
Edited by

Application 
and Theory of 
Multimedia Signal 
Processing Using 
Machine Learning or 
Advanced Methods

Cheonshik Kim

Printed Edition of the Special Issue Published in Applied Sciences

www.mdpi.com/journal/applsci



Application and Theory of Multimedia
Signal Processing Using Machine
Learning or Advanced Methods





Application and Theory of Multimedia
Signal Processing Using Machine
Learning or Advanced Methods

Editor

Cheonshik Kim

MDPI • Basel • Beijing • Wuhan • Barcelona • Belgrade • Manchester • Tokyo • Cluj • Tianjin



Editor

Cheonshik Kim

Sejong University

Korea

Editorial Office

MDPI

St. Alban-Anlage 66

4052 Basel, Switzerland

This is a reprint of articles from the Special Issue published online in the open access journal

Applied Sciences (ISSN 2076-3417) (available at: https://www.mdpi.com/journal/applsci/special

issues/Multimedia Signal Processing Using Machine Learning Advanced Methods).

For citation purposes, cite each article independently as indicated on the article page online and as

indicated below:

LastName, A.A.; LastName, B.B.; LastName, C.C. Article Title. Journal Name Year, Volume Number,

Page Range.

ISBN 978-3-0365-5393-1 (Hbk)

ISBN 978-3-0365-5394-8 (PDF)

© 2022 by the authors. Articles in this book are Open Access and distributed under the Creative

Commons Attribution (CC BY) license, which allows users to download, copy and build upon

published articles, as long as the author and publisher are properly credited, which ensures maximum

dissemination and a wider impact of our publications.

The book as a whole is distributed by MDPI under the terms and conditions of the Creative Commons

license CC BY-NC-ND.



Contents

About the Editor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

Cheonshik Kim

Application and Theory of Multimedia Signal Processing Using Machine Learning or Advanced
Methods
Reprinted from: Appl. Sci. 2022, 12, 6426, doi:10.3390/app12136426 . . . . . . . . . . . . . . . . . 1

Abigail Copiaco, Christian Ritz, Nidhal Abdulaziz and Stefano Fasciani

A Study of Features and Deep Neural Network Architectures and Hyper-Parameters for
Domestic Audio Classification
Reprinted from: Appl. Sci. 2021, 11, 4880, doi:10.3390/app11114880 . . . . . . . . . . . . . . . . . 5

Chunxia Zhang, Xiaoli Wei and Sang-Woon Kim

Empirical Evaluation on Utilizing CNN-Features for Seismic Patch Classification
Reprinted from: Appl. Sci. 2022, 12, 197, doi:10.3390/app12010197 . . . . . . . . . . . . . . . . . . 29

Jae-Yeul Kim and Jong-Eun Ha

Foreground Objects Detection by U-Net with Multiple Difference Images
Reprinted from: Appl. Sci. 2021, 11, 1807, doi:10.3390/app11041807 . . . . . . . . . . . . . . . . . 43

Yee Fan Tan, Tee Connie, Michael Kah Ong Goh and Andrew Beng Jin Teoh

A Pipeline Approach to Context-Aware Handwritten Text Recognition
Reprinted from: Appl. Sci. 2022, 12, 1870, doi:10.3390/app12041870 . . . . . . . . . . . . . . . . . 63

Xue Bi, Lu Leng, Cheonshik Kim, Xinwen Liu, Yajun Du and Feng Liu

Constrained Backtracking Matching Pursuit Algorithm for Image Reconstruction in
Compressed Sensing
Reprinted from: Appl. Sci. 2021, 11, 1435, doi:10.3390/app11041435 . . . . . . . . . . . . . . . . . 81

Cheonshik Kim and Chin-Nung Yang

Self-Embedding Fragile Watermarking Scheme to Detect Image Tampering Using AMBTC and
OPAP Approaches
Reprinted from: Appl. Sci. 2021, 11, 1146, doi:10.3390/app11031146 . . . . . . . . . . . . . . . . . 95

Cheonshik Kim, Dongkyoo Shin, Ching-Nung Yang and Lu Leng

Hybrid Data Hiding Based on AMBTC Using Enhanced Hamming Code
Reprinted from: Appl. Sci. 2020, 10, 5336, doi:10.3390/app10155336 . . . . . . . . . . . . . . . . . 117

Yi-Fan Tseng, Zi-Yuan Liu and Raylin Tso

Practical Inner Product Encryption with Constant Private Key †

Reprinted from: Appl. Sci. 2020, 10, 8669, doi:10.3390/app10238669 . . . . . . . . . . . . . . . . . 135

Zuo Xiang, Frank H. P. Fitzek, and Patrick Seeling

You Only Look Once, But Compute Twice: Service Function Chaining for Low-Latency Object
Detection in Softwarized Networks †

Reprinted from: Appl. Sci. 2019, 11, 2177, doi:10.3390/app11052177 . . . . . . . . . . . . . . . . . 149

Yebo Gu, Bowen Huang and Zhilu Wu

Power Allocation for Secrecy-Capacity-Optimization-Artificial-Noise Secure MIMO Precoding
Systems under Perfect and Imperfect Channel State Information
Reprinted from: Appl. Sci. 2021, 11, 4558, doi:10.3390/app11104558 . . . . . . . . . . . . . . . . . 163

v





About the Editor

Cheonshik Kim

Cheonshik Kim is a professor in the Department of Computer Science, Sejong University,

Korea. He is the Editor of the Real-Time Image Processing Journal and ICACT Transaction on Advanced

Communications Technology (TACT), and a Topical Advisory Panel Member of Applied Sciences (MDPI).

His research interests include multimedia systems, data hiding, and watermarking. He was a subject

of a biographical record in the Marquis Who’s Who in the World 2013–2015.

vii





Citation: Kim, C. Application and

Theory of Multimedia Signal

Processing Using Machine Learning

or Advanced Methods. Appl. Sci.

2022, 12, 6426. https://doi.org/

10.3390/app12136426

Received: 22 June 2022

Accepted: 22 June 2022

Published: 24 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Editorial

Application and Theory of Multimedia Signal Processing Using
Machine Learning or Advanced Methods

Cheonshik Kim

Department of Computer Engineering, Sejong University, Seoul 05006, Korea; mipsan@sejong.ac.kr

1. Introduction

Machine learning (ML) uses algorithms to identify and predict useful patterns from
data. Although it has found success in many areas, the results of multimedia mining are
not satisfactory. ML in multimedia application extracts relevant data from multimedia files,
such as audio, video, and still images, to perform similar searches, identify associations,
and perform entity identification and classification. CNN emerged as a new breakthrough
in the fields of data mining and AI, and has proven useful in both data analysis and
application. In addition, CNN has made great progress in the area of multimedia. CNN is
a field of machine learning that is applied in smart phones for face recognition and voice
commands. Additionally, CNN technology contributes to the development of algorithms
for the safety and security of multimedia data and the development of new applications.

This Special Issue will share the achievements of key researchers and practitioners in
academia, as well as in the industry, dealing with a wide range of theoretical and applied
problems in the field of multimedia.

2. Published Papers

In view of the above, this Special Issue is introduced to collect the latest research on
the related subject and to solve the present challenging problems related to the various
technologies based on digital imaging technology. In this feature, 10 papers have been
published, and 21 papers have been received (i.e., 47% acceptance rate). Looking back at
the special feature, various topics were covered with a focus on data hiding, encryption,
object detection, image classification, and text recognition.

The first paper (Kim et al. (2020)) [1] shows an effective data hiding method for
two quantization levels of each block of AMBTC using Hamming codes. Bai and Chang
introduced a method of applying Hamming (7,4) to two quantization levels; however,
the scheme is ineffective, and the image distortion error is relatively large. To solve the
problem with the image distortion errors, this paper introduces a way of optimizing
codewords and reducing pixel distortion by utilizing Hamming (7,4) and lookup tables.

The second paper provides another review of efficient inner product encryption
approach by Tseng et al. (2020) [2]. The formal security proof and implementation result are
also demonstrated. Compared with other state-of-the-art schemes, our scheme is the most
efficient in terms of the number of pairing computations for decryption and the private
key length.

The third paper proposed by Kim et al. (2021) [3] introduced a self-embedded wa-
termarking technique based on Absolute Moment Block Truncation Coding (AMBTC)
for reconstructing tampered images by cropping attacks and forgery. The watermark is
embedded in the pixels of the cover image using 3LSB and 2LSB, and the checksum is
hidden in the LSB. Through the recovering procedure, it is possible to recover the original
marked image from the tampered marked image.

The fourth paper is a study on image reconstruction based on sparse constraints,
which is an important research topic in compressed sensing. This paper is a constrained
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backtracking matching pursuit (CBMP) algorithm for image reconstruction, and is written
by Bi et al. (2021) [4].

In the fifth paper, written by Kim et al. (2021) [5], they present a new method to
detect foreground objects in video surveillance using multiple difference images as the
input of convolutional neural networks, which guarantees improved generalization power
compared to current deep learning-based methods.

The sixth paper (Xiang et al. (2021)) [6] is a study of an example for splitting the
inference component of the YOLOv2 trained machine learning model between client,
network, and service side processing to reduce the overall service latency. The approach of
this research is not only applicable to object detection, but can also be applied in a broad
variety of machine learning-based applications and services.

The seventh paper (Gu et al. (2021)) [7] proposes a method of power allocation for
secrecy capacity optimization artificial-noise secure MIMO precoding systems under perfect
and imperfect channel state information.

The eighth paper (Copiaco et al. (2021)) [8] presents a detailed study of the most ap-
parent and widely-used cepstral and spectral features for multi-channel audio applications.
Additionally, the paper details the development of a compact version of the AlexNet model
for computationally limited platforms through studies of performances against various
architectural and parameter modifications of the original network.

This ninth paper (Zhang et al. (2022)) [9] empirically evaluates two kinds of features,
which are extracted, respectively, with traditional statistical methods and convolutional neural
networks (CNNs), in order to improve the performance of seismic patch image classification.

The tenth paper (Tan et al. (2022)) [10] proposes a pipeline that locates texts on a page
and recognizes the text types, as well as the context of the texts within the detected region.

3. Future Research Directions

Although the special feature has ended, more in-depth research on digital image
security technology is expected. In order to support the basic technology of the 4th industrial
revolution, it can be expected that more advanced research will occur in the future.
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Abstract: Recent methodologies for audio classification frequently involve cepstral and spectral
features, applied to single channel recordings of acoustic scenes and events. Further, the concept
of transfer learning has been widely used over the years, and has proven to provide an efficient
alternative to training neural networks from scratch. The lower time and resource requirements
when using pre-trained models allows for more versatility in developing system classification
approaches. However, information on classification performance when using different features for
multi-channel recordings is often limited. Furthermore, pre-trained networks are initially trained
on bigger databases and are often unnecessarily large. This poses a challenge when developing
systems for devices with limited computational resources, such as mobile or embedded devices.
This paper presents a detailed study of the most apparent and widely-used cepstral and spectral
features for multi-channel audio applications. Accordingly, we propose the use of spectro-temporal
features. Additionally, the paper details the development of a compact version of the AlexNet
model for computationally-limited platforms through studies of performances against various
architectural and parameter modifications of the original network. The aim is to minimize the
network size while maintaining the series network architecture and preserving the classification
accuracy. Considering that other state-of-the-art compact networks present complex directed acyclic
graphs, a series architecture proposes an advantage in customizability. Experimentation was carried
out through Matlab, using a database that we have generated for this task, which composes of
four-channel synthetic recordings of both sound events and scenes. The top performing methodology
resulted in a weighted F1-score of 87.92% for scalogram features classified via the modified AlexNet-
33 network, which has a size of 14.33 MB. The AlexNet network returned 86.24% at a size of
222.71 MB.

Keywords: neural network; transfer learning; scalograms; MFCC; Log-mel; pre-trained models

1. Introduction

The continuous research advances in the field of single and multi-channel audio clas-
sification suggests its importance and relevance in a broad range of real-world applications.
In this work, we focus on domestic multi-channel audio classification, which can be applied
to monitoring systems and assistive technology [1,2].

The majority of the existing works within this area are based on the classification of
sound events found in single channel audio [3,4] rather than classifying multi-channel

Appl. Sci. 2021, 11, 4880. https://doi.org/10.3390/app11114880 https://www.mdpi.com/journal/applsci5
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audio signals containing acoustic scenes, which is required to understand the continuous
nature of daily domestic activities. Acoustic scenes refer to the sound scene recording of a
certain activity over time, while sound events refer to more specific sound classes happen-
ing at short periods of time within a duration [5]. The detection of multi-channel audio was
also found to be 10% more accurate when compared to single channel audio, considering
the case of overlapping sounds that commonly occur in real-life [6]. Such overlapping
sounds may be better detected through joint processing from different channels, reducing
the effects of background noise and other interference. A similar concept to this work is the
Detection and Classification of Acoustic Scenes and Events (DCASE) 2018 Task 5 challenge,
which focuses on domestic multi-channel acoustic scene classification [7]. In this challenge,
top performing methods often involve the use of Log-Mel energies and Mel-frequency
Cepstral Coefficients (MFCC), while VGG-16 and VGG-ish pre-trained models are common
choices for classification. The use of Log-Mel continues to be a popular choice for features
in top performing methods of the DCASE 2019 and 2020 Task 4 challenges on sound event
detection and classification [7]. Nonetheless, the utilization of spectro-temporal scalograms
for multi-channel classification has not yet been thoroughly explored.

Log-Mel energies are a subset of spectral features, which consider the frequency
components of a signal [8]. On the other hand, MFCCs are based on the cepstral represen-
tation of a signal, which results from the Inverse Fourier Transform (IFT) of the spectral
components of the signal [8]. Although these algorithms are commonly used and are
popular for noise-free environments, they have several challenges when faced in noisy
acoustic environments [8,9].

Hence, this work aims to determine the optimum feature for domestic multi-channel
acoustic scene classification, which takes into account real-life scenarios, such as the
presence of different types of background noise. Although the DCASE 2018 Task 5 challenge
had real recordings in real environments, the specific characteristics of the noise and
reverberation were unknown. Hence, here we conduct a controlled study on these effects
using a new database with known characteristics. Experimentation is done by conducting
a thorough analysis and comparison of the classification performances and processing
time of cepstral and spectral features for several pre-trained neural network and compact
neural network models, using weight-sensitive metrics. It is important to note that the
use of weight-sensitive metrics is important, in order to take into account the biasing that
may be caused by imbalanced datasets. Further, a study on the effects of architectural
and hyper-parameter modification on the optimum pre-trained network has also been
looked into, in order to reduce the size of the network while maintaining its performance.
In turn, we propose the use of spectro-temporal features in the form of scalograms, which
are computed through a fast Fourier transform (FFT)-based continuous wavelet transform
(CWT) [10]. These features possess excellent time and frequency localization, allowing a
thorough representation of continuous signals with minimal loss of information [10]. This
is coupled with a modified AlexNet Model, which consists of 33 layers instead of 25, and
utilizes a leaky rectified linear unit (ReLU) activation function instead of a traditional ReLU
function. Finally, we also synthesize an original database, which aims to recreate scenarios
that could occur in real life, in order to test and verify the overall robustness of the system.
In summary, the contributions described in this article include:

• A detailed performance comparison between different cepstral, spectral, and spectro-
temporal features for audio classification.

• A direct performance comparison of pre-trained models and a detailed study of the
effects of network modification on the optimum model.

• The development of a modified, compact AlexNet model that maintains the model’s
accuracy while reducing the network size by over 90%, allowing compatibility with
mobile devices and applications.

• The development of a multi-channel synthetic domestic acoustic scene and event
database to test the overall system robustness.
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In this work, we focus on the classification and labelling of sound event and scenes,
which are relevant for dementia patient monitoring systems. However, applications of
the techniques explored in this work are not limited to acoustic scene classification and
can be extended to other domains. For example, the compact network and the features
examined can be modified to fit any image classification problem, such as emotion detection
systems [11] and image-based diagnosis for healthcare applications [12]. Further, features
explored in this work, as well as their combination, can also be used for regression problems,
such as the estimation of characteristics of seismic waves [13], which is based on STFT
features combined with CNN.

It is important to note that the compact neural network development is not a step
towards an actual deployment in any specific resource-limited system. Rather, we explore
and experiment the extent to which the system can be scaled down while maintaining
high performance.

2. Audio Features and Pre-Trained Neural Networks

2.1. Audio Signal Features

Audio classification is typically achieved by extracting discriminative features that
represent the underlying common characteristics of audio signals belonging to the same
class. Similar to the DCASE challenge, it is assumed that the audio signals are recorded by
microphone arrays placed at different locations (nodes) within a room. The recorded audio
signals can then be represented as:

ym(t) =
K

∑
i=1

hm,i(t) ∗ Si(t) + vm(t) (1)

where, ym(t) is the signal recorded at time t by microphone m in the array at each node, Si(t)
is the ith sound source signal (where K is the total number of sounds), hm,i(t) is the room
impulse response (RIR) from source i to microphone m, and vm(t) is additive background
noise at microphone m. The audio recordings used in this work are four-channel and are
time-aligned.

This section discusses several top performing features considered for multi-channel
acoustic scenes and evaluates them in terms of their advantages and drawbacks according
to the requirements of the system. The following subsections evaluate the possible features
according to their relevant categories within the feature engineering process [8], as shown
in Figure 1.

 

Figure 1. Taxonomy of features extracted from audio.

As observed, features are sub-divided into three main categories, namely: temporal
features, spectral features, and cepstral features. Temporal features are computed in the
time-domain and have the least computational complexity [8]. Spectral features, on the
other hand, are extracted starting from the frequency representation of the signal [8].
Cepstral features then represent the rate of change within the different spectrum bands [8].
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Finally, the fusion between spectral and temporal features results in spectro-temporal
features, which combine both time and frequency attributes of a signal [8].

Since temporal features are directly extracted from the audio signal, they often deter
from providing reliable descriptors for multi-channel audio classification, as they do not
contain information about the frequency. Hence, in this work, we examine cepstral and
spectral features only. Along with this, we also examine spectro-temporal features, which
are a combination of temporal and spectral features.

2.1.1. Cepstral Features

Cepstral features represent the cepstrum, a depiction of acoustic signals that is com-
monly utilized in homomorphic signal processing, and is often characterized by the conver-
sion of signals combined through convolution, into the sums of their specific cepstra [14].
Cepstral coefficients were found to be one of the most commonly utilized features for
classification of acoustic scene and events.

The mel-frequency cepstral coefficients (MFCC) were the most widely apparent, and
are based on a filter that models the behaviour of the human auditory system [14], making it
advantageous in terms of sound identification. The MFCCs can be acquired through taking
the log of the mel spectrum. Following this, the discrete cosine transform (DCT) of the log
spectrum are obtained, with the MFCCs being the result of the DCT’s amplitudes [15].

Calculation of the MFCC coefficient starts by dividing the time-aligned four-channel
averaged audio signal yavg(t) into multiple segments. Windowing is then applied to each
of these segments prior to being subject to the discrete Fourier transform (DFT), resulting
in the short-term power spectrum P(f) [16].

The power spectrum P(f) is then warped along the frequency axis f, and into the mel-
frequency axis M, resulting in a warped power spectrum P(M). The warped power spectrum
is then discretely convolved with a triangular bandpass filter with K filters, resulting in
θ(Mk) [16]. The MFCC coefficients are calculated according to Equation (2) [16].

MFCC(d) = ∑K
k=1 Xk cos

[
d(k − 0.5)

π

K

]
, d = 1 . . . D (2)

where Xk = ln(θ(Mk)), and D << K due to the compression ability of the MFCC [16].
Nonetheless, these were also found to be prone to loss of substantial information due to
its sensitivity to noise [17]. Similarly, its performance can be affected by the shape and
spacing of the filters and the warping of the power spectrum [16]. Nevertheless, the MFCC
approach has several advantages due to its simple computation, and flexibility with regards
to integration with several other features [16].

2.1.2. Spectral Features

Spectral features are computed from the frequency components of the audio sig-
nal. The two-dimensional representation of the frequency components of an audio signal
is called a spectrogram, which often results from the application of the short time dis-
crete Fourier transform (STFT) to constantly compare the input signal with a sinusoidal
analysis function [18]. Although this representation is known to work well with neural
networks [19], the signal processing techniques used in order to display the representation
can cause inconsistency within the structure of the spectrogram [18]. Further, the majority
of the works concerning the spectrogram solely makes use of the magnitude component
representation of the audio signal, omitting the phase information [20].

Although spectral features have several advantages, the information yielded may not
be sufficient for the characterization of multi-channel audio scene acoustics. Often, they are
combined with other features in order to produce a considerable representation of the signal
magnitude [8]. However, since different audio scenes have different requirements in terms
of temporal and frequency resolutions [21], the combination of several spectral features
does not necessarily improve the accuracy of the classifier. A study by Chu, S. et al. [22] had
shown that combining several spectral features, including centroid, bandwidth, flatness,
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and asymmetry for sound classification, does not really improve the accuracy. Instead, an
increase in the computational complexity is observed due to the individual computation of
multiple features that had to be combined.

Nonetheless, the log-Mel energy features are deemed beneficial for multi-channel
acoustic scene classification and were utilized in notable related works mentioned in this
research [23,24]. Log-Mel energy features had also been a well-received choice of features
for DCASE challenge entries, as per the review of Mesaros, A. et al. [25], due to the two-
dimensional matrix output that it yields, which is a suitable input for the CNN classifier.
Log-Mel features are extracted through the application of a STFT applied to Hamming
windowed audio segments [9]. A Mel-scale filter bank is then implemented after taking
the square of the absolute value per bin, which are then processed to fit the requirements
of the system [9].

2.1.3. Spectro-Temporal Features

Spectro-temporal features stem from the fusion of temporal and spectral features.
Although not widely explored in the field of multi-channel audio classification, several
works have devised algorithms that integrate the use of both temporal and spectral features
for acoustic event detection [26,27]. Cotton, et al. proposed the use of a non-negative matrix
factorization algorithm in order to detect a set of patches containing relevant spectral and
temporal information that best describes the data [27]. The results achieved in their
experiment suggest that their features provide more robustness in noisy environments
as opposed to MFCCs as sole features. Schroder, et al. [26], on the other hand, devises a
spectro-temporal feature extraction algorithm through two-dimensional Gabor functions
for robust classification.

Nevertheless, these algorithms were tested solely on acoustic events as opposed to
acoustic scenes. Similarly, the applicability of these algorithms to multi-channel audio
scenes remains controversial; aside from not being widely utilized, comparison against
other top performing feature combinations for the same application were not apparent.

However, one of the most notable works in the field of spectro-temporal features
is scalogram features, which are computed through the continuous wavelet transform
(CWT) [28]. Such methods consider both the time and frequency components of a signal.
The time components represent the motion of the signal, and the frequency components
symbolize the pixel positions in an image [28]. Taking a computer vision approach, the
velocity vectors are first calculated through multi-scale wavelets, which are localized in
time [29]. The CWT of a continuous signal is defined by Equation (3) [29].

CWTc(s, t) =
∫ ∞

−∞
yavg(u)

1√
s

ψ∗
(

u − t
s

)
du (3)

where ψ∗ refers to the complex conjugate of the mother wavelet, t refers to the time
domain, u signifies the signal segment, and s refers to the scale, which is a function of
the frequency [29].

Separation of the audio channels is then performed via the low-dimensional models
that reverberated from the firmness of the harmonic template models [28]. Such a process
is beneficial for multi-channel audio classification due to its ability to separate mixed audio
sources, which allows a thorough analysis for individual audio channels.

The scalogram is a visual representation of the absolute value of the CWT coefficients,
represented by Equation (4) [30]:

E(s, t) = |CWTc(s, t)|2 (4)

Nonetheless, despite its advantages, computation of CWT coefficients are often ex-
tensive and are subject to high computational time duration [31]. Wavelets are computed
through comparing and inverting the DFT of the signal against the DFT of the wavelet,
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which can be computationally expensive. Thus, integration of other techniques in order to
reduce this complexity must also be examined.

2.2. Pre-Trained Networks

Convolutional neural networks (CNN) have been commonly used for multi-channel
sound scene classification in the recent years. CNNs are a sub-type of neural networks that
utilize multiple convolution stages for classification [32]. Similar to the traditional neural
network, CNNs are composed of three layers, namely: the convolutional layer, the pooling
layer, and the fully connected layer [33]. Nonetheless, instead of a traditional fully con-
nected layer, only a subset of the previous layer neurons is connected to the next ones. This
suggests improvements in run time, computational complexity, and memory requirements.

There are various pre-trained convolutional neural network models for classification.
This is achieved through the use of transfer learning, which allows the reuse of a previously
trained network’s weights to train a new network model [34], typically using new training
data representing new classes. Several advantages of transfer learning include an improved
efficiency both in time duration requirements of the model building process, training, and
the learning workflow [35]. Further, several research works also report improved results
by using transfer learning on pre-trained networks as opposed to training a network
from scratch [36].

Various examples of pre-trained CNN models include AlexNet [37], GoogleNet [38],
ResNet [39], Inception-ResNet [40], Xception [41], SqueezeNet [42], VGGNet [43], and
LeNet [44]. These networks are trained with large datasets, and the weights are saved in
order to be re-used for transfer learning. Table 1 provides a summary of the comparison
between these pre-trained networks in terms of their basic characteristics, including the
year of introduction, network size in MB, image input size, number of layers, number of
parameters, and the 5% error rate. Nonetheless, as per our previous works, the AlexNet
model returns the highest accuracy for domestic audio classification applications [45,46].

Table 1. General Comparison Summary between Pre-trained CNN Models.

Model Year Size (MB) Input Size Layers Parameters 5% ER

AlexNet [37] 2012 227 227 × 227 8 62.3 million 16.4%
GoogleNet [38] 2014 27 224 × 224 22 4 million 6.70%

ResNet [39] 2015 167 224 × 224 101 * 25 million 3.57%
Inception-ResNet [40] 2017 209 299 × 299 164 * 55.9 million

Xception [41] 2016 85 299 × 299 71 22.9 million
SqueezeNet [42] 2016 5.2 227 × 227 18 1.25 million

VGGNet [43] 2014 515 224 × 224 41* 138 million 7.30%
LeNet [44] 1998 7 60,000 28.2%

* Number of layers may vary depending on the version used.

3. Experimental Methodology

Based on the above discussion on the advantages and disadvantages of different
feature and classification techniques, this section starts by explaining the dataset utilized
and details the methodology and process we used to carry out this study.

3.1. Synthetic Domestic Acoustic Database

Synthesizing our own database allows the production of data that address issues
commonly faced in a certain environment and recreates scenarios that could occur in real
life. This includes noisy environments, as well as various source-to-receiver distances.
Furthermore, this also provides the exact locations of the sound sources.

For this work, the generation of the synthetic database was done based on a 92.81 m2

one-bedroom apartment modelled after the Hebrew Senior Life Facility [47], illustrated
in Figure 2. We assumed a 3 m height for the ceiling. Multi-channel recordings were
aimed for; hence, microphone arrays were placed on each of the four corners of the six
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rooms at 0.2 m below the ceiling. This produced four recordings, one from each of the
receiver nodes.

 

Figure 2. Floorplan of one-bedroom apartment used as acoustic environment for the synthetic
database, dimensions in meters [47].

Accordingly, the microphone arrays were composed of four linearly arranged omnidirec-
tional microphones with 5 cm inter-microphone spacing (n), as per the geometry provided in
Figure 3, where d refers to the distance from the sound source to the microphones.

Figure 3. Microphone array geometry for a single node: four linearly spaced microphones.

Dry samples are taken from Freesound (FSD50K) [48], Kaggle [49], DESED Synthetic
Soundscapes [50], and Open SLR [51], depending on the audio class. Due to the variations
in sampling frequency, some of the audio signals were down sampled to 16 kHz for
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uniformity purposes. The room dimensions, source and receiver locations, wall reflectance,
and other relevant information, were then used in order to calculate the impulse response
for each room using the image method, incorporating source directivity [52]. This was
then convolved with the sounds, specifying their location, in order to create the synthetic
data. The data generated included clean signals, as well as different types of noisy signals,
including: children playing, air conditioner, and street music, added at three different SNR
levels: 15 dB, 20 dB, and 25 dB. The duration of each audio signal was uniformly kept at 5-s,
as this was found to provide satisfactory time resolution for the sound scenes and events
detected in this work.

Table 2 describes this dataset. This data was curated such that the testing data
consisted of one noise level for each node. Any instances of the data contained in the test
set were then removed from the training data. The testing set content is summarized for a
specific sound being recorded at four nodes:

• Node 1: Clean Signal with 15 dB Noise
• Node 2: Clean Signal with 20 dB Noise
• Node 3: Clean Signal with 25 dB Noise
• Node 4: Clean Signal

Table 2. Summary of the Source Node Estimation Dataset.

Category Training Data Testing Data

Absence/Silence 11,286 876
Alarm 2765 260

Cat 11,724 1080
Dog 6673 792

Kitchen Activities 12,291 1062
Scream 4308 376
Shatter 2877 370

Shaver/toothbrush 11,231 1077
Slam 1565 268

Speech 30,113 2374
Water 6796 829

TOTAL 101,629 9364

This ensures that even when the same sound is being recorded by the four nodes
present, it reduces the chances of biasing through the addition of different types of noise at
different SNR levels. Further, this was also designed to reflect real life recordings, where
the sound from different microphones may differ based on their distance to the source and
other sounds present in their surroundings.

As observed, audio classes used in the generation of this database focus on sound
events and scenes that often occur, or require an urgent response, in dementia patients’
environment. Further, this was also generated through the room impulse responses of the
HebrewLife Senior Facility [47], in order to reflect a realistic patient environment. This is
because assistance monitoring systems are real-world applications of deep-learning audio
classifiers, such as the work presented in this paper. Nonetheless, this can also be extended
to other application domains as previously discussed.

3.2. Feature Extraction Using Fast CWT Scalograms

The CWT has several similarities to the Fourier transforms, such that it utilizes inner
products in order to compute the similarity between the signal and an analysing func-
tion [53]. However, in the case of CWT, the analysing function is a wavelet, and the
coefficients are the results of the comparison of the signal against shifted, scaled, and
dilated versions of the wavelet, which are called constituent wavelets [53]. Compared
with the STFT, wavelets provide better time-localization [30] and are more beneficial to
non-stationary signals [53].
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However, in order to reduce the computational requirements for deriving scalograms,
this work proposes the use of the Fast Fourier Transform (FFT) algorithm for CWT coeffi-
cients computation [30]. Such that, if we define the mother wavelet (Ψ) to be [30], where t
refers to continuous time:

ψts(u) =
1√

t
ψ

(
u − s

t

)
(5)

Then Equation (3), involving the CWT coefficients, can be rewritten as follows [30],
where yavg refers to the average of the four-channels of the audio signal:

CWTc(s, t) =
∫ ∞

−∞
yavg(u)ψ∗

t (s − u)du (6)

This shows that CWT coefficients can be expressed by the convolution of wavelets
and signals. Thus, this can be written in the Fourier transform form domain, resulting in
Equation (7) [30]:

CWTc(s, t) =
1

2π

∫ ∞

−∞
yavg(ω)ψ∗

s,t(ω)dω (7)

where ψ∗
s,t(ω) specifies the Fourier transform of the mother wavelet at scale t:

ψ∗
s,t(ω) =

√
tψ∗(tω)ejωs (8)

Further, yavg(ω) then denotes the Fourier transform of the analysed signal yavg(t):

yavg(ω) =
∫ ∞

−∞
yavg(t)ejωtdt (9)

Hence, the discrete versions of the convolutions can be represented as per Equation (10),
where n is in discrete time domain:

W(s) = ∑N−1
n=0 yavg(n)ψ∗(s − n) (10)

From the sum in Equation (10), we can observe that CWT coefficients can be derived
from the repetitive computation of the convolution of the signal, along with the wavelets,
at every value of the scale per location [30]. This work follows this process in order to
extract the DFT of the CWT coefficients at a faster rate compared to the traditional method.

In summary, CWT coefficients are calculated through obtaining both the DFT of the
signal, as per Equation (9), and the Morlet analysing function, as per Equation (8), via the
FFT. The products of these are then derived and integrated, as per Equation (6), in order to
extract the wavelet coefficients. Accordingly, the discrete version of the integration can be
represented as a summation, which is observed in Equation (10).

3.2.1. Feature Representation

Feature computation is carried out in MATLAB, exploiting functionalities provided in
the Audio System and Data Communications toolboxes. A total of 20 filter bank channels
with 12 cepstral coefficients are used for the cepstral feature extraction, as per the standard
after DCT application [54]. An FFT size of 1024 is utilized, while the lower and upper
filter bank frequency limits are set to 300 Hz and 3700 Hz. This frequency range includes
the main components of speech signals (specifically, narrowband speech), while filtering
out the humming sounds from the alternating current power, as well as high frequency
noise [55]. Further, this range is relevant to the sound classes of speech and scream,
and was found to also include the main components of the other classes. While larger
frequency ranges could also be considered, this would require much larger FFT sizes to
maintain the same frequency resolution, which in turn would increase the computational
requirements. The extraction of the feature vectors is carried out by computing the average
of the four time-aligned channels in the time domain, yavg(t). The coefficients are then
extracted accordingly, from which single feature matrices are generated. The feature
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images are resized into 227 × 227 matrices using a bi-cubic interpolation algorithm with
antialiasing [56], in order to match the input dimensionality of the AlexNet neural network
model. Figure 4 shows samples of feature images for each of the three features compared,
using the ‘Speech’ and ‘Kitchen sound’ classes.

   

   

Figure 4. Feature representation samples using the ‘Speech’ (top) and ‘Kitchen’ (bottom) classes: Left to Right: CWT
Scalograms, Log-Mel, and MFCC.

3.3. Modified AlexNet Network Model

Domestic multi-channel acoustic scenes consist of several signals that are captured
with microphone arrays of different sizes and geometrical configurations. As discussed
previously, CNNs have been widely popular for their advantage with regards to efficiency
when used with data of spatial behaviour [57]. Thus, the experimentation part of this work
compares different pre-trained network models for transfer learning. Modifications on
the hyper-parameters are then made on the best performing network, the response being
observed in three ways:

1. Effects of changing the network activation function.
2. Effects of fine-tuning the weight and bias factors, and parameter variation.
3. Effects of modifications in the network architecture.

Activation functions in neural networks are a very important aspect of deep learning.
These functions heavily influence the performance and computational complexity of the
deep learning model [58]. Further, such functions also affect the network in terms of its
convergence speed and ability to perform the task. Aside from exploring different activation
functions, we also look at fine-tuning the weights and bias factors of the convolutional
layers, as well as investigating the effects of the presence of convolutional layers based
on performance.

For the modified AlexNet model, we examine the traditional Rectified Linear Unit
(ReLU) activation function, along with three of its variations. The ReLU offers advantages
in solving the vanishing gradient problem [59], which is common with the traditional
sigmoid and tanh activation functions. The gradients of neural networks are computed
through backpropagation, which calculates the derivatives of the network through every
layer. Hence, for activation functions such as the sigmoid, the multiplication of several
small derivatives causes a very small gradient value. This, in turn, negatively affects the
update of weights and biases across training sessions [59]. Provided that the ReLU function
has a fixed gradient of either 1 or 0, aside from providing a solution to the vanishing
gradient problem and overfitting, it also results in lower computational complexity, and
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therefore significantly faster training. Another benefit of ReLUs is the sparse representation,
which is caused by the 0 gradient for negative values [60]. Over time, it has been proven
that sparse representations are more beneficial compared to dense representations [61].

Nonetheless, despite the numerous advantages of the ReLU activation function, there
are still a number of disadvantages. Because the ReLU function only considers positive
components, the resulting gradient has a possibility to go towards 0. This is because the
weights do not get adjusted during descent for the activations within that area. This means
that the neurons that will go into that state would stop responding to any variations in
the input or the error, causing several neurons to die, which makes a substantial part of
the network passive. This phenomena is called the dying ReLU problem [62]. Another
disadvantage of the ReLU activation function is that values may range from zero to infinity.
This implies that the activation may continuously increase to a very large value, which is
not an ideal condition for the network [63]. The following activations attempt to mitigate
the disadvantages faced by the traditional ReLU function through modifications and will
be explored in this work:

a. Leaky ReLU: The leaky ReLU is a variation of the traditional ReLU function that
attempts to fix the dying ReLU problem by adding an alpha parameter, which creates
a small negative slope when x is less than zero [64].

b. Clipped ReLU: The clipped ReLU activation function attempts to prevent the acti-
vation from continuously increasing to a large value. This is achieved cutting the
gradient at a pre-defined ceiling value [63].

c. eLU: The exponential linear unit (eLU) is a similar activation function to ReLU.
However, instead of sharply decreasing to zero for negative inputs, eLU smoothly
decreases until the output is equivalent to the specified alpha value [65].

Aside from activation functions, variations in the convolutional and fully connected
layers will also be examined. The study will be done in terms of both the number of
parameters and the number of existing layers within the network.

For parameter modification, we explore the reduction of output variables in the fully
connected layers. This method immensely reduces the overall network size [66]. However,
it is important to note that recent works solely reduce the number of parameters from
the first two fully connected layers. Hence, here we introduce the concept of uniform
scaling, which is achieved by dividing the output parameters of fully connected layers by a
common integer, based on the subsequent values.

Modification of the network architecture is also considered through examining the
model’s performance when the number of layers within the network is varied. These layers
may include convolutional, fully-connected, and activation function layers. Nonetheless,
throughout the layer variation process, the model architecture is maintained to be of a
series network type. A series network contains layers that are arranged subsequent to
one another, containing a single input, and output layer. Directed Acyclic Graph (DAG)
networks, on the other hand, have a complex architecture, from which layers may have
inputs from several layers, and the outputs of which may be used for multiple layers [67].
The higher number of hidden neurons and weights, which is apparent on DAG networks,
could increase risks of overfitting. Hence, maintaining a series architecture allows for
a more customizable and robust network. Further, as per the state-of-the-art, all other
compact networks that currently exist present a DAG architecture. Thus, the development
of a compact network with a more customizable format, and through using fewer layers,
proposes advantages in designing sturdy custom networks.

3.4. Performance Evaluation Metrics

To evaluate the performance of the proposed systems, the following aspects are investigated:

1. Per class and overall comparison of different cepstral, temporal, and spectro-
temporal features classified using various pre-trained neural network and machine
learning models.

2. Effects of balancing the dataset
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Aside from the standard accuracy, evaluations of the performances of different tech-
niques were also compared and measured in terms of their F1-scores. This is defined to be
a measure that takes into consideration both the recall and the precision, which are derived
from the ratios of True Positives (TP), True Negatives (TN), False Positives (FP), and False
Negatives (FN) [68], which can be extracted from confusion matrices.

The databases used for this research compose of unequal numbers of audio files per
category. To account for the data imbalance, two different techniques are used:

1. Balancing the Dataset

Particularly used for the initial development and experiments conducted for this
work, in this technique, the dataset was equalized across all levels in order to preserve a
balanced dataset. This is done in order to avoid biasing in favour of specific categories
with more samples. It is achieved by reducing the amount of data per level to match the
minimum amount of data amongst the categories. Selection of the data was done randomly
throughout the experiments.

2. Using Weight-sensitive Performance Metrics

Provided that the F1-score serves as the main performance metric used for the ex-
periments conducted, it is crucial to ensure that these metrics are robust and unbiased,
especially for multi-classification purposes. When taking the average F1-score for an unbal-
anced dataset, the amount of data per level may affect and skew the results for the mean
F1-score in favour of the classes with the most amount of data. Therefore, we consider
three different ways of calculating the mean F1-score, including the Weighted, Micro, and
Macro F1-scores, in order to take into account for the dataset imbalance [69].

4. Results

4.1. Feature Extraction Results
Comparison of Cepstral, Spectral, and Spectro-Temporal Features

Per-level and average comparisons using MFCC and Log-Mel spectrogram features
against the proposed CWTFT scalograms method are seen in Table 3, which is an average
of three training trials. As observed, F1-score averaging is done using three different
methods: Micro, Macro, and Weighted, in order to take into account the biasing that may
be caused by the data imbalance. Further, the table also entails the comparison of the
system performance between imbalanced and balanced data. To achieve a balanced data,
the size of the dataset is reduced to match the lowest numbered category in both training
and testing sets. As per Table 2, for each category, this turns out to be 1565 files for training,
based on the “Slam” category, and 260 files for testing, based on the “Alarm” category. This
adds up to a total of 17,215 training files and 2860 testing files.

The following results are achieved using the traditional AlexNet network, provided
that this gives us the highest results as per our previous works [45,46]. Training for the
imbalanced data is achieved at 10 epochs with 1016 iterations per epoch. However, it
is important to note that the number of epochs for the balanced data is 75, as it has less
iterations per epoch due to the lower amount of data per category. Hence, it requires more
epochs in order to reach stability.
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Table 3. Per-level comparison between imbalanced and balanced data between different types of
features, with an average of three training trials.

CWTFT Scalograms

Imbalanced Data Balanced Data

Category Accuracy Precision Recall
F1-

Score
Accuracy Precision Recall

F1-
Score

Silence 100.0% 99.3% 100.0% 99.7% 100.0% 98.4% 100.0% 99.2%
Alarm 65.4% 63.4% 65.4% 64.4% 75.2% 83.8% 75.2% 78.7%

Cat 97.2% 82.3% 97.2% 89.1% 94.8% 77.9% 94.8% 86.1%
Dog 74.8% 74.3% 74.8% 74.5% 84.7% 89.2% 84.7% 85.8%

Kitchen 82.3% 82.4% 82.3% 82.4% 76.5% 59.3% 76.5% 67.2%
Scream 83.7% 82.4% 83.7% 83.1% 85.9% 85.2% 85.9% 86.1%
Shatter 78.2% 72.2% 78.2% 75.1% 75.4% 89.8% 75.4% 83.2%
Shaver 71.5% 83.0% 71.5% 76.8% 66.7% 75.2% 66.7% 69.5%
Slam 65.4% 70.6% 65.4% 67.9% 71.5% 82.1% 71.5% 77.6%

Speech 100.0% 97.8% 100.0% 98.9% 100.0% 92.1% 100.0% 96.7%
Water 74.2% 85.8% 74.2% 79.6% 75.2% 82.2% 75.2% 78.1%
Micro 86.0% 86.0% 86.0% 86.0% 82.4% 83.2% 82.4% 82.6%

Weight 86.0% 86.0% 86.0% 85.9% 82.4% 83.2% 82.4% 82.6%
Macro 81.2% 81.2% 81.2% 81.0% 82.4% 83.2% 82.4% 82.6%

MFCCs

Imbalanced Data Balanced Data

Category Accuracy Precision Recall
F1-

Score
Accuracy Precision Recall

F1-
Score

Absence 100.0% 98.6% 100.0% 99.3% 100.0% 98.7% 100.0% 99.3%
Alarm 53.2% 69.7% 53.2% 60.4% 52.3% 79.4% 52.3% 62.3%

Cat 75.6% 62.6% 75.6% 68.5% 74.1% 65.3% 74.1% 72.0%
Dog 74.8% 69.7% 74.8% 72.1% 76.9% 79.4% 76.9% 78.1%

Kitchen 64.1% 71.6% 64.1% 67.7% 51.8% 48.3% 51.8% 49.2%
Scream 75.8% 71.9% 75.8% 73.8% 76.4% 74.1% 76.4% 74.3%
Shatter 69.1% 53.8% 69.1% 60.5% 72.5% 70.2% 72.5% 73.1%
Shaver 53.8% 69.6% 53.8% 60.7% 48.6% 43.8% 48.6% 45.6%
Slam 37.9% 53.0% 37.9% 44.2% 50.1% 70.6% 50.1% 57.8%

Speech 99.1% 97.0% 99.1% 98.0% 99.1% 86.3% 99.1% 94.0%
Water 48.7% 55.5% 48.7% 51.9% 50.2% 50.9% 50.2% 50.1%
Micro 77.6% 77.6% 77.6% 77.6% 68.4% 69.7% 68.4% 68.7%

Weight 77.6% 77.3% 77.6% 77.3% 68.4% 69.7% 68.4% 68.7%
Macro 68.4% 70.3% 68.4% 68.8% 68.4% 69.7% 68.4% 68.7%

Log-Mel Spectrograms

Imbalanced Data Balanced Data

Category Accuracy Precision Recall
F1-

Score
Accuracy Precision Recall

F1-
Score

Absence 100.0% 98.4% 100.0% 99.2% 100.0% 100.0% 100.0% 100.0%
Alarm 62.5% 61.2% 62.5% 61.8% 70.2% 62.2% 70.2% 65.6%

Cat 73.4% 65.0% 73.4% 68.9% 55.9% 60.3% 55.9% 61.2%
Dog 52.2% 51.4% 52.2% 51.8% 49.8% 54.9% 49.8% 51.9%

Kitchen 51.8% 42.6% 51.8% 46.7% 32.3% 31.6% 32.3% 32.6%
Scream 43.9% 47.4% 43.9% 45.6% 54.4% 53.6% 54.4% 54.3%
Shatter 58.2% 62.2% 58.2% 60.1% 66.8% 64.2% 66.8% 65.8%
Shaver 43.1% 41.2% 43.1% 42.1% 41.9% 31.4% 41.9% 38.1%
Slam 20.2% 36.3% 20.2% 26.0% 37.2% 56.1% 37.2% 44.4%

Speech 99.1% 92.8% 99.1% 95.9% 98.1% 82.9% 98.1% 89.5%
Water 32.2% 38.7% 32.2% 35.1% 35.2% 40.7% 35.2% 37.1%
Micro 65.0% 65.0% 65.0% 65.0% 58.3% 58.0% 58.3% 58.2%

Weight 65.0% 63.9% 65.0% 64.2% 58.3% 58.0% 58.3% 58.2%
Macro 57.9% 57.9% 57.9% 57.6% 58.3% 58.0% 58.3% 58.2%
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As observed, the CWTFT scalograms have consistently achieved the highest F1-score
across all categories, exceeding the performance of the MFCC features by over 10%. As
mentioned earlier, this can be explained by the spectro-temporal properties of wavelets,
which allows excellent time and frequency localization. The Log-Mel spectrograms gather
the least F1-score out of the three features. In terms of the data imbalance, it is observed
that once data is even across all categories, it improves the performance of the smaller
categories. Nonetheless, the trade-off is that it reduces the F1-score for the categories with
more data initially. It is also evident that performances associated with classes referring to
acoustic scenes are higher than those associated to sound events. This is because sound
events occur sporadically and at different instances throughout the 5-s intervals, whereas
sound scenes are continuously present throughout the duration. Overall, the imbalanced
dataset returns higher performance. Figure 5 accordingly shows the relevant confusion
matrices for imbalanced and balanced datasets.

  
(a) (b) 

Figure 5. Confusion matrices for the top performing algorithm—CWTFT scalograms for: (a) Imbalanced dataset using the
full synthetic database; (b) balanced dataset with 1565 files for training, and 260 files for testing.

In our previous works, we examined the response of the system performance by
concatenating the cepstra from individual channels [45,46]. This yielded a slightly better
performance than using a single cepstrum after averaging the four time-aligned channels
for the case of cepstral coefficients. Extracting cepstral coefficients for each channel allows
a thorough consideration of all distinctive properties of the signal, which minimizes the
loss of information. However, per-channel feature extraction did not cause improvement
with Scalogram features, yielding a result of 90.72% as opposed to 92.33% for averaging the
channels, as audio sources are already separated within its wavelet computation process.

Aside from the accuracy, execution time for the inference and resource requirements is
another important consideration that must be made when selecting features. Table 4 details
the execution time information for the three features compared, in terms of extracting the
relevant features and translating them into a 227 × 227 image. Recording the execution
time was achieved through a machine with Intel Core i7-9850H CPU @ 2.60 GHz processor,
operated in single core. The reported execution times are in seconds and are an average
of 100 different readings. As observed, scalograms also returned the shortest overall time
duration across all three features compared. The numerous processes involved with the
MFCC and Log-mel features justify the longer extraction time.

Table 4. Average execution time for inference (in s).

Parameter Scalograms MFCC Log-Mel

Feature Extraction Execution Time 0.1981 1.0076 1.0640
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CWTFT coefficients are derived through taking the product between the DFT of
the signal and the analyzing function through FFT, and inverting this in order to extract
the wavelet coefficients. On the other hand, both MFCC and Log-Mel are based on the
Mel-scale filter bank. This is based on the short-term analysis, from where vectors are
computed per frame. Further, windowing is performed to remove discontinuities, prior
to utilizing the DFT to generate the Mel filter bank. Further processes, such as the use
of triangular filters and warping, are also necessary prior to the application of the IDFT
and transformation.

It is important to note that in terms of memory usage, there are negligible differences
between the three features compared. This is because the features are being resized and
translated into a 227 × 227 image through bi-cubic interpolation, in order to fit the classifier.
Nonetheless, each image translation occupies between 4–12 KB of memory, depending on
the sound class.

4.2. Architecture of Modified AlexNet-33 (MAlexNet-33)

This section discusses the results achieved through the detailed study of the effects of
modifying the traditional AlexNet architecture. The AlexNet model was found to result in
the highest F1-scores based on our previous work experiments [45,46]. In this work, we
aim to improve this network by decreasing the overall network size while maintaining
its performance. To begin with, the original layer structure of the AlexNet network is
presented in Figure 6. As observed, it contains 25 layers, with 2 regular convolution layers,
3 group convolution layers, and 3 fully connected layers.

 

Figure 6. AlexNet Network Layer Structure: This is a 25-layer series architecture imported via Matlab Deep Network De-
signer. The CNN model accepts 227 × 227 image inputs and is trained to classify between 1000 image classes via ImageNet.
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4.2.1. Exploring Variations of the Rectified Linear Unit and the Number of Layers

For this experiment, the response of the system to reducing the number of layers
is investigated. Further, different variations of the ReLU activation function are also
examined. Table 5 displays the different combinations tested for this experiment with
regards to decreasing the number of layers and changing the activation function, presented
as an average between 11 classes. Hence, throughout the results, it is apparent that the micro
averaging results between the four measures are the same and there are close similarities
between some of the measures. This is due to the total number of false negatives and false
positives being the same. More distinct differences between the classes can be seen in the
per-level comparison, such as that of Table 3.

Table 5. Performance Measures of Different Networks using Variations of the F1-score.

Network Type Accuracy Precision Recall F1-Score

AlexNet
Micro 86.36% 86.36% 86.36% 86.36%

Weighted 86.36% 86.72% 86.36% 86.24%
Macro 81.03% 82.99% 81.03% 81.69%

AlexNet-20
Micro 85.19% 85.19% 85.19% 85.19%

Weighted 85.19% 86.01% 85.19% 85.02%
Macro 79.68% 82.42% 79.68% 80.44%

AlexNet-20
with eLU (1)

Micro 84.30% 84.30% 84.30% 84.30%
Weighted 84.30% 84.80% 84.30% 84.18%

Macro 78.08% 81.20% 78.08% 79.22%
AlexNet-20
with Leaky
ReLU (0.01)

Micro 85.70% 85.70% 85.70% 85.70%
Weighted 85.70% 86.37% 85.70% 85.58%

Macro 79.45% 83.62% 79.45% 80.99%
AlexNet-20

with Clipped
ReLU (6)

Micro 84.10% 84.10% 84.10% 84.10%
Weighted 84.10% 84.25% 84.10% 84.04%

Macro 78.38% 78.55% 78.38% 78.26%
AlexNet-17
with Leaky
ReLU (0.01)

Micro 81.89% 81.89% 81.89% 81.89%
Weighted 81.89% 82.67% 81.89% 81.74%

Macro 75.04% 76.39% 75.04% 75.13%

From Table 5, AlexNet-20 was achieved by removing one grouped convolutional,
two ReLU, one fully connected, and one 50% dropout layer from the original network.
It is observed that removing convolutional and fully connected layers from the network
reduces its performance as well.

However, it is also apparent that using other activation functions improves the per-
formance. For instance, using a Leaky ReLU with a 0.01 parameter in place of the ReLU
activation function increased the weighted F1-score to 85.58%, having less than 1% differ-
ence from the original network’s performance. Such improvement is reportedly due to
the Leaky ReLU’s added parameter to solve the dying ReLU problem. Due to having less
layers in the system, a reduction of about 30% from the original size was also achieved.
MAlexNet-20 with a Leaky ReLU activation function has a network size of about 150 MB,
compared against AlexNet’s 220 MB network size.

Subsequent to this, the concept of a successive activation function was also looked at.
For this, two activation function layers were placed successively throughout the network.
However, as per Table 6, it is implied that using two successive activation functions does
not necessarily improve the overall system performance. However, it is also apparent that
using more than one activation function does not affect the overall size of the network.
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Table 6. Successive Activation Function Combination Summary.

Activation Function
1

Activation Function
2

Accuracy Network Size

ReLU ReLU 83.27% 157.92 MB
Leaky ReLU (0.01) Leaky ReLU (0.01) 84.32% 157.92 MB

ReLU Leaky ReLU (0.01) 85.38% 157.92 MB
Tanh Leaky ReLU (0.01) 73.49% 157.92 MB

4.2.2. Parameter Modification

The AlexNet contains three fully connected layers with parameter values of 9216, 4096,
and 4096 for the inputs, and 4096, 4096, and 1000 for the outputs. In this experiment, we
reduce the output parameters across the first two fully connected layers within the network
through scaling. The results achieved from this experiment are reported in Table 7.

Table 7. Parameter Modification Results.

Activation
Function

Input to
FC6

FC6 FC7
Num. of
Layers

Scale Epochs
Network

Size
Weighted

F1

ReLU 9216 4096 4096 25 (orig *) None 10 221.4 MB 86.24%
ReLU 4608 574 574 25 (equ *) Equ. 30 31.90 MB 85.76%
ReLU 4608 576 256 25 (div 16) 16 30 31.23 MB 85.15%

Leaky ReLU (0.01) 4608 576 256 25 (div 16) 16 30 31.23 MB 85.48%
Leaky ReLU (0.01) 4608 384 172 25 (div 24) 24 30 23.82 MB 86.82%

ReLU 4608 384 192 25 [64] None 30 23.85 MB 85.76%

* orig—refers to the original AlexNet layer; equ—refers to using equal fully connected layer parameters.

In here, FC6 refers to the output of the first fully connected layer, and FC7 refers to the
output of the second fully connected layer. It is important to note that the output of the last
fully connected layer corresponds to the number of classes the system aims to identify and
is not determined by parameter scaling.

As observed from Table 7, a notable improvement is observed through scaling the
output parameters of the fully connected layers through a division of 24 (from the input
parameter and fully connected sizes of the original network), which provided slightly
higher F1-score compared to the original AlexNet. Further, this results in an almost 90%
reduction in size of the network compared to the original (23.82 MB as opposed to 221.4 MB).
Uniform scaling also returns better performance compared to keeping an equal number of
parameters across all fully connected layers. Further, it also achieved a higher weighted F1-
score than the combination used by previous recent studies, for which the exact parameters
used are represented by the last entry on Table 7 [66]. It is important to note that the input
size for FC6 is automatically calculated for the modified networks. After the convolution
stages, this is found to be 4608 parameters. Quantitatively, it is implied that the output
parameters of all fully connected layers subsequent to the last fully connected layer can be
scaled down extensively, depending on the number of classes that the model is designed to
predict, keeping in mind that the fully connected output parameters are higher than the
number of possible predictions.

The number of epochs required is determined through the training accuracy and
losses graph. Generally, a lower number of output parameters slows down the training,
requiring more epochs in order to reach a well-learned network. Figure 7 displays the
difference between a traditional AlexNet and a version with lower numbers of output
parameters in the fully connected layers. The comparison was done for 10 epochs.

4.2.3. The Combination of Layer and Parameter Modification

Provided that uniformly scaling the fully connected layer parameters has proven
beneficial, in this section, we combine this technique with the advantages of modifying the
number of layers. This is done in two ways, the results for which are presented in Table 8:
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• Decreasing the number of layers: Similar to the experiment conducted in Section 3.2.1,
this reduces the number of convolutional and fully connected layers within the net-
work. For example, MAlexNet-23 refers to the removal of conv4 and relu4, maintain-
ing all fully connected layers. On the other hand, MAlexNet-20 is the same network
structure examined in Section 3.2.1.

• Increasing the number of layers: For this experiment, another grouped convolutional
layer/s with the relevant activation function was added to the network structure.
From the original AlexNet model, the grouped convolutions carry bias learnable
weights of 1 × 1 × 192 × 2 and 1 × 1 × 128 × 2, respectively. For this work, additional
grouped convolution functions were added, such that it has a bias learnable weight
of 1 × 1 × 64 × 2 for MAlexNet-27, and 1 × 1 × 64 × 2 and 1 × 1 × 32 × 2 for
MAlexNet-33. Accordingly, Leaky ReLu (0.01) activation functions were utilized for
all grouped convolutional layers.

  

  

Figure 7. Training accuracy and losses graph (Left) AlexNet; (Right) Modified AlexNet with less parameters.

Table 8. Results for the combination of layer and parameter modifications.

Activation Function FC6 FC7
Num. of
Layers

Scale Epochs
Network

Size
Weighted F1

ReLU 384 192 23 (n.conv4) None 30 21.19 MB 84.63%
Leaky ReLU (0.01) 384 192 23 (n.conv4) None 30 21.19 MB 83.05%
Leaky ReLU (0.01) 576 - 20 (n.conv4) None 30 27.98 MB 83.80%
Leaky ReLU (0.01) 1064 - 20 (n.conv4) Equ. 30 45.99 MB 84.66%

ReLU 1064 - 20 (n.conv4) Equ. 30 45.99 MB 82.54%
ReLU 576 - 20 (n.conv4) Equ. 30 27.99 MB 83.63%

Leaky ReLU (0.01) 576 - 20 (n.conv4) Equ. 30 27.99 MB 83.71%
Leaky ReLU (0.01) 576 - 22 (w.conv4) Equ. 30 30.64 MB 85.00%
Leaky ReLU (0.01) 384 - 22 (w.conv4) 24 30 23.56 MB 85.76%
Leaky ReLU (0.01) 384 172 23 (n.conv4) 24 30 21.16 MB 84.76%
Leaky ReLU (0.01) 384 172 27 (gconv64) 24 30 17.34 MB 86.89%
Leaky ReLU (0.01) 192 86 27 (gconv64) 48 30 13.59 MB 85.61%
Leaky ReLU (0.01) 384 172 33 (gconv32) 24 30 14.33 MB 87.92%

As per Table 8, it is observed that the top performing algorithm is the MAlexNet-33,
which is designed as a combination of both fully connected parameter scaling, as well
as the addition of two new grouped convolutional layers with bias learnable weights
of 1 × 1 × 64 × 2 and 1 × 1 × 32 × 2, and relevant activation layers. This provided a
weighted F1-score of 87.96%, exceeding the performance of the AlexNet, with a network
size of 14.33 MB. This suggests an over 95% decrease in the size of the resource require-
ments when compared to the original model. When compared to [66], this also improved
both the performance and the network size, exceeding the performance by around 2.16%
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and decreasing the network size by over 40%. Aside from the improvement in resource
requirements, decreasing the network size also returned a notable improvement in the
inference execution time, provided that they are factors linearly related to one another.

4.2.4. Comparison with Other Compact Networks

In this section, a comparison of the proposed architecture to currently existing com-
pact networks is presented. For this work, several compact pre-trained models including
SqueezeNet [42], MobileNet-v2 [70], NasNet Mobile [71], and ShuffleNet [72], are consid-
ered. A summary of the comparison is seen in Table 9, in terms of the total number of
layers, depth, type, network size in MB, the activation function used, the weighted F1-score,
the training time for 30 epochs, the network loading time, and the execution inference time
average. The network loading time is an average of five trials, while the execution time is
measured in 100 trials.

Table 9. Detailed Comparison with other Compact Neural Networks.

MAlexNet-33 SqueezeNet MobileNet-v2 NasNet Mobile ShuffleNet

Number of Layers 33 68 155 913 173
Depth 8 18 53 N/A 50
Type Series Network DAG DAG DAG DAG

Network Size 14.33 MB 3.07 MB 9.52 MB 19.44 MB 3.97 MB

Activation Function Leaky ReLU
(0.01) Fire ReLU Clipped ReLU

(C: 6) ReLU ReLU

Weighted F1-score 87.92% 84.48% 86.85% 83.38% 86.91%
Training time 178 min 273 min 599 min 1668 min 792 min

Epochs 30 30 30 30 30
Loading time average 1.10 s 1.04 s 1.32 s 2.59 s 1.62 s

Execution time average 0.0148 s 0.0159 s 0.0338 s 0.1345 s 0.0348 s

Throughout the comparison, it is important to note that, while MAlexNet-33 is a
series network, all other compact networks are DAG networks, which have a complex
architecture and a significantly larger number of layers.

As observed, our proposed network consistently provided the highest weighted F1-
score in comparison to the other compact networks. Despite having a 14.33 MB network
size, this provided negligible time differences (about 0.08-s against SqueezeNet) in terms
of loading the network. Further, it also possesses the least training and execution time
compared to the other networks.

It is also apparent that other compact networks possess a higher loading time despite
the smaller network size, which is caused by the DAG network configuration, and the
multiple layers within the architecture. Provided that the MAlexNet-33 has the least
number of layers, it creates a highly customizable network architecture. Adding more
layers of neurons increases the complexity of the neural networks. Although hidden layers
are crucial for extracting the relevant features, having too many hidden layers may cause
overfitting. In this case, the network would be limited in terms of its generalization abilities.
In order to avoid this effect, this work focuses on designing a smaller network with fewer
neurons and weights than a traditional compact neural network.

5. Discussion

Interpreting the presented results, we conclude that the use of CWTFT scalograms re-
turns the best results for audio scene and event classification applications. This is supported
by our previous experiments, which were performed using the SINS database [45,46] and
the experiments conducted in this work. This can be justified by the fact that scalograms
possess excellent time and frequency localization. Furthermore, another advantage is that
it also separates audio sources upon the wavelet computation process. Using an FFT-based
wavelet transform also returns favourable time duration requirements, which exceeded
that of cepstral and spectral features.
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There are three main discoveries found in this study:

Hypothesis 1: The Leaky ReLU activation function returned higher performance for multi-level
classification as opposed to the traditional ReLU in the majority of cases.

Verification of Hypothesis 1: This is true on a case-by-case scenario. This can be
explained by the presence of the dying ReLU problem in feature sets, which is ameliorated
through the small parameter added through the Leaky ReLU. However, it is important
to note that the presence of the dying ReLU problem could depend on several factors,
including the nature of the data being trained. In cases where this does not occur, replacing
the activation function to a Leaky ReLU may not return any advantages.

Hypothesis 2: Decreasing the number of fully connected and convolutional layers throughout the
network also slightly decreases the performance.

Verification of Hypothesis 2: Generally, convolutional layers represent high level
features within the network. Accordingly, fully connected layers flatten and combine these
features. Hence, reducing the number of these layers negatively affects the performance of
the network.

Hypothesis 3: Decreasing parameters, weight factors, and biases within the fully connected and
convolutional layers helps decrease the size of the network more, compared to when these layers are
removed completely.

Verification of Hypothesis 3: Both convolutional and fully connected layers con-
tribute to the high and low-level features from which the network learns, and are therefore
essential. However, since pre-trained models are originally trained on very large data,
large parameters, weight, and bias factors are often not necessary for the smaller dataset by
which transfer learning is being implemented for. This explains the maintenance of the
system performance despite decreasing the parameters for these layers accordingly. Based
on our experiments, scaling the parameters uniformly across fully connected layers returns
the best performance.

6. Conclusions

This study started with a per-level performance comparison against top-performing
feature extraction methodologies, which demonstrated the robustness of the proposed
CWTFT features. Further, an extensive study on pre-trained neural network modification
was also presented, aiming to reduce the size of the AlexNet model whilst maintaining the
accuracy. The top performing methodology involved the use of FFT-based CWT Scalogram
features, with a modified AlexNet model with 33 layers (MAlexNet-33). This model uses
the Leaky ReLU as its main activation function, combining strategies of both including
additional convolutional layers and uniformly scaling the parameters of convolutional
and fully connected layers in order to create the optimum network. The best performance
resulted in an 87.92% weighted F1-score at a network size of 14.33 MB. This suggests a
good improvement when compared with using the original AlexNet network with the
same features, which resulted in an F1-score of 86.24%, at a size of 221.4 MB.
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Featured Application: Automatic seismic fault detection, exploration of underground resources,

and other areas of image recognition where large-scale artificial data is possible but real-world

data is extremely limited.

Abstract: This paper empirically evaluates two kinds of features, which are extracted, respectively,
with traditional statistical methods and convolutional neural networks (CNNs), in order to improve
the performance of seismic patch image classification. In the latter case, feature vectors, named
“CNN-features”, were extracted from one trained CNN model, and were then used to learn existing
classifiers, such as support vector machines. In this case, to learn the CNN model, a technique of
transfer learning using synthetic seismic patch data in the source domain, and real-world patch data
in the target domain, was applied. The experimental results show that CNN-features lead to some
improvements in the classification performance. By analyzing the data complexity measures, the
CNN-features are found to have the strongest discriminant capabilities. Furthermore, the transfer
learning technique alleviates the problems of long processing times and the lack of learning data.

Keywords: seismic patch classification; CNN-features; transfer learning; data complexity

1. Introduction

Seismic faults are important subsurface structures that have significant geologic im-
plications for hydrocarbon accumulation and migration in a petroleum reservoir. On the
basis of these characteristics, it is very important to detect faults with advanced techniques.
Recently, seismic fault detection using deep-learning techniques has been actively stud-
ied [1–5]. In this approach, seismic images are first divided into patches of a certain size.
The fault detection problem then becomes a two-class classification problem that classifies
fault and nonfault (normal) patches. The fault detection problem can be solved by identify-
ing the location of the patches classified as abnormal patches in the fault line. This paper
focuses on the classification of patch data. First, feature vectors were extracted from seismic
patch data and were then classified as fault and nonfault patches using existing classifiers
to find fault lines.

Convolutional neural networks (CNNs) are now state-of-the-art approaches for a lot
of applications. On the basis of their good performance, CNNs have recently been used to
detect seismic faults [4]. However, two constraints can be found in this approach: one is
the need to provide a huge amount of interpreted data (e.g., fault and nonfault patches);
the other is the significant amount of time required to process them. To address the first, a
synthetic dataset, having simple fault geometries, was built. Therein, the input to the CNN
was the seismic amplitude only; that is, the approach did not require the calculation of the
other seismic attributes, but the second constraint remains without any solution.

As is commonly known, CNNs take a tremendous amount of time to learn when
allowing “sufficient” training data. Recently, it has been observed that the convolutional
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(C) and fully connected (FC) layers take the most time to run [6]. In particular, since the
latter is responsible for the multiplication of large-scale matrices, it consumes up to almost
60% of the computation time. From the above review results, as well as from the findings
in [6–11], we may consider replacing the FC layers responsible for classifying seismic patch
data in a CNN with an existing classifier, such as support vector machines (SVMs). The
role of the C layer in this framework corresponds to, for example, the role of the principal
component analysis (PCA) in traditional statistical-based classification.

The use of SVMs instead of FC layers is known to improve the classification accu-
racy [7,12], but no analysis has been made on why. Rather than embarking on a general
analysis, in this paper, we will consider a comparative study that will be taken as the basis
for the above improvements. In addition, the measures of the data complexity can be
used to estimate the difficulty in separating the sample points into their expected classes.
Especially, it has been reported that the measurements can be performed to figure out
a variety of characteristics related to data classification [13]. From this point of view, to
derive an intuitive comparison and to answer the above question, we will consider the
complexity measurements.

In this paper, we use CNN-features in seismic patch classification. Using this feature
vector, we can avoid the problems of a long learning time and a lack of training data,
without deteriorating the classification performance. We also analyzed the data complexity
to compare the discriminating powers of the features. A preliminary short version of
this paper was published as a conference paper [14]. In particular, the current version
has been expanded to include: First, additional techniques to improve the classification
performance of CNNs; second, a quadratic pooling strategy that was reviewed and tested
in order to further increase the discriminative capabilities of the CNN-features [15]; and
third, new experiments were conducted and analyzed to consider how improving CNNs in
classification systems that classify CNN-features using conventional classifiers changes the
system performance.

In this paper, we focus on the following research issues regarding the use of CNN-
feature vectors. First, we attempt to hybridize deep-learning techniques and pattern
recognition (PR) methods for seismic patch classification. Traditional PR proceeds in two
stages: data representation and feature classification, while CNN is implemented in two
stages: feature extraction and classification. It is well known that the representation phase
of PR is sensitive to the domain properties, while the classification phase of a CNN has
a long training time. The main issue of this paper is the hybridization of the above two
stages to address these shortcomings. On the basis of this hybrid strategy, we can combine
the feature extraction capabilities of CNNs with the various classifiers that have been
developed so far and can utilize the appropriate classifiers for applications.

Second, we attempt to adopt transfer learning [16] in model learning for seismic patch
classification. In general, while artificially generating experimental data is not expensive,
there is a limit to presenting the detailed state of the real world. On the other hand, the
real-world data can reflect the true state well, but it is difficult to obtain a sufficient amount.
The second research point of the paper is the use of the transfer learning technique in
the learning of models for the extraction of CNN-features. That is, we first learned CNN
models using well-prepared artificial data, and then leveraged them as pre-trained models
to learn classification models on real-world data.

The third issue of the paper is the application of data complexity in an effort to find
reasons why this hybrid approach leads to improved classification results. To achieve our
purpose, we measured the data complexity of the feature vectors extracted with traditional
methods, including PCA, and compared them with that of the CNN-features.

Finally, the fourth concern of the paper is to represent the seismic patches in CNN-
features. To avoid the curse of dimensionality in image classification, various approaches
have been used so far. The CNN-features can be utilized regardless of their sensitivity to
the cardinality and dimensions of the dataset since they are extracted from CNNs.
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The remainder of the paper is organized as follows: in Section 2, a brief introduction
to the latest findings on seismic fault detection, using CNN-features and data complexities,
is provided; in Section 3, a classification method related to this empirical study and the
structure of seismic patch image data are presented, in turn; in Section 4, experimental
studies, such as experimental data and methods, and classification accuracy rates and data
complexity measurements, are described in detail; in Section 5, conclusive arguments and
limitations that are worthy of further research are summarized.

2. Related Work

This section briefly reviews some of the latest results for detecting seismic faults,
using CNN-features and data complexities for measuring the discrimination power of
the features.

2.1. Seismic Fault Detection

In geophysics, current fault detection methods can be broadly categorized into two
classes: traditional methods [17–19], and machine-learning-based algorithms [1–5,20–23].
In general, traditional methods work by detecting the local discontinuity in seismic images
on the basis of some of the seismic features, such as semblance, variance, etc. For example,
Wang and Alregib [19] propose a combination of the Hough transform and the tracking
vector to extract faults from coherence maps. Although these methods can produce satis-
factory results in early studies, they are time-consuming, and they also require professional
background knowledge to calculate the informative attributes.

With the great success of various machine-learning and deep-learning techniques
in many fields, scholars have developed many automatic fault detection procedures to
alleviate the shortcomings of traditional ones. For instance, SVMs [20] and the multilayer
perceptron technique [21] are separately applied to analyze the attributes (including the
detected edges, and the geometric and texture features) extracted from different seismic
images, and, finally, to classify whether there are faults or not. In [5], Wang et al. provide
a review of the use of image-processing and machine-learning methods to identify faults.
Considering that the performance of machine-learning algorithms strongly relies on the
calculated attributes, it is popular, in recent years, to employ deep-learning approaches
to achieve automatic fault detection. Among them, the CNN is the most commonly used
technique because of its powerful ability to extract useful features. Recently, it has been
combined with transfer learning [1–3] in order to further enhance its performance while
alleviating the difficulty in obtaining sufficient labeled data.

2.2. CNN-Features

CNN-features are composed of values taken from the activation unit of the first FC
layer of the CNN architecture [8]. Various studies have been conducted using CNN-features
in many applications. In [24], it was evaluated whether the CNN weights obtained from
large-scale source tasks could be transferred to a target task with a limited amount of
training material. Along with this study, many other studies related to the extraction and
utilization of CNN-features have been conducted [6,9,10].

In [25], it was reported that reusing a previously trained CNN as a generic feature
extractor leads to a state-of-the-art result, meaning that CNNs are able to learn generic
feature extractors that can be used for different tasks. Thus, some studies have recently been
reported in the industry on the techniques of extracting, and classifying feature vectors with
this approach [7,11]. In [7], top-performing hand-crafted descriptors, including the LBP
(local binary pattern) and the HOG (histogram of oriented gradients), were compared with
CNN-based models using variants of AlexNet [26]. Experiments on three datasets reported
that CNN-based models were superior to other models. However, it was also pointed out
that, to extract meaningful features from raw data, the approach requires huge amounts of
training data. In case the generation of data is expensive, it might not be appropriate, as
in [27].
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In the meantime, CNNs have improved performances while building deeper and
wider networks [28]. In a different way, there are studies to improve the performance by
simply using a pooling based on quadratic statistics, such as covariance, rather than sum
(mean) or max pooling. A few examples are: second-order pooling (O2P) [15]; bilinear
pooling (BiP) [12]; compact BiP [29]; deep architecture for O2P [30]; improved BiP [31];
matrix power normalized covariance (MPN-COV) [32]; and the iterative matrix square root
normalization of covariance pooling (iSQRT-COV) [33].

In [12], an effective architecture, called a bilinear CNN (B-CNN), was developed for
visual classification. B-CNNs represent an image as a pooled outer product of features,
derived from two CNNs, which capture the localized feature interactions. The work in [31]
shows that feature normalization and domain-specific fine-tuning provide additional
benefits, improving the accuracy using identical networks. In subsequent studies, various
methods were proposed, in turn, to overcome the disadvantages of the B-CNN, such as the
high dimensionality of the feature vectors, or GPU-unfriendly algorithms.

2.3. Data Complexity

An attempt to identify the relationship between the data and the classifier that classifies
it was specifically initiated in [34]. Since then, it has been studied a lot. A few examples,
but not all, can be found in [13,35,36]. Referring to these findings, we selected the data
complexity measures to be used in our experiments as the following four indicators: the
Fisher’s discriminant ratio (F1); the directional-vector Fisher’s discriminant ratio (F1v, or
simply, Fv); the distance of erroneous instances to a linear classifier, or its training error
rate (L2); and the volume of the local neighborhood (D2).

Each measurement of complexity mentioned above is made as follows. First, F1 is
used to measure the separation capacity of a single feature between two classes. One way
to obtain the value for multiple features is:

F1 =
2

∑
i=1

pi(m − mi)C−1(m − mi), (1)

where mi (and m) is the mean of each class (and ci the entire class); C is the pooled covariance
matrix derived from averaging the covariance of each class; and pi is the proportion of
examples in the class, ci. As a result, the higher the value, the less redundancy and the
easier it is to distinguish between the two classes.

Second, the Fv value, developed as a complement to F1, is calculated as in [29]:

Fv =
1

1 + dTBd/dTWd
, (2)

where B is the between-class scatter matrix; W is the within-class scatter matrix; and
d = W−1(m1 − m2). That is, d is a directional vector in which the data are projected to
maximize class separation, and the value of Fv approaches zero by maximizing W−1B,
which becomes a simpler classification. Therefore, the lower the measurement, the simpler
the classification problem is.

Third, D2 is related to the density measurement, defined as the average number of
samples per unit volume in the space where all samples are distributed [36]. The value of
D2 in n training samples is determined by measuring the average volume occupied by the
k nearest neighbors in each sample, xi, referred to as Nk(xi). The value is counted as:

D2 =
1
n

n

∑
i=1

d

∏
h=1

(max( fh, Nk(xi))− min( fh, Nk(xi) )), (3)

where max( fh, Nk(xi)) and min( fh, Nk(xi) ) denote the maximum and minimum values of
the feature, fh, among the k-NN of xi, respectively.
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Finally, the L2 value is decided by referring to the error rate of the linear SVM classifiers.
Therefore, the higher the value, the more errors, and the more difficult it is to classify
linearly, which increases the complexity. Here, each measurement is briefly described to
the minimum required. A detailed description of each of these measurements, and other
measures that were not selected here, but that were closely related to the selected ones, can
be found in the relevant literature.

3. Methods and Data

This section first introduces the classification methods associated with the current
empirical research, and then presents the seismic wave image data used in this paper.

3.1. Classification Methods

The classification system to be developed in this paper (named HYB) is a method of
hybridizing an existing linear (or nonlinear) classifier (e.g., an SVM) with a CNN. HYB
is a classification framework that performs feature extraction on CNNs, and then trains
SVMs using the extracted features. In this approach, when learning the CNN in the target
domain, the problem of insufficient learning data can be avoided through transfer learning,
using a model learned in advance in the source domain.

The CNN architecture extracting the feature vector consists of an input layer, a hidden
layer, and an FC layer. The hidden layer includes layers that perform convolution and
subsampling. In this structure, the feature vectors we are trying to extract are made from
input neurons directly connected to the FC layer. The extracted vector is a midlevel repre-
sentation, just before the input image passes through the hidden layers and is transferred
to the FC layer. Therefore, the dimension of the feature vector is equal to the number of
neurons that make up the first FC layer. As a result, we can adjust the number of FC input
neurons to find the optimal dimension for the given application.

To extract CNN-features as described above, the weights of the CNN that make up
the C layers should be fixed in advance. To this end, transfer learning can be used [16]. In
transfer learning, the cardinality of the target task’s dataset is usually less than that of the
source task’s training dataset. Because of this, the proposed CNN-feature extraction method
can avoid the general difficulty of CNN learning, which requires a large amount of data.
Moreover, CNN training in the transfer learning mode is made up of fine-tuning. Therefore,
the learning time can be significantly reduced with a small amount of fine-tuning.

The CNN model is learned by repeatedly performing forward propagation (FP) and
backward propagation (BP), in an end-to-end manner. At this time, one of sum-, max-, or
O2P-pooling is used to reduce the amount of processed data. When using O2P-pooling, the
learning process is performed as follows: First, for the FP, it is assumed that a feature tensor,
X ∈ Rh×w×d, of the height, h, width, w, and channel, d, is generated from the last C layer,
and that this tensor is reshaped into a matrix, X ∈ Rn×d, consisting of n = hw features of
the d-dimension. Then the second-order pooling, Σ ∈ Rd×d, for X is computed as:

Σ = X
¯
I XT, (4)

where
¯
I = 1

n

(
I − 1

n 1
)

; I and 1 are the n × n identity matrix and the matrix of all the ones,
respectively. To improve the representation power, Σ is transformed into Z by performing
matrix power normalization using SVD (singular value decomposition) and is then sent to
the FC layer.

Next, BP proceeds in the opposite direction. Given the gradient of a loss function, l
w.r.t. Z, propagated from the FC layer, i.e., ∂l/∂Z, the gradient of l w.r.t. Σ is estimated
sequentially. First, we have prepared all the relevant derivations (see Equation (2) in [31]),
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and then we can calculate the ∂l/∂Σ. Using this derivative, the gradient of l w.r.t. X, which
is used to update the weights of the network, is determined as:

∂l
∂X

= IX

(
∂l
∂Σ

+

(
∂l
∂Σ

)T
)

. (5)

Here, it should be noted that the BP contains GPU-nonfriendly computations, such as
SVD, which leads to costly training. To solve this problem, fast end-to-end methods were
developed, such as MPN-COV [32] and iSQRT-COV [33], which are suitable for parallel
implementation.

3.2. Seismic Data

A total of 500 synthetic seismic images were prepared, and each of them contained one
fault line with different slopes and positions. The corresponding fault position in each image
was indicated in white by generating binary masks, referring to the seismic amplitude
information. Figure 1 presents an example of a seismic wave image (a), and a fault line (b)
to be extracted from it. The dataset of the synthetic seismic wave images (501 × 501 pixels),
reproduced through open-source code, IPF [37], is an artificial implementation of sequential
rock deformation over time.

 
(a) (b) 

Figure 1. Plots presenting synthetic seismic wave data: (a) a synthetic seismic image; (b) a fault
line. Here, two blocks, marked in the red color and in blue, indicate the fault and nonfault patches,
respectively.

From the dataset composed of image pairs, shown in Figure 1 (where the two images
on the left and right sides include seismic waves and fault lines, respectively), the fault and
nonfault patches were extracted. One patch is a (45 × 45)-dimensional matrix with one
candidate pixel in the center, and 2024 pixels adjacent to it (this is the smallest patch size
generating satisfactory results [4]). This patch can be classified as a fault patch or a nonfault
patch, according to the following rule: If the candidate pixel is a pixel forming a fault
line, then it becomes a fault patch; otherwise, it becomes a nonfault patch. For example,
referring to the fault line matrix shown in Figure 1b, all possible fault patches were first
extracted, and then the same number of nonfault patches were randomly extracted from
the seismic wave image, shown in Figure 1a.
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4. Experimental Study

In this section, we present the evaluation results for the classification performance and
data complexity of the CNN-features. These were compared to those of the feature vectors,
extracted in three ways: PCA; kPCA using “Gaussian” kernel [38]; and discriminative auto-
encoder (AE) [39]. kPCA and AE were selected as the nonlinear and the network-based
version of the PCA, respectively, and the implementations of the original authors were used
without modification. Regarding CNNs, two versions were implemented [40]. The first is a
typical CNN with sum-pooling, and the second is an improved CNN using O2P-pooling.
Then, the SVMs were realized from the LIBSVM [41].

4.1. Synthetic and Real Experimental Data

As mentioned above, we first generated synthetic seismic waves and fault images.
From the total of 500 seismic wave images, two patch sets of ‘Test1’ and ‘Train1’ were
constructed as follows: Test1 is a set of 76,038 patches extracted from the first 100 images;
and Train1 is a set of 284,850 patches extracted from 400 seismic images from the remaining
101 to 500 images. Train1 (and Test1) was used to pretrain the CNN models needed to
extract the CNN-features.

For real-world seismic images, we considered the real seismic wave image data,
cited from the Project Netherlands Offshore F3 Block—Complete [42]. We first asked some
experienced experts to manually mark the fault lines according to the structural information
(the work of assigning fault lines to real seismic wave images should be done by human
labelers using appropriate tools, as was performed in ImageNet [28]). Next, for a simple
comparative analysis, only ten seismic images along with fault lines were selected. Then, a
total of 52,026 (26,013 for each class) fault and nonfault patches were extracted from the ten
seismic images. When extracting the patches, the number of patches on the larger side was
adjusted to the smaller side by randomly selecting them in order to prevent an imbalance
between the classes. Hereafter, this real-world patch data is referred to as “RealPatch”.

4.2. CNN Models Implemented

Figure 2 and Table 1 show the details of the CNN architecture designed for the
experiment. This CNN consists of two convolutional (and subsampling: SUB) layers, and
one FC layer, which is one of the smallest required scales for our goal. The parameters
involved in the CNN are listed in Table 1.

Figure 2. The architecture of the CNN model.
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Table 1. The details of the CNN architecture.

Layer
Descriptions

Input
Size

Output
Size

Feature
Maps

Kernel
Size

1st convolution and
subsampling 45 × 45 40 × 40 4 (8) 6 × 6

2nd convolution and
subsampling 20 × 20 16 × 16 8 (16) 5 × 5

Fully connected 512 × 1 2 × 1

In Table 1, the architecture is implemented with two different models, a conventional
sum-pooling CNN and an improved O2P-pooling CNN, which are referred to as “CNN-
sum” and “CNN-O2P”, respectively. Details related to the models are as follows: In
CNN-sum, the number of output maps of the two C layers was set to 4 and 8, respectively,
but, in CNN-O2P, the number was adjusted to 8 and 16, as indicated by the parentheses in
the fourth column of the table.

Second, in the two SUB layers, sampling was performed by sum-pooling, which
reduces the dimension of each axis by half. At this time, the CNN-sum directly connected
the output (which was reshaped to a vector) of the second SUB layer to the FC layer, but,
in CNN-O2P, O2P-pooling was additionally implemented, and the obtained result was
connected to the FC layer. In all these operations, pooling was performed with a stride of 2.

Third, the last component at the bottom of both models is the FC layer, and the number
of input neurons of this layer is defined as the number of weights output from the previous
layer. The CNN-features we are trying to extract consist of these input neurons that connect
directly to the FC layer. Therefore, the dimension of the feature vector can be determined
by adjusting the number of these neurons.

Fourth, each model deals with the two-class problem of classifying the seismic image
patches as normal and abnormal. Therefore, it is necessary to adjust the number of neuron
units in the output layer when expanding to multiclass problems. In addition, a soft-max
function is required to obtain the normalized probabilities for each class.

Finally, the parameters for learning the CNN models were experimentally set to a
learning rate of 1, a momentum of 0.5, a batch size of 10, and the number of epochs was
set to 100. The number of epochs was optimized by referring to the learning curve to
prevent overfitting.

4.3. Classification Accuracy Rates

Our CNN-features were extracted as follows: We first prepared a CNN model using
source training data, Data1 (# of epochs: 100). Next, we fine-tuned this pretrained model
using target training data, Data2 (# of epochs: 200). Here, as for Data1, Train1 was used as it
was, and Data2, of 10,000 patches (5000 per class), was randomly selected from RealPatch.

In classification work performed by a feature extractor and a classifier, in general,
there is no optimal feature extractor for all classifiers, and vice versa. Thus, to validate the
performance of our CNN-based extractor, we conducted a simple classification experiment
using only two types of classifiers: the k-nearest neighbor rules (kNNs: k = 1, 3), and SVMs
(of the polynomial and RBF kernels). (Here, each of these two classifiers was chosen as
the easiest to implement and the most widely used classifiers. Although kNNs have a
long execution time, the classifiers were chosen because the discriminative characteristics
of the input vectors can be directly reflected in the output determination. Therefore,
thorough evaluation using other classifiers, such as AdaBoost and the decision tree, is a
future challenge).

Table 2 presents a numerical comparison of the classification accuracy rates (%) of the
features extracted by the five methods, i.e., PCA, kPCA, AE, CNN-sum, and CNN-O2P.
Here, the values were averaged after repeating 10 times. Each time, 10,000 (and 10,000)
patches were randomly selected as the training (and test) data from RealPatch, and the five
different types of feature vectors were extracted. For a fair comparison, the dimensions of
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all the feature vectors were adjusted to 256. The highest (second) accuracy of each row is
emphasized in bold (underlined).

Table 2. Classification accuracy rates (mean) (%).

Classifiers
(Types)

Feature Extraction Methods

PCA kPCA AE CNN-Sum CNN-O2P

kNN (k = 1) 92.47 93.10 86.33 95.67 99.03
kNN (k = 3) 84.52 86.56 74.59 93.19 98.47

SVM (polyn.) 80.20 86.69 72.69 85.88 96.21
SVM (RBF) 91.16 93.32 83.58 95.91 97.99

From the comparison shown in Table 2, it can be observed that the use of the CNN-
based extractor, in conjunction with existing classifiers, can significantly improve the
classification accuracy compared to the other extractors included in the comparison. In
particular, it is noteworthy that the CNN-based extractor uses not only training data, but
also pretrained CNN models that could not be used for other extractions. Under this
condition, a direct comparison of the five feature extractors may not be fair. However,
from the perspective of machine learning, such as transfer learning, the results of this
experiment suggest one possibility related to the “new” extractor. From this consideration,
the performance improvements observed in the last column of the table may have resulted
from the discriminating ability of the pretrained models.

Finally, in Table 2, CNN-sum and CNN-O2P were included as feature extractors, but
they can also serve as classifiers with the FC layers. The classification performances of the
CNN-sum and CNN-O2P trained for the experiments in the table were 96.13 (%) and 96.61
(%), respectively.

4.4. Data Complexity Measures

To highlight the reason why the use of the CNN-features improves the classification
performance, the complexity measures were also measured and compared. Figure 3 shows
a comparison of the complexity measurements obtained by applying the four extractors
of PCA, kPCA, AE, and a CNN (CNN-O2P or CNN-sum) to RealPatch, prepared for
this experiment.

In Figure 3, the CNN (CNN-O2P or CNN-sum) bar has the highest height for the F1
complexity, while the PCA (or kPCA) bar has the highest for the Fv, D2, and L2 complexities.
Through this comparison, we can consider as follows: First, the result of comparing the data
complexity shown in Figure 3 is consistent with the result of comparing the classification
accuracy shown in Table 2. That is, compared to the accuracy of PCA and CNN-features
in Table 2, CNN-based is superior to PCA. In Figure 3, when comparing the F1 values for
these two extractors, the CNN bar height is higher than that of PCA.

Second, a comparison of the Fv, D2, and L2 complexities is the opposite of F1: the
CNN-based bar height is lower than the PCA height. Specifically, the fact that the CNN-
based accuracy rate in Table 2 is greater than that of the PCA is consistent with the fact
that the CNN-based F1 bar in Figure 3 is higher than that of the PCA. However, the Fv
value is small when the accuracy rate is large. As reported in the relevant literature [13],
the increasing value of F1 reduces the overlapping feature space and, thus, allows for a
better separation of the feature space of the two classes. Unlike F1, the smaller the value
measured in Fv, the simpler the classification problem.
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Figure 3. Plot comparing the complexity measures obtained in PCA, kPCA, AE, CNN-sum, and
CNN-O2P from RealPatch. For ease of comparison, each of the complexity values measured was
adjusted so that the maximum value was 1. In addition, CNN-sum and CNN-O2P were clearly
compared only in F1. Thus, to clarify the focus of the paper, the two were analyzed only with a CNN.

Similar comparative analyses can be applied for the other complexity measures, D2
and L2. In general, for D2 and L2, the larger the bar height, the greater the overlap between
classes, which makes classification difficult. The results of Figure 3 are very consistent with
the above fact. From the observations made above, it can be argued that the CNN-based
extractor is a good feature extractor when compared to the AE-based extractor, as well
as when compared to the PCA (and kPCA). In particular, the extractor can be applied to
situations where existing extractors do not work well because of the nature of the data.
In various practices dealing with high-dimensional data, PCAs, which rely on covariance
matrices, are known to be rarely used because they are not efficient.

4.5. Time Complexity

Finally, to make the comparison complete, the time complexity of the extraction
methods was explored. Rather than embarking on another analysis of the computational
complexities, however, the time consumption levels for the datasets were simply measured
and compared. In the interest of brevity, the processing CPU times for each dataset is the
time consumed by repeating the feature extraction several times and then averaging it.
Table 3 presents a numerical comparison of the processing CPU times. Here, the times
recorded are the required CPU times on a laptop computer with a CPU of 2.60 GHz and a
RAM of 16.0 GB, and that is operating on a Window 64-bit platform.

Table 3. The processing CPU times (in seconds).

Data PCA kPCA AE CNN

Train1 8.3 7775.0 9560.8 35.5

In Table 3, it can be observed that the extractor of the CNN-features requires a much
shorter processing CPU time than the traditional nonlinear algorithms for the datasets used.
Particularly, this demonstrates that the extractor can dramatically reduce the processing
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time compared to other kernel- and network-based methods (e.g., kPCA and AE). However,
it should be noted that extracting the CNN-features requires a pretrained model. In Table 3,
Train1 was used for the seismic data to obtain the pretrained model (# of epochs: 100). The
training time for the model was excluded when counting the processing time in the table.

4.6. Summary and Future Challenges

As a result, from the above experiment, we can observe that the classification of seismic
patch data can be improved by means of hybridizing CNN-features with existing classifiers.
The summary of the experimental results and future tasks are as follows.

In this approach, CNN models were first trained to extract CNN-features. To this
end, we first prepared a CNN model using synthetic data and then used it as a pretrained
model when learning models for the feature extraction of real-life data. Therefore, it is
necessary to analyze the extent to which such transfer learning has affected the CNN-feature
extraction process.

More specifically, the task of analyzing the impact of the learning results of the source
domain (i.e., CNN models learned from the synthetic data) on the classification performance
of the target domain is a future challenge. We also experimented with a very limited number
of real-world data here. Therefore, the task of investigating the optimal cardinality of the
training set required for the target domain is also an open problem.

It is also interesting to see what has happened when using enhanced CNNs to extract
CNN-features with the hybrid method. Here, however, only CNN-sum and CNN-O2P were
implemented in one simple CNN and its weakly enhanced CNN, respectively, and were
compared to each other. Therefore, experiments on strongly enhanced CNNs, including
LesNet [43] and VGG-Net [44], remain open.

In order to find out why this hybrid approach leads to improved results, we measured
the data complexity of the CNN-features and compared it with that of the existing extractors.
However, complexity measurements were limited here, using only a limited number of
measurements. In addition, the feature-extraction performance was compared using only
a few traditional extractors. Therefore, introducing more diverse complexity metrics
and including handcrafted extractors in comparison, such as the LBP, the HOG, etc., is a
future challenge.

5. Conclusions

In this paper, the CNN-feature was first extracted using one CNN model, and was then
used to learn an existing classifier, such as an SVM. Here, the model was first pre-trained
using synthetic seismic data and was then fine-tuned using real-world data. By measuring
the data complexity, the answer to the question of why this approach works effectively
is presented.

However, the simulation was simply performed, by referring to the smallest structure
that can express basic algorithms. Therefore, a comprehensive evaluation, using various
architectures, such as ResNet and VGG-Net, and a comparison with the latest results in this
domain remain a challenge in the future. In addition, detecting the occurrence of negative
transfer that may occur in this approach is an important topic for future work. In addition
to these limitations, the problem of theoretically investigating the CNN-based extractor
remains unresolved.
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Glossary

Abbreviation Meaning

AE auto-encoder
B-CNN bilinear convolutional neural network
BP backward propagation
BiP bilinear pooling
C convolutional
CNN convolutional neural network
FC fully connected layer
FP forward propagation
GPU graphics computing units
HOG histogram of oriented gradients
HYB hybrid method of combining linear (nonlinear) classifier with CNN
iSQRT-COV iterative matrix square root normalization of covariance pooling
LBP local binary pattern
MPN-COV matrix power normalized covariance pooling
O2P second-order pooling
PCA principal component analysis
PR pattern recognition
SVM support vector machine
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Abstract: In video surveillance, robust detection of foreground objects is usually done by subtracting
a background model from the current image. Most traditional approaches use a statistical method to
model the background image. Recently, deep learning has also been widely used to detect foreground
objects in video surveillance. It shows dramatic improvement compared to the traditional approaches.
It is trained through supervised learning, which requires training samples with pixel-level assignment.
It requires a huge amount of time and is high cost, while traditional algorithms operate unsupervised
and do not require training samples. Additionally, deep learning-based algorithms lack generalization
power. They operate well on scenes that are similar to the training conditions, but they do not operate
well on scenes that deviate from the training conditions. In this paper, we present a new method
to detect foreground objects in video surveillance using multiple difference images as the input
of convolutional neural networks, which guarantees improved generalization power compared to
current deep learning-based methods. First, we adjust U-Net to use multiple difference images
as input. Second, we show that training using all scenes in the CDnet 2014 dataset can improve
the generalization power. Hyper-parameters such as the number of difference images and the
interval between images in difference image computation are chosen by analyzing experimental
results. We demonstrate that the proposed algorithm achieves improved performance in scenes that
are not used in training compared to state-of-the-art deep learning and traditional unsupervised
algorithms. Diverse experiments using various open datasets and real images show the feasibility of
the proposed method.

Keywords: visual surveillance; deep learning; object detection

1. Introduction

In video surveillance, the main aim is to detect foreground objects, such as pedestrians,
vehicles, animals, and other moving objects. This can be used for object tracking or behavior
analysis by further processing. Foreground detection in video surveillance is usually done
by comparing a background model image and the current image. Traditional approaches
to video surveillance require many steps, including initialization, representation, main-
tenance of a background model, and foreground detection operation [1–3]. Illumination
changes, camera jitter, camouflage, ghost object motion, and hard shadows make the robust
detection of foreground objects difficult in video surveillance. Many approaches have been
proposed to cope with these problems. Since the introduction of deep learning, it has also
been adopted in video surveillance. Most algorithms are supervised, while most traditional
algorithms are unsupervised. Methods based on deep learning have led to a huge im-
provement in video surveillance like other domains of image classification, detection, and
recognition. However, the use of deep learning in video surveillance has two disadvantages.
One is that they have little generalization power. Deep learning achieves improved results
compared to the traditional machine learning algorithm, but it still requires improvement
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in the generalization power. Domain transfer algorithms shows some improvement in this
problem. It is well known that, as more training data are used, more accurate results can
be obtained through deep learning. The other disadvantage is that deep learning requires
a lot of labeled data. In video surveillance, it requires pixel-level labeled data, which are
more expensive one than those of image classification and detection. Recently, various
datasets that satisfy this requirement have been established with diverse scenarios for video
surveillance. In this study, we used the CDnet 2014 dataset [4]. It consists of 53 scenes that
cover diverse situations in video surveillance. Typical deep learning algorithms for video
surveillance train a new model for each scene using some portion of the data and apply it
to the remaining images.

Our goal is to achieve improved generalization power in comparison to recent deep
learning-based algorithms in video surveillance. The main contribution of the proposed
method is summarized as follows. We present a deep learning-based approach which
shows better generalization power than the traditional non-deep learning-based state-of-
the-art approach. Deep learning-based approaches achieve better performance than the
non-deep learning-based traditional state-of-the-art approach on scenes that are similar
to learning environments. However, it requires foreground label images, which require
designation per pixel. Therefore, the preparation of training data requires a huge amount
of time, while traditional non-deep learning-based algorithms do not require training
images. When they are applied to scenes that are different from the training environment
without new training on that scene, they show even worse performance than the traditional
approach. We present a deep learning-based algorithm that achieves better generalization
performance than the traditional non-deep learning-based state-of-the-art approach, and at
the same time, it does not require training images. This is possible due to two factors. One
is to use multiple difference images as the input of U-Net. The other is to train networks
using all training samples from publicly open datasets in visual surveillance. We show the
feasibility of the presented method through diverse experimental results.

The rest of the paper is organized as follows. Section 2 gives related works, Section 3
shows the proposed algorithm. The experimental results are shown in Section 4 and, finally,
Section 5 gives conclusions.

2. Related Works

Background subtraction and foreground detection in video surveillance have been
studied widely. Good surveys of this research are available [5–8]. We divide them into
two groups, namely, approaches that do not use deep learning and those that are based on
deep learning.

2.1. Earlier Approaches

Stauffer and Grimson [9] proposed a method called mixture of Gaussian (MOG) that
represents the brightness value of each pixel as the combination of Gaussian distribu-
tions. They suggested a method to determine the number of the Gaussian mixture and
each parameter of the Gaussian distribution using the expectation and maximization al-
gorithm [10]. No special initialization is required because it adapts their parameters as
a sequence goes on. Pixels are considered as background when their brightness values
belong to the Gaussian mixture model, otherwise, they are considered as foreground.
Elgammal et al. [11] proposed a probabilistic non-parametric method using kernel density
estimation. Barnich et al. [1] introduced a sample-based method in background modeling.
Samples from previous predefined frames are used in background modeling. If there is
a predefined group of samples that is close to the current pixel, then it is considered as
background, otherwise, it is considered as foreground. Kim et al. [12] proposed a method
that uses a codebook. At the initial stage, codewords from intensity, color, and temporal
features are constructed. They build up a codebook for later segmentation. The current
frame’s pixel values of intensity and color are compared to those of the codewords in
the code book. Finally, a foreground or background label is assigned to each pixel by
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comparing the distance with codewords in the codebook. In the case of a background pixel,
the matching codeword is updated. Oliver et al. [13] proposed a method based on principal
component analysis, which is called the eigenbackground. The mean and the covariance
matrix are computed using a predefined number of images. Here, N eigenvectors are
chosen corresponding to the N largest eigenvalues, and they are used as the background
model. Incoming images are projected into those eigenvectors, and their distance in those
spaces is used to identify the foreground and background.

Wang et al. [14] proposed a method that uses a Gaussian mixture model for the
background and uses single Gaussian for the foreground. They employed a flux tensor [15]
that can explain variations of optic flow within a local 3D spatio-temporal volume, and
it is used in detecting blob motion. With information from blob motion, foreground
and background models are integrated to find moving and static foreground objects.
Additionally, edge matching [16] is used to classify static foreground objects as ghosts or
intermediate motions. Varadarajan et al. [3] proposed a method that applies a region-based
mixture of Gaussians for foreground object segmentation to cope with the sensitivity of
the dynamic background. Additionally, Chen et al. [17] proposed an algorithm that uses a
mixture of Gaussians in a local region. At each pixel level, the foreground and background
are modeled using a mixture of Gaussians. Each pixel is determined to be foreground or
background by finding the highest probability of the center pixel around an N × N region.

Sajid and Cheung [18] proposed an algorithm to cope with sudden illumination
changes by using multiple background models through single Gaussians and different
color representations. K-means clustering is used to classify the pixels of input images. For
each pixel, K models are compared, and the group that shows the highest normalized cross-
correlation is chosen. An RGB and YCbCr color frame is used, and segmentation is done
for each color, which yields six segmentation masks. Finally, background segmentation is
performed by integrating all available segmentation masks.

Hofmann et al. [19] proposed an algorithm that improves Barnich et al. [1]. They
replace the global threshold R with an adaptive threshold R(x) that depends on the pixel
location and a metric of the background model which is called background dynamics. The
threshold R(x) and the model update rate are determined by a feedback loop using the
additional information from the background dynamics. They showed that it can cope with
a dynamic background and highly structured scenes. Tiefenbacher et al. [20] proposed an
algorithm that improves the algorithm introduced by Hofmann et al. [19] by controlling
the updates of the pixel-wise thresholds using a PID controller. St-Charles et al. [2] also
proposed an improved algorithm by using local binary similarity patterns [21] as addi-
tional features of pixel intensities and slight modification of the update mechanism of the
thresholds and the background model.

2.2. Deep Learning-Based Approaches

Braham and Droogenbroeck [20] proposed the first scene-specific convolutional neural
network (CNN)-based algorithm for background subtraction. A fixed background model
is generated by a temporal median operation over the first 150 video frames. Then, image
patches centered on each pixel are extracted from both the current and background images.
The combined patches are used as the input of the trained CNN, and it outputs the
probability of foreground. They evaluated their algorithm on the 2014 ChangeDetection.net
dataset (CDnet 2014) [22]. The CNN requires training for each sequence in CDnet 2014. It
requires a long computation time because patches from each pixel are required to pass the
CNN, and it is similar to the sliding window approach in object detection. Babaee et al. [23]
proposed a method that uses a CNN to perform the segmentation of foreground objects,
and they use a background model that is generated using the SuBSENSE [2] and Flux
Tensor [14] algorithms. Spatial median filtering is used for the post-processing of the
network outputs. Wang et al. [24] proposed multi-scale convolutional neural networks
with cascade structure for background subtraction. Additionally, they trained a network
for each video in the CDnet 2014 dataset. More recently, Lim et al. [25] proposed an
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encoder–decoder-type neural network for foreground segmentation called FgSegNet. It
uses a pretrained convolutional network of VGG-16 [26] as the encoding part with a triplet
network structure. In the decoding part, a transposed convolutional network is used.
Their network is trained by randomly selecting some training samples for each video in
CDnet 2014.

Zeng et al. [27] proposed a multi-scale fully convolutional network architecture that
takes advantage of various layer features for background subtraction. Zheng et al. [28]
proposed an algorithm that combines traditional background subtraction and semantic
segmentation [29]. The output of semantic segmentation is used to update the background
model through feedback. Their result shows that it achieves the best performance among
unsupervised algorithms in CDnet 2014. Sakkos et al. [30] presented a robust model
that consists of a triple multi-task generative adversarial network (GAN) that can detect
foreground even in exceptionally dark or bright scenes and in continuously varying illumi-
nation. They generate low- and high-brightness image pairs using the gamma function
from a single image and use them in training by simultaneously minimizing GAN loss
and segmentation loss. Patil et al. [31] proposed a motion saliency foreground network
(MSFgNet) to estimate the background and to find the foreground in video frames. Original
video frames are divided into a number of small video streams, and the background is
estimated for each divided video stream. The saliency map is computed using the current
video frame and the estimated background. Finally, an encoder–decoder network is used to
extract the foreground from the estimated saliency maps. Varghese et al. [32] investigated
visual change, aiming to accurately identify variations between a reference image and a
new test image. They proposed a parallel deep convolutional neural network for localizing
and identifying the changes between image pairs.

Akilan et al. [33] proposed a 3D convolutional neural network with long short-term
memory (LSTM) to include temporal information in a deep learning framework for back-
ground subtraction. This is similar to our approach in terms of using temporal information.
We use multiple difference images as the input of networks, while they extracted temporal
information by LSTM. Yang et al. [34] proposed a method to apply multiple images to fully
convolutional networks (FCNs). When selecting multiple input images, images close to the
current are selected more. The studies in [33,34] belong to the method of using multiple
input images in the same way as the proposed method. In the case of [33,34], multiple
original images are used, whereas the proposed method is different in using multiple
difference images.

3. Proposed Method

Unlike general object segmentation, proper acquisition of temporal information as
well as spatial information is essential for robust foreground object detection in video
surveillance. If we rely only on spatial information in the foreground object detection
process, it may be difficult to determine whether the vehicle is moving or not. However,
this problem can be solved if temporal information from past images is used.

Figure 1 shows the difference images between the current image and a number of past
images. Using only spatial information existing in the current image has a limitation in
distinguishing between the driving vehicle in the red box in Figure 1 and the parked vehicle
in the blue box. On the other hand, when the difference image is used as input data for a
deep learning model, it is possible to distinguish between a moving object and a stationary
object. However, as can be seen from the difference images in Figure 1, there is a problem in
that both the location where the foreground object existed in the past and the location that
existed in the present view are displayed in the difference image between the current image
and the past image. In addition, elements such as snow and rain and dynamic background
objects such as moving bushes in bad weather conditions show high difference values
even though they are background objects. In order to solve these problems, the proposed
method uses many difference images, not a single difference image, as input data.
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Figure 1. Use of temporal information by multiple difference images.

We adopt U-Net [35], which uses a gray or color image as the input of the network.
We adjust it to use multiple difference images. Figure 2 shows the overall structure of the
proposed algorithm. A network structure that uses multiple difference images as the input
of U-Net [35] is shown in Figure 3. Difference images are obtained by subtracting each
past image from the current image. The total number of difference images and the frame
interval in subtraction are the hyper-parameters. We choose them through the analysis of
experimental results. We choose 10 difference images as the number of inputs of the net-
work through experiments. The size of the input is changed to 320(W) × 240(H) × 10(C),
while the original U-Net uses input images of 572(W) × 572(H) × 1(C). U-Net [35] does not
use padding in the convolutional layer and uses “copy and crop” in the layer connection
process, so it outputs an image of 388x388 in size, which is different from the input image
size of 572 × 572. In visual surveillance, all areas of the image need to be classified into
foreground or background. Therefore, we prevented the size reduction of the output
according to the convolutional layer by using padding in all layers of U-Net, and layers
were connected using concatenation without cropping to make the size of the input image
and the output image the same. The size of the input image was 320 × 240, which is an
image size mainly used in the visual surveillance.

Figure 2. Foreground object detection by U-Net with multiple difference images as input.
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Figure 3. The structure of modified U-Net.

Batch normalization is used between each convolutional layer and the nonlinear
function. Here, 2 × 2 max polling is used and the filter size of all convolution layers is
3 × 3. A rectified linear unit (ReLU) is used as the activation function in all layers except
the last layer where a sigmoid function is used. We use the sigmoid function on the final
layer to make the foreground and background map have a value between 0 and 1. The
output of the final convolution layer gives the segmentation map by the sigmoid function.
Finally, a segmentation map of 320(W) × 240(H) × 1(C) is obtained. The total number of
parameters of the proposed structure is 31,064,261, and the number of learnable parameters
is 31,050,565.

Binary cross-entropy is used as the loss, which is defined as

L =
1
N

N

∑
i=0

−(yilogŷi + (1 − yi) log(1 − ŷi)) (1)

where yi is the ground truth label of the i-th pixel is, ŷi is the label estimated by networks,
and N is the total number of pixels in the image. We train the proposed structure using
the CDnet 2014 dataset, and 24 scenes are selected from the total of 53 scenes. We se-
lect 200 images for each scene and randomly divide them into 160 training images and
40 validation images. When 24 scenes consisting of 4800 images are used in the training,
3840 images and 960 images are used for the training and validation, respectively.

The Keras framework [36] with TensorFlow as a backend is used in implementation.
The initial values of parameters in the networks are initialized using the He normal
initializer [37]. We do not use the pretrained weights of VGG-16 [26] for our model because
we use multiple difference images as the input, while VGG deals with raw input images.
We train our network using the Adam optimizer [38] with an initial learning rate as 0.001,
β1 as 0.9, β2 as 0.999, and ε as 10−8. If the validation loss does not decrease in five successive
epochs, the learning rate is reduced by half. The learning process is stopped if the validation
loss does not decrease in 10 successive epochs within the maximum of 100 epochs. The
CDnet 2014 dataset provides four labels of static, hard shadow, outside region of interest,
and unknown motion as the ground truth of the segmentation map. Preprocessing is
performed to divide the pixel value of the ground truth images by 255. We set static as
0 and motion as 1 in the computation of loss. The outside region of interest area and the
unknown motion are not used in the computation of loss.
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4. Experimental Results

In the experiment, the proposed algorithm is compared with the traditional algorithms
of SuBSENSE [2], CwisarD [39], Spectral360 [40], GMM [9], and PAWCS [41] and deep
learning-based algorithms of FgSegNet-v2 [42] and modified FgSegNet-v2. The original
FgSegNet-v2 [42] algorithm uses one RGB image as the input of a network. We modify it
to use multiple difference images as the input of a network, like the proposed algorithm,
and we denote it as modified FgSegNet-v2. Data for training consisted of a training set and
validation set, and the performance of each algorithm was evaluated using a test set that
was not used for training.

The following experiment was performed to show the performance of the proposed al-
gorithm.

(1) Comparison when using multiple original images and multiple difference images
as the input of a network; we show the superiority of the proposed algorithm through this.

(2) Comparison between learning using data obtained in one environment and learn-
ing using all data obtained in various environments; we show that the proposed algorithm
gives improved results in unknown scenes.

Experiments were done using the CDnet 2014 dataset [4]. They consisted of 53 scenes
from 11 categories, as shown in Table 1, and they dealt with diverse situations that could
occur during visual surveillance. We evaluated the foreground object detection algorithms
using a variety of metrics that are widely used in visual surveillance, namely, recall,
precision, F-measure (FM), percentage of wrong classification (PWC), false positive rate
(FPR), false negative rate (FNR), and specificity (SP):

Precision =
TP

TP + FP

Recall =
TP

TP + FN

FM = 2 × Precision × Recall
Precision + Recall

PWC =
FP + FN

TP + TN + FP + FN

FPR =
FP

FP + TN

FNR =
FN

TP + FN

SP =
TN

TN + FP
where TP, TN, FP, and FN mean true positive, true negative, false positive, and false
negative, respectively.

Table 1. List of scenes in the CDnet 2014 dataset (bold indicates the scene used in training).

Categories
(Total Number of Scenes/Number of Scenes Used for Training)

Scene Names

Baseline (4/2) Highway, Office, Pedestrians, PETS2006

Camera Jitter (4/2) Badminton, Sidewalk, Traffic, Boulevard

Bad Weather (4/2) Skating, Wet snow, Blizzard, Snowfall

Dynamic Background (6/3) Boats, Canoe, Fountain1, Fountain2, Fall, Overpass

Intermittent Object Motion (6/2) Abandoned box, Street light, Parking, Sofa, Tram stop,
Winter drive way

Low Framerate (4/2) Port_0_17 fps, Tram crossroad_1 fps, Tunnel exit_0_35fps,
Turnpike_0_5fps

49



Appl. Sci. 2021, 11, 1807

Table 1. Cont.

Categories
(Total Number of Scenes/Number of Scenes Used for Training)

Scene Names

Night Videos (6/3) Bridge entry, busy boulevard, fluid highway, Street corner
at night, Tram station, Winter street

PTZ (4/0) Continuous pan, Intermittent pan, Two position ptz cam,
Zoom in zoom out

Shadow (6/3) Back door, Copy machine, Bungalows, Bus station,
Cubicle, People in shade

Thermal (5/3) Corridor, Library, Lakeside, Dining room, Park

Turbulence (4/2) Turbulence0, Turbulence1, Turbulence2, Turbulence3

In Table 1, bold letters represent the 24 scenes used in the training. We used 200 images
for each scene in training. Test statistics are obtained by using scenes not used in the
training in Table 1. Ten difference images under a five-frame interval were used as the
input of networks. Subtracting by mean was used for the preprocessing of the input
data. In both cases, four scenes of the pan–tilt–zoom (PTZ) category were not used in the
training. The proposed method has a weakness for the category of PTZ where images are
obtained through panning of the camera. In video surveillance, cameras are usually fixed
at a predefined location. Scenes in the PTZ category are not common situations in video
surveillance. Therefore, experiments are done using 49 scenes from 10 categories, excluding
the PTZ category. Computation was done using one Intel i7-7820X CPU and an NVIDIA
RTX 2080Ti GPU. The computation time for each input was 30 ms, which was obtained
by averaging the processing time of 100 trials. In the case of FgSegNet-v2 [42], a deep
learning-based method, it took 9 ms to process one image in the same PC environment. This
is a faster processing speed than the proposed method, but the proposed method shows
much better generalization ability in the real environment. Additionally, the proposed
method can be computed over 30 fps. Therefore, it was judged that the proposed method
has an appropriate level of model size and computational cost to use in a real environment.

First, we present the experimental results of training using only one scene in the CDnet
2014 dataset. After training using one scene, we applied it to other scenes to assess the
generalization ability. Table 2 shows a comparison of the proposed method and FgSegNet-
v2 [42], which produces state-of-the-art results on the CDnet 2014 dataset. FgSegNet-v2
was used to train a separate network for each scene in the CDnet 2014 dataset, and test
statistics were obtained for each scene. The proposed method and FgSegNet-v2 were
trained using only a highway scene in the CDnet 2014 dataset. FgSegNet-v2 uses one
RGB image as input, while the proposed algorithm uses 10 difference images as input.
FgSegNet-v2 achieved a better result than the proposed algorithm in a scene that was
used in the training. Though the proposed method showed dramatic improvement in
comparison to FgSegNet-v2 for other scenes that were not used in the training, the overall
performance of the proposed method still requires improvement because it achieves much
lower performance than SuBSENSE [2]. We can conclude that training using only a highway
scene does not guarantee generalization power for other scenes. Therefore, we trained the
proposed algorithm using all the scenes except the PTZ category in the CDnet 2014 dataset
to improve the generalization ability.
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Table 2. Comparison of results obtained by training using one scene (Highway) in the CDnet 2014 dataset.

Highway
Scene

All Scenes Scenes Not Used in Training

FM PWC FM PWC FM PWC

Proposed 0.99 0.08 0.47 3.61 0.46 3.68

FgSegNet-v2 [42] 1.00 0.02 0.25 11.1 0.23 11.4

Tables 3 and 4 show the result of the proposed algorithm, which was trained using
24 scenes in CDnet 2014 dataset. The proposed method shows superior performance
compared to other algorithms, with FM scores of 0.927 and 0.895, respectively, even in
“Bad Weather” and “Dynamic Background” categories, where a large amount of noise is
included in the difference image.

Table 3. Results of proposed method which is trained using 24 scenes in CDnet 2014 dataset.

Categories FM PWC Recall Precision FPR FNR SP

Baseline 0.9535 0.1301 0.9481 0.9597 0.0006 0.0519 0.9994
Camera Jitter 0.7759 3.5410 0.7563 0.8461 0.0084 0.2437 0.9916
Bad Weather 0.9266 0.1741 0.9628 0.9007 0.0012 0.0372 0.9988
Dynamic BG 0.8952 0.2805 0.8892 0.9033 0.0012 0.1108 0.9988

Int. Obj. Motion 0.7509 3.0798 0.9169 0.6792 0.0306 0.0831 0.9694
Low Framerate 0.7854 0.9016 0.9256 0.7204 0.0088 0.0744 0.9912
Night Videos 0.8553 0.5602 0.8717 0.8437 0.0035 0.1283 0.9965

Shadow 0.9108 0.6420 0.9251 0.9037 0.0042 0.0749 0.9958
Thermal 0.9319 0.6305 0.9688 0.9006 0.0059 0.0312 0.9941

Turbulence 0.8536 0.2404 0.9766 0.7881 0.0023 0.0235 0.9977
Average 0.8635 1.0301 0.9130 0.8437 0.0072 0.0870 0.9928

Scenes used in training 0.9649 0.1580 0.9788 0.9529 0.0013 0.0212 0.9987
Scenes not used in

training 0.7662 1.8674 0.8499 0.7389 0.0128 0.1501 0.9872

Table 4. Comparison result of FM score by proposed method and other methods on the CDnet 2014 dataset.

Scenes Proposed
Modified

FgSegNet-v2
FgSegNet-v2

[42]
SuBSENSE

[2]
CwisarD

[39]
Spectral-360

[40]
GMM [9]

Baseline 0.954 0.940 0.814 0.950 0.908 0.933 0.825
Camera Jitter 0.776 0.769 0.613 0.815 0.781 0.716 0.597
Bad Weather 0.927 0.919 0.876 0.862 0.684 0.757 0.738

Dynamic
Background 0.895 0.883 0.619 0.818 0.809 0.787 0.633

Int. Obj.
Motion 0.751 0.719 0.584 0.657 0.567 0.566 0.633

Low Framerate 0.785 0.750 0.742 0.645 0.641 0.644 0.537
Night Videos 0.855 0.831 0.703 0.560 0.374 0.483 0.410

Shadow 0.911 0.893 0.734 0.899 0.841 0.884 0.737
Thermal 0.932 0.929 0.799 0.817 0.762 0.776 0.662

Turbulence 0.854 0.896 0.521 0.779 0.723 0.543 0.466
Average 0.864 0.850 0.697 0.777 0.706 0.706 0.619

Table 4 shows a comparison of the results obtained by the proposed algorithm and
other algorithms. The proposed method, FgSegNet-v2 [42], and modified FgSegNet-
v2 were trained using the same 24 scenes in the CDnet 2014 dataset. The proposed
method, FgSegNet-v2, and modified FgSegNet-v2 are deep learning-based algorithms that
require training samples. SuBSENSE [2], CwisarD [39], Spectral-360 [40], and GMM [9]
are traditional algorithms that do not require training samples, and their experimental
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statistics shown in Table 4 are those reported in the literature. The proposed algorithm
achieved the best performance, except for camera jitter and turbulence categories in the
CDnet 2014 dataset. Training the original FgSegNet-v2 using 24 scenes in the CDnet 2014
dataset produced an even worse performance than the traditional SuBSENSE algorithm [2].
Simply training using multiple scenes without changing the network cannot guarantee
generalization power. The proposed algorithm, which uses multiple difference images as
input, achieves a meaningful improvement. We can conclude that the proposed algorithm
provides greater generalization ability than other algorithms.

The original FgSegNet-v2 has no generalization ability in other scenes that are not
used in training. Modifying its input to be multiple difference images, like in the proposed
method, leads to dramatic improvement. Therefore, we can conclude that using multiple
difference images as the input of the network could increase its generalization ability.

4.1. Multiple Difference Images vs. Multiple Original Images

In this section, we show experimental results according to the types of input images.
We compare two cases of using multiple original images and multiple difference images
as the input of networks. FgSegNet-v2 [42] predicts foreground objects using only the
current image as the input of the networks. We modify it to use multiple original images or
multiple difference images. In both cases, subtracting with mean is used as preprocessing.
Training is done using 24 scenes in Table 1. Two hundred images from each scene are used,
so 4800 images in total are used in training.

Table 5 shows the performance of the trained network on CDnet 2014 dataset according
to the input of original images and multiple difference images. The numbers of original
images and difference images are varied according to the interval between frames, as
shown in Table 5, where 50 frames are considered for the input of the network. We show
performance in two different aspects. One is applying a trained network on scenes used
in training. The other is applying a trained network on scenes that are not used in the
training. Using multiple original images gives a slightly better result than using multiple
difference images in scenes used in training. However, using multiple difference images
shows a distinctly better performance than for scenes which are not used in the training.
At 10-frame intervals, we could reach a 27.5% reduction in false detection by using five
difference images compared to using six original images, and we could reach a 28.6%
reduction in false detection by using 10 difference images compared to using 11 original
images. We can conclude that using multiple difference images as the input of networks
gives improved accuracy and generalization power.

Table 5. Comparison results of using multiple original images and multiple difference images as the input of networks
within a 50-frame range.

Number of Original
or Difference Images

Overall Scenes Used for Training Scenes Not Used for Training

FM PWC FM PWC FM PWC

6 (org) 0.84 1.43 0.96 0.12 0.72 2.69
5 (diff) 0.86 1.06 0.97 0.13 0.76 1.95
11 (org) 0.84 1.36 0.98 0.06 0.71 2.62
10 (diff) 0.86 1.03 0.96 0.16 0.77 1.87

4.2. Frame Intervals in Multiple Difference Images

We show the experimental results by varying the number of difference images and the
interval between frames in difference image computation. Training is done using 24 scenes
in Table 1. Two hundred images are used for each scene, so 4800 images in total are used
in training. Table 6 shows the experimental results by varying the number of difference
images at the fixed interval of five frames. Table 7 shows the experimental results by
varying intervals between frames in computing difference images at the fixed range of
50 frames. Evaluation is done using CDnet 2014 datasets except the PTZ category. Three
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experimental statistics of performance using all scenes, scenes used for training, and scenes
not used for training are presented in Tables 6 and 7. The number of difference images and
the frame interval between successive images are closely related to the speed of moving
foreground objects. We think that there are different optimal numbers of difference images
and intervals according to the speed of moving foreground objects. Small differences in
performance appear according to the variation of the number of difference images and
frame intervals in the Cdnet 2014 dataset. Finally, we set the number of difference images
as 10 and the interval between frames as five based on these experimental results which
show better performance in scenes not used in training.

Table 6. A comparison result by changing the number of difference images under a five-frame interval.

Number of
Difference Images

All Scenes Scenes Used for Training Scenes Not Used for Training

FM PWC FM PWC FM PWC

5 0.84 1.10 0.95 0.30 0.74 1.86
10 0.86 1.03 0.96 0.16 0.77 1.87
15 0.85 1.06 0.96 0.26 0.75 1.84
20 0.84 1.09 0.93 0.30 0.75 1.86

Table 7. A comparison result by changing frame intervals to within 50 frames.

Number of
Difference Images

All Scenes Scenes Used for Training Scenes Not Used for Training

FM PWC FM PWC FM PWC

2 0.85 1.24 0.96 0.18 0.75 2.26
5 0.86 1.06 0.97 0.13 0.76 1.95
10 0.86 1.03 0.96 0.16 0.77 1.87
50 0.84 1.22 0.96 0.18 0.72 2.21

4.3. Generalization Ability Test Using Scenes Not Used in Training

Having a good generalization power is one of the main goals of machine learning.
Though deep learning has shown a big jump in performance in various areas, it still requires
an improvement in the generalization power. We show the improved generalization power
of the proposed method by applying it on the scenes that are not used in the training. The
proposed algorithm is compared to three algorithms, SuBSENSE [2], modified FgSegNet-v2,
and FgSegNet-v2 [42]. We adjust FgSegNet-v2 to use multiple difference images as input,
like the proposed method, and we denote it as modified FgSegNet-v2. Experiments were
done by training the proposed method, modified FgSegNet-v2, and FgSegNet-v2 using the
same 24 scenes in the CDnet 2014 dataset, which are shown in Table 1.

First, we evaluate the generalization power on the CDnet 2014 dataset. We investigated
the generalization ability by applying the trained networks to the other 29 scenes that
were not used in training in the CDnet 2014 dataset. Second, we present the results
obtained by applying the trained networks to scenes in the SBI2015 dataset [43] and scenes
that we acquired ourselves. The SBI2015 dataset and scenes that we acquired were not
used in training. Figure 4 shows the results obtained on scenes used for training in the
CDnet 2014 dataset. Figure 4a shows the original image and the corresponding frame
number of the scene. Figure 4b shows the ground truth segmentation map. The results
of SuBSENSE [2], the proposed method, modified FgSegNet-v2, and FgSegNet-v2 [42]
are presented in Figure 4b–e. The deep learning-based methods of the proposed method,
modified FgSegNet-v2, and FgSegNet-v2 give better results than the traditional approach
of SuBSENSE [2]. Through this, we can ascertain that deep learning-based algorithms give
superior results compared to traditional a BGS algorithm in scenes used in the training.
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 Input (a) (b) (c) (d) (e) 

Skating 
#1427 

      

Highway 
#1371 

      

Badminton 
#872 

      

Office 
#1142 

      

Canoe 
#905 

      

Copy Machine 
#960 

      

Figure 4. Test results on scenes used for the training in the CDnet 2014 dataset: (a) ground truth foreground maps, (b)
proposed method, (c) SuBSENSE [2], (d) modified FgSegNet-v2, (e) FgSegNet-v2 [42].

Figure 5 shows the results obtained on scenes that were not used for training in the
CDnet 2014 dataset. We can notice a clearly different tendency in Figure 4. FgSegNet-
v2 [42] produces the worst results among the four algorithms. It produces even worse
results than the non-deep learning-based method of SuBSENSE [2]. We can conclude that
the original FgSegNet-v2 is efficient in scenes that were used for training, and it has little
generalization ability. This can also be noticed quantitatively in Table 4. The proposed
method and modified FgSegNet-v2 achieve better results than SuBSENSE even in scenes
not used in training. Through this, it can be confirmed that the generalization ability
is improved considerably by simply changing the input structure without changing the
structure of the deep learning model.
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 Input (a) (b) (c) (d) (e) 

Pedestrians 
#356 

      

Cubicle 
#5623 

      

Turbulence2 
#2364 

      

Blizzard 
#1254 

      

Traffic 
#964 

      

Zoom In 
Zoom Out 

#510 
      

Figure 5. Test results obtained on scenes not used for training in the CDnet 2014 dataset: (a) ground truth foreground maps,
(b) proposed method, (c) SuBSENSE [2], (d) modified FgSegNet-v2, (e) FgSegNet-v2 [42].

We present quantitative results obtained using the SBI2015 dataset [43] to show the
generalization ability of proposed method. SBI2015 provides 14 scenes in total. We do
not use the Toscana scene because it consists of six images that are not continuous. In
addition, “Snellen” and “Foliage” scenes treated moving leaves as foreground labels. This
classification differs from the foreground concept used in video surveillance. Moving leaves
are generally classified as dynamic background, and we think that they should be treated
as background labels. Therefore, in experiments, “Snellen” and “Foliage” scenes were also
excluded from the evaluation. The proposed method, FgSegNet-v2 [42], PAWCS [41], and
the SuBSENSE [2] algorithm were compared, and the results are shown in Table 8. The
proposed method achieved a better performance than other algorithms. The proposed
method shows low FM scores in the “Candela” and “People&oliage” scenes. Since the
proposed method receives images in a range of 50 frames, it shows insufficient performance
in the “Candela” scene where there is a foreground object that has been stopped for a long
time. Additionally, in the “People&Foliage” scene, both moving people and bushes are
classified as foreground objects. In visual surveillance, moving bushes should be classified
as dynamic background, but in the scene they are classified as foreground, so most methods,
including the proposed method, show very low performance. Furthermore, FgSegNet-v2
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achieved much lower performance than the PAWCS and SuBSENSE algorithms, as seen in
Figure 5.

Table 8. Comparison of FM score by the proposed method and other algorithms on the SBI2015 dataset.

Scene Ours Modified FgSegNet-v2 PAWCS [41] SuBSENSE [2]
FgSegNet-v2

[42]

Board 0.8114 0.8086 0.7798 0.5777 0.5816
CAVIAR1 0.9566 0.9342 0.8589 0.9144 0.9115
CAVIAR2 0.8094 0.8192 0.6772 0.8714 0.0306
CaVignal 0.8634 0.9102 0.3697 0.3980 0.7704
Candela 0.6402 0.6646 0.8725 0.5356 0.4144

Hall&Monitor 0.9384 0.8878 0.7411 0.7758 0.7365
Highway1 0.8465 0.8619 0.7015 0.5523 0.4263
Highway2 0.9559 0.9537 0.9031 0.8937 0.2277

HumanBody2 0.9415 0.9342 0.7013 0.8346 0.5978
IBMtest2 0.9574 0.9548 0.9386 0.9390 0.4197

People&Foliage 0.4474 0.3033 0.3162 0.2660 0.4930
Mean 0.8335 0.8211 0.7145 0.6871 0.5100

Figure 6 shows some representative results obtained using images in the SBI2015
dataset. We can notice that the proposed algorithm shows more improvement than tradi-
tional background model-based algorithms in the SBI dataset compared to the CDnet 2014
dataset. We think that this is caused by the differences in those datasets. The CDnet 2014
dataset provides a preparation section to generate background model images before a test,
but the SBI dataset does not provide this. Therefore, background model-based algorithms
have difficulties in the generation of good background model images in the first part of the
SBI dataset.

Figure 7 shows the results obtained by using scenes that we acquired ourselves. We
only show qualitative results because obtaining a ground truth segmentation map with
pixel-wise resolution would requires a huge amount of time. Two sets of results obtained
using the proposed method are presented in Figure 7. One was trained using 24 scenes in
the CDnet 2014 dataset. The other was trained using 49 scenes in the CDnet 2014 dataset.
In Figure 7, the SeoulTech #175 image was acquired with a small jitter of the camera and
there are no foreground objects in the scene. Overall, the proposed method trained using
49 scenes achieved better results than when it was trained using 24 scenes. Through this,
we can see that if additional datasets can be obtained, better performance can be expected.
We can conclude that the proposed method can stably detect foreground objects even in
new environments that are not shown in the CDnet dataset.

56



Appl. Sci. 2021, 11, 1807

 Input (a) (b) (c) (d) (e) 

Board 
#22 

      

CAVIAR2 
#135 

      

CaVignal 
#150 

      

Candela 
#285 

      

Higway1 
#177 

      

Human 
Body2 
#130 

      

IBMtest2 
#50 

      

Figure 6. Test results on SBI2015 dataset: (a) ground truth foreground maps, (b) proposed method, (c) SuBSENSE [2], (d)
modified FgSegNet-v2, (e) FgSegNet-v2 [42].
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 Input (a) (b) (c) (d) (e) 

Car 
#116 

 

     

Car 
#150 

      

Pedestrians 
#175 

      

Pedestrians 
#470 

      

SeoulTech 
#175 

(Camera Jitter) 
      

SeoulTech 
#355 

      

SeoulTech 
#363 

      

SeoulTech 
#500 

      

Figure 7. Qualitative results on real scenes that were not used in training: (a) proposed method trained using 49 scenes
in the CDnet 2014 dataset, (b) proposed method trained using 24 scenes in the CDnet 2014 dataset, (c) SuBSENSE [2], (d)
modified FgSegNet-v2, (e) FgSegNet-v2 [42].

Deep learning-based algorithms with supervised learning show the best performance
in scenes that are similar to training scenes. Therefore, they require training before applica-
tion to unknown scenes. However, they require a large set of training data. In particular,
visual surveillance requires a ground truth segmentation map per pixel, which requires a
large amount of time and is high cost. The best option would be a deep learning-based
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algorithm that does not require training samples of unknown scenes. We want to have
an algorithm for visual surveillance that achieves a performance comparable to that of a
deep learning-based algorithm, at the same time, requires little effort in preparing samples
for training.

The proposed algorithm trained using many samples can achieve better performance
than SuBSENSE [2] in situations where there are no training samples. We can conclude
that the proposed method achieves better results on scenes that deviate from the training
environment, in comparison to traditional and deep learning-based algorithms, from these
experimental results. The proposed method is based on deep learning, and it does not
require training samples before application to unknown scenes. Our goal is to have a
foreground detection algorithm that achieves better performance than traditional unsuper-
vised visual surveillance algorithms. The proposed algorithm meets this requirement by
adjusting U-Net to use multiple difference images and training it using multiple scenes.

5. Conclusions

In this paper, we proposed an algorithm that has better generalization power than
recent deep learning-based approaches and traditional unsupervised approaches in video
surveillance. Using multiple difference images as the input of U-Net and training using all
scenes in the CDnet 2014 dataset have made this possible. We demonstrated the improved
generalization power of the proposed algorithm through diverse experiments using the
CDnet 2014 dataset, the SBI 2015 dataset, and real scenes that we acquired ourselves.
We have shown that the generalization ability can be improved by only using multiple
difference images as input to other deep learning methods. However, since the frame
range of the input data is limited, it is difficult to detect foreground objects that have
been stopped for a long time. Additionally, because the proposed algorithm uses multiple
difference images as input, it has a shortcoming for scenes acquired by a camera in motion.
In further research, we are going to apply recurrent neural networks to cope with these
problems. In addition, we plan to do research to cope with the problems that are caused
by moving camera using a spatio-temporal network that properly considers spatial and
temporal information.
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Featured Application: The proposed handwritten text recognition pipeline can be used for

practical documents transcription and context recognition.

Abstract: Despite concerted efforts towards handwritten text recognition, the automatic location
and transcription of handwritten text remain a challenging task. Text detection and segmentation
methods are often prone to errors, affecting the accuracy of the subsequent recognition procedure. In
this paper, a pipeline that locates texts on a page and recognizes the text types, as well as the context
of the texts within the detected region, is proposed. Clinical receipts are used as the subject of study.
The proposed model is comprised of an object detection neural network that extracts text sequences
present on the page regardless of size, orientation, and type (handwritten text, printed text, or non-
text). After that, the text sequences are fed to a Residual Network with a Transformer (ResNet-101T)
model to perform transcription. Next, the transcribed text sequences are analyzed using a Named
Entity Recognition (NER) model to classify the text sequences into their corresponding contexts
(e.g., name, address, prescription, and bill amount). In the proposed pipeline, all the processes are
implicitly learned from data. Experiments performed on 500 self-collected clinical receipts containing
15,297 text segments reported a character error rate (CER) and word error rate (WER) of 7.77% and
10.77%, respectively.

Keywords: handwritten text recognition; Residual Network; Transformer model; object detection;
named entity recognition

1. Introduction

Handwritten text recognition (HTR) has gained enormous research interest due to
the potential benefits that can be derived from accurate text transcription that eases at-
tempts to digitize handwritten content [1,2]. An HTR system is applicable to a myriad of
scenarios, ranging from reading bank cheque amounts to transcribing medical records and
notes [3]. Although highly desirable in practical applications, HTR is faced with a number
of challenges.

The current HTR systems generally apply a Convolutional Neural Network (CNN)
and Long Short-Term Memory (LSTM) model for text transcription [3]. However, a va-
riety of text styles, such as printed texts, handwritten texts, scribble, and images, exists
in real-life documents. Therefore, using a single text recognition model is insufficient
for the text transcription task. Ingle et al. proposed a text style classification approach
using an LSTM-based and fully feed-forward network model for line-level segmentation.
An optimal model was determined when the calculated probability of a particular class
was greater than a predefined threshold [3]. In addition, Singh and Karayev presented a
study on HTR by decomposing an image into one or more regions as texts, mathematical
equations, tables, and scratched texts using a Residual Network (ResNet) [4]. These studies
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have demonstrated a way for precise text transcription by ignoring unknown or unreadable
regions, and the proposed approaches are applicable in a wide range of applications, cover-
ing simple to complex scenarios. Nevertheless, the line-based segmentation methods [3]
sometimes fail to recognize the texts correctly due to difficulty in segmenting the image
into lines accurately. Full page-based models that only transcribe a particular region of
texts in the page while skipping others [4], on the other hand, can only work well on a
balanced dataset, such as when the layout of the page is the same.

In the literature, the combination of CNN with Recurrent Neural Network (RNN) [5,6]
and LSTM [7] are widely applicable for sequence modeling in HTR. However, the RNN
variations face vanishing and exploding gradient problems, where the models fail to learn
the long sequence information [8]. Recently, the Transformer model with an attention
mechanism has been introduced, and it has demonstrated superior performance over
the conventional RNN and LSTM models for long sequence information processing [4,9].
The Transformer model yields outstanding performance on public benchmark datasets,
especially on the IAM dataset [10]. For example, a CNN and LSTM architecture integrated
with a Transformer model was applied on the IAM dataset and achieved a character error
rate (CER) of 8.50% [2]. Another study that applied the Transformer model to handwriting
document recognition reported a CER of 6.30% on the IAM dataset at paragraph-level [4].

In general, an HTR system development pipeline comprises two stages: (1) text local-
ization and (2) text recognition [11]. Real-life documents generally contain a combination of
text types such as printed texts, handwritten texts, signatures, and others. How to correctly
localize and recognize these text types has become pivotal to avoid bias and ensure the
right data sample distribution. Many solutions have been proposed to better perform these
tasks [3,4,9], but there is still room for improvement. Apart from accurately recognizing the
handwritten texts, how to associate the meaning or context of the recognized texts is also
crucial to enable the automatic documentation of the transcribed texts. Being able to meet
the computational requirement of a real-life HTR system is also of paramount importance.

In this paper, a context-aware HTR pipeline is proposed to overcome the limitations of
the existing HTR systems by considering the accuracy and efficiency of text type classifica-
tion and localization, text recognition, and text context recognition on real-life documents
as a whole. Clinical receipts are used as the subject of study as they contain a combination
of printed items on the receipts, handwritten texts of the clinicians, as well as non-text
elements, such as the logo of the clinics. Towards this end, a dataset containing 500 samples
of clinical receipts has been collected. The documents are further segmented based on
regions such as patient names, address, prescription, and bill amount, yielding a total of
15,297 text segments.

The proposed HTR pipeline consists of a You Only Look Once v5 (YOLOv5) model for
text localization and type classification, followed by a Residual Network with Transformer
(RESNET-101T) for text recognition, and a Named Entity Recognition (NER) model for
text context recognition. An integrated model comprising ResNet-101 and Transformer,
which is coined as ResNet-101T, is introduced in this paper. ResNet-101 acts as a feature
extractor, whose output is fed into the Transformer model to perform text recognition.
ResNet-101 is well-known for its ability to alleviate the effect of vanishing gradient and
avoid performance degradation when the network’s depth is increased. The Transformer
model is selected due to its outstanding performance in handling sequential data, and it
has a low inductive bias compared to conventional RNN architectures. Nevertheless, the
Transformer model requires a huge dataset for training. Therefore, data augmentation
is performed to ensure the model is properly trained with a sufficient amount of data.
The proposed pipeline aims to study the applicability of data-driven DL models on a
close-to-real-life dataset, where it contains much noisier and challenging data compared to
the existing benchmark datasets. The contributions of this paper are highlighted as follows:

- A context-aware HTR pipeline made up of a series of carefully chosen pre-processing,
text recognition, and context interpretation funnels is presented to deal with a close-
to-real-life handwritten text dataset. The pipeline is designed to locate texts on a page
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and is able to recognize the text types such as handwritten text, printed text, non-text,
as well as the text context.

- A ResNet-101T model that has a better ability in handling sequence data compared to
RNN variations is proposed for text recognition. The proposed model is compared
with the state-of-the-art HTR methods, including CNN-LSTM and Vision Transformer.

- A NER model is proposed to complement the pipeline to recognize the context of
the transcribed texts. Transcription of the document can be performed in a fully
automatic way.

The remaining paper is organized as follows. Section 2 presents the literature review.
Section 3 describes the data and theoretical backgrounds of the methods applied for the
proposed pipeline. Then, Section 4 presents the experimental result, and Section 5 discusses
the insights into the proposed pipeline. Finally, the conclusion and future works are drawn
in Section 6.

2. Literature Review

The emergence of deep learning (DL) has brought significant advances to HTR. The DL
models have progressively improved the performance of HTR transcription over the years.
This section discusses the different ideas proposed to solve HTR and the performance
achieved.

Bluche presented an approach for joint line segmentation for HTR transcription [11].
The dataset was taken from paragraph-level images from the RIMES and IAM datasets. The
author proposed the integration of the attention mechanism with the Multi-dimensional
Long Short-Term Memory Recurrent Neural Network (MDLSTM-RNN) for implicit text
segmentation and transcription. The collapse layer of the model was modified with an at-
tention mechanism to provide the weights in identifying the input positions on a paragraph
image iteratively to enable a free segmentation method for text transcription. As a result,
the model achieved a CER of 4.9 and 2.5 on the IAM and RIMES datasets, respectively,
containing images with 300 dpi resolution.

Wigington et al. proposed a model of Start, Follow, and Read (SFR) for historical
HTR [12]. The SFR model could identify the text position by using a Region Proposal
Network and a CNN-LSTM model for text transcription. The proposed SFR model was
composed of a Start-of-Line (SOL) finder, which identified the text line of a given image, a
Line Follower (LF), which segmented the position identified by the SOL finder iteratively
and, lastly, the HTR model. The 2017 ICDAR full-page competition dataset was applied in
the study of German handwriting. The proposed model achieved outstanding performance,
with a BLEU score of 72.3. The model was also evaluated on the RIMES and IAM datasets,
achieving a CER and WER of 2.1 and 9.3, as well as 6.4 and 23.2, respectively.

There was another study that applied CNN to a Kannada handwritten document [13].
In the paper, the author proposed CNN for training the data. In the experiment setup, the
Chars74K dataset containing over 657 classes was applied. Each class has 25 handwritten
characters. Data augmentation techniques, including denoising, contrast normalization,
segmentation, gray-scale conversion, and binarization, were performed to expand the
dataset size. After a hundred epochs of training, the model achieved 99% accuracy on the
Chars74k dataset and 96% on a self-collected handwritten document.

Ingle et al. conducted a study for a scalable HTR system [3]. The authors integrated
the proposed HTR system into a larger-scale OCR system. In the study, the authors
applied LSTM-based models and gated recurrent convolutional layers (GRCL) as a fully
feed-forward network model for line-level text recognition and classification. Online
handwritten data from the IAM offline and online databases and a self-collected online
handwritten sample were used. The authors trained separate models for both printed and
handwritten words. The dataset used for both printed and handwritten text consisted
of 508 and 433 images. After hyperparameter tuning, the proposed GRCL achieved a
character error rate (CER) and word error rate (WER) of 4.0 and 10.8, respectively.
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Wu et al. presented a method to detect and recognize handwritten text and text-
line [14]. The authors presented a method named Multi-Level Convolutions Convolutional
and Recurrent Network (MLC-CRNN), which combined different deep learning techniques,
including CNN, RNN, and Connectionist Temporal Classification (CTC) loss function. In
the paper, the Connectionist Text Proposal Network (CTPN) was used in training a new
model for a handwriting text-line detector. Following handwriting text recognition, the
team applied a refined CRNN model. To make it a multi-layer convolution (MLC), two
more branches were added linearly on the original convolutional layers. The datasets used
for training were obtained from three hundred students. The participants were asked to
write on a standard answer sheet. The training set contained 3883 images, and the testing
set contained 297 images. The proposed MLC-CRNN model, when integrated with two
MLC modules, achieved the best performance by obtaining an accuracy of 91.4%.

Singh and Karayev presented a study that applied full-page handwriting document
recognition using the Transformer model [4]. The authors aimed to recognize handwritten
texts in a full-page manner. The model consists of a CNN network to extract the features
from the document, followed by Transformer as an image-to-sequence model, which learns
to map an image to a sequence. The model was trained on various datasets, including
IAM, WIKITEXT, FREE FORM ANSWER, ANSWERS2. The model was then evaluated on
the FREE FORM ANSWERS dataset and obtained a CER of 7.6%. Despite the promising
performance, the method suffers from a biased multi-task problem. For example, if the
model is trained using datasets that only contain one transcribed text region per sample
(like the Free Form dataset), the model will have a tendency to transcribe only one main text
region while skipping the others due to its full-page recognition nature. This is a challenge
for text recognition. It is important to have a robust text recognition system that can deal
with different text types, including printed texts, handwritten texts, and non-texts. Table 1
summarizes the different papers discussed in this section.

Table 1. Summary of included studies.

Author Subject of Study Proposed Solution Dataset Experimental Results

Bluche (2016) [11] Joint line segmentation
and transcription MDLSTM-RNN RIMES and

IAM database

CER of 4.9 and 2.5 on IAM
and RIMES

data, respectively

Wigington et al.
(2018) [12]

Historical document
processing SFT

ICDAR 2017
competition dataset,

IAM, RIMES

BLEU score of 72.3 on
ICDAR dataset. CER and

WER of 2.1 and 9.3, 6.4 and
23.2 on both IAM

and RIMES
datasets, respectively

Asha and Krishnappa
(2018) [13]

Kannada Handwritten
Document Recognition CNN Chars74K dataset 99% of accuracy

Ingle et al. (2019) [3]
Line-level text style

classification and
recognition

GRCL

IAM online and offline
database, self-collected

handwritten
online samples

CER and WER of
4.0 and 10.8

Wu et al. (2020) [14]
Recognition of

handwritten text
and text-line

CTPN to detect text
lines, MLC-CRNN for

text recognition

3883 training images
and 297 testing images Accuracy of 91.4%

Sign and Karayev
(2021) [4]

Full-page handwritten
document recognition Transformer

IAM, WIKITEXT, FREE
FORM ANSWERS,

ANSWERS2
CER of 7.6%
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3. Proposed Method

3.1. Data Collection

In this study, a dataset consisting of 500 clinical receipts is collected. The dataset is
composed of 10 variants of medical receipts with 50 samples each. The empty receipt
templates are obtained from online resources, with a resolution of 300 dpi and above.
During data collection, empty medical receipts were distributed to the participants to fill
with their own handwriting. No restriction was imposed on how the participants should
write on the receipts. The participants come from various backgrounds and professions,
were aged between 12 and 50 at the time of the study, and are from Malaysia. Every
participant is literate and can write independently, with no known disability. A blank
printed copy of the receipt template was given to them to fill. After the form was filled,
the filled form was collected and scanned. Figure 1 shows some samples of the collected
handwritten receipts.

Figure 1. Samples of collected handwritten clinical receipts.

3.2. The Proposed Context-Aware HTR Pipeline

The proposed HTR pipeline, from pre-processed input to context recognition, is
illustrated in Figure 2. We would like to have a model that is aware of the receipt’s content
for better recognition accuracy in the pipeline. Towards this end, the printed texts and
handwritten texts are separated into two different processing funnels. The You Only Look
Once v5 (YOLOv5) [15] model is applied to distinguish the handwritten texts from printed
texts and non-text elements for more precise region of interest (ROI) localization. After
that, an Optical Character Recognition (OCR) model is used to identify the printed texts,
while the handwritten texts are recognized using a Residual Network (ResNet-101) and
Transformer architecture (ResNet-101T). In this paper, Tesseract [16], a matured open-source
OCR model, is applied for printed text recognition, and thus, no further evaluation is made
for the model. Subsequently, both outputs from the text recognition models are processed
by a Named Entity Recognition (NER) model to identify the context of the texts.
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Figure 2. HTR pipeline process and architecture.

3.2.1. Pre-Processing

During the data pre-processing stage, various procedures were applied to ensure that
the data were in an appropriate form for further model training. Considering different
noises that might occur in a real-life document image, we took several aspects into consid-
eration. We identified two problems: (a) the image is taken at a slanted or skewed angle;
(b) there are lines in the image that could affect classification performance. Progressive
Probabilistic Hough Line Transform (PPHLT) [17,18] was applied to rotate the image to
the correct angle. The method first detects the image’s edges by applying canny edge
detection. The image is then rotated accordingly based on the computed angle from the
PPHLT algorithm. Next, morphological operations and image inpainting [19] are applied
to remove the lines from the image. After that, trimming is used to remove excessive white
pixels, such as in the border regions in the image.

A YOLOv5 model has been trained to identify the text region of interest (ROI). A text
ROI is categorized into three types: printed texts, handwritten texts, and non-text. More
information about ROI localization and categorization is given in the next section. The
segmented regions are then padded into the same size. For model training, the text ROIs are
labeled manually as printed, handwritten, and others. There are a total of 5099 handwritten
text segments, 7445 printed text segments, and 261 non-text segments in this study. Figure 3
shows a sample of the labeled image.

 

Figure 3. Sample labeled image.
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The text segment is augmented randomly by reducing or adding line width, adding
Gaussian noise, and blurring the images. The final dataset is composed of 15,297 segments
of handwritten text images. Figure 4 presents the flow of the proposed pre-processing
approach. Some samples of the text segment and the corresponding augmented images are
shown in Figure 5.

 

Figure 4. The flow of pre-processing approach.

Figure 5. Samples of segmented and augmented images.

3.2.2. ROI Localization and Categorization

Text ROI location and categorization are crucial in making sure that the input fed to
the HTR model is of good quality. Towards this end, YOLOv5, which is a successful object
classification and detection method, is deployed. YOLOv5 works by dividing an image
into a grid system, and the object will be detected within the cell of the grid. YOLOv5 is
established and refined based on the YOLOv3 method presented by Joseph and Ali [20].
No academic publication for YOLOv5 is available; hence, the theoretical background of
YOLOv3 is provided.

YOLOv3 predicts the coordinates of a bounding box, tx, ty, tw, th, where x, y, w, h
represent the x and y coordinates, width, and height. Sum squared error is used for training
the model. Additionally, the model uses logistic regression to measure the objectness
score, also known as the probability of being classified into a particular object. The feature
extractor used consists of 53 layers (DarkNet-53) and is more efficient in utilizing the GPU
for faster evaluation. Generally, YOLOv3 predicts the bounding boxes at three different
scales, and features are extracted from those scales. The outcome is a 3d-tensor of the
bounding box, objectness score, and classes prediction. The bounding boxes bx, by, bw, bh
are defined in Equation (1).

bx = σ(tx) + cx
by = σ

(
ty
)
+ cy

bw = pwetw

bh = pheth

(1)

where cx, cy are the offset from the top left corner of the image, and pw, ph are width
and height of the bounding box prior. σ stands for the sigmoid function. Built upon
the fundamentals of YOLOv3, different variants for YOLOv5 have been introduced [15].
Some examples include YOLO-v5n with the least parameters of 1.9 million, YOLO-v5s
with 7.2 million parameters, YOLO-v5m with 21.2 million parameters, YOLO-v5l with
46.5 parameters, and YOLO-v5x with the most parameters of 86.7 million.
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3.2.3. Residual Network with Transformer (ResNet-101T)

Resnet is proposed by He et al. [21] as a residual learning framework for better
neural network training with a deeper architecture. The Residual network has shortcut
connections inserted to the network to make a counterpart of the Residual version. There
are ResNets with different lengths of layers, which can be implied from their names; for
example, ResNet-101 stands for a ResNet architecture containing 101 layers.

In residual learning, the stacked layers are the building block for feature mapping. A
building block can be defined as:

y = F(x, {Wi}+ x) (2)

where x is the input vector, y is the output vector, and the function, F stands for residual
mapping. The operation for F can be performed by applying a shortcut connection or
element-wise addition.

On the other hand, Transformer is a neural network proposed by Vaswani et al. [9],
that applies an attention mechanism to connect the encoder and decoder. The encoder maps
the input to a sequence of continuous representation. Given the mapped sequence, the
decoder generates the output of one element at a time, where the model is autoregressive at
each step as it uses the generated output at the previous step as additional input for output
generation. Transformer with attention mechanism is introduced to tackle the problem of
memory constraints in RNN variations by modeling the dependencies without considering
the input and output sequence distances. Transformer has an advantage in that it has a
relatively low inductive bias compared to RNN.

The encoder stack contains a multi-head attention mechanism, which is followed by a
feed-forward neural network layer, and each layer is followed by a normalization layer. As
opposed to the encoder, the decoder contains more layers. The output of the encoder is
inserted into the third layer of the decoder. Additionally, a linear layer is appended to the
end of the decoder for output prediction. Figure 6 shows the decoder–encoder structure of
the Transformer model.

The attention in the Transformer model is known as scaled-dot attention. The attention
function is defined as:

Attention(Q, K, V) = so f tmax
(

QKT
√

dk

)
V (3)

where Q is a matrix of a set of queries of the attention function, and K and V stand for
keys and values. Dot-product attention is used as it is faster and has better space efficiency
compared to additive attention. However, the attention is implemented as a multi-head
mechanism. Thus, the outputs of the attention are concatenated as:

Multiheaad attention(Q, K, V) = Concatenate(head1, . . . , headi)WO (4)

where headi stands for Attention
(

QWQ
i , KWK

i , VWV
i

)
. The multi-head attention is applied

in the encoder–decoder of the Transformer model to allow the decoder to look through
every position of the input sequences, coming from the queries of previous layers and the
memory keys and values. Additionally, the self-attention layers in the encoder and decoder
allow the output of previous layers to be attended for its position.

The Transformer model uses positional encoding, PE, to make use of the sequence
order by providing information of the token of the sequences,

PE(pos,2i) = sin

(
pos

10000
2i

dmodel

)
, PE(pos,2i+1) = cos

(
pos

10000
2i

dmodel

)
(5)

where pos and i are the position and dimension of the input, and dmodel is the hidden size
of the Transformer model.
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Figure 6. Structure of the Transformer model.

3.2.4. Named Entity Recognition (NER)

The NER model is used to identify the context of the recognized texts from the
transcribed receipt. In this paper, a Natural Language Processing (NLP) model called
spaCy [22] is applied. spaCy allows the model to recognize a wide range of words or
entities. The NER model is composed of Convolutional Neural Network (CNN) and Long
Short-Term Memory (LSTM) models [23], and it is processed based on a transition-based
model described in the paper by Lample et al. [24].

A transition-based model directly identifies the suitable representations of a multi-
token. The model is built as a stacked data structure to obtain the input’s chunks in
predicting the following actions. Lample et al. used a stacked LSTM model, enabling the
stacked object embedding through the push and pop operations [24]. Stack LSTM is used
to compute the dimensional embedding of the stack content, buffer, output, and actions
taken at each time step, which represents the distribution of the possible action at each time
step. Thus, the model aims to maximize the conditional probability of action sequences
based on the given sentence input. The maximum probability of the action is chosen until
the chunking algorithm meets the termination condition.
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3.3. Implementation Details

This section describes the training procedure of the proposed pipeline. Firstly, the
YOLO-v5 model is used for multi-text type classification. In this study, the YOLO-v5x
model was chosen as it has shown a very promising result from the established results. An
annotation software called LabelImg [25] was used to annotate the collected dataset to train
the YOLOv5 model. The image is segmented into three classes (printed, handwritten, and
non-text), as shown in Figure 7. The non-text category contains unreadable texts such as
logos, signatures, and others. Three hundred receipt images were used, with a train and
validation split of 5:1. After that, the model was trained for 100 epochs, where the best
model with the highest precision score was saved. The total number of characters included
in the experiment was 96, with a maximum length of 64.

   
(a) (b) (c) 

Figure 7. Sample segmented images: (a) printed (b) handwritten (c) non-text.

After the handwritten segments were obtained from YOLOv5, we combined the
ResNet-101 and Transformer models, named ResNet-101T, for HTR. ResNet-101 is used as
the feature extractor, the backbone of the proposed architecture where the linear projection
layer is excluded, and Transformer is used to analyze the extracted features, as inspired
by [26]. In [26], CNN is used together with Transformer to achieve the object detection goal.
In this paper, ResNet-101 is responsible for learning 2D representations that encompass
shape/outline and positional information of the texts/words in the image. The last fea-
ture map by ResNet-101 serves as the input to Transformer, which is then flattened with
2D-positional encoding and passed to the encoder. The ResNet-101 feature map also serves
as the input for the decoder, which is the target in this case. The output embeddings of the
decoder are then passed to the final linear layer for predictions.

Both the ResNet-101 and Transformer (ResNet-101T) are jointly trained. Two inputs are
fed into the model: handwritten segments and the label. The image is fed into ResNet-101T
with the shape 30 × 375 × 3. The label length is 64 characters. The input shape and the
corresponding number of parameters for each layer of ResNet-101T are given in Table 2.
The total number of text segments used was 15,297, and the train, test, validation split ratio
was 8:1:1. The model was trained for 100 epochs, and the hyperparameters were tuned to
find the optimal result in terms of character error rate (CER) and word error rate (WER).
The hyperparameters that are tuned in the experiments include cell units of the ResNet-101
and the number of decoders, encoders, attention heads of the Transformer model.

Table 2. Output shape and number of parameters of each layer in the proposed ResNet-101T model.

Layer (Type) Input Shape Parameter

ResNet [1, 3, 30, 375] 9408
Embedding layer [1, 63] 25,344
Positional Encoding [1, 63, 256] 0
Transformer Encoder [12, 1, 256] 5,260,800
Transformer Decoder [12, 1, 256], [63, 1, 256] 6,315,520
Linear [1, 63, 256] 25,443

Total parameter: 12,151,651
Trainable parameter: 12,151,651
Non-trainable parameters: 0

In training the NER model, a tag editor is used to annotate the text data, where the
text data is obtained from the annotated text labels. Unlike the labeled data for the HTR
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model recognition, the text labels are annotated for both printed and handwritten texts.
The model is trained for 100 epochs, and the best model with the highest accuracy is saved.
The dataset contains a total of 54,522 tokens, with 954 sentences. Tokens refer to chunks
within a sentence, or the string between spaces and punctuation symbols, while sentences
represent the sequence of tokens. Eleven attributes, such as the clinic’s name, address, and
contact details, were identified in the study.

4. Experimental Results

This section presents the experimental results of the proposed HTR pipeline. The
experimental setup and performance of each model are provided in the following sections.

4.1. Experimental Setup

The proposed HTR pipeline consists of three funnels: ROI localization, handwritten
word recognition, and context recognition. Each of these funnels is evaluated separately.
The experiments are conducted using a The experiments are conducted using a laptop
with a processor of Intel(R) Core (TM) i7-10875H CPU @2.30 GHZ and an GeForce RTX
3060 GPU manufactured by NVIDIA corporation, purchased from the supplier Illegear,
Johor, Malaysia.

4.2. You Only Look Once v5 (YOLOv5)

The YOLOv5 model has demonstrated promising results in accurately identifying the
ROIs of the printed text, handwritten text, and non-text. Figure 8 shows a sample output
of the detected regions from a receipt, along with the confidence score. The model has a
very high mean average precision (mAP) of 0.5 confidence, at 91.78%, where the mAP of
confidence score of 0.5 and above show a lower expectancy, at 52.75%. Moreover, the model
can achieve a precision of 91.61% and a recall of 86.24%. Throughout the training, the
loss graphs of the model in detecting the bounding boxes, the error between the detected
objects, and the classification loss showed a steady decreasing trend. The learning rate also
decreased steadily after 20 iterations. Figure 9 illustrates the metric changes throughout
the training period.

 

Figure 8. Sample detected output of the YOLOv5 model.
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(a) (b) (c) 

   
(d) (e) (f) 

  
(g) (h) 

Figure 9. Experimental results of the Yolov5 model: (a) mean average precision of 0.5 confidence;
(b) mean average precision of 0.5 to 0.95 confidence; (c) precision; (d) recall; (e) train box loss; (f) train
object loss; (g) train class loss; (h) the learning rate.

4.3. ResNet-101 with Transformer (ResNet-101T)

The proposed ResNet-101T model is trained for 100 epochs. ResNet-101 is used for
feature extraction, where the extracted features are fed as input to the Transformer to
identify the underlying information based on the image pixels. The ResNet output is in
a 2D format as the last two layers are dropped. Figure 10 shows some examples of the
extracted feature maps from the first layer of ResNet. The topology of the words is still
visible in the ResNet output, which encodes positional information, i.e., word sequence.
After that, a 2D positional encoding is used to flatten the 2D representation into a 1D
sequence. We believe the feature vector possesses some sequential information. This is
where the Transformer model plays a role in processing the sequential data.

Figure 10. Example of extracted features of the first layer of ResNet-101.

The model achieved a character error rate (CER) and word error rate (WER) of 7.77%
and 10.77% on the testing data. In addition, the model demonstrated a stable decrease in
both the training and validation losses. To improve the performance of the proposed model,
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hyperparameter tuning was carried out. The hyperparameters being tuned included the
number of heads, encoders, decoders, and the hidden dimension size of the ResNet-101T.
The hyperparameter tuning process took a very long time, as a more complex structure
is more computationally intensive. Due to training time constraints, the training epoch
was fixed at 100 for each setting. Table 3 shows the experimental result of hyperparameter
tuning in terms of CER, WER, and time in seconds. The initial model, with the setting
of 4 encoders, decoders, and attention heads, yields the best performance among the
competing models. This is possible as models with a more complex structure would require
a longer convergence time. Additionally, a too-complex structure might lead to overfitting.
Therefore, the two models with the settings of the number of encoders, decoders, attention
heads of (6, 6, 4) and (8, 8, 8), and cell units of 1024 were terminated earlier due to the
extremely long training time, and no significant loss reduction was noticed after ten epochs.

Table 3. Hyperparameter tuning results of the proposed ResNet-101T model.

Number of Encoders,
Decoders, Attention Heads

Unit Dimension

256 512 1024

4, 4, 4
CER 7.77 8.66 20.93
WER 10.77 11.81 29.02

Times (Second) 350,864 392,254 592,497

6, 6, 4
CER 9.15 11.87 86.76
WER 13.08 16.93 87.39

Times (Second) 388,399 487,445 73,817 (Stopped at 11)

8, 8, 8
CER 12.96 13.35 1.0
WER 17.15 19.25 1.0

Times (Second) 429,401 539,650 87,148 (Stopped at 11)

4.4. Named Entity Recognition (NER)

There are a total of 11 attributes contained in the NER model, including medicine,
payment, clinic name, address, contact, website, receipt number, name, email, and service.
The model’s performance is measured in terms of accuracy, entities precision, recall, and
f1-score. Table 4 summarizes the model performance of each entity. Generally, the trained
NER model achieved a promising result, with a full score for accuracy, precision, recall,
and f1-score for all the attributes except payment. The results demonstrate that the NER
model can perform well on the context recognition task.

Table 4. NER model performance on entities recognition.

Entities Precision Recall F1-Score

Medicine 1 1 1
Payment 0.9967 1 0.9983

Clinic Name 1 1 1
Address 1 1 1
Contact 1 1 1
Website 1 1 1

Receipt Number 1 1 1
Name 1 1 1
Email 1 1 1

Service 1 1 1
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4.5. Comparisons with State-of-the-Art Methods

To validate the effectiveness of the proposed model, a comparison is made with
LSTM [27] and Visual Transformer (ViT) [28] models. LSTM was selected for benchmark
comparison as it is the state-of-the-art sequential processing method in HTR. Moreover,
ViT was investigated to demonstrate the superiority of the proposed ResNet-101T method
over the sole Transformer model. For a fair comparison, the same setting is imposed in all
the experiments, such as the dataset split ratio. ViT was trained with a total of 1600 steps
and evaluated at every 200 steps. The LSTM model achieved a CER and WER of 11.55 and
26.64, and ViT had a CER and WER of 10.60 and 18.41, where the performance of both
models was inferior to ResNet-101T, as presented in Table 5. In terms of speed comparison,
the LSTM model used the least computational time for training while ViT took a much
longer time to train. Note that although LSTM has a faster training speed due to its simpler
architecture, its accuracy is much lower than the proposed ResNet-101T model. Figure 11
shows the training and validation loss of the models throughout training.

Table 5. Result comparison of Transformer and LSTM.

Model CER WER Computational Time for Model Training (s)

Proposed
ResNet-101T 7.77 10.77 350,864

LSTM [28] 11.55 26.64 87,148
ViT [29] 12.47 20.18 571,428

   
(a) (b) (c) 

Figure 11. Experimental results of the ResNet-101T: (a) training and validation loss of the Transformer
model; (b) training and validation loss of the LSTM model; (c) training and validation loss of ViT.

4.6. Demonstration

This section demonstrates some of the sample input and output of the proposed
method. Figures 12 and 13 show the transcription results of the proposed HTR pipeline
for different receipt templates. The printed text region is highlighted in blue, while the
handwritten text region is bounded with a red square. A label is displayed at the top
left corner of the square if the NER model identifies any underlying information from
the text regions. We observe that the proposed model can correctly recognize the context
of the transcribed texts. However, the application of OCR to printed texts sometimes
failed to recognize the texts appropriately. This is considered a future work to enhance the
model’s performance.

76



Appl. Sci. 2022, 12, 1870

  
(a) (b)

Figure 12. Sample input and output I: (a) input; (b) output.

  
(a) (b)

Figure 13. Sample input and output II: (a) input; (b) output.

5. Discussion

Some interesting findings have been discovered in this study. Real-life documents
contain a substantial amount of noise (the noise can occur before and after the digitization
process). Thus, the document layout should be properly analyzed, and data pre-processing
plays an important role in treating different types of documents. In contrast to the line
segmentation technique [3] and the full-page document recognition method [4], we applied
an object detection approach for implicit ROI localization. The proposed approach was
able to perform text type classification at the same time. There generally exist different
text types in handwritten receipts, such as printed, handwritten, and non-text. Different
text types should be treated individually to ensure optimal performance, rather than
considering all text types in one go, which might result in inferior performance. Thus,
explicitly segmenting different ROIs according to the text types would help to increase
recognition accuracy and is more suitable for real-life applications.

Along this line, we find that a single HTR model cannot cope with the different text
types. For example, a model that is good at recognizing printed texts does not necessarily
work well with handwritten texts. Moreover, a separate model needs to be developed to
recognize non-text attributes such as signature, which is considered vital for documentation.
Therefore, a pipeline approach was proposed by training different models to deal with
different text types. The transcribed texts are not directly useful for practical applications.
Hence, a NER module was introduced to assign the transcribed texts into their correspond-
ing entities/groups (e.g., name, date, address, phone number). The pipeline approach
ensures a fully automated workflow with better efficiency, recognition accuracy, and data
management ability in a practical application.

We also wish to highlight that the ResNet-101T model is proposed due to the following
reasons. First, ResNet-101 has the advantage of being able to minimize negative effects
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when the depth of the network is increased. Second, the Transformer model can better
model the words input with the attention mechanism compared to the other RNN variations.
Moreover, it also has a relatively low inductive bias compared to its RNN counterpart. In
addition, the experimental result suggests the application of ResNet can effectively extract
the 2D representative features, such as the shape/outline and positional information of
the words for training the Transformer model. The result of feeding ResNet output to the
Transformer model is better than using raw text input for the Transformer model. Empirical
results show that the proposed model has clearly outperformed LSTM and ViT in terms of
CER and WER. Although LSTM takes less time for training due to its relatively simpler
architecture, its accuracy is far inferior to the proposed ResNet-101T method.

6. Conclusions and Future Works

A system that can recognize human handwritten text is significantly essential in au-
tomatic information storage and management. This paper presents a pipeline approach
towards HTR. The proposed approach is composed of ROI localization, text type classifica-
tion, text recognition, and context recognition funnels. A ResNet-101T model is introduced
to recognize handwritten texts. The proposed model, trained using a self-collected clin-
ical receipts dataset containing 15,297 text segments, achieves a CER and WER of 7.77%
and 10.77%, respectively. In addition, more experimental studies can be carried out to
investigate the use of ViT for HTR, such as fine-tuning and cross-validation.

For future endeavors, more training data will be collected to enhance the system’s
efficiency and accuracy. More receipt samples will be distributed to collect different
handwritten styles, such as the clinicians and medical staff in the hospital, who might have
messier handwritten styles. In this way, the proposed approach can be fine-tuned and
applied in real-life scenarios. The HTR pipeline can be further improved and extended
to different domains, such as clinical reports and receipts updates, insurance records,
industrial documents, and others. In addition, Explainable AI techniques [29,30] are
considered for future works to enhance the model’s explainability and to learn meaningful
representations to improve the model’s performance.
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Abstract: Image reconstruction based on sparse constraints is an important research topic in com-
pressed sensing. Sparsity adaptive matching pursuit (SAMP) is a greedy pursuit reconstruction
algorithm, which reconstructs signals without prior information of the sparsity level and potentially
presents better reconstruction performance than other greedy pursuit algorithms. However, SAMP
still suffers from being sensitive to the step size selection at high sub-sampling ratios. To solve
this problem, this paper proposes a constrained backtracking matching pursuit (CBMP) algorithm
for image reconstruction. The composite strategy, including two kinds of constraints, effectively
controls the increment of the estimated sparsity level at different stages and accurately estimates
the true support set of images. Based on the relationship analysis between the signal and mea-
surement, an energy criterion is also proposed as a constraint. At the same time, the four-to-one
rule is improved as an extra constraint. Comprehensive experimental results demonstrate that the
proposed CBMP yields better performance and further stability than other greedy pursuit algorithms
for image reconstruction.

Keywords: constrained backtracking matching pursuit; sparse reconstruction; compressed sensing;
greedy pursuit algorithm; image processing

1. Introduction

Image reconstruction is a significant application of multimedia signal processing.
Compressed sensing (CS) is a technique that reconstructs sparse, compressible signals
from under-determined random linear measurements. Over the past few decades, CS
has been widely applied to image processing, including image reconstruction [1–5] and
acquisition [6–8].

Various algorithms have been proposed for CS-based signal reconstruction with sparse
constraints [9], which can be categorized into three classes. The first class is the non-convex
optimization [10], such as re-weighted l1 norm minimization [11] and lq norm minimiza-
tion [12]. However, non-convex optimization is a non-deterministic polynomial (NP)-hard
problem, which is hard to solve. The second class focuses on convex optimization based on
the minimization of the l1 norm. The basis pursuit (BP) algorithm is typically used for con-
vex optimization, but its l1 norm-based cost function is sometimes not differentiable. It also
involves high computational complexity, thus limiting its practical applications [13–15].

The third category includes a set of greedy pursuit algorithms, which are to easy im-
plement and have low computational complexity [13–21]. Specifically, orthogonal matching
pursuit (OMP) [15–17], stage-wise OMP (StOMP) [18], and regularized orthogonal match-
ing pursuit (ROMP) [19,20] have been proposed. The reconstruction complexity of basic
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greedy pursuit algorithms is roughly about O(kMN), which is much lower than that of
BP algorithm.

While the greedy pursuit algorithms show superiority in easy implementation and
computational efficiency, they typically require additional measurements for reconstruction
and lack stable reconstruction capability. The problem is alleviated when backtracking
is introduced. For example, the subspace pursuit (SP) algorithm [21] and compressive
sampling pursuit (CoSaMP) algorithm [22] have been proposed based on the backtracking
scheme. The difference between SP and CoSaMP is that the latter chooses 2k indices to
combine the estimated support set from the previous iteration. However, it is necessary
to estimate the sparsity level of signal k before applying SP and CoSaMP. Indeed, it is
impractical to know the accurate sparsity level k of unknown signals in advance.

Then, sparsity adaptive matching pursuit (SAMP), which can recover signals without
knowing the sparsity level, was proposed by Do et al. [23]. It alternatively estimates
the sparsity level when the residue’s energy increases between two consecutive stages
and updates the support set size of the signal using a fixed and small step size. SAMP
has apparent advantages when processing one-dimensional sparse signals. However,
since one is used as the initial step size, when processing high-dimensional signals, the
small step size significantly affects the result and efficiency of reconstruction. To further
improve the reconstruction performance, an energy-based adaptive matching pursuit
(EAMP) has been proposed [24]. One limitation of EAMP is that it only focuses on the
binary signal reconstruction. Rasha et al. used the structured Wilkinson matrix as the
measurement matrix to improve the efficiency of SAMP [25]. More recently, the improved
generalized sparsity adaptive matching pursuit (IGSAMP) algorithm has been proposed.
This algorithm uses a nonlinear step size to approximate the sparsity level, and only a small
initial step size can be selected. Meanwhile, it requires carefully choosing the parameters
without referring to the sensitivity of a large step size [26].

To improve the reconstruction performance of the sparsity adaptive matching pursuit
algorithm and make it less sensitive to the step size, we propose a compositely constrained
backtracking matching pursuit (CBMP) algorithm for image reconstruction. The main
contributions of this paper are summarized as follows.

(1) The restricted isometry property (RIP) is analyzed, and the relationship between
observed values and signals is derived and demonstrated.

(2) The reconstruction process is divided into three stages, including the large step size
stage, small step size stage, and support set update stage. Different step sizes are used
in these stages.

(3) A backtracking threshold operation is proposed, which adopts a composite strategy
and uses dedicated parameters to control the different step sizes in the reconstruc-
tion process.

(4) The proposed algorithm can achieve satisfactory reconstruction performance and
overcome the sensitivity to step size.

2. Preliminaries

2.1. A Review of Compressed Sensing

CS compresses the signal at the time of sampling while maintaining the ability to
reconstruct the original signal. For a signal x ∈ RN that has at most k terms as nonzero
components in some bases Ψ, the compressed signal y is obtained through the following
linear transform:

y = ΦΨx (1)

where y is an M × 1 vector and Φ denotes an M × N random measurement matrix with
M � N.

In general, M is much larger than N, so the reconstruction x from the measurements
y can be solved by forming an underdetermined set of linear equations. Thus, the CS
reconstruction is generally an ill-posed problem. To guarantee an exact reconstruction
of every k sparse signal, one of the most important assumptions of CS is that the mea-
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surement matrix Φ satisfies the restricted isometry property (RIP) [27,28] with parameters
(k, δ) [29–31].

(1 − δk)‖x‖2
2 ≤ ‖Φx‖2

2 ≤ (1 + δk)‖x‖2
2 (2)

where δk is the RIP constant and 0 < δk < 1, k < M.
When a matrix satisfies the RIP, the lengths of all sufficiently sparse vectors are approx-

imately preserved under the matrix transformation [29]. In [19,21], it was demonstrated
that if δ2K <

√
2 − 1,, then the signal can be exactly reconstructed via a finite number

of iterations.
The CS reconstruction aims to find the sparsest possible solution that satisfies

Equation (1). Then, the CS model [1,31] is represented as:

min ‖Ψx‖0 subject to y = ΦΨx (3)

where ‖Ψx‖0 is the l0 norm and denotes the number of nonzero components in (Ψx).

2.2. A Review of the Greedy Pursuit Algorithms

Among the reconstruction algorithms used in CS, the greedy pursuit algorithms are
the most widely used due to their easy implementation and low computational complexity.

The goal of greedy pursuit algorithms is to find the support set of the unknown signal.
After finding the support set, the signal can be reconstructed by solving a least squares
problem [31–33]. There exit the indices of the optimal support set J ∈ {1, 2, . . . , n}, and z∗
satisfies y = z∗ϕJ . ϕJ is the J-th column (index) of Φ. Then, the error function e(j) is:

e(j) =min
z

∥∥zϕj − y
∥∥2

2 = min
z

[(
ϕT

j ϕj

)
z2 − 2

(
ϕT

j y
)

z + yTy
]

= min
z

(
ϕT

j ϕj

)(
z −

ϕT
j y

ϕT
j ϕj

)2

+ yTy −
(

ϕT
j y
)2

ϕT
j ϕj

Letting e(j) = 0, the optimal solution:

z∗ =

⎧⎨⎩
ϕT

j y

‖ϕj‖2 , j = J

0, otherwise.

⎫⎬⎭ (4)

The matching pursuit (MP) algorithm is one of the most classical and primitive greedy
pursuit algorithms. As described in Equation (4), only the column J minimizing the
error function is selected in each iteration of the MP algorithm [32]. Later on, the OMP
algorithm [15] was developed based on the MP algorithm. As stated in OMP, some indices
are searched, corresponding to the most significant correlations between the measurement
matrix and the residual. In each iteration, only one or more coordinates are selected
and added to the support set. These selected coordinates correspond to the columns
(indices) of observation matrices with the largest correlation with the residuals. The
optimization iterates until the termination condition is satisfied. Finally, the pseudo-
inverse of the observation matrix corresponding to the obtained support set is used for
signal reconstruction.

CS-based greedy pursuit algorithms adopted in CS include OMP [15–17], StOMP [18],
ROMP [19,20], SP [21], CoSaMP [22], SAMP [23], EAMP [24], and IGSAMP [26]. Utilizing
some criteria, they can approximate the sparse signals iteratively. Each of the algorithms
iteratively computes the estimated support set of the signals. In each iteration, one or
several coordinates are added to the support set. In particular, in OMP, only one column
of Φ is added to the estimated support set. In StOMP, a hard threshold is used to choose
several columns that are to be added to the support set. Both algorithms have to select
these columns previously. Otherwise, these algorithms cannot be rectified.
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These greedy pursuit algorithms required more measurements for exact reconstruction
and lacked stable reconstruction capability until the backtrackingidea was introduced in
SP [21] and CoSaMP [22]. Refining the last estimated support set, the backtracking scheme
allows eliminating the wrong coordinates, which are selected in the previous iterations.
The candidate set is introduced into the greedy pursuit algorithm, which is the key point of
the backtracking. However, both SP [21] and CoSaMP [22] require prior knowledge about
the sparsity level k, which is impractical to know previously. SAMP [23], on the other hand,
was put forward to gradually approach the sparsity level by accumulation with a step size.
The SAMP algorithm is shown in Figure 1 and Algorithm 1.

Figure 1. The pipeline of sparsity adaptive matching pursuit (SAMP) [23].

Algorithm 1 Sparsity adaptive matching pursuit algorithm

Input:

M × N measurement matrix Φ, measurement vector y, step size s

Initialization:

x̂ = 0 {Trivial Initialization}, r0 = y {Initial residue}, U0 = ∅ {the estimated support set},

L = s {size of the support set}, j = 1 { stage index}, i = 1 { iteration index}.

Repeat:

1. Preliminary test: find the matched L indices from Φ based on the correlation between

Φ and ri−1, that is Di = max(|ΦTri−1|, L).

2. Make the candidate list: Ui = Ti−1 ⋃Di, xUi = Φ†
Ui y.

3. Final test: F = max(|xUi |, L), xF = Φ†
Fy.

4. Compute residual: r = y − ΦFxF.

if the halting condition is true, then quit the iteration;

else if ‖r‖2 ≥ ‖ri−1‖2, then

j = j + 1{update the stage index}, L = j × s {update the size of support set};

else Ti = F{update the support set}, ri = r { update the residual}, i = i + 1.

end if

Until the halting condition is true;

Output: x̂ = Φ†
Ty {update the stage index}, L = j × s {a sparse reconstruction computed

by the least squares algorithm}

SAMP uses the “divide and conquer” principle stage-by-stage to estimate the sparsity
level and the true support set of the target signals. SAMP applies two tests, namely the
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preliminary test and the final test, to estimate the signal’s support set. The preliminary
test is used to implement the selection of the L largest elements corresponding to the most
considerable correlation between the residual and the measurement matrix, denoted by
Di = max

(
ΦTri−1 |, L

)
. After the preliminary test, a candidate list U is created by the

union of the chosen list in the preliminary test and the support set in the previous iteration,
represented by Ui = Ti−1 ∪ Di. The final test firstly solves a least squares problem to
obtain xUi , and then chooses a subset of the L largest elements from xUi . This subset of
coordinates serves as the support set of the current iteration. The residual is finally updated
by subtracting the measured vector y from its projection onto the subspace spanned by the
columns in the support set. The pseudo-code of SAMP is summarized below.

Φ† =
(
ΦTΦ

)−1ΦT represents the pseudo-inverse of Φ, in which ΦT denotes the
transposition of Φ. The main innovation of SAMP is that the increment of the residual is
used as the criterion to judge the sparsity level by accumulating with the step size. As
previously mentioned, SAMP uses a fixed step size that is sensitive to the reconstruction
performance [23]. Specifically, when SAMP is applied to two-dimensional images, the
selection of the step size seriously affects the image reconstruction performance due to the
lack of flexibility and adaptation in the sparsity level update stage. As shown in Figure 2,
the reconstruction performance is affected by the step size. When the step size s = 64, the
peak signal-to-noise ratio (PSNR) is 24.04 dB, whereas when s = 512, the PSNR is 28.44 dB.

(a) s = 64, PSNR = 24.04 dB (b) s = 512, PSNR = 28.44 dB

Figure 2. Performance of SAMP vs. different step sizes.

Then, a variable step size was proposed in EAMP [24], but it focuses on one-dimensional
sparse binary signal reconstruction. Recently, IGSAMP [26] was proposed to improve
SAMP. Furthermore, it requires one to carefully choose the parameters and control the vari-
able nonlinear step size in the reconstruction process and does not refer to the sensitivity to
the step size. In this paper, we propose an improved adaptive greedy algorithm, whose
signal reconstruction performance is relatively insensitive to the step size.

3. The Constrained Backtracking Matching Pursuit Algorithm for
Image Reconstruction

To overcome the sensitivity to the step size and improve the reconstruction perfor-
mance of greedy pursuit algorithms, we propose the CBMP algorithm, which introduces
restrictions to the backtracking stage, which provides more flexibility as the algorithm
gradually approaches the true sparsity level of the unknown signal. The main steps of
CBMP are described as follows:

Considering the signal to be reconstructed is a two-dimensional image, the sparsity
level is relatively large; the process of sparsity level estimation is divided into large and
small step size estimation stages. In the large step size stage, the increment of the step size
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is sj = 2 × sj−1. j denotes the stage iteration index. The increment of the sparsity level in
the stage of the small step size is fixed and equals the step size of the previous stage.

Due to the advantages of combing information and improving accuracy [34,35], a com-
posite strategy is proposed to effectively control the increment of the estimated sparsity
level in the two stages. It includes two constraints controlled by parameters a and b, which
are required in the backtracking threshold operation of CBMP, as described in Algorithm 2.
The theoretical support for the composite strategy is clarified as follows:

Theorem 1. Let x ∈ RN be a sparse signal and y be a measurement vector. If the measurement
matrix Φ satisfies the RIP, then ‖x‖2

2 > 1√
2
‖y‖2

2. The proof is presented in Appendix A.

Algorithm 2 The proposed CBMP algorithm

Input:

M × N measurement matrix Φ, measurement vector y, step size s0

Initialization:

x = 0{trivial Initialization }; y0
r = y{initial residue }; T0 = ∅{the estimated support set

}; L0 = s0{size of the support set (sparsity level)}; j = 1{stage index};

i=1{iterationindex} ; U0 = ∅{ union set }
Repeat the following steps until the stopping condition holds:

1. Preliminary test: v = ΦTyi−1
r , find the matched set Di =

{
Lj−1 indices corresponding

to the largest absolute values of v}, that is Di = max
(|ΦTyi−1

r
∣∣, Lj−1).

2. Union operation: to broaden the selection space and make candidate list Ui : Ui =

Ti−1 ∪ Di, xUi = Φ†
Ui y.

3. Final test: to obtain the vector xi
F : find the matched indices Fi based on the largest

absolute values of xUi , that is Fi = max
(|xUi |, Lj−1), xi

F = Φ†
Fi y.

4. Compute residual: ri
F = y − ΦFxi

F.

5. Backtracking threshold operation:

if
∥∥xi

F
∥∥2

2 ≤ a‖y‖2
2 and size(Ui) < b × M, then shift into the large step size estimation

stage: sj = 2 × sj−1, Lj = Lj−1 + sj, yi
r = yi−1

r , j = j + 1, i = i + 1, then shift into 1.

if
∥∥ri

F
∥∥

2 >
∥∥yi−1

r
∥∥

2 , then shift into the small step size estimation

stage: sj = sj−1, Lj = Lj−1 + sj, yi
r = yi−1

r , j = j + 1, i = i + 1, then shift into 1.

Otherwise, shift into the stage that updates the support set based on the current

estimated sparsity level: yi
r = ri

F, Lj = Lj−1, Ti = Fi, i = i + 1, then shift into 1.

Output: x = Φ†
Ty { a sparse reconstruction computed by the least squares algorithm }

According to Theorem 1, the energy of the original signal x is greater than the square
root of one half of that of the measurement vector y, that is ‖x‖2

2 > 1√
2
‖y‖2

2. Different step
sizes are used in CBMP. Specifically, the estimated sparsity level is far smaller than the
true one at the early stage. Based on this theorem, the energy criterion can be improved by
introducing a parameter a to constrain the reconstruction stages.

Inspired by the “four-to-one” practical rule proposed in [27], the measurement number
should be four-times the signal sparsity level for signal reconstruction. In CBMP, Ui is the
union of a new matched set and the estimated support set of the previous iteration. M is
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the row number of the measurement matrix. We introduce the “four-to-one” rule to CBMP
and use the parameter b to constrain the estimation stage. The relationship between the
parameters a and b is analyzed in Section 4.

Figure 3 shows the flowchart of the CBMP algorithm. The reconstruction process is
divided into the sparsity level update stage and the support set update stage. As for the
details, the sparsity level update stage includes both the large and small step size update
stages. In the early stage of reconstruction, the estimated sparsity level is far less than the
true one, so large step sizes are adopted to estimate the sparsity level. As the iteration goes
on, after the threshold condition is satisfied, it enters a small step size stage. The reason
why CBMP can achieve better reconstruction performance than SAMP is attributed to its
superior capability in handling the wrong indices (atoms). When the current obtained
sparsity level is far less than the true one, those false indices can be easily added into the
candidate support set. However, these false indices are difficult to eliminate in the later
iteration. Therefore, at the beginning of the iteration, a large step size allows those false
indices to be filtered out.

Figure 3. The flowchart of the constrained backtracking matching pursuit (CBMP) algorithm.

4. Experimental Results

Several experiments were conducted to illustrate the performance of the CBMP algo-
rithm. The proposed CBMP was compared with SAMP [23] and IGSAMP [26]. The halting
condition used by these algorithms was ‖yr‖ � 10−5. For a fair comparison, the same
initial step size was used by CBMP, SAMP, and IGSAMP. It should be noted that in SAMP
and IGSAMP, the reconstruction results shown in their simulation experiments [23,26]
are obtained by a small step size (s = 1). In practical applications, when two-dimensional
images are stacked into long one-dimensional vectors, the sparsity level in the transform
domain is far greater than one. Correspondingly, the step sizes of the proposed algorithm
were relatively large. The step sizes used in the experiment were 64, 128, 256, and 512,
respectively. Different sampling rates were used to demonstrate the reconstruction perfor-
mance of CBMP. The wavelet transform was chosen as the sparse basis to represent images.
The quality of recovered images was measured by the peak signal-to-noise ratio (PSNR),
which is expressed as:

MSE =
1

M × N

M−1

∑
i=0

N−1

∑
j=0

|I(i, j)− Î(i, j)|2 (5)

PSNR(I, Î) = 10 log10

(
MAX
MSE

)
(6)
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where M = N = 512, I(i, j) denotes the original value of the test image at the position
(i, j) and Î(i, j) denotes the reconstructed value at the position (i, j). The maximum pixel
intensity is given as MAX. All images here are expressed using 8 bit intensity values
per pixel, so the peak intensity is 255. The experiment configuration is as follows: the
CPU was an Intel® Core™ i5-7200U at 2.50 GHz, and the size of the RAM was 8 GB.
The programming language used to perform the experiments was MATLAB. Several
experiments were conducted to validate the advantages of CBMP.

According to Theorem 1, ‖x‖2
2 > 1√

2
‖y‖2

2. In CBMP, xF should gradually approach
the true one and xF is much smaller than x at the beginning. Simultaneously, there are two
update stages, and then, the threshold parameter a is contracted within 1

4
√

2

(
1
2 × 1

2 × 1√
2

)
.

Our experiments demonstrate that the threshold parameters a and b do not distinctively
affect the reconstruction performance if the parameter satisfies a ≤ 1

4
√

2
. In CBMP, the

support set of the signal obtained by the current iteration is constrained by the parameter
a in the step size update stage, while Ui is the union of the estimated support set of
the previous iteration and the currently selected support set. Therefore, the relationship
between these two parameters is set as b = 2a. These two parameters play different
roles, as a is used after the final test, while b corresponds to the union operation after the
preliminary test.

The relationship between the threshold parameters and reconstruction performance is
shown in Figures 4 and 5. Meanwhile, SAMP and IGSAMP are both tested. Two standard
images, “Lena” and “Peppers”, were reconstructed to test the reconstruction performance
of different parameter pairs (a, b). For a fair comparison, the sampling rate was 0.4, and the
same initial step sizes were used. The initial step sizes were chosen from 64 to 512. From
Figure 4, we can see that the reconstruction performance of CBMP with different threshold
parameters is better than that of SAMP and IGSAMP. For example, when a = 1

16
√

2
, all

the PSNR values of CBMP with different initial step sizes are greater than 33.5. While the
initial step size is 512, SAMP achieves the maximum PSNR value, which is less than 32, and
IGSAMP offers the maximum PSNR value, which is less than 32.5. Therefore, CBMP offers
better reconstruction performance than SAMP and IGSAMP. From Figure 5, it is noticed
that if a ≤ 1

4
√

2
, all the PSNR values of CBMP with different step sizes are greater than 31.

Therefore, the introduction of the threshold operation is necessary for the improvement of
greedy pursuit algorithms. At the same time, threshold parameters do not distinctively
affect the reconstruction performance if they are satisfied with the constrained condition in
CBMP. Meanwhile, the reconstruction performance of CBMP with a = 1

16
√

2
is better than

the others; thus, this a value is regarded as the optimal value in the CBMP.
Tables 1 and 2 compare CBMP, SAMP, and IGSAMP in terms of the reconstruction

performance (PSNR) on the Lena image with different sampling ratios and initial step
sizes. Tables 3 and 4 compare CBMP, SAMP, and IGSAMP in terms of the reconstruction
performance (PSNR) on the Peppers image with different sampling ratios and initial
step sizes.

In Table 1, when the sampling ratio is 0.3, each PSNR value of the CBMP algorithm is
greater than that of SAMP and IGSAMP. For example, with the initial step size of 64, the
PSNR value of SAMP and IGSAMP is 25.45 dB and 26.23 dB, respectively, but the PSNR
value of CBMP is 32.13 dB. Table 2 shows the PSNR values of SAMP, IGSAMP, and CBMP
with the same sampling ratio of 0.4. Different step sizes are used. The PSNR values of
SAMP with different initial step sizes range from 26.99 dB to 31.60 dB. The PSNR values of
IGSAMP are increased from 27.32 dB to 32.46 dB. However, the PSNR values of CBMP are
greater than those of SAMP and IGSAMP, achieving 33.9675 dB as the average value.

Similarly, Table 3 shows the PSNR values of the Peppers image by SAMP, IGSAMP,
and CBMP when the sampling ratio is 0.3. Each PSNR value of the CBMP algorithm is
greater than that of SAMP and IGSAMP. Table 4 shows the PSNR values of the Peppers
image by SAMP, IGSAMP, and CBMP when the sampling ratio is 0.4. Different step sizes
are used. For example, as the initial step size is 512, the PSNR value of SAMP and IGSAMP
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is 30.67 dB and 32.75 dB, respectively, while the PSNR value of CBMP is 32.84 dB.Therefore,
CBMP can achieve better reconstruction performance with different sampling ratios and
initial step sizes.

Figure 4. PSNR (dB) under different initial step sizes of the Lena image.

Table 1. PSNR (dB) comparison of the Lena image when the sampling ratio is 0.3.

Initial Step Size PSNR of SAMP PSNR of IGSAMP PSNR of CBMP

64 25.45 26.23 32.13
128 26.41 28.45 31.91
256 27.62 29.89 31.87
512 28.98 31.76 31.83

Table 2. PSNR (dB) comparison of the Lena image when the sampling ratio is 0.4.

Initial Step Size PSNR of SAMP PSNR of IGSAMP PSNR of CBMP

64 26.99 27.32 33.85
128 28.59 28.86 34.01
256 30.31 31.07 33.99
512 31.60 32.46 34.02

Table 3. PSNR (dB) comparison of the Peppers image when the sampling ratio is 0.3.

Initial Step Size PSNR of SAMP PSNR of IGSAMP PSNR of CBMP

64 24.04 25.33 31.46
128 25.19 27.85 31.42
256 26.87 30.54 31.40
512 28.44 31.10 31.38
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Figure 5. PSNR (dB) under different initial step sizes of the Peppers image.

Table 4. PSNR (dB) comparison of the Peppers image when the sampling ratio is 0.4.

Initial Step Size PSNR of SAMP PSNR of IGSAMP PSNR of CBMP

64 26.30 25.37 32.80
128 28.00 27.96 32.81
256 28.87 30.79 32.81
512 30.67 32.75 32.84

Finally, the reconstructed results of the Lena image using SAMP, IGSAMP, and CBMP
are shown in Figures 6 and 7. The sampling rate is 0.3; different step sizes are used. The
reconstructed results of the Peppers image using SAMP, IGSAMP, and CBMP are shown in
Figures 8 and 9.

(a) SAMP (b) IGSAMP (c) CBMP

Figure 6. Reconstructed results of the Lena image by SAMP, IGSAMP, and CBMP with the initial
step size of 64.
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(a) SAMP (b) IGSAMP (c) CBMP

Figure 7. Reconstructed results of the Lena image by SAMP, IGSAMP, and CBMP with the initial
step size of 512.

(a) SAMP (b) IGSAMP (c) CBMP

Figure 8. Reconstructed results of the Peppers image by SAMP, IGSAMP, and CBMP with the initial
step size of 64.

(a) SAMP (b) IGSAMP (c) CBMP

Figure 9. Reconstructed results of the Peppers image by SAMP, IGSAMP, and CBMP with the initial
step size of 512.

In our test, CBMP outperforms SAMP and IGSAMP in terms of visual effect and
PSNR, which is irrelevant to the setup of the initial step size value. At the same time,
with different step sizes, the reconstruction performance of CBMP is stable. For example,
Figures 8a and 9a show different visual reconstruction effects when the initial step size is 64
and 512, individually, and the same conclusion can be made from Figures 8b and 9b. It is
noted that the visualization effect is not obvious in Figures 8c and 9c when the initial step
size is 64 and 512, respectively. Therefore, it can be concluded that the CBMP algorithm is
relatively insensitive to the step size.

5. Conclusions

In this paper, a constrained backtracking matching pursuit algorithm is proposed
for image reconstruction using compressed sensing. A composite strategy, including two
constraints, is adopted to effectively control the estimated sparsity level’s increment at
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different stages and accurately estimate the true support set of the image to be recon-
structed. On the one hand, the energy criterion between the estimated signal and the
measurement is used as a constraint. On the other hand, the four-to-one practical rule is
considered and improved as another control. Due to the introduction of these composite
mechanisms, the reconstruction performance of the proposed algorithm outperforms the
greedy pursuit algorithms, including SAMP and IGSAMP. In particular, CBMP offers a
stable reconstruction performance, which is insensitive to the initial step size. In our future
works, the CBMP algorithm will be applied to neural network framework-based signal
reconstruction, including medical image reconstruction.
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Appendix A

Let x ∈ RN be a sparse signal and y be a measurement vector. If the measurement
matrix Φ satisfies the RIP, then ‖x‖2

2 > 1√
2
‖y‖2

2.

Proof. From the right-hand side of the RIP, one has:

‖Φx‖2
2 ≤ (1 + δk)‖x‖2

2 (A1)

Furthermore, ‖y‖2
2 ≤ (1 + δk)‖x‖2

2. and:

‖y‖2
2

(1 + δk)
≤ ‖x‖2

2 (A2)

According to the monotonicity of δk [21], for two integers k < k′:

δk < δk′

Furthermore, δk < δ2k:
1 + δk < 1 + δ2k

and:
1

1 + δ2k
<

1
1 + δk

Then:
‖y‖2

2
1 + δ2k

<
‖y‖2

2
1 + δk

(A3)

Combining (A2) with (A3):
‖y‖2

2
1 + δ2k

<
‖y‖2

2
1 + δk

≤ ‖x‖2
2 (A4)

Based on the demonstration in SP [21] and RIP [30], 0 < δ2k <
√

2 − 1 is the sufficient
condition for signal reconstruction in CS.
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Then:
1 < 1 + δ2k <

√
2

‖y‖2
2√

2
<

‖y‖2
2

1+δ2k
< ‖x‖2

2

Therefore:
‖x‖2

2 >
1√
2
‖y‖2

2.
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Abstract: Research on self-embedding watermarks is being actively conducted to solve personal
privacy and copyright problems by image attack. In this paper, we propose a self-embedded water-
marking technique based on Absolute Moment Block Truncation Coding (AMBTC) for reconstructing
tampered images by cropping attacks and forgery. AMBTC is suitable as a recovery bit (watermark)
for the tampered image. This is because AMBTC has excellent compression performance and image
quality. Moreover, to improve the quality of the marked image, the Optimal Pixel Adjustment Process
(OPAP) method is used in the process of hiding AMBTC in the cover image. To find a damaged block
in a marked image, the authentication data along with the watermark must be hidden in the block. We
employ a checksum for authentication. The watermark is embedded in the pixels of the cover image
using 3LSB and 2LSB, and the checksum is hidden in the LSB. Through the recovering procedure,
it is possible to recover the original marked image from the tampered marked image. In addition,
when the tampering ratio was 45%, the image (Lena) could be recovered at 36 dB. The proposed
self-embedding method was verified through an experiment, and the result was the recovered image
showed superior perceptual quality compared to the previous methods.

Keywords: watermarking; self-embedding; digital signature; AMBTC; fragile watermarking

1. Introduction

With the advanced high-speed communication technology, recently, many SNS sub-
scribers freely share the digital contents they have created, and with useful image pro-
cessing software, digital contents are easily manipulated to create interesting images. In
addition, images are deliberately or unintentionally manipulated during transmission,
causing many social problems. For this reason, the problem of verifying the integrity of an
image is becoming an important area of image security.

To solve such a problem, in the past, several signature-based image authentication
schemes [1,2] were proposed for integrity verification. Digital signatures are always stored
by third parties in a digital signature-based method. In this approach, the digital signature
extracted from the image is compared to a digital signature stored by a third party. Compar-
ing the two signatures may detect if the image has been tampered with [3–5]. This method
makes it easy to determine whether an image is authentic or not, but they cannot find
the tampered area. Besides, adding signatures requires additional bandwidth and storage
space. Digital signatures have these obvious limitations. First of all, to recover a marked
image with high quality, a method is required that can accurately detect the tampered area
of the marked image. As an alternative to digital signatures, the watermarking technology
not only detects tampered areas using watermarks, but it also suggests an alternative to
recover marked images and is currently being actively studied.

Watermarking methods are classified as strong watermarking [6–9], semi-fragile wa-
termarking [10–12] and fragile watermarking [13–16]. The strong watermarking method
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allows you to extract hidden watermarks from watermarked images, even after image
processing (e.g., image compression and filtering). Thus, it can be exploited to verify copy-
right and intellectual property rights. The fragile watermarking technique can be easily
destroyed by simple image processing; thus, it can accurately detect the tampered area.
There are currently two types of fragile watermarking techniques. The first type detects
only the tampered area from the cover image. The second can detect and find the tampered
area as well as recover the area on the image.

Self-embedding is a way of recovering the tampered area with the recovered bits,
which are embedded in the pixels of the cover image, where the recovering bits are com-
posed of the feature of the original image. The performance of the self-embedding method
based on watermarking technology is generally evaluated by the quality of the recovered
image. In most self-embedding methods, the recovery bits of a specific block are always
hidden in the other block of the image. A method like this can fail if the block containing the
recovery bit has been tampered with. This is called the tampering coincidence problem [17].

The most important factor for image recovery depends on the ability to detect forged
areas. Walton [5] proposed the first fragile watermarking method for detection of tampered
areas based on inserting checksums in gray levels. Fridrich et al. [18,19] introduced a
self-embedding method based on DCT. Here, the DCT is converted to a bitstream, and then
it is embedded to pixels of the distant block. The reconstruction quality using Algorithm 1
in this method is 50% quality, which is significantly worse than that for a JPEG compressed
image. He et al. [19] proposed an adjacent block-based statistical detection method to
accurately identify the tampered block, and they provided an analysis of the tampered
detection performance. It has been shown that the statistical detection method can identify
the tampered block of the host image. However, there may also be a recovering problem
due to statistical error.

Lin et al. [20] introduced a hierarchical-based watermarking method to detect and
recover cover image damage. It is effective because the detection is based on a hierarchical
structure so that the accuracy of tamper localization can be ensured. The drawback is that
it is not possible to check whether the location of the error is an error of a lower block of the
current block or an error of a lower block within the same block. Therefore, the scheme [21]
proposed a new mechanism to facilitate recovery with a higher probability by inserting a
double copy of the watermark into two different blocks.

Zhang and Wang (2008) [22] proposed a new vector coding-based fragile watermark-
ing method that can recover the tampered area without error, as long as it is not too serious.
For restoration, recovery and authentication, bits are compressed losslessly and then are
embedded in the cover image. The mean PSNR is about 28.70 dB. Moreover, if the tam-
pering rate is less than 3.2%, the tampered area may be totally recovered. To improve the
tampering rate, Zhang et al. (2009) [23] proposed another fragile watermarking scheme
that restores the content of the original image. While the reference bits are embedded into
the entire cover image, the hash bits are embedded into the local blocks.

Qian et al. [24] proposed a fragile watermarking method for high-quality restoration.
They first categorized the image into one of six types depending on the degree of smooth-
ness. Complex blocks were compressed into more bits for recovery and smooth blocks
were needed fewer bits for recovery. Finally, the recovery bit and authentication bit were
embedded into the three number of LSBs of every pixel for the image.

Luo et al. [25] proposed a self-contained watermarking scheme for digital images. The
host image was converted into a halftone image using a digital halftone technique, and the
converted pixels were used as recovery bits. Halftone can preserve the characteristics of the
host image in the most compressed type. The halftoning watermark was used for tamper
detection, and the tampered area can be approximately recovered using the extracted
watermark. They adopted a simple low-pass filtering approach for inverse halftoning. The
reconstructed image based on halftone is not satisfactory from the perspective of the image
quality. Hsu and Tu’s study [26] used the degree of smoothness to distinguish the types of
image blocks, and they employed different watermark embedding, tamper detection and
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recovery strategies for different block types to enhance hiding efficiency, authentication
and recovery effects.

Yang & Shen [27] proposed a method to detect and recover images tampered with
by integrating Wong’s watermarking method [28] and vector quantization (VQ). This
integration also required a little extra cost, i.e., an increase in codebook size. However, with
a codebook, the image is recovered by using VQ if the mapping information for recovery is
lost. Due to the limitation of the quality of VQ, the restored image is not of high quality.

In [29–31], they proposed a fragile watermarking technique based on Block Truncation
Coding (BTC). In this method, the bitstream compressed with BTC [32] or AMBTC [33]
of the original image was hidden in the LSB and 2LSB of the cover image to store the
features of the original image. When a part of the image has been tampered, the location
is detected, and the information on the tampered area is recovered with AMBTC. Kim
et al. [29] adopted a method of improving the image quality through Gaussian filtering
after using the reconstructed bits for image restoration. Hemida et al. [30] used a quantum
chaos map to escape the tampering attack of the mark. The error rate of tamper detection
using the XOR operation between the bitmap of each block and the binary random number
may higher than that of using the decimal number. Chang et al. [31] proposed a method
to improve the quality of marked images by enhancing the compression performance of
AMBTC encoding bits for the original image.

The quality of the reconstructed image was not good due to the loss of recover bits
according to compress the bitmaps. They employed an inpainting technique to improve the
quality of the recovered image. For the tampered block, the most important thing to recover
depends on how to exactly find the tampered location. In this paper, we propose a fragile
watermark technique based on self-embedding using AMBTC to restore the tampered
cover image. To improve the quality of the cover image, it uses Optimal Pixel Adjustment
Process (OPAP) [34] to encode self-embedded data (Watermark). OPAP is introduced to
optimize the error in the DH process using LSB replacement, and it is a coding method with
excellent performance. In this scheme, we used checksum for authentication of every block
and embeded authentication bits in every block to detect forgery. Although the checksum
is a simple method, it guarantees relatively accurate performance in detecting whether or
not it is a tampered block through threshold comparison. This improves the accuracy of
tamper detection and localization.

This scheme has several advantages: (1) high accuracy of tampered detection; (2) the
quality of the recovered marked image is guaranteed by the use of high-quality compres-
sion bits generated by AMBTC; (3) the quality of marked images is guaranteed because the
original image encoded with AMBTC is hidden in the cover-image using OPAP; (4) recov-
ering bits for a block are concealed at a far distance from the current block to prepare for
cropping attacks. Experimental results show that the proposed scheme allows high-quality
recovery up to a modulation rate of 45%.

The rest of this paper is organized as follows. Section 2 briefly introduces watermark
technology. Section 3 presents a review of current and related work. Section 4 introduces
the proposed self-embedding watermarking scheme. Section 5 explains the experimental
results, and Section 6 provides the conclusions and future work.

2. Conspectus of Watermarking Technology

In this section, an overview of watermarking technology and its main terms is introduced.

2.1. Watermark Requirements

The critical requirements that a watermarking method must have are as follows [35].
First, embedding capacity: it must have capable of storing data of sufficient capacity to
protect the copyright of digital contents. Second, robustness: the embedded watermark
in a cover image needs to be able to resist various attacks such as compression of images
and image processing. Third, security: attackers must not be able to easily access the
embedded watermark. Fourth, unrecognizable: It should be possible to hide the presence of
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watermarks by preventing distortion of marked images in case of embedding a watermark
in the cover image. Fifth, blind: it should be possible to recover the watermark without
reference to the original image.

2.2. Watermarking Techniques Classification

Watermarking technology is the most basic application used for copyright protection
of digital content such as (color) images [35], video [36] and 3D mesh [37]. That is, the
ownership information of the watermark is exploited for identifying copyright ownership
and preventing fraud and theft of digital content. In fact, marked digital images can prove
ownership when someone claims it by a legitimate owner. In addition, authentication is
another watermarking application that aims to verify the integrity of the watermarked
digital images and detect attempts to alter the original images. These watermarks are
designed to be subject to signal manipulation and are used to indicate the authenticity of
digital content.

Watermarking technology can be divided according to several perspectives. First,
according to human perception, it is divided into two types: visible watermarking tech-
nology and invisible technology. The former means that the watermark is visible from
digital images, and the latter means that the watermark cannot be recognized by the human
eye. Second, watermarking technology is divided into non-blind and blind, depending on
whether the original image is needed for watermark recovery. In the non-blind technique,
both the original image and watermark are required during the authentication of the
watermark. The blind technique does not require a watermark or original image. Third,
it is divided into a spatial domain and a frequency domain based on the work area. The
former is done by directly manipulating the pixel values in the original image. The merit of
the work based on the spatial domain is its simple implementation and low computational
complexity, while its demerit is its weak robustness to compression. In the latter case, you
need to convert the host image to an appropriate frequency working domain. Then, the
coefficient is adjusted according to the values of a watermark. In general, domain transfor-
mation techniques are Discrete Cosine Transform (DCT), Singular Value Decomposition
(SVD), and Discrete Wavelet Transform (DWT) [18,38,39]. The frequency domain-based
approach is more resilient to compression attacks and image conversion attacks [36].

Fourth, depending on whether the watermark can withstand various attacks, it is
classified into a strong watermark, a fragile watermark or a semi-fragile watermark. The
strong watermark-based method provides the performance to withstand compression and
various image manipulations. To do this, it is characterized by converting the image into the
frequency domain. The fragile watermark-based method is vulnerable to image compres-
sion and image processing, so the use of this method may be different. This is because the
hidden information cannot be restored even with trivial image processing. The semi-fragile
watermark-based method provides selective robustness for specific manipulations.

There are two ways to watermark a color image in the conversion domain. The first
uses gray level techniques to process each channel individually, and the second treats each
pixel in the color image into a quaternion vector to which the transformation is applied.

3. Preliminaries

3.1. AMBTC

The Block Truncation Coding (BTC) [32] is a simple lossy compression method based
on moment preserving quantization for blocks of pixels in a grayscale image. Since BTC
produces a set of bitmap, mean and standard deviation to represent a block, it gives a
CR (size of the original image/size of the compressed image) of 4; hence, the bit rate is
2 bits per pixel for a 4 × 4 block. Though the BTC method provides good compression
without much degradation on the reconstructed images, it shows some artifacts like the
staircase effect. Absolute Moment Block Truncation Coding (AMBTC) [33] preserves the
higher mean and lower mean of each of the blocks and improves the staircase effect of the
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conventional BTC method. Besides, AMBTC is simpler than BTC, thus the computation
speed is very fast. The AMBTC algorithm involves the following steps:

Step 1: The original image of size N × N is divided into non-overlapping blocks (C) of the
size m × m (let m = 4), and each block is processed separately. Let m2 = k.

Step 2: For each block, the average pixel value is calculated by Equation (1).

x̄ =
1
k

k

∑
i=1

xi (1)

where xi represents the ith pixel value of this block with the size of k. All pixels
in the block are quantized into a bitmap bi(0 or 1) using Equation (2). That is, if
the corresponding pixel xi is greater than or equal to the average (x̄), it is assigned
with ‘1’, otherwise it is ‘0’. Pixels in each block are divided into two groups of ‘1’
or ‘0’.

bi =

{
1, if xi ≥ x̄,
0, if xi < x̄.

(2)

Step 3: The block M is partitioned into two sets of pixels M0 and M1 such that M = M0 ∪
M1 and M0 ∩M1 = φ where M0 = {00, 01, . . . , 0t} and M1 = {11, 12, . . . , 1k−t},,
and t and k − t refer to the numbers of pixels in the ‘0’ and ‘1’ groups, respectively.
The means Q1 and Q2 of the two groups indicate the quantization levels of the
groups ‘0’ and ‘1’. The two quantization levels are calculated by Equations (3)
and (4).

Q1 =

⌊
1
t ∑

xi<x̄
xi

⌋
(3)

Q2 =

⌊
1

k − t ∑
xi≥x̄

xi

⌋
(4)

Step 4: To reconstruct the pixel marked by ‘0’ it will be given the value Q1, and that marked
by ‘1’ will be given the value Q2. The values Q1 and Q2 satisfy the following
relation. The compressed block is simply uncompressed by using Equation (5).

gi =

{
Q1, if bi = 0,
Q2, if bi = 1.

(5)

The image block is compressed into two quantization levels Q1 and Q2, and a bitmap
M, and it can be represented as a trio(Q1, Q2,M). A bitmap M contains the bit-planes that
represent the pixels, and the values Q1 and Q2 are used to decode the AMBTC-compressed
image by using Equation (5). If the block size is 4× 4 then it will give the 32-bit compressed
data (i.e., the size of the block bitmap is 16 bits; converting Q1 and Q1 to binary results
in 16 bits), and hence the bit rate is 2 bpp. For m = 4, 16 pixels are represented by a
trio(Q1, Q2,M) of 8 + 8 + 16 = 32 bits, so the compression ratio (CR) is (16 × 8)/32 = 4.
For 512 × 512 pixel images, the file size of 2M-bits can be reduced to 0.5 M-bits.

3.2. LSB Substitution and OPAP

LSB (Least-Significant-Bit) alternative technology is a method of directly concealing the
watermark in the LSB of the pixels constituting the cover image. Wang et al. [34] introduced
an optimal LSB substitution and genetic algorithms, and it was found that the Worst-case
Mean Squared Error (WMSE) (which is a measurement obtained by comparing the original
and marked image) is 1/2 of that obtained with simple LSB substitution techniques. Let us
look at the DH procedure for the original 8-bit grayscale represented by xi ∈ {0, 1, . . . , 255}.
S denotes n-bit hidden values represented as S = {sk|0 ≤ k < n, sk ∈ {0, 1}}. The mapping
between the n-bit secret bits S = {sk} and the embedded bits S′ = s′k can be defined as
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follows: s′k = ∑δ−1
j=0 sk×δ+j × 2δ−1−j. The pixel value xi for embedding the δ-bit s′k is changed

to form the stego-pixel x′i like x′i = xi − (xi mod 2δ) + s′k. The δ LSBs of the pixels are
extracted by sk = x′i mod 2δ.

It has been mathematically proven that OPAP can improve the quality of marked
images by reducing WMSE by using LSB replacement based on the minimization rule. Let
xi be the pixel of the cover image, x′i be the obtained pixel from pixel xi using the LSB
replacement, and x′′i is the optimized pixel derived from x′i by the OPAP method. The value
of Δi may be segmented into three intervals. The OPAP modifies x′ to form the stego-pixel
x′′ as the following rules:

1. Rule 1 (2δ−1 < Δi < 2δ): if x′i ≥ 2δ, then x′′i = x′i − 2δ; otherwise x′′i = x′i ;
2. Rule 2 (−2δ−1 ≤ Δi ≤ 2δ−1): x′′i = x′i ;
3. Rule 3 (−2δ < Δi < −2δ−1): if x′i < 256 − 2δ, then x′′i = x′i + 2δ; otherwise x′′i = x′i ;

3.3. Luo et al.’s Method

Luo et al. [25] proposed a self-embedding watermarking scheme by using the digital
halftoning technique. Here, the tampered image is restored by converting the original
image’s features into the halftone image and secretly embedding them in the pixels of cover
image. If the halftone image composed of 1’s and 0’s is used as the restoration bits, the size
of the watermark is small, but the quality of the restored image is low because it cannot
retain sufficient features for the original image.

Suppose I and W denote the host image and the watermark image, respectively,
and both are of size N × N. W obtains the enhanced edge by using the error diffusion
halftoning algorithm. The watermark W permutes the locations of all pixels constituting
the watermark using the key K. The permuted watermark Wp is embedded into the pixels’
LSBs in the cover image I (Figure 1).

For reconstruction, recover W ′ from the marked image I′, then divide I′ and W ′ into
non-overlapping m × m block BIl and BWl(l = 1, 2, . . . , N × N/m) respectively. Compute
the difference D between pixel values of each block BIl and the corresponding block BWl .
If the difference is smaller than threshold T, it is the authenticated block; otherwise, it is not
the authenticated block. For the tampered block, it is replaced with the same block of W ′.

Shuffle

Watermarking

LSB replacement

Key

Host image

Halftone image

Marked image

Figure 1. Block diagram of the proposed scheme—watermark generation and embedding.

3.4. Fridrich and Goljan’s Method

Fridrich and Goljan [18] described a self-embedding technique. First, the cover image
is divided into blocks of 8 × 8 pixels. Set the LSB of each pixel in a given block to 0, and
convert the block into DCT. The quantized matrix is encoded with 64 bits, and the bits are
embedded into the LSBs of a distant block. After embedding the watermark, on average it
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modifies 5% of pixels in a block, and the quality of the reconstructed image is somewhat
worse than 50% of JPEG quality. The following three steps are carried out for each block B:

Step 1: The original image is divided into blocks of 8× 8 pixels. All blocks are transformed
into the interval [−127, 128], and the LSBs of all pixels are set to zero.

Step 2: Each 8 × 8 block is transformed into the frequency domain using DCT. The first 11
coefficients (in zig-zag order) are quantized with the following quantization table
Q (Fridrich and Goljan [18]) that corresponds to 50% JPEG quality: The quantized
values are further binary encoded. The bit lengths of their codes (including the
signs) are shown in matrix L (Fridrich and Goljan [18]). Coding based on L will
guarantee that the first 11 coefficients from each block will be coded using exactly
64 bits.

Step 3: The binary sequence obtained in Step 2 (e.g., the 64-bit string) is encrypted and in-
serted into the LSB of the block B+−→p , where −→p is a vector of length approximately
3/10 of the image size with a randomly chosen direction.

4. Proposed Scheme for Self-Embedding

This section introduces an efficient self-embedding method based on AMBTC. First,
the proposed method obtains the feature information of the original image by converting
the original image into AMBTC. A basic configuration of the AMBTC image is a trio
composed of a bitmap and two quantization levels. Next, the encrypted trios are embedded
in their own pixels in the cover image, and the quality of the cover image is somewhat
reduced by this procedure.

Figure 2 schematically shows the procedure of obtaining two bitmaps from the original
image and the procedure of embedding the checksum and two bitmaps into the cover
image after completing the mapping process. The compression method in Section 3.1 is
the procedure to obtain the bitmap M1 and two quantization levels Q1 and Q2 per block
(Figure 2).

Both quantization levels are converted to binary bitmap M2 for DH. In preparation
for the cropping attack, every block of two M1 and M2 moves as far away as possible from
the original location of the block using a scramble (mapping) algorithm. Afterward, the
watermarks are embedded in the 2LSB and 3LSB of the pixels in the cover image. After
creating a checksum for block authentication, it secretly inserts it into the pixels of the cover
block. It is used for authentication of the block during the restoration process.

Figure 3 shows a simple schematic explaining the recovery procedure of a tampered
watermarked image. To recover the tampered image, the concealed watermarks M1 and
M2 must first be extracted from 3LSB and 2LSB (OPAP method). The original bitmap is
reconstructed by applying Equation (8) to each block of M1 and M2. After converting M2
to a quantization level per block, a grayscale image is restored by performing a decoding
process. To check the forged block, we should restore the checksum V′

sum hidden in the LSB
and then generate the checksum Vsum for the block by using the key.

The two generated checksums are compared, and the authentication process is exe-
cuted in block units. In other words, if the two checksums match, it means that there is no
forgery attack on the block. If not, forgery has occurred. Therefore, the block is replaced
with the corresponding block of the AMBTC image created as a watermark.
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Cover Image C

AMBTC – trio

Encoding
Bitmap M1quantization1, 2
Bitmap M2

Bitmap M1

Bitmap M2

Block
localization

Block
localization

Embed the recovery data into 2~3 LSB of each block using OPAP

Marked imageK

Embed V into LSB of the pixel

Embed check-sum

Generate check-sum (Eq. (12))= ( ( )mxm=1

Algorithm#1 Algorithm#2

(Algorithm#3)

(Algorithm#3)

Figure 2. Block diagram for generating a watermarked image using AMBTC and the proposed embedding scheme (See
Algorithms 1–3).

Marked image K

AMBTC – trio

extract

Bitmap M1quantization
,

Bitmap M2

Bitmap M1

Bitmap M2

o

Recovered Image R

2-3LSB

reordering

reordering

decoding

AMBTC

Read 4x4 block

Extract
check-sum

Generate
check-sum

Tampered

Not Tampered
Equal

Not
Decoded block 

copy

Read 4x4

Tampered block
copy

Decoded Image B

Divide 4x4

Read 4x4

Construct bitmap

Compute check-sum

Compare
Check-sum

Algorithm#4Algorithm#4

Algorithm#5 Algorithm#5

Figure 3. Block diagram for watermark extraction, tampering detection, localization and image recovery (See Algorithms 4
and 5).
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4.1. Watermark Generation, Localization and Authentication

Let us suppose that C and M denote the cover image and watermark (two maps of
AMBTC), respectively, and both have a size of N × N. The two watermark M1,2 is taken by
the previously mentioned AMBTC algorithm. The watermark M is randomly permuted by
a key and then is subjected to the embedding procedure.

The step-by-step embedding procedure is as follows:

Algorithm 1 Watermark Generation

Input: A original image O with a size of N × N

Output: Two bitmap M1 and M2 sized N × N.

Step 1: A compressed set trio(Q1, Q2,M) is obtained from the original image O by using the
AMBTC algorithm (Section 3.1). The sized N × N bitmap M1 and M2 are initialized
with zeros.

Step 2: For given trio(Q1, Q2,M), the bitmap M1 is constructed by adding the block
bitmap Mn to the M1 using Equation (6), where n ∈ {1 ≤ n ≤ (N × N)/(m × m)}
and m = 4.

M
n
1 = ∑

n=1
Mn, where M ∈ trio(Q1, Q2,M)n, (6)

Step 3: After converting the two quantization levels Qn
1 and Qn

2 into 8 bits using Equation
(7) respectively, the bi,t are assigined to the block Mn sequentially. Then, Mn
is added to the bitmap M2 like Equation (6), i.e., Mn

2 = ∑n=1 Mn, where M ∈
trio(Q1, Q2,M)n.

bi,t =

⌊
Q1,2

2t

⌋
mod 2, t = 0, 1, . . . , 7. (7)

If the watermark is concealed in the same order as the original image, the tampered
area cannot be restored when the marked image is damaged. Therefore, the recovery bits,
watermarks, are not embedded into the block itself. These watermarks are embedded in
LSBs of the mapped block Mj. Here, blocks Mi and Mj are chosen such that {i = j|(i, j) ∈
[1, 2, . . . , R]}, where R is the total number of blocks in the cover image.

The procedure of watermark localization is as follows:

Algorithm 2 Block Mapping

Input: Two watermark bitmaps, M1 and M2 in Algorithm 1, Key ξ

Output: Mapped (scrambled) bitmaps M1, and M2

Step 1: Divides the bitmap M1 into non-overlapping blocks of m × m pixels. Read a block
Mn from M1, where n ∈ {1 ≤ n ≤ R} and R = (N × N)/(m × m) and m = 64.
The optimal position j for the block Mn is obtained by using Equation (8), where ξ
is prime number. Swap the block Mn with the block Mj in the map M1.

j =
{

f (i) = (ξ × n) mod R
j = f (n) + 1; (8)

When dividing the image into 16 areas, the block location n and j must not be in
the same, and the key ξ must search for its location, which can be the most distant
from each other.

Step 2: Read a block Mn from the bitmap M2. The optimal position j for the block Mn is
obtained by using Equation (8) and swap the block Mn with the block Mj in the
map M2.

Step 3: Repeat Step-1 and Step-2 for all blocks.
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4.2. Watermark Embedding Procedure

In Section 4.1, we introduced obtaining bitmaps M1 and M2 for the restoration of
marked images using Algorithm 1. However, if one block of the marked image has tam-
pered with, M1 and M2 of the block have tampered with, so localization is required.
Algorithm 2 introduced obtaining localized maps M1 and M2. Section 3.2 introduces the
procedure of hiding the two maps and the authentication bits in the cover image. Here,
the three LSB layers of the cover image are replaced with watermark bits and authentica-
tion bits.

The watermark embedding procedure is as follows:

Algorithm 3 Watermark Embedding

Input: cover image C

Output: marked image K

Step 1: Divide the cover image C and two maps (M1 and M2) in Algorithm 2 into non-overlapping blocks sized m × m,
where m = 4.

Step 2: Read three blocks from the cover image C, two maps M1 and M2, respectively, then these blocks are assigned to
Pn, M1, and M2, where n ∈ {1 ≤ n ≤ (N × N)/(m × m)} and n is a block index number.

Step 3: Obtain 1LSB (b1
i ), 2LSB (b2

i ), and 3LSB (b3
i ) using Equation (9), where n is the index, and i is the pixel index.

After that, OPAP is applied according to the rule of Equation (10), and Mn
1 is hidden in the 3LSB of P̃ . That is,

P̃ ′
n = ∑m×m

i=1 f (P̃n,i,Mn,i
1 ), here, f is a function representing the logic of Equation (10).⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

P̃n,i
removed←−−−−−

LSB
�Pn,i/2�

b1
i

1LSB←−− Pn,i mod 2

b2
i

2LSB←−− P̃n,i mod 2

b3
i

3LSB←−− �P̃n,i/2� mod 2

(9)

P̃ ′
n =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

P̃n,i − 1, if (b3
i = 0 and b2

i = 0) and Mn,i
1 = 1,

P̃n,i + 1, if (b3
i = 0 and b2

i = 1) and Mn,i
1 = 1,

P̃n,i − 1, if (b3
i = 1 and b2

i = 0) and Mn,i
1 = 0,

P̃n,i + 1, if (b3
i = 1 and b2

i = 1) and Mn,i
1 = 0,

no change, otherwise

(10)

Step 4: Embed Mn,i
2 into (b3

i ⊕ b2
i ) of P̃ ′

n using OPAP rule (Equation (11)), where f is the function represented the logic
of Eqaution (11). Before applying OPAP, b3

i and b2
i need to be re-calculated using Equation (9). That is why the

LSBs are updated values by using Equation (10).

P̃ ′′
n =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
P̃ ′

n(i)− 1, if (b3
i = 1 and b2

i = 1) and Mn
2 (i) = 1,

P̃ ′
n(i) + 1, if (b3

i = 1 and b2
i = 0) and Mn

2 (i) = 0,
P̃ ′

n(i)− 1, if (b3
i = 0 and b2

i = 1) and Mn
2 (i) = 0,

P̃ ′
n(i) + 1, if (b3

i = 0 and b2
i = 0) and Mn

2 (i) = 1,
no change, otherwise

(11)

In order to reflect the changed pixel block P̃ ′′
n to Pn, the following calculation must be applied. That is, Pn(i) =

f (P̃ ′′
n (i)× 2) + b1

i .
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Step 5: For image authentication, we compute a checksum for each block and hide it in a block. First, we choose a large
number G that will be used for calculating the checksums (Equation (12)). For each block, every pixel (Vn,i) is
generated by a key (ξ) with a pseudo-random number. Here, g(Vn,i) is the gray level of the pixel Vn,i. We also
generate m × m integers c1, c2, . . . , cm×m comparable in size to G. The checksum Ksum is calculated as⎧⎨⎩ Vsum = ∑m×m

i=1 cig(Vn(i)) mod G
ki,t =

⌊Vsum

2t

⌋
mod 2, t = 0, 1, . . . , m × m.

(12)

Finally, the transformed bits ki from checksum Ksum are acquired.

Step 6: Embed ki into the LSBs of Pn,i using the logic of Equation (13). That is, P′
n = ∑m×m

i=1 f (Pn,i, ki,t), where f is the
function representing the rule.

Pn(i)′ =

⎧⎨⎩
no operation, if ki = b1

i
Pn(i) + 1, if (ki = b1

i ) and b1
i = 0,

Pn(i)− 1, if (ki = b1
i ) and b1

i = 1,
(13)

4.3. Watermark Extraction and Reconstructing AMBTC

In the method we proposed, the information (checksum) for its authentication is
secretly concealed in the LSB, so it is possible to check whether the marked image is
tampered with or forged even if there is no original image. The receiver side can find
the tampered and forged block by using the validity of the checksum while moving each
block. If a modulated block is found, the damaged block can be recovered according to the
recovery procedure. Figure 3 shows a block diagram for the content recovery procedure.

Algorithm 4 Watermark Extracting

It extracts two maps, which are watermarks hidden in the marked image K. The restoration process is performed using
two maps and the checksum.

Input: A marked image K (output of Algorithm 3) with a size of N × N, Key ξ.

Output: A reconstructed image B with a size of N × N.

Step 1: Divide the marked image K into non-overlapping blocks sized m × m, where m = 4. The sized N × N bitmap M1
and M2 are initialized with zeros.

Step 2: Read a block from the marked image K, then this block is assigned to Pn, where n is a block number. After that,
the embedded hidden bits in b1

i (LSB1), b2
i (LSB2) and b3

i (LSB3) are obtained from the block Pn using Equation (9).
Then, a block (Mn,i) of bitmap M1 is restored using Equation (14).

Mn,i =
m×m

∑
i=1

�P̃n,i/2� mod 2 (14)

The restored bitmap block Mn,i is assigned to M1, i.e., Mn
1 = Mn, where n is a block index.

Step 3: After applying Equation (15) to block Pn, the obtained recovery block Mn,i is assigned to M2. That is, Mn
2 = Mn.

Mn,i =
m×m

∑
i=1

(�P̃n,i/2� mod 2)⊕ (P̃n,i mod 2) (15)
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Step 4: If the procedure of Steps 2 and 3 is repeated, the number of blocks ((N × N)/(m × m)), the two maps M1 and
M2 are reconstructed.

Step 5: The mapped blocks M1 and M2 constructed by Equation (8) are reconstructed to have their original location. For
this, first, divide the bitmap M1 and M2 into non-overlapping blocks of m × m pixels, where m = 64. Repeat Steps
5-1 and 5-2 until M1 and M2 are reconstructed.

Step 5-1: Read a block Mn from M1, where n ∈ {1 ≤ n ≤ (N × N)/(m × m)}. Obtain an index of two blocks needed to
be exchanged applying M1 to Equation (8). That is, j = ∑n=1 f (Mn, ξ, n) where f is the function of the rule of
Equation (8) and ξ is the key. Here, the indexes n and j are the indexes of the blocks to be exchanged. Swap the
values of the block Mn and the block Mj in the map M1. When the blocks corresponding to the two positions
are exchanged, the original positions are returned.

Step 5-2: Read a block Mn from M2, where n ∈ {1 ≤ n ≤ (N × N)/(m × m)}. Obtain an index to exchange two blocks
applying Equation (8) to M1. That is, j = ∑n=1 f (Mn, ξ, n). Swap the values of the block Mn and the block Mj
in the map M2.

Step 6: Divide the bitmap M1 and M2 into non-overlapping blocks of m × m pixels, where m = 4. The sized N × N
AMBTC grayscale image B are initialized with zeros.

Step 6-1: Read a block Mn from M2, where n ∈ {1 ≤ n ≤ (N × N)/(m × m)}. The moment values (Q1 and Q2) are
reconstructed from Mn using Equation (16), where base = [27, 26, 25, 24, 23, 22, 21, 20]T .{

Qn
1 = ∑m×m/2

i=1 (base ·Mn,i)

Qn
2 = ∑m×m/2

i=9 (base ·Mn,i)
(16)

Step 6-2: Read a block Mn from M1. Equation (5) is applied to replace a bitmap block Mn with a grayscale block Gn. That
is, Gn,i = ∑m×m

i=1 f (Mn, Q1, Q2), where f is a function logic of Equation (5) and n is block number. A grayscale
block G coding obtained by the decoding is assigned to B, i.e., B(n) = Gn.

Step 7: The image derived from AMBTC is reconstructed as repeating the procedure of Step 6 as much as the number
of blocks.

Until now, we explained the restoration of a grayscale image based on AMBTC through
extracting watermarks(maps) from the marked image. Next, we will explain how to restore
the tampered block after finding the tampered block from the marked image.

Algorithm 5 Watermark Authentication, Tamper Detection and Reconstruct Cover Image

This describes the extracting checksum from the marked image and the restoration proce-
dure of the tampered block using the checksum and the recovered trio.

Input: A marked image K and a grayscale image B (output of Algorithm 4) based on
AMBTC with a size of N × N, Key ξ.

Output: A reconstructed cover image R with a size of N × N.

Step 1: Divide the images K and B into non-overlapping blocks sized m × m, where m = 4.
The sized N × N image R are initialized with zeros.

Step 2: Read a block of the images K and B, then this block is assigned to Pn and Bn,
where n is a block number. Psum embedded in the LSB of the block Pn is recovered
by using Equation (17).

Psum =
m×m

∑
i=1

(Pn,i mod 2)× 2i (17)

Psum is an embedded checksum in the block Pn.
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Algorithm 5 Cont.

Step 3: Generate checksum Vsum using Equation (12) and then discriminate whether the
block has been tampered with or not using Equation (18). That is, if Vsum = Psum,
this block is a safe block; otherwise, it is a tampered block. If the block is safe, Pn is
assigned to Rn. Meanwhile, if it is tampered, the recovered block Bn is assigned to
Rn.

Rn =

{ Pn, i f (Vsum = Psum),
Bn, otherwise, (18)

Step 4: The recovered image R is made by repeating the procedure of Steps 2 and Step 3 as
much as the number of blocks.

5. Experimental Results

In this section, the experiments and analysis are described to prove the performance
of the proposed method. The computing platform used in the experiment has a Core
i5-8250U processor, 1.60 GHz speed and 8 GB of RAM, and the software for the simulation
is MATLAB R2019b. The standard USC-SIPI image database was used in the experiment
for image restoration. Of these, some of the original 512 × 512 grayscale images were
selected and used for the experiment. Figure 4 shows a set of test images (e.g., Lena, Pepper,
Airplane, Boat, Goldhill, Couple, Baboon, and Zelda) used in the experiment.

For evaluation, Structural Similarity Index Metric (SSIM) and peak signal-to-noise
ratio (PSNR) were used to compare the performance of the existing and proposed methods.
The quality of the image was measured by the PSNR defined as

PSNR = 10log10
2552

MSE
(19)

PSNR is calculated as 10log (signal power/noise power), and signal power and noise power
are calculated using peak power. The MSE used for PSNR calculation is the difference in
average intensity between the marked image and the reference image, and a low MSE value
can be evaluated as good image quality. In other words, the MSE is the mean of the squares
of the errors (pi − p′i)

2, where p and p′ are reference and distorted images, respectively.
The MSE is calculated as follows:

MSE(p, p′) = 1
N

N

∑
i=1

(pi − p′i)
2. (20)

Here, the allowable pixel intensity is 2552.
SSIM is a formula that measures the similarity between the original image and the

displayed image. It consists of luminance, contrast and structure, and it measures the
quality of an image. The range of the SSIM value is limited between 0 and 1, and if the
value is close to 1, the image is similar to the cover image. The computation of SSIM is
as follows:

SSIM(x, y) =
(2μxμy + c1)(2σxy + c2)

(μ2
xμ2

y + c1)(σ2
x + σ2

y + c2)′
(21)

where μx and μy denote values of cover image x and the marked image y, σx and σy are
standard deviation values of the cover image and the marked image, while σx,y denotes
the covariance of both two images. c1 and c2 are constants to stabilize the the division.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4. Test images used in our experiments: (a) Lena, (b) Pepper, (c) Airplane, (d) Boat, (e) Goldhill, (f) Couple, (g)
Baboon and (h) Zelda.

Figure 5 shows a cropping attack on the marked image with limited ratios and the
results of recovering the tampered images using the proposed method. The ratio was
limited to 10% to 45%. For the cropping attack, the visual difference between the original
image and the restored images as applying the method proposed in Section 4 (see Figure 5b)
was very similar. Objective evaluations such as PSNR and SSIM of Figure 5 can be found in
Tables 1 and 2.

The merit of our proposed method is that it manages PSNR (Table 1) and SSIM
(Table 2) about marked images and recovered images reasonably. In the case of Lena image,
when the ratio of cropping attacks is 5% and 45%, the difference between the two PSNRs is
only 3.4573 dB. While, in the case of the Barbara image, the difference was highest among
the comparison PSNRs in Table 1, i.e., it was 6.3909 dB.

In Table 2, the reason for introducing SSIM to measure image quality is that SSIM was
high in the case of Baboon images with low PSNR (in Table 1), and subjective evaluation of
image quality like the human visual system is possible, unlike PSNR measurement results.
Overall, it means that SSIM was more accurate than PSNR in subjective terms. Therefore,
two measurements are required for complementarity. As a result, it showed very good
performance compared to other existing methods.
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10% 20% 30% 40% 45%
(a) Tampered Rates of Lena image

10% 20%
(b) Recovered Lena images 

30% 40% 45%

Figure 5. Cropping attack according to various ratios on Lena images and reconstructed Lena images applying the method
we proposed.

Table 1. PSNR comparisons between original images and recovered images according to tampered rates.

Cover Image
Tampering Rate

5% 10% 15% 20% 25% 30% 35% 40% 45%

Lena 40.0894 40.0741 39.8066 39.2411 38.7654 38.2036 37.6783 36.754 36.6321
Pepper 39.1559 38.8223 38.258 37.8034 37.4989 37.0547 36.7648 36.1718 36.0495

Airplane 39.9916 40.0421 39.8804 39.0067 39.087 38.9265 39.1673 35.7464 35.7072
Boat 40.1693 39.9564 39.6507 38.9742 38.4153 37.7102 37.5841 35.8619 35.7968

Goldhill 39.7814 39.6703 39.5971 38.0752 37.8333 37.5566 37.4104 36.2497 35.8103
Couple 38.6335 37.9082 36.0183 34.9058 33.5838 33.1666 32.4731 32.1509 31.7149
Baboon 34.9313 33.6695 32.1257 31.5393 31.0723 30.4577 29.6961 29.551 28.6731
Zelda 40.0645 39.7914 39.0381 38.847 38.4935 37.7322 38.0708 36.3148 37.4341

Barbara 37.8367 37.0637 35.9489 35.8704 35.4713 34.1328 33.2672 31.9851 31.4458
Average 38.96151 38.55533 37.81376 37.14034 36.6912 36.10454 35.79023 34.53173 34.36264

Table 2. SSIM comparisons between original images and recovered images according to tampered rates.

Cover Image
Tampering Rate

5% 10% 15% 20% 25% 30% 35% 40% 45%

Lena 0.9508 0.9517 0.9534 0.9506 0.951 0.9516 0.9521 0.9495 0.9507
Pepper 0.9504 0.9505 0.9504 0.9495 0.9497 0.9484 0.948 0.9458 0.9463

Airplane 0.9477 0.9492 0.9509 0.953 0.955 0.9573 0.9599 0.9546 0.9571
Boat 0.9582 0.9601 0.9625 0.9638 0.9644 0.9647 0.9668 0.9608 0.9632

Goldhill 0.9665 0.9668 0.9674 0.9604 0.9593 0.958 0.9572 0.9502 0.9502
Couple 0.9664 0.9658 0.9604 0.9609 0.9552 0.9513 0.9465 0.9441 0.94
Baboon 0.9776 0.9732 0.9655 0.9615 0.9572 0.9516 0.9454 0.9421 0.9359
Zelda 0.9494 0.9486 0.947 0.9462 0.9446 0.943 0.9443 0.9398 0.9421

Barbara 0.969 0.9686 0.967 0.9689 0.9682 0.9644 0.9618 0.9585 0.9565
Average 0.959556 0.959389 0.958278 0.9572 0.956067 0.954478 0.953556 0.949489 0.949111

Figure 6 shows the quality of the restored image as PSNR when the cropping attack
ratio was applied from 5% to 45% for the marked image. As the attack rate increased, PSNR
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decreased, showing a downward trend. However, the line was relatively smooth. In the
case of the Lena image, the maximum performance was 40 dB or more at 5% and 36 dB or
more at 45%.

In the case of the Pepper image, it showed about 39 dB at 5% and more than 36 dB at
45%, showing the lowest performance. The texture of the Pepper image has a smoother
characteristic than that of the Lena image, and the surface of the cover image is very bright.
Such features seem to degrade the quality of the recovered image during the reconstruction
process using AMBTC. That can be a minor weakness of the method we have proposed.

5 10 15 20 25 30 35 40 45
Tampering rate(%)

35.5

36

36.5

37

37.5

38

38.5

39

39.5

40

40.5

dB

Lena
 Pepper
Boat
Goldhill

Figure 6. Tampered images at various tampering rates (%).

Since the recovered image using the proposed method used AMBTC derived from
the BTC, this staircase effect could be reduced to some extent. The staircase effect may
tend to appear larger in the brighter parts of the image. As a result, as the tampering rate
increased, the staircase effect on the nose of Barbara’s image was slightly revealed. Overall,
the quality of the image restored with the method we proposed was excellent.

Figure 7 compares the performance of the existing self-embedding methods (i.e.,
Zhang et al. [17], Luo et al. [25], Yang & Shen [27], Hemida & He [30]) with our proposed
method. The Tampering Rate (TR) for the marked cover-image (Lena) ranged from 5% to
45%. Both methods proposed by Hemida & He [30] and Luo et al. [25] measured about
35dB when the TR was 5%, and there was a slight difference in the performance of the two
methods until the TR reached about 20%. However, the PSNR of the two showed similar
reduction, and when TR was 20%, it was about 30 dB.

Then, the PSNR of Luo et al. [25] decreased to a smooth descending curve and was
about 24 dB when TR = 45%, while the method proposed by Hemida & He [30] drastically
decreased to about 11 dB when TR = 45%. One of the reasons Hemida& He’s method [30]
did not perform well is because it uses simple binary operations to detect the tampering
area. This seems to be due to the threshold error according to the use of binary operations.
Luo et al. [25] used the 7MSB binary value of each block for image authentication. Although
Luo et al.’s authentication method performed better than Hemida & He [30], authentication
failures may occur due to errors caused using binary numbers and may affect performance.
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Figure 7. Comparison of the performance between previous methods and our proposed method.

Using halftones for image restoration is important to investigate. The image quality
obtained by restoration using halftones was around 30 dB, which is a bit insufficient to
ensure high image quality. The reason is that in the process of converting halftone to a
grayscale image, it is visually observed that the quality of the image is clearly different
from the texture of the original image. This means that the halftone could not be enough
for the recovery bits. The PSNR of Yang & Shen [27] was limited from about 35 dB (highest)
to about 24 dB (lowest), but it showed a relatively stable PSNR performance. For tampering
authentication, they used Wong’s watermarking technique [28], and its plan had a good
impact on performance.

When the TR was 5%, the PSNR of Zhang et al.’s method [17] and the proposed
method were shown at about 39 dB and about 40 dB, respectively. The proposed method
decreased slowly until TR = 45%, and when TR = 45%, PSNR was 36 dB. On the other hand,
the PSNR of Zhang et al. [17] was about 25 dB (TR = 45%), which appeared as a slightly
steeper curve than ours. However, the advantage of this method is that it is designed to
prevent tampering coincidence problems, which has a positive effect on performance and
shows superior performance among existing methods. Nevertheless, the proposed method
shows good performance among self-embedding methods.

The factors for improving the performance of the proposed method are as follows:
first, the recovery bits for a specific block were stored in a long block located as far away
as possible. Second, there was correct detection of tampered blocks. Since our proposed
method was faithful in this perspective, we find that it had a positive effect on performance.

Table 3 shows a comparison of the PSNR of the marked image and the restored image
obtained after applying various self-embedding watermarking methods to the Lena image.
Looking at the PSNR of the reconstructed image in Table 3, we show that the proposed
method was superior to the previous methods. In the case of He et al.’s method [19], some
blocks at the boundary of the tampered region were erroneously identified. Zhang et al.’s
method [23] showed that the quality of the recovered image was high when the tampered
domain was less than 35% of the entire image. Qian et al.’s method did the authentication
bit and reference bit in the three LSB layers of the image. Therefore, the restored image
was excellent under limited conditions. Yang & Shen [27] produced an index table of the
original image through vector quantization (VQ), and the obtained data were hidden in
the cover image for image restoration. If the VQ is lost with a tamper attack, the restoration
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of the lost VQ area is impossible. In Kim et al.’s method [29], when the image damaged
area was less than 50%, the quality of the reconstructed image was high (33.6). This was
improved through image filtering after image restoration. In conclusion, our proposed
method had the best restored image quality, but the quality of marked images was not the
best. This is because up to 3LSB was used for restoration performance.

Table 3. Comparisons of PSNR of marked image and recovered image among different schemes.

Methods
Marked Images

(PSNR)
Recovered Images

(PSNR)
Criteria of Restoration

He et al. [19] 51.1 32.2 Tampered areas must
be reserved

Zhang et al. [23] 37.9 29.9 <59%
Qian et al. [24] 37.9 35.0 <35%
Yang and Shen [27] 40.7 32.0 <50%
Kim et al. [29] 43.7 33.6 <50%
The proposed method 40.0 36.6 <45%

Table 4 shows the PSNR and NCC (Normalized Cross-Correlation) of the watermarked
images, and it shows their embedding times (seconds). The PSNRs of the marked images
were at levels difficult to discriminate with the human visual system. Therefore, the marked
image made by the proposed method was very good in the aspect of the images’ quality. In
addition, the time performance measured with MATLAB was not bad, but the reason why
the performance was not high is due to the performance of MATLAB, and it seems that
there will be no problem in terms of time when developing in C language.

Table 4. Measuring PSNR, SSIM, NCC and time (second) of marked images based on the proposed
method.

Cover Image PSNR (dB) SSIM NCC Embedding Time (s)

Lena 40.0076 0.9488 0.9996 1.0396
Pepper 40.0121 0.9516 0.9997 0.9516

Airplane 40.0306 0.9469 0.9996 0.8567
Boat 40.0093 0.9549 0.9996 0.9976

Goldhill 39.9983 0.9662 0.9995 1.2315
Couple 40.0196 0.9691 0.9996 1.2363
Baboon 40.0095 0.9841 0.9996 1.2099
Zelda 39.9805 0.9480 0.9994 0.8555

6. Conclusions

In this paper, we present a productive, fragile, self-embedding watermarking method
based on AMBTC. Here, we concealed the recovery bits in LSB2 and LSB3 and the check-
sum bits in LSB in block units using the OPAP method. In addition, a checksum was
introduced for accurate block authentication. In the existing method, binary bits were
used for authentication, but there was a lack of precision, so checksum was used. Since
the proposed method is a fragile watermarking method, the watermark information may
be destroyed by image processing such as compression and filtering. However, in case
of a partial cropping attack, it is possible to restore the tampered area to the level of the
marked area before the forgery by using the hidden restoration information. The limitation
of our proposed method is that if the damaged area of the image is large, the restoration
information is also removed, so that an area that cannot be restored may occur. In the future
we would like to find a way to solve the problem of corruption of recovery information
that occurs when the size of the damaged image area is more than 50%.
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Abbreviations

The following abbreviations are used in this manuscript:

M1 first bitmap image
M2 second bitmap image
Vsum generated checksum
C cover image
M watermark (two maps of AMBTC)
O original image
Pn storing m × m pixel in a block
P̃n,i a block which is removed LSB from Pn
trio(Q1, Q2,M) Q is a quantization level and M is a bitmap block
N the size of original image
m the size of a block
ξ Key for block mapping in Algorithm 2
Gn a grascale block
BTC Block Truncation Coding
AMBTC Absolute Moment Block Truncation Coding
OPAP Optimal Pixel Adjustment Process
DH Data Hiding
XOR Exclusive-OR
CR Compression Ratio
PSNR Peak Signal-to-Noise Ratio
MSE Mean Squared Error
WMSE Worst-case Mean Squared Error
LSB Least-Significant-Bit
SSIM Structural Similarity Index Metric
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Abstract: The image-based data hiding method is a technology used to transmit confidential
information secretly. Since images (e.g., grayscale images) usually have sufficient redundancy
information, they are a very suitable medium for hiding data. Absolute Moment Block Truncation
Coding (AMBTC) is one of several compression methods and is appropriate for embedding data due
to its very low complexity and acceptable distortion. However, since there is not enough redundant
data compared to grayscale images, the research to embed data in the compressed image is a very
challenging topic. That is the motivation and challenge of this research. Meanwhile, the Hamming
codes are used to embed secret bits, as well as a block code that can detect up to two simultaneous
bit errors and correct single bit errors. In this paper, we propose an effective data hiding method for
two quantization levels of each block of AMBTC using Hamming codes. Bai and Chang introduced a
method of applying Hamming (7,4) to two quantization levels; however, the scheme is ineffective,
and the image distortion error is relatively large. To solve the problem with the image distortion
errors, this paper introduces a way of optimizing codewords and reducing pixel distortion by utilizing
Hamming (7,4) and lookup tables. In the experiments, when concealing 150,000 bits in the Lena
image, the averages of the Normalized Cross-Correlation (NCC) and Mean-Squared Error (MSE) of
our proposed method were 0.9952 and 37.9460, respectively, which were the highest. The sufficient
experiments confirmed that the performance of the proposed method is satisfactory in terms of image
embedding capacity and quality.

Keywords: data hiding; AMBTC; BTC; Hamming code; LSB

1. Introduction

Recently, the Internet space has become like a single trading world where almost all digital
content is distributed because every trading system is connected by high speed Internet, such as 5G.
Many people distribute digital content in this space and are constantly consuming digital content.
The problem with this digital space is that a copyright protection problem occurs because digital
content is easily redistributed, copied, and modified by illegal users. There are various solutions to
this problem, but the commonly used method is digital watermarking [1–3], which is used to protect
the integrity and reliability of digital media.

Besides watermarking technology, Data Hiding (DH) technology is the most commonly used
method of concealing information in digital media. The DH [4–6] technique can be used in various
fields, such as digital signatures, fingerprint recognition, authentication, and secret communication.
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It has been proven various times that DH could be used for secret communication, as well as the
protection of the copyright of digital content. The people who use Internet communication know that
the Internet is not a fully protected communication channel due to the many attackers. However,
secret communication using DH can safely protect secret messages in digital cover media from the
incomplete Internet channel.

DH may achieve the role of a secret communication strategy only when it satisfies two important
criteria. First, the quality of the cover image (including data) should not be significantly different from
the quality of the original image, since the cover image must not be detected by attackers while it is
transmitted. Second, it must have the ability to transmit many secret data to the receiver securely.

The DH method is mainly conducted in two domains, namely the spatial domain and the
frequency domain. In the spatial domain, a secret bit is concealed in the pixels of a host image directly.
In the case of DH based on the spatial domain, it is applied to a grayscale image; even though the
four Least Significant Bits (LSBs) [7–10] of each pixel are used for information hiding, they may not be
detected by the Human Visual System (HVS).

Reversible DH [11–20] is a special case of DH in the academic community. In RDH, after the
embedded bits are extracted, the stego image can be recovered back to the original image without
distortion. The representative RDH methods are Difference Expansion (DE) [11,12], image compression [13],
Histogram Shifting (HS) [14,15], Prediction-Error expansion (PE) [16,17], and encrypted images [18,19] for
privacy preserving.

In the frequency domain, a cover image is converted into a frequency form, and then, the data are
concealed in the coefficients of the frequency. The two most common methods based on the frequency
domain are Discrete Cosine Transform (DCT) [21,22] and Discrete Wavelet Transform (DWT) [23].
Since changing the coefficient adversely affects the image quality, it is necessary to find and change
the positions of the coefficient that have a relatively small influence on the image quality during data
insertion. Spatial domain methods have the merit of the ability to conceal many secret data compared
to the frequency domain methods, and the quality of the image is better, while they have the demerits
of compression, noise, and filtering attacks compared to the frequency domain methods. Meanwhile,
excellent compression images like JPEG are preferred as digital media, because the file size is small
compared to the raw images and is well transmitted. For this reason, many researchers closely studied
the watermarking and DH methods based on JPEG compression a long time ago.

Block Truncation Coding (BTC) [24] is one of the compression methods, and the configuration of
the BTC is very simple compared to conventional JPEG. Thus, the computation time of BTC is much
shorter than that of JPEG, and the quality of an image based on BTC is not significantly deteriorated
compared to that of the original image. For this reason, it seems many researchers are interested in DH
based on Absolute Moment Block Truncation Coding (AMBTC) [25–27], originated from BTC recently.
Chuang and Chang [28] proposed a DH method based on AMBTC replacing the bitmaps of smooth
blocks with the secret bits after dividing the blocks of an image into smooth blocks and complex blocks
directly. It is called the Direct Bitmap Substitution (DBS) method. The merit of this method is that it
may control the quality of the stego image by adjusting the threshold T(= b − a) because the number
of blocks using DH is decided according to the threshold value T. Here, a and b are quantization
levels for each block in AMBTC. With the increase of the threshold T, the embedding capacity will be
increased, while the image quality will be worse. In the case of decreasing the threshold T, the quality
of the image will be improved, but the embedding capacity may be reduced.

Ou and Sun [29] introduced a way to embed data in the bitmaps of smooth blocks and proposed
a method to reduce the distortions of the image by adjusting two quantization levels through
re-computation, but the original image is required for re-calculation. Bai and Chang [30] proposed a
way to embed secret data by applying a Hamming Code, i.e., HC(7,4) [7], to two quantization levels
and bitmaps of AMBTC, respectively. When HC (7,4) is used for a complex block of AMBTC, it may
be undesirable for high image quality. Kumar et al. [31] used two threshold values to increase the
capacity of DH without significantly improving the image quality. Chen et al. [32] proposed a lossless
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DH method using the order of two quantization levels in trio. This method is named the Order of Two
Quantization Level (OTQL) method, which can conceal one bit per a block. For example, to store the
bit “1”, the order of two quantization levels, a and b, is reversed as trio(b, a, BM). This method does
not change the coefficients of both quantization levels, so it does not affect the quality of the image.

Hong [33] proposed a DH using Pixel Pair Matching (PPM) [34], where PPM is applied to the
quantization levels; while the existing OTQL and DBS are used together for complex and smooth blocks,
respectively. In 2017, Huang et al. [35] proposed a scheme for hiding data using pixel differences
(hidden bits = log2T: derived from the difference expansion method) at two quantization levels and
introduced a method to adjust the differences in the quantization levels to maintain image quality.
This method is also a hybrid method by using OTQL and DBS as well. Chen and Chi [36] sub-divided
less complex blocks and highly complex blocks. In 2016, Malik et al. [37] introduced a DH based
on AMBTC using a two bit plane and four quantization levels. The merit of this method is the high
payload, and the demerit is the decrease in the compression rates.

The motivations to propose a DH method using the Hamming code based on the image
compressed with AMBTC are as follows. First, AMBTC is suitable for DH because it has reasonable
compression performance, very low computational complexity, and (although not many) redundant
bits. In addition, DH is relatively less studied for grayscale images. Second, the Hamming code is very
efficient for redundant bits, such as for grayscale images. This has been demonstrated in previous
studies [7,10]. However, since the image compressed with AMBTC has fewer redundant bits than the
grayscale image, the embedding of enough secret bits at two quantization levels results in a negative
effect on the image in the decoding of the bitmap. Third, Bai and Chang [30] attempted to conceal data
at two quantization levels, but this did not achieve optimized performance. Therefore, it is essential to
develop an optimized method in the DH process.

The main contributions of this paper are summarized as follows:

(i) We introduce a general framework for DH based on AMBTC with the minimal squared error by
the optimal Hamming code using a Lookup Table (LUT).

(ii) Our method calculates the codeword corresponding to the minimum distance from the standard
array of the (7,4) Hamming code table and then extracts the corresponding code. The method
has little effect on program performance and can be easily conducted.

(iii) We provide a comparative analysis and evaluate the efficiency based on the specified criteria.
(iv) Sufficient experimental results are used to show the effectiveness and advantages of the proposed

method.

The rest of this paper is organized as follows. Section 2 gives the introduction of the background
research. The proposed method is described in detail in Section 3. The experimental results are
analyzed in Section 4. Section 5 draws the conclusions.

2. Preliminaries

2.1. AMBTC

Absolute Moment Block Truncation Coding (AMBTC) [25] efficiently improves the computation
time of Block Truncation Coding (BTC) and improves the image quality over BTC. The basic
configuration of one block in AMBTC is two quantization levels and one bitmap, while one block is
compressed by preserving the moment. Here, the two quantization values are obtained by calculating
the higher mean and the lower mean of each block. For AMBTC compression, the grayscale image is
first divided into (k × k) blocks without overlapping, where k can determine the compression level by
(4 × 4), (6 × 6), (8 × 8), etc. AMBTC adopts block-by-block operations. For each block, the average
pixel value is calculated by:
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x̄ =
1

k × k

k2

∑
i=1

xi (1)

where xi represents the ith pixel value of this block with a size of k × k. All pixels in this block are
quantized into a bitmap bi (zero or one); that is, if the corresponding pixel xi is greater than or equal
to the average (x̄), it is replaced with “1”, otherwise it is replaced with “0”. Pixels in each block are
divided into two groups, “1” and “0”. The symbols t and k2 − t refer to the numbers of pixels in the “0”
and “1” groups, respectively. The means a and b of the two groups indicate the quantization levels of
the groups “0” and “1”. The two quantization levels are calculated by Equations (2) and (3).

a =

⌊
1
t ∑

xi<x̄
xi

⌋
(2)

b =

⌊
1

k2 − t ∑
xi≥x̄

xi

⌋
(3)

where a and b are also used to reconstruct AMBTC.

bi =

{
1, if xi ≥ x̄,
0, if xi < x̄.

(4)

gi =

{
a, if bi = 0,
b, if bi = 1.

(5)

The bitmap is obtained from Equation (4), and the compressed block is simply uncompressed
by using Equation (5); that is, the compressed code unit, trio(a, b, BM), may be obtained by using
Equations (2)–(5). The image block is compressed into two quantization levels a, b, and a Bitmap
(BM) and can be represented as a trio(a, b, BM). A BM contains the bit-planes that represent the pixels,
and the values a and b are used to decode the AMBTC compressed image by using Equation (5).

Example 1. Here, we describe the encoding and decoding procedure of one block of a grayscale image using an
example. Figure 1a is a grayscale block, and the mean value of the pixels is 106. By applying Equations (2)–(4)
on (a), we can obtain the bitmap as shown in (b) and two quantization levels (a = 102; b = 107). The basic
unit of each block is trio(a, b, BM) = (102, 107, 0101111111011001). Using the information of the trio and
Equation (5), the decoded grayscale block in (c) is reconstructed.

102 107 104 110

109 106 107 106

110 112 104 106

106 101 103 107

0 1 0 1

1 1 1 1

1 1 0 1

1 0 0 1

102 107 102 107

107 107 107 107

107 107 102 107

107 102 102 107

(a) a natural block (b) bitmap (c) A reconstructed block

Compressed unit: ( , , ) = (102, 107, 0101111111011001)

Figure 1. An example of AMBTC: (a) a natural block; (b) a bitmap block; (c) a reconstructed block. BM, Bitmap.
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2.2. Hamming Code

The Hamming Code (HC) [38] is a single error-correcting linear block code with a minimum
distance of three for all the codewords. In HC(n, k), n is the length of the codeword, k is the number of
information bits, and (n − k) is the number of parity bits.

Let x be a k bit information word. The n bit codeword y is created by using y = xG, where G is
the k × n generator matrix. Let e = y − ỹ be the error vector that determines whether an error occurred
while sending y. If e = 0, no error occurs, and ỹ = y.

Otherwise, the weight of e represents the number of errors. Let H be a (n − k) × n parity
matrix with the relation of G · HT = [0]k×(n−k). Let us assume that the codeword ỹ has an error like
e = (y − ỹ). In this case, we could correct one error (e = y ⊕ ỹ) from the codeword ỹ by using the
syndrome S = ỹ · HT , where the syndrome denotes the position of the error in the codeword. As show
in Equation (6), the error e can be obtained.⎧⎪⎨⎪⎩

ỹ · HT = (e ⊕ y) · HT = e · HT + y · HT

(y · HT) = (x · G) · HT = x · (G · HT) = 0)
= e · HT + 0 = e · HT

(6)

Consider HC(7,4) with the following parity matrix.

H =

⎡⎢⎣0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1

⎤⎥⎦ (7)

For example, assuming that one error bit occurred in y (e.g., the second bit from the left in
e = (e1, e2, . . . , e7) = (0100000), we may obtain the error position and recover the one bit error from the
codeword y by calculating the syndrome S(= y · HT = (010)).

2.3. Bai and Chang’s Method

For DH, the AMBTC algorithm is applied to the original cover image to obtain a low mean,
a high mean, and a bitmap for every block. Then, the secret message is concealed in the AMBTC
compressed trio(a, b, BM). The merit of AMBTC is that it achieves a higher payload compared to other
DH schemes performed in the compression domain. Here, it performs AMBTC DH in two phases.
The method proposed by Bai and Chang is composed of two stages. One of them is to embed three
bits in two quantization levels in trio(a, b, BM) by using HC(7, 4). The detailed process of this method
is as follows.

Step 1: For each trio, obtain seven bits from the two pixels at two quantization levels, and rearrange
the seven bits to form a seven bit unit. Let a = (a8 a7 a6 a5 a4 a3 a2 a1) and
b = (b8 b7 b6 b5 b4 b3 b2 b1) be the two original pixels. The rearranged seven bit unit is
obtained by y = (a4, a3, a2, a1||b3, b2, b1), where the symbol || denotes that the four bits from
a are concatenated with the three bits from b. Three secret message bits (m = (m1, m2, m3))

are read from the secret bit set M.
Step 2: Compute the syndrome S(= Hy ⊕ m) of the codeword y, and then, the value is changed

into a decimal value and is assigned to the variable i. To obtain the stego codeword
ŷ = (y1, y2, y3, y4, y5, y6, y7), flip the ith bit of the codeword y.

Step 3: To reconstruct two quantization levels with the codeword y, (y7, y6, y5, y4) is replaced with
four LSBs of the low-mean value a, and (y3, y2, y1) is replaced with three LSBs of the
high-mean value b.

Step 4: It is possible to hide an additional bit by using the order of two quantization levels and
the difference between them. In this case, it may be acceptable to embed an additional
bit when the criterion (b − a ≥ 8) is satisfied. Otherwise, it is not accepted to embed an
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additional bit. If the bit to be embedded is “1”, swap the order of the two quantization levels
as (trio(b, a, BM)), otherwise no change is conducted.

In Step 4, it is possible to embed an additional bit only under the given condition (b − a ≥ 8).
The reason for the condition is necessary; if the difference between the values of a and b is small,
the order of the two values may be reversed as a result of the computation of the Hamming code.
An ambiguous result in the decoding procedure may occur.

3. The Proposed Scheme

In this section, we introduce a DH to embed secret data in bitmaps and the quantization levels
of AMBTC using optimized the Hamming code and DBS method. First, compressed blocks, trios,
are classified into smooth blocks and complex blocks. Then, DBS is applied to the bitmaps of the
smooth blocks, while the Hamming code may be applied to the quantization levels regardless of the
block characteristics. The method proposed by Bai and Chang results in the large distortion of the
cover image. In Section 3.1, we introduce a way to solve this problem.

3.1. Embedding Procedure

We introduce a way of DH using the Hamming code, DBS, and OTQL based on AMBTC and
explain the details of the procedure step-by-step as follows. Additionally, the flowchart of the
embedding process is described in Figure 2.

Input: Original grayscale image with a size of N × N, threshold T, and secret data
M = (m1, m2, . . . , mn).

Output: Stego AMBTC trios.
Step 1: The original image G is divided into 4 × 4 non-overlapping blocks.
Step 2: The trio(a, b, BM) of the AMBTC, i.e., the compressed codes, is obtained according to

Equations (1)–(4), where a and b are the low mean and the high mean quantization levels,
respectively, and BM is the bitmap.

Step 3: The quantization levels are a = (a8a7 . . . a1) and b = (b8b7 . . . b1), where a8 is the Most
Significant Bit (MSB) of a and a1 is the LSB of a. Similarly, b8 is the MSB of b, and b1 is the
LSB of b. The rearranged seven bit codeword is obtained by:

y = (a4a3a2a1||b3b2b1) (8)

where the symbol || denotes concatenation. Note that a4 and b1 are the MSB and LSB of the
rearranged pixel y, respectively.

Step 4: In Figure 3b, the location of the coset leader that matches the decimal number d for mi+2
i

bits is retrieved from the Lookup Table (LUT) using the procedure in Figure 4. Assuming
that xi = (x7 x6 x5 x4 x3 x2 x1), the codewords corresponding to the retrieved coset reader
are converted to (α′ β′). That is, α′ = bin2dec(x7 x6 x5 x4) and β′ = bin2dec(x3 x2 x1).
Meanwhile, for codeword y generated in Step 3, α = bin2dec(y7 y6 y5 y4) and β =

bin2dec(y3 y2 y1) are converted; that is, y′ = (α β). The distances for x and y′ are calculated
using Equation (9). After calculating min((α − α′)2 + (β − β′)2) for all codewords, the value
with the minimum distance among them is obtained. The obtained minimum distance
codeword is h = (α′ β′).

ε = min((α − α′)2 + (β − β′)2) (9)

For the codeword h, two quantization levels, a and b, are constructed as follows:{
a = (a8a7a6a5||h7h6h5h4)

b = (b8b7b6b5b4||h3h2h1)
(10)
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Before next step, three is added to the index variable i.
Step 5: If |a − b| ≤ T, it may be a smooth block. For the smooth block, we use DBS. The mi+15

i bits
replace the pixels of the BM. Fifteen is added to the index variable i before the next step.
If |a − b| > T and |a − b| ≥ 8, OTQL is launched. If mi

i = 1, transpose the order of two
quantization levels, a and b, of the trio, otherwise put the trio as the original state.

Step 6: Repeat Steps 2∼5 until all image blocks are processed. Then, the stego AMBTC compressed
codes’ trio is constructed.

Read a ( , ,BM)

= +15

= + 16

Create codeword

Lookup codeword
from LUT with +2

= ( 8 7 6 5 || 7 6 5 4 )
= ( 8 7 6 5 4 || 3 2 1 )

End

OTQL method

Y

N

1
7 = ([ || ]), i=i+3

= ( 4 3 2 1 || 3 2 1 )

Ref. Fig. 4

AMBTC ( , , )

Reconstructed
Quantization levels

Find minimum
distance codeword

|a b| T &
|a b| 8

Copy m into BM

Figure 2. The flowchart of the data embedding process. OTQL, Order of Two Quantization Level.

(a) (b)

Standard array of a (7,4) Hamming code for DH

Coset
leader

MSB 4-BIT to DECIMAL NUMBER, LSB 3 -BIT to DECIMAL NUMBER
Ex) (a1 = 1, b1 = 5) {(1 5) in coset leader 0}

0
(1 5) (3 2) (2 7) (6 4) (7 1) (5 6) (8 3) (13 0)

(12 5) (14 2) (15 7) (11 4) (10 1) (8 6) (9 3)

1
(1 4) (3 3) (2 6) (6 5) (7 0) (5 7) (4 2) (13 1)

(12 4) (14 3) (15 6) (11 5) (10 0) (8 7) (9 2)

2
(1 7) (3 0) (2 5) (6 6) (7 3) (10 4) (4 1) (13 2)

(12 7) (14 0) (15 5) (11 6) (10 3) (8 4) (9 1)

3
(1 6) (3 1) (2 4) (6 7) (7 2) (10 5) (4 0), (13 3)

(12 6) (14 1) (15 4) (11 7) (10 2) (8 5) (9 0)

4
(1 1) (3 6) (2 3) (6 0) (7 5) (5 2) (4 7) (13 4)

(12 1) (14 6) (15 3) (11 0) (10 5) (8 2) (9 7)

5
(9 0) (3 7) (2 2) (6 1) (7 4) (5 3) (4 6) (13 5)

(12 0) (14 7) (15 2) (13 1) (10 4) (8 3) (9 6)

6
(1 3) (3 4) (2 1) (6 2) (7 7) (5 0) (4 5) (13 6)

(12 3) (14 4) (15 1) (11 2) (10 7) (8 0) (9 5)

7
(1 2) (3 5) (2 0) (6 3) (7 6) (5 1) (4 4) (13 7)

(12 2) (14 5) (15 0) (11 3) (10 6) (8 1) (8 4)

Standard array of a (7,4) Hamming code for DH

Coset
leader

0000000
(0001101) (0011010) (0010111) (0110100) (0111001) (0101110) (1000011) (1101000)

(1100101) (1110010) (1111111) (1011100) (1010001) (1000110) (1001011)

0000001
(0001100) (0011011) (0010110) (0110101) (0111000) (0101111) (0100010) (1101001)

(1100100) (1110011) (1111110) (1011101) (1010000) (1000111) (1001010)

0000010
(0001111) (0011000) (0010101) (0110110) (0111011) (0101100) (0100001) (1101010)

(1100111) (1110000) (1111101) (1011110) (1010011) (1000100) (1001001)

0000011
(0001110) (0011001) (0010100) (0110111) (0111010) (0101101) (0100000), (1101011)

(1100110) (1110001) (1111100) (1011111) (1010010) (1000101) (1001000)

0000100
(0001001) (0011110) (0010011) (0110000) (0111101) (0101010) (0100111) (1101100)

(1100001) (1110110) (1111011) (1011000) (1010101) (1000010) (1001111)

0000101
(0001000) (0011111) (0010010) (0110001) (0111100) (0101011) (0100110) (1101101)

(1100000) (1110111) (1111010) (1011001) (1010100) (1000011) (1001110)

0000110
(0001011) (0011100) (0010001) (0110010) (0111111) (0101000) (0100101) (1101110)

(1100011) (1110100) (1111001) (1011010) (1010111) (1000000) (1001101)

0000111
(0001010) (0011101) (0010000) (0110011) (0111110) (0101001) (0100100) (1101111)

(1100010) (1110101) (1111000) (1011011) (1010110) (1000001) (1001100)

Figure 3. Standard array of HC(7,4) for Data Hiding (DH): (a) binary presentation and (b) decimal presentation.
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Coset
leader

codewords HC(7,4)

0

1

2 (0001111) (0011000) (0010101)
(0110110) (0111011) (0101100) …

3

4

5

6
7

= ( 4 3 2 1 || 3 2 1 )
m

bin2dec

= 2 ( 7 6 5 4)= 2 ( 3 2 1),
[ ]

[ ]

= (( )2 + ( )2)= ([ || ])

3-bits
LUT

Find coset leade
if m = (010)2

Lookup minimum 
distance ([ || ])

choose Fetch a
codeword = 2 ( 7 6 5 4)= 2 ( 3 2 1)

Figure 4. The flowchart of the lookup codeword with m. HC, Hamming Code.

3.2. Extraction Procedure

The procedure for extracting the hidden secret bits is shown in Figure 5. The process is explained
in detail according to the following procedure.

Input: Stego AMBTC compressed codes trios, matrix H =

⎡⎢⎣0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1

⎤⎥⎦, and threshold T.

Output: Secret data M = (m1, m2, . . . , mn).

Step 1: Read one block of trio(a, b, BM) from a set of trios as a defined order, where the trio consists
of two quantization levels and one bitmap.

Step 2: The quantization levels are a = (a8a7 . . . a1) and b = (b8b7 . . . b1), where a8 is the MSB of a
and a1 is the LSB of a. Similarly, b8 is the MSB of b and b1 is the LSB of b. The rearranged
seven bit codeword is y = (a4a3a1a1||b3b2b1) by Equation (8).

Step 3: Obtain the syndrome S = y · HT . Then, assign S to mi+2
i , and add three to i.

Step 4: If |a − b| ≤ T, it is a smooth block trio. In this case, this means that the hidden bits were
embedded in the BM in the form of pixels. Therefore, by assigning the pixels of the BM to
m in order, all the values concealed in the BM can be obtained. That is, mi+15

i = BM16
1 and

i = i + 15. If |a − b| > T and |a − b| ≥ 8, one bit is hidden in the trio by using the order of
two quantization levels. If the order of two quantization levels is trio(b, a, BM), this means
that mi

i = 1, otherwise mi
i = 0.

Step 5: Repeat Steps 1 ∼ 4 until all the trios are completely processed, and the extracted bit sequence
constitutes the secret data m.

3.3. Examples

Here, we will show how to minimize the errors in the encoding process through an optimized
method rather than the existing method. The detailed procedure of our proposed DH is
explained by the process shown in Figure 6 using trio(103, 109, 0000010001110111) and secret bits
m = (1011010111100001100). Since b − a = 109 − 103 = 6 ≤ T(7), the trio is classified as a smooth
block. Therefore, in Figure 2, the data concealment process proceeds according to the processing
corresponding to the smooth block of the trio. From now on, the process shown in Figure 6a will be
explained step-by-step.

(1) The two quantization levels of a given trio are assigned to variables a and b and then converted
to binary, i.e., a = 103 = 011001112 and b = 109 = 011011012.
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(2) For the two converted binary numbers, the four LSB (a = (011001112) of a and the three LSB
(b = (011011012)) of b are extracted.

(3) To form a codeword, the extracted binary numbers are combined; that is, y = (0111||101)2.
(4) Calculate y′ = (bin2dec(0111) bin2dec(101)) = (7 5).
(5) After converting the bit m(= 101) to decimal, the value d = 5 is retrieved from the coset leaders

of the standard array of HC (7,4).
(6) Using Equation (9), the codeword having the minimum distance from the given codeword is

retrieved from the table. Here, (a − 7)2 + (b − 4)2 = 1 corresponds to the minimum distance.
(7) The new codeword is h = (7||4) = (0111||100)2 = (0111100)2.
(8) Two quantization levels embedding three secret bits are recovered by using the codeword h.

A new quantization level is obtained by replacing the upper four bits and the lower three bits of
h obtained in the process of (7), respectively, with four LSB and three LSB of two quantization
levels. That is, the recovered codewords are a = 103 and b = 108.

AMBTC (a, b, BM)

+15== + 16

Create codeword

Syndrome=
|a b| T

Y

N

= ;= + 3

= ( 4 3 2 1 || 3 2 1 )

= 1, = + 1 = 0, = + 1
Y N

Read a ( , ,BM)

Copy BM into m
|a b| 8 &
( > )

End

Figure 5. The flowchart of the extracting procedure.

In Figure 6b, we explain a way of embedding secret bits into the bitmap.

(1) First, it is necessary to check whether a given block belongs to a smooth block. That is, if the difference
between the absolute values of two given quantization levels is less than the threshold T, it is a
smooth block, otherwise it belongs to a complex block. In Figure 6b, the difference between two
given quantization levels is less than the defined threshold T, so it belongs to a smooth block.

(2) Since the block in the given example is a smooth block, sixteen bits are concealed in the bitmap
by replacing the 16 bit secret bits (m = (1010 1111 0000 1100)) directly with the bitmap.
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To extract secret bits from two quantization levels, we need to construct a codeword using the
quantization levels. To construct the codeword, the procedure of Figure 6a is followed. That is,
the codeword (y = 0111100) is obtained by extracting four LSB (0111) and three LSB (100) from two
quantization levels a(= 103) and b(= 108) and combining them. Here, we obtain the hidden secret bits,
m = (101), by using the equation, S = y · HT, to the codeword. The decoding of the secret bits in the BM
extracts the hidden bits by moving all pixels in the BM into a variable m array directly.

Figure 6. Illustration of data embedding.

4. Experimental Results

In this section, we prove the performance of our proposed scheme by comparing with the existing
methods, such as Bai and Chang [30], W Hong [33], and Chuang et al. [28]. As shown in Figure 7,
six grayscale images sized 512 × 512 are used for our experiments. In addition, the block size of
AMBTC is set to 4 × 4, and the secret bits are generated by a pseudo-random number generator.
Embedding Capacity (EC) and the Peak Signal-to-Noise Ratio (PSNR) are widely used as objective
image evaluation indices. Here, EC is used as an indicator for the number of secret bits that can be
embedded in a cover pixel. The relatively high PSNR value means that the quality of the stego image
is good. The DH capacity is the size of the secret bit that is embedded in the cover image. The quality
of the image is measured by the PSNR defined as:

PSNR = 10log10
2552

MSE
(11)
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The Mean-Squared Error (MSE) used in the PSNR denotes the average intensity difference between
the stego and reference images.

(a) (c)

(e) (f)

(b) 

(d) 

Figure 7. Test images: (a∼f) 512 × 512.

The lower the MSE value of a stego image, the better the quality of the image. The MSE is
calculated using the reference image p and the distorted image p

′
as follows.

MSE =
1

N × N

N

∑
i=1

N

∑
j=1

(pij − p
′
ij)

2 (12)

The error value ε = pij − p
′
ij indicates the difference between the original and the distorted pixels.

The 2552 means the allowable pixel intensity in Equation (11). A typical value for the PSNR in a
lossy image is from 30 dB to 50 dB for an eight bit depth; the higher the better. Structural SIMilarity
(SSIM) [39] estimates whether changes such as image brightness, photo contrast, and other residual
errors are identified as structural changes. The SSIM values is limited to a range between zero and one.
If the SSIM value is close to one, it means that the stego image is similar to the cover image and of high
quality. The equation of SSIM is as follows:

SSIM(x, y) =
(2μxμy + c1)(2σxy + c2)

(μ2
xμ2

y + c1)(μ2
xμ2

y + c2)
(13)

where μx, μy are the mean values of the cover image (x) and stego image (y), σx, σy, σ2
x , σ2

y , and σxy are
the standard deviation, variances, and covariance of the cover image and stego image, and c1, c2, c3 are
constant values to avoid the division by zero problem.

The Normalized Cross-Correlation (NCC) has been commonly used as a metric to evaluate the
degree of similarity (or dissimilarity) between two compared images. The main advantage of the NCC
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is that it is less sensitive to linear changes in the amplitude of illumination in the two compared images.
Furthermore, the NCC is confined to the range between −1 and one. NCC is calculated by the formula
given in Equation (14).

NCC =
∑M

x=1 ∑N
y=1(S(x, y)× C(x, y))

∑M
x=1 ∑N

y=1(S(x, y))2
(14)

Table 1 represents the comparison of EC and PSNR between the proposed scheme and existing
methods, i.e., Ou and Sun [29], Bai and Chang [30], and W Hong et al. [33]. Specifically, we compare the
performance between our scheme and the existing methods using six images when the threshold value
T(= b − a) is 5, 10, and 20. The evaluation of EC and the PSNR based on threshold values is necessary
for objectivity and fairness for comparative evaluation of the performance; that is, the data measured
under the same threshold value may be evaluated as a more meaningful comparison. One important
point for EC and PSNR is that there is a trade-off between the two assessments. That is, if EC is higher,
the PSNR is reduced, and vice versa. However, in the case that the proposed method has very good
performance, the deviation from the trade-off may not be large. The EC of our proposed method is
efficient with respect to the EC as 151,173 bits when T = 5.

Table 1. PSNR and Embedding Capacity (EC) according to different thresholds T.

Images T
Ou and Sun [29] Bai and Chang’s [30] W Hong [33] The Proposed

EC (bits) PSNR (dB) EC (bits) PSNR (dB) EC (bits) PSNR (dB) EC (bits) PSNR (dB)

Boats

5

129,249 31.3506 64,011 31.2928 149,368 31.3203 166,176 31.2846
Goldhill 53,873 32.7028 21,291 32.7076 73,408 32.6373 100,853 31.4917
Airplane 154,545 31.7405 78,477 31.6604 175,203 31.7181 187,268 31.2018

Lena 135,089 33.1929 67,400 33.1760 155,889 33.1454 168,498 33.1059
Peppers 100,977 33.6253 48,164 33.6888 121,072 33.5682 138,714 33.4999

Zelda 109,585 35.7438 53,096 35.8680 128,346 35.6618 145,526 35.5624
Average 113,886 33.0593 55,407 33.0656 133,881 33.0085 151,173 32.6911

Images T
Ou and Sun [29] Bai and Chang’s [30] W Hong [33] The Proposed

EC (bits) PSNR (dB) EC (bits) PSNR (dB) EC (bits) PSNR (dB) EC (bits) PSNR (dB)

Boats

10

160,913 31.0204 82,644 31.1508 186,330 30.9774 201,272 30.9316
Goldhill 127,409 31.6842 64,721 32.2382 150,349 31.6372 169,667 30.7147
Airplane 194,897 31.3173 102,018 31.4875 221,824 31.2796 232,682 30.8072

Lena 193,249 32.3724 101,530 32.7961 220,205 32.3277 231,077 32.2792
Peppers 200,369 32.2246 106,357 32.9962 227,287 32.1842 236,657 32.1617

Zelda 212,753 33.6013 113,380 34.7771 240,483 33.5452 247,727 33.5333
Average 164,799 31.8075 85,108 32.5743 190,170 31.7623 219,847 31.7379

Images T
Ou and Sun [29] Bai and Chang’s [30] W Hong [33] The Proposed

EC (bits) PSNR (dB) EC (bits) PSNR (dB) EC (bits) PSNR (dB) EC (bits) PSNR (dB)

Boats

20

205,809 29.5664 110,433 30.7138 233,709 29.5557 243,122 29.5228
Goldhill 212,193 29.1224 117,286 31.2597 240,231 29.1121 249,392 28.5724
Airplane 226,977 30.1906 122,037 31.1269 256,110 30.1792 262,802 29.8300

Lena 233,697 30.7508 126,667 32.2383 264,366 30.7356 269,432 30.7074
Peppers 240,977 30.691 131,514 32.4373 271,132 30.6750 276,077 30.6495

Zelda 253,841 31.5579 138,904 33.9124 284,866 31.5299 288,527 31.4777
Average 221,128 29.9278 124,474 31.9481 250,207 29.9158 264,892 30.1266

In Table 1, Bai and Chang’s PSNR (=33.0656 dB) is measured as higher than that (=32.6911 dB) of
our proposed method. Here, the EC of Bai and Chang [30] is 55,407 bits, and the EC of our method is
151,173 bits. In the end, our proposed method shows the capability to conceal about 95,000 bits more
than that of Bai and Chang.

If the threshold T and EC are given for a faithful measurement, the PSNR of our proposed method
may be the highest. This is because the size of the hidden bits affects the PSNR. Apparently, a relative
good method has high values both for the PSNR and EC. When T = 10, we can see that our method’s
EC (=219,847 bits) is the largest. The method of W Hong [33] and our proposed method both have the

128



Appl. Sci. 2020, 10, 5336

same PSNR (31.7 dB), which is 0.1 dB lower than that of Ou and Sun’s method [29]. However, in this
case as well, when considering the amount of EC, our method outperforms the other two methods.

When T = 20, the PSNR of the proposed method is higher than the previous two methods (Ou
and Sun [29] and W Hong [33]), and the EC of our method has the highest performance. It can be seen
from the simulation results in Table 1 that the proposed method has 140,000 bits more than that of Bai
and Chang [30] in terms of EC.

Figure 8 shows the performance comparison between our proposed method and the existing
methods, where we measured the PSNR while increasing the capacity of the secret bits from 20,000 bits
to 310,000 bits in four images ((a) Lena, (b) Boat, (c) Pepper, and (d) Zelda) by using the proposed and
existing methods.

(a) Lena

(c) Pepper (d) Zelda
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Figure 8. Performance comparisons of the proposed method and other related methods (i.e., Ou and
Sun, Bai and Chang, Hong) based on four images: (a) Lena, (b) Boat, (c) Pepper, and (d) Zelda.

We propose a way to improve the performance of Bai and Chang’s method [30], and as shown
in Figure 8, it is confirmed that our proposed method is superior to existing methods. On the other
hand, our proposed method shows almost the same performance as W Hong’s method [33], but it
can be confirmed that the performance of our proposed scheme is slightly better. Ou and Sun’s
method [29] is superior to Bai and Chang’s method [20], but the performance is not as high as that of
our proposed method.

AMBTC has difficulty hiding enough data, because it is a compressed code, and unlike
conventional grayscale images, it is not easy to exploit high embedding capacity by the constraint
of compressed pixels. It is difficult to improve the DH performance for images with many complex
blocks, and if we exploit many pixels for high data concealment, the image quality may deteriorate.
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In Figure 8, we can see that the EC of Bai and Chang’s method [30] is very low. That is because
this method can hide only six bits of data while inverting up to two pixels in each bitmap. Thus,
there is a limit to embedding enough data in the trio’s bitmaps. Since this method cannot conceal many
secret bits for the threshold T of the same condition, it shows a relatively high PSNR. After all, that is
why this method is inferior to other methods. If we would like to increase the number of secret bits
even at the expense of the PSNR, it is possible to increase the size of the threshold T. However, it
may often be the case that the PSNR becomes worse than expected without increasing the number of
hidden bits. For example, when T ≤ 4, the three methods except Bai and Chang’s method can hide
about 130,000 bits, while the PSNRs are slightly reduced. For such a large amount of data to embed,
they exploited the DBS method with respect to BM equally.

Bai and Chang’s method must increase the T value in order to conceal 130,000 bits of data, and
as a result, the errors accumulate rapidly. Since Bai and Chang’s method [30] uses up to four LSB for
data concealment, the size of the error inevitably increases. Since our proposed method uses up to
three LSB and the frequent count of three LSB is also not very high, the negative effect on image quality
is less than that of Bai and Chang’s method [30]. In the end, we prove that the proposed method has a
better optimization performance than Bai and Chang’s method [30].

Figure 9 shows the evaluation by comparing the histograms of stego images generated from
the proposed method and existing methods, i.e., W Hong, Ou and Sun, and Bai and Chang. Here,
stego images are generated after concealing 150,000 bits in the cover Lena image by the existing and
proposed methods. The pixel value range on the x-axis is [95, 115]. In Figure 9, the curves of our
proposed method and the two existing methods (i.e., W Hong and Ou and Sun) are similar, while Bai
and Chang’s histogram curve has a larger amplitude than the other methods. The reason is that the
maximum EC of Bai and Chang’s method is up to 150,000 bits. In other words, we can see that the
quality of the image reaches the lower limit because it exhausts all possible resources. The histogram
does not show much difference because our proposed method and the two existing methods keep
more than 33 dB in common when concealing 150,000 bits. As shown in Figure 8, as the EC increases,
the histogram of the stego image also is far from the histogram of the original cover image.
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Figure 9. Compared histograms among the proposed method and other related methods with the Lena
image when the number of hidden bits is 150,000.

Table 2 shows an experiment to compare the PSNR and SSIM after concealing the same amount of
data (120,000 bits) in the cover image for a more objective performance check and reliable comparison.
The SSIM of the proposed method shows the highest value. On the other hand, in the case of the
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PSNR, W Hong’s method [33] shows a high average. In fact, the PSNR only quantifies the quality
of reconstructed or damaged images in relation to the facts. For this reason, we introduce SSIM as a
criterion for the secondary evaluation. SSIM evaluates the structure of the image. The SSIM of the
reconstructed image for the ground image is always one, and if the value is close to one, you can see
that the image quality is excellent. Therefore, we can see that our proposed method is superior to the
existing methods in terms of SSIM.

Table 2. Performance comparison of the PSNR and SSIM among the proposed and previous schemes
(using 120,000 bits).

Images
Ou and Sun [29] Bai and Chang [30] W Hong [33] The Proposed

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Boats 31.3506 0.6433 30.3823 0.6675 31.3846 0.6828 31.4158 0.7298
Goldhill 31.7499 0.6942 31.1779 0.7345 32.2203 0.7279 31.4158 0.7642
Airplane 31.7282 0.6614 31.1754 0.6526 31.9034 0.7042 31.3737 0.7305

Lena 33.2362 0.6614 32.4231 0.6870 33.3540 0.7094 33.4090 0.7566
Peppers 33.3636 0.6556 32.7389 0.6966 33.3905 0.7081 33.5822 0.7316

Zelda 35.4041 0.6936 34.5442 0.7177 35.7839 0.7335 35.9442 0.7778
Average 32.8054 0.6683 32.0736 0.6943 33.0061 0.7110 32.8568 0.7484

Table 3 shows the MSE and NCC simulation results for the existing and proposed methods for
the four images. The average MSE value of the proposed method is lower than those of the three
other methods. The MSE value of the Airplane image in our proposed method is slightly higher than
those of Ou and Sun [29] and W Hong [33]. However, from the NCC scores, there is no difference,
so it is objectively proven that there is no problem with the performance of our proposed method.
Furthermore, when the maximum EC of Ou and Sun reaches 270,000 bits, the PSNR drops to 23 dB.
On the other hand, our proposed method can maintain the PSNR higher than 30 dB, so the DH
performance of our proposed method is useful. Our proposed method can obtain better performance
by creating a lookup table to obtain more optimal values than W Hong’s method.

Table 3. Performance comparison of the MSE and Normalized Cross-Correlation (NCC) between the
proposed and previous schemes (using 150,000 bits).

Ou and Sun [29] Bai and Chang [30] W Hong [33] The Proposed
Images

MSE NC MSE NC MSE NC MSE NC

Boats 49.9795 0.9946 97.2898 0.9932 51.0112 0.9945 47.6810 0.9950
Goldhill 50.2434 0.9939 70.2292 0.9934 53.1714 0.9938 52.0115 0.9940
Airplane 43.4923 0.9960 88.157 0.9952 44.2237 0.9960 48.1400 0.9961

Lena 32.3098 0.9954 57.5453 0.9948 33.3644 0.9953 31.3258 0.9957
Peppers 32.3199 0.9955 55.0679 0.9948 34.0308 0.9943 30.4184 0.9958

Zelda 21.1771 0.9943 32.3215 0.9938 21.4966 0.9943 18.0991 0.9948
Average 38.2537 0.9943 66.7685 0.9942 39.5497 0.9949 37.9460 0.9952

Table 4 shows the comparison of the CPU execution time between the proposed and the existing
methods. The computer for the experiment is a YOGA 730, and the CPU processor is Intel(R) Core(TM)
i5-8250U CPU 1.6 GHz. The software is MATLAB R2019a. Here, we measure the CPU time to
conceal a random number from 20,000 bits to 200,000 bits in the Lena image by using the four
methods (i.e., Ou and Sun, W Hong, Bai and Chang, our proposed method). The process of the
measurement includes AMBTC compression, data embedding, and AMBTC decompression. The most
time-consuming method is that of Bai and Chang, and the least time-consuming method is that of Ou
and Sun. The method we propose is faster than Bai and Chang’s, but it is time consuming compared to
the other two. However, if we code using the C language, the required time would be less than 1 s.
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Table 4. Comparing the CPU time between the proposed and the existing methods (measurement: seconds).

Methods
Hidden Bits

20,000 50,000 70,000 90,000 100,000 120,000 150,000 170,000 190,000 200,000

Ou and Sun 1.4531 1.5313 1.6094 1.6563 1.7188 1.7969 1.8281 1.9063 1.9219 1.9531
W Hong 1.4688 1.5938 1.6406 1.7813 1.8281 1.8594 1.875 1.9063 1.9531 2.0313

Bai and Chang 2.4688 3.7344 5.25 5.9688 6.5625 7.3594 8.4219 - - -
The proposed 1.6875 1.8281 2.125 2.2656 2.5625 2.8594 3.1563 3.5313 3.5938 3.6094

5. Conclusions

In this paper, we introduced a DH method that applies DBS and optimized HC(7,4) to AMBTC
compressed grayscale images. The basic unit of AMBTC is the trio, which consists of two quantization
levels and one bitmap and is represented by trio(a, b, bitmap). Therefore, AMBTC is a trioset, and the
proposed DH method is applied to each block of an image. The proposed method may have different
final performance results depending on the characteristics of each block. Therefore, we divided
every block into two groups (smooth blocks and complex blocks) and applied the proposed method.
The distinction of whether a block is a smooth block or a complex block is determined by the difference
between the two quantization levels of the block. That is, if the difference (|a − b|) between two
quantization levels is smaller than or equal to the threshold T, it is categorized as a smooth block.
When hiding data in a complex block with a difference higher than threshold T, the MSE errors increase
compared to a smooth block. Therefore, it is important in terms of DH to distinguish the blocks. In other
words, the smoother the blocks are, the more they help to maintain the image quality while concealing
more data. In this paper, our proposed method achieved the optimized level by HC(7,4) based on the
lookup table. As a result, it was shown through experiments that our proposed scheme surpasses the
performance of Hong’s method. Experimental results show that the proposed scheme provides a high
EC while suppressing the loss of quality of the cover image. In the future, we will devise a method
to calculate a more optimal distance when applying HC(7,4) to two quantization levels and conduct
research to find a way to minimize data concealment errors.
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Abstract: Inner product encryption, first introduced by Katz et al., is a type of predicate encryption
in which a ciphertext and a private key correspond to an attribute vector and a predicate vector,
respectively. Only if the attribute and predicate vectors satisfy the inner product predicate will the
decryption in this scheme be correct. In addition, the ability to use inner product encryption as an
underlying building block to construct other useful cryptographic primitives has been demonstrated
in the context of anonymous identity-based encryption and hidden vector encryption. However,
the computing cost and communication cost of performing inner product encryption are very high
at present. To resolve this problem, we introduce an efficient inner product encryption approach
in this work. Specifically, the size of the private key is only one G element and one Zp element,
and decryption requires only one pairing computation. The formal security proof and implementation
result are also demonstrated. Compared with other state-of-the-art schemes, our scheme is the most
efficient in terms of the number of pairing computations for decryption and the private key length.

Keywords: predicate encryption; inner product encryption; constant-size private key;
efficient decryption; constant pairing computations

1. Introduction

Inner product encryption (IPE), first introduced by Katz et al. [1], is a type of predicate
encryption [2] in which a ciphertext and a private key correspond to an attribute vector x and a
predicate vector y, respectively. In particular, the decryption will be correct if and only if the attribute
vector and the predicate vector satisfy the inner product predicate, meaning that the inner product
operation of x and y equals zero (〈x, y〉 = 0). Over the past decade, many IPE schemes have been
proposed, such as those based on pairing [3–7] and lattice [8–11]. The security definition of an IPE
scheme [1] can be naturally extended from the IND–CPA security of identity-based encryption [12–14].
More precisely, under the security approach of IPE, an adversary learns nothing about the encrypted
message from a ciphertext associated with an attribute vector x if they do not own the private key
associated with a predicate vector y such that 〈x, y〉 = 0. Such a definition is also called the IND–CPA
security for IPE scheme in some papers [15] and is defined as the payload-hiding property in [1].
Alternatively, the security definition defined in [1], called the attribute-hiding property, states that a
ciphertext reveals nothing about the corresponding ciphertext attribute x. However, we emphasize
that the attribute-hiding property is not an absolutely necessary property for IPE. Many IPE schemes
proposed in the literature achieve only IND–CPA security/payload hiding, such as that in [15–17].

In addition to their usefulness in fine-grained access control, IPE schemes can be used
to construct various cryptographic primitives or can be converted to more complex primitives,
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such as identity-based encryption [12–14], hidden vector encryption [2,18] and subset predicate
encryption [19,20]. We refer readers to the work presented in [1,19] for details.

Although many IPE schemes have been introduced, the computing cost and communication cost
of these schemes are high. In particular, the pairing operation required by existing pairing-based IPE
schemes is typically linearly related to the vector length; therefore, the computational efficiency of
these schemes is low. Moreover, the size of the private key of most schemes is linearly related to vector
lengths. However, although the existing lattice-based IPE schemes are considered quantum-resistant,
the key size of almost all schemes is too large or the message space is too small. In addition, Internet of
Things devices are gradually becoming common in daily life; however, the problems mentioned in the
preceding discussion make the application of an IPE scheme impractical for these resource-constrained
devices. Thus, an unresolved question remains: can we obtain an efficient IPE scheme by reducing the
cost of decryption and optimizing the length of the private key?

1.1. Our Contributions

Herein, we resolve the aforementioned problem by introducing an effective IPE scheme.
In particular, in the proposed scheme, the length of a private key is independent of the length of the
predicate vector. In addition, the decryption only requires one pairing operation; thus, the decryption
is also independent of the length of the predicate vector. Rigorous proofs are provided to demonstrate
that, under a modified decisional Diffie–Hellman assumption, our proposed scheme is coselective
IND–CPA secure. Moreover, our proposed scheme is more efficient than other advanced schemes,
as listed in Tables 1 and 3.

1.2. Related Works

1.2.1. Pairing-Based IPE Schemes

The first IPE scheme, introduced by Katz et al. [1], entails the evaluation of predicates over
ZN using the inner product, where N is a composite number. After this pioneering work, many
studies followed. For example, Okamoto and Takashima [3] proposed the first hierarchical predicate
encryption method (or delegable predicate encryption) for inner product predicates; this provides a
user with functionality to delegate more restrictive functionality to another user. Attrapadung and
Libert [16] constructed an IPE scheme that solves the inefficiency problem of the previous scheme.
More precisely, provided that the description of the ciphertext attribute vector is not included in the
ciphertext, the ciphertext overhead of the scheme is reduced to O(1). By combining dual system
encryption [21] and dual pairing vector spaces [3] carefully, Lewko et al. [22] obtained the first
fully secure IPE scheme and hierarchical predicate encryption under the n-extended decisional
Diffie–Hellman assumption. However, the security of all these previous studies was based on
nonstandard assumptions. To resolve this issue, Park [23] developed the first IPE scheme under
the standard assumptions (i.e., decisional bilinear Diffie–Hellman and decisional linear (DLIN)
assumptions). Okamoto and Takashima [24] then introduced two nonzero inner product encryption
schemes that support constant-size ciphertexts and a constant-size secret key, respectively, which are
adaptively secure under the DLIN assumption in the standard model. The authors also proposed
the first IPE scheme that is fully secure and fully attribute-hiding [25] as well as the first unbounded
IPE scheme that is also fully secure and fully attribute-hiding in the standard model under the DLIN
assumption [26]. Kawiai and Takashima [27] introduced a new notion, called IPE with ciphertext
conversion, which considers the security of predicate-hiding. Zhenlin and Wei [28] then introduced
another concept, called multiparty cloud computation IPE with multiplicative homomorphic property,
which enables an IPE scheme to support multiparty cloud computation. Kim et al. [29] proposed a new
efficient IPE scheme that only requires n exponentiation and three pairing computations for decryption.
Huang et al. [30] proposed the first enabled–disabled IPE, which supports timed-release services and
data self-destruction. Ramanna [15] constructed two IPE schemes using tag-based quasi-adaptive
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noninteractive zero knowledge, where the first and second both have the property of constant-size
ciphertext but only the second has the property of attribute-hiding. Zhang et al. [7] recently proposed
a new IPE scheme based on a double encryption system; it has been demonstrated to achieve adaptive
security under a weak attribute-hiding model.

As discussed subsequently, extensive research has focused on the developed and proposed
schemes; however, the private key length of most schemes is linearly dependent on the vector length
or requires many pairing operations, making these schemes impractical. Thus, determining how to
construct a more practical scheme remains a critical area of research.

1.2.2. Lattice-Based IPE Schemes

To fend off attack from quantum computers in the future, Agrawal et al. [8] proposed the first
IPE scheme based on the lattice hard assumption (i.e., the learning with error assumption, which is
believed to be able to withstand quantum attacks); to do so, they modified an identity-based encryption
approach proposed by Agrawal et al. [31]. Xagawa [9], inspired by the work of Agrawal et al., proposed
an improved lattice-based IPE scheme that reduced the size of public parameters and ciphertext.
Li et al. [10] proposed a lattice-based IPE scheme that further reduced the size of public parameters
and ciphertext. In contrast to [9], their work reduced the size by a factor of log n, where n is the security
parameter. Wang et al. [11] recently proposed the first compact IPE scheme that employs an IPE
scheme [9], fully homomorphic encryption [32] and vector-encoding schemes [33]. Although these
constructions are thought to be able to withstand quantum computer attacks, they are based on the
learning with errors assumption, resulting in key lengths that are still too large to be practical.

1.3. Organization

The remainder of this paper is organized as follows. In Section 2, we start by discussing some
preliminaries on bilinear maps, complexity assumptions and the definition of IPE. In Section 3, we then
propose our IPE scheme and demonstrate its correctness. In Section 4, we subsequently demonstrate
security proofs using a modified decisional Diffie–Hellman problem, and then in Section 5, we compare
our approach with other state-of-the-art schemes and reveal the implementation results. In Section 6,
we finally conclude the paper.

2. Preliminaries

Herein, we present the necessary preliminaries, such as notations, complex assumptions, and the
definition of an IPE scheme.

2.1. Notations

Throughout this paper, we use x $←− S to denote “choose an element x randomly and uniformly
from the set S” and x ← A to denote “x is the output of the algorithm A”. Moreover, we use a to
denote a vector and use ai to denote the i-th entry of vector a. The inner product of these two vectors
x, y is denoted as 〈x, y〉. For a prime p, we use Zp to denote the set of integers modulo p. Finally,
we use N and Z to denote the set of positive integers and integers, respectively.

2.2. Bilinear Maps

Let G and GT be an additive and a multiplicative cyclic group, respectively; here, the order of
G and GT is a large prime p (i.e., |G| = |GT | = p). Then, let P be a generator of G. A bilinear map
(pairing) e : G×G → GT is a mapping with the following properties:

• Bilinearity: For a, b ∈ Zp, e(aP, bP) = e(P, P)ab.
• Nondegeneracy: ∃P ∈ G, such that e(P, P) = 1GT .
• Computability: The mapping e is efficiently computable.
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In this work, we take advantage of the generalized decisional Diffie–Hellman exponent (GDDHE)
problem, based on [34]. The GDDHE problem is a generic framework within which new complexity
assumptions can be created. We first give an overview of the GDDHE problem. Let

• p be a prime;
• s, n be two positive integers;
• P, Q ∈ Fp[X1, . . . , Xn]s be two s-tuple of n-variate polynomials over Fp; and
• f be an n-variate polynomial in Fp[X1, . . . , Xn].

Q, QT are two ordered sets with multivariate polynomials, and thus, we define Q = (q1, q2, . . . , qs)

and R = (r1, r2, . . . , rs). As stated in [34], we require p1 = q1 = 1 to be two constant polynomials.
Consider a bilinear map e : G×G → GT with the generator P of G and gT = e(P, P) ∈ GT . For a
vector (x1, x2, . . . , xn) ∈ Fn

p, we define

Q(x1, x2, . . . , xn)P = (q1(x1, x2, . . . , xn)P, . . . , qs(x1, x2, . . . , xn)P) ∈ G
s,

and
gR(x1,x2,...,xn)

T = (gr1(x1,x2,...,xn)
T , . . . , grs(x1,x2,...,xn)

T ) ∈ G
s
T .

By “ f depends on (Q, R)” we mean that there are s2 + s constants {ai,j}s
i,j=1 and {bk}s

k=1 such that

f =
s

∑
i,j=1

ai,jqiqj +
s

∑
k=1

bkrk.

We say that f is independent of (Q, R) if f does not depend on (Q, R).

Definition 1 (The (Q, R, f )-GDDHE Problem). Given (Q(x1, . . . , xn)P, gR(x1,...,xn)
T , Z) ∈ Gs ×Gs

T ×GT,

decide if Z ?
= g f (x1,...,xn)

T .

Then, for an algorithm A, the advantage of A in solving the (Q, R, f )-GDDHE problem is
defined as

Adv(Q,R, f )-GDDHE(A) =
∣∣∣A (

Q(x1, . . . , xn)P, gR(x1,...,xn)
T , g f (x1,...,xn)

T

)
−A

(
Q(x1, . . . , xn)P, gR(x1,...,xn)

T , Z $←− GT

)
.

Boneh et al. propose that the (Q, R, f )-GDDHE problem is difficult if f is independent of (Q, R)
and demonstrate that a large class of hard problems can be fit into the framework of the GDDHE
problem; for instance, the DDH problem over GT .

Definition 2 (The decisional Diffie–Hellman problem over GT (DDHGT problem)). Let gT = e(P, P) be

a generator of GT. Given (P, gT , A = ga
T , B = gb

T , C) ∈ G×G4
T, where a, b $←− Zp, decide whether C = gab

T
or an random element from GT.

By setting Q = (1), R = (1, a, b), f = ab, the DDH problem over GT is equivalent to the
(Q, R, f )-GDDHE problem. Observe that no constants exist such that the linear combination of
1, a, b equals ab; therefore, f is independent of (Q, R). Given the result of Boneh et al., we conclude that
no algorithm is available with which to solve the DDHGT problem with a nonnegligible advantage.
See [34] for additional details.

Next, we present a modified version of the DDHGT problem, which will be used in the
security proof.
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Definition 3 (The modified decisional Diffie–Hellman problem over GT (M-DDHGT problem)).
Let gT = e(P, P) be a generator of GT. Given (P, A′ = aP, gT , A = ga

T , B = gb
T , C) ∈ G2 × G4

T,

where a, b $←− Zp, decide whether C = gab
T or a random element from GT.

Theorem 1 (The modified decisional Diffie–Hellman assumption over GT (M-DDHGT assumption)).
We say that the M-DDHGT assumption holds if there is no algorithm D for solving the M-DDHGT problem
with a nonnegligible advantage.

Proof. Compared with the DDHGT problem, the instance of the M-DDHGT problem contains an
additional element A′ = aP. The M-DDHGT problem is equivalent to the (Q, R, f )-GDDHE
problem with

Q = (1, a), R = (1, a, b), f = ab.

No constants exist such that the linear combination of the monomials (1 · a), 1, a, b equals the
polynomial ab. Therefore, considering the the results of Boneh et al., we conclude that the M-DDHGT

problem is hard. Moreover, we define the advantage for an algorithm D in solving the M-DDHGT

problem as

AdvM-DDHGT (D) =
∣∣∣Pr[D(P, A′, gT , A, B, C = gab

T ) = 1] − Pr[D(P, A′, gT , A, B, C $←− GT) = 1]
∣∣∣ .

2.3. Definition of Inner Product Encryption

An IPE scheme consists of four algorithms: Setup, KeyGen, Encrypt and Decrypt. The details
of the algorithms are as follows:

• Setup(1λ, 1�). Take as inputs the security parameters (1λ, 1�), where λ, � ∈ N, and the algorithm
outputs the system parameter params and the master secret key msk. The descriptions of the
attribute vector space A and the predicate vector space P are implicitly included in params.
Moreover, the inner product operation over A and P must be well defined.

• Encrypt(params, x, M). Given the system parameter params, an attribute vector x ∈ A and a
message M, the algorithm outputs a ciphertext Cx for the attribute vector x.

• KeyGen(params, msk, y). Given the system parameter params and a predicate vector y ∈ P,
the algorithm outputs the private key Ky for the predicate vector y.

• Decrypt(params, Cx, Ky). Given the system parameter params, a ciphertext Cx and the private key
Ky, the algorithm outputs a message M or a error symbol ⊥.

The correctness is defined as follows. For all λ, � ∈ N, let Cx ← Encrypt(params, x ∈ A, M) and
let Ky ← KeyGen(params, msk, y ∈ P); thus, we have

M ← Decrypt(params, Cx, Ky) if 〈x, y〉 = 0;
⊥ ← Decrypt(params, Cx, Ky) if 〈x, y〉 = 0,

where (params,msk) ← Setup(1λ, 1�).

2.4. Security Model

Here, we first introduce IND–CPA security for IPE. The IND–CPA game of IPE for the attribute
vector space A and predicate vector space P is defined as an interactive game between a challenger C
and an adversary A.

• Setup. The challenger C runs Setup(1λ, 1�) and sends the system parameter params to the
adversary A.
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• Query Phase 1. The challenger polynomially answers many private key queries for y ∈ P for the
adversary A by returning Ky ← KeyGen(params, msk, y).

• Challenge. The adversary A submits an attribute vector x∗ ∈ A such that 〈x∗, y〉 = 0 for all
y that have been queried in Query Phase 1 and two messages M0, M1 with the same length
to challenger C. Then, C randomly chooses β ∈ {0, 1} and returns a challenge ciphertext
Cx∗ ← Encrypt(params, x∗, Mβ).

• Query Phase 2. This phase is the same as Query Phase 1, except that the adversary is not allowed
to make a query with y ∈ P such that 〈x∗, y〉 = 0.

• Guess. The adversary A outputs a bit β′ and wins the game if β′ = β.

The advantage of an adversary for winning the IND–CPA game is defined as

AdvIND-CPA(A) =

∣∣∣∣Pr[β′ = β]− 1
2

∣∣∣∣ .

Definition 4 (IND–CPA Security for IPE). We say that an IPE is IND–CPA secure if there is no probabilistic
polynomial-time adversary A who wins the IND–CPA game with a nonnegligible advantage.

As we mentioned in Section 1, in some literature [1,23], the security notions for an IPE are
defined with the notions “payload hiding” and “attribute hiding”. Informally, payload-hiding
(or attribute-hiding) is defined to argue that a ciphertext leaks no information about the encrypted
message (or attribute vector). The IND–CPA security shown in this section is equivalent to
payload-hiding. We emphasize that attribute-hiding is unnecessary for an IPE scheme; in [15–17],
schemes have been proposed satisfying only payload hiding.

We next present the selective security and the coselective security [16,35] for IPE. The selective
IND-CPA (sIND-CPA) game is defined the same as the IND-CPA game, except that the adversary A
is forced to commit before the Setup phase to an attribute vector x∗, and A is not allowed to make
private key queries with y such that 〈x∗, y〉 = 0 in both Query Phase 1 and Query Phase 2.

Definition 5 (sIND-CPA Security for IPE). An IPE scheme is said to be sIND–CPA secure if no probabilistic
polynomial-time adversary wins the sIND–CPA game with a nonnegligible advantage.

The coselective IND–CPA (csIND–CPA) game is defined as equal to the IND–CPA game,
except that the adversary A is forced to commit before the Setup phase q to predicate vectors
y(1), . . . , y(q) for the private key queries, where q is a polynomial in the security parameter λ and A
is required to invoke the Challenge phase with an attribute vector x∗ such that 〈x∗, y(j)〉 = 0 for
j = 1, . . . , q.

Definition 6 (csIND–CPA Security for IPE). An IPE scheme is said to be csIND–CPA secure if no probabilistic
polynomial-time adversary wins the csIND–CPA game with a nonnegligible advantage.

Coselective security can be understood as a complementary notion to selective security. In the
selective security game, the adversary can learn the private key in accordance with its previous
choices, whereas in the coselective security game, the adversary can choose its target after seeing
the public parameter and learning the private keys of its choice. Although selective security and
coselective security are weaker than full security, both notions are, by definition, incomparable in
general by definition.
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3. Proposed Inner Product Encryption Scheme

Our IPE scheme consists of four algorithms: Setup, KeyGen, Encrypt and Decrypt. The details
of the proposed scheme are explained in the following.

• Setup(1λ, 1�). Given the security parameters (1λ, 1�), where λ, � ∈ N, the algorithm performs
as follows.

1. Choose bilinear groups G,GT of prime order p > 2λ. Let P and gT = e(P, P) be the generator
of G and GT , respectively.

2. Set the predicate vector space and the attribute vector space to Z�
p.

3. Choose s = (s1, s2, . . . , s�)
$←− Z�

p.

4. Compute ĥ = (gsi
T )

�
i=1 = (ĥ1, . . . , ĥ�).

5. Output the system parameter params = (P, gT , ĥ), and the master secret key msk = s.

• Encrypt(params, x, M). Given the system parameter params, a vector x = (x1, x2, . . . , x�) ∈ Z�
p,

and a message M ∈ GT , the algorithm performs as follows.

1. Choose r, δ
$←− Zp.

2. Compute C0 = rP, and Ĉ0 = gr
T .

3. Compute Ci = ĥr
i · gδxi

T · M for i = 1 to �.
4. Output the ciphertext Cx = (C0, Ĉ0, C1, C2, . . . , C�).

• KeyGen(params, msk, y). Given the system parameter params, a master secret key msk, and a
vector y = (y1, y2, . . . , y�) ∈ Z�

p, where ∑�
i=1 yi = 0, the algorithm performs as follows.

1. Choose k $←− Zp.
2. Compute K0 = kP, and K1 = 〈s, y〉+ k mod p.
3. Output the private key Ky = (K0, K1).

• Decrypt(params, Cx, Ky). Given the system parameter params, a ciphertext Cx, and the private
key Ky, where y = (y1, y2, . . . , y�) the algorithm performs as follows.

1. Compute D0 = e(K0, C0).

2. Compute D1 = ∏�
i=1 C

yi
i .

3. Compute D =
D0 · D1

Ĉ
K1
0

.

4. Compute d = (∑�
i=1 yi)

−1 mod p.
5. Compute M = Dd.

Correctness

The correctness of the proposed scheme is shown as follows.

• D0 = e(K0, C0) = e(kP, rP) = gkr
T .

• D1 = ∏�
i=1 C

yi
i = ∏�

i=1(ĥ
r
i · gδxi

T · M)yi = ∏�
i=1(ĥ

yi
i )

r · (gδxiyi
T ) · (Myi ) =

∏�
i=1((gsi

T )
yi )r ∏�

i=1(gδxiyi
T )∏�

i=1(Myi ) = gr〈s,y〉
T · gδ〈x,y〉

T · M∑�
i=1 yi .

• Ĉ
K1
0 = grK1

T = gr〈s,y〉+rk
T .

• D =
D0 · D1

Ĉ
K1
0

=
gr〈s,y〉

T · gδ〈x,y〉
T · M∑�

i=1 yi · gkr
T

gr〈s,y〉+rk
T

= gδ〈x,y〉
T · M∑�

i=1 yi .

• We have D = M∑�
i=1 yi iff 〈x, y〉 = 0.

• Thus Dd = M∑�
i=1 yi ·((∑�

i=1 yi)
−1 mod p) = M.
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4. Security Analysis of the Proposed Scheme

We now provide the security proof for the coselective security of the proposed IPE scheme. In the
subsequent proof, we view a vector as a row vector.

Theorem 2. The proposed scheme is csIND–CPA secure for q private key queries, where q is a polynomial in
the security parameter λ, under the M-DDHGT assumption.

Proof. Given (P, A′ = aP, gT , A = ga
T , B = gb

T , C), we build an algorithm C using the adversary A to
solve the M-DDHGT problem as follows.

• Init. The adversary A commits q predicate vectors y(1), . . . , y(q).
• Setup. C first finds a vector u = (u1, u2, . . . , u�) such that

⎡⎢⎢⎢⎢⎣
y1

y2
...

yq

⎤⎥⎥⎥⎥⎦ u� = 0�� ,

where 0� = (0, 0, . . . , 0)︸ ︷︷ ︸
�

. Such u exists when q > �. The operation is to find a vector u such

that 〈u, yj〉 = 0 for j = 1 to q. C then chooses v = (v1, v2, . . . , v�)
$←− Z�

p. Next, C computes

ĥ = (Bui · gvi
T )

�
i=1 = (ĥ1, . . . , ĥ�). Finally, C sets params = (P, gT , ĥ) and sends params to A.

Note that C implicitly sets msk = s = (si = ui · b + vi)
�
i=1.

• Query Phase 1. After receiving y(i) = (y(i)1 , . . . , y(i)� ) from A, where i ∈ [1, 2, . . . , q], C first chooses

k $←− Zp and then computes Ky(i) = (K0, K1) = (kP, 〈v, y(i)〉+ k mod p). The correctness of the
private key Ky(i) is demonstrated as follows.

K1

= 〈s, y(i)〉+ k mod p
= ∑�

j=1 sjy
(i)
j + k mod p

= ∑�
j=1(uj · b + vj) · y(i)j + k mod p

= b ∑�
j=1 ujy

(i)
j + ∑�

j=1 vjy
(i)
j + k mod p

= b〈u, y(i)〉+ 〈v, y(i)〉+ k mod p
= 〈v, y(i)〉+ k mod p.

• Challenge. Upon receiving x∗, where 〈x∗, y(i)〉 = 0 for i = 1, . . . , q, and two equal-length
messages M0, M1 from A, the challenger C performs the following.

1. Choose β ∈ {0, 1}.

2. Choose δ
$←− Zp.

3. Set C′0 = A′ and Ĉ′0 = A.

4. For i = 1 to �, compute C′i = (Cui · Avi · gδx∗i
T ) · Mβ.

5. Set the challenge ciphertext C∗ = (C′0, Ĉ′0, C′1, C′2, . . . , C′�).
6. Return C∗ to A.

142



Appl. Sci. 2020, 10, 8669

Here, we implicitly set the randomness of the encryption procedure to a. Therefore, if C = gab
T ,

then we have C′0 = aP, Ĉ′0 = ga
T for i = 1, . . . , �,

C′i = (Cui · Avi · gδx∗i
T ) · Mβ

= (gabui
T · gavi

T · gδx∗i
T ) · Mβ

= (ga(bui+vi
T )) · (gδx∗i

T ) · Mβ

= ha
i · gδx∗i

T · Mβ.

Thus, the challenge ciphertext C∗ is a valid ciphertext.

• Query Phase 2. This phase is the same as Query Phase 1.
• Guess. The adversary A outputs a bit β′. The challenger C outputs 1 if A wins the game and

outputs a random bit otherwise.

Assume that the adversary A wins the game with advantage ε:∣∣∣∣Pr[β′ = β]− 1
2

∣∣∣∣ ≥ ε.

If C = gab
T , then the view of the adversary is identical as that in real world. Thus, we have

Pr[C(P, A′, gT , A, B, C = gab
T ) = 1]

= Pr[β′ = β]

≥ 1
2 + ε.

However, if C is a random element in GT , then the choice of β is independent from the adversary’s
view and we have

Pr[C(P, A′, gT , A, B, C $←− GT) = 1]
= Pr[β′ = β]

= 1
2 .

Therefore, the advantage of C in solving the M-DDHGT problem is∣∣∣Pr[C(P, A′, gT , A, B, C = gab
T ) = 1]

− Pr[C(P, A′, gT , A, B, C $←− GT) = 1]
∣∣∣

≥
∣∣∣( 1

2 + ε)− 1
2

∣∣∣
≥ ε.

This means that if there is an adversary winning the game with nonadvantage ε, then there is an
algorithm C solving the M-DDHGT problem with a probability greater than ε.

5. Efficiency Analysis and Implementation Results

Herein, we compare the efficiency of the proposed IPE scheme with the schemes proposed
in [1,3,5–7,15,16,22–30,36] (Because [4,17] are the complete versions of [16,24], we only compare our
work with [16,24]). As shown in Table 1, we compare our scheme to others in two aspects: the size
of the private key and the number of pairing operations for decryption. The type of group order is
also presented because the efficiency of prime order groups is higher than that of composite order
bilinear groups.

As is evident in Table 1, our proposed scheme has the shortest private key length and smallest
number of pairings. Moreover, both the private key length and the number of pairings in our proposed
scheme are independent of the length of the predicate and attribute vectors. The most efficient existing
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scheme is [29], where the private key length is three group elements and three pairings are needed for
decryption. In our scheme, the private key is only an element of G and an element of Zp, and only one
pairing is necessary during decryption. Furthermore, in [5], the private key length (2m|G|) and the
number of pairings (2m) are independent of the lengths of the vectors, where m is the leakage-resilience
parameter. However, m must be at least equal to or greater than 2. Therefore, the private key length
and pairing number are still larger than those obtained with our approach (this is because their scheme
degenerates to a conventional IPE scheme without leakage resilience when m = 1).

Table 1. Comparison of our scheme’s efficiency with that of other schemes. The vector length for
an IPE scheme is denoted by �; the bit lengths of the representations for an element in Zp and G are
denoted by |Zp| and |G|, respectively; the leakage resilience parameter is denoted by m.

Scheme Private Key Length Number of Pairings for Decryption Group Order

[1] (2�+ 1)|G| 2�+ 1 Composite
[3] (�+ 3)|G| �+ 3 Prime

[16]-1 (�+ 1)|G| 2 Prime
[16]-2 (�+ 6)|G|+ (�− 1)|Zp| 9 Prime
[22] (2�+ 3)|G| 2�+ 3 Prime

[24]-1 (4�+ 1)|G| 9 Prime
[24]-2 9|G| 9 Prime
[24]-3 11|G| 11 Prime
[23] (4�+ 2)|G| 4�+ 2 Prime
[25] (4�+ 2)|G| 4�+ 2 Prime

[26]-1 (15�+ 5)|G| 15�+ 5 Prime
[26]-2 (21�+ 9)|G| 21�+ 9 Prime
[27] 6�|G| 6� Prime
[28] �|G| � Composite
[29] 3|G| 3 Prime
[30] (4�+ 2)|G| 4�+ 4 Prime

[15]-1 (2�+ 1)|G|+ (�− 1)|Zp| 3 Prime
[15]-2 5|G| 3 Prime

[5] 2m|G| 2m Prime
[36] (4�+ 5)|G| 4�+ 5 Prime
[6]-1 5|G| 5 Prime
[6]-2 7|G| 7 Prime
[7] (�+ 1)|G| �+ 1 Composite

Ours 1|G|+ 1|Zp| 1 Prime

We also implemented our scheme and the schemes of [15,17,29] to compare efficiency. We chose
these three schemes for the following reasons:

• Among all the existing IPE schemes, the first scheme of [16] requires the smallest number of
pairings for decryption (only two pairings required);

• Among the schemes supporting constant private key length, the schemes of [15,29] require the
smallest number of pairings for decryption (only three pairings required).

The environment of the implementation is presented in Table 2, and the implementation results
are shown in Table 3. We implemented these schemes by using the Charm-Crypto library [37] and
Python language. For schemes constructed over symmetric paring groups (the approach in [16] and
our method), we selected the pairing group SS512 in [38] (also known as type A groups), and for
the schemes constructed over asymmetric pairing groups (in [15,29]), we chose the pairing group
BN254 in [39] (also known as type F groups). The SS512 group is a supersingular elliptic curve group
where the size of the base field order is 512 bits and the embedding degree is two. For a bilinear
map e : G×G → GT over the SS512 group, the bit lengths of elements in G and GT are 64 and
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128 bytes, respectively. In the case of the BN254 group, the size of the base field order is 256 bits and
the embedding degree is 12. For a bilinear map e : G1 ×G2 → GT over the BN254 group, the bit
lengths of elements in G1, G2, and GT are 64, 128, and 384 bytes, respectively. For the length of
predicate and attribute vectors, we chose � = 100. As evident in Table 3, the encryption and decryption
algorithms of our scheme were highly efficient. For decryption and encryption, only 10 and 20 ms was
required, respectively. Our encryption algorithm was 5, 8.5, and 13 times faster than that in [15,16,29],
respectively, and our decryption algorithm was 10, 14, and 14 times faster than that in [15,16,29],
respectively. Moreover, our private key length was 86, 2.6, and 4.3 times shorter than that in [15,16,29],
respectively. However, as a trade-off, the length of the ciphertext in our scheme was the largest among
these schemes.

Table 2. Environment of the implementation.

Specification

OS Ubuntu 18.04 LTS

CPU Intel i7-4790 3.6 GHz

RAM 8 gb

Language Python 3.6

Library Charm-Crypto v0.50

Table 3. Implementation results.

Scheme
Encryption Time Decryption Time Private Key Length Ciphertext Length

(ms) (ms) (kb) (kb)

[16] 100 100 31.7 0.937
[29] 170 140 0.955 17.5
[15] 260 140 1.59 25.9

Ours 20 10 0.37 31.3

6. Conclusions

In this work, an efficient IPE scheme in which the size of the private keys and the number of
pairings for decryption are constant is introduced; moreover, this scheme is coselective IND–CPA
secure under the modified decisional Diffie–Hellman assumption. Comparison and experimental
results are also provided to illustrate that the size and computing cost of this scheme are small. In future
works, we aim to improve the efficiency by reducing the ciphertext length and provide a security proof
for stronger security concerns under standard assumptions. Because the proposed scheme is based on
bilinear pairing, it cannot resist quantum attacks, unlike lattice-based IPE schemes. In future work,
we will explore how to construct an efficient and practical quantum-resistant IPE scheme.
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Featured Application: Splitting of formerly only integrated inference from object recognition

and other trained (and potentially untrained) machine learning approaches has broad applicabil-

ity in all application scenarios that rely on these types of models, with connected autonomous

cars, smart city applications, and video surveillance being prominent examples.

Abstract: With increasing numbers of computer vision and object detection application scenarios,
those requiring ultra-low service latency times have become increasingly prominent; e.g., those
for autonomous and connected vehicles or smart city applications. The incorporation of machine
learning through the applications of trained models in these scenarios can pose a computational
challenge. The softwarization of networks provides opportunities to incorporate computing into
the network, increasing flexibility by distributing workloads through offloading from client and
edge nodes over in-network nodes to servers. In this article, we present an example for splitting
the inference component of the YOLOv2 trained machine learning model between client, network,
and service side processing to reduce the overall service latency. Assuming a client has 20% of the
server computational resources, we observe a more than 12-fold reduction of service latency when
incorporating our service split compared to on-client processing and and an increase in speed of more
than 25% compared to performing everything on the server. Our approach is not only applicable to
object detection, but can also be applied in a broad variety of machine learning-based applications
and services.

Keywords: object detection; latency optimization; mobile edge cloud; connected autonomous cars;
smart city; video surveillance

1. Introduction

Multimedia network traffic has permeated all types of networks, and its dominance
continues with increased adoptions of new connected services. Within the range of multi-
media network traffic types, video is typically the most dominant form, especially with
respect to bandwidth requirements. For example, Cisco forecasts in [1] that 82% of In-
ternet Protocol (IP) traffic will be comprised of video by the year 2022. Within the video
domain, specifically the object detection sub-category has an additional significant latency
requirement, especially when applied in certain scenarios, see, e.g., [2]. The object iden-
tification and understanding within an ongoing video stream is based on the Computer
Vision (CV) domain of real-time video analysis. Prominent examples for real-time object
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detection and analysis include Google Lens or smart city applications that perform video
surveillance [3–5] or for connected autonomous cars, as illustrated in Figure 1. Especially
for the latter, incorporating new sensor data such as from LIDAR and other on-board
sensors that goes beyond image data alone is also attracting interest [6–8].

(a) (b)
Figure 1. Object detection use cases including pedestrians and vehicles detection. (a) Pedestrian data
set detection by YOLOv2 (image from [9]). (b) Object detection on the street (image from [10]).

Significant challenges exist to reliably perform real-time video analysis on resource-
limited devices, such as mobile phones or ad-hoc deployed video monitoring, when
considering higher frame rates of live video captures. The requirements are typically
high when locally processing data, as captured image analysis and machine vision tasks
that comprise visual understanding commonly encompass involved Artificial Intelligence
(AI) approaches. The AI component of these types of systems has undergone steady
improvements in recent years as well, with increasing precision and recall, especially for
Deep Learning (DL) approaches [11]. As these approaches exceed traditional methods,
deep learning-based mechanisms have become increasingly popular, themselves commonly
based on Convolutional Neural Networks (CNN) [12]. This enables CV systems to more
reliably detect objects even in complicated scenes. The training of these models is typically
highly resource-intensive; however, continuous improvements in hardware alleviate some
of these problems and make a focus on the inference from these models more important.
Example approaches include R-CNN [13], Faster R-CNN [14], and YOLO [15] combine
precision with improved detection speed (also referred to as the inference speed).

The focus on latency optimization in a mobile context has to combine several re-
quirements, such as resource usage and low latency of detection. Common resources
considered include memory, CPU, and bandwidth on the computing side, however, overall
system costs commonly need to be factored into solutions as well. For example, future
intelligent transport system and connected autonomous vehicle applications of object
detection are highly latency sensitive and mission-critical at the same time. Current ap-
proaches commonly are limited in realizing the full potential that upcoming network
softwarization provides:

• Object detection as outlined above is resource demanding and commonly not suitable
for prolonged execution on mobile (i.e., battery-limited) devices and can overwhelm
the computational resources of embedded solutions.

• Instead, cloud computing typically offers flexible resource management for computa-
tionally intensive tasks through computational offloading, see, e.g., [16,17].The need
to communicate with far-away cloud computing resources in traditional network
infrastructures, however, increases the overall service latency significantly.

• One approach to overcome the limitations of mobile processing while providing
low latency services is to combine local processing and geographically close cloud
services for more computationally expensive processing. While current communica-
tion networks infrastructure does not typically allow for in-network computing, new
softwarized networks provide this flexibility.
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• In this article, we focus on the latency optimization aspects of mobile object detection
by combining on-device and in-network computing. Our approach can be applied in
5G and beyond networks (as well as any network that has in-situ computing enabled).

In this article, we describe the implementation and performance analysis for a real-
time object detection method that incorporates this network softwarization and computing
resource provisioning.

The current trend to edge computing [18,19] and network softwarization in general
enables the flexible service and application deployment under tight latency constraints,
such as the one we consider here. Typically, deployments in softwarized networks include
a combination of technologies to fulfill the requirements of real-time use cases: Software-
Defined Networking (SDN) [20], Network Function Virtualization (NFV) [21], and Service
Function Chaining (SFC) [22]. As the network becomes softwarized, Computing in the
Network (COIN) and the Mobile Edge Cloud (MEC) [23] become powerful concepts to
combine mobile, local, and far computing resources in a flexible fashion per use-case.
Computing in the network will significantly reduce latency and issues that stem from
extended packet switching across multiple networks, such as congestion. Virtualized
resources can be flexibly deployed at various locations closer to the user, follow the user,
and be reallocated in a dynamic fashion. In such a setup, initial pre-processing could be
performed at edge nodes and reduce the subsequent nodes’ latency requirements for real-
time services. This split of overall service processing needs is enabled by the layer-based
approach used in object detection neural networks and the ability to split the location of
processing by connecting the different layers flexibly over the network.

We describe the overall approach in the following Section 2, which contains informa-
tion about the general on-device or on-server object recognition approach. Additionally,
we describe the implementation of a single service function split between an initial service
client and the server, noting that multiple splits could be performed as well. We follow
with the description of results for a latency-focused performance evaluation in Section 3
and discussion in Section 4 before concluding in Section 5.

2. Materials and Methods

In this manuscript, we employ the You Only Look Once (YOLO) object detection
library as a concrete example, noting that similarities with other neural networks can be
exploited to modify our described approach with those models and mechanisms as well.
In this section, initially discuss the general approach before describing YOLO and our
setup in greater detail.

2.1. CNN Object Detection Model Split

CNN approaches for object detection generally feature several types of interconnected
layers: convolutional layers, pooling layers, fully-connected layers, and batch normaliza-
tion layers. These layers are typically stacked in a pattern of convolutional layers and
activation functions followed by pooling layers, which (in multiple iterations) reduces the
overall size of the image to a smaller size. Once a desired small size has been reached, fully
connected layers are used, whereby the final layer contains the output. The output of each
convolutional or pooling layer is an intermediate representation of the original image data
relying on convolutional filters, their parameters derived via CNNs. The parameters (or
weights) are dynamic while the feature maps representing different features of an image
remain static and the overall outcome depends on the image input. Typically, the weights
and resulting output data types are floating-point numbers. After a convolution layer,
activation functions such as ReLU [24] are applied. To simplify the overall process, it is
also common that the overall image will be initially pre-processed, as multi-layer models
typically were trained for and assume a specific image size.

The limitations of computing resources (here, processing and memory) of edge nodes
motivates a split of the overall processing to take place via different levels of offloading. For
example, should traditional cloud computing approaches be involved, the entire sequence
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of images (or video frames) generated at the client on the network edge would have to be
forwarded to centralized cloud servers. In compute-and-forward networks, on the other
hand, computing resources are available inside the network which enables intermediate
processing. In turn, reduced amounts of data alleviate network congestion and can improve
overall service latency. We assume that deep learning frameworks such as Tensorflow [25]
can be deployed as VNFs inside the network as well as on the centralized server. We
additionally note that here, we consider a general CPU-based baseline evaluation, which
can greatly be enhanced with additional accelerators, such as GPUs or FPGAs.

A significant initial consideration is how and where to perform a potential split
between the on-device, edge, and centralized server processing in this overall architecture.
Table 1 provides the initial layers for YOLOv2 [26], SSD [27], VGG16 [28], and Faster
R-CNN [14].

Table 1. Initial 10-layer designs for example object detection models.

Model Structure of first 10 layers

YOLOv2 Conv. + Pool. + Conv. + Pool. + 3 Conv. + Pool. + 2 Conv.

SSD 2 Conv. + Pool. + 2 Conv. + Pool. + 3 Conv. + Pool.

VGG16 2 Conv. + Pool. + 2 Conv. + Pool. + 3 Conv. + Pool.

Faster R-CNN 2 Conv. + Pool. + 2 Conv. + Pool. + 3 Conv. + Pool.

Comparing these entries, all feature different combinations of similar layers that can
be evaluated to determine a favorable point to split the original model such that the part
before a split can be executed on a network device and bandwidth savings result. This
requires limiting the number of layers prior to a split. Consequently, the number of layers
before the split point should not be too high and the output data of the front part should
be smaller than the original input image size in order to realize bandwidth savings.

Given a particular split to enable the offloading of processing parts, the structure
of the pipeline for evaluating the performance of deploying object detection services in
edge computing such as MEC is presented in Figure 2 with a detailed visualization of
basic components.

SF3Data
Processor YOLO-1

Encoder

VNF

Users store&forward
compute&forward

YOLO-2

  Server

Classifier SFF1 SFF2 SFF3

SF1

Figure 2. Overview of the distributed architecture, here for the example employing YOLO [29].

The implementation of this example is focused on the VNF, which supports both
store-and-forward and compute-and-forward to adapt to the network state. The outer
Service Function Path is not modified during computation, i.e., the VNF will not affect
other protocols or the SFC architecture.

The VNF is employed to offload part of the overall computational burden of the CNN
related computations in the object detection from centralized servers to the network edge.
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We employ YOLOv2 as example for such object detection methods. YOLOv2 is deployed
in the VNF at the edge and the server. As described, we follow the outlined approach of
splitting the CNN model into two parts. The first part is deployed in the VNF and the
second part is deployed on the server. Following the overall desire to reduce the overall
service latency under the computational constraints, the complexity of the first part is lower
than that of the second part, where in our case, the first part will be the pre-processor for
video frames.

2.2. You Only Look Once (YOLO), But Twice

We now focus on the concrete implementation employed in the remainder of this
article. YOLOv2 is mainly constructed of convolutional layers and max-pooling layers [26],
similar to several other approaches highlighted in Table 1 and illustrated in Figure 3.

Conv/ReLU/Pool

+Result

Input

Figure 3. Combined Model structure of YOLOv2 as executed as a single instance.

Following our assumption of computational resource availability at clients, edge
nodes, and centralized cloud computing servers, increasing distance from the network edge
corresponds to higher computational resources. Subsequently, splitting workloads should
focus on the initial layers, provided that the split takes place at an advantageous processing
step in the neural network. Similarly, not too many layers should have been processed at
the initial nodes to improve the overall service latency and adhere to computing resource
restrictions. Figure 4 illustrates the different layer outputs in relation to the initial input
image for YOLOv2. Figure 4 additionally contains the reference input size (i.e., 1 × 608 ×
608 × 3).

While some initial layers clearly outsize the original input, the outputs of the latter
layers are very small. For example, the final convolutional layer has only 13% of the
original input size. In the first 10 layers, the output size of max_8 and conv_10 are both
66% of the input size, which are both candidates for a potential early split. To expedite the
processing, we here consider the first candidate max-pooling layer’s output as a split point.
This provides a possibility to compress the resulting feature maps (which should result in
smaller sizes than the input images). The resulting model’s split is illustrated in Figure 5,
showcasing how the outputs are communicated further into the network.
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Figure 4. Output size of each layer in YOLOv2 for conv-olutional and max-pooling layers [29].

+

Result Input max_8

conv_9

Figure 5. YOLOv2 split into two separate instances with the output of the eighth layer communicated
over the network.

In our particular example, the VNF consists of the following three components pack-
aged as container:

Data Processor The data processor collects the incoming video packets and performs rel-
evant pre-processing tasks. These tasks could encompass video decoding, image
manipulations (especially reshaping to proper input dimensions), or pixel representa-
tion changes.

YOLO Part 1 The initial part of YOLO as VNF provides initial detection model process-
ing as outlined in this section. The resulting feature maps contain the extracted
information from the original image.

Encoder The encoder ecodes (compresses) the resulting feature maps before sending
them to the server to reduce bandwidth requirements even further. As the feature
maps themselves are representable as image data data, we consider several image
compression approaches.
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The alternative approach to the YOLO service function split is the monolithic deploy-
ment on the central cloud server. A significant benefit is that cloud servers are generally
assumed to have an abundance of computing resources at their disposal. In our example
implementation, the server deploys the regular (full as in Figure 3) YOLOv2. Additionally,
the server also deploys the remaining layers of the split YOLOv2 service (as in Figure 5). To
enable separation of the server-side service to use, the VNF adds a small header indicating
which approach to use. Should the received data be pre-processed by the VNF, the poten-
tially compressed feature maps are decoded and entered in the remaining chain of layers.
Alternatively, should the received data be simply forwarded data from user equipment, the
traditional YOLOv2 pre-processing chain commences (employing the same mechanisms as
in the VNF). In either case, the object detection result is obtained on the server and sent
back to the user equipment after processing is completed.

2.3. Testbed Input Data Performance Metrics

Our example evaluation is based on the COCO data set [30], employing YOLOv2 [26]
as described in this section. We consider three different object detection scenarios, namely
(i.) on-device, (ii.) server-based, and (iii.) service function split. In addition to pre-
processing and subsequent YOLOv2 object detection fully deployed on the client/server,
we also perform a split with only layers after the max_8 on the server, and the layers and pro-
cessing before being implemented as VNF. In our example, the input images are normalized
to the range [0–1], i.e., the data type of all feature maps will be 32-bit float. For the overall
testbed, we employ a generic computer system with an i7-6700T CPU with 16GB RAM
using Ubuntu 18.04 LTS and implement the system in the Communication Networks Emu-
lator (ComNetsEmu), see [31]. The Tensorflow library v1.13 is used to implement the object
detection function of VNF and server. All programs and measurement scripts are imple-
mented in Python 3.6 and are publicly accessible in the repository of ComNetsEmu [32]. All
source code can be found in the folder: app/machine_learning_for_object_detection.
Detailed descriptions (for reproducible measurements) of all the libraries and environments
used can be found in the Dockerfile included in the repository. Provided the nature of
non-accelerated performance evaluation here, our results provide an upper first limit to
attainable latency, which can be improved upon, e.g., with GPU accelerations. The client,
VNF and server are running on different physical CPUs (using Linux cpuset_cpus) to min-
imize interference. For the latency measurements, a multi-hop topology is used connecting
client to in-network service function (processing or forwarding as illustrated in Figure 2)
and server. All links in the topology have the same homogeneous bandwidth is limits of to
10 Mbit/s with a fixed propagation delay of 150 ms. The same source image data is sent by
the client (pedestrian.jpg with a original size of 48 kB) for 30 repeated measurements. All
measurements were performed utilizing JPEG compression for the original and in-network
computation’s intermediate result forwarding.

As not only latency performance, but also the actual prediction outcome performance
are important for object detection services, a careful trade-off between the two should be
made. For the 8th layer (split point) of YOLOv2, the output data shape is 1 × 78 × 78 × 128,
which results in approximately 92% as a baseline average precision for the entire COCO
data set without YOLOv2 modifications. We select compression format and working point
following our reasoning in [29], with results illustrated in Figure 6 for multiple compression
approaches’ compression factor versus the average attainable precision.

As illustrated, only JPEG and WebP result in higher attainable average precision
beyond the 92% baseline. Subsequently, we select JPEG compression of about 50% to be
applied to the 7th layer output; the compressed data is about half of the original image
data (also in JPEG format).
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Figure 6. Image-based compression methods for JPEG input assumption, from [29].

We initially assume that the client features a limited processing capacity that is 20% that
of the server/service function in a common scenario. We base this split on the CoreMark
Benchmark [33] values per MHz for the Samsung Exynos 5422 (15.077 for four cores at 2.1
GHz) and the Intel Core i5-8500 (57.207 for four cores at 3 GHz). The Samsung Exynos
as a popular mobile device CPU and representative for a low-power fixed smart city
device or smartphone at just below 20% performance of the i5-8500. Similar comparisons
for other benchmarks confirm this general approach, e.g., the Passmark Average CPU
Mark [34] results for the entire CPU of current Android phones are around 6000 while
current dual CPU server systems are rated around 90,000. Based on single thread ratings, it
would require 1/10th of a modern server’s threads to replicate the entire available CPU
performance of a smartphone. Similarly, multi-core benchmarks from Geekbench v5 for a
Google Pixel 5 smartphone range around 1500 while the AMD Threadripper 3990X is rated
at around 27,000. Again, the idea of providing fractional resources for NFV would allow
us to serve 18 phones at full virtualized CPU performance in this foundational comparison.
In turn, we reason that our split is representative of the common performance differences
between mobile and short-term available edge computing resources. As we perform our
evaluations in the ComNetsEmu environment with the above settings, we note that during
the experimentation, the server is always allocated with 100% CPU time while the client
is allocated a dynamic portion of the server’s CPU time, denoted as α. With the overall
service latency T as the main focus of this article, we determine it as

T = tClient
CPU + tServer

CPU + 2 · tprop + tup
tran + tdown

tran . (1)

where intuitively tClient|Server
CPU denotes the required CPU times for client and server, respec-

tively. Similarly, we denote the fixed propagation delay as tprop and the up- or downstream

transmission delays as tup|down
tran .

3. Results

In this section, we describe the obtained service latency results for the three evaluated
scenarios of on-device, server-based, and service function split object detection service
with YOLOv2 as described in prior sections. We initially present our overarching results in
Table 2.
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Table 2. Overview of obtained service latency T results for YOLOv2 performed on-device (with varying degrees α of server
computation resource), store-and-forward networking with server-side processing, and compute-and-forward with α = 0.2
client-side processing up to layer 8 of YOLOv2 and remainder processing server-side. All results are in seconds.

Client, α Store Compute

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 (α = 0.2)

Min 116.498 74.990 50.103 28.381 16.132 11.883 9.517 8.229 7.368 6.575 8.937 6.012
Median 150.701 81.901 54.140 31.276 16.693 12.359 9.984 8.735 7.678 6.882 9.170 6.581
Average 147.884 81.656 53.902 31.275 16.746 12.406 9.964 8.695 7.712 6.904 9.242 6.643
Max 155.296 85.397 57.722 34.629 17.996 13.049 10.623 9.319 8.228 7.370 9.772 7.496
StdDev 8.952 2.565 1.844 1.639 0.450 0.320 0.313 0.296 0.253 0.226 0.237 0.408

We first observe that for the two scenarios of fully on-device (α = 1) and fully on-server
(Store), the server-side processing incurs a delay of just over 2 seconds. For the client-only
service latency, we notice an exponential increase as the performance of the client in relation
to the server diminishes. At α = 0.2, the client requires almost a 12-fold increase to process
the image. As outlined in the motivation in Section 2.3, we employ this as a comparison
point to the server for the compute-and-forward scenario. The compute-and-forward case
provides a total service latency that is just below that of the client having the full server
resources itself. We additionally notice from the table that the median and average are
fairly close to another, with generally less than one percent difference. A visual comparison
of these three service approaches is illustrated in Figure 7.

Figure 7. Service latency likelihood for YOLOv2 performed on-device only (with device com-
putational resources equal to server-side resources, α = 1), store-and-forward networking with
server-side processing only, and compute-and-forward with α = 0.2 client-side processing up to
layer 8 of YOLOv2 and remainder processing server-side.

We observe that the store-and-forward approach is in this comparison not desirable at
all, as it exhibits the highest service latency. The comparison of an assumed full server-level
CPU performance on the client side with the compute-and-forward approach with only
20% server-side equivalent resources on the client side showcases a significant overlap in
service time distributions. Particularly, we notice that 50% of the compute-and-forward
latency times observed are lower than any local processing, while the remaining 50% are
spread over the entire client-side processing range. In comparison, the store-and-forward
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approach yields a lower spread of latency values and is more comparable to the on-client
processing in this regard.

We now consider the impact of different local processing capabilities of the client in
comparison to the server. We illustrate the outcomes for the overall service latency for
different client computational resources in Figure 8. We initially note the increase in service
latency as the evaluation moves from compute-and-forward over store-and-forward to
the scenario of α = 0.5 in Table 2, assuming the client’s processing resources are 50% of
the server resources. We observe that the visual difference to the other two server-side
approaches is significant. We additionally observe the continuous increase of service
latency to the α = 0.2 case, which is the alternative to the compute-and-forward case and
showcases the immense benefit that can be obtained from our described approach visually.
Overall, we derive that the split between in-network processing and server-side processing
heavily favors the service function split, especially for scenarios where clients have low
computational resources when compared to available server-side resources.

Figure 8. Overall service latency times for YOLOv2 object detection for on-client (with client com-
putation resources equal to 20–50% server resources), traditional store-and-forward of image data
to the server for object detection, and service split between in-network computing and forwarding
to server.

4. Discussion

Overall, our results are indicative of significant service latency reductions that can
be attained through splitting the inference workload in the multi-layer YOLOv2 object
recognition model. Some of our results have show an increasing spread across service
latency values, especially in scenarios where the client has only smaller fractional CPU
times. This spread can be attributed to the increased burden on the CPU of performing
multiple operations and the overhead, especially when considering the computational
burden of the various layers in the YOLOv2 model. It is particularly noteworthy that the
emulation framework employed (ComNetsEmu) was not designed for ultra-low latency
usage and is originally a prototyping and teaching tool and we expect additional gains can
be realized when implementing our approach on production-level systems.

We note that our assumptions were based around similar architectures employed on
client and server implementations here, which could be even further abstracted across
different platforms and, most importantly, through the utilization of GPUs on the server
side rather than the CPU-driven approach we are evaluating here. Indeed, the comparison
between server and client is based on a generic viewpoint and does not account for potential
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additional gains due to parallel processing and multi-threading. Significant increases in
server core density also will increase the potential for the server side having significantly
more computational resources available for bursty operations such as individual image
operations even without GPUs.

Indeed, moving into ultra-low latency application scenarios will require changes to
the current approach to networked services, such as with a ChAin-based Low latency
VNF ImplemeNtation (CALVIN) [35], which significantly reduced processing times at
the network’s MEC. While negative effects can result [36], we showcased that in the
generic scenario we considered this was not the case. While commonly, specific hardware
is required to provide speed-up factors for learning, not inference, recent research has
also evaluated the possibility to employ commodity hardware for these scenarios [37,38].
Specifically, in [39], the authors were able to achieve a throughput of 19 decisions per
second for autonomous line following on a smart network interface. While the task at hand
is different, the overall concept of offloading potrtions or all of the computer vision tasks
into the network is similar.

Ongoing research takes place that continues on the various facets of object detection
mechanisms as well – in our context with continuous upgrades of the YOLO model. In [40],
the authors describe and improve upon YOLOv3 for the outlined significant ITS scenario.
They derive processing times of just below 10 ms, which reaches service latency levels
that are suitable for real-time object detection. Indeed, the interest for improvement
and implementation for YOLO at the network edge is continuously attracting research
interest [41–43] to improve upon the continuously developed YOLO, including hardware
implementations [44]. Comparing these optimized approaches to our evaluation base don
CPU processing alone is limited, as mostly, GPU or specialized hardware is employed for
this type of task. In turn, our results can be seen as a ceiling evaluation of the resulting
service latency for cases where no specialized hardware is available and processing needs
to be performed on the CPU.

5. Conclusions

There will be an increased need for object detection as well as other machine learning-
based approaches that are performed in a low-latency fashion in future application scenar-
ios. For example, future Intelligent Transport Systems (ITS) will rely on pedestrian and car
detection mechanisms to avoid loss of life and damage to property. Similarly, in connected
autonomous driving, an object detection service is helpful for decision-making, such as for
braking and obstacle avoidance. In the driver view, for example, object detection services
can help the car to protect vulnerable road users (VRUs) such pedestrians and bicycles as
we originally illustrated in Figure 1b.

Approaches that rely on machine learning commonly require significant processing,
which is not always available on device, but becomes available in the softwarized 5G and
beyond cellular networks. We present an approach to implement a service that splits the
traditional YOLOv2 model between an on-device client and centralized server component
by performing only the initial layers’ processing on the client and the remainder on the
server. Comparing our approach with traditional on-client and on-server processing with
varying degrees of client computational resources, we find that a 12-fold reduction of
the service latency can be achieved when the client has 20% of the server’s resources—
a scenario we deem likely in future connected device scenarios, especially for battery-
limited devices.

The approach to split the intermediate results in systems incorporating neural network
layers is not limited to object recognition tasks alone, but can be applied for all such systems.
The increased embedding of AI approaches in modern networked systems provides broad
opportunities to employ approaches such as ours to improve service levels and decrease
their latency times. A particularly interesting future avenue here would be the reliance on
partially pre-determined outcomes from prior cached results for distributed edge systems.
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Another venue currently under consideration is the combination of the service function
split we showcased here together with network coding.
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Abbreviations

The following abbreviations are used in this manuscript:

5G Fifth-Generation Cellular Networks
AI Artificial Intelligence
CNN Convolutional Neural Network
COIN COmputing In the Network
CPU Central Processing Unit
CV Computer Vision
DL Deep Learning
FPGA Field-Programmable Gate Array
GPU Graphics Processing Unit
IP Internet Protocol
ITS Intelligent Transport System
JPEG Joint Photographic Experts Group
LIDAR Light Detection and Ranging
MEC Mobile Edge Cloud
NFV Network Function Virtualization
RAM Random Access Memory
ReLU Rectified Linear Unit
SDN Software-Defined Network
SFC Service Function Chaining
UDP User Datagram Protocol
VNF Virtual Network Function
VRU Vulnerable Road User
YOLO You Look Only Once
WebP Web Picture
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Abstract: In this paper, we consider the physical layer security problem of the wireless communi-
cation system. For the multiple-input, multiple-output (MIMO) wireless communication system,
secrecy capacity optimization artificial noise (SCO−AN) is introduced and studied. Unlike its
traditional counterpart, SCO−AN is an artificial noise located in the range space of the channel
state information space and thus results in a significant increase in the secrecy capacity. Due to the
limitation of transmission power, making rational use of this power is crucial to effectively increase
the secrecy capacity. Hence, in this paper, the objective function of transmission power allocation is
constructed. We also consider the imperfect channel estimation in the power allocation problems.
In traditional AN research conducted in the past, the expression of the imperfect channel estimation
effect was left unknown. Still, the extent to which the channel estimation error impacts the accuracy
of secrecy capacity computation is not negligible. We derive the expression of channel estimation
error for least square (LS) and minimum mean squared error (MMSE) channel estimation. The
objective function for transmission power allocation is non-convex. That is, the traditional gradient
method cannot be used to solve this non-convex optimization problem of power allocation. An
improved sequence quadratic program (ISQP) is therefore applied to solve this optimization problem.
The numerical result shows that the ISQP is better than other algorithms, and the power allocation as
derived from ISQP significantly increases secrecy capacity.

Keywords: physical layer security; secure transmission; secrecy capacity; secrecy capacity optimization
artificial noise; power allocation; channel estimation error

1. Introduction

Secure transmission is a fundamental problem in wireless communications due to the
broadcast nature of the wireless medium. Along with the rapid advancement of informa-
tion technology, the higher information transmission rate has called for a stricter standard
of information transmission security. For a long time, the primary method of guaranteeing
the secure transmission of information has been via encryption technology. Encryption
technology utilizes the limitation in computing speed to prevent the eavesdropper from
deciphering all encrypted information in a limited time. However, as computer technology
advances with faster computation, the decryption of information becomes more straightfor-
ward. In theory, no encrypted information is indecipherable if the computer’s calculation
speed is fast enough. This indeed is the inherent flaw in the current information encryption
technology. Therefore, the physical layer security technology has been proposed to solve
the problems of secure information transmission.

The physical layer security technology differs substantially from the information
encryption technology. Unlike encryption technology, which relies on the limitation in
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computation speed, the physical layer security technology has its basis in the randomness
of the wireless communication channel. The physical layer security technology tries to
prevent eavesdroppers from decoding information, regardless of the amount of time or
the computing speed. One of the most innovative physical layer security technologies is
artificial noise (AN). AN adds extra noise to the information. This noise solely impacts the
eavesdropper’s channel but does not affect the legitimate receiver channel. That is, only
the signal received by the eavesdropper is reduced in this method. The effectiveness of the
physical layer technology is then evaluated by secrecy capacity.

The study of physical layer security begins from [1]. This paper proposes uncondi-
tional secure transmission as the ultimate goal of physical layer security technology study.

After [1,2] is the first paper to study the secure transmission of information from
the perspective of information theory. In [2], wiretap communication model with the
eavesdropping channel is proposed, and the aforementioned secrecy capacity was also
first proposed in this paper. Paper [3] studies the physical layer security technology based
on [2]. In [3], a broadcast channel model with confidential messages is proposed to extend
Wyner’s work.

Currently, the physical layer security technology has not been at the center of public at-
tention, primarily due to a strict restriction that the eavesdropper’s channel must be strictly
worse than the legitimate channel. Considering the following cases: the eavesdropper is
closer to the transmitter, or the eavesdropper has more antennas than the transmitter. These
mentioned conditions will make the eavesdropper’s channel better than the legitimate
channel and thus reduces the effectiveness of the physical layer security technology.

To help with the issue above, AN technology is introduced. The proposal of AN
technology reduces the difficulty of applying the physical layer security technology in the
multiple-input, multiple-output (MIMO) communication system [4]. AN is in the null
space of the legitimate channel, which mean the legitimate channel is not affected. There
is no need to employ any additional signal processing device to the legitimate receiver.
Meanwhile, the eavesdropper’s channel capacity is reduced significantly. To show this
result quantitatively, let A denote the channel capacity of the legitimate receiver and B
denote the channel capacity of the eavesdropper. The principle of AN is to increase the
difference A − B by reducing B and keeping A constant.

There have been many outstanding works in the realm of AN technology. In [5,6], AN
and the interference alignment technology are creatively merged to introduce AN featuring
interference alignment. In [7], the lower bound on the secrecy capacity of artificial noise
wireless communication systems subject to transmit power is proposed. Ref. [8] proposes
the secrecy capacity expression with imperfect channel estimation. This expression is
non-convex, so the gradient descent method cannot be used for this optimization problem.
Therefore, it is impossible to get the optimal solution of the secrecy capacity expression. The
study in [9–12] consider the effects of active eavesdropper. The active eavesdropper can
interfere with pilot to reduce the secrecy capacity of the wire-tap system. This is something
that hasn’t been explored in previous studies.

The past research on AN is summarized into two main aspects:

(1) Research on AN noise technology under different communication modes [13–21]:
examples include the AN power allocation problem in OFDM, GSM, and other
communication modes [22] and the application of AN under intelligent reflecting
surface [23]. The simplified communication model is Y = HX + e, where Y denotes
the received signal, H denotes the channel, X denotes the transmitted signal, and e
is the noise. The above researches focus on “H”.

(2) Reshaping certain features of AN. For example, Ref. [24] designs an artificial noise
that has interference alignment characteristics. The research focused on “X” from
the equation above [25–28].

Still, there has been little to no research attention on redesigning the core of AN.
Therefore, our research focus on creating a new kind of AN. Our research shows that our
new artificial noise has a better performance compared to its traditional counterpart.
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In [29], the secrecy capacity optimization artificial noise (SCO−AN) is proposed.
The core of AN technology is to design a noise in the null space of the channel state
information space. Unlike the traditional AN, which ignores the range space of the channel
state information space, SCO−AN is located in that range space. While SCO−AN may
slightly impact the channel capacity of the legitimate receiver, SCO−AN significantly
reduces the channel capacity of the eavesdropper. Therefore, this method still increases the
difference between the legitimate channel capacity and the eavesdropping channel capacity.
SCO−AN is a tool to convert the noise immunity of communication systems into secrecy
capacity.

As there is a limitation in the transmission power, it is critical to draw an optimization
problem to maximize the secrecy capacity under that limitation. The power allocation
problem becomes essential. Therefore, in this paper, we study the power allocation problem
of SCO−AN. The Hessian matrix of the SCO−AN power allocation objective function is not
positive definite, which means the objective function is non-convex. The maximum value
of the SCO−AN power allocation function cannot be obtained by the gradient descent
method. An improved sequential quadratic programming (ISQP) is proposed to solve this
problem. With the effects of imperfect channel estimation considered, the objective power
allocation function containing imperfect channel estimation parameters is constructed.

The main contributions of this paper are summarized as follows:

(1) In reality, the secrecy capacity of a wireless communication system using SCO−AN
is limited by transmission power. Considering this limitation, this paper constructs a
power distribution function for SCO−AN and the information-bearing signal.

(2) Since the power allocation objective function is non-convex, it is difficult to optimize
the power distribution function using a power optimization scheme based on gra-
dient descent. ISQP is then proposed to allocate power between SCO−AN and the
information-bearing signal. ISQP improves the traditional iterative algorithm and
reduces the computational complexity by simplifying the initial iterative matrix and
improving computational efficiency.

(3) Due to the influence of Gaussian white noise in the channel, there is an error in
the channel estimation, resulting in an error in the SCO−AN design. The channel
estimation error affects the accuracy of the power allocation optimization. This
paper considers the imperfect channel state information for power allocation. The
power allocation objective function of SCO−AN and the information-bearing signal
containing channel estimation errors is constructed. The expression for the channel
estimation errors is derived for the first time. This expression can then be applied to
future physical layer security research examining imperfect channel estimation.The
power allocation function is then converted to a function with only one variable–the
SCO−AN–simplifying the function’s overall computational complexity.

This paper is structured as follows:

• In Section 2, the system model and the framework are introduced.
• In Section 3, the objective function for the power allocation between SCO−AN and

the information-bearing signal, with and without considering imperfect channel
estimation, is proposed. ISQP is then applied to optimize the power allocation. The
algorithm flow of ISQP algorithm is constructed.

• In Section 4, simulation results are shown and discussed.
• In Section 5, the conclusion is drawn, and the suggestions for future work are presented.

In this paper, the following notations are used: Boldface upper case denotes matrices,
boldface lower case denotes vectors, italics case denotes numbers; [·]T denotes the matrix
transpose operation; [·]∗ denotes the complex conjugate operation; [·]† denotes the conju-
gate transpose operation (conjugate complex number) for the matrix (number) “·”; E{·}
denotes the mathematical expectation; ‖ · ‖ denotes the norm of a vector; and | · | denotes
the determinant of a matrix.
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2. Related Work and System Model

2.1. Related Work–Wireless Communication Model with Eavesdroppers

In this section, we review the artificial noise technology and the method of SCO−AN.
Moreover, the effects of imperfect channel estimation are analyzed in detail.

Figure 1 shows a wireless communication system model with an eavesdropper. In
this model, Alice is the transmitter of the message, Bob is the legitimate receiver, and
Eve is the eavesdropper. Alice has NA antennas, Bob has NB antennas and Eve has NE
antennas. H represents the channel state information (CSI) of the legitimate channel (Alice
to Bob), while G represents the CSI of the eavesdropper channel (Alice to Eve). Hk and
Gk represent the CSI of H and G at time k respectively. The element hi,j (or gi,j) in H (or
G) is the channel gain coefficient between the ith transmitter antenna and the jth receiver’s
(or eavesdropper’s) antenna. xk ∈ CNA represents the signal transmitted by Alice at time
k; yk ∈ CNE represents the signal received by Bob at time k; and zk ∈ CNB represents the
signal received by Eve at time k.

zk = Hkxk + nk, (1)

yk = Gkxk + ek, (2)

where nk and ek are independent and identically distributed (i.i.d) additive Gaussian
white noise (AGWN) with the variance of σ2

n and σ2
e respectively. For the convenience of

discussion, we assume that the CSI of G and H can be obtained by Alice without delay.
The maximum transmitting power is assumed to be P, where E[x†

k xk] ≤ P .

Figure 1. Wireless communication model with eavesdropper.
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2.2. Related Work–The Artificial Noise

Located in the null space of legitimate channel (i.e., Bob’s channel), AN does not affect
Bob’s reception of information. For Eve, however, AN reduces Eve’s channel capacity
significantly. Alice sends AN simultaneously while sending the information-bearing signal;
that is,

xk = wk + sk, (3)

In (3), wk ∈ CNA denotes AN; sk ∈ CNA denotes the information-bearing signal; and
wk is artificial noise, which is located in the null space of Hk, such that Hkwk = 0. Let Zk
be a standard orthonormal basis for Hk and vk be a complex random variable with the
variance of σ2

v such that wk = Zkvk and Z†
k Zk = I. Then, the signals received by Bob and

Eve are:
zk = Hkxk + nk

= Hkwk + Hksk + nk
= Hksk + nk,

(4)

yk = Gksk + Gkwk + ek, (5)

where yk is the signal received by Eve, and zk is the signal received by Bob. yk and zk are
Gaussian vectors. As wk is in the null space of Hk, we have Hkwk = 0 and the term with
wk vanishes in (4). That is, the artificial noise does not impact Bob, while Eve is affected.

In [4], the transmitted signal is chosen as sk = pkuk, where uk is the information signal
with the variance of σ2

u and pk obeys the independent Gaussian distribution. Here, pk is
chosen such that: (a) Hkpk = 1, and (b) ‖pk‖=1.

In [4], Goel considers two scenarios:

(a) A single-input, single-output (SISO) wireless communication system where the
transmitter, the receiver, and the eavesdropper equip one antenna each, i.e.,
NA = NB = NR = 1; and

(b) A MIMO wireless communication system where the the transmitter, the receiver,
and the eavesdropper each equip multiple antennas, i.e., NA = NB = NR > 1.

For scenario a, the variables in (4)–(6) are Gaussian complex variables. loge(∗) is used
to calculate entropy, so the lower bound on secrecy capacity after adding artificial noise is
given by:

Ca
sec = I(Z; S)− I(Y; S)

= log
(

1 +
|Hk pk|2σ2

u
σ2

n

)
− log

(
1 +

|Gk pk|2σ2
u

E|Gkwk|2 + σ2
e

)
,

(6)

where E|Gkwk|2 = (GkZkZ†
k G†

k )σ
2
k . Ca

sec denotes the secrecy capacity after adding artificial
noise, and I(A; B) denotes mutual information entropy of A and B.

For scenario b, Gk and Hk are Gaussian complex matrices. The elements in Gk and Hk
are Gaussian complex variables. The other variables in (4)–(6) are Gaussian vectors. It then
follows that the lower bound on secrecy capacity after adding artificial noise is given by:

Ca
sec = I(Z; S)− I(Y; S)

= log
∣∣∣Iσ2

n + HkE[sks†
k ]H

†
k

∣∣∣− log

(
|GkZkZ†

k G†
k σ2

v + GkE[sks†
k ]G

†
k |

|GkZkZ†
k G†

k σ2
v + Iσ2

e |

)
.

(7)

2.3. Related Work–SCO−AN: Perfect Channel Estimation

SCO−AN is proposed in [29]. In this section, SCO−AN is introduced in detail.
The goal of physical layer security is to maximize the secrecy capacity of a com-

munication system. In the wireless wiretap communication model, it is not possible to
increase the channel capacity of the legitimate receiver. AN is then proposed to reduce the
eavesdropper’s channel capacity while the legitimate receiver’s channel capacity remains
intact. Inspired by AN, the secrecy capacity optimization artificial noise (SCO−AN) is
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proposed in [29]. Unlike the traditional AN, SCO−AN has a slight impact on the legitimate
receiver’s channel capacity but reduces the capacity of eavesdropping channels much more
significantly. Hence, the system’s overall secrecy capacity increases.

Next, we compute the analytical expression of using SCO−AN, in a manner parallel
to our computations of AN above. Alice adds SCO−AN to the transmission signal:

xk = wg + sk, (8)

In [29], the transmitted signal is sk = pkuk, where uk is the information-bearing signal
with variance of σ2

u and pk obeys the Gaussian distribution. pk satisfies the following
conditions: (a) Hkpk = 1; and (b)‖pk‖=1. wg ∈ CNA denotes the SCO−AN. To facilitate
calculations, we assume that wg = Zkvg, where Zk is a standard orthonormal basis of Hk
and vg is a complex random variables with variance σ2

g . The signals received by the Bob
and Eve are:

zk = Hksk + Hkwg+nk, (9)

yk = Gksk + Gkwg + ek, (10)

where zk denotes the signal received by Bob and yk denotes the signal received by Eve.
For the SISO wireless communication system, all the elements in (8)–(10) are complex

variables. So the lower bound on secrecy capacity after adding SCO−AN is:

Cg
sec = I(Z; S)− I(Y; S)

= log
(

1 +
|Hk pk|2σ2

u
E|Hkwg|2 + σ2

n

)
− log

(
1 +

|Gk pk|2σ2
u

E|Gkwg|2 + σ2
e

)
,

(11)

where E
∣∣Hkwg

∣∣2 = (HkZkZ†
k H†

k )σ
2
g , and E

∣∣Gkwg
∣∣2 = (GkZkZ†

k G†
k )σ

2
g . Cg

sec denotes the
secrecy capacity after adding SCO−AN. In (11), Cg

sec is a non-convex function about σ2
g .

For the MIMO wireless communication system, Hk and Gk are gaussian complex
martixs, xk, wg, sk, nk and ek are gaussian vectors. So the lower bound on secrecy capacity
after adding SCO−AN is:

Cg
sec = I(Z; S)− I(Y; S)

= log

( |(HkZkZ†
k H†

k)σ
2
g + Iσ2

n + HkZkZ†
k H†

k σ2
u |

|(HkZkZ†
k H†

k)σ
2
g + Iσ2

n |

)

− log

( |(GkZkZ†
k G†

k)σ
2
g + Iσ2

e + GkZkZ†
k G†

k σ2
u |

|(GkZkZ†
k G†

k)σ
2
g + Iσ2

e |

) (12)

(12) is a function of σ2
g .

For the convenience of discussion, Ck
sec represents the change of secrecy capacity after

adding the SCO−AN when compared to simply adding traditional AN. For the case of
SCO−AN, to ensure the effectiveness of physical security, (13) must be guaranteed.

Ck
sec = Cg

sec − Ca
sec > 0, (13)

In (13), for the SISO communication system, Ca
sec is given by (6) and Cg

sec is given
by (11). For the MIMO communication system, Ca

sec is given by (7) and Cg
sec is given

by (12).
In Figure 2, the dashed line represents the secrecy capacity of AN calculated by (7),

and the solid line is the secrecy capacity of SCO−AN calculated by (12). The legitimate
channel H and the eavesdropper channel G are Rayleigh fading channels. The signal xk is
a complex covector. Figure 2 shows that SCO−AN provides more secrecy capacity than
AN does. The noise in H and G are Gaussian white noise. The secrecy capacity increases
with higher SNR.
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Figure 2. Secrecy capacity comparison of the AN and SCO−AN versus different SNR.

2.4. SCO−AN: Imperfect Channel Estimation

The Gaussian white noise causes the error of channel estimation. The effect of the
imperfect channel estimation should be considered.

For the SISO communication system, Heo denotes channel estimation error. The
channel state information received by Alice is H̃:

Hk = Heo + H̃, (14)

The signal received by Bob after adding SCO−AN is:

z∗k = (Heo + H̃)sk + (Heo + H̃)wg+nk, (15)

For MIMO communication system, Heo denotes channel estimation error. The channel
state information received by Alice is H̃ :

Hk = Heo + H̃, (16)

The signal received by Bob after adding SCO−AN is:

z∗k = (Heo + H̃)sk + (Heo + H̃)wg+nk, (17)

We assume that the channel estimation of G is perfect.
For the SISO communication system, Heo, H̃, and Zk are independent. Therefore,

|HeoZk|2 = |Heo|2|Zk|2,
∣∣H̃Zk

∣∣2 =
∣∣H̃∣∣2|Zk|2. The lower bound on secrecy capacity after

adding SCO−AN under imperfect channel estimation is:
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Cg
sec,eo = I(Z; S)− I(Y; S)

= log
(

1 + |H̃pk|2σ2
u

σ2
n+|Heo pk |2σ2

u+E|H̃wg|2+E|Heowg|2
)
− log

(
1 + |Gk pk |2σ2

u
E|Gkwg |2+σ2

e

)
= log

(
1 + |H̃pk|2σ2

u

σ2
n+|Heo pk |2σ2

u+|H̃Zk|2σ2
g+|HeoZk |2σ2

g

)
− log

(
1 + |Gk pk |2σ2

u
|GkZk |2σ2

g+σ2
e

)
= log

(
1 + |H̃pk|2σ2

u

σ2
n+|Heo pk |2σ2

u+|H̃|2|Zk |2σ2
g+|Heo |2|Zk |2σ2

g

)
− log

(
1 + |Gk pk |2σ2

u
|Gk |2|Zk |2σ2

g+σ2
e

) (18)

In (18), we see that the channel estimation error will affect the channel capacity of the
legitimate channel. Meanwhile, the secrecy capacity of the wireless communication system
is reduced.

For the MIMO system, the lower bound on secrecy capacity after adding SCO−AN
under imperfect channel estimation is:

Cg
sec,eo = I(Z; S)− I(Y; S)

= log

(
|KH + (Heo + H̃)ZkZ†

k(Heo + H̃)
†
σ2

u |
|KH |

)
− log

(
|KG + GkZkZ†

k G†
k σ2

u |
|KG|

)
(19)

In (19), KH = ((Heo + H̃)ZkZ†
k(Heo + H̃)†)σ2

g + Iσ2
n and KG = (GkZkZ†

k G†
k)σ

2
g + Iσ2

e .

2.5. Comprison of AN and SCO−AN

The artificial noise must be in the null space of the CSI matrix, this condition makes
the artificial noise design very challenging. Artificial noise is the solution of homoge-
neous linear equations Hkwk = 0. If the rank of the matrix Hk is r and the dimension is
n × m(n ≥ m), only when r < m, the homogeneous linear equation system Hkwk = 0 has
no solutions, when r = m, the homogeneous linear equations have only zero solutions. In
the environment of natural communication, the probability of occurrence of r = m is almost
zero, that is to say, in the conditions of natural communication, the design of artificial noise
is almost impossible.

For example, in MIMO, when the number of transmitting antennas is less than the
number of eavesdropping antennas, artificial noise cannot be designed; when the number
of transmitting antennas is equal to the number of eavesdropping antennas, artificial
noise can be designed under the condition |H| = 0. When the number of transmitting
antennas is greater than the number of eavesdropping antennas, artificial noise cannot
be designed. This is exactly the opposite of the original intention of AN. AN is designed
to solve the condition that the eavesdropping channel must be a weaken version of the
legitimate channel.

Therefore, the previous researches discussed some of the characteristics of AN theo-
retically and ignored its applicability.

For SISO, Hk is a constant and wk is a constant as well. If HkWk = 0 has a non-zero
solution, H = 0 must be guaranteed. Therefore, AN is not applicable in SISO wireless
communication system.

SCO−AN is located in the range space of the legitimate CSI space, so, Hkwg = 0.
There are countless non-zero solutions to wg, so we don’t worry about to design wg.
We try to design AN under the condition of Rayleigh fading channels, and carry out a

total of 1000 experiments, and all experiments fail. When we try to design SCO−AN, all
experiments are successful.

In Table 1, we compare SCO−AN and AN in detail, and briefly summarize the
characteristics and applicability of SCO−AN and AN. It can be seen that SCO−AN is
better than AN in every aspect.
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Table 1. Comprison of AN and SCO−AN.

Method Design Difficulty
Secrecy Capacity

Improvement
Application Connection with H Connection with G

AN tough normal normal in null space in range space
SCO−AN easy good good in range space in range space

3. Power Allocation of SCO−AN

The transmission power of the wireless communication system is limited. It is essential
to allocate secrecy capacity under limited transmission power.

3.1. Objective Function of Power Allocation
3.1.1. Objective Function of Power Allocation for SISO Communication System

‖pk‖2=1 and Zk is a standard orthonormal basis for Hk, which means ZkZ†
k = I for

MIMO and ZkZ†
k = 1 for SISO. We assume that the transmission power is P.

σ2
g + σ2

u ≤ P. (20)

We use x instead of σ2
u and y instead of σ2

g . The initial states of x and y are x0 and
y0 respectively. For the SISO communication system, the secrecy capacity before power
allocation is C0

sec. Therefore:

log

(
1 +

|Hk|2x0

σ2
n + |Hk|2y0

)
− log

(
1 +

|Gk|2x0

|Gk|2y0+σ2
e

)
= C0

sec. (21)

There are no variables except x0 and y0 in (21). The power allocation problem of
SCO−AN for SISO is written as:

min log

(
1 +

|Gk|2x

|Gk|2y+σ2
e

)
− log

(
1 +

|Hk|2x

σ2
n + |Hk|2y

)

s.t. log

(
1 +

|Hk|2x

σ2
n + |Hk|2y

)
− log

(
1 +

|Gk|2x

|Gk|2y+σ2
e

)
> C0

sec

log

(
|Hk|2x

σ2
n + |Hk|2y

)
≥ K

x + y ≤ P

x > 0

y > 0

(22)

In (22), a restricted condition log
(

1 + |Hk |2x
σ2

n+|Hk |2y

)
− log

(
1 + |Gk |2x

|Gk |2y+σ2
e

)
> C0

sec is

added to make sure that the optimal direction is correct. SCO−AN is an extra noise
for Bob the receiver as well. K is the minimum signal-to-noise ratio (SNR) for normal

communication. We add another restricted condition log
(

1 + |Hk |2x
σ2

n+|Hk |2y

)
≥ K to ensure

normal communication. The value of K varies among different communication systems.

The objective function in (22) is log
(

1 + |Gk |2x
|Gk |2y+σ2

e

)
− log

(
1 + |Hk |2x

σ2
n+|Hk |2y

)
. The Hes-

sian matrix of the objective function in (22) is not positive definite, so the extremum of
the objective function cannot be obtained by the partial derivative method. An improved
sequence quadratic program (ISQP) is adopted to optimize power allocation. The basic
idea of ISQP is that, at each iterative step, a quadratic programming problem is solved to
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establish a descent direction, which reduces the value function to obtain compensation.
The iterative steps are repeated until the solution of the original problem is obtained.

The Lagrange function of (22) is:

L(x, y, μ, λ) = f (x, y)− μ1h1(x, y)− ∑
j=1,2,3,4

λjgj(x, y), (23)

where

f (x, y) = − log
(

1 + |Hk |2x
σ2

n+|Hk |2y

)
+ log

(
1 + |Gk |2x

|Gk |2y+σ2
e

)
g1(x, y) = log

(
1 + |Hk |2x

σ2
n+|Hk |2y

)
− log

(
1 + |Gk |2x

|Gk |2y+σ2
e

)
− Csec0

g2(x, y) = x
g3(x, y) = y

g4(x, y) = log
(

|Hk |2x
σ2

n+|Hk |2y

)
− K

h1(x, y) = x + y − P.

(24)

For the case of imperfect channel estimation, the initial states of x and y are x0 and y0
respectively. The initial secrecy capacity is Ceo

sec.

log

(
1 +

∣∣H̃∣∣2x

σ2
n + |Heo|2x +

∣∣H̃∣∣2y + |Heo|2y

)
− log

(
1 +

|Gk|2x0

|Gk|2y0+σ2
e

)
= Ceo

sec (25)

The power allocation problem of SCO−AN for SISO under imperfect channel estima-
tion is written as:

min − log

(
1 +

∣∣H̃∣∣2x

σ2
n + |Heo|2x +

∣∣H̃∣∣2y + |Heo|2y

)
+ log

(
1 +

|Gk|2x

|Gk|2y + σ2
e

)

s.t. log

(
1 +

∣∣H̃∣∣2x

σ2
n + |Heo|2x +

∣∣H̃∣∣2y + |Heo|2y

)
− log

(
1 +

|Gk|2x

|Gk|2y + σ2
e

)
> Ceo

sec

log

(
1 +

∣∣H̃∣∣2x

σ2
n + |Heo|2x +

∣∣H̃∣∣2y + |Heo|2y

)
≥ K

x + y ≤ P

x > 0

y > 0

(26)

The Lagrange function of (26) is:

L(x, y, μ, λ) = f (x, y)− μ1h1(x, y)− ∑
j=1,2,3,4

λjgj(x, y), (27)

where

f (x, y) = − log
(

1 + |H̃|2x

σ2
n+|Heo |2x+|H̃|2y+|Heo |2y

)
+ log

(
1 + |Gk |2x

|Gk |2y+σ2
e

)
g1(x, y) = log

(
1 + |H̃|2x

σ2
n+|Heo |2x+|H̃|2y+|Heo |2y

)
− log

(
1 + |Gk |2x

|Gk |2y+σ2
e

)
− Ceo

sec

g2(x, y) = x
g3(x, y) = y

g4(x, y) = log
( |H̃|2x

σ2
n+|Heo |2x+|H̃|2y+|Heo |2y

)
− K

h1(x, y) = x + y − P,

(28)
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The most frequently used methods for channel estimation are least square (LS) channel
estimation and minimum mean square error (MMSE) channel estimation.

LS channel estimation is a classic algorithm for non-blind channel estimation. The
pilot symbols are used to estimate the channel.

The LS channel estimation is given as:

H̃LS = zk(xk)
−1. (29)

For the MIMO communication system, the LS channel estimation is:∥∥HLS
eo
∥∥2

=
∥∥H − H̃LS

∥∥2

=
∥∥∥(zk − n)x−1

k − xkx−1
k

∥∥∥2

=
∥∥∥nx−1

k

∥∥∥2
.

(30)

In (30), HLS
eo denotes the error of LS channel estimation and

∥∥HLS
eo
∥∥2 denotes the

second norm of the LS channel estimation error.
∥∥HLS

eo
∥∥2 is in proportion to the SNR of the

legitimate channel.
For the SISO communication system, the LS channel estimation is:∣∣∣HLS

eo

∣∣∣2 =
∣∣∣H − H̃LS

∣∣∣2 =
∣∣∣nx−1

k

∣∣∣2. (31)

For the MIMO communication system, similar to LS estimation, it is easy to obtain (32):∥∥HMMSE
eo

∥∥2
=
∥∥H − H̃MMSE

∥∥2

=

∥∥∥∥H − RHH̃(RHH + σ2
n

σ2
x

I)
−1

H̃LS

∥∥∥∥2

=

∥∥∥∥H − RHH̃(RHH + σ2
n

σ2
x

I)
−1

ykx−1
k

∥∥∥∥2
,

(32)

where HMMSE
eo denotes the error of MMSE channel estimation and RAB denotes the cross-

correlation matrix of A and B.
For SISO communication system, RAB denotes the cross-correlation coefficient of A

and B. ∣∣HMMSE
eo

∣∣2 =
∣∣H − H̃MMSE

∣∣2
=

∣∣∣∣H − RHH̃(RHH + σ2
e

σ2
x
)
−1

H̃LS

∣∣∣∣2
=

∣∣∣∣H − RHH̃(RHH + σ2
n

σ2
x
)
−1

ykx−1
k

∣∣∣∣2.

(33)

For the SISO communication system, according to the analysis above, every parameter
in (18) except σ2

g is available. (31) and (33) are applicable conclusions. However, for
MIMO communication system, the expansion of matrices is too complex, rendering (30)
and (32) inapplicable.

3.1.2. Objective Function of Power Allocation for MIMO Communication System

For the MIMO communication system, the power for each transmission is P0,m. Therefore,

σ2
g + σ2

u ≤ P0,m. (34)

The initial secrecy capacity is C0,m
sec . For the perfect channel estimation, the initial

secrecy capacity is given by:

log
∣∣Iσ2

n + HkZkZ†
k H†

k x0
∣∣− log

(
|GkZkZ†

k G†
k y0+Iσ2

e +GkZkZ†
k G†

k x0|
|GkZkZ†

k G†
k y0+Iσ2

e |

)
= C0,m

sec . (35)
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The power allocation problem of SCO−AN for MIMO is written as:

min log

(
|(GkZkZ†

k G†
k)y + Iσ2

e + GkZkZ†
k G†

k x|
|(GkZkZ†

k G†
k)y + Iσ2

e |

)
− log

(
|(HkZkZ†

k H†
k)y + Iσ2

n + HkZkZ†
k H†

k x|
|(HkZkZ†

k H†
k)y + Iσ2

n |

)

s.t. log

(
|(GkZkZ†

k G†
k)y + Iσ2

e + GkZkZ†
k G†

k x|
|(GkZkZ†

k G†
k)y + Iσ2

e |

)
− log

(
|(HkZkZ†

k H†
k)y + Iσ2

n + HkZkZ†
k H†

k x|
|(HkZkZ†

k H†
k)y + Iσ2

n |

)
> C0,m

sec

log

(
|(HkZkZ†

k H†
k)y + Iσ2

n + HkZkZ†
k H†

k x|
|(HkZkZ†

k H†
k)y + Iσ2

n |

)
> K

x + y ≤ P0,m

x > 0

y > 0

(36)

The Lagrange function of (36) is:

L(x, y, μ, λ) = f (x, y)− μ1h1(x, y)− ∑
j=1,2,3,4

λjgj(x, y), (37)

where

f (x, y) = log
(

|(GkZkZ†
k G†

k )y+Iσ2
e +GkZkZ†

k G†
k x|

|(GkZkZ†
k G†

k )y+Iσ2
e |

)
− log

(
|(HkZkZ†

k H†
k )y+Iσ2

n+HkZkZ†
k H†

k x|
|(HkZkZ†

k H†
k )y+Iσ2

n |

)
g1(x, y) = log

(
|(HkZkZ†

k H†
k )y+Iσ2

n+HkZkZ†
k H†

k x|
|(HkZkZ†

k H†
k )y+Iσ2

n |

)
− log

(
|(GkZkZ†

k G†
k )y+Iσ2

e +GkZkZ†
k G†

k x|
|(GkZkZ†

k G†
k )y+Iσ2

e |

)
− C0,m

sec

g2(x, y) = log
(

|(HkZkZ†
k H†

k )y+Iσ2
n+HkZkZ†

k H†
k x|

|(HkZkZ†
k H†

k )y+Iσ2
n |

)
− K

g3(x, y) = x
g4(x, y) = y
h1(x, y) = x + y − P0,m .

(38)

For the imperfect channel estimation, the initial secrecy capacity is C0,m
sec,eo. For the

imperfect channel estimation, the initial secrecy capacity is given by:

log

(∣∣∣Keo
H,0+(Heo+H̃)ZkZ†

k (Heo+H̃)
†x0

∣∣∣
|Keo

H,0|

)
− log

( |KG+GkZkZ†
k G†

k x0|
|KG |

)
= C0,m

sec,eo , (39)

In (39), Keo
H,0 = ((Heo + H̃)ZkZ†

k(Heo + H̃)†)y0 + Iσ2
n . We use x instead of σ2

u , y instead
of σ2

g and the initial states of x and y are x0 and y0 respectively.
For the imperfect channel estimation, the power allocation problem of SCO−AN is

written as:

min log

⎛⎝
∣∣∣KH + (Heo + H̃)ZkZ†

k(Heo + H̃)
†x
∣∣∣

|KH |

⎞⎠− log

(∣∣KG + GkZkZ†
k G†

k x
∣∣

|KG|

)

s.t. log

⎛⎝
∣∣∣KH + (Heo + H̃)ZkZ†

k(Heo + H̃)
†x
∣∣∣

|KH |

⎞⎠− log

(∣∣KG + GkZkZ†
k G†

k x
∣∣

|KG|

)
) > C0,m

sec,eo

log

⎛⎝
∣∣∣((Heo + H̃)ZkZ†

k(Heo + H̃)
†
)y + (Heo + H̃)ZkZ†

k(Heo + H̃)
†x
∣∣∣

|KH |

⎞⎠ ≥ K

x + y ≤ P0,m

x > 0

y > 0

(40)
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The Lagrange function of (40) is:

L(x, y, μ, λ) = f (x, y)− μ1h1(x, y)− ∑
j=1,2,3,4

λjgj(x, y), (41)

where

f (x, y) = − log

(∣∣∣KH+(Heo+H̃)ZkZ†
k (Heo+H̃)

†x
∣∣∣

|KH |

)
+ log

( |KG+GkZkZ†
k G†

k x|
|KG |

)
g1(x, y) = log

(∣∣∣KH+(Heo+H̃)ZkZ†
k (Heo+H̃)

†x
∣∣∣

|KH |

)
− log

( |KG+GkZkZ†
k G†

k x|
|KG |

)
− C0,m

sec,eo

g2(x, y) = log

(∣∣∣((Heo+H̃)ZkZ†
k (Heo+H̃)

†
)y+(Heo+H̃)ZkZ†

k (Heo+H̃)
†x
∣∣∣

|KH |

)
− K

g3(x, y) = x
g4(x, y) = y
h1(x, y) = x + y − P0,m

(42)

3.1.3. Objective Function of Power Allocation for SIMO Communication System with
Active Eavesdroppers

In this paper, we discussed the case of the passive eavesdropper. Recently, the pro-
posed pilot spoofing attack technology maked EVE to have the ability to attack Alice.
Therefore, we will discuss the influence of active eavesdroppers.As shown in Figure 3,
in the SIMO wire-tap communication system, Alice equips with N transmit antenna, N
one-antenna receivers (Bobs) equip with N one-antenna Eves. Let PN denotes the pilot
symbol. PN is known to Eve, which concurrently send the same pilot in the training
phase withe average transmission power Pe and Alice has a perfect knowledge of PN . The
relevant knowledge [30] of pilot frequency has been introduced in this paper and will not
be repeated.

Figure 3. Single-antenna eavesdroppers launch pilot spoofing attack.
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According to ([9]), for the LS estimatior,

h LS
= (KH

B KB)
−1KH

B z (43)

where h LS denotes the estimate of h with LS Estimator and KH
B

Δ
=

√
PB AB.

AB
Δ
=

1√
LB

[
a(θB,1,m), a(θB,2,m), . . . , a(θB,LB ,m)

]
(44)

AB
Δ
=

1√
LB

[
a(θB,1,m), a(θB,2,m), . . . , a(θB,LB ,m)

]
(45)

a(θB,l,m) =

[
1, e−j2π d

λc cos(θB,l,m), e−j4π d
λc cos(θB,l,m), . . . , e−j2nπ d

λc cos(θB,l,m)
]T

√
N

(46)

LB is the number of paths between the transmitter and Alice.
For the MMSE estimatior,

h MMSE
= (ILB + KH

B R−1
dd KB)

−1KH
B R−1

dd z, (47)

where h MMSE denotes the estimate of h with MMSE Estimator and Rdd
Δ
= KEKH

E +

σ2
v IN The power allocation problem of SCO−AN for SIMO with active eavesdropper

is written as:

min log

⎛⎝
∣∣∣KH + (heo + h̃)ZkZ†

k(heo + h̃)
†x
∣∣∣

|KH |

⎞⎠− log

(∣∣KG + GkZkZ†
k G†

k x
∣∣

|KG|

)

s.t. log

⎛⎝
∣∣∣Kh + (heo + h̃)ZkZ†

k(heo + h̃)
†x
∣∣∣

|KH |

⎞⎠− log

(∣∣KG + GkZkZ†
k G†

k x
∣∣

|KG|

)
) > C0,m

sec,eo

log

⎛⎝
∣∣∣((heo + h̃)ZkZ†

k(heo + h̃)
†
)y + (heo + h̃)ZkZ†

k(heo + H̃)
†x
∣∣∣

|KH |

⎞⎠ ≥ K

x + y ≤ P0,m

x > 0

y > 0

(48)

For SIMO communication system with active eavesdroppers, heo = h − h̃ in (48). h̃

denotes h̃LS when LS estimator is used and denotes h̃MMSE when MMSE estimator is used.
The Lagrange function of (48) is:

L(x, y, μ, λ) = f (x, y)− μ1h1(x, y)− ∑
j=1,2,3,4

λjgj(x, y), (49)
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where

f (x, y) = − log

(∣∣∣KH+(heo+h̃)ZkZ†
k (heo+h̃)

†x
∣∣∣

|KH |

)
+ log

( |KG+GkZkZ†
k G†

k x|
|KG |

)
g1(x, y) = log

(∣∣∣KH+(heo+h̃)ZkZ†
k (heo+h̃)

†x
∣∣∣

|KH |

)
− log

( |KG+GkZkZ†
k G†

k x|
|KG |

)
− C0,m

sec,eo

g2(x, y) = log

(∣∣∣((heo+h̃)ZkZ†
k (heo+h̃)

†
)y+(heo+h̃)ZkZ†

k (heo+h̃)
†x
∣∣∣

|KH |

)
− K

g3(x, y) = x
g4(x, y) = y
h1(x, y) = x + y − P0,m

(50)

The power allocation problems of SCO−AN with perfect channel estimation, imper-
fect channel and active eavesdropper are similar. Therefore, we use the same algorithm to
solve the problem.

3.2. SQP and ISQP Algorithm

μ and λ are Lagrange multipliers. To optimize the problems above, the following
conditions must be satisfied:

∂L
∂X

∣∣∣
x=x∗

= 0 (a)

λj = 0, (b)
uk ≥ 0, (c)
ukgk(x∗) = 0, (d)
hi(x∗) = 0 i = 1 (e)
gj(x∗) = 0, j = 1, 2, 3, 4 ( f )

(51)

(51) are Karush-Kuhn-Tucker conditions (KKT conditions). (a) is a necessary condition
when the extreme value of Lagrange function is taken; (b) is a Lagrange coefficient con-
straint; (c) is an inequality constraint case; (d) is the complementary relaxation condition;
(e) and (f) are the original constraints.

The KKT condition is a necessary condition for the optimal solution.
Condition (c) constructs the L(x, λ, μ) function and the condition L(x, λ, μ) ≤ f (x)

should be satisfied. In L(x, λ, μ) , μ is 0, so λ is less than or equal to 0.
A quadratic polynomial is used to approximate f (x, y). By expanding the quadratic

polynomial into a positive definite quadratic form, the following quadratic programming
subproblem is obtained:

min 1
2 dTBkd +∇ f (xk, yk)

Td
s.t h(xk, yk) + Aε

kd = 0
g(xk, yk) + AΓ

k d ≥ 0,
(52)

where Aε
k = ∇h(xk, yk), AΓ

k = ∇g(xk, yk),tk is a positive definite matrix, and dk is optimal
solution of quadratic programming subproblems.

Let x∗ denote the KKT point of the optimization constraint problem and λ∗, μ∗ ≥ 0
be its corresponding Lagrange multiplier vectors. For x∗, the following conditions should
be satisfied:

1. The Jacobi matrix of L(x, λ, μ) is row full rank.
2. The strict complementary relaxation condition should be satisfied; that is, gi(x∗) ≥ 0,

λ∗
i ≥ 0, gi(x∗)λ∗

i = 0, and gi(x∗) + λ∗
i > 0.

3. A sufficient second-order optimality condition should be satisfied, that is, for any
vector d = 0 that satisfies A(x∗)d = 0, the following condition is satisfied:

dTB(x∗, y∗, μ∗, λ∗)d > 0, (53)
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where B(x, y, μ, λ) is a positive definite matrix, at the beginning of the iteration,
B(x, y, μ, λ) is usually set as the identity matrix.

If (xk, yk, μk, λk) is close to (x∗, y∗, μ∗, λ∗) sufficiently, the quadratic programming
sub-problem of (53) has a local minimum point d∗. The corresponding effective constraint
index set is the same as the effective constraint index set of the original problem at (x∗, y∗).
Using the KKT conditions, (52) is equivalent to:

H1(d, μ, λ) = Bk − (Aε
k)

Tμ − (AΓ
k )

Tλ +∇ f (xk, yk), (54)

H2(d, μ, λ) = h(xk, yk) + (Aε
k)

Td, (55)

λ ≥ 0, g(xk, yk) + AΓ
k d ≥ 0, λ[g(xk, yk) + AΓ

k d] = 0, (56)

Note that Formula (20) and (23) are linear complementarity problems. We define
smooth FB-function:

ϕ(ε, a, b) = a + b −
√

a2 + b2 + 2ε2, (57)

where ε > 0 is a smooth parameter, and

Φ(ε, d, λ) = (ϕ1(ε, d, λ), ϕ2(ε, d, λ) . . . ϕm(ε, d, λ))T , (58)

in (32),
ϕi(ε, d, λ) = λi + [gi(xk, yk) + (AΓ

k )id]

−
√

λ2
i + [gi(xk, yk) + (AΓ

k )id]
2
+ 2ε2,

(59)

where (AΓ
k )i is the i-th row of AΓ

k . (18) and (19), (21) and (22) are equivalent to

H(z) := H(ε, d, μ, λ) =

⎛⎜⎜⎝
ε

H1(d, μ, λ)
H2(d, μ, λ)
Φ(ε, d, λ)

⎞⎟⎟⎠ = 0, (60)

The Jacobian matrix of (Hz) is

H′(z) =

⎛⎜⎜⎝
1 0 0 0
0 Bk −(Aε

k)
T −(AΓ

k )
H

0 Aε
k 0 0

ν D2(z)AΓ
k 0 D1(z)

⎞⎟⎟⎠, (61)

where ν = ∇εΦ(ε, d, λ) = (ν1, ν2, . . . , νm)T and

νi = − 2ε√
λ2

i + [gi(xk, yk) + (AΓ
k )id]

2
+ 2ε2

, (62)

D1(z) = diag(a1(z), a2(z), . . . , am(z)),
D2(z) = diag(b1(z), b2(z), . . . , bm(z)),

(63)

where
ai(z) = 1 − λi√

λ2
i +[gi(xk ,yk)+(AΓ

k )id]
2
+2ε2

,

bi(z) = 1 − gi(xk ,yk)+(AΓ
k )id√

λ2
i +[gi(xk ,yk)+(AΓ

k )id]
2
+2ε2

,
(64)

here, we make γ ∈ (0, 1) and a non-negative functions ψ(z) is

ψ(z) = γ‖H(z)‖min{1, ‖H(z)‖}. (65)

178



Appl. Sci. 2021, 11, 4558

Sequence quadratic program (SQP) is an iterative algorithm, the basic idea of SQP
is to apply approximate Newton method to the first-order optimality condition of con-
strained optimization problem. In each iteration step, a quadratic programming problem
with the quadratic approximation of Lagrange function as the objective function and the
linearization of the original constraint as the constraint condition are solved.

The full SQP is shown as follows:

Algorithm 1 SQP

Step 0: Set β=0.5, σ=0.2, ε=1 × 10−6, the initial vector d0 = (1, 1, 1)T, μ0 = 0,
λ0 = (0, 0, 0)T , z0 = (ε0, d0, μ0, λ0), z0 = (ε0, 0, 0, 0), i = 0
Step 1: If ‖H(zi)‖ ≤ 0, stop iteration, else, ψi = ψ(zi), ψi is shown in (37), H(zi) is shown
in (32).
Step 2: Solve the equations H(zi) + H′(zi)Δzi = ψz0 and then get the solution of the
equations: Δzi = (Δεi, Δdi, Δμi, Δλi)
Step 3: Let m be the smallest non-negative integer m that satisfies the following inequality:
H(zi + βmΔzi) ≤ [1 − σ(1 − γε0)βm)]‖H(zi)‖ where αi = ρmi , zi+1 = zi + αiΔzi
Step 4: i = i + 1, go to step1

We adopt a improved sequence quadratic program (ISQP) which is based on improve-
ments from sequence quadratic program. At the beginning of the iteration, the initial matrix
in (52), B(x, μ, λ) is set as the identity matrix in ISQP. In SQP, the initial matrix is designed as

W(x, y, u, λ) = ∇2( f (x, y))− l
∑

i=1
ui ×∇2(hi(x, y))− m

∑
i=1

λi ×∇2(gi(x, y)), ∇2(∗) denotes

the Hessian matrix of (∗). A second order partial derivative should be calculated in each

iteration of SQP. The complexity of W(x, y, u, λ) = ∇2( f (x, y))− l
∑

i=1
ui ×∇2(hi(x, y))−

m
∑

i=1
λi ×∇2(gi(x, y)) trivially is much larger than that of B(x, y, μ, λ).

3.3. Complexity Analysis

In this section, we assert the superiority of ISQP by comparing the complexity of the
three algorithms: ISQP, SQP, BPA and COCOA [31]. ISQP and SQP have been introduced
in detail in previous sections. The BPA algorithm is a traversal algorithm which searches
all directions in each iteration and then selects the best direction. The complexity of BPA
algorithm is high and the search direction is greatly affected by the step size. BPA is also
likely to search in the wrong direction. The complexity of ISQP, SQP, and BPA are shown
as follows. The change of angle for BPA is set as 5◦ so 36 rounds of calculation are needed
for just one iteration. The entries in the tables indicate the calculated amount required for
one iteration.

In Tables 2–5, NH1 denotes derivative of g1(x, y), and NH2 denotes derivative of
g2(x, y). The amounts of computation for derivative of g1(x, y) in SISO and MIMO are
different, so we use NH1 in place of the amounts of computation for derivative of g1(x, y).
Similarly, Nf 1 denotes derivative of the objective function, and Nf 2 denotes second deriva-
tive of the objective function. Four times of calculation are needed for the second second
derivative of the objective function. The objective function is a composite function, so Nf 2
is much larger than Nf 1.

Table 2. Complexity Analysis for SISO under Perfect Channel Estimation.

Algorithm Complexity for Each Iteration

ISQP 16(NH1 + NH2)+Nf 1 + 137
SQP 122 + 16(NH1 + NH2)+Nf 1 + Nf 2
BPA 36 Nf 2+144
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Table 3. Complexity Analysis for SISO under Imperfect Channel Estimation.

Algorithm Complexity for Each Iteration

ISQP 16(NH1 + NH2) + Nf 1 + 186
SQP 157 + 16(NH1 + NH2) + Nf 1 + Nf 2
BPA 36 Nf 2+186

Table 4. Complexity Analysis for MIMO under Perfect Channel Estimation.

Algorithm Complexity for Each Iteration

ISQP 16(NH1 + NH2) + Nf 1 + 167
SQP 142 + 16(NH1 + NH2) + Nf 1+Nf 2
BPA 36 Nf 2 + 166

Table 5. Complexity Analysis for MIMO under Imperfect Channel Estimation.

Algorithm Complexity for Each Iteration

ISQP 16(NH1 + NH2) + Nf 1 + 216
SQP 192 + 16(NH1 + NH2) + Nf 1 + Nf 2
BPA 36 Nf 2 + 234

4. Simulation Results

4.1. Simulation Environment and Discussion

In the simulation experiment for the MIMO communication system, there are two
transmitting antennas, two receiving antennas, and two eavesdropping antennas,
i.e., NA = NB = NE = 2. H and G are 2 × 2 Rayleigh fading channels. The distributions
of H and G both have a mean value of 0 and a variance of 0.5. The information-bearing
signals are random complex vectors. The transmission power is 10 (i.e., P = 10). The
Gaussian noise in the channel changes with the SNR. The SNR of H increases from 0 to 30,
while the SNR of G is 5 dB. All Parameters are shown in Table 6.

For the SISO communication system, NA = NR = NE = 1 by definition. The
information-bearing signals are a random complex number. The SNR of H increases from 0
to 30, while the SNR of G is 5 dB and P = 10.

Table 6. Simulation Parameters for MIMO.

Parameter Value

Number of Transmitting Antennas 2
Number of Receiving Antennas 2

Number of Eavesdropping Antennas 2
Transmission Power 10

Mean of Channel H and G 0
Variance of Channel H and G 0.5

4.2. Numerical Simulation and Discussion

Table 7 shows the increase of secrecy capacity after one iteration for SISO under perfect
channel estimation. The base value of the iteration step is β = 0.5. The imperfect channel
estimation is not considered here. The secrecy capacity increases the most after one iteration
of ISQP, followed closely by SQP. The secrecy capacity of the BPA algorithm has the least
increase. The COCOA algorithm, another typical iterative algorithm, is also compared in
Tables 7 and 8.
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Table 7. Secrecy Capacity Comparison for SISO under Perfect Channel Estimation.

Algorithm Intial Secrecy Capacity
Optimized Secrecy Capacity (β = 0.5,

One Step)

ISQP 0.3643 0.4243
SQP 0.3643 0.4256
BPA 0.3643 0.3821

COCOA 0.3643 0.4109

Table 8. Complexity Comparison for SISO under Perfect Channel Estimation.

Algorithm Amount of Computation for Each Iteration Number of Iterations

ISQP 732 5
SQP 897 5
BPA 6624 13

COCOA 933 7

Table 8 shows the complexity comparison of algorithms for SISO under the perfect
channel estimation. BPA leads to the largest calculated amount of computation and the
worst optimization result. Such poor performance is owing to the lack of clear search direc-
tions for BPA. On the contrary, ISQP has the smallest calculated amount of computation
and the best optimization result due to the simplicity of the initial matrix.

According to Tables 7 and 8, the optimization performance of ISQP is similar to that of
SQP. However, ISQP requires much less computation. Therefore, we conclude that ISQP is
a more effective and thus more desirable algorithm. ISQP and SQP requires fewer iterations
than COCOA when ε = 1 × 10−6. The expression ε = 1 × 10−6 refers to the two-norm of
the gradient rate for BPA and COCOA. Again, BPA requires the most iterations.

Tables 9–11 show the influence of the initial point on the optimization of secrecy
capacity. The results are similar across different algorithms. The even distribution of trans-
mission between information-bearing and SCO−AN seems to be the optimal distribution
scheme. This result paves the way to an exciting field for future research.

Table 9. Influence of the Initial Point on Secrecy Capacity (ISQP).

Algorithm (x0, y0) Intial Secrecy Capacity Optimized Secrecy Capacity

ISQP (5, 5) 0.5612 0.6312
ISQP (3, 7) 0.4785 0.5322
ISQP (1, 9) 0.3821 0.4329

Table 10. Influence of the Initial Point on Secrecy Capacity (SQP).

Algorithm (x0, y0) Intial Secrecy Capacity Optimized Secrecy Capacity

SQP (5, 5) 0.5612 0.6375
SQP (3, 7) 0.4785 0.5364
SQP (1, 9) 0.3821 0.4357

Table 11. Influence of the Initial Point on Secrecy Capacity (BPA).

Algorithm (x0, y0) Intial Secrecy Capacity Optimized Secrecy Capacity

BPA (5, 5) 0.5612 0.5924
BPA (3, 7) 0.4785 0.4922
BPA (1, 9) 0.3821 0.4012

181



Appl. Sci. 2021, 11, 4558

Figure 4 shows the performance comparison of different algorithms. Figure 4 con-
tains four subfigures, each showing a similar trend in the results. Subfigure (a) shows
the optimization performance of SISO under perfect channel estimation versus different
SNR. Subfigure (b) shows the optimization performance of SISO under imperfect channel
estimation versus different SNR. Subfigure (c) shows the optimization performance of
MIMO under perfect channel estimation versus different SNR. Subfigure (d) shows the
optimization performance of MIMO under imperfect channel estimation versus different
SNR. According to Section 3, BPA requires the most computation and has the worst opti-
mization performance. While SQP and ISQP have similar performance, SQP requires 15%
more calculated amounts than ISQP. The optimization performance of COCOA is slightly
better than that of BPA, but COCOA is not an excellent iterative algorithm due to the lack
of efficacy.

(a) SISO under Perfect Channel Estimation (b) SISO under Imperfect Channel Estimation

(c) MIMO under Perfect Channel Estimation (d) MIMO under Imperfect Channel Estimation

Figure 4. Comparison of Optimization Performance under Perfect and Imperfect Channel Estimation versus Different SNR.

Figure 5 shows SCO−AN’s secrecy capacity with and without allocation versus
different SNR. The effects of perfect and imperfect channel estimation are also considered.
The SNR of H increases from 2 to 30, while the SNR of G is 5 dB. ISQP allocates all the
transmission power. In this figure, the solid line shows the lower bound on optimized
secrecy capacity. The dashed line shows the lower bound on secrecy capacity without power
allocation. The results in Figure 5 are computed according to (6) and (12), and the ISQP
algorithm. The results show that the lower bound on secrecy capacity increases with power
allocation, implying the high effectiveness of the ISQP algorithm. The secrecy capacity
increases with SNR for H; that is, a low noise level improves secrecy capacity. The lower
bound on the secrecy capacity of SCO−AN decreases when the effect of imperfect channel
estimation is taken into consideration. The lower bound on the secrecy capacity with MMSE
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channel estimation is greater than the lower bound on that with LS channel estimation. We
then reach that the higher channel estimation accuracy enhances secrecy capacity.

Figure 6 shows SCO−AN’s secrecy capacity with and without active eavesdropper
versus different SNR. The effects of different kinds of channel estimation are also considered.
The SNR of H increases from 2 to 30, while the SNR of G is 5 dB. ISQP allocates all the
transmission power. In this figure, the solid line shows the lower bound on optimized
secrecy capacity. The results in Figure 6 are computed according to (43), (47) and (48)
and the ISQP algorithm. The results show that the lower bound on secrecy capacity
increases with power allocation, implying the high effectiveness of the ISQP algorithm.
The secrecy capacity increases with SNR for H; that is, a low noise level improves secrecy
capacity. The lower bound on the secrecy capacity of SCO−AN decreases when the
effect of active eavesdropper is taken into consideration. The lower bound on the secrecy
capacity with MMSE channel estimation is greater than the lower bound on that with LS
channel estimation.

Figure 5. SCO−AN’s Secrecy Capacity Before and After Power Allocation versus Different SNR and
Channel Estimation Algorithm.

Figure 7 shows SCO−AN’s secrecy capacity with active eavesdropper versus different
PE. The effects of different kinds of channel estimation are also considered. The power of
PE increases from 1 to 10, while the PB is unchanged. ISQP allocates all the transmission
power. The results show that the lower bound on secrecy capacity increases with power
allocation, implying the high effectiveness of the ISQP algorithm. The secrecy capacity
decreases with PE; that is, a low PE improves secrecy capacity. The lower bound on the
secrecy capacity with MMSE channel estimation is greater than the lower bound on that
with LS channel estimation.
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Figure 6. SCO−AN’s Secrecy Capacity Before and After Power Allocation versus Different SNR and
Channel Estimation Algorithm with and without active eavesdropper.

Figure 7. SCO−AN’s Secrecy Capacity Before and After Power Allocation versus Different PE and
Channel Estimation Algorithm.
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5. Conclusions and Future Work

In this paper, we study the power allocation problems of SCO−AN under perfect
and imperfect CSI. First, the power allocation model of SCO−AN with perfect channel
estimation is constructed. Then, the effect of the imperfect channel estimation error is
examined. The power allocation model of SCO−AN is constructed for the first time
in this paper, along with the expression of the imperfect channel estimation’s effect on
power allocation. The power allocation optimization problem is a crucial contribution to
optimizing secrecy capacity under imperfect channel estimation. The power allocation
problem’s objective function is non-convex, which poses challenges to the solving process.
Therefore, we solve this problem by adopting the ISQP algorithm. We compare ISQP with
the other three algorithms–SQP, BPA, and COCOA. Although ISQP is slightly worse than
SQP in terms of the optimization effect, the ISQP algorithm far exceeds other algorithms.
Moreover, ISQP requires the least complex computation. Therefore, we decide to choose the
ISQP algorithm. Our simulation results show that the secrecy capacity of SCO−AN wireless
communication system increases the most under ISQP algorithm. We then conclude that
the ISQP algorithm is the most effective for this purpose.

There is much room for future research. For any optimization problem, there is an
upper bound to be reached. What is the upper bound on secrecy capacity for SCO−AN
under a specific power? This question lays an exciting background for future research
directions. Since 2019, the research on the physical layer security of reflective intelligence
surfaces has become a research hotspot. The application of SCO−AN in intelligent reflector
technology is one of our future research contents as well. As inspired by many papers,
the features of mixing other SCO−AN signals also pose a meaningful research question,
such as SCO−AN with interference alignment characteristics and SCO−AN with channel
coding characteristics. Among these proposed topics for future studies, we will first study
the secrecy capacity’s upper bound of SCO−AN.
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