF

)
(8)
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Figure 6. Discretized geometry used for view factor calculation.

Table 3. Temperatures for the calculation of
.

Qrad,EAF during phase 2 (geometry is shown in Figure 6).

Color Red Blue Cyan Orange Gray

Temperature in ◦C Modeled 1500 4500 1650 900

During the refining phase of the exemplary process, thermal surface to surface radia-
tion effects will become the most important mechanisms between the individual scrap parts
inside and onto the scrap bulk. Gas radiation effects, on the other hand, will be negligible
(in the bulk itself), since the radiation distances between the individual parts are small and
the overall heat capacity of the off-gas is low compared to the scrap’s heat capacity.

In particular, during the second (refining) phase of the exemplary continuously
charged EAF process, where the scrap charging and the off-gas suction through the shak-
ing floor tunnel will be stopped, thermal radiation effects onto and inside the scrap bulk
will become highly relevant for the thermal distribution inside the scrap bulk. Therefore,
the furnace’s scrap bulk temperature in front of the shaking floor may rise a lot more due
to the incident thermal radiation.

To describe these radiation effects to the front of the scrap bulk, the surface to surface
(s2s) approach is used. According to Hottel or Howel [26,27], the heat flow between thermal
radiating surfaces to a special surface i can be computed by Equation (9), which represent,
the difference between the in- and outgoing heat fluxes

.
q′′ multiplied with the radiation

exchange surface area Ai of a surface i.

.
Qi =

( .
q′′

out,i − .
q′′

in,i

)
· Ai (9)

The outgoing heat flux can be evaluated solving the following linear equation system
(10), if the geometry specific view factors Fik of the N surfaces are known.[

N

∑
k
(ε − 1) · Fik + δik

]
·
[ .
q′′

out,i

]
=

[
εi σ T4

i

]
(10)

To then calculate the surface incident heat flux
.
q′′

in,i , Equation (11) can be used.

.
q′′

in,i =
N

∑
k=1

.
q′′

out,k · Fik (11)

Using this approach, the heat flow
.

Qrad,EAF (Figure 4) to an area representing the front
surface of the scrap bulk is calculated to include the furnace incident radiation effects inside
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the model. Therefore, the view factor matrix was calculated using an in-house radiation
model. The geometry for the view factor calculation is shown in Figure 6.

For the differently colored faces, the temperatures given in Table 3 were assumed.
Here, especially the assumed arc temperature (cyan) can vary a lot between different
models (<2000–30,000 K) [28–30]. With a view factor of <1%, the impact of this temperature
to the scrap front is not very important. Here, the shown values must be seen as a rough
approximation that have no particular significance or are supported by measurement data.
Nevertheless, to model an existing preheating process, those temperature assumptions
must be optimized against existing process data, as these are highly relevant for the heat
input over the refining phase 2.

2.3.7. Radiation Modeling—Inside of the Scrap Bulk

As some of the thermal radiation between the scrap cells may penetrate though a single
cell layer in i direction, due to its porosity, an approach to model this penetration behavior is
necessary. Therefore, a scrap bulk thermal radiation simulation approach, to add additional
radiation heat changes ΔQrad to the evaluation of Equation (7), has been developed. This is
somehow difficult, as changes in the modeling approach, according to the chosen cell
size, must be made, because the radiation between the scrap pieces is not a continuous
phenomenon. This is illustrated in Figure 7a, where you can see that if the cell size is
chosen to large, radiation phenomena will probably be underestimated due to its highly
nonlinear nature, and if it is chosen to be a lot smaller than the individual scrap pieces
(Figure 7c), the individual heat transfer in each scrap piece may be underestimated, as well
(especially if those have a high thermal conductivity and are not too elongated), as a single
temperature (distribution) for each solid cell i is being used. Therefore, choosing a cell
size similar to the dimensions of an individual scrap piece seems reasonable (Figure 7b).
This may not always be possible if the individual dimensions of the piece differ greatly
from each other or the pieces itself are very large, so that a corresponding large cell size
would lead to significant numerical errors.

 
(a) (b) (c) 

Figure 7. Illustrative sketch of differently used cell sizes. (a) cell size >> scrap parts, (b) cell size ≈
scrap parts, (c) cell size << scrap parts.

For the calculation of radiation passing through the cells, some assumptions will be
established. Furthermore, a simple model to calculate a cumulative blocking factor between
the cell layer i and its “seen” neighbor cells will be used. Therefore, it is assumed that there
is an exposed surface in each cell, which contributes a certain amount of surface As,rad,
which may be calculated using Equation (12) and represents the scrap surface, which can
be “seen” by its adjacent cell at maximum. Within this equation, it must be considered that
in theory, at maximum, some proportion less than half of the size of this surface area can
be “seen” from each side of the cell, which leaves a specific unknown factor c somewhere
between zero and one, depending on the scrap geometry and distribution. This factor
will cover for some side radiation losses, which cannot be represented in the 1D model,
and further represent some kind of the only “self-seen amount” of the scrap parts in each
cell. If the losses are ignored, which becomes increasingly true, the more cells are used
(the smaller the cells become in respect to the shaft dimensions); this factor boils down to
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represent the not self-seen proportion of the surfaces. Furthermore, c may also cover for
the fact that through the structure of the radiation surfaces of the individual scrap pieces in
the bulk, εe f f instead of the ideal ε must be used, because of the cavity formation of the
scrap pieces in the individual cells. Depending on the size and shape distribution of the
individual scrap parts, c will not be independent of the chosen cell size. Since there is no
real knowledge of the quantity of this factor at the moment, a factor c of 0.5 will be used.

Arad,layer i = c · 0.5 · SA : Vb · Vf s (12)

In this paper there, is no deep dive into the topic of how one could practically deter-
mine the factor c. For now, this factor should be looked at as a kind of optimization factor,
which later could be adapted using real process data or adapted within sensitivity studies.
If there are different scrap parts with different c values inside the bulk, this model could in
general be extended to a 2D or 3D model type, where influences of the composition could
also be investigated.

Having the potentially radiation-blocking surface of each cell layer i, which is the
same for each cell, a constant surface to volume area ratio and a constant cell size is used;
there is a need for a model to estimate the penetration of thermal radiation through the
individual cell layers. Therefore, a sub model, where the blocking surfaces of the individual
scrap pieces in each cell over the cross-section area of the shaft are kind of unrolled into
one dimension (see Figure 8a) has been developed. Furthermore, it is assumed that the
scrap pieces are equally distributed over the cross-section area, but the distance between
the individual pieces is allowed to vary randomly in between those equally distributed
positions. If completely random positions of the individual pieces would be possible,
dysfunctional scrap bulks would be part of consideration; for example, convectional
heating would not work as intended. Due to the symmetry effects in such a system, this is
similar to modeling two randomly positioned accumulated scrap piece areas against each
other (Figure 8b). Then, the intersection areas (green lines in Figure 8) between the two
layers for many (10,000 and more) randomly varied positions can be calculated.

Figure 8. Exemplary representations for the randomized overlap calculation (a) using eight individual
scrap pieces, (b) using one.

Using this method, the overlapping factor o f ac for each occupation fraction can be
calculated, which is the fraction of the occupied shaft cross-section area by Arad, shown
in Figure 9a. Due to the fact that no completely random movement for the individual
pieces has been set, the function deviates from a line with a slope of 1, where the average
overlapping factor would be equal to the average occupation fraction.
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Figure 9. Calculated occupation fractions (a) and amount of “seen” surface between a cell i and its
neighboring cell ζ (b).

Now, with this overlapping factor, the mean amount of surface, which can be seen
between different cell layers ζ, can be calculated using the Equation (13), in the following
referred to as bζ . Here, bζ is used as an array of values indexed according to ζ. ζ is a relative
coordinate system between a cell i and its neighboring cell(s). This means that ζ = 0 refers
to a cell itself and ζ = 1 refers to the exchange with the closest neighboring cell and so on.

ζ = 0 : 1
ζ = 1 : o f ac

ζ > 1 :
(

1 − o f ac

)ζ · o f ac

(13)

The results are shown in Figure 9b. From this figure, it is seen that different oc-
cupation fractions may require a different amount of considered neighboring cells to
accurately calculate the thermal radiation exchange between the individual cell layers.
In this modeling approach, the exchange between an amount of k neighboring layer cells
is considered, where the amount of relative seen surfaces between i and i ± k is greater
than 0.1%. Of course, this is a gross simplification, which also worsens with increasing
Δx, because the calculated overlapping only directly correlates to radiation exchange for
infinitely small distances, but it also is a fast and easy-to-calculate approach, which in the
future also could be extended with additional optimization parameters to better fit reality.

Using the calculated bζ values, a modified version b∗ζ were the entry for the layer index
ζ = 1 of bζ is removed. Then, the restructured b∗ζ must be indexed according to ζ = i − 1.
The surface-to-surface radiation heat flow for the first k cells of the bulk, going from the EAF
side, can be calculated using the Equations (9)–(11). Using the aforementioned modification,
the result according to b∗ζ (see Equation (14)) can be evaluated. This procedure is physically
not completely correct, as each cell layer i of the first k cells is simplified as being on the
front layer of the bulk (Figure 6), including its corresponding temperature Ti, but it should
be sufficiently accurate.

0 ≤ i < k :
.

Q
∗
i,rad,EAF = b∗i ·

.
Qi,rad,EAF(Ti)

i ≥ k :
.

Q
∗
i,rad,EAF = 0

(14)

To obtain the overall radiation heat transfer between a cell i and its k surrounding
cells, an energy balance considering all cells within a certain range index range k must
be established, which again marks the range after which all outgoing radiation from a
radiating cell should be absorbed. Therefore, Equation (15) has been derived. Here, the c
factor is considered within Arad, which, according to the assumptions, is the same for each
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cell i. Furthermore, a modified equation for the heat transfer between two parallel equally
sized surfaces, modified with the factor bζ , which was introduced in the previous sections,
is used with ζ = |i − γ|.

.
Qi,rad,cross = σ · Arad ·

⎛
⎝ i−1

∑
γ=i−k

bζ ·
T4

γ − T4
i

1
εs,i

+ 1
εs,γ

− 1
+

i+k

∑
γ=i+1

bζ ·
T4

γ − T4
i

1
εs,i

+ 1
εs,γ

− 1

⎞
⎠ (15)

Altogether, these equations should allow a decent modeling of the radiative trans-
ported heat inside the scrap bulk for higher temperature ranges. Unfortunately, one must
estimate the mesh specific coefficient c in a certain range.

3. Results

3.1. Model Sensitivity to Different Scrap Types

First, some results for three hypothetical scrap bulks consisting of different classes
of scrap (see Table 1) are shown. In Figure 10, the predicted preheating temperature of
the scrap (Figure 10a) and off-gas outlet temperature (Figure 10b) development over time
can be seen. In Figure 10a, the resulting scrap temperature does not differ very much
(deviation around 20 K), although the scrap characteristics defer in the range of usual scrap
parts. Furthermore, as the outlet temperature of the off-gas is close to the charged scrap
temperature (Figure 10b), nearly all energy is transferred from the off-gas to the scrap.

  
(a) (b) 

Figure 10. Simulated preheating temperature of scrap (a) and off-gas outlet temperature (b) over
process time of phase 1 for the different characteristic scrap parts S1, S2 and S3 (see Table 1).

As it can be seen from Figure 10a, the scrap preheating temperature difference reduces
over time of phase 1 under constant process conditions, which also applies to the spatial
temperature distribution inside the bulk (see Figure 11a,b). From here on, the scrap type S3
is used for further investigations.
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(a) (b) 

Figure 11. Simulated temperature distribution over the scrap bulk after (a) 5 and (b) 50 min.

3.2. Mesh Size Implications on the Modeled Process

In Figure 12, the effect of the chosen mesh size on the temperature distribution over
the shaft length is shown to be very pronounced. There are mainly two reasons for that.
The first is the numerical convergence of the model regarding mesh size (convection,
gas conduction) and the second is that the radiative heat transport is physically influenced
by the mesh size, which basically is due to the geometry reduction to 1D. The numerical
error of the convection modeling is amplified by the fact that there is no heat conduc-
tion model implemented over the length of the scrap for the scrap parts, therefore, the
heat conduction in x direction is theoretical infinite in each scrap cell and 0 between the
scrap cells.

Figure 12. Simulated scrap bulk (S3) temperature and off-gas temperature over the length of the
shaft for different cell sizes after 50 min; dotted = scrap temperature, solid = off-gas temperature.

As the heat conduction in and between the scrap parts should not be the main transport
mechanism, at least for the exemplary modeled process, the modeling error in this regard
should be acceptable, if enough cells to significantly reduce the numerical error of the
convective modeling are used. In Figure 13, the difference between the model using
radiation modeling and no radiation modeling used in the model is shown at the end of
the two different phases. As expected, the influence of thermal radiation, especially in the
front of the bulk, are non-negligible in phase 2, while for phase 1, the influence especially
in the main part of the bulk is very small.
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Figure 13. Comparison of resulting temperature differences radiation modeling in the bulk vs.
no radiation modeling in the bulk at the ends of phase 1 and 2.

Furthermore, looking at two main target properties, namely, the scrap preheating
temperature and the off-gas temperature after the shaft, it can be seen from Figure 14a,b
that these properties are converging for cell amount larger than ≈100 cells rather quickly
when they approach a steady state condition.

  
(a) (b) 

Figure 14. Scrap (S3) preheating and off-gas outlet temperature after 5 (gray lines) and 50 min (black lines) for different cell
numbers (a); scrap (S3) preheating temperature development for cell numbers (b).

3.3. Influence of Convective Heat Transfer Assumptions

The influence of the used heat transfer coefficient is shown in Figure 15a,b. The simu-
lation is very sensitive to the heat transfer coefficient in between 10 and 40 W/(m2 K).
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(a) (b) 

Figure 15. Scrap (S3) preheating and off-gas outlet temperature after 5 (gray lines) and 50 min (black lines) for different heat
transfer coefficients a f s (= α) (a); scrap (S3) preheating temperature development for different heat transfer coefficients
a f s (= α) (b).

3.4. Influence of Factor c on Modeled Radiative Heat Transfer

The importance of the factor c does not seems to be of the most importance for the
refining phase (phase 2) if the scrap temperatures inside the bulk are rising above 800 ◦C
(Figure 16). During this phase (Figure 16b), deviations of around 50 ◦C can be observed
between the predicted heating of the first scrap layer inside the scrap within varying
c between 0.3 and 0.9. As the flat-bath melting phase (Figure 16a) is clearly dominated by
convective effects, differences are minor and around 10 ◦C.

 
(a) (b) 

Figure 16. Scrap (S3) preheating temperature development for different c values over the time of (a) phase 1 and (b) phase 2.

Of course, there are other influences on the model, such as mass flow rates, material
properties, etc., but these are rather well known. Therefore, they will not be described further.

3.5. Verification of the Model’s Heat Balance

To give some exemplary verification of the correctness of the model’s implementation,
energy in- and outputs to the shaft (scrap and off-gas), using the model without radiation
transport model enabled, for the modeling of phase 1, are shown in Figure 17a.
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(a) (b) 

Figure 17. Energy in-, outputs and difference over time (a); cumulated energy difference and energy stored inside the bulk
(scrap and off-gas) (b).

In Figure 17b, the integral (blue area in Figure 17a) is shown as the blue curve. As the
temperature distribution inside the bulk reaches a stationary state, the differences between
the in- and output energies will approach zero; the energy difference accumulated up to
this point in time must reside inside the scrap bulk. This is shown with the orange curve in
Figure 17b, which depicts the stored energy inside the bulk (scrap and off-has) over the
process time, which was calculated from the respective spatial temperature curves. There
is a slight offset between the curves, which is due to the dynamics between changing the
whole heating curve of the bulk and changing the preheating temperature of scrap in the
first cell of the model. This indicates the mathematical correctness of the models regarding
the overall energy balance.

4. Conclusions

The described modeling approach can deliver plausible results in short simulation
times, usually much less than a minute for reasonable mesh sizes and simulated process
times of ~60 min. Of course, the many simplifying assumptions lead to the fact that the
shown results are not directly transferable to a real process. These simplifications were
developed to clarify the impact of certain model aspects. It was shown that the scrap
type for some variation of the different scrap classes will not have a very high impact
on preheating temperatures (if the parts can be seen as thermally thin). Furthermore,
we showed the importance of radiation modeling for rising temperatures in refining phase
2. It is interesting to note that some of the unknown model parameters, such as c, which
have uncertainty and for a real process probably must be tuned against validation data,
have much less influence than one could expect. Furthermore, it was shown that the
current model is very sensitive (in the convection dominated phase) if low heat transfer
coefficient values between 10 and 40 W/(m2 K) are used. Nevertheless, these values are
low for forced convection, but due to the relatively low velocities in the exemplary process
between 0.5 m/s and 3 m/s (according to the assumed conditions and temperature ranges)
it cannot be ruled out that these may occur in certain circumstances, as there are no general
approximations of heat transfer coefficients in scrap bulks available in the literature now.
Furthermore, due to the high temperature dependence of the gas’s density, the cooling will
lead to a significant slowdown of the gas’s flow speed. Therefore, the derivation of heat
transfer coefficients laws for different flow velocities through scrap bulks will be necessary
to generate sufficiently accurate temperature estimates over the whole bulk.

From the results, it can be concluded that the shown modeling approach is very
suitable, especially if radiation and convection phases can be separated. This can be
justified by the fact that the convection model is strongly influenced by the number of
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cells used over the shaft length, while for the bulk radiation model, there is an additional
physical implication of the chosen cell size. Separating the two is, therefore, a good way to
avoid problems regarding the mesh. For mixed cases where both transmission mechanisms
are important at the same time, an additional heat conduction model over the bulk length
could help to reduce the numerical error for coarser meshes. Furthermore, the numerical
error on a coarser mesh for the convective model could theoretically be mitigated by
empirically or numerically determined compensation functions, so that an optimal grid
size for the radiation modeling could still be chosen.

Certain cases such as inhomogeneous scrap movement of the bulk, mixed or variously
layered scrap bulks may require the model to be extended to 2D or 3D, since those will
be hard to account for in a 1D model. The capturing of other relevant aspects, such as
varying off-gas properties (due to varying composition), the changing of flow rates (scrap
and off-gas) over process time or the variation of heat transfer coefficient according to
approximated gas velocities, is currently possible with the current model or rather does
not require a lot of effort to implement. Nevertheless, such changes require validation data
of existing processes.

5. Summary

To summarize, a fast and versatile scrap preheating model capable of estimating con-
vective and radiation dominated heat transfer inside a scrap bulk, while also considering
local heat conduction effects, has been developed. As shown, capturing the effects for the
heating over the scrap part thickness is not very relevant for a broad range of different
scrap types.

It was shown that in some areas, the model is not subject to strong deviations due
to uncertainties in the model’s parameters; in many cases, it could therefore be used,
for example, to estimate the approximate design of the required length of a scrap preheating
shaft. Otherwise, under some circumstances, the model may be very reactive to some
parameters. Therefore, it is recommended to start with investigating the model’s sensitivity
to parameters as mesh size, used heat transfer coefficient and c. Furthermore, as there were
no validation measurements performed for this model until now, practical decisions based
on these results of our implementation should be carried out with the appropriate caution.

Additionally, there is still further work needed, especially regarding the areas of:

• Simplified modeling of conduction heat transfer between individual scrap parts,
for applications where this becomes relevant;

• Validation and parameterization of the blocking modeling;
• Estimation strategies for the c factor and the heat transfer coefficient α f s;
• Modeling of more complex scrap bulks with mixed materials;
• Finding suitable optimization factors to fit the model to various experimental cases.

Despite the several simplifications used in the model, the modeling approach itself is
very extensible and, therefore, generally applicable to more complex cases, while still being
as comprehensive as necessary to allow for real-time control and optimization purposes.

Supplementary Materials: The source code, geometry files and generated results used within
this publication are archived under: https://www.mdpi.com/article/10.3390/met11081280/s1.
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Abstract: The steel industry, in accordance with the momentum of greener industry, has welcomed
the changes and is actively pursuing that objective. One such activity is the commitment to energy
recovery from by-products such as slag since the average energy content of ferrous slags is around 1
to 2 GJ/tslag. The recovered energy could, then, be used in heating or drying process among others.
The RecHeat was designed and modelled iteratively to achieve an optimised heat recovery apparatus.
The model shows that the temperature of different sections of the heat exchanger part varies from 170
to 380 ◦C after slag pouring while the average air temperature at the entrance of the heat exchanger
is less than 150 ◦C. Furthermore, the temperature of the fluid medium changes from 125–140 ◦C to
260–340 ◦C from one end of the heat exchanger part to the other at the end of the simulation. The
outlet temperature at the end of the simulation is calculated to be around 340 ◦C, which shows an
increase by at least 200 ◦C in the temperature of the air entering the apparatus.

Keywords: mathematical modelling; computational fluid dynamic; slag heat recovery; heat ex-
changer; drying; slag energy content; heat recovery technology; RecHeat

1. Introduction

Production of iron and steel is a CO2- and energy-intensive activity. The global steel
industry is responsible for one-quarter of industrial CO2 emissions and 7 to 9% (2020) of
global anthropogenic CO2 emissions. Furthermore, during 2019, 22% of globally used
industrial energy was used in steel production. Typically, the cost of energy is around
10–20% of the total production costs of steel [1–4].

Improved energy efficiency is one of the approaches of greener steel production. This
is generally seen as one of the major short-term methods of CO2 emission reduction in the
steel industry.

To be able to meet the Sustainable Development Scenario (SDS) set for the industry
sector, the energy intensity of crude steel production needs to achieve a 1.2% annual
reduction between 2018 and 2030 [5]. Energy or heat recovery, as one of the main fields of a
four-stage efficiency methodology of the Step-up program launched by the World Steel
association [3], shows the importance of this process.

1.1. Slag Heat Recovery

Energy recovery from hot liquid slag is one of the underused candidates for increasing
energy efficiency in steel production. In 2018, around 330 to 375 million tons of blast
furnace slag (BFS) and around 250 million tons of steelworks slags (65% basic oxygen
furnace (BOF) and ladle furnace (LF) slag, and 35% electric arc furnace (EAF) slag) were
produced. It is expected that global steel consumption will increase, meaning that slag
volumes will increase in the future [6].
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In iron and steel production, slags are the main by-product in terms of mass (90%).
These molten slags carry a great amount of unused waste heat and are considered to be
value-added products with extra energy output, which raises environmental concerns
while offering cost-saving opportunities for industrial applications [2].

Molten slag forms at 1300–1700 ◦C, and when discharged, a great deal of high-grade
heat is carried with it. In the steel industry, slag accounts for 10% of waste energy and
35% of high-temperature waste heat [2]. Therefore, technology development is vital to the
recovery of this high-temperature waste heat, which immediately leads to energy savings
and emission reduction in the iron and steel industry.

Generally, the current heat recovery technologies can be classified into physical and
chemical methods. Lots of research efforts have been directed towards physical methods,
like mechanical crushing, air blast and centrifugal granulation process [7,8]. Of the chemical
methods, the CH4 reforming reaction and the coal gasification processes have been widely
investigated [3]. For blast furnace (BF) slag, the two European pilot plants with recovery of
heat during granulation are the most promising developed technologies [9].

Typically, the energy content of ferrous slags is around 1 to 2 GJ/tslag at the tapping
temperature, and part of this is lost due to discharge of the hot slag. The discharged slag
is processed either by granulating it directly from the process (typical method for BFS) or
tapped to a slag pot and transported to slag handling area. The transported slag, then, is
poured on the slag dump area. It is important to emphasise that currently, the energy of
the dumped slag is mainly wasted as the slags are cooled down by the atmosphere or by
means of water-cooling with no heat recovery.

Over the decades, different types of methods have been developed to recover this
unused energy/heat. The heat recovery methods can be divided into two groups, direct
contact with slag or indirect contact through air, mist/vapor, or water. Despite the several
different types of approaches, there are no widely commercialised use of heat recovery
processes available. Wang et al. published an extensive review of the research technologies,
indicating that all of them are in the demonstration or experimental phase [2]. The majority
of the physical methods concentrate on the development of BFS heat recovery. Less
attention has been paid to the development of heat recovery from steelmaking slags;
electric arc furnace (EAF), basic oxygen furnace (BOF) and ladle furnace (LF) slag.

1.2. RecHeat Techonology

The RecHeat (Recovery of Heat from molten slag) technology innovation is based
on the idea of an “as simple as possible to use”, heat exchanger type of technology for
molten slag heat recovery. Therefore, the apparatus is constructed of simple metal sheets to
enhance the energy exchange through a semi-direct contact of slag with the heat exchange
structure surface. Moreover, such a construction benefits from a not-so-expensive recyclable
material and localised rebuilding-patching in the case of minor damage. Furthermore,
safety, simplicity and practical reason led to the use of air as an energy-transport medium
instead of water, even though water has better thermal properties.

In practice, the slag from the steel plant will be carried to the RecHeat using a slag
truck. The slag truck, then, tilts the slag pot over the designated area of the RecHeat. As
can be imagined, the slag might not be distributed uniformly over the thin steel plate. In such
a case, a metallic arm will be used to spread the slag as uniformly as possible so that there will
not be any uncovered area. With this arrangement, the slag starts to radiate its energy to
the surroundings, where the air will be sucked in into the apparatus through two separate
entrances. Of course, since the system should be in an open environment due to security
risks and for practical purposes (slag truck accessibility) part of this energy will be lost.

The heated air can, then, be used for drying purposes. This could be a significant
gain considering the energy for drying medium covers 50–70% of the operational costs
of drying process. Therefore, it can be said that utilization of slag heats is a cost-efficient
source of heat for drying. At the same time, coupling of a drying station to the RecHeat
draws a path of direct utilization of the recovered heat.
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2. Geometry, Modelling and Model Setup

It might not be far from the truth to say that one of the most popular approaches in
transferring heat from one medium to another is to use a heat exchanger. This method has
proven itself reliable and practical in many industrial and domestic sectors. In addition,
with the increasing notion of green industry, recovering heat energy of by-products, e.g.,
slag in the steel-making process, has become an objective of many industries. Therefore, as
mentioned, RecHeat was designed with the notion that it should be usable with minimum
effort while recovering tangible energy from the slag.

The objective of the current study, then, is to design an optimum apparatus based
on the heat exchanger concept that can retrieve the energy of the slag using air as the
medium for the purpose of drying, as mentioned previously. Therefore, the focus of the
modelling activity has been to predict the system efficiency by means of computational
fluid dynamic (CFD). This approach has the advantage of reducing the cost of construction
and the risk involved with multiple design tests. Such a system can be easily modelled
using Navier-Stokes and energy equations without any further modification by means of
commercial CFD codes. A description of the equations is given below.

2.1. Geometry

Figure 1 shows the overall setup of the RecHeat in practice. As can be seen, the
RecHeat is formed of a heat exchanger part which is then connected to a collector. The heat
exchanger part is formed of three layers which are stacked on top of each other; each layer
consists of four metallic pallets with five channels each. Moreover, as can be seen in the
figure, the outlet of the heat exchanger is at the end of the collecting pipe (in the left-bottom
corner of the figure) while the air is sucked in through the open ports at the other end (the
right side of the figure).

Figure 1. Heat exchanger and the slag layer; side-, front-, back- and top-view of the apparatus from
top to bottom.
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As mentioned, the heat exchanger section is formed of three stacked layers where
the air must travel through the layers (from one side to the other and back) to reach the
collecting sections. By looking at the side and the back views, it can be seen that the air
enters the heat exchanger section of the apparatus though the bottom channels. Then, the
medium will travel towards the other end and with a U-turn, it enters the middle layer.
This is visualised in the front-view of the apparatus. Of course, the same happens at the end
of the middle layer, where the medium makes a U-turn, entering the top layer (back-view).
At the end of the top layer, the air exits the heat exchanger and will be collected and mixed
in the piping section.

Moreover, a thin steel plate is placed over the heat exchanger section. This is to
prevent the direct contact of the slag with the apparatus which can cause damages to
the construction. Of course, the apparatus is also protected by sand on its side to make
a pool-shaped area where the liquid slag should be poured in. Then, the liquid slag is
transported by the slag truck and poured over, into the designated area. Of course, in real
practice, if the slag does not uniformly spread over the surface, it is possible, to a certain
degree, to spread it using a mechanical arm.

With such a setup, the structure of the apparatus heats up, extracting energy from the
slag on top while the entering air to the system warms up at the two bottom layers until
reaching the top layer.

2.2. Modelling Approach

Of course, the next logical question will be “what model setup will, most realistically,
represent the current arrangement”. To answer this question, one should consider that the
apparatus is designed to suck in the air from the surrounding. This medium, in turn, should
be affected by the radiative and convective heat due to slag cooling process. Therefore, it is
safe to say that the temperature of the air entering the system could naturally differ as the
cooling of the slag progresses. Therefore, it can be seen that the generic Navier-Stokes and
energy equations could describe the system. These equations are given below.

∇.U = 0 (1)

ρ
DU
Dt

= −∇p +∇.τ + ρg (2)

ρcp
∂T
∂t

+ ρcpU.∇T = ∇.(k∇T) (3)

In the above, D
Dt represents the material derivative, U is the velocity, ρ is the density, p

is the pressure, τ is the viscous stress tensor, g is the gravitational acceleration, cp is the
specific heat capacity, k is the thermal conductivity and T denotes the temperature. The
thermal properties of the slag were reported by Gonzalez-Fernandez et al. [10].

To be able to more realistically set up the model, commercial CFD PHOENICS (v. 2019,
Concentration, Heat and Momentum Limited (CHAM), London, UK), which uses the
cut-cell method, proved to be a suitable choice. In this application, the numerical domain
always consists of a box shown with red lines in Figure 2. In this model setup, the outer
faces of the red box are treated as pressure boundary with temperature fixed at the ambient
temperature (surrounding environment), while the bottom face of the exterior is treated as
a wall mimicking the ground. Hence, the cooling behaviour of the slag and the transient
nature of the air entering the RecHeat could be modelled more realistically.

Figure 2. Calculation domain.
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2.3. Initial and Boundary Conditions

The initial values and boundary conditions for the model can be summarised in
Table 1 as follow:

Table 1. Model initial and boundary conditions.

BC & IV Object Type Magnitude Unit

Boundary Condition
RecHeat Gas Out Mass Flow Rate 2.5 kg/s
Top & Side Faces Pressure boundary Ambient P and T Pa & ◦C

Bottom Face Wall Adiabatic -

Initial Value
Slag Temperature 1300 ◦C
Air Temperature Ambient T ◦C

The side and top faces of the domain (light blue faces of the outer box in Figure 3) are
assumed to be pressure boundary faces where the pressure and temperature are equal to
the ambient pressure and temperature. It should be noted that since the modelling was
to be followed up by a pilot trial, the ambient temperature was set to 20 ◦C. This is in
consideration of the location of the test site and planned season of the trial. However, the
pilot trial was delayed due to the pandemic that engulfed all nations, and by the time of
the test, the ambient temperature had dropped to a lower magnitude. The bottom face
(brown face in Figure 3), then, was treated as an adiabatic wall.

Figure 3. Outer faces of the calculation domain: top and sides faces are treated as pressure boundary
and the bottom as adiabatic wall.

Furthermore, the air flow rate was set to 2.5 kg/s, which is equivalent to the expected
flow rate that the fan could operate (red circle in Figure 3) and the slag temperature was
taken as the average temperature of the slag reaching the testing site. The thickness of the
slag was also calculated with respect to the slag pot volume and a spreading area equal
to 10 cm. Of course, it should be pointed out that the slag did not spread uniformly over
the top surface during the pilot test, but in the model setup, the slag layer was set at a
uniform thickness-temperature.

3. Results

The modelling of the RecHeat can be divided into two distinct parts: the structure
heating and heat exchanging stages.

3.1. The Structure Heating Stage

In a real process, it can be expected that the apparatus temperature is at equilibrium
with the surrounding environment, i.e., ambient temperature. Therefore, the objective of
the first stage of the process is to increase the temperature of the structure to the maximum
possible magnitude. By pouring the slag over the structure, the body of the apparatus
absorbs the energy of the slag through conduction. Simultaneously, the radiative energy of
the slag instantaneously heats up the surrounding air.
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Figure 4 shows the average temperature of the sucked-in air into the structure during
the structure heating stage. It can be visibly seen that the slag radiation energy disperses
into the surroundings where the temperature of air is above 250 ◦C.

Figure 4. Average air temperature during the structure heating stage; colours correspond to pal-
let colouring.

Then, the sucked-in heated air begins to exchange its energy with the body of the
structure as it flows through the apparatus, since the temperature of the structure is lower
than the entering medium. Hence, it can be said that the convection and radiation have a
simultaneous effect during the structure heating stage.

Table 2 shows the magnitude of the temperature of each pallet in three layers of
the heat exchanger at two instances, the initial stage and the end of the steady state. As
expected, the top layer of the heat exchanger registers the greatest temperature magnitude.

Table 2. Temperature magnitude of each pallet in each layer at two instances of the structure
heating stage.

Top Layer Middle Layer Bottom Layer

126.00 125.04 125.04 127.27 40.66 39.24 40.00 44.29 43.61 41.22 42.51 47.22
392.14 387.60 384.70 372.51 262.99 264.73 259.63 246.12 170.82 175.02 170.53 162.71

Moreover, it can be seen that the middle and bottom layers register greater temperature
magnitude than the ambient, while the middle-layer pallets are at least 2 ◦C colder than the
one in the bottom layer. This behaviour then reverses, and the temperature of the middle
layer is more than 80 degrees warmer than the bottom.

To determine the end of the first stage, the change in the magnitude of the temperature
of each pallet was monitored. When this variation flatlined near zero, it was concluded
that the system was at the end of the structure heating stage. Therefore, the second stage,
and heat exchange should be initiated. It should be pointed out that this does not mean the
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structure heating stage has come to an end; it merely suggests that such a stage is in its
converged state.

3.2. The Heat Exchange Stage
3.2.1. Pallet Temperature Profiles

Figure 5 shows the evolution of temperature of each layer for the given stacks, where
the colour of the title corresponds to the colour presented in Figure 1. As mentioned,
layers are indexed from top to bottom; hence, layer one in each stack registers the greatest
temperature magnitude, while layer three (at the bottom) is significantly colder.

Figure 5. Average temperature of each layer of the stacks; colours of the titles correspond to pallet colouring.

The figure suggests that all the layers of the stack number one (opposite to the outlet)
have larger magnitude of the temperature compared to their counterparts in the other three.
For stacks number three and four, even though the top pallets have large difference in the
magnitude of the temperature, the middle and bottom layers seem to be rather the same.

Moreover, the figure shows that the magnitude of the temperature still increases at
the beginning of the heat exchanger stage, but it changes before the midpoint. It can be
seen that this change in the slope of the curves appears sooner for the layers in the bottom
and the middle in comparison to the top.
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3.2.2. Air Flow Temperature Profile

Figure 6 shows the average temperature of the air at the entrance and the exit of
the heat exchanger (HEx) section of the apparatus. As can be seen, the temperature of
the air entering the heat exchanger still increasing in the magnitude. This corresponds
to the energy pick-up from the slag radiation to the environment which continues at the
beginning of the transient simulation. However, this behaviour starts to change, and the
magnitude of the temperature of the air entering the heat exchanger starts to drop rapidly.

Figure 6. (a) Average temperature at the entrance of the Hex. (b) Average temperature at the exit of Hex.

On the other hand, at the exit ports of the heat exchanger, the magnitude of the
temperature increases further nearly till the middle of the simulation. In the case of stack
number one (orange pallets) this increase even continues further.

Moreover, Figure 5 shows that even though the temperature of the air entering pallet
number 4 is slightly higher than pallet number 2, the exit temperatures of these two
pallets differ significantly. This should be due to the differences in the magnitude of the
temperature of the stacks (Table 2 and Figure 5).

Table 3 shows the average temperature of the air entering and exiting the heat ex-
changer at the end of the transient simulation. As can be seen, the air temperature magni-
tudes increase to more than double at the end of the heat exchanger section of the RecHeat.

Table 3. Average temperature of each stack at the entrance and the exit of the heat exchanger at the
final time.

Variable Location Stack #1 Stack #2 Stack #3 Stack #4

Temperature

Entrance 140.32 134.29 127.36 134.79

Exit 349.36 315.76 304.13 287.13

Diff 209.04 181.47 176.77 152.34

Figure 7 shows the temperature of the air at the outlet of the apparatus. As can be
seen, the product temperature at the start of the transient period is equal to 328 ◦C, which
peaks at 350 ◦C, and by the end of the simulation (at 1500 s) drops to nearly 340 ◦C. The
peak occurs at 650 s into the transient process; at this point, the curve reverses its direction.
Therefore, it can be seen that the outlet temperature increases by more than 20 degrees in
the first 650 s and it decreases by 12 degrees in 850 s after the peak.
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Figure 7. Temperature of the final product (air).

3.3. Heat Energy of the Product

As mentioned, the objective of the RecHeat is to produce hot air to be used in a drying
process, and this dried material can be anything such as biomaterial, sludges or others.
Therefore, it is logical to calculate the heat energy of the product.

Figure 8 shows the calculated heat energy of the outgoing air. Of course, to calculate
the heat of energy one should assess the value using a baseline or reference temperature. In
this study, since the air is sucked in from the surrounding environment, it is just logical to
choose the ambient temperature as the baseline temperature of the medium. The ambient
temperature, considering the location of the test, was chosen as TRef = 20 ◦C Using the
given value, the heat energy of the air was calculated (Figure 8).

Figure 8. Heat energy of the final product (air).
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As can be seen, the heat energy of the product at the beginning of the transient process,
at its peak and the end of the simulation are 844, 908 and 878 kW, respectively. As can be
seen, the magnitude of the heat energy at the end of the simulation is 34 kW larger than
the starting value.

3.4. Streamlines and Air Profile

Figure 9 shows the profile of the air entering the apparatus to the ports at the left
and the evolution of the temperature of the medium through the heat exchanger section
of RecHeat.

Figure 9. Air streamlines originating from a line across the entrance ports, coloured by temperature.

As can be seen, the source of the streamlines was chosen as the location where the air
sucked into the apparatus comes from above the entrance ports. Since the radiation effect de-
creases, this figure suggests that the medium entering the system is near ambient temperature.
Moreover, it can be seen that the temperature of the air at the bottom layers of the heat
exchanger section of the apparatus is still not higher than 150 ◦C. This changes by the end
of the middle layer. The figure shows that the air temperature reaches 200 ◦C and larger
at this point; reaching the end of the heat exchanger section, the temperature of the air is
close to the exit temperature in three of the four sections. Generally, it can be seen that the
temperature of the air in the upper two layers (top view) is greater than the lower two.

4. Discussion

4.1. The Structure Heating Stage

As explained, Table 2 shows that at the beginning of the structure heating stage, the
middle layer registers a slightly lower temperature magnitude compared to the bottom
layer. Considering that the energy of the slag diffuses in a top-to-bottom direction, it is
natural to assume otherwise. This behaviour, therefore, could be due to the heat energy
entering the structure through the entrance ports of the RecHeat by means of the sucked-
in air.

As Figure 4 shows, the air temperature very rapidly reaches beyond 250 ◦C at the be-
ginning of the structure heating stage. This is the energy that has radiated from the surface
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of the slag. This heated air entered the apparatus (and heat exchanger section) at the top
layer in the second configuration of the RecHeat, resulting in a different temperature profile.

In the current optimised design of the RecHeat, the heated air enters the heat exchanger
section through the bottom layers. Hence, the bottom layers not only receive conductive
heat energy of the slag but also absorb part of the radiated heat energy of slag through the
flow of the air.

Hence, it is safe to say that this shows the significance of the radiative-convective
energy dispersion of the slag during the structure heating process. Moreover, it shows that
a change in the arrangement of the air entering the apparatus has a noticeable effect on the
temperature profile of the pallets.

Of course, by the end of the structure heating stage, the bottom layer is significantly
colder than the middle one which should be due to the stronger effect of the conductive
heat through the body absorption from the slag.

4.2. The Heat Exchanging Stage

As mentioned, this stage starts when the energy exchange between the slag and the
structure drops to a very low magnitude. At this stage, the temperatures of the pallets still
change, but to a lesser extent (Figure 5).

The figure also shows that the change in the average magnitude of the temperature
of each pallet is greater for the ones in the bottom and middle layers compared to the top.
Therefore, compared to the top layer (blue line), the curves of other layers change their
slope. Of course, this change is smaller for the middle layer compared to the bottom. This
could be due firstly to the fact that the top layer is still in almost direct contact with the slag;
and secondly, the heating process of the air during its transition though the heat exchanger
section (absorption of energy of the body by the fluid).

This is more clearly expressed in Figure 9. It can be seen that the ambient air rapidly
heats up by entering the inlet port of the RecHeat to 100 ◦C and increases its magnitude
by more than 100 ◦C when passing through the bottom two layers. Of course, the air
temperature increases further by absorbing the energy of the top, while the absorbed
energy of the layers by the air should be substituted through conduction of the energy of
the slag through its proximity.

Figure 9 also shows that the air exiting the heat exchanger region of profile three and
four (closer to the outlet) seems to be colder than the other two. This could be due to the
differences in the mass flow rates of the air through different profiles.

Figure 10 shows the mass of air entering each profile. As can be seen, there is a significant
difference in the mass flow rate of the air through the two stacks near the outlet. A larger
mass flow rate can mean larger energy pick-up leading to lower temperature magnitude.

Meanwhile, even though the air temperature at the end of the heat exchanger varies
in the interval of 260–360 ◦C (Figure 6), the temperature of the air exiting the apparatus is
greater than 325 ◦C and is equal to 340 ◦C at the end of the transient simulation (Figure 7).
Translating this value into heat energy, it can be seen that the RecHeat collects more than
840 kW energy (from the baseline of ambient temperature). Of course, this value seems to be
small in comparison to the amount of energy available in the slag, but such a performance
proves to be noteworthy considering the temperature range (and the heat energy) required
for drying of a wide range of materials.
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Figure 10. Air mass flow rate through each profile.

5. Conclusions

The recovery of energy from waste materials has become a prime objective in many
industries due to social and economic aspects, and one such material and industry is slag
and steel-plants, respectively.

To address this objective, and as a part of technological development, a slag heat
recovery apparatus, RecHeat, was designed using a one-to-one computer model. Then,
the results of the simulation were used to redesign and optimise the structure to maximise
the heat recovery process. This was done to prevent the economical exhaustion of the
building and testing of such an apparatus. The optimised structure of the RecHeat was
then also tested at an industrial pilot scale, as part of the ECOSLAG project (funded by
RFCS, Research for steel and coal industry, project no. 800762 [11]).

Two stages were identified during the heat recovery process, i.e., the structure heating
and the heat exchanger stages. In the former stage, the body of the apparatus increases its
temperature magnitude, while in the latter one, the magnitude of the temperature of the
sucked-in air increases when passing through each layer of the heat exchanger section.

The model shows that the temperatures of the layers of the heat exchanger section
of the apparatus are around 170, 250 and 380 ◦C at the end of the structure heating stage,
while the average air temperature at the entrance of the heat exchanger section is less than
150 ◦C.

The temperature magnitudes of the pallets change their slope when the system enters
the heat exchanger stage. This could be due to the fact that the air entering the system
starts to absorb the energy deposited into the structures. It was shown that the temperature
of the fluid medium changes from a 125–140 ◦C interval to 260–340 ◦C from one end of the
heat exchanger section to the other at the end of the simulation.

The outlet temperature at the end of the simulation is calculated to be around 340 ◦C,
which shows an increase in temperature of at least 200 ◦C in the air entering the apparatus.
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Abstract: This historical review of casting methods used to produce sheets of steel for automobiles,
household products, rocket bodies, etc., all point toward the development of one-step commercial
processes, which are capable of casting liquid steel directly into a final sheet product. Progress
towards this goal is confirmed by successful advances being made, but there remain major difficulties
in reaching it. We concur that the conventional continuous casting method remains the current process
of choice for highest-quality steel sheet products, but the ESP TSC (Endless Strip Production—Thin
Slab Caster) approach is now highly competitive. Similarly, the original goal of Sir Henry Bessemer to
produce a direct strip-making twin-drum caster, in 1856, finally came to lasting commercial fruition
at CASTRIP/NUCOR. Nonetheless, a newer approach, promoted by Salzgitter, termed DSP (Direct
Strip Production), or promoted by MMPC/MetSim as HSBC (Horizontal Single Belt Casting), has
several advantages over CASTRIP in terms of microstructures and productivity. As such, the pros
and cons of current methods are reviewed within this brief history of casting.

Keywords: continuous casting; near net shape casting; twin roll (Bessemer) casting; horizontal single
belt casting

1. Introduction

Continuous casting practices for steelmaking have been constantly evolving ever since
the early 1930s, when Junghans was first researching ways to pour liquid steel into an
open-bottomed, water-cooled mold, to withdraw the partially solidified steel out of it,
continuously, in the form of a round or square billet or slab [1,2]. He envisioned that once
these continuously cast shapes had become fully frozen, their solidified ends could be cut
off for further processing. In this way, they could be transformed into “rebar” to reinforce
concrete, or into bars from which nails, bolts, tire cord wire, etc., could be fashioned, etc.
Reference 1, edited by Dr. Manfred Rasch, contains detailed articles from many of the
key companies, personnel, and timelines of events in his review of the development of
continuous casting practices for steel, beginning with Sir Henry Bessemer (1813–1898), and
followed by Siegfried Junghans (1887–1954).

Thus, the underlying goal of Junghans’ early research was to try to replace the static
mold ingot casting systems used in virtually all steel plants up until the 1960s with a
continuous process. This would effectively eliminate the ~10–20% losses associated with the
“top and tailing” of the thick ingots (up to ~30, or 760 mm) typically being produced. Thus,
after the cast ingots had cooled sufficiently (~5 h), to allow them to be safely withdrawn
from their ingot molds, they were sent, still partially molten inside, to the soaking pits for
temperature homogenization. This could last from approximately 10 h for a hot ingot, or
up to 18 h for a cold, ingot. During this treatment time, the micro-segregation of solute
elements (C, S, P, Mn, etc.) could be mitigated within the inter-dendritic solidification
structure. In the meantime, temperature profiles within the ingot had become uniform, to
~±2 ◦C, ready for rolling down to semi-finished products. Thus, after proper soaking, the
eight or more ingots within the soaking pit would be ready for transfer to the adjacent hot
mill for rolling into “flat” or “long” products at temperatures of around 1100 ◦C.
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First, the ingots were sent to the “roughing mill” for ingot “break down”. This
was accomplished by passing them back and forth under the roughing mill, thereby
transforming the original 25–30 inch thick ingot (635–760 mm) into a long, 1–2” (25–50 mm)
thick “transfer bar”. This bar then had to be “topped” and “tailed”’ to eliminate the
rolled-in surfaces at the transfer bar’s extremities, where surface overlap had occurred
during compression and thickness reduction to 30 mm or ~2–3 inches. Similarly, any
macroscopic shrinkage holes formed during solidification also needed topping before
sending the transfer bar to the stands of the rolling mill. All of this automatically led to a
mandatory 10–15% loss in yield.

Therefore, for sheet steel products, following a further removal of iron oxide skin
from the transfer bars using high velocity, high pressure water jets just ahead of a six- or
seven-stand hot rolling mill, the transfer bars were reduced to much thinner hot rolled steel
sheet products, ~1–3 mm thick, using appropriate cooling schedules to create the specific
hot grades being targeted (e.g., HSLA, etc.).

Clearly, Junghans’ research, which lead to the Conventional Continuous Casting (CCC)
method, promised to eliminate much of the material losses associated with the ingot casting
approach, and thereby produce a step-up increase in steel productivity.

However, approximately seventy-odd years before Junghans’ early research work,
Henry Bessemer, inventor of the first tonnage steel process, had proposed a far more elegant
process to cast liquid steel into near-net shape products, namely the Twin Roll Casting
(TRC) process. He envisioned pouring liquid steel into the cavity produced by a twin set
of contra-rotating rolls to freeze the exiting steel directly into ~1–2 mm thick sheet steel
products. Following minimal rolling and heat treatment, this would be ready for sale.
While many researchers had since tried to fulfill Bessemer’s twin-roll casting “dream” and
produce a commercial system for thin steel sheet production over the ensuing century
before Junghans’ research work, none had succeeded in producing high-quality sheets
of steel.

We make mention of Clarence Hazelett, founder of the Hazelett Strip Casting Company,
U.S.A, who had been researching Bessemer’s Twin Roll Caster concepts (TRC) in the early
1930s for non-ferrous systems. He had some success but finally decided to abandon that
approach in favor of a Twin Belt Caster (TBC) moving mold system in 1949.

His TBC system was approximately ten times more productive and proved to be a
commercial success for copper, lead and zinc alloys, and certain grades of aluminum and
magnesium alloys. TBC casters are now in worldwide use within the non-ferrous industry,
but not for casting liquid steel. Previous attempts by Hazelett Strip Casting Corp., in col-
laboration with Sumitomo Metals Corporation, and earlier with U.S Steel/Bethlehem Steel
in the 1980s, had failed to develop a satisfactory commercial system for the steel industry.

Therefore, today, the dominant casting process within the steel industry is the Conven-
tional Continuous Caster (CCC), as developed by Rossi and partners with their CONCAST
Corporations in Europe and the USA, following Junghans’ death and Rossi’s sole acquisi-
tion of patent rights from Junghans’ widow [1,2].

2. The Past

Thus, thanks to the initial research efforts and work carried out by Siegfried Junghans
(1887–1954) in Germany, aimed at eliminating the wastage caused by the ingot casting
process, a disruptive paradigm was brought to the steel industry. Thus, Figure 1 illustrates
the evolutionary sweep in continuous casting developments ever since that seismic change
from ingot casting technologies to CCC [3]. It began in the 1950s, following the first
designs of continuous casting machines by CONCAST. These casters were developed in
collaboration with some early companies and their dedicated researchers, who recognized
the important economic implications deriving from this new type of casting machine [1]. For
the fixed CCC approach, the formulations for mold powders are important for protecting
the surface of molten steel from significant heat losses and by remaining molten at ~900 ◦C
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to provide lubrication between the surface of the forming slab and the oscillating walls of
the copper mold.

 
Figure 1. The past, present, and future of steel processing steps, as predicted in 1990 [3].

A key role in the development of the continuous casting method was played by Iain
Halliday at Barrow Steel Works, in Scotland. He perfected the Junghans–Rossi oscillation
mode (i.e., three-quarters of the cycle down and one quarter up), by imposing a relative
velocity during the down-stroke, with the mold going down slightly faster than the strand,
which he termed “negative strip”. This invention helped to resolve the sticking of the
growing frozen steel shell onto the copper mold and allowed him to reach casting speeds of
14.5 m/min in 1958. This casting speed is still a world record for these “fixed or stationary”
mold technologies. Conventional continuous casting machines, nearing process perfection
in recent years, allow partially solidified slabs, blooms, or billets, to be continuously
withdrawn through their open-bottomed molds, at productivity levels equivalent to ingot
casting technology, but with a 10–15% yield advantage. Some 1.8 billion tons per year are
now cast through them.

Thus, the growing steel industries in Japan and Korea in the 1960s, as well as the
well-established companies in the Nordic countries, were the first to adopt this new way of
casting. Asian countries went on to become dominant global players in CCC, exporting
much of their steel abroad, including to North America. Meantime, many conventional
integrated steel plants in North America gradually walked into bankruptcy, some even
before being able to adopt this new technology. For example, Dofasco escaped by the skin
of its teeth thanks to the warnings and the advice of Dr. Dante Cosma of their Research
Department to the President of the Company, Mr. Frank Sherman. He heeded Dante’s
advice over that of all the other “experts” within his company and canceled the new ingot
casting aisle midway through construction. Nonetheless, approximately ten years later,
Dofasco could not escape the clutches of ArcelorMittal (AM) in the “race to the bottom” at
the start of the second millennium. This take-over seems to have been achieved by selling
off Dofasco’s valuable iron ore mines in Ontario and Quebec after having first acquired
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the company, thereby allowing AM to cover its initial expense for Dofasco’s acquisition.
Naturally, the Board of Directors of Dofasco had already been handsomely rewarded in the
original sale of the company.

Nonetheless, and fortunately for North America, the mini-mill concept and its first
implementation in the new steelmaking plant built in Oshawa, Ontario, had been confirmed
by Dr. Gerald Heffernan and his co-workers in ~1985 [2]. This had been followed a couple
or so years later by a succession of NUCOR plants being built in the countryside of the
USA; as a new revolution in North America (N.A.), steelmaking practices began to take
shape [2]. As such, many newer plants in N.A. have shifted away from the conventional
blast furnace-BOF steelmaking model towards a 100% scrap-melting/continuous casting
technology. Many of the recent continuous casting technologies now presented, were
researched by the conventional integrated steel companies, but were brought into the
steel industry through efforts by Minimills to invade the more lucrative niches for steel
production. Nevertheless, to the authors’ knowledge, all the steel sheet products used for
“body in white” automobiles remain within the exclusive domain of advanced CCC steel
plants around the world.

3. The Present (2020s)

Referring to Figure 1, the left-hand side of the diagram shows the situation before
the advent of continuous casting in the mid-1950s. North America’s first commercially
successful vertical mold continuous casting machine was commissioned in 1954 to produce
slabs of stainless steel at the Welland Plant of Atlas Steels in Ontario, Canada, using a “stick
caster”. Today, all ingot casting has been eliminated worldwide, apart from some specialty
steel applications.

For this new paradigm in casting technology, yield increases of approximately 10–15%
have been achieved thanks to the successful development of slag-lubricated, oscillating,
open-ended mold machines. These molds, and the behavior of their mold fluxes, are at the
very heart of the various continuous casting machines dominating steel casting processes.

Figure 2 shows a conventional continuous casting operation comprising a tundish,
a water-cooled, chromium-plated, copper alloy mold, a mold oscillator, a group of cast
strand supporting rolls, rolls for bending and straightening the strand, rolls to pinch and
withdraw the cast strands, groups of water spray nozzles to extract heat from the strand, a
torch cutter for cutting the cast strand, and a dummy bar [4]. This dummy bar fits in the
bottom of the open mold at start-up, providing a starting base on which the strand can
freeze. The dummy bar then extracts the cast strand, and finally moves away to “storage”
once the forming strand has approached the torch cutter.

The overall set-up is generic, in that a “ladle” sits on a rotating “turret” or “swing
tower” and empties liquid steel into a “tundish” set below via a protective ladle shroud
(or tube). This tundish is used to distribute metal to one, two, four, six, or even eight
oscillating molds/strands, set below. In the case of slab casting operations, it is common
to have twin slab production. In the diagram, a SEN(Submerged Entry Nozzle) is used to
protect the streams entering the mold from re-oxidation. Once the ladle has been emptied
of steel, the tundish is allowed to drain while the turret rotates a newly filled ladle into
position. In this way, “sequence”, or “continuous, continuous” casting can be achieved,
with uninterrupted runs in the order of up to 1000 ladle changes being possible, using the
flying tundish technique for the rapid replacement of a spent tundish.

Another popular type of fixed-mold conventional continuous caster is the “vertical,
curved mold”-type caster, in which, the mold and support rolls are arranged vertically to
maximize the chances for inclusions to float out of the deep sump of molten steel before
being trapped in the solidifying shell. The strand is then bent and straightened to deliver
the strand horizontally, and continuously. In comparison, the first “stick”, or vertical mold
casters, froze single vertical strands in the same way as today’s DC (Direct Chill) casters for
the aluminum industry. The fact that curved mold and low-head curved mold machines
tend to capture a band of inclusions approximately mid-distance from the top surface of
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the strand, and its central axial plane, led to the popularity of the vertical-curved bending
machine. In technically advanced steel mills, where surface quality is good (freedom
from scabs, slivers, and deep oscillation marks), these slabs, blooms, and billets can be hot
charged directly to a reheat furnace without surface inspection before further size reduction.

Figure 2. Typical process layout and equipment for various forms of continuous casting; Two-strand
continuous slab caster [4].

However, a certain amount of scale (iron oxides) will usually form on the slab’s
surfaces during their time in the reheating furnace. This can be useful in moderation since
surface blemishes can then be removed during passage through the high-powered water
jets of the de-scaler. In the case of slabs for sheet products, a roughing mill then rolls the
slab down to a “transfer bar” some 25–50 mm (1–2 ins) thick. In most current commercial
operations for sheet production in integrated steel plants, the transfer bar is then fed into a
six- or seven-stand hot strip mill, where a steel sheet, 1–4 mm thick, is produced at speeds
approaching 15 m/s (3000 ft/min). Strip temperatures, alloy compositions, and rates of
compression are all carefully controlled to manipulate the solid-state phase transformations
and thereby optimize steel microstructures and attendant mechanical properties. Since
the early adoption of CCC machines by the large integrated steel mills, there has been
considerable pressure on reducing the capital and running costs of these mammoth steel
plants. The first development in the commercial continuous casting of steel was the Thin
Slab Caster (TSC) in 1985 [1]. These casting machines, illustrated in Figure 3, are aimed at
servicing the rapidly growing EAF-based mini-mills in North America, thereby allowing
them to enter the lucrative sheet metal market.
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Figure 3. Past and recent commercial developments in strip casting technologies. Typical process
layout and equipment for various forms of continuous casting. [5].

4. Thin Slab Casting, TSC

Thus, in the last thirty-odd years, progress towards the goal of process rationalization
has been aided through the development of thin slab casting, which is also based on the
fixed, oscillating mold. This development has allowed scrap-base-EAF mini-mills such as
NUCOR to enter the flat products business [2].

Thin slab casting technology eliminates the need for a conventional rougher/breakdown
mill, followed by a seven-stand hot rolling mill, with a muffle furnace for temperature
stabilization, followed by more modest in-line rolling requirements. As a result, an inte-
grated line, comprising an advanced EAF-thin slab caster, can produce up to approximately
800,000 tons/year in facilities with lower investment costs, less manpower, and much-
reduced energy consumption, compared to an integrated mill. Figure 4 illustrates the
layout of such a machine and the funnel-shaped, tapered type of mold that allows for the
placement of an SEN (Submerged Entry Nozzle) between its narrow faces. In all TSC cases,
casting velocities ~5 m/min are needed to compete with the highly productive conventional
casters typically running at 1.2–1.6 m/min.

A more recent approach by Arvedi [6] is a bow-type, low head, endless strip produc-
tion TSC, developed in 2009. It uses a straight tapered, 80 mm wide, oscillating, fixed
mold. This new caster started operations in 2015 in Italy. Its key advantage is that it is
an “endless caster”, or “Endless Strip Production” (ESP), capable of producing steel strip
products endlessly. This means that there is no interruption between pouring liquid steel
and producing the final hot strip in one continuous line. This leads to further increases in
productivity and environmental benefits.

For instance, the ESP has demonstrated that mill threading can be suppressed, allowing
the production of hot-rolled coils in thinner gauges, down to 0.8 mm hot-rolled (HR) strip
products. These, in turn, can be used to form cold-rolled (CR) strips down to 200 microns,
or 0.2 mm, suitable for electrical grades of steel, for instance. Other advantages claimed
vs. standard TSC operations include a halving of operating costs and energy consumption.
Mr. Giovanni Arvedi’s “Acciaieria Arvedi” steelworks in Cremona has successfully licensed
this technology to Rizhao Steel in China, (PRC), where five lines are now operating.
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Figure 4. A thin slab caster operation, taken from An Introduction to Iron and steel making [4].

We believe that these innovations represent the apex of current achievements in fixed
mold and continuous casting technologies. We see that components of the future steel
industry are moving forwards in rationalizing and simplifying the CCC process, leading to
a lowering of both capital and operational costs, according to the predictions in Figure 1,
by combining casting with rolling in-line.

5. NNSC Moving Mould Technologies

Meanwhile, as noted previously, ever since the 1880s, there have been many efforts to
fulfill the dream of Sir Henry Bessemer to cast steel strips directly from a pool of liquid steel
using twin-roll casting technologies. Various consortia and companies have researched
the characteristics and potential of such Near Net Shape Casting (NNSC) machines. In
2000 AD, Nippon Steel and Mitsubishi Heavy Industries announced the world’s first
commercial operation of a Twin Roll Caster (TRC) to produce sheets of stainless steel,
2–5 mm thick, 0.76–1.3 m wide, at their Hikari Works in Southern Japan. The roll diameters
were approximately 1.2 m, and peripheral roll speeds were in the order of 1 m/s. A pinch
roll gathered the strip, which, following minimal hot working, was cooled and coiled
directly into the finished product. However, following the second rebuild of their caster,
they abandoned their commercial TRC system, quoting “unresolved microstructures” and
an uneconomical performance. Similar events occurred in Europe, where the Euro-strip
caster, a TRC development, was abandoned without explanation following many years of
apparently very promising research work.

Nonetheless, and contrary to those decisions, following initial research work by
BHP in Australia to prove the viability of their TRC process in Melbourne, CASTRIP
(NUCOR/BHP/IHI) was incorporated, and a commercial twin roll caster was built by IHI
to produce low carbon steel strips at NUCOR’s Crawfordsville Plant. The building of this
commercial strip caster for producing low carbon steel sheet material, 1.7–1.9 mm thick,
was announced in 2002 [7]. The NUCOR casters rolls are only 0.5 m in diameter, much
the same as in Bessemer’s original patent specifications, and run at speeds of 1–2 m/s
during casting. Furthermore, the plant continues to operate ten years later. Therefore, some
steelmakers have finally realized Bessemer’s visionary intuition and achieved the long
sought-after rationalization of downstream processing of steel. A second machine was
built for NUCOR, and plans have been made to install a CSP (Compact Strip Caster) in the
UK, and two in the Peoples Republic of China [8].
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However, it is still possible that the economic viability of the TRC process remains in
question. Apparently, only two or three consecutive ladles can be cast before a roll change.
Apparently, the build-up of frozen steel accretions at the liquid steel/side dam interfaces
can open the roll gap settings. This can cause the computer control system to increase the
roll separation distance, followed by a “break-out”. As such, more than approximately
three consecutive ladles seem to be impractical at present (2020), on average. Nonetheless,
other reports claim that a ten-ladle sequence is possible. Similarly, while CASTRIP is
ideal for mini-mill operations, there is a fivefold mismatch in the maximum productivity
of a twin roll caster vs. current integrated steel manufacturing slab casting operations
(e.g., ~400,000 tpy vs. ≥2,000,000 tpy).

Such problems regarding TRC operations, together with some basic thermo-mechanical
considerations, led to an alternative solution for integrated mills being proposed by Her-
bertson and Guthrie in 1987, and independently by Professor Schwerdtfeger et al. a little
later that year [9]. Both groups independently proposed a Horizontal Single Belt Caster
(HSBC) approach, which ideally involves using a high speed (1–3 m/s) horizontal single
belt, on which, steel is poured, as shown in the bottom casting system of Figure 3. Since
then, the world’s first commercial HSBC caster, named Belt Casting Technology (BCT), was
designed for producing ~1 MT/year by SMS Demag and was delivered to the Peine plant
of Salzgitter. There, casting trials, initially targeting advanced high-strength steels, began
in 2012, exploring its potential for casting a variety of novel High-Strength, High-Ductility
(HSHD) steels using a 13 m long belt running at ~0.4 m/s [10]. The plant layout is presented
in Figure 5.

 

Figure 5. Schematic of the industrial scale pilot plant of Direct Strip Castin (DSC) at Peine, Ger-
many [11].

6. The Future

All continuous casting machines involve the freezing of a shell of steel, forming
either against a vibrating “stationary”, or against a moving belt, or twin rolls. For the
fixed CCC approach, the formulations for mold powders are important for protecting the
surface of molten steel from significant heat losses and by remaining molten at ~900 ◦C to
provide lubrication between the surface of the forming slab and copper mold. On that note,
one of the key “sticking points” delaying CCC’s successful commercial development in
the late 50 s and early 60 s, versus the then conventional ingot casting operation, was the
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development of the oscillating mold. Typically, the molds for slab, billet, and bloom casting
are oscillated in a sinusoidal manner (at 1–3 Hz), and mold powder is fed into the meniscus
region, where it gradually melts to form a liquid, lubricating slag. This is needed to prevent
the newly formed shell from sticking to the copper mold. The oscillatory motion has also
been thought by many to contribute to the feeding of molten slag into the mold/strand
gap. Based on comprehensive CFD simulations [9], this is true. It certainly helps with
strand-sticking problems, which lead to thin shells and costly liquid steel “breakouts”.
These breakouts of steel can cause the freezing of molten steel onto the caster’s guide rolls,
leading to extended downtimes. Nonetheless, the well-known OMs (Oscillation Marks)
associated with CCC (Conventional Continuous Casters), and shown in Figure 6A, caused
by these oscillatory motions, represent surface imperfections or defects, their lengths and
frequencies being governed by the length and frequency of the stroke. The first moments
of solidification modeled in Figure 6B reveal that the lubricating slag changes the direction
of heat transfer from a horizontal direction during the downstroke to a vertical heat flow
during the up-stroke when a lower radial rate of heat extraction prevails. This leads to a
re-melting of the forming shell. The result is akin to forming a row of linked sausages, as
appears in Figure 6B.

  
(A) (B) 

Figure 6. (A) Typical defect that can lead to oscillation marks on a cast slab in a continuous casting
mold, together with a schematic diagram showing the cross-section around an oscillation mark.
(B) represents the results of a Computational Fluid Dynamic (CFD) predicting how the initial steel
shell is formed [12].

The problem with OMs is that they can also be a source of micro-cracks. However, the
“un-acknowledged” saving grace for present CCC and most TSC systems is the later oxida-
tion of the outer layers of a cast steel slab, bloom, or billet in the reheat furnaces or muffle
furnaces that can effectively “oxidize away” such discontinuities before rolling operations.

A similar situation occurred in the production of “rimming grade steels” via ingot
technology, where subsequent oxidation of its blemished surfaces in the ingot soaking
pits would also result in blemish-free final surfaces, ready for rolling down to the thin
strip auto-body sheet. Thus, ingot casting techniques for “rimming grade” steels for auto
companies in North America were practiced up into the 1980s, when equivalent quality,
aluminum-killed (AK) steel grades of CCC sheet material finally became available.

For any NNSC process to be able to compete with the blemish-free surfaces of slabs
produced using ideally operating CCC and TSC systems, NNSC surfaces must also be
completely free of blemishes. Many of us will know that, at very high speeds of rotation,
single roll casters can produce perfect bottom surfaces; for example, when producing
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~100 micron thick sheets of metallic glasses (e.g., the MetGlas™ process for producing steel
sheets for electrical transformers, containing 1% boron and 4% silicon). Therefore, the only
question remaining for a moving mold system to usurp the current technological impasse
of poor cast surfaces, is what is the critical lower speed for such a moving mold system?
Perhaps it is self-evident that the criteria must be (1) how fast does the substrate have to
move, to separate the line of initial freezing from the line of initial contact of the liquid
metal with the cooling substrate system, and (2) how can we eliminate the high-frequency
oscillations of the back meniscus, where the liquid metal first contacts the cooling belt?

We now refer to experimental work carried out at the McGill Metals Processing Centre
(MMPC), some fifteen years ago, in which we were able to measure instantaneous heat
fluxes using a strip casting simulator, in which we poured liquid aluminum, and later
liquid steel, on to a moving, flat copper substrate, 12 mm thick, moving at ~1 m/s. This
simulates equivalent initial heat fluxes and the freezing of molten metal onto a 1 mm thick
water-cooled steel belt running at the same speed [13]. We were able to characterize the
topography of the sand-blasted copper surface and then use an equivalent geometrical
construct to predict instantaneous heat fluxes for comparison with experimental results.
The modeling result is shown in Figure 7, whose predicted heat fluxes and initial shell
formation coincided well with equivalent simulator experiments. Note that the contact
is essentially non-wetting, even at the 20–30 μm high peaks of the rectangular pyramids
(260 pyramids/mm2). We must also compensate for sudden gas expansion at the mold-
metal interface.

 
Figure 7. Ab initio computations of the first moments of solidification of an aluminum alloy, AA6111
strip, being cast, iso-kinetically, onto a 1 cm. thick copper substrate (depicted as a grey substrate). The
idealized copper surface is modeled as an array of rectangular pyramids, whose peaks contact the
melt at discrete points. The interfacial gas conducts the heat from the freezing metal into the copper
substrate, as per our experimental results [13].

Armed with this knowledge, one sees that one has perhaps 15 ms to make a perfect
surface of the AA6111 sheet before any surface imperfections are stamped into the bottom
surface of the metallic sheet. Similar results can, and were, computed for steel alloys, based
on their thermal properties and those of the substrate and interfacial gases.
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Our experiments have demonstrated that perfect bottom surfaces can be attained, as
have equivalent tests at Clausthal University, and Salzgitter Steel. The other question of
stabilizing the initial contact of liquid metal onto the cooling mold has also been considered,
and we believe that this meniscus line can be held steady, thereby eliminating the so-called
chatter marks reported for TRC operations at NUCOR.

Thus, the final question for opting to replace standard CCC processes with far less
expensive (capital and operating costs) and far more environmentally friendly NNSC pro-
cesses in the future, is that of the thickness of the liquid metal cast onto the belt, versus that
of the CCC process. Here, it should be clear that NNSC processing overwhelmingly wins,
in that casting, for example, 10 mm thick sheet material, or even thinner, eliminates any
macro-segregation and large grain sizes associated with the casting of 300 mm steel slabs.
NNSC even eliminates the inverse macro-segregation encountered in DC cast aluminum
casters. However, the surfaces must remain completely flat for subsequent in-line rolling.
Similarly, we have demonstrated that reduced cast thicknesses of ~6 mm or less make the
need for side dams and electromagnetic braking to compensate for velocity mismatches
between the belt and input metal speeds, redundant for melts of aluminum. For steel and
copper melts, we found that side-dams were obligatory, but EM braking was unnecessary
at these lowered cast strip thicknesses.

Another question to be addressed is what could be the advantages of HSBC over TRC
Bessemer-type casters? Perhaps the biggest advantage is the ability to adjust its design to
any plant’s steel output. The Peine caster operated by Salzgitter boasts a 13 m (40 ft) long
belt capable of producing 10 mm thick sheet material at a rate above 1 MT/an, whereas a
TRC would need at least two units and two work crews to produce the same steel sheet
output. Alternatively, it would need a roll diameter of approximately 8 m. The second
advantage of HSBC is the question of cooling rates during the transformation from liquid
to solid. The Bessemer process results in cooling rates for the CASTRIP process in the
order of 1000 ◦C/s, whereas the HSBC results in cooling rates ~100 ◦C/s. The result is in
upper bainite structures for CASTRIP producing low-carbon steels, whereas HSBC can
produce steel microstructures much nearer conventional practices and steel properties. The
third advantage of HSBC over TRC, among many others, is the fact that HSBC represents
unconstrained solidification versus the TBC, TRC, or TBC processes. This can eliminate
any problems of macro-porosity in the center of a steel sheet.

Thus, finally, we come to the question of the upper surfaces of HSBC caster systems.
For the aluminum alloys tested at the MMPC and at MetSim, in Montreal, we found that
AA6111, AA5182, and AA2024, all have perfectly flat upper interfaces, some coated with
very thin oxide films of aluminum or magnesium. For steels (TRIP, TWIP, and 3% and 6%
silicon steels), and for copper and Cu-Ni melts, we have obtained equivalent results on the
quality of upper and lower surfaces on our pilot-scale caster. Porosities are also very low.
Similar results have been reported by Professor Karl-Heinz Spitzer [11].

7. Conclusions

One can conclude from this article, that there is an inevitable convergence in the
designs of fixed and moving mold casting machines towards the manufacture of steel
sheets into one continuous process. The result will be shorter plants, less equipment, fewer
personnel, and greater efficiencies. The Arvedi caster for steel [6], the ALCOA micro mill
for aluminum alloys [14], and the BCT-Belt Casting Technology (or HSBC) [15] prove that
these processes are possible and that they can drastically reduce manufacturing costs while
significantly helping to address environmental concerns. As such, they could be poised to
revolutionize the tonnage casting of steel and aluminum alloy sheet materials in disruptive
technology, removing all of the current bottlenecks to present-day systems and processes.
By the same token, we believe that it will be possible to make equivalent advances in the
production of long products. It is only a matter of time to accomplish the final logical steps
toward the ideal NNSC approaches. Time will tell, but timing is everything!
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