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1. Background

Land surface phenology (LSP) is an important research field in terrestrial remote
sensing and has become an indispensable approach in global change research, as evidenced
by many important scientific findings supported by LSP in recent decades. LSP involves
the use of remote sensing to monitor seasonal dynamics in vegetated land surfaces and
to retrieve phenological metrics (transition dates, rate of change, annual integrals, etc.).
LSP is an essential indicator of global change and has played a pivotal role in shaping our
understanding about how terrestrial ecosystems are responding to climate change and
human activities. Both regional and global LSP products have been routinely generated
and played prominent roles in modeling crop yield, ecological surveillance, identifying
invasive species, modeling the terrestrial biospheric processes, and assessing global change
impacts on urban and natural ecosystems.

Recent advances in field and spaceborne sensor technologies, as well as data fusion
techniques, have enabled novel LSP retrieval algorithms that refine LSP retrievals at even
higher spatiotemporal resolutions, providing new insights into ecosystem dynamics. Mean-
while, rigorous assessment of the uncertainties in LSP retrievals is undergoing, and efforts
to reduce these uncertainties are also forming an active research field. In addition, open-
source software and hardware are being developed and have greatly facilitated the use of
LSP metrics by scientists beyond the remote-sensing community. As such, we organized
this Special Issue to cover the latest developments in sensor technologies, LSP retrieval
algorithms and validation strategies, and the use of LSP products in a variety of fields.
The objective of this Editorial is to offer the readers an overview of the latest develop-
ments in the LSP field and facilitate the distribution of the scientific knowledge from this
Special Issue.

2. Papers in the Special Issue

The 15 papers published in this Special Issue represent diverse themes in the LSP
research field (see Table 1). Figure 1 presents the major keywords contained in the abstracts
of the papers. Although natural ecosystems were mostly studied [1–3], urban [4,5] and agri-
cultural ecosystems [6] were also considered in the as an important field of LSP applications.
High-altitude and high-latitude ecosystems gain particular attention in this Special Issue,
likely due to the sensitivity of these ecosystems to climate change [7–12]. Most studies have
a temporal scale greater than a decade, with a few having used NOAA/AVHRR data of
longer than three decades [10,13]. Additionally, it can be seen that the use of cloud-based
remote-sensing big data analytics facilities such as Google Earth Engine (GEE) have also
been adopted by several studies (e.g., [7–9]). While a majority of the papers focused on
scientific applications, some studies also looked at the theoretical aspect of LSP such as the

Remote Sens. 2022, 14, 4310. https://doi.org/10.3390/rs14174310 https://www.mdpi.com/journal/remotesensing1
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scaling effect [13]. Data-wise, most studies used vegetation indices due to their long-term
continuity; a few papers also exploited the potential of emerging proxies such as solar-
induced chlorophyll fluorescence (SIF) [14]. Lastly, half of the studies published in this
Special Issue used some type of ground phenology data, including phenocam, traditional
phenology observations, and eddy–covariance flux towers.

Table 1. Publication summary of the Special Issue.

Publication Topic Satellite Data

Inclusion of
Ground

Phenology
Data

Target
Ecosystems

Temporal
Scale

Analytic
Platform

Kim et al. [4] Impact of urbanization
on phenology MODIS EVI Yes (phenocam) Urban, rural,

and natural 2016 Local

Wang et al. [8]

Mechanism and impact
of climatic and soil

factors on the phenology
of alpine ecosystems

MODIS NDVI Yes (phenology
stations)

Alpine meadow
and alpine

steppe
2001–2018 GEE

Ma et al. [7]
Phenological trends of
GPP dynamics in the

Arctic
MODIS GPP Yes (Fluxnet) Arctic

ecosystems 2001–2019 GEE

Zhang et al. [6] Crop phenology and
yield prediction

MODIS NDVI,
EVI, and LAI No Maize 2010–2015 Local

Ji et al. [5] Urban heat island effect
on spring phenology

MODIS EVI,
LST, Phenology No Urban, rural 2006–2018 Local

Guo et al. [9]
Mountain phenology

response to
meteorological drivers

MODIS NDVI No Mountainous
ecosystems 2001–2019 Local

Chen et al. [13] Scaling effect of LSP over
complex terrain

MODIS NDVI,
GIMMS3g

NDVI

Yes (phenology
stations)

Grassland,
cropland, and

forests
1982–2020 Local

Yang et al. [10]
Turning points of
grassland autumn

phenology

GIMMS3g
NDVI No

Alpine meadow,
forests, and
shrublands

1982–2015 Local

Guo et al. [15] Snow phenology and its
environmental drivers

MODIS Snow
Cover, NDVI No Forest,

cropland 2001–2018 GEE

Medeiros et al.
[3]

Caatinga phenology and
environmental drivers MODIS EVI No Caatinga 2000–2019 GEE

Wang et al. [14] Comparison of LSP from
SIF and EVI

MODIS EVI,
GOSIF

(Reconstructed
OCO-2 SIF)

No
Terrestrial

ecosystems in
China

2003–2016 Local

Costa et al. [2] Phenology of GPP
and WUE MODIS GPP Yes (Fluxnet)

Tropical forest,
caatinga, and

cerrado
2009–2016 Local

Liu et al. [11] Phenology responses to
snow seasonality

MODIS Snow
Cover No Mountainous

ecosystems 2002–2020 Local

Cui et al. [12]
Phenology response to

soil moisture and
temperature

MODIS NDVI Yes (phenology
stations)

Mountainous
ecosystems 2001–2020 Local

Costa et al. [1]
Phenology of ecosystem

productivity in dry
tropical forest

MODIS GPP,
MODIS NDVI

and EVI
Yes (Fluxnet) Caatinga (dry

tropical forest) 2014–2015 Local
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Figure 1. Cloud of the words contained in the abstracts of the papers published in the Special Issue
“Remote Sensing of Land Surface Phenology”. The bigger the size, the higher the frequency of
each word.

3. Outlook to the Future

As elaborated in the Call of Papers of this Special Issue, our hope was to not only
summarize the ongoing diverse LSP developments but also boost discussions on prospects
in LSP research. With the 15 selected papers, we believe that this aim should have been
accomplished. Based upon the new knowledge we gained from this Special Issue, we
hereby offer our perspective on future research directions in the LSP field:

First, improving the quality of the input satellite observations remains important as it
lays the foundation for any downstream phenology retrieval and applications. From the
sensor perspective, the improvement in sensor performance including spatial, spectral, and
temporal resolutions is the direction of the development of new-generation remote-sensing
data sources. From the methodological perspective, data fusion can effectively regulate
the inherent contradiction between “spatial resolution and temporal resolution” of satellite
remote-sensing observation, and realize the simultaneous improvement in spatial resolution
and temporal resolution. In addition, with the development of remote-sensing sensor
technology, more spaceborne platforms are becoming available, such as geostationary
satellites that can observe the full disk of the Earth every 10–15 min, leading to much-
improved temporal resolution that is capable of the near-real-time monitoring of vegetation
dynamics [16–18]. Meanwhile, dozens or even hundreds of micro-/nanosatellites can form
a constellation to significantly increase the spatial coverage and spatial–temporal resolution
through a multisatellite synergetic approach. A relatively successful case is the PlanetScope
constellation, which has launched more than 200 micro-/nanosatellites so far, providing
seamless multispectral observation data at a global scale with a daily temporal resolution
and 3 m spatial resolution, significantly improving the capability of resolving the fine
details of global phenology change [19,20].

Second, the LSP retrieval workflow needs to be refined including the development of a
more generalized algorithm. An often-encountered challenge in remote-sensing phenology
applications is the fact that different data sets do not share the same processing algorithm,
which makes it difficult to analyze and compare the results from different studies. Therefore,
it is an important future direction for remote-sensing phenology to develop a versatile
algorithm that can adapt to different circumstances.
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Third, like many other remote-sensing subjects, validation is the essential component
in any satellite phenology product development. A key issue here is the scale mismatch chal-
lenge [21,22]. Scale matching is not only the matching of spatial scales but also the matching
between ground-based phenology metrics (e.g., budburst, flowering, leaf-coloring, etc.)
and satellite-based metrics (e.g., SOS, EOS, POS, etc.) [23,24]. Therefore, it is critical to
advance the theory and method that can resolve scale mismatch issues so that ground
and satellite observations can be used in a more tandem manner [25,26]. The use of UAV
observations and tower-mounted cameras can, to a certain extent, remediate the scale
mismatch issue [27,28]. Meanwhile, considering the complexity of scale effects, computer
simulations based on 3D radiative-transfer modelling can be used as a powerful tool to
explore the scale effects or mixed image effects in vegetation phenology remote-sensing
monitoring [29]. In addition, for low- and medium-resolution remote-sensing phenol-
ogy products (e.g., MODIS/VIIRS), it is difficult even for UAVs or phenocams to provide
validation data at the comparable pixel scale, in which case indirect “validation” can be
performed using higher-spatial-resolution satellite data [30].
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Abstract: Urbanization and the resulting increase in development areas and populations cause
micro-climate changes such as the urban heat island (UHI) effect. This micro-climate change can
affect vegetation phenology. It can advance leaf unfolding and flowering and delay the timing of
fallen leaves. This study was carried out to clarify the impact of urbanization on the leaf unfolding of
Mongolian oak. The survey sites for this study were established in the urban center (Mts. Nam, Mido,
and Umyeon in Seoul), suburbs (Mts. Cheonggye and Buram in Seoul), a rural area (Gwangneung,
Mt. Sori in Gyeonggi-do), and a natural area (Mt. Jeombong in Gangwon-do). Green-up dates
derived from the analyses of digital camera images and MODIS satellite images were the earliest in
the urban center and delayed through the suburbs and rural area to the natural area. The difference
in the observed green-up date compared to the expected one, which was determined by regarding
the Mt. Jeombong site located in the natural area as the reference site, was the biggest in the urban
center and decreased through the suburbs and rural area to the natural area. Green-up dates in the
rural area, suburbs, and urban center were earlier by 11.0, 14.5, and 16.3 days than the expected
ones. If these results are transformed into the air temperature based on previous research results,
it could be deduced that the air temperature in the urban center, suburbs, and rural area rose by
3.8 to 4.6 ◦C, 3.3 to 4.1 ◦C, and 2.5 to 3.1 ◦C, respectively. Green-up dates derived based on the
accumulated growing degree days (AGDD) showed the same trend as those derived from the image
interpretation. Green-up dates derived from the change in sap flow as a physiological response of the
plant showed a difference within one day from the green-up dates derived from digital camera and
MODIS satellite image analyses. The change trajectory of the curvature K value derived from the sap
flow also showed a very similar trend to that of the curvature K value derived from the vegetation
phenology. From these results, we confirm the availability of AGDD and sap flow as tools predicting
changes in ecosystems due to climate change including phenology. Meanwhile, the green-up dates
in survey sites were advanced in proportion to the land use intensity of each survey site. Green-up
dates derived based on AGDD were also negatively correlated with the land use intensity of the
survey site. This result implies that differences in green-up dates among the survey sites and between
the expected and observed green-up dates in the urban center, suburbs, and rural area were due to
the increased temperature due to land use in the survey sites. Based on these results, we propose
conservation and restoration of nature as measures to reduce the impact of climate change.

Keywords: climate change; digital camera; MODIS; Mongolian oak; phenology; sap flow; urbanization

1. Introduction

Urbanization is one of the major social and scientific changes spreading around the
world [1,2]. It significantly alters land surface conditions and has profound impacts on
terrestrial ecosystem processes and services [3–7]. Changes in land use release greenhouse
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gases into the atmosphere by changing the patterns of carbon storage and accelerate climate
change by breaking the balance of the carbon budget [2]. An increase in atmospheric CO2
due to intensive use of land and fossil fuel destroys the balance of the global carbon cycle
maintained in an equilibrium fashion [2,8–11]. In addition, increased development areas
and populations cause changes in weather factors and affect terrestrial ecosystems [3–6,12].
Inadvertent weather factor changes in urban areas form an important effect on regional
climate change [13–16].

Urbanization is an important anthropogenic influence on climate and has significantly
affected terrestrial ecosystems [12,17]. It can modify local climate on daily, seasonal, and
annual scales [18] and increase extreme climate events [19–22]. Changes in climate resulting
from urbanization, therefore, can be considered a type of climate change on a local scale [23].
Such a change in local climate in an urban area is referred to as the “urban heat island (UHI)
effect”. The UHI effect is characterized by elevated temperatures in urban areas, compared
to the surrounding rural areas [7,24,25]. It can affect regional climate change, increase
environmental pollution, elevate energy and water consumption, affect the development
of meteorological events such as increased precipitation, and have a significant impact on
human health [16,26,27].

In phenological research, urban areas are important areas for study because they
enable an assessment of the potential future effects of climate change on plant develop-
ment [17,28]. Increased temperature by UHI can affect vegetation phenology such as the
start of the season (SOS) and the end of the growing season (EOS) [25,29–31]. It is very
important to understand the impact of UHI on phenology because the intensity of the UHI
effect is similar to the expected temperature change in the near future [7].

Current climate change has a strong impact on vegetation phenology [6,32–37], and it
causes changes in the timing of plant developmental phases, affecting the carbon budget
of the terrestrial ecosystem [38–41]. Phenological characteristics are closely related to
variation in weather factors [6,42–45], many of which can affect vegetation phenology such
as green-up, budburst, and leaf senescence [17].

Among the numerous techniques to observe phenology, using digital camera and
MODIS satellite images requires less time and cost to collect data [46,47]. Time-lapse pho-
tography provides very exact temporal sampling at daily intervals for assessing phenology.
Satellite remote sensing provides decades of records of vegetation phenology across larger
spatial scales than other technologies [48]. Remote sensing also has the advantage of pro-
viding large temporal records of vegetation phenology over larger spatial scales than other
techniques [17,48]. In particular, the method using both digital camera and MODIS satellite
images has sufficient spatial resolution to obtain detailed information about vegetation
and land cover types and can collect data with more flexible spatial resolution, thereby
resolving the problems pointed out in the existing data collection [17,26,46,49].

Recently, beyond the level of checking phenological phases by observing the exter-
nal forms of plants, a study method to confirm the plant phenological phases through
physiological responses such as sap flow time series estimates was also proposed [17,50].
Water availability is regulated by the timing and periodicity of leaf production and is
very important for plant growth [51,52]. According to many studies investigating the
relationship between phenology and sap flow, sap flow is closely related to the change
in leaf area [50,53,54], since plants draw water from the xylem by tension from the leaves
during the transpiration period [55], and the amount of transpiration increases depending
on the formation of leaves. Therefore, sap flow usually has a linear relationship with leaf
area development [17,50,54]. Phenological events emerging through appearance may be
difficult to observe accurately and precisely due to various influences [56,57], and the
method of color wavelength analysis of the leaves applies well for deciduous plants, but
there will be limitations to evergreen plants. In this respect, a method of monitoring physi-
ological changes according to seasonal changes may be more versatile [58]. In addition,
since the phenophase using instrumental techniques can be better specified than pure
observations and qualified guesses, the onset of spring phenological stages such as leaf
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area development can be easily identified from sap flow measurements [50]. Ecophysio-
logical measurements such as sap flow measurement can provide additional value in the
objectification of phenological studies [50]. Therefore, sap flow has been widely utilized as
a tool to diagnose the development of the phenological phases of plants [30,51,54,59].

The objectives of this study are to (1) find the phenological trajectory of vegetation
through analysis of MODIS satellite and digital camera images, (2) investigate how micro-
climate change caused by urbanization affects vegetation phenology, (3) diagnose the
phenological trajectory of vegetation through the physiological response of plants, and
(4) prepare an ecosystem management strategy to adapt to climate change.

2. Materials and Methods

2.1. Study Area

To find out the response of phenological events according to the climatic condition, we
selected three areas different in land use intensity, such as urban, rural, and natural areas
on the same latitude. The phenological signal is evident in deciduous broad-leaved forests
because the changes in the canopy are large depending on the stage of the phenology [60].
In this study, therefore, we selected the target species as Quercus mongolica Fisch. ex Ledeb.,
a dominant species in the deciduous broad-leaved forest of Korea. Since the Q. mongolica
that belongs to the Quercus genus grows at the highest elevation in South Korea, it is
considered to be sensitive to temperature rises due to climate change. Seven sites including
Mts. Nam, Mido, and Umyeon in the urban center, Mts. Cheonggye and Buram in the
suburbs, Gwangneung (Mt. Sori) in a rural area, and Mt. Jeombong in a natural area
were selected for analysis (Figure 1, Table 1). The urbanization ratio was calculated from
the ratio of development area to the total area within a 5 km radius from the study area
by a geographic interpolation system (GIS) using the national land use map (National
Geographic Information Institute, 2016). The urbanization rates of Mts. Nam, Mido,
Umyeon, Cheonggye, Buram, and Sori (Gwandneung) were 76.07, 70.35, 52.44, 35.80, 49.60,
and 6.38, respectively, and Mt. Jeombong was not urbanized at all as it is located in a
natural area (Table 2).

Figure 1. A map showing the location of the study sites.
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Table 1. Description of study sites. DoY: day of year.

Site Name

Latitude
(Decimal
Degree)

Longitude
(Decimal
Degree)

Elevation
(m)

Tower Type

Data Collection Period
(DOY)

Digital
Camera

MODIS

Urban center
Mt. Nam 37.55 126.99 215 Ecological tower 56~240

2016/2/19
~

2016/7/18

Mt. Mido 37.49 127.00 40 56~240
Mt. Umyeon 37.47 127.00 185 76~240

Suburb
Mt. Cheonggye 37.44 127.05 276 72~240

Mt. Buram 37.63 127.09 115 63~240

Rural area Gwangneung
(Mt. Sori) 37.75 127.15 345 Fire surveillance tower 96~240

Natural area Mt. Jeombong 38.04 128.47 830 Ecological tower 91~240

Table 2. Urbanization rate in study sites.

Site Name
Urbanized Area

(km2)
Urbanization Rate

(%)

Urban center
Mt. Nam 59.71 76.07
Mt. Mido 55.22 70.35

Mt. Umyeon 41.16 52.44

Suburb
Mt. Cheonggye 28.10 35.80

Mt. Buram 38.94 49.60
Rural area Gwangneung (Mt. Sori) 5.01 6.38

2.2. Digital Camera and Satellite Image Acquisition

We installed digital cameras (Model Ltl-6210M, Little Acorn Outdoors, Denmark, WI,
USA) near the top of each tower or tree, looking north and angled slightly downward,
providing a view across the canopy. To acquire daily photos, each camera was set to record
JPEG images three times per day (09:00, 12:30, and 14:30). In order to maintain consistency,
only 12:30 images were used for the analysis (Table 3).

Table 3. Descriptions of the intervalometers and cameras employed. FoV: field of view.

Intervalometer
Daily Capture Times 09:00, 12:30, 16:00

Interval between Captures 3 1/2 h

Camera

Model Acorn Ltl-6210M
Sensor 5 megapixel color CMOS

Pixel size 2560 × 1920
Channels RGB (red, green, blue)

Lens F = 3.1; FoV = 52; Auto IR-Cut
Memory card 32 GB SD

File type High-quality JPEG (2MP)
Power 12 × AA; Solar panel
Flash Disabled

As the notion the shorter the collection cycle, the higher the clarity applies [61], we
used MODIS (MODerate-Resolution Imaging Spectroradiometer) 500 m resolution land
surface imagery (MOD09GA), which is supplied at daily intervals as multi-spectral satellite
images. The MODIS satellite is a payload scientific instrument placed in the earth’s orbit
by NASA in December 1999 on the Terra (EOS AM) satellite. The MODIS satellite imagery
measures the surface temperature of the land and ocean, and the distribution map of the
earth’s vegetation is re-synthesized with control variables such as clouds and distributed
free of charge by NASA. The MODIS satellite is suitable for monitoring phenological
changes because the sensor incorporates enhanced cloud detection, atmospheric correction,
georeferencing, and the ability to monitor vegetation [39,62].
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2.3. Digital Camera Image Analysis

An annual vegetation phenological cycle inferred from remote sensing is characterized
by four stages that define the key phenological phases at annual time scales: (1) green-up,
(2) maturity, (3) senescence, and (4) dormancy [17,60,63]. Phenological signals remain low
values during the dormancy phase and then increase rapidly as the green-up phase begins.
When the leaves reach maturity, signals no longer increase but maintain a high value. After
that, the plants enter into the senescence phase, and the signals decrease radically. As
the dormancy phase begins, the phenological signals return to the lowest value of the
initial phase. As such, an inflection point at which the curvature rapidly changes in the
phenological signal curve may be interpreted as the start date of each stage [17,63]. The
formula for obtaining the curvature K value of the inflection point is as follows:

f (t) = a +
c

1 + exp(a + bt)
+ d (1)

K =
f ′′(t)(

1 + ( f ′(t))2
) 3

2
(2)

where t is time, c is the amplitude of an increase or decrease in the green value, d is the
baseline value of the dormant season, and a and b control the lower and upper limits of the
function [17,64–66].

To extract phenological signals, we collected images from the digital cameras peri-
odically and classified them into red, green, and blue bands. Using digital numbers for
each band, we calculated the average excess green index (ExG) for each ROI based on the
equation [64,65]

ExG = 2 × ρGREEN − (ρRED + ρBLUE) (3)

where ρRED, ρGREEN, and ρBLUE are values in red, green, and blue channels acquired from
digital camera images, respectively. The region of interest (ROI) is used when digital
camera images are analyzed to clarify phenological changes [67]. As the digital camera
images include a mixture of the sky, landscape, and other factors, the ROI is limited to
the crown layer to extract the phenological signal from the images. Furthermore, because,
in these study sties, the Q. mongolica stands are mixed with Quercus variabilis Blume and
Quercus serrata Murray stands, and other species, the ROI was limited to pure stands of
Q. mongolica, and we tried to avoid mountains and sky [60,64] (Figure 2). In this study, we
set up a number of ROIs for the images of the Q. mongolica community in each site and
extracted the ExG index.

  

Figure 2. A field of view from the digital camera at the Mt. Jeombong site. Regions of interest (ROIs)
1–3 are indicated in red.
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2.4. Analysis of Satellite Images

The MOD09GA datasets are comprised of seven bands, including visible light bands
and near-infrared bands. The EVI in MODIS was calculated using red (Band 1: 620–670 μm),
green (Band 4: 545–565 μm), blue (Band 3: 459–479 μm), and near-infrared (Band 2: 841–
876 μm) based on the equations. The vegetation index uses the EVI index, which is an
improvement over other indexes. The EVI index is an improved vegetation index to reduce
the effects of spatial differences by using blue bands in areas with large spatial differences
and is suitable for observing seasonal changes in vegetation by reflecting the characteristics
of the canopy [62]. The EVI calculations used in the analysis are as follows:

EVI = 2.5 × (ρnir − ρred)/{ρnir + (6 × ρred − 7.5 × ρblue) + 1} (4)

where ρnir, ρred, and ρblue are values in near-infrared, red, and blue bands. MODIS
satellite images were reprojected to TM (transverse Mercator) coordinates because they use
a sinusoidal projection. Based on the extracted data, the EVI index for each study site was
derived. Then, the EVI was obtained using the smooth curve fitting method to remove
variation and to gather trends because interpretation error can occur due to data errors and
variation depending on weather conditions [17]. In this study, the EVI was smoothed to
the 80th percentile using an exponentially weighted moving average (EWMA). The EWMA
was defined as

St = α × Yt + (1 − α) × St−1 (t > 1, S1 = Y1) (5)

where t is the day of year (DoY); St is the EWMA value at the DoY; Yt is the EVI value at
the DoY; and α is the smoothing coefficient.

2.5. Sap Flow Measurement

To analyze the relationship between the phenological signal and the physiological
responses of plants, we collected data from a sap flow measurement instrument (model
SFM1 Sap Flow Meter, ICT international, Armidale, Australia) installed in the study sites.
Measured individuals were randomly selected from individuals included in the ROI. Sap
flow velocity (cm3·hr−1) was calculated by heat pulse, and temperature was measured
from the thermistor inserted 7.5 mm and 22.5 mm inside the removed bark [68]. The
seasonal trajectory of sap flow was interpreted using curvature K (formula 2) based on the
daily sap velocity. The transition date of the sap flow was compared with the phenological
transition date obtained from the digital camera and MODIS installed at the same site.

2.6. Data Correction

The green-up date of Q. mongolica derived from digital camera and MODIS satellite
images showed a difference depending on the study site. According to [69], increases in
latitude of 1◦ N, longitude of 1◦ E, and altitude of 100 m result in delays of 2.6 ± 0.2 days,
0.6 ± 0.1 days, and 2.1 ± 0.2 days, respectively, in the leaf unfolding date. Based on
this information, we corrected the difference in leaf unfolding dates due to differences in
latitude, longitude, and altitude among the study areas.

On the other hand, we designated the Mt. Jeombong site as the reference site to clarify
the effect of urbanization. Mt. Jeombong maintains a healthy and integrated stand of
Q. mongolica as it is designated as a reserve by the Korea Forest Service and thereby escapes
artificial interferences. Based on the Mt. Jeombong data, the expected dates of green-up
were obtained by reflecting the geographic and topographic location of each study site. The
effect of urbanization on plant phenology in each study area was determined by comparing
the differences between the expected and observed dates of green-up in each site.

2.7. Weather Factor Collection and Analysis

To analyze the correlation between phenological events and weather factors and iden-
tify the weather conditions at the time of major phenological phases, the atmospheric tem-
perature measurement instrument HOBO (HOBO Pro v2 Temp/RH Temp, Onset Computer,
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Bourne, MA, USA) was installed. The temperature was measured every 30 minutes every
day, and the data measured at 12:30 were used due to compatibility with the digital camera.

Based on the collected weather data, AGDD (accumulated growing degree days) were
calculated to analyze the temperature threshold of the plant’s green-up period. The formula
for calculating AGDD is as follows:

∑n
1

Tmax + Tmin
2

− TΔ (T ≥ 5 ◦C) (6)

where Tmax and Tmin are the maximum and minimum air temperatures, respectively, and
TΔ is the temperature below which plant growth is zero. In this study, we assumed a
minimum temperature threshold of 5 ◦C for enzymatic activity in Q. mongolica based on
studies of [70,71].

3. Results

3.1. The Green-up Date of Mongolian Oak

ExG values obtained from digital cameras clearly indicate the phenological changes of
Mongolian oak (Figure 3). The green-up date of Mongolian oak, derived from the curvature
K value of the digital camera ExG, was the earliest in the urban area and gradually delayed
moving through the suburban and rural areas toward the natural area with 94, 95, 95, 95, 97,
102, and 117 days in Mts. Nam, Mido, Umyeon, Buram, Cheonggye, Sori (Gwangneung),
and Jeombong, respectively, based on the day of year (DoY) (Table 4).

Figure 3. (a,b) show the seasonal courses of ExG in the Mongolian oak stands of each site. (c) shows
the logistic models of green-up based on ExG, and (d) shows the rate of change of curvature K in
study sites. The time at which the rate of change in curvature exhibits local maxima indicates the
green-up date.
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Table 4. Green-up dates estimated by two different criteria, ExG and EVI, and the difference
between observed and expected green-up dates from ExG and EVI. Obs: observed, Exp: expected,
Diff : difference.

Site

ExG EVI
Obs

(DoY)
Exp

(DoY)
Diff

(Days)
Obs

(DoY)
Exp

(DoY)
Diff

(Days)

Urban center
Mt. Nam 94 110 −16 94 110 −16
Mt. Mido 95 113 −18 96 114 −18

Mt. Umyeon 95 110 −15 97 112 −15

Suburb
Mt. Cheonggye 97 111 −14 96 110 −14

Mt. Buram 95 110 −15 96 111 −15

Rural area Gwangneung
(Mt. Sori) 103 114 −11 104 115 −11

Natural area Mt. Jeombong 118 118 0 114 114 0

EVI values obtained from MODIS images also clearly indicate the phenological
changes of Mongolian oak (Figure 4). The green-up date of Mongolian oak, derived
from the curvature K value of the MODIS image EVI, showed a similar trend to the result
from the digital camera, with 94, 96, 97, 95, 96, 104, and 114 days in Mts. Nam, Mido,
Umyeon, Buram, Cheonggye, Sori (Gwangneung), and Jeombong, respectively, based on
the DoY (Table 4).

Figure 4. (a,b) show the seasonal courses of EVI in the Mongolian oak stands of each site. (c) shows
the logistic models of green-up based on EVI, and (d) shows the rate of change of curvature K in
study sites. The time at which the rate of change in curvature exhibits local maxima indicates the
green-up date.

In addition, to clarify the differences among sites due to artificial interference, the ex-
pected dates of green-up were obtained through latitude, altitude, and elevation correction
based on the natural area, Mt. Jeombong. This was compared with the actual observed
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dates of the study site (Table 4). The green-up date observed from the ExG of Mt. Nam was
DoY 94, which is 16 days earlier than the expected DoY 110. The green-up date observed
from the ExG of Mt. Mido was DoY 95, which is 18 days earlier than the expected DoY
113. The green-up date observed from the ExG of Mt. Umyeon was DoY 95, which is
15 days earlier than the expected DoY 110. The green-up date observed from the ExG of Mt.
Cheonggye was DoY 97, which is 14 days earlier than the expected DoY 111. The green-up
date observed from the ExG of Mt. Buram was DoY 95, which is 15 days earlier than the
expected DoY 110. The green-up date observed from the ExG of Gwangneung (Mt. Sori)
was DoY 103, which is 11 days earlier than the expected DoY 114 (Table 4).

The green-up date observed from the EVI of Mt. Nam was DoY 94, which is 16 days
earlier than the expected DoY 110. The green-up date observed from the EVI of Mt. Mido
was DoY 96, which is 18 days earlier than the expected DoY 114. The green-up date
observed from the EVI of Mt. Umyeon was DoY 97, which is 15 days earlier than the
expected DoY 112. The green-up date observed from the EVI of Mt. Cheonggye was DoY
96, which is 14 days earlier than the expected DoY 110. The green-up date observed from
the EVI of Mt. Buram was DoY 96, which is 15 days earlier than the expected DoY 111. The
green-up date observed from the EVI of Gwangneung (Mt. Sori) was DoY 104, which is
11 days earlier than the expected DoY 115 (Table 4).

As a result of analysis, the correlation between green-up dates derived from ExG and
EVI values and land use intensity showed a significant negative correlation (Figure 5).

Figure 5. Relationship between urbanization ratio and green-up dates derived from ExG (upper)
and EVI (lower) (p < 0.05).
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3.2. Accumulated Growing Degree Days (AGDD)

Green-up dates estimated by AGDD in each study site are shown in Table 5. Green-up
dates expressed as DoY were 94, 95, 95, 97, 96, 103, and 114 in Mts. Nam, Mido, Woomyeon,
Cheonggye, Buram, Sori (Gwangneung), and Jeombong, respectively (Table 5). AGDD for
green-up dates derived from the ExG of the digital camera were 160.3 ◦C, 158.2 ◦C, 156.3 ◦C,
162.2 ◦C, 162.3 ◦C, 156.6 ◦C, and 160.5 ◦C, and AGDD for green-up dates derived from the
EVI of MODIS images were 160.3 ◦C, 166.9 ◦C, 162.6 ◦C, 153.2 ◦C, 168.3 ◦C, 163.3 ◦C, and
154.4 ◦C in the aforementioned site order (Table 5). As a result of analyzing the correlation
between the land use intensity of the study sites and the date when the AGDD value
reached 159 ◦C, they showed a significant negative correlation (Figure 6).

Table 5. Green-up dates estimated by AGDD and AGDD values for green-up dates derived from
ExG and EVI.

Site Name
Green-Up

Dates
(DoY)

AGDD (◦C)

ExG EVI

Urban center
Mt. Nam 94 160.3 160.3
Mt. Mido 95 158.2 166.9

Mt. Umyeon 95 156.3 162.6

Suburb
Mt. Cheonggye 97 162.2 153.2

Mt. Buram 96 162.3 168.3

Rural area Gwangneung
(Mt. Sori) 103 156.6 163.3

Natural area Mt. Jeombong 114 160.5 154.4
Average 159.5 161.3

Figure 6. Relationship between dates when AGDD reached 159 ◦C and urbanization ratio (p < 0.05).

3.3. Seasonal Trajectory of the Sap Flow

The seasonal change in sap flow is expressed in Figure 7. Green-up dates expressed in
DoY were 94, 96, 97, and 104 in Mts. Nam, Woomyeon, Cheonggye, and Sori (Gwangneung),
respectively (Figure 8). The difference between the green-up dates derived from sap flow
and the ExG of the digital camera was within one day, and the date was the same in Mts.
Nam and Cheonggye. The difference between the green-up dates derived from the sap
flow and the EVI of MODIS images was within one day, and the date was the same in Mt.
Nam and Gwangneung (Mt. Sori) (Table 6). The trajectory change in the curvature K value
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derived from the sap flow of the plant showed a very similar trend to that of the curvature
K value derived from the digital camera and MODIS satellite images (Figure 8).

Figure 7. Changes in sap flow velocity during the study period in each site.

Figure 8. SFM logistic models of green-up (a) and curvature K (b) in study.
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Table 6. Comparisons of green-up dates derived from vegetation phenology (ExG and EVI) and sap
flow (SFM).

Site
ExG

(DoY)
EVI

(DoY)
SFM
(DoY)

Difference
(Days)

ExG-SFM EVI-SFM

Mt. Nam 94 94 94 0 0
Mt. Mido 95 96 - - -

Mt. Umyeon 95 97 96 −1 1
Mt. Cheonggye 97 96 97 0 1

Mt. Buram 95 96 - - -
Gwangneung (Mt. Sori) 103 104 104 1 0

Mt. Jeombong 118 114 - - -

4. Discussion

4.1. Changes in the Green-up Dates Depending on Land Use Intensity

Land use by human activities releases greenhouse gases, and the increase in de-
velopment areas and populations causes urban heat islands and changes the micro-
climate [6,37,72,73]. Massive urban sprawling can bring about more deforestation, habitat
destruction, and greenhouse gas (GHG) or carbon emissions, and these factors can lead to
local climate change [74]. In fact, in Korea, the urbanization rate and population of urban
areas increased rapidly from 1971 to 2000, during which the daily minimum, maximum,
and mean temperature increased [75]. Studies carried out in China showed that the UHI
effect contributes to climate warming by about 30% [76,77].

Climate change affects the developmental phase of plants, and, thus, it can bring about
significant changes in phenology [23]. Every 1 ◦C increase in the land surface temperature
(LST) in spring and fall advanced the SOS by 9 to 11 days, and EOS was delayed by 6 to
10 days in China [78]. In eastern North America, the SOS generally advanced by three days
for every 1 ◦C increase in the LST. These phenomena were the largest in the urban center
and decreased exponentially as they headed toward the rural area [78]. The authors of [79]
reported that the spring phenology of vegetation occurs earlier along the urban–rural
gradient, and it occurs much earlier when close to the urban center because of the UHI
effect. In the urban area of eastern North America, the SOS was advanced, on average,
by seven days compared with the surrounding rural area, and EOS was delayed about
eight days [12]. According to [80], on average, Boston’s land surface temperatures were
about 7 ◦C warmer, and its growing season was 18 to 22 days longer relative to the adjacent
rural areas.

In this study, the observed green-up dates in the urban center, suburbs, and rural
areas were earlier than the expected dates (Table 4), which is attributed to the temperature
increase due to urbanization in those areas. Mts. Nam, Mido, and Umyeon, which showed
the largest difference from the expected dates, are located in the urban center where the
urbanization ratio is high and thus maintain a higher temperature than the surrounding
areas due to the urban heat island [17]. Although Mt. Cheonggye and Mt. Buram are
located in the suburbs, it is known that they are affected artificially because they are
adjacent to the urban center [81]. Therefore, those sites also showed a big difference from
the expected dates. Gwangneung (Mt. Sori), which is located in a rural area, has less land
use intensity and population density than the urban center and suburbs, and thus the
difference between the observed and expected dates of green-up is relatively small, but
compared with Mt. Jeombong, a natural forest, there is an artificial influence, indicating a
difference in the green-up date (Table 4). By comparing these results by landscape type
according to land use intensity, this showed the biggest difference in the urban center as the
difference between the observed date and the expected date of each study site was 11 days
in the rural area, about 14.5 days in the suburbs, and about 16.3 days in the urban center
(Table 4). According to a previous study [23], if the mean air temperature rises by 1 ◦C, the
green-up date of Q. mongolica is advanced by 3.58 (based on MODIS image interpretation)
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and 4.33 (based on AGDD) days. If the results obtained from this study are translated into
the air temperature based on previous research results [23], it could be deduced that the air
temperature in the urban center, suburbs, and rural area rose by 3.8 to 4.6 ◦C, 3 to 4.1 ◦C,
and 2.5 to 3.1 ◦C, respectively. In fact, the air temperature in the urban center of Seoul was
reported to be about 5 ◦C different from the outskirt of the city [82].

According to [83], early flowering plays an important role in determining plant
reproduction and pollen limitations by increasing the probability of experiencing frost
damage. In addition, a delay or shortening of the flowering period can have a significant
influence on the pollination process by affecting the available time of pollen and the
sharing of pollen [84]. Differences in the timing of phenological events between urban
and rural areas can lead to reproductive isolation, especially with plants that have a short
flowering period [29]. Different responses of plant phenology between urban and rural
can be blocked or restrict gene flow among meta-populations and meta-communities in
rural–urban transects, and in addition, these different responses are likely to accelerate
species polarization [85].

The UHI effect caused by urbanization can be confirmed through AGDD. AGDD
values are highly correlated with the date of green-up and flowering and can be used
as indicators of vegetation phenology [86]. The AGDD threshold for the green-up of
Q. mongolica is about 159 ◦C [86], and this study shows that the higher the land use strength
at the study site, the faster the AGDD threshold is reached (Figure 6). These results
indicate that Q. mongolica reaches green-up faster because the AGDD value reaches the
threshold earlier due to the increase in temperature from the UHI effect. Furthermore,
the results prove that the green-up of plants is accelerating due to climate change caused
by urbanization.

Urbanization, along with its consequence, climate change, is occurring at an unprece-
dented rate [87,88]. This rapid, uncontrollable acceleration of urbanization has led to wors-
ening environmental degradation, resulting in issues such as pollution and unpredictable
climate patterns, among many other indirect consequences [19–22,88–91]. The environmen-
tal change occurring in the urban world does not only affect the cities themselves—the
climate impact of urbanization is spreading out on a global scale [1,2,87]. The loss of vege-
tation due to urbanization leads to several consequences. Not only does the area lose its
richness in biodiversity but also its circulation of water, nitrogen, and other elements would
be affected [2,5,8–11,92]. At the same time, as the areal size of greenery space decreases,
CO2 emissions rise, which leads to further warming of the area and, consequently, the
world [2,93].

In phenological research, urban areas are an important study field because they enable an
assessment of the future potential impacts of climate change on plant development [17,28]. The
investigation of urban phenology is important because cities with their amplified temperatures
can serve as a proxy for future conditions, and thus future phenology can be estimated from
current information [29]. In this respect, this study, which indicates that vegetation phenol-
ogy was advanced due to the urbanization effect, provides information on how vegetation
phenology changes when the temperature increases in the future.

4.2. Diagnosis of Phenological Changes by Analyzing Sap Flow

Traditionally, the study of vegetation phenology focuses on monitoring and analyses of
the timing of phenological events [17,60]. Phenological observations are mainly performed
through visual observation. Consequently, most phenological studies were conducted
with easily observable things such as green-up, leaf bud break, first flowering, and leaf
fall [6,17,43,44]. Recently, in addition to the method of checking phenological phases by
observing the visual observation, a study method to confirm phenological phases through
physiological responses such as photosynthesis has also been proposed [17,50,94,95].

At scales from organs to ecosystems, many processes, particularly those related to
the cycling of carbon (productivity and growth), water (evapotranspiration and runoff),
and nutrients (decomposition and mineralization), are directly mediated by phenology,
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and the seasonality of these processes is implicitly phenological [30]. Sap flow, which is
well known as a harbinger of spring, is a physiological process driven by phenological
change. Sap flow becomes active and increases contemporarily with leaf development,
and thereby sap flow and the leaf area index denote similar early spring patterns [54].
Simultaneously with leaf development, transpiration has to progress [96] to participate
in forming the leaves and the follow-up of tree radial growth. Therefore, phenology is
tightly connected to the ecophysiological processes of deciduous tree species [51]. Stem
volume changes and sap flow provided valuable additional information specifying the
tree development during both spring and autumn phenological stages. During the leaf
expansion phase, the diameter of trees decreased in the deciduous trees. There is a close
relationship between the use of stem water storage and leaf phenology. Sap flow was
detected in the branches and the main stem of trees without leaf transpiration. These sap
flow patterns observed in branches and stems, along with changes in VWC (volumetric
water content) in sapwood and in the stem diameter, may be associated with the movement
of water and carbohydrates necessary for the process of developing new leaves [59].

In this study, both the green-up date and the change trajectory of the curvature K
value derived from the sap flow were similar to the green-up date and the change trajectory
of the curvature K value derived from the digital camera and MODIS satellite images
(Table 6). These results show that vegetation phenology observed through the appearance
of plants is reflected in the sap flow as a physiological reaction within the plant body. In
fact, according to [54], sap flux density and leaf unfolding showed a linear relationship,
and in the late stage of leaf development, a decrease in sap flow was observed due to the
reduced transpirational demand.

The results of this study, which show that physiological responses in plants are
similar to the vegetation phenology, can be evaluated as the results of a step forward
in phenological studies, which have mainly been observed through the appearance of
plants. In particular, considering that phenological events emerging in appearance may be
difficult to observe accurately and precisely due to various influences [56,57], observation
of phenological events through physiological responses could be used as a tool to verify
the response of vegetation according to various environmental changes including climate.
Furthermore, it is expected that the sap flow of plants could be used more diversely as a
tool to reinforce monitoring of vegetation phenology by collecting sap flow data of plants
in various spatiotemporal scales and comparing and analyzing them with seasonal data of
phenology collected using remote sensing techniques.

4.3. Ecosystem Management Strategy to Adapt Climate Change

Climate change has already become a reality, and even if we try to balance greenhouse
gas emissions and absorption, it seems that we will soon be in danger of being hit by
greenhouse gases already emitted [97]. An IPCC-led international agreement system is
pushing to contain the amount of greenhouse gases currently emitted as much as possible,
but it is expected that the absolute volume will increase in the coming years as the emissions
of developing countries such as China, India, Brazil, and Russia increase explosively [98].
Ecosystems have experienced environmental changes such as climate change in the past
and have adapted to these changes [99], but the rapid climate change that is happening will
be far beyond the speed at which species and ecosystems can adapt and will have a variety
of effects, including the extinction of many species [98,100]. In this regard, in parallel with
efforts to reduce greenhouse gas emissions, we need to find countermeasures to adapt to
future climate change [100].

We have interpreted the cause of climate change with an emphasis on the increased
use of fossil fuels up to date. However, as the results of this study show, the response of
ecosystems is closely related to the land use intensity of the site. The observed evidence
shows that the effects of urban heat islands were greater than those from climate change
that greenhouse gases cause in some locations [101,102]. The concentration of CO2 is also
steadily increasing at a global level, but it is showing a distinct seasonal variation that is
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high in winter and low in summer [8,103], which is the result of temperate forests acting as
a source of absorption [104]. All environmental problems, including climate change, have
sources of both emission and absorption. Therefore, we can mitigate climate change by
reducing CO2 emissions, but we can also mitigate climate change by increasing absorption
sources. Sound nature helps adapt to climate change by absorbing and storing carbon.
Since about 20% of greenhouse gas emissions are estimated to be due to deforestation,
forest conservation and restoration can store a considerable amount of carbon [105–107].
Achieving sustainable land use by preserving and restoring nature can be a climate change
adaptation measure that can mitigate climate change. As the IUCN suggests, preserving
and restoring nature to achieve sustainable land use can be an adaptation measure to
mitigate climate change. Vegetation achieved through ecological restoration can function
as a true adaptation measure by displaying ecosystem service functions such as climate
control and carbon dioxide absorption. In this respect, systematic and wise land use
planning is required to achieve efficient adaptation to climate change. In fact, the balance
of the carbon cycle and the air temperature increase coefficient were shown to depend
on the land use pattern of local areas, and the carbon budget by region also showed such
trend [108].

Even at the site scale, we can use vegetation to conserve energy and create thermally
pleasant environments by encouraging evapotranspirational cooling, and shading from the
hot summer sun [109–111]. As we understand the ecological functions that create surface
climates and the specific landscape features that alter these functions, we can make the
climate favorable for us by taking advantage of natural landscape processes [109,111–118].
This is a vital theme within the land use planning field, which advocates understanding
local environmental features as part of the site planning process [117,119] and creating
designs that are in harmony with the environment, especially in terms of energy and
water conservation [120,121]. Therefore, we recommend conservation and restoration
of natural ecosystems as a strategy that enables humankind to adapt to climate change
impacts [113,122,123]

5. Conclusions

Climate change is rapidly progressing. The most important anthropogenic influ-
ences on climate are the emission of greenhouse gases and changes in land use such as
urbanization, but the importance of the latter is increasingly being highlighted.

Urbanization is one of the major social changes that have spread around the world.
Urbanization is happening rapidly at an unprecedented rate, and the increases in develop-
ment areas and population growth due to it are causing changes in weather factors and
affecting the ecosystem. As phenology is a significant diagnostic tool for the biological
impacts from climate change, it could be an indicator for clarifying the effect of urban-
ization. In this study, the relationship between the phenology response of Mongolian
oak and land use intensity was investigated by determining the green-up date of plants
through digital camera image and MODIS satellite image analyses. We confirmed that the
green-up date of Mongolian oak was advanced due to the temperature rise resulting from
urbanization. The change was in proportion to the degree of urbanization and thereby was
the largest in the urban center and tended to decrease moving through the rural area to the
natural area. By comparing by landscape type according to land use intensity, this showed
the biggest difference in the urban center as the difference between the observed date
and the expected date of each study site was 11.0 days in the rural area, about 14.5 days
in the suburbs, and about 16.3 days in the urban center. If we translate the results into
the air temperature based on previous research results, it could be deduced that the air
temperature in the urban center, suburbs, and rural area rose by 3.8 to 4.6 ◦C, 3.3 to 4.1 ◦C,
and 2.5 to 3.1 ◦C, respectively.

This trend was also identified by AGDD, which determine the physiological activity
of the plant depending on the seasonal changes, and the sap flow, one of the physiological
responses of the plant. The higher the intensity of land use, the faster the green-up threshold
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is reached. From this result, we were able to confirm the availability of AGDD and sap
flow in predicting changes in ecosystems due to climate change including phenology.

On the other hand, the change in sap flow was almost consistent with that of the
green-up date in the change trajectory as the difference was within one day. As most
studies on plant phenology have focused on external changes of plants, observing the
seasonal change in plants through this physiological response is meaningful in terms of
expanding the scope of research in the field.

Furthermore, the significant difference in the plant phenology response in proportion
to land use intensity on the same latitude in the same climate zone can be important
evidence for proving the impact of urbanization as a factor in causing climate change.
This result is expected to contribute significantly to developing future climate change
adaptation strategies.
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50. Urban, J.; Bednářová, E.; Plichta, R.; Kučera, J. Linking phenological data to ecophysiology of European beech. Acta Hortic. (ISHS)
2013, 991, 293–299. [CrossRef]

51. Paloschi, R.A.; Ramos, D.M.; Ventura, D.J.; Souza, R.; Souza, E.; Morellato, L.P.C.; Nóbrega, R.L.B.; Coutinho, Í.A.C.; Verhoef,
A.; Körting, T.S.; et al. Environmental Drivers of Water Use for Caatinga Woody Plant Species: Combining Remote Sensing
Phenology and Sap Flow Measurements. Remote Sens. 2021, 13, 75. [CrossRef]

52. Alberton, B.; da Silva Torres, R.; Sanna Freire Silva, T.; Rocha, H.R.D.; Moura, M.S.B.; Morellato, L.P.C. Leafing patterns and
drivers across seasonally dry tropical communities. Remote Sens. 2019, 11, 2267. [CrossRef]

53. Rojas-Jiménez, K.; Holbrook, N.M.; Gutiérrez-Soto, M.V. Dry-season leaf flushing of Enterolobium cyclocarpum (ear-pod tree):
Above–and belowground phenology and water relations. Tree Physiol. 2007, 27, 1561–1568. [CrossRef] [PubMed]
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Abstract: Phenology shifts over time are known as the canary in the mine when studying the
response of terrestrial ecosystems to climate change. Plant phenology is a key factor controlling
the productivity of terrestrial vegetation under climate change. Over the past several decades, the
vegetation in the three-river headwaters region (TRHR) has been reported to have changed greatly
owing to the warming climate and human activities. However, uncertainties related to the potential
mechanism and influence of climatic and soil factors on the plant phenology of the TRHR are poorly
understood. In this study, we used harmonic analysis of time series and the relative and absolute
change rate on Google Earth Engine to calculate the start (SOS), end (EOS), and length (LOS) of
the growing season based on MOD09A1 datasets; the results were verified by the observational
data from phenological stations. Then, the spatiotemporal patterns of plant phenology for different
types of terrain and basins were explored. Finally, the potential mechanism involved in the influence
of climatic and soil factors on the phenology of plants in the TRHR were explored based on the
structural equation model and Pearson’s correlation coefficients. The results show the remotely
sensed monitoring data of SOS (R2 = 0.84, p < 0.01), EOS (R2 = 0.72, p < 0.01), and LOS (R2 = 0.86,
p < 0.01) were very similar to the observational data from phenological stations. The SOS and LOS of
plants possessed significant trends toward becoming advanced (Slope < 0) and extended (Slope > 0),
respectively, from 2001 to 2018. The SOS was the earliest and the LOS was the longest in the Lancang
River Basin, while the EOS was the latest in the Yangtze River Basin owing to the impact of climate
change and soil factors. Meanwhile, the spatial patterns of SOS, EOS, and LOS have strong spatial
heterogeneity at different elevations, slopes, and aspects. In addition, the results show that the drivers
of plant phenology have basin-wide and stage differences. Specifically, the influence of soil factors
on plant phenology in the Yangtze River Basin was greater than that of climatic factors, but climatic
factors were key functional indicators of LOS in the Yellow and Lancang river basins, which directly
or indirectly affect plant LOS through soil factors. This study will be helpful for understanding the
relationship between the plant phenology of the alpine wetland ecosystem and climate change and
improving the level of environmental management.

Keywords: plant phenology; spatiotemporal patterns; structural equation model; Google Earth
Engine; Three-River Headwaters region
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1. Introduction

The global climate has been warming gradually over the past several decades, which
has important impacts on vegetation phenology in ecological systems [1–3]. Vegetation
phenology acts as a sensitive and precise indicator that responds to climate warming and
has become an important topic in the fields of climate and ecology [4,5]. Studies have
shown that changes in spring and autumn plant phenology caused by climate change can
differentially alter the length of the growing season and affect water, carbon, and energy
fluxes between the atmosphere and the terrestrial biosphere [6]. Increased carbon uptake
stimulated by an extended growing season has the potential to mitigate climate change [7].
Therefore, elucidating the trends in plant phenology can improve our understanding of the
influence of climate change on ecosystem productivity, carbon cycling, and energy flow.

Although many studies have investigated plant phenology, little attention has been
paid to alpine wetland ecosystems [8,9]. As the largest alpine wetland ecosystem in
the world, the Three-River Headwaters region (TRHR) is considered the premonitory
region of global climate change. It is worth noting that increasing human activities and
global climate warming have led to severe ecological degradation in the TRHR, such
as vegetation degradation, soil erosion, desertification, lake and wetland decline, and
glacial retreat [10,11]. Because of the unique geographical location and climate of TRHR,
a large number of researchers have studied this area. For example, Han et al. studied
the relationship between plant greening and climate factors based on plant phenologi-
cal site data, and the results showed that the trend for the time of plant greening was
ahead–postpone–ahead–postpone [12]. Li explored the phenology response of plant to
hydrothermal conditions from 1999 to 2010 based on SPOT NDVI, and the results indicated
that the increase of cumulative precipitation and temperature of response time make SOS
delayed [13]. Chen et al. used SPOT NDVI to explore the spatiotemporal patterns of plant
phenology during 2000–2013, and the results showed that the SOS advanced, EOS delayed,
and LOS extended [14]. Hence, it is a good idea to select the TRHR as a study area to
explore the changes in plant phenology under climate change, which will improve our
understanding of changes in plant phenology in alpine wetland ecosystems. Increased
warming trends and frequent extreme events caused by climate change have produced
significant impacts on many ecosystems, such as changes in vegetation phenology, grass-
land degradation, wetland shrinkage, and encroachment upon farmlands [15]. Currently,
many research studies have focused on the response of vegetation phenology to specific
climate factors, including temperature, precipitation, and shortwave radiation. The results
indicated that interaction between temperature, shortwave radiation, and water has caused
various impacts on vegetation activities in different regions [16–18]. For example, the SOS
arrived 2.5 days earlier, and the EOS was delayed by 1 day for every 1 ◦C increase in the
temperature across 19 European countries [19]. The onset time of 70.1% of vegetation
in the growth season was delayed by 2.7 days because of winter precipitation in boreal
forests [20]. Shortwave radiation plays a potential role in regulating vegetation growth in
humid tropical or subtropical regions [21]. However, many factors can affect vegetation
growth. Some changes in vegetation growth are caused by changes in climatic factors, but
the soil factor (i.e., total soil C, N, and K) also affects vegetation dynamics because of the ef-
fects of soil conditions on the production of new cells that control plant photosynthesis [22].
For example, increasing the N input to land terrestrial ecosystems can promote vegetative
growth and accelerate respiration in plants and soil microorganisms [23]. In fact, plants
are very sensitive to resource conditions and tend to adjust their growth rates according to
changing environments at different time scales [24]. A change in soil nutrient availability
and mobility can change the photosynthetic rate of vegetation, which ultimately deter-
mines the difference in vegetative growth [25]. Therefore, it is important to understand the
underlying mechanisms of how soil resources affect vegetative growth, especially under
global climate change. Furthermore, traditional multivariate analysis ignored the total
effects associated with the interaction between variables and only focused on the direct
effects of predictors on the response variables [24]. Simultaneously, the interaction between
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variables often has a greater impact on response variables. Hence, it is necessary to analyze
the direct or indirect effects of a particular variable on another variable to study the factors
that influence plant phenology.

In this study, we extracted plant phenological information based on MOD09A1
datasets with Google Earth Engine; the accuracy of the extracted plant phenology results
was verified by using the station data of plant phenology; our main aims are: (1) investi-
gating spatiotemporal characteristics of plant phenology (2) and analyzing the potential
influence mechanism of climate and soil factors on the plant phenology of TRHR.

2. Materials and Methods

2.1. Processing

The flow chart of research ideas for this paper is as follows (Figure 1). First, we
calculated the plant phenology according to the following steps: (1) the NDVI of the TRHR
was calculated from MOD09A1 datasets in Google Earth Engine; (2) next, bare soil, sparse
vegetation, and evergreen forest pixels were eliminated according to certain requirements;
(3) then, the NDVI datasets were smoothed by harmonic analysis of time series (HANTS);
(4) we used relative and absolute rates of change to calculate plant phenology (SOS and
EOS) based on the NDVI datasets smoothed by HANTS; (5) the phenological data obtained
by remote sensing monitoring were verified by using the observation data of phenological
stations. Then, we analyzed the spatiotemporal dynamic pattern of plant phenology on
different types of terrain and basins. Finally, we explored the potential influence mechanism
of climate and soil factors on the phenology of the TRHR based on the structural equation
model (SEM) and Pearson correlation coefficients.

Figure 1. Flow chart of research ideas for this paper. NDVI, HANTS, SOS, EOS, LOS, DEM, MMT,
MMP, MMH, MMR, MMST, MMSM, pH, and TN indicate the normalized difference vegetation
index, harmonic analysis of time series, start of the growing season, end of the growing season,
length of the growing season, digital elevation model, monthly mean temperature, monthly mean
precipitation, monthly mean relative humidity, monthly mean shortwave radiation, monthly mean
soil temperature, monthly mean soil moisture, pH (H2O), and total N, respectively.

2.2. Study Area

The TRHR (31◦39′N–37◦10′N, 89◦24′E–102◦27′E) is located in the hinterland of the
Tibetan Plateau and in southern Qinghai Province of China (Figure 2). As the source area
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for the Yellow, Lancang, and Yangtze rivers, the TRHR supplies approximately 40 billion m3

of water downstream every year. It serves as an important source of freshwater resources
in China and Asia and is often referred to as the “Chinese water tower” [26]. The TRHR
spans 22 counties and covers an area of about 3.95 × 105 km2, and the elevation increases
from 1987.5 m in the southeast to 6714.5 m in the northwest, with an average elevation
over 4000 m. In 2010, the main land-use types in the TRHR were grassland (68.4%), desert
(16.0%), wetland (9.4%), shrub (4.6%), and forest (0.3%), where alpine steppe and alpine
meadow were the main types of grassland [27]. The TRHR has major extensive wetlands
in China, with abundant lake, river, glacier, and mountain snow resources, and supports
the largest alpine wetland ecosystem in the world. Moreover, the TRHR is an important
ecological functional zone, a typical ecologically fragile area in China, and is quite sensitive
to climate change.

 

Figure 2. Maps of the study area: (a) Tibetan Plateau in China; (b) Three-River Headwaters region on
the Tibetan Plateau; (c) locations of meteorological, phenological stations, alpine steppe, and alpine
meadow in and near the Three-River Headwaters region.

The TRHR experiences a typical plateau continental climate with large daily tem-
perature differences, small annual temperature differences, intense radiation, and a large
number of sunshine hours [28]. The TRHR has cool and dry winters with wet and warm
summers, mainly caused by the influence of the Asian monsoon and high elevation [29].
Meanwhile, the annual average precipitation in the THRH gradually increased from
northwest (262.2 mm) to southeast (772.8 mm), primarily concentrated between June and
September owing to the influence of the warm and humid air currents in the southern
Bay of Bengal [28,30]. Furthermore, the annual average temperature, sunshine hours,
and evaporation of TRHR ranging −5.6 to 7.8 ◦C, 2300 to 2900 h, and 730–1700 mm,
respectively [14,26].

2.3. Data Sources
2.3.1. MOD09A1 Data

The main vegetation types in the TRHR are alpine steppe and alpine meadow. These
do not have high amounts of vegetation coverage, with the highest values of NDVI being
less than 0.6. Therefore, there are no areas where vegetation is so saturated that the
NDVI cannot be accurately expressed. Hence, NDVI was selected in this paper for use in
analyzing plant phenological characteristics. Based on a previous study, this paper selected
MOD09A1 data products because they have a high temporal resolution, which can provide
us with better detailed information related to vegetation growth. The NDVI time-series
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data came from the Google Earth Engine (https://developers.google.com/earth-engine/
datasets/catalog/MODIS_006_MOD09A1 (accessed on 20 July 2020)), with a temporal
resolution of 8 days and a spatial resolution of 500 × 500 m. In order to improve the
calculated phenological results accurately, we used the following rules for data processing.
(1) NDVI was calculated based on the MOD09A1 band using Equations (1) and (2). To
eliminate the influence of bare soil, sparse vegetation, and evergreen forest, the pixels of
NDVI data in this study had to meet the following requirements: (a) the average value of
NDVI should be more than 0.2 in April–October; (b) the maximum value of annual NDVI
shall exceed 0.30; (c) the annual maximum value shall occur from July to September; and
(d) the average value of NDVI in winter shall be less than 0.4. (3) The NDVI data with a
temporal resolution of 1 day was obtained by using HANTS to fit the data, which were
processed in steps 1 and 2 (Figure 3a).

Figure 3. (a) Fitting effect of the harmonic analysis of time series; (b) definition of the normalized difference vegetation
index (NDVI), threshold of the start of the growing season (SOS), and end of the growing season (EOS). The green line is the
NDVI time-series change curve of 8 days after smooth treatment. The vertical axis of the left side is the NDVI value, and the
vertical axis of the right side is the change rate of NDVI. For comparison, the change rate of NDVI has been zoomed in
integer times, the ratio of absolute change value is 1000, and the ratio of relative change rate is 100.

2.3.2. Phenological Observation Data

Vegetation phenological observation data (2001–2013) of the THRH used in this study
were extracted from the ten-day datasets on crop growth and farmland soil moisture
in China, which were obtained from the Chinese Meteorological Administration (http:
//data.cma.cn/ (accessed on 12 October 2020)). We selected the phenological stations
according to the principle that the vegetation type around each station is grassland. Finally,
we selected five phenological observation stations (Figure 2c).

2.3.3. Climate Datasets

The meteorological data were selected from the monthly cumulative precipitation,
monthly mean relative humidity, and monthly mean air temperature from April to October
during 2001 to 2018 for 51 nationally standard meteorological stations in and near the
TRHR (Figure 2c), which were provided by the Chinese Meteorological Administration
(http://data.cma.cn/ (accessed on 5 July 2020)). Some observational data were missing
and had non-uniformity characteristics owing to the influence of changes in meteorological
stations and in instruments used to observe. Thus, the regression equation of time series
and the homogeneity test of variance were used to fill in the missing values and test
for data homogeneity at first in this paper. The commonly used spatial interpolation
methods include inverse distance weighted, co-kriging, and thin plate splines (TPS). After
comparative experiments, the monthly accumulated precipitation and monthly mean
relative humidity were interpolated by the co-kriging method in ArcGIS10.5 software
(ESRI, Redlands, CA, USA), with 500 × 500 m resolution. Furthermore, the TPS method of
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Anusplin software (Centre for Resource and Environmental Studies, Australian National
University, Canberra, Australia) was adopted to interpolate the monthly mean temperature
at a resolution of 500 × 500 m.

In this study, time-series shortwave radiation data were acquired from the European
Centre for Medium-Range Weather Forecasts website (https://cds.climate.copernicus.eu/
cdsa-pp#!/dataset/reanalysis-era5-land-monthly-means?tab=overview (accessed on 5 July
2020)), with a temporal resolution of one month and a spatial resolution of 0.1◦ × 0.1◦.

2.3.4. Soil Characteristics Database

In order to explore the influence of soil physical and chemical attributes on plant
phenology, we used a database of soil characteristics that was produced by the Land–
Atmosphere Interaction Research Group at Sun Yat-sen University (http://globalchange.
bnu.edu.cn/home (accessed on 25 October 2020)). The database included information
on total N (g/100 g), total P (g/100 g), total K (g/100 k), soil organic matter (g/100 g),
alkali-hydrolysable N (mg/kg), available P (mg/kg), available K (mg/kg), cation ex-
change capacity (me/100 g), porosity (cm3/100 cm3), bulk density (g/cm3), and pH (H2O).
Furthermore, soil moisture and soil temperature data were obtained from Google Earth
Engine (https://developers.google.com/earth-engine/datasets/catalog/NASA_FLDAS_
NOAH01_C_GL_M_V001#bands (accessed on 25 October 2020)) with a spatial resolution
of 0.1◦ × 0.1◦ and temporal resolution of one month.

2.3.5. Digital Elevation Model

Digital Elevation Model (DEM) data were collected from the Advanced Spaceborne
Thermal Emission and Reflection Radiometer Global Digital Elevation Model (ASTER
GDEM) Version 3, which was provided by the US National Aeronautics and Space Admin-
istration’s Earth Data website (https://earthdata.nasa.gov/ (accessed on 30 October 2020)),
with a spatial resolution of 30 m. For this study, the DEM data were processed with ArcGIS
10.5 to obtain the slope, elevation, and aspect.

2.4. Methods
2.4.1. Extraction of Plant Phenological Information

(1) NDVI

In this study, on the basis of NDVI that is estimated by the MOD09A1 band informa-
tion, we calculated the SOS and EOS using the method of the relative and absolute rates of
NDVI change, respectively. The NDVI is defined by [31]:

NDVI = (ρNIR − ρRed)/(ρNIR + ρRed), (1)

where ρNIR and ρRed are the spectral reflectance values calculated in the near-infrared and
red bands, respectively.

(2) Determination of the SOS and EOS

We used the maximum relative and minimum absolute rates of change in NDVI to
calculate the SOS and EOS based on previous studies [14]. The equations of these rates of
change can be expressed by:

NDVIrate_rel =
NDVIt+1 − NDVIt

NDVIt
, t ∈ [1, 2, . . . , 365], (2)

NDVIrate_abs = NDVIt+1 − NDVIt, t ∈ [1, 2, . . . , 365], (3)

where NDVIrate_rel and NDVIrate_abs are the relative and absolute rates of change, respectively.
The specific calculation process is as follows. First, we calculated the time (T) when the

maximum value appears based on the NDVI time-series data. The NDVI curve was divided
into a rising (0, T) and a descending (T, 365) stage. Second, based on Equations (2) and (3),

32



Remote Sens. 2021, 13, 2528

the maximum relative and minimum absolute rates of change were calculated by using
the NDVI time-series data. Then, the thresholds of SOS and EOS were determined based
on the maximum relative and minimum absolute rates of change, respectively. Third, if
the NDVI value was greater than the SOS threshold at time 0 to T, the corresponding date
of the year was regarded as the SOS. Similarly, if the NDVI value of some pixels was less
than the EOS threshold at time T to 365, the corresponding day of the year plus one was
regarded as the EOS (Figure 3b).

2.4.2. The Spatiotemporal Pattern of Plant Phenology

(1) Linear Regression Analysis

We adopted a linear regression analysis to analyze the monotonic trend of the vegeta-
tion phenology and indicators [32,33]. The trend slope in a multi-year regression equation
represents the amount of inter-annual change and can be found using the least squares
method as follows:

Slope =
n·∑n

t=1 t·Xt − ∑n
t=1 t ∑n

t=1 Xt

n·∑n
t=1 t2 − (∑n

t=1 t)2 , (4)

where Slope refers to the inter-annual trend, n is the number of years of the study, and the
Xt is the value of this variable in the t-th year. When the slope is positive or negative, this
indicates an increasing or decreasing trend, respectively.

(2) Standard Deviation Analysis

Standard deviation is a measure of the degree of data dispersion that can reflect the
stability or fluctuation of variables [34]. For this study, the stability or fluctuation of plant
phenology was calculated by standard deviation based on the pixel scale. The calculation
formula is as follows:

Si =

√
1
n

n

∑
i=1

(
Xi − X

)2, (5)

where Si indicates the standard deviation of an X dataset. When the Si value is larger, the
distribution of the data is more discrete and has a larger range of fluctuation. In contrast,
when the Si value is smaller, the distribution of the data is more concentrated and the range
of fluctuation is smaller.

2.4.3. Driving Force Analysis

(1) Pearson Correlation Coefficient

For this paper, we used correlation analysis to determine the relationship between
the plant phenology (SOS, EOS, and LOS) and other factors. A higher value indicates a
stronger correlation; otherwise, it means a weaker correlation [28,35]. The relevant formula
is as follows:

Rxy =
∑n

i=1[[xi − x]·[yi − y] ]√
∑n

i=1 [[xi − x]2·[yi − y]2]
, (6)

where Rxy is the correlation coefficient between x and y, n is the number of years during the
study, xi and yi are the two sets of variables, and x and y are the mean values of variables.

(2) Structural Equation Model

SEM is a method used to analyze the relationship between variables based on a
covariance matrix of variables, which includes maximum likelihood, synthesis of factor,
and path analyses [24]. It pre-sets the dependence relationship between the factors in the
system based on the researcher’s prior knowledge, which can judge the strength of the
relationship between the factors and can fit and judge the overall model. In addition, SEM
has several advantages. For example, the direct or indirect effects of a particular variable
on another variable can be partitioned by SEM, and SEM estimates and reports the total
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path coefficient to present the strengths of these multiple effects [36]. Since the change in
SOS and EOS eventually lead to the change in LOS, this paper only used SEM to explore
the potential influence mechanism of climate and soil factors on LOS in the TRHR.

3. Results

3.1. The Verification of Vegetation Phenological Results

For this study, a regional plant phenological dataset was developed based on data
acquired from 2001 to 2018. Figure 4 shows that the remote sensing monitoring data of
SOS (R2 = 0.84, p < 0.01), EOS (R2 = 0.72, p < 0.01), and LOS (R2 = 0.86, p < 0.01) have strong
similarity with the phenological observation data. Specifically, the times of SOS monitored
by remote sensing and observed by phenological stations are distributed near a straight line
(Y = X). However, the times of EOS and LOS observed by remote sensing and phenological
stations are generally distributed above the straight line (Y = X). This showed that the time
product of SOS is highly consistent with the values observed at phenological stations, but
the time product of EOS is delayed when compared with that of phenological stations; in
addition, the LOS product of remote sensing monitoring is longer than observed at the
phenological station (Figure 4).

Figure 4. The comparison between remote sensing monitoring data (RSMD) and phenological observation data (POD):
(a) start of the growing season (SOS); (b) end of the growing season (EOS); (c) length of the growing season (LOS).

3.2. Spatiotemporal Pattern of Plant Phenology

During the study period, the spatiotemporal trends and standard deviations of SOS,
EOS, and LOS had a heterogeneous geographical distribution from 2001 to 2018. The
spatial distribution of the multiyear mean SOS primarily occurred between day 100 and
150, and the multiyear average SOS arrived before day 100 in the low-elevation river valley
areas of the Yellow and Lancang river basins and appeared after day 150 in some high-
elevation or high-latitude areas of the Yangtze River Basin (Figure 5a,d). Similarly, the high
value (>16 day/year) of standard deviation for SOS principally occurred in the Lancang
River Basin and the southwestern part of the Yangtze River Basin, with the lowest value
(<8 day/year) in the center of the Yangtze River Basin and the southeastern part of the
Yellow River Basin (Figure 5g). We also found that the Yellow River Basin had the earliest
SOS, and the time is in advance (Figure 5j). Furthermore, the spatial distribution of the
multiyear average EOS was mainly observed from day 265 to 283, the multiyear average
EOS arrived before day 265 in the northeast of the Yellow River Basin, and appeared
after day 280 in the center of the Yangtze River Basin (Figure 5b,e). The high value of the
standard deviation of EOS was mainly in the Yangtze and Lancang river basins (Figure 5h).
In addition, we also compared the temporal trend of EOS in different basins; the earliest
EOS was in the Lancang River Basin and the latest in the Yangtze River Basin (Figure 5k).
Last, the spatial distribution of the multiyear average LOS was mainly between day 120 and
160, while the multiyear average LOS was longer than day 150 in some areas of the Yellow
and Lancang river basins (Figure 5c,f). The high value of the standard deviation of LOS
was mainly distributed in the Lancang and Yangtze river basins (Figure 5i). Furthermore,

34



Remote Sens. 2021, 13, 2528

we also found that the Lancang River Basin had the longest LOS, which is becoming longer
over time (Figure 5l).

 

Figure 5. Spatiotemporal patterns of vegetation phenology: (a–c) the spatial pattern of a multi-year average of the start
(SOS), end (EOS), and length (LOS) of the growing season on the Three-River Headwaters from 2001 to 2018; (d–f) time-
frequency distribution of SOS, EOS, and LOS, respectively; (g–i) standard deviation for the SOS, EOS, and LOS, respectively;
(j–l) temporal variation characteristics of vegetation phenology of (A) Yangtze, (B) Yellow, and (C) Lancang river basins in
SOS, EOS, and LOS, respectively. The different letters above the box plots indicate significant differences among different
basins at p < 0.05. The green boxplots indicate the overall distribution characteristics of SOS, EOS, and LOS values in
different basins. The yellow boxplots indicate the overall distribution characteristics of the trend of SOS, EOS, and LOS
values in different basins.

For this study, SOS, EOS, and LOS have different distributions at different elevations,
slopes, and aspects in the THRH (Figure 6). Specifically, the SOS generally showed an
upwards (0.001 day/m, R2 = 0.17, p > 0.01) trend with an increase in elevation (Figure 6a).
This phenomenon indicates that with an increase in elevation, the SOS is delayed. In con-
trast, EOS and LOS decreased (0.002 day/m, R2 = 0.34, p > 0.01 and 0.003 day/m, R2 = 0.84,
p < 0.01, respectively) as elevation increased, which represents that the time of EOS and
the LOS advance and shorten with an increase in elevation, respectively (Figure 6b–c).
Furthermore, SOS and EOS decreased significantly (0.32 day/◦, R2 = 0.93, p < 0.01 and
1 day/◦, R2 = 0.85, p < 0.01, respectively) with an increase in slope (Figure 6d–e). This
indicates that the time of SOS and EOS advance with an increase in slope. However, the
relationship between LOS and slope was the opposite of that between SOS or EOS and
slope. The LOS was prolonged (0.2 day/◦, R2 = 0.94, p < 0.01) with an increase in slope
(Figure 6f). Last, we find the north-facing slopes had the lowest value of SOS but had the
highest value of EOS and LOS. The results showed that the times of SOS, EOS, and LOS
were the earliest, latest, and longest, respectively, on the north slope.
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Figure 6. The relationship between different terrain factors and the start (SOS), end (EOS), and length
(LOS) of the growing season: distribution and change characteristics at different elevations (a–c),
slopes (d–f), and aspects (g–i).

3.3. Linking Climatic and Soil Factors to Plant Phenology

The correlation coefficients between plant phenology connected to the principal cli-
mate characteristics along with soil physical and chemical factors were significant at
p < 0.01 (Table 1). In the Yangtze River Basin, our results show that the SOS was positively
correlated with monthly mean shortwave radiation (MMR; 0.73**), pH (0.50**), and to-
tal phosphorus (TK) (0.44**) but negatively correlated with monthly mean precipitation
(MMP; −0.68**), available nitrogen (AN; −0.39**), monthly mean relative humidity (MMH;
−0.38**), and monthly mean soil moisture (MMSM; −0.37**). Furthermore, the correlation
coefficients between EOS and MMP, pH, TK, and MMR were −0.45**, 0.40**, 0.41**, and
0.44**. Finally, we found that LOS was significantly negatively correlated with pH (−0.46**)
and TK (−0.37**), but LOS was significantly positively correlated with MMR (0.53**), MMH
(0.52**), and AN (0.38**) during the growing season.

In the Yellow River Basin, significant positive relationships were observed between
SOS and monthly mean temperature (MMT; 0.50**), monthly mean soil temperature (MMST;
0.48**), MMR (0.50**), and MMSM (0.31**). However, the EOS was significantly negatively
correlated with MMSM (−0.39**) and AN (−0.32**) and significantly positively correlated
with pH (0.37**). In addition, we found that LOS was significantly negatively correlated
with MMR (−0.55**), MMT (−0.46**), and MMST (−0.43**).

In the Lancang River Basin, the results indicated that there were significant positive
correlations between the SOS and AK (0.50**), MMT (0.65**), MMST (0.55**), MMR (0.53**),
and MMSM (0.43**). In addition, we found that the EOS was significantly negatively
correlated with MMST (−0.41**), MMT (−0.43**), MMR (−0.36**), and MMP (−0.33**).
Meanwhile, we also found that the correlation coefficients between LOS and MMH, MMT,
MMST, MMR, and AK were 0.41**, −0.69**, −0.65**, −0.58**, and −0.50** (Table 1).
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The mechanisms involved in patterns in the length of the plant growing season in
different basins were explored using SEM. In general, the effect of soil factors on LOS is
greater than that of climate factors in the Yangtze River Basin. Specifically, AP, pH, and
TN had a significant effect on the LOS (p < 0.01), with scores of 0.30, −0.65, and −0.77,
respectively. However, the impact scores of MMR and MMH on LOS were only 0.35 and
0.33 (Figure 7a). Path analyses identified that climate factors, as a key functional indicator
of the LOS in the Yellow River Basin, had either direct or indirect effects via edaphic factors.
Specifically, the MMR (scored at −0.55), MMT (scored at −0.30), and MMST (scored at 0.54)
had significant effects on the LOS (Figure 7b). Furthermore, in the Lancang River Basin, the
effects of each variable on LOS were different (ranging from −0.52 to 0.25), which suggests
that the LOS might be co-determined by both the soil and climatic factors (Figure 7c). This
assumption was confirmed in that soil factors were significantly affected by climatic factors.
Specifically, the AK (scored at 0.41), AP (scored at 0.27), and AN (scored at 0.32) were
significantly (p < 0.01) influenced by MMT. Furthermore, AK and AP had a significant
interaction (scored at 0.58).

 

Figure 7. Mechanisms involved in the patterns of the length of the plant growing season in different
basins. Structural equation modeling (SEM) was used to analyze the total effects of variables. The
black and red solid lines represent positive and negative standardized SEM coefficients, respectively,
while the line thickness indicates the magnitude of these coefficients for the Yangtze (a), Yellow (b),
and Lancang (c) river basins, respectively. MMR, MMT, MMH, and MMST represent monthly mean
shortwave radiation, temperature, relative humidity, and soil temperature, respectively. AN, AP, pH,
TN, BD, POR, and AK represent alkali-hydrolysable N, available P, pH (H2O), total N, bulk density,
porosity, and available K, respectively.

4. Discussion

4.1. Spatial–Temporal Patterns of Plant Phenology

The time of the SOS experienced a significant downtrend (slope < 0), but the LOS
increased over time (slope > 0) during 2001–2018 in the Yellow River Basin (Figure 5j,l).
The research showed that with the increase of annual mean precipitation, temperature,
relative humidity, shortwave radiation, soil temperature, and soil moisture in the Yellow
River Basin during the SOS and LOS period, the time of SOS and LOS became earlier
and longer (Figures S3 and S5). The favorable water and heat environment provided
important resources for vegetative growth [37,38]. Water supply determines whether
the photosynthesis occurs normally with an adequate CO2 concentration and sufficient
light [24,39]. Meanwhile, water is also an indispensable intermediary used to ensure
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nutrient substance transport [24,40]. Therefore, the increased humidity, precipitation, and
soil moisture played a crucial role in the advance of the timing of the SOS and the prolonged
nature of the LOS. In addition to water, temperature is also an indispensable factor in
vegetative growth. An increase in temperature could facilitate vegetative growth if plants
do not encounter water limitation [4,40]. Furthermore, climate warming can stimulate the
enzymatic activities involved in photosynthesis [24,41], accelerate the mineralization and
decomposition of organic matter [42], and extend the length of the vegetative growing
season [7,43]. In general, the improvement of water and heat conditions visibly promoted
the growth of vegetation in the TRHR.

The multi-year (2001–2018) average time of the SOS, EOS, and LOS in the TRHR
presented a discrepant geographical pattern. In general, the time of the plant SOS was
earliest in the Lancang and western Yellow river basins, while the time of the plant EOS
was latest in the middle of the Yangtze River Basin. The duration of the vegetation growing
season was longest in the Lancang and western Yellow river basins (Figure 5a–c). This
phenomenon is closely related to the distribution of climate in the TRHR. The TRHR’s
climate is dominated by the East Asian monsoon, because the Himalayan Mountain Range
obstructs the Indian monsoon [44,45] and causes a gradual reduction in precipitation,
relative humidity, and soil moisture from southeast to northwest (Figures S2–S5). Likewise,
vegetative growth is easily affected by climate change in the TRHR as also supported
by previous studies [46,47]. Furthermore, the time of the plant SOS was delayed with
an increase in elevation, but the times of the EOS or LOS were advanced or shortened,
respectively, with an increase in elevation (Figure 6a–c). Possible reasons include the
following: the ecosystems of high elevation areas are fragile, and the vegetative growth
is vulnerable to extreme weather, such as extreme low temperature and frost. Another
possibility is that the perennial snowfall occurring in high elevation regions causes low
temperatures, which weaken the activity of soil microorganisms [14]. In contrast, with an
increase in slope, the time of the SOS and EOS are in advance, while the LOS is prolonged
(Figure 6d–f). The main reason for this result is that the areas with high slopes were mainly
concentrated in the Lancang and the south part of the Yellow river basins, which have
lower elevations (Figure S1). This provides reliable water and temperatures to guarantee
the normal operation of vegetative photosynthesis. Finally, the vegetation of shady slopes
started growing earlier in the growing season, ended later, and so had the longest growing
season (Figure 6g–i), mainly due to the strong illumination and high temperature that
accelerated soil organic matter mineralization and caused sunny slopes to have less soil
moisture [48]. However, the shady slopes have soft solar radiation, moist soil, less moisture
evaporation, and higher soil fertility [49,50].

4.2. The Response of the Plant Phenology to Climate Change

Our results illustrate that the variations in soil resources (e.g., pH and soil total N)
that support vegetative growth, together with the climatic conditions that were suitable for
vegetative growth, co-explained the phenological differences in plants from different basins.
Specifically, the Yangtze River Basin is affected by the East Asian monsoon and elevation
(Figure S1a), insufficient water supply, and relatively low temperatures, and low levels
of soil nutrients constrained the growth of vegetation at the start of the growing season
(Figures S2–S3). The air and soil temperatures are relatively low with less precipitation
and soil moisture from April to May, which is not enough to support the transport of
nutrients in plants, soil nutrient absorption by roots, and photosynthesis [24,51]. With the
increased temperature, winter snow, permafrost, and glaciers have begun to melt slowly,
and mineralization and decomposition of organic matter are accelerated [52,53] so that
warmer temperatures provide plants with earlier opportunities to germinate [32]. However,
the Yellow and Lancang river basins have higher temperatures and more shortwave
radiation and precipitation than other areas owing to the lower elevation (Figures S1–S5).
The increase in precipitation significantly increased soil carbon and N content, making
it easier for plants to absorb nutrients owing to an increase in leaf stomatal conductance
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and photosynthesis [24,54]. This may explain why temperature is more important for seed
germination than water at the start of the growing season in the Yangtze River Basin, while
water and heat are equally important for seed germination in the Yellow and Lancang river
basins. In addition, the Yangtze River Basin lies in a high elevation area, which has thin
air, strong solar radiation, and a long sunshine season (Figure S3). At high elevations, the
decomposition of soil litter slows, which promotes the accumulation of organic matter due
to the low temperatures caused by snow cover, which, in turn, slows the activity of soil
microorganisms [14]. Thus, the growing season ends relatively late in the Yangtze River
Basin. An interesting question arises: why were the soil factors having a greater impact
on LOS in the Yangtze River Basin when compared with the Yellow and Lancang river
basins (Table 1 and Figure 7)? Here, we propose one explanation. The precipitation, air
temperature, relative humidity, soil moisture, and soil temperature showed a decreasing
trend from southeast (the Yellow River Basin) to northwest (the Yangtze River Basin) in
the TRHR because of the influence of the monsoon and elevation (Figures S2–S5). This
situation led to low air temperature and less precipitation in the Yangtze River Basin, which
does not provide enough energy for the growth of plants. At this time, the melting of
permafrost and glaciers and the mineralization of soil organic matter provide energy for
plant growth. However, the Yellow and the Lancang river basins have high air temperature,
soil temperature, precipitation, and soil moisture, which can provide sufficient energy for
plant growth.

4.3. Limitations of the Current Study

Despite the achievements in this study, large uncertainties still exist. In addition to
NDVI, multiple vegetation indices can be used to reflect vegetation dynamics, such as
EVI and LAI [1,34]. Note that the calculated plant phenology results may be vary based
on the differences in resolution and quality of datasets using different vegetation indices.
Furthermore, the present smoothing methods of remote sensing time series data have
great differences in the model structure, which may result in great differences among the
extracted plant phenology results [55,56]. Meanwhile, although the smoothing method used
for the remote sensing time series is the same, different smoothing parameters also cause
different results. Although the guidelines for some smoothing methods suggested using
default parameter values when they were proposed, the best parameter values may vary
because of the different growth trajectories of vegetation at specific sites, which lead to a
difference in plant phenology in various regions and with different vegetation types [57,58].
Moreover, many methods can be used to extract plant phenological information, and they
all have a certain level of applicability. Therefore, different methods may lead to different
conclusions regarding the same question [56]. As mentioned above, it is necessary to further
check whether the plant phenological results calculated from different datasets, smoothing
methods of remote sensing time series, smoothing parameters, and phenology extraction
methods provide the same or similar results and to improve the credibility of the results.
Furthermore, there are many factors that affect plant phenology. Some changes in phenology
are caused by climatic and soil factors; other decisive factors have shown effects on plant
phenology, such as flash floods and extreme drought. Hence, more attention should be paid
to the relationship between plant phenology and natural disasters in future studies.

5. Conclusions

In the present study, we calculated plant phenology information in the TRHR based
on the MOD09A1 dataset using the method of HANTS and the relative and absolute rates
of change on Google Earth Engine. Meanwhile, the extracted plant phenology results
were verified using plant phenology station data. Then, we explored the spatiotemporal
patterns of plant phenology based on linear regression and standard deviation analyses.
Finally, the potential influence mechanism of climatic and soil factors on phenology was
analyzed using Pearson correlation coefficients and an SEM model. The verification of
plant phenological results shows that our results were well-correlated with observational

40



Remote Sens. 2021, 13, 2528

data acquired by phenological stations; the determination coefficients of SOS, EOS, and
LOS stages were 0.84, 0.72, and 0.86, respectively. The temporal variation of the SOS and
LOS indicated that the SOS advanced while the LOS extended. As for spatial patterns, the
SOS was the earliest and the LOS was the longest in the Lancang River Basin, while the
EOS was the latest in the Yangtze River Basin. Furthermore, the spatial distributions of
SOS, EOS, and LOS have strong spatial heterogeneity at different elevations, slopes, and
aspects. The potential influence mechanism of climatic and soil factors on the phenology
indicated that plant phenology in the Yangtze River Basin is mainly affected by soil factors,
while that in the Yellow and Lancang river basins is mainly impacted by climatic factors.
The results of this study revealed the spatiotemporal patterns of plant phenology of the
TRHR and emphasize the important role of soil factors, precipitation, and temperature
in controlling plant phenological dynamics. These findings might help to reveal the
mechanisms of potential impacts on plant phenology in alpine wetland ecosystems and
provide a theoretical basis for ecosystem management.

Supplementary Materials: The following are available online at https://www.mdpi.com/2072-429
2/13/13/2528/s1, Figure S1: Topographic features of Three-River Headwaters region: (a) elevation;
(b) slope; (c) aspect; and (d) topographic relief, Figure S2. The monthly means for (a) soil temperature,
(b) soil moisture, (c) relative humidity, (d) temperature, (e) precipitation, (f) shortwave radiation in
the Yangtze (A), Yellow (B), and Lancang (C) river basins in different periods. Horizontal lines in box
plots denote the 95th, 75th, 50th, 25th, and 5th percentiles from top to bottom; the rectangles represent
the average values, Figure S3. Spatial pattern of (a, d, g, j, m, and p), standard deviation (b, e, h, k,
n, and q) and temporal trend (c, f, i, l, o, and r) for the monthly mean temperature, precipitation,
relative humidity, shortwave radiation, soil temperature, and soil moisture at the start of the growing
season, Figure S4. Spatial pattern of (a, d, g, j, m, and p), standard deviation (b, e, h, k, n, and q), and
temporal trend (c, f, i, l, o, and r) for the monthly mean temperature, precipitation, relative humidity,
shortwave radiation, soil temperature, and soil moisture at the end of the growing season, Figure S5.
Spatial pattern (a, d, g, j, m, and p), standard deviation (b, e, h, k, n, and q), and temporal trend (c, f, i,
l, o, and r) for the monthly mean temperature, precipitation, relative humidity, shortwave radiation,
soil temperature, and soil moisture in length of the growing season.
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Abstract: Quantifying the spatial, seasonal (phenological), and inter-annual variations of gross pri-
mary productivity (GPP) in the Arctic is critical for comprehending the terrestrial carbon cycle and its
feedback to climate warming in this region. Here, we evaluated the accuracy of the MOD17A2H GPP
product using the FLUXNET 2015 dataset in the Arctic, then explored the spatial patterns, seasonal
variations, and interannual trends of GPP, and investigated the dependence of the spatiotemporal
variations in GPP on land cover types, latitude, and elevation from 2001 to 2019. The results showed
that MOD17A2H was consistent with in situ measurements (R = 0.8, RMSE = 1.26 g C m−2 d−1). The
functional phenology was also captured by the MOD17A2H product (R = 0.62, RMSE = 9 days) in
the Arctic. The spatial variation of the seasonal magnitude of GPP and its interannual trends is partly
related to land cover types, peaking in forests and lowest in grasslands. The interannual trend of
GPP decreased as the latitude and elevation increased, except for the latitude between 62◦~66◦ N
and elevation below 700 m. Our study not only revealed the variation of GPP in the Arctic but also
helped to understand the carbon cycle over this region.

Keywords: GPP; carbon cycle; arctic; phenology; photosynthesis

1. Introduction

Climate change is causing permafrost melting [1], shrub cover expansion, growing
season lengthening, and consequently, carbon flux changes in the Arctic [2]. Furthermore,
the carbon cycle is also influenced by changes in vegetation phenology [3]. GPP, which is
considered the biggest carbon flux of terrestrial ecosystems [4], not only plays a vital role in
offsetting the concentration of greenhouse gases and mitigating global warming to a certain
extent [5] but also builds a bridge between terrestrial and air carbon. In the context of
the Arctic, the rate of climate warming is almost twice the global average, a phenomenon
known as Arctic amplification [2,6–10]. Therefore, quantifying the spatial, seasonal (pheno-
logical), and inter-annual variations of Arctic GPP is critical for comprehending the carbon
cycle and its feedback to climate warming.

Quantifying global or local GPP has received a great deal of attention in recent studies.
Utilizing satellite-based near-infrared reflectance (NIRv) as the proxy of GPP and the re-
vised light-use-efficiency model (i.e., EC-LUE model), Wang et al. [11] and Zheng et al. [12]
explored the global spatial patterns of GPP with a spatial resolution of 0.05 degrees. How-
ever, the annual average estimates of GPP were not consistent during the same period.
Wang et al. [11] reported a range of 128.3 ± 4.0 Pg C year−1 while Zheng et al. [12] reported
a range of 106.2 ± 2.9 Pg C yr−1. Some studies have detected the GPP in the Arctic, but
most paid attention to specific ecosystems (e.g., streams and moss communities) [13,14]
and few efforts [12,15] have been devoted to investigating the specific situation of the

Remote Sens. 2021, 13, 2875. https://doi.org/10.3390/rs13152875 https://www.mdpi.com/journal/remotesensing45



Remote Sens. 2021, 13, 2875

Arctic GPP. Here, the MOD17A2H product was selected because it is one of the major
official GPP products and has been most widely used in detecting the carbon cycle of
terrestrial ecosystems [4,16]. Additionally, its finer resolution (500 m) can reveal detailed
GPP variations in the Arctic.

Satellite products generally suffer from the uncertainty that results from complex data
acquisition processes and limitations of retrieval algorithms. For this reason, different
datasets lead to disparate results. MOD17 is based on the light-use-efficiency (LUE) concept,
which is difficult to parameterize since it is influenced by land cover types, phenophases
and different types of environmental stress. Furthermore, the maximal values of LUE are
specified in the look-up tables for the same biota types, which might introduce uncertainties
in GPP [17]. Although MOD17A2H, the v.6 product of MOD17, has overcome the limitation
of the proposed year and filling method, the core issues caused by its algorithm still
exist. In addition, MODIS (Moderate Resolution Imaging Spectroradiometer) products are
inferred based on surface reflectance, which is only available when the relative accuracy of
MODIS reflectance products can be determined [18]. Therefore, evaluating its performance
is necessary before characterizing the spatiotemporal pattern of GPP. There have been
many validation studies regarding the performance of MODIS GPP products at the global
scale [19–22] and their accuracies over different biomes (e.g., grassland and forest) have
been quantified [23]. However, the validation pixels belonging to specific biomes are often
combined together and there are few specialized studies that quantify the accuracy of
MOD17A2H in the Arctic. In fact, the performance of the MODIS GPP algorithm shows
reasonable variations with climate regions and factors [18,19], species [24], and latitude [25].
Furthermore, the phenology (e.g., the peak timing of GPP) derived from satellite products
is often mismatched in scale with in situ data [26]. Several studies have assessed the
performance of phenological patterns of MOD17A2H in different regions or biomes [17,27].
However, it is unclear whether MOD17A2H is suitable for the Arctic. Therefore, there is a
pressing need to investigate the accuracy of MOD17A2H in the Arctic.

The objective of this work was to utilize MOD17A2H to explore the spatial distribution
and phenological characteristics of GPP in the Arctic. In particular, the goal was to (1) eval-
uate the performance of MOD17A2H in different conditions in the Arctic; (2) identify the
spatial distribution and phenological characteristics of GPP, and detect the variation of
GPP with land cover types, latitude, and elevation; and (3) detect the interannual trends
of GPP in the Arctic and its relation with land cover types, latitude, and elevation. This
article begins by describing the study area and the experimental data (Section 2). Section 3
explains the validation and trend detection methods. Section 4 provides the results and
discussion of validation, spatial distribution, and phenological characteristics, as well as
interannual trends of GPP. Finally, Section 5 presents a brief conclusion.

2. Study Area and Experimental Data

2.1. Study Area

The study region covers the area from 50◦ N to 90◦ N and is characterized by long
cold winters and short summers. There is very little precipitation and the temperature is
low. As a result of the harsh environments, there are few vegetation types in the Arctic.
As shown in Figure 1a, water occupies more than half of the area in the Arctic, and the
dominant vegetation type are shrubland (dominated by woody perennials), savannas (tree
cover 10–60%), and grasslands (dominated by herbaceous annuals (<2 m)). Savannas are
distributed in relatively low latitudes, while most of the shrublands are located at high
latitudes. Grasslands are mainly scattered west of Greenland. The average altitude of
the Arctic is below 1000 m. Areas with higher elevations are mainly distributed in the
northwestern region of Canada, the northeastern region of Russia, as well as the Greenland
Island and surrounding areas.
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Figure 1. (a) Location of the FLUXNET sites used in this study. The description of these sites is
provided in Table 1. The base map is the land cover types of the Arctic. (b) The elevation distribution
of the Arctic.

Table 1. Basic information regarding the FLUXNET sites of the Arctic.

Site_ID Site_Name Country Latitude (◦ N) Longitude (◦ E) Land Cover N

FI-Lom Lompolojankka Finland 67.9972 24.2092 WET 71
GL-NuF Nuuk Fen Greenland 64.1308 −251.3861 WET 105
GL-ZaF Zackenberg Fen Greenland 74.4814 −20.5545 WET 42
RU-Che Cherski Russia 68.6130 161.3414 WET 33
SJ-Adv Adventdalen Svalbard and Jan Mayen 78.1860 15.9230 WET 23
US-Atq Atqasuk USA 70.4696 −157.4089 WET 88
US-Ivo Ivotuk USA 68.4865 −155.7503 WET 68
FI-Sod Sodankyla Finland 67.3624 26.6386 ENF 371

US-Prr Poker Flat Research Range
Black Spruce Forest USA 65.1237 −147.4876 ENF 98

GL-ZaH Zackenberg Heath Greenland 74.4733 −20.5503 GRA 137
RU-Cok Chokurdakh Russia 70.8291 147.4943 OSH 107
SJ-Blv Bayelva, Spitsbergen Svalbard and Jan Mayen 78.9217 11.8311 SNO 13

WET: wetlands; ENF: evergreen needleleaf forests; GRA: grasslands; OSH: open shrublands; SNO: permanent snow and ice. N means the
numbers of the data points of the sites after quality control.

2.2. Data
2.2.1. FLUXNET Data

FLUXNET 2015 is the latest version of the FLUXNET dataset. Compared with previous
datasets, FLUXNET v.2015 improves the protocols of data quality and the pipeline of
data processing [28]. The Net Ecosystem Exchange (NEE) in the FLUXNET 2015 dataset
was gap-filled with the marginal distribution sampling (MDS) method [29]. It was then
partitioned into Ecosystem Respiration (RECO) and GPP using the daytime fluxes method
(_DT) [30] and the nighttime fluxes method (_NT) [29]. The quality flags in FLUXNET
2015 are given values ranging from 0 to 1, indicating the percentage of high quality
gap-filled and measured data [12]; 1 represents the highest quality and 0 represents the
poorest quality [31].

As shown in Table 1, there are 12 sites in the FLUXNET datasets located in the study
area, including 7 wetland sites, 2 forest sites, a grassland site, a shrublands site, and
a permanent snow and ice site. This study used GPP (GPP_NT_VUT_REF) estimated
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from the night-time method with a daily temporal scale. The selection of GPP followed
two criteria: (1) the quality flags were larger than 0.5; and (2) the difference between the
GPP derived using the night-time method (GPP_NT_VUT_REF) and the day-time method
(GPP_DT_VUT_REF) was lower than 50%. After filtering the data based on the two criteria,
daily GPP were temporally aggregated to generate the 8-day averaged GPP, matching the
temporal resolution of MOD17A2H.

2.2.2. Satellite Data

MOD17A2H (Collection 6) is a standard satellite product with a spatial resolution of
500 m and a temporal resolution of 8 days. It is calculated based on the light use efficiency
(LUE) approach by Monteith [31]:

GPP = ε × fPAR × PAR (1)

where ε, fPAR, and PAR denote the radiation use efficiency coefficient (RUE), the frac-
tion of incident PAR absorbed by the surface, and photosynthetically active radiation,
respectively [32].

According to Running et al. [32], the GPP values of MOD17A2H refer to the sum of
the GPP during an 8-day period. In this study, we averaged the total GPP to generate the
8-day averaged GPP.

2.2.3. Land Cover

The MCD12Q1 product provides global land cover type data at a spatial resolution of
500 m at an annual time step from 2001 to 2019. It is based on the supervised classification
of MODIS reflectance data with six different classification schemes, including the IGBP
(Annual International Geosphere-Biosphere Programmer), which was widely utilized due
to its high accuracy and widespread acceptance [33]. Thus, the IGBP classification method
was utilized in this study. The land cover data from 2001 to 2019 were chosen to produce
a spatially continuous dataset via mosaic. The filling data of MCD12Q1 was removed to
reduce their effect on the results. Evergreen needleleaf forests, evergreen broadleaf forests,
deciduous needleleaf forests, deciduous broadleaf forests, and mixed forests were grouped
into forests. Closed shrublands and open shrublands were grouped together as shrublands.
Woody savannas and savannas were combined into savannas.

2.2.4. DEM (Digital Elevation Model)

Multi-Error-Removed Improved-Terrain (MERIT) DEM is an improvement of SRTM3
(Shuttle Radar Topography Mission v.3) DEM, with a spatial resolution of 3 arc-second
(~90 m). It removes multiple error components from the SRTM3 DEM, including stripe
noise caused by the sensor error, speckle noise of surface reflectance, absolute bias derived
from the limited control points of the ground, and tree height bias where the canopies
were incorrectly classified as the land surface [34,35]. MERIT was chosen because its
accuracy is higher than that of SRTM and NASADEM (NASA Digital Elevation Model) [36]
and because of the data availability in the Arctic. In order to match the resolution of
MOD17A2H, the DEM dataset was resampled to 500 m using the bilinear method.

3. Methods

3.1. Accuracy Assessment

Although the validation based on in situ leaves issues of scale unresolved, which
might introduce uncertainties to the verification, it is still an important method in regions
lacking long-term validation data [37–39]. Here, the direct comparison method was uti-
lized because it is simple and easy to implement. To avoid the influence of data noise,
geometric mismatch, and spatial heterogeneity on the validation results, the average of the
3 × 3 pixels of MOD17A2H centered around tower coordinates in situ was used to match
with in situ as suggested by Ueyama et al. [40].
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Statistical indices, including the coefficient of correlation (R), root mean square error
(RMSE), and Bias were used to indicate the accuracy of MOD17A2H [41]. R measures
the consistency between MOD17A2H and in situ data, while RMSE measures the average
absolute error of the MOD17A2H over a single in situ. Bias describes the average deviation
between MOD17A2H and in situ measurements:

R = ∑h
l=1

(
Pl − P

)(
Ol − O

)
/
√

∑h
l=1

(
Pl − P

)2 ∑h
l=1

(
Ol − O

)2, (2)

RMSE =

√
∑h

l=1(Pl − Ol)
2/h, (3)

Bias = ∑h
l=1(Pl − Ol)/h (4)

where Pl and Ol are the MOD17A2H and in situ-based GPP on the l th time period,
respectively. P and O are the averaged value of the MOD17A2H and in situ-based GPP
time series, respectively. h is the total number of time periods.

The assessment was twofold. First, the performances of the MOD17A2H product were
assessed separately over each site. Second, by combining the data points of all sites within
each specific land cover type, the accuracies of MOD17A2H over different land cover types
were assessed and compared.

3.2. Comparison of Phenological Patterns between In Situ and MOD17A2H

The phenological patterns in ecosystem GPP are important in the terrestrial carbon
cycle and have significant ecological implications. To understand if the MOD17A2H
satellite GPP product can capture the functional phenology, which has been defined as
the interaction and close association between plant functional traits and phenology [42],
of in situ GPP, we first filled the data gap in the original 8-day GPP time series using
a linear interpolation method. The gap-filled GPP time series was further smoothed using
the Savitzky-Golay (SavGol) filter with a window size of 9 time steps and a second-order
polynomial, which not only eliminated noise but also preserved the basic phenological
attributes [43]. Finally, we extracted the timing of maximum GPP (day of year, DOY) during
the photosynthetically active period for each site from both the in situ and MOD17A2H data.
Agreement between the peak timings extracted from the in situ GPP and those extracted
from the MOD17A2H was used as an indicator of the performance of the MOD17A2H GPP
product in representing the functional phenology patterns of arctic ecosystems.

3.3. The Spatial Distribution Characteristics Identification and Trend Detection

The spatial distribution of GPP was explored. First, the pixel-wise multiyear averaged
monthly GPP was calculated to check the GPP spatial distribution and the phenology
patterns in different months. Second, the annual-maximum and annual-averaged GPP
were identified to detect the distribution of GPP in the Arctic.

A pixel-based simple linear regression, in which time is the independent variable
and GPP is the dependent variable, was applied to detect the trend of GPP. In addition,
the significance of the interannual trend was evaluated utilizing the Mann–Kendall (MK)
test [44], and the significant trends (p < 0.025) of the Arctic were retained.

In this study, both MOD17A2H data and the linear regression function were pro-
vided by Google Earth Engine (GEE), which is a cloud-based computing platform for
planetary-scale data analysis, mapping, and modeling, providing free access to numerous
global datasets and advanced computational capabilities [45]. GEE was employed for the
following reasons: it provides easy access to the MOD17A2H datasets and other related
datasets such as land cover types and elevation; it enables rapid exploration of long time
series datasets without downloading them; and it provides a library of functions such as
linear regression function, which are applied for data analysis and result display.
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4. Results and Discussion

4.1. Validation MOD17A2H Based on In Situ

The results of in situ and MOD17A2H GPP were compared in different land cover
types. Figure 2 shows the time series of MOD17A2H and the in situ-based GPP over
wetlands; their scatter plots are presented in Figure 3. As shown in Figure 2, missing data
occurs frequently in the time series, especially in winter and early spring. This is attributed
to the weak photosynthetic activity of vegetation and the lower data coverage during this
period. Both MOD17A2H and in situ-based GPP show reasonable seasonal and annual
variability over wetlands (Figure 2). However, the agreement between them is significantly
different from site to site.

Figure 2. Time series comparison between site-based GPP and MOD17A2H over wetland sites, (a–g)
refers to FI_Lom, GL_NuF, US_Atq, RU_Che, GL_ZaF, US_Ivo and SJ_Adv, respectively.
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Figure 3. Scatter plots of site-based GPP against MOD17A2H over different wetland sites (a–g) and
the overall scatter plots by combining all wetland sites (h). Flux tower GPP means in situ GPP. The
gray belt refers to the confidence interval of 95%.

The comparison results over wetlands can be divided into two groups according to the
performance of MOD17A2H: (1) FI_Lom, US_Atq, GL_ZaF, and SJ_Adv; and (2) GL_NuF,
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RU_Che and US_Ivo. MOD17A2H was found to underestimate in group (1) and overesti-
mate in group (2). Nevertheless, the degree of underestimation varies significantly from
site to site and is low for FI_lom and US_Atq, both in magnitude and temporal variation
trend (Figure 2a,c), with RMSEs of 1.12 and 0.69 g C m−2 d−1 and R of 0.9 and 0.86, re-
spectively (Figure 3a,c). For GL_ZaF and SJ_Adv, the agreement is worse, as the RMSEs
are 2.01 and 1.79 g C m−2 d−1, respectively (Figure 3e,g), and the bias is very large, with
values of −1.54 and −1.21, respectively. The large discrepancy between MOD17A2H and
in situ GPP may be caused by their spatial scale mismatch. Furthermore, it should be noted
that the data points (less than 50) over these two sites are very limited. For the second
group, MOD17A2H is generally consistent with in situ measurements, with the RMSEs of
0.74, 1.22, and 1.0 g C m−2 d−1, and R of 0.86, 0.82, and 0.86 over GL_NuF, RU_Che, and
US_Ivo, respectively.

As indicated by Figure 3, the MOD17A2H performs well over wetlands when ex-
cluding the sites with limited data points (i.e., GL_ZaF and SJ_Adv). One interesting
observation was that the latitudes of GL_ZaF and SJ_Adv are higher than 74◦ N while
those of the other sites are lower than 74◦ N. In addition, the GL_NuF site where the
best agreement between MOD17A2H and in situ occurs has the lowest latitude of all the
wetland sites. Therefore, it can be inferred that the accuracy of MOD17A2H may be related
to latitude, as it is higher over low latitudes but lower over high latitudes. When it comes
to the overall performance of MOD17A2H over wetlands (Figure 3h), the overall RMSE
and R are 1.17 g C m−2 d−1 and 0.76, respectively. MOD17A2H slightly underestimates
GPP, with a bias of −0.19. Based on the results above, MOD17A2H can be considered
capable of revealing the spatial distribution characteristics and the temporal trend of GPP
over wetlands in the Arctic.

Figures 4 and 5 show the evaluation results of MOD17A2H over forest sites (i.e.,
FI_Sod and US_Prr). MOD17A2H underestimates GPP at FI_Sod but overestimates GPP at
US_Prr. The extent of misestimation differs between the two sites and is weak for FI_Sod
but strong for US_Prr. Over FI_Sod, MOD17A2H agrees well with in situ measurements
(Figure 4a), with the RMSE of 1.33 g C m−2 d−1 and bias of −0.77 (Figure 5a). However,
for US_Prr, their agreement is worse (Figure 4b), with the RMSE of 2.05 g C m−2 d−1 and
bias of 1.19 (Figure 5b). It is important to note that the extent of misestimating MOD17A2H
varies from year to year. This is especially true over US_Prr, where the overestimation
of MOD17A2H is more significant from 2012 to 2014 (Figure 4b). Although the two
sites feature forests, their locations are different (Table 1), indicating that the accuracy
of MOD17A2H is also influenced by other factors. As shown in Figure 5c, although
MOD17A2H slightly underestimates GPP over forests (Bias = −0.36), overall, MOD17A2H
was consistent with site measurements over forests, with RMSE and R of 1.51 g C m−2 d−1

and 0.79, respectively.

Figure 4. Time series comparison between site-based GPP and MOD17A2H over forest sites, (a) and
(b) refers to FI_Sod and US_Prr.
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Figure 5. Scatter plots of site-based GPP against MOD17A2H over different forest sites (a,b), and the
overall scatter plots by combining all forest sites (c). Flux tower GPP means in situ GPP. Gray belt
refers to the confidence interval of 95%.

Figures 6 and 7 present the comparison results over grasslands, shrublands, and
permanent snow and ice. MOD17A2H generally underestimates GPP over these land
cover types but the degree of underestimation varies with sites, as it is relatively weak for
RU_Cok (RMSE = 1.02 g C m−2 d−1, Bias = −0.44) but strong for GL_ZaH and SJ_Blv (with
the RMSEs of 0.61 and 0.19 g C m−2 d−1 and the Bias of −0.5 and −0.17, respectively).
It is important to remember that the latitudes of GL_ZaH and SJ_Blv are higher than at
RU_Cok, which further demonstrates that the accuracy of MOD17A2H is related to the
latitude of the sites.

When combining the data points of all the sites (Figure 8), MOD17A2H slightly
underestimates GPP, with the bias of −0.32. The overall accuracy of MOD17A2H is
reasonable over the Arctic, with RMSE of 1.26 g C m−2 d−1 and R of 0.8, respectively. These
indicators demonstrate that MOD17A2H is able to capture the spatiotemporal variation
characteristics of GPP in the Arctic.

From the validation results based on in situ measurements, it is shown that the
MOD17A2H generally underestimates GPP over these land cover types. Nevertheless,
depending on the location of the sites, it may underestimate or overestimate GPP within
each land cover type. This demonstrates that the accuracy of MOD17A2H is also influenced
by other factors in addition to land cover types. For instance, the latitude seems to be
associated with the accuracy of MOD17A2H given that the accuracy of MOD17A2H tends
to be higher over low latitudes but lower over high latitudes (>74◦ N), which might be
due to the actual maximum radiation conversion efficiency (εmax) of vegetations being
quite different from the given εmax in high latitude. In fact, the misclassification of a pixel
is also responsible for the inconsistency of the accuracies derived from different sites
within the same land cover type. Because the classification scheme adopted by IGBP is too
general, it cannot reveal the detailed categories carrying out photosynthesis. Moreover,
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MOD17A2H is calculated based on the concept of light use efficiency (LUE), which assumes
a fixed maximum radiation conversion efficiency (εmax) of each land cover type [19]. This
treatment also introduced errors when misclassification occurred. Another cause of the
inconsistency is the different degrees of surface heterogeneities within the satellite pixel,
which cause the sites to be more or less representative of the satellite pixel. Last but not least,
since missing data of in situ may occur unequally during each 8-day period, the temporal
representativeness varies across these sites. Despite these uncertainties, the validation
results still suggest that the performance of MOD17A2H is better over shrublands and
wetlands than it is over forests.

Figure 6. Time series comparison between site-based GPP and MOD17A2H over grasslands (a),
shrublands (b), and permanent snow and ice (c) sites.

 

Figure 7. Scatter plots of site-based GPP against MOD17A2H over grasslands (a), shrublands (b),
permanent snow and ice (c) sites. Flux tower GPP means in situ GPP. Gray belt refers to the confidence
interval of 95%.
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Figure 8. The overall scatterplots of in situ based GPP against MOD17A2H. Flux tower GPP means
in situ GPP. Gray belt refers to the confidence interval of 95%.

4.2. Evaluation of the Phenological Characteristics of MOD17A2H

According to Figure 9, MOD17A2H does express the phenological characteristics
of GPP in the Arctic, with cross-sites R and RMSE of 0.62 and 8.9 days, respectively. In
particular, as shown in Figure 9c, the peak GPP timing DOY of grasslands was the most
consistent with that extracted from in situ data (R = 0.86, RMSE = 4 days). By contrast,
the discrepancy between MOD17A2H and in situ peak GPP timing over forest sites was
the highest (Figure 9b), with R and RMSE of 0.52 and 11.9 days, respectively, which
demonstrates that the characteristics of the forests (mostly evergreen needleleaf) GPP,
derived from MOD17A2H, are difficult to capture compared with the characteristics of
other land cover types. This might be due to two reasons: (1) forests are composed of
evergreen needleleaf forests, evergreen broadleaf forests, deciduous needleleaf forests,
deciduous broadleaf forests, and mixed forests; therefore, the diversity of forests makes
phenological characteristics difficult to capture by satellite observations; and (2) evergreen
needleleaf forest is one of the major forest types in the Arctic, which is less sensitive
to climate changes according to [46], thus the phenological characteristics of evergreen
needleleaf forests are hard to capture.

4.3. Spatial Distribution Characteristics
4.3.1. Spatial Distribution of Annual-Averaged GPP

Figure 10 shows the annual maximum (Figure 10a) and annual-averaged GPP (Figure 10b),
derived from MOD17A2H, in the Arctic on a pixel basis. The two metrics generally
present similar spatial distribution patterns. GPP is relatively low in the northeast of
Canada and the regions surrounding Greenland, with an annual-maximum range of 0 to
1.200 g C m−2 d−1 and an annual-averaged range of 0 to 0.900 g C m−2 d−1. The low GPP
over these areas can be explained by the fact that these areas are almost completely covered
by grassland and barren land, which have lower GPP (Figure 11c). Therefore, it can be
inferred that the spatial distribution of GPP is related to land cover types. Furthermore,
the GPP shows a decreasing trend as the latitude increases. This is especially true over
the eastern hemisphere of the Arctic, where the annual maximum of GPP drops from
3.300 to 0.300 g C m−2 d−1 and the annual-averaged of GPP decreases from 2.400 to
0.300 g C m−2 d−1.
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Figure 9. The DOY comparison of the timing of the maximum GPP between the sites and MOD17A2H.
(a–e) Represent permanent wetlands, forests, grasslands, shrublands, and all sites combined, respec-
tively. The gray belt refers to the confidence interval of 95%.

Figure 11a,b display the distribution of GPP with latitude and elevation, respectively.
It can be seen that GPP generally shows a decreasing trend with latitude, which is in line
with the results of Gounand et al. [25]. Nevertheless, the sensitivity of GPP to latitude
depends on the situation. The results define three groups of latitudes: (1) latitudes less
than 62◦ N and more than 80◦ N; (2) latitudes higher than 62◦ N but lower than 66◦ N; and
(3) latitudes between 66◦ N and 80◦ N. In the first group, the GPP distribution is sparse
because the region located within this scope is quite limited. Thus, GPP shows irregular
variation patterns with latitude. In the second group, GPP is relatively stable, indicating
the insensitivity of GPP to latitude within this scope. Nevertheless, GPP presents a clear
decreasing trend in the third group, demonstrating that GPP is most sensitive to latitude
from 66◦ N to 80◦ N. Similar to latitude, GPP generally shows a decreasing trend with
increasing elevation (Figure 11b). However, the decreasing rates are different depending
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on the elevation, which is smaller for elevations lower than 700 m, but larger for elevations
higher than 700 m.

 

Figure 10. The spatial distribution characteristics of annual-maximum (a) and annual-averaged GPP
(b) over the Arctic. Units of GPP are g C m−2 d−1.

Figure 11. The annual-averaged GPP distribution with latitude (a) and elevation (m) (b) for the whole Arctic. The gray belt
refers to the confidence interval of 95%, the blue line refers to the fit line, and the boxplots denote the distribution of the
annual-averaged GPP with the latitude. (c) The annual-averaged GPP distribution for the entire study period 2001–2019
over different land cover types. FOR, SHR, SAV, GRA, WET, SNO, BAR, and WAT denote the forests, shrublands, savannas,
grasslands, permanent wetlands, permanent snow and ice, barren, and water bodies, respectively.
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Figure 11c presents the annual-averaged GPP distribution over different land cover
types for the entire study period. It can be seen that all land cover types show considerable
interannual variation except for permanent snow and ice as well as barren land (as indicated
by the wide distribution of boxplots).

4.3.2. Variation of Monthly GPP

Figure 12 displays the spatial pattern of multiyear (2001–2019) averaged monthly GPP.
The phenological cycle of vegetation is clearly shown in the figure. GPP is very low from
November to March, with values close to 0. This is because the photosynthesis of vegetation
was restricted due to the extremely harsh environment and limited lighting hours. From
April to July, with rising temperatures, melting snow and sea ice, and increasing hours of
light, the carbon fixation ability of vegetation is stronger, which contributes to the gradual
expansion of GPP from the northwest of Canada and the low latitudes of Russia to the entire
Arctic. In addition, the mean GPP over the whole Arctic shows a rapid increase during this
period, with the values increasing from 0.0859 g C m−2 d−1 in April to 3.739 g C m−2 d−1

in July. However, the GPP gradually decreases from August to October as the mean values
decrease from 2.215 to 0.0453 g C m−2 d−1. This may be attributed to the decrease in
temperature, the shortening of day-length, and the senescence of vegetation during this
period. The northwestern region of Canada, a small low latitude portion of Russia, and the
regions surrounding Iceland have the longest growth period since they are the first to begin
and the last to stop photosynthesis. Figure 12 demonstrates that spatial heterogeneity is
small during the dormant months (from November to March) and the mid and late summer
months (July and August) when GPP is consistently small or large, but large during the
transition months (April, May, September, and October) and early summer (June). There
are two main reasons for this: the first is the spatial difference in land cover types, the
second is the temporal difference in climate conditions [47].

The GPP in the Arctic has a distinct seasonality with the greatest values in July
(Figure 13). Throughout the year, most land cover types follow the general seasonality
of GPP; they are lowest from January to March, begin to increase in April and reach
a maximum in July, decrease from then on and fall back to the lowest values in November.
Forest and savannas present the largest GPP from April to August, followed by shrublands,
water bodies, permanent wetlands, and grasslands (Figure 13). Permanent snow and ice as
well as barren land ranks last. Nevertheless, from September to October, water bodies show
slightly larger GPP than other land cover types. These results demonstrate that forests
and savannas have a rather high carbon storage capacity during the growing season (from
April to August) but water bodies are the biggest contributors to carbon fixation from
September to October.

The results of Figure 13 are certainly not anticipated because land cover types such as
permanent snow and ice, barren land, and water bodies, which cannot carry out photosyn-
thesis, show considerable GPP. This can be explained by the definition of land cover type
of IGBP, which is determined by the dominant land cover of a pixel. Water bodies refer to
those pixels that are at least 60% covered by permanent water bodies; barren denotes that
at least 60% of the pixel is non-vegetated barren (sand, rock, and soil) areas with less than
10% vegetation; permanent Snow and ice means that at least 60% of the pixel is covered by
snow and ice for at least 10 months of the year. Therefore, the misclassified part of a pixel
is the source of GPP for these three land cover types. From the results above, it is inferred
that only extracting the vegetated pixels, as classified by the land cover, will lead to errors
in calculating carbon storage in the Arctic.

Figure 13 also shows that the monthly GPP has the widest distribution in June,
indicating that the interannual variation of GPP is the most significant in June. This
is understandable since vegetation grew at the fastest speed from May to June (indicated
by the largest slope) and thus is more affected by climate change.
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Figure 12. Spatial distribution characteristics of the multiyear averaged monthly GPP over the Arctic,
(a–l) refers to January to December. The mean values of the whole Arctic are also shown in the figure
for each month. Units of GPP are g C m−2 d−1.
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Figure 13. Multiyear averaged monthly GPP distribution over the entire study period for different
land cover types (denoted by colored lines) over the Arctic. The black boxplots denote the multiyear
monthly GPP distribution of all land cover types.

4.4. Trend Estimates of GPP

The interannual variation trend of GPP is shown on a pixel basis (Figure 14); almost
half of the Arctic presents significant positive trends, but the magnitude of trends shows
distinct spatial variation. In the northwest of Canada and the latitude lower than 70◦ N of
Russia, the trend of GPP varies significantly, ranging from 0.005 to 0.08 g C m−2 year−1. By
contrast, in the northeast of Canada and the regions surrounding Greenland, the GPP trend
varies slightly, ranging from 0 to 0.01 g C m−2 year−1. The small range of the GPP trend is
likely to be associated with grassland and barren land. The former has a relatively small
spatial variation, as indicated by the centralized distribution of the interannual trends in
GPP. The latter has a very small GPP, which is almost constant over time (Figure 11c).

Figure 14. The spatial distribution of interannual trend of GPP (g C m−2 year−1) over the Arctic (at
97.5% confidence level based on MK test).
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As seen from Figure 12, there is almost no vegetation productivity in the Arctic from
November to March. Thus, Figure 15 only presents the interannual trends from April to
October. It is clear that the interannual trends show significant differences between different
months. From April to June, the interannual trends in northwestern Canada gradually
increase and reach a maximum in June, with an overall trend of 0.068 g C m−2 year−1

(Figure 15c). From then on, the interannual trend decreases gradually until October
(Figure 15d–g). Furthermore, we also find that the interannual trends in July and August
are more spatially heterogeneous than in other months. These results demonstrate that the
response of vegetation to climate change is not consistent between different months and
over different areas. It is interesting to find that the interannual trend is the most significant
in June (Figure 15c) and shows a similar spatial pattern to the overall interannual trend
(Figure 14). This demonstrates that the interannual variations of GPP in the Arctic may be
dominated by the change of vegetation productivity in June.

Figure 15. Spatial distribution of the interannual variation trend (g C m−2 year−1) of monthly GPP
over the Arctic, (a–g) refers to April to October.

The distributions of the interannual trends in GPP with latitude and elevation are
shown in Figure 16a,b. The interannual trends first increase at the latitude of 51◦ N and
reach a maximum of 0.018 g C m−2 year−1 at 57◦ N. From then on, the interannual trend
decreases significantly until 62◦ N. However, the interannual trend seems to be independent
of latitude from 62◦ N to 66◦ N. Then a clear decreasing trend can be observed from 66◦ N
until 80◦ N. Therefore, we can conclude that the interannual trend of GPP is sensitive to
the latitude, except in the regions located between 62◦ N and 66◦ N, which is similar to
the distribution of annual-averaged GPP with the variation of latitude. This is mainly
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because the regions located between (62◦ N, 66◦ N) are in the same climatic zone, namely
in the north temperate zone. Figure 16b demonstrates that the interannual trend of GPP
generally shows a decreasing trend with increasing elevations. However, the sensitivity is
relatively weak at low elevations (<700 m) and significant at larger elevations (>700 m). The
low GPP and interannual trend in the regions with relatively higher altitude and latitude
Figure 11a,b and Figure 16a,b mainly due to the low precipitation and temperature, which
are not conducive to plant growth [48,49]. These results could help us understand the
latitude or elevation range in which the change of GPP mainly occurred, providing a basis
for understanding the changes of the Arctic GPP.

Figure 16. Interannual variation trend of GPP (g C m−2 year−1) distribution with latitude (a),
elevation (m) (b) over the Arctic. The gray belt refers to the confidence interval of 95%, the blue
line refers to the fit line, and the boxplots denote the distribution of the annual-averaged GPP with
the latitude. (c) Land cover-dependent interannual variation trend of GPP (g C m−2 year−1) over
the Arctic. FOR, SHR, SAV, GRA, WET, SNO, and BAR denote the forests, shrublands, savannas,
grasslands, permanent wetlands, permanent snow and ice, barren, and water bodies, respectively.

Figure 16c displays the boxplots of the interannual trends by combining the pixels
for each land cover type. It can be seen that almost each land cover type presents positive
trends. However, their magnitude, as well as their spatial variation, depend on the land
cover types. Forests have the largest interannual trend, followed by savannas and shrub-
lands. The interannual trend of grassland is not as large as we expected and is even slightly
smaller than the trend of permanent wetlands. Savannas and forests show the largest
spatial variations in interannual trends, as indicated by the most widespread distribution
of boxplots. Permanent wetlands and grasslands present the smallest spatial variations
when excluding permanent snow and ice as well as barren land. These results demonstrate
that the interannual trends of savannas and forests are more influenced by other factors,
while those of permanent wetlands and grasslands are less sensitive to other factors.

5. Conclusions

Arctic ecosystems have undergone great changes in the context of climate change.
GPP is one of the most crucial indicators of the response of ecosystems to climate change.
However, few efforts have been devoted to exploring the spatial variation and phenological
characteristics of GPP in the Arctic. In response to this challenge, this study investigated
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the spatial distribution as well as the seasonal (phenological) and interannual variations
of GPP in the Arctic using MOD17A2H. Furthermore, the GPP variation trends with land
cover types, latitude, and elevation were also explored. In order to ensure that the results
were reliable, the accuracy of MOD17A2H was first evaluated using in situ measurements
from FLUXNET.

This study found that MOD17A2H generally underestimates GPP over the land cover
types investigated in this study, and its accuracy tends to be higher over low latitude but
lower over high latitude. However, the overall accuracy suggests that MOD17A2H is con-
sistent with the FLUXNET 2015 dataset (RMSE = 1.26 g C m−2 d−1, R = 0.8, Bias = −0.32),
and MOD17A2H can represent the phenological characteristics of GPP (RMSE = 8.9 days,
R = 0.62). Based on MOD17A2H, it was demonstrated that the maximum GPP occurred in
July. In addition, the spatial distribution of GPP is related to land cover types; for example,
forests and savannas have relatively high carbon storage capacity from April to August. By
comparing the GPP variation with latitude and elevation, it was shown that GPP generally
decreases as the latitude and elevation increase. However, the phenomenon is not evident
for latitudes in the range (62◦ N, 66◦ N) and elevation lower than 700 m. The overall trend
of GPP in the Arctic is greater than zero and is dominated by the variation of vegetation
productivity in June. Furthermore, the response to climate change is different across these
land cover types; for example, forests are most sensitive to climate warming. The distribu-
tion of the interannual trend in GPP across latitudes and elevations is consistent with the
changes in GPP as a function of latitude and elevation.

This study is helpful for understanding the spatiotemporal distribution characteristics
of GPP over the Arctic as well as the response of ecosystems to climate change. Never-
theless, the results need to be validated with different satellite products. The number of
sites used for validation is limited. Therefore, the presented conclusion about the accuracy
of MOD17A2H may not be transferable to other regions. Another limitation is that only
individual factors such as land cover type, latitude, and elevation were considered in this
paper. Other factors, such as air temperature, precipitation, and snow, that are related
to vegetation growth status need to be explored further. This will also be our focus in
the future.
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Abstract: Estimating yield potential (Yp) and quantifying the contribution of suboptimum field
managements to the yield gap (Yg) of crops are important for improving crop yield effectively.
However, achieving this goal on a regional scale remains difficult because of challenges in collecting
field management information. In this study, we retrieved crop management information (i.e.,
emerging stage information and a surrogate of sowing date (SDT)) from a remote sensing (RS)
vegetation index time series. Then, we developed a new approach to quantify maize Yp, total Yg,
and the suboptimum SDT-induced Yg (Yg0) using a process-based RS-driven crop yield model for
maize (PRYM–Maize), which was developed in our previous study. PRYM–Maize and the newly
developed method were used over the North China Plain (NCP) to estimate Ya, Yp, Yg, and Yg0 of
summer maize. Results showed that PRYM–Maize outputs reasonable estimates for maize yield over
the NCP, with correlations and root mean standard deviation of 0.49 ± 0.24 and 0.88 ± 0.14 t hm−2,
respectively, for modeled annual maize yields versus the reference value for each year over the
period 2010 to 2015 on a city level. Yp estimated using our new method can reasonably capture the
spatial variations in site-level estimates from crop growth models in previous literature. The mean
annual regional Yp of 2010–2015 was estimated to be 11.99 t hm−2, and a Yg value of 5.4 t hm−2

was found between Yp and Ya on a regional scale. An estimated 29–42% of regional Yg in each year
(2010–2015) was induced by suboptimum SDT. Results also show that not all Yg0 was persistent over
time. Future studies using high spatial-resolution RS images to disaggregate Yg0 into persistent and
non-persistent components on a small scale are required to increase maize yield over the NCP.

Keywords: remote sensing; crop sowing date; development stage; yield gap; yield potential; process-
based model

1. Introduction

Yield potential (Yp) is the upper limit of the yield of a specific crop type within a given
domain and is limited by only the local heat and light resources [1]. Narrowing the gap
(yield gap, Yg) between Yp and on-farm yield (Ya) is critical for increasing food production.
Yg is caused by multiple factors, but not all could be controlled [2,3]. Factors contributing to
Yg were categorized into either persistent (field managements, terrain, and soil quality) or
non-persistent factors (adverse climate, insect attack, and other non-management factors)
by Lobell, et al. [4]. The persistent factor, field management, could be controlled in the field
and has made considerable contributions to Yp, as presented in previous studies [2,5,6].
Therefore, the knowledge of Yp and the contributions of persistent factors to Yg can provide
useful information for improving crop yield.

Sowing date (SDT) is one of the important management factors that affect crop
yield [7–9]. A few economic inputs are required to optimize SDT on a farm. Several
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methods may be available for exploring Yp and quantifying the contribution of this factor
to Yg. These methods could be generally categorized into two types: model simulation
and field experiments. The latter method provides an estimate of Yp and other levels of
yield under controlled experimental conditions, thus it can quantify the effect of SDT on
Yg [10]. However, for analysis over a wide spatial or temporal range, such a method is
time-costing and uneconomical. In this case, the field experiment generally served as a
means of acquiring data for calibrating and validating crop growth models (CGMs) [11–13].
Model simulation is favored for its low cost and high efficiency [1,14]. CGMs such as
the agricultural production system simulator (APSIM) [15], crop environment resource
synthesis (CERES) models [16], and CSM-IXIM [17], after being calibrated, can produce
reliable estimates of crop Yp and Ya and can also simulate crop yield under controlled
conditions [11,18,19]. The knowledge of the contribution of management factors, including
SDT, to Yg could be revealed by comparing simulated values of crop yield under different
management scenarios [6,20]. However, quantifying the contribution of SDT to Yp is not
feasible over a broad region using CGMs owing to the inaccessibility of spatiotemporally
continuous field management information and the sparse spatial distribution of accessible
meteorological sites at present. Simulations and analyses with CGMs in existing literature
were merely performed on meteorological-site levels or within a small region and provided
limited information for understanding Yp and Yg in space [6,20].

The use of remote sensing (RS)-based methods may be an alternative way to address
the above issues, as the use of RS data can make a model less dependent on meteoro-
logical data and management information and show better performances in regional
simulations [21,22]. Unlike CGMs, the key factor, leaf area index (LAI), for simulating
photosynthesis rate RS-based models is remotely sensed rather than simulated by the
model [23], which makes RS-based models more applicable to regional applications. An
RS-based land process model has long been used to simulate ecosystem productivity and
is also useful for simulating crop yield [23,24]. SDT, which is also an essential input of
RS-based models to map crop yield, can be obtained by analyzing the RS vegetation in-
dices (VI) time series [25–27]. Hence, we can use RS data to study the contribution of
suboptimum SDT to Yg over a broad region. Vegetation parameters retrieved from RS data
reflect the actual growing condition of crops and seem to be useful for simulating only Ya.
However, spatiotemporal variations in pixel-level Ya predicted using an RS method are
potentially useful for quantifying Yp [28] and understanding the contribution of different
factors to Yg [2,29]. Assuming that potential yield is realized on a local scale, pixel-level Yp
could be computed as the high percentile (95th or 99th) of yield distribution of surrounding
pixels [28,30]. To avoid this assumption, Lobell [28] suggested using a hybrid method that
estimates the real Yp by fitting the Yp derived from the above RS-based method to the
estimate of a calibrated CGM. However, the hybrid approach may in turn be restricted by
CGMs’ high input data requirement over a broad region. In addition, such a method may
fail when Yg and factors contributing to Yg varied significantly and irregularly in space.
Therefore, an RS-based method to quantify regional-scale Yp, Yg, and the effect of SDT on
crop yield, without the need for CGMs, is needed.

Multiple types of satellite data are available for modeling crop yield and Ygs. High-
spatial-resolution data, such as Landsat and SPOT, that have relatively long revisit times
have been generally used to develop empirical relationships between crop yield and
spectral indices at a specific developmental stage of the crop [29,31–33]. These empirical
methods are limited to quantify Yp and Yg for regions with lower levels of field manage-
ment [28]. Besides, these methods do not explicitly consider the effect of SDT on crop yield,
being not able to quantify the SDT to Yg. The two Sentinel-2 satellites (Sentinel-2A and
B) can provide 10 to 20 m resolution multispectral data with a revisit period of 4–5 days
and are useful for driving a process-based model to estimate crop yield, which requires
time-continuous inputs [34]. However, Sentinel-2B data were only available from 2018
when the satellite was launched; hence, using process-based methods with Sentinel-2
data to reproduce Yg and Yp from earlier years is impossible. Although the widely used
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MODIS data have a coarser spatial resolution than Landsat, SPOT, and Sentinel-2, it can
provide time-continuous images with more available pixels in time and are available from
2000 to present. The data have also been used to estimate crop yield with process-based
models [23,35].

In this study, we aim to develop a new RS approach that uses MODIS data to quantify
Yp and the contribution of suboptimum SDT to Yg of summer maize over the North China
Plain (NCP), with three main objectives: (1) To develop a novel RS-based method driven
by MODIS data to simulate Yp and Yg at a large spatial scale; (2) to assess the reliability of
the developed RS-based method in simulating Ya and Yp over the NCP; and (3) to quantify
Yg and the contribution of suboptimum SDT to the Yg of summer maize over the NCP in
the period 2010 to 2015.

2. Materials and Methods

2.1. Study Region

We quantified the Ya, Yp, Yg, and the contribution of suboptimum SDT to Yg of
summer maize over the NCP. The study region in this study spans five provincial-level
administrative divisions of China (Beijing, Tianjin, Hebei, Shandong, and Henan) and
covers 42 prefecture and two provincial-level cities of China (110.98◦ E–122.71◦ E, 32.27◦ N–
41.06◦ N). In the period 2010 to 2015, the accumulated effective temperature (or growing
degree days, GDD, with a base temperature of 8 ◦C) during the maize growing season
(May to September) and annual precipitation shows a significant spatial gradient with
mean values of 1950 ◦C d year−1 and 720 mm year−1, respectively, for the entire region.
The NCP is one of the major cultivation areas for maize in China, and it is approximated to
produce 30% of the total maize production of the country [36]. We determined the study
region based on administrative boundaries (Figure 1). The region does not correspond to
the exact domain of the plain, but it does cover the major maize cultivation areas.

2.2. Data
2.2.1. Remotely Sensed Crop Information

The remotely sensed crop information we used in this study includes maize distri-
bution maps and vegetation indices (VIs) data. We used annual maize cultivation areas
over the study region in the period 2010 to 2015, which were estimated by Xun, et al. [37]
and have users’ accuracies greater than 80%. The remotely sensed VIs were required in
the RS crop model to simulate the actual yield. We used the Moderate Resolution Imaging
Spectroradiometer (MODIS) normalized difference vegetation index (NDVI), enhanced
vegetation index (EVI), and LAI in this study. NDVI and EVI data with 1 km and 16-
day resolution, retrieved from MOD13A2 and MYD13A2 products (available through
https://earthdata.nasa.gov/, accessed in 3 May 2020), were used. As the study area is
large enough and the typical maize planted region is usually larger than 1 km2, the used
images with 1 km resolution could capture the main spatial characteristics of maize in the
study area. The retrieved data were preprocessed in terms of the following procedures
before use to remove unreliable data and noise:

• Quality control: Pixel values with snow or cloud cover in the retrieved data were
replaced by linearly interpolating the nearest available pixels in time.

• Time-series filter: TIMESAT3.3 was used to filter the retrieved VI data, with the
required parameters were set, as shown in Section 2.3.5.

• Temporal interpolation: Eight-day VI data were linearly interpolated to daily data.
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Figure 1. The study region (North China Plain) and reference region (Rongcheng county and
Dingxing county). The reference region is a county, where most of the croplands were cultivated
with summer maize, and we obtained a reference LAI time-series curve by averaging the LAI time
series of all maize pixels retrieved from MODIS products in the reference region (Section 2.3.4). The
reference LAI time series was an important factor for computing the Yp of maize (Section 2.3.4).

The LAI of maize was not directly retrieved from the MODIS product as crop LAI was
reported to be significantly underestimated by the MODIS product. In this study, maize
LAI was calculated using empirical equations, calibrated by Bai, et al. [38], in terms of EVI.
This method was calibrated with samples collected from the US, Europe, and China. Thus,

LAI =

{
24.805EVI2 − 15.444EVI + 2.382

9.249EVI − 1.236

before EVI peaking

after EVI peaking
(1)

where LAI was calculated in two ways during one growing season, and we used a quadratic
equation before EVI peaking and a linear equation after it.

All the computations involving gridded MODIS data were carried out using the GDAL
(the Geospatial Data Abstraction Library) package under the Python2.7 environment.

2.2.2. Meteorological Data

Gridded daily meteorological data retrieved from the ERA-Interim reanalysis (ERA)
dataset and multi-site data of the China Meteorological Administration (CMA) were
required to drive the RS crop yield model. Surface net radiation (Rn), vapor pressure
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deficit (VPD), and air temperature (T) were directly retrieved from the ERA-Interim dataset
(https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era-interim, access-
ed in May and June, 2020). Precipitation (Pr) and global solar radiation (Rg) were retrieved
from CMA multi-site data (http://data.cma.cn/, accessed in June 2020). Site-scale CMA
data were spatially interpolated to a raster dataset using inverse distance weighted method
provided by ArcGIS software (v10.1), and key parameters required were set as follows:

• Output cell size = 5 km;
• Power = 2;
• Search radius = variable; and
• Search radius settings: Number of points = 12; maximum distances = 100 km.

Rather than directly retrieving from the site-scale observations, daily solar radiation
(Rg) data were calculated in terms of the interpolated site-observed daily air tempera-
ture range (TR) and daily sun hours (HrS) because sites observing Rg is too sparse to be
interpolated. We referred to Chen, et al. [39] to calculate daily Rg, such that

Rg/R0 = a × ln(TR) + b ×
(

HrS/Hrday

)c
+ d (2)

where R0 denotes the extra-terrestrial solar radiation; Hrday denotes the number of daytime
hours; and a, b, c, and d are empirical coefficients. The average of values for each coefficient
across multiple sites over China was used, such that a = 0.04, b = 0.48, c = 0.83, and d = 0.11.
ERA-Interim datasets provide gridded global meteorological variables from 1981 to present
in multiple temporal and spatial resolutions. The temporal and spatial resolutions of
gridded data retrieved from ERA-Interim were 12 h and 0.125 arc-degree. The daily value
of each variable is the sum (for Pr) or average (for variables except for Pr) of two 12-h
values in one day.

2.2.3. Reference Maize Yield

Prefecture-level statistics of maize yield in the period 2010 to 2015 reported by the
National Bureau of Statistics of China were used to validate Ya simulated by a process-
based and RS-driven crop yield model for maize (PRYM–Maize). These data were retrieved
from the statistical yearbook of Shandong Province, Hebei Province, Henan Province,
Beijing, and Tianjin for 2010–2015. When validating the simulations against statistical
values, simulated pixel-level yields were averaged by prefecture-level districts (Figure 1).

2.3. Methods
2.3.1. Quantifying Yg and the Contribution of SDT to Yg

An RS process-based crop yield model (Section 2.3.2 driven by MODIS data was
used to simulate Ya, limiting the potential yield by only SDT (Yp0) over the NCP. Yp was
computed on the basis of the modeled Yp0 (see Section 2.3.4. Two Ygs and the contribution
of suboptimum SDT to Yg were calculated as follows:

Yg = Yp − Ya (3)

Yg0 = Yp − Yp0 (4)

CYg0 = Yg0/Yg (5)

where Yg or Yg0 is the gap between Yp and Ya or potential yield limited by suboptimum
SDT, and CYg0 is the contribution of Yg0 to Yg.

When mapping the mean annual Yg and CYg0 based on MODIS 1 km resolution
Ya and Yg0, the two 1 km data were aggregated to 5 km-resolution rasters. Most 1 km
pixels over the NCP were not continuously cropped with maize in time (Supplementary
Figure S2), whereas most 5 km grids have more than one 1 km pixels continuously cropped
with maize in 2010–2015. A 5 km grid represents all maize fields located on the grid. How-
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ever, we noted that the aggregation may reduce the effects of random factors (uncertainties
in RS data or meteorological inputs) on yield, as discussed in Section 4.1.

2.3.2. A Brief Overview of PRYM–Maize

A process-based RS crop yield model, PRYM–Maize, which was developed in our
previous study and running on a daily step, was used to simulate maize yield in conjunc-
tion with MODIS data in this study [35]. PRYM–Maize consists of two basic modules:
water balance and productivity modules. The water balance module (WBM) follows the RS
and water balance-based Penman-Monteith model version 2 (RS-WBPM2) [38], which was
modified from Bai, et al. [40], to simulate water stress based on MODIS VIs and meteoro-
logical data. The productivity module consists of multiple sub-processes, photosynthesis,
grain conversion, and respirations. The ecosystem-level photosynthesis rate was scaled
from the leaf-level value based on a two-leaf canopy model and the MODIS-based LAI
(Equation (1))). A full description of the model can be found in Zhang, Bai, Zhang and
Shahzad [35] or Supplementary Text S1.

2.3.3. Modifications to PRYM–Maize

In PRYM–Maize, we simulated the growth of maize grain on a daily step as a function
of development stage (DVS) and daily net primary productivity (NPPdaily), as presented
in Supplementary Text S1.3. The DVS index is required to compute the proportions of
photosynthesis-produced dry matters that were allocated to different organs, namely, root,
stem, leaf, and grain. In the previous version of PRYM–Maize, the DVS is calculated as a
function of GDDs, as also presented in other CGMs [41–43]. However, GDDs are vulnerable
to uncertainties in input air temperature data. Alternatively, GPP was potentially useful to
indicate the crop DVS because it is more directly related to crop growth than are GDDs [24].
In addition, RS information represented by GPP may partly eliminate the error in input air
temperature data. Huang, Ryu, Jiang, Kimm, Kim, Kang and Shim [24] proposed using
normalized accumulated GPP (GPPnor_acc), estimated using an RS-based model, to indicate
the DVS of crop and found that the two factors were tightly correlated. This method was
successfully used in simulating rice grain-filling across three flux sites over the Korean
Peninsula [24]. In this study, we do not use GDDs but adopt GPPnor_acc to compute the
DVS. GPPnor_acc was designed to vary from 0 to 1 in Huang, Ryu, Jiang, Kimm, Kim, Kang
and Shim [24] as crops grow accompanied by accumulating GPP, and GPPnor = 0 and 1
correspond to emerging and maturing stages of crops. Such that

GPP(t0)
nor_acc =

t0
∑

t=EM
GPP(t)

GPPacc
(6)

GPPacc =
HV

∑
t=EM

GPP(t) (7)

where GPPacc denotes the accumulated GPP along the entire growing season; GPP (t0)
nor_acc

denotes normalized accumulated GPP for day t0 and is equivalent to DVS; and EM and HV
denote the emerging and harvest date, respectively. Pixel-level EM and HV were retrieved
from the RS NDVI time series (Section 2.3.5).

DVS varies from 0 to 2, indicating the development of crops from emerging to matur-
ing stages; therefore, we estimated DVS by scaling GPPnor_acc using 2, as follows:

DVS(t0) = 2 × GPP(t0)
nor_acc (8)

2.3.4. Simulating Potential LAI and Yp

Temporal variations in LAI of crops fully depend on simulations in CGMs; thus, it is
feasible to simulate Yp using a calibrated crop model by removing all field management
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limits for crop growth in the model. However, not all management factors in an RS-based
yield model can be adjusted to the optimum because RS-LAI, as a critical input of the
RS-based model, does include environmental stress on crop growth. However, it is still
possible to use an RS-based model to simulate Yp if the stress on crop growth represented by
actual LAI is removed. Here, we define the LAI time series, representing no environmental
stress on crops and leading to potential yielding, as potential LAI (LAIp).

RS-LAI derived from the MODIS VI (Equation (1)) may fail in representing the magni-
tude of LAIp but could capture the variation trend of LAIp in time because the DVS of crops,
including maize, primarily depends on the effective accumulative temperature rather than
field managements, as represented by existing CGMs [41,42,44]. Figure 2 is a scatter plot,
with 45 data pairs, for maize yield vs. peak LAI observed during the growing season
(PLAI). These data were collected from 21 published and 8 unpublished super-high yield
experiments over China. These experiments attempted to optimize all field managements,
and the growth of maize was primarily limited by air temperature and solar radiation.
Under optimum field managements, maize yield positively correlates with PLAI. When
PLAI is greater than 6.6, maize yield tends to saturate at a high level, ~20 t hm−2, and the
correlations between PLAI and maize yield become insignificant (Figure 2). This implies
that a PLAI greater than 6.6 may be adequate for maize yielding.

Figure 2. Maize yield against growing season maximum leaf area index (LAImax) over China. Red
circles denote data retrieved from 21 published [45–65] and 8 unpublished trials. For one trial
involving multiple treatments or maize spices, the data pair from the highest yield treatment of each
species was picked up. Blue circles denote recent field trails that have not been published yet.

Based on the above analyses, we proposed using the following steps to calculate LAIp
and Yp:

1. Derive a reference curve (CRF =
{

LAI(0)RF , LAI(2)RF , . . . , LAI(JHV)
RF

}
) from the LAI time

series within the reference region (Figure 1), where JHV denotes the number of days
from EM to HV, LAIRF denotes a reference LAI value of a given day. CRF has a PLAI
greater than 6.6, representing the roughly temporal variation in LAIp. We obtain CRF
using two procedures: (i) Average the LAI time series of all maize pixels retrieved
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from MODIS VI-based LAI (Equation (1)) by date in 2010 within the reference region
(Figure 2) to obtain an LAI curve (C0 =

{
LAI(0)0 , LAI(2)0 , . . . , LAI(JHV)

0

}
) for maize;

(ii) calculate CRF from C0 as CRF = PLAIopt× C0 −min(C0)
max(C0)−min(C0)

, where PLAIopt denotes
the optimum PLAI for maize potentially yielding and is expected to be greater than
6.6. In this study, we made a conservative estimate for PLAIopt and set it to 7.5, and
this estimate was supported by Liu, Hou, Xie, Ming, Wang, Xu, Liu, Yang and Li [50],
who reported PLAI = 7.53 of the maize plants, achieving the highest maize yield
(22.5 t hm−2) record in China.

2. Derive LAIp for each pixel by fitting the time series of RS-LAI (CRS =
{

LAI(0)RS , LAI(2)RS ,

. . . , LAI
(J′HV)
RS

}
) of the pixel to CRF using linear regression analysis, as shown in

Figure 3, where J ′HV denotes the number of days from EM to HV for a given pixel.
In other words, we fitted CRF = k × CRS + b for each pixel to obtain k and b and
then calculated LAIp as k × CRS + b. If J ′HV �= JHV, CRF was linearly stretched in the
timeline to match the time span of CRS.

3. Run the RS process-based crop yield model to simulate Yp0 with input LAI substituted
by LAIp, f N(N) = 1, and gsm,2000 = 0.017 m s−1.

4. We referred to the method of Lobell [28], which assumed optimal field management
(SDT in this study) can be achieved within a given domain with similar climate
conditions, to compute Yp at each pixel as the 95th of Yp0 values of surrounding pixels.
These surrounding pixels were selected using two criteria: (i) Within a 50 km buffer
around the central pixel and (ii) differences in accumulated GDDs and total solar
radiation during the growing season (June–September) between the surroundings and
the center pixel were less than 50 ◦C d and 50 MJ, respectively. The buffer size here
referred to the size of a zone represented by a meteorological site in Wart, et al. [66].

Figure 3. An example of deriving LAIp from RS-LAI and CREF. LAIp on the right panel (b) was derived by fitting the
RS-LAI on the left panel (a) to CREF using the least-square method.

2.3.5. Extracting Crop Phenology Using RS Data

Emerging (EM) and harvest (HV) dates of each pixel in each year were retrieved from
the 8-day and 1 km time-series NDVI data using TIMESAT3.3. The Savitzky–Golay filter
was used to denoise the NDVI time series. The EM and HV dates were estimated on the
basis of the denoised NDVI time series, and they corresponded to the start and end of the
season (SOS and EOS, respectively) defined in TIMESAT. The key parameters required
were set as follows:
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• Window size = 64 days,
• Start of season method = relative amplitude, and
• Season start/end value = 0.1/0.2,

where “window size” means the total nearest days that are used to denoise the current
data; “relative amplitude” indicates that the SOS or EOS was estimated as the time when
NDVI increases or decreases to a given proportion, as specified by the season start or end
value, of the relative amplitude of NDVI time series during a specific growing season.

3. Results

3.1. Modeled Ya

Pixel-level Ya in 2010–2015 over the NCP was simulated using the modified PRYM–
Maize. Results are shown in Figure 4. In each year, modeled prefecture-level yields had
a root mean standard deviation (RMSD) value of 0.88 ± 0.14 t hm−2 and an R value
of 0.49 ± 0.24 with the reference value. A pooled analysis for modeled yield vs. refer-
ence yield in 2010–2015 shows modeled yield by PRYM–Maize has an R (RMSD) of 0.45
(0.87 t hm−2). The performance of PRYM–Maize is improved when modeled and reference
prefecture-level yields are averaged in time (Figure 5b). Uncertainties in modeled yield are
significantly reduced, and the RMSD of mean annual modeled yield vs. the reference value
is 0.66 t hm−2, which is less than that in any one year (Figure 4).

The average of R (RMSD) values for modeled yield vs. reference value in each year
is 0.49 (0.86 t hm−2). The model achieves the best simulations in 2011 with an R value of
0.66. Generally, R values achieved by PRYM–Maize in this study are not high, and one
important reason for this is that the prefecture-level maize yield values in 2010–2015 are in
a narrow range (4–9 t hm−2) and show relatively small dynamics over space, as represented
by both reference (standard deviation (STD) = 0.88 t hm−2 for reference yield) and modeled
yield (Figures 4 and 5a). Therefore, these results demonstrate that PRYM–Maize outputs
reasonable estimates for the Ya of summer maize over the NCP.

3.2. Modeled Yp

The Yp of summer maize over the NCP was estimated using the RS-based method
presented in Section 2.3.4. Yp estimated for each year in the period 2010 to 2015 was
averaged over time (Figure 6a). Results show that Yp estimated in this study has a tight
correlation (R = 0.81, RMSD = 0.87 t hm−2) with that estimated using a calibrated APSIM-
Maize model at 10 agricultural meteorological (AM) sites from existing studies (Figure 6c).
The result demonstrates that the performance of the developed approach in estimating Yp
is comparable to that of a calibrated CGM. However, Yp values from the two methods were
not the same (Figure 6c). Regardless of the differences in formulations between the two
methods, Yp in this study represented the period 2010 to 2015, which is different from the
data we used for comparisons in Figure 6.

Our results show that the mean annual Yp in the period 2010 to 2015 ranged between
9 and 16 t hm−2 over the study region with a regional value of 11.99 t hm−2. Mean annual
Yp over the study region generally increased from southwest to northeast. The northeast of
Shandong Province had the highest Yp, whereas the lowest Yp appeared in the southeast of
Henan province.
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Figure 4. Maps of modeled Ya of summer maize in 2010 (a), 2011 (b), 2012 (c), 2013 (g), 2014 (h), and 2015 (i); and the
pixel-level frequency distribution (FD) of pixel level values in 2010 (d), 2011 (e), 2012 (f), 2013 (j), 2014 (k), and 2015 (l). The
scatter plot represents a comparison between modeled yield and reference yield on a prefecture-level, the modeled yield
on a prefecture-level is the average of yield values of all pixels within a prefecture-level district, and each scatter plot has
44 samples; the solid line in each scatter plot represents the “1:1 line.” The value ranges in the legend are right-closed and
left-open.
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Figure 5. Modeled maize yields vs. reference values on a prefecture-level for pooled data (a) and
mean annual data (b) in the period 2010 to 2015; R, N, and RMSD denote correlation, sample size,
and root mean standard deviation, respectively; the error bar represents the standard deviation of
multi-year data.

Figure 6. The map (a) and frequency distribution (b) of mean annual modeled Yp of summer maize over the period 2010 to
2015, and the modeled Yp of 10 agricultural meteorological (AM) sites vs. the simulations of corresponding sites from Wang,
Wang, Yin, Feng and Zhang [11] (c). The value ranges in the legend of panel (a) are right-closed and left-open. Yp data from
Wang, Wang, Yin, Feng and Zhang [11] represent the average of annual Yp in the period 1982 to 2005 for Linyi, 1982 to 2008
for Zibo and Laiyang, and 1982 to 2009 for the remaining sites.
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3.3. Yg and the Contribution of Suboptimum SDT to Yg

Modeled regional Ya and potential yield limited by suboptimal SDT (Yp0) and Yp in
the period 2010 to 2015 are presented in Table 1 and Figure 7a. The ratio of Yg to Yp (Yg/Yp),
the ratio of Ya to Yp (Ya/Yp), Yg caused by suboptimal SDT (Yg0), and the contribution of
suboptimal SDT to Yg (CYg0) computed on the basis of Ya, Yp0, and Yp are also presented
in Table 1 and Figure 7b. The spatial variations in annual mean Ya, Yg, Yg/Yp, Yp0, Yg0,
and CYg0 are shown in Figure 8. Results show that large gaps (Ygs) remained between Ya
and Yp on a regional scale or at a specific location over the NCP. Most areas of the study
region had Yg values greater than 3 t hm−2, and high Yp values were mainly distributed in
the north and northeast (Figure 8b). Yg of approximately 99% of the study areas accounted
for more than 30% of local Yp (Figure 8c). Annual regional Yg of summer maize in NCP
ranged in 4.9–6.4 t hm−2 with a mean value of 5.4 t hm−2, accounting for approximately
45% of the mean annual regional Yp (Table 1 and Figure 8). As shown in Table 1 and
Figure 7, considerable proportions of Yg were induced by suboptimum SDT. An estimated
80% of the study areas, Yg0 ranged from 1 to 4 t hm−2 (Figure 8e). Yg0 also contributed to
more than 20% of Yg in ~85% of the study areas. Regional Yg0 in each year ranged from
1.4 to 2.2 t hm−2, accounting for 29–42% of the annual regional Yg. The annual average
of regional Yg0 contributes to 35% of annual averaged regional Yg in 2010–2015 (Table 1).
The analyses above demonstrate that large Yg remained in summer maize croplands over
the NCP, and the values of Yg varied in space and could be considerably reduced by
optimizing the SDT.

Table 1. Ya, potential yield limited by suboptimal SDT (Yp0), Yp, Yg, ratio of Yg to Yp (Yg/Yp), ratio
of Ya to Yp (Ya/Yp), Yg caused by suboptimal SDT (Yg0), and contribution of suboptimal SDT to Yg
(CYg0) in the period 2010 to 2015 for the entire NCP a.

Year Ya Yp Yg Yg/Yp Ya/Yp Yp0 Yg0 CYg0

2010 5.8 10.8 4.9 45% 55% 9.4 1.4 29%
2011 6.1 11.4 5.3 46% 54% 9.2 2.2 42%
2012 7.0 12.7 5.7 45% 55% 10.7 2.0 35%
2013 6.4 11.3 4.9 43% 57% 9.6 1.7 35%
2014 6.3 11.2 4.8 43% 57% 9.4 1.8 38%
2015 7.1 13.4 6.4 48% 52% 11.3 2.1 33%

Average 6.5 11.8 5.4 45% 55% 9.9 1.9 35%
a Values of Ya, Yp, and Yp0 were computed on the basis of the actual distribution of maize cultivation areas in
each year, and Yg/Yp, Ya/Yp, and CYg0 were computed using the regional statistics.

 
Figure 7. Annual and the average of the annual regional Yg0, Yp0–Ya, and Ya (a), and proportions of regional Yg0, Yp0–Ya,
and Ya in regional Yp (b) in the period 2010 to 2015.
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Figure 8. Maps of simulated mean annual Ya (a), Yg (b), the ratio of Yg to Yp (Yg/Yp) (c), potential yield limited by
suboptimum SDT (Yp0) (g), Yg induced by suboptimum SDT(Yg0) (h), and the contribution of suboptimum SDT to Yg
(CYg0) (i), with a 5 km resolution in 2010–2015; and the frequency distribution (FD) of pixel-level values of Ya (d), Yg (e),
Yg/Yp (f), Yp0 (j), Yg0 (k), and CYg0 (l). The value ranges in the legends are right-closed and left-open. Annual 1 km Ya,
Yp0, and Yp were aggregated to 5 km and then averaged in time to derive the mean annual Ya, Yp0, and Yp. Yg and Yg/Yp
were derived from the 5 km Ya and Yp, and Yg0 and CYg0 were derived from the 5 km Yp0, Yg, and Yp. Each 5 km grid
represents all 1 km cropland pixels inside the grid.
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4. Discussion

4.1. Yg0 Is Partly Persistent

It is infeasible to perfectly optimize the summer maize SDT across the entire study
region to fully eliminate Yg0 because the optimum SDT depends on weather conditions
during the growing season and the growing season of summer maize generally lasts
~100 days, but predicting weather conditions over such a long term (~100 days) precisely is
not feasible at present. During the growing season, some unfavorable weather conditions
(e.g., shifting of heat, radiation, and precipitation among different development stages)
may cause SDT optimization to fail. Therefore, the contribution of suboptimum SDT, as a
result of unfavored weather conditions, to Yg is non-persistent. To separate the persistent
factors (primarily the knowledge and management skills of farmers) affecting SDT from
the non-persistent will help understand the likelihood of reducing Yg by optimizing SDT.

Here, we adopted the method (Supplementary Text S2) of Farmaha, Lobell, Boone,
Cassman, Yang and Grassini [2] to assess persistent Yg0 based on both 1 km Yg0 and
5 km Yg0 time series (Supplementary Figure S3). The 1 km result was derived on the
basis of the Yg0 time series in croplands continuously cropped with maize (Supplementary
Figure S2). We showed only the results of persistent factor percentage (PFP) in Yg based
on “small Yg group (SYg),” PFPSYg. Figure S3a,b show the percentage of persistent values
in Yg0 based on 1 km Yg0 and 5 km Yg0, respectively. The 1 km result covers a smaller
spatial extent, and a pixel-by-pixel comparison between the two results was performed
over the overlapped region (Figure S3c). The spatial variations in the PFP of the two
results were moderately correlated with each other with a correlation coefficient (R) of
0.59. However, the 5 km result shows an overall overestimation of PFP. Regional values of
PFP of the 1 and 5 km results over the overlapped regions are 59% and 69%, respectively.
The reason for the higher PFP estimated by 5 km Yg0 may be that some spatial dynamics
in Yg0 were eliminated in 5 km Yg0. Nevertheless, both panels (Figure S3a,b) indicate
non-negligible non-persistent components in Yg0 and significant variations in persistent
Yg0 over space. Smaller percentages of persistent Yg0 are found in the south of the NCP.
Figure S3 presents two examples of assessing persistent Yg0, implying that further studies
are required to reveal the impact of climates on SDT and that assessing persistent Yg0 within
smaller regions using high-resolution RS data is necessary to understand the likelihood of
narrowing Yg0 on a local scale.

4.2. Yp Derived from Ya and Yp0

Ya derived from remotely sensed data is also useful for quantifying Yp and Yg [1,28].
Pixel-level Yp could be estimated as a high percentile (95th or 99th) of pixel-level Ya
values within a small region around the pixel under investigation. However, as previously
mentioned, this method assumes optimum field managements are achieved in some
croplands (or pixels) within the domain under investigation. A novel approach avoiding
the assumption in estimating Yp based on satellite data was proposed in this study, and
the new method only assumes optimum SDT is achieved in on-farm managements. The
“Potential yield” derived from Ya is equivalent to “potential farmers’ yield (Ypf),” as defined
in Liu, Yang, Lin, Hubbard, Lv and Wang [6]. In the maize belt of the US, where farmers’
management skills were maintained at a high level, Ypf was close to Yp; however, in other
regions, where crop growth was strongly stressed, Yp was poorly represented by Ypf [1]. We
investigated the differences between Ypf and Yp derived using the new method proposed
in this study (Supplementary Figure S4). Modeled Ypf values were significantly smaller
than modeled Yp. The regional-scale mean annual Ypf is 8.7 t hm−2, which is significantly
less than the Yp estimated in this study as well as previous studies [11,67,68], whereas our
method produced a result closer to previous estimates. This implies that large gaps exist
between farmers’ potential yield and the Yp of summer maize over the NCP. The newly
developed method in this study provides a more reliable approach to estimating Yp and
can improve the understanding of the Yg of summer maize in the study region.

80



Remote Sens. 2021, 13, 3582

4.3. Limits of the Method in This Study

PRYM–Maize is proved to perform reasonably well in reproducing regional crop yield,
having comparable or even better performances than models in recent studies in terms
of RMSD [2,69]. PRYM–Maize was then used to develop a new method in this study to
quantify Yp, Yp0, Yg, and Yg0. This new method produced a Yp magnitude similar to
that produced by the calibrated CGM (Section 3.2), and the spatial pattern in Yp over the
NCP simulated using our model was also closed to the results of Li [68], who reproduced
regional Yp across the NCP using CGM simulations at multiple meteorological sites. This
new method can also be used in other regions, where farmers’ potential yields are far below
the potential levels. However, one should be careful with the value of PLAIopt. We used
PLAIopt = 7.5 in this study, and this value was a conservative estimate for PLAIopt and was
obtained by analyzing historical field trials over China. However, the value of PLAIopt
may be reduced in higher latitude or altitude regions, where low temperatures and heat
dominate the growth of maize.

The accuracy of an RS-based approach to estimate crop yield highly depends on the
input RS data. The accuracy of Ya estimates over the NCP in this study was degraded by
mixed pixels. There was an overall underestimation of the Ya over Shandong Province,
where many pixels were mixed with plastic greenhouses. The plastic greenhouse is widely
used across Shandong, and it weakens the vegetation information [70], reducing the yield
estimated from mixed pixels. Future studies are required to resolve such issues. Using
higher-resolution images may be feasible, but the temporal resolution of such data such
as Landsat, Sentinel-2, and SPOT may become a new limitation. Alternative approaches,
such as pixel downscaling, can also be useful for addressing the above issue. For example,
we can merge RS data with coarse spatial resolution and high temporal resolution (e.g.,
MODIS), high-spatial-resolution panchromatic product [71], or other bands [72] to obtain
high-spatial- and high-temporal-resolution data to drive the RS-based crop yield model,
thereby reducing the effect of non-vegetation information. In addition, the pixel change
detection method [73] is available for further removing the bad pixels or outliers in yield or
Ygs produced by the RS-based model. We should consider these approaches in our future
work to improve the quantification of regional crop yield and Ygs.

The WBM is a critical part of PRYM–Maize for crop photosynthesis modeling in the
context of climate change in the future. Extreme climate events (e.g., drought and heatwave)
have great impacts on crop water status and thus crop yield [74,75]. Thus, with the elevating
intensification of these extreme climate events [76,77], water availability estimated using
the WBM of PRYM–Maize will play a more important role in quantifying crop yield. The
WBM consists of evapotranspiration (loss of water of croplands) and soil water balance
processes; hence, water availability can, in turn, affect the water balance process through its
impact on evapotranspiration [38,40]. Evapotranspiration modeling in the current PRYM–
Maize does not explicitly include the effect of extreme climate events. Therefore, in future
work, the improvement of PRYM–Maize with regard to better characterizing the water
status of crops during extreme climate events will be required.

5. Conclusions

The knowledge of how field managements contribute to Yg can help improve crop
yield. In this study, we modified a process-based RS crop yield model for simulating Ya
and proposed a new approach based on the modified model to quantifying Yp and the
contribution of suboptimum SDT to Yg over a broad region. The above methods were used
to estimate Ya, Yp, Yg, Yp0, Yg0, and CYg0 of summer maize over the NCP in the period
2010 to 2015. We have the following conclusions:

1. The modified RS crop yield model reasonably estimated the Ya of summer maize over
the NCP, but the model’s accuracy was limited by input RS data.

2. Modeled Yp showed close relationships with site-level results given by CGMs in pre-
vious studies, which demonstrated that the proposed RS-based approach to estimate
Yp was effective in modeling Yp over the NCP.
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3. Large gaps, Ygs, remained between Ya and Yp of summer maize over the NCP and
suboptimum SDT, which considerably contributed to Yg; regional Yg over the NCP in
the period 2010 to 2015 was 5.0 t hm−2, and the Yg, which accounted for suboptimum
SDT (Yg0), was approximately 41% of Yg. However, not all Yg0 could be filled
by optimizing SDT because Yg0 was also affected by non-persistent factors. Thus,
studies on small regions with higher-resolution RS data are required to decompose
the persistent portion from Yg0.

PRYM–Maize’s robust performance under extreme weather conditions, such as drought
and heatwaves, will need to be improved in the future. In addition, it is necessary to im-
prove the performance of the RS-based method in estimating Yp within a specific region in
conjunction with finer-resolution data or a pixel downscaling method.

Supplementary Materials: The following are available online at https://www.mdpi.com/2072-429
2/13/18/3582/s1, Figure S1: The diagram for calculating Small yield gap (SYg) and Large yield gap
(LYg) in ranking and non-ranking rasters, Figure S2: 1-km pixels that were continuously cropped
with summer maize in 2010–2015 over the NCP, Figure S3: Persistent factor percentage (PFP) based
on 1-km Yg0 (a) and 5-km Yg0 (b), and a comparison between 1-km PFP and 5-km PFP over space
(c). The value intervals in the legends of panel (a) and (b) are right-closed and left-open. PFPSYg
denotes the PFP value calculated in terms of Yg of croplands grouped in small Yg as defined in
Farmaha, Lobell, Boone [25] (Reference [25] is cited in the supplementary materials) or illustrated in
Supplementary Text S2. In this study, PFP was calculated for each pixel using surrounding pixels
within a buffer of 50 km. But not all pixels within the buffer were used, only pixels meet the criteria
(see Section 2.3.4—Step 4) for computing Yp from Yp0 were kept. Figure S4: Modeled yield potential
(Yp) vs. modeled farmers’ yield penitential (Ypf), Table S1: Values of coefficients for calculating maize
respiration and dry matter allocation.
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Abstract: Plant phenology is one of the key regulators of ecosystem processes, which are sensitive to
environmental change. The acceleration of urbanization in recent years has produced substantial
impacts on vegetation phenology over urban areas, such as the local warming induced by the urban
heat island effect. However, quantitative contributions of the difference of land surface temperature
(LST) between urban and rural (ΔLST) and other factors to the difference of spring phenology (i.e., the
start of growing season, SOS) between urban and rural (ΔSOS) were rarely reported. Therefore, the
objective of this study is to explore impacts of urbanization on SOS and distinguish corresponding
contributions. Using Hangzhou, a typical subtropical metropolis, as the study area, vegetation
index-based phenology data (MCD12Q2 and MYD13Q1 EVI) and land surface temperature data
(MYD11A2 LST) from 2006–2018 were adopted to analyze the urban–rural gradient in phenology
characteristics through buffers. Furthermore, we exploratively quantified the contributions of the
ΔLST to the ΔSOS based on a temperature contribution separation model. We found that there was
a negative coupling between SOS and LST in over 90% of the vegetated areas in Hangzhou. At
the sample-point scale, SOS was weakly, but significantly, negatively correlated with LST at the
daytime (R2 = 0.2 and p < 0.01 in rural; R2 = 0.14 and p < 0.05 in urban) rather than that at nighttime.
Besides, the ΔSOS dominated by the ΔLST contributed more than 70% of the total ΔSOS. We hope
this study could help to deepen the understanding of responses of urban ecosystem to intensive
human activities.

Keywords: plant phenology; land surface temperature; urban heat island effect; contribution; Hangzhou

1. Introduction

Plant phenology is the time of a certain growth event in the growth cycle, such as
germination, branching, leafing, flowering, fruiting, defoliation and dormancy [1–4]. It
directly or indirectly regulates several processes of plant growth, such as carbon and
water cycle, playing a crucial role in the earth system [5,6]. Adapting to seasonal changes
of the environment, plants show a growth rhythm, which is sensitive to environmental
change [7,8]. As one of the most critical factors affecting plant phenology, an increase in
temperature can promote the activity of enzymes, thereby prolonging plant development.
Specifically, an increase in spring temperature promotes the release of plant dormancy in
spring, and generally extends the growth cycle of plants [9–14].

Urbanization is an important feature of world development today, and it is one of
the main causes of global environmental change in the 21st century. The acceleration of

Remote Sens. 2021, 13, 3684. https://doi.org/10.3390/rs13183684 https://www.mdpi.com/journal/remotesensing87



Remote Sens. 2021, 13, 3684

urbanization in recent years has produced substantial impacts on plant phenology over
both urban areas and their rural surroundings [15–19]. This is mostly associated to the local
warming effect induced by the urban heat island effect, which resulted from the increase
in impervious surface percentage and anthropogenic heat emissions [20–23]. Moreover, it
is as well as through the fertilization effect induced by the increase in the concentration
of carbon dioxide (CO2), nitrogen oxides (NOx), and other atmospheric trace gases over
urban surfaces [24–26]. These changes affect urban environments that plants depend on,
and have impacts on the growth of plants, thereby changing the plant phenology [27,28].

At present, many studies have paid attention to impacts of urbanization on the change
of plant phenology [27–32]. There are two methods to explore the impacts above: the
historical comparison method and the urban–rural comparison method. The historical
comparison method compared the phenology before and after urbanization, which was
mainly for fast-developing cities [31]. However, due to the difficulty of obtaining long
time series data, the historical comparison method is greatly restricted. The urban–rural
comparison method used the data of the urban and the rural at the same time to explore
the impact of urbanization on phenology, which is a method of changing space for time.
The second one has been widely used, because of the great advantages in large-scale
observations of remote sensing data [15–19,32]. Meng et al. investigated the urban and
rural phenology of the of 85 giant cities in the continental United States from 2001 to 2014,
and the results showed that the start of growing season (SOS) in the urban was 6 days
earlier than that in the rural [33]. Wohlfahrt et al. found that with the acceleration of
urbanization, the SOS advanced and the senescence delayed in the urban areas where the
temperature rises [34]. Hu et al. used the Enhanced Vegetation Index (EVI) to explore the
spatio-temporal changes of plant phenology and its response to land surface temperature
(LST) in Northeast China [35]. The results showed that the LST was significantly negatively
correlated with the SOS. Recently, most current studies focused on varieties of plant phe-
nology and influences of temperature on plant phenology under urbanization, but did not
quantitatively evaluate the contribution of the temperature differences to the phenological
differences between the urban and the rural. That is, the quantitative contribution of the
local warming induced by the urban heat island effect (the difference of LST between urban
and rural, ΔLST) to the difference of spring phenology (SOS) between urban and rural
(ΔSOS) was less understood in past research.

With the development of statistical methods, it was possible to distinguish the influ-
ence of different factors. Li et al. used a statistical method to quantify the contribution
of cooling and water supply to the yield benefits due to irrigation. They found that 16%
of irrigation yield increase was due to irrigation cooling while the rest (84%) is due to
water supply and other factors [36]. Besides, Zhao et al. also used a statistical method to
quantifying the impacts of urbanization on vegetation growth. They found that the growth
enhancement offset about 40% of direct loss of vegetation productivity caused by replacing
productive vegetated surfaces with nonproductive impervious surfaces [16,30]. Based on
the studies above, a statistical model was used to carry out this study.

Therefore, the objective of this study is to explore impacts of urbanization on SOS and
exploratively distinguish contributions of local warming induced by the urban heat island
effect (ΔLST) and other factors to the difference of spring phenology between urban and
rural (ΔSOS). Hangzhou, a typical subtropical metropolis, was selected as the study area.
Specifically, the spatial differences and inter-annual changes of the phenology in the urban
and the rural were compared through a gradient analysis method using satellite-based
phenology and LST data from 2006 to 2018. Then, the coupling relationship between
phenology and temperature were investigated. After that, taking typical forest grid cells in
the urban and the rural areas of Hangzhou as test samples, the local SOS was extracted
using a remote sensing vegetation index from 2006 to 2018, and the difference of responses
of SOS to LST between the urban and rural was explored. Finally, we exploratively
distinguish quantitative contributions of the ΔLST and other factors to the ΔSOS.
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2. Materials and Methods

2.1. Study Area

Hangzhou (118◦21′–120◦31′E, 29◦11′–30◦33′N) is the capital city of Zhejiang Province,
whose GDP ranks among the top 10 in China, with 8.133 million in urban population,
2.227 million in rural population and an urbanization rate of 78.5% in 2019. It is located
in the north of Zhejiang Province with a subtropical humid monsoon climate. As for
temperature, it is lowest in January (average of 3–5 ◦C) and highest in July (average of
28–29 ◦C) with an annual average of 15.3–17 ◦C. The extreme maximum and minimum
temperatures in Hangzhou reached 42.9 ◦C (31 July 1971) and −15 ◦C (5 January 1977). For
precipitation, the annual average is 1100–1600 mm with rainy days of 130–160 days/year.
There are two rainy seasons throughout the year. The first is the plum flood season from
May to June, with an average rainfall of 350–500 mm, accounting for 25–31% of the year.
The second rainy season is the typhoon rainy season from August to September, with an
average rainfall of 120–220 mm, accounting for 8–13%. The forest coverage rate is over
64.77% (about 10,900 km2), dominated by evergreen broad-leaved forests and deciduous
broad-leaved forests. In this study, the land cover map with 10 m-spatial resolution in
2017 from Gong Peng Research Group of Tsinghua University was aggregated to pixels of
500 m × 500 m to extract forest areas for the following analysis. To assure both a certain
level of homogeneity in the land cover type and an adequate number of pixels for a
meaningful analysis, only the pixels of 500 m where the forest type was over 75% were
included in this study. Besides, the multi-temporal dataset of global urban boundaries of
2018 was used to divide the scope of the urban and the rural of Hangzhou Figure 1. This
dataset is derived from the Global Artificial Impervious Area-GAIA, released by Gong Peng
Research Group of Tsinghua University [37]. Then, 5 test areas of deciduous broad-leaved
forest were selected in the urban and the rural (i.e., 10 km away from the urban area) of
Hangzhou, respectively. In each test area, 2 sample points, a total of 20 sample points, were
extracted (Figure 1). Besides, the Google map, latitude and longitude of the test areas in
the urban and rural were showed in Table 1.

Table 1. The Google map, latitude and longitude of the test areas in the urban and rural.

U1 U2 U3

   

U4 U5 No: Latitude, Longitude

  

U1: 30.36051N, 120.19516E
U2: 30.35946N, 120.17856E
U3: 30.18648N, 120.30131E
U4: 30.18959N, 120.42429E
U5: 30.42698N, 120.28390E
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Table 1. Cont.

R1 R2 R3

   

R4 R5 No: Latitude, Longitude

  

R1: 30.23112N, 119.35119E
R2: 30.05648N, 119.51766E
R3: 29.72447N, 119.35588E
R4: 29.97818N, 119.27411E
R5: 30.24293N, 119.33563E

Figure 1. Spatial distribution of Hangzhou and the location of forest test areas. The small maps in the
upper right corner show the location of Hangzhou in Zhejiang Province and the location of Zhejiang
Province in China.
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2.2. Remote Sensing Data
2.2.1. Land Surface Temperature

MODIS MYD11A2 LST product was used in this study, including the LST during the
daytime and the nighttime, with a spatial resolution of 1000 m and a temporal resolution
of 8 days. The LST of Aqua satellite is observed at 1:30 and 13:30 local solar time, the
lowest and highest temperature of the day, which is more representative than that of Terra
(monitored at 10:30 and 22:30) in the study of urban heat island. Therefore, the LST data
of the Aqua satellite were used in this study [38,39]. The MODIS Reprojection Tool (MRT)
was used to process the original images of LST, and so did the following data. Then, they
were extracted in light of the study area and resampled to 500 m to be consistent with the
phenology data. In addition, to explore the quantitative contributions of the ΔLST to the
ΔSOS under urbanization, we collected 1000-m spatial resolution LST data of daytime and
nighttime from 2006 to 2018 according to the coordinates of forest sample points.

2.2.2. MODIS Phenology

This paper tried to explore the difference of plant phenology between the urban
and the rural of Hangzhou and its temporal and spatial patterns. The SOS from the
MCD12Q2 (i.e., a MODIS phenology dataset) across the study area during 2006–2018 was
used in this study. The spatial and time resolution of the dataset is 500 m and 1 year,
respectively. The phenological events are derived from time series of MODIS 2-band
Enhanced Vegetation Index (EVI2), which are fitted by QA/QC-weighted penalized cubic
smoothing spline. The phenology data in some high-latitude regions and some semi-arid
and arid environments exhibiting low-amplitude EVI2 variation, having uncertainty, while
the data of Hangzhou in mid-latitude regions is relatively stable [40]. Besides, these data
have been validated with field observations [41] and have been widely used and approved
in previous studies [17,18,42].

2.2.3. Enhanced Vegetation Index

The contributions of the ΔLST to the ΔSOS were used to explore at a finer spatial
resolution. Here, the Aqua MODIS 16-day EVI data (MYD13Q1, 250 m × 250 m), which
matched the LST data from the same satellite (Aqua) to reduce uncertainties, was used to
extract the phenology. Previous studies have suggested that EVI could accurately reflect
the growth status of vegetation, and effectively extract phenology at both regional and
local scales [43–47]. In this study, the asymmetric Gaussian function, which is widely used
in curve fitting and phenological extraction, while a 20% threshold was used to fit the EVI
curve and extract the SOS for each selected forest sample point from 2006 to 2018 [6,7].

Notably, both the MODIS phenology product and EVI-derived phenology were used
in this study. On the one hand, to explore the changes in plant phenology caused by the
urban heat island effect, we needed to focus on the forest, which is severely affected by
urbanization. At this time, the plant phenology data with a resolution of 500 m cannot
satisfy the demand, so the EVI data with a resolution of 250 m at a smaller scale was used
to improve the resolution and reduce the influence of mixed pixels. On the other hand,
MCD12Q2 uses EVI2 data to extract plant phenology, while EVI2 data lacks the blue band,
different from EVI [48]. Therefore, the more widely used and robust EVI data was used
for extracting more accurate plant phenology. Considering the reasons above, we selected
EVI-based SOS for the research of sample-scale.

Besides, the SOS extracted from MCD12Q2 phenology data and EVI data showed a
linear correlation (R2 = 0.54) at the forest sample area in Hangzhou Figure 2. First, the
original data and methods to extract SOS were different. The one used the EVI data and
the method of asymmetric Gaussian function with a 20% threshold, while the other used
the EVI2 data and the method of QA/QC-weighted penalized cubic smoothing spline.
Although the correlation of SOS derived from MCD12Q2 and EVI was not satisfied, the
relationship was statistically significant (p < 0.05), which could support the consistency
between them. Second, in this study, we aimed to explore the quantitative contributions of
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the difference of land surface temperature between urban and rural and other factors to the
difference of spring phenology (ΔSOS) under urbanization. The relative ΔSOS was effective
instead of the absolute value of SOS. Therefore, despite the difference in the absolute SOS
of the two data, they had a statistically significant linear relationship and there was also
a certain relationship between the ΔSOS. Besides, the RMSE of the two data was 5 days,
which was smaller than the average ΔSOS of >9 days. In summary, the two data of SOS
had a certain consistency in this study.

Figure 2. Correlation of SOS between MCD12Q2 and EVI. Black line denotes linear regression lines.
The DOY denotes the day of year.

2.3. Temperature Contribution Separation Model

The rapid development of urbanization dramatically changes the environments which
terrestrial ecosystem depended on. Compared with the rural surroundings, there are
differences in temperature, photoperiod and atmosphere conditions, having a certain
impact on plant phenology. A large number of studies have shown that the acceleration of
urbanization in recent years produced substantial impacts on plant phenology over both
urban areas and their rural surroundings [15–18,33]. Therefore, in order to distinguish the
contributions of ΔLST and other factors between urban and rural to the difference of spring
phenology (ΔSOS), we followed the statistical method of quantifying the contributions of
cooling and water supply to the yield benefits due to irrigation of Li et al. [36], establishing
a temperature contribution separation model based on the laboratory of the rural and
urban of Hangzhou.

Firstly, we performed regression analysis on SOS and average LST during the daytime
in spring (February, March, April) from 2006 to 2018 in the rural and the urban Equations (1)
and (2), respectively. Secondly, Equations (3)–(5) were used to distinguish the contributions
of the ΔLST and other factors to the ΔSOS:

SOSrural = frural(Trural) (1)

SOSurban = furban(Turban) (2)

Tcontribution = frural(Trural)− frural(Turban) (3)

Othercontribution = frural(Turban)− furban(Turban) (4)

Tpercent = Tcontribution/(Tcontribution + Othercontribution) (5)

where the subscripts of rural and urban denote the corresponding parameters of the rural
and the urban, respectively; the SOS denotes the start of the growing season; the T denotes
the average LST during the daytime in spring; the f denotes the regression relationship
between LST and SOS. The Tcontribution and Othercontribution denote the contributions of the
ΔLST and other factors to the ΔSOS, respectively; and the Tpercent denotes the percentage
of the contribution of the ΔLST.
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The temperature contribution separation model was shown in Figure 3. (1) In the
figure, the blue and red lines represent the regression relationships between SOS and LST
in the rural and the urban Equations (1) and (2), respectively. Points A and D represent
the average LST and SOS of the sample points in the same year of the rural and urban,
respectively. Line B-D is the difference of the SOS between the rural and the urban.
(2) We supposed that the rural surroundings were heated to reach the LST of the urban
in the same year. Then, the SOS of the rural (point A) in that year moved to point C
according to Equation (3). At this time, the two points A and C were the phenological
state only in different LST, and line B-C was the phenological difference only when the
LST rose Equation (3), which refers to the influence of the urban heat island effect (ΔLST).
(3) However, in the same year, the average LST and SOS of the sample point in the urban
was located at point D. There was a phenological difference C-D Equation (4) from point C,
which refers to the influence of other environmental factors in the urban except temperature.
(4) Furthermore, the percentage of the contribution of the ΔLST to the ΔSOS was calculated
by Equation (5).

Figure 3. Temperature contribution separation model. The red/blue solid lines denote the linear
regression line of the urban/rural sample point data. Points A and D denote the data of sample
points in the rural and the urban in the same year, points B and C denote the predicted values of the
model, and gray dotted lines denote the contributions of different factors. The DOY denotes the day
of year.

2.4. Statistical Analysis

In this study, the multi-year average phenology of the SOS of 2006–2018 were calcu-
lated to compare the differences of phenology between that in the urban and the rural of
Hangzhou, which were extracted from the MCD12Q2 phenology dataset. Besides, a buffer
analysis method was adopted to compare the difference of SOS in urban–rural gradient
and its relationship with LST in more detail [7,28]. First, the urban boundary of Hangzhou
in 2018 was derived from the global urban boundary dataset [12]. Second, the circular
buffer zones outside the urban boundary were drawn every 2 km, which were 2, 4, 6, 8, 10,
12, 14, 16, 18 and 20 km, respectively. Finally, the average of SOS and LST in each buffer
zone were calculated to explore the relationship between SOS and LST with the distance
away from the urban.

Furthermore, the two-factor combination mapping is a very intuitive visualization
method that can express the coupling relationship between two variables. The two factors
that are incomparable numerically can be compared in a hierarchical manner, and the dif-
ferent levels of the two factors are matched in pairs to different combinations, representing
the different coupling relationships of the two factors. In this study, to explore the coupling
relationship between SOS and LST, the natural breakpoint classification method was used
to divide the daily average LST and SOS in spring of 2018 into three levels: low, medium
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and high. Additionally, we used the two-factor combination mapping method to display
the different coupling relationships, including low LST-low SOS, low LST-medium SOS,
low LST-high SOS, medium LST-low SOS, medium LST-medium SOS, medium LST-high
SOS, high LST-low SOS, high LST-medium SOS, and high LST-high SOS.

3. Results

3.1. Spatial Patterns of the LST and SOS in Hangzhou

The average LST in spring of 2018 was utilized to explore the difference of LST between
that in the urban and the rural Figure 4. The results showed that there was a significant
spatial heterogeneity in the LST of Hangzhou, showing a gradient of high in the urban and
low in the rural. In terms of spatial distribution, the area with a LST greater than 23.5 ◦C
accounted for 10.9%, mainly distributed in the urban area; 16.6%, 32.9% and 26.6% of the
area with a LST of 21.5–23.5, 19.5–21.5 and 17.5–19.5 ◦C distributed in the middle area of
Hangzhou, respectively. The area with a LST less than 17.5 ◦C (accounting for 13%) was
mainly distributed in the northern and southern edges of Hangzhou. Moreover, as shown
in the inset chart in Figure 4, the LST followed a generally decreasing urban–rural gradient,
showing a significant urban heat island effect that the LST was highest (24 ◦C) in the urban
and lowest (18.6 ◦C) in the rural. In the range of 0–6 km from the urban, the LST decreased
fast (0.72 ◦C/km), and the decrease tended to slow down (0.08 ◦C/km) after 6 km.

Figure 4. Spatial distribution of land surface temperature in spring of 2018 in Hangzhou. The
histogram denotes the frequency distribution of difference temperature. The inset graph denotes
the variation trend of temperature in the buffer zone at different distances from urban. The solid
lines denote the urban boundaries, and the wide and short dotted lines denote the 10 km and 20 km
buffers of the urban boundaries, respectively.

As shown in Figure 5, the annual average SOS of Hangzhou from 2006 to 2018 showed
a significant spatial heterogeneity. The SOS was earlier in the urban and later in the rural.
In terms of spatial distribution, the area with the SOS less than 76 day of year (termed
DOY) accounted for 8.9%, mainly distributed in the urban and the area within 2 km from
the urban, located in the east and south of Hangzhou. About 23.1%, 31.1% and 26.6% of
the area with SOS of 76–83, 83–88 and 88–94 DOY were distributed in the middle area
of Hangzhou, respectively. The area with SOS more than 94 DOY (accounting for 10.3%)
mainly distributed in the northern edges of Hangzhou, in the mountainous areas with
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higher elevations. Besides, as shown in the inset chart in Figure 5, the SOS followed a
generally increasing urban–rural gradient, that is, from urban (79 DOY) to rural (87 DOY),
the SOS was continuously delayed by 8 days. In the range of 0–6 km from the urban, the
SOS increased fast (1.02 days/km), and the increase tended to slow down (0.14 days/km)
after 6 km.

Figure 5. Spatial distribution of annual average of the start of the growing season (SOS) from 2006 to
2018 in Hangzhou. The histogram denotes the frequency distribution of difference SOS. The inset
graph denotes the variation trend of SOS in the buffer zone at different distances from urban. The
DOY denotes the day of year. The solid lines denote the urban boundaries, and the wide and short
dotted lines denote the 10 km and 20 km buffers of the urban boundaries, respectively.

We further explored the spatial difference of SOS between that in the urban and the
rural of Hangzhou from 2006 to 2018, and we found that the results from each year had
little significant fluctuations. Therefore, in order to avoid information redundancy and
excessively long images, we displayed the results every 4 years (2006, 2010, 2014 and 2018)
Figure 6. The results showed that although the absolute value of SOS varied from year to
year, the spatial differentiation of SOS yearly was consistent with the annual average SOS
from 2006 to 2018 in Figure 5. They both showed a significant spatial heterogeneity that the
SOS was smaller in the eastern and southern area of Hangzhou and larger in the northern
marginal area. As shown in the inset chart in Figure 6, the SOS of the urban was 9, 9, 6
and 6 days earlier than the rural in 2006, 2010, 2014 and 2018, respectively. In addition, the
SOS followed a generally increasing urban–rural gradient. In 2006, 2010, 2014 and 2018,
the SOS increased fast (1.25, 1.05, 0.83 and 0.93 days/km, respectively) within the range
of 0–6 km from the urban, while it tended to be stable (0.07, 0.21, 0.05 and 0.04 days/km,
respectively) after 6 km.

Combined with the analysis of the average LST in spring of 2018 and SOS across
Hangzhou above, the difference in LST and SOS presented an opposite state and change
trend. That is, the LST tended to be higher in the urban and lower in the rural, while
SOS tended to be earlier in the urban and later in the rural. The LST followed a generally
decreasing urban–rural gradient, while the opposite occurred for SOS, but both the LST and
SOS varied greatly within the range of 0–6 km and then tended to be stable. In summary,
the LST and SOS showed a negative correlation, and the coupling relationship between
them would be further explored below.
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Figure 6. Spatial distribution of the start of the growing season (SOS) in Hangzhou (left charts), and
variation trend of SOS in the buffer zone at different distances from urban (right charts) in 2006, 2010,
2014, and 2018. The black line denotes the urban boundary, dark gray denotes the buffer of 10 km,
and light grey denotes the buffer of 20 km. The DOY denotes the day of year. The solid lines denote
the urban boundaries, and the wide and short dotted lines denote the 10 km and 20 km buffers of the
urban boundaries, respectively.
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3.2. Relationship between LST and SOS in Hangzhou

The results above showed that the spatial distribution and urban–rural gradient of the
average LST in spring and SOS showed an opposite trend. Therefore, it could be inferred
that there was negative correlation between LST and SOS. Figure 7 shows the coupling
relationship between LST and SOS, and the 94.6% of the area conformed to the inference
above. The LST and SOS showed a significant negative correlation accounted for 53.9%,
more than a half of the total area. Among them, the low LST-high SOS (accounting for
6.2%) mainly distributed in the northern edge of Hangzhou, the outer rural farthest from
urban. The medium LST–medium SOS (45.3%) was mainly distributed in the middle part
of Hangzhou, with a moderate distance from urban. The high LST–low SOS (2.4%) was
mainly distributed in urban and within 2 km from urban. At the same time, there was
40.7% of the area that LST and SOS showed a weaker negative correlation, including low
LST–medium SOS (10.9%), medium LST–low SOS (12.2%), medium LST–high SOS (10.1%),
and high LST–medium SOS (7.5%), mainly distributed in the area between urban and
outer rural. Besides, there was 5.4% of the area that exhibited a contrary relationship to
the inference. That is, the LST and SOS showed a significantly positive correlations, which
were low LST–low SOS (3.3%) and high LST–high SOS (2.1%). It might be related to the
threshold of LST and SOS for the classification. In addition, in areas with low, moderate and
high LST, 83%, 67% and 82% of the SOS has a medium-high, moderate and medium-low
distribution, respectively. Overall, the results above confirmed the inference that spring
LST was negatively correlated with SOS.

Figure 7. Coupling relationship between land surface temperature in spring and the start of the
growing season (SOS) of 2018 in Hangzhou. The 3D pie chart denotes the percentage of each coupling
relationship, and the flat pie charts denote the percentage of SOS by level at different temperatures.
The solid lines denote the urban boundaries, and the wide and short dotted lines denote the 10 km
and 20 km buffers of the urban boundaries, respectively.

In order to further verify the inference above, the annual average SOS of 2006–2018
and its change trend at different levels of LST was calculated to explore the relationship
between LST and SOS. As shown in Figure 8a, the annual average SOS at low, medium,
and high LST were 88.9, 85.8, and 85.0 DOY, respectively. The SOS continently decreased
with the increase of the LST. That is, the spring phenology continued to advance. As shown
in Figure 8b, the change trend of SOS at low, medium, and high LST were −5.1, −3.9, and
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−2 days/10 years, respectively. The downward trend of SOS decreased with the increase of
LST. That is, the rate of advancement of phenology continuously slowed down. In general,
the inference established that there was a negative correlation between SOS and LST, and it
developed in a consistent direction, showing a trend of convergence.

Figure 8. Distribution of (a) the annual average of the start of growing season (SOS) of 2006–2018
and (b) its interannual variation trend under different temperatures. Slope denotes the slope of the
linear regression line between SOS and year. Low, Medium and High denote different temperatures
according to the natural breakpoint classification method. The DOY denotes the day of year. In the box
charts, the box denote the values of median, lower quartile (Q1) and upper quartile (Q3), respectively;
the error bars denote the values of Q1 − 1.5(Q3 − Q1) and Q3 + 1.5(Q3 − Q1), respectively.

3.3. Relationship between LST and SOS at Sample Points

The relationship between LST and SOS at the sample point scale was further employed
Figure 9. The LST in the urban of Hangzhou was significantly higher than that in the rural,
exhibiting a significant urban heat island effect. In terms of the LST during the daytime in
spring, the difference between that in the urban (23.0 ± 1.2 ◦C) and the rural (19.7 ± 1.0 ◦C)
was significant, reaching 3.3 ± 1.0 ◦C. From 2006 to 2018, the difference continued to
increase, with an average annual increase of 0.2 ◦C (p < 0.01). For the LST during the
nighttime in spring, the difference between that in the urban (8.2 ± 1.0 ◦C) and the rural
(7.0 ± 0.7 ◦C) reached 1.2 ± 0.3 ◦C. Compared with the daytime, the urban heat island
effect was weaker at night, reduced by 2.1 ◦C. Integrating the temperature during the
daytime and nighttime Figure 9c, the difference of the daily average temperature between
that in the urban (15.6 ± 0.8 ◦C) and the rural (13.3 ± 0.8 ◦C) reached 2.3 ± 0.5 ◦C, and
it continued to increase from 2006 to 2018 (Slope = 0.09 ◦C/years, p < 0.01). To further
compare the difference of SOS between that in the urban and the rural Figure 9d, the SOS
of urban (79.3 ± 5.6 DOY) was 7.4 ± 2.7 days earlier than that in the rural (86.7 ± 5.0 DOY).
It indicated that the plant phenology changed significantly under different environmental
backgrounds in the urban and the rural. Besides, it was worth noting that, except 2012
(1.5 days) and 2015 (12.9 days), the difference of SOS between that in the urban and the
rural was relatively stable from 2006 to 2018, with a difference of 7.5 ± 1.6 days, and it was
consistent with the difference of 6–9 days in Hangzhou Figure 6.

As shown in Figure 10, the LST during the daytime rather than nighttime showed
a statistically significantly negative correlation with SOS both in the urban and the rural.
In terms of the LST during the daytime Figure 10a, the sample points of LST–SOS in
the urban and the rural distributed significantly separately, with LST of 19–28 ◦C and
16–23 ◦C, and SOS of 40–100 DOY and 50–110 DOY in the urban and the rural, respectively.
Besides, the SOS in the rural was statistically significantly negatively correlated with
the LST (Slope = −1.64 days/◦C; p < 0.01). The correlation in urban had a degree of
significance (Slope = −1.01 days/◦C, p < 0.05), and the change trend of the SOS with LST
increasing in the urban was smaller than that in the rural. For the LST during the nighttime
Figure 10b, the sample points of LST-SOS in the rural and the urban had poor separation
and high similarity. There was less statistically significant correlation between SOS and LST
(p > 0.05), indicating that the LST during the nighttime had little effect on SOS. However,
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the fitted trends all showed that the SOS decreased with the increasing LST, which was
consistent with the response of SOS to LST in Figure 8.

Figure 9. The interannual changes and differences of (a) the daytime land surface temperature in
spring, (b) the nighttime land surface temperature in spring, (c) the daily average temperature, and
(d) the start of growing season (SOS) in the urban and the rural from 2006 to 2018. The red/blue
dotted lines denote the interannual changes, and the gray bars denote the differences. The DOY
denotes the day of year.

Figure 10. The response of SOS in the urban and the rural to (a) daytime temperature and
(b) nighttime temperature. The SOS means the start of the growing season. The red/blue solid
points denote urban/rural sample data, the red/blue solid lines denote linear regression lines, and
the regression equation and significance are shown in the illustration. The DOY denotes the day
of year.
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3.4. Relative Contributions of ΔLST to ΔSOS at Sample Points

The temperature contribution separation model was utilized to explore the contri-
butions of the ΔLST to the ΔSOS under urbanization. The difference of SOS under ur-
banization between predicted by the model (7.3 ± 1.3 days) and observed through data
(7.4 ± 2.7 days) was −0.16 ± 1.4 days Figure 11a. For the results predicted by the model
Figure 11b, the ΔLST played a significant role in the advance of SOS under urbanization
and the proportion of its contributions was relatively stable, despite the interannual fluctu-
ations. Besides, we found that the ΔSOS dominated by the ΔLST contributed 72 ± 13.3%
(5.3 ± 1.7 of 7.3 ± 1.3 days) to the difference of SOS between that in the urban and the
rural Figure 11a. The advance of 28 ± 13.3% (1.9 ± 0.7 days) of SOS under urbanization
was dominated by other factors such as photoperiod and air pollution. Overall, the local
warming effect induced by the urban heat island effect produced substantial impacts on
plant phenology under urbanization, but the impact of other factors also cannot be ignored.

Figure 11. (a) The contributions of the difference of land surface temperature between urban and
rural (ΔLST) and other factors to the difference of plant phenology under urbanization and (b) their
interannual variations from 2006 to 2018. The SOS means the start of the growing season. Quantile
chart denotes the distribution of SOS differences from 2006 to 2018. Solid red points represent
abnormal values. The DOY denotes the day of year.

4. Discussion

Plant phenology is one of the key regulators of ecosystem processes, which is sensitive
to environmental change. The acceleration of urbanization in recent years has produced
substantial impacts on vegetation phenology over urban areas, such as the local warming
induced by the urban heat island effect. This study explored impacts of urbanization
on SOS and distinguished contributions of ΔLST and other factors to ΔSOS based on
a temperature contribution separation model. We found that the SOS was negatively
correlated with the daytime LST in spring, and the ΔSOS dominated by the ΔLST and
other factors contributed 72% and 28% to the ΔSOS, respectively. Previous studies showed
that there were lots of aspects besides temperature were different between urban and
rural under urbanization, which had a certain impact on plant phenology. (1) The land
cover changes under urbanization changed the soil properties extremely in the urban,
affecting the relationship between plants, water and nutrients [49]. (2) There were high
concentration of greenhouse gases (such as CO2) and major pollutants (such as NO, NO2,
CO, SO2 and particulates with a diameter of 10μm or less) in the urban, resulting from
the emissions produced by factories and automobiles [50]. In this regard, many studies
showed that pollutants in the urban environment could cause the advance or delay of plant
phenology [51–53]. (3) Due to the increasing artificial light caused by the human activities
at night in the urban, the growth of plants was seriously influenced [54,55]. Therefore,
there were various differences between the urban areas and their rural surroundings, not
only in terms of temperature, but also in other aspects that affect plant phenology.
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The LST in spring from February to April was selected to explore the relationship be-
tween LST and SOS in this study. Previous studies showed that meteorological parameters
such as temperature and precipitation in a period of time before the phenological event
were important determinants affecting the occurrence of phenology. The period of time is
significant to the study of the relationship between phenology and climate [56,57], which
called preseason duration. Polgar et al. found that the temperature in late winter and spring
or preseason temperature played an important role in the occurrence of SOS [58]. Zhou
et al. and Jia et al. found that the LST showed a statistically significant correlation with
SOS (p < 0.05, R2 > 0.8) [7,15]. In addition, different temperature indicators were used to
explore its effect on the SOS, such as daily maximum temperature and diurnal temperature
difference. (1) Piao et al. showed that the SOS was more sensitive to the preseason daily
maximum temperature in the northern hemisphere, and 68% of the European Union and
83% of the United States had a preseason duration of 0–3 months [59]. (2) The results of
Huang et al. showed that 77.2% of the northern hemisphere, the SOS had the strongest
correlation with the average diurnal temperature difference in the preseason period of
1–3 months [60]. In general, the results above indicated that the temperature in spring was
relevant to SOS with the preseason duration of 0–3 months.

At the same time, there were some limitations in this study. (1) As shown in Figure 10,
the LST during the daytime showed a statistically significantly negative correlation with
SOS both in the urban (p < 0.05) and the rural (p < 0.01), while the R2 was low. The low R2

might be related to the impurity of the data where existed many mixed pixels in the urban
sample. To explore the changes in plant phenology caused by the urban heat island effect,
we needed to focus on forest where is severely affected by urbanization. However, the
MODIS EVI data with a resolution of 250 m was the data with long time series, the highest
resolution and we could currently obtain. Therefore, the problem of mixed pixels inevitably
existed in the urban, which affected the correlation between SOS and LST. Although the R2

was relatively low, they were both statistically significant (p < 0.05), which was meaningful
in a certain degree. In the future, data with higher resolutions should be used to reduce the
uncertainty caused by the data and make results more reliable. (2) In this study, all types of
forest in Hangzhou were used to explore the impact of urbanization on plant phenology.
Previous studies found that the phenology and the response to urbanization varied in the
different types of vegetation. However, due to the limitation of the accuracy of data, we
could only exclude shrub, farmland and grassland. Relatively uniform and stable forests
were extracted as the study object to weaken the impact of different vegetation types to a
certain extent. Reliably, previous studies utilized all vegetation types for the study and got
reliable results, having a certain significance [7,33]. In future research, we hope to more
finely distinguish the vegetation types and improve the accuracy of the study, in order to
obtain more reliable results. (3) As mentioned above, there were lots of aspects besides
temperature that were different between urban and rural under urbanization, which had a
certain impact on plant phenology. Although other factors were taken into consideration
in this study, no specific data analysis was carried out on other factors such as greenhouse
gases. In future studies, a more quantitative and detailed discussion on the effects of
other factors on vegetation phenology should be advanced. With the development of
high-quality data and online data processing platforms (e.g., Google Earth Engine), it is
feasible to apply the methodology of our present work to other study areas even to a
global scale.

5. Conclusions

Focused on Hangzhou, a typical subtropical metropolis, to investigate the impact
of urbanization on plant phenology. Vegetation index-based phenology data and land
surface temperature data were adopted to analyze the urban–rural gradient in phenology
characteristics and the contributions of ΔLST to the ΔSOS under urbanization. We found
that there was a negative coupling between SOS and LST in over 90% of the vegetated areas
in Hangzhou. At the sample-point scale, SOS was weakly, but significantly, negatively
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correlated with LST at the daytime (R2 = 0.2 and p < 0.01 in rural; R2 = 0.14 and p < 0.05 in
urban) rather than that at nighttime. Besides, the ΔSOS dominated by the ΔLST contributed
more than 70% of the total ΔSOS. We consider that the achievements of this study will
provide quantitative evidence for the impact of urbanization on the plant phenology,
and help to deepen the understanding of urban ecosystem adaptation under intensive
human activities.
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Abstract: Land surface phenology (LSP), as a precise bio-indicator that responds to climate change,
has received much attention in fields concerned with climate change and ecology. Yet, the dynamics of
LSP changes in the Qinling Mountains (QMs)—A transition zone between warm-temperate and north
subtropical climates with complex vegetation structure—under significant climatic environmental
evolution are unclear. Here, we analyzed the spatiotemporal dynamics of LSP for different vegetation
types in the QMs from 2001 to 2019 and quantified the degree of influence of meteorological factors
(temperature, precipitation, and shortwave radiation), and soil (temperature and moisture), and
biological factors (maximum of NDVI and middle date during the growing season) on LSP changes
using random forest models. The results show that there is an advanced trend (0.15 days/year) for
the start of the growing season (SOS), a delayed trend (0.24 days/year) for the end of the growing
season (EOS), and an overall extended trend (0.39 days/year) for the length of the growing season
(LOS) in the QMs over the past two decades. Advanced SOS and delayed EOS were the dominant
patterns leading to a lengthened vegetation growing season, followed by a joint delay of SOS and
EOS, and the latter was particularly common in shrub and evergreen broadleaved forests. The
growth season length increased significantly in western QMs. Furthermore, we confirmed that
meteorological factors are the main factors affecting the interannual variations in SOS and EOS,
especially the meteorological factor of preseason mean shortwave radiation (SWP). The grass and
crop are most influenced by SWP. The soil condition has, overall, a minor influence the regional LSP.
This study highlighted the specificity of different vegetation growth in the QMs under warming,
which should be considered in the accurate prediction of vegetation growth in the future.

Keywords: land surface phenology; NDVI; spatiotemporal dynamics; different drivers; random
forest model

1. Introduction

Vegetation phenology is the seasonal timing of lifecycle events, such as leaf emergence,
flowering, leaf coloration and fall, and it has become an important topic in the field of
climate and ecology as a sensitive and precise indicator that is responsive to climate
warming [1,2]. Shifts in spring and autumn vegetation phenology caused by climate
warming can differentially alter the length of the growing season, which affects carbon,
water, and energy exchange between terrestrial ecosystems and the atmosphere [3–5].
Recent studies have reported that in addition to climatic factors, soil and biological factors
also influence shifts in vegetation phenology by affecting plant growth processes in the
context of ongoing global climate change [6,7], due to the poor interpretation of phenology
shifts among different vegetation types [8,9]. Hence, it is essential to study the dynamics
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and drivers of phenology among different vegetation types to improve phenology models
and enrich our understanding of the carbon cycle of terrestrial ecosystem.

With the application of remote sensing in monitoring vegetation phenology, we
traditionally use the term land surface phenology (LSP) to denote the dynamic variations
in vegetation land surface as observed from satellite imagery [10]. Satellite-derived LSP
metrics are usually focused on the start (SOS) and end (EOS) of growing seasons [11].
Satellite-based studies have shown that SOS was advanced by 10.6 days (i.e., 5.4 days
per decade) throughout Europe and by 14 days (i.e., 7.9 days per decade) in temperate
China before 2000 [12,13]. However, this trend of SOS advancement may have slowed
or even reversed since the 2000s. For instance, in the entire northern hemisphere, it was
advanced by only 0.2 days during 2000 to 2008, but a delayed SOS was revealed in the
Tibetan Plateau [14,15]. Regarding satellite-derived EOS, the published results have not
always been consistent. Across the entire Northern Hemisphere, EOS was delayed at a rate
of 2.2 days per decade during 2000–2008 [14]. In the Yellow River Basin, EOS was delayed
by 5.6 and 3.4 days in 1982–1999 and 2000–2015, respectively [16]. In the Qinghai-Tibet
Plateau, however, Wang et al. [17] reported the opposite phenology change trends, in both
the east and west zones. Overall, these varied results might be due to different study areas,
periods, and methods of extracting phenology metrics. However, few studies have focused
on the diversity of phenology across different vegetation types. In particular, the dynamic
phenology characteristics of herbaceous or shrubs and evergreen forests in the Qinling
Mountains have been little studied.

To date, the processes and drivers governing LSP remain poorly understood. Several
studies reported that temperature is a major driver of early spring leaf development and
delayed autumn leaf fall in plants and has less control over autumn phenology than spring
phenology [18,19]. The impact of precipitation on LSP processes is mainly directed at
plants in arid and semiarid regions, where water deficits limit the use of light and heat
conditions by plants in arid and semiarid areas [20]. Some studies further considered
solar radiation (i.e., shortwave radiation) and found that increasing photosynthetic active
radiation can promote earlier leaf germination and delaying leaf senescence [21]. Besides
meteorological factors, soil factors and biological factors have also been shown to be
drivers of LSP change processes [22–24]. Soil temperature and moisture information, due
to the prevalent freezing—Thawing process of soil in alpine and arctic regions, could more
directly control vegetation growth; for example, soil wetting will, to some extent, reduce
the effect of soil warming on LSP changes [22,25]. Slight fluctuations in the time interval
between the middle date (MD) of the growing season and the autumn phenology have a
strong effect on regulating EOS [7]. Peak growth in summer (i.e., maximum NDVI during
the growing season, MN) can have an impact on vegetation greening and senescence, and
its unique vegetation growth patterns may result in different allocations of green or carbon
across the growing season [24]. To date, how these meteorological, soil, and biological
factors affect regional-scale LSP variations has not been clearly and consistently studied,
which seriously affects our ability to predict LSP periods.

The responses of vegetation growth processes to climate change are inherently non-
linear [26]. Random forest (RF), as a nonparametric multivariate method, can explain
nonlinear processes to a large extent [27]. The advantage of the RF model is that it can
consider many predictor variables and nonlinearly determine the relative importance of
each predictor variable [28]. Due to its high efficiency in handling the potentially complex
relationships between LSP periods and meteorological, soil, and biological factors, RF has
been widely and successful applied in recent ecology studies [6,29].

The Qinling Mountains (QMs), rich in vegetation types, represent a demarcation
line of climate in China and are also an area characterized by sensitivity or response to
climate change, with a significant upward temperature trend in the past half century [30].
Here, we used the satellite derived normalized difference vegetation index (NDVI) records
(2001–2019) from MOD13A2 to extract the LSP dates of QMs. The objectives were (a) to
explore the temporal and spatial trends of LSP in the QMs, (b) to quantify the relative
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contribution of SOS and EOS of different vegetation types to the length of growing season
(LOS) and to determine the dominant growth pattern during the growing season, and (c)
to simulate the LSP dates and assess the relative importance of meteorological, soil, and
biological factors on the interannual variations in LSP. This study focuses on the specificity
of different vegetation growths in the QMs, and the results are helpful for future accurate
prediction of vegetation growth and to develop scientific management strategies.

2. Materials and Methods

2.1. Study Area

Qinling is the highest mountain range in the central region of China and also a
geographical boundary between the north and the south of China, with an elevation range
of 51 to 5120 m and a spatial range from 30.8◦ to 35.5◦N to 102.5◦ to 114.6◦E (Figure 1a). Its
climate differs significantly between north and south, with a humid northern subtropical
climate in the south and a warm temperate semi-humid and semiarid climate in the north
(Figure 1a). It has also been classified as one of the critical terrestrial biodiversity areas of
world significance [31], with mixed coniferous and deciduous broadleaved forests widely
distributed on its northern slopes, while the southern slopes are dominated by mixed
evergreen and deciduous broadleaved forests (Figure 1b).

Figure 1. An overview of (a) the study area and (b) spatial distribution of vegetation types. Only
pixels with unchanged vegetation types were analyzed in this study period. The dataset with a total
of 218,899 pixels was divided into seven vegetation types.

2.2. Datasets

NDVI is the most commonly applied vegetation index to characterize vegetation
greenness and is strongly correlated with vegetation photosynthetic activity [32]. Climate
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change is the main factor affecting the change of vegetation greenness, and this change can
be reflected by the spectral information of NDVI images. In this study, we used the NDVI
datasets generated from NOAA/AVHRR series satellite images by the NASA MODIS13A2
group (Table 1). We used this dataset to extract the LSP dates for QMs from 2001 to 2019.
We also excluded areas of bare soil/sparse vegetation with an annual average NDVI of less
than 0.1 [33].

Table 1. Datasets and sources in the study area.

Dataset Spatial Resolution Temporal Resolution Time Span Source

MODIS13A2 NDVI 1 km 16 days 2001–2019

The Level-1 and Atmosphere
Archive and Distribution System

Distributed Active Archive Center
(LAADS DAAC) (https://search.

earthdata.nasa.gov/search/,
accessed on 15 October 2020).

Land cover
(CCI-LC) 300 m Yearly 2001–2019

http://maps.elie.ucl.ac.be/CCI/
viewer/index.php, accessed on 20

October 2020

Temperature 0.1◦ hourly 2001–2019
The Reanalysis (ERA5) climatic

datasets (https:
//cds.climate.copernicus.eu,

accessed on 12 November 2020)

Precipitation 0.1◦ hourly 2001–2019
Shortwave radiation 0.1◦ hourly 2001–2019

Soil temperature 0.1◦ hourly 2001–2019
Soil moisture 0.1◦ hourly 2001–2019

Meteorological data, including daily mean air temperature, daily total precipitation,
and daily mean shortwave radiation and soil data, including daily mean soil temperature
and moisture in 0–100 cm soil layer, from 2001 to 2019 were used in this study. These
gridded data were derived from the ERA5-Land hourly data (Table 1). Moreover, we
transformed the hourly climate data (24 hourly data were averaged for temperature, solar
radiation, soil temperature and humidity, 24 hourly data were summed for precipitation) to
daily-scale temporal resolution and resampled meteorological data to the same resolution
as MODIS13A2 data. A time lag of 30 days before SOS and 60 days before EOS is defined
as preseason.

The 300 m spatial resolution Climate Change Initiative Land Cover (CCI-LC) maps
from 2001 to 2019 were available from the European Space Agency (ESA) (Table 1). CCI-LC
discriminates 22 classes of land cover. In this study, we resampled these maps to 1 km and
analyzed only pixels of unchanged vegetation types containing evergreen needle leaved
forest (ENF), evergreen broadleaved forest (EBF), deciduous broadleaved forest (DBF),
mixed forest (MF), shrubland (SL), grassland (GL), and cropland (CL).

2.3. Retrieval of Phenology Metrics from NDVI Time Series Data

The premise of quantitatively analyzing the phenology changes is to derive several
key phenology metrics: SOS, EOS, LOS, MN, and MD (Figure 2). In this study, we firstly
stacked the NDVI images from 2001 to 2019 in chronological order and smoothed the
NDVI time series with a Savitzky-Golay (SG) filter for each pixel per year. The SG filter
was chosen because it can best preserve the temporal vegetation dynamics and minimize
atmospheric contamination and has also been integrated into the processing of the MODIS
phenology product [34]. The smoothed data was used further for extracting phenology
metrics of different vegetation types by detecting the inflection point (i.e., date) when the
NDVI time series begins to ascend or descend for the specific year. This is the derivative
method which the phenology metrics were extracted for each pixel per year, whereby the
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maximum value of NDVIratio corresponds to the greatest change of the smoothed NDVI
time series [35]. Equation (1) is given as

NDVIratio(t) =
NDVIt+1 − NDVIt

NDVIt
(1)

where NDVIratio(t) is the calculated relative changing rate of NDVI at time t and NDVIt is
the NDVI value at time t. Occurrence dates were obtained using these smoothed NDVI
time series. SOS and EOS dates were determined as the day with the maximum and
minimum NDVIratio. LOS was determined to be the difference between EOS and SOS.
MN was defined as the peak of vegetation growth, i.e., the NDVI value corresponding to
NDVIratio closest to zero. MD date was the middle date between the EOS date and the SOS
date. The description of phenology metrics correlations is shown in Figure 2.

Figure 2. The description of phenology metrics correlations extracted using the NDVI time se-
ries datasets.

2.4. Method and Statistical Analysis
2.4.1. Trend Analysis

The method used in this study is shown in Figure 3. The spatiotemporal trends
of LSP during 2001–2019 were estimated using Sen’s slope method, also known as the
Theil-Sen median method. The method is a robust nonparametric statistical method for
trend calculation that is insensitive to measurement errors and is far more accurate than
nonrobust simple linear regression [36]. Sen’s slope was calculated using Equation (2):

Sen’s slope = Median
( xj − xi

j − i

)
(2)

where the median is the mean value of all the slopes, and xi and xj represent the LSP dates
of years i and j. A negative Sen’s slope indicates an advancing trend, whereas a positive
Sen’s slope indicates a delaying trend.
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Figure 3. Flowchart of the method used in this study. MODIS 13A2 NDVI (2001–2019), in which
the spatiotemporal distributions of NDVI for 2001, 2010, 2015 and 2019 are presented as examples
of NDVI time series used as extract phenology metrics. Land cover (2001–2019), in which the
spatiotemporal distribution of land cover for 2001, 2010, 2015 and 2019, used as an example of the
changes in different vegetation types. Environmental factors, the first column indicates the drivers
for SOS and the second column indicates the drivers for EOS, and shows the spatial distribution of
each driver separately, which is used to example the predictors used for RF models.

Then, we used the Mann-Kendall (MK) method to test the significance of time series
trends, which is a nonparametric statistical test and is robust to outliers [37]. We used the
normal cumulative distribution function to determine the p-value of the MK test statistic
with a significant confidence level of p < 0.1. In this study, we used Sen’s slope and MK
test to trend analysis and significance test the spatial distribution (average growth) and
interannual variation (interannual growth) of LSP for different vegetation types from 2001
to 2019, all using MATLAB 2017a were completed.

2.4.2. Change Pattern and Relative Attribution Analysis

To further understand the seasonal changes of vegetation growth in the QMs in the
past two decades, we divided the trend changes of LSP (SOS, EOS, and LOS) into six
combinations, where each combination represents a pattern of vegetation growth (Table 2).
We used spatial analysis to count the proportion and significance of different vegetation
for each pattern and to derive the dominant pattern of seasonal changes in the growth of
each vegetation. All analysis was accomplished using ArcGIS 10.4.
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Table 2. Six change patterns of plant growing seasons, i.e., six combination types of SOS, EOS, and
LOS change trends. The plus and minus signs represent the trend direction corresponding to SOS,
EOS, or LOS, respectively.

Change Pattern Trend of SOS Trend of EOS Trend of LOS

I Advanced (−) Delayed (+) Lengthened (+)
II Advanced (−) Advanced (−) Lengthened (+)
III Advanced (−) Advanced (−) Shortened (−)
IV Delayed (+) Advanced (−) Shortened (−)
V Delayed (+) Delayed (+) Lengthened (+)
VI Delayed (+) Delayed (+) Shortened (−)

To evaluate the symmetry of SOS and EOS for LOS changes, we used the C-index
proposed by Garonna et al. [38] to calculate the relative contribution of trends in SOS and
EOS for LOS changes. It was calculated as follows:

C = −1 +
2 ·

∣∣∣SOSslope

∣∣∣∣∣∣SOSslope

∣∣∣+ ∣∣∣EOSslope

∣∣∣ (3)

where SOSslope and EOSslope are the Sen’s slope of SOS and EOS, respectively. A positive
C value indicates that the trend in LOS is mainly attributable to changes in EOS, and a
negative C value indicates that the trend in LOS is mainly attributable to changes in SOS.
The variation of C value is from −1 to 1.

2.4.3. Analysis of the Relative Importance of Different Drivers

Based on previous studies on the drivers of interannual variation in vegetation phe-
nology [18–24], we selected drivers such as Table 3 to simulate SOS and EOS. These drivers
are divided into three main categories: meteorological, soil and biological factors, which
are further divided into preseason cumulative values and cumulative values throughout
the growing season.

Table 3. Predictive variables used in the modeling of the LSP dates. The 12 predictive variables were classified into three
categories: meteorological factors, soil factors, and biological factors. Meteorological factors include TP, TG, PP, PG, SWP,
and SWG (6 in total). Soil factors include STP, STG, SMP, and SMG (4 in total). Biological factors include MN and MD (2 in
total). Growing season is defined as the days between SOS and EOS.

Variables SOS Drivers EOS Drivers

Meteorological factors

Preseason average temperature * (TP) Preseason average temperature ** (TP)
Growing season average temperature (TG) Growing season average temperature (TG)

Preseason total precipitation * (PP) Preseason total precipitation ** (PP)
Growing season total precipitation (PG) Growing season total precipitation (PG)

Preseason mean shortwave radiation * (SWP) Preseason mean shortwave radiation ** (SWP)
Growing season mean shortwave radiation (SWG) Growing season mean shortwave radiation (SWG)

Soil factors

Preseason soil temperature * (STP) Preseason soil temperature ** (STP)
Growing season soil temperature (STG) Growing season soil temperature (STG)

Preseason soil moisture * (SMP) Preseason soil moisture ** (SMP)
Growing season soil moisture (SMG) Growing season soil moisture (SMG)

Biological factors Maximum NDVI during growing season (MN) Maximum NDVI during growing season (MN)
Middle season date (MD) Middle season date (MD)

* Predicted over a period of 30 days. ** Predicted over a period of 60 days.

In this study, the RF model was used to assess the relative importance of the drivers
affecting interannual variations in LSP. First, for each pixel, we calculated the partial
correlation coefficients between environmental factors (TP, TG, PP, PG, SWP, SWG, STP,
STG, SMP, SMG, MN, and MD) and SOS and EOS during 0, 1, 2, . . . n months before SOS
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and EOS, and we separately derived the highest correlation with SOS and EOS for the time
range of 30 days before SOS and 60 days before EOS for environmental data. Moreover,
a subset of variables highly correlated with SOS and EOS was selected, and the values
of the variables at selected years and locations (spatiotemporal models) were combined
into a set of input feature vectors that are used as inputs for the RF algorithm. Then, these
feature vectors were divided equally into two subsets, with 2/3 of the dataset used for
model training (in bag) and the remaining 1/3 of the dataset used as an additional test
of the RF internal computation (out of bag, i.e., OOB) to estimate the importance of each
variable. Variable importance can also be measured by OOB, which compares the increases
in OOB error with that variable randomly permuted and all others unchanged [39]. The
importance score of a variable is as follows:

VI
(

Xj
)
=

1
ntree∑

t

(
err′OOBj

t − errOOBj
t

)
(4)

where Xj is the jth variable, ntree is the number of trees, errOOBj
t is the OOB error of each

tree t, and err′OOBj
t is the OOB error when Xj is permuted, while all other variables remain

unchanged among OOB data. For regression, the OOB error is the mean square error.
Finally, to optimize the model, the hyperparameter search was used to select the best

tested hyperparameter set, and the optimal model was trained on the whole training set
for accurate prediction of the LSP dates. Besides modeling multi-year-scale LSP variation
for the entire region, subregional variation according to different vegetation types was
also modeled to quantify the relative importance of different drivers. These models were
constructed using the RF package in R statistical software.

To evaluate the predictiveness of the model and to further test the applicability of
the model, we used a randomly selected subset (1/3 of the dataset) for model validation.
Both the proportion of explained variance (R2) and the root mean square error (RMSE)
were used to assess the performance of the model on the complete datasets. The stability
of the model fit is explained by the mean absolute error (MAE) [40]. These statistics were
calculated as follows:
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where yi is the observed satellite-based SOS or EOS values, is
�
y i the predicted RF-based

SOS or EOS values, and yi is the mean satellite-observed SOS or EOS values of all selected
test pixels for 2001–2019. n is the sum of all selected test pixels.

3. Results

3.1. Spatiotemporal Variations of Phenology Metrics in the QMs

Figure 4 shows the spatial variation of the annual mean LSP and their corresponding
standard deviations (Std) over the study period 2001–2019. Earlier (<90 days) sites of SOS
(14.4%) were located at low elevations in the central QMs, and later (>130 days) sites (6.8%)
were located at high elevations in the western QMs (Figure 4a). The earliest occurrence
of SOS was for SL, with a mean SOS of 97 ± 14 days, and the latest occurrence was for
GL, with a mean SOS of 109 ± 12 days (Figure 4a). The Std of SOS has significant spatial
variation, with larger areas located in the southwestern QMs (57.2%) having higher Std
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(>9 days) (Figure 4b). The overall spatial variation in multi-year average EOS was not
significant, and in the southeastern QMs, EOS was mainly concentrated in 290–300 days,
accounting for 43.0% of the entire study area (Figure 4c). The earliest EOS occurred in GL,
with a mean EOS of 287 ± 11 days, and the latest occurred in EBF, with a mean EOS of
295 ± 12 days (Figure 4c). There was higher Std (>13 days) in the southern QMs (25.2%)
compared with the northern QMs (Figure 4d). LOS had clear spatial differences, with the
central QMs (15.5%) having the longest LOS (>210 days) and the western high-altitude
areas (8.5%) had the shortest LOS (<150 days). For SL in the southern QMs (27.9%), its
mean LOS was 193 ± 20 days and the std (>18 days) was also the largest (Figure 4e,f).

Figure 4. (a,c,e) Spatial distribution of the average phenology metrics from 2001 to 2019 and (b,d,f)
standard deviation (Std) of the phenology metrics. Insets at bottom left show the histogram of the
average pixel values for different vegetation types.

We also characterized the spatial distribution of LSP trends for different vegetation
types from 2001 to 2019 (Figure 5). For the whole QMs, SOS was advanced in 67.8%, the
average rate of advance was 1.5 days/decade, and 27.5% of the area (mostly located in the
northern QMs) was significant (Figure 5a,b). DBF advanced at a rate of 1.9 days/decade
and was the fastest compared to other vegetation types (Figure 5a). EOS was delayed in
72.1% of the region and significant for 42.1% of the region (mostly located in the southern
QMs), with an average delay rate of 2.4 days/decade across the region (Figure 5c,d).
EBF had the fastest delay rate of 3.3 days/decade (Figure 5c). The average rate of LOS
lengthening across the study area was 3.9 days/decade, and 74.6% of the areas (mostly
in the southwestern QMs) were lengthened (Figure 5e). The rate of LOS lengthening was
4.7 days/decade for EBF, fastest among the seven vegetation types. Of these areas that
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were lengthened, the change was found to be significant in 40.3% (mostly in the western
QMs) of cases (Figure 5f).

Figure 5. (a,c,e) Spatial distribution of phenology metrics trends from 2001 to 2019 and (b,d,f)
significant (p < 0.1) changes in phenology metrics trends for the study periods. Insets at bottom left
show the average pixel values of the trends of the phenology metrics for the different vegetation types.

Data of interannual variation trends and the significance of LSP for different vegetation
types are shown in Figure 6. Overall, the Sen’s slope of SOS is −0.09 days/year from 2001 to
2019, but this advance is insignificant. There was a trend of significant SOS advancement
for DBF and GL, at 0.16 and 0.13 days/year, respectively. EOS shows a significant delay
trend over the entire region of 0.29 days/year. The trend of EOS delay was more significant
for both EBF and CL compared to other vegetation (p < 0.05), and the rate of EBF delay
was the fastest (0.37 days/year). LOS is significantly lengthened at a rate of 0.48 days/year.
ENF, EBF, DBF, MF, and CL show a more significant trend for lengthened LOS (p < 0.05),
with the fastest being for EBF (0.68 days/year).
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Figure 6. Interannual variations and significance of the mean phenology metrics for the entire study
area and the areas covered by different vegetation types. The unit of Sen’s slope is days/year.

3.2. Change Pattern of LSP and Relative Attribution Analysis

For all vegetation types, the dominant change pattern of the growing season was
Type I, with a proportion of 48.4%, which implies that most vegetation in the QMs had an
advanced SOS, delayed EOS, and lengthened LOS (Table 4). Type V showed the second
largest proportion (15.2%) which meant that there were also many plant species on the
QMs having delayed SOS, delayed EOS, and lengthened LOS. Types III, IV, and VI had
the smallest proportions (all lower than 10.0%), which indicated that the probabilities of
shortened LOS were very low for all plants on the QMs. For five of these vegetation types
(ENF, EBF, MF, SL, and CL), the dominant change pattern of the growing season was Type I,
followed by Type V. This indicates that these types of plants on the QMs had delayed EOS
and lengthened LOS. The main change pattern for DBF and GL was also Type I, with Type
II being the second most prevalent. This implies that there is some DBF and GL showing
advanced SOS, advanced EOS, and lengthened LOS.

Figure 7 shows the significance of each pattern. For all vegetation types, lengthened
LOS, advanced SOS, and delayed EOS were significant in terms of Type I, II, and V change
patterns, respectively. Types I, II, and V were the top three patterns in terms of percentage,
as seen in Table 4, which were also the three patterns of LOS lengthening. In the Type
I, lengthened LOS is significant for most vegetation types (EBF, MF, SL, GL, and CL). In
terms of Type II change, the SOS of ENF, DBF, MF, GL, and CL were all significantly
advanced, and advanced SOS resulted in lengthened LOS. Fewer changes in LSP trends
were significant in terms of Type III, IV, and VI changes, only SL and GL showed significant
Type IV changes, and SL (15.5%) and GL (12.2%) accounted for a large proportion of Type
IV changes. In terms of Type V, the EOS of all six vegetation types (ENF, EBF, DBF, MF, GL,
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and CL) was significantly delayed. Delayed EOS resulted in lengthened LOS, a pattern
which also happens to be the second largest in terms of proportion, and this pattern is also
the one we should be concerned about.

Table 4. The percentage of phenology metrics datasets consisting of each pixel showing different change patterns in the
growing seasons for all the vegetation types. Change patterns refer to the trend groupings in Table 2.

Change Patterns All the Vegetation Types ENF EBF DBF MF SL GL CL

I 48.4% 46.6% 50.1% 49.3% 47.2% 43.2% 44.8% 48.7%
II 12.0% 10.9% 9.5% 13.7% 11.8% 6.9% 15.2% 10.5%
III 7.3% 6.8% 6.2% 8.6% 7.3% 3.1% 7.6% 5.9%
IV 8.7% 9.0% 7.7% 7.9% 8.8% 15.5% 12.2% 9.3%
V 15.2% 16.8% 18.0% 12.4% 16.5% 23.5% 12.7% 17.2%
VI 8.5% 9.9% 8.5% 8.1% 8.4% 7.8% 7.5% 8.6%

Total 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%

Figure 7. Trends and significance of each pattern during the growing season for different vegetation
types. (a) growing season pattern I. (b) growing season pattern II. (c) growing season pattern III.
(d) growing season pattern IV. (e) growing season pattern V. (f) growing season pattern VI. Note:
“All” refers to all vegetation in the QMs.
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For the entire study area, the calculated C-index values were negative for 106,385 pixels
and positive for 112,514 pixels (Table 5 and Figure S1). Pixels with C-index values less than
0 are mainly distributed in the easternmost and southernmost parts of the QMs, which
indicates that their LOS variations are mainly controlled by SOS shifts. All other regions
have pixels with values over 0, which indicates that they are controlled by EOS shifts
(Figure S1, in Supplementary Materials). The percentage of LOS changes controlled by
SOS and EOS is 48.6% and 51.4%, respectively (Table 5). This also shows that LOS trends,
except for DBF and GL, were mainly controlled by the shift in EOS for each vegetation
type. The percentage of LOS changes controlled by SOS shifts was 53.4% and 52.0% for
DBF and GL, respectively. The largest percentage of changes in LOS of all vegetation types
controlled by EOS was 58.3% (SL), and the smallest was 46.6% (DBF).

Table 5. The percentage of datasets in which LOS change was primarily attributable to the shift in
SOS or EOS. For most vegetation types, the percentages show that the trend in LOS was mainly
controlled by the shift in EOS.

All the Vegetation Types SOS Controlled EOS Controlled Total

ENF 46.9% 53.1% 100%
EBF 43.4% 56.6% 100%
DBF 53.4% 46.6% 100%
MF 47.2% 52.8% 100%
SL 41.7% 58.3% 100%
GL 52.0% 48.0% 100%
CL 45.9% 54.1% 100%

The whole area 48.6% 51.4% 100%

3.3. Drivers of Interannual Variations in LSP

For the QMs, different drivers affect the interannual variability in SOS and EOS
(Figure 8 and Table 6). The SWP, MD, and STP are the three most important factors
influencing the interannual SOS variation, and the relative importance accounts for 54.4%
of total (Figure 8a and Table 6). The total percentage of TG, PP, TP, STG, and PG was
39.2%, and the effect of TG and PP on the interannual SOS variation was almost the same.
The remaining four variables (SWG, SMG, SMP, and MN) have a very small effect on
interannual SOS variation, and their combined percentage was only 6.4%. Figure 8b and
Table 6 also show that SWP, PP, and MD are the three most important factors influencing
the interannual EOS variation, with a total relative importance of 54.0%, and the influence
of SWP is much stronger than that of PP and MD. The effects of TP, SWG, STP, PG, TG, and
STG on the interannual EOS variation totaled 41.9%, and the effects of TP and SWG on the
interannual EOS variation were not very different, with a relative importance of 10.2% and
9.9%, respectively. There was also little difference in the relative importance of PG, TG,
and STG. The effect of the single variable of STP on the interannual EOS variation (7.2%) is
much larger than the sum of SMP, SMG, and MN (4.1%).

Table 6. The top three dominant drivers affecting interannual variations in LSP. These three dominant factors are derived
from the ranking of the importance scores of the variables (VI). Different vegetation types have different dominant drivers.

LSP All the Vegetation Types First Dominant Driver Second Dominant Driver Third Dominant Driver

SOS

ENF SWP MD STP
EBF MD SWP PP
DBF MD SWP STP
MF SWP MD STP
SL STP TP SWP
GL SWP MD STP
CL SWP MD TG

the whole area SWP MD STP
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Table 6. Cont.

LSP All the Vegetation Types First Dominant Driver Second Dominant Driver Third Dominant Driver

EOS

ENF SWP TP PP
EBF SWP MD PP
DBF SWP PP TP
MF SWP PP MD
SL SWP PP MD
GL SWP SWG TP
CL SWP TP PP

the whole area SWP PP MD

Figure 8. Relative importance of drivers of affecting interannual variations in LSP for the entire study
area, in decreasing order. (a) The ranking of the drivers of affecting interannual variations in SOS.
(b) The ranking of the drivers of affecting interannual variations in EOS. The specific values for the
relative importance of each driver are in Table S1. Note: The abbreviated variable names are the same
as in Table 3.

The drivers influencing interannual variations in LSP of different vegetation types
were assessed (Figure 9 and Table 6). Figure 9a and Table 6 show that the main drivers
affecting the interannual SOS variation of ENF, MF, and GL were SWP, MD, and STP, and
the relative importance of SWP in these three vegetation types was ranked as GL (28.6%)
> MF (22.1%) > ENF (21.2%). The interannual SOS variation of EBF, DBF, and CL was
mainly influenced by MD and SWP. The main drivers influencing the interannual SOS
variation of SL were STP, TP, and SWP, and STP (29.2%) was the most important factor
influencing the interannual SOS variation of SL. As shown in Figure 9b and Table 6, in
terms of the interannual EOS variation, SWP had the strongest effect on GL (36.4%) and
the slightest effect on SL (20.5%). The main drivers of interannual EOS variation of ENF,
DBF, and CL are SWP, TP, and PP. SWP, PP and MD are the main drivers of interannual
variations in EOS for EBF, MF and SL. Besides SWP, which is the most important driver,
PP is the second factor affecting MF and SL, and MD is the second factor affecting EBF
with a relative importance of 14.5%. Moreover, the main factors affecting the interannual
EOS variation of GL are SWP, SWG, and TP, and the relative importance of SWG and TP is
11.5% and 11.2%, respectively.
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Figure 9. The relative importance of drivers that affect interannual variations in LSP for different vegetation types. Relative
importance was derived from the importance scores of variables (VI) based on RF models established for different vegetation
types: (a) SOS. (b) EOS. Different colors indicate different factors. Note: SOS or EOS as response variable in the RF model.
The specific values for the relative importance of each driver are in Table S1.

We used 19 years of data to construct an RF model for seven vegetation types
(Table S2), and we randomly sampled 1/3 of the pixel dataset to assess their linear re-
lationships (Figure S2). The actual and predicted SOS displayed good linear relationships,
with their correlation coefficient R2 values ranging from 0.900 to 0.938, RMSE values
ranging from 4.90 to 6.52, and MAE values ranging from 3.93 to 5.15 (Figure S2a). Both
the actual and predicted EOS also show good linear relationships, with their correlation
coefficients R2 values ranging from 0.911 to 0.942, RMSE values ranging from 4.23 to 5.63,
and MAE values ranging from 3.26 to 3.74 (Figure S2b). These results indicate that it is
appropriate to use RF models to analyze interannual variations in LSP in the QMs.

4. Discussion

4.1. Dynamics Changes in LSP in the QMs

Understanding the interannual variations in vegetation phenology and its trends is im-
portant for recognizing the patterns of vegetation growth dynamics as a response to climate
warming. Our study showed that there is an advanced trend (1.5 days/decade) for SOS, a
delayed trend (2.4 days/decade) for EOS, and an overall extended trend (3.9 days/decade)
for LOS in the QMs during 2001–2019. In comparison with previous studies on phenology
changes, there were different degrees of advanced SOS, delayed EOS, and lengthened LOS
in different study areas and periods [32,41]. For example, during 1982–2006, the SOS was
advanced by 0.56 days/decade, while the EOS delayed trend rate was 5.5 days/decade, and
the growing season was significantly longer by 6.06 days/decade in North America [42]. In
the Tibetan Plateau region, SOS was advanced at a rate of 0.17 days/decade, EOS was de-
layed at a rate of 5.29 days/decade, and LOS was lengthened at a rate of 5.46 days/decade
for the period 1981–2017 [41]. These results are not entirely consistent with those of studies
conducted for the QMs, and the differences may be mainly due to their different target
periods and the different methods of phenology extraction. However, other investigations
reported that, compared to 1982–1999, the phenology trend slowed down in 2000–2008 and
the changes were not highly significant [14,43]. Meanwhile, our results also show a slower
change in phenology trends over the last 20 years in the QMs, and the magnitude of SOS
advance is also smaller than that of EOS delay. This observation is similar to the results
of Wang et al. and Xia et al. [33,44], which indicates that the satellite-observed phenology
change rates slowed down during a global warming hiatus between 1998 and 2012.
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We also found that the trend in phenology changes of different vegetation is also
highly variable, which is related to the microclimate of different regions or the geographical
variation of plant origin [45]. Our results show a significantly greater trend of SOS changes
in SL than other vegetation types, indicating that the earlier the SOS, the more significant
the trend in SOS variations, and that this difference may be related to plant pollination type,
life type, phylogenetic and wood type, etc. [46]. However, the trend of SOS changes in CL
was weaker than in other vegetation types, and this trend was insignificant because farmers
controlled the sowing time in each year, resulting in significantly smaller variability in crop
phenology than in field observed plants [47]. The results show that the trend of delayed
EOS is significantly stronger for EBF than other vegetation types, mainly because EBF is
mainly located in the region south of the QMs, with a humid northern subtropical climate.
Some researchers have shown that in subtropical mountainous and hilly areas, broadleaved
forests can grow longer under the same similar climatic conditions compared to coniferous
forests [48]. The study also found a significantly stronger trend in the lengthening of
growing season for trees than for shrubs and herbs, which is the same as the findings of
Zhu et al. [49] but in contrast to those of Ge et al. [50], who reported that the interannual
variation trend for trees in China from the 1960s to the 2000s was significantly weaker than
for herbaceous plants, and this difference in trend was due to differences in the study area
and the species of the plants themselves.

4.2. Asymmetry in Contributions of SOS and EOS Trends to LOS

We found the asymmetry in contributions of the SOS and EOS trends to LOS variations
by counting the percentage of pixels with positive and negative C-index values. The results
show that SOS trends control 48.4% of LOS variations and EOS trends control 51.4% of LOS
variations, which shows a stronger association between EOS trends and LOS variations
compared to SOS (Figure S1). Previous studies illustrated that the lengthened growing
season was mainly driven by delayed autumn phenology, which is consistent with our
results [14,38,49]. However, other researchers found that it is the changes in SOS, and
not EOS, that dominate the changes in growing season length [51,52]. It can be seen that
there are differences in previous studies regarding the attribution of LOS variations. To
investigate the reasons for such differences, we divided the trends of SOS, EOS, and LOS
into six change patterns (Table 2 and Figure 7). Our results show that in addition to the
main growth pattern of Type I (SOS advanced, EOS delayed, and LOS lengthened), 15.2%
of the regions had Type V (SOS delayed, EOS delayed, and LOS lengthened), and the
delayed EOS was significant in this pattern. Another 12% of the regions showed Type II
(SOS advanced, EOS advanced, and LOS lengthened) growth pattern, and advanced SOS
was significant. However, since the percentage of the region of the growth pattern Type II
is smaller than that of Types I and V, it is still the trend of delayed EOS that dominates the
variation in LOS for the whole study area, leading to asymmetry of the relative contribution
of SOS and EOS to LOS.

In addition, we found that ENF, EBF, MF, SL, and CL were all controlled by EOS
trends, while the variations in LOS for two vegetation types, DBF and GL, were controlled
by SOS trends (Table 5). As Figure 4e shows, the growing season lengths of DBF and GL
are short, and there are previous studies demonstrating that the effect of EOS shifts on
vegetation with short growing season cycles is insignificant [53]. The percentage of growth
pattern type II is higher than other vegetation types in DBF and GL, and the advance in SOS
is also significant, resulting in SOS dominating the variation in LOS (Table 4). Therefore,
we suggest that the asymmetry in SOS and EOS trends contributing to LOS is related to
vegetation types, and that future studies should focus on vegetation types to accurately
model and predict vegetation phenology periods.

4.3. Analysis of the Drivers of Interannual Variations in LSP

Previous studies showed that the interaction of meteorological, soil, and biological
factors influenced the interannual variability of LSP [6,54]. Our results suggest that SWP
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is the most important driver of interannual variations in SOS and EOS across the QMs
(Figure 8). This is mainly because shortwave radiation compensates for the lack of chilling
demand during plant physiological dormancy through day length, i.e., longer daylight
hours, and has an critical effect on SOS by delaying the accumulation of abscisic acid and
slowing down the rate of leaf senescence, and also on EOS [21]. We also found that SWP
and MD contributed a total of 42.3% to the interannual variations in SOS, and besides
SWP, MD was also an important driver of the interannual SOS variation (Tables 6 and S1).
This is due to the fluctuation of the time interval between SOS and MD, which depends
on the different developmental stages of the phenology events to a large extent and on
the specific differences in the life history of the plant, and needs to be explained by the
phenotypic plasticity of the individual and the adaptation to the environment [55]. There-
fore, we suggest that the effect of MD on interannual SOS variation varies considerably
among vegetation individuals. STP also contributed 12.0% importance in explaining the
interannual SOS variation (Table S1). This is mainly due to the increased soil temperature,
which accelerated the rate of leaf tip emergence and whole leaf expansion, thus promoting
SOS [56]. Moreover, SWP and PP together explain the importance of 43.2% of the interan-
nual EOS variation (Table S1). This is mainly because preseason shortwave radiation and
precipitation control the availability of sunlight and water in vegetation, respectively, and
reduced precipitation affects water transport capacity, which limits the photosynthetic rate
of leaf, leading to lower utilization of light and water conditions by plants and affecting
the interannual variation in EOS [20,57]. The combined contribution of MD, SWP, and PP
to interannual EOS variation was also found to be as high as 54.0% (Table S1), suggesting
that the lifecycle of vegetation is strongly regulated by its own rhythms under improved
hydrothermal conditions, and that biological rhythms play a critical role in interannual
EOS variation [7].

Furthermore, our study shows that the effect of each driver on interannual variations
in LSP was varied for different vegetation types (Figure 9 and Table 6). For example,
SWP is the most important driver for ENF, MF, GL, and CL; MD is the most important
driver for EBF and DBF; and STP is the most important driver for SL (Table 6). This
difference is mainly due to the diversity of plant physiological structures and the different
adaptive strategies of plants to environmental changes [58]. SWP has the greatest effect
on the interannual SOS variation in GL, which is mainly distributed in higher parts of
the QMs and receives abundant solar radiation. The strong solar radiation promotes
root activity and advances SOS [59]. The greatest contribution of MD to interannual SOS
variation in EBF is related to the fact that EBF grows mainly in the southern part of the
QMs, where its deeply rooted system and water conservation adaptations combine to
reduce water stress under the influence of a humid northern subtropical climate. This
adaptation to environmental changes is strongly regulated by its own rhythms, such that
EBF is most affected by MD [60]. The effect of STP in SL is mainly due to the preseason
accumulation of soil temperatures susceptible to specific thresholds that accelerate soil
thaw and vegetation wake, triggering SOS [61]. SWP was the main driver of interannual
EOS variation for all vegetation types, with GL being most influenced by SWP (Table 6).
This is because abundant solar radiation increases surface evaporation and reduces water
availability in grasslands, which subsequently inhibits vegetation growth, resulting in the
EOS of GL being most influenced by SWP [62]. PP and MD have the strongest effect on
interannual EOS variation in SL (Table 6). To our best knowledge, SL is mainly distributed
in semi-humid and semiarid areas, and the control of plant metabolism by water stress
affects its transpiration and photosynthesis, resulting in impaired ATPase synthesis and
accelerated chlorophyll degradation. Meanwhile the adaptation of vegetation to such
adversity changes also affects the interannual variations in EOS [63]. The relationship
between regional climate and vegetation phenology growth will be further explored in
future studies.
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4.4. Evaluation of RF Model

We validated the accuracy of our RF model (Figure S2). The R2 values of the lin-
ear regression formed by the predicted values and the observations inversions are both
greater than 0.900 and 0.911, respectively. When predicting the dates of SOS or EOS, both
RMSE and MAE are relatively small, showing that our RF model has good predictive
performance. Machine learning, as a nonparametric multivariate approach, can integrate
complex relationships between multiple spatial and temporal LSP dates and climate into a
single model for predicting SOS and EOS. Then, the main drivers of SOS and EOS can be
identified by estimating the importance of each variable [6]. However, it should be noted
that although we have tried our best to adjust the hyperparameters of the algorithm to
prevent overfitting in the model, some errors still appear in the test datasets (Table S2).
Therefore, to obtain a better fit, it is necessary to further refine the study area and tree
species in the future. Further study should compare different algorithms to better simulate
the phenology period.

5. Conclusions

This study used the phenology metrics of vegetation in the QMs extracted from
satellite NDVI data to analyze the spatiotemporal trends of LSP during 2001–2019, and to
identify the dominant growth patterns of different vegetation types during the growing
season. Furthermore, driving factors influencing interannual variations in LSP were
emphatically investigated using the RF model. The main conclusions were as follows:

(1) The average advance of SOS across QMs was 1.5 days/decade, with a significant
advance in SOS observed for 27.5% of pixels. EOS was delayed by 2.4 days/decade,
with a significant delay in EOS observed for 42.1% of pixels. LOS was lengthened by
3.9 days/decade, with a significant LOS lengthening observed for 40.3% of pixels.

(2) The dominant pattern of change in the growing season for different vegetation types
was advanced SOS, delayed EOS, and lengthened LOS, and this pattern had the
highest percentage in evergreen broadleaved forests. The percentage of area shows
that the patterns of delayed SOS and EOS and lengthened LOS were the highest
percentage in shrubs.

(3) For the whole QMs, LOS changes were mainly controlled by EOS, and the percent-
age was 51.4%. For deciduous broadleaved forests and grasses, LOS changes were
attributed to SOS, while for other vegetation types, they were attributed to EOS.

(4) SWP was found to be the most important factor influencing SOS and EOS, and grass
and crop most influenced by SWP. Interannual variations in SOS were more influenced
by biological factors (MD) than in EOS. The interannual variability of EOS is more
influenced by preseason precipitation (PP) than SOS.
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Abbreviations
LSP Land surface phenology
QMs Qinling Mountains
NDVI Normalized difference vegetation index
SOS The start of the growing season
EOS The end of the growing season
LOS The length of the growing season
ENF Evergreen needleleaved forest
EBF Evergreen broadleaved forest
DBF Deciduous broadleaved forest
MF Mixed forest
SL Shrubland
GL Grassland
CL Cropland
TP Preseason average temperature
TG Growing season average temperature
PP Preseason total precipitation
PG Growing season total precipitation
SWP Preseason mean shortwave radiation
SWG Growing season mean shortwave radiation
STP Preseason soil temperature
STG Growing season soil temperature
SMP Preseason soil moisture
SMG Growing season soil moisture
MD The middle date of the growing season
MN Maximum NDVI during growing season
RF Random forest
OOB Out of bag
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Abstract: The information on land surface phenology (LSP) was extracted from remote sensing data
in many studies. However, few studies have evaluated the impacts of satellite products with different
spatial resolutions on LSP extraction over regions with a heterogeneous topography. To bridge this
knowledge gap, this study took the Loess Plateau as an example region and employed four types of
satellite data with different spatial resolutions (250, 500, and 1000 m MODIS NDVI during the period
2001–2020 and ~10 km GIMMS3g during the period 1982–2015) to investigate the LSP changes that
took place. We used the correlation coefficient (r) and root mean square error (RMSE) to evaluate the
performances of various satellite products and further analyzed the applicability of the four satellite
products. Our results showed that the MODIS-based start of the growing season (SOS) and end of
the growing season (EOS) were highly correlated with the ground-observed data with r values of
0.82 and 0.79, respectively (p < 0.01), while the GIMMS3g-based phenology signal performed badly
(r < 0.50 and p > 0.05). Spatially, the LSP that was derived from the MODIS products produced more
reasonable spatial distributions. The inter-annual averaged MODIS SOS and EOS presented overall
advanced and delayed trends during the period 2001–2020, respectively. More than two-thirds of the
SOS advances and EOS delays occurred in grasslands, which determined the overall phenological
changes across the entire Loess Plateau. However, both inter-annual trends of SOS and EOS derived
from the GIMMS3g data were opposite to those seen in the MODIS results. There were no significant
differences among the three MODIS datasets (250, 500, and 1000 m) with regard to a bias lower than
2 days, RMSE lower than 1 day, and correlation coefficient greater than 0.95 (p < 0.01). Furthermore,
it was found that the phenology that was derived from the data with a 1000 m spatial resolution
in the heterogeneous topography regions was feasible. Yet, in forest ecosystems and areas with
an accumulated temperature ≥10 ◦C, the differences in phenological phase between the MODIS
products could be amplified.

Keywords: land surface phenology; data suitability; satellite data; spatial scaling effects; the
Loess Plateau

1. Introduction

Land surface phenology (LSP) has been recognized as one of the most effective indi-
cators of climate change [1–4] and is closely related to animal migration, gross primary
production, and crop productivity [5–7]. Methods for measuring phenology include
ground observations (i.e., PhenoCam network and phenology network) and satellite obser-
vations [8–10]. Ground observations usually only reflect the phenological information of
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local ecological communities [11–13]. However, satellite remote sensing has the potential
to continuously observe the variation in vegetation phenology at multiple scales [14–17].

Phenology has been widely monitored in different types of remote sensing data in
attempts to understand the interactions between vegetation and climate change during
the past few decades [18–22]. A variety of vegetation indexes were used to monitor
vegetation phenology in previous studies [23–25]. The two most used vegetation indices
are the enhanced vegetation index (EVI) and the normalized difference vegetation index
(NDVI) [26–29]. Meanwhile, several sets of freely accessible remote sensing products
with different resolutions were released, such as the third generation GIMMS (GIMMS3g)
NDVI with a spatial resolution of 1/12 degree that is derived from the Advanced Very-
High-Resolution Radiometer (AVHRR) series satellites [30,31]; the Systeme Probatoire
d’Observation de la Tarre (SPOT) NDVI with a 1 km spatial resolution [32]; and the
moderate-resolution imaging spectroradiometer (MODIS) NDVI with spatial resolutions
of 250, 500, or 1000 m [33,34]. Among them, GIMMS3g NDVI is the latest and longest-used
product, and MODIS NDVI has several different spatial resolutions. These products have
been widely used for studies involving phenology extraction [15]. Recent studies showed
that the temporal and spatial variation trends of vegetation phenology that were observed
in some areas by GIMMS3g NDVI and MODIS NDVI were consistent, but the conclusions
that were reached in other regions were opposite [35,36]. The topography has a significant
impact on the phenology of different product identifications [37]. Furthermore, the spatial
phenological heterogeneity of data with a different resolution increases with the increase
in landscape fragmentation [5]. However, the impacts of satellite products with different
spatial resolutions on LSP extraction over regions with a heterogeneous topography have
not been well clarified.

In general, data with a finer spatial resolution possess more information about the
seasonality and phenology properties of vegetation [38–40]. Meanwhile, data with a fine
spatial resolution have the problem of providing a larger amount of data, having a slow
computation speed, and being time-consuming [41]. The coarse spatial resolution data is
more suitable for monitoring phenology at a landscape scale [42]. Moreover, there will
be some differences in vegetation phenology that are estimated from the coarse spatial
resolution data to the fine spatial resolution data [5]. Thus, it is important to select remote
sensing products with an appropriate spatial resolution in order to investigate vegetation
phenology changes.

In this study, we explored the applicability of 250, 500, and 1000 m MODIS NDVI
and GIMMS3g NDVI across the entire Loess Plateau, which is a typically ecological fragile
region with a heterogeneous topography. The aims of this study were to (1) investigate the
spatial and temporal patterns of vegetation phenology in the Loess Plateau, (2) analyze the
applicability of different types of satellite data in complex terrain regions, and (3) explore
the factors that influence the differences in the phenology of multiple datasets.

2. Materials and Methods

2.1. Study Area

The Loess Plateau lies in the north of China, covering an area of 62.4 × 104 km2

(Figure 1). The region is dominated by a continental monsoon climate. The annual accu-
mulated temperature ≥10 ◦C (annual AT10) increases from ~50 ◦C·d in the high-elevation
western part to ~5800 ◦C·d in the southern part. Additionally, the annual mean precipi-
tation varies from 50 mm in the northwest to 700 mm in the southeast. The terrain of the
Loess Plateau varies significantly, and the altitude ranges from 80 m in the southeast to
5200 m in the west. Land use data with a spatial resolution of 500 m from the MODIS land
cover product (MCD12Q1) show that there are seven land cover types in the entire study
area; these are grasslands (68.5%), croplands (21.2%), forests (5.1%), barren regions (3.3%),
urban and built-up areas (1.8%), and water bodies (0.1%).
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Figure 1. (a) Location of the Loess Plateau; (b) digital elevation model (DEM) showing the location of
the Weihe Plain, Lvliang Mountains, Mu Us Sandy Land, Hetao Plain, and Qilian Mountains; (c) the
pattern of accumulated temperature ≥ 10 ◦C (AT10); and (d) land cover types in 2001.

2.2. Data Resources and Preprocessing

In this study, we used four types of satellite data: MODIS NDVI with spatial resolu-
tions of 250, 500, and 1000 m and GIMMS3g NDVI with a spatial resolution of ~10 km.
These data have been widely applied for vegetation phenology extraction at regional
to global scales [43–45]. MODIS data for the period 2001–2020 were acquired from
NASA (ftp://ladsweb.nascom.nasa.gov/allData/6/, accessed on 15 April 2021). MODIS
NDVI with a temporal resolution of 16 days is a gridded level 3 product. GIMMS3g
NDVI was obtained from the NASA Earth Exchange platform for the period 1982–2015
(https://nex.nasa.gov/nex/, accessed on 15 April 2021). The spatial and temporal resolu-
tion of the GIMMS3g NDVI was 15 days and 1/12 degree (~10 km), respectively. Both the
MODIS and GIMMS3g time-series datasets were used to identify the start of the growing
season (SOS) and the end of the growing season (EOS).

The daily mean air temperature with a spatial resolution of 0.25 degrees for the period
1982–2020 was obtained from the Copernicus Climate Change Service Climate Data Store
(CDS) (https://cds.climate.copernicus.eu/#!/home, accessed on 19 June 2021). The daily
air temperature was used to obtain AT10 in order to analyze the interaction between
phenology and temperature.

The annual MODIS land cover type product at a 500 m spatial resolution was used to
examine the influence of vegetation type on the LSP. The classification scheme that is used
for the product is the International Geosphere–Biosphere Program (IGBP). Additionally,
the year used for the latest MODIS land cover type data was 2019. The land cover type
product for the period 2001–2019 was obtained from NASA’s Land Processes Distributed
Active Archive Center (LP DAAC) (https://lpdaac.usgs.gov/products/mcd12q1v006
/, accessed on 19 June 2021). The spatial resolution of the product was resampled to
250 m, 1000 m, and 1/12 degree using nearest-neighbor interpolation. The Shuttle Radar
Topography Mission (SRTM) digital elevation model (DEM) dataset was achieved at the
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CGIAR (https://srtm.csi.cgiar.org/, accessed on 11 July 2021). The DEM dataset was used
to understand the distribution of the topography in the Loess Plateau. The terrain of the
central and western parts of the Loess Plateau is heterogeneous, while the terrain of the
Weihe Plain is flat [46].

The 271 detailed ground-observed records in the Loess Plateau were obtained from
14 agro-meteorological stations from 2001 to 2013 (a small set of data with low quality
was rejected). The distributions and information of the ground-observed sites can be
found in Figure 1a and Table 1. The observed records were used to validate the vegetation
phenology that was derived from MODIS data and more information could be used as
prior knowledge of the research area [47].

Table 1. The description of the ground-observed sites.

Site Name Longitude (◦E) Latitude (◦N) Altitude (m) Data Range

Fengxiang 107.38 34.51 779 2001–2013
Yongshou 108.15 34.70 1006 2001–2013
Wugong 108.22 34.25 429 2001–2013
Xianyang 108.71 34.40 473 2001–2013
Changan 108.92 34.15 435 2001–2013
Lintong 109.23 34.40 418 2001–2013
Weinan 109.46 34.50 357 2001–2013
Baishui 109.58 34.95 482 2001–2013

Hancheng 110.45 35.46 446 2001–2013
Ruicheng 110.71 34.70 503 2001–2013
Wanrong 110.83 35.40 609 2001–2013
Yuncheng 111.02 35.03 380 2001–2013

Linfen 111.50 36.06 450 2001–2013
Jincheng 112.83 35.51 726 2001–2013

2.3. Methods

The quality of the NDVI time series was first examined based on the QA information.
The LSP was not produced if three serial periods of NDVI data were contaminated by
clouds. Second, to reduce the impacts of noise from cloud contamination or other poor
atmospheric conditions, the MODIS NDVI time series were smoothed using the modified
Savitsky–Golay algorithm (mSG) with the help of a specific MODIS data layer named “com-
posite day of the year” [19,48]. Similarly, the GIMMS3g NDVI data were also smoothed.
However, the GIMMS3g data lacked the layer of “composite day of the year”; we thus
regarded the 1st and 16th days of each month as the “day of year (DOY)” for each image.
The mSG algorithm is a simple but robust method that is based on the Savitsky–Golay
algorithm [48,49]. Finally, the smoothed NDVI growth curve was used to estimate the SOS
and EOS with the following logistic model [34]:

y(t) =
c

1 + ea+bt + d, (1)

where t is the DOY, y(t) represents the NDVI value at time t, a and b are the fitting parame-
ters, c is the difference between the maximum and minimum NDVI values, and d is the
initial background vegetation index value. Next, the SOS and EOS were produced from
the rate of change in curvature:

K = − b2cz(1 − z)(1 + z)3

[(1 + z)4 + (bcz)2]
3/2 (2)

K′ = b3cz

⎧⎨
⎩ 3z(1 − z)(1 + z)3[2(1 + z)3 + b2c2z]

[(1 + z)4 + (bcz)2]
5/2 − (1 + z)2(1 + 2z − 5z2)

[(1 + z)4 + (bcz)2]
3
2

⎫⎬
⎭ (3)

130



Remote Sens. 2021, 13, 4582

where K represents the curvature, z = ea+bt, and K′ is the rate of change of K.
In order to acquire the deviation and the correlation characteristics between different

products, the root mean square error (RMSE) and correlation coefficient (r) were calculated
using Equations (4) and (5), respectively:

RMSE =

√
∑n

i=1
(
Xi − X

)2

n
(4)

where X is the mean value of X and
(
Xi − X

)
represents the deviation value, that is,

the bias;

r =
n
i=1

(
Xi − X

)(
Yi − Y

)
√

∑n
i=1

(
Xi − X

)2
∑n

i=1
(
Yi − Y

)2
(5)

where Xi and Yi correspond to two different datasets.
Based on the geographical location information of agro-meteorological stations, we

first extracted the SOS and EOS pixels (e.g., 3 × 3 homogeneous pixels) around the center
of each station, and then averaged these values to obtain the mean SOS and EOS of each
station [50]. Finally, we employed RMSE and r to investigate the correlation between the
satellite-based and ground-observed phenology.

3. Results

3.1. The Performances of Satellite-Based SOS and EOS

This study first verified the performances of the SOS and EOS that were produced
from the 250 m MODIS NDVI and GIMMS3g NDVI against the ground-observed data from
2001 to 2013. The results showed that a good agreement was observed between the MODIS-
derived phenology and ground-observed data, where the r values of the MODIS SOS and
EOS were 0.83 and 0.79, respectively (p < 0.01, Figure 2). However, the phenology that was
estimated from GIMMS3g NDVI showed poor consistency. The r values of the GIMMS3g
SOS and EOS were only 0.49 and 0.21, and both the p-values were more than 0.05.

 

Figure 2. Validations of the (a) SOS and (b) EOS that were derived from the 250 m MODIS NDVI
and the (c) SOS and (d) EOS that were derived from the GIMMS3g NDVI.
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3.2. Spatial Patterns of Vegetation Phenology

Figure 3 presents the SOS and EOS of the Loess Plateau in 2001. The spatial patterns of
the vegetation phenology that were produced from the GIMMS3g data were quite different
from those of the MODIS data. However, three sets of MODIS phenology results with
different resolutions gave a similar spatial distribution (Figure A1). The spring phenology
of croplands in the Weihe Plain was the earliest, with an average SOS of DOY 46. Most
SOSs in the grassland region of the central Loess Plateau were later than DOY 170. In
particular, the SOS that was derived from MODIS NDVI in the Mu Us Sandy Land region
was earlier than that in the surrounding areas. The early EOS in the Loess Plateau was
mainly concentrated in the southern region, while the late EOS was mainly concentrated in
the western region and the Lvliang mountains. Among the land cover types, the EOS of
almost 80% of the croplands was between DOY 260 and 290, the EOS date of the forests
was the earliest, and that of the grasslands was the latest.

Figure 3. Spatial patterns of the SOSs were estimated from (a) 250 m MODIS and (b) GIMMS3g data
from 2001; spatial patterns of the EOSs were estimated from (c) 250 m MODIS and (d) GIMMS3g
data from 2001.

Compared with the MODIS-derived phenology, the spatial distribution of the phenol-
ogy period that was identified by the GIMMS3g data was more concentrated. Moreover,
the SOS values that were derived from the GIMMS3g product were largely consistent with
the phenology that was derived from the MODIS data, which was mainly distributed in
the Weihe Plain. The SOS that was produced by the GIMMS3g NDVI data in the northern
part of the Loess Plateau was concentrated in DOY 90–110, and the spatial details were
greatly neglected. Additionally, there was a significant difference between the GIMMS3g
EOS and the MODIS EOS in the south–central region of the Loess Plateau. The difference
ranged from 20 days to more than 60 days.
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Figure 4a,b presents the raw and smoothed NDVI in heterogeneous areas, where
the land use types are grassland and forest, respectively. Figure 4c shows that the time
series of NDVI in the Weihe Plain, where the land use type was cropland. Based on the
time-series data, we found that no matter what year it was, the inflection point of the time
series of the original GIMMS3g data was always concentrated in the seventh or eighth
period’s data in heterogeneous areas. However, this phenomenon did not occur in flat
areas. This indicates that the problem of GIMMS3g data is one of the important reasons for
the spatially aggregated distribution of GIMMS3g phenology.

Figure 4. Time series of (a) grassland, (b) forest, and (c) cropland NDVIs from the GIMMS3g and
MODIS products.

In order to compare the differences between the GIMMS3g-derived and MODIS-
derived phenology in flat areas, we calculated the differences of the two datasets in
the Weihe Plain during the period 2001–2015 (Figure 5). The findings showed that the
differences in SOS (GIMMS3g SOS–250 m MODIS SOS) were mainly less than 5 days and
10 days in 43.49% and 70.66%. The GIMMS3g data performed well at monitoring SOS over
the flat areas. In addition, we found that the frequency with which the differences in SOS
were greater than 20 days decreased significantly and became close to 0. In the results
showing the SOS differences greater than 25 days, the value of the GIMMS3g SOS was
always greater than that of the 250 m MODIS SOS. This shows that GIMMS3g SOS tended
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to be later than MODIS SOS. However, differences in the EOS (GIMMS3g EOS–250 m
MODIS EOS) that were less than 5 days or 10 days were only 13.85% and 29.88%. In
addition, for the entire Loess Plateau, the proportion of differences in EOS between the
GIMMS3g and 250 m MODIS data that were less than 5 days was still less than 20%. This
indicated that the consistency of the GIMMS3g EOS and the MODIS EOS was poor, even
in flat areas.

Figure 5. The distribution of the (a) SOS and (b) EOS differences between the 250 m MODIS and GIMMS3g phenology
during the period 2001–2015.

3.3. Temporal Variation in Vegetation Phenology

The inter-annual trends of the SOS and EOS during the period 1982–2020 are presented
in Figure 6. The results showed that the inter-annual trends of the SOS and EOS from
GIMMS3g were the reverse of those of the MODIS data. The SOS showed a trend of
postponing and the EOS presented a trend of advancing from 1982 to 2015 based on the
GIMMS3g data. In addition, the SOS (EOS) of the GIMMS3g data delay (advance) trend
during the period 2001–2015 was more significant, and the trend lines K of the SOS and
EOS were 0.34 and −0.14, respectively. In contrast, the SOS (EOS) showed an advanced
(delayed) trend based on the MODIS data, and the trend line K of the MODIS SOS and
EOS was −0.63 and 0.19, respectively, during the period 2001–2015.

In the comparison of MODIS products, our findings showed that the phenological
periods that were derived from MODIS products with various spatial resolutions gave
only small differences. The average difference between the 500 m MODIS SOS (EOS) and
250 m MODIS SOS (EOS) was only 1.2 (0.3) days. The correlation coefficient and RMSE
between the 500 m MODIS and 250 m MODIS results were greater than 0.99 and less
than 0.60, respectively (Table 2). Moreover, the average difference between the 1000 m
MODIS SOS (EOS) and 250 m MODIS slightly increased to 1.7 (1.4) days. The correlation
coefficient and RMSE between the 1000 m MODIS and 250 m MODIS results were greater
than 0.95 and approximately equal to 1.0, respectively. This demonstrated that there was
little difference between the 1000 m MODIS NDVI and the 250 m MODIS NDVI. Therefore,
the 1000 m MODIS NDVI could be used to monitor the LSP of the Loess Plateau. However,
the GIMMS3g product may not be able to accurately monitor heterogeneous areas, such as
the Loess Plateau.

Figure 7 shows the spatial trend of the phenology over the Loess Plateau that was
calculated from the MODIS data during the period 2001–2020, which passed the significance
test of α = 0.05. The area with a significantly advanced SOS was about 16.7 × 104 km2,
which was about a quarter of the area of the Loess Plateau. Areas with a significantly
advanced SOS were mainly in the central and northeastern regions of the Loess Plateau.
The area of the delayed SOS was only one-third that of the advanced SOS. Meanwhile, the
delayed SOS was mainly distributed across the croplands of the Weihe and Hetao Plains.
Moreover, the area with a significantly delayed EOS was about 9.3 × 104 km2, which was
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more than three times that of the area with an advanced EOS. More than two-thirds of
the advanced SOS and delayed EOS occurred in grasslands, which determined the overall
phenological changes in the Loess Plateau. Although the land cover types in the Loess
Plateau changed dramatically, the phenological changes were still dominated by the areas
where the land use did not change. Only about 20% of the SOS or EOS significant trends
occurred in areas with changes in the land cover type.

 

Figure 6. Inter-annual trends of the (a) SOS and (b) EOS that were estimated from the GIMMS3g and
MODIS products during the period 1982–2020. The yellow, red, green, and blue solid lines represent
the SOS and EOS values that were inferred from the GIMMS3g NDVI (1982–2015) and MODIS NDVI
(2001–2020). The yellow dashed line shows the GIMMS3g-based SOS and EOS trends during the
period 1982–2015. The pink dashed line shows the GIMMS3g-based SOS and EOS trends during
the period 2001–2015. The black and red dashed line shows the 250 m MODIS-based SOS and EOS
trends during the periods 2001–2015 and 2001–2020, respectively.

Table 2. The correlation coefficient and RMSE that were used for the comparison of the vegetation
phenology between different MODIS products.

500 m MODIS–250 m MODIS 1000 m MODIS–250 m MODIS

Bias
Correlation
Coefficient

RMSE Bias
Correlation
Coefficient

RMSE

SOS −1.2 0.9977 ** 0.5665 −1.7 0.9957 ** 0.9101
EOS 0.3 0.9952 ** 0.3176 1.4 0.9775 ** 0.8241

The symbol ** indicates significance at the 0.01 level.
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Figure 7. Spatial trends of the (a) SOS and (b) EOS from the 250 m MODIS time-series data during
the period 2001–2020.

3.4. Impact Factors on MODIS Products
3.4.1. Influences of Vegetation on MODIS Products

To examine the possible causes of the difference in LSP from the MODIS data, we
investigated the differences in the SOSs and EOSs between MODIS products that were used
on different land cover types (Figure 8). Our findings showed that the largest difference
between the 250 m MODIS SOS and the 1000 m MODIS SOS (1000 m MODIS SOS–250 m
MODIS SOS) in forests was 3.5 days, which was larger than the difference found in
grasslands (1.9 days) and croplands (0.6 days). Additionally, the standard deviation of
the inter-annual difference between the 250 m and 1000 m MODIS SOS in forests was
1.1 days, which was the largest value that was obtained among all vegetation types. The
differences that were obtained between the 250 m MODIS EOS and the 1000 m MODIS
EOS were 0.9 days (forests), 1.2 days (grasslands), and 1.1 days (croplands). The standard
deviation of the inter-annual difference was the largest in forests. In addition, we found
that the differences in the SOS between the 250 m MODIS and 500 m MODIS (500 m MODIS
SOS–250 m MODIS SOS) were both less than one day.

3.4.2. Influences of AT10 on the Phenology

Figure 9 presents the variations in the differences that were obtained between multiple
sets of the SOS and EOS with an AT10 from 1 January to 30 April and from 1 September
to 31 October, respectively. As the AT10 from January to April increased, the difference
between each MODIS SOS gradually increased. In particular, the difference between the
1000 m MODIS SOS and the 250 m MODIS SOS (1000 m MODIS SOS–250 m MODIS SOS)
was greater than the difference between the 500 m MODIS SOS and the 250 m MODIS SOS
(500 m MODIS SOS–250 m MODIS SOS). The standard deviation of the 1000 m MODIS
SOS was greater than that of the 500 m MODIS SOS. The relationship between the EOS
and AT10 was found to be opposite to that of the SOS and AT10. Our results showed that
with the increase in AT10 from September to October, the difference between each MODIS
EOS gradually decreased. No matter whether the SOS or EOS were used, the difference
in vegetation phenology between the 250 m and 1000 m products was less than 3 days.
Additionally, we found that there was almost no difference between the 250 m and 500 m
vegetation phenology.
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Figure 8. Inter-annual trends of the differences in the (a) SOS and (b) EOS between different land
cover types over the Loess Plateau. The dashed line represents the difference in the SOS between
the 250 m SOS and 500 m SOS for different land cover types during the period 2001–2019. The solid
line represents the difference in SOS between the 250 m SOS and 1000 m SOS in different land cover
types during the period 2001–2019.

 
Figure 9. The variation in the differences between multiple sets of the (a) SOS and (b) EOS with an
AT10 from January to April and from September to October, respectively. The red line shows the
difference between the 500 m MODIS SOS (EOS) and the 250 m MODIS SOS (EOS). The black line
shows the difference between the 1000 m MODIS SOS (EOS) and the 250 m MODIS SOS (EOS). The
red and gray shadows indicate the standard deviations of the red and black lines, respectively.
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4. Discussion

4.1. Difference between Satellite-Based LSP and Observations

Based on the MODIS NDVI and the layer named “composite day of the year,” we
calculated three sets of MODIS phenology with different spatial resolutions from 2001 to
2020. The GIMMS3g data lacked a “composite day of the year” layer, therefore we regarded
the 1st and 16th days of each month as the DOY and calculated the GIMMS3g phenology
from 1982 to 2015. We used the ground-observed data during the period 2001–2013 to
verify the performances of the phenology that was derived from the MODIS and GIMMS3g
data. Our results showed that the MODIS-derived phenology and ground-observed data
had a good agreement, but that the correlation between the GIMMS3g-derived phenology
and ground-observed data was very bad. This indicates that the SOS and EOS that were
identified by the MODIS NDVI were more robust, but that the GIMMS3g phenology
performed badly.

Moreover, the MODIS SOS that was identified by the logistics model was earlier
than the SOS that was observed on the ground, while the MODIS EOS was later than the
ground-observed data. Similarly, previous studies also found that in the north of China,
the SOS that was identified by the logistics model based on SPOT satellite data was earlier
than the SOS observed on the ground [49]. We suggest that this phenomenon was caused
by the phenological recognition algorithm and the time resolution of the data used. The
finer the temporal resolution of the image is, the more accurate the identified phenological
phase will be [51–54]. However, among the existing vegetation index products, product
data with a high time resolution are still limited. Therefore, an alternative suggestion is
that using a proper method may make up for the lack of advanced or delayed phenological
phases, such as the cumulative NDVI [49,55]. However, it is also worth noting that different
methods will cause different problems.

The agreement between the EOS and the ground-observed data was not as good
as for the SOS, especially GIMMS3g EOS. A previous study found that the NDVI at
harvest time will be increased due to the noise-reduction algorithm [56]. The land use
type of the Weihe Plain is mainly cropland, and the locations of the agro-meteorological
stations are distributed around the Weihe Plain. This may lead to worse accuracy for the
EOS in cultivated land than for the SOS. In addition, due to the limitation of data from
observation stations, the phenological results that were gained in other areas cannot be
verified. Compared with other studies, we found that the MODIS phenology was similar
to those of other studies in terms of their spatial patterns [49,57].

4.2. Comparisons of Different Product Data

Effectiveness and using the smallest possible amount of data are matters that must
be considered first in experiments. In this study, we compared four sets of remote sens-
ing product data with different resolutions for the extraction of phenology in the Loess
Plateau. Notably, the three sets of MODIS results with different resolutions showed good
consistency. From the correlation coefficient and RMSE, we found that there was little
difference between the 1000 m MODIS and 250 m MODIS results. This indicated that
lower-resolution data could achieve the same effect as relatively higher-resolution data.
Moreover, computers could process the 1000 m MODIS data much faster. Therefore, the
comprehensive performance of the 1000 m MODIS data was better. If errors within the
range of 1–3 days are allowed, we can use the 1000 m MODIS NDVI rather than the 250 m
MODIS NDVI in future phenological studies.
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In contrast, the GIMMS3g products were less effective in the Loess Plateau. From the
time-series phenological results of the GIMMS3g products, we observed that the phenology
was delayed in spring and advanced in autumn. However, the phenological results based
on the MODIS products showed the opposite situation. As we know, many studies have
confirmed that global warming advances spring phenology and delays autumn phenol-
ogy [58–60]. This indicates that the phenological results obtained using the GIMMS3g data
may contain errors in complex-terrain regions, such as the Loess Plateau. Additionally, we
found that the strong spatial homogeneity of the GIMMS3g NDVI was the main reason for
these phenological differences. Except for croplands, from the time series of the original
data, no matter what year was used, the inflection point of the GIMMS3g data was always
concentrated in the seventh or eighth period, and this led to the maximum curvature of the
smoothed timing signal focus in this period. Therefore, the SOS that was identified by the
GIMMS3g NDVI data in the northern part of the Loess Plateau was concentrated in DOY
90–110 (Figure A2).

However, previous studies showed that coarse-resolution SOS was comparable with
finer-resolution SOS in homogeneous areas [5,42]. In this study, we calculated the difference
between the MODIS and GIMMS3g results in the Weihe Plain during the period 2001–2015.
Similarly, our findings showed that the GIMMS3g data performed well in monitoring the
SOS over flat areas. Furthermore, the cropping intensity in a large area of the Weihe Plain
during 1982–2013 changed from cropping twice a year to a single cropping taking place
each year [61]. Due to the effectiveness of the GIMMS3g image in the Weihe Plain, the
GIMMS3g SOS also showed a delayed trend that was the same as the MODIS phenological
trend. Except for the flat area, the large heterogeneous areas in the Loess Plateau were
affected by the original GIMMS3g data. Therefore, the original GIMMS3g data from the
heterogeneous area incorrectly identified the phenological trend in the whole Loess Plateau.

Moreover, although the inflection point did not occur at the end of the vegetation
growth of the raw GIMMS3g data, the proportion of the differences in EOSs between the
GIMMS3g and MODIS data that were less than 5 days was still less than 20% for the entire
Loess Plateau. This means that the GIMMS3g data had a weak ability to predict the SOS
and EOS in areas with complex terrain, while they could better monitor the change in the
SOS in relatively flat areas. If the GIMMS3g product cannot be replaced in an experiment
on phenology production, other phenology estimation methods may be used, such as the
dynamic threshold method [62–64]. Based on the maximum and minimum NDVI each
year, the dynamic threshold method was used to determine the SOS and EOS in spring and
autumn with the threshold ratio. This method could reduce the deviation in phenological
estimation that is caused by the mutation of the temporal signal to a certain extent [65,66].

4.3. Factors for the Differences from MODIS Products

The differences in vegetation phenology that were determined from MODIS products
with different spatial resolutions were mainly due to the land-cover types and temperatures
involved. This finding can also be seen in other regions and ecosystems [67–70]. It is
usually the case that when the same time resolution of the image is used, the finer the
spatial resolution is, the more accurate the phenology properties will be. For example, in
forest ecosystems, the vegetation phenology that is identified by MODIS images with a
1000 m resolution is more variable than that identified using images with a 500 m resolution.
The main reason for this may be that the structures and functions of forest ecosystems are
more complex than those of other natural ecosystems, such as cropland ecosystems [71,72].
Croplands are homogeneous and mainly affected by crop management. In contrast, forests
are usually controlled by multiple environmental factors. Previous studies also suggested
that the performance of coarse-resolution images over homogeneous areas is better than
that over other regions [42,73,74].
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Temperature is the main factor that leads to the advancement of spring phenology
and the delay of autumn phenology [75–77]. Further, we found that the higher the AT10
during the early growth season was, the greater the differences and variability between the
SOSs were. Meanwhile, the lower the AT10 during the late growth season was, the greater
the differences and volatility of the EOSs were. Areas with a high AT10 from January to
April were mainly distributed south of the Weihe Plain. We suggested that the main reason
for this phenomenon was that there are more types of ecosystems in the southeast of the
Loess Plateau, while the northwest of the plateau has a relatively homogenous ecosystem.
Due to differences in the sensitivity of various types of vegetation to AT10, the SOS in
areas with a relatively high AT10 showed greater differences. In addition, areas with a low
AT10 from September to October were mainly concentrated in the southwest of the Loess
Plateau. The huge elevation fluctuation in this area may be the reason for the phenological
differences that were seen in products with different spatial resolutions. Although the
AT10 and vegetation type or terrain had an impact on the data, the maximum averaged
differences of the SOS and EOS between the 250 m MODIS products and the 1000 m MODIS
products were less than three days. Additionally, the phenological difference remained
within an acceptable range.

5. Conclusions

Based on the 250, 500, and 1000 m MODIS data during the period 2001–2020 and the
~10 km GIMMS3g data during the period 1982–2015, as well as the rate of change in the
curvature of the logistic models, this study investigated the applicability and spatial scaling
effects of various remote sensing products with different spatial resolutions on phenology
extraction in a complex-terrain region. Our study showed that the MODIS products
performed better in phenology analysis across the Loess Plateau, and the phenology results
that were derived from the different MODIS products showed only small differences.
However, the GIMMS3g-based SOSs that were derived from logistic models had a good
performance in the flat region (i.e., the Weihe Plain) but a poor performance in regions
with a more heterogeneous topography. Additionally, the performances of the GIMMS3g-
based EOSs across the whole Loess Plateau were poor. The phenology results that were
derived from the MODIS data presented advanced SOS trends and delayed EOS trends
during the period 2001–2020 for the entire Loess Plateau. However, both the SOS and
EOS trends that were identified by the GIMMS3g products were the opposite. Our finding
emphasized that the 1000 m MODIS product can be used to extract phenology from areas
with a complex terrain, such as the Loess Plateau, and almost no difference was found
in the phenology extraction between the 500 m MODIS product and the 250 m MODIS
products. Furthermore, we also investigated the effects of vegetation and AT10 on the
spatiotemporal variability of vegetation phenology, which could help us to understand the
driving factors of such phenological changes in the future.
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Appendix A

Figure A1. Spatial patterns of the SOS were estimated from (a) 500 m MODIS and (b) 1000 m MODIS
from 2001; spatial patterns of the EOS were estimated from (c) 500 m MODIS and (d) 1000 m MODIS
from 2001.
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Figure A2. Spatial patterns of the SOS were estimated from GIMMS3g data from (a) 1985, (b) 1995,
(c) 2005, and (d) 2015; spatial patterns of the EOS were estimated from GIMMS3g data from (e) 1985,
(f) 1995, (g) 2005, and (h) 2015.
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Abstract: Autumn phenology, commonly represented by the end of season (EOS), is considered
to be the most sensitive and crucial productivity indicator of alpine and cold grassland in the
Qinghai-Tibetan Plateau. Previous studies typically assumed that the rates of EOS changes remain
unchanged over long time periods. However, pixel-scale analysis indicates the existence of turning
points and differing EOS change rates before and after these points. The spatial heterogeneity and
controls of these turning points remain unclear. In this study, the EOS turning point changes are
extracted and their controls are explored by integrating long time-series remote sensing images and
piecewise regression methods. The results indicate that the EOS changed over time with a delay
rate of 0.08 days/year during 1982–2015. The rates of change are not consistent over different time
periods, which clearly highlights the existence of turning points. The results show that temperature
contributed most strongly to the EOS changes, followed by precipitation and insolation. Furthermore,
the turning points of climate, human activities (e.g., grazing, economic development), and their
intersections are found to jointly control the EOS turning points. This study is the first quantitative
investigation into the spatial heterogeneity and controls of the EOS turning points on the Qinghai-
Tibetan Plateau, and provides important insight into the growth mechanism of alpine and cold
grassland.

Keywords: autumn phenology; turning point; climate changes; human activities; Qinghai-Tibetan Plateau

1. Introduction

Vegetation phenology refers to periodically recurring growth patterns [1], and sheds
a unique light on how ecosystems respond to climate change [2–4]. Shifts in phenology
trends can affect the carbon budget, water flux, and energy balance from a regional to global
scale [5]. Regional warming in alpine regions has led to several significant phenology
changes, including advancement of the start of the growing season (SOS) in spring and
a delay of the end of season (EOS) in autumn, as well as extensions of the growing
season [6]. Phenology changes in turn provide strong feedback to climate systems, which
can affect the regional carbon and water cycles [7]. The advancement of SOS and its
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controls have been detected in numerous satellite data and observations [8,9]. However,
emerging evidence has shown that autumn phenology may contribute more strongly to the
growth season length extension than spring phenology, leading to an increase of biomass
accumulation [10,11]. Autumn phenology plays a critical role in carbon and nitrogen
cycling [12]; it is thus important to track the spatial dynamics of autumn phenology to
obtain more accurate information regarding growth season length variations and improve
the modeling of biochemical cycles at vegetation-climate intersections [13,14].

With its distinctive geographical and hydrothermal condition, the Qinghai-Tibetan
Plateau is regarded as one of the planet’s most vulnerable alpine and cold ecosystems
because of its strong sensitivity to climate change and has thus become a hotspot of
international research [15]. Some degree of consensus has been achieved in recent decades
regarding EOS changes on the Qinghai-Tibetan Plateau. Previous studies have shown an
overall lengthening of the growing season and extension of the EOS on the Qinghai-Tibetan
Plateau due to the warming and increasingly humid climate [16,17]. Studies based on a
limited number of phenological observations reported that the EOS exhibited advancement
trends on a regional scale [18]. Moreover, EOS changes have significantly affected the gross
primary productivity (GPP) and evapotranspiration (ET) of alpine and cold ecosystems [15].
Some evidence has demonstrated that EOS is not only controlled by climate conditions and
human activities [19,20] but also depends on the previous growth stage (i.e., SOS, annual
peak growth time) [21,22], which make the EOS variation controls complex and difficult to
constrain. Additional studies are therefore required to more clearly reveal the mechanism
of EOS changes.

The major challenge of EOS studies arises from the poorly understood control mecha-
nism. Previous studies have recognized that warmer temperatures and inadequate autumn
solar radiation enhance vegetation growth [22,23]. Daytime and nighttime temperatures
have different impacts on the alpine grassland EOS. However, the effects of higher presea-
son precipitation or longer sunshine duration on the EOS changes remain unclear [6]. The
intersection of a wide variety of climate variables complicates this interpretation. Further-
more, some evidence has shown that human activities (especially grassland grazing) can
alter vegetation phenology [24,25], but the superimposed effects of ecological protection
and grazing make this effect difficult to quantify.

Recent advances in time-series analysis have demonstrated that ecosystem status
changes are gradual but ultimately lead to qualitative changes [26]. The concept of turning
points has opened a new research direction of ecosystem status change. Land cover changes,
extreme climate, and human disturbances often occur abruptly and can result in ecosystem
status changes [27,28], whereas increasing human pressure or grazing may more gradually
change the ecosystem. Some previous studies demonstrated that the trend rates of EOS
changes tend to vary over long periods, whereas turning points (sometimes referred to as
breaking points) are more distinct, with different change rates occurring before and after
these points [29]. A turning point of the Qinghai-Tibetan Plateau has traditionally been
defined in the year 2000 or the entire study period is taken as a whole [20], but notable
variations can be detected at the pixel-scale, which have not been previously reported.

This paper investigates the Qinghai-Tibetan Plateau as a study area to (1) detect
the existence of EOS turning points in different subregions, (2) quantify the determined
climatic factors before and after the turning points, and (3) explore the contribution of
climate change and human activities (grazing, economic development) to the EOS turning
points. The detection of EOS turning points at the pixel and regional scale not only enriches
the understanding of the EOS controls on alpine and cold grassland but also provides
further details to reveal the EOS change mechanisms over different periods and their
controls on the Qinghai-Tibetan Plateau.
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2. Materials and Methods

2.1. Study Area

The Qinghai-Tibetan Plateau is situated in southwestern China and covers all of Tibet
and the Qinghai provinces and is also a part of the Xinjiang, Sichuan, Gansu, and Yunnan
provinces (Figure 1). The Qinghai-Tibetan Plateau is considered the third pole in the
world, has an average altitude of >4000 m, and is characterized by a plateau monsoon
climate with low temperatures, low precipitation, and strong insolation. More than 54%
of the Qinghai-Tibetan Plateau area has a total annual precipitation below 400 mm and
temperatures below 0 ◦C [22]. This region is known as the Asia water tower and is home to
the headstreams of the Yangtze, Yellow, Lantsang, and Indus rivers. The alpine, cold, and
dry climatic conditions lead to unique vegetation types on the Qinghai-Tibetan Plateau. A
climate gradient exists from warm-humid in the southeast to cold-dry in the northwest,
along which the vegetation types transition from forestland, meadow, steppe, and desert.
The grassland, which includes meadow, steppe, and desert steppe, and covers 51.05%
of the Qinghai-Tibetan Plateau area, is the most important ecosystem and sensitive to
climate change. An understanding of grassland dynamics under the climate and human
disturbance conditions is crucial for regional ecological security.

Figure 1. Study area and geographical subregions. The black circles represent the locations of 209 meteorological stations
on the Qinghai-Tibetan Plateau.

We divided the entire Qinghai-Tibetan Plateau into 12 subregions (Figure 1, Table 1) based
on the bio-geographical division proposed by Zheng et al. [30]. The grassland distribution
was extracted according to a China vegetation map (scale = 1:100,000) [31], eliminating
subregions X, XI, and XII, for which the main vegetation types are desert, forestland,
and forestland, respectively. Only the remaining nine subregions (I–IX) are analyzed
in this study, covering meadow, steppe, and desert grassland (Table 1). Of these nine
subregions, we focused in detail on subregion I, which has the highest annual accumulated
temperature above 0 ◦C (AGDD0) and medium moisture index (MI). Subregions II and III
had relatively high MI values that decreased from southeast to northwest. Each subregion
exhibited unique climatic conditions and economic development levels, as well as different
vegetation responses to climate and human activities.
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Table 1. Description of the Qinghai-Tibetan Plateau subregions. AGDD0: Annual accumulated temperature above 0 ◦C. MI:
Moisture index calculated by the ratio of the mean annual precipitation to the annual equilibrium evapotranspiration.

ID Subregion Names AGDD0 Means (◦C) MI Means Main Provinces

I Alpine temperate steppe of the Qinghai Lake Basin 1311.45 0.62 Qinghai, Gansu

II Alpine meadow steppe on the Zoige Plateau 981.29 1.01 Qinghai, Sichuan

III Alpine meadow steppe on the Yushu-Naqu Plateau 670.04 0.91 Qinghai, Tibet

IV Alpine meadow steppe on the sources of the Yangtze and Yellow rivers 496.14 0.57 Qinghai

V Alpine and cold grassland on the Southern Chang Tang Plateau 824.56 0.45 Tibet

VI Alpine temperate grassland of the Brahmaputra River Basin 917.33 0.59 Tibet

VII Alpine and cold grassland on the Northern Chang Tang Plateau 618.61 0.38 Tibet

VIII Alpine and cold grassland on the Upper Indus River Basin 827.01 0.24 Tibet

IX Alpine and cold desert grassland of the Kunlun Mountains 571.07 0.35 Tibet, Xinjiang

X Alpine desert in the Qaidam Basin 1699.63 0.18 Qinghai

XI Alpine forestland in the Hengduan Mountain 2043.25 1.14 Sichuan, Yunnan

XII Subtropical forestland in the southern Tibet 3941.97 1.86 Tibet

2.2. Data Source

The GIMMS NDVI3g dataset provided by NASA was used to estimate the EOS on the
Qinghai-Tibetan Plateau. The dataset was available from 1982 to 2015 with an 8-km spatial
resolution and 15-day temporal resolution [32]. Some previous processes (e.g., calibration,
noise removal) were performed for this version to better detect the vegetation dynamics [32].
This dataset has been widely used to detect long-term vegetation dynamics [33–35]. Due
to the normalized difference vegetation index (NDVI) data might be misrepresented by
snow [36]; we used the average temperature of a sequence of five days less than 0 ◦C
to screen out the pixels that might be covered by snow. Temperature, precipitation, and
insolation data from 1982–2015 were extracted from the China meteorological forcing
dataset (1979–2015) downloaded from the Big Earth Data Platform for Three Poles with a
spatial resolution of 0.1◦ and temporal resolution of 3 h (http://poles.tpdc.ac.cn/, Accessed
on 15 August 2021) [37].

Human activities, including grazing density and economic development, were quanti-
fied using economic statistic data. For example, the grazing density were represented by
the number of large animals (one large animal equal to five sheep unit) and sheep, and
uniformly converted into sheep units. The economic development levels were quantified
as the production of primary, secondary, and tertiary sectors. These data come from the
statistical yearbooks of Qinghai and Tibet from 1982 to 2015.

2.3. Retrieval of EOS

Numerous methods have been used to fit the NDVI changes from seasonal vegetation
cycles. After comparing the fitting results of HANTS [38], Polyfit [39], and Double logis-
tic [40] in the nine subregions, we found that the RMES of HANTS (1.26 ± 0.24 × 10−5)
and Polyfit (1.28 ± 0.24 × 10−5) were similar and smaller than the Double logistic results
(1.93 ± 0.43 × 10−5) (Figure A1). HANTS and Polyfit, were therefore selected as the two
most simple and effective methods to fit the NDVI change curves. Dynamic thresholds were
adopted to determine the EOS. Further details of these two fitting methods are described
below.

The HANTS method involves the harmonic analysis of a time series, is adapted from
the fast Fourier transform, and eliminates cloud noise using the least square method [38,40].
The HANTS methods can quickly smooth the data, remove outliers, and fill gaps of missing
data. The following Equation (1) was used to fit the NDVI seasonal fluctuation curve:

NDVI(t) = a0 + ∑n
i=1 aicos(2πt − ϕi) (1)

where t is the Julian date, a0 is the average of all NDVI observations, and ϕi and ai are the
phase and amplitude of the curve, respectively.
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The Polyfit method adopts a polynomial function to fit the NDVI records [39]. The
following sixth order Equation (2) is used to describe the NDVI curve:

NDVI(t) = a0 + a1t + a2t2 + . . . + a6t6 (2)

where a0–a6 are regression coefficients determined using the Levenberg–Marquardt method.
The EOS was determined by the day when the smoothed curve of the 34-year mean

passed a designated threshold. We first fitted the NDVI changes with HANTS and Polyfit
methods and then calculated the NDVIratio (described in Equation (3)) for 365 days with
multi-year mean NDVI values, next detected the time t with the minimum NDVIratio and
used the corresponding NDVI(t + 1) at time (t + 1) as the NDVI threshold for the EOS.
Finally, we obtained the EOS for 34 years using the threshold:

NDVIratio(t) =
NDVI(t + 1)− NDVI(t)

NDVI(t)
(3)

2.4. Quantification of the EOS Trends, Turning Points, and Controls

After extracting the EOS at the pixel scale, we first quantified the tendency of the EOS
changes using greenness changes methods, and then detected the turning points using the
piecewise regression method. The mean EOS values and EOS trends within the subregions
were calculated as the EOS and EOS trends at the subregion level. The turning points at a
subregion and province level were calculated by the majority values.

The EOS trends were calculated using the greenness rate of change [41]. The EOS was
considered delayed if the slope was a positive value; otherwise, the EOS advanced.

slope =
n × ∑n

i=1(i × NDVI)− ∑n
i=1 i ∑n

i=1 NDVIi

n × ∑n
i=1 i2 − (∑n

i=1 i)2 (4)

where i is the order of the year, n is the number of years, NDVIi is the NDVI in the ith year,
and the slope is the vegetation change rate. Alternatively, we can use the unary linear
regression, in which the P values and confidence levels can be calculated.

Turning points were identified by piecewise regression [42] analysis, as defined in
Equation (5), which can be used to detect sudden and sharp changes in directionality. This
method has been widely applied for analyzing vegetation dynamics [19,43,44].

y =

{
β0 + β1t + ε t ≤ α

β0 + β1t + β2(t − α) + ε t > α
(5)

where t is the order of the year, α is the estimated turning point of the vegetation change
trend determined using the least square error method, β1 and (β1 + β2) are the change rates
before and after the turning points, respectively, and ε is the residual error. We performed
t-tests to check the significance of the piecewise regressions.

Redundancy analysis (RDA) is a powerful analysis technique that could be applied
in separating the contributions of climate, human activities, and their intersections to the
EOS changes. RDA is a method to extract and summarize the variation in a set of response
variables that can be explained by a set of explanatory variables [45]. In this study, RDA
was performed with the vegan package in R language [46]. In RDA, climatic variables
or human activity variables were chosen as predictors to maximize the extent of their
correlation with the EOS changes as the response variable. RDA had been widely used in
ecology-related studies [47,48]. The turning points of human activities were also calculated
with Equation (5). The relationships between the turning points of the EOS and climatic
variables were quantified using partial regression analysis or the correlation coefficient.
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3. Results

3.1. EOS Spatial Distribution and Variation Characteristics

The obtained EOS presented high spatial heterogeneity across the grassland of the
Qinghai-Tibetan Plateau during 1982–2015 (Figure 2). The EOS results extracted using
the HANTS and Polyfit methods were not consistent, but their spatial distribution trends
were similar (Figure 2a,b). The mean multi-year EOS began on the 291th day of the year
(end of September) and spanned nearly one month from the southeast to the northwest
(Figures 2 and 3a). The EOS started early (around the 277th day) in subregion IX, which
has the highest elevation and lowest AGDD0 values, and started late (around the 300th
day) in subregions II and III, which are characterized by relatively warm-humid conditions.
In the central Qinghai-Tibetan Plateau (subregion V), the EOS occurred on the 295th day.
In subregion I, the EOS was early in the west and late in the east with a mean EOS on the
292th day. The spatial heterogeneity variations were significantly controlled by the MI
(EOS = 16.55 × MI + 287.28, R2

adj = 0.20 **), with an early EOS in the drought subregions
(IV, VII, VIII, and IX) and late EOS in the relatively humid subregions (II, III, and VI). The
EOS spatial heterogeneity was essentially insensitive to AGDD0.

The mean EOS on the Qinghai-Tibetan Plateau exhibited a slow delayed trend with
an average rate of 0.08 days/year. The EOS results extracted using the HANTS and Polyfit
methods presented similar patterns (Figure 2d,e). Using these two fitting methods, 60.2%
of the study area presented delay trends (27.8% area is significant), while 39.8% of the study
area presented advance trends (13.4% area is significant). The EOS trends differed between
the nine subregions during 1982–2015 (Figure 3b), showing a delay in the northwest and
an advance in the southeast. Subregions I and IX showed significantly delayed trends
with more than 0.20 days/year. The EOS of subregion II, with a main land use type of
wetland, was also delayed by a rate of 0.12 days/year. The EOS in subregion VIII, which is
characterized by alpine, cold, and dry climatic conditions, presented a negative trend with
the fastest variation rate (−0.12 days/year) compared with the other subregions. The EOS
of subregion IV showed an advanced trend in the north but delayed trend in the south,
with a mean EOS trend of 0.02 days/year. The EOS in subregions III and V showed slight
advanced trends of –0.02 and −0.01 days/year, respectively. Subregions VI and VII both
presented a slightly delayed trend with an average of approximately 0.04 days/year.

3.2. Detection of EOS Turning Points in the Subregions

The EOS changed over time and presented delayed trends during 1982–2015, but
the rates of change were not fixed in each subregion over different periods, and notable
turning points were observed (48.2% is significant) (Figure 4c). For example, in subregion
I, the turning point occurs in the year 1994, for which the EOS was delayed before 1994
and slightly advanced after 1994 (Figure 4f). Similarly, subregion II showed a delayed EOS
before 2002 and then a slightly advanced EOS after 2002. In the remaining subregions
(III, IV, VI, and IX), the change trends were similar and the turning point year was 1994,
where the EOS was delayed prior to 1994, suddenly advanced in 1995, and then maintained
the previous change trend until 2015. The turning point trends in subregions V, VII, and
VIII occurred in 1994, 1994, and 1999 respectively, but were not significant. These results
demonstrate that the EOS changes clearly exhibit turning points and a wide range of EOS
change trends with significant spatial heterogeneity on the Qinghai-Tibetan Plateau. The
pattern of EOS turning points extracted by HANTS and Polyfit (Figure 4a,b,d,e) have a
small difference in subregion I and VI.
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Figure 2. Distributions of the end of season (EOS) (calendar day) and their change trends (days/year). Multi-year means
of the EOS obtained using the (a) HANTS method and (b) Polyfit method. (c) Average values of the HANTS and Polyfit
methods. Trends of the EOS obtained using the (d) HANTS methods and (e) Polyfit method. (f) Average values of the EOS
trends obtained using the HANTS and Polyfit methods.

Figure 3. Bar graphs of the (a) mean EOS values and (b) their trends. “**” indicates p < 0.01 and “*” indicates p < 0.05.
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Figure 4. Turning point distributions and variations for subregions. (a–c) EOS turning points distributions with results
of HANTS, Polyfit, and their mean values. The numbers represent the modes of the turning years in each subregion.
(d–f) Scatter plots and results of piecewise regressions with the results of HANTS, Polyfit, and their mean values. The
vertical dashed lines represent the turning points in the different subregions.

3.3. EOS Variations Controlled by Climatic Variables before and after Turning Points

The EOS changes exhibited close relationships with the climatic variables, but the
dominant climatic variable differed in each subregion before and after its associated turning
point (Figure 5). Temperature was the dominant control over the EOS changes in most
subregions (I, II, IV, VI, VII, VIII, and IX) before and after the turning point year. In contrast,
subregion III showed that the EOS was mainly controlled by the precipitation. Central
subregion VII showed that the EOS was jointly controlled by the effects of temperature
and precipitation. The area where the EOS changes was controlled by temperature covered
the largest proportion, followed by precipitation and insolation (Figure 5d). The results
indicate that the proportions controlled by each climate variable changed before and
after the turning point years. For example, the EOS in subregion V was controlled by
precipitation before the turning point, which then switched to temperature (Figure A2).
The EOS of only approximately 40% of the area in subregion VI was significantly controlled
by temperature prior to the turning point, which thereafter increased to 70%. Contribution
of climates to EOS variation are similar with the fitting results of HANTs and Polyfit
(Figure A3).
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Figure 5. Relative influence of different climate variables (temperature, precipitation, and insolation) on EOS changes before
(a) and after (b) the turning point, and over the entire study period (c) with the EOS means values of HANTS and Polyfit
methods. (d) Area proportions controlled by the different dominant climate variables.

3.4. Controls on the EOS Turning Points

The changes of the annual EOS turning points are consistent with the turning points
of the climate variables in most subregions (Table 2). In subregions I and II, the year of
the EOS turning point coincides with the year of the insolation and precipitation turning
points, respectively. Furthermore, the years of the EOS and temperature turning points
are consistent in subregions III–IX. The major determining climatic variable for the EOS
turning points is precipitation, followed by temperature and insolation. The relationship
with the EOS turning point and insolation is generally weak (R2 < 0.05).

Table 2. Correlation coefficients and P values between the turning points of the EOS and the turning
points of climate variables.

The EOS Turning Points versus Climate Turning Points R2 p Value

EOS~temperature 0.331 <0.01
EOS~precipitation 0.378 <0.01

EOS~insolation 0.038 0.76

The relationship between the EOS and human activities was studied at the province
level owing to limited statistical data in certain counties and subregions. The economic
data show a consistent turning point with the EOS. Before the turning point year (~1996 for
Qinghai and ~1995 for Tibet), Qinghai maintained a large amount of sheep, which reflected
high grazing activity, and the economic development was slow with low production in the
primary, secondary, and tertiary sectors. However, after the turning point year, the grazing
intensity decreased and reached a stable change rate, whereas the economy developed
rapidly, especially in the secondary sector. For Tibet, the grazing intensity was small before
the turning point year but showed a rapid growth rate after the turning point. Similar to
Qinghai, Tibet experienced fast economic growth after the turning point, especially in the
tertiary sector.

At the province level, the annual EOS was closely related to climate, human activities,
and their intersections (Table 3). For Qinghai, a combination of the turning points of climate
and human activities can explain 78.86% of the EOS turning points changes, with climate
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independently accounting for 40.22% and human activities accounting for 10.45%. The
intersections of climate and human activities can explain 28.19% of the EOS variation in
Qinghai. In Tibet, the EOS change due to climate (66.17%) was larger than that in Qinghai
and the effect of human activities (6.8%) was weaker. The climate and human activities
intersections in Tibet (9.98%) were also smaller than in Qinghai.

Table 3. Independent contributions of the turning points of climate, human activities, and their
intersections to the annual turning points variations of EOS at the province level.

Provinces
Climate

Independent (%)
Human Activities
Independent (%)

Climate-Human Activities
Intersections (%)

Qinghai 40.22 10.45 28.19
Tibet 66.17 6.80 9.98

4. Discussion

4.1. Controls on the EOS and EOS Turning Points

This study is the first to demonstrate pixel-scale spatial heterogeneity of the EOS
turning points and explain the turning point controls. The results indicate that the joint
effects of climate variables and human activities are the main controls of the EOS turning
points. The response of the EOS to environmental changes is complex. Some previous
studies indicated that temperature plays a crucial role in EOS regulation [49] however,
we show that the temperature control over the EOS is regulated by precipitation and
insolation in the meadow and grassland ecotones. The cause of the turning points in most
subregions is the abrupt change of temperature and precipitation. The results also reveal
that insolation contributed considerably to the EOS changes, which is consistent with some
previous reports that the EOS and its relation with GPP is mainly limited by insolation [50].
Other studies have reported that meadow shrinkage, decreased land cover, land albedo
changes, and permafrost and seasonal frozen soil dynamics intersect with climate change,
which alters the EOS trends [51].

Grazing is the most important human activity that affects grassland dynamics on
the Qinghai-Tibetan Plateau [52]. The spatial heterogeneity of community increases, com-
munity function alteration, and biodiversity loss are considered to be some of the key
disturbances that result in grassland degradation [53,54]. The pika population could also
increase the effects of animal distribution on vegetation [55]. Overgrazing reduces the
vegetation biomass and height, and restricts the regrowth ability of grassland. Our anal-
ysis shows that grazing activities in Qinghai notably decreased around 1998, coinciding
with the implementation of national conservation policies (e.g., ecological compensation,
restoration of degraded grassland). Grazing in Tibet was not active before 1995 and then
rapidly increased, however grazing decreased after 2005 due to the late implementation
of ecological conservation projects. The primary industry (mostly agriculture and ani-
mal husbandry) increased by nearly a factor of five in 1996–2015 compared with that in
1982–1994, which is also consistent with the EOS change turning points. The tertiary
industry in Qinghai and Tibet quickly increased after the turning points, which indirectly
reflects the intensification of human activities on the Qinghai-Tibetan Plateau.

4.2. Ecological Significance of the EOS and Its Turning Points

Phenological changes have great effects on the structure and function of ecosystems.
At the community level, various species have different phenological responses to climate
change, whereas the EOS can lead to a change in the competition for light and water
conditions [17,56]. Moreover, plant species changes in the community introduced by the
EOS can lead to phenological mismatches; for example, the period of high consumer
demand for a resource does not match with the period of resource abundance [57]. At
the ecosystem level, phenological grassland changes can modify certain land surface
parameters (e.g., albedo, sensible heat flux, evaporation, boundary layer conductivity),
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which affects the regional carbon and water cycles [58]. For example, a later EOS may
promote GPP and cause plants to close their stomates and increase water use efficiency if
a soil deficit exists [59]. Moreover, the delayed EOS may also increase transpiration and
partly offset the GPP, therefore leading to closer relationships between the net ecosystem
productivities and EOS changes [60].

The existence of turning points indicates that the EOS trend over long-time periods
does not remain unchanged, and the rates of EOS changes differ before and after these
points. This observation has several advantages in ecosystem-related studies. First, climatic
controls on the EOS in the Qinghai-Tibetan Plateau intersect with each other and follow
non-linear relationships with the EOS. An analysis of the EOS before and after the turning
points therefore helpful to evaluate the climatic driving mechanisms of the EOS. Second,
the detection of spatial heterogeneity of the turning points is helpful for evaluating the
large-scale implementation effects of ecological conservation projects. Third, an analysis of
the turning points of the EOS relationships with ecosystem functions and services provide
important guidelines for fine ecology planning and the development of protection policies.

4.3. Uncertainties, Challenges, and Future Directions

The uncertainties in this study arise from three aspects. First, although the EOS
trends are consistent with the findings of MODIS NDVI and SPOT NDVI, some design
shortcomings in the AVHRR sensor may potentially introduce noise into the GIMMS 3g
NDVI dataset. Second, the human activities are difficult to quantify for lack of grazing data
(intensity and boundary) and statistic data on the county levels for a long time. Third, there
is a limited number of phenological stations on the Qinghai-Tibetan Plateau, and most are
distributed in the east, which thus does not represent the EOS changes of the entire plateau.
The results of the EOS extraction are not fully calibrated by observations owing to limited
data availability.

We recommended the following perspectives for future studies. First, extreme climate
events (e.g., cold, frost, drought) may have a more direct effect on vegetation phenology
than gradual changes in mean climatic conditions [27,28]. Non-structural carbohydrate
storage in plants is helpful to avoid damage caused by extreme events [61]. However,
extreme climate conditions with variable frequencies and intensities in different seasons on
the Qinghai-Tibetan Plateau require rigorous quantification. Second, although many stud-
ies have quantified the effects of climate variables in different seasons, spring phenology,
growth season length, and human disturbances on the EOS changes, the joint contribution
of these variables is low and the control mechanisms of the EOS and its turning points
remain poorly understood. The strengthening and development of phenological observa-
tions stations are therefore necessary to explain the mechanism of phenology changes in
the Qinghai-Tibetan Plateau. Third, ecosystem models are essential tools for simulating the
carbon cycle in both historic and future climate scenarios however, their accuracies remain
limited by the understanding of the EOS [62]. More reasonable algorithms and reliable
observations are required to calibrate the ecosystem models, which will ultimately provide
a new research direction but presently faces serious challenges.

5. Conclusions

This study applied multiple statistical methods and long-time series remote sensing
data to determine the spatial heterogeneity and controls of autumn phenology on the
Qinghai-Tibetan Plateau. The results are summarized as follows. (1) EOS turning points
exhibit notable spatial heterogeneities. (2) The climatic controls of the EOS before and
after the turning points varied in different subregions on the Qinghai-Tibetan Plateau. (3)
Changes in the turning points are controlled by the joint effects of climate and human
activities (grazing and economic development). This study is the first to demonstrate the
spatial heterogeneity of turning points at a pixel scale and discuss their controls on the
Qinghai-Tibetan Plateau, which is useful for exploring the mechanism of EOS changes and
developing regional ecosystem conservation measures.
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Appendix A

Figure A1. The NDVI fitting results of three equations, including HANTS (red lines and numbers),
Polyfit (green lines and numbers), and Double logistic (red lines and numbers). (a–i) represent
subregions I–IX, respectively. The upper-left panels are corresponding NDVIratio changes and EOS
with HANTS and Polyfit fitting methods. The upper-right numbers are RMESs for three fitting
methods.
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Figure A2. Relative proportions of the three climate variables that contributed to the EOS in each subregion. The legend
coloring is same as in Figure 5. The white portions indicate that the proportion is not significant (p > 0.05).

Figure A3. Relative influence of different climate variables (temperature, precipitation, and insolation) on EOS changes
before (a,e) and after (b,f) the turning point, and over the entire study period (c,g) with the EOS values of HANTS and
Polyfit methods respectively. (d,h) Area proportions controlled by the different dominant climate variables with results of
HANTS and Polyfit methods.
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Abstract: Snow cover is an important water source and even an Essential Climate Variable (ECV)
as defined by the World Meteorological Organization (WMO). Assessing snow phenology and its
driving factors in Northeast China will help with comprehensively understanding the role of snow
cover in regional water cycle and climate change. This study presents spatiotemporal variations
in snow phenology and the relative importance of potential drivers, including climate, geography,
and the normalized difference vegetation index (NDVI), based on the MODIS snow products across
Northeast China from 2001 to 2018. The results indicated that the snow cover days (SCD), snow cover
onset dates (SCOD) and snow cover end dates (SCED) all showed obvious latitudinal distribution
characteristics. As the latitude gradually increases, SCD becomes longer, SCOD advances and SCED
delays. Overall, there is a growing tendency in SCD and a delayed trend in SCED across time.
The variations in snow phenology were driven by mean temperature, followed by latitude, while
precipitation, aspect and slope all had little effect on the SCD, SCOD and SCED. With decreasing
temperature, the SCD and SCED showed upward trends. The mean temperature has negatively
correlation with SCD and SCED and positively correlation with SCOD. With increasing latitude,
the change rate of the SCD, SCOD and SCED in the whole Northeast China were 10.20 d/degree,
−3.82 d/degree and 5.41 d/degree, respectively, and the change rate of snow phenology in forested
areas was lower than that in nonforested areas. At the same latitude, the snow phenology for different
underlying surfaces varied greatly. The correlations between the snow phenology and NDVI were
mainly positive, but weak correlations accounted for a large proportion.

Keywords: snow phenology; driving factors; spatiotemporal variations; Northeast China

1. Introduction

Northeast China, one of the three major areas with snow cover in China [1,2], is
an important agricultural production base. Snow cover can affect the scale and yield
of agriculture by changing soil moisture, insultation from deep frost and prevention of
microbial decomposition of organic matter. In addition, Snow accumulation and melting
are important for storing and releasing water [3,4]. Snow phenology can describe seasonal
snow cover variations and is also used to study the relationship between snow cover and
climate change; parameters include the snow cover days (SCD), snow cover onset dates
(SCOD) and snow cover end dates (SCED) [5,6]. According to the statistics, snow phenology
generally has regular interannual variations [7]. Therefore, assessing snow phenology and
its driving factors in Northeast China is essential for water resource management and
agricultural development in this region.

However, in contrast with research on large-scale snow phenology, systematic studies
of snow phenology in the region have been limited thus far. Chen et al. [8] used the MODIS
snow products across Northeast China to study the spatiotemporal variations in snow
cover. Ding and Gao [4] studied the SCD in Northeast China based on meteorological
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station data. Yang et al. [9] used MODIS data to explore only space-time distributions of
SCD. Qiao et al. [10] used MODIS data to investigate the variations in snow phenology and
their impact on vegetation growth in forested areas, which occupies 40% of the total area.
Shi et al. [11] discussed the SCOD and SCED in the Mollisol areas across the northeastern
plains of China based on snow depth data. In addition, Huang et al., Ke et al., and
Ma et al. [5,6,12] used meteorological station data to analyze the snow phenology changes
in snow-covered areas of China, including Northeast China.

When studying snow phenology based on meteorological observation stations, the
stations give snow depth data for only the surrounding area [13]. Moreover, due to the
scarcity and uneven distribution of stations, there are large discontinuities in the spatial
distribution of the obtained snow phenology data, especially in forested areas and alpine
regions [5,14–16]. The snow depth data retrieved by passive microwaves have a long
time series, but the resolution is low [17], which is not appropriate for local regional
research. The same is true of the Northern Hemisphere snow cover extent (NHSCE),
which is more suitable for studying large-scale snow cover variations [18,19]. In contrast,
MODIS data have not only higher spatial resolution but also higher temporal and spectral
resolutions [20]. Therefore, MODIS is an ideal data source for studying continuous snow
phenology, whether at the global or regional scale. For cloud contamination, many scholars
have also studied and recovered data under clouds through a series of methods and
achieved high cloud removal accuracy [21–26].

Based on the above situation, we analyzed the snow phenology of Northeast China
from 2001 to 2018 in this study using the MODIS snow product. First, the daily cloud-free
snow products were obtained through the conditional probability interpolation method
based on a space-time cube, and accuracy was verified by ground observations. Based on
this work, we explored the spatiotemporal variations in snow phenology and the relative
importance of potential drivers, including climate, geography, and the NDVI, and we then
discussed the roles of major factors in driving snow phenology.

2. Study Area

Northeast China is located at 115◦30′~135◦60′E, 38◦42′~53◦36′N, and the area is ap-
proximately 1.24 million km2. The whole region is surrounded by the Daxingan Mountains,
Xiaoxingan Mountains, and Chang-bai Mountains, with the Northeast Plain in the middle.
It is a relatively independent and complete natural geographical area (Figure 1). The annual
average temperature, precipitation, and elevation are −5~11 ◦C, 300~1000 mm, and 443 m,
respectively [27–29]. Due to the existence of large-scale forests and climate factors, this re-
gion in China has a long snow period and thick snow cover [30]. The Daxingan Mountains,
Xiaoxingan Mountains, and Changbai Mountains are the most important snowfall areas,
with an average annual snowfall of more than 60 mm. The average snowfall is more than
90 mm in the northern Daxingan Mountains and Changbai Mountains, while in some plain
areas, the average snowfall is less than 30 mm [31]. Here, the snowfall means the snow
water equivalent.
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Figure 1. Topography and station distribution in the study area.

3. Methodology

3.1. Data Sources
3.1.1. MODIS Data

Daily MOD10A1 (V006) data with a 500 m resolution and containing 6574 scenes dur-
ing 2001–2018 were downloaded with the help of the Google Earth Engine
(https://code.earthengine.google.com (30 October 2021)). The product has four data
types: NDSI data, quality assessment, albedo, and orbital information. In this research, only
NDSI_Snow_Cover data were used as the main data source to extract snow products, and
the NDSI of snow cover always greater than 0, but not all surface features with NDSI > 0 is
snow cover. Detailed attribute information is shown in Table 1 [32].

Table 1. MODIS Snow Products (V006).

Value Attributes Value Attributes

0–100 NDSI_Snow_Cover 239 ocean
200 missing data 250 cloud
201 no decision 254 detector saturated
211 night 255 fill
237 inland water

3.1.2. Snow Depth Records

The snow depth records in Northeast China from 1 January 2013 to 31 December 2018
were collected from the National Cryosphere Desert Data Center (http://www.ncdc.ac.cn
(30 October 2021)), and these records in snow season (October to April of the following
year) were used to validate the cloud removal accuracy. The station distribution is shown
in Figure 1. Generally, SD ≥ 1 cm indicates snow cover; otherwise, the station is regarded
as snow-free [6,12,33].
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3.1.3. Meteorological Data

Meteorological data with a 1 km resolution were acquired from the National Earth
System Science Data Center, National Science and Technology Infrastructure of China
(http://www.geodata.cn (30 October 2021)). The dataset is monthly data, and in this
study, the temperature/precipitation in different months, the annual mean temperature
(Temp-mean) and annual total precipitation (Pre-total) in hydrological years were used to
explore the roles in snow phenology.

3.1.4. DEM

SRTM digital elevation data with a spatial resolution of 90 m was obtained from the
Google Earth Engine (GEE). In addition, the data was resampled to 500 m in order to keep
the resolution consistent with MODIS snow products. Based on this, the altitude, slope and
aspect were derived.

3.1.5. Vegetation Data

To analyze the variations in snow phenology for different vegetation types in North-
east China, the MODIS vegetation product MOD13A1 normalized difference vegetation
index (NDVI) from 2001 to 2018 was derived through the GEE cloud platform with spa-
tial resolution and temporal resolution of 500 m and 16 d, respectively. In addition, the
monthly/yearly NDVI maximum of all grids was then calculated by the maximum synthe-
sis method to eliminate the interference of clouds and shadows.

3.1.6. Land Cover Data

MCD12Q1 is an annual land cover product with five classification standards. In this
paper, the International Geosphere-Biosphere Program (IGBP) classification standard was
chosen, and land cover types in this region were reclassified into water bodies, forested ar-
eas (including broadleaf forest, coniferous forest, mixed forest and shrub), and nonforested
areas (except water and forested areas), and then we explore the differences in snow cover
phenology for various underlying surfaces at the same latitude.

3.2. Methodology
3.2.1. MODIS Snow Product Cloud Removal

Due to cloud contamination, we used a noval cloud removal algorithm to obtain daily
cloud-free MODIS snow products. First, a threshold of 10 (expand 100 times) was used to
delineate between snow and snow-free conditions in the NDSI_Snow_Cover data layer [34],
and the rest attributes were classified as clouds, except for inland water and ocean. Second,
the conditional probability interpolation method based on a space-time cube was used
to remove the clouds. In addition, snow probability of the cloud pixels was calculated
by using the conditional probability of the central pixel and every neighboring pixel in
a space-time cube of 5 × 5 × 5 under the same snow condition as the weight. Finally,
the snow condition of pixels covered with clouds was recovered according to the snow
probability [26]. The formulas are as follows:

P
(
Cx,y

∣∣Cn
)
=

∑ 1 − ABS
(
Cx,y,t − Cn,t′

)
Nx,y

(1)

P(x0, y0, t0) =
∑ P

(
Cx0,y0

∣∣Cn
)× Sn

∑ P
(
Cx0,y0

∣∣Cn
)× Vn′

(2)

C(x0, y0, t0) =

{
snow, P(x0, y0, t0) ≥ 0.5

snow f ree, P(x0, y0, t0) < 0.5
(3)

Here, P
(
Cx,y

∣∣Cn
)

is the conditional probability having the same snow condition for
the central and n-th adjacent pixels in the space-time cube. Cx,y,t and Cn,t′ represent snow
(C = 1) or snow-free (C = 0) conditions for days t and t′, respectively. Nx,y are cloud-free

166



Remote Sens. 2022, 14, 262

days for the central pixel and n-th neighboring pixels within the study time; P(x0, y0, t0) is
the snow probability of the cloud gaps. Sn means that the n-th pixel has snow (Sn = 1) or is
snow-free (Sn = 0); Vn′ indicates whether the n-th pixel is cloudless (Vn′ = 1) or covered by
clouds (Vn′ = 0); and C(x0, y0, t0) is the snow condition.

3.2.2. Snow Phenology Calculation

Snow phenology mainly includes snow cover days (SCD), snow cover onset dates
(SCOD) and snow cover end dates (SCED). In this study, daily cloud-free snow products
were obtained through cloud removal algorithm above, and snow phenological parameters
in hydrological year, which was defined from 1 September to 31 August of the following
year, were calculated pixel by pixel. The SCD was the total days when a pixel is snow
in a hydrological year. The SCOD was the first day when pixel was covered with snow
lasting at least five days for the first time, and SCED was the last day of at least 5 days of
continuous snow. This avoided the influence of instantaneous snowfall [10,16,35].

3.2.3. Cloud-Free Snow Product Accuracy Assessment

Currently, station data from meteorological observatories are usually regarded as
“truth” data and used to evaluate the cloud removal accuracy. The accuracy assessment
metrics include overall accuracy (OA), underestimation error (UE) and overestimation error
(OE) based on the confusion matrix (Table 2), which are defined as follows:

OA =
a + d

a + b + c + d
(4)

UE =
b

a + b + c + d
(5)

OE =
c

a + b + c + d
(6)

Table 2. Confusion matrix.

MODIS

Snow Snow-Free

Truth
snow a b

snow-free c d

The definitions of a, b, c and d are given in Table 2. OA represents the proportion that
pixels are consistent with the truth and MODIS classification; UE is the proportion that
pixels are snow-free in MODIS, but the corresponding pixels in the truth are covered with
snow; and OE refers to the proportion that pixels are covered with snow in MODIS, but the
corresponding pixels in the truth are snow-free.

3.2.4. Trend Analysis

The Mann–Kendall test and Theil–Sen median analysis were used to explore the
variation trend in snow phenology from hydrological years 2001–2018. In the Mann–
Kendall test, to calculate whether the trend of snow phenology was increasing or decreasing
at the 0.05 confidence level, the Z value was divided into five types: significant decrease
(Z < 1.96), slow decrease (−1.96 ≤ Z < 0), nonsignificant change (Z = 0), slow increase
(0 > Z ≥ 1.96) and significant increase (Z > 1.96). The formulas are as follows:

Z =

⎧⎪⎪⎨
⎪⎪⎩

S−1√
var(S)

, S > 0

0 , S = 0
S+1√
var(S)

, S < 0
(7)
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where,

var(S)=
n(n − 1)(2n + 5)

18
(8)

S =
n−1

∑
i=1

n

∑
j=i+1

sgn
(
Sj − Si

)
(9)

sgn
(
Sj − Si ) =

⎧⎨
⎩

1, Sj − Si > 0
0, Sj − Si = 0
−1, Sj − Si < 0

(10)

When Z > 0, the trend is upward, and when Z < 0, it is downward. Si/Sj represent the
value in years i/j, n is the length of the time series. When |Z| > Z1−α/2 (α is the significance
level), the trend is significant in the time series. In this paper, α = 0.05 was used.

In the Theil–Sen median analysis, to explore the details of the variations in snow
phenology, Ssnow was divided into seven types: <−4 d/a, -<−4–−2 d/a, −2–0 d/a, 0 d/a,
0–2 d/a, 2–4 d/a and >4 d/a. The formula is as follows:

Ssnow= Median
(Sj − Si

j − i

)
, ∀j > i (11)

where Ssnow > 0 and Ssnow < 0 represent upward and downward trends, respectively.

3.2.5. Relative Importance of Multiple Factors to Snow Phenology

The use of geodetector is a common statistical approach that can analyze spatial
variations and reveal the driving factors behind them [36]. A geodetector contains four
subdetectors: factor detector, risk detector, ecological detector and interaction detector [37].
In this research, we employed a factor detector to quantify the relative contributions of
vegetation and geographical (altitude, slope, aspect, latitude and longitude) and meteo-
rological (temperature and precipitation) factors to snow phenology variations, and the
dominant driving factor was then the highest contributor to snow phenology variations.

The factor detector is calculated by the following q-statistic:

q= 1 − ∑L
h=1 Nhσ2

h
Nσ2 = 1 − SSW

SST
(12)

SSW =
L

∑
h=1

Nhσ2
h , SST = Nσ2 (13)

where 0 ≤ q ≤ 1, and the larger the value, the greater the influence of the factor. h is the
number of strata for variables or factors, N represents the number of units in stratum h, and
σ2 and σ2

h denote the variance in the entire study area and stratum h, respectively. SW and
SST are the sum of squares within the data and the total sum of squares, respectively.

3.2.6. Correlation Analysis

To investigate the influence of major driving factors on snow phenology, we calculated
the correlation coefficients between these factors and snow phenology:

rxy =
∑n

i=1(xi − x)(yi − y)√
∑n

i=1(xi − x)2 ∑n
i=1(yi − y)2

(14)

where xi and yi represent the values in the i-th year and x and y are the average values for all
years. If r > 0, two variables are positively correlated, and if r < 0, it is negatively correlated.
When |r| ≤ 0.3, two variables are weakly correlated or have no correlation; 0.3 < |r| ≤ 0.5
indicates that there is a moderate correlation between two variables; 0.5 < |r| ≤ 1 indicates
strong correlation [38].

168



Remote Sens. 2022, 14, 262

4. Results

4.1. Validation of the Daily Cloud-Free MODIS Snow Products

Based on above accuracy assessment metrics, the available station data in Northeast
China were screened to quantitatively evaluate the cloud removal results. The accuracies
of the three evaluation indicators were obtained (Table 3), and Figure 2 summarizes the
monthly accuracy evaluation results for ground observation stations. Overall, the OA of the
MODIS cloud-free product was more than 0.9, the UE and OE were less than 0.1, and the UE
values were greater than the OE values. Generally, the accuracies in the snow stabilization
season were higher than that in the snow accumulation and melting season. However,
in the October and April, the OA was the highest, and the UE and OE were the lowest,
which may be attributed to the lack of snow during this period. There seems odd relative
to others in the February, which is due to the lack of 9 days MODIS data (19 February 2016–
27 February 2016). In the cloud removal processing, the missing data are thought to be
cloud. Therefore, the cloud removal accuracy is very low for these data because there is no
spatial and temporal neighbor data available. The analysis reveals that the cloud removal
product had good reliability and met the needs of the snow phenology analysis.

Table 3. Accuracy evaluation results for ground observation stations.

Time OA UE OE

1 October 2013–30 April 2014 0.95 0.03 0.02
1 October 2014–30 April 2015 0.94 0.05 0.01
1 October 2015–30 April 2016 0.92 0.06 0.03
1 October 2016–30 April 2017 0.94 0.04 0.02
1 October 2017–30 April 2018 0.93 0.05 0.02

Figure 2. Boxplots of the three evaluation indices (a) OA, (b) UE and (c) OE in different months.

4.2. Spatiotemporal Variations and Trends in Snow Phenology
4.2.1. SCD

The distribution of SCD in Northeast China was visually consistent with those of
topography and latitude, showing the characteristics of “high SCD in the mountains and
low SCD in the plains” and “high SCD at high latitudes and low SCD at low latitudes”.
The SCD values in the northern Daxingan Mountains were more than 150 d, those of the
Xiaoxingan Mountains were mainly within 120–150 d, and the SCD values of the plain area
were significantly less than those of the mountainous area. The SCD values of the Sanjiang
Plain were within 90–150 d, and the Liaohe Plain had the shortest SCD values of less than
60 d (Figure 3).
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Figure 3. Spatial distribution of annual average SCD in Northeast China from HY2001 to HY2017.

Figure 4 showed the histogram of annual average SCD computed for a 10-day interval
from HY2001 to HY2017. The average SCD in Northeast China ranged from 0 to 230 d, with
an obvious bimodal distribution, and the annual average SCD was 93 d. The frequency of
SCD in the range from 10–20 d accounted for 9.95%, and that in the range from 120–130 d
accounted for 13.92%.

Figure 4. Histogram of annual average SCD from HY2001 to HY2017 in Northeast China.

Figure 5a indicates that the SCD in Northeast China mainly increased, accounting for
62.27% of the total, among which only 4.73% increased significantly. The regions where the
SCD increased were mainly in the southern Daxingan Mountains, Xiaoxingan Mountains
and Changbai Mountains. SCD decreased mainly in the northern Daxingan Mountains and
the southwestern Changbai Mountains, accounting for 20.25% of the total area, and only
0.24% of the total area recorded significant decreases. Figure 5b showed the area with an
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SCD trend >0 d/a accounted for 60.61%, which was similar to the spatial distribution of
SCD with an increasing trend; the area—revealing no trend was concentrated in the Liaohe
Plain and Songnen Plain, accounting for 16.80%; the areas with trends of less than 0 d/a
accounted for 18.65% and were mainly located in the northern Daxingan Mountains and the
southwestern Changbai Mountains. The results of the Theil–Sen trend and Mann–Kendall
significance test were consistent, which further verified the accuracy of these trends.

Figure 5. Trend of SCD in Northeast China. (a) Significance test and (b) trend of SCD from HY2001
to HY2017.

4.2.2. SCOD

Figure 6 shows that the SCOD was delayed from north to south, which meant an
obvious increase with latitude. At high latitudes, the SCOD were mainly concentrated
within 60–90 d, that is, in November of the current year, and in the northern part of the
Daxingan Mountains, the SCOD were at the end of September or early October of the
current year. In low-latitude areas, the SCOD were concentrated within 90–120 d, that is,
December of the current year. The SCOD were later in some areas of the southern Songnen
Plain, and the latest was in January of the next year. The annual average SCOD in Northeast
China were mainly concentrated within 60–100 d, from November to the middle of January
of the next year, accounting for 84.78% of the total area. Among them, the peak was 70–80 d,
which was approximately the middle of November of the current year, with a proportional
area of 30.22% (Figure 7).

Figure 6. Spatial distribution of annual average SCOD in Northeast China from HY2001 to HY2017.
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Figure 7. Histogram of annual average SCOD from HY2001 to HY2017 in Northeast China.

Figure 8 shows the significance tests and the trend of SCOD from HY2001 to HY2017.
The results of the Theil–Sen trend and Mann–Kendall significance test were consistent. The
area in which the SCOD showed an early trend accounted for 31.93%, while the delayed
trend accounted for 32.80%. The trends of significant advance and delay were relatively
small, only 0.24% and 0.12%, respectively (Figure 8a). Overall, the area with an increase in
Figure 8a corresponded to an SCOD trend > 0 d/a in Figure 8b, and that the area with a
decrease corresponded to an SCOD trend < 0 d/a.

Figure 8. Trend of SCOD in Northeast China. (a) Significance test and (b) trend of SCOD from
HY2001 to HY2017.

4.2.3. SCED

The distribution of SCED was consistent with that of SCD, presenting “high SCED
in the mountains and low SCED in the plains” and “high SCED at high latitudes and low
SCED at low latitudes” trends. From the perspective of spatial distribution, the SCED in
some areas of the Daxingan Mountains, Xiaoxingan Mountains and Changbai Mountains
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were mainly in the range of 210 d to 240 d in approximately April of the next year. The
SCED of the Songnen Plain and Liaohe Plain were relatively early, probably between
January and February of the next year (Figure 9). The annual average SCED distribution in
Northeast China also had two peaks, which were 130–140 d and 200–210 d, corresponding
to the middle of January and late April of the next year, accounting for 5.54% and 20.50% of
the area, respectively. The area with an SCED of less than 240 d accounted for 99.59%; that
is, at the end of April of the next year, the snow in Northeast China almost disappeared
(Figure 10).

Figure 9. Spatial distribution of annual average SCED in Northeast China from HY2001 to HY2017.

Figure 10. Histogram of annual average SCED from HY2001 to HY2017 in Northeast China.
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For the SCED, 29.44% of the total area showed an early trend, while 36.70% had a
delayed trend. In addition, only 1.49% and 2.53% of the area were significantly early
and delayed, respectively (Figure 11a). The delayed areas were mainly distributed in the
Sanjiang Plain, Daxingan Mountains, Xiaoxingan Mountains and Changbai Mountains;
the areas with an advancing trend of SCED were mainly concentrated in the middle of the
region and the transition area between plain and mountainous areas. Figure 11b shows
the trend of SCED in Northeast China. Compared with the significance test, the overall
spatial distribution characteristics and the increasing/decreasing trends of SCED were
highly consistent. The area with an SCED trend > 0 d/a accounted for 36.36%; that with an
SCED trend < 0 d/a accounted for 29.11%.

Figure 11. Trend of SCEDs in Northeast China. (a) Significance test and (b) trend of SCED from
HY2001 to HY2017.

In general, the correlation analysis of the SCD, SCOD, and SCED revealed significant
relationships between the SCED and SCD (r = 0.70). The correlation between the SCOD and
SCD was −0.14, and the increasing trend of the SCD was determined by the advancement
of the SCOD and the delay of the SCED. Considering that there was no significant change
in the SCOD across time, the snow phenology variations in Northeast China from HY2001
to HY2017 were attributed mostly to the changes in SCED.

4.3. Roles of Multiple Factors in Snow Phenology

Figure 12 shows that the geographical and meteorological factors and the NDVI all
affected the SCD, SCOD and SCED. Annual mean temperature had the greatest impact
on the SCD, SCOD and SCED, followed by latitude. Precipitation, aspect and slope all
had little effect on the SCD, SCOD and SCED, and all these q values were less than 0.1.
Compared with the SCOD, the NDVI and longitude both had a greater impact on the SCED
and SCD, with q values of 0.35 (0.15) and 0.30 (0.13), respectively. However, altitude was an
important factor affecting the SCOD compared with the SCD and SCED.

Figure 12. Effects of meteorological and geographic factors and the NDVI on snow phenology.
(a) SCD, (b) SCOD, (c) SCED. Note: p < 0.01.
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We further analyzed the relative importance of monthly temperature and precipitation
to snow phenology, and the results are shown in Figure 13. Obviously, the influence of
monthly temperature on snow phenology is much greater than that of monthly precipitation.
In terms of the roles of different months, the temperature from January to May has a
stronger impact on snow phenology, while the impact from June to August is relatively
weak. Precipitation has a greater impact on snow phenology in May, September and snow
stable period, which the snow completely melted in May, and snowfall occurred in some
areas in September.

Figure 13. Roles of temperature and precipitation in different months in snow phenology. (a) temperature,
(b) precipitation.

5. Discussions

5.1. Response of Snow Phenology to Climate

Figure 14 shows the annual variations in the mean temperature and snow phenology
from HY2001 to HY2017. Except for the SCOD, there were clear increases in both the SCD
and SCED and a decrease in temperature. According to statistics, SCD and SCED were
both strongly negatively correlated with the mean temperature; at the 95% confidence level,
the correlation coefficients were −0.73 and −0.57, respectively. The correlation with the
SCOD was moderate (r = 0.41), which can be explained that besides mean temperature, the
effect of latitude on SCOD was also great (q = 0.55).

The spatial pattern of correlation between the mean temperature and snow phenology
is presented in Figure 15. For 99.91% of the pixels, the mean temperature was negatively
correlated with the SCD, which means the lower the mean temperature was, the longer the
SCD in the whole study area; 59.40% of the pixels showed strong negative correlations, and
areas with weak negative correlation were mainly distributed in the northern Daxingan
Mountains and Xiaoxingan Mountains (Figure 15a). The correlations between the SCOD
and mean temperature were mainly positive, and the weak positive correlations accounted
for a large proportion (40.81%). Areas with strong positive correlations accounted for only
8.19% and were distributed mainly in the Xiaoxingan Mountains and Changbai Mountains
(Figure 15b). The correlations between the mean temperature and SCED were similar to
those of the SCD, and most regions had negative correlations (93.86%). The difference was
that the proportion of strong negative correlations was relatively small (33.06%), and the
average correlation of the SCED was −0.38, while that of the SCD was −0.52 (Figure 15c).
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Figure 14. Annual variations in the mean temperature and snow phenology from HY2001 to HY2017.

Figure 15. Spatial pattern of the correlations between the mean temperature and snow phenology.
(a) SCD, (b) SCOD, (c) SCED.

5.2. Geographical and Vegetation Controls on Snow Phenology

To quantitatively investigate the latitudinal zonation of snow phenology further,
statistics were analyzed in combination with the underlying surface conditions. The slope
and the regularity between snow phenology and latitude in the nonforested and forested
areas further quantitatively proved the latitudinal zonation of snow phenology, as shown in
Table 4 and Figure 16. In Northeast China, as the latitude increased by 1 degree, the average
SCD increased by 10.2 d, the SCOD advanced by 3.82 d and the SCED was delayed by
5.41 d. Generally, the change rate in forested areas was slower. The change rate in the SCD,
SCOD and SCED were 5.41 d/degree, −2.02 d/degree and 2.91 d/degree, respectively,
which were closely related to the closed environments of the forested areas themselves.
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Table 4. Linear slope and R2 of the mean SCD, SCOD, and SCED with latitudes from 39.22◦N to
53.22◦N in the nonforested and forested areas in Northeast China.

SCD SCOD SCED

Slope R2 Slope R2 Slope R2

Northeast
China 10.2 0.97 −3.82 0.89 5.41 0.96

Nonforested
areas 7.8 0.76 −3.41 0.74 4.12 0.71

Forested
areas 5.41 0.98 −2.02 0.93 2.91 0.97

Note: The slope represents the change rate in the days when the latitude increased by 1◦ (d/degree).

Figure 16. Snow phenology related to latitude in the nonforested and forested areas. (a) SCD,
(b) SCOD, (c) SCED.
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The higher the latitude was, the longer the SCD, the earlier the SCOD and the later the
SCED, in both nonforested and forested areas. At the same latitude, the SCD of forested
areas was higher than that of nonforested areas. At high latitudes, the SCOD of forested
areas was later than that of nonforested areas. For the SCED, at low latitudes, the snow
melting time in forested areas was later than that in nonforested areas, and the SCED was
basically the same at high latitudes; these changes can be explained by the observations
that snow melting in high-latitude areas was mainly affected by temperature and that the
SCED in this region was in approximately April, so the rapidly increasing temperature led
to the melting of snow in the forested and nonforested areas.

In contrast to the mean temperature, the NDVI denoting vegetation greenness was
positively correlated with the SCD, SCOD and SCED, accounting for 68.69%, 59.22% and
58.68%, respectively. However, the weak correlation (−0.3 < r <0.3) between snow phenol-
ogy and the NDVI was dominant, with 69.85%, 74.99% and 72.65% of pixels (Figure 17a–c),
which illustrates that the NDVI was not the main factor affecting snow phenology.

Figure 17. Spatial pattern of correlations between the NDVI and snow phenology. (a) SCD, (b) SCOD,
(c) SCED.

5.3. Comparison with Previous Results

Shi et al. [11] reported strong spatial heterogeneity in snow phenology in the Mollisol
region of Northeast China. The SCD increased from southwest to northeast gradually, and
snow cover began to accumulate in mid-November and completely melted in late March
during 1978–2016. In the western Changbai Mountains and northern Daxingan Mountains,
the SCOD always began in early October, and the SCED in the western Daxingan Mountains,
Xiaoxingan Mountains, and Changbai Mountains always occurred in May [8]; which was
similar to the results of this study. In the forested areas of Northeast China, the SCOD were
later, and the SCED were earlier in the plains. The SCOD occurred between late November
and mid-November in the regions with high altitudes, and the SCED occurred later with
increasing latitude and altitude. The earlier SCOD and later SCED led to an increase in the
SCD, especially in high mountain areas. In most areas, the SCOD experienced an advancing
trend, the SCED exhibited an obvious delaying trend, and the SCD showed an opposing
trend from south to north in Northeast China from 2004 to 2018 [10].

This paper found that SCD and SCED increased, and SCOD basically did not change
in Northeast China from 2001 to 2018. However, previous studies on snow phenology in
China found that due to the increase in temperature, the SCOD in most areas were delayed,
and SCED were advanced [5,6,12]. These contradictions may have been caused by the
inconsistency of the time span. Although snow cover will decrease under the background of
global warming, the decrease of mean temperature in a short time has led to the increase of
snow cover. Studies have shown that there are strong correlations between meteorological
and geographic factors and snow cover [39–41]. Vegetation change was also closely related
to snow phenology [10,42,43]. Temperature and precipitation could affect snow cover
variations [44,45]. However, in this research, the results showed that temperature was the
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main factor affecting the variations in snow phenology, and precipitation had little effect.
In the three basins of Songhua River in Northeast China, temperature, precipitation and
altitude were considered to be the three most important factors [9]. Huang et al. [12] studied
the snow cover variations across China from 1951 to 2018 based on snow depth dataset
and used model to analyze the driving effect of multiple factors on snow cover phenology
and found that the most important factors influencing the SCD, SCOD and SCED were
annual coldest monthly minimum temperature, altitude and annual mean temperature,
respectively. This difference may have been caused by inconsistencies in time scales, study
areas, data and research methods. In addition, we both found that precipitation had little
effect on snow phenology.

6. Conclusions

Snow cover is one of the most active features on the land surface [46], and it is very
important to quantitatively explore and understand snow phenology variations for local
climate change. The snow phenology variations and their driving factors in Northeast
China from 2001 to 2018 were assessed based on daily cloud-free snow products generated
in this research. The conclusions were as follows.

(1) The SCD, SCOD and SCED all showed the characteristics of latitudinal zonal distribu-
tion, and the SCED and SCD distributions had obvious consistency. With increasing
latitude, the SCD was longer, the SCOD began earlier, and the SCED appeared later.
Overall, the SCD showed mainly an increasing trend, which was mostly distributed
in the southern Daxing’an Mountains, Xiaoxing’an Mountains and Changbai Moun-
tains. The SCOD showed advanced and delayed trends that accounted for 31.93%
and 32.80%, respectively. The corresponding proportions of the SCED accounted for
29.44% and 36.70%, respectively, which meant that the SCED showed a delayed trend
overall. On the Liaohe Plain and Songnen Plain, the snow phenology basically did
not change.

(2) For snow phenology, the mean temperature was identified as the most important
driver, followed by latitude. In terms of the roles of temperature in different months,
the snow phenology is mainly affected by the temperature in winter of current year
and spring of the next year. The decrease in temperature directly led to the extension
of SCD, the advancement of SCOD and the delay in SCED. Precipitation, aspect and
the slope all had little effect on snow phenology. Compared with the SCOD, the NDVI
and longitude both had a greater impact on the SCED and SCD, while SCOD showed
a greater impact from altitude.

(3) The mean temperature was mainly negatively correlated with the SCD and SCED
and mostly positively correlated with the SCOD. As the latitude increased, the snow
phenology changed gradually, and the change rate in the SCD, SCOD and SCED in
the whole Northeast China were 10.20 d/degree, −3.82 d/degree and 5.41 d/degree,
respectively. The change rate in the snow phenology in forested areas and nonforested
areas were inconsistent, and it was slower in forested areas than nonforested ar-
eas. Snow phenology was mainly positively correlated with the NDVI, but weak
correlations with the NDVI accounted for a large proportion.
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Abstract: The Caatinga is the largest nucleus of Seasonally Dry Tropical Forests (SDTF) in the
Neotropics. The leafing patterns of SDTF vegetation are adapted to the current environmental and
climate variability, but the impacts of climate change tend to alter plants’ phenology. Thus, it is
necessary to characterise phenological parameters and evaluate the relationship between vegetation
and environmental drivers. From this information, it is possible to identify the dominant forces in
the environment that trigger the phenological dynamics of the Caatinga. In this way, remote sensing
represents an essential tool to investigate the phenology of vegetation, particularly as it has a long
series of vegetation monitoring and allows relationships with different environmental drivers. This
study has two objectives: (i) estimate phenological parameters using an Enhanced Vegetation Index
(EVI) time-series over 20 years, and (ii) characterise the relationship between phenologic dynamics
and environmental drivers. TIMESAT software was used to determine four phenological parameters:
Start Of Season (SOS), End Of Season (EOS), Length Of Season (LOS), and Amplitude (AMPL).
Boxplots, Pearson’s, and partial correlation coefficients defined relationships between phenologic
dynamics and environmental drivers. The non-parametric test of Fligner–Killeen was used to test the
interannual variability in SOS and EOS. Our results show that the seasonality of vegetation growth in
the Caatinga was different in the three experimental sites. The SOS was the parameter that presented
the greatest variability in the days of the year (DOY), reaching a variation of 117 days. The sites with
the highest SOS variability are the same ones that showed the lowest EOS variation. In addition, the
values of LOS and AMPL are directly linked to the annual distribution of rainfall, and the longer the
rainy season, the greater their values are. The variability of the natural cycles of the environmental
drivers that regulate the ecosystem’s phenology and the influence on the Caatinga’s natural dynamics
indicated a greater sensitivity of the phenologic dynamics to water availability, with precipitation
being the limiting factor of the phenologic dynamics. Highlights: The EVI time series was efficient in
estimating phenological parameters. The high variability of the start of season (SOS) occurred in sites
with low variability of end of the season (EOS) and vice versa. The precipitation and water deficit
presented a higher correlation coefficient with phenological dynamics. Length of Season (LOS) and
amplitude (AMPL) are directly linked to the annual distribution of rainfall.
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1. Introduction

The Seasonally Dry Tropical Forests (SDTF) are characterised by a strong seasonal
and irregular distribution of rainfall throughout the year, resulting in long dry season
periods [1,2]. The Brazilian Caatinga, with an area of approximately 900,000 km2, is
the largest nucleus of SDTF in the Neotropics [The tropical New World biogeographic
region comprises Central America, the Caribbean, and South America] [3]. Moreover, with
3347 plant species, of which 526 are endemic, the Caatinga is the richest nucleus of SDTF in
the Neotropics [4]. Its remarkable floristic diversity makes the Caatinga twice as rich as the
Amazon rainforest when considering the species/area relationship [4]. Phenology studies
recurring life-cycle events such as bird migration, flower blooming, or leaf emergence and
senescence and the causes of their timing by biotic and abiotic forces [5,6]. The leafing
patterns of Caatinga vegetation are adapted to the intense climate and water seasonality,
being highly dependent on the climate interannual variability [7,8]. Most leaves fall during
the dry season, and the first rainfall pulses trigger a quick leaf flush in the wet season [7–9].

Precipitation and soil moisture are the leading environmental drivers for the leaf
changes in the Caatinga [8,9]. Still, the temperature can also be a driver for species present-
ing scheduled phenology in dry ecosystems [10]. The Intergovernmental Panel on Climate
Change [11] forecasts an increase of 1.5 ◦C in the global mean air temperature for the next
two decades in an optimistic scenario, considering the reduction of current emissions of
CO2. Besides the temperature increases, climate changes are likely to alter the precipitation
regimes in the following decades [12,13]. The consequences of these changes are, among
others, the projected drying out of surface soils [12] and prolonged dry seasons, with an
increase of 47% of the area of the Northeast Region of Brazil (NEB) subjected to extreme
drought events until 2070 [13]. Thus, understanding the past and current vegetation’s
response to the environmental drivers is paramount to predicting its behaviour in climate
change scenarios, allowing the detection of changes in the timing of leaf patterns and
their causes.

The ability to monitor global vegetation phenology, or Land Surface Phenology (LSP),
has increased with the validated Remote Sensing (RS) and modelling approaches to map-
ping phenology [14,15]. Long-term data from satellite products are useful tools for under-
standing the phenological responses of vegetation to current environmental drivers using
Vegetation Indices (VIs), allowing it to predict its responses to climate change scenarios.
VIs time series has received the attention given its potential to characterise interactions
between climate and vegetation with broad applications in different ecosystems [16–18].
Several VIs are calculated based upon different spectral bands and, therefore, evidence of
different components of the environment [19]. The Enhanced Vegetation Index (EVI) has
been widely used to characterise vegetation phenology [20,21] due to its sensitivity to high
biomass and reduced atmospheric and soil effects. EVI is calculated from the near-infrared
(NIR), Red, and Blue bands and can be derived for different satellite platforms, such as
Landsat, Sentinel, and MODIS. The use of algorithms to determine the main phenological
metrics from the VIs time series has favoured the representation of the phenological stages
of each cropping system, allowing a crop-type classification based on their phenological
metrics [22]. However, the studies driving this on a global scale have been primarily fo-
cused on forest ecosystems, associating phenological changes in vegetation with climate
patterns, particularly with rainfall data [23]. These studies showed that the phenological dy-
namics strongly depend on the seasonality of rainfall [21,24]. Still, the studies on a regional
scale indicate that other environmental drivers also trigger phenological changes [25–28].

The LSP applied to an ecosystem scale seems to offer the best opportunities to advance
understanding of environmental triggers and determinants for phenological dynamics,
given the possibility to understand it on a broad scale, encompassing areas in a range of
contrasting environmental conditions. For instance, the early greening or pre-rain green-up,
a phenomenon where trees produce leaves before the rain starts, was registered in the
woodlands and savannas of southern Africa through RS satellite techniques [29,30]. Fur-
thermore, the application of the LSP at a continental scale and using long-term time-series
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(2002–2014) allowed us to measure the variability in leaf flushing (i.e., greening) among
years and to identify the photoperiod as the environmental cue for early greening [30].

The use of LSP and their drivers will be significant for SDTFs where interannual
rainfall variability and rainy season duration change on a spatial and temporal scale [31,32],
factors that are expected to influence the phenological strategies of plant communities in
this vegetation [10]. There was also great regional variability and interannual fluctuation in
vegetation phenology, and the overall phenological trends shifted later [21]. By following
the studies for dry forests, Tong et al. [15] reported that the interannual rainfall variability
was a more dominant force than fire events and land-use change in the phenological trend
in tropical areas. For example, Jesus et al. [25] noticed changes in the phenological patterns
for dense and open vegetation areas of the Caatinga, suggesting that factors that vary at
spatial scales, such as the vegetation structure, would also be necessary for the phenological
responses of the vegetation. In an experimental area in the Caatinga, the phenological
response was directly related to soil water availability [9].

Despite advances in the analysis of phenological patterns and their associated envi-
ronmental drivers, mainly observed in studies at the ecosystem scale, the application of
long-term time series of vegetation indices in studies of the Caatinga vegetation is scarce. In
addition, there are limitations to the diversity of sites studied for the Caatinga. For example,
when analysing the dominant environmental drivers for the phenology of seasonally dry
ecosystems (Caatinga, Cerrado), Alberton et al. [33] observed that the dominant drivers in
these ecosystems were distinct, with light (measured as day-length) being more relevant in
explaining leafing patterns in Cerrado communities than rainfall for Caatinga communi-
ties. Therefore, comparing sites of the same ecosystem can better define the environmental
drivers associated with the phenological dynamics. There are also limitations to the number
of environmental drivers analysed in the studies carried out for the Caatinga. Analysis with
more environmental drivers could reveal meaningful soil–plant–atmosphere interactions,
which may occur to a lesser extent.

Given the above, this study proposes to evaluate the Caatinga phenological sensitivity
to environmental drivers in three Caatinga ecoregions. The seasonality of vegetation will
be observed from the EVI time series over 20 years (2000–2019) and environmental drivers
(precipitation, air temperature, soil moisture, and water deficit) from global databases. This
study has two objectives: (i) estimate phenological parameters using an EVI time-series
over 20 years, and (ii) characterise the relationship between phenologic dynamics and
environmental drivers. The results will also be expected to serve as a baseline against which
to compare future changes in Caatinga phenology due to natural or anthropogenic causes.

2. Material and Methods

2.1. Study Areas

The semi-arid climate (Köppen’s BSh) [34], where the Caatinga is located, presents
accumulated precipitation below 600 mm and an average air temperature of 25 ◦C to 30 ◦C
throughout the year [35]. However, seasonally, the average annual rainfall varies widely
from 300 mm to 1000 mm annually, mainly concentrated in a period of 3 to 4 months, during
summer and autumn, followed by a prolonged dry season lasting 8 to 9 months during
winter and spring [36]. The Caatinga is characterised by high interannual precipitation
variability, with droughts that can last for years and high potential evapotranspiration rates
of between 1500 mm and 2000 mm annually [37]. The Caatinga region has different soil
categories, ranging from shallow, rocky, and relatively fertile to deep with high natural
fertility and sedimentary or sandy, deep, and non-fertile [35]. In the Caatinga, the typical
vegetation comprises deciduous and thorny forests or small forests that grow mainly in
exposed crystalline rocky terrains, such as the Depression Sertaneja [38]. The region’s
geomorphology ranges from lowlands of 300 m, mountains, plateaus, and plateaus with an
altitude of up to 1000 m [35].

The study was carried out at three SDTF protected sites, each area being in a different
ecoregion (Figure 1): (i) Meridional Sertaneja Depression (MSD) ecoregion experimental
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site located Embrapa Semi-arid, Petrolina, Pernambuco; (ii) Sertanejas Depressions (SD)
ecoregion experimental site located at Seridó Ecological Station, Serra Negra do Norte,
Paraíba; (iii) Borborema Plateau (BP) ecoregion experimental site located at Semi-arid
National Institute, Campina Grande, Paraíba. The MSD experimental site’s geographic co-
ordinates are 9◦02′47′ ′ S, 40◦19′16′ ′ W, 395 m altitude, and its vegetation is dry xerophilous
forest, with trees and shrubs that average five metres in height [39]. The average annual
temperature is 26.2 ◦C, and the rainfall is 387 mm [39], concentrated mainly from January to
April. The predominant soil type in the experimental site is Red-Yellow Argisol, followed
by Haplossol and Hydromorphic Vertisol [40]. The SD experimental site’s geographic
coordinates are 6◦34′42′ ′ S, 37◦15′05′ ′ W, and 203 m altitude. Its area is characterised by dry
xerophilous forest with deciduous plant species and the predominance of small, widely
dispersed trees and shrubs up to 10 metres high, which develop and grow only in the
rainy season between January and May [41]. The average annual precipitation varies
between 400 and 700 mm, and the average yearly temperature ranges from 28 to 30 ◦C.
The dominant soil is Neosol Litolic, shallow (about 40 cm), stony, and low fertility [42].
The BP experimental site’s geographic coordinates are 7◦16′49′ ′ S, 35◦58′34′ ′ W, and 492 m
altitude. The vegetation present in the experimental site is composed of dense Caatinga,
with tree heights between three and seven metres. The region experiences a rainy season
starting in March/April and extending until August, while the dry season lasts for five to
six months [43]. The average annual rainfall of Campina Grande is about 750 mm, and the
average annual air temperature is 23.3 ◦C [44]. The soil is nitric planosol [45].

Figure 1. Map of the Caatinga with the physical boundaries of the ecoregions and the locations under
study. Koppen’s climate classification for Brazil from ALVARES et al. [34] emphasizes the semi-arid
(BSh) climate of Caatinga SDTF in orange. Location of sites in ecoregions: 1. MSD (Meridional Sertaneja
Depression ecoregion); 2. SD (Sertanejas Depressions ecoregion); 3. BP (Borborema Plateau ecoregion).

2.2. Data Processing

The processes for obtaining geospatial images and data were performed using the
Google Earth Engine (GEE) tool [46]. Cloud computing platforms, such as GEE, facilitate
the processing of satellite images globally. With access and analysis of several petabytes
of images and a broad set of geospatial data, dating from 40 years of Earth observation
data, updated and expanded daily, the tool allows viewing, manipulating, editing, and
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creating spatial data [46]. The EVI vegetation indices derived from the Moderate Resolu-
tion Imaging Spectroradiometer (MODIS) sensor reflectance data were used to represent
the variability of native vegetation, investigating some biophysical mechanisms that in-
volve soil–plant–atmosphere relationships in the natural dynamics of the Caatinga. The
MODIS sensor images and the TerraClimate and CHIRPS data sets’ environmental drivers
were evaluated from 2000 to 2019. The environmental drivers were made up of monthly
precipitation, air temperature, soil moisture, and water deficit time series for the three
experimental areas.

2.2.1. MODIS Data

This research used the surface reflectance data of the MODIS 16-day nadir BRDF-
Adjusted Reflectance product (MCD43A4); the dataset is produced daily using 16 days
of Terra and Aqua MODIS data at 500 metres resolution. The reflectance bands were
used to obtain the EVI vegetation index [47]. The first available images of MODIS date
from February 2000, and this study had its period limited to including images until
December 2019. The EVI series were assembled for each studied site, with the value
of the MCD43A4 product pixel corresponding to the geographic coordinates of each testing
location. After that, the EVI time series was converted into a monthly EVI time series, using
the mean value of each month.

2.2.2. TerraClimate e CHIRPS Data

The air temperature, precipitation, soil moisture, and water deficit are some of the po-
tential environmental drivers for the leaf exchange strategies of Caatinga plant species [33].
These possible environmental drivers acting on the Caatinga vegetation were observed in
three different sites of the Caatinga. All the variables mentioned were obtained monthly
from the TerraClimate data set [48], except for precipitation data. Monthly precipitation
data were obtained from the Climate Hazards Group InfraRed Precipitation with Stations
(CHIRPS) database [49]. The exact centre pixels used to construct the EVI time series were
used to obtain the environmental drivers’ time series.

2.2.3. Phenological Metrics

The phenological metrics represent the characteristics of the vegetation within its
phenological cycle, or phenophases, corresponding to dimensionless output parameters and
can be calculated based on the EVI time series. In this study, the TIMESAT software [50,51]
was used to analyse 20 years of EVI time series (from 2000 to 2019) and to compute
4 phenological metrics: Start of Season (SOS), End Of Season (EOS), Length of the season
(LOS), and Amplitude (AMPL) difference between the peak and the base level value. After
applying the Savitzky-Golay filter [52] in TIMESAT, a seasonality parameter per year was
chosen, representing a phenological cycle with a start and end level of 20% of the seasonal
amplitude. This threshold value was used in several studies and is known to be accurate
in registering the plant’s phenological transitions [53–58]. The four phenological metrics
are shown in boxplot graphics for each ecoregion studied and used for correlations with
environmental drivers.

2.2.4. Seasonal Variability Analysis

Interannual variability in phenological metrics across sites—To test if the interannual
variability in SOS and EOS (i.e., the variances in phenological transition dates) differs among
the three sites, we used the non-parametric test Fligner–Killeen [59]. The Fligner–Killeen
test compares the homogeneity of variances among samples [59]. The same analysis was
performed to test if the variability of SOS differs from the EOS within each site. To test if
the LOS and the AMPL of EVI differ among sites, we performed a one-way analysis of
variance (ANOVA) followed by the Tukey post-hoc test. In addition, we used box plots
to compare the three experimental sites’ seasonal data on EVI, phenological metrics, and
environmental drivers for 20 years.
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Influence of environmental drivers on phenological metrics—The environmental
drivers were also observed monthly to assess their influence on phenological parameters.
This study analysed these relationships through scatter plots with smoothed (r) correla-
tion curves from Pearson’s classification (P) between the EVI and environmental drivers.
Pearson’s correlation between EVI time series and monthly environmental drivers was
submitted to different monthly lag periods (0–3). The lag monthly of each environmental
driver with the highest Pearson’s correlation was applied to the partial correlation method.
Then the partial correlation method was used to analyse the environmental drivers in the
monthly EVI time series [60]. Data analysis was carried out in R [61].

3. Results

3.1. Seasonal Profiles and Phenology of SDTF Studied Sites

The interannual variability did not differ among sites for the SOS (X2 = 1.0; df = 2;
p-value = 0.606) nor the EOS (X2 = 1.3; df = 2; p-value = 0.520). The variability was higher
for the SOS than the EOS at MSD (X2 = 10.6; df = 1; p-value = 0.001) and BP (X2 = 11.1;
df = 1; p-value = 0.0008) but not for SD (X2 = 0.8; df = 1; p-value = 0.363). The LOS
differed among sites (F2,54 = 4.1; p-value = 0.02), with SD presenting a shorter LOS than
BP (p-value = 0.01) but with no differences between MSD vs. BP (p-value = 0.37) and
MSD vs. SD (p-value = 0.28). The amplitude of EVI also differed among sites (F2,54 = 5.2;
p-value = 0.008), with MSD presenting lower amplitude than BP (p-value = 0.006) but with
no differences between SD vs. BP (p-value = 0.52) and MSD vs. SD (p-value = 0.10).

The monthly values of the seasonal EVI profile for each ecoregion studied using
20 years of time series are presented in the box plot of Figure 2. The continuous line on the
boxplot indicates the median of the monthly values for 20 years of the EVI time series. It
can be seen in Figure 2 that the median values are always between 0.2 and 0.5. Despite
the similarity in the amplitude of the EVI values, the graph of the median of the monthly
values has different temporal behaviour for the different ecoregions studied. The maximum
values on the MSD experimental site are similar in February and March. The monthly
median presents a well-defined maximum value for the SD experimental site, occurring in
April. The maximum EVI values occur in May and June at the BP experimental site. For
MSD and SD studied ecoregions, the minimum values occur between six and seven months
after the maximum values are observed, while for BP, it happens after four to five months.

Although the graphs with the monthly EVI values presented in Figure 2 understand
the temporal behaviour, they do not reveal as many characteristics about the vegetation
as the graphs with the phenological metrics presented in Figure 3. When analysing the
SOS, it is noticed that the BP and MSD experimental sites present a greater interquartile
range when compared to the SD experimental site. For most observations, the SOS from
the SD experimental site has taken place between January and February. On the MSD
experimental site, it is observed that SOS occurs most frequently between November and
January. At BP, it is observed that the highest frequency of SOS occurs between January
and May (117 days).

Interestingly, the interquartile range observed for the SOS is not for the EOS and LOS
metrics for the MSD and BP experimental sites. For the EOS and LOS, it was observed that
the MSD and BP sites have a smaller interquartile range than the SD experimental site, with
interquartile range values of less than 30 days for both situations. For the SD experimental
site, the variation in the interquartile range in the EOS is similar to that observed for SOS,
with a variation slightly greater than 30 days interval and the LOS reaching an interquartile
range of 60 days. A relationship of the amplitude with the other metrics, SOS, EOS, and
LOS, was not observed. The amplitude’s highest values were observed for the BP and SD
experimental sites, with 25% of the observations above 0.46. The amplitude values for the
MSD experimental area had 75% of the observations below 0.31.
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Figure 2. Monthly EVI values for 20 years of time series in (A) MSD ecoregion experimental, (B) SD
ecoregion experimental, and (C) BP ecoregion experimental.

Figure 3. Caatinga phenological metrics of the three ecoregions studied, (A) SOS, (B) EOS, (C) LOS,
and (D) Amplitude.
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3.2. Environmental Drivers

Due to the high number of deciduous species, the SDTF, such as the Caatinga, presents
high variability in plant biomass in the annual cycle. Figures 4–6 present the environmental
drivers’ boxplots that may influence the triggers of phenological changes in the Caatinga.
When observing the shape of the graphs of the median behaviour of each environmental
driver, it can be seen that there is a similarity in the water deficit, precipitation, and soil
moisture behaviour. Pearson’s correlation coefficient for the environmental drivers and
time series EVI is presented in Figure 7. Figure 7 only presents the lag (0–3 months)
environmental drivers with the highest Pearson’s correlation. With the application of
Pearson’s correlation, this study allowed for analysis of each environmental driver and
identified their action times on vegetation. These results reinforce the importance of
precipitation as the environmental driver that best reflects plant biomass production in
the Caatinga. Thus, it is the environmental driver that presents the highest coefficient
correlation among all: MSD (r = 0.7258; p < 0.05, lag = 1), SD (r = 0.8267; p < 0.05, lag = 1),
and BP (r = 0.7546; p < 0.05, lag = 1). Subsequently, water deficit and soil moisture had the
highest correlation values. The water deficit’s correlations were: MSD (r = −0.6, p < 0.01,
lag = 0); SD (r = −0.79, p < 0.01, lag = 0); BP (r = −0.69, p < 0.01, lag = 1). Soil moisture
is one of the main environmental triggers of the Caatinga, and in shallow soils, there
is a tendency to saturate and also dry out more quickly, not allowing, in many cases, a
long-term response from the vegetation: MSD (r = 0.52; p < 0.05, lag = 0), SD (r = 0.69;
p < 0.05, lag = 0) and BP (r = 0.52; p < 0.05, lag = 0). Pearson’s correlation coefficient between
the EVI and air temperature time series showed the weakest but most significant correlation.
While MSD and SD presented positive relations between EVI and temperature (r = 0.6;
p < 0.05, lag = 2) and (r = 0.59; p < 0.05, lag = 3), BP (r = −0.56; p < 0.05, lag = 0) showed a
negative association.

Figure 4. Environment drivers for MSD in (A) Water Deficit, (B) Precipitation, (C) Air Temperature,
and (D) Soil moisture.
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Figure 5. Environment drivers for SD in (A) Water Deficit, (B) Precipitation, (C) Air Temperature,
and (D) Soil moisture.

Figure 6. Environment drivers for BP in (A) Water Deficit, (B) Precipitation, (C) Air Temperature,
and (D) Soil moisture.
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Figure 7. Correlation between EVI and environment drivers for MSD, SD, and BP in water deficit
(A–C), precipitation (D–F), air temperature (G–I), and (D) Soil moisture (J–L). The lag months have
the highest (r2) between the environmental drivers and the EVI monthly time series.

In Pearson’s correlation, environmental drivers were analysed one by one. However,
the observed behaviour may not reflect the actual effects on vegetation represented by
the EVI time series. There may be an association of impact between the analysed envi-
ronmental drivers. Partial correlation analysis is a way to solve this problem, allowing
the analysis of multiple variables. The partial correlation analysis between the environ-
mental drivers and EVI is presented in Table 1 with five scenarios. Scenario 1 considers
all environmental drivers to calculate partial correlations, and in the other scenarios, the
effect of one of the drivers is retained. Precipitation and soil moisture always showed a
positive partial correlation. In contrast, the water deficit showed negative correlations,
with r values ranging from −0.25 to −0.62. Only at the BP site, the partial correlation with
temperature was negative. In scenario 1, with all environmental drivers, precipitation
was the environmental driver that presented the highest correlation, with r values ranging
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from 0.48 to 0.51. The other environmental drivers are better perceived when precipitation
is removed from the analysis (scenario 2). In scenario 2, the highest correlations were for
temperature in MSD (0.46), water deficit and soil moisture for SD (0.40), and water deficit
for BP (−0.62). This dependence relationship becomes evident when the drivers with the
highest partial correlation identified in scenario 2 are removed from the analysis. Thus, the
highest values of r for precipitation are seen in scenarios 5, 3, and 4 for MSD, SD, and BP
sites, respectively.

Table 1. Partial correlation coefficients between the EVI and environment drivers across MSD, SD,
and BP sites. Scenario 1 considers all environmental drivers to calculate partial correlations. For
the other scenarios, the effect of one of the variables is removed: scenarios 2 (without precipitation),
3 (without soil moisture), 4 (without water deficit), and 5 (without temperature). “-” indicates that the
environment driver was not used to calculate the partial correlation. Only for statistical significance
(p < 0.05). Missing estimates (NS) are not significant.

Site Scenarios Air Temperature (◦C) Water Deficit (mm) Soil Moisture (mm) Precipitation (mm)

1. MSD

1 0.28 −0.25 NS 0.48
2 0.46 −0.27 0.26 -
3 0.26 −0.34 - 0.52
4 0.34 - 0.26 0.49
5 - −0.32 NS 0.58

2. SD

1 0.09 −0.41 0.11 0.51
2 0.26 −0.40 0.40 -
3 0.06 −0.50 - 0.61
4 0.36 - 0.33 0.51
5 - −0.52 0.08 0.55

3. BP

1 NS −0.29 0.18 0.48
2 NS −0.62 0.16 -
3 −0.14 −0.32 - 0.47
4 −0.28 - 0.23 0.69
5 - −0.39 0.22 0.48

4. Discussion

Compared to the following season, the greater rainfall variability at the beginning
of the wet season may be the primary driver for the interquartile range of the SOS to be
greater than that observed for the EOS and LOS (Figure 3). The higher frequency and
accumulation are the main characteristics of rainfall contributing to the higher AMPL
and LOS values at the BP experimental site. The partial coefficient of air temperature
in the BP experimental site was always lower. In tropical regions, the air temperature
variability is low, with about four degrees of annual amplitude difference from the monthly
normal. However, in the MSD experimental site, there was a greater partial correlation
between air temperature (scenario 2). The climatological water deficit is calculated from
the reference evapotranspiration and precipitation, providing an efficient measure of the
water availability and demand of the environment. Air temperature, directly related to
water vapour-pressure deficit, is one of the climatic factors contributing to the variability of
reference evapotranspiration [62]. The average monthly precipitation is quite variable in
the annual cycle, which has a greater impact on the water deficit.

In the Caatinga, vegetation’s phenology and photosynthetic activity are associated
with water availability [9]. In drier regions such as MSD and SD, intra-annual water
availability is lower, leading to shorter growing season periods. The water stress makes
the environmental conditions (Figures 2 and 3) harsh for leaf maintenance for vegetation.
In contrast, BP with more regular water availability (Figures 2 and 3) shows larger LOS,
which means more water and carbon exchange time at the soil–vegetation–atmosphere
interface [63]. Carbon assimilation was related to EVI at Caatinga by Mendes et al. [64],
demonstrating that the vegetation presents more significant photosynthetic activity and
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productivity (seasonal and total) during high EVI value periods. The vegetation at BP
showed a higher senescence rate than in the other areas. The phenological parameter is
related to leaf loss in the dry season and the maximum use of water availability for its
recovery after the dry period with accelerated regrowth and increased metabolic processes
in the rainy season [65]. These vegetation strategies are adaptive to optimise the phenolog-
ical, vegetative, and reproductive processes [10]. The study areas showed similarities in
the seasonality of phenological parameters, corroborating the high association level with
water availability.

Many studies have shown that rainfall seasonality regulates SDTF canopy seasonality [24,66],
but there is a complex relationship between environmental drivers and the vegetation
response [9,28], mainly for the Caatinga where the plant physiology is adapted to drought
and elevated temperatures [67]. As expected for the Caatinga vegetation, the months
with the highest water deficit have the lowest leaf cover (lowest EVI values), a result
previously found by other studies in the region [7,33,68]. About 70% of the year has a
water deficit [69]. According to Flerchinger et al. [70], about 90% of the rainwater in arid
and semi-arid regions returns to the atmosphere through evapotranspiration. As there is
not such a significant variability in the average air temperature between the tropics, the
annual constancy provides a high evaporative demand from the atmosphere throughout
the year [69], conditioning the water deficit to the seasonal fluctuation of the rainfall, adjust-
ing the Caatinga phenological cycle to the water availability. Phenological transitions are
an excellent indicator of climate change [71], and future scenarios estimate greater water
demand from plants and the occurrence of droughts, providing a more significant water
deficit [72,73], and with that, being able to alter the phenology of the plants. The water
deficit slows down plants’ growth, causes leaves, fruits, and flowers to fall, and, in the short
term, tends to anticipate flowering and the beginning of fruiting, reducing plant cycles. In
contrast, they tend to extend or even prevent the regular completion of the plant cycle [74].

The months with the highest spectral response of vegetation occurred in the rainy
season when rain and soil moisture were predominantly distributed. The peak of the EVI
was preceded by the month of greatest precipitation at SD and MSD. The rain at the BP
experimental site shows a smoother and more regular distribution than in other areas, with
the EVI closely following seasonal fluctuations in precipitation. The ecosystem accumulates
sufficient water reserves in the soil and biomass for both sites under study, resulting in
slower leaf fall during the dry season. The EVI followed the monthly rainfall distributions
linearly, as shown in Figure 4. Likewise, the air temperature is observed after the maximum
peak of the EVI. The air temperature also decreases the vegetation response, resulting in
greater water stress for the research areas. Because of the high diversity of species at the
Caatinga, the studied sites could present plants at different stages of adaptation or with
physiological aspects related to water uptake or leaf abscission. The fact that MSD and SD
present shorter LOS than BP could be related to vegetation strategies to use the water more
efficiently during the available period. The peak of EVI values was higher at MSD and
SD, and this would be related to more biomass production resulting from the water use
efficiency (WUE) of the species composition.

5. Conclusions

This study observed that using the EVI time series efficiently estimated phenological
parameters. The determination of the phenological parameters for 20 years allowed the
evaluation of their seasonality. The seasonality of Caatinga vegetation growth differed
between the three experimental sites. The SOS was the parameter that presented the great-
est variability in the days of the year (DOY), reaching a variation of 117 days. The high
variability of SOS occurred in sites with low variability of EOS and vice versa. The relation-
ship between air temperature and vegetation was insignificant for the two experimental
sites and presented a significant value for the site drier (MSD). At the experimental site
where the highest vegetative peak co-occurred with the low air temperature, the highest
LOS and AMPL were observed. In addition, the values of LOS and AMPL are directly
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linked to the annual distribution of rainfall, and the longer the rainy season, the greater
their values are. The variability of the natural cycles of the environmental drivers that
regulate the ecosystem’s phenology and the influence on the Caatinga’s natural dynamics
indicated a greater sensitivity of the vegetation to water availability, with the water deficit
being the limiting factor of the vegetation. There is a greater need for new research and
studies aiming to reduce the impact of climatic risks by characterising and quantifying
species’ response patterns to likely climate change. There will be changes in phenological
patterns, production, and spatial distribution. Quantifying these impacts and devising
appropriate actions to minimise such adversities represent significant research challenges
in the coming decades.

Author Contributions: Formal analysis, R.M., J.A., M.M., A.M.P.-M. and C.A.C.d.S.; Investigation,
R.M., J.A., M.M. and B.B.d.S.; Methodology, D.R. and J.C.; Software, R.M., J.A. and D.R.; Supervision,
J.C.; Visualization, A.M.P.-M., C.A.C.d.S. and B.B.d.S.; Writing—original draft, R.M., J.A., D.R. and
B.B.d.S.; Writing—review & editing, D.R., M.M., C.A.C.d.S. and J.C. All authors have read and agreed
to the published version of the manuscript.

Funding: The study was financed by the Pró-Reitoria de Pós-Graduação e Pesquisa of the Federal
University of Campina Grande (PRPG-UFCG).

Acknowledgments: The authors thank the Coordenação de Aperfeiçoamento de Pessoal de Nível
Superior-Brazil (CAPES)-Finance Code 001 for the as a Brazilian CAPES scholarship to the first and
second author, the project Nova geração de modelos para estimativas de evapotranspiração para o
Semiárido Brasileiro (CNPq Proc. 409341/2021-5). This work forms part of the project Evolução na
representação do balanço de energia por meio da integração de dados de campo e satélite aplicados a
computação em nuvem para o semiárido brasileiro (FAPESQ under startup grant number #010/2021).
The authors are also grateful to CNPq for the PQ (Productivity and Research) grants to the sixth autor
(Proc. 304493/2019-8).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Pennington, R.T.; Lehmann, C.; Rowland, L.M. Tropical savannas and dry forests. Curr. Biol. 2018, 28, R541–R545. [CrossRef]
[PubMed]

2. Moro, M.F.; Nic Lughadha, E.; de Araújo, F.S.; Martins, F.R. A Phytogeographical Metaanalysis of the Semiarid Caatinga Domain
in Brazil. Bot. Rev. 2016, 82, 91–148. [CrossRef]

3. De Queiroz, L.P.; Cardoso, D.; Fernandes, M.F.; Moro, M.F. Diversity and Evolution of Flowering Plants of the Caatinga Domain.
Caatinga 2017, 23–63. [CrossRef]

4. Fernandes, M.F.; Cardoso, D.; de Queiroz, L.P. An updated plant checklist of the Brazilian Caatinga seasonally dry forests and
woodlands reveals high species richness and endemism. J. Arid Environ. 2020, 174, 104079. [CrossRef]

5. Leith, H. Phenology and Seasonality Modeling. Soil Sci. 1974, 120, 461. [CrossRef]
6. Morisette, J.T.; Richardson, A.D.; Knapp, A.K.; Fisher, J.I.; Graham, E.A.; Abatzoglou, J.; Wilson, B.E.; Breshears, D.D.;

Henebry, G.M.; Hanes, J.M.; et al. Tracking the rhythm of the seasons in the face of global change: Phenological research
in the 21st century. Front. Ecol. Environ. 2009, 7, 253–260. [CrossRef]

7. Machado, I.C.S.; Barros, L.M.; Sampaio, E.V.S.B. Phenology of Caatinga Species at Serra Talhada, PE, Northeastern Brazil.
Biotropica 1997, 29, 57–68. [CrossRef]

8. Alberton, B.; Torres, R.D.S.; Cancian, L.F.; Borges, B.D.; Almeida, J.; Mariano, G.C.; dos Santos, J.; Morellato, P. Introducing
digital cameras to monitor plant phenology in the tropics: Applications for conservation. Perspect. Ecol. Conserv. 2017, 15, 82–90.
[CrossRef]

9. Paloschi, R.; Ramos, D.; Ventura, D.; Souza, R.; Souza, E.; Morellato, L.; Nóbrega, R.; Coutinho, I.A.C.; Verhoef, A.; Körting, T.; et al.
Environmental Drivers of Water Use for Caatinga Woody Plant Species: Combining Remote Sensing Phenology and Sap Flow
Measurements. Remote Sens. 2020, 13, 75. [CrossRef]

10. Vico, G.; Thompson, S.E.; Manzoni, S.; Molini, A.; Albertson, J.D.; Almeida-Cortez, J.S.; Fay, P.A.; Feng, X.; Guswa, A.J.;
Liu, H.; et al. Climatic, ecophysiological, and phenological controls on plant ecohydrological strategies in seasonally dry
ecosystems. Ecohydrology 2015, 8, 660–681. [CrossRef]

11. Riahi, K.; Schaeffer, R.; Arango, J.; Calvin, K.; Guivarch, C.; Hasegawa, T.; Jiang, K.; Kriegler, E.; Matthews, R.; Peters, G.P.; et al.
Mitigation pathways compatible with long-term goals. In IPCC, 2022: Climate Change 2022: Mitigation of Climate Change.
Contribution of Working Group III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Shukla, P.R., Skea, J.,

195



Remote Sens. 2022, 14, 2637

Slade, R., Al Khourdajie, A., van Diemen, R., McCollum, D., Pathak, M., Some, S., Vyas, P., Fradera, R., et al., Eds.; Cambridge
University Press: Cambridge, UK; New York, NY, USA, 2022. [CrossRef]

12. Torres, R.R.; Lapola, D.M.; Gamarra, N.L.R. Future Climate Change in the Caatinga. Caatinga 2017, 383–410. [CrossRef]
13. Marengo, J.A.; Cunha, A.P.M.A.; Nobre, C.A.; Neto, G.G.R.; Magalhaes, A.R.; Torres, R.R.; Sampaio, G.; Alexandre, F.; Alves, L.M.;

Cuartas, L.A.; et al. Assessing drought in the drylands of northeast Brazil under regional warming exceeding 4 ◦C. Nat. Hazards
2020, 103, 2589–2611. [CrossRef]

14. Xu, L.; Myneni, R.; Iii, F.S.C.; Callaghan, T.V.; Pinzon, J.E.; Tucker, C.J.; Zhu, Z.; Bi, J.; Ciais, P.; Tømmervik, H.; et al. Temperature
and vegetation seasonality diminishment over northern lands. Nat. Clim. Chang. 2013, 3, 581–586. [CrossRef]

15. Tong, X.; Tian, F.; Brandt, M.; Liu, Y.; Zhang, W.; Fensholt, R. Trends of land surface phenology derived from passive microwave
and optical remote sensing systems and associated drivers across the dry tropics 1992–2012. Remote Sens. Environ. 2019, 232.
[CrossRef]

16. Brando, P.M.; Goetz, S.J.; Baccini, A.; Nepstad, D.C.; Beck, P.S.A.; Christman, M.C. Seasonal and interannual variability of climate
and vegetation indices across the Amazon. Proc. Natl. Acad. Sci. USA 2010, 107, 14685–14690. [CrossRef]

17. Olmos-Trujillo, E.; González-Trinidad, J.; Júnez-Ferreira, H.; Pacheco-Guerrero, A.; Bautista-Capetillo, C.; Avila-Sandoval, C.;
Galván-Tejada, E. Spatio-Temporal Response of Vegetation Indices to Rainfall and Temperature in A Semiarid Region.
Sustainability 2020, 12, 1939. [CrossRef]

18. Andrade, J.; Cunha, J.; Silva, J.; Rufino, I.; Galvão, C. Evaluating single and multi-date Landsat classifications of land-cover in a
seasonally dry tropical forest. Remote Sens. Appl. Soc. Environ. 2021, 22, 100515. [CrossRef]

19. Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the radiometric and biophysical performance
of the MODIS vegetation indices. Remote Sens. Environ. 2002, 83, 195–213. [CrossRef]

20. Adole, T.; Dash, J.; Atkinson, P. A systematic review of vegetation phenology in Africa. Ecol. Inform. 2016, 34, 117–128. [CrossRef]
21. Suepa, T.; Qi, J.; Lawawirojwong, S.; Messina, J. Understanding spatio-temporal variation of vegetation phenology and rainfall

seasonality in the monsoon Southeast Asia. Environ. Res. 2016, 147, 621–629. [CrossRef]
22. Htitiou, A.; Boudhar, A.; Lebrini, Y.; Hadria, R.; Lionboui, H.; Elmansouri, L.; Tychon, B.; Benabdelouahab, T. The Performance of

Random Forest Classification Based on Phenological Metrics Derived from Sentinel-2 and Landsat 8 to Map Crop Cover in an
Irrigated Semi-arid Region. Remote Sens. Earth Syst. Sci. 2019, 2, 208–224. [CrossRef]

23. Pastor-Guzman, J.; Dash, J.; Atkinson, P. Remote sensing of mangrove forest phenology and its environmental drivers. Remote
Sens. Environ. 2018, 205, 71–84. [CrossRef]

24. De Jesus, J.B.; Kuplich, T.M.; Barreto, D.D.C.; da Rosa, C.N.; Hillebrand, F.L. Temporal and phenological profiles of open and
dense Caatinga using remote sensing: Response to precipitation and its irregularities. J. For. Res. 2021, 32, 1067–1076. [CrossRef]

25. Songsom, V.; Koedsin, W.; Ritchie, R.J.; Huete, A. Mangrove Phenology and Environmental Drivers Derived from Remote Sensing
in Southern Thailand. Remote Sens. 2019, 11, 955. [CrossRef]

26. Wang, G.; Huang, Y.; Wei, Y.; Zhang, W.; Li, T.; Zhang, Q. Inner Mongolian grassland plant phenological changes and their
climatic drivers. Sci. Total Environ. 2019, 683, 1–8. [CrossRef]

27. Huang, J.-G.; Ma, Q.; Rossi, S.; Biondi, F.; Deslauriers, A.; Fonti, P.; Liang, E.; Mäkinen, H.; Oberhuber, W.; Rathgeber, C.B.K.; et al.
Photoperiod and temperature as dominant environmental drivers triggering secondary growth resumption in Northern Hemi-
sphere conifers. Proc. Natl. Acad. Sci. USA 2020, 117, 20645–20652. [CrossRef]

28. Godoy-Veiga, M.; Cintra, B.B.L.; Stríkis, N.M.; Cruz, F.W.; Grohmann, C.H.; Santos, M.S.; Regev, L.; Boaretto, E.; Ceccantini, G.;
Locosselli, G.M. The value of climate responses of individual trees to detect areas of climate-change refugia, a tree-ring study in
the Brazilian seasonally dry tropical forests. For. Ecol. Manag. 2021, 488, 118971. [CrossRef]

29. Whitecross, M.; Witkowski, E.; Archibald, S. No two are the same: Assessing variability in broad-leaved savanna tree phenology,
with watering, from 2012 to 2014 at Nylsvley, South Africa. S. Afr. J. Bot. 2016, 105, 123–132. [CrossRef]

30. Ryan, C.M.; Williams, M.; Grace, J.; Woollen, E.; Lehmann, C.E.R. Pre-rain green-up is ubiquitous across southern tropical Africa:
Implications for temporal niche separation and model representation. New Phytol. 2016, 213, 625–633. [CrossRef]

31. Sampaio, E.V. Overview of the Brazilian caatinga. Seas. Dry Trop. For. 1995, 1, 35–63. [CrossRef]
32. Gutiérrez, A.P.A.; Engle, N.L.; De Nys, E.; Molejón, C.; Martins, E.S. Drought preparedness in Brazil. Weather Clim. Extremes 2014,

3, 95–106. [CrossRef]
33. Alberton, B.; Torres, R.D.S.; Silva, T.S.F.; da Rocha, H.R.; Moura, M.S.B.; Morellato, L.P.C. Leafing Patterns and Drivers across

Seasonally Dry Tropical Communities. Remote Sens. 2019, 11, 2267. [CrossRef]
34. Alvares, C.A.; Stape, J.L.; Sentelhas, P.C.; Moraes, G.J.L.; Sparovek, G. Köppen’s climate classification map for Brazil. Meteorol. Z.

2013, 22, 711–728. [CrossRef]
35. Sampaio, E.V.S.B. Características e potencialidades. In Uso Sustentável e Conservação dos Recursos Florestais da Caatinga;

Gariglio, M.A., Sampaio, E.V.S.B., Cestaro, L.A., Kageyama, P.Y., Eds.; Serviço Florestal Brasileiro: Brasília, Brazil, 2010; pp. 29–48.
36. Prado, D. As caatingas da América do Sul. In Ecologia e Conservação da Caatinga; Leal, I.R., Tabarelli, M., Silva, J.M.C., Eds.;

Universitária da UFPE: Recife, Brazil, 2003; pp. 3–73.
37. Nimer, E. Climatologia da região Nordeste do Brasil. Introdução à climatologia dinâmica. Rev. Bras. Geogr. 1972, 34, 3–51.
38. Velloso, A.L.; Sampaio, E.V.S.B.; Giulietti, A.M.; Barbosa, M.R.V.; Castri, A.A.J.F.; Queiroz, L.P.; Fernandes, A.; Oren, D.C.;

Cestaro, L.A.; Carvalho, A.J.E.; et al. Ecorregiões: Propostas para o Bioma Caatinga. In Associação Plantas do Nordeste; The Nature
Conservancy do Brasil: Recife, Brazil, 2002; p. 75.

196



Remote Sens. 2022, 14, 2637

39. Souza, R.; Feng, X.; Antonino, A.; Montenegro, S.; Souza, E.; Porporato, A. Vegetation response to rainfall seasonality and
interannual variability in tropical dry forests. Hydrol. Process. 2016, 30, 3583–3595. [CrossRef]

40. Kill, L.H.P. Caracterização da vegetação da Reserva Legal da Embrapa Semiárido. Embrapa Semiárido Pet. 2017, 1, 1–27.
41. Tavares-Damasceno, J.P.; Silveira, J.L.G.D.S.; Câmara, T.; Stedile, P.D.C.; Macario, P.; Toledo-Lima, G.S.; Pichorim, M. Effect of

drought on demography of Pileated Finch (Coryphospingus pileatus: Thraupidae) in northeastern Brazil. J. Arid Environ. 2017,
147, 63–70. [CrossRef]

42. Althoff, T.D.; Menezes, R.; de Carvalho, A.L.; Pinto, A.D.S.; Santiago, G.A.C.F.; Ometto, J.; Von Randow, C.; Sampaio, E.V.D.S.B.
Climate change impacts on the sustainability of the firewood harvest and vegetation and soil carbon stocks in a tropical dry forest
in Santa Teresinha Municipality, Northeast Brazil. For. Ecol. Manag. 2016, 360, 367–375. [CrossRef]

43. Cunha, J.E.B.L.; Rufino, I.A.A.; Ideião, S.M.A. Determinação da temperatura da superfície na cidade de Campina Grande-PB a
partir de imagens do satélite Landsat 5-TM. In Anais XIV Simpósio Brasileiro de Sensoriamento Remoto; INPE: Natal, Brazil, 2009.

44. INMET, National Institute of Meteorology of Brazil, 2021. Available online: https://bdmep.inmet.gov.br/# (accessed on
1 October 2021).

45. Embrapa, Empresa Brasileira de Pesquisa Aagropecuária. Centro Nacional de Pesquisa de Solos. Sistema Brasileiro de Classificação
de Solo, 2nd ed.; Embrapa Solos: Rio de Janeiro, Brazil, 2006.

46. Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial
analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [CrossRef]

47. Guerschman, J.P.; Scarth, P.F.; McVicar, T.R.; Renzullo, L.J.; Malthus, T.J.; Stewart, J.B.; Rickards, J.E.; Trevithick, R. Assessing the
effects of site heterogeneity and soil properties when unmixing photosynthetic vegetation, non-photosynthetic vegetation and
bare soil fractions from Landsat and MODIS data. Remote Sens. Environ. 2015, 161, 12–26. [CrossRef]

48. Abatzoglou, J.T.; Dobrowski, S.; Parks, S.A.; Hegewisch, K.C. TerraClimate, a high-resolution global dataset of monthly climate
and climatic water balance from 1958–2015. Sci. Data 2018, 5, 170191. [CrossRef] [PubMed]

49. Funk, C.; Peterson, P.; Landsfeld, M.; Pedreros, D.; Verdin, J.; Shukla, S.; Husak, G.; Rowland, J.; Harrison, L.; Hoell, A.; et al.
The climate hazards infrared precipitation with stations—A new environmental record for monitoring extremes. Sci. Data 2015,
2, 150066. [CrossRef] [PubMed]

50. Jönsson, P.; Eklundh, L. TIMESAT—A program for analyzing time-series of satellite sensor data. Comput. Geosci. 2004, 30, 833–845.
[CrossRef]

51. Jönsson, P.; Eklundh, L. TIMESAT 3.1—Software Manual; Lund University: Lund, Sweden, 2012; p. 82. Available online:
http://web.nateko.lu.se/timesat/timesat.asp (accessed on 1 May 2021).

52. Savitzky, A.; Golay, M.J.E. Smoothing and Differentiation of Data by Simplified Least Squares Procedures. Anal. Chem. 1964,
36, 1627–1639. [CrossRef]

53. Kong, F.; Li, X.; Wang, H.; Xie, D.; Li, X.; Bai, Y. Land Cover Classification Based on Fused Data from GF-1 and MODIS NDVI
Time Series. Remote Sens. 2016, 8, 741. [CrossRef]

54. Streher, A.S.; Sobreiro, J.F.F.; Morellato, P.; Silva, T. Land Surface Phenology in the Tropics: The Role of Climate and Topography
in a Snow-Free Mountain. Ecosystems 2017, 20, 1436–1453. [CrossRef]

55. Diem, P.K.; Pimple, U.; Sitthi, A.; Varnakovida, P.; Tanaka, K.; Pungkul, S.; Leadprathom, K.; LeClerc, M.Y.; Chidthaisong, A.
Shifts in Growing Season of Tropical Deciduous Forests as Driven by El Niño and La Niña during 2001–2016. Forests 2018, 9, 448.
[CrossRef]

56. Wang, Y.; Zang, S.; Tian, Y. Mapping paddy rice with the random forest algorithm using MODIS and SMAP time series. Chaos
Solitons Fractals 2020, 140. [CrossRef]

57. Ramírez-Cuesta, J.; Minacapilli, M.; Motisi, A.; Consoli, S.; Intrigliolo, D.; Vanella, D. Characterization of the main land processes
occurring in Europe (2000–2018) through a MODIS NDVI seasonal parameter-based procedure. Sci. Total Environ. 2021,
799, 149346. [CrossRef]

58. Doussoulin-Guzmán, M.-A.; Pérez-Porras, F.-J.; Triviño-Tarradas, P.; Ríos-Mesa, A.-F.; Porras, A.G.-F.; Mesas-Carrascosa, F.-J.
Grassland Phenology Response to Climate Conditions in Biobio, Chile from 2001 to 2020. Remote Sens. 2022, 14, 475. [CrossRef]

59. Conover, W.J.; Johnson, M.E.; Johnson, M.M. A Comparative Study of Tests for Homogeneity of Variances, with Applications to
the Outer Continental Shelf Bidding Data. Technometrics 1981, 23, 351–361. [CrossRef]

60. Zhu, W.; Zheng, Z.; Jiang, N.; Zhang, D. A comparative analysis of the spatio-temporal variation in the phenologies of two
herbaceous species and associated climatic driving factors on the Tibetan Plateau. Agric. For. Meteorol. 2018, 248, 177–184.
[CrossRef]

61. R Development Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing:
Vienna, Austria, 2019; Available online: https://www.r-project.org (accessed on 20 February 2019).

62. De Souza, L.S.B.; Silva, M.T.L.; Alba, E.; de Moura, M.S.B.; Neto, J.F.D.C.; de Souza, C.A.A.; da Silva, T.G.F. New method for
estimating reference evapotranspiration and comparison with alternative methods in a fruit-producing hub in the semi-arid
region of Brazil. Arch. Meteorol. Geophys. Bioclimatol. Ser. B 2022, 1–10. [CrossRef]

63. Dos Santos, C.A.C.; Mariano, D.A.; Nascimento, F.D.C.A.D.; Dantas, F.R.D.C.; de Oliveira, G.; Silva, M.T.; da Silva, L.L.;
da Silva, B.B.; Bezerra, B.G.; Safa, B.; et al. Spatio-temporal patterns of energy exchange and evapotranspiration during an intense
drought for drylands in Brazil. Int. J. Appl. earth Obs. Geoinf. ITC J. 2019, 85, 101982. [CrossRef]

197



Remote Sens. 2022, 14, 2637

64. Mendes, K.R.; Campos, S.; Da Silva, L.L.; Mutti, P.R.; Ferreira, R.R.; Medeiros, S.S.; Perez-Marin, A.M.; Marques, T.V.; Ramos, T.M.;
Vieira, M.M.D.L.; et al. Seasonal variation in net ecosystem CO2 exchange of a Brazilian seasonally dry tropical forest. Sci. Rep.
2020, 10, 1–16. [CrossRef] [PubMed]

65. Bezerra, M.V.C.; Da Silva, B.B.; Bezerra, B.G. Avaliação dos efeitos atmosféricos no albedo e NDVI obtidos com imagens de
satélite. Rev. Bras. Eng. Agrícola Ambient. 2011, 15, 709–717. [CrossRef]

66. Allen, K.; Dupuy, J.M.; Gei, M.G.; Hulshof, C.; Medvigy, D.; Pizano, C.; Salgado-Negret, B.; Smith, C.M.; Trierweiler, A.; Van
Bloem, S.J.; et al. Will seasonally dry tropical forests be sensitive or resistant to future changes in rainfall regimes? Environ. Res.
Lett. 2017, 12, 023001. [CrossRef]

67. Trovão, D.M.D.B.M.; Fernandes, P.D.; De Andrade, L.A.; Neto, J.D. Variações sazonais de aspectos fisiológicos de espécies da
Caatinga. Rev. Bras. Eng. Agrícola Ambient. 2007, 11, 307–311. [CrossRef]

68. Miranda, R.D.Q.; Nóbrega, R.L.B.; de Moura, M.S.B.; Raghavan, S.; Galvíncio, J.D. Realistic and simplified models of plant and
leaf area indices for a seasonally dry tropical forest. Int. J. Appl. Earth Obs. Geoinf. ITC J. 2020, 85, 101992. [CrossRef]

69. Marengo, J.A.; Torres, R.R.; Alves, L.M. Drought in Northeast Brazil—past, present, and future. Theor. Appl. Climatol. 2016,
129, 1189–1200. [CrossRef]

70. Flerchinger, G.N.; Hanson, C.L.; Wight, J.R. Modeling Evapotranspiration and Surface Energy Budgets across a Watershed. Water
Resour. Res. 1996, 32, 2539–2548. [CrossRef]

71. Langvall, O.; Löfvenius, M.O. Long-term standardized forest phenology in Sweden: A climate change indicator. Int. J. Biometeorol.
2021, 65, 381–391. [CrossRef] [PubMed]

72. Marin, F.R.; Assad, E.D.; Barbarisi, B.F.; Pilau, F.G.; Pacheco, L.R.F.; Zullo, J.J.; Pinto, H.S. Efeito das mudanças climáticas sobre
a aptidão climática para cana-de-açúcar no Estado de São Paulo. In Congresso Brasileiro de Agrometeorologia; Embrapa/SBAgro:
Aracaju, Brazil, 2007; Volume 15.

73. Nepomuceno, A.L.; Farias, J.R.B.; Salinet, L.H.; Polizel, A.M.; Neumaier, N.; Beneventi, M.A.; Stolf, R.; Rolla, A.A.P. Engen-
haria genética como ferramenta no desenvolvimento de plantas de soja adaptadas a cenários futuros de mudanças climáticas.
In Congresso Brasileiro de Agrometeorologia; Embrapa/SBAgro: Aracaju, Brazil, 2007.

74. Bergamaschi, H. O clima como fator determinante da fenologia das plantas. In Fenologia: Ferramenta para Conservação, Melhoramento
e Manejo de Recursos Vegetais Arbóreos; Embrapa Florestas: Colombo, Brazil, 2007; Volume 1, pp. 291–310.

198



Citation: Wang, C.; Wu, Y.; Hu, Q.;

Hu, J.; Chen, Y.; Lin, S.; Xie, Q.

Comparison of Vegetation Phenology

Derived from Solar-Induced

Chlorophyll Fluorescence and

Enhanced Vegetation Index, and

Their Relationship with Climatic

Limitations. Remote Sens. 2022, 14,

3018. https://doi.org/10.3390/

rs14133018

Academic Editor: Sofia Bajocco

Received: 26 April 2022

Accepted: 20 June 2022

Published: 23 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing 

Communication

Comparison of Vegetation Phenology Derived from
Solar-Induced Chlorophyll Fluorescence and Enhanced
Vegetation Index, and Their Relationship with
Climatic Limitations

Cong Wang 1, Yijin Wu 1, Qiong Hu 1,*, Jie Hu 2, Yunping Chen 2, Shangrong Lin 3 and Qiaoyun Xie 4

1 Key Laboratory for Geographical Process Analysis & Simulation of Hubei Province & School of Urban and
Environmental Sciences, Central China Normal University, Wuhan 430079, China;
wangcong@ccnu.edu.cn (C.W.); wuyijin@ccnu.edu.cn (Y.W.)

2 Macro Agriculture Research Institute, College of Plant Science and Technology, Huazhong Agricultural
University, Wuhan 430070, China; hu_jie@webmail.hzau.edu.cn (J.H.);
yunping.chen@webmail.hzau.edu.cn (Y.C.)

3 Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Atmospheric Sciences,
Sun Yat-sen University, Zhuhai 519082, China; linsr@radi.ac.cn

4 School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia;
qiaoyun.xie@uts.edu.au

* Correspondence: huqiong@ccnu.edu.cn

Abstract: Satellite-based vegetation datasets enable vegetation phenology detection at large scales,
among which Solar-Induced Chlorophyll Fluorescence (SIF) and Enhanced Vegetation Index (EVI)
are widely used proxies for detecting phenology from photosynthesis and greenness perspectives,
respectively. Recent studies have revealed the divergent performances of SIF and EVI for estimating
different phenology metrics, i.e., the start of season (SOS) and the end of season (EOS); however, the
underlying mechanisms are unclear. In this study, we compared the SOS and EOS of natural ecosys-
tems derived from SIF and EVI in China and explored the underlying mechanisms by investigating
the relationships between the differences of phenology derived from SIF and EVI and climatic limiting
factors (i.e., temperature, water and radiation). The results showed that the differences between
phenology generated using SIF and EVI were diverse in space, which had a close relationship with
climatic limitations. The increasing climatic limitation index could result in larger differences in
phenology from SIF and EVI for each dominant climate-limited area. The phenology extracted using
SIF was more correlated with climatic limiting factors than that using EVI, especially in water-limited
areas, making it the main cause of the difference in phenology from SIF and EVI. These findings high-
light the impact of climatic limitation on the differences of phenology from SIF and EVI and improve
our understanding of land surface phenology from greenness and photosynthesis perspectives.

Keywords: vegetation phenology; climatic limitation; solar-induced chlorophyll fluorescence;
enhanced vegetation index

1. Introduction

Vegetation phenology is the study of the timing of recurring biological events of
plants and their interactions among periodic changes in the natural environment [1]. It
indicates the response and adaptation of vegetation ecosystems to seasonal and interannual
environmental change [2,3]. Since the industrial revolution, climate change (e.g., global
warming) induced by human activities has had a profound impact on vegetation phenology;
at the same time, changes in vegetation phenology have been regarded as a sensitive
indicator of climate change and the carbon cycle [4]. Information on vegetation phenology is
playing an increasingly important role in global change monitoring, ecological environment
simulation and climate change response [2,4].
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Remote sensing provides a useful approach to characterizing seasonal and interannual
changes in land surface vegetation from regional to global scales [5–7]. Land surface phe-
nology is mainly extracted based on satellite vegetation datasets using the key phenological
metrics, i.e., the start of season (SOS) and the end of season (EOS) [8], to characterize
the timing of vegetation dynamics during the growing season. Vegetation indices (VIs),
calculated from land surface reflectance, are widely used to extract land surface phenology
and analyze its response to climate change in various studies from the leaf and canopy
greenness perspective. For example, the global land surface phenology product MCD12Q2
was generated by Zhang et al. [6,8] using the EVI (Enhanced Vegetation Index) time series,
which is the only global land surface phenology product available in recent years. How-
ever, as VIs are not capable of providing us with a direct proxy of physiological processes,
they cannot be perfectly applied to modeling frameworks [9]. In this case, some studies
have explored the potential of vegetation phenology extraction from an photosynthetic
perspective. Solar-induced chlorophyll fluorescence (SIF), as a new physiological proxy
for photosynthesis activity [10], presenting a weak signal emitted by green plants during
photosynthesis [11–14]. Compared to traditional VIs, SIF provides a direct indicator for
monitoring vegetation physiological functioning [15,16], and has a close relationship with
carbon uptake of vegetation. Some studies have indicated that satellite-based SIF observa-
tions are highly correlated with in situ Gross Primary Productivity (GPP) over flux towers,
and thus have the potential to reveal GPP dynamics under environmental changes over a
large scale [15,17].

Some studies have reported that phenology derived from SIF and EVI were different
across various vegetation types [18,19], such as coniferous forests, deciduous forests, grass-
lands and croplands [15–17,20,21]. For example, Wang et al. [14] revealed that EVI-based
EOS could be later than SIF-based EOS for more than two weeks in grasslands in Australia,
and such differences would be larger when plants are stressed with decreasing soil mois-
ture. Moreover, for different phenological metrics, i.e., SOS and EOS, SIF and EVI also
performed differently. For example, Walther et al. [15] indicated that the EVI-based SOS of
boreal evergreen coniferous forest was much later (about a month) than the SIF-based SOS,
but the EVI-based EOS was slightly advanced (about 1 to 2 weeks) to the SIF-based EOS.
Although some studies have revealed differences in phenology derived from SIF and EVI
among land cover types, the driving factors and underlying mechanisms are less known.

Except for croplands, which could be largely affected by human activities, the dynam-
ics of land surface phenology are driven by the physical characteristics of the vegetation
itself and the external climate environment [22]. The external climate factors that affect
vegetation phenology mainly include temperature, precipitation and radiation, which
interact to promote or limit natural vegetation growth [23,24]. For example, Ma et al. [25]
revealed that 80% of EVI-based phenology dynamics in dryland ecosystems are driven by
the variability of annual precipitation. In contrast, recent studies have indicated that SIF
has quicker responses to external environmental stress information (e.g., water stress) than
EVI did [26,27], as SIF contains additional information on stress conditions that reflects
fluorescence efficiency [11]. However, climate controls on EVI-based phenology (greenness)
and SIF-based phenology (photosynthesis) have not been compared, and a comprehensive
analysis across different climatic conditions is still scarce.

In this study, we defined the climatic limiting controls on vegetation growth as climatic
limitations, which include temperature-limiting, water-limiting, and radiation-limiting
factors. We focus on naturally vegetated areas in China and divide them into climate-
limited areas (i.e., temperature, water, and radiation limitations). We then employed SIF
and EVI to extract phenology from photosynthesis and greenness perspectives, respectively,
and compared their characteristics across climate-limited areas. We further explored the
underlying mechanisms by investigating the relationships between the differences in
phenology derived from SIF and EVI and climatic limiting factors. This work can provide
insights into the mechanistic differences between SIF and EVI in characterizing land surface
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phenology to improve our understanding of vegetation dynamics from greenness and
photosynthesis perspectives and their interactions with climate conditions.

2. Materials and Methods

2.1. Data Sources and Reprocessing
2.1.1. SIF Datasets

The GOSIF (Global OCO-2 SIF) is a reconstructed SIF product based on Orbiting
Carbon Observatory-2 (OCO-2) observations, Moderate Resolution Imaging Spectrora-
diometer (MODIS) vegetation data, and meteorological reanalysis data. The GOSIF
datasets from 2003 to 2016 were downloaded from http://globalecology.unh.edu/ (ac-
cessed on 10 February 2021), which were globally spatio-temporal continuous at 0.05◦
and 8-day resolution derived with a machine learning algorithm trained with OCO-2
SIF [28]. The datasets had a good performance validated by original SIF observations
(RMSE = 0.07 W m−2 μm−1 sr−1) and also showed a good correlation with the in-situ GPP
over flux sites (R2 = 0.73, p < 0.001) [28].

2.1.2. EVI Datasets

The MODIS Terra/Aqua Vegetation Indices (MOD13C1/MYD13C1, V006) were com-
bined to generate EVI time series from 2003 to 2016 at 8-day interval and 0.05◦ spatial
resolution, which were available at https://ladsweb.modaps.eosdis.nasa.gov/ (accessed
on 15 March 2021). Global MOD13C1 and MYD13C1 are cloud-free spatial composites of
MOD13A2 and MYD13A2 at 16-day intervals and 1 km spatial resolutions, respectively.

2.1.3. Land Cover Map

We utilized the global land cover product (GLC), freely available at http://data.ess.
tsinghua.edu.cn/index.html (accessed on 22 September 2021) to map the natural vegetated
areas and mask croplands that are vulnerable to human interference [29]. This product
consists of 17 land cover types, among which the developed land types and non-vegetated
land types were masked to generate natural vegetated areas. The accuracy for 2010, 2015
and 2020 are 86.39% ± 9.05%, 86.44% ± 8.99% and 84.83% ± 10.19%, respectively [29]. We
aggregated the original land cover dataset from 2015 to 0.05◦ to match the spatial resolution
of the SIF and EVI datasets in this study.

2.1.4. Meteorological Datasets

The reanalysis meteorological datasets from 2003 to 2016 were obtained from the
ERA-Interim global reanalysis data (https://apps.ecmwf.int/datasets/data/interim-full-
daily/levtype=sfc/, accessed on 13 December 2020). Here, we selected 2 m temperature,
total precipitation and photosynthetically active radiation (PAR) from ERA-5. All of these
variables were obtained from the surface-level fields of this reanalysis at 0.125◦ for a
daily interval. The potential evapotranspiration (PET) was downloaded from the gridded
Climatic Research Unit (CRU) datasets (https://catalogue.ceda.ac.uk/uuid/10d3e3640f004
c578403419aac167d82, accessed on 27 January 2021). The original climate datasets from 2003
to 2016 were aggregated to a monthly time scale at a 0.05◦ spatial resolution to calculate
climatic limitation indices.

2.2. Methods
2.2.1. Phenology Extraction

Due to cloud, atmosphere and snow contamination, we used Savitzky–Golay filtering
to smooth the time series of GOSIF and MODIS EVI. Then, a double logistic function was
fitted based on the smoothed time series to generate continuous curves. The double logistic
is a flexible model for monitoring seasonal and inter-annual land surface dynamics based
on satellite data, which has been widely used for various vegetation types at global or
regional scales [30,31]. The double logistic function can be written as follows:
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V(t) = Vmin + (Vmax − Vmin)× (
1

1 + e−mS×(t−S)
+

1
1 + emA×(t−A)

− 1) (1)

where V(t) is the value of vegetation proxies (i.e., GOSIF or MODIS EVI) at day of the
year (DOY) t, Vmax is the maximum vegetation proxies in the year, Vmin is the minimum
vegetation proxies in the year, mS and mA are the maximum slope of the curve in green up
and in senescence, respectively, S and A are their corresponding DOYs. Finally, the SOS
and EOS were estimated as follows [32]:

SOS =
2 ln(

√
3 −√

2)
mS

+ S (2)

EOS =
2 ln(

√
3 −√

2)
mA

+ A (3)

2.2.2. Determination of Climate-Limited Area

We used long-term monthly average climate data to develop scaling factors (0–1) (refer
to the climatic limitation index) [24]. The temperature limitation index, radiation limitation
index and water limitation index were calculated using the criteria proposed by Nemani
et al. [24] as follows:

iT =

⎧⎨
⎩

1 − Tmin−TMmin
TMmax−TMmin

, TMmin < Tmin < TMmax

1, Tmin < TMmin
0, Tmin > TMmax

(4)

where iT is the temperature limitation index, Tmin is the daily minimum temperature,
TMmin and TMmax are the thresholds of the daily minimum temperature, which were set as
−5 ◦C and 5 ◦C in this study, respectively.

iR =

⎧⎨
⎩

1 − Rmean−RMmin
RMmax−RMmin

, RMmin < Rmean < RMmax

1, Rmean < RMmin
0, Rmean > RMmax

(5)

where iR is the radiation limitation index, Rmean is the daily mean PAR, RMmin and RMmax
are the thresholds of the daily mean PAR, which were set as 75 W and 150 W, respectively.
In addition, we used the ratio of precipitation to potential evapotranspiration (P/PET) as
an indicator of water-limited conditions, as below:

iW =

{
1 − P

0.75∗PET , P
PET < 0.75

0, P
PET ≥ 0.75

(6)

The spatial patterns of the three climatic limitation indices are shown in Figure 1a.
For classification, we define the pixels as the dominant temperature-limited area if: (1)
iT is higher than iR and iW, and (2) iT is larger than 0.25. Radiation-limited areas and
water-limited areas were determined by the same criteria. We determined the pixels as
having no climatic limitation where iT, iR and iW are all lower than 0.25 (Figure 1b).
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Figure 1. Spatial pattern of climatic limitations in China (a) and dominant climatic limitations (b).

2.2.3. Relationship of Phenology Derived from SIF and EVI and Climatic Limitations

We randomly sampled 5000 pixels for each climate-limited area and adopted linear
correlation regression analysis to explore the relationship between phenology generated
using SIF and EVI and the dominant climatic limiting factors. Furthermore, we adopted the
C-index proposed by Garonna et al. [33] to quantify the relative contributions of phenology
derived from SIF and EVI to their differences with climatic limitation indices [34], which
were calculated as follows:

C =
|SSIF|−|SEVI|
|SSIF|+|SEVI| (7)

where SSIF or SEVI is the gradient (i.e., slope) of linear regression relationships between
SOS/EOS generated using SIF or EVI and climatic limitation indices. As the C-index is
unitless, ranging from −1 to 1, the contribution ratio based on the C-index (Cr) can be
calculated as Equation (8). If the Cr of phenology from SIF or EVI is larger than 50%, this
means that this factor is mostly attributable to the difference of phenology between SIF and
EVI under climatic limitations.

Cr =
1 + C

2
× 100% (8)

3. Results

In general, the multi-year average phenology of natural vegetation from SIF and EVI
has consistent spatial patterns in China, with a delaying pattern in SOS and an advanced
pattern in EOS from southeast to northwest (Figure 2a–d), which is consistent with previous
studies reported by Wang et al. [35]. Furthermore, we found substantial differences between
the SIF and the EVI in the derived phenological metrics (Figure 2e,f). Specifically, the SOS
derived from SIF is generally later than that from EVI, which accounts for 70% of the total
natural vegetated area, except for those areas of evergreen forest in the south. The EOS
from SIF is generally earlier than that from EVI, accounting for 87% of the total natural
vegetated area.

Then, the differences in phenology derived from SIF and EVI were presented sta-
tistically across different climate-limited areas (Figure 3). We found that the differences
in SOS generated using SIF and EVI (here denoted as ΔSOS) mainly ranged from 0 to
20 days (Figure 3a), while the differences in EOS generated using SIF and EVI (here de-
noted asΔEOS) mainly distributed between −30 and −10 days (Figure 3b). This indicates
that the difference in EOS generated using SIF and EVI is generally larger than that gener-
ated using SOS. For both SOS and EOS, the largest difference of phenology from SIF and
EVI (i.e., ΔSOS > 30 days or ΔEOS < −30 days) occurred in temperature-limited areas and
water-limited areas, while the difference of phenology from SIF and EVI at no climatic
limitations was the smallest.
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Figure 2. The spatial pattern of multi-year average phenology of natural vegetation from SIF (a,c)
and EVI (b,d) and their differences, i.e., SOS/EOS derived from SIF subtracted by that derived from
EVI (e,f).

Figure 3. The differences in SOS (a) or EOS (b) derived from SIF and EVI among different climatic
limitation areas.

As shown in Figure 4, we found that increasing the climatic limitation index could
result in larger differences in SOS and EOS from SIF and EVI for each dominant climatic
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limitation area. This finding could explain why the difference in phenology derived from
SIF and EVI with no climatic limitations is the smallest in Figure 3. In terms of different
climatic limitations, we found that the slope of linear regression of ΔSOS or ΔEOS to
water-limitation index was the highest, followed by temperature-limitation index, and
then radiation-limitation index, which might be a consequence of divergent responses of
SIF and EVI to different climatic or environmental constraints. In addition, the climatic
limitation indices were more correlated with ΔSOS than with ΔEOS. A likely cause is
that autumn phenology is more complex than spring phenology, as it may be affected by
multiple climatic factors, thus weakening the relationship between one dominant climatic
limitation index and ΔEOS.

Figure 4. Scatterplot of differences of SOS (first row) and EOS (second row) derived from SIF and
EVI versus climatic limitation index at temperature-dominant area (a,d), water-dominant area (b,e)
and radiation-dominant area (c,f). The black line shows the linear regression between phenology
from SIF or EVI and climatic limitation indices; r is the correlation coefficient of the linear regression.

Table 1 quantified the relative contributions of phenology from SIF and EVI to ΔSOS
and ΔEOS under the dominant climatic limitation areas. We found that the phenology
extracted using SIF was more correlated with temperature, water and radiation limiting
factors than that using EVI, making it the main cause of the difference of phenology from
SIF and EVI. Especially in water-limited areas, the contributions of phenology from SIF to
ΔSOS or ΔEOS is much larger than those from EVI (SOS: 90.00% vs. 10.00%, EOS: 80.00%
vs. 20.00%), as phenology derived from EVI had a low correlation with the water limitation
index. These different responses of SIF and EVI to the water limitation index attributed to
the differences in phenology from SIF and EVI in the water-limited area, which was also
shown in Figure 4.
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Table 1. The relationships between phenology from SIF or EVI and climatic limitation indices. s:
slope of the linear regression between phenology from SIF or EVI and climatic limitation indices. r:
correlation coefficient of the linear regression. Cr: contribution ratio of phenology from SIF or EVI to
the difference of phenology derived from SIF and EVI under climatic limitations.

Parameters

SOS EOS

SIF EVI SIF EVI

s r Cr s r Cr s r Cr s r Cr

Temperature-limitation 150.23 0.73 62.00% 92.55 0.62 38.00% −67.31 −0.57 68.50% −31.07 −0.26 31.50%
Water-limitation 97.10 0.55 90.00% 10.62 0.07 10.00% −70.82 −0.54 80.00% −17.52 0.14 20.00%

Radiation-limitation 197.98 0.87 53.65% 166.89 0.80 46.35% −183.13 −0.90 49.35% −191.74 −0.88 50.65%

4. Discussion

In this study, we analyzed the characteristics of phenology derived from SIF and EVI
for natural vegetated areas in China and found substantial differences between SOS/EOS
generated using SIF and EVI. Specifically, the SOS derived from SIF was generally later
than that derived from EVI, which was the case in 70% of the total natural vegetated
area in China. We found this occurred in climatic limiting areas, where deciduous forests,
mixed forests and grasslands were mainly distributed. Those vegetation types initiate
photosynthesis after green leaves emerge in spring [17,20]; thus, photosynthesis phenology
tends to be later than greenness phenology for SOS, which explains our results. In those
areas covered by evergreen forests in the south with no distinct climatic limitations, the SOS
derived from SIF was slightly earlier than that from EVI. A higher PAR supply in humid
areas would stimulate photosynthesis more quickly, leading to photosynthesis starting
earlier than greenness in spring for evergreen forests [15,19,36]. The EOS from SIF was
generally earlier than that from EVI, which is consistent with previous studies [15,17,19],
implying seasonal hysteresis of EVI in response to photoperiod changes in the period of
senescence [15,17].

Furthermore, we revealed that the differences between phenology generated using SIF
and EVI were diverse in SOS and EOS. We found that the difference in EOS generated using
SIF and EVI was generally larger than that generated using SOS. Possible reasons include
the following: (a) The autumn phenology extracted from satellite VIs had higher uncertainty
(and perhaps bias) relative to spring phenology [37]. For example, Lu et al. [20] presented
that EVI could hardly predict the autumn phenology of deciduous forests accurately with
an overall R2 less than 0.3, while the R2 of spring phenology was generally higher than
0.7. (b) Seasonal decoupling of physiological status and greenness information occurred in
autumn. Specifically, SOS derived from SIF and EVI occur relatively synchronously, but
they become increasingly asynchronous as the growing season progresses [38], leading to
larger differences in EOS generated using SIF and EVI than that in SOS.

We further inferred that the differences between SIF-based phenology and EVI-based
phenology in space have a close relationship with their different responses to climatic
limitations. In contrast to information about green biomass proxied by EVI, SIF contains
information on the absorbed photosynthetically active radiation by vegetation (APAR)
and environmental stresses (especially water stress) related to photosynthetic light-use
efficiency (LUE) [10]. Therefore, SIF is more sensitive to climate variability than EVI [39,40].
This is consistent with our finding that phenology from SIF was more correlated with
climatic limitations than that from EVI, making it the main cause of the difference between
phenology generated using SIF and EVI. Under these divergent responses to climatic
limitations, the differences in SOS and EOS from SIF and EVI become larger, along with a
higher climatic limitation index. However, in the radiation-limited area, a higher radiation
limitation index did not contribute to a larger difference in EOS derived from SIF and EVI.
This happened as EOS derived from SIF and EVI had similar regression slopes with the
radiation limitation index, suggesting that autumn phenology is more radiation-limited
than spring phenology from both greenness and photosynthesis perspectives [41]. In
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addition, the radiation-limiting area in this study was distributed in northern China, where
snow cover existed in autumn and winter, which may introduce the undesired errors of
EOS extracting from reflectance-based EVI [42].

Although the GOSIF product was generated using remote sensing data from the
MODIS and meteorological reanalysis data as inputs to the predictive SIF model, which
may increase the correlation of SIF and climatic factors in a time series, this correlation from
data sources will be offset in the spatial statistics adopted in this study. In addition, we
employed SIF and EVI to extract phenology from photosynthesis and greenness perspec-
tives, respectively. Other proxies, such as Chlorophyll/Carotenoid Index [43], Normalized
Difference Vegetation Index, can be further analyzed in future studies to investigate the
unique characteristics of each proxy on remote sensing derived phenology. The relation-
ship between vegetation phenology and multiple climatic factors instead of one dominant
climatic limitation index needs to be analyzed further to explore whether and how the
impacts of climatic interactions on vegetation dynamics. Moreover, we focused on natural
vegetated areas in China as a target, as it provides a natural laboratory with a wide variation
of ecosystems and climate types. Further research could be expanded to the hemisphere or
global scale to evaluate our findings.

5. Conclusions

This study revealed a substantial difference between phenology extracted using
satellite-derived SIF and EVI data across areas limited by different climatic factors (temper-
ature, radiance, water). We inferred that the differences between SIF-based phenology and
EVI-based phenology have a close relationship with their different responses to climate
limitations. The higher climatic limitation index could result in larger differences in phenol-
ogy derived from SIF and EVI for each dominant climatic limitation area. The phenology
extracted using SIF was more correlated with climatic limitations than that using EVI, espe-
cially in water-limited areas, making it the main cause of the difference between phenology
extracted using SIF and EVI. These findings improved our understanding of land surface
phenology from greenness and photosynthesis perspectives and provided insight into the
mechanistic differences between SIF and EVI in characterizing land surface phenology.
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Abstract: The analysis of gross primary production (GPP) is crucial to better understand CO2

exchanges between terrestrial ecosystems and the atmosphere, while the quantification of water-use
efficiency (WUE) allows for the estimation of the compensation between carbon gained and water lost
by the ecosystem. Understanding these dynamics is essential to better comprehend the responses of
environments to ongoing climatic changes. The objective of the present study was to analyze, through
AMERIFLUX and LBA network measurements, the variability of GPP and WUE in four distinct
tropical biomes in Brazil: Pantanal, Amazonia, Caatinga and Cerrado (savanna). Furthermore, data
measured by eddy covariance systems were used to assess remotely sensed GPP products (MOD17).
We found a distinct seasonality of meteorological variables and energy fluxes with different latent
heat controls regarding available energy in each site. Remotely sensed GPP was satisfactorily related
with observed data, despite weak correlations in interannual estimates and consistent overestimations
and underestimations during certain months. WUE was strongly dependent on water availability,
with values of 0.95 gC kg−1 H2O (5.79 gC kg−1 H2O) in the wetter (drier) sites. These values reveal
new thresholds that had not been previously reported in the literature. Our findings have crucial
implications for ecosystem management and the design of climate policies regarding the conservation
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of tropical biomes, since WUE is expected to change in the ongoing climate change scenario that
indicates an increase in frequency and severity of dry periods.

Keywords: gross primary production; evapotranspiration; water use efficiency

1. Introduction

Discussions on climate change have become increasingly more relevant in the general
scientific community, particularly since the creation of the Intergovernmental Panel on
Climate Change (IPCC), which is composed of a diverse group of worldwide researchers,
focusing on climate change studies and its impacts on society. Since the industrial revo-
lution, the concentration of carbon dioxide (CO2) in the atmosphere has increased with
the use of fossil fuels, deforestation, the use of nitrogen in agriculture and livestock farm-
ing, which are reported to be the main uses responsible for the anthropic greenhouse
effect. Studies have already shown the relevance of biosphere–atmosphere interactions in
Brazilian biomes regarding planetary climate regulation due, for example, to water, energy,
and carbon exchanges with the atmosphere [1–6]. However, there are still uncertainties
regarding these processes due to the remarkable diversity of physiognomies, landscapes
and other biophysical aspects that might play a role in differentiating atmospheric patterns
from one place to another within each biome.

To reduce these uncertainties, in situ measurements are needed to better understand
the particularities of each environment. Furthermore, these observed data can also be
used to assess soil–vegetation–atmosphere models [7–10] and to analyze satellite-derived
estimates of water and/or CO2 balance components [11–16]. Both these models and remote
sensing data are extremely important in providing reliable information on CO2 exchanges
over tropical forests where flux tower coverage is scarce or non-existent, such as in many
parts of Brazil.

Additionally, certain forest physiognomies are not endemic to Brazil, but occur in
several other regions of the globe, and therefore, their particularities regarding biophysical
patterns need to be understood in detail. Wetlands in tropical rainforests such as the
Amazon are environments where organic production rates are high and anoxic conditions
are frequent, and therefore, they represent crucial zones for the global balance of greenhouse
gases in the atmosphere. Cerrado ecosystems (savannas), however, are located at the
tropics and subtropics and are characterized by marked wet and dry seasons. They cover
approximately 60%, 50% and 45% of the total area of Africa, Australia and South America,
respectively [17]. These ecosystems play an important role in the cycle of several greenhouse
gasses, as reported by the studies [18–20] among others, and on energy fluxes (latent
and sensible heat) in the context of climate change, since they cover approximately 20%
(2.7 billion ha) of the global surface [17].

Carbon dynamics and biophysical evapotranspiration controls over tropical Brazilian
ecosystems and in other regions of the world have also been studied because of the need to
better understand the effects of land use change on regional and global biogeochemical
cycles [13,15,21]. Evidently, it also allows us to estimate the contribution of tropical biomes
to the regional and global climate controls, also comprising the relationship between
precipitation, evapotranspiration, plant productivity and greenhouse gas exchanges within
the atmosphere [22]. These changes motivated the development of various research fields
within climate sciences focusing on the debate over greenhouse gases cycles and anthropic
influence over these cycles. CO2 concentration in the atmosphere surpassed 405 ppm [23]
and continues increasing each decade, as well as that of other greenhouse gases. Therefore,
it is necessary to develop methods and techniques to quantify these emissions and the
fluxes of these gases, improving the understanding on how different environments function
and respond to land-use changes.
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The eddy covariance method (EC) directly and non-intrusively estimates the vertical
transport of CO2 and other greenhouse gases. Information measured through EC allows for
the better comprehension of biogeochemical cycles, energy fluxes and other atmospheric
controls. It also provides clues to other pivotal questions regarding ecosystem (in this
study, tropical ecosystems) controls over climate. However, due to the lack of an extensive
EC measurement network throughout Brazil, other data sources are required, such as
satellite-derived data. Our hypothesis is that both gross primary production (GPP) and
water-use efficiency (WUE) data respond differently to varied water availability conditions
on the main tropical ecosystems in Brazil. Thus, our objective is to analyze the dynamics of
GPP and WUE in the Amazon, Cerrado (savanna), Pantanal and Caatinga biomes through
data collected through EC systems and to assess the performance of data derived from the
Moderate Resolution Imaging Spectroradiometer (MODIS) sensor for the quantification of
CO2 balance components over these environments.

2. Materials and Methods

2.1. Data Policy and Use License

The Ameriflux platform compiles data monitored in three Brazilian biomes: BR-Sa1
(Amazon), BR-CST (Caatinga) and BR-Npw (Pantanal). Data from the Cerrado site (BR-BI,
Bananal Island—Javaés) are available at https://daac.ornl.gov (accessed on 25 April 2022).
Data provided by the ORNL DAAC can be accessed for free, without restrictions and
in accordance with NASA’s Earth Science Program. Ameriflux data are shared under
CC-BY-4.0 data usage license (Creative Commons by Attribution 4.0 International). This
license states that the use of data is free to share (copy and redistribute the material in any
medium or format) and/or adapt (remix, transform, and build upon the material). The
scientific literature references describing each of the data sites are: BR-Sa1 [24], BR-CST [25]
and BR-Npw [26].

2.2. Description of Study Area
2.2.1. Cerrado Site

Measurements were conducted on an experimental site located on an inundation plain
at Cantão State Park, 260 km west of the city of Palmas (Tocantins state, Figure 1) as a part
of the Large-Scale Biosphere-Atmosphere Experiment in Amazonia (LBA). A micrometeoro-
logical tower equipped with an eddy covariance system and instruments for meteorological
variable measurements were used. The tower was located 2 km east of the Araguaia River
(9◦49′27.9”S, 50◦08′92.8”W, 120 m in altitude), 1 km east of the Javaézinho River, at the
northern border of the Bananal Island, and south of Cantão State Park. The Araguaia plains,
where the Bananal Island is located, is characterized by an exuberant landscape comprising
Cerrado and Amazon biomes extending throughout three conservation units: Araguaia
National Park, Cantão State Park and the Cantão Environmental Protection Area. The
Bananal Island encompasses a total area of 21,000 km2 (approximately 80 km × 260 km)
and is the largest fluvial island in the world, covered mainly by savannas and pastures
with seasonal inundations occurring from February to June [3]. The instrumental fetch area
covers different types of physiognomies: cerradão, semi deciduous forests (trees with an
average height of 20 m), cerrado s.s. and bare field areas with isolated lagoons. The climate
in the region is warm and wet, with mean annual precipitation of approximately 1466 mm
year−1 and 90% of the total precipitation occurring in the wet season between October and
April [3]. Measurements comprise the period from January 2004 to December 2006.
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Figure 1. Location of the study sites with the native extension of each biome.

2.2.2. Caatinga Site

Measurements were carried out on a site managed by the Chico Mendes Institute
for Biodiversity Conservation (ICMBio), and the micrometeorological tower is part of the
NOWCDCB (National Observatory of Water and Carbon Dynamics in the Caatinga Biome,
Figure 1) monitoring network. The campaign comprised the period from 1 January 2014 to
31 July 2015. The tower is located in a preserved Caatinga segment (BR-CST) within the
Pajeú river watershed (7◦58′05.20”S, 38◦23′02.62”W, 430 m in altitude) in Serra Talhada city,
Pernambuco state, Northeast Brazil. According to Köppen’s classification, the climate is
semiarid (BSwh), with summer rainfalls occurring between December and May (85% of
total precipitation) as reported by [27]. Mean annual precipitation is approximately 640 mm,
and average air temperatures range from 23.1 to 26.7 ◦C [27]. Native species at the site are
Mimosa hostilis, Mimosa verrucosa and Croton sonderianus, while Anadenanthera macrocarpa,
Spondias tuberosa, Caesalpinia pyramidalis, and Ziziphus joazeiro can also be found, with a mean
height of 8.0 m [27]. Rainfall was provided by a “Instituto Nacional de Meteorologia”
(INMET) station near of site.

2.2.3. Pantanal Site

The study was conducted at the Brazilian Northern Pantanal Wetland (BR-Npw)
flux tower (Figure 1) located approximately 35 km SE of Pocone, Mato Grosso, Brazil
(16◦29′53.71”S: 56◦24′45.91”W; 120 m altitude). The site is part of a research station managed
by the Federal University of Mato Grosso (UFMT) within a national reserve managed by
the Brazilian Social Service of Commerce (SESC Pantanal) [28,29]. According to Köppen
classification, the regional climate is Aw, which is defined as a hot and wet climate with
rainfall in the summer and dry in the winter [30]. The accumulated precipitation varies
from 800 to 1500 mm/year [31,32]. The air temperature ranges between 29 and 32 ◦C
(maximum) and between 17 and 20 ◦C (minimum) [33,34]. The soil type in the region
is classified as Dystric Gleysol [35] with an average concentration of 429 g/kg of sand,
254 g/kg of silt, and 317 g/kg of clay, mean soil organic matter (SOM) (0–0.10 m depth) of
17 g/kg and a soil pH of 4.7 [36]. The vegetation of the site is typical of “scrub” forests in
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the region, with a mean leaf area of 7.4 m2 m−2 and a mean height of 6 m [37], dominated
by Combretum lanceolatum, Phol (Combretaceae), a common species found on the riverbanks
of the Pantanal region [38]. Vascular or semi-aquatic plants such as Thalia geniculata and
Nymphaea sp. occur in more open areas [39]. These are dense forests that are referred to as
“hyperseasonal” because they are subjected to both seasonal flooding and drought [40].

Our data were collected from 1 January 2015 to 31 December 2016. Micrometeorologi-
cal variables were measured 20 m aboveground, close to the eddy covariance sensors. Air
temperature (Ta, ◦C) and relative humidity (RH, %) were measured using a thermohygrom-
eter (HMP45AC, Vaisala Inc., Woburn, MA, USA). Precipitation (Ppt, mm) was measured
2 m above the ground using a micrometeorological station (WXT520, Vaisala Inc., Helsinki,
Finland) installed in an open area to avoid interception by the tower or tree canopy. The
flood stage was determined by measuring water levels (WL) above the ground at the study
site. These inundation levels (±1%) were measured along with water temperature (±0.3 ◦C)
using a CTD-10 (Decagon Devices Inc., Pullman, WA, USA, ± 0.05% full scale at 20 ◦C)
in 2015 and 2016. Due to instrument malfunction in 2014, the data for this year are not
available. The start of each flood cycle began with the first reading of standing water at the
site and ended when sensors indicated the absence of standing water. These flood cycles
were then compared to the stage of the Cuiaba River collected by the RPPN-SESC Pantanal
park rangers (pers. comm.) approximately 1 km away.

2.2.4. Amazon Site

Measurements were conducted on a site located at Tapajós National Forest (TNF,
2◦51′S, 54◦58′W, Figure 1), near the Santarém-Cuiabá highway (BR-163). The TNF is limited
by the Tapajós River in the west and by the BR-163 highway in the east, extending 150 km
to the south of Santarém city, Pará state. At the eastern side of the BR-163, the landscape
is dominated by agriculture. The tower was installed approximately 6 km west of the
highway. The canopy has a significant number of large emergent trees (to 55 m height),
Manilkara huberi (Ducke) Chev., Hymenaea courbaril L., Betholletia excelsa Humb. and Bonpl.,
and Tachigalia spp., and a closed canopy at ~40 m [41]; this forest can be considered primary,
or “oldgrowth” [42]. Analyzed data comprise CO2 and energy fluxes and meteorological
data. Measurements comprise daily and monthly means of hourly data in the period from
January 2009 to December 2011. CO2 fluxes were measured at 58 m in height through
a closed-path analyzer (LICOR-6262) while a Campbell CSAT3 anemometer was used for
tridimensional wind measurements. The 65 m micrometeorological tower is located at
an area emerging from within the primary forest with a dense canopy of approximately
40 m in height, reaching up to 55 m for some emerging trees [43]. Rainfall was provided by
a INMET station near of site (Belterra).

Figure 1 shows the location of the four studied sites and their respective biomes.

2.3. Instrumentation and Data Processing

Instrumentation in each of the sites is described in previous publications [3,27,44,45].
Gaps formed due to the exclusion of spurious data during the rigorous data screening
process were filled using a marginal distribution sampling method (MDS) described by [46],
which accounts for the covariance between fluxes and meteorological variables as well
as the autocorrelation of fluxes. In this algorithm, three conditions are identified, and
a procedure is adopted accordingly: (1) when flux data are missing, but meteorological
data are available (Rg, Ta and VPD), missing data are replaced by the mean value in
similar meteorological conditions over a seven-day window; (2) when only radiation data
are available, the missing data are replaced by the mean value in similar meteorological
conditions over a seven-day window; (3) when there are no meteorological data available,
the missing data are replaced by the mean value in the last hour, thus accounting for
the daily variability of each variable. If after these steps, data were still not filled, the
procedure was repeated with larger window sizes until the gap could be filled. For the
gap filling procedure, an automated online tool developed by the Max Planck Institute
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for Biogeochemistry (http://www.bgc-jena.mpg.de/~MDIwork/eddyproc/, accessed on
2 February 2022) was used.

2.4. Flux Partitioning

Through CO2 flux (NEE) partitioning, we obtained: gross primary production (GPP)
and ecosystem respiration (Reco). For the Cerrado and Pantanal sites, NEE is given as
a proxy of the turbulent flow. At the other sites, NEE was composed of turbulent flow
and storage. We used the flux partitioning method based on nighttime hours [46]. Since
GPP = 0 at the nighttime period, NEE is given as:

NEE = Reco, for nighttime hours (1)

NEE = Reco − GPP, for daytime hours (2)

where Reco (μmol m−2s−2) is the sum of autotrophic and heterotrophic respiration. Reco
and GPP were calculated using the online tool provided by the Max Planck Institute
for Biogeochemistry (http://www.bgc-jena.mpg.de/~MDIwork/eddyproc/, accessed on
2 February 2022).

Diurnal corrections of missing NEE data were modeled based on daytime data using
the common rectangular hyperbolic light-response curve model [47,48]:

NEE =
α·β·Rg

α·Rg + β
+ γ (3)

where α (μmol C J−1) is light-use efficiency and represents the initial slope of the light-
response curve; β (μmol C m−2s−1) is the maximum CO2 absorption rate of the canopy
at light saturation; γ (μmol C m−2s−1) is ecosystem respiration and Rg (W m−2) is global
radiation. GPP was calculated as:

GPP = NEE + Reco (4)

To provide a better comparison with literature data (more in situ studies), we calculated
Ecosystem WUE, calculated as:

WUE = GPP/ET (5)

where ET (mm) is evapotranspiration.

2.5. MODIS Data

Remotely sensed GPP data obtained from the MODIS sensor onboard the Terra satellite
were used. These data were calculated based on the concept of light use efficiency [47],
through the relation between incident photosynthetically active radiation (PAR), the fraction
of photosynthetically active radiation absorbed by plants (FPAR) and the actual light use
efficiency (ε) of vegetation [49]:

GPP = ε ∗ APAR (6)

where APAR is the absorbed photosynthetically active radiation, which is calculated as
the product between the FPAR—derived from the MOD15A2H product [50]—and the
PAR. PAR values are obtained from the Global Modeling Assimilation Office (GMAO)
reanalysis [51] set and correspond to 45% of the total incident solar energy in the visible
spectrum (0.4 to 0.7 μm). In the MOD17A2 product, the values of ε are derived from the
attenuation of its maximum value (εmax) due to two environmental stresses: (1) minimum
temperature (Tmin), which can inhibit photosynthesis, reducing enzymatic activity, and
(2) vapor pressure deficit (VPD), because high VPD can reduce stomatal conductance [52].
The GPP data for the Caatinga biome were derived from the MOD17A2 version 6.0 prod-
uct [53] from the MODIS sensor on board the Terra satellite. This algorithm provides 8-day
composite data in a 500 m spatial resolution.
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Reanalysis data from the GMAO dataset (https://gmao.gsfc.nasa.gov/GMAO_products/
reanalysis_products.php, accessed on 25 February 2022) used as input parameters for the
MOD17A2 product were Tmin and VPD. Therefore, we carried out an overall assessment
to check for inconsistencies in this dataset in relation to the same parameters measured at
the Cerrado, Caatinga, Pantanal and Amazon biomes. FPAR and leaf area index (LAI) data
from the MOD15A2H product were also verified. Furthermore, the MOD12 product [54]
for land cover was also discussed regarding the years 2014 and 2015 in the region.

The MOD12 [54] product for land cover was also discussed regarding the Cerrado and
Caatinga site for the period from 1 January 2014 to 31 July 2015, the Pantanal site for the
period from 1 January 2015 to 31 December 2016, and the Amazon site from 1 January 2009
to 31 December 2011.

3. Results

3.1. Meteorological Conditions

Precipitation and air temperature data in all study sites (Figure 2), as well as daily
observations of solar radiation, air temperature and relative humidity (Figure 3), presented
a seasonality that was consistent with the local climatology. Highest radiation incidence
was registered in the Caatinga and Pantanal sites, which makes them the warmest sites
since air temperature is strongly correlated with solar radiation. The highest monthly
temperature was found in the Pantanal site (Figure 2A), with 31.6 ◦C being registered in
October, while the Amazon site presented the lowest temperatures (25.4 ◦C in April), which
is also probably associated with the fact that radiation is lower (Figure 3A). The Caatinga
and Pantanal sites are in phase regarding solar radiation (Figure 3A) and air temperature
(Figure 3B) patterns, despite VPD values being three-fold higher in the Caatinga (Figure 3C),
while VPD in the Pantanal is similar to that observed in the Amazon. VPD in the Amazon
practically doubles until September, along with lower observed accumulated rainfall and
higher air temperatures.

Figure 2. Monthly variation of mean air temperature (lines) and accumulated rainfall (bars) for each
site and period: (A)—Amazonia: 2009–2011 (rainfall from INMET station); (B) Caatinga: January
2014−July 2015 (rainfall from INMET station); (C) Cerrado: 2004−2006; (D) Pantanal: 2015−2016).
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Figure 3. Seasonal variation of the daily mean of meteorological variables: (A) global incident
radiation (W m−2), (B) air temperature (◦C) and (C) vapor pressure deficit (kPa). The shaded colored
areas indicate data standard deviation.

Mean annual precipitation in the Amazon site was approximately 2221 mm, 38%
higher than in the Pantanal site (1381 mm) and 25% higher than in the Cerrado site
(1668 mm). Caatinga presented an annual accumulated rainfall value of 698.9 mm in
2014 and 376.3 mm until July 2015. The number of months with monthly precipitation
<10% of total annual precipitation in each site (Figure 2) varied locally. In the Amazon,
seven months met this criterion, while in the Cerrado and Pantanal, six months did as well.
In the Caatinga, a total of nine months presented less than 10% of total annual rainfall.
Besides the highest precipitation totals, the Amazon also presents the greatest monthly
variability of precipitation, particularly in March (Figure 4). September is the month where
precipitation in all four sites is the most similar, with the Caatinga site registering null
precipitation and the other sites registering precipitation below 50 mm. In March, the
difference between the wettest and the driest sites accounts for over 300 mm. Only in
the months of June and July did the Caatinga site feature monthly accumulated rainfall
higher than the Cerrado and Pantanal sites. Only the Amazon site surpassed 300 mm of
precipitation in the months from February to April.
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Figure 4. Monthly accumulated rainfall boxplots for each site and studied period (Amazonia:
2009–2011; Caatinga: January 2014−July 2015; Cerrado: 2004−2006; Pantanal: 2015−2016).

3.2. Water and Energy Fluxes

The annual cycle of observed daily ET (Figure 5) showed different patterns in the
biomes: (1) Cerrado and Pantanal with maximum water vapor flux in October, decreasing
toward March and April as the wet season ends; (2) a well-defined ET cycle in the Amazonia
site, peaking in September during the dry season. ET cycles in the Cerrado and Pantanal are
similar, with maximum daily ET of approximately 7.0 mm day−1. In July, daily ET values
are similar in the Cerrado, Pantanal and Amazon sites, with a similar pattern to what was
previously observed for solar radiation and air temperature (Figure 3A,B). The Caatinga
site stood out, with values down to three-fold lower if compared to the other sites, despite
the similar seasonal pattern (higher daily ET between October and April, lower daily ET
between May and September). Maximum ET coincides with higher energy availability
(radiation) and higher temperatures in the sites, between October and November.

Figure 5. Monthly daily evapotranspiration (mm day−1) boxplots for each site and studied pe-
riod (Amazonia: 2009−2011; Caatinga: January 2014−July 2015; Cerrado: 2004−2006; Pantanal:
2015−2016).

The monthly seasonal patterns of net radiation and sensible and latent heat fluxes
differ strongly from site to site. In the Pantanal, Caatinga and Cerrado, net radiation (Rn)
presents values higher than 120 W m−2 (Figure 6A) in January and May, with a decreasing
pattern the following months. The Amazon site, located further north than the other sites
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and therefore more influenced by the Intertropical Convergence Zone during these months,
presented lower values, of approximately 100 W m−2, with increasing values from May
until the peak of the dry season in September. Hourly Rn patterns are similar, with the
Amazon site featuring approximately 50 W m−2 less than the other sites. However, latent
heat flux (LE) (Figure 6B) and sensible heat flux (H) (Figure 6C) have distinct hourly and
monthly patterns. Maximum LE in the Pantanal is three-fold higher than in the Caatinga,
while the H pattern is the inverse. Rn, H and LE patterns are in phase regarding Pantanal
and Amazonia sites, particularly because LE and H sharply increase in the dry season,
following the increase in available energy. An opposite relationship is found between Rn
and LE in the Cerrado and Caatinga sites, which increase in September and October while
LE reduces in the same period.

Figure 6. Hourly and monthly variation of energy fluxes: (A) net radiation (Rn, W m−2), (B) latent
heat flux (LE, W m−2) and (C) sensible heat flux (H, W m−2).

3.3. Carbon Fluxes and WUE

According to the daily GPP analysis shown in Figure 7, seasonal changes in GPP are
more intense in the Caatinga and Pantanal sites if compared to the Amazonia and Cerrado
sites. The coefficient of determination (R2) between observed GPP and evapotranspiration
(Figure 8) was also higher in the Caatinga and Pantanal. Maximum values reach up to 9.0 gC
m−2 d−1 in the Cerrado and Amazonia, while the lowest GPP values reach approximately
0.5 gC m−2 d−1 in the Caatinga. The seasonality and intensity of GPP values in the Amazon
and Cerrado are similar, while in the Caatinga and Pantanal, they are similar only between
June and July. Regarding maximum values, GPP peaks in April in the Cerrado, coinciding
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with the period of least radiation availability after the site inundation, while in the Amazon,
GPP peaks in October, characterized by high radiation, air temperature and an increase in
precipitation after an annual minimum in September.

Figure 7. Monthly GPP (gC m−2 day−1) boxplot for each site and study period (Amazonia:
2009−2011; Caatinga: January 2014−July 2015; Cerrado: 2004−2006; Pantanal: 2015−2016).

Figure 8. Correlation between daily GPP averages and evapotranspiration for each site. The size
of the circles indicates the intensity of water-use efficiency (WUE) estimated at each day (gC kg
H2O day−1).

We also assessed observed GPP data by comparing them with MODIS satellite data
on a monthly scale (Figure 9). Results show a high overestimation of satellite data in
drier periods, especially in the Amazonia site (Figure 9A). In the Caatinga site (Figure 9B),
measurements are more similar from September to November if we consider the median
values and monthly variability. In the Cerrado site (Figure 9C), MODIS GPP underestimates
observed data in the dry season (August and September), while in the Pantanal (Figure 9D),
daily variability of MODIS data is much more prominent than observed data, despite the
coherence in representing the seasonal cycle. Given these patterns, the best correlations
were found in the Pantanal (R2 = 0.31) and Caatinga (R2 = 0.27) sites (Figure 10), with
values similar to what is found in the general literature regarding MODIS GPP assessment
(Table 1). Due to the importance of investigating specific local water cycles and the effect of
drought on the water balance and carbon uptake, we calculated WUE (Figure 11), showing
interesting variability aspects depending on the studied biome. WUE is lower in the site
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with the highest evapotranspiration (Pantanal), while a remarkable variability and the
highest WUE values are found in the Caatinga site. WUE in the other sites did not present
great seasonal differences, with values reaching approximately 4.0 gC kg H2O day−1 in the
driest months (between September and October). WUE surpassed 15 gC kg H2O day−1 in
the driest month (September) of the driest site (Caatinga), sharply decreasing in October
with the occurrence of rainfall. Mean annual WUE values estimated in this study delineate
new thresholds if compared to previously reported values in the literature (Table 2), with
the Pantanal site featuring WUE lower than 1.0 gC kg H2O year−1 and the Caatinga site
featuring values near 5.8 gC kg H2O year−1, which is much higher than in other dry forests
studied in the literature.

Figure 9. Monthly GPP boxplot (gC m−2 day−1) for eddy covariance observed data (Tower) and
MODIS—derived data (Satellite) for the: (A) Amazonia; (B) Caatinga; (C) Cerrado; (D) Pantanal sites.

Figure 10. Correlation between daily tower GPP × MODIS GPP for each site. The size of the circles
indicates the intensity of daily accumulated rainfall (mm).
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Table 1. Statistical summary of studies comparing MODIS GPP and eddy covariance estimations for
different land covers using linear regression models.

Forest Type Slope R2 Reference

Alpine grassland 1.30 0.50 Zhu et al. [55]
Alpine grassland 0.58 0.17 Zhu et al.

Dry tropical forest 0.24 0.27 This study
Floodplain forest 5.39 0.01 This study

Primary forest 5.34 0.02 This study
Semi-deciduous forest 0.49 0.32 Danelichen et al. [56]
Temperate grassland 1.59 0.70 Zhu et al., 2018
Temperate grassland 0.50 0.40 Zhu et al., 2018

Tropical grassland 0.89 0.53 Zhu et al., 2018
Tropical peatland 0.23 0.16 Wang et al. [57]
Tropical grassland 0.91 0.63 Zhu et al., 2018
Tropical grassland 0.89 0.53 Zhu et al., 2018

Wetland 2.40 0.31 This study

Figure 11. Monthly WUE (gC kg H2O day−1) boxplot for each site and studied period: (Amazonia:
2009−2011; Caatinga: 01/2014−07/2015; Cerrado: 2004−2006; Pantanal: 2015−2016).

Table 2. Comparison between mean annual WUE retrieved in the present study with values for
different types of forests found in the literature.

Forest Types WUE (g C kg−1H2O) References

Wetland 0.95 This study
Boreal treeless wetland 1.2 Kuglitsch et al. [58]

Floodplain forest 1.61 This study
Maritime pine 1.69 Berbigier et al. [59]
Primary forest 1.82 This study

Deciduous broadleaf forest 1.87 Wang et al.
Old-growth forest 1.83 Liu et al. [60]

Evergreen broadleaf forest 2.35 Tang et al. [61]
Conifer plantation forest 2.53 Yu et al. [62]

Deciduous broadleaf forest 2.57 Yu et al.
Eucalypt plantation 2.87 Rodrigues et al. [63]

Ponderosa pine 2.97 Law et al. [64]
Evergreen broadleaf forest 3.13 Tang et al.

Boreal aspen 3.70 Krishnan et al. [65]
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Table 2. Cont.

Forest Types WUE (g C kg−1H2O) References

Temperate broad-leaved
deciduous 5.0 Kuglitsch et al.

Douglas-fir 5.40 Ponton et al. [66]
Dry tropical forest 5.79 This study

4. Discussion

Evapotranspiration showed well-defined seasonality in all sites, varying at the annual
scale with local precipitation, radiation availability and increasing temperatures. Highest
evapotranspiration values were registered in the warmer months and/or in months with
more radiation or precipitation. Evapotranspiration reached maximum values in the
Cerrado and Pantanal sites in wetter months, reaching up to 7 mm day−1 in November,
with a mean value slightly above 3 mm day−1. In the Caatinga site, even in the month
with the highest evapotranspiration rates (October), overall values did not reach the same
intensity of the other sites, showing the particularity of this site regarding its arid climate
(BSh) according to Köppen’s classification (Liang et al., 2020) [67]. Crucial studies have
already been conducted to estimate the magnitude, seasonality and controls of ET at the
local scale using eddy covariance measurements in Brazil (Da Rocha et al., 2009; Costa
et al., 2010) [6,68]. These studies usually show that dry season evapotranspiration is
higher than in the wet season, and Rn is the main ET control in tropical rainforests (such
as the Amazon), while it is not true for the Caatinga, Cerrado and Pantanal sites. Our
results showed that in these sites, evapotranspiration decreases throughout the dry season,
reaching the lowest rates between August and September, when the Amazon features its
highest values. Even during the dry season, high evapotranspiration rates can be explained
by the predominance of pioneer tree species (Combretum lanceolatum and Vochysia divergens)
with high photosynthesis rates and stomatal conductance (gs) (Dalmagro et al., 2013;
2016) [69,70], associated with the ability of these species to extract water from deep storages
containing similar water content to that of inundation areas and wet periods (Sanches et al.,
2011; Vourlitis et al., 2011; Dalmagro et al., 2013; da Silva et al., 2021) [29,69,71,72].

In the dry season of the Cerrado site, an inverse relationship was found between LE
and Rn, which is typical of savanna ecosystems, where the root system does not reach deep
water storages, but part of the vegetation is adapted and relies on senescence mechanisms
of tree leaves and dormancy of grasses (3). A pulse in productivity (increased GPP) that is
directly related to the increase in water availability (rainfall) can be observed, particularly
from October on, which marks the beginning of the transition from the dry to the wet season.
As expected, all sites reduced productivity in response to increased rainfall variability, with
the most productive ecosystems being those with the highest precipitation rates (Amazon
and Cerrado). The low rainfall rates observed in the Caatinga in October were sufficient to
drive a sharp increase in productivity, which indicates that more frequent rainfall events
in this environment could lead to more nutrient availability and the mitigation of water
stress through leaf absorption mechanisms. A further indicator of these aspects can be
observed through the remarkable variability in evapotranspiration during this month
in the Caatinga. Furthermore, this biome presented the best correlations between GPP
and evapotranspiration. The comparison between observed and remotely sensed data
showed that both datasets represent the same seasonality, despite their weak correlation.
Satellite data accurately represents the strong response of the Pantanal and Caatinga sites
to local precipitation, while the results are not satisfactory regarding the dry period in the
Amazon and Cerrado. The weak correlation between GPP data in tropical forests is well
documented (Zhu et al., 2018) [55] and is generally attributed to light-use efficiency, which
is underestimated by the MODIS GPP algorithm (Sjöström et al., 2013) [73]. Additionally,
potential uncertainties regarding the FPAR might also affect MODIS GPP estimates, which
have also been discussed in the literature (Liu et al., 2017) [60]. Despite its wide use, our
results corroborate previous studies reporting the need to use MODIS GPP data with
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caution for interannual and intra-annual studies, as suggested by Zhu et al. [55]. Our study
revealed that humid biomes present lower WUE, and drier biomes present higher WUE,
with decreasing values with the onset of the wet season and maximum values in the dry
season. This result is consistent with previous studies in other environments (Liu et al., 2017;
Singh et al., 2014; Yu et al., 2008) [60,62,74]. Ito and Inatomi [75] claim that forest ecosystems
presented WUE values comparable or superior to arid (such as caatinga) and shrub biomes
(such as Cerrado and Pantanal), with an intermediate value of 0.6–1.2 g C kg−1 H2O for
humid forest biomes. The average WUE for the Pantanal is within this range.

WUE responds differently to seasonal water availability in each biome. Overall,
more productive biomes present high WUE (Xue et al., 2015) [76]. In sparsely vegetated
areas, such as the Cerrado (savannas) and the Pantanal wetlands, WUE varies greatly
throughout the year, despite presenting lower values than the Caatinga. From January to
April, when precipitation is high in all sites (except Caatinga), the Amazon site featured
an increase in WUE daily values, while the Cerrado WUE decreased, and the Pantanal
WUE remained unaltered. From May, rainfall triggers a sharp decrease in WUE over these
regions until September. Our results reveal important implications for the understanding
of climate change effects on carbon and water exchange processes in tropical biomes,
because the projected reduction in water availability over these sites due to the increasing
number of dry days [77] may lead to an increase in WUE at the ecosystem level. However,
increasing temperatures may further increase or reduce ecosystem WUE at the monthly
scale. Consequently, changes in ecosystem WUE due to climate change will depend on the
relative impact of these changes in precipitation and temperature. Caatinga WUE is highly
dependent on water availability, with lower values and variability in the wetter months
and higher values and variability in the drier months. The results found here corroborate
other studies in other parts of the Caatinga biome [78–82], and it is important to report
that owing to measurement difficulties, few studies have systematically compared global
patterns of WUE of terrestrial ecosystems across different biomes or have analyzed the
seasonal variability of WUE in relation to weather conditions, because ecosystem WUE
is slightly different from plant WUE [61]. Plant physiologists consider WUE at leaf or
stand scales and are mainly interested in relations between total or above-ground biomass,
stem biomass or net CO2 uptake to transpiration or evapotranspiration (ET), and although
uncertainties associated with site-to-site variation in site quality criteria, flux measurement
methods, calculations and data quality control still exist, ongoing standardization and
quality assurance efforts enable global integration with other tools [61].

5. Conclusions

In this study, we presented data on the seasonal variations of energy fluxes, climatic
variables, GPP, ET and WUE for different tropical biomes in Brazil. Furthermore, correla-
tions between observed carbon exchange data and remotely sensed data were also assessed.
Results showed that GPP and ET responses to meteorological variables (solar radiation,
air temperature, precipitation and VPD) are in phase, suggesting that this meteorological
variability controls photosynthesis and ET in a similar fashion on a monthly scale, despite
both direct and inverse relationships having been found depending on the type of environ-
ment. Based on our results, our study concludes that inconsistent MODIS GPP estimates
for some months and sites indicate that the parametrizations used in the MOD17A2H GPP
algorithm (such as FPAR) may need to be enhanced over certain land covers in order to
improve estimates. WUE in the studied sites varied annually from 0.95 to 5.79 gC kg−1

H2O, with minimum and maximum values differing from usually found values for other
environments worldwide. This study will aid future studies regarding the influence of
global warming and water stress on carbon and water fluxes in similar tropical forests.
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Abstract: In high-elevation mountains, seasonal snow cover affects land surface phenology and the
functioning of the ecosystem. However, studies regarding the long-term effects of snow cover on
phenological changes for high mountains are still limited. Our study is based on MODIS data from
2003 to 2021. First, the NDPI was calculated, time series were reconstructed, and an SG filter was used.
Land surface phenology metrics were estimated based on the dynamic thresholding method. Then,
snow seasonality metrics were also estimated based on snow seasonality extraction rules. Finally,
correlation and significance between snow seasonality and land surface phenology metrics were
tested. Changes were analyzed across elevation and vegetation types. Results showed that (1) the
asymmetry in the significant correlation between the snow seasonality and land surface phenology
metrics suggests that a more snow-prone non-growing season (earlier first snow, later snowmelt,
longer snow season and more snow cover days) benefits a more flourishing vegetation growing
season in the following year (earlier start and later end of growing season, longer growing season).
(2) Vegetation phenology metrics above 3500 m is sensitive to the length of the snow season and
the number of snow cover days. The effect of first snow day on vegetation phenology shifts around
3300 m. The later snowmelt favors earlier and longer vegetation growing season regardless of the
elevation. (3) The sensitivity of land surface phenology metrics to snow seasonality varied among
vegetation types. Grass and shrub are sensitive to last snow day, alpine vegetation to snow season
length, desert to number of snow cover days, and forest to first snow day. In this study, we used a
more reliable NDPI at high elevations and confirmed the past conclusions about the impact of snow
seasonality metrics. We also described in detail the curves of snow seasonal metrics effects with
elevation change. This study reveals the relationship between land surface phenology and snow
seasonality in the Qilian Mountains and has important implications for quantifying the impact of
climate change on ecosystems.

Keywords: land surface phenology; NDPI; Qilian Mountains; snow cover; high elevation

1. Introduction

Evidence suggests that global temperatures have continued to rise over the last two
decades and will continue to warm over the next three decades [1], which affects many
ecosystems [2–4]. Alpine ecosystems are considered to be particularly sensitive to climate
change because of harsh natural environments [5–8]. Therefore, accurate assessment of the
impacts of climate change in alpine ecosystems is essential.

Land surface phenology (LSP) is defined as the seasonal change pattern of surface
vegetation obtained from remote sensing observations, which is usually used to describe
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the start, end and length of the vegetation growing season [9–11]. Unlike traditional ground-
based observations that can record dates of budburst or flushing, LSP is used to describe
the full process of regional greening. This may not correspond to a specific vegetation
event but can provide a rapid understanding of the key stages of the overall greening of
a region [9]. LSP is one of the most sensitive and easily observable nature features when
analyzing the response of vegetation to climate change [12], and exploring its changes
provides an important avenue for studying severe climate anomalies. Climate change can
interfere with vegetation germination. In addition, changes in LSP may have a significant
impact on carbon and water cycles [13–15]. An integrated analysis of the impact of climate
change on land surface phenology is important for understanding the impact of future
climate change.

Driving factors for trends in land surface phenology have frequently been attributed
to changes in temperature and precipitation [16–18]. However, as one of the typical features
in areas with stable snowpack, changes in snow seasonality can also cause changes in land
surface phenology [19,20]. Specifically, Snow accumulates or melts on soil and vegetation,
which can directly alter the hydrothermal conditions under which vegetation grows and
develops (Figure 1). Snow directly affects near-surface temperatures in several ways. Snow
cover in winter insulates the soil from cold air and maintains soil temperature [20]. Soil
temperature is higher than air temperature in early spring under snow cover [21]. Due to
the insulating nature of snow, temperature no longer has a direct effect on vegetation [22].
The timing of snowmelt is sometimes a more important factor in the growing season than air
temperature [23]. These regulatory effects of snow accumulation and snowmelt on surface
temperature have important implications for land surface phenology and soil moisture
content. Snow is the main source of freshwater for alpine vegetation, as snowmelt provides
the necessary moisture for vegetation to sprout in the form of soil water [24–27]. Snow cover
protects vegetation and soil from harsh natural hazards such as wind erosion, freezing
damage, and intense solar radiation, which often occur in high-elevation mountains and can
seriously hinder vegetation growth [28–31]. It has also been demonstrated that winter snow
can indirectly affect the carbon sequestration capacity of vegetation by altering community
structure and activity of soil microorganisms [32].

 

Figure 1. Schematic diagram of snow cover effects.

Although there are many studies focusing on the snow cover effect on land surface
phenology, they have inconsistent results [33–38]. In some warm and dry regions, winter
snow cover has been shown to favor early spring vegetation germination and prolong
the growing season, while the opposite is true in cold, humid regions [35,36], clearly
demonstrating that the effect of snow cover varies under different hydrothermal conditions.
However, in Inner Mongolia, China [38], and the French Alps [39], two regions with
different natural conditions, snow has a similar negative effect on land surface phenology:
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late snowmelt delays vegetation emergence. Grass is the predominant vegetation type in
these two regions, and the mechanism for the effect of snow on the same species should be
consistent. Even so, the impact of snow on a single vegetation type in the same area changes
with terrain [33,34]. In short, the influence of snow seasonality on land surface phenology
is determined by the coupling of multiple factors such as water and heat conditions,
vegetation type and terrain. There remains a lot of views on specific conclusions, especially
the effect of snow as a function of elevation gradients and vegetation types, and additional
study is required. Additionally, the spring phenology extracted using NDVI is often
affected by preseason snow, which may lead to inaccurate conclusions [40,41]. Unraveling
the effects of snow on land surface phenology can help identify the mechanisms of change
in land surface phenology.

The Qilian Mountains area (QLMA) is an essential part of the Qinghai–Tibet Plateau
and is considered as an important ecological barrier in western China. The QLMA has
large elevation differences, a variety of vegetation types and significant climate change. In
addition, the relatively small area of QLMA could mitigate the impact of spatial differences
on the results. It is an ideal laboratory for studying the vegetation response to climate
change. Studies on vegetation phenology for the Qilian Mountains region are still limited.
We quantified the response of land surface phenology metrics to different snow seasonality
metrics from 2002 to 2021. Annual snow seasonality metrics include the first snow day
(FSD), last snow day (LSD), snow season length (SSL) and total number of days with snow
cover (SCD). Land surface phenology metrics include the start of the growing season (SOS),
end of the growing season (EOS) and length of the growing season (LOS) estimated by
the normalized difference phenology index (NDPI), which was proven to be an accurate
vegetation index for estimating land surface phenology at high elevation [42]. More
comprehensive metrics and more reliable vegetation indices enhance the richness and
accuracy of our conclusions. In addition, we chose two representative influencing factors,
elevation and vegetation type, which may be helpful to explain the complex effects of
snow seasonality.

To better understand the relationship between snow and land surface phenology, the
following three research questions are proposed:

1. What are the distribution characteristics of snow seasonality and land surface phenol-
ogy in the Qilian Mountains area?

2. What is the impact of snow on land surface phenology in the study area?
3. How does the phenological response change with elevation and by vegetation types?

2. Materials and Methods

2.1. Study Area

The QLMA lies at the intersection of the Tibetan, Mongolian and Loess plateaus
(35.84◦–39.97◦N, 93.61◦–103.90◦E), with Qinghai Province in the south and Gansu Province
of China in the north (Figure 2). The average elevation of the QLMA is over 3000 m, higher
in the center and lower in the surroundings. This area belongs to the mid-latitude high
elevation region. Most of the QLMA is in the temperate semiarid zone of the highlands [43],
where solar radiation is strong. The average annual precipitation is 300–500 mm, more in
the east than in the west. These make QLMA a sensitive area for climate change.

As an important ecological barrier in northwestern China, the QLMA is home to
headwaters of rivers fed by snow and glacial meltwater. Grassland vegetation, desert
vegetation, shrub and alpine vegetation cover more than 90% of the QLMA. Additional
vegetation types include coniferous forest, broadleaved forest and swamp vegetation [44,45].
Because of its rich gene pool of alpine species, the QLMA is considered a key area and a
priority area for biodiversity conservation in China [46]. A pilot Qilian Mountain National
Park in the QLMA was established in 2017 to protect forests, grasslands, wetlands, surface
water resources and glaciers [47]. Collectively, the QLMA is an ideal laboratory for studying
climate change and ecosystems in cold and arid regions.
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Figure 2. Map of the (a) land cover types, (b) elevation, (c) annual mean temperature, and (d) annual
mean precipitation of the study area.

2.2. Data Sources and Pre-Processing

The normalized difference snow index (NDSI) was used to create snow pixels with a res-
olution of 500 m provided by MO(Y)D10A1 V6. The Terra(O) and Aqua(Y) satellites provide a
separate daily NDSI from 1 September 2002 to 1 June 2020 [48]. ‘NDSI_Snow_Cover_Class’
and ‘NDSI_Snow_Cover_Algorithm_Flags_QA’ are the bands we used to eliminate invalid
pixels and ‘NDSI_Snow_Cover’ is the band to extract NDSI. Data were from NASA’s NSIDC
DAAC at CIRES, with a large percentage of cloud pixels [49–51]. Some preprocessing
was required to eliminate cloud obscuration [52,53]. First, pixels with a non-zero value
of the ‘NDSI_Snow_Cover_Class’ and ‘NDSI_Snow_Cover_Algorithm_Flags_QA’ band were
masked out, as these pixels represent invalid values such as missing data and clouds. Second,
daily MOD10A1 and MYD10A1 data were combined using daily maximum values to reduce
the number of cloud pixels. Finally, the max of the cloud-free pixels within a three-day time
window surrounding the cloud pixels was taken as a replacement value. Experiments proved
that these operations can effectively reduce the proportion of cloud pixels and improve the
accuracy of snow products [51,54]. These preprocesses were completed using the Google
Earth Engine.

The MOD09A1 V6 products provide the surface spectral reflectance of Terra MODIS
bands 1–7 at 500 m resolution [55] containing seven bands that have been corrected for
atmospheric conditions such as gasses and aerosols. It was used to calculate NDPI and
thus estimate land surface phenology from 2003 to 2021. Data were provided by NASA LP
DAAC at the USGS EROS Center.

The QLMA vegetation distribution dataset (vegetation pattern data (1:1,000,000) in
the Qilian Mountains) was obtained from the National Cryosphere Desert Data Center
(NCDC, http://www.ncdc.ac.cn/, accessed on 6 September 2021) and the digital elevation
model (DEM) from 30 m ASTER GDEM was downloaded from the Geospatial Data Cloud
(http://www.gscloud.cn/, accessed on 13 January 2022). We used these data to distinguish
the six types of vegetation and every 100 m in elevation of QLMA. Figure 3 shows the
technical workflows.
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Figure 3. Overview of technical workflows.

2.3. Calculation of Snow Cover Seasonality

Value equal to 40 in the preprocessed ‘NDSI_Snow_Cover’ layer was chosen as a
threshold for identifying snow pixels [56]. Pixels recognized as snow pixels were reclas-
sified as 1, otherwise 0. Previous studies have shown that the snowpack on the Tibetan
Plateau increases sharply in September and decreases sharply in the beginning of May [57].
Therefore, 1st September to 1st June of the following year is considered to be the potential
snow season to exclude outliers that appear in the summer. A new time series was con-
structed: 1st September was set to be the first day of year, and 31st May of the following
year was set to be the last. The metrics of the snow season were calculated based on
methods in [58], where FSD and LSD are measured in day of year (DOY) and SSL and SCD
are measured in days. The formulas are as follows:

FSD = SDOYmin, (1)

LSD = SDOYmax, (2)

SSL = LSD − FSD + 1, (3)

SCD = ∑n
i=1 Si, (4)

where SDOY represents the distance between the date when a pixel is identified as a snow
pixel and previous 1st September, n denotes the total number of days in the potential snow
season, and Si denotes the state of snow cover for any given day within SDOY; Si equals 1
if there is snow and 0 if not.

2.4. Calculation of Land Surface Phenology

Shortwave infrared reflectance was combined with near-infrared and red reflectance
to calculate the NDPI. It is an index for extracting accurate surface phenology to achieve
high contrast between vegetation and background [59]. It was proven to be an accurate
vegetation index for estimating land surface phenology in QLMA [42]. The formula is
as follows:

NDPI =
ρNIR − [α × ρRED + (1 − α)× ρSWIR]
ρNIR + [α × ρRED + (1 − α)× ρSWIR]

, (5)

where ρNIR represents the near-infrared band, ρRED represents the red band and ρSWIR
represents the shortwave infrared band. In MOD09A1, ρRED corresponds to band 1, ρNIR
to band 2 and ρSWIR to band 6. α is a constant value for a given sensor and is taken as
0.74 for MODIS products [59].

In this study, we first masked the pixels of cloud shadow, snow and cloud, then
calculated NDPI values for the filtered images. Then we reconstructed the time series
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to unify the number of images into 72 in each year by calculating the average value.
Finally, we smoothed the curves using the Savitzky–Golay (SG) filter. The window size
was set to 5 and the number of polynomials was set to 3. Several methods have been
developed to detect land surface phenology based on vegetation indices [60–63]. A simple
and effective dynamic threshold method was used to extract land surface phenology from
the reconstructed NDPI time series (Figure 4) [64]. Pixels with an intra-year NDPI change
of less than 0.1 were excluded, and these were assumed to be areas without significant
seasonality, as the NDPI of vegetation with distinct phenological stages generally increases
from very small values (close to 0) to above 0.4 in study area. The formula is as follows:

thd(t) =
NDPI(t)− NDPImin
NDPImax − NDPImin

, (6)

where NDPI(t) represents the NDPI value at the calendar year date sequence t; NDPImin
represents the maximum value of NDPI in a year; NDPImin represents the minimum value
of the time series vegetation curve on the left and right part of the curve (SOS corresponds to
the left half of the curve and EOS corresponds to the right) in a year bounded by NDPImax;
and thd(t) represents the percentage corresponding to NDPI(t) after stretching it in time
to a range of 0–1. Critical thresholds of 30% and 70% were selected [34].

Figure 4. Schematic illustration for extracting LSP metrics using dynamics threshold method. The
black curve represents the interannual NDPI for a given pixel. Red lines represent SOS, blue lines
represent EOS and green lines represent LOS.

2.5. Correlation Analysis

To assess the relationship between snowpack and land surface phenology, we calcu-
lated the Pearson correlation coefficients between four snow season indicators (FSD, LSD,
SSL and SCD) and three phenology indicators (SOS, EOS and LOS), and evaluated the sig-
nificance of the correlation (p-value) by performing a t-test [36,65]. Based on the vegetation
distribution, we focused on the correlation between snow season metrics and phenological
metrics in six different vegetation types: forest, shrub, grass, alpine vegetation, cultivated
vegetation and desert vegetation. In addition, an elevation gradient was set from 2500 m
to 4500 m to study the vertical variation of the correlation between vegetation and snow
seasonality. Correlations were calculated for each pixel and then further counted according
to different elevations or vegetation types. The spatial patterns of snow seasonality and
land surface phenology over the study area were characterized by the mean of the metrics.
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3. Results

3.1. Spatial Pattern of Snow Seasonality over the QLMA

The spatial heterogeneity pattern of snow seasonality metrics can be observed in
the QLMA (Figure 5). The earliest snowfall occurs in the central area within the QLMA
(before October, DOY < 30). This region is also the one with the last snowmelt (after April,
DOY > 210), resulting in the longest snow season. For the western and northern regions, the
first snowfall occurs weeks later (before December, DOY < 90), and snowmelt occurs late
(after April, DOY > 210), the length of the snow season is shorter than in the center. In the
northern part of Qinghai Lake and the eastern and southern fringes of the study area, the
first snowfall occurs the latest (after December, DOY > 120), the snowmelt occurs earliest
(before February, DOY < 150), and the snow season is the shortest. The spatial pattern of
SCD is similar to that of SSL, but the spatial differences are not significant because of the
widespread presence of intermittent snow. The SCD is less than 30 d in most of the study
area, especially in the southeast, but higher in the central and western parts.

Figure 5. Mean of snow seasonality metrics in QLMA from 2002 to 2020. (a) represents the FSD,
(b) represents the LSD, (c) represents the SSL, and (d) represents the SCD.

3.2. Land Surface Phenology among Different Vegetation Types

Figure 6 shows the calculated LSP metrics for the different vegetation types. LSP
metrics for all vegetation except desert varied with elevation: SOS delays (Figure 6a),
EOS advances (Figure 6b) and LOS shortens (Figure 6c) as elevation rises. There are no
significant trends in SOS or LOS with elevation for desert, but EOS advances with elevation.

Figure 6d shows the average LSP metrics across elevation. Desert and alpine vegetation
have the earliest growing seasons starting in late April. The growing season of forest begins
in mid-May, while shrub, grass and cultivated vegetation start growing in late May. The
EOS of different vegetation types are relatively close. The EOS of vegetation types other
than alpine vegetation generally appear in early September, with desert and forest a few
days earlier. The EOS of alpine vegetation is the earliest, occurring around mid-August.
Desert has the longest growing season lengths (SSL = 120), SSL in forest (SSL = 105) and
alpine vegetation (SSL = 101) are shorter. Shrub, grass and cultivated vegetation have the
shortest growing seasons of about 95 d.
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Figure 6. The calculated LSP metrics for the different vegetation types change with elevation.
(a) represents the SOS, (b) represents the EOS and (c) represents the LOS. (d) shows the average of all
elevations. The bar graph represents the average SOS and EOS of six different vegetation types, and
the arrows inside the bar indicate their LOS. (e) shows the histogram of pixel numbers of different
elevation gradients.

3.3. Spatial Pattern of Land Surface Phenology over the QLMA

The spatial pattern of the mean values of land surface phenology metrics in the QLMA
area is shown in Figure 7. Many western areas were filtered out because of the lack of
seasonal vegetation. The earliest start of the growing season is in the western and northern
margins, usually before 1st May, followed by the eastern areas, where the growing season
starts within about a month (before 1st June). Vegetation in the central part of the study
area has the latest start of the growing season, occurring after 1st June, and in a few areas
even later (after 15th June) (Figure 7a). The growing season for most of the vegetation in
the study area ends between 15th August and 15th September. Growing seasons in the
northern part of Qinghai Lake and the eastern edge of the study area end half a month later.
The vegetation with the latest end of the growing season is located in the western region,
occurring after 1st October (Figure 7b). The spatial distribution pattern of LOS is similar
to that of SOS, with the northern edge and the sporadic areas in west having the longest
vegetation growing season, which exceeds 150 d at most. From the eastern area toward the
center, the vegetation growing season gradually shortens from up to 120 d to up to 90 d
(Figure 7c).
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Figure 7. Mean of land surface phenology metrics in QLMA from 2003 to 2021. (a) represents the
SOS, (b) represents the EOS and (c) represents the LOS.

3.4. Spatial Pattern of the Correlation between Snow Seasonality and Land Surface
Phenology Metrics

Different snow seasonality metrics have different strengths and directions of influence
on different LSP metrics, and there is spatial variation in this correlation (Figure 8). Overall,
the snow seasonality metrics have a similar impact on EOS and LOS, in contrast to SOS.
FSD shows a significant positive correlation with SOS in the southern part of Qinghai
Lake and a mostly nonsignificant negative correlation with the central part. FSD shows
mainly negative correlation with EOS and LOS in the study area, especially in the central
region, where the negative correlation is significant. EOS and LOS in the eastern part of the
study area show a nonsignificant positive correlation with FSD. The effect of LSD on LSP is
different from that of FSD. LSD shows a significant negative correlation with SOS in the
western part of the study area and the southern part of Qinghai Lake. Both EOS and LOS in
the central and western parts of the study area show positive correlations with LSD, where
LOS in the western part shows a significant positive correlation with LSD. EOS and LOS in
the southeast of the study area, however, show a negative but insignificant correlation with
LSD. The spatial pattern of SSL and SCD effects on LSP is similar to that of LSD, compared
to the more significant correlation of SCD with LSP.

The proportion of significant positive and significant negative correlations indicates
the main direction of influence of snow seasonality metrics on LSP metrics (Table 1). All
the 12 correlations have a relatively obvious directionality, meaning that there is no posi-
tive correlation with the same proportion of negative correlations. Among them, positive
correlations dominate in FSD_SOS, LSE_EOS, LSD_LOS, SSL_L0S and SCD_LOS. The
proportion of insignificant positive correlations is about 7% more than the proportion of
insignificant negative correlations, and the proportion of significant positive correlations
exceeds the proportion of significant negative correlations by twice. However, negative cor-
relation is the major of FSD_LOS, SSL_SOS and SCD_SOS. The proportion of insignificant
positive correlations is approximately 6% less than the proportion of insignificant negative
correlations, and the proportion of significant positive correlations is less than half of the
proportion of significant negative correlations.
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Figure 8. Correlation between different land surface phenology metrics and different snow seasonality
metrics. “Significant” means p < 0.1.

Table 1. Area of significant correlation between snow season metrics and phenology metrics (%), SN
for significant negative (p < 0.1) correlation and NN for nonsignificant negative (p > 0.1, r < −0.2)
correlation. SP for significant positive (p < 0.1) correlation and NP for nonsignificant positive (p > 0.1,
r > 0.2) correlation.

SN (%) NN (%) NP (%) SP (%) SN/SP

FSD_SOS 4.23 11.75 17.79 8.96 0.47
FSD_EOS 8.12 16.68 12.98 5.17 1.57
FSD_LOS 9.04 18.66 11.38 4.34 2.08

LSD_SOS 8.89 16.66 12.54 4.91 1.81
LSD_EOS 4.13 11.40 18.38 8.86 0.47
LSD_LOS 4.04 11.14 18.52 9.55 0.42

SSL_SOS 9.66 17.22 11.47 4.34 2.23
SSL_EOS 4.84 11.35 19.02 8.31 0.58
SSL_LOS 3.87 10.94 18.71 10.00 0.39

SCD_SOS 11.88 17.31 12.90 5.26 2.26
SCD_EOS 4.57 11.30 18.87 7.63 0.60
SCD_LOS 3.94 11.49 18.29 11.13 0.35

3.5. Elevation-Dependent Correlation between Snow Seasonality and Land Surface
Phenology Metrics

We further investigated the phenological response along the elevation gradient
(Figure 9). FSD is significantly negatively correlated with SOS and positively correlated
with LOS at low elevation, and the correlation gradually decreases as the elevation increases
to 3500 m. The direction of the effect of FSD above 3500 m changes. The correlation with
SOS turns from a nonsignificant positive correlation to a significant positive correlation
by degrees, and the correlation with LOS changes to a progressively increasing negative
correlation. The correlation between FSD and EOS is weak and always fluctuates around
0. There is no shift in the correlation between LSD and LSP metrics with rising elevation.
Regardless of the elevation, LSD is always nearly significantly positively correlated with
EOS and LOS. LSD is significantly negatively correlated with SOS at low elevation, and the
correlation and significance decrease with rising elevation, but there is an increasing trend
above 3900 m. The correlation of SSL and SCD with LSP metrics has similar characteristics
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with elevation. Below 3300 m, they show a nonsignificant weak correlation with LSP met-
rics. The correlations gradually increase with elevation, and approach stability at around
3500 m. Above 3500 m, SSL and SCD show a significant negative correlation with SOS and
a significant positive correlation with EOS and LOS, especially LOS. The effect of SCD is
more obvious than SSL.

Figure 9. Left panel shows the land surface phenology metrics response to different snow seasonality
metrics at different elevation. (a) means FSD, (b) means LSD, (c) means SSL and (d) means SCD.
Right panel shows the vegetation constitute at different elevations.

Vegetation constitute varies at different elevations. Forest and cultivated vegetation
are largely absent above 3000 m. Shrub increases rapidly from 4.95% to a maximum of
27.56% above 2800 m, with most of its distribution concentrated between 2900 m and
3700 m. Grass is the dominant vegetation type in most areas, usually accounting for more
than 60% of the vegetation.

3.6. Interspecific Variation in the Response of Land Surface Phenology

To characterize differences in the responses of land surface phenology to snow sea-
sonality, we compared the responses of six vegetation phenological characteristics to snow
(Figure 10). The elevation interval with the highest concentration of vegetation distribu-
tion is selected: 2600–3500 m for forest and cultivated vegetation, 3100–4000 m for grass,
shrub and desert, and 3600–4200 m for alpine vegetation. FSD is significantly negatively
correlated with SOS of forest and LOS of alpine vegetation, and significantly negatively
correlated with EOS of shrub. EOS of forest, shrub and grass is significantly positively
correlated with LSD, as is LOS of shrub and grass. SSL and SCD affect vegetation in almost
the same direction. SSL is significantly correlated with EOS for more vegetation types,
while SCD is significantly correlated with SOS and LOS of vegetation. The SOS of forest
is significantly positively correlated with SCD, while the SOS of desert is significantly
negatively correlated with SCD. EOS of shrub and grassland is more sensitive to SSL and
is significantly positively correlated. LOS of alpine vegetation is significantly positively
correlated with both SSL and SCD, while LOS of desert is significantly positively correlated
with SCD only.
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Figure 10. Correlation between vegetation phenological metrics of eight types of vegetation and
snow phenological metrics. * p < 0.1, ** p < 0.05, *** p < 0.01.

4. Discussion

4.1. Does Seasonal Snow Seasonality Metrics Affect Land Surface Phenology Metrics?

Our findings demonstrated that land surface phenology at high elevations responds
to snow cover seasonality. However, this response relationship is complicated because
different snow season metrics affect different phenological metrics (Figure 8, Table 1). The
magnitude asymmetry in the significant correlation between the snow seasonality and land
surface phenology metrics suggests that a more snow-prone non-growing season (earlier
first snow, later snowmelt, longer snow season and more snow cover days) may benefit a
more flourishing vegetation growing season the following year (earlier start and later end
of the growing season, longer growing season). The area of significant positive correlation
between FSD and SOS is more than two times the area of significant negative correlation.
In contrast, the area significantly positively correlated with LOS is less than half of the
area significantly negatively correlated. These magnitude asymmetries may indicate the
direction of the effect of FSD on LSP [33]. That is, FSD is positively correlated with SOS and
negatively correlated with EOS and LOS. This suggests that earlier snowfall in the autumn
triggers an earlier growing season the following spring and delays the end of the vegetation
growing season the following autumn, which also extends the vegetation growing season.

Qiao and Wang [38] found no or negative correlation between FSD and SOS when
exploring winter snowpack and spring grassland vegetation phenology in Inner Mongolia,
which is not consistent with our findings. This may be attributed to elevation. Significant
negative correlations could be observed only in central Inner Mongolia, where the elevation
is below 3000 m. However, at higher elevations in the southwest, the correlations are not
significant. In QLMA, there are relatively few areas below 3000 m in elevation, resulting in
the negative correlation that is not widely observed by us. The findings of Wang et al. [35] in
the Tibetan Plateau (TP) are close to ours. They extensively observed a positive correlation
between FSD and SOS, especially in the central TP and northwest of the QLMA. The
negative correlation between FSD and EOS is consistent with the findings of Qi et al. [34]
in QLMA; moreover, we observed a larger area (Figure 8). This finding is equally relevant
in other areas with continuous seasonal snowpack [66]. However, the impact of late season
transient snowfall events may be limited, which could explain the small impact of FSD in
some areas [58,67].

We considered that a later snowmelt may result in a delayed end of the growing season
and a longer growing season length. Longer snow seasons and more snow days lead to
earlier growing seasons and also prolong growing season length. Our study confirmed the
findings of Wang [35] and Qi [34] in the same study area, but differences in elevation and
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hydrothermal conditions cause this finding to change in other areas. In fact, the effect of
different snow seasonality metrics can still be observed even within a region, which may
also be due to the elevation and climatic conditions of the different regions [36]. Moreover,
different vegetation indices, LSP estimation methods and thresholds for estimating snow
seasonality have an impact on the conclusions. However, these effects are usually reflected
in intensity and significance. The apparent magnitude asymmetry of correlations within
the study area points to the main direction of snow seasonality effects, in which we are able
to corroborate each other. Even in different areas, similar effects of snow seasonality can
still be observed if elevations and climates are similar, such as at higher elevations in Inner
Mongolia and Nepal [38,66].

4.2. Why Do the Effects of Snow Seasonality Metrics Vary with Elevation?

Our study confirmed the high-elevation dependence between snow cover and phenol-
ogy (Figure 9). The effect of earlier FSD on SOS shifted from delaying to facilitating with
increasing elevation. The effect on LOS changes from shortening to lengthening, with the
turning point occurring roughly at 3500 m. The correlation between FSD and EOS changes
from a nonsignificant positive correlation to almost no correlation. If an earlier and longer
growing season is considered to be better, then an earlier FSD is detrimental to vegetation
growth at lower elevations and beneficial at higher elevations. This effect of first snow on
vegetation phenology with elevation is not unique to QLMA. Paudel and Andersen [66]
found no correlation between FSD and EOS at low elevations, but a strong positive correla-
tion at very high elevations. Obviously, the elevation of our study area is far from ‘very
high’, above 5000 m, so we could only observe an insignificant correlation between FSD and
EOS. The findings in the Qinghai–Tibetan Plateau and QLMA are more comparable. Qi [34]
divided QLMA into four elevation intervals, and the correlation between FSD and EOS is
consistent with our findings on the trend of weakening with elevation. Our more detailed
division makes the results more obvious. Wang et al. [35] found a positive correlation
between FSD and SOS on the TP that gradually increased between 2500–5000 m and then
weakened, which is similar to our findings. We further found a change in this correlation
not only in intensity but also in direction, that is, a significant negative correlation between
FSD and SOS below 3500 m. The study area of Wang et al. [35] is much larger than ours,
and the seasonality of snow varies greatly at lower elevations, which may lead to their
inability to accurately count correlations below 3500 m. However, that earlier first snowfall
at higher elevations favors earlier vegetation phenology is what we all agree on.

We did not observe an effect of LSD on LSP metrics with elevation. Regardless of
elevation, later snowmelt is beneficial for earlier vegetation growing season initiation and a
longer growing season. Snow melt directly provides the necessary water for vegetation
to sprout, and the spring snowpack maintains soil temperatures. No matter what the
elevation, accumulated temperature and water are necessary for vegetation to sprout.
Paudel and Andersen [66] observed the same conclusion as ours in the low elevation arid
zone, and Wang et al. [35] also found a negative correlation between LSD and SOS in the
TP, but it was not significant at low elevation. In contrast, Qi et al. [34] found a significant
positive correlation between LSD and SOS in the high-elevation interval of QLMA, which
may be related to the selection and treatment of the vegetation indices. Compared to
estimating SOS based on NDVI, the NDPI we used is shown to better eliminate the effect
of pre-season snowpack and avoid misclassification of snow and vegetation pixels [40–42].
In addition, our reconstructed NDPI with a temporal resolution of 4 d also helps to obtain
a more accurate SOS.

We also found a similar effect of SSL and SCD on LSP metrics. Vegetation below 3300 m
is barely affected by them, while vegetation above 3500 m SOS is significantly negatively
correlated with them, and LOS is significantly positively correlated with them. This is
consistent with the findings of many other studies, at least at the same elevation [34,35,58].
This may be due to different climatic conditions at different elevations, which could drive
differences in correlation [68]. Although the melting of snow will always provide moisture

243



Remote Sens. 2022, 14, 3629

to the soil, different temperature conditions may lead to different effects on the presence of
snow. More snow is needed at higher elevations to cover the soil than at relatively warm
lower elevations because the snow acts as an insulator [36,69]. Soils are protected from
the harsh climatic conditions and severe solar radiation to which they would otherwise be
subjected by a snow cover [69–71]. Soil temperatures at high elevations with snow cover
are usually higher than in areas without snow [72].

We described for the first time at QLMA the process of reversal of the direction
of influence of snow seasonality metrics on LSP metrics with elevation. However, we
estimated that the thresholds for LSP (0.3 and 0.7) and the use of seasonal vegetation filter
(NDPI > 0.1) may have influenced the strength of the relationship. The vegetation constitute
that varies with elevation may be another factor affecting the correlation. Changes in other
vegetation proportions can cause fluctuations in correlations (LSD_FSD below 3300 m), but
grass is always the predominant vegetation type in QLMA, which could ensure the relative
stability of correlations.

4.3. Why Do the Effects of Snow Seasonality Metrics Vary with Vegetation Type?

The response of vegetation to snowpack varies considerably between biomes, and
similar phenomena have been observed in the QLMA (Figure 10). We found that the LSP
metrics of shrub and grass respond most significantly to LSD compared to other vegetation,
namely that later snowmelt extends the growing season of both vegetation species. This
is consistent with the findings of many other studies on grasslands [34,36]. It may be
because shrub and grass have relatively simple structures and short size, so they are more
likely to be completely covered by snow. In addition, due to the strong solar radiation,
the snow on the grassland melts more easily and water can be supplied to the soil in a
timely manner [73]. The LSP metrics of desert only respond to SCD. Compared to other
snow seasonality metrics, SCD reflects not only the timing of snow presence, but also the
frequency of snow presence, which is important for drought desert. Conversely, alpine
vegetation is more sensitive to FSD and SSL and these may reflect the arrival and duration
of cold air during the snow season as temperature is more important for alpine vegetation.
We also found that the SOS of the forest responds differently to snow seasonality metrics
than other vegetation types. Snow falling on branches does not have a direct and timely
effect on the root system [74,75]. Due to the tall structure of the trees, the snow in the
canopy and on the ground is exposed to different solar radiation, resulting in differences in
snow melt [76,77]. Furthermore, some studies have demonstrated that different vegetation
types have different temperature requirements for breaking dormancy [69,78]. Woody
plants may require cold conditions to promote germination, while grasses require warmer
conditions. Snow protects shallow underground root systems from the cold, resulting in
different effects on different vegetation types.

In summary, our study illustrated that different vegetation types have different reflec-
tions of LSP metrics on snow seasonality metrics, which explains the spatial variation in
the impact of snow seasonality metrics from another perspective than elevation.

4.4. Prediction of Vegetation Phenology from Satellite Data Is Beneficial for Future Research

The concept of using satellite data to estimate vegetation phenology metrics was born
long ago. With the continuous improvement of remote sensing image accuracy and cloud
computing capability, the estimation of phenology based on satellite data has gradually
become reliable. Unlike the phenology metrics obtained from field observations, the
remote sensing-based estimation of phenology metrics focuses on the variation of regional
greenness. Important time points are calculated from the interannual variation curves of
vegetation indices, and thus vegetation phenology is estimated. For stakeholders, satellites
can quickly provide long time series and large-scale data, which could also avoid time-
consuming field work. Characterizing vegetation phenology at a larger scale is beneficial
for studies such as vegetation response in the context of global climate change.
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However, the validation for the remote sensing-based phenological indices and in
situ phenological indices is also important. Although there may be temporal differences
in the phenological indices obtained by the two methods, both can indicate consistent
phenological trends. More in situ data is an important way to improve the accuracy of
satellite predictions. This is also the objective of our future study.

4.5. Study Limitations and Future Work

The medium-resolution satellite data and complex topographic conditions of the
Qilian Mountains make it difficult to estimate land surface phenology. Although we used
the NDPI, which is least affected by pre-season snowpack, as a vegetation index, the
accuracy of such threshold-based extraction remains uncertain. Land surface phenology is
a complex parameter that is influenced by a combination of factors. In addition to snow
seasonality, vegetation is influenced by snow depth, pre-growing season temperature and
precipitation and light conditions. In addition to elevation, slope and aspect play important
roles. Thus, assessing the response of land surface phenology requires more accurate
models. As mentioned earlier, the differences in water conditions across the study area may
be an important factor influencing the conclusions. The content and depth of groundwater,
meltwater from permafrost and glaciers, may also have an impact. These would be good to
include in future study. Finally, although the vegetation distribution data we used are very
reliable, changes are inevitable over long time series, especially in low-elevation areas that
are inherently more susceptible to human activities.

5. Conclusions

The snow season and vegetation phenological indicators in the Qilian Mountains
in the northeastern Qinghai–Tibet Plateau were investigated, and their corresponding
relationships were analyzed. In this study, we concluded that snow seasonality metrics
have distinct spatial distribution characteristics. The snow season started earlier and lasted
longer in the central part of the study area. The LSP metrics varied significantly with
elevation and most vegetation growing seasons shortened with elevation. The asymmetry
of significant correlation between snow seasonality and LSP metrics indicates the main
direction of influence. A more snow-prone non-growing season (earlier first snow, later
snowmelt, longer snow season and more snow cover days) may trigger a more flourishing
vegetation growing season the following year (earlier start and later end of growing season,
longer growing season).

The NDPI we used is less affected by spring snowpack. We set thresholds to remove
nonseasonal vegetation and delineated more detailed elevation gradients. We described
the effect of QLMA snow seasonality as a curve that varies with elevation. Below 3300 m,
later first snowfall leads to an earlier growing season and also extends the growing season
length, while the effect of first snowfall above 3300 m is reversed. The intensity of the effect
of LSD fluctuates with elevation but does not reverse. The effects of SSL and SCD on LSP
are small and insignificant below 3500 m, and their increase mainly benefits the extended
growing season of high-elevation vegetation. In addition, the sensitivity of LSP metrics to
snow seasonality varies among vegetation types. Our research provides more evidence
that the impact of snow varies with elevation and underlying vegetation types.

Hydrothermal conditions, changes in temperature and precipitation, extreme weather
events and glacial melt are important factors influencing land surface phenology at high
elevations and should be investigated in future studies in conjunction with high-resolution
data to develop improved models for analyzing them.

Author Contributions: Conceptualization, W.Z., K.Y. and Y.L.; methodology, Y.L. and K.Y.; software,
validation, Y.L. and K.Y.; writing—original draft preparation and visualization, Y.L.; writing—review
and editing, X.M. and S.G. funding acquisition, W.Z. and K.Y. All authors have read and agreed to
the published version of the manuscript.

245



Remote Sens. 2022, 14, 3629

Funding: This research was funded by the National Natural Science Foundation of China, grant
number 41977415, and the Fundamental Research Funds for the Central Universities, grant
number 265QZ2022001.

Data Availability Statement: Not applicable.

Acknowledgments: We express our gratitude to anonymous reviewers and editors for their profes-
sional comments and suggestions.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. IPCC. Summary for Policymakers; IPCC: Geneva, Switzerland, 2018.
2. Kang, W.; Liu, S.; Chen, X.; Feng, K.; Guo, Z.; Wang, T. Evaluation of ecosystem stability against climate changes via satellite data

in the eastern sandy area of northern China. J. Environ. Manag. 2022, 308, 114596. [CrossRef] [PubMed]
3. Wang, Y.; Gu, J. Ecological responses, adaptation and mechanisms of mangrove wetland ecosystem to global climate change and

anthropogenic activities. Int. Biodeterior. Biodegrad. 2021, 162, 105248. [CrossRef]
4. Weiskopf, S.R.; Rubenstein, M.A.; Crozier, L.G.; Gaichas, S.; Griffis, R.; Halofsky, J.E.; Hyde, K.J.W.; Morelli, T.L.; Morisette, J.T.;

Muñoz, R.C.; et al. Climate change effects on biodiversity, ecosystems, ecosystem services, and natural resource management in
the United States. Sci. Total Environ. 2020, 733, 137782. [CrossRef] [PubMed]

5. Beniston, M. Climatic Change in Mountain Regions: A Review of Possible Impacts. Clim. Chang. 2003, 59, 5–31. [CrossRef]
6. Bebi, P.; Krumm, F. Mountains and Climate Change: A Global Concern; Centre for Development and Environment (CDE), Swiss

Agency for Development and Cooperation (SDC), Geographica Bernensia: Bern, Switzerland, 2014; pp. 8–13.
7. Verrall, B.; Pickering, C.M. Alpine vegetation in the context of climate change: A global review of past research and future

directions. Sci. Total Environ. 2020, 748, 141344. [CrossRef] [PubMed]
8. Gao, Q.; Guo, Y.; Xu, H.; Ganjurjav, H.; Li, Y.; Wan, Y.; Qin, X.; Ma, X.; Liu, S. Climate change and its impacts on vegetation

distribution and net primary productivity of the alpine ecosystem in the Qinghai-Tibetan Plateau. Sci. Total Environ. 2016, 554–555,
34–41. [CrossRef] [PubMed]

9. White, M.A.; Nemani, R.R. Real-time monitoring and short-term forecasting of land surface phenology. Remote Sens. Environ.
2006, 104, 43–49. [CrossRef]

10. de Beurs, K.M.; Henebry, G.M. Land surface phenology, climatic variation, and institutional change: Analyzing agricultural land
cover change in Kazakhstan. Remote Sens. Environ. 2004, 89, 497–509. [CrossRef]

11. Moody, A.; Johnson, D.M. Land-Surface Phenologies from AVHRR Using the Discrete Fourier Transform. Remote Sens. Environ.
2001, 75, 305–323. [CrossRef]

12. Zeng, L.; Wardlow, B.D.; Xiang, D.; Hu, S.; Li, D. A review of vegetation phenological metrics extraction using time-series,
multispectral satellite data. Remote Sens. Environ. 2020, 237, 111511. [CrossRef]

13. Piao, S.; Cui, M.; Chen, A.; Wang, X.; Ciais, P.; Liu, J.; Tang, Y. Altitude and temperature dependence of change in the spring
vegetation green-up date from 1982 to 2006 in the Qinghai-Xizang Plateau. Agric. For. Meteorol. 2011, 151, 1599–1608. [CrossRef]

14. Richardson, A.D.; Keenan, T.F.; Migliavacca, M.; Ryu, Y.; Sonnentag, O.; Toomey, M. Climate change, phenology, and phenological
control of vegetation feedbacks to the climate system. Agric. For. Meteorol. 2013, 169, 156–173. [CrossRef]

15. Wang, S.; Zhang, B.; Yang, Q.; Chen, G.; Yang, B.; Lu, L.; Shen, M.; Peng, Y. Responses of net primary productivity to phenological
dynamics in the Tibetan Plateau, China. Agric. For. Meteorol. 2017, 232, 235–246. [CrossRef]

16. Li, F.; Song, G.; Liujun, Z.; Xiuqin, F.; Yanan, Z. Urban vegetation phenology analysis and the response to the temperature change.
In Proceedings of the 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Fort Worth, TX, USA,
23–28 July 2017; pp. 5743–5746.

17. Lang, W.; Chen, X.; Liang, L.; Ren, S.; Qian, S. Geographic and Climatic Attributions of Autumn Land Surface Phenology Spatial
Patterns in the Temperate Deciduous Broadleaf Forest of China. Remote Sens. 2019, 11, 1546. [CrossRef]

18. Clinton, N.; Yu, L.; Fu, H.; He, C.; Gong, P. Global-Scale Associations of Vegetation Phenology with Rainfall and Temperature at a
High Spatio-Temporal Resolution. Remote Sens. 2014, 6, 7320–7338. [CrossRef]

19. Pedersen, S.H.; Liston, G.E.; Tamstorf, M.P.; Abermann, J.; Lund, M.; Schmidt, N.M. Quantifying snow controls on vegetation
greenness. Ecosphere 2018, 9, e02309. [CrossRef]

20. Assmann, J.J.; Myers-Smith, I.H.; Phillimore, A.B.; Bjorkman, A.D.; Ennos, R.E.; Prevéy, J.S.; Henry, G.H.R.; Schmidt, N.M.;
Hollister, R.D. Local snow melt and temperature—but not regional sea ice—explain variation in spring phenology in coastal
Arctic tundra. Glob. Chang. Biol. 2019, 25, 2258–2274. [CrossRef]

21. Piao, S.; Liu, Q.; Chen, A.; Janssens, I.A.; Fu, Y.; Dai, J.; Liu, L.; Lian, X.; Shen, M.; Zhu, X. Plant phenology and global climate
change: Current progresses and challenges. Glob. Chang. Biol. 2019, 25, 1922–1940. [CrossRef]

22. Zheng, J.; Jia, G.; Xu, X. Earlier snowmelt predominates advanced spring vegetation greenup in Alaska. Agric. For. Meteorol. 2022,
315, 108828. [CrossRef]

23. Frei, E.R.; Henry, G.H.R. Long-term effects of snowmelt timing and climate warming on phenology, growth, and reproductive
effort of Arctic tundra plant species. Arct. Sci. 2021. e-First. [CrossRef]

246



Remote Sens. 2022, 14, 3629

24. Kumar, M.; Wang, R.; Link, T.E. Effects of more extreme precipitation regimes on maximum seasonal snow water equivalent.
Geophys. Res. Lett. 2012, 39, L20504. [CrossRef]

25. Hanati, G.; Zhang, Y.; Su, L.; Hu, K. Response of water and heat of seasonal frozen soil to snow melting and air temperature. Arid.
Land Geogr. 2021, 44, 889–896. [CrossRef]

26. Bai, J.; Shi, H.; Yu, Q.; Xie, Z.; Li, L.; Luo, G.; Jin, N.; Li, J. Satellite-observed vegetation stability in response to changes in climate
and total water storage in Central Asia. Sci. Total Environ. 2019, 659, 862–871. [CrossRef] [PubMed]

27. Harpold, A.A.; Molotch, N.P. Sensitivity of soil water availability to changing snowmelt timing in the western U.S. Geophys. Res.
Lett. 2015, 42, 8011–8020. [CrossRef]

28. Desai, A.R.; Wohlfahrt, G.; Zeeman, M.J.; Katata, G.; Eugster, W.; Montagnani, L.; Gianelle, D.; Mauder, M.; Schmid, H.P. Montane
ecosystem productivity responds more to global circulation patterns than climatic trends. Environ. Res. Lett. 2016, 11, 024013.
[CrossRef] [PubMed]

29. Rixen, C.; Dawes, M.A.; Wipf, S.; Hagedorn, F. Evidence of enhanced freezing damage in treeline plants during six years of CO2
enrichment and soil warming. Oikos 2012, 121, 1532–1543. [CrossRef]

30. Peng, S.; Piao, S.; Ciais, P.; Friedlingstein, P.; Zhou, L.; Wang, T. Change in snow phenology and its potential feedback to
temperature in the Northern Hemisphere over the last three decades. Environ. Res. Lett. 2013, 8, 014008. [CrossRef]

31. Sherwood, J.A.; Debinski, D.M.; Caragea, P.C.; Germino, M.J. Effects of experimentally reduced snowpack and passive warming
on montane meadow plant phenology and floral resources. Ecosphere 2017, 8, e01745. [CrossRef]

32. Yang, X.; Henry, H.A.L.; Zhong, S.; Meng, B.; Wang, C.; Gao, Y.; Sun, W. Towards a mechanistic understanding of soil nitrogen
availability responses to summer vs. winter drought in a semiarid grassland. Sci. Total Environ. 2020, 741, 140272. [CrossRef]

33. Tomaszewska, M.A.; Nguyen, L.H.; Henebry, G.M. Land surface phenology in the highland pastures of montane Central Asia:
Interactions with snow cover seasonality and terrain characteristics. Remote Sens. Environ. 2020, 240, 111675. [CrossRef]

34. Qi, Y.; Wang, H.; Ma, X.; Zhang, J.; Yang, R. Relationship between vegetation phenology and snow cover changes during
2001–2018 in the Qilian Mountains. Ecol. Indic. 2021, 133, 108351. [CrossRef]

35. Wang, S.; Wang, X.; Chen, G.; Yang, Q.; Wang, B.; Ma, Y.; Shen, M. Complex responses of spring alpine vegetation phenology to
snow cover dynamics over the Tibetan Plateau, China. Sci. Total Environ. 2017, 593–594, 449–461. [CrossRef]

36. Wang, X.; Wu, C.; Peng, D.; Gonsamo, A.; Liu, Z. Snow cover phenology affects alpine vegetation growth dynamics on the Tibetan
Plateau: Satellite observed evidence, impacts of different biomes, and climate drivers. Agric. For. Meteorol. 2018, 256–257, 61–74.
[CrossRef]

37. Xie, J.; Jonas, T.; Rixen, C.; de Jong, R.; Garonna, I.; Notarnicola, C.; Asam, S.; Schaepman, M.E.; Kneubühler, M. Land surface
phenology and greenness in Alpine grasslands driven by seasonal snow and meteorological factors. Sci. Total Environ. 2020,
725, 138380. [CrossRef] [PubMed]

38. Qiao, D.; Wang, N. Relationship between Winter Snow Cover Dynamics, Climate and Spring Grassland Vegetation Phenology in
Inner Mongolia, China. ISPRS Int. J. Geoinf. 2019, 8, 42. [CrossRef]

39. Choler, P. Growth response of temperate mountain grasslands to inter-annual variations in snow cover duration. Biogeosciences
2015, 12, 3885–3897. [CrossRef]

40. Delbart, N.; Kergoat, L.; Le Toan, T.; Lhermitte, J.; Picard, G. Determination of phenological dates in boreal regions using
normalized difference water index. Remote Sens. Environ. 2005, 97, 26–38. [CrossRef]

41. Cao, R.; Feng, Y.; Liu, X.; Shen, M.; Zhou, J. Uncertainty of Vegetation Green-Up Date Estimated from Vegetation Indices Due to
Snowmelt at Northern Middle and High Latitudes. Remote Sens. 2020, 12, 190. [CrossRef]

42. Huang, K.; Zhang, Y.; Tagesson, T.; Brandt, M.; Wang, L.; Chen, N.; Zu, J.; Jin, H.; Cai, Z.; Tong, X.; et al. The confounding effect of
snow cover on assessing spring phenology from space: A new look at trends on the Tibetan Plateau. Sci. Total Environ. 2021,
756, 144011. [CrossRef] [PubMed]

43. Li, Z.; Feng, Q.; Li, Z.; Wang, X.; Gui, J.; Zhang, B.; Li, Y.; Deng, X.; Xue, J.; Gao, W.; et al. Reversing conflict between humans and
the environment—The experience in the Qilian Mountains. Renew. Sustain. Energy Rev. 2021, 148, 111333. [CrossRef]

44. Ma, Y.; Guan, Q.; Sun, Y.; Zhang, J.; Yang, L.; Yang, E.; Li, H.; Du, Q. Three-dimensional dynamic characteristics of vegetation and
its response to climatic factors in the Qilian Mountains. Catena 2022, 208, 105694. [CrossRef]

45. Zhang, J.; Zhang, C. Vegetation Pattern Data (1:100,000) in the Qilian Mountains; National Cryosphere Desert Data Center: Lanzhou,
China, 2020. [CrossRef]

46. Peng, Q.; Wang, R.; Jiang, Y.; Li, C. Contributions of climate change and human activities to vegetation dynamics in Qilian
Mountain National Park, northwest China. Glob. Ecol. Conserv. 2021, 32, e01947. [CrossRef]

47. Yan, K.; Ding, Y. The overview of the progress of Qilian Mountain National Park System Pilot Area. Int. J. Geoheritage Park 2020, 8,
210–214. [CrossRef]

48. Hall, D.K.; Salomonson, V.V.; Riggs, G.A. MODIS/Terra Snow Cover Daily L3 Global 500m Grid. Version 6; NASA National Snow
and Ice Data Center Distributed Active Archive Center: Boulder, CO, USA, 2016. [CrossRef]

49. Gafurov, A.; Bárdossy, A. Cloud removal methodology from MODIS snow cover product. Hydrol. Earth Syst. Sci. 2009, 13,
1361–1373. [CrossRef]

50. Hall, D.K.; Riggs, G.A.; Foster, J.L.; Kumar, S.V. Development and evaluation of a cloud-gap-filled MODIS daily snow-cover
product. Remote Sens. Environ. 2010, 114, 496–503. [CrossRef]

247



Remote Sens. 2022, 14, 3629

51. Wang, W.; Huang, X.; Deng, J.; Xie, H.; Liang, T. Spatio-Temporal Change of Snow Cover and Its Response to Climate over the
Tibetan Plateau Based on an Improved Daily Cloud-Free Snow Cover Product. Remote Sens. 2015, 7, 169–194. [CrossRef]

52. Liang, T.G.; Huang, X.D.; Wu, C.X.; Liu, X.Y.; Li, W.L.; Guo, Z.G.; Ren, J.Z. An application of MODIS data to snow cover
monitoring in a pastoral area: A case study in Northern Xinjiang, China. Remote Sens. Environ. 2008, 112, 1514–1526. [CrossRef]

53. George, R.; Dorothy, H.; Miguel, R. USER GUIDE: MODIS/Terra Snow Cover 8-Day L3 Global 500m Grid, Version 61; NASA Goddard
Space Flight Center: Greenbelt, MD, USA, 2021.

54. Parajka, J.; Blöschl, G. Spatio-temporal combination of MODIS images—Potential for snow cover mapping. Water Resour. Res.
2008, 44, W03406. [CrossRef]

55. Vermote, E. MOD09A1 MODIS/Terra Surface Reflectance 8-Day L3 Global 500m SIN Grid V006; NASA EOSDIS Land Processes
DAAC: Sioux Falls, SD, USA, 2015. [CrossRef]

56. Cao, M.; Li, X.; Chen, X.; Wang, J.; Che, T. Remote Sensing of Cryosphere; Science Press: Beijing, China, 2006; p. 60. (In Chinese)
57. Chu, D.; Hongjie, X.; Pengxiang, W.; Jianping, G.; Jia, L.; Yubao, Q.; Zhaojun, Z. Snow cover variation over the Tibetan Plateau

from MODIS and comparison with ground observations. J. Appl. Remote Sens. 2014, 8, 084690. [CrossRef]
58. Xie, J.; Kneubuhler, M.; Garonna, I.; Notarnicola, C.; De Gregorio, L.; De Jong, R.; Chimani, B.; Schaepman, M.E. Altitude-

dependent influence of snow cover on alpine land surface phenology. J. Geophys. Res. Biogeosci. 2017, 122, 1107–1122. [CrossRef]
59. Wang, C.; Chen, J.; Wu, J.; Tang, Y.; Shi, P.; Black, T.A.; Zhu, K. A snow-free vegetation index for improved monitoring of

vegetation spring green-up date in deciduous ecosystems. Remote Sens. Environ. 2017, 196, 1–12. [CrossRef]
60. White, M.A.; Thornton, P.E.; Running, S.W. A continental phenology model for monitoring vegetation responses to interannual

climatic variability. Glob. Biogeochem. Cycles 1997, 11, 217–234. [CrossRef]
61. Zhang, X.; Friedl, M.A.; Schaaf, C.B.; Strahler, A.H.; Hodges, J.C.F.; Gao, F.; Reed, B.C.; Huete, A. Monitoring vegetation phenology

using MODIS. Remote Sens. Environ. 2003, 84, 471–475. [CrossRef]
62. Reed, B.C.; Brown, J.F.; Van der Zee, D.; Loveland, T.R.; Merchant, J.W.; Ohlen, D.O. Measuring phenological variability from

satellite imagery. J. Veg. Sci. 1994, 5, 703–714. [CrossRef]
63. Salinero-Delgado, M.; Estévez, J.; Pipia, L.; Belda, S.; Berger, K.; Paredes Gómez, V.; Verrelst, J. Monitoring Cropland Phenology

on Google Earth Engine Using Gaussian Process Regression. Remote Sens. 2022, 14, 146. [CrossRef]
64. Broich, M.; Huete, A.; Paget, M.; Ma, X.; Tulbure, M.; Coupe, N.R.; Evans, B.; Beringer, J.; Devadas, R.; Davies, K.; et al. A spatially

explicit land surface phenology data product for science, monitoring and natural resources management applications. Environ.
Model. Softw. 2015, 64, 191–204. [CrossRef]

65. Jin, H.; Jönsson, A.M.; Bolmgren, K.; Langvall, O.; Eklundh, L. Disentangling remotely-sensed plant phenology and snow
seasonality at northern Europe using MODIS and the plant phenology index. Remote Sens. Environ. 2017, 198, 203–212. [CrossRef]

66. Paudel, K.P.; Andersen, P. Response of rangeland vegetation to snow cover dynamics in Nepal Trans Himalaya. Clim. Chang.
2013, 117, 149–162. [CrossRef]

67. Hüsler, F.; Jonas, T.; Riffler, M.; Musial, J.P.; Wunderle, S. A satellite-based snow cover climatology (1985–2011) for the European
Alps derived from AVHRR data. Cryosphere 2014, 8, 73–90. [CrossRef]

68. Beniston, M.; Keller, F.; Goyette, S. Snow pack in the Swiss Alps under changing climatic conditions: An empirical approach for
climate impacts studies. Theor. Appl. Climatol. 2003, 74, 19–31. [CrossRef]

69. Yu, Z.; Liu, S.; Wang, J.; Sun, P.; Liu, W.; Hartley, D.S. Effects of seasonal snow on the growing season of temperate vegetation in
China. Glob. Chang. Biol. 2013, 19, 2182–2195. [CrossRef] [PubMed]

70. Björk, R.G.; Molau, U. Ecology of Alpine Snowbeds and the Impact of Global Change. Arct. Antarct. Alp. Res. 2007, 39, 34–43.
[CrossRef]

71. Wipf, S.; Rixen, C.; Mulder, C.P.H. Advanced snowmelt causes shift towards positive neighbour interactions in a subarctic tundra
community. Glob. Chang. Biol. 2006, 12, 1496–1506. [CrossRef]

72. Freppaz, M.; Celi, L.; Marchelli, M.; Zanini, E. Snow removal and its influence on temperature and N dynamics in alpine soils
(Vallée d’Aoste, northwest Italy). J. Plant Nutr. Soil Sci. 2008, 171, 672–680. [CrossRef]

73. Winkler, R.D.; Moore, R.D. Variability in snow accumulation patterns within forest stands on the interior plateau of British
Columbia, Canada. Hydrol. Process. 2006, 20, 3683–3695. [CrossRef]

74. Pomeroy, J.W.; Parviainen, J.; Hedstrom, N.; Gray, D.M. Coupled modelling of forest snow interception and sublimation. Hydrol.
Process. 1998, 12, 2317–2337. [CrossRef]

75. Pomeroy, J.W.; Gray, D.M.; Hedstrom, N.R.; Janowicz, J.R. Prediction of seasonal snow accumulation in cold climate forests.
Hydrol. Process. 2002, 16, 3543–3558. [CrossRef]

76. Davis, R.E.; Hardy, J.P.; Ni, W.; Woodcock, C.; McKenzie, J.C.; Jordan, R.; Li, X. Variation of snow cover ablation in the boreal
forest: A sensitivity study on the effects of conifer canopy. J. Geophys. Res. Atmos. 1997, 102, 29389–29395. [CrossRef]

77. López-Moreno, J.I.; Stähli, M. Statistical analysis of the snow cover variability in a subalpine watershed: Assessing the role of
topography and forest interactions. J. Hydrol. 2008, 348, 379–394. [CrossRef]

78. Yu, H.; Luedeling, E.; Xu, J. Winter and spring warming result in delayed spring phenology on the Tibetan Plateau. Proc. Natl.
Acad. Sci. USA 2010, 107, 22151. [CrossRef]

248



Citation: Cui, X.; Xu, G.; He, X.; Luo,

D. Influences of Seasonal Soil

Moisture and Temperature on

Vegetation Phenology in the Qilian

Mountains. Remote Sens. 2022, 14,

3645. https://doi.org/10.3390/

rs14153645

Academic Editor: Zhuosen Wang

Received: 2 June 2022

Accepted: 26 July 2022

Published: 29 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing 

Article

Influences of Seasonal Soil Moisture and Temperature on
Vegetation Phenology in the Qilian Mountains

Xia Cui 1,*, Gang Xu 2, Xiaofei He 2 and Danqi Luo 2

1 Key Laboratory of Western China’s Environmental Systems (Ministry of Education), College of Earth and
Environmental Sciences, Lanzhou University, Lanzhou 730000, China

2 State Key Laboratory of Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology,
Lanzhou University, Lanzhou 730020, China; xugang@lzu.edu.cn (G.X.); hexf21@lzu.edu.cn (X.H.);
luodq20@lzu.edu.cn (D.L.)

* Correspondence: xiacui@lzu.edu.cn

Abstract: Vegetation phenology is a commonly used indicator of ecosystem responses to climate
change and plays a vital role in ecosystem carbon and hydrological cycles. Previous studies have
mostly focused on the response of vegetation phenology to temperature and precipitation. Soil
moisture plays an important role in maintaining vegetation growth. However, our understanding
of the influences of soil moisture dynamics on vegetation phenology is sparse. In this study, using
a time series of the normalized difference vegetation index (NDVI) from the moderate resolution
imaging spectroradiometer (MODIS) dataset (2001–2020), the start of the growing season (SOS), the
end of the growing season (EOS), and the length of the growing season (LOS) in the Qilian Mountains
(QLMs) were extracted. The spatiotemporal patterns of vegetation phenology (SOS, EOS, and LOS)
were explored. The partial coefficient correlations between the SOS, EOS, and seasonal climatic
factors (temperature, precipitation, and soil moisture) were analyzed. The results showed that the
variation trends of vegetation phenology were not significant (p > 0.05) from 2001 to 2020, the SOS
was advanced by 0.510 d/year, the EOS was delayed by 0.066 d/year, and the LOS was prolonged
by 0.580 d/year. The EOS was significantly advanced and the LOS significantly shortened with
increasing altitude. The seasonal temperature, precipitation, and soil moisture had spatiotemporal
heterogeneous effects on the vegetation phenology. Overall, compared with temperature and soil
moisture, precipitation had a weaker influence on the vegetation phenology in the QLMs. For
different elevation zones, the temperature and soil moisture influenced the vegetation phenology
in most areas of the QLMs, and spring temperature was the key driving factor influencing SOS; the
autumn soil moisture and autumn temperature made the largest contributions to the variations in EOS
at lower (<3500 m a.s.l.) and higher elevations (>3500 m a.s.l.), respectively. For different vegetation
types, the spring temperature was the main factor influencing the SOS for broadleaf forests, needleleaf
forests, shrublands, and meadows because of the relative lower soil moisture stress. The autumn
soil moisture was the main factor influencing EOS for deserts because of the strong soil moisture
stress. Our results demonstrate that the soil moisture strongly influences vegetation phenology,
especially at lower elevations and water-limited areas. This study provides a scientific basis for
better understanding the response of vegetation phenology to climate change in arid mountainous
areas and suggests that the variation in soil moisture should be considered in future studies on the
influence of climate warming and environmental effects on the phenology of water-limited areas.

Keywords: vegetation phenology; Qilian Mountains; soil moisture; remote sensing

1. Introduction

Vegetation plays an important role in ecosystem carbon and hydrological cycles [1,2]
and is a sensitive indicator of ecosystem response to climate change. Vegetation phenology,
which is the periodic life activity of plants, provides an independent measure of how
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ecosystems respond to climate change [3] and varies significantly according to climate zone
and vegetation type, especially in temperate and northern regions [4,5]. Affected by climate
change and human activity, the start of the growing season (SOS), the end of the growing
season (EOS), and the length of the growing season (LOS) show substantial interannual
variability [6]. Phenological changes result in small-area changes in plant activity within
the community and large-area changes in overall land surface processes, such as the
carbon budget, surface energy flux, and regional climate [7]. Therefore, understanding
phenological variation and its response to climate change is critical for improving terrestrial
biosphere models and climate models [8].

Current research methodologies on vegetation phenology mainly include the tra-
ditional ground observation method and satellite remote sensing monitoring method.
Traditional ground observations can provide detailed specific plant phenology information
at the species-scale or individual plant scale but have limitations in terms of observational
stations and spatial coverage [9]. In addition, most ground observation sites only focus on
cultivated plants rather than natural vegetation [10]. Remote sensing data from satellites
can provide long time series and a high temporal resolution vegetation index (VI) and have
been widely applied in large-scale vegetation phenology monitoring [11]. The satellite
remote sensing monitoring method primarily uses time series VIs, and the normalized
difference vegetation index (NDVI) is the most commonly used VI [12]. The NDVI is
simple to calculate and sensitive to plant growth and can track seasonal dynamic changes
in vegetation [13].

Climate changes can be directly reflected in vegetation phenology [6]. Temperature can
be considered the most important factor affecting vegetation phenology in many regions.
Numerous studies have found that advances in spring phenology at middle and high
latitudes are primarily controlled by increased global surface mean temperature [14–17].
Additionally, precipitation is a key factor in regulating vegetation phenology, particularly
in water-limited arid and semiarid regions [18]. For example, Ren et al. [19] showed that the
influence of precipitation on the interannual variation in the SOS and EOS is more important
than that of temperature in the Inner Mongolian Autonomous Region. Compared with
precipitation, soil moisture is the most direct water supply for vegetation and is susceptible
to drought, which can affect vegetation phenology [20]. Some observational studies have
suggested that soil water availability is also an important factor that can trigger vegetation
growth in water-limited areas [21,22]. An understanding of the impact of soil moisture
dynamics on vegetation phenology is very important and can increase our understanding
of the influence of climate change on ecosystems. However, there are insufficient studies
related to this topic.

The Qilian Mountains (QLMs) are located in the arid/semiarid region of northwestern
China, which is a transitional zone between the Qinghai–Tibet Plateau (QTP), Loess Plateau,
and Inner Mongolia Plateau. The QLMs have a vulnerable ecosystem and complex climate,
and the hydrothermal conditions differ from east to west [23]. In recent years, the QLMs
have experienced significant climate changes, which involve a significant trend of warming
and wetting, frequent climate anomalies [24], and local vegetation becoming sensitive
to climate changes [25]. In addition, the large east–west span and spatial heterogeneity
among the vegetation types in the QLMs lead to enormous differences in the response
relationship between the vegetation phenology of different vegetation types and climatic
factors. Soil moisture plays an essential role in maintaining vegetation growth, especially
in arid and semi-arid regions [20]. Soil moisture in the QLMs increases with an increase
in altitude and is heterogeneous between different types of land cover [26]. Due to the
complex topography and climatic conditions, the ecosystems in the QLMs are fragile and
sensitive to climate change, and thus it is necessary to systematically explore the effects of
temperature, precipitation, and soil moisture on vegetation phenology.

Based on moderate resolution imaging spectroradiometer (MODIS) NDVI time series
products from 2001 to 2020, this study extracted the SOS, EOS, and LOS for the QLMs’
vegetation and analyzed the characteristics of the changes in vegetation phenology and
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the response relationship between vegetation phenology and driving factors, including
temperature, precipitation, and soil moisture. The main objectives of this study were to
(1) investigate the characteristics of the spatiotemporal patterns of vegetation phenology in
the QLMs during the period 2001–2020, (2) evaluate the effects of seasonal temperature,
precipitation, and soil moisture on the SOS and the EOS in the study area, and (3) explore
the relationship between the phenology of different elevation zones, vegetation type, and
climatic factors in the QLMs. This study can contribute to our understanding of the
mechanism of the effects of climate change on vegetation phenology in arid mountain
areas, and the findings enable the prediction of the future evolution of ecosystems and the
implementation of effective ecosystem management.

2. Data and Methods

2.1. Study Area

The QLMs represent the largest mountain system in the marginal northeast of the QTP,
which crosses Gansu Province and Qinghai Province. The geographical coordinates lie be-
tween 93◦25′–103◦50′E and 35◦52′–39◦52′N, with a total area of approximately 184,000 km2.
The terrain gradually rises from northeast to southwest, and the average elevation exceeds
3500 m (Figure 1). The northern slope of the QLMs contain the headwaters of three inland
rivers (Heihe, Shulehe, and Shiyanghe rivers) in China [27]. Qinghai Lake is the largest
inland saltwater lake in China and is fed from the south slope of the QLMs. The QLMs
belong to the midlatitude northern temperate zone, which has a typical continental plateau
climate [28]. Due to the obvious vertical zonality and horizontal zonality, the water and heat
conditions in the Qilian Mountains dramatically vary spatially. Precipitation mainly occurs
in the summer and decreases from east to west, increasing with altitude, but temperature
shows the reverse pattern [25]. The main vegetation types in the region include broadleaf
forests, needleleaf forests, shrublands, meadows, grasslands, and deserts, and the natural
ecosystems are fragile and sensitive to climate change because of complex topographic and
climatic conditions.

Figure 1. Geographical location of the Qilian Mountains.

2.2. Data Sources

NDVI time series have been widely used as an important proxy for quantifying
vegetation photosynthetic activity. The MODIS NDVI products (MOD13A2) from 2001 to
2020 with a 1 km spatial resolution and 16-day time step were used in this study. The NDVI
data were obtained from NASA (https://lpdaac.usgs.gov, accessed on 20 November 2021)
and were preprocessed using the MODIS reprojection tool (MRT) for band extraction and
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mosaic, format, and projection conversion. We removed pixels with average annual NDVI
values (2001–2020) < 0.1 to prevent the interference of nonvegetation signals [18,29].

The ground-based phenology data were collected from the vegetation phenological
observation datasets at Haibei station from 2006 to 2015, which were provided by the
Chinese Ecosystem Research Network (CERN) (http://www.cnern.org.cn, accessed on
17 December 2021). In addition, the phenology data of Sidalong station, Liancheng station,
Xiyinghe station, and Suganhu station from 2020 were obtained from the National Tibetan
Plateau Data Center (https://data.tpdc.ac.cn/en/, accessed on 17 December 2021).

Monthly temperature and precipitation data from 2001 to 2020 were obtained from the
National Tibetan Plateau Data Center (http://data.tpdc.ac.cn, accessed on 22 April 2021).
These datasets were spatially downscaled from CRU TS v4.02 with WorldClim datasets
based on the delta downscaling method and were evaluated using the data of 496 national
weather stations across China. The evaluation indicated that the downscaled dataset is
reliable for investigations related to climate change across China [30]. The monthly surface
soil moisture data (0–7 cm) from 2001 to 2020 were obtained from ERA5-Land and used
to represent the water availability indicator to evaluate the water content impacts on
vegetation phenology. ERA5-Land provides a soil moisture reanalysis dataset of 0.1◦ × 0.1◦
from 1950 to the present. The monthly soil moisture data from ERA5-Land were resampled
to the same resolution as the vegetation phenology data using a bilinear interpolation
algorithm. The digital elevation model at a spatial resolution of 1 km was obtained from
the Resource and Environmental Science and Data Center (http://www.rsdc.cn/, accessed
on 17 December 2021).

2.3. Methods
2.3.1. Extraction of Vegetation Phenology

The NDVI time series involves some noise caused by clouds or poor atmospheric
conditions and needs to be smoothed using a filter. In this study, NDVI was smoothed using
a seven-parameter double logistic function proposed by Gonsamo et al. [31] to reconstruct
the NDVI time series at a daily temporal resolution:

f(x) = α1 +
α2

1 + e−∂1(x−β1)
− α3

1 + e−∂2(x−β2)
(1)

where f(x) is the fitted NDVI at day x; x is a specific day of year (DOY); α1, α2, α3, ∂1, ∂2, β1, β2
are smoothing parameters; α1 is the background NDVI value; α2 is the early summer
plateau; α3 is the amplitude of the late summer plateau; ∂1 and ∂2 represent the transitions
in the slope coefficient; and β1 and β2 are the midpoints at the start and end of the growing
season transitions, respectively.

For the fitted NDVI time series, the dynamic threshold derived from each pixel was
used to determine the SOS and EOS. In this method, the SOS and EOS are defined as the
DOY when the NDVIratio reaches a certain threshold during the NDVI rising stage in spring
and decline stage in autumn. The NDVIratio is calculated as:

NDVIratio =
NDVIx − NDVImin

NDVImax − NDVImin
(2)

where NDVIx represents the NDVI value on day x and NDVImax and NDVImin are the
maximum and minimum NDVI values in the annual NDVI time series, respectively. In this
study, the dynamic threshold was defined as NDVIratio values of 30% and 50% to determine
the SOS and EOS, respectively. The LOS was the difference between the SOS and EOS.

2.3.2. Trend Analysis

The temporal trends in the time series of the vegetation phenology were calculated
by the Theil–Sen median slope estimator [32] at the pixel level. The Theil–Sen median
slope estimator is a nonparametric median-based slope estimator that is less susceptible to
noise and outliers [33]. A positive Theil–Sen slope indicates a delayed or extended trend,
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while a negative value indicates an advanced or shortened trend. The Mann–Kendall (MK)
method [34] was used to determine the significance of the long-term advanced/delayed
trend in vegetation phenology. In our study, the significance level was based on the
MK test value, and p < 0.05 was defined as statistically significant. The combined use
of the Theil–Sen median slope and MK trend test classified vegetation phenological pa-
rameters into five categories, namely, “significant advanced/shortened”, “insignificant
advanced/shortened”, “no change”, “insignificant delayed/extended”, and “significant
delayed/extended”.

2.3.3. Partial Correlation Analysis

Partial correlation coefficients were calculated to examine the correlation between
vegetation phenology and seasonal driving factors (temperature, precipitation, and soil
moisture). In our analysis, the seasons were defined as spring (March–May), summer
(June–August), and autumn (September–November). The second-order partial correlation
coefficient was calculated as follows:

r12,34 =
r12,3−r14,3 × r24,3√

(1 − r2
14,3)× (1 − r2

24,3)
(3)

where r12,34 represents the partial correlation coefficient of variables 1 and 2 after controlling
for variables 3 and 4. r12,3 represents the first order partial correlation coefficient and was
computed as follows:

r12,3 =
r12−r13 × r23√

(1 − r2
13)× (1 − r2

23)
(4)

where r12, r13, r23 represent the Pearson’s correlation coefficients between variables 1 and 2,
1 and 3, and 2 and 3, respectively. After we calculated the partial correlation coefficient values,
Student’s t-test was used to identify the significance of the coefficient, and only the pixels
with a significance level of p < 0.05 were considered significant. To determine the influence
of terrain and vegetation types on the linkage between vegetation phenology and seasonal
driving factors, the partial correlation coefficients in different elevation zones and different
vegetation types were also analyzed in our study. The elevation was reclassified into four
classes (1: <3000 m a.s.l., 2: 3000–3500 m a.s.l., 3: 3500–4000 m a.s.l., and 4: >4000 m a.s.l.).

3. Results

3.1. Temporal and Spatial Variation in Vegetation Phenology

The vegetation phenology derived from the satellite data was consistent with ground
observations at the Xiying River, Liancheng, Suganhu, and Sidalong stations in 2020 and
the Haibei station from 2006 to 2015. The correlation coefficient (R2) between the SOS and
field data was 0.536 (p < 0.01), the mean absolute error (MAE) was 9 d, the root mean square
error (RMSE) was 11 d, the R2 was 0.533 (p < 0.01), the MAE was 5 d, and the RMSE was
6 d between the EOS and field data (Figure S1). Based on the validation results described
above, the remote sensing monitoring method adopted in this paper can accurately reflect
vegetation phenological characteristics in the QLMs.

The interannual changes in vegetation phenology in the QLMs from 2001 to 2020
showed different fluctuation ranges (Figure 2). There was an advanced SOS trend of
0.510 d/year and an extended LOS trend of 0.580 d/year. There was a delayed EOS trend
at a rate of 0.066 d/year, which is only a slight change. However, no significant changes
were found in these vegetation phenology parameters (p > 0.05).

The vegetation phenology parameters varied with altitude (Figure 3). With an increase
in altitude, the SOS showed a gentle upward trend, but the correlation between the SOS and
altitude was weak (p > 0.05). Conversely, with an increase in altitude, the EOS gradually
advanced and the LOS gradually shortened. There was a significant negative correlation
between the altitude and both EOS and LOS (p < 0.05), and the correlation coefficients
were high (R2 ≥ 0.899). The SOS tended to be delayed by 0.20 d/100 m, while the EOS

253



Remote Sens. 2022, 14, 3645

tended to advance by 0.60 d/100 m, and the LOS tended to extend by 0.80 d/100 m with
increasing altitude.

Figure 2. Interannual changes in vegetation phenology in the QLMs.

Figure 3. Characteristics of the changes in the SOS (a), EOS (b), and LOS (c) with altitude.
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The multiyear average spatial distribution of phenology in QLMs from 2001 to 2020
is shown in Figure 4a,c,e. From east to west, the vegetation phenology showed evident
changes. Overall, the SOS in the study area mainly occurred from 115 days to 150 days,
which accounted for more than 80% of the vegetation region. The earlier SOS was mainly
seen in the eastern and western QLMs, and the later SOS was mainly distributed in the
central section. In addition, the multiyear mean EOS of vegetation phenology varied
between 255 and 275 d (more than 80% of the overall pixels) from the middle of September
to early October. The EOS showed the opposite pattern in terms of spatial distribution
compared with the SOS; it was earlier in the central section of the QLMs and later in the
western and eastern sections of the QLMs. Due to the combined effects of SOS and EOS,
the LOS was mainly between 110 and 160 d. The spatial pattern of LOS was similar to that
of EOS, whereby the LOS was shorter in the central section of the QLMs and longer the
eastern and western sections of the QLMs.

Figure 4. Spatial distribution and the change trend of vegetation phenology parameters. The left side
represents the spatial pattern of the average value of the SOS (a), EOS (c), and LOS (e) from 2001 to
2020. The right side represents the spatial distribution of the change trend of the SOS (b), EOS (d),
and LOS (f) from 2001 to 2020. The trends are considered significant for pixels according to the MK
test (p < 0.05).
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Figure 4b,d,f and Table 1 show the spatial distribution of the vegetation phenology
trend in the QLMs from 2001 to 2020. A total of 72.37% of the vegetation pixels showed
an advancing trend of SOS from 2001 to 2020. A total of 13.85% of pixels, which were
mainly concentrated in the central and eastern sections of the QLMs, showed a significant
advancing trend of SOS. A few areas in the northwest of the QLMs showed a delayed
trend of SOS, whereas only 1.44% of the total land area was significantly delayed. Regions
with delayed EOS accounted for 47.59% of the vegetation pixels in the study area from
2001 to 2020 and were mainly located in the eastern and central sections of the QLMs. In
addition, the areas with advanced EOS were mainly located on the northern margins and at
the northwest of Qinghai Lake. Approximately 6.8% of vegetation pixels had a significant
delayed trend in terms of the EOS, and 3.9% of vegetation pixels had a significantly
advanced trend. There was an overall extended LOS trend for most parts of the vegetation
area (71.66% of the vegetation pixels) from 2001 to 2020, with 12.65% being significantly
extended and only 1.87% being significantly shortened. The areas with extended LOS
trends were mainly distributed in the central and eastern sections of QLMs.

Table 1. The percentage of different trends of vegetation parameters based on MK analysis across
the QLMs.

Vegetation Phenology
Insignificantly

Advanced/Shortened
Insignificantly

Delayed/Prolonged
Significantly

Advanced/Shortened
Significantly

Delayed/Prolonged

SOS 58.52% 19.62% 13.85% 1.44%

EOS 36.57% 40.79% 3.90% 6.80%

LOS 23.42% 59.01% 1.87% 12.65%

3.2. Response of Vegetation Phenology to Seasonal Driving Factors

The spatial distribution of the partial correlation coefficients between seasonal driving
factors and vegetation phenology metrics are displayed in Figure 5. For the QLMs, the SOS
was negatively correlated with spring temperature in 73.81% of vegetation pixels, while
21.21% of pixels showed a significant correlation (p < 0.05) and were mainly located in the
eastern and central parts of the study area (Figure 5a). The percentage of negative and
positive correlations between the SOS and spring precipitation was similar (Figure 5c), with
a significant negative correlation occurring in the northeast of Hala Lake. More than half
of the vegetation pixels (61.34%) of the SOS had a negative correlation with spring soil
moisture, of which 9.18% of pixels showed a significant negative correlation (Figure 5e),
mainly at the west of Qinghai Lake. The results above indicate that the increases in spring
temperature and soil moisture likely cause the SOS to advance in most part of the QLMs.

The partial correlation coefficients between the EOS and autumn temperature showed
that the EOS was positively correlated with temperature in 65.20% of vegetation pixels, and
9.89% of the areas passed the significance test (Figure 5b). Approximately 56.19% of the
vegetation pixels showed a negative correlation between the EOS and autumn precipitation,
and only 4.75% of the areas passed the significance test (Figure 5d). For autumn soil
moisture, positive correlations between the EOS and soil moisture occurred in 60.44% of the
total vegetation pixels, and approximately 9.50% of the pixels showed a significant positive
correlation (p < 0.05, Figure 5f), most of which were distributed west of Qinghai Lake and
southeast of Hala Lake. In total, the autumn temperature and soil moisture influenced the
EOS in most areas, and the increase in autumn temperature and soil moisture likely caused
the EOS to be delayed.
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Figure 5. The partial correlation coefficients between vegetation phenology parameters and seasonal
driving factors. (a,c,e) represent the partial correlation coefficients between the SOS and spring
temperature, precipitation, and soil moisture, respectively. (b,d,f) represent the partial correlation
coefficients between the EOS and autumn temperature, precipitation, and soil moisture, respec-tively.
The inset panels on the bottom left of each subpicture present pixels with a significantly (p < 0.05)
negative (blue) and positive (red) correlation. The percentages of positive (P) and negative (N)
correlations (the values in brackets indicate the percentage of significant correlations) are shown at
the top of each subpicture.

3.3. Vegetation Phenology Parameters Response to Seasonal Driving Factors Based on Different
Elevation Zones

The driving factors had different effects on vegetation phenology depending on
elevation. The results of the partial correlation analysis between the vegetation phenology
parameters (SOS, EOS) and seasonal driving factors (temperature, precipitation and soil
moisture) for different elevation zones are shown in Figure 6. A mainly negative correlation
occurred between the SOS and spring temperature (the percentage of significant negative
correlation ranged from 14.59% to 24.87%) at different elevation zones. At middle elevations
(3000–4000 m a.s.l.), more than 76% of the vegetation pixels showed a negative correlation
between the SOS and spring temperature (Figure 6a), and more than 24% of the areas passed
the significance test. The SOS was mainly negatively correlated with spring soil moisture
(more than 61%) at the <4000 m elevation zone, and the percentage of areas that passed
the significance test at the 95% level ranged from 7.24% to 12.5% (Figure 6c). However, the
SOS had the opposite correlation with spring soil moisture in the highest elevation zone
(mainly positive), 7.63% of the areas showed a significant positive correlation (Figure 6c).
Compared with spring temperature and soil moisture, spring precipitation had a weaker
influence on the SOS at the four elevation zones, and the areas of positive and negative
correlation between spring precipitation and the SOS were similar, with few pixels showing
a significant correlation (Figure 6b).
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Figure 6. Percentages of correlation between SOS and three driving factors at different elevation
zones. The three driving factors were (a) spring temperature (Tspring), (b) spring precipitation
(Pspring), and (c) spring soil moisture (SMspring).

At the lowest elevation zone (<3000 m a.s.l.), the EOS was positively correlated with
summer temperatures and precipitation in 62.57% and 72.16% of areas, and 8.03% and
18.1% of the areas showed a significant correlation (p < 0.05), respectively (Figure 7b,e).
Notably, a negative correlation between EOS and summer soil moisture occurred in 80.96%
of vegetation pixels at the lowest elevation zone (<3000 m a.s.l.), which was more than
four times larger than the positive correlation (19.04%). Approximately 30.06% of the
pixels showed a significantly negative correlation between summer soil moisture and EOS
(p < 0.05) at the lowest elevation zone (<3000 m a.s.l.), while areas with significant positive
correlations represented only 0.59% of the total (Figure 7h), indicating that the EOS was
advanced in most low elevation regions with an increase in summer soil moisture. A
positive correlation between the EOS and autumn temperature covered more than 60%
of the area in the different elevation zones, and more than 7.00% of the pixels exhibited a
significant correlation (Figure 7c). For the region with elevations less than 4000 m, more
than 8.81% of the areas demonstrated a significantly positive correlation between the EOS
and autumn soil moisture (Figure 7i). For the regions with elevations of less than 3500 m,
the area with a significant positive correlation between the EOS and autumn soil moisture
was greater than the EOS and autumn temperature (Figure 7c,i), so at lower elevations (less
than 3500 m), soil moisture played a more important role in vegetation growth in autumn.
At higher elevations (higher than 3500 m), temperature played a more important role in
vegetation growth in autumn (Figure 7c). Overall, compared with autumn temperature
and soil moisture, autumn precipitation had a weaker influence on the EOS at the four
elevation zones (Figure 7f).
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Figure 7. Percentages of correlation between EOS and different driving factors at different elevation
zones. The driving factors were (a,b,c) seasonal temperature (Tspring, Tsummer, and Tautumn are
spring, summer, and autumn temperature, respectively), (d,e,f) seasonal precipitation (Pspring, Psum-
mer, and Pautumn are spring, summer, and autumn precipitation, respectively), and (g,h,i) seasonal
soil moisture (SMspring, SMsummer, and SMautumn are spring, summer, and autumn soil moisture,
respectively).

3.4. Vegetation Phenology Response to Seasonal Driving Factors across Vegetation Types

Generally, different vegetation types had different responses to driving factors
(Figures 8 and 9). For different vegetation types, the partial correlation coefficients be-
tween the SOS and spring temperature were mostly negative (Figure 8a), especially for
broadleaf forests, needleleaf forests, shrubland, and meadows (more than 23% of regions
had significantly negative correlations). The partial correlation coefficients between the
SOS and spring soil moisture were also mostly negative (Figure 8c) for different vegetation
types, except alpine vegetation, and more than 7.80% of areas had significantly negative
correlations. For alpine vegetation, the SOS was negatively correlated with spring tem-
perature in approximately 65.18% of areas, of which 12.14% of areas showed a significant
negative correlation (Figure 8a). However, it was positively correlated with the spring soil
moisture in 52.04% of areas, with 7.49% of regions showing a significantly positive correla-
tion (Figure 8c). Compared with spring temperature and soil moisture, spring precipitation
had a weaker influence on the SOS in most vegetation types. The areas of positive and
negative correlation between spring precipitation and the SOS were similar, with few pixels
showing a significant correlation (Figure 8b).

Compared with the correlation between the EOS and autumn temperature and soil
moisture, there were limited positive and negative correlations between the EOS and
autumn precipitation, and there were relatively few significant pixels for most vegetation
types (Figure 9f). Autumn temperature and soil moisture had mainly positive correlations
with the EOS for most vegetation types (Figure 9c,i), and the EOS had a more significant
relation with soil moisture than temperature for grasslands and deserts. There was a
negative correlation between EOS and spring temperature in more than 65% of areas of
broadleaf forests, and 13.49% of the areas were significantly correlated (Figure 9a). For
needleleaf forests, there was a negative correlation between EOS and spring precipitation
in 66.11% of areas, and 10.64% of the areas were significantly correlated (Figure 9d). A
significant positive correlation between the EOS and summer precipitation was found in
11.51% of pixels for broadleaf forest and 11.36% of pixels for needleleaf forest (Figure 9e).
Summer and autumn soil moisture had opposite correlations with the EOS in QLMs, except
meadows. The EOS was mainly negatively correlated with summer soil moisture, especially
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for broadleaf forests, needleleaf forests, and grasslands (approximately 15.58%, 14.71%,
and 18.78% of the pixels had significant negative correlations, respectively). The EOS of
most vegetation types were positively correlated with autumn soil moisture, especially
those of grasslands and deserts (for which approximately 11.35% and 12.97% of the pixels
had significant positive correlations, respectively).

Figure 8. PerPercentages of correlation between the SOS and three driving factors in different vegeta-
tion types. The three driving factors were (a) spring temperature (Tspring), (b) spring precipitation
(Pspring), and (c) spring soil moisture (SMspring).
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Figure 9. Percentages of correlation between EOS and different driving factors in different vegetation
types. The driving factors were (a,b,c) seasonal temperature (Tspring, Tsummer, and Tautumn are
spring, summer, and autumn temperature, respectively), (d,e,f) seasonal precipitation (Pspring,
Psummer, and Pautumn are spring, summer, and autumn precipitation, respectively), and (g,h,i) sea-
sonal soil moisture (SMspring, SMsummer, and SMautumn are spring, summer, and autumn soil
moisture, respectively).

4. Discussion

4.1. The Spatial Heterogeneity of Vegetation Phenology in the Qilian Mountains

The vegetation phenology in the QLMs showed significant spatial heterogeneity. In
general, the SOS was later in the central region and earlier in the eastern and western
regions of the QLMs, and the EOS exhibited the opposite trend in terms of its spatial
distribution. These results are consistent with the results reported by Qi et al. [27] and
Sun et al. [35] but inconsistent with the results reported by Qiao et al. [36], who observed
that the multiyear mean SOS was gradually delayed from southeast to northwest and that
the multiyear mean EOS gradually advanced from southeast to northwest in the QLMs.
The main reasons for the differences in the results are the different temporal and spatial
resolutions of the remote sensing data. Different remote sensing data sources and data
time series may obtain different vegetation phenology results [37,38]. The AVHRR and
MODIS datasets have a consistently high temporal resolution time series of data and are
widely used for phenology studies [39]. MODIS data (1 km) have a higher resolution
than AVHRR data (8 km) and can extract more detailed spatial phenological signals for
vegetation types, particularly in heterogeneous areas [40]. The vegetation phenology of the
QLMs was characterized by an advanced SOS, delayed EOS, and extended LOS during the
period from 2001 to 2020, which are consistent with recent results on the QTP [37,38,41]
and on the QLMs [27,35].

In our study, the results showed that the SOS gradually delayed, the EOS gradually
advanced, and the LOS gradually shortened with increasing altitude. No significant
correlation was found between the SOS and altitude, but a significant negative correlation
was found between both the EOS and LOS and altitude. These results are consistent
with recent findings on the QTP [2]. The SOS change may have almost nothing to do
with altitude [2]. At higher altitudes, there is relatively low air temperature, which is not
beneficial for delaying leaf senescence, and the EOS advances to avoid harm from frost and
has a shorter LOS [42].
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4.2. Response of Vegetation Phenology to Different Driving Factors

Vegetation phenology responses to different driving factors are complex and variable.
In our study, we found that the SOS was negatively correlated with spring temperature
and spring soil moisture in most regions of the study area, implying that the advanced SOS
could be associated with a warmer spring air temperature and higher soil moisture. In our
study, the spring temperature had a stronger influence on the SOS, and most studies have
also reported that higher temperatures were the main factor associated with an earlier SOS
around the world over the last several decades [18,43–45].

The impacts of driving factors on vegetation phenology were varied in different
elevation zones. For SOS, spring temperature seemed to be the main factor limiting
vegetation growth. The QLMs are located in high altitude areas with low temperatures
(the annual mean temperature in most areas is below 0 ◦C); with an increase in altitude,
the temperature gradually decreased (Table 2). Vegetation needs a certain amount of
cumulative temperature to green up, so the early stages of vegetation growth are more
affected by temperature in relatively cold regions [5,46]. The autumn soil moisture was
the main limiting factor at lower elevations (<3500 m a.s.l.), and autumn temperature was
the main limiting factor at higher elevations (>3500 m a.s.l.). These results are consistent
with the research of Peng et al. [47], which demonstrated that soil moisture was the major
limiting factor for the radial growth of Qinghai spruce at the lower elevations of the central
QLMs and that temperature was the major limiting factor for radial growth of Qinghai
spruce at higher elevations. These results also suggest that vegetation management must
take elevation differences into account when facing the challenges of climate change. From
Table 2, we can see that the annual average soil moisture at lower elevations (0.31 m3·m−3)
was less than that at higher elevations (0.34 m3·m−3), so this is one possible reason that the
autumn soil moisture had a stronger influence on the EOS in lower elevation zones. The
EOS showed a significant negative correlation with summer soil moisture in approximately
30.06% of the pixels in the lowest elevation zones (<3000 m a.s.l.). Peng et al. [47] also
found that, during the summer at lower elevations, soil moisture is the most important
factor limiting xylem cell differentiation based on the Vaganov–Shashkin model.

Table 2. The annual average soil moisture and temperature from 2001 to 2020 in four elevation zones.

Soil Moisture (m3·m−3) Temperature (◦C)

DEM < 3000 m 0.31 2.19

DEM: 3000–3500 m 0.31 −0.90

DEM: 3500–4000 m 0.34 −4.67

DEM > 4000 m 0.34 −7.27

At the landscape level, the SOS was negatively correlated with spring temperature in
most regions with different vegetation types. More specifically, 42.36%, 23.31%, 31.54%,
and 24.83% of the areas of broadleaf forests, needleleaf forests, shrublands, and meadows,
respectively, showed a significantly negative correlation between SOS and spring tempera-
ture (Figure 8a). This is because the broadleaf forests, needleleaf forests, shrublands, and
meadows are mainly located in semi-arid regions (more than 78% of these are located in
the semi-arid region) where the climate is relatively humid compared with arid regions;
however, the temperature is low in the study area, and higher temperature in spring could
decrease the damage from frost and promote spring thawing [5]. The spring soil moisture
had a stronger influence on the SOS of deserts (Figure 8c). This is because about 90.37%
of deserts are located in arid areas with limited soil water conditions (Table 3). The soil
water is an indispensable intermediary used to ensure nutrient substance transport, which
is likely to be the main reason for the negative correlation between soil moisture and
SOS for deserts. Additionally, there are many shallow-rooted plants in deserts, and these
shallow-rooted plants are more sensitive to soil moisture changes than other plants [48,49].
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A negative correlation was observed between summer soil moisture and EOS, but a posi-
tive correlation was observed between autumn soil moisture and EOS for most vegetation
types. This negative correlation shifted to a positive correlation from summer to autumn,
indicating that the summer and autumn soil moisture had a great influence on the EOS, but
the correlation was the opposite in these two seasons. The main reason for this differential
response is that the precipitation in QLMs is mainly concentrated in summer [25], and
too much moisture prevents vegetation growth because a high soil moisture can limit the
absorption of soil nutrients by vegetation [50]. Ren et al. found that the precipitation
played a more important role than temperature in the interannual variation of the SOS
and EOS in Inner Mongolia [19]. However, compared with temperature and soil moisture,
precipitation had a relatively limited impact on the EOS in the QLMs. This is because
precipitation may a have lagged effect on vegetation phenology, meaning that soil moisture
is a more straightforward driving factor for vegetation phenology than precipitation and
has a number of sources in the QLMs, including precipitation, snowmelt, surface runoff,
and groundwater.

Table 3. The annual average soil moisture and temperature from 2001 to 2020 for different vegeta-
tion types.

Soil Moisture (m3·m−3) Temperature (◦C)

Broadleaf forests 0.36 1.72

Needleleaf forests 0.34 −1.49

Shrublands 0.35 −2.05

Meadows 0.36 −4.87

Grasslands 0.29 −0.75

Deserts 0.20 −2.49

Alpine vegetation 0.33 −7.16

4.3. Limitations and Future Work

It should be noted that there may be some limitations to our current study. The number
of ground observations of vegetation phenology is insufficient, especially in the central and
western parts of the QLMs because of a lack of phenological observation networks. At the
same time, the existing observation stations have a relatively short historical record. Digital
cameras have been shown to be valuable tools to validate the phenology derived from
satellite imagery at a low cost [40] because of their high temporal and spatial resolutions. In
future, automated digital cameras are promising for providing consistent and continuous
monitoring of vegetation growth at local and regional scales [51,52].

The vegetation phenology results calculated from remote sensing data may contain
some uncertainties that are due to the inaccuracy of satellite data. NDVI data have been
widely used for phenology characterization because they are simple to measure for most
optical sensors [53,54]. However, because NDVI data are sensitive to the soil background
and are easily saturated in high vegetation coverage areas [55], the applications of NDVI
data may have some limitations. Considering the sparse vegetation in the western part
of the QLMs, the modified vegetation index, such as the soil-adjusted vegetation index
(SAVI), may be appropriate for detecting vegetation growth changes because of its ability
to minimize the effects of the soil background. In the future, collective analyses of multiple
VIs (such as the land phenology index, enhanced vegetation index, and perpendicular
vegetation index) may improve the accuracy of phenology estimation [56–58]. The spatial
resolution of ERA5-Land soil moisture data is relatively low, which may hide some spatial
details of soil moisture parameters. But the high-resolution soil datasets are difficult to
obtain for a large study area [59]. Future studies should integrate a series of soil moisture
datasets at a higher resolution to further discuss the response relationship between vegeta-
tion phenology and soil moisture. Vegetation phenology is also influenced by other factors,
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such as radiation, soil nutrients, climate extremes, and human activities, so more attention
should be paid to exploring the phenology variations in response to these driving factors
in future work. The vegetation phenology response to driving factors may be nonlinear,
and the interactions between climatic factors have critical role in vegetation phenology, so
other methods like the GeoDetector model can be used to detect the contribution of driving
factors to vegetation phenology and the interactions between driving factors. Our findings
suggest that the variation in soil moisture should be considered in future studies on climate
warming and the environmental effects of phenology in water-limited areas.

5. Conclusions

Based on the time series MODIS NDVI datasets from 2001 to 2020, we retrieved
the vegetation phenological parameters in the QLMs. The spatiotemporal variation in
vegetation phenology was analyzed, and divergent correlations between the SOS and
EOS and seasonal driving factors were explored. The results demonstrated that vegetation
phenology in the QLMs is characteristic of advancing SOS, postponing EOS, and prolonging
LOS, but the variation trends of vegetation phenology were not significant (p > 0.05) from
2001 to 2020. The seasonal temperature, precipitation, and soil moisture had spatiotemporal
heterogeneous effects on the vegetation phenology. Compared with temperature and soil
moisture, precipitation had a weaker influence on the vegetation phenology in QLMs. The
spring temperature was the key driving factor influencing SOS in the QLMs. The autumn
soil moisture and autumn temperature made the largest contributions to the variations in
EOS at lower elevations (<3500 m a.s.l.) and higher elevations (>3500 m a.s.l.), respectively.
Spring temperature was the key driving factor influencing SOS of most vegetation types.
Autumn soil moisture was the main factor influencing EOS in deserts because of the
strong soil moisture stress. An increase in summer soil moisture may limit vegetation
growth in the QLMs. Under ongoing global change, finding the response of the SOS and
EOS to driving factors is beneficial for a better understanding of the interactions between
vegetation phenology and future climate change.
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